Sample records for reduce crew workload

  1. Flight deck crew coordination indices of workload and situation awareness in terminal operations

    NASA Astrophysics Data System (ADS)

    Ellis, Kyle Kent Edward

    Crew coordination in the context of aviation is a specifically choreographed set of tasks performed by each pilot, defined for each phase of flight. Based on the constructs of effective Crew Resource Management and SOPs for each phase of flight, a shared understanding of crew workload and task responsibility is considered representative of well-coordinated crews. Nominal behavior is therefore defined by SOPs and CRM theory, detectable through pilot eye-scan. This research investigates the relationship between the eye-scan exhibited by each pilot and the level of coordination between crewmembers. Crew coordination was evaluated based on each pilot's understanding of the other crewmember's workload. By contrasting each pilot's workload-understanding, crew coordination was measured as the summed absolute difference of each pilot's understanding of the other crewmember's reported workload, resulting in a crew coordination index. The crew coordination index rates crew coordination on a scale ranging across Excellent, Good, Fair and Poor. Eye-scan behavior metrics were found to reliably identify a reduction in crew coordination. Additionally, crew coordination was successfully characterized by eye-scan behavior data using machine learning classification methods. Identifying eye-scan behaviors on the flight deck indicative of reduced crew coordination can be used to inform training programs and design enhanced avionics that improve the overall coordination between the crewmembers and the flight deck interface. Additionally, characterization of crew coordination can be used to develop methods to increase shared situation awareness and crew coordination to reduce operational and flight technical errors. Ultimately, the ability to reduce operational and flight technical errors made by pilot crews improves the safety of aviation.

  2. Evaluation of the Display of Cognitive State Feedback to Drive Adaptive Task Sharing

    PubMed Central

    Dorneich, Michael C.; Passinger, Břetislav; Hamblin, Christopher; Keinrath, Claudia; Vašek, Jiři; Whitlow, Stephen D.; Beekhuyzen, Martijn

    2017-01-01

    This paper presents an adaptive system intended to address workload imbalances between pilots in future flight decks. Team performance can be maximized when task demands are balanced within crew capabilities and resources. Good communication skills enable teams to adapt to changes in workload, and include the balancing of workload between team members This work addresses human factors priorities in the aviation domain with the goal to develop concepts that balance operator workload, support future operator roles and responsibilities, and support new task requirements, while allowing operators to focus on the most safety critical tasks. A traditional closed-loop adaptive system includes the decision logic to turn automated adaptations on and off. This work takes a novel approach of replacing the decision logic, normally performed by the automation, with human decisions. The Crew Workload Manager (CWLM) was developed to objectively display the workload between pilots and recommend task sharing; it is then the pilots who “close the loop” by deciding how to best mitigate unbalanced workload. The workload was manipulated by the Shared Aviation Task Battery (SAT-B), which was developed to provide opportunities for pilots to mitigate imbalances in workload between crew members. Participants were put in situations of high and low workload (i.e., workload was manipulated as opposed to being measured), the workload was then displayed to pilots, and pilots were allowed to decide how to mitigate the situation. An evaluation was performed that utilized the SAT-B to manipulate workload and create workload imbalances. Overall, the CWLM reduced the time spent in unbalanced workload and improved the crew coordination in task sharing while not negatively impacting concurrent task performance. Balancing workload has the potential to improve crew resource management and task performance over time, and reduce errors and fatigue. Paired with a real-time workload measurement system, the CWLM could help teams manage their own task load distribution. PMID:28400716

  3. Evaluation of the Display of Cognitive State Feedback to Drive Adaptive Task Sharing.

    PubMed

    Dorneich, Michael C; Passinger, Břetislav; Hamblin, Christopher; Keinrath, Claudia; Vašek, Jiři; Whitlow, Stephen D; Beekhuyzen, Martijn

    2017-01-01

    This paper presents an adaptive system intended to address workload imbalances between pilots in future flight decks. Team performance can be maximized when task demands are balanced within crew capabilities and resources. Good communication skills enable teams to adapt to changes in workload, and include the balancing of workload between team members This work addresses human factors priorities in the aviation domain with the goal to develop concepts that balance operator workload, support future operator roles and responsibilities, and support new task requirements, while allowing operators to focus on the most safety critical tasks. A traditional closed-loop adaptive system includes the decision logic to turn automated adaptations on and off. This work takes a novel approach of replacing the decision logic, normally performed by the automation, with human decisions. The Crew Workload Manager (CWLM) was developed to objectively display the workload between pilots and recommend task sharing; it is then the pilots who "close the loop" by deciding how to best mitigate unbalanced workload. The workload was manipulated by the Shared Aviation Task Battery (SAT-B), which was developed to provide opportunities for pilots to mitigate imbalances in workload between crew members. Participants were put in situations of high and low workload (i.e., workload was manipulated as opposed to being measured), the workload was then displayed to pilots, and pilots were allowed to decide how to mitigate the situation. An evaluation was performed that utilized the SAT-B to manipulate workload and create workload imbalances. Overall, the CWLM reduced the time spent in unbalanced workload and improved the crew coordination in task sharing while not negatively impacting concurrent task performance. Balancing workload has the potential to improve crew resource management and task performance over time, and reduce errors and fatigue. Paired with a real-time workload measurement system, the CWLM could help teams manage their own task load distribution.

  4. Crew Integration & Automation Testbed and Robotic Follower Programs

    DTIC Science & Technology

    2001-05-30

    Evolving Technologies for Reduced Crew Operation” Vehicle Tech Demo #1 (VTT) Vehicle Tech Demo #2 ( CAT ATD) Two Man Transition Future Combat...Simulation Advanced Electronic Architecture Concept Vehicle Shown with Onboard Safety Driver Advanced Interfaces CAT ATD Exit Criteria...Provide 1000 Hz control loop for critical real-time tasks CAT Workload IPT Process and Product Schedule Crew Task List Task Timelines Workload Analysis

  5. Fatigue Mitigation and Crew Endurance Management in the Royal Australian Navy and the U.S. Navy: A Review of Recent Efforts and a Collaborative Path Forward

    DTIC Science & Technology

    2014-12-01

    research, several boundaries have been imposed to focus this thesis. 1. Scope This thesis is not a wholesale analysis of workload studies in...focus of this thesis. 2. Limitations Multiple factors, including mental and physical fatigue, influence crew endurance. More sleep of higher...support crew endurance are physical fitness, diet and nutrition, use of technology to reduce workload, reasonable living conditions, adequate manning

  6. Ground operation of the mobile servicing system on Space Station Freedom

    NASA Astrophysics Data System (ADS)

    Wojcik, Z. A.

    1992-11-01

    Space Station Freedom (SSF) will be assembled in the 1995 to 2000 time period, when permanently manned capability (PMC) will be achieved. During the build phase and after PMC, the Mobile Servicing System (MSS) will be used as a tool to assist crew in the building and in assembly and all maintenance aspects of SSF. Operation of the MSS will be executed and controlled by on-orbit crew, thereby having an impact on the limited crew time and resources. The current plan specifies that the MSS will not be operable when crew are not present. Simulations have been carried out to quantify the maintenance workload expected over the life of SSF. These simulations predict a peak in maintenance demand occurring even before PMC is achieved. The MSS is key to executing those maintenance tasks, and as a result, the demands on MSS crew resource will likely exceed availability, thereby creating a backlog of maintenance actions and negatively impacting SSF effectiveness. Ground operated telerobotics (GOT), the operation of the MSS from the ground, is being proposed as an approach to reducing the anticipated maintenance backlog, along with reducing crew workload when the MSS is executing simple or repetitive tasks. GOT would be implemented in a phased approach, both in terms of the type of activity carried out and the point of control gradually passing from on-orbit crew to ground personnel. The benefits of GOT are expressed in terms of reduced on-orbit crew workload, greater availability of the MSS during the post-PMC period, and the ability to significantly reduce or even eliminate any maintenance action backlog. The benefits section compares GOT with crew operation timelines, and identifies other benefits of GOT. Critical factors such as safety, space-ground communication latency, simulation, operations planning, and design considerations are reviewed.

  7. Assessment of pilot workload with the introduction of an airborne threat-alert system

    NASA Technical Reports Server (NTRS)

    Battiste, Vernol; Bortolussi, Michael R.

    1989-01-01

    Simulated line operations were used to assess the value of the TCAS on the pilot's ability to avoid a collision and to determine the effects of various display configurations and information contents on the flight-crew performance and workload. The crew flew a Phase II Link/Boeing 727 simulator in a simulated ATC environment. Four levels of collision avoidance information were evaluated using the following TCAS display formats: no TCAS information, TCAS information with no traffic display information, TCAS information with threat-activated traffic display information, and TCAS information with a full-time traffic display of threat information. It was found that the use of a threat-activated TCAS display significantly reduced the first officers' workload was significantly reduced by the threat-activated TCAS display, as were the workloads of the captain and the second officer.

  8. Flight Crew Factors for CTAS/FMS Integration in the Terminal Area

    NASA Technical Reports Server (NTRS)

    Crane, Barry W.; Prevot, Thomas; Palmer, Everett A.; Shafto, M. (Technical Monitor)

    2000-01-01

    Center TRACON Automation System (CTAS)/Flight Management System (FMS) integration on the flightdeck implies flight crews flying coupled in highly automated FMS modes [i.e. Vertical Navigation (VNAV) and Lateral Navigation (LNAV)] from top of descent to the final approach phase of flight. Pilots may also have to make FMS route edits and respond to datalink clearances in the Terminal Radar Approach Control (TRACON) airspace. This full mission simulator study addresses how the introduction of these FMS descent procedures affect crew activities, workload, and performance. It also assesses crew acceptance of these procedures. Results indicate that the number of crew activities and workload ratings are significantly reduced below current day levels when FMS procedures can be flown uninterrupted, but that activity numbers increase significantly above current day levels and workload ratings return to current day levels when FMS procedures are interrupted by common ATC interventions and CTAS routing advisories. Crew performance showed some problems with speed control during FMS procedures. Crew acceptance of the FMS procedures and route modification requirements was generally high; a minority of crews expressed concerns about use of VNAV in the TRACON airspace. Suggestions for future study are discussed.

  9. Crew procedures and workload of retrofit concepts for microwave landing system

    NASA Technical Reports Server (NTRS)

    Summers, Leland G.; Jonsson, Jon E.

    1989-01-01

    Crew procedures and workload for Microwave Landing Systems (MLS) that could be retrofitted into existing transport aircraft were evaluated. Two MLS receiver concepts were developed. One is capable of capturing a runway centerline and the other is capable of capturing a segmented approach path. Crew procedures were identified and crew task analyses were performed using each concept. Crew workload comparisons were made between the MLS concepts and an ILS baseline using a task-timeline workload model. Workload indexes were obtained for each scenario. The results showed that workload was comparable to the ILS baseline for the MLS centerline capture concept, but significantly higher for the segmented path capture concept.

  10. Crew procedures for microwave landing system operations

    NASA Technical Reports Server (NTRS)

    Summers, Leland G.

    1987-01-01

    The objective of this study was to identify crew procedures involved in Microwave Landing System (MLS) operations and to obtain a preliminary assessment of crew workload. The crew procedures were identified for three different complements of airborne equipment coupled to an autopilot. Using these three equipment complements, crew tasks were identified for MLS approaches and precision departures and compared to an ILS approach and a normal departure. Workload comparisons between the approaches and departures were made by using a task-timeline analysis program that obtained workload indexes, i.e., the radio of time required to complete the tasks to the time available. The results showed an increase in workload for the MLS scenario for one of the equipment complements. However, even this workload was within the capacity of two crew members.

  11. Predicting operator workload during system design

    NASA Technical Reports Server (NTRS)

    Aldrich, Theodore B.; Szabo, Sandra M.

    1988-01-01

    A workload prediction methodology was developed in response to the need to measure workloads associated with operation of advanced aircraft. The application of the methodology will involve: (1) conducting mission/task analyses of critical mission segments and assigning estimates of workload for the sensory, cognitive, and psychomotor workload components of each task identified; (2) developing computer-based workload prediction models using the task analysis data; and (3) exercising the computer models to produce predictions of crew workload under varying automation and/or crew configurations. Critical issues include reliability and validity of workload predictors and selection of appropriate criterion measures.

  12. Flight Crew Workload Evaluation Based on the Workload Function Distribution Method.

    PubMed

    Zheng, Yiyuan; Lu, Yanyu; Jie, Yuwen; Fu, Shan

    2017-05-01

    The minimum flight crew on the flight deck should be established according to the workload for individual crewmembers. Typical workload measures consist of three types: subjective rating scale, task performance, and psychophysiological measures. However, all these measures have their own limitations. To reflect flight crew workload more specifically and comprehensively within the flight environment, and more directly comply with airworthiness regulations, the Workload Function Distribution Method, which combined the basic six workload functions, was proposed. The analysis was based on the different conditions of workload function numbers. Each condition was analyzed from two aspects, which were overall proportion and effective proportion. Three types of approach tasks were used in this study and the NASA-TLX scale was implemented for comparison. Neither the one-function condition nor the two-function condition had the same results with NASA-TLX. However, both the three-function and the four- to six- function conditions were identical with NASA-TLX. Further, the significant differences were different on four to six conditions. The overall proportion was insignificant, while the effective proportions were significant. The results show that the conditions with one function and two functions seemed to have no influence on workload, while executing three functions and four to six functions had an impact on workload. Besides, effective proportions of workload functions were more precisely compared with the overall proportions to indicate workload, especially in the conditions with multiple functions.Zheng Y, Lu Y, Jie Y, Fu S. Flight crew workload evaluation based on the workload function distribution method. Aerosp Med Hum Perform. 2017; 88(5):481-486.

  13. Crew-integration and Automation Testbed (CAT)Program Overview and RUX06 Introduction

    DTIC Science & Technology

    2006-09-20

    unlimited Crew-integration and Automation Testbed ( CAT ) Program Overview and RUX06 Introduction 26-27 July 2006 Patrick Nunez, Terry Tierney, Brian Novak...3. DATES COVERED 4. TITLE AND SUBTITLE Crew-integration and Automation Testbed ( CAT )Program Overview and RUX06 Introduction 5a. CONTRACT...Experiment • Capstone CAT experiment – Evaluate effectiveness of CAT program in improving the performance and/or reducing the workload for a mounted

  14. Fatigue and Workload in Four-Man C-5A Cockpit Crews (Volant Galaxy).

    DTIC Science & Technology

    1980-08-01

    AD-AO91. 1.9 SCI400L OF AEROSPACE MEDICINE BROOKS AFB TX F/6 S/9 FATIGUE AND WORKLOAD ZN FOUR-NAN C-SA COCKPIT CREWS (VOLANT *AL--ETC(U$ AUG 80 W F...release; distribution unlimited. USAF SCHOOL OF ALROSPACE MEDICINE Aerospace Medical Division (AFSC) Brooks Air Force Base, Texas 78235 81 2 NOTICES...This final report was submitted by personnel of the Crew Performance Branch, Crew Technology Division, USAF School of Aerospace Medicine , Aerospace

  15. An Assessment of Reduced Crew and Single Pilot Operations in Commercial Transport Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Kramer, Lynda J.; Kennedy, Kellie D.; Stephens, Chad L.; Etherington, Timothy J.

    2017-01-01

    Future reduced crew operations or even single pilot operations for commercial airline and on-demand mobility applications are an active area of research. These changes would reduce the human element and thus, threaten the precept that "a well-trained and well-qualified pilot is the critical center point of aircraft systems safety and an integral safety component of the entire commercial aviation system." NASA recently completed a pilot-in-the-loop high fidelity motion simulation study in partnership with the Federal Aviation Administration (FAA) attempting to quantify the pilot's contribution to flight safety during normal flight and in response to aircraft system failures. Crew complement was used as the experiment independent variable in a between-subjects design. These data show significant increases in workload for single pilot operations, compared to two-crew, with subjective assessments of safety and performance being significantly degraded as well. Nonetheless, in all cases, the pilots were able to overcome the failure mode effects in all crew configurations. These data reflect current-day flight deck equipage and help identify the technologies that may improve two-crew operations and/or possibly enable future reduced crew and/or single pilot operations.

  16. Field study of communication and workload in police helicopters - Implications for AI cockpit design

    NASA Technical Reports Server (NTRS)

    Linde, Charlotte; Shively, Robert J.

    1988-01-01

    This paper reports on the work performed by civilian helicopter crews, using audio and video recordings and a variety of workload measures (heart rate and subjective ratings) obtained in a field study of public service helicopter missions. The number and frequency of communications provided a significant source of workload. This is relevant to the design of automated cockpit systems, since many designs presuppose the use of voice I/O systems. Fluency of communications (including pauses, hesitation markers, repetitions, and false starts) furnished an early indication of the effects of fatigue. Three workload measures were correlated to identify high workload segments of flight, and to suggest alternate task allocations between crew members.

  17. Autonomous Mission Operations

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Spirkovska, Lilijana; McCann, Rob; Wang, Lui; Pohlkamp, Kara; Morin, Lee

    2012-01-01

    NASA's Advanced Exploration Systems Autonomous Mission Operations (AMO) project conducted an empirical investigation of the impact of time-delay on todays mission operations, and of the effect of processes and mission support tools designed to mitigate time-delay related impacts. Mission operation scenarios were designed for NASA's Deep Space Habitat (DSH), an analog spacecraft habitat, covering a range of activities including nominal objectives, DSH system failures, and crew medical emergencies. The scenarios were simulated at time-delay values representative of Lunar (1.2-5 sec), Near Earth Object (NEO) (50 sec) and Mars (300 sec) missions. Each combination of operational scenario and time-delay was tested in a Baseline configuration, designed to reflect present-day operations of the International Space Station, and a Mitigation configuration in which a variety of software tools, information displays, and crew-ground communications protocols were employed to assist both crews and Flight Control Team (FCT) members with the long-delay conditions. Preliminary findings indicate: 1) Workload of both crew members and FCT members generally increased along with increasing time delay. 2) Advanced procedure execution viewers, caution and warning tools, and communications protocols such as text messaging decreased the workload of both flight controllers and crew, and decreased the difficulty of coordinating activities. 3) Whereas crew workload ratings increased between 50 sec and 300 sec of time-delay in the Baseline configuration, workload ratings decreased (or remained flat) in the Mitigation configuration.

  18. Quantifying Pilot Contribution to Flight Safety During Dual Generator Failure

    NASA Technical Reports Server (NTRS)

    Etherington, Timothy J.; Kramer, Lynda J.; Kennedy, Kellie D.; Bailey, Randall E.; Last, Mary Carolyn

    2017-01-01

    Accident statistics cite flight crew error in over 60% of accidents involving transport category aircraft. Yet, a well-trained and well-qualified pilot is acknowledged as the critical center point of aircraft systems safety and an integral safety component of the entire commercial aviation system. No data currently exists that quantifies the contribution of the flight crew in this role. Neither does data exist for how often the flight crew handles non-normal procedures or system failures on a daily basis in the National Airspace System. A pilot-in-the-loop high fidelity motion simulation study was conducted by the NASA Langley Research Center in partnership with the Federal Aviation Administration (FAA) to evaluate the pilot's contribution to flight safety during normal flight and in response to aircraft system failures. Eighteen crews flew various normal and non-normal procedures over a two-day period and their actions were recorded in response to failures. To quantify the human's contribution, crew complement was used as the experiment independent variable in a between-subjects design. Pilot actions and performance when one of the flight crew was unavailable were also recorded for comparison against the nominal two-crew operations. This paper details diversion decisions, perceived safety of flight, workload, time to complete pertinent checklists, and approach and landing results while dealing with a complete loss of electrical generators. Loss of electrical power requires pilots to complete the flight without automation support of autopilots, flight directors, or auto throttles. For reduced crew complements, the additional workload and perceived safety of flight was considered unacceptable.

  19. Reactions of Air Transport Flight Crews to Displays of Weather During Simulated Flight

    NASA Technical Reports Server (NTRS)

    Bliss, James P.; Fallon, Corey; Bustamante, Ernesto; Bailey, William R., III; Anderson, Brittany

    2005-01-01

    Display of information in the cockpit has long been a challenge for aircraft designers. Given the limited space in which to present information, designers have had to be extremely selective about the types and amount of flight related information to present to pilots. The general goal of cockpit display design and implementation is to ensure that displays present information that is timely, useful, and helpful. This suggests that displays should facilitate the management of perceived workload, and should allow maximal situation awareness. The formatting of current and projected weather displays represents a unique challenge. As technologies have been developed to increase the variety and capabilities of weather information available to flight crews, factors such as conflicting weather representations and increased decision importance have increased the likelihood for errors. However, if formatted optimally, it is possible that next generation weather displays could allow for clearer indications of weather trends such as developing or decaying weather patterns. Important issues to address include the integration of weather information sources, flight crew trust of displayed weather information, and the teamed reactivity of flight crews to displays of weather. Past studies of weather display reactivity and formatting have not adequately addressed these issues; in part because experimental stimuli have not approximated the complexity of modern weather displays, and in part because they have not used realistic experimental tasks or participants. The goal of the research reported here was to investigate the influence of onboard and NEXRAD agreement, range to the simulated potential weather event, and the pilot flying on flight crew deviation decisions, perceived workload, and perceived situation awareness. Fifteen pilot-copilot teams were required to fly a simulated route while reacting to weather events presented in two graphical formats on a separate visual display. Measures of flight crew reactions included performance-based measures such as deviation decision accuracy, and judgment-based measures such as perceived decision confidence, workload, situation awareness, and display trust. Results demonstrated that pilots adopted a conservative reaction strategy, often choosing to deviate from weather rather than ride through it. When onboard and NEXRAD displays did not agree, flight crews reacted in a complex manner, trusting the onboard system more but using the NEXRAD system to augment their situation awareness. Distance to weather reduced situation awareness and heightened workload levels. Overall, flight crews tended to adopt a participative leadership style marked by open communication. These results suggest that future weather displays should exploit the existing benefits of NEXRAD presentation for situation awareness while retaining the display structure and logic inherent in the onboard system.

  20. Real-time simulation of an airborne radar for overwater approaches

    NASA Technical Reports Server (NTRS)

    Karmarkar, J.; Clark, D.

    1982-01-01

    Software developed to provide a real time simulation of an airborne radar for overwater approaches to oil rig platforms is documented. The simulation is used to study advanced concepts for enhancement of airborne radar approaches (ARA) in order to reduce crew workload, improve approach tracking precision, and reduce weather minimums. ARA's are currently used for offshore helicopter operations to and from oil rigs.

  1. A simulator study of the interaction of pilot workload with errors, vigilance, and decisions

    NASA Technical Reports Server (NTRS)

    Smith, H. P. R.

    1979-01-01

    A full mission simulation of a civil air transport scenario that had two levels of workload was used to observe the actions of the crews and the basic aircraft parameters and to record heart rates. The results showed that the number of errors was very variable among crews but the mean increased in the higher workload case. The increase in errors was not related to rise in heart rate but was associated with vigilance times as well as the days since the last flight. The recorded data also made it possible to investigate decision time and decision order. These also varied among crews and seemed related to the ability of captains to manage the resources available to them on the flight deck.

  2. 14 CFR 23.1523 - Minimum flight crew.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Minimum flight crew. 23.1523 Section 23... Information § 23.1523 Minimum flight crew. The minimum flight crew must be established so that it is... commuter category airplanes, each crewmember workload determination must consider the following: (1) Flight...

  3. 14 CFR 23.1523 - Minimum flight crew.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Minimum flight crew. 23.1523 Section 23... Information § 23.1523 Minimum flight crew. The minimum flight crew must be established so that it is... commuter category airplanes, each crewmember workload determination must consider the following: (1) Flight...

  4. 14 CFR 23.1523 - Minimum flight crew.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Minimum flight crew. 23.1523 Section 23... Information § 23.1523 Minimum flight crew. The minimum flight crew must be established so that it is... commuter category airplanes, each crewmember workload determination must consider the following: (1) Flight...

  5. Training for Aviation Decision Making: The Naturalistic Decision Making Perspective

    NASA Technical Reports Server (NTRS)

    Orasanu, Judith; Shafto, Michael G. (Technical Monitor)

    1995-01-01

    This paper describes the implications of a naturalistic decision making (NDM) perspective for training air crews to make flight-related decisions. The implications are based on two types of analyses: (a) identification of distinctive features that serve as a basis for classifying a diverse set of decision events actually encountered by flight crews, and (b) performance strategies that distinguished more from less effective crews flying full-mission simulators, as well as performance analyses from NTSB accident investigations. Six training recommendations are offered: (1) Because of the diversity of decision situations, crews need to be aware that different strategies may be appropriate for different problems; (2) Given that situation assessment is essential to making a good decision, it is important to train specific content knowledge needed to recognize critical conditions, to assess risks and available time, and to develop strategies to verify or diagnose the problem; (3) Tendencies to oversimplify problems may be overcome by training to evaluate options in terms of goals, constraints, consequences, and prevailing conditions; (4) In order to provide the time to gather information and consider options, it is essential to manage the situation, which includes managing crew workload, prioritizing tasks, contingency planning, buying time (e.g., requesting holding or vectors), and using low workload periods to prepare for high workload; (5) Evaluating resource requirements ("What do I need?") and capabilities ("'What do I have?" ) are essential to making good decisions. Using resources to meet requirements may involve the cabin crew, ATC, dispatchers, and maintenance personnel; (6) Given that decisions must often be made under high risk, time pressure, and workload, train under realistic flight conditions to promote the development of robust decision skills.

  6. Effects of Automation on Aircrew Workload and Situation Awareness in Tactical Airlift Missions

    DTIC Science & Technology

    2015-12-24

    autopilot (Hall, 1996; FAA). The inability of the crew to manually override the autopilot and mode confusion was causal to the Exxon Valdez oil spill...malfunctioned. In the case of a loss in propeller hydraulic fluid (“Prop Low Oil ” light), a warning light illuminates on the engine instrument stack...2013). Analysis of workload of tank crew under the conditions of informatization . Beijing: China North Vehicle Research Institute. Martin, G

  7. Analytic and subjective assessments of operator workload imposed by communications tasks in transport aircraft

    NASA Technical Reports Server (NTRS)

    Eckel, J. S.; Crabtree, M. S.

    1984-01-01

    Analytical and subjective techniques that are sensitive to the information transmission and processing requirements of individual communications-related tasks are used to assess workload imposed on the aircrew by A-10 communications requirements for civilian transport category aircraft. Communications-related tasks are defined to consist of the verbal exchanges between crews and controllers. Three workload estimating techniques are proposed. The first, an information theoretic analysis, is used to calculate bit values for perceptual, manual, and verbal demands in each communication task. The second, a paired-comparisons technique, obtains subjective estimates of the information processing and memory requirements for specific messages. By combining the results of the first two techniques, a hybrid analytical scale is created. The third, a subjective rank ordering of sequences of communications tasks, provides an overall scaling of communications workload. Recommendations for future research include an examination of communications-induced workload among the air crew and the development of simulation scenarios.

  8. Pilot Workload Measurement and Experience on Supersonic Cruise Aircraft

    NASA Technical Reports Server (NTRS)

    Rezek, T. W.

    1978-01-01

    Aircraft parameters and physiological parameters most indicative of crew workload were investigated. Recommendations were used to form the basis for a continuing study in which variations of the interval between heart beats are used as a measure of nonphysical workload. Preliminary results are presented and current efforts in further defining this physiological measure are outlined.

  9. Development of preliminary design concept for a multifunction display and control system for the Orbiter crew station. Task 4: Design concept recommendation

    NASA Technical Reports Server (NTRS)

    Spiger, R. J.; Farrell, R. J.; Holcomb, G. A.

    1982-01-01

    Application of multifunction display and control systems to the NASA Orbiter spacecraft offers the potential for reducing crew workload and improving the presentation of system status and operational data to the crew. A design concept is presented for the application of a multifunction display and control system (MFDCS) to the Orbital Maneuvering System and Electrical Power Distribution and Control System on the Orbiter spacecraft. The MFDCS would provide the capability for automation of procedures, fault prioritization and software reconfiguration of the MFDCS data base. The MFDCS would operate as a stand-alone processor to minimize the impact on the current Orbiter software. Supervisory crew command of all current functions would be retained through the use of several operating modes in the system. Both the design concept and the processes followed in defining the concept are described.

  10. Crew workload in JASDF C-1 transport flights: I. Change in heart rate and salivary cortisol.

    PubMed

    Kakimoto, Y; Nakamura, A; Tarui, H; Nagasawa, Y; Yagura, S

    1988-06-01

    The physiological responses of heart rate and salivary cortisol for six paired captains and co-pilots during JASDF scheduled transport flights were compared to assess crew workload. The relative change of both responses showed similar patterns and were influenced significantly by whether pilots were controlling the aircraft. Moreover, differences in flying experience and responsibility of captains and co-pilots influenced the two physiological responses; heart rate and salivary cortisol measures increased more for both captains and co-pilots while they were in control of the aircraft than when they were not. Compared to captains, co-pilots showed much higher activation and variability in relative change of heart rate and salivary cortisol between periods of controlling and non-controlling the aircraft. On the other hand, captains showed relatively constant responses comparing aircraft controlling and non-controlling periods, especially in the cruise phase of flight. Salivary cortisol may be a useful, non-invasive method of assess crew workload.

  11. Crew workload-management strategies - A critical factor in system performance

    NASA Technical Reports Server (NTRS)

    Hart, Sandra G.

    1989-01-01

    This paper reviews the philosophy and goals of the NASA/USAF Strategic Behavior/Workload Management Program. The philosophical foundation of the program is based on the assumption that an improved understanding of pilot strategies will clarify the complex and inconsistent relationships observed among objective task demands and measures of system performance and pilot workload. The goals are to: (1) develop operationally relevant figures of merit for performance, (2) quantify the effects of strategic behaviors on system performance and pilot workload, (3) identify evaluation criteria for workload measures, and (4) develop methods of improving pilots' abilities to manage workload extremes.

  12. The Impact of Data Communications Messages in the Terminal Area on Flight Crew Workload and Eye Scanning

    NASA Technical Reports Server (NTRS)

    Comstock, James R., Jr.; Baxley, Brian T.; Norman, Robert M.; Ellis, Kyle K. E.; Adams, Cathy A.; Latorella, Kara A.; Lynn, William A.

    2010-01-01

    This paper, to accompany a discussion panel, describes a collaborative FAA and NASA research study to determine the effect Data Communications (Data Comm) messages have on flight crew workload and eye scanning behavior in busy terminal area operations. In the Next Generation Air Transportation System Concept of Operations, for the period 2017-2022, the FAA envisions Data Comm between controllers and the flight crew to become the primary means of communicating non-time critical information. Four research conditions were defined that span current day to future equipage levels (Voice with Paper map, Data Comm with Paper map, Data Comm with Moving Map Display with ownship position displayed, Data Comm with Moving Map, ownship and taxi route displayed), and were used to create arrival and departure scenarios at Boston Logan Airport. Preliminary results for workload, situation awareness, and pilot head-up time are presented here. Questionnaire data indicated that pilot acceptability, workload, and situation awareness ratings were favorable for all of the conditions tested. Pilots did indicate that there were times during final approach and landing when they would prefer not to hear the message chime, and would not be able to make a quick response due to high priority tasks in the cockpit.

  13. Electronic Master Monitor and Advisory Display System, Human Engineering Summary Report.

    DTIC Science & Technology

    1981-06-01

    Communications, Sensors Instrumentation Division IS. NUMBER OF PAGES Fort Monmouth, NJ 0770M 226 14. MONITORING AGENCY NAME & ADORESS{I1 differel from...quantized each indication according to electrical signal, sensor type, display type, operating ranges, etc. The HFE evaluation sought to categorize the...was based on: " Frequency of the suggestion across crews * Relative potential for reducing workload " The need for sophisticated sensors for

  14. Situation Awareness and Workload Measures for SAFOR

    NASA Technical Reports Server (NTRS)

    DeMaio, Joe; Hart, Sandra G.; Allen, Ed (Technical Monitor)

    1999-01-01

    The present research was conducted in support of the NASA Safe All-Weather Flight Operations for Rotorcraft (SAFOR) program. The purpose of the work was to investigate the utility of two measurement tools developed by the British Defense Evaluation Research Agency. These tools were a subjective workload assessment scale, the DRA Workload Scale (DRAWS), and a situation awareness measurement tool in which the crews self-evaluation of performance is compared against actual performance. These two measurement tools were evaluated in the context of a test of an innovative approach to alerting the crew by way of a helmet mounted display. The DRAWS was found to be usable, but it offered no advantages over extant scales, and it had only limited resolution. The performance self-evaluation metric of situation awareness was found to be highly effective.

  15. Stress, workload and physiology demand during extravehicular activity: a pilot study.

    PubMed

    Rai, Balwant; Kaur, Jasdeep; Foing, Bernard H

    2012-06-01

    Extravehicular activity (EVA), such as exercise performed under unique environmental conditions, is essential for supporting daily living in weightlessness and for further space exploration like long Mars mission. The study was planned stress, workload, and physiological demands of simulated Mars exploration. In this study, the six-person crew lived (24 hours) for 14 days during a short-term stay at the Mars Desert Research Station. The heart rates, salivary cortisol, workload, peak oxygen uptake or maximal aerobic capacity of the crew are measured before, during and after an EVA. Data for heart rate showed the same trend as peak oxygen uptake or maximal aerobic capacity, with a maximal increase to 85% of peak. The rating of subscale showed a significant increase in EVA as compared to run. Salivary cortisol levels and heart rates were increased in both groups, although significant increased of cortisol levels and heart rates more in EVA as compared to hill running crew members. Further study is required on large scale taken into account of limitations of this study and including other physiological and psychological parameters in Mars analog environment.

  16. Flight performance measurement utilizing a figure of merit (FOM)

    NASA Technical Reports Server (NTRS)

    Mosier, Kathleen L.; Zacharias, Greg L.

    1993-01-01

    One of the goals of the NASA Strategic Behavior/Workload Management Program is to develop standardized procedures for constructing figures of merit (FOMs) that describe minimal criteria for flight task performance, as well as summarize overall performance quality. Such a measure could be utilized for evaluating flight crew performance, for assessing the effectiveness of new equipment or technological innovations, or for measuring performance at a particular airport. In this report, we describe the initial phases in the creation of a FOM to be employed in examining crew performance in NASA-Ames Air Ground Compatibility and Strategic Behavior/Workload Management programs.

  17. NASA TLA workload analysis support. Volume 1: Detailed task scenarios for general aviation and metering and spacing studies

    NASA Technical Reports Server (NTRS)

    Sundstrom, J. L.

    1980-01-01

    The techniques required to produce and validate six detailed task timeline scenarios for crew workload studies are described. Specific emphasis is given to: general aviation single pilot instrument flight rules operations in a high density traffic area; fixed path metering and spacing operations; and comparative workload operation between the forward and aft-flight decks of the NASA terminal control vehicle. The validation efforts also provide a cursory examination of the resultant demand workload based on the operating procedures depicted in the detailed task scenarios.

  18. 14 CFR 25.1523 - Minimum flight crew.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Minimum flight crew. 25.1523 Section 25.1523 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... sufficient for safe operation, considering— (a) The workload on individual crewmembers; (b) The accessibility...

  19. 14 CFR 29.1523 - Minimum flight crew.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Minimum flight crew. 29.1523 Section 29.1523 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... sufficient for safe operation, considering— (a) The workload on individual crewmembers; (b) The accessibility...

  20. 14 CFR 29.1523 - Minimum flight crew.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Minimum flight crew. 29.1523 Section 29.1523 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... sufficient for safe operation, considering— (a) The workload on individual crewmembers; (b) The accessibility...

  1. 14 CFR 25.1523 - Minimum flight crew.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Minimum flight crew. 25.1523 Section 25.1523 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... sufficient for safe operation, considering— (a) The workload on individual crewmembers; (b) The accessibility...

  2. 14 CFR 27.1523 - Minimum flight crew.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Minimum flight crew. 27.1523 Section 27.1523 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... safe operation, considering— (a) The workload on individual crewmembers; (b) The accessibility and ease...

  3. 14 CFR 27.1523 - Minimum flight crew.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Minimum flight crew. 27.1523 Section 27.1523 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... safe operation, considering— (a) The workload on individual crewmembers; (b) The accessibility and ease...

  4. Cockpit data management

    NASA Technical Reports Server (NTRS)

    Groce, J. L.; Boucek, G. P.

    1988-01-01

    This study is a continuation of an FAA effort to alleviate the growing problems of assimilating and managing the flow of data and flight related information in the air transport flight deck. The nature and extent of known pilot interface problems arising from new NAS data management programs were determined by a comparative timeline analysis of crew tasking requirements. A baseline of crew tasking requirements was established for conventional and advanced flight decks operating in the current NAS environment and then compared to the requirements for operation in a future NAS environment emphasizing Mode-S data link and TCAS. Results showed that a CDU-based pilot interface for Mode-S data link substantially increased crew visual activity as compared to the baseline. It was concluded that alternative means of crew interface should be available during high visual workload phases of flight. Results for TCAS implementation showed substantial visual and motor tasking increases, and that there was little available time between crew tasks during a TCAS encounter. It was concluded that additional research should be undertaken to address issues of ATC coordination and the relative benefit of high workload TCAS features.

  5. Twentieth Annual Conference on Manual Control, Volume 2

    NASA Technical Reports Server (NTRS)

    Hart, S. G. (Compiler); Hartzell, E. J. (Compiler)

    1984-01-01

    Volume II contains thirty two complete manuscripts and five abstracts. The topics covered include the application of event-related brain potential analysis to operational problems, the subjective evaluation of workload, mental models, training, crew interaction analysis, multiple task performance, and the measurement of workload and performance in simulation.

  6. How the workload impacts on cognitive cooperation: A pilot study.

    PubMed

    Sciaraffa, Nicolina; Borghini, Gianluca; Arico, Pietro; Di Flumeri, Gianluca; Toppi, Jlenia; Colosimo, Alfredo; Bezerianos, Anastatios; Thakor, Nitish V; Babiloni, Fabio

    2017-07-01

    Cooperation degradation can be seen as one of the main causes of human errors. Poor cooperation could arise from aberrant mental processes, such as mental overload, that negatively affect the user's performance. Using different levels of difficulty in a cooperative task, we combined behavioural, subjective and neurophysiological data with the aim to i) quantify the mental workload under which the crew was operating, ii) evaluate the degree of their cooperation, and iii) assess the impact of the workload demands on the cooperation levels. The combination of such data showed that high workload demand impacted significantly on the performance, workload perception, and degree of cooperation.

  7. Use of Data Comm by Flight Crew to Conduct Interval Management Operations to Parallel Dependent Runways

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Hubbs, Clay; Shay, Rick; Karanian, James

    2011-01-01

    The Interval Management (IM) concept is being developed as a method to maintain or increase high traffic density airport arrival throughput while allowing aircraft to conduct near idle thrust descents. The Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR1) experiment at NASA Langley Research Center used 24 commercial pilots to examine IM procedures to conduct parallel dependent runway arrival operations while maintaining safe but efficient intervals behind the preceding aircraft. The use of IM procedures during these operations requires a lengthy and complex clearance from Air Traffic Control (ATC) to the participating aircraft, thereby making the use of Controller Pilot Data Link Communications (CPDLC) highly desirable as the communication method. The use of CPDLC reduces the need for voice transmissions between controllers and flight crew, and enables automated transfer of IM clearance elements into flight management systems or other aircraft avionics. The result is reduced crew workload and an increase in the efficiency of crew procedures. This paper focuses on the subset of data collected related to the use of CPDLC for IM operations into a busy airport. Overall, the experiment and results were very successful, with the mean time under 43 seconds for the flight crew to load the clearance into the IM spacing tool, review the calculated speed, and respond to ATC. An overall mean rating of Moderately Agree was given when the crews were asked if the use of CPDLC was operationally acceptable as simulated in this experiment. Approximately half of the flight crew reported the use of CPDLC below 10,000 for IM operations was unacceptable, with 83% reporting below 5000 was unacceptable. Also described are proposed modifications to the IM operations that may reduce CPDLC Respond time to less than 30 seconds and should significantly reduce the complexity of crew procedures, as well as follow-on research issues for operational use of CPDLC during IM operations.

  8. Assessment of Crew Workload for the RAH-66 Comanche Force Development Experiment 1

    DTIC Science & Technology

    2001-10-01

    Scale and a cockpit controls and displays usability questionnaire . Results of the assessment indicate that (a) workload was tolerable for the pilots...Workload Levels Between Front Seat and Back Seat 13 3.4 Pilot Responses to Controls and Displays Usability Questionnaire 13 3.5 HMD Symbology 13 4... questionnaire . The data were analyzed to determine if the pilot flying the aircraft (pilot on controls) and the pilot operating the mission equipment

  9. Crew performance and communication: Performing a terrain navigation task

    NASA Technical Reports Server (NTRS)

    Battiste, Vernol; Delzell, Susanne

    1993-01-01

    A study was conducted to examine the map and route cues pilots use while navigating under controlled, but realistic, nap-of-the-earth (NOE) flight conditions. US Army helicopter flight crews were presented a map and route overlay and asked to perform normal mission planning. They then viewed a video-recording of the out-the-window scene during low-level flights, without the route overlay, and were asked periodically to locate their current position on the map. The pilots and navigators were asked to communicate normally during the planning and flight phases. During each flight the navigator's response time, accuracy, and subjective workload were assessed. Post-flight NASA-TLX workload ratings were collected. No main effect of map orientation (north-up vs. track-up) was found for errors or response times on any of the tasks evaluated. Navigators in the north-up group rated their workload lower than those in the track-up group.

  10. Use of Data Comm by Flight Crew in High-Density Terminal Areas

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Norman, Robert M.; Ellis, Kyle K. E.; Latorella, Kara A.; Comstock, James R.; Adams, Cathy A.

    2010-01-01

    This paper describes a collaborative FAA and NASA experiment using 22 commercial airline pilots to determine the effect of using Datalink Communication (Data Comm) to issue messages in busy, terminal area operations. Four conditions were defined that span current day to future flight deck equipage levels (voice communication only, Data Comm only, Data Comm with Moving Map Display, Data Comm with Moving Map displaying taxi route), and each condition was used to create an arrival and a departure scenario at the Boston Logan Airport. These eight scenarios were repeated twice for a total of 16 scenarios for each of the eleven crews. Quantitative data was collected on subject reaction time and eye tracking information. Questionnaires collected subjective feedback on workload and acceptability to the flight crew for using Data Comm in a busy terminal area. 95% of the Data Comm messages were responded to by the flight crew within one minute; however, post experiment debrief comments revealed almost unanimous consensus that two minutes was a reasonable expectation for crew response. Eye tracking data indicated an insignificant decrease in head-up time for the Pilot Flying when Data Comm was introduced; however, the Pilot Monitoring had significantly less head-up time. Data Comm workload was rated as operationally acceptable by both crew members in all conditions in flight at any altitude above the Final Approach Fix in terms of response time and workload. Results also indicate the use of Data Comm during surface operations was acceptable, the exception being the simultaneous use of voice, Data Comm, and audio chime required for an aircraft to cross an active runway. Many crews reported they believed Data Comm messages would be acceptable after the Final Approach Fix or to cross a runway if the message was not accompanied by a chime and there was not a requirement to immediately respond to the uplink message.

  11. Stress, Workload and Physiology Demand During Extravehicular Activity: A Pilot Study

    PubMed Central

    Rai, Balwant; Kaur, Jasdeep; Foing, Bernard H

    2012-01-01

    Background: Extravehicular activity (EVA), such as exercise performed under unique environmental conditions, is essential for supporting daily living in weightlessness and for further space exploration like long Mars mission. Aim: The study was planned stress, workload, and physiological demands of simulated Mars exploration. Materials and Methods: In this study, the six-person crew lived (24 hours) for 14 days during a short-term stay at the Mars Desert Research Station. The heart rates, salivary cortisol, workload, peak oxygen uptake or maximal aerobic capacity of the crew are measured before, during and after an EVA. Results: Data for heart rate showed the same trend as peak oxygen uptake or maximal aerobic capacity, with a maximal increase to 85% of peak. The rating of subscale showed a significant increase in EVA as compared to run. Salivary cortisol levels and heart rates were increased in both groups, although significant increased of cortisol levels and heart rates more in EVA as compared to hill running crew members. Conclusion: Further study is required on large scale taken into account of limitations of this study and including other physiological and psychological parameters in Mars analog environment. PMID:22754877

  12. Flight Crew Workload, Acceptability, and Performance When Using Data Comm in a High-Density Terminal Area Simulation

    NASA Technical Reports Server (NTRS)

    Norman, R. Michael; Baxley, Brian T.; Adams, Cathy A.; Ellis, Kyle K. E.; Latorella, Kara A.; Comstock, James R., Jr.

    2013-01-01

    This document describes a collaborative FAA/NASA experiment using 22 commercial airline pilots to determine the effect of using Data Comm to issue messages during busy, terminal area operations. Four conditions were defined that span current day to future flight deck equipage: Voice communication only, Data Comm only, Data Comm with Moving Map Display, and Data Comm with Moving Map displaying taxi route. Each condition was used in an arrival and a departure scenario at Boston Logan Airport. Of particular interest was the flight crew response to D-TAXI, the use of Data Comm by Air Traffic Control (ATC) to send taxi instructions. Quantitative data was collected on subject reaction time, flight technical error, operational errors, and eye tracking information. Questionnaires collected subjective feedback on workload, situation awareness, and acceptability to the flight crew for using Data Comm in a busy terminal area. Results showed that 95% of the Data Comm messages were responded to by the flight crew within one minute and 97% of the messages within two minutes. However, post experiment debrief comments revealed almost unanimous consensus that two minutes was a reasonable expectation for crew response. Flight crews reported that Expected D-TAXI messages were useful, and employment of these messages acceptable at all altitude bands evaluated during arrival scenarios. Results also indicate that the use of Data Comm for all evaluated message types in the terminal area was acceptable during surface operations, and during arrivals at any altitude above the Final Approach Fix, in terms of response time, workload, situation awareness, and flight technical performance. The flight crew reported the use of Data Comm as implemented in this experiment as unacceptable in two instances: in clearances to cross an active runway, and D-TAXI messages between the Final Approach Fix and 80 knots during landing roll. Critical cockpit tasks and the urgency of out-the window scan made the additional head down time to respond to Data Comm messages undesirable during these events. However, most crews also stated that Data Comm messages without an accompanying audio chime and no expectation of an immediate response could be acceptable even during these events.

  13. Flying Schedule-Matching Descents to Explore Flight Crews' Perceptions of Their Load and Task Feasibility

    NASA Technical Reports Server (NTRS)

    Martin, Lynne Hazel; Sharma, Shivanjli; Lozito, Sharon; Kaneshige, John; Hayashi, Miwa; Dulchinos, Victoria

    2012-01-01

    Multiple studies have investigated the development and use of ground-based (controller) tools to manage and schedule traffic in future terminal airspace. No studies have investigated the impacts that such tools (and concepts) could have on the flight-deck. To begin to redress the balance, an exploratory study investigated the procedures and actions of ten Boeing-747-400 crews as they flew eight continuous descent approaches in the Los Angeles terminal airspace, with the descents being controlled using speed alone. Although the study was exploratory in nature, four variables were manipulated: speed changes, route constraints, clearance phraseology, and winds. Despite flying the same scenarios with the same events and timing, there was at least a 50 second difference in the time it took crews to fly the approaches. This variation is the product of a number of factors but highlights potential difficulties for scheduling tools that would have to accommodate this amount of natural variation in descent times. The primary focus of this paper is the potential impact of ground scheduling tools on the flight crews performance and procedures. Crews reported "moderate to low" workload, on average; however, short periods of intense and high workload were observed. The non-flying pilot often reported a higher level of workload than the flying-pilot, which may be due to their increased interaction with the Flight Management Computer, when using the aircraft automation to assist with managing the descent clearances. It is concluded that ground-side tools and automation may have a larger impact on the current-day flight-deck than was assumed and that studies investigating this impact should continue in parallel with controller support tool development.

  14. Maintaining human productivity during Mars transit

    NASA Technical Reports Server (NTRS)

    Statler, Irving C.; Billings, Charles E.

    1989-01-01

    This paper addresses the special nature of the human-machine relationship during a trip to Mars. In particular, the potential for monotony and boredom during a long-duration space voyage and the effect on motivation and productivity can be important considerations to the health and welfare of the crew. For the voyage to Mars, a design may be considered that will purposefully maintain some level of workload for the crew as a preventive measure for the deterioration of productivity that comes with boredom. This paper speculates on these considerations, on the appropriate level of workload for maximum productivity, and on what might be done during the mission to alleviate the problems caused by monotony and boredom.

  15. A piloted simulation study of data link ATC message exchange

    NASA Technical Reports Server (NTRS)

    Waller, Marvin C.; Lohr, Gary W.

    1989-01-01

    Data link Air Traffic Control (ATC) and Air Traffic Service (ATS) message and data exchange offers the potential benefits of increased flight safety and efficiency by reducing communication errors and allowing more information to be transferred between aircraft and ground facilities. Digital communication also presents an opportunity to relieve the overloading of ATC radio frequencies which hampers message exchange during peak traffic hours in many busy terminal areas. A piloted simulation study to develop pilot factor guidelines and assess potential flight crew benefits and liabilities from using data link ATC message exchange was completed. The data link ATC message exchange concept, implemented on an existing navigation computer Control Display Unit (CDU) required maintaining a voice radio telephone link with an appropriate ATC facility. Flight crew comments, scanning behavior, and measurements of time spent in ATC communication activities for data link ATC message exchange were compared to similar measures for simulated conventional voice radio operations. The results show crew preference for the quieter flight deck environment and a perception of lower communication workload.

  16. Trade Study: A Two- Versus Three-Soldier Crew for the Mounted Combat System (MCS) and Other Future Combat System Platforms

    DTIC Science & Technology

    2003-09-01

    Powers, J.; Tillman, B.; Davilla, D.; Hutchins, C. Crew Reduction in Armored Vehicles Ergonomie Study (CRA VES); Report No. ARL-CR-80; U.S. Army...Rucker, AL, 1984. Nachreiner, F. Standards for Ergonomie Principles Relating to the Design of Work Systems and to Mental Workload. Applied Ergonomics

  17. A static organization in a dynamic context--A qualitative study of changes in working conditions for Swedish engine officers.

    PubMed

    Lundh, Monica; Rydstedt, Leif W

    2016-07-01

    During the last decades the shipping industry has undergone rapid technical developments and experienced hard economic conditions and increased striving for profitability. This has led to reduced staffing and changes in task performance, which has been reported to increase workload for the remaining seafarers. The working conditions on board have a number of distinct and in many ways unique characteristics, which makes the job demands and resources for seafarers unique in several ways. The purpose of this study was to assess how engine room staff perceives how these major technical and organizational changes in the shipping industry have affected job demands as well as resources. The study compiled individual interviews and focus groups interviews with engine crew members where they were asked to elaborate on the psychosocial work environment and the major changes in the working conditions on board. Engine crew describes a work situation where they feel a lack of resources. The content of the work has changed, staffing has been reduced, new tasks are being added but the organization of the crew and the design of the work place remains unaltered. Copyright © 2016 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  18. Cockpit Adaptive Automation and Pilot Performance

    NASA Technical Reports Server (NTRS)

    Parasuraman, Raja

    2001-01-01

    The introduction of high-level automated systems in the aircraft cockpit has provided several benefits, e.g., new capabilities, enhanced operational efficiency, and reduced crew workload. At the same time, conventional 'static' automation has sometimes degraded human operator monitoring performance, increased workload, and reduced situation awareness. Adaptive automation represents an alternative to static automation. In this approach, task allocation between human operators and computer systems is flexible and context-dependent rather than static. Adaptive automation, or adaptive task allocation, is thought to provide for regulation of operator workload and performance, while preserving the benefits of static automation. In previous research we have reported beneficial effects of adaptive automation on the performance of both pilots and non-pilots of flight-related tasks. For adaptive systems to be viable, however, such benefits need to be examined jointly in the context of a single set of tasks. The studies carried out under this project evaluated a systematic method for combining different forms of adaptive automation. A model for effective combination of different forms of adaptive automation, based on matching adaptation to operator workload was proposed and tested. The model was evaluated in studies using IFR-rated pilots flying a general-aviation simulator. Performance, subjective, and physiological (heart rate variability, eye scan-paths) measures of workload were recorded. The studies compared workload-based adaptation to to non-adaptive control conditions and found evidence for systematic benefits of adaptive automation. The research provides an empirical basis for evaluating the effectiveness of adaptive automation in the cockpit. The results contribute to the development of design principles and guidelines for the implementation of adaptive automation in the cockpit, particularly in general aviation, and in other human-machine systems. Project goals were met or exceeded. The results of the research extended knowledge of automation-related performance decrements in pilots and demonstrated the positive effects of adaptive task allocation. In addition, several practical implications for cockpit automation design were drawn from the research conducted. A total of 12 articles deriving from the project were published.

  19. Objective Situation Awareness Measurement Based on Performance Self-Evaluation

    NASA Technical Reports Server (NTRS)

    DeMaio, Joe

    1998-01-01

    The research was conducted in support of the NASA Safe All-Weather Flight Operations for Rotorcraft (SAFOR) program. The purpose of the work was to investigate the utility of two measurement tools developed by the British Defense Evaluation Research Agency. These tools were a subjective workload assessment scale, the DRA Workload Scale and a situation awareness measurement tool. The situation awareness tool uses a comparison of the crew's self-evaluation of performance against actual performance in order to determine what information the crew attended to during the performance. These two measurement tools were evaluated in the context of a test of innovative approach to alerting the crew by way of a helmet mounted display. The situation assessment data are reported here. The performance self-evaluation metric of situation awareness was found to be highly effective. It was used to evaluate situation awareness on a tank reconnaissance task, a tactical navigation task, and a stylized task used to evaluated handling qualities. Using the self-evaluation metric, it was possible to evaluate situation awareness, without exact knowledge the relevant information in some cases and to identify information to which the crew attended or failed to attend in others.

  20. Aircrew Discourse: Exploring Strategies of Information and Action Management

    NASA Technical Reports Server (NTRS)

    Irwin, Cheryl M.; Veinott, Elizabeth S.; Shafto, Michael G. (Technical Monitor)

    1995-01-01

    This paper explores methodology issues encountered in the analysis of flightcrew communications in aviation simulation research. Examples are provided by two recent studies which are compared on three issues: level of analysis, data definition, and interpretation of the results. The data discussed were collected in a study comparing two levels of aircraft automation. The first example is an investigation of how pilots' information transfer strategies differed as a function of automation during low and high-workload flight phases. The second study focuses on how crews managed actions in the two aircraft during a ten minute, high-workload flight segment. Results indicated that crews in the two aircraft differed in their strategies of information and action management. The differences are discussed in terms of their operational and research significance.

  1. Human factors of advanced technology (glass cockpit) transport aircraft

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L.

    1989-01-01

    A three-year study of airline crews at two U.S. airlines who were flying an advanced technology aircraft, the Boeing 757 is discussed. The opinions and experiences of these pilots as they view the advanced, automated features of this aircraft, and contrast them with previous models they have flown are discussed. Training for advanced automation; (2) cockpit errors and error reduction; (3) management of cockpit workload; and (4) general attitudes toward cockpit automation are emphasized. The limitations of the air traffic control (ATC) system on the ability to utilize the advanced features of the new aircraft are discussed. In general the pilots are enthusiastic about flying an advanced technology aircraft, but they express mixed feelings about the impact of automation on workload, crew errors, and ability to manage the flight.

  2. Bayesian Safety Risk Modeling of Human-Flightdeck Automation Interaction

    NASA Technical Reports Server (NTRS)

    Ancel, Ersin; Shih, Ann T.

    2015-01-01

    Usage of automatic systems in airliners has increased fuel efficiency, added extra capabilities, enhanced safety and reliability, as well as provide improved passenger comfort since its introduction in the late 80's. However, original automation benefits, including reduced flight crew workload, human errors or training requirements, were not achieved as originally expected. Instead, automation introduced new failure modes, redistributed, and sometimes increased workload, brought in new cognitive and attention demands, and increased training requirements. Modern airliners have numerous flight modes, providing more flexibility (and inherently more complexity) to the flight crew. However, the price to pay for the increased flexibility is the need for increased mode awareness, as well as the need to supervise, understand, and predict automated system behavior. Also, over-reliance on automation is linked to manual flight skill degradation and complacency in commercial pilots. As a result, recent accidents involving human errors are often caused by the interactions between humans and the automated systems (e.g., the breakdown in man-machine coordination), deteriorated manual flying skills, and/or loss of situational awareness due to heavy dependence on automated systems. This paper describes the development of the increased complexity and reliance on automation baseline model, named FLAP for FLightdeck Automation Problems. The model development process starts with a comprehensive literature review followed by the construction of a framework comprised of high-level causal factors leading to an automation-related flight anomaly. The framework was then converted into a Bayesian Belief Network (BBN) using the Hugin Software v7.8. The effects of automation on flight crew are incorporated into the model, including flight skill degradation, increased cognitive demand and training requirements along with their interactions. Besides flight crew deficiencies, automation system failures and anomalies of avionic systems are also incorporated. The resultant model helps simulate the emergence of automation-related issues in today's modern airliners from a top-down, generalized approach, which serves as a platform to evaluate NASA developed technologies

  3. Space Station crew workload - Station operations and customer accommodations

    NASA Technical Reports Server (NTRS)

    Shinkle, G. L.

    1985-01-01

    The features of the Space Station which permit crew members to utilize work time for payload operations are discussed. The user orientation, modular design, nonstressful flight regime, in space construction, on board control, automation and robotics, and maintenance and servicing of the Space Station are examined. The proposed crew size, skills, and functions as station operator and mission specialists are described. Mission objectives and crew functions, which include performing material processing, life science and astronomy experiments, satellite and payload equipment servicing, systems monitoring and control, maintenance and repair, Orbital Maneuvering Vehicle and Mobile Remote Manipulator System operations, on board planning, housekeeping, and health maintenance and recreation, are studied.

  4. Shuttle Abort Flight Management (SAFM) - Application Overview

    NASA Technical Reports Server (NTRS)

    Hu, Howard; Straube, Tim; Madsen, Jennifer; Ricard, Mike

    2002-01-01

    One of the most demanding tasks that must be performed by the Space Shuttle flight crew is the process of determining whether, when and where to abort the vehicle should engine or system failures occur during ascent or entry. Current Shuttle abort procedures involve paging through complicated paper checklists to decide on the type of abort and where to abort. Additional checklists then lead the crew through a series of actions to execute the desired abort. This process is even more difficult and time consuming in the absence of ground communications since the ground flight controllers have the analysis tools and information that is currently not available in the Shuttle cockpit. Crew workload specifically abort procedures will be greatly simplified with the implementation of the Space Shuttle Cockpit Avionics Upgrade (CAU) project. The intent of CAU is to maximize crew situational awareness and reduce flight workload thru enhanced controls and displays, and onboard abort assessment and determination capability. SAFM was developed to help satisfy the CAU objectives by providing the crew with dynamic information about the capability of the vehicle to perform a variety of abort options during ascent and entry. This paper- presents an overview of the SAFM application. As shown in Figure 1, SAFM processes the vehicle navigation state and other guidance information to provide the CAU displays with evaluations of abort options, as well as landing site recommendations. This is accomplished by three main SAFM components: the Sequencer Executive, the Powered Flight Function, and the Glided Flight Function, The Sequencer Executive dispatches the Powered and Glided Flight Functions to evaluate the vehicle's capability to execute the current mission (or current abort), as well as more than IS hypothetical abort options or scenarios. Scenarios are sequenced and evaluated throughout powered and glided flight. Abort scenarios evaluated include Abort to Orbit (ATO), Transatlantic Abort Landing (TAL), East Coast Abort Landing (ECAL) and Return to Launch Site (RTLS). Sequential and simultaneous engine failures are assessed and landing footprint information is provided during actual entry scenarios as well as hypothetical "loss of thrust now" scenarios during ascent.

  5. Timeline Analysis Program (TLA-1)

    NASA Technical Reports Server (NTRS)

    Miller, K. H.

    1976-01-01

    The Timeline Analysis Program (TLA-1) was described. This program is a crew workload analysis computer program that was developed and expanded from previous workload analysis programs, and is designed to be used on the NASA terminal controlled vehicle program. The following information is described: derivation of the input data, processing of the data, and form of the output data. Eight scenarios that were created, programmed, and analyzed as verification of this model were also described.

  6. A Summary of Crew Workload and Situational Awareness Ratings for U.S. Army Aviation Aircraft

    DTIC Science & Technology

    2014-06-01

    Engineering Directorate (ARL/HRED) assesses crewstation design for new and upgraded U.S. Army Aviation aircraft during simulations and operational...crewstation design for new and upgraded Army Aviation aircraft during simulations and operational testing. The assessments are conducted to identify...crewstation design . To date, more than 12,000 pilot workload ratings and 3000 pilot SA ratings have been collected by ARL/HRED for Army aircraft . This report

  7. Performance evaluation in full-mission simulation - Methodological advances and research challenges. [in air transport operations

    NASA Technical Reports Server (NTRS)

    Chidester, Thomas R.; Kanki, Barbara G.; Helmreich, Robert L.

    1989-01-01

    The crew-factors research program at NASA Ames has developed a methodology for studying the impact of a variety of variables on the effectiveness of crews flying realistic but high workload simulated trips. The validity of investigations using the methodology is enhanced by careful design of full-mission scenarios, performance assessment using converging sources of data, and recruitment of representative subjects. Recently, portions of this methodology have been adapted for use in assessing the effectiveness of crew coordination among participants in line-oriented flight training.

  8. Safely Conducting Airport Surface Trajectory-Based Operations

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Prinzel, Lawrence J., III; Bailey, Randall E.; Arthur, Jarvis J., III; Barnes, James R.

    2014-01-01

    A piloted simulation study was conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) to evaluate the ability to safely conduct surface trajectory-based operations (STBO) by assessing the impact of providing traffic intent information, conflict detection and resolution (CD&R) system capability, and the display of STBO guidance to the flight crew on both head-down and head-up displays (HUD). Nominal and off-nominal conflict scenarios were conducted using 12 airline crews operating in a simulated Memphis International Airport terminal environment. The flight crews met their required time-of-arrival at route end within 10 seconds on 98 percent of the trials, well within the acceptable performance bounds of 15 seconds. Traffic intent information was found to be useful in determining the intent of conflict traffic, with graphical presentation preferred. The CD&R system was only minimally effective during STBO because the prevailing visibility was sufficient for visual detection of incurring traffic. Overall, the pilots indicated STBO increased general situation awareness but also negatively impacted workload, reduced the ability to watch for other traffic, and increased head-down time.

  9. Quantification of crew workload imposed by communications-related tasks in commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Acton, W. H.; Crabtree, M. S.; Simons, J. C.; Gomer, F. E.; Eckel, J. S.

    1983-01-01

    Information theoretic analysis and subjective paired-comparison and task ranking techniques were employed in order to scale the workload of 20 communications-related tasks frequently performed by the captain and first officer of transport category aircraft. Tasks were drawn from taped conversations between aircraft and air traffic controllers (ATC). Twenty crewmembers performed subjective message comparisons and task rankings on the basis of workload. Information theoretic results indicated a broad range of task difficulty levels, and substantial differences between captain and first officer workload levels. Preliminary subjective data tended to corroborate these results. A hybrid scale reflecting the results of both the analytical and the subjective techniques is currently being developed. The findings will be used to select representative sets of communications for use in high fidelity simulation.

  10. A game for space

    NASA Astrophysics Data System (ADS)

    Häuplik-Meusburger, Sandra; Aguzzi, Manuela; Peldszus, Regina

    2010-02-01

    As countermeasure to heavy workloads or monotony, astronauts have drawn on leisure activities imported from Earth or invented in situ. Aside from consumption of media, physical exercise, Earth observation, communication with ground or crew and the practising of instruments, also games play an important role. With a few exceptions, the emphasis, however, lies on virtual games and software applications. A review of play activities in orbit and their benefits to date suggests a need for additional recreational opportunities. In response, an interactive strategy game for use in microgravity is presented that relies on interlocking sphere-shaped game pieces in order to make the most of the kinetic and sensory potential of reduced gravity conditions. Aside from the play value and aesthetics of this reconfigurable modular game structure, the activity may help maintain and enhance manual dexterity, mental alertness and sociability amongst the crew. The design solution and prototype are presented and needs for further research and development are outlined.

  11. Crew/Automation Interaction in Space Transportation Systems: Lessons Learned from the Glass Cockpit

    NASA Technical Reports Server (NTRS)

    Rudisill, Marianne

    2000-01-01

    The progressive integration of automation technologies in commercial transport aircraft flight decks - the 'glass cockpit' - has had a major, and generally positive, impact on flight crew operations. Flight deck automation has provided significant benefits, such as economic efficiency, increased precision and safety, and enhanced functionality within the crew interface. These enhancements, however, may have been accrued at a price, such as complexity added to crew/automation interaction that has been implicated in a number of aircraft incidents and accidents. This report briefly describes 'glass cockpit' evolution. Some relevant aircraft accidents and incidents are described, followed by a more detailed description of human/automation issues and problems (e.g., crew error, monitoring, modes, command authority, crew coordination, workload, and training). This paper concludes with example principles and guidelines for considering 'glass cockpit' human/automation integration within space transportation systems.

  12. Airline Crew Training

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The discovery that human error has caused many more airline crashes than mechanical malfunctions led to an increased emphasis on teamwork and coordination in airline flight training programs. Human factors research at Ames Research Center has produced two crew training programs directed toward more effective operations. Cockpit Resource Management (CRM) defines areas like decision making, workload distribution, communication skills, etc. as essential in addressing human error problems. In 1979, a workshop led to the implementation of the CRM program by United Airlines, and later other airlines. In Line Oriented Flight Training (LOFT), crews fly missions in realistic simulators while instructors induce emergency situations requiring crew coordination. This is followed by a self critique. Ames Research Center continues its involvement with these programs.

  13. Improving striping operations through system optimization.

    DOT National Transportation Integrated Search

    2015-09-01

    Striping operations generate a significant workload for Missouri Department of Transportation (MoDOT) maintenance : operations. The requirement for each striping crew to replenish its stock of paint and other consumable items from a bulk storage : fa...

  14. Investigation of Control System and Display Variations on Spacecraft Handling Qualities for Docking with Stationary and Rotating Targets

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Goodrich, Kenneth H.; Bailey, Randall E.; Barnes, James R.; Ragsdale, William A.; Neuhaus, Jason R.

    2010-01-01

    This paper documents the investigation into the manual docking of a preliminary version of the Crew Exploration Vehicle with stationary and rotating targets in Low Earth Orbit. The investigation was conducted at NASA Langley Research Center in the summer of 2008 in a repurposed fixed-base transport aircraft cockpit and involved nine evaluation astronauts and research pilots. The investigation quantified the benefits of a feed-forward reaction control system thruster mixing scheme to reduce translation-into-rotation coupling, despite unmodeled variations in individual thruster force levels and off-axis center of mass locations up to 12 inches. A reduced rate dead-band in the phase-plane attitude controller also showed some promise. Candidate predictive symbology overlaid on a docking ring centerline camera image did not improve handling qualities, but an innovative attitude status indicator symbol was beneficial. The investigation also showed high workload and handling quality problems when manual dockings were performed with a rotating target. These concerns indicate achieving satisfactory handling quality ratings with a vehicle configuration similar to the nominal Crew Exploration Vehicle may require additional automation.

  15. Delegation control of multiple unmanned systems

    NASA Astrophysics Data System (ADS)

    Flaherty, Susan R.; Shively, Robert J.

    2010-04-01

    Maturing technologies and complex payloads coupled with a future objective to reduce the logistics burden of current unmanned aerial systems (UAS) operations require a change to the 2-crew employment paradigm. Increased automation and operator supervisory control of unmanned systems have been advocated to meet the objective of reducing the crew requirements, while managing future technologies. Specifically, a delegation control employment strategy has resulted in reduced workload and higher situation awareness for single operators controlling multiple unmanned systems in empirical studies1,2. Delegation control is characterized by the ability for an operator to call a single "play" that initiates prescribed default actions for each vehicle and associated sensor related to a common mission goal. Based upon the effectiveness of delegation control in simulation, the U.S. Army Aeroflightdynamics Directorate (AFDD) developed a Delegation Control (DelCon) operator interface with voice recognition implementation for play selection, real-time play modification, and play status with automation transparency to enable single operator control of multiple unmanned systems in flight. AFDD successfully demonstrated delegation control in a Troops-in-Contact mission scenario at Ft. Ord in 2009. This summary showcases the effort as a beneficial advance in single operator control of multiple UAS.

  16. Workload Analysis of the Crew of the Abrams V2 SEP: Phase I Baseline IMPRINT Model

    DTIC Science & Technology

    2009-09-01

    PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army Research Laboratory ATTN: RDRL- HRM -B Aberdeen Proving Ground, MD 21005-5425 8...running a stop sign or a deer darting across the road, the high workload demands of driving become more apparent. The frequency of automobile accidents...OF COPIES ORGANIZATION COPIES ORGANIZATION 29 1 ARMY RSCH LABORATORY – HRED RDRL HRM A J MARTIN MYER CENTER BLDG 2700 RM 2D311

  17. Flight crew fatigue III: North Sea helicopter air transport operations.

    PubMed

    Gander, P H; Barnes, R M; Gregory, K B; Graeber, R C; Connell, L J; Rosekind, M R

    1998-09-01

    We studied 32 helicopter pilots before, during, and after 4-5 d trips from Aberdeen, Scotland, to service North Sea oil rigs. On duty days, subjects awoke 1.5 h earlier than pretrip or posttrip, after having slept nearly an hour less. Subjective fatigue was greater posttrip than pretrip. By the end of trip days, fatigue was greater and mood more negative than by the end of pretrip days. During trips, daily caffeine consumption increased 42%, reports of headache doubled, reports of back pain increased 12-fold, and reports of burning eyes quadrupled. In the cockpits studied, thermal discomfort and high vibration levels were common. Subjective workload during preflight, taxi, climb, and cruise was related to the crewmembers' ratings of the quality of the aircraft systems. During descent and approach, workload was affected by weather at the landing site. During landing, it was influenced by the quality of the landing site and air traffic control. Beginning duty later, and greater attention to aircraft comfort and maintenance, should reduce fatigue in these operations.

  18. Case Study of the Space Shuttle Cockpit Avionics Upgrade Software

    NASA Technical Reports Server (NTRS)

    Ferguson, Roscoe C.; Thompson, Hiram C.

    2005-01-01

    The purpose of the Space Shuttle Cockpit Avionics Upgrade project was to reduce crew workload and improve situational awareness. The upgrade was to augment the Shuttle avionics system with new hardware and software. An early version of this system was used to gather human factor statistics in the Space Shuttle Motion Simulator of the Johnson Space Center for one month by multiple teams of astronauts. The results were compiled by NASA Ames Research Center and it was was determined that the system provided a better than expected increase in situational awareness and reduction in crew workload. Even with all of the benefits nf the system, NASA cancelled the project towards the end of the development cycle. A major success of this project was the validation of the hardware architecture and software design. This was significant because the project incorporated new technology and approaches for the development of human rated space software. This paper serves as a case study to document knowledge gained and techniques that can be applied for future space avionics development efforts. The major technological advances were the use of reflective memory concepts for data acquisition and the incorporation of Commercial off the Shelf (COTS) products in a human rated space avionics system. The infused COTS products included a real time operating system, a resident linker and loader, a display generation tool set, and a network data manager. Some of the successful design concepts were the engineering of identical outputs in multiple avionics boxes using an event driven approach and inter-computer communication, a reconfigurable data acquisition engine, the use of a dynamic bus bandwidth allocation algorithm. Other significant experiences captured were the use of prototyping to reduce risk, and the correct balance between Object Oriented and Functional based programming.

  19. Heart rate and pulmonary function while wearing the launch-entry crew escape suit (LES) during + Gx acceleration and simulated Shuttle launch

    NASA Technical Reports Server (NTRS)

    Krutz, Robert W., Jr.; Bagian, James P.; Burton, Russell R.; Meeker, Larry J.

    1990-01-01

    Space shuttle crewmembers have been equipped with a launch-entry crew escape system (LES) since the Challenger accident in 1986. Some crewmembers, wearing the new pressure suit, have reported breathing difficulties and increased effort to achieve the desired range of motion. This study was conducted to quantify the reported increased physical workloads and breathing difficulty associated with wearing the LES. Both veteran astronauts and centrifuge panel members were exposed to various + Gx profiles (including simulated shuttle launch) + Gx on the USAF School of Aerospace Medicine (USAFSAM) human-use centrifuge. Maximum heart rate data showed no increased workload associated with arm and head movement in the LES when compared to the flight suit/helmet ensemble (LEH). However, the LES did impose a significant increase in breathing difficulty beginning at +2.5 Gx which was demonstrated by a decrease in forced vital capacity and subjected questionnaries.

  20. Air Force Manpower Requirements and Component Mix: A Focus on Agile Combat Support

    DTIC Science & Technology

    2014-01-01

    average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed...relates required man- hours to one or more workload factors. The solution to a manpower equation is divided by an appropriate man- hour availability...Instruction [ANGI] 38-201, pp. 3– 4 ). Crew Ratios For most AC and RC flying units, aircrew requirements are derived using approved crew ratios ( the

  1. Pressing the Approach: A NASA Study of 19 Recent Accidents Yields a New Perspective on Pilot Error

    NASA Technical Reports Server (NTRS)

    Berman, Benjamin A.; Dismukes, R. Key

    2007-01-01

    This article begins with a review of two sample airplane accidents that were caused by pilot error. The analysis of these and 17 other accidents suggested that almost all experienced pilot operating in the same environment in which the accident crews were operating and knowing only what the accident crews knew at each moment of the flight, would be vulnerable to making a similar decision and similar errors. Whether a particular crew in a given situation makes errors depends on somewhat random interaction of factors. Two themes that seem to be prevalent in these cases are: Plan Continuation Bias, and Snowballing Workload.

  2. The Charlotte (TM) intra-vehicular robot

    NASA Technical Reports Server (NTRS)

    Swaim, Patrick L.; Thompson, Clark J.; Campbell, Perry D.

    1994-01-01

    NASA has identified telerobotics and telescience as essential technologies to reduce the crew extra-vehicular activity (EVA) and intra-vehicular activity (IVA) workloads. Under this project, we are developing and flight testing a novel IVA robot to relieve the crew of tedious and routine tasks. Through ground telerobotic control of this robot, we will enable ground researchers to routinely interact with experiments in space. Our approach is to develop an IVA robot system incrementally by employing a series of flight tests with increasing complexity. This approach has the advantages of providing an early IVA capability that can assist the crew, demonstrate capabilities that ground researchers can be confident of in planning for future experiments, and allow incremental refinement of system capabilities and insertion of new technology. In parallel with this approach to flight testing, we seek to establish ground test beds, in which the requirements of payload experimenters can be further investigated. In 1993 we reviewed manifested SpaceHab experiments and defined IVA robot requirements to assist in their operation. We also examined previous IVA robot designs and assessed them against flight requirements. We rejected previous design concepts on the basis of threat to crew safety, operability, and maintainability. Based on this insight, we developed an entirely new concept for IVA robotics, the CHARLOTTE robot system. Ground based testing of a prototype version of the system has already proven its ability to perform most common tasks demanded of the crew, including operation of switches, buttons, knobs, dials, and performing video surveys of experiments and switch panels.

  3. Case Study of Using High Performance Commercial Processors in Space

    NASA Technical Reports Server (NTRS)

    Ferguson, Roscoe C.; Olivas, Zulema

    2009-01-01

    The purpose of the Space Shuttle Cockpit Avionics Upgrade project (1999 2004) was to reduce crew workload and improve situational awareness. The upgrade was to augment the Shuttle avionics system with new hardware and software. A major success of this project was the validation of the hardware architecture and software design. This was significant because the project incorporated new technology and approaches for the development of human rated space software. An early version of this system was tested at the Johnson Space Center for one month by teams of astronauts. The results were positive, but NASA eventually cancelled the project towards the end of the development cycle. The goal to reduce crew workload and improve situational awareness resulted in the need for high performance Central Processing Units (CPUs). The choice of CPU selected was the PowerPC family, which is a reduced instruction set computer (RISC) known for its high performance. However, the requirement for radiation tolerance resulted in the re-evaluation of the selected family member of the PowerPC line. Radiation testing revealed that the original selected processor (PowerPC 7400) was too soft to meet mission objectives and an effort was established to perform trade studies and performance testing to determine a feasible candidate. At that time, the PowerPC RAD750s were radiation tolerant, but did not meet the required performance needs of the project. Thus, the final solution was to select the PowerPC 7455. This processor did not have a radiation tolerant version, but had some ability to detect failures. However, its cache tags did not provide parity and thus the project incorporated a software strategy to detect radiation failures. The strategy was to incorporate dual paths for software generating commands to the legacy Space Shuttle avionics to prevent failures due to the softness of the upgraded avionics.

  4. Case Study of Using High Performance Commercial Processors in a Space Environment

    NASA Technical Reports Server (NTRS)

    Ferguson, Roscoe C.; Olivas, Zulema

    2009-01-01

    The purpose of the Space Shuttle Cockpit Avionics Upgrade project was to reduce crew workload and improve situational awareness. The upgrade was to augment the Shuttle avionics system with new hardware and software. A major success of this project was the validation of the hardware architecture and software design. This was significant because the project incorporated new technology and approaches for the development of human rated space software. An early version of this system was tested at the Johnson Space Center for one month by teams of astronauts. The results were positive, but NASA eventually cancelled the project towards the end of the development cycle. The goal to reduce crew workload and improve situational awareness resulted in the need for high performance Central Processing Units (CPUs). The choice of CPU selected was the PowerPC family, which is a reduced instruction set computer (RISC) known for its high performance. However, the requirement for radiation tolerance resulted in the reevaluation of the selected family member of the PowerPC line. Radiation testing revealed that the original selected processor (PowerPC 7400) was too soft to meet mission objectives and an effort was established to perform trade studies and performance testing to determine a feasible candidate. At that time, the PowerPC RAD750s where radiation tolerant, but did not meet the required performance needs of the project. Thus, the final solution was to select the PowerPC 7455. This processor did not have a radiation tolerant version, but faired better than the 7400 in the ability to detect failures. However, its cache tags did not provide parity and thus the project incorporated a software strategy to detect radiation failures. The strategy was to incorporate dual paths for software generating commands to the legacy Space Shuttle avionics to prevent failures due to the softness of the upgraded avionics.

  5. Improving striping operations through system optimization - phase 2 : final report.

    DOT National Transportation Integrated Search

    2016-07-01

    Striping operations generate a significant workload for MoDOT maintenance operations. The requirement for each striping crew : to replenish its stock of paint and other consumable items from a bulk storage facility, along with the necessity to make s...

  6. SHAPA: An interactive software tool for protocol analysis applied to aircrew communications and workload

    NASA Technical Reports Server (NTRS)

    James, Jeffrey M.; Sanderson, Penelope M.; Seidler, Karen S.

    1990-01-01

    As modern transport environments become increasingly complex, issues such as crew communication, interaction with automation, and workload management have become crucial. Much research is being focused on holistic aspects of social and cognitive behavior, such as the strategies used to handle workload, the flow of information, the scheduling of tasks, the verbal and non-verbal interactions between crew members. Traditional laboratory performance measures no longer sufficiently meet the needs of researchers addressing these issues. However observational techniques are better equipped to capture the type of data needed and to build models of the requisite level of sophistication. Presented here is SHAPA, an interactive software tool for performing both verbal and non-verbal protocol analysis. It has been developed with the idea of affording the researchers the closest possible degree of engagement with protocol data. The researcher can configure SHAPA to encode protocols using any theoretical framework or encoding vocabulary that is desired. SHAPA allows protocol analysis to be performed at any level of analysis, and it supplies a wide variety of tools for data aggregation, manipulation. The output generated by SHAPA can be used alone or in combination with other performance variables to get a rich picture of the influences on sequences of verbal or nonverbal behavior.

  7. Autonomous Payload Operations Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Stetson, Howard K.; Deitsch, David K.; Cruzen, Craig A.; Haddock, Angie T.

    2007-01-01

    Operating the International Space Station (ISS) involves many complex crew tended, ground operated and combined systems. Over the life of the ISS program, it has become evident that by having automated and autonomous systems on board, more can be accomplished and at the same time reduce the workload of the crew and ground operators. Engineers at the National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center in Huntsville Alabama, working in collaboration with The Charles Stark Draper Laboratory have developed an autonomous software system that uses the Timeliner User Interface Language and expert logic to continuously monitor ISS payload systems, issue commands and signal ground operators as required. This paper describes the development history of the system, its concept of operation and components. The paper also discusses the testing process as well as the facilities used to develop the system. The paper concludes with a description of future enhancement plans for use on the ISS as well as potential applications to Lunar and Mars exploration systems.

  8. Crew workload strategies in advanced cockpits

    NASA Technical Reports Server (NTRS)

    Hart, Sandra G.

    1990-01-01

    Many methods of measuring and predicting operator workload have been developed that provide useful information in the design, evaluation, and operation of complex systems and which aid in developing models of human attention and performance. However, the relationships between such measures, imposed task demands, and measures of performance remain complex and even contradictory. It appears that we have ignored an important factor: people do not passively translate task demands into performance. Rather, they actively manage their time, resources, and effort to achieve an acceptable level of performance while maintaining a comfortable level of workload. While such adaptive, creative, and strategic behaviors are the primary reason that human operators remain an essential component of all advanced man-machine systems, they also result in individual differences in the way people respond to the same task demands and inconsistent relationships among measures. Finally, we are able to measure workload and performance, but interpreting such measures remains difficult; it is still not clear how much workload is too much or too little nor the consequences of suboptimal workload on system performance and the mental, physical, and emotional well-being of the human operators. The rationale and philosophy of a program of research developed to address these issues will be reviewed and contrasted to traditional methods of defining, measuring, and predicting human operator workload. Viewgraphs are given.

  9. The Effects of the Mars Exploration Rovers (MER) Work Schedule Regime on Locomotor Activity Circadian Rhythms, Sleep and Fatigue

    NASA Technical Reports Server (NTRS)

    DeRoshia, Charles W.; Colletti, Laura C.; Mallis, Melissa M.

    2008-01-01

    This study assessed human adaptation to a Mars sol by evaluating sleep metrics obtained by actigraphy and subjective responses in 22 participants, and circadian rhythmicity in locomotor activity in 9 participants assigned to Mars Exploration Rover (MER) operational work schedules (24.65 hour days) at the Jet Propulsion Laboratory in 2004. During MER operations, increased work shift durations and reduced sleep durations and time in bed were associated with the appearance of pronounced 12-hr (circasemidian) rhythms with reduced activity levels. Sleep duration, workload, and circadian rhythm stability have important implications for adaptability and maintenance of operational performance not only of MER operations personnel but also in space crews exposed to a Mars sol of 24.65 hours during future Mars missions.

  10. Assessing Dual Sensor Enhanced Flight Vision Systems to Enable Equivalent Visual Operations

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Etherington, Timothy J.; Severance, Kurt; Bailey, Randall E.; Williams, Steven P.; Harrison, Stephanie J.

    2016-01-01

    Flight deck-based vision system technologies, such as Synthetic Vision (SV) and Enhanced Flight Vision Systems (EFVS), may serve as a revolutionary crew/vehicle interface enabling technologies to meet the challenges of the Next Generation Air Transportation System Equivalent Visual Operations (EVO) concept - that is, the ability to achieve the safety of current-day Visual Flight Rules (VFR) operations and maintain the operational tempos of VFR irrespective of the weather and visibility conditions. One significant challenge lies in the definition of required equipage on the aircraft and on the airport to enable the EVO concept objective. A motion-base simulator experiment was conducted to evaluate the operational feasibility, pilot workload and pilot acceptability of conducting straight-in instrument approaches with published vertical guidance to landing, touchdown, and rollout to a safe taxi speed in visibility as low as 300 ft runway visual range by use of onboard vision system technologies on a Head-Up Display (HUD) without need or reliance on natural vision. Twelve crews evaluated two methods of combining dual sensor (millimeter wave radar and forward looking infrared) EFVS imagery on pilot-flying and pilot-monitoring HUDs as they made approaches to runways with and without touchdown zone and centerline lights. In addition, the impact of adding SV to the dual sensor EFVS imagery on crew flight performance, workload, and situation awareness during extremely low visibility approach and landing operations was assessed. Results indicate that all EFVS concepts flown resulted in excellent approach path tracking and touchdown performance without any workload penalty. Adding SV imagery to EFVS concepts provided situation awareness improvements but no discernible improvements in flight path maintenance.

  11. The impact of cockpit automation on crew coordination and communication. Volume 1: Overview, LOFT evaluations, error severity, and questionnaire data

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L.; Chidester, Thomas R.; Kanki, Barbara G.; Palmer, Everett A.; Curry, Renwick E.; Gregorich, Steven E.

    1991-01-01

    The purpose was to examine, jointly, cockpit automation and social processes. Automation was varied by the choice of two radically different versions of the DC-9 series aircraft, the traditional DC-9-30, and the glass cockpit derivative, the MD-88. Airline pilot volunteers flew a mission in the simulator for these aircraft. Results show that the performance differences between the crews of the two aircraft were generally small, but where there were differences, they favored the DC-9. There were no criteria on which the MD-88 crews performed better than the DC-9 crews. Furthermore, DC-9 crews rated their own workload as lower than did the MD-88 pilots. There were no significant differences between the two aircraft types with respect to the severity of errors committed during the Line-Oriented Flight Training (LOFT) flight. The attitude questionnaires provided some interesting insights, but failed to distinguish between DC-9 and MD-88 crews.

  12. Dual Oculometer System for Aviation Crew Assessment

    NASA Technical Reports Server (NTRS)

    Latorella, Kara; Ellis, Kyle K.; Lynn, William A.; Frasca, Dennis; Burdette, Daniel W.; Feigh, Charles T.; Douglas, Alan L.

    2010-01-01

    Oculometers, eye trackers, are a useful tool for ascertaining the manner in which pilots deploy visual attentional resources, and for assessing the degree to which stimuli capture attention exogenously. The aim of this effort was to obtain oculometer data comfortably, unobtrusively, reliably and with good spatial resolution over a standard B757-like flight deck for both individuals in a crew. We chose to implement two remote, 5-camera Smarteye systems which were crafted for this purpose to operate harmoniously. We present here the results of validation exercises, lessons learned for improving data quality, and initial thoughts on the use of paired oculometer data to reflect crew workload, coordination, and situation awareness, in the aggregate.

  13. Interactive Query Processing in Big Data Systems: A Cross Industry Study of MapReduce Workloads

    DTIC Science & Technology

    2012-04-02

    invite cluster operators and the broader data management commu- nity to share additional knowledge about their MapReduce workloads. 9. ACKNOWLEDGMENTS...against real- life production MapReduce workloads. Knowledge of such workloads is currently limited to a handful of technology companies [19, 8, 48, 41...database management insights would benefit from checking workload assumptions against empirical measurements. The broad spectrum of workloads analyzed allows

  14. AMO EXPRESS: A Command and Control Experiment for Crew Autonomy Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Stetson, Howard K.; Frank, Jeremy; Cornelius, Randy; Haddock, Angie; Wang, Lui; Garner, Larry

    2015-01-01

    NASA is investigating a range of future human spaceflight missions, including both Mars-distance and Near Earth Object (NEO) targets. Of significant importance for these missions is the balance between crew autonomy and vehicle automation. As distance from Earth results in increasing communication delays, future crews need both the capability and authority to independently make decisions. However, small crews cannot take on all functions performed by ground today, and so vehicles must be more automated to reduce the crew workload for such missions. NASA's Advanced Exploration Systems Program funded Autonomous Mission Operations (AMO) project conducted an autonomous command and control experiment on-board the International Space Station that demonstrated single action intelligent procedures for crew command and control. The target problem was to enable crew initialization of a facility class rack with power and thermal interfaces, and involving core and payload command and telemetry processing, without support from ground controllers. This autonomous operations capability is enabling in scenarios such as initialization of a medical facility to respond to a crew medical emergency, and representative of other spacecraft autonomy challenges. The experiment was conducted using the Expedite the Processing of Experiments for Space Station (EXPRESS) rack 7, which was located in the Port 2 location within the U.S Laboratory onboard the International Space Station (ISS). Activation and deactivation of this facility is time consuming and operationally intensive, requiring coordination of three flight control positions, 47 nominal steps, 57 commands, 276 telemetry checks, and coordination of multiple ISS systems (both core and payload). Utilization of Draper Laboratory's Timeliner software, deployed on-board the ISS within the Command and Control (C&C) computers and the Payload computers, allowed development of the automated procedures specific to ISS without having to certify and employ novel software for procedure development and execution. The procedures contained the ground procedure logic and actions as possible to include fault detection and recovery capabilities.

  15. [NUTRITIONAL STATUS IN THE EXPERIMENT WITH 105-DAY ISOLATION AS THE FIRST PHASE OF PROJECT MARS-500].

    PubMed

    Agureev, A N; Afonin, B V; Sedova, E A; Solovieva, A A; Valuev, V A; Sidorenko, L A

    2015-01-01

    In a 105-day experiment simulating crew life in a space exploration vehicle, shifts in the nutritional status were assessed in 6 test subjects differing in the body mass index, basal metabolism, attitude to the diet, physical exercise and workload. Results of the investigation showed that because of the hard physical work the nutritional status of test subjects was described by more intensive basal metabolism, elevated metabolism of carbohydrates and lipids, and their increased mobilization from depots. Food ration, though it was sufficient to sustain health and fairly high performance, failed to meet fully individual taste preferences and energy needs for physical activities. The heavy workloads required mobilization of lipids from adipose depots, and a decrease of the hepatic detoxification and metabolic capacities. Self-limitation of eating protein-rich desserts led to a relative deficiency of protein intake. These faults of the diet were the reason why 4 out of 6 test subjects reduced their basal metabolism and lost body mass. Recovery of metabolism and slowdown of the body mass loss were achieved by supplementing meals with available protein-containing products.

  16. NASA/NSF Workshop on Antarctic Research

    NASA Technical Reports Server (NTRS)

    Connors, Mary M.

    1990-01-01

    Viewgraphs that accompanied an Ames Research Center presentation address Ames' currently-supported life sciences activities. These include crew factor issues such as human, automation, and telecommunication systems; strategic behavior and workloads; sleep, fatigue, and circadian rhythms; and virtual reality and spatial instrumentation. The need, background, and examples of pertinent research are provided.

  17. Human Engineering of Space Vehicle Displays and Controls

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Holden, Kritina L.; Boyer, Jennifer; Stephens, John-Paul; Ezer, Neta; Sandor, Aniko

    2010-01-01

    Proper attention to the integration of the human needs in the vehicle displays and controls design process creates a safe and productive environment for crew. Although this integration is critical for all phases of flight, for crew interfaces that are used during dynamic phases (e.g., ascent and entry), the integration is particularly important because of demanding environmental conditions. This panel addresses the process of how human engineering involvement ensures that human-system integration occurs early in the design and development process and continues throughout the lifecycle of a vehicle. This process includes the development of requirements and quantitative metrics to measure design success, research on fundamental design questions, human-in-the-loop evaluations, and iterative design. Processes and results from research on displays and controls; the creation and validation of usability, workload, and consistency metrics; and the design and evaluation of crew interfaces for NASA's Crew Exploration Vehicle are used as case studies.

  18. Crew decision making under stress

    NASA Technical Reports Server (NTRS)

    Orasanu, J.

    1992-01-01

    Flight crews must make decisions and take action when systems fail or emergencies arise during flight. These situations may involve high stress. Full-missiion flight simulation studies have shown that crews differ in how effectively they cope in these circumstances, judged by operational errors and crew coordination. The present study analyzed the problem solving and decision making strategies used by crews led by captains fitting three different personality profiles. Our goal was to identify more and less effective strategies that could serve as the basis for crew selection or training. Methods: Twelve 3-member B-727 crews flew a 5-leg mission simulated flight over 1 1/2 days. Two legs included 4 abnormal events that required decisions during high workload periods. Transcripts of videotapes were analyzed to describe decision making strategies. Crew performance (errors and coordination) was judged on-line and from videotapes by check airmen. Results: Based on a median split of crew performance errors, analyses to date indicate a difference in general strategy between crews who make more or less errors. Higher performance crews showed greater situational awareness - they responded quickly to cues and interpreted them appropriately. They requested more decision relevant information and took into account more constraints. Lower performing crews showed poorer situational awareness, planning, constraint sensitivity, and coordination. The major difference between higher and lower performing crews was that poorer crews made quick decisions and then collected information to confirm their decision. Conclusion: Differences in overall crew performance were associated with differences in situational awareness, information management, and decision strategy. Captain personality profiles were associated with these differences, a finding with implications for crew selection and training.

  19. Assessment of the Navy’s North West Region Advance Food Menu Gallery Workload and Food Cost Impact Trade-Offs

    DTIC Science & Technology

    2009-06-01

    Self serve Same All All Assorted Indiv Fresh Fruits Bananas , apples, oranges, etc. Self serve Same All B/Br Omelets/Eggs to Order Scratch- from fresh...Prepared by night crew (M-F), and day crew for Saturday and Sunday All B/Br E02401 Assorted Cereal Adv Individual bowls with peel lids M-F L-SO N01207...Fresh Fruit Vegetable Prep [FSAs]  Wash, slice, dice, cut, peel or other process FFV, etc.  Clean/sanitize FFV Prep room equipment.  Clean FFV

  20. SKYLAB (SL)-2 PRIME CREW - BLDG. 5 - JSC

    NASA Image and Video Library

    1973-03-20

    S73-20713 (1 March 1973) --- Astronaut Charles Conrad Jr., commander of the first manned Skylab mission, wipes perspiration from his face following an exercise session on the bicycle ergometer during Skylab training at Johnson Space Center. Conrad is in the work and experiments compartment of the crew quarters of the Skylab Orbital Workshop (OWS) trainer at JSC. In addition to being the prime exercise for the crewmen, the ergometer is also used for the vector-cardiogram test and the metabolic activity experiment. The bicycle ergometer produces measured workloads for use in determining man's metabolic effectiveness. Photo credit: NASA

  1. Assessment of the RAH-66 Comanche Pilot-Crew Station Interface for the Force Development Test and Experimentation I (FDTE I)

    DTIC Science & Technology

    2003-09-01

    Engineering Directorate Approved for public release; distribution is unlimited. REPORT DOCUMENTATION PAGE Form Approved ■TTT ^-r- T - T - 0MB No. 0704...estimate or any ^^7^^cZ^^n^^Jam,^. rr;.;^™rtd^n’«2^;rafSy’T.’id*ot^ t :;:r^^^^^^ PLEASE DO NOT RmiRN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE...abandoned. Table 1. MANPRINT measures of performance MOP 2-5-1. Percent of crew errors attributable to induced fatigue or workload. ^ T .^il" P^’-cent of

  2. Flight Crew Task Management in Non-Normal Situations

    NASA Technical Reports Server (NTRS)

    Schutte, Paul C.; Trujillo, Anna C.

    1996-01-01

    Task management (TM) is always performed on the flight deck, although not always explicitly, consistently, or rigorously. Nowhere is TM as important as it is in dealing with non-normal situations. The objective of this study was to analyze pilot TM behavior for non-normal situations. Specifically, the study observed pilots performance in a full workload environment in order to discern their TM strategies. This study identified four different TM prioritization and allocation strategies: Aviate-Navigate-Communicate-Manage Systems; Perceived Severity; Procedure Based; and Event/Interrupt Driven. Subjects used these strategies to manage their personal workload and to schedule monitoring and assessment of the situation. The Perceived Severity strategy for personal workload management combined with the Aviate-Navigate-Communicate-Manage Systems strategy for monitoring and assessing appeared to be the most effective (fewest errors and fastest response times) in responding to the novel system failure used in this study.

  3. Feasibility of negative pressure wound therapy during intercontinental aeromedical evacuation of combat casualties.

    PubMed

    Fang, Raymond; Dorlac, Warren C; Flaherty, Stephen F; Tuman, Caroline; Cain, Steven M; Popey, Tracy L C; Villard, Douglas R; Aydelotte, Jayson D; Dunne, James R; Anderson, Adam M; Powell, Elisha T

    2010-07-01

    The objective of this study was to assess the feasibility of utilizing negative pressure wound therapy (NPWT) for the treatment of wartime soft-tissue wounds during intercontinental aeromedical evacuation. Attempts to use NPWT during early phases of overseas contingency operations resulted in occasional vacuum system failures and potentially contributed to wound complications. These anecdotal episodes led to a perception that NPWT during aeromedical evacuation carried a high risk of wound complications and limited its use. As a result, NPWT was not frequently applied in the management of soft-tissue wounds before US casualty arrival in the continental United States (CONUS) for wounds sustained in the combat theaters. Concurrently, early NPWT on the traumatic wounds of host nation casualties not requiring aeromedical evacuation seemed to provide many benefits typically associated with the therapy such as decreased infection rates, earlier wound closure, and improved pain management. On a daily basis, study investigators reviewed the trauma in-patient census at Landstuhl Regional Medical Center, Germany, to identify patient candidates with soft-tissue extremity or torso wounds that required packing. Patient demographics, injuries, and previous wound treatments were recorded. Surgeons inspected wounds in the operating room and applied a NPWT dressing if deemed appropriate. NPWT was continued throughout the remainder of the patient's hospitalization and also during aeromedical evacuation to CONUS. A study investigator escorted the patient during aeromedical evacuation to educate the flight crews, to record the impact on crew workload, and to troubleshoot the system if necessary. Thirty enrolled patients with 41 separate wounds flew from Germany to CONUS with a portable NPWT system (VAC Freedom System; Kinetic Concepts Incorporated, San Antonio, TX). All 30 patients arrived at the destination facilities with intact and functional systems. No significant in-flight complications were identified, impact on flight crew workload was negligible, and subjective feedback from both flight crews and patients was uniformly positive. For 29 patients, the NPWT dressing was replaced (frequently with serial exchanges) during initial surgical treatment in CONUS; the 30th patient underwent delayed primary closure of his right forearm fasciotomy. Receiving care teams reported no complications attributable to NPWT during aeromedical evacuation. NPWT is feasible during intercontinental aeromedical evacuation of combat casualties without an increase in wound complications or a significant impact on air crew workload. Further studies are indicated to evaluate the efficacy of NPWT in combat wounds compared with other wound care techniques.

  4. Assessing Impact of Dual Sensor Enhanced Flight Vision Systems on Departure Performance

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Etherington, Timothy J.; Severance, Kurt; Bailey, Randall E.

    2016-01-01

    Synthetic Vision (SV) and Enhanced Flight Vision Systems (EFVS) may serve as game-changing technologies to meet the challenges of the Next Generation Air Transportation System and the envisioned Equivalent Visual Operations (EVO) concept - that is, the ability to achieve the safety and operational tempos of current-day Visual Flight Rules operations irrespective of the weather and visibility conditions. One significant obstacle lies in the definition of required equipage on the aircraft and on the airport to enable the EVO concept objective. A motion-base simulator experiment was conducted to evaluate the operational feasibility and pilot workload of conducting departures and approaches on runways without centerline lighting in visibility as low as 300 feet runway visual range (RVR) by use of onboard vision system technologies on a Head-Up Display (HUD) without need or reliance on natural vision. Twelve crews evaluated two methods of combining dual sensor (millimeter wave radar and forward looking infrared) EFVS imagery on pilot-flying and pilot-monitoring HUDs. In addition, the impact of adding SV to the dual sensor EFVS imagery on crew flight performance and workload was assessed. Using EFVS concepts during 300 RVR terminal operations on runways without centerline lighting appears feasible as all EFVS concepts had equivalent (or better) departure performance and landing rollout performance, without any workload penalty, than those flown with a conventional HUD to runways having centerline lighting. Adding SV imagery to EFVS concepts provided situation awareness improvements but no discernible improvements in flight path maintenance.

  5. Identification of Important "Party Line" Information Elements and the Implications for Situational Awareness in the Datalink Environment

    NASA Technical Reports Server (NTRS)

    Midkiff, Alan H.; Hansman, R. John, Jr.

    1992-01-01

    Air/ground digital datalink communications are an integral component of the FAA's Air Traffic Control (ATC) modernization strategy. With the introduction of datalink into the ATC system, there is concern over the potential loss of situational awareness by flight crews due to the reduction in the "party line" information available to the pilot. "Party line" information is gleaned by flight crews overhearing communications between ATC and other aircraft. In the datalink environment, party line information may not be available due to the use of discrete addressing. Information concerning the importance, availability, and accuracy of party line elements was explored through an opinion survey of active air carrier flight crews. The survey identified numerous important party line elements. These elements were scripted into a full-mission flight simulation. The flight simulation experiment examined the utilization of party line information by studying subject responses to the specific information elements. Some party line elements perceived as important were effectively utilized by flight crews in the simulated operational environment. However, other party line elements stimulated little or no increase in situational awareness. The ability to assimilate and use party line information appeared to be dependent on workload, time availability, and the tactical/strategic nature of the situations. In addition, the results of both the survey and the simulation indicated that the importance of party line information appeared to be greatest for operations near or on the airport. This indicates that caution must be exercised when implementing datalink communications in these high workload, tactical sectors. This document is based on the thesis of Alan H. Midkiff submitted in partial fulfillment of the degree of Master of Science in Aeronautics and Astronautics at the Massachusetts Institute of Technology.

  6. Douglas flight deck design philosophy

    NASA Technical Reports Server (NTRS)

    Oldale, Paul

    1990-01-01

    The systems experience gained from 17 years of DC-10 operation was used during the design of the MD-11 to automate system operation and reduce crew workload. All functions, from preflight to shutdown at the termination of flight, require little input from the crew. The MD-11 aircraft systems are monitored for proper operation by the Aircraft Systems Controllers (ASC). In most cases, system reconfiguration as a result of a malfunction is automated. Manual input is required for irreversible actions such as engine shutdown, fuel dump, fire agent discharge, or Integrated Drive Generator (IDG) disconnect. During normal operations, when the cockpit is configured for flight, all annunciators on the overhead panel will be extinguished. This Dark Cockpit immediately confirms to the crew that the panels are correctly configured and that no abnormalities are present. Primary systems annunciations are shown in text on the Alert Area of the Engine and Alert Display (EAD). This eliminates the need to scan the overhead. The MD-11 aircraft systems can be manually controlled from the overhead area of the cockpit. The center portion of the overhead panel is composed of the primary aircraft systems panels, which include FUEL, AIR, Electrical (ELEC) and Hydraulic (HYD) systems, which are easily accessible from both flight crew positions. Each Aircraft Systems Controller (ASC) has two automatic channels and a manual mode. All rectangular lights are annunciators. All square lights are combined switches and annunciators called switch/lights. Red switch/lights on the overhead (Level 3 alerts) are for conditions requiring immediate crew action. Amber (Level 2 or Level 1 alerts) indicates a fault or switch out of position requiring awareness or crew interaction. Overhead switches used in normal operating conditions will illuminate blue when in use (Level 0 alerts) such as WING ANTI-ICE - ON. An overhead switch/light with BLACK LETTERING on an amber or red background indicates a system failure and that crew interaction is required. A switch/light with blue or amber lettering and a BLACK BACKGROUND indicates a switch out of normal position and that crew action is necessary only if the system is in manual operation.

  7. NASA Space Human Factors Program

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This booklet briefly and succinctly treats 23 topics of particular interest to the NASA Space Human Factors Program. Most articles are by different authors who are mainly NASA Johnson or NASA Ames personnel. Representative topics covered include mental workload and performance in space, light effects on Circadian rhythms, human sleep, human reasoning, microgravity effects and automation and crew performance.

  8. Functional categories for future flight deck designs

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    1993-01-01

    With the addition of each new system on the flight deck, the danger of increasing overall operator workload while reducing crew understanding of critical mission information exists. The introduction of more powerful onboard computers, larger databases, and the increased use of electronic display media may lead to a situation of flight deck 'sophistication' at the expense of losses in flight crew capabilities and situational awareness. To counter this potentially negative impact of new technology, research activities are underway to reassess the flight deck design process. The fundamental premise of these activities is that a human-centered, systems-oriented approach to the development of advanced civil aircraft flight decks will be required for future designs to remain ergonomically sound and economically competitive. One of the initial steps in an integrated flight deck process is to define the primary flight deck functions needed to support the mission goals of the vehicle. This would allow the design team to evaluate candidate concepts in relation to their effectiveness in meeting the functional requirements. In addition, this would provide a framework to aid in categorizing and bookkeeping all of the activities that are required to be performed on the flight deck, not just activities of the crew or of a specific system. This could then allow for a better understanding and allocation of activities in the design, an understanding of the impact of a specific system on overall system performance, and an awareness of the total crew performance requirements for the design. One candidate set of functional categories that could be used to guide an advanced flight deck design are described.

  9. Irregular working hours and fatigue of cabin crew.

    PubMed

    Castro, Marta; Carvalhais, José; Teles, Júlia

    2015-01-01

    Beyond workload and specific environmental factors, flight attendants can be exposed to irregular working hours, conflicting with their circadian rhythms and having a negative impact in sleep, fatigue, health, social and family life, and performance which is critical to both safety and security in flight operations. This study focuses on the irregular schedules of cabin crew as a trigger of fatigue symptoms in a wet lease Portuguese airline. The aim was to analyze: what are the requirements of the cabin crew work; whether the schedules being observed and effective resting timeouts are triggering factors of fatigue; and the existence of fatigue symptoms in the cabin crew. A questionnaire has been adapted and applied to a sample of 73 cabin crew-members (representing 61.9% of the population), 39 females and 34 males, with an average age of 27.68 ± 4.27 years. Our data indicate the presence of fatigue and corresponding health symptoms among the airline cabin crew, despite of the sample favorable characteristics. Senior workers and women are more affected. Countermeasures are required. Recommendations can be made regarding the fatigue risk management, including work organization, education and awareness training programmes and specific countermeasures.

  10. Team Performance and Error Management in Chinese and American Simulated Flight Crews: The Role of Cultural and Individual Differences

    NASA Technical Reports Server (NTRS)

    Davis, Donald D.; Bryant, Janet L.; Tedrow, Lara; Liu, Ying; Selgrade, Katherine A.; Downey, Heather J.

    2005-01-01

    This report describes results of a study conducted for NASA-Langley Research Center. This study is part of a program of research conducted for NASA-LARC that has focused on identifying the influence of national culture on the performance of flight crews. We first reviewed the literature devoted to models of teamwork and team performance, crew resource management, error management, and cross-cultural psychology. Davis (1999) reported the results of this review and presented a model that depicted how national culture could influence teamwork and performance in flight crews. The second study in this research program examined accident investigations of foreign airlines in the United States conducted by the National Transportation Safety Board (NTSB). The ability of cross-cultural values to explain national differences in flight outcomes was examined. Cultural values were found to covary in a predicted way with national differences, but the absence of necessary data in the NTSB reports and limitations in the research method that was used prevented a clear understanding of the causal impact of cultural values. Moreover, individual differences such as personality traits were not examined in this study. Davis and Kuang (2001) report results of this second study. The research summarized in the current report extends this previous research by directly assessing cultural and individual differences among students from the United States and China who were trained to fly in a flight simulator using desktop computer workstations. The research design used in this study allowed delineation of the impact of national origin, cultural values, personality traits, cognitive style, shared mental model, and task workload on teamwork, error management and flight outcomes. We briefly review the literature that documents the importance of teamwork and error management and its impact on flight crew performance. We next examine teamwork and crew resource management training designed to improve teamwork. This is followed by discussion of the potential influence of national culture on teamwork and crew resource management. We then examine the influence of other individual and team differences, such as personality traits, cognitive style, shared mental model, and task workload. We provide a heuristic model that depicts the influence of national culture and individual differences on teamwork, error management and flight outcomes. The results demonstrate the usefulness of the model for future research.

  11. Considerations for the retrofit of data link

    NASA Technical Reports Server (NTRS)

    Corwin, William H.; Mccauley, Hugo W.

    1990-01-01

    Human factors issues related to the retrofit of data link in commercial transport aircraft are discussed. Topics that must be considered for data link implementation include, the loss of the party line, (i.e., the availability to all aircraft of information transmitted on a common voice frequency), and the scheduling of information to the flight crew. This paper focuses primarily on the human factors issues related to retrofit of Mode S. Retrofits is a difficult task because panel space accessible to flight crew members is limited. As with all cockpit equipment, data link implementation will have to comply with Federal Aviation Regulation 25.1523, which requires the manufacturer to address the conspicuity and ease of use of the data link device, and to assess the impact on crew workload. Operational sequence diagrams are provided to illustrate a methodology that can be used to decompose the flight crew body channel utilization of candidate avionics configurations in order to optimize the pilot-vehicle interface.

  12. Surface Telerobotics: Development and Testing of a Crew Controlled Planetary Rover System

    NASA Technical Reports Server (NTRS)

    Bualat, Maria G.; Fong, Terrence; Allan, Mark; Bouyssounouse, Xavier; Cohen, Tamar; Kobayashi, Linda

    2013-01-01

    In planning for future exploration missions, architecture and study teams have made numerous assumptions about how crew can be telepresent on a planetary surface by remotely operating surface robots from space (i.e. from a flight vehicle or deep space habitat). These assumptions include estimates of technology maturity, existing technology gaps, and operational risks. These assumptions, however, have not been grounded by experimental data. Moreover, to date, no crew-controlled surface telerobot has been fully tested in a high-fidelity manner. To address these issues, we developed the "Surface Telerobotics" tests to do three things: 1) Demonstrate interactive crew control of a mobile surface telerobot in the presence of short communications delay. 2) Characterize a concept of operations for a single astronaut remotely operating a planetary rover with limited support from ground control. 3) Characterize system utilization and operator work-load for a single astronaut remotely operating a planetary rover with limited support from ground control.

  13. A plan for time-phased incorporation of automation and robotics on the US space station

    NASA Technical Reports Server (NTRS)

    Purves, R. B.; Lin, P. S.; Fisher, E. M., Jr.

    1988-01-01

    A plan for the incorporation of Automation and Robotics technology on the Space Station is presented. The time phased introduction of twenty two selected candidates is set forth in accordance with a technology development forecast. Twenty candidates were chosed primarily for their potential to relieve the crew of mundane or dangerous operations and maintenance burdens, thus freeing crew time for mission duties and enhancing safety. Two candidates were chosen based on a potential for increasing the productivity of laboratory experiments and thus directly enhancing the scientific value of the Space Station. A technology assessment for each candidate investigates present state of the art, development timelines including space qualification considerations, and potential for technology transfer to earth applications. Each candidate is evaluated using a crew workload model driven by crew size, number of pressurized U.S. modules and external payloads, which makes it possible to assess the impact of automation during a growth scenario. Costs for each increment of implementation are estimated and accumulated.

  14. The perfect boring situation-Addressing the experience of monotony during crewed deep space missions through habitability design

    NASA Astrophysics Data System (ADS)

    Peldszus, Regina; Dalke, Hilary; Pretlove, Stephen; Welch, Chris

    2014-01-01

    In contemporary orbital missions, workloads are so high and varied that crew may rarely experience stretches of monotony. However, in historical long duration missions, occurrences of monotony were, indeed, reported anecdotally by crew. Of the effective countermeasures that appear to be at hand, many rely on visual or logistical proximity to the Earth, and are not feasible in the remote context of an extended deep space mission scenario. There, particularly in- and outbound cruising stages would be characterised by longer, comparably uneventful periods of low workload, coupled with confinement and unchanging vehicle surroundings. While the challenge of monotony has been pointed out as an exploration-related research area, it has received less explicit attention from a habitation design perspective than other human behaviour and performance issues. The paper addresses this gap through a literature review of the theory and application of design-based mitigation strategies. It outlines models of emergence of monotony, situates the phenomenon in a remote mission context as a problem of sensory, social and spatio-temporal isolation, and discusses proposed countermeasures related to habitability. The scope of the literature is extended to primary sources in the form of a qualitative review of six onboard diaries from orbital and simulator missions, highlighting a range of habitat-related design themes. These are translated into the autonomous deep space setting with the overall rationale of integrating affordances into onboard habitation systems and placing emphasis on reinforcing positive situational characteristics.

  15. 78 FR 19329 - Request for Information (RFI): Reducing Investigator's Administrative Workload for Federally...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... most to their administrative workload and to offer recommendations for reducing that workload. Members... offer recommendations to reduce unnecessary and redundant administrative requirements. Background Over... an awardee's available research time, a figure widely cited in numerous articles and reports. To help...

  16. Crew factors in flight operations. Part 3: The operational significance of exposure to short-haul air transport operations

    NASA Technical Reports Server (NTRS)

    Foushee, H. C.; Lauber, J. K.; Baetge, M. M.; Acomb, D. B.

    1986-01-01

    Excessive flightcrew fatigue has potentially serious safety consequences. Laboratory studies have implicated fatigue as a causal factor associated with varying levels of performance deterioration depending on the amount of fatigue and the type of measure utilized in assessing performance. These studies have been of limited utility because of the difficulty of relating laboratory task performance to the demands associated with the operation of a complex aircraft. The performance of 20 volunteer twin-jet transport crews is examined in a full-mission simulator scenario that included most aspects of an actual line operation. The scenario included both routine flight operations and an unexpected mechanical abnormality which resulted in a high level of crew workload. Half of the crews flew the simulation within two to three hours after completing a three-day, high-density, short-haul duty cycle (Post-Duty condition). The other half flew the scenario after a minimum of three days off duty (Pre-Duty) condition). The results revealed that, not surprisingly, Post-Duty crews were significantly more fatigued than Pre-Duty crews. However, a somewhat counter-intuitive pattern of results emerged on the crew performancemeasures. In general, the performance of Post-Duty crews was significantly better than that of Pre-Duty crews, as rated by an expert observer on a number of dimensions relevant to flight safety. Analyses of the flightcrew communication patterns revealed that Post-Duty crews communicated significantly more overall, suggesting, as has previous research, that communication is a good predictor of overall crew performance.

  17. Cockpit resource management skills enhance combat mission performance in a B-52 simulator

    NASA Technical Reports Server (NTRS)

    Povenmire, H. Kingsley; Rockway, Marty R.; Bunecke, Joseph L.; Patton, Mark W.

    1989-01-01

    A cockpit resource management (CRM) program for mission-ready B-52 aircrew is developed. The relationship between CRM performance and combat mission performance is studied. The performances of six crew members flying a simulated high workload mission in a B-52 weapon system trainer are evaluated. The data reveal that CRM performance enhances tactical maneuvers and bombing accuracy.

  18. A two-stage approach to the depot shunting driver assignment problem with workload balance considerations.

    PubMed

    Wang, Jiaxi; Gronalt, Manfred; Sun, Yan

    2017-01-01

    Due to its environmentally sustainable and energy-saving characteristics, railway transportation nowadays plays a fundamental role in delivering passengers and goods. Emerged in the area of transportation planning, the crew (workforce) sizing problem and the crew scheduling problem have been attached great importance by the railway industry and the scientific community. In this paper, we aim to solve the two problems by proposing a novel two-stage optimization approach in the context of the electric multiple units (EMU) depot shunting driver assignment problem. Given a predefined depot shunting schedule, the first stage of the approach focuses on determining an optimal size of shunting drivers. While the second stage is formulated as a bi-objective optimization model, in which we comprehensively consider the objectives of minimizing the total walking distance and maximizing the workload balance. Then we combine the normalized normal constraint method with a modified Pareto filter algorithm to obtain Pareto solutions for the bi-objective optimization problem. Furthermore, we conduct a series of numerical experiments to demonstrate the proposed approach. Based on the computational results, the regression analysis yield a driver size predictor and the sensitivity analysis give some interesting insights that are useful for decision makers.

  19. A two-stage approach to the depot shunting driver assignment problem with workload balance considerations

    PubMed Central

    Gronalt, Manfred; Sun, Yan

    2017-01-01

    Due to its environmentally sustainable and energy-saving characteristics, railway transportation nowadays plays a fundamental role in delivering passengers and goods. Emerged in the area of transportation planning, the crew (workforce) sizing problem and the crew scheduling problem have been attached great importance by the railway industry and the scientific community. In this paper, we aim to solve the two problems by proposing a novel two-stage optimization approach in the context of the electric multiple units (EMU) depot shunting driver assignment problem. Given a predefined depot shunting schedule, the first stage of the approach focuses on determining an optimal size of shunting drivers. While the second stage is formulated as a bi-objective optimization model, in which we comprehensively consider the objectives of minimizing the total walking distance and maximizing the workload balance. Then we combine the normalized normal constraint method with a modified Pareto filter algorithm to obtain Pareto solutions for the bi-objective optimization problem. Furthermore, we conduct a series of numerical experiments to demonstrate the proposed approach. Based on the computational results, the regression analysis yield a driver size predictor and the sensitivity analysis give some interesting insights that are useful for decision makers. PMID:28704489

  20. Psychophysiological Assessment of Fatigue in Commercial Aviation Operations

    NASA Technical Reports Server (NTRS)

    Hernandez, Norma; Cowings, Patricia; Toscano, William

    2012-01-01

    The overall goal of this study is to improve our understanding of crew work hours, workload, sleep, fatigue, and performance, and the relationships between these variables on actual flight deck performance. Specifically, this study will provide objective measures of physiology and performance, which may benefit investigators in identifying fatigue levels of operators in commercial aviation and provide a way to better design strategies to limit crew fatigue. This research was supported by an agreement between NASA Ames Research Center and easyJet Airline Company, Ltd., Luton, UK. Twenty commercial pilots volunteered to participant in the study that included 15 flight duty days. Participants wore a Zephyr Bioharness ambulatory physiological monitor each flight day, which measured their heart rate, respiration rate, skin temperature, activity and posture. In addition, pilots completed sleep log diaries, self-report scales of mood, sleepiness and workload, and a Performance Vigilance Task (PVT). All data were sent to NASA researchers for processing and analyses. Heart rate variability data of several subjects were subjected to a spectral analysis to examine power in specific frequency bands. Increased power in low frequency band was associated with reports of higher subjective sleepinesss in some subjects. Analyses of other participants data are currently underway.

  1. AMO EXPRESS: A Command and Control Experiment for Crew Autonomy

    NASA Technical Reports Server (NTRS)

    Stetson, Howard K.; Frank, Jeremy; Cornelius, Randy; Haddock, Angie; Wang, Lui; Garner, Larry

    2015-01-01

    NASA is investigating a range of future human spaceflight missions, including both Mars-distance and Near Earth Object (NEO) targets. Of significant importance for these missions is the balance between crew autonomy and vehicle automation. As distance from Earth results in increasing communication delays, future crews need both the capability and authority to independently make decisions. However, small crews cannot take on all functions performed by ground today, and so vehicles must be more automated to reduce the crew workload for such missions. NASA's Advanced Exploration Systems Program funded Autonomous Mission Operations (AMO) project conducted an autonomous command and control demonstration of intelligent procedures to automatically initialize a rack onboard the International Space Station (ISS) with power and thermal interfaces, and involving core and payload command and telemetry processing, without support from ground controllers. This autonomous operations capability is enabling in scenarios such as a crew medical emergency, and representative of other spacecraft autonomy challenges. The experiment was conducted using the Expedite the Processing of Experiments for Space Station (EXPRESS) rack 7, which was located in the Port 2 location within the U.S Laboratory onboard the International Space Station (ISS). Activation and deactivation of this facility is time consuming and operationally intensive, requiring coordination of three flight control positions, 47 nominal steps, 57 commands, 276 telemetry checks, and coordination of multiple ISS systems (both core and payload). The autonomous operations concept includes a reduction of the amount of data a crew operator is required to verify during activation or de-activation, as well as integration of procedure execution status and relevant data in a single integrated display. During execution, the auto-procedures provide a step-by-step messaging paradigm and a high level status upon termination. This messaging and high level status is the only data generated for operator display. To enhance situational awareness of the operator, the Web-based Procedure Display (WebPD) provides a novel approach to the issues of procedure display and execution tracking. For this demonstration, the procedure was initiated and monitored from the ground. As the Timeliner sequences executed, their high level execution status was transmitted to ground, for WebPD consumption.

  2. K-12 Teachers' Preparedness for Utilizing Technology to Reduce Classroom Administrative Workload

    ERIC Educational Resources Information Center

    Parizo, Daniel C.

    2013-01-01

    Research on technology in the K-12 classroom has focused on student learning initiatives. Few studies, however, have addressed whether technology is being used to reduce classroom administrative workload or whether teachers are prepared to utilize technology for reducing administrative workload. The problem this study addressed was the unclear…

  3. Task network models in the prediction of workload imposed by extravehicular activities during the Hubble Space Telescope servicing mission

    NASA Technical Reports Server (NTRS)

    Diaz, Manuel F.; Takamoto, Neal; Woolford, Barbara

    1994-01-01

    In a joint effort with Brooks AFB, Texas, the Flight Crew Support Division at JSC has begun a computer simulation and performance modeling program directed at establishing the predictive validity of software tools for modeling human performance during spaceflight. This paper addresses the utility of task network modeling for predicting the workload that astronauts are likely to encounter in extravehicular activities (EVA) during the Hubble Space Telescope (HST) repair mission. The intent of the study was to determine whether two EVA crewmembers and one intravehicular activity (IVA) crewmember could reasonably be expected to complete HST Wide Field/Planetary Camera (WFPC) replacement in the allotted time. Ultimately, examination of the points during HST servicing that may result in excessive workload will lead to recommendations to the HST Flight Systems and Servicing Project concerning (1) expectation of degraded performance, (2) the need to change task allocation across crewmembers, (3) the need to expand the timeline, and (4) the need to increase the number of EVA's.

  4. Habitability and performance issues for long duration space flights.

    PubMed

    Whitmore, M; McQuilkin, M L; Woolford, B J

    1998-09-01

    Advancing technology, coupled with the desire to explore space has resulted in increasingly longer manned space missions. Although the Long Duration Space Flights (LDSF) have provided a considerable amount of scientific research on human ability to function in extreme environments, findings indicate long duration missions take a toll on the individual, both physiologically and psychologically. These physiological and psychological issues manifest themselves in performance decrements; and could lead to serious errors endangering the mission, spacecraft and crew. The purpose of this paper is threefold: 1) to document existing knowledge of the effects of LDSF on performance, habitability, and workload, 2) to identify and assess potential tools designed to address these decrements, and 3) to propose an implementation plan to address these habitability, performance and workload issues.

  5. Habitability and Performance Issues for Long Duration Space Flights

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; McQuilkin, Meredith L.; Woolford, Barbara J.

    1997-01-01

    Advancing technology, coupled with the desire to explore space has resulted in increasingly longer manned space missions. Although the Long Duration Space Flights (LDSF) have provided a considerable amount of scientific research on human ability to function in extreme environments, findings indicate long duration missions take a toll on the individual, both physiologically and psychologically. These physiological and psychological issues manifest themselves in performance decrements; and could lead to serious errors endangering the mission, spacecraft and crew. The purpose of this paper is to document existing knowledge of the effects of LDSF on performance, habitability, and workload and to identify and assess potential tools designed to address these decrements as well as propose an implementation plan to address the habitability, performance and workload issues.

  6. Ground operation of robotics on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Wojcik, Z. Alex; Hunter, David G.; Cantin, Marc R.

    1993-01-01

    This paper reflects work carried out on Ground Operated Telerobotics (GOT) in 1992 to refine further the ideas, procedures, and technologies needed to test the procedures in a high latency environment, and to integrate GOT into Space Station Freedom operations. Space Station Freedom (SSF) will be in operation for 30 years, and will depend on robots to carry out a significant part of the assembly, maintenance, and utilization workload. Current plans call for on-orbit robotics to be operated by on-board crew members. This approach implies that on-orbit robotics operations use up considerable crew time, and that these operations cannot be carried out when SSF is unmanned. GOT will allow robotic operations to be operated from the ground, with on-orbit crew interventions only when absolutely required. The paper reviews how GOT would be implemented, how GOT operations would be planned and supported, and reviews GOT issues, critical success factors, and benefits.

  7. A candidate concept for display of forward-looking wind shear information

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1989-01-01

    A concept is proposed which integrates forward-look wind shear information with airplane performance capabilities to predict future airplane energy state as a function of range. The information could be displayed to a crew either in terms of energy height or airspeed deviations. The anticipated benefits of the proposed display information concept are: (1) a wind shear hazard product that scales directly to the performance impact on the airplane and that has intuitive meaning to flight crews; (2) a reduction in flight crew workload by automatic processing of relevant hazard parameters; and (3) a continuous display of predicted airplane energy state if the approach is continued. Such a display may be used to improve pilot situational awareness or improve pilot confidence in wind shear alerts generated by other systems. The display is described and the algorithms necessary for implementation in a simulation system are provided.

  8. Ground operation of robotics on Space Station Freedom

    NASA Astrophysics Data System (ADS)

    Wojcik, Z. Alex; Hunter, David G.; Cantin, Marc R.

    1993-03-01

    This paper reflects work carried out on Ground Operated Telerobotics (GOT) in 1992 to refine further the ideas, procedures, and technologies needed to test the procedures in a high latency environment, and to integrate GOT into Space Station Freedom operations. Space Station Freedom (SSF) will be in operation for 30 years, and will depend on robots to carry out a significant part of the assembly, maintenance, and utilization workload. Current plans call for on-orbit robotics to be operated by on-board crew members. This approach implies that on-orbit robotics operations use up considerable crew time, and that these operations cannot be carried out when SSF is unmanned. GOT will allow robotic operations to be operated from the ground, with on-orbit crew interventions only when absolutely required. The paper reviews how GOT would be implemented, how GOT operations would be planned and supported, and reviews GOT issues, critical success factors, and benefits.

  9. Human factors in aviation

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L. (Editor); Nagel, David C. (Editor)

    1988-01-01

    The fundamental principles of human-factors (HF) analysis for aviation applications are examined in a collection of reviews by leading experts, with an emphasis on recent developments. The aim is to provide information and guidance to the aviation community outside the HF field itself. Topics addressed include the systems approach to HF, system safety considerations, the human senses in flight, information processing, aviation workloads, group interaction and crew performance, flight training and simulation, human error in aviation operations, and aircrew fatigue and circadian rhythms. Also discussed are pilot control; aviation displays; cockpit automation; HF aspects of software interfaces; the design and integration of cockpit-crew systems; and HF issues for airline pilots, general aviation, helicopters, and ATC.

  10. Modeling Relationships Between Flight Crew Demographics and Perceptions of Interval Management

    NASA Technical Reports Server (NTRS)

    Remy, Benjamin; Wilson, Sara R.

    2016-01-01

    The Interval Management Alternative Clearances (IMAC) human-in-the-loop simulation experiment was conducted to assess interval management system performance and participants' acceptability and workload while performing three interval management clearance types. Twenty-four subject pilots and eight subject controllers flew ten high-density arrival scenarios into Denver International Airport during two weeks of data collection. This analysis examined the possible relationships between subject pilot demographics on reported perceptions of interval management in IMAC. Multiple linear regression models were created with a new software tool to predict subject pilot questionnaire item responses from demographic information. General patterns were noted across models that may indicate flight crew demographics influence perceptions of interval management.

  11. Design Insights for MapReduce from Diverse Production Workloads

    DTIC Science & Technology

    2012-01-25

    different industries [5]. Consequently, there is a need to develop systematic knowledge of MapRe- duce behavior at both established users within technol...relevant to MapReduce-like systems that combine data movements and computation. 5.2 Task granularity Many MapReduce workload management mechanisms make...ex- ecutes the jobs given, versus what the jobs actually are. MapReduce workload managers currently optimize exe- cution scheduling and placement

  12. Perceived vs. measured effects of advanced cockpit systems on pilot workload and error: are pilots' beliefs misaligned with reality?

    PubMed

    Casner, Stephen M

    2009-05-01

    Four types of advanced cockpit systems were tested in an in-flight experiment for their effect on pilot workload and error. Twelve experienced pilots flew conventional cockpit and advanced cockpit versions of the same make and model airplane. In both airplanes, the experimenter dictated selected combinations of cockpit systems for each pilot to use while soliciting subjective workload measures and recording any errors that pilots made. The results indicate that the use of a GPS navigation computer helped reduce workload and errors during some phases of flight but raised them in others. Autopilots helped reduce some aspects of workload in the advanced cockpit airplane but did not appear to reduce workload in the conventional cockpit. Electronic flight and navigation instruments appeared to have no effect on workload or error. Despite this modest showing for advanced cockpit systems, pilots stated an overwhelming preference for using them during all phases of flight.

  13. Application of Human-Autonomy Teaming to an Advanced Ground Station for Reduced Crew Operations

    NASA Technical Reports Server (NTRS)

    Ho, Nhut; Johnson, Walter; Panesar, Karanvir; Wakeland, Kenny; Sadler, Garrett; Wilson, Nathan; Nguyen, Bao; Lachter, Joel; Stallmann, Summer

    2017-01-01

    Within human factors there is burgeoning interest in the "human-autonomy teaming" (HAT) concept as a way to address the challenges of interacting with complex, increasingly autonomous systems. The HAT concept comes out of an aspiration to interact with increasingly autonomous systems as a team member, rather than simply use automation as a tool. The authors, and others, have proposed core tenets for HAT that include bi-directional communication, automation and system transparency, and advanced coordination between human and automated teammates via predefined, dynamic task sequences known as "plays." It is believed that, with proper implementation, HAT should foster appropriate teamwork, thus increasing trust and reliance on the system, which in turn will reduce workload, increase situation awareness, and improve performance. To this end, HAT has been demonstrated and/or studied in multiple applications including search and rescue operations, healthcare and medicine, autonomous vehicles, photography, and aviation. The current paper presents one such effort to apply HAT. It details the design of a HAT agent, developed by Human Automation Teaming Solutions, Inc., to facilitate teamwork between the automation and the human operator of an advanced ground dispatch station. This dispatch station was developed to support a NASA project investigating a concept called Reduced Crew Operations (RCO); consequently, we have named the agent R-HATS. Part of the RCO concept involves a ground operator providing enhanced support to a large number of aircraft with a single pilot on the flight deck. When assisted by R-HATS, operators can monitor and support or manage a large number of aircraft and use plays to respond in real-time to complicated, workload-intensive events (e.g., an airport closure). A play is a plan that encapsulates goals, tasks, and a task allocation strategy appropriate for a particular situation. In the current implementation, when a play is initiated by a user, R-HATS determines what tasks need to be completed and has the ability to autonomously execute them (e.g., determining diversion options and uplinking new routes to aircraft) when it is safe and appropriate. R-HATS has been designed to both support end users and researchers in RCO and HAT. Additionally, R-HATS and its underlying architecture were developed with generalizability in mind as a modular software applicable outside of RCO/aviation domains. This paper will also discuss future further development and testing of RHATS.

  14. Shared Problem Models and Crew Decision Making

    NASA Technical Reports Server (NTRS)

    Orasanu, Judith; Statler, Irving C. (Technical Monitor)

    1994-01-01

    The importance of crew decision making to aviation safety has been well established through NTSB accident analyses: Crew judgment and decision making have been cited as causes or contributing factors in over half of all accidents in commercial air transport, general aviation, and military aviation. Yet the bulk of research on decision making has not proven helpful in improving the quality of decisions in the cockpit. One reason is that traditional analytic decision models are inappropriate to the dynamic complex nature of cockpit decision making and do not accurately describe what expert human decision makers do when they make decisions. A new model of dynamic naturalistic decision making is offered that may prove more useful for training or aiding cockpit decision making. Based on analyses of crew performance in full-mission simulation and National Transportation Safety Board accident reports, features that define effective decision strategies in abnormal or emergency situations have been identified. These include accurate situation assessment (including time and risk assessment), appreciation of the complexity of the problem, sensitivity to constraints on the decision, timeliness of the response, and use of adequate information. More effective crews also manage their workload to provide themselves with time and resources to make good decisions. In brief, good decisions are appropriate to the demands of the situation and reflect the crew's metacognitive skill. Effective crew decision making and overall performance are mediated by crew communication. Communication contributes to performance because it assures that all crew members have essential information, but it also regulates and coordinates crew actions and is the medium of collective thinking in response to a problem. This presentation will examine the relation between communication that serves to build performance. Implications of these findings for crew training will be discussed.

  15. Flight Deck Interval Management Avionics: Eye-Tracking Analysis

    NASA Technical Reports Server (NTRS)

    Latorella, Kara; Harden, John W.

    2015-01-01

    Interval Management (IM) is one NexGen method for achieving airspace efficiencies. In order to initiate IM procedures, Air Traffic Control provides an IM clearance to the IM aircraft's pilots that indicates an intended spacing from another aircraft (the target to follow - or TTF) and the point at which this should be achieved. Pilots enter the clearance in the flight deck IM (FIM) system; and once the TTF's Automatic Dependent Surveillance-Broadcast signal is available, the FIM algorithm generates target speeds to meet that IM goal. This study examined four Avionics Conditions (defined by the instrumentation and location presenting FIM information) and three Notification Methods (defined by the visual and aural alerts that notified pilots to IM-related events). Current commercial pilots flew descents into Dallas/Fort-Worth in a high-fidelity commercial flight deck simulation environment with realistic traffic and communications. All 12 crews experienced each Avionics Condition, where order was counterbalanced over crews. Each crew used only one of the three Notification Methods. This paper presents results from eye tracking data collected from both pilots, including: normalized number of samples falling within FIM displays, normalized heads-up time, noticing time, dwell time on first FIM display look after a new speed, a workload-related metric, and a measure comparing the scan paths of pilot flying and pilot monitoring; and discusses these in the context of other objective (vertical and speed profile deviations, response time to dial in commanded speeds, out-of-speed-conformance and reminder indications) and subjective measures (workload, situation awareness, usability, and operational acceptability).

  16. Human Factors in Training - Space Flight Resource Management Training

    NASA Technical Reports Server (NTRS)

    Bryne, Vicky; Connell, Erin; Barshi, Immanuel; Arsintescu, L.

    2009-01-01

    Accidents and incidents show that high workload-induced stress and poor teamwork skills lead to performance decrements and errors. Research on teamwork shows that effective teams are able to adapt to stressful situations, and to reduce workload by using successful strategies for communication and decision making, and through dynamic redistribution of tasks among team members. Furthermore, superior teams are able to recognize signs and symptoms of workload-induced stress early, and to adapt their coordination and communication strategies to the high workload, or stress conditions. Mission Control Center (MCC) teams often face demanding situations in which they must operate as an effective team to solve problems with crew and vehicle during onorbit operations. To be successful as a team, flight controllers (FCers) must learn effective teamwork strategies. Such strategies are the focus of Space Flight Resource Management (SFRM) training. SFRM training in MOD has been structured to include some classroom presentations of basic concepts and case studies, with the assumption that skill development happens in mission simulation. Integrated mission simulations do provide excellent opportunities for FCers to practice teamwork, but also require extensive technical knowledge of vehicle systems, mission operations, and crew actions. Such technical knowledge requires lengthy training. When SFRM training is relegated to integrated simulations, FCers can only practice SFRM after they have already mastered the technical knowledge necessary for these simulations. Given the centrality of teamwork to the success of MCC, holding SFRM training till late in the flow is inefficient. But to be able to train SFRM earlier in the flow, the training cannot rely on extensive mission-specific technical knowledge. Hence, the need for a generic SFRM training framework that would allow FCers to develop basic teamwork skills which are mission relevant, but without the required mission knowledge. Work on SFRM training has been conducted in collaboration with the Expedition Vehicle Division at the Mission Operations Directorate (MOD) and with United Space Alliance (USA) which provides training to Flight Controllers. The space flight resource management training work is part of the Human Factors in Training Directed Research Project (DRP) of the Space Human Factors Engineering (SHFE) Project under the Space Human Factors and Habitability (SHFH) Element of the Human Research Program (HRP). Human factors researchers at the Ames Research Center have been investigating team work and distributed decision making processes to develop a generic SFRM training framework for flight controllers. The work proposed for FY10 continues to build on this strong collaboration with MOD and the USA Training Group as well as previous research in relevant domains such as aviation. In FY10, the work focuses on documenting and analyzing problem solving strategies and decision making processes used in MCC by experienced FCers.

  17. Differences in physical workload between military helicopter pilots and cabin crew.

    PubMed

    Van den Oord, Marieke H A; Sluiter, Judith K; Frings-Dresen, Monique H W

    2014-05-01

    The 1-year prevalence of regular or continuous neck pain in military helicopter pilots of the Dutch Defense Helicopter Command (DHC) is 20%, and physical work exposures have been suggested as risk factors. Pilots and cabin crew perform different tasks when flying helicopters. The aims of the current study were to compare the exposures to physical work factors between these occupations and to estimate the 1-year prevalence of neck pain in military helicopter cabin crew members. A survey was completed by almost all available helicopter pilots (n = 113) and cabin crew members (n = 61) of the DHC. The outcome measures were self-reported neck pain and exposures to nine physical work factors. Differences in the proportions of helicopter pilots and cabin crew members reporting being often exposed to the particular physical factor were assessed with the χ(2) test. The 1-year prevalence of regular or continuous neck pain among cabin crew was 28%. Significantly more cabin crew members than pilots reported being often exposed to manual material handling, performing dynamic movements with their torsos, working in prolonged bent or twisted postures with their torsos and their necks, working with their arms raised and working in awkward postures. Often exposure to prolonged sitting and dynamic movements with the neck were equally reported by almost all the pilots and cabin crew members. Flight-related neck pain is prevalent in both military helicopter pilots and cabin crew members. The exposures to neck pain-related physical work factors differ between occupations, with the cabin crew members subjected to more factors. These results have implications for preventative strategies for flight-related neck pain.

  18. A Validated Task Analysis of the Single Pilot Operations Concept

    NASA Technical Reports Server (NTRS)

    Wolter, Cynthia A.; Gore, Brian F.

    2015-01-01

    The current day flight deck operational environment consists of a two-person Captain/First Officer crew. A concept of operations (ConOps) to reduce the commercial cockpit to a single pilot from the current two pilot crew is termed Single Pilot Operations (SPO). This concept has been under study by researchers in the Flight Deck Display Research Laboratory (FDDRL) at the National Aeronautics and Space Administration's (NASA) Ames (Johnson, Comerford, Lachter, Battiste, Feary, and Mogford, 2012) and researchers from Langley Research Centers (Schutte et al., 2007). Transitioning from a two pilot crew to a single pilot crew will undoubtedly require changes in operational procedures, crew coordination, use of automation, and in how the roles and responsibilities of the flight deck and ATC are conceptualized in order to maintain the high levels of safety expected of the US National Airspace System. These modifications will affect the roles and the subsequent tasks that are required of the various operators in the NextGen environment. The current report outlines the process taken to identify and document the tasks required by the crew according to a number of operational scenarios studied by the FDDRL between the years 2012-2014. A baseline task decomposition has been refined to represent the tasks consistent with a new set of entities, tasks, roles, and responsibilities being explored by the FDDRL as the move is made towards SPO. Information from Subject Matter Expert interviews, participation in FDDRL experimental design meetings, and study observation was used to populate and refine task sets that were developed as part of the SPO task analyses. The task analysis is based upon the proposed ConOps for the third FDDRL SPO study. This experiment possessed nine different entities operating in six scenarios using a variety of SPO-related automation and procedural activities required to guide safe and efficient aircraft operations. The task analysis presents the roles and responsibilities in a manner that can facilitate testing future scenarios. Measures of task count and workload were defined and analyzed to assess the impact of transitioning to a SPO environment.

  19. Technology-enabled Airborne Spacing and Merging

    NASA Technical Reports Server (NTRS)

    Hull, James; Barmore, Bryan; Abbott, Tetence

    2005-01-01

    Over the last several decades, advances in airborne and groundside technologies have allowed the Air Traffic Service Provider (ATSP) to give safer and more efficient service, reduce workload and frequency congestion, and help accommodate a critically escalating traffic volume. These new technologies have included advanced radar displays, and data and communication automation to name a few. In step with such advances, NASA Langley is developing a precision spacing concept designed to increase runway throughput by enabling the flight crews to manage their inter-arrival spacing from TRACON entry to the runway threshold. This concept is being developed as part of NASA s Distributed Air/Ground Traffic Management (DAG-TM) project under the Advanced Air Transportation Technologies Program. Precision spacing is enabled by Automatic Dependent Surveillance-Broadcast (ADS-B), which provides air-to-air data exchange including position and velocity reports; real-time wind information and other necessary data. On the flight deck, a research prototype system called Airborne Merging and Spacing for Terminal Arrivals (AMSTAR) processes this information and provides speed guidance to the flight crew to achieve the desired inter-arrival spacing. AMSTAR is designed to support current ATC operations, provide operationally acceptable system-wide increases in approach spacing performance and increase runway throughput through system stability, predictability and precision spacing. This paper describes problems and costs associated with an imprecise arrival flow. It also discusses methods by which Air Traffic Controllers achieve and maintain an optimum interarrival interval, and explores means by which AMSTAR can assist in this pursuit. AMSTAR is an extension of NASA s previous work on in-trail spacing that was successfully demonstrated in a flight evaluation at Chicago O Hare International Airport in September 2002. In addition to providing for precision inter-arrival spacing, AMSTAR provides speed guidance for aircraft on converging routes to safely and smoothly merge onto a common approach. Much consideration has been given to working with operational conditions such as imperfect ADS-B data, wind prediction errors, changing winds, differing aircraft types and wake vortex separation requirements. A series of Monte Carlo simulations are planned for the spring and summer of 2004 at NASA Langley to further study the system behavior and performance under more operationally extreme and varying conditions. This will coincide with a human-in-the-loop study to investigate the flight crew interface, workload and acceptability.

  20. Working Memory, Age, Crew Downsizing, System Design and Training

    DTIC Science & Technology

    2000-08-01

    Radvansky and Zacks, 1997). As authors have noted perceived demand. Accurate "Situation Models " (Johnson- when attempting to make sense of a... models of cognitive function and workload (cf. Baddeley bodies of information to be processed or multiple results and Gathercole, 1993). The ability to...major bottleneck in human performance. Some models of multiple traces from different headings and the human information processing (Pashler, 1998) place

  1. Fatigue in Military Operational Environments: An Annotated Bibliography

    DTIC Science & Technology

    2007-07-01

    Office Soldier, SFAE-SDR, 5901 Putnam Road, Bldg. 328, Ft. Belvoir, VA 22060-5422. Reproduction of all or part of this report is authorized...During the operation there was an extensive use of hypnotics (temazepam) by air crews. The workload was depending on aircraft type and mission...countermeasures. Various components of the U.S. military have authorized the use of specific compounds for this purpose. Hypnotics such as temazepam

  2. Department of Defense In-House RDT&E Activities. Management Analysis Report

    DTIC Science & Technology

    1988-10-30

    Surveying 621 Nurse Assistant Technician 622 Medical Supply Aid 818 Engineering 625 Autopsy Attendant Drafting 636 Rehabilitation Therapy Asst 856...IMPORTANT PROGRAMS AVIATOR PERFORMANCE EFFECTS OF CHEMICAL AGENT ANTIDOTE THERAPIES . INDIVIDUAL AND CREW STRESS/WORKLOAD/PERFORMANCE. BIOMEDICAL HAZARDS...MIL.RELEVANT INFECT.DISEASES IN S.W.ASIA AND AFRICA. THERAPY OF INFECT. DISEASE IN S.W.ASIA AND AFRICA RAPID & EARLY DIAG. OF INFECT.DISEASES OF

  3. Aircraft Emergencies: Challenge and Response

    NASA Technical Reports Server (NTRS)

    Burian, Barbara K.

    2010-01-01

    Emergency and abnormal situations in aviation present flight crews with a number of challenges. Checklists are essential tools that have been developed to assist them to meet these challenges. However, in order for checklists to be most effective in these situations they must be designed with the operational and situational demands of emergencies and abnormal conditions in mind as well as human performance capabilities and limitations under high stress and workload.

  4. Human Factors in Accidents Involving Remotely Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Merlin, Peter William

    2013-01-01

    This presentation examines human factors that contribute to RPA mishaps and provides analysis of lessons learned. RPA accident data from U.S. military and government agencies were reviewed and analyzed to identify human factors issues. Common contributors to RPA mishaps fell into several major categories: cognitive factors (pilot workload), physiological factors (fatigue and stress), environmental factors (situational awareness), staffing factors (training and crew coordination), and design factors (human machine interface).

  5. How to reduce workload--augmented reality to ease the work of air traffic controllers.

    PubMed

    Hofmann, Thomas; König, Christina; Bruder, Ralph; Bergner, Jörg

    2012-01-01

    In the future the air traffic will rise--the workload of the controllers will do the same. In the BMWi research project, one of the tasks is, how to ensure safe air traffic, and a reasonable workload for the air traffic controllers. In this project it was the goal to find ways how to reduce the workload (and stress) for the controllers to allow safe air traffic, esp. at huge hub-airports by implementing augmented reality visualization and interaction.

  6. Commercial Flight Crew Decision-Making during Low-Visibility Approach Operations Using Fused Synthetic/Enhanced Vision Systems

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Bailey, Randall E.; Prinzel, Lawrence J., III

    2007-01-01

    NASA is investigating revolutionary crew-vehicle interface technologies that strive to proactively overcome aircraft safety barriers that would otherwise constrain the full realization of the next-generation air transportation system. A fixed-based piloted simulation experiment was conducted to evaluate the complementary use of Synthetic and Enhanced Vision technologies. Specific focus was placed on new techniques for integration and/or fusion of Enhanced and Synthetic Vision and its impact within a two-crew flight deck on the crew's decision-making process during low-visibility approach and landing operations. Overall, the experimental data showed that significant improvements in situation awareness, without concomitant increases in workload and display clutter, could be provided by the integration and/or fusion of synthetic and enhanced vision technologies for the pilot-flying and the pilot-not-flying. During non-normal operations, the ability of the crew to handle substantial navigational errors and runway incursions were neither improved nor adversely impacted by the display concepts. The addition of Enhanced Vision may not, unto itself, provide an improvement in runway incursion detection without being specifically tailored for this application. Existing enhanced vision system procedures were effectively used in the crew decision-making process during approach and missed approach operations but having to forcibly transition from an excellent FLIR image to natural vision by 100 ft above field level was awkward for the pilot-flying.

  7. A model for developing job rotation schedules that eliminate sequential high workloads and minimize between-worker variability in cumulative daily workloads: Application to automotive assembly lines.

    PubMed

    Yoon, Sang-Young; Ko, Jeonghan; Jung, Myung-Chul

    2016-07-01

    The aim of study is to suggest a job rotation schedule by developing a mathematical model in order to reduce cumulative workload from the successive use of the same body region. Workload assessment using rapid entire body assessment (REBA) was performed for the model in three automotive assembly lines of chassis, trim, and finishing to identify which body part exposed to relatively high workloads at workstations. The workloads were incorporated to the model to develop a job rotation schedule. The proposed schedules prevent the exposure to high workloads successively on the same body region and minimized between-worker variance in cumulative daily workload. Whereas some of workers were successively assigned to high workload workstation under no job rotation and serial job rotation. This model would help to reduce the potential for work-related musculoskeletal disorders (WMSDs) without additional cost for engineering work, although it may need more computational time and relative complex job rotation sequences. Copyright © 2016 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  8. The Astronaut-Athlete: Optimizing Human Performance in Space.

    PubMed

    Hackney, Kyle J; Scott, Jessica M; Hanson, Andrea M; English, Kirk L; Downs, Meghan E; Ploutz-Snyder, Lori L

    2015-12-01

    It is well known that long-duration spaceflight results in deconditioning of neuromuscular and cardiovascular systems, leading to a decline in physical fitness. On reloading in gravitational environments, reduced fitness (e.g., aerobic capacity, muscular strength, and endurance) could impair human performance, mission success, and crew safety. The level of fitness necessary for the performance of routine and off-nominal terrestrial mission tasks remains an unanswered and pressing question for scientists and flight physicians. To mitigate fitness loss during spaceflight, resistance and aerobic exercise are the most effective countermeasure available to astronauts. Currently, 2.5 h·d, 6-7 d·wk is allotted in crew schedules for exercise to be performed on highly specialized hardware on the International Space Station (ISS). Exercise hardware provides up to 273 kg of loading capability for resistance exercise, treadmill speeds between 0.44 and 5.5 m·s, and cycle workloads from 0 and 350 W. Compared to ISS missions, future missions beyond low earth orbit will likely be accomplished with less vehicle volume and power allocated for exercise hardware. Concomitant factors, such as diet and age, will also affect the physiologic responses to exercise training (e.g., anabolic resistance) in the space environment. Research into the potential optimization of exercise countermeasures through use of dietary supplementation, and pharmaceuticals may assist in reducing physiological deconditioning during long-duration spaceflight and have the potential to enhance performance of occupationally related astronaut tasks (e.g., extravehicular activity, habitat construction, equipment repairs, planetary exploration, and emergency response).

  9. Test and Evaluation Metrics of Crew Decision-Making And Aircraft Attitude and Energy State Awareness

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Ellis, Kyle K. E.; Stephens, Chad L.

    2013-01-01

    NASA has established a technical challenge, under the Aviation Safety Program, Vehicle Systems Safety Technologies project, to improve crew decision-making and response in complex situations. The specific objective of this challenge is to develop data and technologies which may increase a pilot's (crew's) ability to avoid, detect, and recover from adverse events that could otherwise result in accidents/incidents. Within this technical challenge, a cooperative industry-government research program has been established to develop innovative flight deck-based counter-measures that can improve the crew's ability to avoid, detect, mitigate, and recover from unsafe loss-of-aircraft state awareness - specifically, the loss of attitude awareness (i.e., Spatial Disorientation, SD) or the loss-of-energy state awareness (LESA). A critical component of this research is to develop specific and quantifiable metrics which identify decision-making and the decision-making influences during simulation and flight testing. This paper reviews existing metrics and methods for SD testing and criteria for establishing visual dominance. The development of Crew State Monitoring technologies - eye tracking and other psychophysiological - are also discussed as well as emerging new metrics for identifying channelized attention and excessive pilot workload, both of which have been shown to contribute to SD/LESA accidents or incidents.

  10. Fusion of Synthetic and Enhanced Vision for All-Weather Commercial Aviation Operations

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Kramer, Lynda J.; Prinzel, Lawrence, III

    2007-01-01

    NASA is developing revolutionary crew-vehicle interface technologies that strive to proactively overcome aircraft safety barriers that would otherwise constrain the full realization of the next-generation air transportation system. A piloted simulation experiment was conducted to evaluate the complementary use of Synthetic and Enhanced Vision technologies. Specific focus was placed on new techniques for integration and/or fusion of Enhanced and Synthetic Vision and its impact within a two-crew flight deck during low visibility approach and landing operations. Overall, the experimental data showed that significant improvements in situation awareness, without concomitant increases in workload and display clutter, could be provided by the integration and/or fusion of synthetic and enhanced vision technologies for the pilot-flying and the pilot-not-flying. During non-normal operations, the ability of the crew to handle substantial navigational errors and runway incursions were not adversely impacted by the display concepts although the addition of Enhanced Vision did not, unto itself, provide an improvement in runway incursion detection.

  11. [WORK-REST CYCLE OF COSMONAUTS IN MISSIONS 22/23-39/40 OF THE INTERNATIONAL SPACE STATION].

    PubMed

    Stepanova, S I; Karpova, O I; Galichiy, V A; Nesterov, V F; Saraev, I F

    2016-01-01

    Analyzed were the results of in-flight monitoring of the work-rest cycle (WRC) of Russian crewmembers during 17 instances of the International space station crew rotation in the period of 2010-2014. Weakly crew health reports of the MCC-M medical group were reviewed as well as documented overworks, sleep shifts and consequent health complaints as testimonies of WRC intensity level. Hard work schedule characterized 69% of the flight weeks. The contributing factors were extravehicular activities, dock and undock operations with transport vehicles and redock operations with orbital modules, joint work with space shuttle crews, preparations for landing, off-nominal events, cargo transfer, procedures from the Task List and requested by the MCC-M. Facts stated by the analysis give grounds to believe that distribution of equally extra and planned works over days and weeks in 2013-2014 was more uniform as compared with 2010-2012. This seems to somewhat obviate "critical" workload levels on the days of particularly important operations.

  12. The Study of Crew Coordination and Performance in Hierarchical Team Decision Making

    DTIC Science & Technology

    1992-11-01

    Technical Report 92-01 3 decision making (Carley, 1991; Levis, 1984; Miao , Luh, Kleinman, & Castanon, 1991). This type of approach uses mathematical 5...Boston: Allyn and Bacon. Bieth, B. H . (1987). Subjective workload under individual and team performance conditions. Proceedings of the Human Factors...B. B., Jr. (1992, June). H •ri•oiLal_ and vertical structures in small teams: Team performance and communication Datteins. Paper presented at the 1991

  13. Operational behavioral health and performance resources for international space station crews and families

    NASA Technical Reports Server (NTRS)

    Sipes, Walter E.; Vander Ark, Stephen T.

    2005-01-01

    The Behavioral Health and Performance Section (BHP) at NASA Johnson Space Center provides direct and indirect psychological services to the International Space Station (ISS) astronauts and their families. Beginning with the NASA-Mir Program, services available to the crews and families have gradually expanded as experience is gained in long-duration flight. Enhancements to the overall BHP program have been shaped by crewmembers' personal preferences, family requests, specific events during the missions, programmatic requirements, and other lessons learned. The BHP program focuses its work on four areas: operational psychology, behavioral medicine, human-to-system interface, and sleep and circadian. Within these areas of focus are psychological and psychiatric screening for astronaut selection as well as many resources that are available to the crewmembers, families, and other groups such as crew surgeon and various levels of management within NASA. Services include: preflight, in flight, and postflight preparation; training and support; resources from a Family Support Office; in-flight monitoring; clinical care for astronauts and their families; and expertise in the workload and work/rest scheduling of crews on the ISS. Each of the four operational areas is summarized, as are future directions for the BHP program.

  14. [Distribution and main influential factors of mental workload of middle school teachers in Nanchang City].

    PubMed

    Xiao, Yuanmei; Li, Weijuan; Ren, Qingfeng; Ren, Xiaohui; Wang, Zhiming; Wang, Mianzhen; Lan, Yajia

    2015-01-01

    To investigate the distribution and main influential factors of mental workload of middle school teachers in Nanchang City. A total of 504 middle school teachers were sampled by random cluster sampling from middle schools in Nanchang City, and the mental workload level was assessed with National Aeronautics and Space Administration-Task Load Index (NASA-TLX) which was verified in reliability and validity. The mental workload scores of middle school teachers in Nanchang was approximately normal distribution. The mental workload level of middle school teachers aged 31 -35 years old was the highest. For those no more than 35 years old, there was positive correlation between mental workload and age (r = 0.146, P < 0.05). For those more than 35 years old, the levels of their mental workload had no statistically significant difference. There was a negative correlation between mental workload and educational level(r = -0.172, P < 0.05). The middle school teachers with lower educational level seemed to have a higher mental workload (P < 0.01). The longer a middle school teacher worked per day, the higher the mental workload was. Working hours per day was the most influential factor on mental workload in all influential factors (P < 0.001). Mental workload of middle school teachers was closely related to age, educational level and work hours per day. Working hours per day was the important risk factor of mental workload. Reducing working hours per day, especially reducing it to be no more than 8 hours per day, may be a significant and useful approach alleviating mental workload of middle school teachers in Nanchang City.

  15. Data Elements for Workload Analysis of Armored Vehicle Crews

    DTIC Science & Technology

    1990-09-01

    weapon status, terrain, enemy, etc.) and 2) managing the operation of the various mental processes through which the operator interacts with the...contrive, or plan a process or procedure for carrying out a tactical action. DICTATE - To speak aloud into a recorder. DIRECT - To manage the action of...To mark or note on a map or chart; to locate by means of coordinates. POSITION - To place oneself or others in a location or posture. PREPARE - To

  16. Human factors evaluations of Free Flight Issues solved and issues remaining.

    PubMed

    Ruigrok, Rob C J; Hoekstra, Jacco M

    2007-07-01

    The Dutch National Aerospace Laboratory (NLR) has conducted extensive human-in-the-loop simulation experiments in NLR's Research Flight Simulator (RFS), focussed on human factors evaluation of Free Flight. Eight years of research, in co-operation with partners in the United States and Europe, has shown that Free Flight has the potential to increase airspace capacity by at least a factor of 3. Expected traffic loads and conflict rates for the year 2020 appear to be no major problem for professional airline crews participating in flight simulation experiments. Flight efficiency is significantly improved by user-preferred routings, including cruise climbs, while pilot workload is only slightly increased compared to today's reference. Detailed results from three projects and six human-in-the-loop experiments in NLR's Research Flight Simulator are reported. The main focus of these results is on human factors issues and particularly workload, measured both subjectively and objectively. An extensive discussion is included on many human factors issues resolved during the experiments, but also open issues are identified. An intent-based Conflict Detection and Resolution (CD&R) system provides "benefits" in terms of reduced pilot workload, but also "costs" in terms of complexity, need for priority rules, potential compatibility problems between different brands of Flight Management Systems and large bandwidth. Moreover, the intent-based system is not effective at solving multi-aircraft conflicts. A state-based CD&R system also provides "benefits" and "costs". Benefits compared to the full intent-based system are simplicity, low bandwidth requirements, easy to retrofit (no requirements to change avionics infrastructure) and the ability to solve multi-aircraft conflicts in parallel. The "costs" involve a somewhat higher pilot workload in similar circumstances, the smaller look-ahead time which results in less efficient resolution manoeuvres and the sometimes false/nuisance alerts due to missing intent information. The optimal CD&R system (in terms of costs versus benefits) has been suggested to be state-based CD&R with the addition of intended or target flight level. This combination of state-based CD&R with a limited amount of intent provides "the best of both worlds". Studying this CD&R system is still an open issue.

  17. Manned versus unmanned rendezvous and capture

    NASA Technical Reports Server (NTRS)

    Brody, Adam R.

    1991-01-01

    Rendezvous and capture (docking) operations may be performed either automatically or under manual control. In cases where humans are far from the mission site, or high-bandwidth communications lines are not in place, automation is the only option. Such might be the case with unmanned missions to the moon or Mars that involve orbital docking or cargo transfer. In crewed situations where sensors, computation capabilities, and other necessary instrumentation are unavailable, manual control is the only alternative. Power, mass, cost, or other restrictions may limit the availability of the machinery required for an automated rendezvous and capture. The only occasions for which there is a choice about whether to use automated or manual control are those where the vehicle(s) have both the crew and instrumentation necessary to perform the mission either way. The following discussion will focus on the final approach or capture (docking) maneuver. The maneuvers required for long-range rendezvous operations are calculated by computers. It is almost irrelevant whether it is an astronaut, watching a count-down timer who pushes the button firing the thruster or whether the computer keeps track of the time and fires with the astronaut monitoring. The actual manual workload associated with a mission that may take as long as hours or days to perform is small. The workload per unit time increases tremendously during the final approach (docking) phase and this is where the issue of manual versus automatic is more important.

  18. Avionics upgrade strategies for the Space Shuttle and derivatives

    NASA Astrophysics Data System (ADS)

    Swaim, Richard A.; Wingert, William B.

    Some approaches aimed at providing a low-cost, low-risk strategy to upgrade the shuttle onboard avionics are described. These approaches allow migration to a shuttle-derived vehicle and provide commonality with Space Station Freedom avionics to the extent practical. Some goals of the Shuttle cockpit upgrade include: offloading of the main computers by distributing avionics display functions, reducing crew workload, reducing maintenance cost, and providing display reconfigurability and context sensitivity. These goals are being met by using a combination of off-the-shelf and newly developed software and hardware. The software will be developed using Ada. Advanced active matrix liquid crystal displays are being used to meet the tight space, weight, and power consumption requirements. Eventually, it is desirable to upgrade the current shuttle data processing system with a system that has more in common with the Space Station data management system. This will involve not only changes in Space Shuttle onboard hardware, but changes in the software. Possible approaches to maximizing the use of the existing software base while taking advantage of new language capabilities are discussed.

  19. Conducting Safe and Efficient Airport Surface Operations in a NextGen Environment

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Prinzel, Lawrence J., III; Bailey, Randall E.; Arthur, Jarvis J., III; Barnes, James R.

    2016-01-01

    The Next Generation Air Transportation System (NextGen) vision proposes many revolutionary operational concepts, such as surface trajectory-based operations (STBO) and technologies, including display of traffic information and movements, airport moving maps (AMM), and proactive alerts of runway incursions and surface traffic conflicts, to deliver an overall increase in system capacity and safety. A piloted simulation study was conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center to evaluate the ability of a flight crew to conduct safe and efficient airport surface operations while utilizing an AMM. Position accuracy of traffic was varied, and the effect of traffic position accuracy on airport conflict detection and resolution (CD&R) capability was measured. Another goal was to evaluate the crew's ability to safely conduct STBO by assessing the impact of providing traffic intent information, CD&R system capability, and the display of STBO guidance to the flight crew on both head-down and head-up displays (HUD). Nominal scenarios and off-nominal conflict scenarios were conducted using 12 airline crews operating in a simulated Memphis International Airport terminal environment. The data suggest that all traffic should be shown on the airport moving map, whether qualified or unqualified, and conflict detection and resolution technologies provide significant safety benefits. Despite the presence of traffic information on the map, collisions or near-collisions still occurred; when indications or alerts were generated in these same scenarios, the incidents were averted. During the STBO testing, the flight crews met their required time-of-arrival at route end within 10 seconds on 98 percent of the trials, well within the acceptable performance bounds of 15 seconds. Traffic intent information was found to be useful in determining the intent of conflicting traffic, with graphical presentation preferred. The CD&R system was only minimally effective during STBO because the prevailing visibility was sufficient for visual detection of conflicting traffic. Overall, the pilots indicated STBO increased general situation awareness but also negatively impacted workload, reduced the ability to watch for other traffic, and increased head-down time.

  20. A human factors engineering conceptual framework of nursing workload and patient safety in intensive care units.

    PubMed

    Carayon, Pascale; Gürses, Ayşe P

    2005-10-01

    In this paper, we review the literature on nursing workload in intensive care units (ICUs) and its impact on patient safety and quality of working life of nurses. We then propose a conceptual framework of ICU nursing workload that defines causes, consequences and outcomes of workload. We identified four levels of nursing workload (ICU/unit level, job level, patient level, and situation level), and discuss measures associated with each of the four levels. A micro-level approach to ICU nursing workload at the situation level is proposed and recommended in order to reduce workload and mitigate its negative impact. Performance obstacles are conceptualized as causes of ICU nursing workload at the situation level.

  1. CDTI: Crew Function Assessment

    NASA Technical Reports Server (NTRS)

    Tole, J. R.; Young, L. R.

    1982-01-01

    Man machine interaction often requires the operator to perform a sterotyped scan of instruments to monitor and/or control a system. Situations in which this type of behavior exists, such as instrument flight, scan pattern has been shown to be altered by imposition of simultaneous verbal tasks. The relationship between pilot visual scan of instruments and mental workload was described. A verbal loading task of varying difficulty caused pilots to stare at the primary instrument as the difficulty increased and to shed looks at instruments of less importance. The verbal loading task affected rank ordering of scanning sequences. The behavior of pilots with widely varying skill levels suggested that these effects occur most strongly at lower skill levels and are less apparent at high skill levels. Graphical interpretation of the hypothetical relationship between skill, workload, and performance is introduced and modeling results are presented to support this interpretation.

  2. Mental workload prediction based on attentional resource allocation and information processing.

    PubMed

    Xiao, Xu; Wanyan, Xiaoru; Zhuang, Damin

    2015-01-01

    Mental workload is an important component in complex human-machine systems. The limited applicability of empirical workload measures produces the need for workload modeling and prediction methods. In the present study, a mental workload prediction model is built on the basis of attentional resource allocation and information processing to ensure pilots' accuracy and speed in understanding large amounts of flight information on the cockpit display interface. Validation with an empirical study of an abnormal attitude recovery task showed that this model's prediction of mental workload highly correlated with experimental results. This mental workload prediction model provides a new tool for optimizing human factors interface design and reducing human errors.

  3. Crew Workload Prediction Study.

    DTIC Science & Technology

    1981-12-01

    the takeoff is being made in a high performance aircraft in afterburner . In this case, the time available for takeoff is less than that required in...4 -4 4 d5 0 z ~ C, 0 0 u 0 0 00 0 z w u 0- E-4P Hn H %D 00 𔃻 zp C4 0 0u ( H0 Z -8 Z z4, H"W 9 0- P4 En 4 .0 [4 C4 014 0;HHgc 0 00 0 tnt n ( n o L

  4. A graphical weather system design for the NASA transport systems research vehicle B-737

    NASA Technical Reports Server (NTRS)

    Scanlon, Charles H.

    1992-01-01

    A graphical weather system was designed for testing in the NASA Transport Systems Research Vehicle B-737 airplane and simulator. The purpose of these tests was to measure the impact of graphical weather products on aircrew decision processes, weather situation awareness, reroute clearances, workload, and weather monitoring. The flight crew graphical weather interface is described along with integration of the weather system with the flight navigation system, and data link transmission methods for sending weather data to the airplane.

  5. Fatigue-Related Countermeasures for Long-Duration Exploration Missions

    NASA Technical Reports Server (NTRS)

    Whitmire, A.; Johnston, S.; Sipes, W.

    2014-01-01

    The NASA Human Research Program's (HRP) Behavioral Health and Performance Element (BHP) supports and conducts research to mitigate deleterious outcomes related to fatigue, sleep loss, circadian desynchronization, and work overload. Objective evidence indicates that within the context of the International Space Station (ISS), sleep is reduced and there is circadian misalignment. Despite chronic sleep loss and high workloads; however, astronauts successfully complete their missions. Contributing to their success is not only the tremendous skills and capabilities of each astronaut, but also the collaborative team efforts amongst the crew, between flight and ground crews, and through real-time care provided by medical personnel. It is anticipated that risks to human health and performance will increase in the context of exploration missions, where crewmembers will venture to deep space for extended durations and in small vehicles with limited communication with home. Hence, fatigue-related countermeasures are being developed and/or validated that include unobtrusive monitoring technologies to detect fatigue-related performance decrements, environmental countermeasures, and sleep education and training for flight and ground crews. Given that fatigue is an issue in current ISS missions, the BHP works collaboratively with Space Medicine operations to collect data in the operational environment, to validate fatigue-related countermeasures, and provide evidence-based mitigations. Our presentation will summarize fatigue-related operational research that is underway through NASA's BHP in partnership with its operational counterparts. Efforts include studies evaluating the effects of hypnotics, lighting protocols as countermeasures for circadian entrainment, and investigations involving education and training. This presentation will further identify, based on flight and terrestrial evidence, additional sleep and circadian countermeasures that may still be needed to support exploration missions. Lessons learned from transitioning research deliverables into ISS operations will also be discussed.

  6. Electronic Health Record Alert-Related Workload as a Predictor of Burnout in Primary Care Providers.

    PubMed

    Gregory, Megan E; Russo, Elise; Singh, Hardeep

    2017-07-05

    Electronic health records (EHRs) have been shown to increase physician workload. One EHR feature that contributes to increased workload is asynchronous alerts (also known as inbox notifications) related to test results, referral responses, medication refill requests, and messages from physicians and other health care professionals. This alert-related workload results in negative cognitive outcomes, but its effect on affective outcomes, such as burnout, has been understudied. To examine EHR alert-related workload (both objective and subjective) as a predictor of burnout in primary care providers (PCPs), in order to ultimately inform interventions aimed at reducing burnout due to alert workload. A cross-sectional questionnaire and focus group of 16 PCPs at a large medical center in the southern United States. Subjective, but not objective, alert workload was related to two of the three dimensions of burnout, including physical fatigue (p = 0.02) and cognitive weariness (p = 0.04), when controlling for organizational tenure. To reduce alert workload and subsequent burnout, participants indicated a desire to have protected time for alert management, fewer unnecessary alerts, and improvements to the EHR system. Burnout associated with alert workload may be in part due to subjective differences at an individual level, and not solely a function of the objective work environment. This suggests the need for both individual and organizational-level interventions to improve alert workload and subsequent burnout. Additional research should confirm these findings in larger, more representative samples.

  7. NASA Contingency Shuttle Crew Support (CSCS) Medical Operations

    NASA Technical Reports Server (NTRS)

    Adams, Adrien

    2010-01-01

    The genesis of the space shuttle began in the 1930's when Eugene Sanger came up with the idea of a recyclable rocket plane that could carry a crew of people. The very first Shuttle to enter space was the Shuttle "Columbia" which launched on April 12 of 1981. Not only was "Columbia" the first Shuttle to be launched, but was also the first to utilize solid fuel rockets for U.S. manned flight. The primary objectives given to "Columbia" were to check out the overall Shuttle system, accomplish a safe ascent into orbit, and to return back to earth for a safe landing. Subsequent to its first flight Columbia flew 27 more missions but on February 1st, 2003 after a highly successful 16 day mission, the Columbia, STS-107 mission, ended in tragedy. With all Shuttle flight successes come failures such as the fatal in-flight accident of STS 107. As a result of the STS 107 accident, and other close-calls, the NASA Space Shuttle Program developed contingency procedures for a rescue mission by another Shuttle if an on-orbit repair was not possible. A rescue mission would be considered for a situation where a Shuttle and the crew were not in immediate danger, but, was unable to return to Earth or land safely. For Shuttle missions to the International Space Station (ISS), plans were developed so the Shuttle crew would remain on board ISS for an extended period of time until rescued by a "rescue" Shuttle. The damaged Shuttle would subsequently be de-orbited unmanned. During the period when the ISS Crew and Shuttle crew are on board simultaneously multiple issues would need to be worked including, but not limited to: crew diet, exercise, psychological support, workload, and ground contingency support

  8. The relationship between physical workload and quality within line-based assembly.

    PubMed

    Ivarsson, Anna; Eek, Frida

    2016-07-01

    Reducing costs and improvement of product quality are considered important to ensure productivity within a company. Quality deviations during production processes and ergonomics have previously shown to be associated. This study explored the relationship between physical workload and real (found during production processes) and potential (need of extra time and assistance to complete tasks) quality deviations in a line-based assembly plant. The physical workload on and the work rotation between 52 workstations were assessed. As the outcome, real and potential quality deviations were studied during 10 weeks. Results show that workstations with higher physical workload had significantly more real deviations compared to lower workload stations. Static work posture had significantly more potential deviations. Rotation between high and low workload was related to fewer quality deviations compared to rotation between only high workload stations. In conclusion, physical ergonomics seems to be related to real and potential quality deviation within line-based assembly. Practitioner Summary: To ensure good productivity in manufacturing industries, it is important to reduce costs and improve product quality. This study shows that high physical workload is associated with quality deviations and need of extra time and assistance to complete tasks within line-based assembly, which can be financially expensive for a company.

  9. Crew factors in flight operations 9: Effects of planned cockpit rest on crew performance and alertness in long-haul operations

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Graeber, R. Curtis; Dinges, David F.; Connell, Linda J.; Rountree, Michael S.; Spinweber, Cheryl L.; Gillen, Kelly A.

    1994-01-01

    This study examined the effectiveness of a planned cockpit rest period to improve alertness and performance in long-haul flight operations. The Rest Group (12 crew members) was allowed a planned 40 minute rest period during the low workload, cruise portion of the flight, while the No-Rest Group (9 crew members) had a 40 minute planned control period when they maintained usual flight activities. Measures used in the study included continuous ambulatory recordings of brain wave and eye movement activity, a reaction time/vigilance task, a wrist activity monitor, in-flight fatigue and alertness ratings, a daily log for noting sleep periods, meals, exercise, flight and duty periods, and the NASA Background Questionnaire. The Rest Group pilots slept on 93 percent of the opportunities, falling asleep in 5.6 minutes and sleeping for 25.8 minutes. This nap was associated with improved physiological alertness and performance compared to the No-Rest Group. The benefits of the nap were observed through the critical descent and landing phases of flight. The nap did not affect layover sleep or the cumulative sleep debt. The nap procedures were implemented with minimal disruption to usual flight operations and there were no reported or identified concerns regarding safety.

  10. Mars 520-d mission simulation reveals protracted crew hypokinesis and alterations of sleep duration and timing.

    PubMed

    Basner, Mathias; Dinges, David F; Mollicone, Daniel; Ecker, Adrian; Jones, Christopher W; Hyder, Eric C; Di Antonio, Adrian; Savelev, Igor; Kan, Kevin; Goel, Namni; Morukov, Boris V; Sutton, Jeffrey P

    2013-02-12

    The success of interplanetary human spaceflight will depend on many factors, including the behavioral activity levels, sleep, and circadian timing of crews exposed to prolonged microgravity and confinement. To address the effects of the latter, we used a high-fidelity ground simulation of a Mars mission to objectively track sleep-wake dynamics in a multinational crew of six during 520 d of confined isolation. Measurements included continuous recordings of wrist actigraphy and light exposure (4.396 million min) and weekly computer-based neurobehavioral assessments (n = 888) to identify changes in the crew's activity levels, sleep quantity and quality, sleep-wake periodicity, vigilance performance, and workload throughout the record-long 17 mo of mission confinement. Actigraphy revealed that crew sedentariness increased across the mission as evident in decreased waking movement (i.e., hypokinesis) and increased sleep and rest times. Light exposure decreased during the mission. The majority of crewmembers also experienced one or more disturbances of sleep quality, vigilance deficits, or altered sleep-wake periodicity and timing, suggesting inadequate circadian entrainment. The results point to the need to identify markers of differential vulnerability to hypokinesis and sleep-wake changes during the prolonged isolation of exploration spaceflight and the need to ensure maintenance of circadian entrainment, sleep quantity and quality, and optimal activity levels during exploration missions. Therefore, successful adaptation to such missions will require crew to transit in spacecraft and live in surface habitats that instantiate aspects of Earth's geophysical signals (appropriately timed light exposure, food intake, exercise) required for temporal organization and maintenance of human behavior.

  11. Flight Test Assessments of Pilot Workload, System Usability, and Situation Awareness of TASAR

    NASA Technical Reports Server (NTRS)

    Burke, Kelly A.; Haynes, Mark A.

    2016-01-01

    Traffic Aware Strategic Aircrew Requests (TASAR) is an onboard automation concept intended to identify trajectory optimizations, in terms of fuel and time saving objectives, clear of known traffic, weather, and airspace restrictions prior to the aircrew initiating a route-change request to Air Traffic Control (ATC). The software implementation of the TASAR concept is the Traffic Aware Planner (TAP). TASAR analysis and development is being executed by the NASA Langley Research Center's Crew Systems and Aviation Operations Branch (CSAOB) under the sponsorship of the Airspace Technology Demonstration (ATD) Project of the NASA Airspace Operations and Safety Program (AOSP). The TASAR Flight Trial-2 (FT-2) was conducted in June, 2015 out of the Newport News/Williamsburg International Airport. This flight trial was conducted using a Piaggio Avanti flight test aircraft and consisted of 12 Evaluation Flights with airline commercial pilots participating as the Evaluation Pilots, three destination airports in Atlanta and Jacksonville Air Route Traffic Control Centers, and one pair of flight plans associated with each destination airport. The primary goal of FT-2 was to reduce risk for upcoming operational trials with NASA partner airlines, Alaska Airlines and Virgin America. To accomplish this primary goal, six independent objectives were conducted during FT-2, however, this paper will report only the findings of Objective 5; the assessment of system usability, pilot perceived workload, and the degree of pilot acceptability of the TAP Human Machine Interface (HMI) during flight operations, via the administration of several subjective measures.

  12. CHROMagar Orientation Medium Reduces Urine Culture Workload

    PubMed Central

    Manickam, Kanchana; Karlowsky, James A.; Adam, Heather; Lagacé-Wiens, Philippe R. S.; Rendina, Assunta; Pang, Paulette; Murray, Brenda-Lee

    2013-01-01

    Microbiology laboratories continually strive to streamline and improve their urine culture algorithms because of the high volumes of urine specimens they receive and the modest numbers of those specimens that are ultimately considered clinically significant. In the current study, we quantitatively measured the impact of the introduction of CHROMagar Orientation (CO) medium into routine use in two hospital laboratories and compared it to conventional culture on blood and MacConkey agars. Based on data extracted from our Laboratory Information System from 2006 to 2011, the use of CO medium resulted in a 28% reduction in workload for additional procedures such as Gram stains, subcultures, identification panels, agglutination tests, and biochemical tests. The average number of workload units (one workload unit equals 1 min of hands-on labor) per urine specimen was significantly reduced (P < 0.0001; 95% confidence interval [CI], 0.5326 to 1.047) from 2.67 in 2006 (preimplementation of CO medium) to 1.88 in 2011 (postimplementation of CO medium). We conclude that the use of CO medium streamlined the urine culture process and increased bench throughput by reducing both workload and turnaround time in our laboratories. PMID:23363839

  13. Autonomous Task Management and Decision Support Tools

    NASA Technical Reports Server (NTRS)

    Burian, Barbara

    2017-01-01

    For some time aircraft manufacturers and researchers have been pursuing mechanisms for reducing crew workload and providing better decision support to the pilots, especially during non-normal situations. Some previous attempts to develop task managers or pilot decision support tools have not resulted in robust and fully functional systems. However, the increasing sophistication of sensors and automated reasoners, and the exponential surge in the amount of digital data that is now available create a ripe environment for the development of a robust, dynamic, task manager and decision support tool that is context sensitive and integrates information from a wide array of on-board and off aircraft sourcesa tool that monitors systems and the overall flight situation, anticipates information needs, prioritizes tasks appropriately, keeps pilots well informed, and is nimble and able to adapt to changing circumstances. This presentation will discuss the many significant challenges and issues associated with the development and functionality of such a system for use on the aircraft flight deck.

  14. Automation design and crew coordination

    NASA Technical Reports Server (NTRS)

    Segal, Leon D.

    1993-01-01

    Advances in technology have greatly impacted the appearance of the modern aircraft cockpit. Where once one would see rows upon rows. The introduction of automation has greatly altered the demands on the pilots and the dynamics of aircrew task performance. While engineers and designers continue to implement the latest technological innovations in the cockpit - claiming higher reliability and decreased workload - a large percentage of aircraft accidents are still attributed to human error. Rather than being the main instigators of accidents, operators tend to be the inheritors of system defects created by poor design, incorrect installation, faulty maintenance and bad management decisions. This paper looks at some of the variables that need to be considered if we are to eliminate at least one of these inheritances - poor design. Specifically, this paper describes the first part of a comprehensive study aimed at identifying the effects of automation on crew coordination.

  15. The Challenge of Aviation Emergency and Abnormal Situations

    NASA Technical Reports Server (NTRS)

    Burian, Barbara K.; Barshi, Immanuel; Dismukes, Key

    2005-01-01

    Emergency and abnormal situations occur on flights everyday around the world. They range from minor situations readily managed to extremely serious and highly time-critical situations that deeply challenge the skills of even the most effective crews. How well crews respond to these situations is a function of several interacting sets of issues: (1) the design of non-normal procedures and checklists, (2) design of aircraft systems and automation, (3) specific aspects of the non-normal situation, such as time criticality and complexity of the situation, (4) human performance capabilities and cognitive limitations under high workload and stress, (5) design of training for non-normal situations, (6) philosophies, policies and practices within the industry, and (7) economic and regulatory constraints. Researchers and pilots working on NASA's Emergency and Abnormal Situations project are addressing these issues in a long-range study. In this paper we discuss these issues and illustrate them with examples from recent incidents and accidents.

  16. Decision Making in the Airplane

    NASA Technical Reports Server (NTRS)

    Orasanu, Judith; Shafto, Michael G. (Technical Monitor)

    1995-01-01

    The Importance of decision-making to safety in complex, dynamic environments like mission control centers, aviation, and offshore installations has been well established. NASA-ARC has a program of research dedicated to fostering safe and effective decision-making in the manned spaceflight environment. Because access to spaceflight is limited, environments with similar characteristics, including aviation and nuclear power plants, serve as analogs from which space-relevant data can be gathered and theories developed. Analyses of aviation accidents cite crew judgement and decision making as causes or contributing factors in over half of all accidents. Yet laboratory research on decision making has not proven especially helpful In improving the quality of decisions in these kinds of environments. One reason is that the traditional, analytic decision models are inappropriate to multi-dimensional, high-risk environments, and do not accurately describe what expert human decision makers do when they make decisions that have consequences. A new model of dynamic, naturalistic decision making is offered that may prove useful for improving decision making in complex, isolated, confined and high-risk environments. Based on analyses of crew performance in full-mission simulators and accident reports, features that define effective decision strategies in abnormal or emergency situations have been identified. These include accurate situation assessment (including time and risk assessment), appreciation of the complexity of the problem, sensitivity to constraints on the decision, timeliness of the response, and use of adequate information. More effective crews also manage their workload to provide themselves with time and resources to make good decisions. In brief, good decisions are appropriate to the demands of the situation. Effective crew decision making and overall performance are mediated by crew communication. Communication contributes to performance because it assures that all crew members have essential information, but it also regulates and coordinates crew actions and is the medium of collective thinking In response to a problem, This presentation will examine the relations between leadership, communication, decision making and overall crew performance. Implications of these findings for training will be discussed.

  17. Decision Making in Action: Applying Research to Practice

    NASA Technical Reports Server (NTRS)

    Orasanu, Judith; Hart, Sandra G. (Technical Monitor)

    1994-01-01

    The importance of decision-making to safety in complex, dynamic environments like mission control centers, aviation, and offshore installations has been well established. NASA-ARC has a program of research dedicated to fostering safe and effective decision-making in the manned spaceflight environment: Because access to spaceflight is limited, environments with similar characteristics, including aviation and nuclear power plants, serve as analogs from which space-relevant data can be gathered and theories developed. Analyses of aviation accidents cite crew judgement and decision making as causes or contributing factors in over half of all accidents. Yet laboratory research on decision making has not proven especially helpful in improving the quality of decisions in these kinds of environments. One reason is that the traditional, analytic decision models are inappropriate to multi-dimensional, high-risk environments, and do not accurately describe what expert human decision makers do when they make decisions that have consequences. A new model of dynamic, naturalistic decision making is offered that may prove useful for improving decision making in complex, isolated, confined and high-risk environments. Based on analyses of crew performance in full-mission simulators and accident reports, features that define effective decision strategies in abnormal or emergency situations have been identified. These include accurate situation assessment (including time and risk assessment), appreciation of the complexity of the problem, sensitivity to constraints on the decision, timeliness of the response, and use of adequate information. More effective crews also manage their workload to provide themselves with time and resources to make good good decisions are appropriate to the demands of the situation. Effective crew decision making and overall performance are mediated by crew communication. Communication contributes to performance because it assures that all crew members have essential information, but it also regulates and coordinates crew actions and is the medium of collective thinking in response to a problem. This presentation will examine the relations between leadership, communication, decision making and overall crew performance. Implications of these findings for training will be discussed.

  18. The effects of practice on tracking and subjective workload

    NASA Technical Reports Server (NTRS)

    Hancock, P. A.; Robinson, M. A.; Chu, A. L.; Hansen, D. R.; Vercruyssen, M.

    1989-01-01

    Six college-age male subjects performed one hundred, two-minute trials on a second-order tracking task. After each trial, subjects estimated perceived workload using both the NASA TLX and SWAT workload assessment procedures. Results confirmed an expected performance improvement on the tracking task which followed traditional learning curves within the performance of each individual. Perceived workload also decreased for both scales across trials. While performance variability significantly decreased across trials, workload variability remained constant. One month later, the same subjects returned to complete the second experiment in the sequence which was a retention replication of the first experiment. Results replicated those for the first experiment except that both performance error and workload were at reduced overall levels. Results in general affirm a parallel workload reduction with performance improvement, an observation consistent with a resource-based view of automaticity.

  19. Proceedings of the Workshop on the Assessment of Crew Workload Measurement Methods, Techniques and Procedures. Volume 2. Library References.

    DTIC Science & Technology

    1987-06-01

    OHIO 45433-6553 0. % NOTICE When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely...have formulated or in any way supplied the said drawings, specifications, or other data , is not to be regarded by implication, or otherwise in any...Formal Review 2= Informal Review 3= No Reviewer C. Quality of Data (If not 1-3 QUIT) 1= Experiment(s) 2= Case Study(s) 3= Theory/Review (Skip to F.) (Skip

  20. Personality Traits Moderate the Effect of Workload Sources on Perceived Workload in Flying Column Police Officers

    PubMed Central

    Chiorri, Carlo; Garbarino, Sergio; Bracco, Fabrizio; Magnavita, Nicola

    2015-01-01

    Previous research has suggested that personality traits of the Five Factor Model play a role in worker's response to workload. The aim of this study was to investigate the association of personality traits of first responders with their perceived workload in real-life tasks. A flying column of 269 police officers completed a measure of subjective workload (NASA-Task Load Index) after intervention tasks in a major public event. Officers' scores on a measure of Five Factor Model personality traits were obtained from archival data. Linear Mixed Modeling was used to test the direct and interaction effects of personality traits on workload scores once controlling for background variables, task type and workload source (mental, temporal and physical demand of the task, perceived effort, dissatisfaction for the performance and frustration due to the task). All personality traits except extraversion significantly interacted at least with one workload source. Perceived workload in flying column police officers appears to be the result of their personality characteristics interacting with the workload source. The implications of these results for the development of support measures aimed at reducing the impact of workload in this category of workers are discussed. PMID:26640456

  1. Spatialized audio improves call sign recognition during multi-aircraft control.

    PubMed

    Kim, Sungbin; Miller, Michael E; Rusnock, Christina F; Elshaw, John J

    2018-07-01

    We investigated the impact of a spatialized audio display on response time, workload, and accuracy while monitoring auditory information for relevance. The human ability to differentiate sound direction implies that spatial audio may be used to encode information. Therefore, it is hypothesized that spatial audio cues can be applied to aid differentiation of critical versus noncritical verbal auditory information. We used a human performance model and a laboratory study involving 24 participants to examine the effect of applying a notional, automated parser to present audio in a particular ear depending on information relevance. Operator workload and performance were assessed while subjects listened for and responded to relevant audio cues associated with critical information among additional noncritical information. Encoding relevance through spatial location in a spatial audio display system--as opposed to monophonic, binaural presentation--significantly reduced response time and workload, particularly for noncritical information. Future auditory displays employing spatial cues to indicate relevance have the potential to reduce workload and improve operator performance in similar task domains. Furthermore, these displays have the potential to reduce the dependence of workload and performance on the number of audio cues. Published by Elsevier Ltd.

  2. Human factors research as part of a Mars exploration analogue mission on Devon Island

    NASA Astrophysics Data System (ADS)

    Binsted, Kim; Kobrick, Ryan L.; Griofa, Marc Ó.; Bishop, Sheryl; Lapierre, Judith

    2010-06-01

    Human factors research is a critical element of space exploration as it provides insight into a crew's performance, psychology and interpersonal relationships. Understanding the way humans work in space-exploration analogue environments permits the development and testing of countermeasures for and responses to potential hazardous situations, and can thus help improve mission efficiency and safety. Analogue missions, such as the one described here, have plausible mission constraints and operational scenarios, similar to those that a real Mars crew would experience. Long duration analogue studies, such as those being conducted at the Flashline Mars Arctic Research Station (FMARS) on Devon Island, Canada, offer an opportunity to study mission operations and human factors in a semi-realistic environment, and contribute to the design of missions to explore the Moon and Mars. The FMARS XI Long Duration Mission (F-XI LDM) was, at four months, the longest designed analogue Mars mission conducted to date, and thus provides a unique insight into human factors issues for long-duration space exploration. Here, we describe the six human factors studies that took place during F-XI LDM, and give a summary of their results, where available. We also present a meta-study, which examined the impact of the human-factors research itself on crew schedule and workload. Based on this experience, we offer some lessons learnt: some aspects (perceived risk and crew motivation, for example) of analogue missions must be realistic for study results to be valid; human factors studies are time-consuming, and should be fully integrated into crew schedules; and crew-ground communication and collaboration under long-term exploration conditions can present serious challenges.

  3. The effect of a slack-pulling device in reducing operator physiological workload during log winching operations.

    PubMed

    Spinelli, Raffaele; Aalmo, Giovanna Ottaviani; Magagnotti, Natascia

    2015-01-01

    The authors conducted a comparative test to determine whether the introduction of a hydraulic slack puller allowed reducing the physiological workload of operators assigned to log winching tasks. The tests were conducted in northern Italy, on the mountains near Como. The study involved five volunteer subjects, considered representatives of the regional logging workforce. Physiological workload was determined by measuring the operators' heart rate upon completion of specific tasks. The slack puller improved the efficiency of downhill winching, since it allowed a single operator to pull out the cable on his own, without requiring the assistance of a colleague. However, introduction of the slack puller did not result in any reductions of operator physiological workload. The main stressor when working on a steep slope is moving up and down the slope: pulling a cable is only a secondary stressor. Any measures targeting secondary stressors are unlikely to produce dramatic reductions of operator workload.

  4. Classification of driving workload affected by highway alignment conditions based on classification and regression tree algorithm.

    PubMed

    Hu, Jiangbi; Wang, Ronghua

    2018-02-17

    Guaranteeing a safe and comfortable driving workload can contribute to reducing traffic injuries. In order to provide safe and comfortable threshold values, this study attempted to classify driving workload from the aspects of human factors mainly affected by highway geometric conditions and to determine the thresholds of different workload classifications. This article stated a hypothesis that the values of driver workload change within a certain range. Driving workload scales were stated based on a comprehensive literature review. Through comparative analysis of different psychophysiological measures, heart rate variability (HRV) was chosen as the representative measure for quantifying driving workload by field experiments. Seventy-two participants (36 car drivers and 36 large truck drivers) and 6 highways with different geometric designs were selected to conduct field experiments. A wearable wireless dynamic multiparameter physiological detector (KF-2) was employed to detect physiological data that were simultaneously correlated to the speed changes recorded by a Global Positioning System (GPS) (testing time, driving speeds, running track, and distance). Through performing statistical analyses, including the distribution of HRV during the flat, straight segments and P-P plots of modified HRV, a driving workload calculation model was proposed. Integrating driving workload scales with values, the threshold of each scale of driving workload was determined by classification and regression tree (CART) algorithms. The driving workload calculation model was suitable for driving speeds in the range of 40 to 120 km/h. The experimental data of 72 participants revealed that driving workload had a significant effect on modified HRV, revealing a change in driving speed. When the driving speed was between 100 and 120 km/h, drivers showed an apparent increase in the corresponding modified HRV. The threshold value of the normal driving workload K was between -0.0011 and 0.056 for a car driver and between -0.00086 and 0.067 for a truck driver. Heart rate variability was a direct and effective index for measuring driving workload despite being affected by multiple highway alignment elements. The driving workload model and the thresholds of driving workload classifications can be used to evaluate the quality of highway geometric design. A higher quality of highway geometric design could keep driving workload within a safer and more comfortable range. This study provided insight into reducing traffic injuries from the perspective of disciplinary integration of highway engineering and human factor engineering.

  5. Driver behaviour with adaptive cruise control.

    PubMed

    Stanton, Neville A; Young, Mark S

    2005-08-15

    This paper reports on the evaluation of adaptive cruise control (ACC) from a psychological perspective. It was anticipated that ACC would have an effect upon the psychology of driving, i.e. make the driver feel like they have less control, reduce the level of trust in the vehicle, make drivers less situationally aware, but workload might be reduced and driving might be less stressful. Drivers were asked to drive in a driving simulator under manual and ACC conditions. Analysis of variance techniques were used to determine the effects of workload (i.e. amount of traffic) and feedback (i.e. degree of information from the ACC system) on the psychological variables measured (i.e. locus of control, trust, workload, stress, mental models and situation awareness). The results showed that: locus of control and trust were unaffected by ACC, whereas situation awareness, workload and stress were reduced by ACC. Ways of improving situation awareness could include cues to help the driver predict vehicle trajectory and identify conflicts.

  6. Impact of computerized information systems on workload in operating room and intensive care unit.

    PubMed

    Bosman, R J

    2009-03-01

    The number of operating rooms and intensive care departments equipped with a clinical information system (CIS) is rapidly expanding. Amongst the putative advantages of such an installation, reduction in workload for the clinician is one of the most appealing. The scarce studies looking at workload variations associated with the implementation of a CIS, only focus on direct workload discarding indirect changes in workload. Descriptions of the various methods to quantify workload are provided. The hypothesis that a third generation CIS can reduce documentation time for ICU nurses and increase time they spend on patient care, is supported by recent literature. Though it seems obvious to extrapolate these advantages of a CIS to the anesthesiology department or physicians in the intensive care, studies examining this assumption are scarce.

  7. Advanced Multimodal Solutions for Information Presentation

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.; Godfroy-Cooper, Martine

    2018-01-01

    High-workload, fast-paced, and degraded sensory environments are the likeliest candidates to benefit from multimodal information presentation. For example, during EVA (Extra-Vehicular Activity) and telerobotic operations, the sensory restrictions associated with a space environment provide a major challenge to maintaining the situation awareness (SA) required for safe operations. Multimodal displays hold promise to enhance situation awareness and task performance by utilizing different sensory modalities and maximizing their effectiveness based on appropriate interaction between modalities. During EVA, the visual and auditory channels are likely to be the most utilized with tasks such as monitoring the visual environment, attending visual and auditory displays, and maintaining multichannel auditory communications. Previous studies have shown that compared to unimodal displays (spatial auditory or 2D visual), bimodal presentation of information can improve operator performance during simulated extravehicular activity on planetary surfaces for tasks as diverse as orientation, localization or docking, particularly when the visual environment is degraded or workload is increased. Tactile displays offer a third sensory channel that may both offload information processing effort and provide a means to capture attention when urgently required. For example, recent studies suggest that including tactile cues may result in increased orientation and alerting accuracy, improved task response time and decreased workload, as well as provide self-orientation cues in microgravity on the ISS (International Space Station). An important overall issue is that context-dependent factors like task complexity, sensory degradation, peripersonal vs. extrapersonal space operations, workload, experience level, and operator fatigue tend to vary greatly in complex real-world environments and it will be difficult to design a multimodal interface that performs well under all conditions. As a possible solution, adaptive systems have been proposed in which the information presented to the user changes as a function of taskcontext-dependent factors. However, this presupposes that adequate methods for detecting andor predicting such factors are developed. Further, research in adaptive systems for aviation suggests that they can sometimes serve to increase workload and reduce situational awareness. It will be critical to develop multimodal display guidelines that include consideration of smart systems that can select the best display method for a particular contextsituation.The scope of the current work is an analysis of potential multimodal display technologies for long duration missions and, in particular, will focus on their potential role in EVA activities. The review will address multimodal (combined visual, auditory andor tactile) displays investigated by NASA, industry, and DoD (Dept. of Defense). It also considers the need for adaptive information systems to accommodate a variety of operational contexts such as crew status (e.g., fatigue, workload level) and task environment (e.g., EVA, habitat, rover, spacecraft). Current approaches to guidelines and best practices for combining modalities for the most effective information displays are also reviewed. Potential issues in developing interface guidelines for the Exploration Information System (EIS) are briefly considered.

  8. Sociometric and ethological approach to the assessment of individual and group behavior in extra long-term isolation during simulated interplanetary mission

    NASA Astrophysics Data System (ADS)

    Gushin, Vadim; Tafforin, Carole; Kuznetsova, Polina; Vinokhodova, Alla; Chekalina, Angelina

    Several factors, such as hazard to life, reduced social communications, isolation, high workload, monotony, etc., can cause deconditioning of individual status and group dynamics in long-term spaceflight. New approaches to the assessment of group behavior are being developed in order to create necessary counter-measures and to keep optimal psychological climate in the crew. Psychological methods combined with ethological approach to dynamic monitoring of the isolated crew had been tested and validated in Mars-500 experiment. The experiment (duration of 520 days) was designed to simulate the living and working conditions of a piloted mission to Mars. The Mars-500 crew was composed of three Russians, two Europeans and one Chinese. We used psychological tests: sociometric questionnaire to assess group status (popularity) of the crewmembers (monthly), color choice test to assess the level of frustration and anxiety (twice a month). We performed observations from video recordings of group discussions (monthly) and during breakfast time (twice a month). The video analysis was supplied with a software based-solution: The Observer XT®. The results showed that occurrence of collateral acts may indicate psychological stress and fatigue in crewmembers under isolation and that facial expressions may indicate less anxiety. The data of psychological tests allowed to define two subgroups in the crew. The first one consisted of the subjects with high group status and lower level of frustration (not anxious), the second one consisted of less popular subjects, having respectively higher anxiety level. The video analysis showed two times more manifestations of facial expressions and interpersonal communications for the first subgroup. We also identified the subgroups on the basis of their verbal expressions in Russian and in English. Video observation of individual and group behavior, combined with other psychological tests gives opportunity to emphasize more objectively the signs of changes in the socio-psychological status of the crewmembers in isolation, such as stress, fatigue and interpersonal problems but also well-being and personal comfort. This methodical combination helps to reveal the signs of maladaptation and to provide adequate psychological support to every crewmember in accordance with individual needs.

  9. Preliminary Analysis of ISS Maintenance History and Implications for Supportability of Future Missions

    NASA Technical Reports Server (NTRS)

    Watson, Kevin J.; Robbins, William W.

    2004-01-01

    The International Space Station (ISS) enables the study of supportability issues associated with long-duration human spaceflight. The ISS is a large, complex spacecraft that must be maintained by its crew. In contrast to the Space Shuttle Orbiter vehicle, but similar to spacecraft that will be component elements of future missions beyond low-Earth orbit, ISS does not return to the ground for servicing and provisioning of spares is severely constrained by transportation limits. Although significant technical support is provided by ground personnel, all hands-on maintenance tasks are performed by the crew. It is expected that future missions to distant destinations will be further limited by lack of resupply opportunities and will, eventually, become largely independent of ground support. ISS provides an opportunity to begin learning lessons that will enable future missions to be successful. Data accumulated over the first several years of ISS operations have been analyzed to gain a better understanding of maintenance-related workload. This analysis addresses both preventive and corrective maintenance and includes all U.S segment core systems. Systems and tasks that are major contributors to workload are identified. As further experience accrues, lessons will be learned that will influence future system designs so that they require less maintenance and, when maintenance is required, it can be performed more efficiently. By heeding the lessons of ISS it will be possible to identify system designs that should be more robust and point towards advances in both technology and design that will offer the greatest return on investment.

  10. Automation of Sensor Control in Uninhabited Aerial Vehicles

    DTIC Science & Technology

    2015-07-01

    were otherwise performed manually reduces workload and mitigates high workload situations. On the other hand, it has been suggested that the...that automation may help mitigate high workload (Lee, 2008) it would have been interesting if both sets of authors additionally assessed when...frames would result in the sensor view flickering between two views. In support of this, VBS2 initialisation parameters were adjusted to prevent

  11. Metabolic activity, experiment M171. [space flight effects on human metabolism

    NASA Technical Reports Server (NTRS)

    Michel, E. L.; Rummel, J. A.

    1973-01-01

    The Skylab metabolic activity experiment determines if man's metabolic effectiveness in doing mechanical work is progressively altered by a simulated Skylab environment, including environmental factors such as slightly increased pCO2. This test identified several hardware/procedural anomalies. The most important of these were: (1) the metabolic analyzer measured carbon dioxide production and expired water too high; (2) the ergometer load module failed under continuous high workload conditions; (3) a higher than desirable number of erroneous blood pressure measurements were recorded; (4) vital capacity measurements were unreliable; and (5) anticipated crew personal exercise needs to be more structured.

  12. Analysis of eighty-four commercial aviation incidents - Implications for a resource management approach to crew training

    NASA Technical Reports Server (NTRS)

    Murphy, M. R.

    1980-01-01

    A resource management approach to aircrew performance is defined and utilized in structuring an analysis of 84 exemplary incidents from the NASA Aviation Safety Reporting System. The distribution of enabling and associated (evolutionary) and recovery factors between and within five analytic categories suggests that resource management training be concentrated on: (1) interpersonal communications, with air traffic control information of major concern; (2) task management, mainly setting priorities and appropriately allocating tasks under varying workload levels; and (3) planning, coordination, and decisionmaking concerned with preventing and recovering from potentially unsafe situations in certain aircraft maneuvers.

  13. The loneliness of the long-duration astronaut.

    PubMed

    Cooper, H S

    1996-01-01

    This paper investigates the psychological implications of long duration spaceflight. Initial psychological problems associated with a heavy workload were identified during Skylab missions. Since then, most of our knowledge of psychological problems has come from experience onboard Russian spacecraft. Noted problems include anxiety, boredom, crew interactions, problems associated with isolation and confinement, and others. Efforts to alleviate or prevent these problems are discussed, as well as comparisons to similar environments such as arctic regions or submarines. As the U.S. participates in longer space missions, it will be wise to study psychological issues and to learn from our Russian counterparts.

  14. [Study on mental workload of teachers in primary schools].

    PubMed

    Xiao, Yuan-mei; Wang, Zhi-ming; Wang, Mian-zhen; Lan, Ya-jia; Fan, Guang-qin; Feng, Chang

    2011-12-01

    To investigate the distribution characteristics and influencing factors of mental workload of teachers in primary schools. National Aeronautics and Space Administration-Task Load Index (NASA-TLX) was used to assess the mental workload levels for 397 teachers of primary schools in a city. The mental workload (64.34+10.56) of female teachers was significantly higher than that (61.73+ 9.77) of male teachers (P<0.05). The mental workload (65.66+10.42) of "-35" years old group was the highest. When age of teachers was younger than 35 years old, there was a positive correlation between the mental workload and age (r=0.146, P<0.05). When age of teachers was older than 35 years old, there was a negative correlation between the mental workload and age (r=-0.190, P<0.05). The teachers with higher education level felt higher mental workload (unstandardized coefficients B=1.524, standardized coefficients /=0.111, P<0.05). There was a positive correlation between the mental workload and working hours per day (unstandardized coefficients B =4.659, standardized coefficients/3 =0.223, P<0.001). Mental workload of the teachers in primary schools is closely related to age, educational level and work hours per day. Work hours per day is an important risk factor for mental workload. Reducing work hours per day (8 hours) is an effective measure of alleviating the mental workload of teachers in primary schools.

  15. Decision Making in Action

    NASA Technical Reports Server (NTRS)

    Orasanu, Judith; Statler, Irving C. (Technical Monitor)

    1994-01-01

    The importance of decision-making to safety in complex, dynamic environments like mission control centers and offshore installations has been well established. NASA-ARC has a program of research dedicated to fostering safe and effective decision-making in the manned spaceflight environment. Because access to spaceflight is limited, environments with similar characteristics, including aviation and nuclear power plants, serve as analogs from which space-relevant data can be gathered and theories developed. Analyses of aviation accidents cite crew judgement and decision making as causes or contributing factors in over half of all accidents. A similar observation has been made in nuclear power plants. Yet laboratory research on decision making has not proven especially helpful in improving the quality of decisions in these kinds of environments. One reason is that the traditional, analytic decision models are inappropriate to multidimensional, high-risk environments, and do not accurately describe what expert human decision makers do when they make decisions that have consequences. A new model of dynamic, naturalistic decision making is offered that may prove useful for improving decision making in complex, isolated, confined and high-risk environments. Based on analyses of crew performance in full-mission simulators and accident reports, features that define effective decision strategies in abnormal or emergency situations have been identified. These include accurate situation assessment (including time and risk assessment), appreciation of the complexity of the problem, sensitivity to constraints on the decision, timeliness of the response, and use of adequate information. More effective crews also manage their workload to provide themselves with time and resources to make good decisions. In brief, good decisions are appropriate to the demands of the situation. Effective crew decision making and overall performance are mediated by crew communication. Communication contributes to performance because it assures that all crew members have essential information, but it also regulates and coordinates crew actions and is the medium of collective thinking in response to a problem. This presentation will examine the relations between leadership, communication, decision making and overall crew performance. Implications of these findings for spaceflight and training for offshore installations will be discussed.

  16. Decision Making in Action: Applying Research to Practice

    NASA Technical Reports Server (NTRS)

    Orasanu, Judith; Statler, Irving C. (Technical Monitor)

    1994-01-01

    The importance of decision-making to safety in complex, dynamic environments like mission control centers and offshore installations has been well established. NASA-ARC has a program of research dedicated to fostering safe and effective decision-making in the manned spaceflight environment. Because access to spaceflight is limited, environments with similar characteristics, including aviation and nuclear power plants, serve as analogs from which space-relevant data can be gathered and theories developed. Analyses of aviation accidents cite crew judgement and decision making as causes or contributing factors in over half of all accidents. A similar observation has been made in nuclear power plants. Yet laboratory research on decision making has not proven especially helpful in improving the quality of decisions in these kinds of environments. One reason is that the traditional, analytic decision models are inappropriate to multidimensional, high-risk environments, and do not accurately describe what expert human decision makers do when they make decisions that have consequences. A new model of dynamic, naturalistic decision making is offered that may prove useful for improving decision making in complex, isolated, confined and high-risk environments. Based on analyses of crew performance in full-mission simulators and accident reports, features that define effective decision strategies in abnormal or emergency situations have been identified. These include accurate situation assessment (including time and risk assessment), appreciation of the complexity of the problem, sensitivity to constraints on the decision, timeliness of the response, and use of adequate information. More effective crews also manage their workload to provide themselves with time and resources to make good decisions. In brief, good decisions are appropriate to the demands of the situation. Effective crew decision making and overall performance are mediated by crew communication. Communication contributes to performance because it assures that all crew members have essential information, but it also regulates and coordinates crew actions and is the medium of collective thinking in response to a problem. This presentation will examine the relations between leadership, communication, decision making and overall crew performance. Implications of these findings for spaceflight and training for offshore installations will be discussed.

  17. Hazard evaluation and operational cockpit display of ground-measured windshear data

    NASA Technical Reports Server (NTRS)

    Wanke, Craig; Hansman, R. John, Jr.

    1993-01-01

    Low-altitude windshear is the leading weather-related cause of fatal aviation accidents in the U.S. Since 1964, there have been 26 accidents attributed to windshear resulting in over 500 fatalities. Low-altitude windshear can take several forms, including macroscopic forms such as cold-warm gustfronts down to the small, intense downdrafts known as microbursts. Microbursts are particularly dangerous and difficult to detect due to their small size, short duration, and occurrence under both heavy precipitation and virtually dry conditions. For these reasons, the real-time detection of windshear hazards is a very active field of research. Also, the advent of digital ground-to-air datalinks and electronic flight instrumentation opens up many options for implementation of windshear alerts in the terminal area environment. Study is required to determine the best content, format, timing, and cockpit presentation of windshear alerts in the modern ATC environment to best inform the flight crew without significantly increasing crew workload.

  18. Flight Crew Responses to the Interval Management Alternative Clearances (IMAC) Experiment

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Wilson, Sara R.; Swieringa, Kurt A.; Roper, Roy D.

    2016-01-01

    Interval Management Alternative Clearances (IMAC) was a human-in-the-loop simulation experiment conducted to explore the efficacy and acceptability of three IM operations: CAPTURE, CROSS, and MAINTAIN. Two weeks of data collection were conducted, with each week using twelve subject pilots and four subject controllers flying ten high-density arrival scenarios into the Denver International Airport. Overall, both the IM operations and procedures were rated very favorably by the flight crew in terms of acceptability, workload, and pilot head down time. However, several critical issues were identified requiring resolution prior to real-world implementation, including the high frequency of IM speed commands, IM speed commands requiring changes to aircraft configuration, and ambiguous IM cockpit displays that did not trigger the intended pilot reaction. The results from this experiment will be used to prepare for a flight test in 2017, and to support the development of an advanced IM concept of operations by the FAA (Federal Aviation Agency) and aviation industry.

  19. A systematic review of the effect of different models of after-hours primary medical care services on clinical outcome, medical workload, and patient and GP satisfaction.

    PubMed

    Leibowitz, Ruth; Day, Susan; Dunt, David

    2003-06-01

    The organization of after-hours primary medical care services is changing in many countries. Increasing demand, economic considerations and changes in doctors' attitudes are fueling these changes. Information for policy makers in this field is needed. However, a comprehensive review of the international literature that compares the effects of one model of after-hours care with another is lacking. The aim of this study was to carry out a systematic review of the international literature to determine what evidence exists about the effect of different models of out-of-hours primary medical care service on outcome. Original studies and systematic reviews written since 1976 on the subject of 'after-hours primary medical care services' were identified. Databases searched were Medline/Premedline, CINAHL, HealthSTAR, Current Contents, Cochrane Reviews, DARE, EBM Reviews and EconLit. For each paper where the optimal design would have been an interventional study, the 'level' of evidence was assessed as described in the National Health and Medical Research Council Handbook. 'Comparative' studies (levels I, II, III and IV pre-/post-test studies) were included in this review. Six main models of after-hours primary care services (not mutually exclusive) were identified: practice-based services, deputizing services, emergency departments, co-operatives, primary care centres, and telephone triage and advice services. Outcomes were divided into the following categories: clinical outcomes, medical workload, and patient and GP satisfaction. The results indicate that the introduction of a telephone triage and advice service for after-hours primary medical care may reduce the immediate medical workload. Deputizing services increase immediate medical workload because of the low use of telephone advice and the high home visiting rate. Co-operatives, which use telephone triage and primary care centres and have a low home visiting rate, reduce immediate medical workload. There is little evidence on the effect of different service models on subsequent medical workload apart from the finding that GPs working in emergency departments may reduce the subsequent medical workload. There was very little evidence about the advantages of one service model compared with another in relation to clinical outcome. Studies consistently showed patient dissatisfaction with telephone consultations. The rapid growth in telephone triage and advice services appears to have the advantage of reducing immediate medical workload through the substitution of telephone consultations for in-person consultations, and this has the potential to reduce costs. However, this has to be balanced with the finding of reduced patient satisfaction when in-person consultations are replaced by telephone consultations. These findings should be borne in mind by policy makers deciding on the shape of future services.

  20. Mortality from cancer and other causes in commercial airline crews: a joint analysis of cohorts from 10 countries.

    PubMed

    Hammer, Gaël P; Auvinen, Anssi; De Stavola, Bianca L; Grajewski, Barbara; Gundestrup, Maryanne; Haldorsen, Tor; Hammar, Niklas; Lagorio, Susanna; Linnersjö, Anette; Pinkerton, Lynne; Pukkala, Eero; Rafnsson, Vilhjálmur; dos-Santos-Silva, Isabel; Storm, Hans H; Strand, Trond-Eirik; Tzonou, Anastasia; Zeeb, Hajo; Blettner, Maria

    2014-05-01

    Commercial airline crew is one of the occupational groups with the highest exposures to ionising radiation. Crew members are also exposed to other physical risk factors and subject to potential disruption of circadian rhythms. This study analyses mortality in a pooled cohort of 93 771 crew members from 10 countries. The cohort was followed for a mean of 21.7 years (2.0 million person-years), during which 5508 deaths occurred. The overall mortality was strongly reduced in male cockpit (SMR 0.56) and female cabin crews (SMR 0.73). The mortality from radiation-related cancers was also reduced in male cockpit crew (SMR 0.73), but not in female or male cabin crews (SMR 1.01 and 1.00, respectively). The mortality from female breast cancer (SMR 1.06), leukaemia and brain cancer was similar to that of the general population. The mortality from malignant melanoma was elevated, and significantly so in male cockpit crew (SMR 1.57). The mortality from cardiovascular diseases was strongly reduced (SMR 0.46). On the other hand, the mortality from aircraft accidents was exceedingly high (SMR 33.9), as was that from AIDS in male cabin crew (SMR 14.0). This large study with highly complete follow-up shows a reduced overall mortality in male cockpit and female cabin crews, an increased mortality of aircraft accidents and an increased mortality in malignant skin melanoma in cockpit crew. Further analysis after longer follow-up is recommended.

  1. Evaluation of Fused Synthetic and Enhanced Vision Display Concepts for Low-Visibility Approach and Landing

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Kramer, Lynda J.; Prinzel, Lawrence J., III; Wilz, Susan J.

    2009-01-01

    NASA is developing revolutionary crew-vehicle interface technologies that strive to proactively overcome aircraft safety barriers that would otherwise constrain the full realization of the next generation air transportation system. A piloted simulation experiment was conducted to evaluate the complementary use of Synthetic and Enhanced Vision technologies. Specific focus was placed on new techniques for integration and/or fusion of Enhanced and Synthetic Vision and its impact within a two-crew flight deck during low-visibility approach and landing operations. Overall, the experimental data showed that significant improvements in situation awareness, without concomitant increases in workload and display clutter, could be provided by the integration and/or fusion of synthetic and enhanced vision technologies for the pilot-flying and the pilot-not-flying. Improvements in lateral path control performance were realized when the Head-Up Display concepts included a tunnel, independent of the imagery (enhanced vision or fusion of enhanced and synthetic vision) presented with it. During non-normal operations, the ability of the crew to handle substantial navigational errors and runway incursions were neither improved nor adversely impacted by the display concepts. The addition of Enhanced Vision may not, of itself, provide an improvement in runway incursion detection without being specifically tailored for this application.

  2. Impact of adding additional providers to resident workload and the resident experience on a medical consultation rotation.

    PubMed

    Fang, Michele; Linson, Eric; Suneja, Manish; Kuperman, Ethan F

    2017-02-22

    Excellence in Graduate Medical Education requires the right clinical environment with an appropriate workload where residents have enough patients to gain proficiency in medicine with optimal time for reflection. The Accreditation Council for Graduate Medical Education (ACGME) has focused more on work hours rather than workload; however, high resident workload has been associated with lower resident participation in education and fatigue-related errors. Recognizing the potential risks associated with high resident workload and being mindful of the costs of reducing resident workload, we sought to reduce residents' workload by adding an advanced practice provider (APP) to the surgical comanagement service (SCM) and study its effect on resident satisfaction and perceived educational value of the rotation. In Fiscal Year (FY) 2014 and 2015, an additional faculty member was added to the SCM rotation. In FY 2014, the faculty member was a staff physician, and in FY 2015, the faculty member was an APP.. Resident workload was assessed using billing data. We measured residents' perceptions of the rotation using an anonymous electronic survey tool. We compared FY2014-2015 data to the baseline FY2013. The number of patients seen per resident per day decreased from 8.0(SD 3.3) in FY2013 to 5.0(SD 1.9) in FY2014 (p < 0.001) and 5.7(SD 2.0) in FY2015 (p < 0.001). A higher proportion of residents reported "just right" patient volume (64.4%, 91.7%, 96.7% in FY2013, 2014, 2015 respectively p < 0.001), meeting curricular goals (79.9%, 95.0%, 97.2%, in FY2013, 2014 and 2015 respectively p < 0.001), and overall educational value of the rotation (40.0%, 72.2%, 72.6% in FY2013, 2014, 2015 respectively, p < 0.001). Decreasing resident workload through adding clinical faculty (both staff physician and APPs) was associated with improvements on resident perceived educational value and clinical experience of a medical consultation rotation.

  3. Psychophysiological response to cognitive workload during symmetrical, asymmetrical and dual-task walking.

    PubMed

    Knaepen, Kristel; Marusic, Uros; Crea, Simona; Rodríguez Guerrero, Carlos D; Vitiello, Nicola; Pattyn, Nathalie; Mairesse, Olivier; Lefeber, Dirk; Meeusen, Romain

    2015-04-01

    Walking with a lower limb prosthesis comes at a high cognitive workload for amputees, possibly affecting their mobility, safety and independency. A biocooperative prosthesis which is able to reduce the cognitive workload of walking could offer a solution. Therefore, we wanted to investigate whether different levels of cognitive workload can be assessed during symmetrical, asymmetrical and dual-task walking and to identify which parameters are the most sensitive. Twenty-four healthy subjects participated in this study. Cognitive workload was assessed through psychophysiological responses, physical and cognitive performance and subjective ratings. The results showed that breathing frequency and heart rate significantly increased, and heart rate variability significantly decreased with increasing cognitive workload during walking (p<.05). Performance measures (e.g., cadence) only changed under high cognitive workload. As a result, psychophysiological measures are the most sensitive to identify changes in cognitive workload during walking. These parameters reflect the cognitive effort necessary to maintain performance during complex walking and can easily be assessed regardless of the task. This makes them excellent candidates to feed to the control loop of a biocooperative prosthesis in order to detect the cognitive workload. This information can then be used to adapt the robotic assistance to the patient's cognitive abilities. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Mental and Physical Workload, Salivary Stress Biomarkers and Taste Perception: Mars Desert Research Station Expedition

    PubMed Central

    Rai, Balwant; Kaur, Jasdeep

    2012-01-01

    Background: Very few studies have been conducted on the effects of simulation of Mars conditions on taste. Aims: This study was planned to find the effects of physical and mental workload on taste sensitivity and salivary stress biomarkers. Materials and Methods: Twelve crew members were selected. Taste reactions and intensity of the taste sensations to quinine sulfate, citric acid, and sucrose were tested before and after mental and physical tasks for one hour. Also, psychological mood states by profile of mood state, salivary, salivary alpha amylase and cortisol, and current stress test scores were measured before and after mental and physical tasks. Results: Average time intensity evaluation showed that after the mental and physical tasks, the perceived duration of bitter, sour, and sweet taste sensations was significantly shortened relative to control group. There were good correlations between average time intensity of sweetness, bitterness, sourness and cortisol levels. Conclusions: Taste alterations due to stress can have an effect on the health and confidence of astronauts in long- term space missions. Thus, this issue remains one of the important issues for future human explorations. PMID:23181230

  5. Cooperative Adaptive Cruise Control Human Factors Study : Experiment 1 - Workload, Distraction, Arousal, and Trust

    DOT National Transportation Integrated Search

    2016-12-01

    This study set out to examine the following diverse questions regarding cooperative adaptive cruise control (CACC) use: - Does CACC reduce driver workload relative to manual gap control? - Does CACC increase the probability of driver distraction rela...

  6. Adult social position and sick leave: the mediating effect of physical workload.

    PubMed

    Corbett, Karina; Gran, Jon Michaeal; Kristensen, Petter; Mehlum, Ingrid Sivesind

    2015-11-01

    This study aimed to quantify how much of the adult social gradient in sick leave can be attributed to the mediating role of physical workload while accounting for the role of childhood and adolescent social position and neuroticism. Our sample consisted of 2099 women and 1229 men from a Norwegian birth cohort study (born 1967-1976) who participated in the Nord-Trøndelag Health Study (2006-2008) (HUNT3). Data on sick leave (defined as >16 calendar days; 2006-2009) and social position during childhood, adolescence, and adulthood were obtained from national registers. Study outcome was time-to-first sick leave spell. Physical workload and neuroticism were self-reported in HUNT3. Mediating effects through physical workload were estimated using a method based on the additive hazards survival model. A hypothetical change from highest to lowest group in adult social position was, for women, associated with 51.6 [95% confidence interval (95% CI) 24.7-78.5] additional spells per 100,000 person-days at risk, in a model adjusted for childhood and adolescent social position and neuroticism. The corresponding rate increase for men was 41.1 (95% CI 21.4-60.8). Of these additional spells, the proportion mediated through physical workload was 24% (95% CI 10-49) and 30% (95% CI 10-63) for women and men, respectively. The effect of adult social position on sick leave was partly mediated through physical workload, even while accounting for earlier life course factors. Our findings provide support that interventions aimed at reducing physical workload among those with lower adult social position could reduce sick leave risk.

  7. Estimation of duration and mental workload at differing times of day by males and females

    NASA Technical Reports Server (NTRS)

    Hancock, P. A.; Rodenburg, G. J.; Mathews, W. D.; Vercruyssen, M.

    1988-01-01

    Two experiments are reported which investigated whether male and female operator duration estimation and subjective workload followed conventional circadian fluctuation. In the first experiment, twenty-four subjects performed a filled time-estimation task in a constant blacked-out, noise-reduced environment at 0800, 1200, 1600, and 2000 h. In the second experiment, twelve subjects performed an unfilled time estimation task in similar conditions at 0900, 1400, and 1900 h. At the termination of all experimental sessions, participants completed the NASA TLX workload assessment questionnaire as a measure of perceived mental workload. Results indicated that while physiological response followed an expected pattern, estimations of duration and subjective perception of workload showed no significant effects for time-of-day. In each of the experiments, however, there were significant differences in durational estimates and mental workload response depending upon the gender of the participant. Results are taken to support the assertion that subjective workload is responsive largely to task-related factors and indicates the important differences that may be expected due to operator gender.

  8. The effects of display and autopilot functions on pilot workload for Single Pilot Instrument Flight Rule (SPIFR) operations

    NASA Technical Reports Server (NTRS)

    Hoh, Roger H.; Smith, James C.; Hinton, David A.

    1987-01-01

    An analytical and experimental research program was conducted to develop criteria for pilot interaction with advanced controls and displays in single pilot instrument flight rules (SPIFR) operations. The analytic phase reviewed fundamental considerations for pilot workload taking into account existing data, and using that data to develop a divided attention SPIFR pilot workload model. The pilot model was utilized to interpret the two experimental phases. The first experimental phase was a flight test program that evaluated pilot workload in the presence of current and near-term displays and autopilot functions. The second experiment was conducted on a King Air simulator, investigating the effects of co-pilot functions in the presence of very high SPIFR workload. The results indicate that the simplest displays tested were marginal for SPIFR operations. A moving map display aided the most in mental orientation, but had inherent deficiencies as a stand alone replacement for an HSI. Autopilot functions were highly effective for reducing pilot workload. The simulator tests showed that extremely high workload situations can be adequately handled when co-pilot functions are provided.

  9. Patient transfers in Australia: implications for nursing workload and patient outcomes.

    PubMed

    Blay, Nicole; Duffield, Christine M; Gallagher, Robyn

    2012-04-01

    To discuss the impact of patient transfers on patient outcomes and nursing workload. Many patient transfers are essential and occur in response to patients' clinical changes. However, increasingly within Australia transfers are performed in response to reductions in bed numbers, resulting in 'bed block'. A discussion of the literature related to inpatient transfers, nursing workload and patient safety. Measures to increase patient flow such as short-stay units may result in an increase in patient transfers and nursing workload. Frequent patient transfers may also increase the risk of medication incidents, health-care acquired infections and patient falls. The continuing demand for health care has led to a reactionary bed management system that, in an attempt to accommodate patients, has resulted in increased transfers between wards. This can have a negative effect on nursing workload and affect patient outcomes. High nursing workload is cited as one reason for nurses leaving the profession. Reductions in non-essential transfers may reduce nurse workload, improve patient outcomes and enhance continuity of patient care. © 2011 Blackwell Publishing Ltd.

  10. Synthetic Vision for Lunar and Planetary Landing Vehicles

    NASA Technical Reports Server (NTRS)

    Williams, Steven P.; Arthur, Jarvis (Trey) J., III; Shelton, Kevin J.; Prinzel, Lawrence J., III; Norman, R. Michael

    2008-01-01

    The Crew Vehicle Interface (CVI) group of the Integrated Intelligent Flight Deck Technologies (IIFDT) has done extensive research in the area of Synthetic Vision (SV), and has shown that SV technology can substantially enhance flight crew situation awareness, reduce pilot workload, promote flight path control precision and improve aviation safety. SV technology is being extended to evaluate its utility for lunar and planetary exploration vehicles. SV may hold significant potential for many lunar and planetary missions since the SV presentation provides a computer-generated view of the terrain and other significant environment characteristics independent of the outside visibility conditions, window locations, or vehicle attributes. SV allows unconstrained control of the computer-generated scene lighting, terrain coloring, and virtual camera angles which may provide invaluable visual cues to pilots/astronauts and in addition, important vehicle state information may be conformally displayed on the view such as forward and down velocities, altitude, and fuel remaining to enhance trajectory control and vehicle system status. This paper discusses preliminary SV concepts for tactical and strategic displays for a lunar landing vehicle. The technical challenges and potential solutions to SV applications for the lunar landing mission are explored, including the requirements for high resolution terrain lunar maps and an accurate position and orientation of the vehicle that is essential in providing lunar Synthetic Vision System (SVS) cockpit displays. The paper also discusses the technical challenge of creating an accurate synthetic terrain portrayal using an ellipsoid lunar digital elevation model which eliminates projection errors and can be efficiently rendered in real-time.

  11. Automated fault-management in a simulated spaceflight micro-world

    NASA Technical Reports Server (NTRS)

    Lorenz, Bernd; Di Nocera, Francesco; Rottger, Stefan; Parasuraman, Raja

    2002-01-01

    BACKGROUND: As human spaceflight missions extend in duration and distance from Earth, a self-sufficient crew will bear far greater onboard responsibility and authority for mission success. This will increase the need for automated fault management (FM). Human factors issues in the use of such systems include maintenance of cognitive skill, situational awareness (SA), trust in automation, and workload. This study examine the human performance consequences of operator use of intelligent FM support in interaction with an autonomous, space-related, atmospheric control system. METHODS: An expert system representing a model-base reasoning agent supported operators at a low level of automation (LOA) by a computerized fault finding guide, at a medium LOA by an automated diagnosis and recovery advisory, and at a high LOA by automate diagnosis and recovery implementation, subject to operator approval or veto. Ten percent of the experimental trials involved complete failure of FM support. RESULTS: Benefits of automation were reflected in more accurate diagnoses, shorter fault identification time, and reduced subjective operator workload. Unexpectedly, fault identification times deteriorated more at the medium than at the high LOA during automation failure. Analyses of information sampling behavior showed that offloading operators from recovery implementation during reliable automation enabled operators at high LOA to engage in fault assessment activities CONCLUSIONS: The potential threat to SA imposed by high-level automation, in which decision advisories are automatically generated, need not inevitably be counteracted by choosing a lower LOA. Instead, freeing operator cognitive resources by automatic implementation of recover plans at a higher LOA can promote better fault comprehension, so long as the automation interface is designed to support efficient information sampling.

  12. Academic context and perceived mental workload of psychology students.

    PubMed

    Rubio-Valdehita, Susana; López-Higes, Ramón; Díaz-Ramiro, Eva

    2014-01-01

    The excessive workload of university students is an academic stressor. Consequently, it is necessary to evaluate and control the workload in education. This research applies the NASA-TLX scale, as a measure of the workload. The objectives of this study were: (a) to measure the workload levels of a sample of 367 psychology students, (b) to group students according to their positive or negative perception of academic context (AC) and c) to analyze the effects of AC on workload. To assess the perceived AC, we used an ad hoc questionnaire designed according to Demand-Control-Social Support and Effort-Reward Imbalance models. Using cluster analysis, participants were classified into two groups (positive versus negative context). The differences between groups show that a positive AC improves performance (p < .01) and reduces feelings of overload (p < .02), temporal demand (p < .02), and nervousness and frustration (p < .001). Social relationships with peers and teachers, student autonomy and result satisfaction were relevant dimensions of the AC (p < .001 in all cases).

  13. NASA aviation safety reporting system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Reports describing various types of communication problems are presented along with summaries dealing with judgment and decision making. Concerns relating to the ground proximity warning system are summarized and several examples of true terrain proximity warnings are provided. An analytic study of reports relating to profile descents was performed. Problems were found to be associated with charting and graphic presentation of the descents, with lack of uniformity of the descent procedures among facilities using them, and with the flight crew workload engendered by profile descents, particularly when additional requirements are interposed by air traffic control during the execution of the profiles. A selection of alert bulletins and responses to them were reviewed.

  14. Evaluation of welfare advice in primary care: effect on practice workload and prescribing for mental health.

    PubMed

    Krska, Janet; Palmer, Sharon; Dalzell-Brown, Annette; Nicholl, Pat

    2013-07-01

    To determine Citizen's Advice Bureaux (CAB) and general practice staff perceptions on the impact of a CAB Health Outreach (CABHO) service on staff workload. To quantify the frequency of mental health issues among patients referred to the CABHO service. To measure any impact of the CABHO service on appointments, referrals and prescribing for mental health. GPs and practice managers perceive that welfare rights services, provided by CAB, reduce practice staff workload, but this has not been quantified. Interviews with practice managers and GPs hosting and CAB staff providing an advisory service in nine general practices. Comparison of frequency of GP and nurse appointments, mental health referrals and prescriptions for hypnotics/anxiolytics and antidepressants issued before and after referral to the CABHO service, obtained from medical records of referred patients. Most GPs and CAB staff perceived the service reduced practice staff workload, although practice managers were less certain. CAB staff believed that many patients referred to them had mental health issues. Data were obtained for 148/250 referrals of whom 46% may have had a mental health issue. There were statistically significant reductions in the number of GP appointments and prescriptions for hypnotics/anxiolytics during the six months after referral to CABHO compared with six months before. There were also non-significant reductions in nurse appointments and prescriptions for antidepressants, but no change in appointments or referrals for mental health problems. The quantitative findings therefore confirmed perceptions among both CAB and practice staff of reduced workload and in addition suggest that prescribing may be reduced, although further larger-scale studies are required to confirm this.

  15. Reducing nurses'. Workload using a computerized nursing support system linked to the hospital information system.

    PubMed

    Ito, C; Satoh, I; Michiya, H; Kitayama, Y; Miyazaki, K; Ota, S; Satoh, H; Sakurai, T; Shirato, H; Miyasaka, K

    1997-01-01

    A computerised nursing support system (CNSS) linked to the hospital information system (HIS) was developed and has been in use for one year, in order to reduce the workload of nurses. CNSS consists of (1) a hand held computer for each nurse (2) desk-top computers in the nurses' station and doctors' rooms (3) a data server (4) an interface with the main hospital information system. Nurses enter vital signs, food intake and other information about the patients into the hand held computer at the bed-side. The information is then sent automatically to the CNSS data server, which also receives patients' details (prescribed medicines etc.) from the HIS. Nurses and doctors can see all the information on the desk-top and hand held computers. This system was introduced in May 1995 into a university hospital ward with 40 beds. A questionnaire was completed by 23 nurses before and after the introduction of CNSS. The mean time required to post vital data was significantly reduced from 121 seconds to 54 seconds (p < 0.01). After three months 30% of nurses felt CNSS had reduced their workload, while 30% felt it had complicated their work; after five months 70% noted a reduction and 0% reported that CNSS had made their work more complex. The study therefore concludes that the interface between a computerised nursing support system and the hospital information system reduced the workload of nurses.

  16. Converging Indicators for Assessing Individual Differences in Adaptation to Extreme Environments: Preliminary Report

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S.; Toscano, William B.; DeRoshia, Charles W.; Taylor, Bruce; Hines, Seleimah; Bright, Andrew; Dodds, Anika

    2006-01-01

    This paper describes the development and validation of a new methodology for assessing the deleterious effects of spaceflight on crew health and performance. It is well known that microgravity results in various physiological alterations, e.g., headward fluid shifts which can impede physiological adaptation. Other factors that may affect crew operational efficiency include disruption of sleep-wake cycles, high workload, isolation, confinement, stress and fatigue. From an operational perspective, it is difficult to predict which individuals will be most or least affected in this unique environment given that most astronauts are first-time flyers. During future lunar and Mars missions space crews will include both men and women of multi-national origins, different professional backgrounds, and various states of physical condition. Therefore, new methods or technologies are needed to monitor and predict astronaut performance and health, and to evaluate the effects of various countermeasures on crew during long duration missions. This paper reviews several studies conducted in both laboratory and operational environments with men and women ranging in age between 18 to 50 years. The studies included the following: soldiers performing command and control functions during mobile operations in enclosed armored vehicles; subjects participating in laboratory tests of an anti-motion sickness medication; subjects exposed to chronic hypergravity aboard a centrifuge, and subject responses to 36-hours of sleep deprivation. Physiological measurements, performance metrics, and subjective self-reports were collected in each study. The results demonstrate that multivariate converging indicators provide a significantly more reliable method for assessing environmental effects on performance and health than any single indicator.

  17. Automatic Grading of Spreadsheet and Database Skills

    ERIC Educational Resources Information Center

    Kovacic, Zlatko J.; Green, John Steven

    2012-01-01

    Growing enrollment in distance education has increased student-to-lecturer ratios and, therefore, increased the workload of the lecturer. This growing enrollment has resulted in mounting efforts to develop automatic grading systems in an effort to reduce this workload. While research in the design and development of automatic grading systems has a…

  18. A new algorithm for reducing the workload of experts in performing systematic reviews.

    PubMed

    Matwin, Stan; Kouznetsov, Alexandre; Inkpen, Diana; Frunza, Oana; O'Blenis, Peter

    2010-01-01

    To determine whether a factorized version of the complement naïve Bayes (FCNB) classifier can reduce the time spent by experts reviewing journal articles for inclusion in systematic reviews of drug class efficacy for disease treatment. The proposed classifier was evaluated on a test collection built from 15 systematic drug class reviews used in previous work. The FCNB classifier was constructed to classify each article as containing high-quality, drug class-specific evidence or not. Weight engineering (WE) techniques were added to reduce underestimation for Medical Subject Headings (MeSH)-based and Publication Type (PubType)-based features. Cross-validation experiments were performed to evaluate the classifier's parameters and performance. Work saved over sampling (WSS) at no less than a 95% recall was used as the main measure of performance. The minimum workload reduction for a systematic review for one topic, achieved with a FCNB/WE classifier, was 8.5%; the maximum was 62.2% and the average over the 15 topics was 33.5%. This is 15.0% higher than the average workload reduction obtained using a voting perceptron-based automated citation classification system. The FCNB/WE classifier is simple, easy to implement, and produces significantly better results in reducing the workload than previously achieved. The results support it being a useful algorithm for machine-learning-based automation of systematic reviews of drug class efficacy for disease treatment.

  19. What's skill got to do with it? Vehicle automation and driver mental workload.

    PubMed

    Young, M S; Stanton, N A

    2007-08-01

    Previous research has found that vehicle automation systems can reduce driver mental workload, with implications for attentional resources that can be detrimental to performance. The present paper considers how the development of automaticity within the driving task may influence performance in underload situations. Driver skill and vehicle automation were manipulated in a driving simulator, with four levels of each variable. Mental workload was assessed using a secondary task measure and eye movements were recorded to infer attentional capacity. The effects of automation on driver mental workload were quite robust across skill levels, but the most intriguing findings were from the eye movement data. It was found that, with little exception, attentional capacity and mental workload were directly related at all levels of driver skill, consistent with earlier studies. The results are discussed with reference to applied theories of cognition and the design of automation.

  20. Impact of triage in accident and emergency departments in Bahrain.

    PubMed

    Fateha, B E; Hamza, A Y

    2001-01-01

    We aimed to assess the impact of triage by physicians on the workload and expenditure of the Accident and Emergency (AE) Department of Salmaniya Medical Complex, Bahrain. We analysed three sets of data: patient visits to the AE Department over a 9-month period; patient visits 1 year previously; and forecast patient visits over 9 months starting from July 1999. The referral of patients to AE cubicles was reduced by 54.4% after the implementation of the triage, and reduction in the workload was statistically significant. The reduction in health care expenditure was estimated at between 15.3% and 17.3%. We conclude that triage by physicians can be cost-effective and can reduce the AE Department workload, freeing more time to manage life-threatening and urgent cases.

  1. Effect of Tire Pressure to Physical Workload at Operating a Manual Wheelchair.

    PubMed

    Booka, Masayuki; Yoneda, Ikuo; Hashizume, Tsutomu; Lee, Hokyoo; Oku, Hidehisa; Fujisawa, Shoichiro

    2015-01-01

    It is often experienced that low tire pressure of the wheelchair not only increases running resistance, but also reduces parking brake performance. In this study, the required driving forces for different tire pressures were experimentally measured and evaluated. It was indicated from the result that the wheelchair with proper tire pressure could be run with less workload of wheelchair-user. Then it was also indicated that the wheelchair with a lower tire pressure needed more workload of wheelchair-user even on hard level surface.

  2. Optimizing the balance between task automation and human manual control in simulated submarine track management.

    PubMed

    Chen, Stephanie I; Visser, Troy A W; Huf, Samuel; Loft, Shayne

    2017-09-01

    Automation can improve operator performance and reduce workload, but can also degrade operator situation awareness (SA) and the ability to regain manual control. In 3 experiments, we examined the extent to which automation could be designed to benefit performance while ensuring that individuals maintained SA and could regain manual control. Participants completed a simulated submarine track management task under varying task load. The automation was designed to facilitate information acquisition and analysis, but did not make task decisions. Relative to a condition with no automation, the continuous use of automation improved performance and reduced subjective workload, but degraded SA. Automation that was engaged and disengaged by participants as required (adaptable automation) moderately improved performance and reduced workload relative to no automation, but degraded SA. Automation engaged and disengaged based on task load (adaptive automation) provided no benefit to performance or workload, and degraded SA relative to no automation. Automation never led to significant return-to-manual deficits. However, all types of automation led to degraded performance on a nonautomated task that shared information processing requirements with automated tasks. Given these outcomes, further research is urgently required to establish how to design automation to maximize performance while keeping operators cognitively engaged. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Investing in the Future: Addressing Work/Life Issues of Employees.

    ERIC Educational Resources Information Center

    Kutilek, Linda M.; Conklin, Nikki L.; Gunderson, Gail

    2002-01-01

    A national survey of Extension employees identified the most critical work/life challenges as a heavy workload, evening and weekend commitments, and lack of control or job autonomy. Only 40% were aware of benefits and programs offered concerning work/life balance. Recommendations included reducing the workload and time requirements of county-based…

  4. Can Online Peer Assessment Be Trusted?

    ERIC Educational Resources Information Center

    Bouzidi, L'hadi; Jaillet, Alain

    2009-01-01

    The excessive workload generated by the assessment of exam papers in large classes and the need to give feedback in time often constitute a rather heavy burden for teachers. The online peer assessment can contribute to reduce this workload and, possibly, to improve learning quality by assigning the assessment task to students. However, this raises…

  5. NASA aviation safety reporting system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An analytical study of reports relating to cockpit altitude alert systems was performed. A recent change in the Federal Air Regulation permits the system to be modified so that the alerting signal approaching altitude has only a visual component; the auditory signal would continue to be heard if a deviation from an assigned altitude occurred. Failure to observe altitude alert signals and failure to reset the system were the commonest cause of altitude deviations related to this system. Cockpit crew distraction was the most frequent reason for these failures. It was noted by numerous reporters that the presence of altitude alert system made them less aware of altitude; this lack of altitude awareness is discussed. Failures of crew coordination were also noted. It is suggested that although modification of the altitude alert system may be highly desirable in short-haul aircraft, it may not be desirable for long-haul aircraft in which cockpit workloads are much lower for long periods of time. In these cockpits, the aural alert approaching altitudes is perceived as useful and helpful. If the systems are to be modified, it appears that additional emphasis on altitude awareness during recurrent training will be necessary; it is also possible that flight crew operating procedures during climb and descent may need examination with respect to monitoring responsibilities. A selection of alert bulletins and responses to them is presented.

  6. NASA Extreme Environment Mission Operations: Science Operations Development for Human Exploration

    NASA Technical Reports Server (NTRS)

    Bell, Mary S.

    2014-01-01

    The purpose of NASA Extreme Environment Mission Operations (NEEMO) mission 16 in 2012 was to evaluate and compare the performance of a defined series of representative near-Earth asteroid (NEA) extravehicular activity (EVA) tasks under different conditions and combinations of work systems, constraints, and assumptions considered for future human NEA exploration missions. NEEMO 16 followed NASA's 2011 Desert Research and Technology Studies (D-RATS), the primary focus of which was understanding the implications of communication latency, crew size, and work system combinations with respect to scientific data quality, data management, crew workload, and crew/mission control interactions. The 1-g environment precluded meaningful evaluation of NEA EVA translation, worksite stabilization, sampling, or instrument deployment techniques. Thus, NEEMO missions were designed to provide an opportunity to perform a preliminary evaluation of these important factors for each of the conditions being considered. NEEMO 15 also took place in 2011 and provided a first look at many of the factors, but the mission was cut short due to a hurricane threat before all objectives were completed. ARES Directorate (KX) personnel consulted with JSC engineers to ensure that high-fidelity planetary science protocols were incorporated into NEEMO mission architectures. ARES has been collaborating with NEEMO mission planners since NEEMO 9 in 2006, successively building upon previous developments to refine science operations concepts within engineering constraints; it is expected to continue the collaboration as NASA's human exploration mission plans evolve.

  7. Usability Evaluation of Spot and Runway Departure Advisor (SARDA) Concept in Dallas/Fort Worth Airport Tower Simulation

    NASA Technical Reports Server (NTRS)

    Hayashi, Miwa; Hoang, Ty; Jung, Yoon C.; Gupta, Gautam; Malik, Waqar; Dulchinos, Victoria

    2013-01-01

    Spot and Runway Departure Advisor (SARDA) is a proposed decision-support tool for air traffic control tower controllers for reducing taxi delay and optimizing the departure sequence. In the present study, the tool's usability was evaluated to ensure that its claimed performance benefits are not being realized at the cost of increasing the work burden on controllers. For the evaluation, workload ratings and questionnaire responses collected during a human-in-the-loop simulation experiment were analyzed to assess the SARDA advisories' effects on the controllers' ratings on cognitive resources (e.g., workload, spare attention) and satisfaction. The results showed that SARDA reduced the controllers' workload and increased their spare attention. It also made workload and attention levels less susceptible to the effects of increases in the traffic load. The questionnaire responses suggested that the controllers generally were satisfied with the ease of use of the tool and the objectives of the SARDA concept, but with some caution. To gain more trust from controllers, the the reasoning behind advisories may need to be made more transparent to them.

  8. Debriefing decreases mental workload in surgical crisis: A randomized controlled trial.

    PubMed

    Boet, Sylvain; Sharma, Bharat; Pigford, Ashlee-Ann; Hladkowicz, Emily; Rittenhouse, Neil; Grantcharov, Teodor

    2017-05-01

    Mental workload is the amount of mental effort involved in performing a particular task. Crisis situations may increase mental workload, which can subsequently negatively impact operative performance and patient safety. This study aims to measure the impact of learning through debriefing and a systematic approach to crisis on trainees' mental workload in a simulated surgical crisis. Twenty junior surgical residents participated in a high-fidelity, simulated, postoperative crisis in a surgical ward environment (pretest). Participants were randomized to either an instructor-led debriefing, including performance feedback (intervention; n = 10) or no debriefing (control; n = 10). Subjects then immediately managed a second simulated crisis (post-test). Mental workload was assessed in real time during the scenarios using a previously validated, wireless, vibrotactile device. Mental workload was represented by subject response times to the vibrations, which were recorded and analyzed using the Mann-Whitney U test. Participants in the debriefing arm had a significantly reduced median response time in milliseconds (post-test minus pretest -695, quartile range -2,136 to -297) compared to participants in the control arm (42, -1,191 to 763), (between-arm difference P = .049). Debriefing after simulated surgical crisis situations may improve performance by decreasing trainee's mental workload during a subsequent simulated surgical crisis. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Measurement and analysis of workload effects on fault latency in real-time systems

    NASA Technical Reports Server (NTRS)

    Woodbury, Michael H.; Shin, Kang G.

    1990-01-01

    The authors demonstrate the need to address fault latency in highly reliable real-time control computer systems. It is noted that the effectiveness of all known recovery mechanisms is greatly reduced in the presence of multiple latent faults. The presence of multiple latent faults increases the possibility of multiple errors, which could result in coverage failure. The authors present experimental evidence indicating that the duration of fault latency is dependent on workload. A synthetic workload generator is used to vary the workload, and a hardware fault injector is applied to inject transient faults of varying durations. This method makes it possible to derive the distribution of fault latency duration. Experimental results obtained from the fault-tolerant multiprocessor at the NASA Airlab are presented and discussed.

  10. Analytical techniques of pilot scanning behavior and their application

    NASA Technical Reports Server (NTRS)

    Harris, R. L., Sr.; Glover, B. J.; Spady, A. A., Jr.

    1986-01-01

    The state of the art of oculometric data analysis techniques and their applications in certain research areas such as pilot workload, information transfer provided by various display formats, crew role in automated systems, and pilot training are documented. These analytical techniques produce the following data: real-time viewing of the pilot's scanning behavior, average dwell times, dwell percentages, instrument transition paths, dwell histograms, and entropy rate measures. These types of data are discussed, and overviews of the experimental setup, data analysis techniques, and software are presented. A glossary of terms frequently used in pilot scanning behavior and a bibliography of reports on related research sponsored by NASA Langley Research Center are also presented.

  11. Proceedings of the Workshop on the Assessment of Crew Workload Measurement Methods, Techniques, and Procedures: Part-Task Simulation Data Summary

    DTIC Science & Technology

    1988-02-01

    Force Base Dayton, OH 45433 Dr. Alan Roscoe 011 44 Britannia Airways Ltd. 582424155 Luton Airport Bedfordshire LU2 9ND United Kingdom Bill Russell (202...0O ci 72 C’. 1 cc 0 E t- AC Ol9L c~ G.S 0 = MINE EE 0 x 116 0~ .2 0 03 00 do 0.LL. cc a !00 0-. r. 43I G) E E ix 117 40 0y) L() C) > 1~ c0) o 0 0...Alan Roscoe Britannia Airways Ltd. ALuton Airport Bedfordshire LU2 9ND United Kingdom Bill Russell Air Transport Association 1709 New York Avenue NW

  12. Feasibility study for ergonomic analysis and design of future helicopter cockpit systems

    NASA Technical Reports Server (NTRS)

    Hawkins, H. L.

    1985-01-01

    The Army's light scout-attack helicopters (LHXs), planned for deployment in the 1990's, will fly nap-of-the-earth (NOE) missions in high threat environments, often under poor visibility and adverse atmospheric conditions, and probably with a one man crew. A procedure for the analysis of pilot workload that will identify and explicate the main characteristics of those LHX mission components holding overload potential is described. A principled, in-depth, explication of the cognitive demans of LHX piloting is essential to any effective effort to address the human factors issues. A task-analytic procedure that will yield the detail and organizstion needed to achieve these goals is examined.

  13. Associations between attending physician workload, teaching effectiveness, and patient safety.

    PubMed

    Wingo, Majken T; Halvorsen, Andrew J; Beckman, Thomas J; Johnson, Matthew G; Reed, Darcy A

    2016-03-01

    Prior studies suggest that high workload among attending physicians may be associated with reduced teaching effectiveness and poor patient outcomes, but these relationships have not been investigated using objective measures of workload and safety. To examine associations between attending workload, teaching effectiveness, and patient safety, hypothesizing that higher workload would be associated with lower teaching effectiveness and negative patient outcomes. We conducted a retrospective study of 69,386 teaching evaluation items submitted by 543 internal medicine residents for 107 attending physicians who supervised inpatient teaching services from July 2, 2005 to July 1, 2011. Attending workload measures included hospital service census, patient length of stay, daily admissions, daily discharges, and concurrent outpatient duties. Teaching effectiveness was measured using residents' evaluations of attendings. Patient outcomes considered were applicable patient safety indicators (PSIs), intensive care unit transfers, cardiopulmonary resuscitation/rapid response team calls, and patient deaths. Mixed linear models and generalized linear regression models were used for statistical analysis. Workload measures of midnight census and daily discharges were associated with lower teaching evaluation scores (both β = -0.026, P < 0.0001). The number of daily admissions was associated with higher teaching scores (β = 0.021, P = 0.001) and increased PSIs (odds ratio = 1.81, P = 0.0001). Several measures of attending physician workload were associated with slightly lower teaching effectiveness, and patient safety may be compromised when teams are managing new admissions. Ongoing efforts by residency programs to optimize the learning environment should include strategies to manage the workload of supervising attendings. © 2016 Society of Hospital Medicine.

  14. GPs' perceptions of workload in England: a qualitative interview study.

    PubMed

    Croxson, Caroline Hd; Ashdown, Helen F; Hobbs, Fd Richard

    2017-02-01

    GPs report the lowest levels of morale among doctors, job satisfaction is low, and the GP workforce is diminishing. Workload is frequently cited as negatively impacting on commitment to a career in general practice, and many GPs report that their workload is unmanageable. To gather an in-depth understanding of GPs' perceptions and attitudes towards workload. All GPs working within NHS England were eligible. Advertisements were circulated via regional GP e-mail lists and national social media networks in June 2015. Of those GPs who responded, a maximum-variation sample was selected until data saturation was reached. Semi-structured, qualitative interviews were conducted. Data were analysed thematically. In total, 171 GPs responded, and 34 were included in this study. GPs described an increase in workload over recent years, with current working days being long and intense, raising concerns over the wellbeing of GPs and patients. Full-time partnership was generally not considered to be possible, and many participants felt workload was unsustainable, particularly given the diminishing workforce. Four major themes emerged to explain increased workload: increased patient needs and expectations; a changing relationship between primary and secondary care; bureaucracy and resources; and the balance of workload within a practice. Continuity of care was perceived as being eroded by changes in contracts and working patterns to deal with workload. This study highlights the urgent need to address perceived lack of investment and clinical capacity in general practice, and suggests that managing patient expectations around what primary care can deliver, and reducing bureaucracy, have become key issues, at least until capacity issues are resolved. © British Journal of General Practice 2017.

  15. Synthetic Vision Displays for Planetary and Lunar Lander Vehicles

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Williams, Steven P.; Shelton, Kevin J.; Kramer, Lynda J.; Bailey, Randall E.; Norman, Robert M.

    2008-01-01

    Aviation research has demonstrated that Synthetic Vision (SV) technology can substantially enhance situation awareness, reduce pilot workload, improve aviation safety, and promote flight path control precision. SV, and related flight deck technologies are currently being extended for application in planetary exploration vehicles. SV, in particular, holds significant potential for many planetary missions since the SV presentation provides a computer-generated view for the flight crew of the terrain and other significant environmental characteristics independent of the outside visibility conditions, window locations, or vehicle attributes. SV allows unconstrained control of the computer-generated scene lighting, terrain coloring, and virtual camera angles which may provide invaluable visual cues to pilots/astronauts, not available from other vision technologies. In addition, important vehicle state information may be conformally displayed on the view such as forward and down velocities, altitude, and fuel remaining to enhance trajectory control and vehicle system status. The paper accompanies a conference demonstration that introduced a prototype NASA Synthetic Vision system for lunar lander spacecraft. The paper will describe technical challenges and potential solutions to SV applications for the lunar landing mission, including the requirements for high-resolution lunar terrain maps, accurate positioning and orientation, and lunar cockpit display concepts to support projected mission challenges.

  16. Part-Task Simulation of Synthetic and Enhanced Vision Concepts for Lunar Landing

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J., III; Bailey, Randall E.; Jackson, E. Bruce; Williams, Steven P.; Kramer, Lynda J.; Barnes, James R.

    2010-01-01

    During Apollo, the constraints placed by the design of the Lunar Module (LM) window for crew visibility and landing trajectory were a major problem. Lunar landing trajectories were tailored to provide crew visibility using nearly 70 degrees look-down angle from the canted LM windows. Apollo landings were scheduled only at specific times and locations to provide optimal sunlight on the landing site. The complications of trajectory design and crew visibility are still a problem today. Practical vehicle designs for lunar lander missions using optimal or near-optimal fuel trajectories render the natural vision of the crew from windows inadequate for the approach and landing task. Further, the sun angles for the desirable landing areas in the lunar polar regions create visually powerful, season-long shadow effects. Fortunately, Synthetic and Enhanced Vision (S/EV) technologies, conceived and developed in the aviation domain, may provide solutions to this visibility problem and enable additional benefits for safer, more efficient lunar operations. Piloted simulation evaluations have been conducted to assess the handling qualities of the various lunar landing concepts, including the influence of cockpit displays and the informational data and formats. Evaluation pilots flew various landing scenarios with S/EV displays. For some of the evaluation trials, an eye glasses-mounted, monochrome monocular display, coupled with head tracking, was worn. The head-worn display scene consisted of S/EV fusion concepts. The results of this experiment showed that a head-worn system did not increase the pilot s workload when compared to using just the head-down displays. As expected, the head-worn system did not provide an increase in performance measures. Some pilots commented that the head-worn system provided greater situational awareness compared to just head-down displays.

  17. Part-task simulation of synthetic and enhanced vision concepts for lunar landing

    NASA Astrophysics Data System (ADS)

    Arthur, Jarvis J., III; Bailey, Randall E.; Jackson, E. Bruce; Barnes, James R.; Williams, Steven P.; Kramer, Lynda J.

    2010-04-01

    During Apollo, the constraints placed by the design of the Lunar Module (LM) window for crew visibility and landing trajectory were "a major problem." Lunar landing trajectories were tailored to provide crew visibility using nearly 70 degrees look-down angle from the canted LM windows. Apollo landings were scheduled only at specific times and locations to provide optimal sunlight on the landing site. The complications of trajectory design and crew visibility are still a problem today. Practical vehicle designs for lunar lander missions using optimal or near-optimal fuel trajectories render the natural vision of the crew from windows inadequate for the approach and landing task. Further, the sun angles for the desirable landing areas in the lunar polar regions create visually powerful, season-long shadow effects. Fortunately, Synthetic and Enhanced Vision (S/EV) technologies, conceived and developed in the aviation domain, may provide solutions to this visibility problem and enable additional benefits for safer, more efficient lunar operations. Piloted simulation evaluations have been conducted to assess the handling qualities of the various lunar landing concepts, including the influence of cockpit displays and the informational data and formats. Evaluation pilots flew various landing scenarios with S/EV displays. For some of the evaluation trials, an eye glasses-mounted, monochrome monocular display, coupled with head tracking, was worn. The head-worn display scene consisted of S/EV fusion concepts. The results of this experiment showed that a head-worn system did not increase the pilot's workload when compared to using just the head-down displays. As expected, the head-worn system did not provide an increase in performance measures. Some pilots commented that the head-worn system provided greater situational awareness compared to just head-down displays.

  18. Cognitive workload reduction in hospital information systems : Decision support for order set optimization.

    PubMed

    Gartner, Daniel; Zhang, Yiye; Padman, Rema

    2018-06-01

    Order sets are a critical component in hospital information systems that are expected to substantially reduce physicians' physical and cognitive workload and improve patient safety. Order sets represent time interval-clustered order items, such as medications prescribed at hospital admission, that are administered to patients during their hospital stay. In this paper, we develop a mathematical programming model and an exact and a heuristic solution procedure with the objective of minimizing physicians' cognitive workload associated with prescribing order sets. Furthermore, we provide structural insights into the problem which lead us to a valid lower bound on the order set size. In a case study using order data on Asthma patients with moderate complexity from a major pediatric hospital, we compare the hospital's current solution with the exact and heuristic solutions on a variety of performance metrics. Our computational results confirm our lower bound and reveal that using a time interval decomposition approach substantially reduces computation times for the mathematical program, as does a K -means clustering based decomposition approach which, however, does not guarantee optimality because it violates the lower bound. The results of comparing the mathematical program with the current order set configuration in the hospital indicates that cognitive workload can be reduced by about 20.2% by allowing 1 to 5 order sets, respectively. The comparison of the K -means based decomposition with the hospital's current configuration reveals a cognitive workload reduction of about 19.5%, also by allowing 1 to 5 order sets, respectively. We finally provide a decision support system to help practitioners analyze the current order set configuration, the results of the mathematical program and the heuristic approach.

  19. Mission control of multiple unmanned aerial vehicles: a workload analysis.

    PubMed

    Dixon, Stephen R; Wickens, Christopher D; Chang, Dervon

    2005-01-01

    With unmanned aerial vehicles (UAVs), 36 licensed pilots flew both single-UAV and dual-UAV simulated military missions. Pilots were required to navigate each UAV through a series of mission legs in one of the following three conditions: a baseline condition, an auditory autoalert condition, and an autopilot condition. Pilots were responsible for (a) mission completion, (b) target search, and (c) systems monitoring. Results revealed that both the autoalert and the autopilot automation improved overall performance by reducing task interference and alleviating workload. The autoalert system benefited performance both in the automated task and mission completion task, whereas the autopilot system benefited performance in the automated task, the mission completion task, and the target search task. Practical implications for the study include the suggestion that reliable automation can help alleviate task interference and reduce workload, thereby allowing pilots to better handle concurrent tasks during single- and multiple-UAV flight control.

  20. Acceptability of Flight Deck-Based Interval Management Crew Procedures

    NASA Technical Reports Server (NTRS)

    Murdock, Jennifer L.; Wilson, Sara R.; Hubbs, Clay E.; Smail, James W.

    2013-01-01

    The Interval Management for Near-term Operations Validation of Acceptability (IM-NOVA) experiment was conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) in support of the NASA Next Generation Air Transportation System (NextGen) Airspace Systems Program's Air Traffic Management Technology Demonstration - 1 (ATD-1). ATD-1 is intended to showcase an integrated set of technologies that provide an efficient arrival solution for managing aircraft using NextGen surveillance, navigation, procedures, and automation for both airborne and ground-based systems. The goal of the IM-NOVA experiment was to assess if procedures outlined by the ATD-1 Concept of Operations, when used with a minimum set of Flight deck-based Interval Management (FIM) equipment and a prototype crew interface, were acceptable to and feasible for use by flight crews in a voice communications environment. To investigate an integrated arrival solution using ground-based air traffic control tools and aircraft automatic dependent surveillance broadcast (ADS-B) tools, the LaRC FIM system and the Traffic Management Advisor with Terminal Metering and Controller Managed Spacing tools developed at the NASA Ames Research Center (ARC) were integrated in LaRC's Air Traffic Operations Laboratory. Data were collected from 10 crews of current, qualified 757/767 pilots asked to fly a high-fidelity, fixed based simulator during scenarios conducted within an airspace environment modeled on the Dallas-Fort Worth (DFW) Terminal Radar Approach Control area. The aircraft simulator was equipped with the Airborne Spacing for Terminal Area Routes algorithm and a FIM crew interface consisting of electronic flight bags and ADS-B guidance displays. Researchers used "pseudo-pilot" stations to control 24 simulated aircraft that provided multiple air traffic flows into DFW, and recently retired DFW air traffic controllers served as confederate Center, Feeder, Final, and Tower controllers. Pilot participant feedback indicated that the procedures used by flight crews to receive and execute interval management (IM) clearances in a voice communications environment were logical, easy to follow, did not contain any missing or extraneous steps, and required the use of an acceptable level of workload. The majority of the pilot participants found the IM concept, in addition to the proposed FIM crew procedures, to be acceptable and indicated that the ATD-1 procedures can be successfully executed in a near-term NextGen environment.

  1. Prefrontal Cortex Activation and Young Driver Behaviour: A fNIRS Study

    PubMed Central

    Foy, Hannah J.; Runham, Patrick; Chapman, Peter

    2016-01-01

    Road traffic accidents consistently show a significant over-representation for young, novice and particularly male drivers. This research examines the prefrontal cortex activation of young drivers and the changes in activation associated with manipulations of mental workload and inhibitory control. It also considers the explanation that a lack of prefrontal cortex maturation is a contributing factor to the higher accident risk in this young driver population. The prefrontal cortex is associated with a number of factors including mental workload and inhibitory control, both of which are also related to road traffic accidents. This experiment used functional near infrared spectroscopy to measure prefrontal cortex activity during five simulated driving tasks: one following task and four overtaking tasks at varying traffic densities which aimed to dissociate workload and inhibitory control. Age, experience and gender were controlled for throughout the experiment. The results showed that younger drivers had reduced prefrontal cortex activity compared to older drivers. When both mental workload and inhibitory control increased prefrontal cortex activity also increased, however when inhibitory control alone increased there were no changes in activity. Along with an increase in activity during overtaking manoeuvres, these results suggest that prefrontal cortex activation is more indicative of workload in the current task. There were no differences in the number of overtakes completed by younger and older drivers but males overtook significantly more than females. We conclude that prefrontal cortex activity is associated with the mental workload required for overtaking. We additionally suggest that the reduced activation in younger drivers may be related to a lack of prefrontal maturation which could contribute to the increased crash risk seen in this population. PMID:27227990

  2. Workloads, Achievement and Stress: Two Follow-Up Studies of Teacher Time in Key Stage 1.

    ERIC Educational Resources Information Center

    Campbell, R. J.; And Others

    The first of two follow-up studies, involving 53 infant teachers in England and Wales, was conducted to monitor changes in the workloads of teachers as the national curriculum and assessment were brought in following ministerial promises to reduce the burdens imposed on teachers by the implementation of the national curriculum. Data were collected…

  3. What is the relationship between mental workload factors and cognitive load types?

    PubMed

    Galy, Edith; Cariou, Magali; Mélan, Claudine

    2012-03-01

    The present study tested the hypothesis of an additive interaction between intrinsic, extraneous and germane cognitive load, by manipulating factors of mental workload assumed to have a specific effect on either type of cognitive load. The study of cognitive load factors and their interaction is essential if we are to improve workers' wellbeing and safety at work. High cognitive load requires the individual to allocate extra resources to entering information. It is thought that this demand for extra resources may reduce processing efficiency and performance. The present study tested the effects of three factors thought to act on either cognitive load type, i.e. task difficulty, time pressure and alertness in a working memory task. Results revealed additive effects of task difficulty and time pressure, and a modulation by alertness on behavioral, subjective and psychophysiological workload measures. Mental overload can be the result of a combination of task-related components, but its occurrence may also depend on subject-related characteristics, including alertness. Solutions designed to reduce incidents and accidents at work should consider work organization in addition to task constraints in so far that both these factors may interfere with mental workload. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Cognitive Workload and Sleep Restriction Interact to Influence Sleep Homeostatic Responses

    PubMed Central

    Goel, Namni; Abe, Takashi; Braun, Marcia E.; Dinges, David F.

    2014-01-01

    Study Objectives: Determine the effects of high versus moderate workload on sleep physiology and neurobehavioral measures, during sleep restriction (SR) and no sleep restriction (NSR) conditions. Design: Ten-night experiment involving cognitive workload and SR manipulations. Setting: Controlled laboratory environment. Participants: Sixty-three healthy adults (mean ± standard deviation: 33.2 ± 8.7 y; 29 females), age 22–50 y. Interventions: Following three baseline 8 h time in bed (TIB) nights, subjects were randomized to one of four conditions: high cognitive workload (HW) + SR; moderate cognitive workload (MW) + SR; HW + NSR; or MW + NSR. SR entailed 5 consecutive nights at 4 h TIB; NSR entailed 5 consecutive nights at 8 h TIB. Subjects received three workload test sessions/day consisting of 15-min preworkload assessments, followed by a 60-min (MW) or 120-min (HW) workload manipulation comprised of visually based cognitive tasks, and concluding with 15-min of postworkload assessments. Experimental nights were followed by two 8-h TIB recovery sleep nights. Polysomnography was collected on baseline night 3, experimental nights 1, 4, and 5, and recovery night 1 using three channels (central, frontal, occipital [C3, Fz, O2]). Measurements and Results: High workload, regardless of sleep duration, increased subjective fatigue and sleepiness (all P < 0.05). In contrast, sleep restriction produced cumulative increases in Psychomotor Vigilance Test (PVT) lapses, fatigue, and sleepiness and decreases in PVT response speed and Maintenance of Wakefulness Test (MWT) sleep onset latencies (all P < 0.05). High workload produced longer sleep onset latencies (P < 0.05, d = 0.63) and less wake after sleep onset (P < 0.05, d = 0.64) than moderate workload. Slow-wave energy—the putative marker of sleep homeostasis—was higher at O2 than C3 only in the HW + SR condition (P < 0.05). Conclusions: High cognitive workload delayed sleep onset, but it also promoted sleep homeostatic responses by increasing subjective fatigue and sleepiness, and producing a global sleep homeostatic response by reducing wake after sleep onset. When combined with sleep restriction, high workload increased local (occipital) sleep homeostasis, suggesting a use-dependent sleep response to visual work. We conclude that sleep restriction and cognitive workload interact to influence sleep homeostasis. Citation: Goel N, Abe T, Braun ME, Dinges DF. Cognitive workload and sleep restriction interact to influence sleep homeostatic responses. SLEEP 2014;37(11):1745-1756. PMID:25364070

  5. Analysis of the workload of bank tellers of a Brazilian public institution.

    PubMed

    Serikawa, Simoni S; Albieri, Ana Carolina S; Bonugli, Gustavo P; Greghi, Marina F

    2012-01-01

    During the last decades there have been many changes in the banking sector organization. It has been also observed the mutual growing of musculoskeletal and mental disorders. This study investigated the workload of bank tellers at a Brazilian public institution. It was performed the Ergonomic Work Analysis (EWA). Three employees participated in this study. During the analysis process, three research instruments were applied: Inventory of Work and Risk of Illness, Yoshitake Fatigue Questionnaire and Nordic Musculoskeletal Questionnaire, beyond the realization of footage recordings and the self-confrontation. The results indicated the existence of an excess of workload on the evaluated workstations, mainly in relation to mental order constraints, that overlaps the physical aspects. Thereby it was found that the employees tend to adopt strategies trying to reduce the impacts of the excess of workload, in order to regulate it.

  6. GPs’ perceptions of workload in England: a qualitative interview study

    PubMed Central

    Croxson, Caroline HD; Ashdown, Helen F; Hobbs, FD Richard

    2017-01-01

    Background GPs report the lowest levels of morale among doctors, job satisfaction is low, and the GP workforce is diminishing. Workload is frequently cited as negatively impacting on commitment to a career in general practice, and many GPs report that their workload is unmanageable. Aim To gather an in-depth understanding of GPs’ perceptions and attitudes towards workload. Design and setting All GPs working within NHS England were eligible. Advertisements were circulated via regional GP e-mail lists and national social media networks in June 2015. Of those GPs who responded, a maximum-variation sample was selected until data saturation was reached. Method Semi-structured, qualitative interviews were conducted. Data were analysed thematically. Results In total, 171 GPs responded, and 34 were included in this study. GPs described an increase in workload over recent years, with current working days being long and intense, raising concerns over the wellbeing of GPs and patients. Full-time partnership was generally not considered to be possible, and many participants felt workload was unsustainable, particularly given the diminishing workforce. Four major themes emerged to explain increased workload: increased patient needs and expectations; a changing relationship between primary and secondary care; bureaucracy and resources; and the balance of workload within a practice. Continuity of care was perceived as being eroded by changes in contracts and working patterns to deal with workload. Conclusion This study highlights the urgent need to address perceived lack of investment and clinical capacity in general practice, and suggests that managing patient expectations around what primary care can deliver, and reducing bureaucracy, have become key issues, at least until capacity issues are resolved. PMID:28093422

  7. Augmenting Human Performance in Remotely Piloted Aircraft.

    PubMed

    Gruenwald, Christina M; Middendorf, Matthew S; Hoepf, Michael R; Galster, Scott M

    2018-02-01

    An experiment in a program of research supporting the sense-assess-augment (SAA) framework is described. The objective is to use physiological measures to assess operator cognitive workload in remotely piloted aircraft (RPA) operations, and provide augmentation to assist the operator in times of high workload. In previous experiments, physiological measures were identified that demonstrate sensitivity to changes in workload. The current research solely focuses on the augmentation component of the SAA paradigm. This line of research uses a realistic RPA simulation with varying levels of workload. Recruited from the Midwest region were 12 individuals (6 women) to participate in the experiment. The subjects were trained to perform a surveillance task and a tracking task using RPAs. There was also a secondary task in which subjects were required to answer cognitive probes. A within subjects factorial design was employed with three factors per task. Subjective workload estimates were acquired using the NASA-TLX. Performance data were calculated using a composite scoring algorithm. Augmentation significantly improved performance and reduced workload in both tasks. In the surveillance task, augmentation increased performance from 573.78 to 679.04. Likewise, augmentation increased performance in the tracking task from 749.39 to 791.81. Augmentation was more beneficial in high workload conditions than low workload conditions. The increase in performance and decrease in workload associated with augmentation is an important and anticipated finding. This suggests that augmentation should only be provided when it is truly needed, especially if the augmentation requires additional assets and/or resources.Gruenwald CM, Middendorf MS, Hoepf MR, Galster SM. Augmenting human performance in remotely piloted aircraft. Aerosp Med Hum Perform. 2018; 89(2):115-121.

  8. Upper limb muscular activity and perceived workload during laryngoscopy: comparison of Glidescope(R) and Macintosh laryngoscopy in manikin: an observational study.

    PubMed

    Caldiroli, D; Molteni, F; Sommariva, A; Frittoli, S; Guanziroli, E; Cortellazzi, P; Orena, E F

    2014-03-01

    The interaction between operators and their working environment during laryngoscopy is poorly understood. Numerous studies have focused on the forces applied to the patient's airway during laryngoscopy, but only a few authors have addressed operator muscle activity and workload. We tested whether different devices (Glidescope(®) and Macintosh) use different muscles and how these differences affect the perceived workload. Ten staff anaesthetists performed three intubations with each device on a manikin. Surface electromyography was recorded for eight single muscles of the left upper limb. The NASA Task Load Index (TLX) was administered after each experimental session to evaluate perceived workload. A consistent reduction in muscular activation occurred with Glidescope(®) compared with Macintosh for all muscles tested (mean effect size d=3.28), and significant differences for the upper trapezius (P=0.002), anterior deltoid (P=0.001), posterior deltoid (P=0.000), and brachioradialis (P=0.001) were observed. The overall NASA-TLX workload score was significantly lower for Glidescope(®) than for Macintosh (P=0.006), and the factors of physical demand (P=0.008) and effort (P=0.006) decreased significantly. Greater muscular activity and workload were observed with the Macintosh laryngoscope. Augmented vision and related postural adjustments related to using the Glidescope(®) may reduce activation of the operator's muscles and task workload.

  9. Subjective and objective quantification of physician's workload and performance during radiation therapy planning tasks.

    PubMed

    Mazur, Lukasz M; Mosaly, Prithima R; Hoyle, Lesley M; Jones, Ellen L; Marks, Lawrence B

    2013-01-01

    To quantify, and compare, workload for several common physician-based treatment planning tasks using objective and subjective measures of workload. To assess the relationship between workload and performance to define workload levels where performance could be expected to decline. Nine physicians performed the same 3 tasks on each of 2 cases ("easy" vs "hard"). Workload was assessed objectively throughout the tasks (via monitoring of pupil size and blink rate), and subjectively at the end of each case (via National Aeronautics and Space Administration Task Load Index; NASA-TLX). NASA-TLX assesses the 6 dimensions (mental, physical, and temporal demands, frustration, effort, and performance); scores > or ≈ 50 are associated with reduced performance in other industries. Performance was measured using participants' stated willingness to approve the treatment plan. Differences in subjective and objective workload between cases, tasks, and experience were assessed using analysis of variance (ANOVA). The correlation between subjective and objective workload measures were assessed via the Pearson correlation test. The relationships between workload and performance measures were assessed using the t test. Eighteen case-wise and 54 task-wise assessments were obtained. Subjective NASA-TLX scores (P < .001), but not time-weighted averages of objective scores (P > .1), were significantly lower for the easy vs hard case. Most correlations between the subjective and objective measures were not significant, except between average blink rate and NASA-TLX scores (r = -0.34, P = .02), for task-wise assessments. Performance appeared to decline at NASA-TLX scores of ≥55. The NASA-TLX may provide a reasonable method to quantify subjective workload for broad activities, and objective physiologic eye-based measures may be useful to monitor workload for more granular tasks within activities. The subjective and objective measures, as herein quantified, do not necessarily track each other, and more work is needed to assess their utilities. From a series of controlled experiments, we found that performance appears to decline at subjective workload levels ≥55 (as measured via NASA-TLX), which is consistent with findings from other industries. Copyright © 2013 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  10. Evaluation of three ergonomic measures on productivity, physical work demands, and workload in gypsum bricklayers.

    PubMed

    van der Molen, Henk F; Kuijer, P Paul F M; Formanoy, Margriet; Bron, Lennart; Hoozemans, Marco J M; Visser, Bart; Frings-Dresen, Monique H W

    2010-06-01

    This study evaluated the effects of a combination of three ergonomic measures designed to reduce the risk of low back complaints among gypsum bricklayers. The measures focused on optimizing working height and reducing carrying distances. A within-subjects (N = 10) controlled field study was used to compare the effects of working with the ergonomic measures with those of working with conventional working methods at the worksite during the course of a full working day. Productivity, work demands, and workload were assessed. No effects were found on productivity, total work time, duration of tasks, duration of carrying, or energetic or biomechanical workload. However, the duration and frequency of working between knee and hip height during a working day increased by 25% and 15%, respectively, due to the ergonomic measures. During the finishing task, the duration and frequency of working below knee level decreased significantly by 4 min and 71 times, respectively. The limited impact of the ergonomic measures argues for additional measures to reduce the risk of low back complaints. 2010 Wiley-Liss, Inc.

  11. Exploration Mission Benefits From Logistics Reduction Technologies

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.; Schlesinger, Thilini; Ewert, Michael K.

    2016-01-01

    Technologies that reduce logistical mass, volume, and the crew time dedicated to logistics management become more important as exploration missions extend further from the Earth. Even modest reductions in logical mass can have a significant impact because it also reduces the packing burden. NASA's Advanced Exploration Systems' Logistics Reduction Project is developing technologies that can directly reduce the mass and volume of crew clothing and metabolic waste collection. Also, cargo bags have been developed that can be reconfigured for crew outfitting and trash processing technologies to increase habitable volume and improve protection against solar storm events are under development. Additionally, Mars class missions are sufficiently distant that even logistics management without resupply can be problematic due to the communication time delay with Earth. Although exploration vehicles are launched with all consumables and logistics in a defined configuration, the configuration continually changes as the mission progresses. Traditionally significant ground and crew time has been required to understand the evolving configuration and locate misplaced items. For key mission events and unplanned contingencies, the crew will not be able to rely on the ground for logistics localization assistance. NASA has been developing a radio frequency identification autonomous logistics management system to reduce crew time for general inventory and enable greater crew self-response to unplanned events when a wide range of items may need to be located in a very short time period. This paper provides a status of the technologies being developed and there mission benefits for exploration missions.

  12. Exploration Mission Benefits From Logistics Reduction Technologies

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.; Ewert, Michael K.; Schlesinger, Thilini

    2016-01-01

    Technologies that reduce logistical mass, volume, and the crew time dedicated to logistics management become more important as exploration missions extend further from the Earth. Even modest reductions in logistical mass can have a significant impact because it also reduces the packaging burden. NASA's Advanced Exploration Systems' Logistics Reduction Project is developing technologies that can directly reduce the mass and volume of crew clothing and metabolic waste collection. Also, cargo bags have been developed that can be reconfigured for crew outfitting, and trash processing technologies are under development to increase habitable volume and improve protection against solar storm events. Additionally, Mars class missions are sufficiently distant that even logistics management without resupply can be problematic due to the communication time delay with Earth. Although exploration vehicles are launched with all consumables and logistics in a defined configuration, the configuration continually changes as the mission progresses. Traditionally significant ground and crew time has been required to understand the evolving configuration and to help locate misplaced items. For key mission events and unplanned contingencies, the crew will not be able to rely on the ground for logistics localization assistance. NASA has been developing a radio-frequency-identification autonomous logistics management system to reduce crew time for general inventory and enable greater crew self-response to unplanned events when a wide range of items may need to be located in a very short time period. This paper provides a status of the technologies being developed and their mission benefits for exploration missions.

  13. Accumulative job demands and support for strength use: Fine-tuning the job demands-resources model using conservation of resources theory.

    PubMed

    van Woerkom, Marianne; Bakker, Arnold B; Nishii, Lisa H

    2016-01-01

    Absenteeism associated with accumulated job demands is a ubiquitous problem. We build on prior research on the benefits of counteracting job demands with resources by focusing on a still untapped resource for buffering job demands-that of strengths use. We test the idea that employees who are actively encouraged to utilize their personal strengths on the job are better positioned to cope with job demands. Based on conservation of resources (COR) theory, we hypothesized that job demands can accumulate and together have an exacerbating effect on company registered absenteeism. In addition, using job demands-resources theory, we hypothesized that perceived organizational support for strengths use can buffer the impact of separate and combined job demands (workload and emotional demands) on absenteeism. Our sample consisted of 832 employees from 96 departments (response rate = 40.3%) of a Dutch mental health care organization. Results of multilevel analyses indicated that high levels of workload strengthen the positive relationship between emotional demands and absenteeism and that support for strength use interacted with workload and emotional job demands in the predicted way. Moreover, workload, emotional job demands, and strengths use interacted to predict absenteeism. Strengths use support reduced the level of absenteeism of employees who experienced both high workload and high emotional demands. We conclude that providing strengths use support to employees offers organizations a tool to reduce absenteeism, even when it is difficult to redesign job demands. (c) 2016 APA, all rights reserved).

  14. Neck and shoulder muscle activity and posture among helicopter pilots and crew-members during military helicopter flight.

    PubMed

    Murray, Mike; Lange, Britt; Chreiteh, Shadi Samir; Olsen, Henrik Baare; Nørnberg, Bo Riebeling; Boyle, Eleanor; Søgaard, Karen; Sjøgaard, Gisela

    2016-04-01

    Neck pain among helicopter pilots and crew-members is common. This study quantified the physical workload on neck and shoulder muscles using electromyography (EMG) measures during helicopter flight. Nine standardized sorties were performed, encompassing: cruising from location A to location B (AB) and performing search and rescue (SAR). SAR was performed with Night Vision Goggles (NVG), while AB was performed with (AB+NVG) and without NVG (AB-NVG). EMG was recorded for: trapezius (TRA), upper neck extensors (UNE), and sternocleido-mastoid (SCM). Maximal voluntary contractions (MVC) were performed for normalization of EMG (MVE). Neck posture of pilots and crew-members was monitored and pain intensity of neck, shoulder, and back was recorded. Mean muscle activity for UNE was ∼10% MVE and significantly higher than TRA and SCM, and SCM was significantly lower than TRA. There was no significant difference between AB-NVG and AB+NVG. Muscle activity in the UNE was significantly higher during SAR+NVG than AB-NVG. Sortie time (%) with non-neutral neck posture for SAR+NVG and AB-NVG was: 80.4%, 74.5% (flexed), 55.5%, 47.9% (rotated), 4.5%, 3.7% (lateral flexed). Neck pain intensity increased significantly from pre- (0.7±1.3) to post-sortie (1.6±1.9) for pilots (p=0.028). If sustained, UNE activity of ∼10% MVE is high, and implies a risk for neck disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The impact of automation on workload and dispensing errors in a hospital pharmacy.

    PubMed

    James, K Lynette; Barlow, Dave; Bithell, Anne; Hiom, Sarah; Lord, Sue; Pollard, Mike; Roberts, Dave; Way, Cheryl; Whittlesea, Cate

    2013-04-01

    To determine the effect of installing an original-pack automated dispensing system (ADS) on dispensary workload and prevented dispensing incidents in a hospital pharmacy. Data on dispensary workload and prevented dispensing incidents, defined as dispensing errors detected and reported before medication had left the pharmacy, were collected over 6 weeks at a National Health Service hospital in Wales before and after the installation of an ADS. Workload was measured by non-participant observation using the event recording technique. Prevented dispensing incidents were self-reported by pharmacy staff on standardised forms. Median workloads (measured as items dispensed/person/hour) were compared using Mann-Whitney U tests and rate of prevented dispensing incidents were compared using Chi-square test. Spearman's rank correlation was used to examine the association between workload and prevented dispensing incidents. A P value of ≤0.05 was considered statistically significant. Median dispensary workload was significantly lower pre-automation (9.20 items/person/h) compared to post-automation (13.17 items/person/h, P < 0.001). Rate of prevented dispensing incidents was significantly lower post-automation (0.28%) than pre-automation (0.64%, P < 0.0001) but there was no difference (P = 0.277) between the types of dispensing incidents. A positive association existed between workload and prevented dispensing incidents both pre- (ρ = 0.13, P = 0.015) and post-automation (ρ = 0.23, P < 0.001). Dispensing incidents were found to occur during prolonged periods of moderate workload or after a busy period. Study findings suggest that automation improves dispensing efficiency and reduces the rate of prevented dispensing incidents. It is proposed that prevented dispensing incidents frequently occurred during periods of high workload due to involuntary automaticity. Prevented dispensing incidents occurring after a busy period were attributed to staff experiencing fatigue after-effects. © 2012 The Authors. IJPP © 2012 Royal Pharmaceutical Society.

  16. Development and Execution of Autonomous Procedures Onboard the International Space Station to Support the Next Phase of Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Beisert, Susan; Rodriggs, Michael; Moreno, Francisco; Korth, David; Gibson, Stephen; Lee, Young H.; Eagles, Donald E.

    2013-01-01

    Now that major assembly of the International Space Station (ISS) is complete, NASA's focus has turned to using this high fidelity in-space research testbed to not only advance fundamental science research, but also demonstrate and mature technologies and develop operational concepts that will enable future human exploration missions beyond low Earth orbit. The ISS as a Testbed for Analog Research (ISTAR) project was established to reduce risks for manned missions to exploration destinations by utilizing ISS as a high fidelity micro-g laboratory to demonstrate technologies, operations concepts, and techniques associated with crew autonomous operations. One of these focus areas is the development and execution of ISS Testbed for Analog Research (ISTAR) autonomous flight crew procedures intended to increase crew autonomy that will be required for long duration human exploration missions. Due to increasing communications delays and reduced logistics resupply, autonomous procedures are expected to help reduce crew reliance on the ground flight control team, increase crew performance, and enable the crew to become more subject-matter experts on both the exploration space vehicle systems and the scientific investigation operations that will be conducted on a long duration human space exploration mission. These tests make use of previous or ongoing projects tested in ground analogs such as Research and Technology Studies (RATS) and NASA Extreme Environment Mission Operations (NEEMO). Since the latter half of 2012, selected non-critical ISS systems crew procedures have been used to develop techniques for building ISTAR autonomous procedures, and ISS flight crews have successfully executed them without flight controller involvement. Although the main focus has been preparing for exploration, the ISS has been a beneficiary of this synergistic effort and is considering modifying additional standard ISS procedures that may increase crew efficiency, reduce operational costs, and raise the amount of crew time available for scientific research. The next phase of autonomous procedure development is expected to include payload science and human research investigations. Additionally, ISS International Partners have expressed interest in participating in this effort. The recently approved one-year crew expedition starting in 2015, consisting of one Russian and one U.S. Operating Segment (USOS) crewmember, will be used not only for long duration human research investigations but also for the testing of exploration operations concepts, including crew autonomy.

  17. [The Relation between the Height of Radiographic Table and Workloads of Radiologic Technologist in General X-ray Examinations].

    PubMed

    Hattori, Akiko; Mizoguchi, Noriko; Arimura, Hisao; Fukano, Yuuichi; Umezu, Yoshiyuki; Yabuuchi, Hidetake

    2015-12-01

    Workloads of radiological technologists under different conditions of heights of radiographic table and/or X-ray tube assembly were calculated using a software for preventing musculoskeletal complaint to investigate optimal working environment for general X-ray examinations. In the patient positioning, compressive force of lumbar disc decreased at higher radiographic table within the range of 45-90 cm. On the other hand, workload of the shoulder joint increased with increase in the height of radiographic table. Load of the shoulder joint similarly increased as the height of the X-ray tube assembly increased. Compressive force of lumbar disc reduced by approximately 10-30% as the height ratio of the radiographic table to body height increased by approximately 40%, compared to the lowest table of 45 cm. Muscle load of a 50-years-old woman was approximately double compared to a 30-year-old man, even in the same workload. It is important to keep suitable height of radiographic table for reduction of the workloads of lumbar rather than shoulder joint, because floating-type radiographic table is generally used.

  18. The stress and workload of virtual reality training: the effects of presence, immersion and flow.

    PubMed

    Lackey, S J; Salcedo, J N; Szalma, J L; Hancock, P A

    2016-08-01

    The present investigation evaluated the effects of virtual reality (VR) training on the performance, perceived workload and stress response to a live training exercise in a sample of Soldiers. We also examined the relationship between the perceptions of that same VR as measured by engagement, immersion, presence, flow, perceived utility and ease of use with the performance, workload and stress reported on the live training task. To a degree, these latter relationships were moderated by task performance, as measured by binary (Go/No-Go) ratings. Participants who reported positive VR experiences also tended to experience lower stress and lower workload when performing the live version of the task. Thus, VR training regimens may be efficacious for mitigating the stress and workload associated with criterion tasks, thereby reducing the ultimate likelihood of real-world performance failure. Practitioner Summary: VR provides opportunities for training in artificial worlds comprised of highly realistic features. Our virtual room clearing scenario facilitated the integration of Training and Readiness objectives and satisfied training doctrine obligations in a compelling engaging experience for both novice and experienced trainees.

  19. System status display evaluation

    NASA Technical Reports Server (NTRS)

    Summers, Leland G.

    1988-01-01

    The System Status Display is an electronic display system which provides the crew with an enhanced capability for monitoring and managing the aircraft systems. A flight simulation in a fixed base cockpit simulator was used to evaluate alternative design concepts for this display system. The alternative concepts included pictorial versus alphanumeric text formats, multifunction versus dedicated controls, and integration of the procedures with the system status information versus paper checklists. Twelve pilots manually flew approach patterns with the different concepts. System malfunctions occurred which required the pilots to respond to the alert by reconfiguring the system. The pictorial display, the multifunction control interfaces collocated with the system display, and the procedures integrated with the status information all had shorter event processing times and lower subjective workloads.

  20. The evaluation of team lifting on physical work demands and workload in ironworkers.

    PubMed

    van der Molen, Henk F; Visser, Steven; Kuijer, P Paul F M; Faber, Gert; Hoozemans, Marco J M; van Dieën, Jaap H; Frings-Dresen, Monique H W

    2012-01-01

    Lifting and carrying heavy loads occur frequently among ironworkers and result in high prevalence and incidence rates of low back complaints, injuries and work-disability. From a health perspective, little information is available on the effect of team lifting on work demands and workload. Therefore, the objective of this study was to compare the effects of team lifting of maximally 50 kg by two ironworkers (T50) with team lifting of maximally 100 kg by four ironworkers (T100). This study combined a field and laboratory study with the following outcome measures: duration and frequency of tasks and activities, energetic workload, perceived discomfort and maximal compression forces (Fc peak) on the low back. The physical work demands and workload of an individual iron worker during manual handling of rebar materials of 100 kg with four workers did not differ from the manual handling of rebar materials of 50 kg with two workers, with the exception of low back discomfort and Fc peak. The biomechanical workload of the low back exceeded for both T50 and T100 the NIOSH threshold limit of 3400N. Therefore, mechanical transport or other effective design solutions should be considered to reduce the biomechanical workload of the low back and the accompanying health risks among iron workers.

  1. Reduced Crew Operations Research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Brandt, Summer L.; Lachter, Joel

    2017-01-01

    In 2012, NASA began exploring the feasibility of single pilot reduced crew operations (SPORCO) in the context of scheduled passenger air carrier operations (i.e., Parts 121 and 135). This research was spurred by two trends in aviation research: the trend toward reducing costs and a shortage of pilots. A series of simulations were conducted to develop tools and a concept of operations to support RCO. This slide deck is a summary of the NASA Ames RCO research prepared for an R T team at Airbus. Airbus is considering moving forward with reducing crew during the cruise phase of flight with long-haul flights and is interested in the work we have completed.

  2. Use of EEG workload indices for diagnostic monitoring of vigilance decrement.

    PubMed

    Kamzanova, Altyngul T; Kustubayeva, Almira M; Matthews, Gerald

    2014-09-01

    A study was run to test which of five electroencephalographic (EEG) indices was most diagnostic of loss of vigilance at two levels of workload. EEG indices of alertness include conventional spectral power measures as well as indices combining measures from multiple frequency bands, such as the Task Load Index (TLI) and the Engagement Index (El). However, it is unclear which indices are optimal for early detection of loss of vigilance. Ninety-two participants were assigned to one of two experimental conditions, cued (lower workload) and uncued (higher workload), and then performed a 40-min visual vigilance task. Performance on this task is believed to be limited by attentional resource availability. EEG was recorded continuously. Performance, subjective state, and workload were also assessed. The task showed a vigilance decrement in performance; cuing improved performance and reduced subjective workload. Lower-frequency alpha (8 to 10.9 Hz) and TLI were most sensitive to the task parameters. The magnitude of temporal change was larger for lower-frequency alpha. Surprisingly, higher TLI was associated with superior performance. Frontal theta and El were influenced by task workload only in the final period of work. Correlational data also suggested that the indices are distinct from one another. Lower-frequency alpha appears to be the optimal index for monitoring vigilance on the task used here, but further work is needed to test how diagnosticity of EEG indices varies with task demands. Lower-frequency alpha may be used to diagnose loss of operator alertness on tasks requiring vigilance.

  3. Experiment Description and Results for Arrival Operations Using Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR)

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Murdoch, Jennifer L.; Swieringa, Kurt A.; Barmore, Bryan E.; Capron, William R.; Hubbs, Clay E.; Shay, Richard F.; Abbott, Terence S.

    2013-01-01

    The predicted increase in the number of commercial aircraft operations creates a need for improved operational efficiency. Two areas believed to offer increases in aircraft efficiency are optimized profile descents and dependent parallel runway operations. Using Flight deck Interval Management (FIM) software and procedures during these operations, flight crews can achieve by the runway threshold an interval assigned by air traffic control (ATC) behind the preceding aircraft that maximizes runway throughput while minimizing additional fuel consumption and pilot workload. This document describes an experiment where 24 pilots flew arrivals into the Dallas Fort-Worth terminal environment using one of three simulators at NASA?s Langley Research Center. Results indicate that pilots delivered their aircraft to the runway threshold within +/- 3.5 seconds of their assigned time interval, and reported low workload levels. In general, pilots found the FIM concept, procedures, speeds, and interface acceptable. Analysis of the time error and FIM speed changes as a function of arrival stream position suggest the spacing algorithm generates stable behavior while in the presence of continuous (wind) or impulse (offset) error. Concerns reported included multiple speed changes within a short time period, and an airspeed increase followed shortly by an airspeed decrease.

  4. Short Haul Civil Tiltrotor Study in MIDAS: Auto versus Manual Nacelle Procedures for Commanded Go-Around

    NASA Technical Reports Server (NTRS)

    Atencio, Adolph, Jr.; Banda, Carolyn

    1998-01-01

    Tiltrotor aircraft combine the speed and range of a turboprop performance with the ability to take off and land in a vertical mode like a helicopter. These aircraft will transport passengers from city center to city center and from satellite airports to major hub airports to make connections to long range travel. The Short Haul Civil Tiltrotor (SH(CT)) being studied by NASA is a concept 40 passenger civil tiltrotor (CTR) transport. The Man-machine Integration Design and Analysis System (MIDAS) was used to evaluate human performance in terms of crew procedures and pilot workload for a simulated 40 passenger Civil Tiltrotor Transport on a steep approach to a vertiport. The scenario for the simulation was a normal approach to the vertiport that is interrupted by a commanded go-around at the landing decision point. The simulation contrasted an automated discrete nacelle mode control with a fully manual nacelle control mode for the go-around. The MIDAS simulation showed that the pilot task loading during approach and for the commanded go-around is high and that pilot workload is near capacity throughout. The go-around in manual nacelle mode was most demanding, resulting in additional time requirements to complete necessary tasks.

  5. System for Better Spacing of Airplanes En Route

    NASA Technical Reports Server (NTRS)

    Green, Steven; Erzberger, Heinz

    2004-01-01

    An improved method of computing the spacing of airplanes en route, and software to implement the method, have been invented. The purpose of the invention is to help air-traffic controllers minimize those deviations of the airplanes from the trajectories preferred by their pilots that are needed to make the airplanes comply with miles-in-trail spacing requirements. The software is meant to be a modular component of the Center TRACON Automation System (CTAS) (TRACON signifies "terminal radar approach control"). The invention reduces controllers workloads and reduces fuel consumption by reducing the number of corrective clearances needed to achieve conformance with specified flow rates, without causing conflicts, while providing for more efficient distribution of spacing workload upstream and across air-traffic-control sectors.

  6. Impact of 3D vision on mental workload and laparoscopic performance in inexperienced subjects.

    PubMed

    Gómez-Gómez, E; Carrasco-Valiente, J; Valero-Rosa, J; Campos-Hernández, J P; Anglada-Curado, F J; Carazo-Carazo, J L; Font-Ugalde, P; Requena-Tapia, M J

    2015-05-01

    To assess the effect of vision in three dimensions (3D) versus two dimensions (2D) on mental workload and laparoscopic performance during simulation-based training. A prospective, randomized crossover study on inexperienced students in operative laparoscopy was conducted. Forty-six candidates executed five standardized exercises on a pelvitrainer with both vision systems (3D and 2D). Laparoscopy performance was assessed using the total time (in seconds) and the number of failed attempts. For workload assessment, the validated NASA-TLX questionnaire was administered. 3D vision improves the performance reducing the time (3D = 1006.08 ± 315.94 vs. 2D = 1309.17 ± 300.28; P < .001) and the total number of failed attempts (3D = .84 ± 1.26 vs. 2D = 1.86 ± 1.60; P < .001). For each exercise, 3D vision also shows better performance times: "transfer objects" (P = .001), "single knot" (P < .001), "clip and cut" (P < .05), and "needle guidance" (P < .001). Besides, according to the NASA-TLX results, less mental workload is experienced with the use of 3D (P < .001). However, 3D vision was associated with greater visual impairment (P < .01) and headaches (P < .05). The incorporation of 3D systems in laparoscopic training programs would facilitate the acquisition of laparoscopic skills, because they reduce mental workload and improve the performance on inexperienced surgeons. However, some undesirable effects such as visual discomfort or headache are identified initially. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. The effects of on-street parking and road environment visual complexity on travel speed and reaction time.

    PubMed

    Edquist, Jessica; Rudin-Brown, Christina M; Lenné, Michael G

    2012-03-01

    On-street parking is associated with elevated crash risk. It is not known how drivers' mental workload and behaviour in the presence of on-street parking contributes to, or fails to reduce, this increased crash risk. On-street parking tends to co-exist with visually complex streetscapes that may affect workload and crash risk in their own right. The present paper reports results from a driving simulator study examining the effects of on-street parking and road environment visual complexity on driver behaviour and surrogate measures of crash risk. Twenty-nine participants drove a simulated urban commercial and arterial route. Compared to sections with no parking bays or empty parking bays, in the presence of occupied parking bays drivers lowered their speed and shifted their lateral position towards roadway centre to compensate for the higher mental workload they reported experiencing. However, this compensation was not sufficient to reduce drivers' reaction time on a safety-relevant peripheral detection task or to an unexpected pedestrian hazard. Compared to the urban road environments, the less visually complex arterial road environment was associated with speeds that were closer to the posted limit, lower speed variability and lower workload ratings. These results support theoretical positions that proffer workload as a mediating variable of speed choice. However, drivers in this study did not modify their speed sufficiently to maintain safe hazard response times in complex environments with on-street parking. This inadequate speed compensation is likely to affect real world crash risk. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Three-dimensional virtual navigation versus conventional image guidance: A randomized controlled trial.

    PubMed

    Dixon, Benjamin J; Chan, Harley; Daly, Michael J; Qiu, Jimmy; Vescan, Allan; Witterick, Ian J; Irish, Jonathan C

    2016-07-01

    Providing image guidance in a 3-dimensional (3D) format, visually more in keeping with the operative field, could potentially reduce workload and lead to faster and more accurate navigation. We wished to assess a 3D virtual-view surgical navigation prototype in comparison to a traditional 2D system. Thirty-seven otolaryngology surgeons and trainees completed a randomized crossover navigation exercise on a cadaver model. Each subject identified three sinonasal landmarks with 3D virtual (3DV) image guidance and three landmarks with conventional cross-sectional computed tomography (CT) image guidance. Subjects were randomized with regard to which side and display type was tested initially. Accuracy, task completion time, and task workload were recorded. Display type did not influence accuracy (P > 0.2) or efficiency (P > 0.3) for any of the six landmarks investigated. Pooled landmark data revealed a trend of improved accuracy in the 3DV group by 0.44 millimeters (95% confidence interval [0.00-0.88]). High-volume surgeons were significantly faster (P < 0.01) and had reduced workload scores in all domains (P < 0.01), but they were no more accurate (P > 0.28). Real-time 3D image guidance did not influence accuracy, efficiency, or task workload when compared to conventional triplanar image guidance. The subtle pooled accuracy advantage for the 3DV view is unlikely to be of clinical significance. Experience level was strongly correlated to task completion time and workload but did not influence accuracy. N/A. Laryngoscope, 126:1510-1515, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  9. Georgia Department of Transportation (GDOT) leadership academy.

    DOT National Transportation Integrated Search

    2014-01-01

    Public agencies like the Georgia Department of Transportation (GDOT) are continually challenged with : reduced staff levels, reduced budgets, increased workloads and expectations for services provided. In : addition, the current economic and politica...

  10. Modification of working conditions based on ergo THK reducing workload, muscle tension, and fatigue of rice milling workers in J village

    NASA Astrophysics Data System (ADS)

    Ruliati, L. P.; Adiputra, N.; Sutjana, I. D. P.; Sutajaya, I. M.

    2017-11-01

    Rice mill is one of the businesses in informal sector. From the rice milling process, ergonomic problems arise when employees work with bent position that done repeatedly to lift grain sacks to be transferred to peeler machine. This situation will affect the comfort of work, thus increasing the workload, muscle tension, and fatigue. The consequence will certainly affect the health and productivity of workers. In this study introduces ergo Tri Hita Karana (ergo THK) as an ergonomics intervention model which solves ergonomics problems of the cultural aspects of THK. The study aim is to determine the modification of working conditions based Ergo THK to reduce workload, muscle tension and fatigue. This research uses Randomized Pretest and Posttest Control Group Design experimental design. The subjects were 30 male rice mill workers with an age range of 16 until 56 years, and then divided into 15 subjects in the control group and 15 subjects in the treatment group. The results showed that the average posttest workloads in the control group are 136.950 more less 0.297 and in the treatment group are 107.60 more less 0.396. Significance analysis showed that after the two groups done their activities, the average workload significantly different p less than 0.005. The amount of reduction in the workload between the two groups was 21.43 percent. In muscle tension posttest showed that the mean score of the muscle tension in the control group was 62.67 more less 7.31 and the treatment group was 20.96 more less 2.96. Significance analysis showed that both groups mean muscle-tension results were significantly different p less than 0.005. The amount of reduction in tension between the control group and the treatment group while working was 66.55 percent. At fatigue posttest showed that the mean score of fatigue in the control group was 76.40 more less 13.51 and the treatment group was 55.53 more less 9.51. Significant analysis showed that the mean fatigue of both groups significantly different p less than 0.005. The amount of reduction in fatigue between the control group and the treatment group while working was 27.31 percent. From this study it can be concluded that the modification of the working conditions based on Ergo THK can reduce the workload by 21.43 percent, muscle tension by 66.55 percent and fatigue by 27.31 percent.

  11. CO2 Washout Testing of the REI and EM-ACES Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn C.; Norcross, Jason

    2012-01-01

    When a space suit is used during ground testing, adequate carbon dioxide (CO2) washout must be provided for the suited subject. Symptoms of acute CO2 exposure depend on partial pressure of CO2 (ppCO2), metabolic rate of the subject, and other factors. This test was done to characterize inspired oronasal ppCO2 in the Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES) for a range of workloads and flow rates for which ground testing is nominally performed. Three subjects were tested in each suit. In all but one case, each subject performed the test twice. Suit pressure was maintained at 4.3 psid. Subjects wore the suit while resting, performing arm ergometry, and walking on a treadmill to generate metabolic workloads of about 500 to 3000 BTU/hr. Supply airflow was varied between 6, 5, and 4 actual cubic feet per minute (ACFM) at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored in real time by gas analyzers with sampling tubes connected to the mask. Metabolic rate was calculated from the total CO2 production measured by an additional gas analyzer at the suit air outlet. Real-time metabolic rate was used to adjust the arm ergometer or treadmill workload to meet target metabolic rates. In both suits, inspired CO2 was affected mainly by the metabolic rate of the subject: increased metabolic rate significantly (P < 0.05) increased inspired ppCO2. Decreased air flow caused small increases in inspired ppCO2. The effect of flow was more evident at metabolic rates . 2000 BTU/hr. CO2 washout values of the EM-ACES were slightly but not significantly better than those of the REI suit. Regression equations were developed for each suit to predict the mean inspired ppCO2 as a function of metabolic rate and suit flow rate. This paper provides detailed descriptions of the test hardware, methodology, and results as well as implications for future ground testing in the REI-suit and EM-ACES.

  12. Carbon Dioxide Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy, and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject, and physiological differences between subjects. Computational Fluid Dynamics (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test was to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III suit across a range of workload and flow rates. Data and trends observed during testing along with refined CFD models will be used to help design an inlet vent configuration for the Z-2 space suit. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit, and the Enhanced Mobility Advanced Crew Escape Suit. Three subjects performed two test sessions each in the Mark-III suit to allow for comparison between tests. Six different helmet inlet vent configurations were evaluated during each test session. Suit pressure was maintained at 4.3 psid. Suited test subjects walked on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute were tested at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the CO2 production measured by an additional gas analyzer at the air outlet from the suit. Real-time metabolic rate measurements were used to adjust the treadmill workload to meet target metabolic rates. This paper provides detailed descriptions of the test hardware, methodology and results, as well as implications for future inlet vent designs and ground testing.

  13. International Space Station Crew Quarters Ventilation and Acoustic Design Implementation

    NASA Technical Reports Server (NTRS)

    Broyan, James L., Jr.; Cady, Scott M; Welsh, David A.

    2010-01-01

    The International Space Station (ISS) United States Operational Segment has four permanent rack sized ISS Crew Quarters (CQs) providing a private crew member space. The CQs use Node 2 cabin air for ventilation/thermal cooling, as opposed to conditioned ducted air-from the ISS Common Cabin Air Assembly (CCAA) or the ISS fluid cooling loop. Consequently, CQ can only increase the air flow rate to reduce the temperature delta between the cabin and the CQ interior. However, increasing airflow causes increased acoustic noise so efficient airflow distribution is an important design parameter. The CQ utilized a two fan push-pull configuration to ensure fresh air at the crew member's head position and reduce acoustic exposure. The CQ ventilation ducts are conduits to the louder Node 2 cabin aisle way which required significant acoustic mitigation controls. The CQ interior needs to be below noise criteria curve 40 (NC-40). The design implementation of the CQ ventilation system and acoustic mitigation are very inter-related and require consideration of crew comfort balanced with use of interior habitable volume, accommodation of fan failures, and possible crew uses that impact ventilation and acoustic performance. Each CQ required 13% of its total volume and approximately 6% of its total mass to reduce acoustic noise. This paper illustrates the types of model analysis, assumptions, vehicle interactions, and trade-offs required for CQ ventilation and acoustics. Additionally, on-orbit ventilation system performance and initial crew feedback is presented. This approach is applicable to any private enclosed space that the crew will occupy.

  14. Reducing the need for surgeons by reducing pollution-derived workload: is there a role for surgeons?

    PubMed

    Talati, Jamsheer J; Agha, Riaz; Agha, Maliha; Rosin, Richard David

    2011-01-01

    The need for additional surgical workforce personnel is likely to increase dramatically at a rate beyond our capacity to train them. As surgical training programmes cannot be rapidly expanded, this paper explores an alternative solution to the quandary, a reduction of the disease burden by a war on pollution. Highlighting the role of pollutants in increasing the surgical workload, it identifies potential roles for surgeons in the battle against pollution and draws attention to the need to research out agents which could protect humans against their carcinogenic effects. Copyright © 2011 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  15. My copilot is a nurse--using crew resource management in the OR.

    PubMed

    Powell, Stephen M; Hill, Ruth Kimberly

    2006-01-01

    Crew resource management (CRM) has been used for more than 20 years in the aviation industry to teach individual error countermeasures by developing nontechnical (ie, cognitive, social) skills based on the observed traits of successful individuals and crews. The health care industry began to investigate aviation CRM after the Institute of Medicine's report, To Err is Human: Building a Safer Health System, recommended that medicine adopt aviation's approach to safety and error management. Initial results of implementing CRM in health care arenas have demonstrated reduced adverse outcomes, reduced errors, reduced length of stay, improved nurse retention, and changed attitudes and behaviors toward teamwork.

  16. Influence of obesity and physical workload on disability benefits among construction workers followed up for 37 years.

    PubMed

    Robroek, Suzan J W; Järvholm, Bengt; van der Beek, Allard J; Proper, Karin I; Wahlström, Jens; Burdorf, Alex

    2017-09-01

    The objectives of this study are to investigate the relation between obesity and labour force exit via diagnosis-specific disability benefits, and whether physical workload modifies this association. A longitudinal analysis was performed among 3 28 743 Swedish construction workers in the age of 15-65 years. Body weight and height were measured at a health examination and enriched with register information on disability benefits up to 37 years later. Diagnoses of disability benefits were categorised into cardiovascular diseases (CVDs), musculoskeletal diseases (MSDs), mental disorders and others. A job exposure matrix, based on self-reported lifting of heavy loads and working in bent forward or twisted position, was applied as a measure of physical workload. Cox proportional hazards regression analyses were performed, and the relative excess risk due to interaction (RERI) between obesity and physical workload was calculated. Obese construction workers were at increased risk of receiving disability benefits (HR 1.70, 95% CI 1.65 to 2.76), mainly through CVD (HR 2.30) and MSD (HR 1.71). Construction workers with a high physical workload were also more likely to receive a disability benefit (HR 2.28, 95% CI 2.21 to 2.34), particularly via MSD (HR 3.02). Obesity in combination with a higher physical workload increased the risk of disability benefits (RERI 0.28) more than the sum of the risks of obesity and higher physical workload, particularly for MSD (RERI 0.44). Obesity and a high physical workload are risk factors for disability benefit. Furthermore, these factors are synergistic risk factors for labour force exit via disability benefit through MSD. Comprehensive programmes that target health promotion to prevent obesity and ergonomic interventions to reduce physical workload are important to facilitate sustained employment. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Effect of physical effort on mental workload of cyclists in real traffic in relation to age and use of pedelecs.

    PubMed

    Boele-Vos, M J; Commandeur, J J F; Twisk, D A M

    2017-08-01

    To improve cycling safety, insight is required into the factors that contribute to road safety of older cyclists. From the wide range of possible factors, this paper addresses the role of physical effort on mental workload of cyclists with the aim to investigate whether physical effort affects mental workload of cyclists in real traffic in a field experiment. Two instrumented bicycles, a conventional bicycle and a pedelec, were used. Mental workload of cyclists in two age groups - 30-45 years and 65 years and over - was measured by means of a secondary cognitive task requiring the detection and reaction to visual stimuli on a cycle route that varied in physical effort and task complexity. We expected physical effort to impair performance on the secondary task in complex traffic sections and not in simple sections, and that this impairment would be greater for older cyclists because of age related reduced muscle strength than for younger cyclists. We expected this impairment to be smaller if a pedelec was used. If such would be the case, this would indicate pedelecs to be beneficial for this older age group, because of a lower mental workload. Our study confirmed that increased physical effort in complex traffic sections deteriorated the detection of relevant stimuli in both age groups. Overall, older cyclists had longer reaction times and lower hit rates than younger cyclists. Mental workloads of cyclists are basically the same when cycling on a conventional bicycle or on a pedelec. In theory, pedelecs may be beneficial to reduce physical effort in cycling in order to maintain enough mental capacity to handle complex traffic situations. However, this study did not demonstrate these benefits. As pedelecs are often used for longer trips, by elderly with low muscle strength, future studies should also explore the effect of higher physical effort over longer periods of time, and also specifically in elderly with low muscle strength. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Cardiopulmonary data-acquisition system

    NASA Technical Reports Server (NTRS)

    Crosier, W. G.; Reed, R. A.

    1981-01-01

    Computerized system controls and monitors bicycle and treadmill cardiovascular stress tests. It acquires and reduces stress data and displays heart rate, blood pressure, workload, respiratory rate, exhaled-gas composition, and other variables. Data are printed on hard-copy terminal every 30 seconds for quick operator response to patient. Ergometer workload is controlled in real time according to experimental protocol. Collected data are stored directly on tape in analog form and on floppy disks in digital form for later processing.

  19. Tactile display landing safety and precision improvements for the Space Shuttle

    NASA Astrophysics Data System (ADS)

    Olson, John M.

    A tactile display belt using 24 electro-mechanical tactile transducers (tactors) was used to determine if a modified tactile display system, known as the Tactile Situation Awareness System (TSAS) improved the safety and precision of a complex spacecraft (i.e. the Space Shuttle Orbiter) in guided precision approaches and landings. The goal was to determine if tactile cues enhance safety and mission performance through reduced workload, increased situational awareness (SA), and an improved operational capability by increasing secondary cognitive workload capacity and human-machine interface efficiency and effectiveness. Using both qualitative and quantitative measures such as NASA's Justiz Numerical Measure and Synwork1 scores, an Overall Workload (OW) measure, the Cooper-Harper rating scale, and the China Lake Situational Awareness scale, plus Pre- and Post-Flight Surveys, the data show that tactile displays decrease OW, improve SA, counteract fatigue, and provide superior warning and monitoring capacity for dynamic, off-nominal, high concurrent workload scenarios involving complex, cognitive, and multi-sensory critical scenarios. Use of TSAS for maintaining guided precision approaches and landings was generally intuitive, reduced training times, and improved task learning effects. Ultimately, the use of a homogeneous, experienced, and statistically robust population of test pilots demonstrated that the use of tactile displays for Space Shuttle approaches and landings with degraded vehicle systems, weather, and environmental conditions produced substantial improvements in safety, consistency, reliability, and ease of operations under demanding conditions. Recommendations for further analysis and study are provided in order to leverage the results from this research and further explore the potential to reduce the risk of spaceflight and aerospace operations in general.

  20. Domestic chores workload and depressive symptoms among children affected by HIV/AIDS in China.

    PubMed

    Yu, Yun; Li, Xiaoming; Zhang, Liying; Zhao, Junfeng; Zhao, Guoxiang; Zheng, Yu; Stanton, Bonita

    2013-01-01

    Limited data are available regarding the effects of domestic chores workload on psychological problems among children affected by HIV/AIDS in China. The current study aims to examine association between children's depressive symptoms and the domestic chores workload (i.e., the frequency and the amount of time doing domestic chores). Data were derived from the baseline survey of a longitudinal study which investigated the impact of parental HIV/AIDS on psychological problems of children. A total of 1449 children in family-based care were included in the analysis: 579 orphaned children who lost one or both parents due to AIDS, 466 vulnerable children living with one or both parents being infected with HIV, and 404 comparison children who did not have HIV/AIDS-infected family members in their families. Results showed differences on domestic chores workload between children affected by HIV/AIDS (orphans and vulnerable children) and the comparison children. Children affected by HIV/AIDS worked more frequently and worked longer time on domestic chores than the comparison children. Multivariate linear regression analysis showed that domestic chores workload was positively associated with depressive symptoms. The data suggest that children affected by HIV/AIDS may face increasing burden of domestic chores and it is necessary to reduce the excessive workload of domestic chores among children affected by HIV/AIDS through increasing community-based social support for children in the families affected by HIV/AIDS.

  1. Analysis of Mental Workload in Online Shopping: Are Augmented and Virtual Reality Consistent?

    PubMed

    Zhao, Xiaojun; Shi, Changxiu; You, Xuqun; Zong, Chenming

    2017-01-01

    A market research company (Nielsen) reported that consumers in the Asia-Pacific region have become the most active group in online shopping. Focusing on augmented reality (AR), which is one of three major techniques used to change the method of shopping in the future, this study used a mixed design to discuss the influences of the method of online shopping, user gender, cognitive style, product value, and sensory channel on mental workload in virtual reality (VR) and AR situations. The results showed that males' mental workloads were significantly higher than females'. For males, high-value products' mental workload was significantly higher than that of low-value products. In the VR situation, the visual mental workload of field-independent and field-dependent consumers showed a significant difference, but the difference was reduced under audio-visual conditions. In the AR situation, the visual mental workload of field-independent and field-dependent consumers showed a significant difference, but the difference increased under audio-visual conditions. This study provided a psychological study of online shopping with AR and VR technology with applications in the future. Based on the perspective of embodied cognition, AR online shopping may be potential focus of research and market application. For the future design of online shopping platforms and the updating of user experience, this study provides a reference.

  2. Analysis of Mental Workload in Online Shopping: Are Augmented and Virtual Reality Consistent?

    PubMed Central

    Zhao, Xiaojun; Shi, Changxiu; You, Xuqun; Zong, Chenming

    2017-01-01

    A market research company (Nielsen) reported that consumers in the Asia-Pacific region have become the most active group in online shopping. Focusing on augmented reality (AR), which is one of three major techniques used to change the method of shopping in the future, this study used a mixed design to discuss the influences of the method of online shopping, user gender, cognitive style, product value, and sensory channel on mental workload in virtual reality (VR) and AR situations. The results showed that males’ mental workloads were significantly higher than females’. For males, high-value products’ mental workload was significantly higher than that of low-value products. In the VR situation, the visual mental workload of field-independent and field-dependent consumers showed a significant difference, but the difference was reduced under audio–visual conditions. In the AR situation, the visual mental workload of field-independent and field-dependent consumers showed a significant difference, but the difference increased under audio–visual conditions. This study provided a psychological study of online shopping with AR and VR technology with applications in the future. Based on the perspective of embodied cognition, AR online shopping may be potential focus of research and market application. For the future design of online shopping platforms and the updating of user experience, this study provides a reference. PMID:28184207

  3. Integrated navigation, flight guidance, and synthetic vision system for low-level flight

    NASA Astrophysics Data System (ADS)

    Mehler, Felix E.

    2000-06-01

    Future military transport aircraft will require a new approach with respect to the avionics suite to fulfill an ever-changing variety of missions. The most demanding phases of these mission are typically the low level flight segments, including tactical terrain following/avoidance,payload drop and/or board autonomous landing at forward operating strips without ground-based infrastructure. As a consequence, individual components and systems must become more integrated to offer a higher degree of reliability, integrity, flexibility and autonomy over existing systems while reducing crew workload. The integration of digital terrain data not only introduces synthetic vision into the cockpit, but also enhances navigation and guidance capabilities. At DaimlerChrysler Aerospace AG Military Aircraft Division (Dasa-M), an integrated navigation, flight guidance and synthetic vision system, based on digital terrain data, has been developed to fulfill the requirements of the Future Transport Aircraft (FTA). The fusion of three independent navigation sensors provides a more reliable and precise solution to both the 4D-flight guidance and the display components, which is comprised of a Head-up and a Head-down Display with synthetic vision. This paper will present the system, its integration into the DLR's VFW 614 Advanced Technology Testing Aircraft System (ATTAS) and the results of the flight-test campaign.

  4. Air Traffic Management Technology Demonstration-1 Concept of Operations (ATD-1 ConOps), Version 2.0

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Johnson, William C.; Swenson, Harry N.; Robinson, John E.; Prevot, Tom; Callantine, Todd J.; Scardina, John; Greene, Michael

    2013-01-01

    This document is an update to the operations and procedures envisioned for NASA s Air Traffic Management (ATM) Technology Demonstration #1 (ATD-1). The ATD-1 Concept of Operations (ConOps) integrates three NASA technologies to achieve high throughput, fuel-efficient arrival operations into busy terminal airspace. They are Traffic Management Advisor with Terminal Metering (TMA-TM) for precise time-based schedules to the runway and points within the terminal area, Controller-Managed Spacing (CMS) decision support tools for terminal controllers to better manage aircraft delay using speed control, and Flight deck Interval Management (FIM) avionics and flight crew procedures to conduct airborne spacing operations. The ATD-1 concept provides de-conflicted and efficient operations of multiple arrival streams of aircraft, passing through multiple merge points, from top-of-descent (TOD) to the Final Approach Fix. These arrival streams are Optimized Profile Descents (OPDs) from en route altitude to the runway, using primarily speed control to maintain separation and schedule. The ATD-1 project is currently addressing the challenges of integrating the three technologies, and their implantation into an operational environment. The ATD-1 goals include increasing the throughput of high-density airports, reducing controller workload, increasing efficiency of arrival operations and the frequency of trajectory-based operations, and promoting aircraft ADS-B equipage.

  5. NASA's ATM Technology Demonstration-1: Integrated Concept of Arrival Operations

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Swenson, Harry N.; Prevot, Thomas; Callantine, Todd J.

    2012-01-01

    This paper describes operations and procedures envisioned for NASA s Air Traffic Management (ATM) Technology Demonstration #1 (ATD-1). The ATD-1 Concept of Operations (ConOps) demonstration will integrate three NASA technologies to achieve high throughput, fuel-efficient arrival operations into busy terminal airspace. They are Traffic Management Advisor with Terminal Metering (TMA-TM) for precise time-based schedules to the runway and points within the terminal area, Controller-Managed Spacing (CMS) decision support tools for terminal controllers to better manage aircraft delay using speed control, and Flight deck Interval Management (FIM) avionics and flight crew procedures to conduct airborne spacing operations. The ATD-1 concept provides de-conflicted and efficient operations of multiple arrival streams of aircraft, passing through multiple merge points, from top-of-descent (TOD) to touchdown. It also enables aircraft to conduct Optimized Profile Descents (OPDs) from en route altitude to the runway, using primarily speed control to maintain separation and schedule. The ATD-1 project is currently addressing the challenges of integrating the three technologies, and implantation into an operational environment. Goals of the ATD-1 demonstration include increasing the throughput of high-density airports, reducing controller workload, increasing efficiency of arrival operations and the frequency of trajectory-based operations, and promoting aircraft ADS-B equipage.

  6. 46 CFR 252.20 - Subsidized and nonsubsidized voyages.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., idleness, delay or lay-up—(i) Report by operator. The operator shall report promptly to the Region Director any reduced crew period and any period of idleness, lay-up or delay occurring during or between... the event the nonsubsidized voyage follows a subsidized period of reduced crew, idleness or lay-up...

  7. Human habitation field study of the Habitat Demonstration Unit (HDU)

    NASA Astrophysics Data System (ADS)

    Litaker, Harry L.; Archer, Ronald D.; Szabo, Richard; Twyford, Evan S.; Conlee, Carl S.; Howard, Robert L.

    2013-10-01

    Landing and supporting a permanent outpost on a planetary surface represents humankind's capability to expand its own horizons and challenge current technology. With this in mind, habitability of these structures becomes more essential given the longer durations of the missions. The purpose of this evaluation was to obtain preliminary human-in-the-loop performance data on the Habitat Demonstration Unit (HDU) in a Pressurized Excursion Module (PEM) configuration during a 14-day simulated lunar exploration field trial and to apply this knowledge to further enhance the habitat's capabilities for forward designs. Human factors engineers at the NASA/Johnson Space Center's Habitability and Human Factors Branch recorded approximately 96 h of crew task performance with four work stations. Human factors measures used during this study included the NASA Task Load Index (TLX) and customized post questionnaires. Overall the volume for the PEM was considered acceptable by the crew; however; the habitat's individual work station volume was constrained when setting up the vehicle for operation, medical operations, and suit maintenance while general maintenance, logistical resupply, and geo science was considered acceptable. Crew workload for each station indicated resupply as being the lowest rated, with medical operations, general maintenance, and geo science tasks as being light, while suit maintenance was considered moderate and general vehicle setup being rated the highest. Stowage was an issue around the habitat with the Space Exploration Vehicle (SEV) resupply stowage located in the center of the habitat as interfering with some work station volumes and activities. Ergonomics of the geo science station was considered a major issue, especially with the overhead touch screens.

  8. Airborne Precision Spacing: A Trajectory-based Approach to Improve Terminal Area Operations

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan

    2006-01-01

    Airborne Precision Spacing has been developed by the National Aeronautics and Space Administration (NASA) over the past seven years as an attempt to benefit from the capabilities of the flight deck to precisely space their aircraft relative to another aircraft. This development has leveraged decades of work on improving terminal area operations, especially the arrival phase. With APS operations, the air traffic controller instructs the participating aircraft to achieve an assigned inter-arrival spacing interval at the runway threshold, relative to another aircraft. The flight crew then uses airborne automation to manage the aircraft s speed to achieve the goal. The spacing tool is designed to keep the speed within acceptable operational limits, promote system-wide stability, and meet the assigned goal. This reallocation of tasks with the controller issuing strategic goals and the flight crew managing the tactical achievement of those goals has been shown to be feasible through simulation and flight test. A precision of plus or minus 2-3 seconds is generally achievable. Simulations of long strings of arriving traffic show no signs of instabilities or compression waves. Subject pilots have rated the workload to be similar to current-day operations and eye-tracking data substantiate this result. This paper will present a high-level review of research results over the past seven years from a variety of tests and experiments. The results will focus on the precision and accuracy achievable, flow stability and some major sources of uncertainty. The paper also includes a summary of the flight crew s procedures and interface and a brief concept overview.

  9. Burnout and Workload Among Health Care Workers: The Moderating Role of Job Control

    PubMed Central

    Portoghese, Igor; Galletta, Maura; Coppola, Rosa Cristina; Finco, Gabriele; Campagna, Marcello

    2014-01-01

    Background As health care workers face a wide range of psychosocial stressors, they are at a high risk of developing burnout syndrome, which in turn may affect hospital outcomes such as the quality and safety of provided care. The purpose of the present study was to investigate the moderating effect of job control on the relationship between workload and burnout. Methods A total of 352 hospital workers from five Italian public hospitals completed a self-administered questionnaire that was used to measure exhaustion, cynicism, job control, and workload. Data were collected in 2013. Results In contrast to previous studies, the results of this study supported the moderation effect of job control on the relationship between workload and exhaustion. Furthermore, the results found support for the sequential link from exhaustion to cynicism. Conclusion This study showed the importance for hospital managers to carry out management practices that promote job control and provide employees with job resources, in order to reduce the burnout risk. PMID:25379330

  10. Minimally disruptive medicine: the evidence and conceptual progress supporting a new era of healthcare.

    PubMed

    Abu Dabrh, A M; Gallacher, K; Boehmer, K R; Hargraves, I G; Mair, F S

    2015-01-01

    Patients with chronic conditions or multimorbidity, and often their caregivers, have to adjust their lives and mobilise their capacity (ability) to respond to the workload (demands) imposed by treatments and the care of their conditions. There is a continuous and complex interaction between workload and capacity. When capacity proves insufficient to address the treatment workload, creating a burden, patients may place a lower priority on other aspects of their lives, or reduce engagement with healthcare. Guidelines usually focus on disease-centred outcomes without consideration of limited capacity or demanding workload (burden) from treatment regimens. It seems reasonable to consider that healthcare needs reshaping so that care that pursues goals important to patients as well as those suggested by evidence-based medicine. This can be achieved by using shared decision approaches guided by the expertise of clinicians to deliver optimal care while minimising the burden of treatment on patients, their caregivers, and the healthcare system. What we need is minimally disruptive medicine.

  11. [Mobile single-pass batch hemodialysis system in intensive care medicine. Reduction of costs and workload in renal replacement therapy].

    PubMed

    Hopf, H-B; Hochscherf, M; Jehmlich, M; Leischik, M; Ritter, J

    2007-07-01

    This paper describes the introduction of a single-pass batch hemodialysis system for renal replacement therapy in a 14 bed intensive care unit. The goals were to reduce the workload of intensive care unit physicians using an alternative and simpler method compared to continuous veno-venous hemodiafiltration (CVVHDF) and to reduce the costs of hemofiltrate solutions (80,650 EUR per year in our clinic in 2005). We describe and evaluate the process of implementation of the system as well as the achieved and prospective savings. We conclude that a close cooperation of all participants (physicians, nurses, economists, technicians) of a hospital can achieve substantial benefits for patients and employees as well as reduce the economic burden of a hospital.

  12. Classification of response-types for single-pilot NOE helicopter combat tasks

    NASA Technical Reports Server (NTRS)

    Mitchell, David G.; Hoh, Roger H.; Atencio, Adolph, Jr.

    1987-01-01

    Two piloted simulations have recently been conducted to evaluate both workload and handling qualities requirements for operation of a helicopter by a single pilot in a nap-of-the-earth combat environment. An advanced cockpit, including a moving-map display and an interactive touchpad screen, provided aircraft mission, status, and position information to the pilot. The results of the simulations are reviewed, and the impact of these results on the development of a revised helicopter handling qualities specification is discussed. Rate command is preferred over attitude command in pitch and roll, and attitude hold over groundspeed hold, for low-speed precision pointing tasks. Position hold is necessary for Level 1 handling qualities in hover when the pilot is required to perform secondary tasks. Addition of a second crew member improves pilot ratings.

  13. An Exploratory Study of Runway Arrival Procedures: Time Based Arrival and Self-Spacing

    NASA Technical Reports Server (NTRS)

    Houston, Vincent E.; Barmore, Bryan

    2009-01-01

    The ability of a flight crew to deliver their aircraft to its arrival runway on time is important to the overall efficiency of the National Airspace System (NAS). Over the past several years, the NAS has been stressed almost to its limits resulting in problems such as airport congestion, flight delay, and flight cancellation to reach levels that have never been seen before in the NAS. It is predicted that this situation will worsen by the year 2025, due to an anticipated increase in air traffic operations to one-and-a-half to three times its current level. Improved arrival efficiency, in terms of both capacity and environmental impact, is an important part of improving NAS operations. One way to improve the arrival performance of an aircraft is to enable the flight crew to precisely deliver their aircraft to a specified point at either a specified time or specified interval relative to another aircraft. This gives the flight crew more control to make the necessary adjustments to their aircraft s performance with less tactical control from the controller; it may also decrease the controller s workload. Two approaches to precise time navigation have been proposed: Time-Based Arrivals (e.g., required times of arrival) and Self-Spacing. Time-Based Arrivals make use of an aircraft s Flight Management System (FMS) to deliver the aircraft to the runway threshold at a given time. Self-Spacing enables the flight crew to achieve an ATC assigned spacing goals at the runway threshold relative to another aircraft. The Joint Planning and Development Office (JPDO), a multi-agency initiative established to plan and coordinate the development of the Next Generation Air Transportation System (NextGen), has asked for data for both of these concepts to facilitate future research and development. This paper provides a first look at the delivery performance of these two concepts under various initial and environmental conditions in an air traffic simulation environment.

  14. Adaptive Planning: Understanding Organizational Workload to Capability/ Capacity through Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Hase, Chris

    2010-01-01

    In August 2003, the Secretary of Defense (SECDEF) established the Adaptive Planning (AP) initiative [1] with an objective of reducing the time necessary to develop and revise Combatant Commander (COCOM) contingency plans and increase SECDEF plan visibility. In addition to reducing the traditional plan development timeline from twenty-four months to less than twelve months (with a goal of six months)[2], AP increased plan visibility to Department of Defense (DoD) leadership through In-Progress Reviews (IPRs). The IPR process, as well as the increased number of campaign and contingency plans COCOMs had to develop, increased the workload while the number of planners remained fixed. Several efforts from collaborative planning tools to streamlined processes were initiated to compensate for the increased workload enabling COCOMS to better meet shorter planning timelines. This paper examines the Joint Strategic Capabilities Plan (JSCP) directed contingency planning and staffing requirements assigned to a combatant commander staff through the lens of modeling and simulation. The dynamics of developing a COCOM plan are captured with an ExtendSim [3] simulation. The resulting analysis provides a quantifiable means by which to measure a combatant commander staffs workload associated with development and staffing JSCP [4] directed contingency plans with COCOM capability/capacity. Modeling and simulation bring significant opportunities in measuring the sensitivity of key variables in the assessment of workload to capability/capacity analysis. Gaining an understanding of the relationship between plan complexity, number of plans, planning processes, and number of planners with time required for plan development provides valuable information to DoD leadership. Through modeling and simulation AP leadership can gain greater insight in making key decisions on knowing where to best allocate scarce resources in an effort to meet DoD planning objectives.

  15. The Impact of Apollo-Era Microbiology on Human Space Flight

    NASA Technical Reports Server (NTRS)

    Elliott, T. F; Castro, V. A.; Bruce, R. J.; Pierson, D. L.

    2014-01-01

    The microbiota of crewmembers and the spacecraft environment contributes significant risk to crew health during space flight missions. NASA reduces microbial risk with various mitigation methods that originated during the Apollo Program and continued to evolve through subsequent programs: Skylab, Shuttle, and International Space Station (ISS). A quarantine of the crew and lunar surface samples, within the Lunar Receiving Laboratory following return from the Moon, was used to prevent contamination with unknown extraterrestrial organisms. The quarantine durations for the crew and lunar samples were 21 days and 50 days, respectively. A series of infections among Apollo crewmembers resulted in a quarantine before launch to limit exposure to infectious organisms. This Health Stabilization Program isolated the crew for 21 days before flight and was effective in reducing crew illness. After the program developed water recovery hardware for Apollo spacecraft, the 1967 National Academy of Science Space Science Board recommended the monitoring of potable water. NASA implemented acceptability limits of 10 colony forming units (CFU) per mL and the absence of viable E. coli, anaerobes, yeasts, and molds in three separate 150 mL aliquots. Microbiological investigations of the crew and spacecraft environment were conducted during the Apollo program, including the Apollo-Soyuz Test Project and Skylab. Subsequent space programs implemented microbial screening of the crew for pathogens and acceptability limits on spacecraft surfaces and air. Microbiology risk mitigation methods have evolved since the Apollo program. NASA cancelled the quarantine of the crew after return from the lunar surface, reduced the duration of the Health Stabilization Program; and implemented acceptability limits for spacecraft surfaces and air. While microbial risks were not a main focus of the early Mercury and Gemini programs, the extended duration of Apollo flights resulted in the increased scrutiny of impact of the space flight environment on crew health. The lessons learned during that era of space flight continue to impact microbiology risk mitigation in space programs today.

  16. Sensitivity of subjective questionnaires to cognitive loading while driving with navigation aids: a pilot study.

    PubMed

    Smyth, Christopher C

    2007-05-01

    Developers of future forces are implementing automated aiding for driving tasks. In designing such systems, the effect of cognitive task interference on driving performance is important. The crew of such vehicles may have to occasionally perform communication and planning tasks while driving. Subjective questionnaires may aid researchers to parse out the sources of task interference in crew station designs. In this preliminary study, sixteen participants drove a vehicle simulator with automated road-turn cues (i.e., visual, audio, combined, or neither) along a course marked on a map display while replying to spoken test questions (i.e., repeating sentences, math and logical puzzles, route planning, or none) and reporting other vehicles in the scenario. Following each trial, a battery of subjective questionnaires was administered to determine the perceived effects of the loading on their cognitive functionality. Considering the performance, the participants drove significantly faster with the road-turn cues than with just the map. They recalled fewer vehicle sightings with the cognitive tests than without them. Questionnaire results showed that their reasoning was more straightforward, the quantity of information for understanding higher, and the trust greater with the combined cues than the map-only. They reported higher perceived workload with the cognitive tests. The capacity for maintaining situational awareness was reduced with the cognitive tests because of the increased division of attention and the increase in the instability, variability, and complexity of the demands. The association and intuitiveness of cognitive processing were lowest and the subjective stress highest for the route planning test. Finally, the confusability in reasoning was greater for the auditory cue with the route planning than the auditory cue without the cognitive tests. The subjective questionnaires are sensitive to the effects of the cognitive loading and, therefore, may be useful for guiding the development of automated aid designs.

  17. Enhanced Flight Vision Systems Operational Feasibility Study Using Radar and Infrared Sensors

    NASA Technical Reports Server (NTRS)

    Etherington, Timothy J.; Kramer, Lynda J.; Severance, Kurt; Bailey, Randall E.; Williams, Steven P.; Harrison, Stephanie J.

    2015-01-01

    Approach and landing operations during periods of reduced visibility have plagued aircraft pilots since the beginning of aviation. Although techniques are currently available to mitigate some of the visibility conditions, these operations are still ultimately limited by the pilot's ability to "see" required visual landing references (e.g., markings and/or lights of threshold and touchdown zone) and require significant and costly ground infrastructure. Certified Enhanced Flight Vision Systems (EFVS) have shown promise to lift the obscuration veil. They allow the pilot to operate with enhanced vision, in lieu of natural vision, in the visual segment to enable equivalent visual operations (EVO). An aviation standards document was developed with industry and government consensus for using an EFVS for approach, landing, and rollout to a safe taxi speed in visibilities as low as 300 feet runway visual range (RVR). These new standards establish performance, integrity, availability, and safety requirements to operate in this regime without reliance on a pilot's or flight crew's natural vision by use of a fail-operational EFVS. A pilot-in-the-loop high-fidelity motion simulation study was conducted at NASA Langley Research Center to evaluate the operational feasibility, pilot workload, and pilot acceptability of conducting straight-in instrument approaches with published vertical guidance to landing, touchdown, and rollout to a safe taxi speed in visibility as low as 300 feet RVR by use of vision system technologies on a head-up display (HUD) without need or reliance on natural vision. Twelve crews flew various landing and departure scenarios in 1800, 1000, 700, and 300 RVR. This paper details the non-normal results of the study including objective and subjective measures of performance and acceptability. The study validated the operational feasibility of approach and departure operations and success was independent of visibility conditions. Failures were handled within the lateral confines of the runway for all conditions tested. The fail-operational concept with pilot in the loop needs further study.

  18. Reasons for adopting technological innovations reducing physical workload in bricklaying.

    PubMed

    de Jong, A M; Vink, P; de Kroon, J C A

    2003-09-15

    In this paper the adoption of technological innovations to improve the work of bricklayers and bricklayers' assistants is evaluated. Two studies were performed among 323 subjects to determine the adoption of the working methods, the perceived workload, experiences with the working methods, and the reasons for adopting the working methods. Furthermore, a comparison of the results of the studies was made with those of two similar studies in the literature. The results show that more than half of the sector adopted the innovations. The perceived workload was reduced. The employees and employers are satisfied with the working methods and important reasons for adoption were cost/benefit advantages, improvement of work and health, and increase in productivity. Problems preventing the adoption were the use of the working methods at specific sites, for instance in renovation work. The adoption of the new working methods could perhaps have been higher or faster if more attention had been paid to the active participation of bricklayers and bricklayers' assistants during the development of the new working methods and to the use of modern media techniques, such as the Internet and CD/DVD.

  19. Mitigating clogging and arrest in confined self-propelled systems

    NASA Astrophysics Data System (ADS)

    Savoie, William; Aguilar, Jeffrey; Monaenkova, Daria; Linevich, Vadim; Goldman, Daniel

    Ensembles of self-propelling elements, like colloidal surfers, bacterial biofilms, and robot swarms can spontaneously form density heterogeneities. To understand how to prevent potentially catastrophic clogs in task-oriented active matter systems (like soil excavating robots), we present a robophysical study of excavation of granular media in a confined environment. We probe the efficacy of two social strategies observed in our studies of fire ants (S. invicta). The first behavior (denoted as unequal workload) prescribes to each excavator a different probability to enter the digging area. The second behavior (denoted as reversal\\x9D), is characterized by a probability to forfeit excavation when progress is sufficiently obstructed. For equal workload distribution and no reversal behavior, clogs at the digging site prevent excavation for sufficient numbers of robots. Measurements of aggregation relaxation times reveal how the strategies mitigate clogs. The unequal workload behavior reduces the tunnel density, decreasing the probability of clog formation. Reversal behavior, while allowing clogs to form, reduces aggregation relaxation time. We posit that application of social behaviors can be useful for swarm robot systems where global control and organization may not be possible.

  20. Quantifying the impact of cross coverage on physician's workload and performance in radiation oncology.

    PubMed

    Mosaly, Prithima R; Mazur, Lukasz M; Jones, Ellen L; Hoyle, Lesley; Zagar, Timothy; Chera, Bhishamjit S; Marks, Lawrence B

    2013-01-01

    To quantitatively assess the difference in workload and performance of radiation oncology physicians during radiation therapy treatment planning tasks under the conditions of "cross coverage" versus planning a patient with whom they were familiar. Eight physicians (3 experienced faculty physicians and 5 physician residents) performed 2 cases. The first case represented a "cross-coverage" scenario where the physicians had no prior information about the case to be planned. The second exposure represented a "regular-coverage" scenario where the physicians were familiar with the patient case to be planned. Each case involved 3 tasks to be completed systematically. Workload was assessed both subjectively (perceived) using National Aeronautics and Space Administration-Task Load Index (NASA-TLX), and objectively (physiological) throughout the task using eye data (via monitoring pupil size and blink rate). Performance of each task and the case was measured using completion time. Subjective willingness to approve or disapprove the generated plan was obtained after completion of the case only. Forty-eight perceived and 48 physiological workload assessments were obtained. Overall, results revealed a significant increase in perceived workload (high NASA-TLX score) and decrease in performance (longer completion time and reduced approval rate) during cross coverage. There were nonsignificant increases in pupil diameter and decreases in the blink rate during cross-coverage versus regular-coverage scenario. In both cross-coverage and regular-coverage scenarios the level of experience did not affect workload and performance. The cross-coverage scenario significantly increases perceived workload and degrades performance versus regular coverage. Hence, to improve patient safety, efforts must be made to develop policies, standard operating procedures, and usability improvements to electronic medical record and treatment planning systems for "easier" information processing to deal with cross coverage, while recognizing strengths and limitations of human performance. Published by Elsevier Inc.

  1. Laparoendoscopic single site (LESS) in vivo suturing using a magnetic anchoring and guidance system (MAGS) camera in a porcine model: impact on ergonomics and workload.

    PubMed

    Yin, Gang; Han, Woong Kyu; Faddegon, Stephen; Tan, Yung Khan; Liu, Zhuo-Wei; Olweny, Ephrem O; Scott, Daniel J; Cadeddu, Jeffrey A

    2013-01-01

    To compare the ergonomics and workload of the surgeon during single-site suturing while using the magnetic anchoring and guidance system (MAGS) camera vs a conventional laparoscope. Seven urologic surgeons were enrolled and divided into an expert group (n=2) and a novice group (n=5) according to their laparoendoscopic single-site (LESS) experience. Each surgeon performed 2 conventional LESS and 2 MAGS camera-assisted LESS vesicostomy closures in a porcine model. A Likert scale (scoring 1-5) questionnaire assessing workload, ergonomics, technical difficulty, visualization, and needle handling, as well as a validated National Aeronautics and Space Administration Task Load Index (NASA-TLX) questionnaire were used to evaluate the tasks and workloads. MAGS LESS suturing was universally favored by expert and novice surgeons compared with conventional LESS in workload (3.4 vs 4.2), ergonomics (3.4 vs 4.4), technical challenge (3.3 vs 4.3), visualization (2.4 vs 3.3), and needle handling (3.1 vs 3.9 respectively; P<.05 for all categories). Surgeon NASA-TLX assessments found MAGS LESS suturing significantly decreased the workload in physical demand (P=.004), temporal demand (P=.017), and effort (P=.006). External instrument clashing was significantly reduced in MAGS LESS suturing (P<.001). The total operative time of MAGS LESS suturing was comparable to that of conventional LESS (P=.89). MAGS camera technology significantly decreased surgeon workload and improved ergonomics. Nevertheless, LESS suturing and knot tying remains a challenging task that requires training, regardless of which camera is used. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. A multidisciplinary approach of workload assessment in real-job situations: investigation in the field of aerospace activities.

    PubMed

    Mélan, Claudine; Cascino, Nadine

    2014-01-01

    The present contribution presents two field studies combining tools and methods from cognitive psychology and from occupational psychology in order to perform a thorough investigation of workload in employees. Cognitive load theory proposes to distinguish different load categories of working memory, in a context of instruction. Intrinsic load is inherent to the task, extraneous load refers to components of a learning environment that may be modified to reduce total load, and germane load enables schemas construction and thus efficient learning. We showed previously that this theoretical framework may be successfully extended to working memory tasks in non-instructional designs. Other theoretical models, issued from the field of occupational psychology, account for an individual's perception of work demands or requirements in the context of different psychosocial features of the (work) environment. Combining these approaches is difficult as workload assessment by job-perception questionnaires explore an individual's overall job-perception over a large time-period, whereas cognitive load investigations in working memory tasks are typically performed within short time-periods. We proposed an original methodology enabling investigation of workload and load factors in a comparable time-frame. We report two field studies investigating workload on different shift-phases and between work-shifts, with two custom-made tools. The first one enabled workload assessment by manipulating intrinsic load (task difficulty) and extraneous load (time pressure) in a working-memory task. The second tool was a questionnaire based on the theoretical concepts of work-demands, control, and psychosocial support. Two additional dimensions suspected to contribute to job-perception, i.e., work-family conflicts and availability of human and technical resources were also explored. Results of workload assessments were discussed in light of operators' alertness and job-performance.

  3. A multidisciplinary approach of workload assessment in real-job situations: investigation in the field of aerospace activities

    PubMed Central

    Mélan, Claudine; Cascino, Nadine

    2014-01-01

    The present contribution presents two field studies combining tools and methods from cognitive psychology and from occupational psychology in order to perform a thorough investigation of workload in employees. Cognitive load theory proposes to distinguish different load categories of working memory, in a context of instruction. Intrinsic load is inherent to the task, extraneous load refers to components of a learning environment that may be modified to reduce total load, and germane load enables schemas construction and thus efficient learning. We showed previously that this theoretical framework may be successfully extended to working memory tasks in non-instructional designs. Other theoretical models, issued from the field of occupational psychology, account for an individual’s perception of work demands or requirements in the context of different psychosocial features of the (work) environment. Combining these approaches is difficult as workload assessment by job-perception questionnaires explore an individual’s overall job-perception over a large time-period, whereas cognitive load investigations in working memory tasks are typically performed within short time-periods. We proposed an original methodology enabling investigation of workload and load factors in a comparable time-frame. We report two field studies investigating workload on different shift-phases and between work-shifts, with two custom-made tools. The first one enabled workload assessment by manipulating intrinsic load (task difficulty) and extraneous load (time pressure) in a working-memory task. The second tool was a questionnaire based on the theoretical concepts of work-demands, control, and psychosocial support. Two additional dimensions suspected to contribute to job-perception, i.e., work–family conflicts and availability of human and technical resources were also explored. Results of workload assessments were discussed in light of operators’ alertness and job-performance. PMID:25232346

  4. Influence of mental workload on muscle endurance, fatigue, and recovery during intermittent static work.

    PubMed

    Mehta, Ranjana K; Agnew, Michael J

    2012-08-01

    Most occupational tasks involve some level of mental/cognitive processing in addition to physical work; however, the etiology of work-related musculoskeletal disorders (WMSDs) due to these demands remains unclear. The aim of this study was to quantify the interactive effects of physical and mental workload on muscle endurance, fatigue, and recovery during intermittent work. Twelve participants, balanced by gender, performed intermittent static shoulder abductions to exhaustion at 15, 35, and 55% of individual maximal voluntary contraction (MVC), in the absence (control) and presence (concurrent) of a mental arithmetic task. Changes in muscular capacity were determined using endurance time, strength decline, electromyographic (EMG) fatigue indicators, muscle oxygenation, and heart rate measures. Muscular recovery was quantified through changes in strength and physiological responses. Mental workload was associated with shorter endurance times, specifically at 35% MVC, and greater strength decline. EMG and oxygenation measures showed similar changes during fatigue manifestation during concurrent conditions compared to the control, despite shorter endurance times. Moreover, decreased heart rate variability during concurrent demand conditions indicated increased mental stress. Although strength recovery was not influenced by mental workload, a slower heart rate recovery was observed after concurrent demand conditions. The findings from this study provide fundamental evidence that physical capacity (fatigability and recovery) is adversely affected by mental workload. Thus, it is critical to determine or evaluate occupational demands based on modified muscular capacity (due to mental workload) to reduce risk of WMSD development.

  5. Domestic chores workload and depressive symptoms among children affected by HIV/AIDS in China

    PubMed Central

    Yu, Yun; Li, Xiaoming; Zhang, Liying; Zhao, Junfeng; Zhao, Guoxiang; Zheng, Yu; Stanton, Bonita

    2012-01-01

    Limited data are available regarding the effects of domestic chores workload on psychological problems among children affected by HIV/AIDS in China. The current study aims to examine association between children’s depressive symptoms and the domestic chores workload (i.e., the frequency and the amount of time doing domestic chores). Data were derived from the baseline survey of a longitudinal study which investigated the impact of parental HIV/AIDS on psychological problems of children. A total of 1,449 children in family-based care were included in the analysis: 579 orphaned children who lost one or both parents due to AIDS, 466 vulnerable children living with one or both parents being infected with HIV, and 404 comparison children who did not have HIV/AIDS infected family members in their families. Results showed differences on domestic chores workload between children affected by HIV/AIDS (orphans and vulnerable children) and the comparison children. Children affected by HIV/AIDS worked more frequently and worked longer time on domestic chores than the comparison children. Multivariate linear regression analysis showed that domestic chores workload was positively associated with depressive symptoms. The data suggest that children affected by HIV/AIDS may face increasing burden of domestic chores and it is necessary to reduce the excessive workload of domestic chores among children affected by HIV/AIDS through increasing community-based social support for children in the families affected by HIV/AIDS. PMID:22970996

  6. A simple ERP method for quantitative analysis of cognitive workload in myoelectric prosthesis control and human-machine interaction.

    PubMed

    Deeny, Sean; Chicoine, Caitlin; Hargrove, Levi; Parrish, Todd; Jayaraman, Arun

    2014-01-01

    Common goals in the development of human-machine interface (HMI) technology are to reduce cognitive workload and increase function. However, objective and quantitative outcome measures assessing cognitive workload have not been standardized for HMI research. The present study examines the efficacy of a simple event-related potential (ERP) measure of cortical effort during myoelectric control of a virtual limb for use as an outcome tool. Participants trained and tested on two methods of control, direct control (DC) and pattern recognition control (PRC), while electroencephalographic (EEG) activity was recorded. Eighteen healthy participants with intact limbs were tested using DC and PRC under three conditions: passive viewing, easy, and hard. Novel auditory probes were presented at random intervals during testing, and significant task-difficulty effects were observed in the P200, P300, and a late positive potential (LPP), supporting the efficacy of ERPs as a cognitive workload measure in HMI tasks. LPP amplitude distinguished DC from PRC in the hard condition with higher amplitude in PRC, consistent with lower cognitive workload in PRC relative to DC for complex movements. Participants completed trials faster in the easy condition using DC relative to PRC, but completed trials more slowly using DC relative to PRC in the hard condition. The results provide promising support for ERPs as an outcome measure for cognitive workload in HMI research such as prosthetics, exoskeletons, and other assistive devices, and can be used to evaluate and guide new technologies for more intuitive HMI control.

  7. Anthropometric considerations for a 4-axis side-arm flight controller

    NASA Technical Reports Server (NTRS)

    Debellis, W. B.

    1986-01-01

    A data base on multiaxis side-arm flight controls was generated. The rapid advances in fly-by-light technology, automatic stability systems, and onboard computers have combined to create flexible flight control systems which could reduce the workload imposed on the operator by complex new equipment. This side-arm flight controller combines four controls into one unit and should simplify the pilot's task. However, the use of a multiaxis side-arm flight controller without complete cockpit integration may tend to increase the pilot's workload.

  8. Fatigue Management in Spaceflight Operations

    NASA Technical Reports Server (NTRS)

    Whitmire, Alexandra

    2011-01-01

    Sleep loss and fatigue remain an issue for crewmembers working on the International Space Station, and the ground crews who support them. Schedule shifts on the ISS are required for conducting mission operations. These shifts lead to tasks being performed during the biological night, and sleep scheduled during the biological day, for flight crews and the ground teams who support them. Other stressors have been recognized as hindering sleep in space; these include workload, thinking about upcoming tasks, environmental factors, and inadequate day/night cues. It is unknown if and how other factors such as microgravity, carbon dioxide levels, or increased radiation, may also play a part. Efforts are underway to standardize and provide care for crewmembers, ground controllers and other support personnel. Through collaborations between research and operations, evidenced-based clinical practice guidelines are being developed to equip flight surgeons with the tools and processes needed for treating circadian desynchrony (and subsequent sleep loss) caused by jet lag and shift work. The proper implementation of countermeasures such as schedules, lighting protocols, and cognitive behavioral education can hasten phase shifting, enhance sleep and optimize performance. This panel will focus on Fatigue Management in Spaceflight Operations. Speakers will present on research-based recommendations and technologies aimed at mitigating sleep loss, circadian desynchronization and fatigue on-orbit. Gaps in current mitigations and future recommendations will also be discussed.

  9. NASA HRP Plans for Collaboration at the IBMP Ground-Based Experimental Facility (NEK)

    NASA Technical Reports Server (NTRS)

    Cromwell, Ronita L.

    2016-01-01

    NASA and IBMP are planning research collaborations using the IBMP Ground-based Experimental Facility (NEK). The NEK offers unique capabilities to study the effects of isolation on behavioral health and performance as it relates to spaceflight. The NEK is comprised of multiple interconnected modules that range in size from 50-250m(sup3). Modules can be included or excluded in a given mission allowing for flexibility of platform design. The NEK complex includes a Mission Control Center for communications and monitoring of crew members. In an effort to begin these collaborations, a 2-week mission is planned for 2017. In this mission, scientific studies will be conducted to assess facility capabilities in preparation for longer duration missions. A second follow-on 2-week mission may be planned for early in 2018. In future years, long duration missions of 4, 8 and 12 months are being considered. Missions will include scenarios that simulate for example, transit to and from asteroids, the moon, or other interplanetary travel. Mission operations will be structured to include stressors such as, high workloads, communication delays, and sleep deprivation. Studies completed at the NEK will support International Space Station expeditions, and future exploration missions. Topics studied will include communication, crew autonomy, cultural diversity, human factors, and medical capabilities.

  10. Flight directors for STOl aircraft

    NASA Technical Reports Server (NTRS)

    Rabin, U. H.

    1983-01-01

    Flight director logic for flight path and airspeed control of a powered-lift STOL aircraft in the approach, transition, and landing configurations are developed. The methods for flight director design are investigated. The first method is based on the Optimal Control Model (OCM) of the pilot. The second method, proposed here, uses a fixed dynamic model of the pilot in a state space formulation similar to that of the OCM, and includes a pilot work-load metric. Several design examples are presented with various aircraft, sensor, and control configurations. These examples show the strong impact of throttle effectiveness on the performance and pilot work-load associated with manual control of powered-lift aircraft during approach. Improved performed and reduced pilot work-load can be achieved by using direct-lift-control to increase throttle effectiveness.

  11. Work climate and work load measurement in production room of Batik Merak Manis Laweyan

    NASA Astrophysics Data System (ADS)

    Suhardi, Bambang; Simanjutak, Sry Yohana; Laksono, Pringgo Widyo; Herjunowibowo, Dewanto

    2017-11-01

    The work environment is everything around the labours that can affect them in the exercise of duties and work that is charged. In a work environment, there are workplace climate and workload which affect the labour in force carrying out its work. The working climate is one of the physical factors that could potentially cause health problems towards labour at extreme conditions of hot and cold that exceed the threshold limit value allowed by the standards of health. The climate works closely related to the workload accepted by workers in the performance of their duties. The influence of workload is pretty dominant against the performance of human resources and may cause negative effects to the safety and health of the labours. This study aims to measure the effect of the work climate and the workload against workers productivity. Furthermore, some suggestions to increase the productivity also been recommended. The research conducted in production room of Batik Merak Manis Laweyan. The results showed that the workplace climate and the workload at eight stations in production room of Merak Manis does not agree to the threshold limit value that has been set. Therefore, it is recommended to add more opening windows to add air velocity inside the building thus the humidity and temperature might be reduced.

  12. Impact of Performance Obstacles on Intensive Care Nurses‘ Workload, Perceived Quality and Safety of Care, and Quality of Working Life

    PubMed Central

    Gurses, Ayse P; Carayon, Pascale; Wall, Melanie

    2009-01-01

    Objectives To study the impact of performance obstacles on intensive care nurses‘ workload, quality and safety of care, and quality of working life (QWL). Performance obstacles are factors that hinder nurses‘ capacity to perform their job and that are closely associated with their immediate work system. Data Sources/Study Setting Data were collected from 265 nurses in 17 intensive care units (ICUs) between February and August 2004 via a structured questionnaire, yielding a response rate of 80 percent. Study Design A cross-sectional study design was used. Data were analyzed by correlation analyses and structural equation modeling. Principal Findings Performance obstacles were found to affect perceived quality and safety of care and QWL of ICU nurses. Workload mediated the impact of performance obstacles with the exception of equipment-related issues on perceived quality and safety of care as well as QWL. Conclusions Performance obstacles in ICUs are a major determinant of nursing workload, perceived quality and safety of care, and QWL. In general, performance obstacles increase nursing workload, which in turn negatively affect perceived quality and safety of care and QWL. Redesigning the ICU work system to reduce performance obstacles may improve nurses‘ work. PMID:19207589

  13. Space Shuttle crew compartment debris-contamination

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Villarreal, Leopoldo J.

    1992-01-01

    Remedial actions undertaken to reduce debris during manned flights and ground turnaround operations at Kennedy Space Center and Palmdale are addressed. They include redesign of selected ground support equipment and Orbiter hardware to reduce particularization/debris generation; development of new detachable filters for air-cooled avionics boxes; application of tape-on screens to filter debris; and implementation of new Orbiter maintenance and turnaround procedures to clean filters and the crew compartment. Most of these steps were implemented before the return-to-flight of STS-26 in September 1988 which resulted in improved crew compartment habitability and less potential for equipment malfunction.

  14. Avionics Configuration Assessment for Flightdeck Interval Management: A Comparison of Avionics and Notification Methods

    NASA Technical Reports Server (NTRS)

    Latorella, Kara A.

    2015-01-01

    Flightdeck Interval Management is one of the NextGen operational concepts that FAA is sponsoring to realize requisite National Airspace System (NAS) efficiencies. Interval Management will reduce variability in temporal deviations at a position, and thereby reduce buffers typically applied by controllers - resulting in higher arrival rates, and more efficient operations. Ground software generates a strategic schedule of aircraft pairs. Air Traffic Control (ATC) provides an IM clearance with the IM spacing objective (i.e., the TTF, and at which point to achieve the appropriate spacing from this aircraft) to the IM aircraft. Pilots must dial FIM speeds into the speed window on the Mode Control Panel in a timely manner, and attend to deviations between actual speed and the instantaneous FIM profile speed. Here, the crew is assumed to be operating the aircraft with autothrottles on, with autopilot engaged, and the autoflight system in Vertical Navigation (VNAV) and Lateral Navigation (LNAV); and is responsible for safely flying the aircraft while maintaining situation awareness of their ability to follow FIM speed commands and to achieve the FIM spacing goal. The objective of this study is to examine whether three Notification Methods and four Avionics Conditions affect pilots' performance, ratings on constructs associated with performance (workload, situation awareness), or opinions on acceptability. Three Notification Methods (alternate visual and aural alerts that notified pilots to the onset of a speed target, conformance deviation from the required speed profile, and reminded them if they failed to enter the speed within 10 seconds) were examined. These Notification Methods were: VVV (visuals for all three events), VAV (visuals for all three events, plus an aural for speed conformance deviations), and AAA (visual indications and the same aural to indicate all three of these events). Avionics Conditions were defined by the instrumentation (and location) used to present IM information to crews: (1) Integrated (IM information is embedded in extant PFD (Primary Flight Display), ND (Navigation Display), EICAS (Engine Indicating and Crew Alerting System) displays); (2) EFB_Aft (IM information is only supplied in an EFB and mounted in location similar to that for MITRE's UPS work); (3) EFB_Fore (IM information is only supplied in an EFB which is mounted more forward, under the side window), and (4) EFB_Aft plus use of an AGD (the same IM information is supplied in an EFB and on an AGD, both mounted in locations similar to that in MITRE's UPS work ). Twelve commercial pilot crews flew descent scenarios (VNAV Speed with the mode control panel (MCP) speed window open until flaps extended, then VNAV Path) in a commercial transport flight simulator with realistic visual scene and communications. The results of this study serve three practical aims: (1) contribute to the down-select of avionics configuration for future assessment of the ASTAR spacing algorithm at NASA; (2) provide information useful to the FAA Human Factors Division (ANG-C1)'s mission to identify issues pertinent to flight certification of, and flight standards; (3) identify methodological considerations in support of future FIM human-in-the-loop (HITL) investigations.

  15. A graph based algorithm for adaptable dynamic airspace configuration for NextGen

    NASA Astrophysics Data System (ADS)

    Savai, Mehernaz P.

    The National Airspace System (NAS) is a complicated large-scale aviation network, consisting of many static sectors wherein each sector is controlled by one or more controllers. The main purpose of the NAS is to enable safe and prompt air travel in the U.S. However, such static configuration of sectors will not be able to handle the continued growth of air travel which is projected to be more than double the current traffic by 2025. Under the initiative of the Next Generation of Air Transportation system (NextGen), the main objective of Adaptable Dynamic Airspace Configuration (ADAC) is that the sectors should change to the changing traffic so as to reduce the controller workload variance with time while increasing the throughput. Change in the resectorization should be such that there is a minimal increase in exchange of air traffic among controllers. The benefit of a new design (improvement in workload balance, etc.) should sufficiently exceed the transition cost, in order to deserve a change. This leads to the analysis of the concept of transition workload which is the cost associated with a transition from one sectorization to another. Given two airspace configurations, a transition workload metric which considers the air traffic as well as the geometry of the airspace is proposed. A solution to reduce this transition workload is also discussed. The algorithm is specifically designed to be implemented for the Dynamic Airspace Configuration (DAC) Algorithm. A graph model which accurately represents the air route structure and air traffic in the NAS is used to formulate the airspace configuration problem. In addition, a multilevel graph partitioning algorithm is developed for Dynamic Airspace Configuration which partitions the graph model of airspace with given user defined constraints and hence provides the user more flexibility and control over various partitions. In terms of air traffic management, vertices represent airports and waypoints. Some of the major (busy) airports need to be given more importance and hence treated separately. Thus the algorithm takes into account the air route structure while finding a balance between sector workloads. The performance of the proposed algorithms and performance metrics is validated with the Enhanced Traffic Management System (ETMS) air traffic data.

  16. Differences in work environment for staff as an explanation for variation in central line bundle compliance in intensive care units.

    PubMed

    Lee, Yuna S H; Stone, Patricia W; Pogorzelska-Maziarz, Monika; Nembhard, Ingrid M

    Central line-associated bloodstream infections (CLABSIs) are a common and costly quality problem, and their prevention is a national priority. A decade ago, researchers identified an evidence-based bundle of practices that reduce CLABSIs. Compliance with this bundle remains low in many hospitals. The aim of this study was to assess whether differences in core aspects of work environments-workload, quality of relationships, and prioritization of quality-are associated with variation in maximal CLABSI bundle compliance, that is, compliance 95%-100% of the time in intensive care units (ICUs). A cross-sectional study of hospital medical-surgical ICUs in the United States was done. Data on work environment and bundle compliance were obtained from the Prevention of Nosocomial Infections and Cost-Effectiveness Refined Survey completed in 2011 by infection prevention directors, and data on ICU and hospital characteristics were obtained from the National Healthcare Safety Network. Factor and multilevel regression analyses were conducted. Reasonable workload and prioritization of quality were positively associated with maximal CLABSI bundle compliance. High-quality relationships, although a significant predictor when evaluated apart from workload and prioritization of quality, had no significant effect after accounting for these two factors. Aspects of the staff work environment are associated with maximal CLABSI bundle compliance in ICUs. Our results suggest that hospitals can foster improvement in ensuring maximal CLABSI bundle compliance-a crucial precursor to reducing CLABSI infection rates-by establishing reasonable workloads and prioritizing quality.

  17. A Semi-Preemptive Garbage Collector for Solid State Drives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Junghee; Kim, Youngjae; Shipman, Galen M

    2011-01-01

    NAND flash memory is a preferred storage media for various platforms ranging from embedded systems to enterprise-scale systems. Flash devices do not have any mechanical moving parts and provide low-latency access. They also require less power compared to rotating media. Unlike hard disks, flash devices use out-of-update operations and they require a garbage collection (GC) process to reclaim invalid pages to create free blocks. This GC process is a major cause of performance degradation when running concurrently with other I/O operations as internal bandwidth is consumed to reclaim these invalid pages. The invocation of the GC process is generally governedmore » by a low watermark on free blocks and other internal device metrics that different workloads meet at different intervals. This results in I/O performance that is highly dependent on workload characteristics. In this paper, we examine the GC process and propose a semi-preemptive GC scheme that can preempt on-going GC processing and service pending I/O requests in the queue. Moreover, we further enhance flash performance by pipelining internal GC operations and merge them with pending I/O requests whenever possible. Our experimental evaluation of this semi-preemptive GC sheme with realistic workloads demonstrate both improved performance and reduced performance variability. Write-dominant workloads show up to a 66.56% improvement in average response time with a 83.30% reduced variance in response time compared to the non-preemptive GC scheme.« less

  18. Initial Investigation of Reaction Control System Design on Spacecraft Handling Qualities for Earth Orbit Docking

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Jackson, E. Bruce; Goodrich, Kenneth H.; Ragsdale, W. Al; Neuhaus, Jason; Barnes, Jim

    2008-01-01

    A program of research, development, test, and evaluation is planned for the development of Spacecraft Handling Qualities guidelines. In this first experiment, the effects of Reaction Control System design characteristics and rotational control laws were evaluated during simulated proximity operations and docking. Also, the influence of piloting demands resulting from varying closure rates was assessed. The pilot-in-the-loop simulation results showed that significantly different spacecraft handling qualities result from the design of the Reaction Control System. In particular, cross-coupling between translational and rotational motions significantly affected handling qualities as reflected by Cooper-Harper pilot ratings and pilot workload, as reflected by Task-Load Index ratings. This influence is masked but only slightly by the rotational control system mode. While rotational control augmentation using Rate Command Attitude Hold can reduce the workload (principally, physical workload) created by cross-coupling, the handling qualities are not significantly improved. The attitude and rate deadbands of the RCAH introduced significant mental workload and control compensation to evaluate when deadband firings would occur, assess their impact on docking performance, and apply control inputs to mitigate that impact.

  19. Workload and awkward posture problems among small-scale strawberry farmers in Japan.

    PubMed

    Kumudini, Ganga; Hasegawa, Tetsuya

    2009-12-01

    Farmers handle heavy workloads, often in awkward postures and experiencing some work related problems. Farmers perceive them as no more than inevitable consequences of farming activities. Although many problems can be prevented or reduced by simple and inexpensive modifications to work, these problems are increasing among farmers. The main focus of the paper was to investigate workload and awkward postures among strawberry farmers and suggest possible solutions to overcome the identified problems. Questionnaires, direct observations and intertwining methods were used to collect the data. Low-level strawberry beds and long working hours were recognized as critical factors that led to farmers' health problems including suffering from low back pain, heavy fatigue, unsteady feeling after work, etc. There was a substantial increase in fatigue in busy seasons compared with slack seasons. When compared with the other workers such as office, technical, sales and blue-collar workers, female farmers' general fatigue level was considerably high. Findings indicated that strawberry farming was a stressful occupation and farmers were strained under heavy workload, monotonous and repetitive work and poor working conditions with frequent fatigue symptoms and severe influence on health.

  20. Semi-automated CCTV surveillance: the effects of system confidence, system accuracy and task complexity on operator vigilance, reliance and workload.

    PubMed

    Dadashi, N; Stedmon, A W; Pridmore, T P

    2013-09-01

    Recent advances in computer vision technology have lead to the development of various automatic surveillance systems, however their effectiveness is adversely affected by many factors and they are not completely reliable. This study investigated the potential of a semi-automated surveillance system to reduce CCTV operator workload in both detection and tracking activities. A further focus of interest was the degree of user reliance on the automated system. A simulated prototype was developed which mimicked an automated system that provided different levels of system confidence information. Dependent variable measures were taken for secondary task performance, reliance and subjective workload. When the automatic component of a semi-automatic CCTV surveillance system provided reliable system confidence information to operators, workload significantly decreased and spare mental capacity significantly increased. Providing feedback about system confidence and accuracy appears to be one important way of making the status of the automated component of the surveillance system more 'visible' to users and hence more effective to use. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  1. [Correlation of mental fatigue due to work load and professional qualifications of physicians].

    PubMed

    Wichrowski, A; Dudek, B

    1988-01-01

    The results presented in the paper refer to the relationship between physicians' professional qualifications and mental fatigue. It was that professional qualifications determining man's capabilities affect the level and structure of mental fatigue caused by work. Furthermore, it was assumed that this workload is multidimensional, and so its following five dimensions were singled out: mental difficulties, monotony, risk and responsibility, moral conflicts and dilemmas. The level of qualifications was measured by the length of employment and specialization and scientific degrees. The studies involved 10% of randomly selected physicians from all over Poland. The obtained results indicate that with increasing length of employment the workload due to moral dilemmas, risk and responsibility and mental difficulties, gets reduced; on the other hand, the load resulting from work monotony is increased. Also the specialization degree affects the workload caused by the risk, responsibility and moral dilemmas. Noticeable here is the trend towards a reduction in the workload with increasing specialization degrees. Instead, the higher the scientific degree the higher the sense of load due to risk and responsibility with simultaneous decrease in the load due to work monotony.

  2. A Preliminary Review of Fatigue Among Rail Staff

    PubMed Central

    Fan, Jialin; Smith, Andrew P.

    2018-01-01

    Background: Fatigue is a severe problem in the rail industry, which may jeopardize train crew's health and safety. Nonetheless, a preliminary review of all empirical evidence for train crew fatigue is still lacking. The aim of the present paper is, therefore, to provide a preliminary description of occupational fatigue in the rail industry. This paper reviews the literature with the research question examining the risk factors associated with train crew fatigue, covering both papers published in refereed journals and reports from trade organizations and regulators. It assesses the progress of research on railway fatigue, including research on the main risk factors for railway fatigue, the association between fatigue and railway incidents, and how to better manage fatigue in the railway industry. Methods: Systematic searches were performed in both science and industry databases. The searches considered studies published before August 2017. The main exclusion criterion was fatigue not being directly measured through subjective or objective methods. Results: A total of 31 studies were included in the main review. The causes of fatigue included long working hours, heavy workload, early morning or night shifts, and insufficient sleep. Poor working environment, particular job roles, and individual differences also contributed to fatigue. Conclusion: Fatigue in the rail industry includes most of the features of occupational fatigue, and it is also subject to industry-specific factors. The effect of fatigue on well-being and the fatigued population in the railway industry are still not clear. Future studies can consider associations between occupational risk factors and perceived fatigue by examining the prevalence of fatigue and identifying the potential risk factors in staff within the railway industry. PMID:29867630

  3. Symposium on Aviation Psychology, 1st, Ohio State University, Columbus, OH, April 21, 22, 1981, Proceedings

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The impact of modern technology on the role, responsibility, authority, and performance of human operators in modern aircraft and ATC systems was examined in terms of principles defined by Paul Fitts. Research into human factors in aircraft operations and the use of human factors engineering for aircraft safety improvements were discussed, and features of the man-machine interface in computerized cockpit warning systems are examined. The design and operational features of computerized avionics displays and HUDs are described, along with results of investigations into pilot decision-making behavior, aircrew procedural compliance, and aircrew judgment training programs. Experiments in vision and visual perception are detailed, as are behavioral studies of crew workload, coordination, and complement. The effectiveness of pilot selection, screening, and training techniques are assessed, as are methods for evaluating pilot performance.

  4. Delivery performance of conventional aircraft by terminal-area, time-based air traffic control: A real-time simulation evaluation

    NASA Technical Reports Server (NTRS)

    Credeur, Leonard; Houck, Jacob A.; Capron, William R.; Lohr, Gary W.

    1990-01-01

    A description and results are presented of a study to measure the performance and reaction of airline flight crews, in a full workload DC-9 cockpit, flying in a real-time simulation of an air traffic control (ATC) concept called Traffic Intelligence for the Management of Efficient Runway-scheduling (TIMER). Experimental objectives were to verify earlier fast-time TIMER time-delivery precision results and obtain data for the validation or refinement of existing computer models of pilot/airborne performance. Experimental data indicated a runway threshold, interarrival-time-error standard deviation in the range of 10.4 to 14.1 seconds. Other real-time system performance parameters measured include approach speeds, response time to controller turn instructions, bank angles employed, and ATC controller message delivery-time errors.

  5. Pilot's Desk Flight Station

    NASA Technical Reports Server (NTRS)

    Sexton, G. A.

    1984-01-01

    Aircraft flight station designs have generally evolved through the incorporation of improved or modernized controls and displays. In connection with a continuing increase in the amount of information displayed, this process has produced a complex and cluttered conglomeration of knobs, switches, and electromechanical displays. The result was often high crew workload, missed signals, and misinterpreted information. Advances in electronic technology have now, however, led to new concepts in flight station design. An American aerospace company in cooperation with NASA has utilized these concepts to develop a candidate conceptual design for a 1995 flight station. The obtained Pilot's Desk Flight Station is a unique design which resembles more an operator's console than today's cockpit. Attention is given to configuration, primary flight controllers, front panel displays, flight/navigation display, approach charts and weather display, head-up display, and voice command and response systems.

  6. Resilience as a moderator of the indirect effects of conflict and workload on job outcomes among nurses.

    PubMed

    Lanz, Julie Jean; Bruk-Lee, Valentina

    2017-12-01

    To examine the relative effects of interpersonal conflict and workload on job outcomes (turnover intentions, burnout, injuries) and examine if resilience moderates the indirect effects of conflict and workload on job outcomes via job-related negative effect. There is interest in understanding resilience in the nursing profession. Placing resilience in the context of the Emotion-Centred Model of Occupational Stress (Spector, ) is a novel approach to understanding how resilience ameliorates the negative effects of workplace stressors. This study used a two-wave survey design to collect data from 97 nurses across medical units. Nurses working in the US were recruited in June 2014 using Qualtrics Panels, an online survey platform service that secures participants for research. Nurses were contacted via email at two time points, two weeks apart and provided a link to an online survey. SPSS v. 23 and PROCESS v2.15 were used to analyse regressions and moderated mediation. Interpersonal conflict predicted turnover intentions and burnout; workload predicted injuries. Job-related negative affect mediated the relationships between stressors and job outcomes except for the direct effect of workload on injuries. Low resilience increased the magnitude of the indirect effects of conflict on job outcomes. Job characteristics like workload predicted unique variability in self-reported physical injuries. Conflict at work, a social stressor, predicted well-being and job attitudes. Highly resilient nurses bounced back after experiencing conflict in the workplace. Resilience should be explored for its potential as a method to reduce the negative effects of social stressors. © 2017 John Wiley & Sons Ltd.

  7. Effectiveness of an intervention at construction worksites on work engagement, social support, physical workload, and need for recovery: results from a cluster randomized controlled trial

    PubMed Central

    2012-01-01

    Background To prolong sustainable healthy working lives of construction workers, a worksite prevention program was developed which aimed to improve the health and work ability of construction workers. The aim of the current study was to investigate the effectiveness of this program on social support at work, work engagement, physical workload and need for recovery. Methods Fifteen departments from six construction companies participated in this cluster randomized controlled trial; 8 departments (n=171 workers) were randomized to an intervention group and 7 departments (n=122 workers) to a control group. The intervention consisted of two individual training sessions of a physical therapist to lower the physical workload, a Rest-Break tool to improve the balance between work and recovery, and two empowerment training sessions to increase the influence of the construction workers at the worksite. Data on work engagement, social support at work, physical workload, and need for recovery were collected at baseline, and at three, six and 12 months after the start of the intervention using questionnaires. Results No differences between the intervention and control group were found for work engagement, social support at work, and need for recovery. At 6 months follow-up, the control group reported a small but statistically significant reduction of physical workload. Conclusion The intervention neither improved social support nor work engagement, nor was it effective in reducing the physical workload and need for recovery among construction workers. Trial registration NTR1278 PMID:23171354

  8. Long Term Effects on Risk Factors for Cardiovascular Disease after 12-Months of Aerobic Exercise Intervention - A Worksite RCT among Cleaners

    PubMed Central

    Korshøj, Mette; Lidegaard, Mark; Krustrup, Peter; Jørgensen, Marie Birk; Søgaard, Karen; Holtermann, Andreas

    2016-01-01

    Objectives Occupational groups exposed to high occupational physical activity have an increased risk for cardiovascular disease (CVD). This may be explained by the high relative aerobic workload. Enhanced cardiorespiratory fitness reduces the relative aerobic workload. Thus, the aim was to evaluate the 12-months effects of worksite aerobic exercise on risk factors for CVD among cleaners. Methods One hundred and sixteen cleaners aged 18–65 years were randomized to a group performing aerobic exercise and a reference group receiving lectures. Outcomes were collected at baseline and after 12-months. A repeated measures 2×2 multi-adjusted mixed-model design was applied to compare the between-group differences using intention-to-treat analysis. Results Between-group differences (p<0.05) were found favouring the aerobic exercise group: cardiorespiratory fitness 2.15 (SE 1.03) mlO2/min/kg, aerobic workload -2.15 (SE 1.06) %HRR, resting HR -5.31 (SE 1.61) beats/min, high sensitive C-reactive protein -0.65 (SE 0.24) μg/ml. The blood pressure was unaltered. Stratified analyses on relative aerobic workload at baseline revealed that those with relative aerobic workloads ≥30% of HRR seems to impose a notable adverse effect on resting and ambulatory blood pressure. Conclusion This long-term worksite aerobic exercise intervention among cleaners led to several beneficial effects, but also potential adverse effects among those with high relative aerobic workloads. Trial Registration Controlled-Trials.com ISRCTN86682076 PMID:27513932

  9. CO2 Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject and physiological differences between subjects. Computational Fluid Dynamic (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test was to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III suit across a range of workload and flow rates. Data and trends observed during testing along with refined CFD models will be used to help design an inlet vent configuration for the Z-2 space suit. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES). Three subjects performed two test sessions each in the Mark-III suit to allow for comparison between tests. Six different helmet inlet vent configurations were evaluated during each test session. Suit pressure was maintained at 4.3 psid. Suited test subjects walked on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute (ACFM) were tested at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the total oxygen consumption and CO2 production measured by additional gas analyzers at the air outlet from the suit. Realtime metabolic rate measurements were used to adjust the treadmill workload to meet target metabolic rates. This paper provides detailed descriptions of the test hardware, methodology and results, as well as implications for future inlet vent designs and ground testing.

  10. CO2 Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject and physiological differences between subjects. Computational Fluid Dynamic (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test was to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III suit across a range of workload and flow rates. Data and trends observed during testing along with refined CFD models will be used to help design an inlet vent configuration for the Z-2 space suit. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES). Three subjects performed two test sessions each in the Mark-III suit to allow for comparison between tests. Six different helmet inlet vent configurations were evaluated during each test session. Suit pressure was maintained at 4.3 psid. Suited test subjects walked on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute (ACFM) were tested at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the total oxygen consumption and CO2 production measured by additional gas analyzers at the air outlet from the suit. Real-time metabolic rate measurements were used to adjust the treadmill workload to meet target metabolic rates. This paper provides detailed descriptions of the test hardware, methodology and results, as well as implications for future inlet vent designs and ground testing.

  11. NASA's Commercial Crew Program, the Next Step in U.S. Space Transportation

    NASA Technical Reports Server (NTRS)

    Mango, Edward J., Jr.

    2013-01-01

    The Commercial Crew Program (CCP) is leading NASA's efforts to develop the next U.S. capability for crew transportation and rescue services to and from the International Space Station (ISS) by the middecade timeframe. The outcome of this capability is expected to stimulate and expand the U.S. space transportation industry. NASA is relying on its decades of human space flight experience to certify U.S. crewed vehicles to the ISS and is doing so in a two phase certification approach. NASA certification will cover all aspects of a crew transportation system, including: Development, test, evaluation, and verification. Program management and control. Flight readiness certification. Launch, landing, recovery, and mission operations. Sustaining engineering and maintenance/upgrades. To ensure NASA crew safety, NASA certification will validate technical and performance requirements, verify compliance with NASA requirements, validate that the crew transportation system operates in the appropriate environments, and quantify residual risks. The Commercial Crew Program will present progress to date and how it manages safety and reduces risk.

  12. A simulator investigation of the use of digital data link for pilot/ATC communications in a single pilot operation

    NASA Technical Reports Server (NTRS)

    Hinton, David A.; Lohr, Gary W.

    1988-01-01

    Studies have shown that radio communications between pilots and air traffic control contribute to high pilot workload and are subject to various errors. These errors result from congestion on the voice radio channel, and missed and misunderstood messages. The use of digital data link has been proposed as a means of reducing this workload and error rate. A critical factor, however, in determining the potential benefit of data link will be the interface between future data link systems and the operator of those systems, both in the air and on the ground. The purpose of this effort was to evaluate the pilot interface with various levels of data link capability, in simulated general aviation, single-pilot instrument flight rule operations. Results show that the data link reduced demands on pilots' short-term memory, reduced the number of communication transmissions, and permitted the pilots to more easily allocate time to critical cockpit tasks while receiving air traffic control messages. The pilots who participated unanimously indicated a preference for data link communications over voice-only communications. There were, however, situations in which the pilot preferred the use of voice communications, and the ability for pilots to delay processing the data link messages, during high workload events, caused delays in the acknowledgement of messages to air traffic control.

  13. AMO EXPRESS: A Command and Control Experiment for Crew Autonomy Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Stetson, Howard K.; Haddock, Angie T.; Frank, Jeremy; Cornelius, Randy; Wang, Lui; Garner, Larry

    2015-01-01

    NASA is investigating a range of future human spaceflight missions, including both Mars-distance and Near Earth Object (NEO) targets. Of significant importance for these missions is the balance between crew autonomy and vehicle automation. As distance from Earth results in increasing communication delays, future crews need both the capability and authority to independently make decisions. However, small crews cannot take on all functions performed by ground today, and so vehicles must be more automated to reduce the crew workload for such missions. NASA's Advanced Exploration Systems Program funded Autonomous Mission Operations (AMO) project conducted an autonomous command and control experiment on-board the International Space Station that demonstrated single action intelligent procedures for crew command and control. The target problem was to enable crew initialization of a facility class rack with power and thermal interfaces, and involving core and payload command and telemetry processing, without support from ground controllers. This autonomous operations capability is enabling in scenarios such as initialization of a medical facility to respond to a crew medical emergency, and representative of other spacecraft autonomy challenges. The experiment was conducted using the Expedite the Processing of Experiments for Space Station (EXPRESS) rack 7, which was located in the Port 2 location within the U.S Laboratory onboard the International Space Station (ISS). Activation and deactivation of this facility is time consuming and operationally intensive, requiring coordination of three flight control positions, 47 nominal steps, 57 commands, 276 telemetry checks, and coordination of multiple ISS systems (both core and payload). Utilization of Draper Laboratory's Timeliner software, deployed on-board the ISS within the Command and Control (C&C) computers and the Payload computers, allowed development of the automated procedures specific to ISS without having to certify and employ novel software for procedure development and execution. The procedures contained the ground procedure logic and actions as possible to include fault detection and recovery capabilities. The autonomous operations concept includes a reduction of the amount of data a crew operator is required to verify during activation or de-activation, as well as integration of procedure execution status and relevant data in a single integrated display. During execution, the auto-procedures (via Timerliner) provide a step-by-step messaging paradigm and a high-level status upon termination. This messaging and high-level status is the only data generated for operator display. To enhance situational awareness of the operator, the Web-based Procedure Display (WebPD) provides a novel approach to the issues of procedure display and execution tracking. WebPD is a web based application that serves as the user interface for electronic procedure execution. It incorporates several aspects of the HTML5 standard. Procedures are written in a dialect of XML called Procedure Representation Language (PRL). WebPD tracks execution status in the procedure or procedures being displayed. WebPD aggregates and simplifies the auto-sequence execution status information, and formatted to be easily followed and understood by an operator who is not dedicated to actively monitoring the task. WebPD also provides an integrated data and control interface to pause or halt the execution in order to provide a check point of operation and to examine progress before starting the next sequence of activities. For this demonstration, the procedure was initiated and monitored from the ground. As the Timeliner sequences executed, their high-level execution status was written to PLMDM memory. This memory is read and downlinked via Ku-Band at a 1 Hz rate. The data containing the high-level execution status is de-commutated on the ground, and rebroadcast for WebPD consumption. A future demonstration will be performed onboard, with ISS astronauts initiating the operations instead of ground controllers. The AMO EXPRESS experiment demonstrated activation and de-activation of EXPRESS rack 7, providing the capability of future single button activations and deactivations of facility class racks. The experiment achieved numerous technical and operations 'firsts' for the ISS

  14. Development and experimental evaluation of an alarm concept for an integrated surgical workstation.

    PubMed

    Zeißig, Eva-Maria; Janß, Armin; Dell'Anna-Pudlik, Jasmin; Ziefle, Martina; Radermacher, Klaus

    2016-04-01

    Alarm conditions of the technical equipment in operating rooms represent a prevalent cause for interruptions of surgeons and scrub nurses, resulting in an increase of workload and potential reduction of patient safety. In this work, an alarm concept for an integrated operating room system based on open communication standards is developed and tested. In a laboratory experiment, the reactions of surgeons were analysed, comparing the displaying of alarms on an integrated workstation and on single devices: disruptive effects of alarm handling on primary task (ratings of perceived distraction, resumption lag, deterioration of speed, accuracy, and prospective memory), efficiency and effectiveness of identification of alarms, as well as perceived workload were included. The identification of the alarm cause is significantly more efficient and effective with the integrated alarm concept. Moreover, a slightly lower deterioration of performance of the primary task due to the interruption of alarm handling was observed. Displaying alarms on an integrated workstation supports alarm handling and consequently reduces disruptive effects on the primary task. The findings show that even small changes can reduce workload in a complex work environment like the operating room, resulting in improved patient safety.

  15. The effect of spiked boots on logger safety, productivity and workload.

    PubMed

    Kirk, P; Parker, R

    1994-04-01

    Analysis of 1657 lost-time logging accidents in the New Zealand logging industry (1985-1991) indicates that 17.5% were as a result of slips, trips and falls and a total of 2870 days were lost. Most (56%) of these slipping, tripping and falling accidents occurred in the felling and delimbing phase of the logging operation, where 37% of the workforce are employed. In an attempt to reduce the number of slipping injuries to loggers employed in felling and delimbing, a study of the effectiveness of spike-soled (caulk) boots was undertaken. Four loggers were intensively observed at work, by continuous time-study methods, while wearing their conventional rubber-soled boots and then spike-soled boots. The number of slips, work methods used, physiological workload and productivity were compared for loggers wearing the two footwear types. Results indicated that spike-soled boots were associated with a significant reduction in the frequency of slips and had no adverse effect on work methods, physiological workload or productivity. Spike-soled boots are now being promoted for use by loggers in New Zealand as a simple method to reduce slipping, tripping and falling accidents.

  16. Power Management for Space Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2001-01-01

    Space power systems include the power source, storage, and management subsystems. In current crewed spacecraft, solar cells are the power source, batteries provide storage, and the crew performs any required load scheduling. For future crewed planetary surface systems using Advanced Life Support, we assume that plants will be grown to produce much of the crew's food and that nuclear power will be employed. Battery storage is much more costly than nuclear power capacity and so is not likely to be used. We investigate the scheduling of power demands by the crew or automatic control, to reduce the peak power load and the required generating capacity. The peak to average power ratio is a good measure of power use efficiency. We can easily schedule power demands to reduce the peak power from its maximum, but simple scheduling approaches may not find the lowest possible peak to average power ratio. An initial power scheduling example was simple enough for a human to solve, but a more complex example with many intermittent load demands required automatic scheduling. Excess power is a free resource and can be used even for minor benefits.

  17. Rocking the boat: does perfect rowing crew synchronization reduce detrimental boat movements?

    PubMed

    Cuijpers, L S; Passos, P J M; Murgia, A; Hoogerheide, A; Lemmink, K A P M; de Poel, H J

    2017-12-01

    In crew rowing, crew members need to mutually synchronize their movements to achieve optimal crew performance. Intuitively, poor crew coordination is often deemed to involve additional boat movements such as surge velocity fluctuations, heave, pitch, and roll, which would imply lower efficiency (eg, due to increased hydrodynamic drag). The aim of this study was to investigate this alleged relation between crew coordination and boat movements at different stroke rates. Fifteen crews of two rowers rowed in a double scull (ie, a two-person boat) at 18, 22, 26, 30, and 34 strokes per minute. Oar angles (using potentiometers) and movements of the boat (using a three-axial accelerometer-gyroscope sensor) were measured (200 Hz). Results indicated that crew synchronization became more consistent with stroke rate, while surge, heave, and pitch fluctuations increased. Further, within each stroke rate condition, better crew synchronization was related to less roll of the boat, but increased fluctuations regarding surge, heave, and pitch. Together this demonstrates that while better crew synchronization relates to enhanced lateral stability of the boat, it inevitably involves more detrimental boat movements and hence involves lower biomechanical efficiency. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Robotics and Automation for Flight Deck Aircraft Servicing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesser, J.B.; Draper, J.V.; Pin, F.G.

    1999-03-01

    One of the missions of the Future Aircraft Carriers Program is to investigate methods that would improve aircraft turnaround servicing activities on carrier decks. The major objectives and criteria for evaluating alternative aircraft servicing methods are to reduce workload requirements, turnaround times (TAT), and life-cycle costs (LCC). Technologies in the field of Robotics and Automation (R and A) have the potential to significantly contribute to these objectives. The objective of this study was to investigate aircraft servicing functions on carrier decks which would offer the potentially most significant payoff if improved by various R and A technologies. Improvement in thismore » case means reducing workload, time and LCC. This objective was accomplished using a ''bottom-up'' formalized approach as described in the following.« less

  19. Creating pharmacy staffing-to-demand models: predictive tools used at two institutions.

    PubMed

    Krogh, Paul; Ernster, Jason; Knoer, Scott

    2012-09-15

    The creation and implementation of data-driven staffing-to-demand models at two institutions are described. Predictive workload tools provide a guideline for pharmacy managers to adjust staffing needs based on hospital volume metrics. At Abbott Northwestern Hospital, management worked with the department's staff and labor management committee to clearly outline the productivity monitoring system and the process for reducing hours. Reference charts describing the process for reducing hours and a form to track the hours of involuntary reductions for each employee were created to further enhance communication, explain the rationale behind the new process, and promote transparency. The University of Minnesota Medical Center-Fairview, found a strong correlation between measured pharmacy workload and an adjusted census formula. If the daily census and admission report indicate that the adjusted census will provide enough workload for the fully staffed department, no further action is needed. If the census report indicates the adjusted census is less than the breakeven point, staff members are asked to leave work, either voluntarily or involuntarily. The opposite holds true for days when the adjusted census is higher than the breakeven point, at which time additional staff are required to synchronize worked hours with predicted workload. Successful staffing-to- demand models were implemented in two hospital pharmacies. Financial savings, as indicated by decreased labor costs secondary to reduction of staffed shifts, were approximately $42,000 and $45,500 over a three-month period for Abbott Northwestern Hospital and the University of Minnesota Medical Center-Fairview, respectively. Maintenance of 100% productively allowed the departments to continue to replace vacant positions and avoid permanent staff reductions.

  20. The effect of augmented real-time image guidance on task workload during endoscopic sinus surgery.

    PubMed

    Dixon, Benjamin J; Chan, Harley; Daly, Michael J; Vescan, Allan D; Witterick, Ian J; Irish, Jonathan C

    2012-01-01

    Due to proximity to critical structures, the need for spatial awareness during endoscopic sinus surgery (ESS) is essential. We have developed an augmented, real-time image-guided surgery (ART-IGS) system that provides live navigational data and proximity alerts to the operating surgeon during ablation. We wished to test the hypothesis that task workload would be reduced when using this technology. A trial involved 8 otolaryngology residents and fellows performing ESS on cadaveric specimens; 1 side in a conventional method (control) and 1 side with ART-IGS. After computed tomography scanning, anatomical contouring, and registration of the head, a three-dimensional (3D) virtual endoscopic view, ablative tool tracking, and proximity alerts were enabled. Each subject completed ESS tasks and rated their workload during and after the exercise using the National Aeronautics and Space Administration (NASA) Task Load Index (TLX). A questionnaire and open feedback interview were completed after the procedure. There was a significant reduction in mental demand, temporal demand, effort, and frustration when using the ART-IGS system in comparison to the control (p < 0.02). Perceived performance was increased (p = 0.02). Most subjects agreed that the system was sufficiently accurate, caused minimal interruption, and increased confidence. Optical tracking line-of-sight issues were frequently cited as the main limitation early in the study; however, this was largely resolved. ART-IGS reduces task workload for trainees performing ESS. Live navigation and alert zones may be a valuable intraoperative teaching aid. Copyright © 2012 American Rhinologic Society-American Academy of Otolaryngic Allergy, LLC.

  1. Active and Passive Fatigue in Simulated Driving: Discriminating Styles of Workload Regulation and Their Safety Impacts

    PubMed Central

    Saxby, Dyani J.; Matthews, Gerald; Warm, Joel S.; Hitchcock, Edward M.; Neubauer, Catherine

    2015-01-01

    Despite the known dangers of driver fatigue, it is a difficult construct to study empirically. Different forms of task-induced fatigue may differ in their effects on driver performance and safety. Desmond and Hancock (2001) defined active and passive fatigue states that reflect different styles of workload regulation. In 2 driving simulator studies we investigated the multidimensional subjective states and safety outcomes associated with active and passive fatigue. Wind gusts were used to induce active fatigue, and full vehicle automation to induce passive fatigue. Drive duration was independently manipulated to track the development of fatigue states over time. Participants were undergraduate students. Study 1 (N = 108) focused on subjective response and associated cognitive stress processes, while Study 2 (N = 168) tested fatigue effects on vehicle control and alertness. In both studies the 2 fatigue manipulations produced different patterns of subjective response reflecting different styles of workload regulation, appraisal, and coping. Active fatigue was associated with distress, overload, and heightened coping efforts, whereas passive fatigue corresponded to large-magnitude declines in task engagement, cognitive underload, and reduced challenge appraisal. Study 2 showed that only passive fatigue reduced alertness, operationalized as speed of braking and steering responses to an emergency event. Passive fatigue also increased crash probability, but did not affect a measure of vehicle control. Findings support theories that see fatigue as an outcome of strategies for managing workload. The distinction between active and passive fatigue is important for assessment of fatigue and for evaluating automated driving systems which may induce dangerous levels of passive fatigue. PMID:24041288

  2. The Effect of an Electronic Checklist on Critical Care Provider Workload, Errors, and Performance.

    PubMed

    Thongprayoon, Charat; Harrison, Andrew M; O'Horo, John C; Berrios, Ronaldo A Sevilla; Pickering, Brian W; Herasevich, Vitaly

    2016-03-01

    The strategy used to improve effective checklist use in intensive care unit (ICU) setting is essential for checklist success. This study aimed to test the hypothesis that an electronic checklist could reduce ICU provider workload, errors, and time to checklist completion, as compared to a paper checklist. This was a simulation-based study conducted at an academic tertiary hospital. All participants completed checklists for 6 ICU patients: 3 using an electronic checklist and 3 using an identical paper checklist. In both scenarios, participants had full access to the existing electronic medical record system. The outcomes measured were workload (defined using the National Aeronautics and Space Association task load index [NASA-TLX]), the number of checklist errors, and time to checklist completion. Two independent clinician reviewers, blinded to participant results, served as the reference standard for checklist error calculation. Twenty-one ICU providers participated in this study. This resulted in the generation of 63 simulated electronic checklists and 63 simulated paper checklists. The median NASA-TLX score was 39 for the electronic checklist and 50 for the paper checklist (P = .005). The median number of checklist errors for the electronic checklist was 5, while the median number of checklist errors for the paper checklist was 8 (P = .003). The time to checklist completion was not significantly different between the 2 checklist formats (P = .76). The electronic checklist significantly reduced provider workload and errors without any measurable difference in the amount of time required for checklist completion. This demonstrates that electronic checklists are feasible and desirable in the ICU setting. © The Author(s) 2014.

  3. Auditory Task Irrelevance: A Basis for Inattentional Deafness

    PubMed Central

    Scheer, Menja; Bülthoff, Heinrich H.; Chuang, Lewis L.

    2018-01-01

    Objective This study investigates the neural basis of inattentional deafness, which could result from task irrelevance in the auditory modality. Background Humans can fail to respond to auditory alarms under high workload situations. This failure, termed inattentional deafness, is often attributed to high workload in the visual modality, which reduces one’s capacity for information processing. Besides this, our capacity for processing auditory information could also be selectively diminished if there is no obvious task relevance in the auditory channel. This could be another contributing factor given the rarity of auditory warnings. Method Forty-eight participants performed a visuomotor tracking task while auditory stimuli were presented: a frequent pure tone, an infrequent pure tone, and infrequent environmental sounds. Participants were required either to respond to the presentation of the infrequent pure tone (auditory task-relevant) or not (auditory task-irrelevant). We recorded and compared the event-related potentials (ERPs) that were generated by environmental sounds, which were always task-irrelevant for both groups. These ERPs served as an index for our participants’ awareness of the task-irrelevant auditory scene. Results Manipulation of auditory task relevance influenced the brain’s response to task-irrelevant environmental sounds. Specifically, the late novelty-P3 to irrelevant environmental sounds, which underlies working memory updating, was found to be selectively enhanced by auditory task relevance independent of visuomotor workload. Conclusion Task irrelevance in the auditory modality selectively reduces our brain’s responses to unexpected and irrelevant sounds regardless of visuomotor workload. Application Presenting relevant auditory information more often could mitigate the risk of inattentional deafness. PMID:29578754

  4. Prospective memory in dynamic environments: effects of load, delay, and phonological rehearsal

    NASA Technical Reports Server (NTRS)

    Stone, M.; Dismukes, K.; Remington, R.

    2001-01-01

    A new paradigm was developed to examine prospective memory performance in a visual-spatial task that resembles some aspects of the work of air traffic controllers. Two experiments examined the role of workload (number of aeroplanes that participants directed), delay (between receipt of prospective instructions and execution), and phonological rehearsal. High workload increased prospective memory errors but increasing delay from 1-3 or 5 minutes had no effect. Shadowing aurally presented text reduced prospective memory performance, presumably because it prevented verbal rehearsal of the prospective instructions. However, performance on the foreground task of directing aeroplanes to routine destinations was affected only by workload and not by opportunity for rehearsal. Our results suggest that ability to maintain performance on a routine foreground task while performing a secondary task--perhaps analogous to conversation--does not predict ability to retrieve a prospective intention to deviate from the routine.

  5. An Integrative Literature Review of Patient Turnover in Inpatient Hospital Settings.

    PubMed

    Park, Shin Hye; Weaver, Lindsay; Mejia-Johnson, Lydia; Vukas, Rachel; Zimmerman, Julie

    2016-05-01

    High patient turnover can result in fragmentation of nursing care. It can also increase nursing workload and thus impede the ability of nurses to provide safe and high-quality care. We reviewed 20 studies that examined patient turnover in relation to nursing workload, staffing, and patient outcomes as well as interventions in inpatient hospital settings. The studies consistently addressed the importance of accounting for patient turnover when estimating nurse staffing needs. They also showed that patient turnover varied by time, day, and unit type. Researchers found that higher patient turnover was associated with adverse events; however, further research on this topic is needed because evidence on the effect of patient turnover on patient outcomes is not yet strong and conclusive. We suggest that researchers and administrators need to pay more attention to patterns and levels of patient turnover and implement managerial strategies to reduce nursing workload and improve patient outcomes. © The Author(s) 2015.

  6. Prospective memory in dynamic environments: effects of load, delay, and phonological rehearsal.

    PubMed

    Stone, M; Dismukes, K; Remington, R

    2001-05-01

    A new paradigm was developed to examine prospective memory performance in a visual-spatial task that resembles some aspects of the work of air traffic controllers. Two experiments examined the role of workload (number of aeroplanes that participants directed), delay (between receipt of prospective instructions and execution), and phonological rehearsal. High workload increased prospective memory errors but increasing delay from 1-3 or 5 minutes had no effect. Shadowing aurally presented text reduced prospective memory performance, presumably because it prevented verbal rehearsal of the prospective instructions. However, performance on the foreground task of directing aeroplanes to routine destinations was affected only by workload and not by opportunity for rehearsal. Our results suggest that ability to maintain performance on a routine foreground task while performing a secondary task--perhaps analogous to conversation--does not predict ability to retrieve a prospective intention to deviate from the routine.

  7. C3PO - A Dynamic Data Placement Agent for ATLAS Distributed Data Management

    NASA Astrophysics Data System (ADS)

    Beermann, T.; Lassnig, M.; Barisits, M.; Serfon, C.; Garonne, V.; ATLAS Collaboration

    2017-10-01

    This paper introduces a new dynamic data placement agent for the ATLAS distributed data management system. This agent is designed to pre-place potentially popular data to make it more widely available. It therefore incorporates information from a variety of sources. Those include input datasets and sites workload information from the ATLAS workload management system, network metrics from different sources like FTS and PerfSonar, historical popularity data collected through a tracer mechanism and more. With this data it decides if, when and where to place new replicas that then can be used by the WMS to distribute the workload more evenly over available computing resources and then ultimately reduce job waiting times. This paper gives an overview of the architecture and the final implementation of this new agent. The paper also includes an evaluation of the placement algorithm by comparing the transfer times and the new replica usage.

  8. Automation in future air traffic management: effects of decision aid reliability on controller performance and mental workload.

    PubMed

    Metzger, Ulla; Parasuraman, Raja

    2005-01-01

    Future air traffic management concepts envisage shared decision-making responsibilities between controllers and pilots, necessitating that controllers be supported by automated decision aids. Even as automation tools are being introduced, however, their impact on the air traffic controller is not well understood. The present experiments examined the effects of an aircraft-to-aircraft conflict decision aid on performance and mental workload of experienced, full-performance level controllers in a simulated Free Flight environment. Performance was examined with both reliable (Experiment 1) and inaccurate automation (Experiment 2). The aid improved controller performance and reduced mental workload when it functioned reliably. However, detection of a particular conflict was better under manual conditions than under automated conditions when the automation was imperfect. Potential or actual applications of the results include the design of automation and procedures for future air traffic control systems.

  9. Applying human factors principles to alert design increases efficiency and reduces prescribing errors in a scenario-based simulation

    PubMed Central

    Russ, Alissa L; Zillich, Alan J; Melton, Brittany L; Russell, Scott A; Chen, Siying; Spina, Jeffrey R; Weiner, Michael; Johnson, Elizabette G; Daggy, Joanne K; McManus, M Sue; Hawsey, Jason M; Puleo, Anthony G; Doebbeling, Bradley N; Saleem, Jason J

    2014-01-01

    Objective To apply human factors engineering principles to improve alert interface design. We hypothesized that incorporating human factors principles into alerts would improve usability, reduce workload for prescribers, and reduce prescribing errors. Materials and methods We performed a scenario-based simulation study using a counterbalanced, crossover design with 20 Veterans Affairs prescribers to compare original versus redesigned alerts. We redesigned drug–allergy, drug–drug interaction, and drug–disease alerts based upon human factors principles. We assessed usability (learnability of redesign, efficiency, satisfaction, and usability errors), perceived workload, and prescribing errors. Results Although prescribers received no training on the design changes, prescribers were able to resolve redesigned alerts more efficiently (median (IQR): 56 (47) s) compared to the original alerts (85 (71) s; p=0.015). In addition, prescribers rated redesigned alerts significantly higher than original alerts across several dimensions of satisfaction. Redesigned alerts led to a modest but significant reduction in workload (p=0.042) and significantly reduced the number of prescribing errors per prescriber (median (range): 2 (1–5) compared to original alerts: 4 (1–7); p=0.024). Discussion Aspects of the redesigned alerts that likely contributed to better prescribing include design modifications that reduced usability-related errors, providing clinical data closer to the point of decision, and displaying alert text in a tabular format. Displaying alert text in a tabular format may help prescribers extract information quickly and thereby increase responsiveness to alerts. Conclusions This simulation study provides evidence that applying human factors design principles to medication alerts can improve usability and prescribing outcomes. PMID:24668841

  10. Applying human factors principles to alert design increases efficiency and reduces prescribing errors in a scenario-based simulation.

    PubMed

    Russ, Alissa L; Zillich, Alan J; Melton, Brittany L; Russell, Scott A; Chen, Siying; Spina, Jeffrey R; Weiner, Michael; Johnson, Elizabette G; Daggy, Joanne K; McManus, M Sue; Hawsey, Jason M; Puleo, Anthony G; Doebbeling, Bradley N; Saleem, Jason J

    2014-10-01

    To apply human factors engineering principles to improve alert interface design. We hypothesized that incorporating human factors principles into alerts would improve usability, reduce workload for prescribers, and reduce prescribing errors. We performed a scenario-based simulation study using a counterbalanced, crossover design with 20 Veterans Affairs prescribers to compare original versus redesigned alerts. We redesigned drug-allergy, drug-drug interaction, and drug-disease alerts based upon human factors principles. We assessed usability (learnability of redesign, efficiency, satisfaction, and usability errors), perceived workload, and prescribing errors. Although prescribers received no training on the design changes, prescribers were able to resolve redesigned alerts more efficiently (median (IQR): 56 (47) s) compared to the original alerts (85 (71) s; p=0.015). In addition, prescribers rated redesigned alerts significantly higher than original alerts across several dimensions of satisfaction. Redesigned alerts led to a modest but significant reduction in workload (p=0.042) and significantly reduced the number of prescribing errors per prescriber (median (range): 2 (1-5) compared to original alerts: 4 (1-7); p=0.024). Aspects of the redesigned alerts that likely contributed to better prescribing include design modifications that reduced usability-related errors, providing clinical data closer to the point of decision, and displaying alert text in a tabular format. Displaying alert text in a tabular format may help prescribers extract information quickly and thereby increase responsiveness to alerts. This simulation study provides evidence that applying human factors design principles to medication alerts can improve usability and prescribing outcomes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Association Between Leisure Time Physical Activity, Cardiopulmonary Fitness, Cardiovascular Risk Factors, and Cardiovascular Workload at Work in Firefighters.

    PubMed

    Yu, Clare C W; Au, Chun T; Lee, Frank Y F; So, Raymond C H; Wong, John P S; Mak, Gary Y K; Chien, Eric P; McManus, Alison M

    2015-09-01

    Overweight, obesity, and cardiovascular disease risk factors are prevalent among firefighters in some developed countries. It is unclear whether physical activity and cardiopulmonary fitness reduce cardiovascular disease risk and the cardiovascular workload at work in firefighters. The present study investigated the relationship between leisure-time physical activity, cardiopulmonary fitness, cardiovascular disease risk factors, and cardiovascular workload at work in firefighters in Hong Kong. Male firefighters (n = 387) were randomly selected from serving firefighters in Hong Kong (n = 5,370) for the assessment of cardiovascular disease risk factors (obesity, hypertension, diabetes mellitus, dyslipidemia, smoking, known cardiovascular diseases). One-third (Target Group) were randomly selected for the assessment of off-duty leisure-time physical activity using the short version of the International Physical Activity Questionnaire. Maximal oxygen uptake was assessed, as well as cardiovascular workload using heart rate monitoring for each firefighter for four "normal" 24-hour working shifts and during real-situation simulated scenarios. Overall, 33.9% of the firefighters had at least two cardiovascular disease risk factors. In the Target Group, firefighters who had higher leisure-time physical activity had a lower resting heart rate and a lower average working heart rate, and spent a smaller proportion of time working at a moderate-intensity cardiovascular workload. Firefighters who had moderate aerobic fitness and high leisure-time physical activity had a lower peak working heart rate during the mountain rescue scenario compared with firefighters who had low leisure-time physical activities. Leisure-time physical activity conferred significant benefits during job tasks of moderate cardiovascular workload in firefighters in Hong Kong.

  12. Should I stay or should I go? The influence of individual and organizational factors on pharmacists' future work plans.

    PubMed

    Gaither, Caroline A; Nadkarni, Anagha; Mott, David A; Schommer, Jon C; Doucette, William R; Kreling, David H; Pedersen, Craig A

    2007-01-01

    To examine the association between individual (demographic) and organizational (work environment and workload) factors and pharmacists' future work plans and explore reasons for either leaving or staying with current employers (culture/climate factors). Cross-sectional study. United States in 2004. 1,263 pharmacists. Seven-page mail survey. Future work plans, time spent in practice activities, staffing levels, and actual and perceived workload and demographic variables. Overall, 15% of respondents reported that they planned to leave their current employer within the year subsequent to this survey. More than 50% reported that their workload had significantly increased in the previous year. Multivariate analyses showed that nonwhites were 2.1 times more likely to be planning to leave their current employer, compared with whites, and unmarried respondents were 1.7 times more likely to leave than were married individuals. More negative perceptions regarding the impact of workload on various personal, work, and patient care outcomes predicted leaving. A main factor that prompted their inclinations was described by 72% of leavers (insufficient and/or unqualified staff) and 49% of stayers (flexible scheduling). The most common reasons for staying were good salary and relationships with coworkers, while the most common reasons for leaving were a desire for change and stress/workload issues. Future work plans of pharmacists are influenced by a variety of individual, organizational, and culture/climate factors. While employers have little latitude for influencing demographic characteristics of employees, many organizational and culture/climate factors (scheduling, opportunities for interpersonal interactions, salary/benefits, staffing, and workload) can be addressed with the intent of reducing pharmacist turnover.

  13. Novel Estimation of Pilot Performance Characteristics

    NASA Technical Reports Server (NTRS)

    Bachelder, Edward N.; Aponso, Bimal

    2017-01-01

    Two mechanisms internal to the pilot that affect performance during a tracking task are: 1) Pilot equalization (i.e. lead/lag); and 2) Pilot gain (i.e. sensitivity to the error signal). For some applications McRuer's Crossover Model can be used to anticipate what equalization will be employed to control a vehicle's dynamics. McRuer also established approximate time delays associated with different types of equalization - the more cognitive processing that is required due to equalization difficulty, the larger the time delay. However, the Crossover Model does not predict what the pilot gain will be. A nonlinear pilot control technique, observed and coined by the authors as 'amplitude clipping', is shown to improve stability, performance, and reduce workload when employed with vehicle dynamics that require high lead compensation by the pilot. Combining linear and nonlinear methods a novel approach is used to measure the pilot control parameters when amplitude clipping is present, allowing precise measurement in real time of key pilot control parameters. Based on the results of an experiment which was designed to probe workload primary drivers, a method is developed that estimates pilot spare capacity from readily observable measures and is tested for generality using multi-axis flight data. This paper documents the initial steps to developing a novel, simple objective metric for assessing pilot workload and its variation over time across a wide variety of tasks. Additionally, it offers a tangible, easily implementable methodology for anticipating a pilot's operating parameters and workload, and an effective design tool. The model shows promise in being able to precisely predict the actual pilot settings and workload, and observed tolerance of pilot parameter variation over the course of operation. Finally, an approach is proposed for generating Cooper-Harper ratings based on the workload and parameter estimation methodology.

  14. Taking the load off: investigations of how adaptive cruise control affects mental workload.

    PubMed

    Young, Mark S; Stanton, Neville A

    2004-07-15

    It has been posited that Adaptive Cruise Control (ACC) represents a new generation of vehicle automation, in that it has the potential to relieve drivers of mental as well as physical workload. The results of previous research however, have raised some confusing issues about the specific effects of Adaptive Cruise Control (ACC) on driver mental workload (MWL)--some studies report reduced MWL compared to manual driving, while others find no effect. Two hypotheses are proposed in an attempt to explain these discrepancies: (a) that any potential MWL reductions due to ACC could be masked by the overriding influence of steering demand; or (b) that the tasks designed in some experiments do not exploit the adaptive nature of the ACC system, therefore precluding any potential benefits. Two related experiments were designed to test these hypotheses. It was found that the main reason for the discrepant findings was the nature of the driving task chosen--constant-speed tasks do not realise the mental workload benefits of ACC. Future researchers using ACC devices are advised to use variable-speed tasks to ensure that all aspects of device functionality are covered.

  15. Usability of PDF based Digital Textbooks to the Physically Disabled University Student.

    PubMed

    Oku, Hidehisa; Matsubara, Kayoko; Booka, Masayuki

    2015-01-01

    Digital textbooks have been expected for providing multimedia information that the print textbooks could not handle. The original digital textbook can be fabricated relatively easily by using Epub or DAISY. Print textbooks are, however, employed as textbooks in the most of lectures in universities. Therefore, it is considered necessary to convert the content of the print textbook to the digital textbook simply and in a short time. In this paper, the digital textbook using PDF files of the print textbook was suggested as one of simple and practical solution to provide an alternative textbook for the physically disabled university student who has difficulty handling the print textbook. Then usability of the suggested method was evaluated experimentally from the point of workload. Result of the experiment indicates that the digital textbook fabricated as the alternative one for the print textbook by the suggested method has a potential to reduce workload for the physically disabled university students. In addition, the digital textbook with larger LCD display needs less workload than the print textbook. Then, there are not so much difference in the workload between the print book which is smaller than the print textbook and the digital book made from the print book.

  16. Impact of automation: Measurement of performance, workload and behaviour in a complex control environment.

    PubMed

    Balfe, Nora; Sharples, Sarah; Wilson, John R

    2015-03-01

    This paper describes an experiment that was undertaken to compare three levels of automation in rail signalling; a high level in which an automated agent set routes for trains using timetable information, a medium level in which trains were routed along pre-defined paths, and a low level where the operator (signaller) was responsible for the movement of all trains. These levels are described in terms of a Rail Automation Model based on previous automation theory (Parasuraman et al., 2000). Performance, subjective workload, and signaller activity were measured for each level of automation running under both normal operating conditions and abnormal, or disrupted, conditions. The results indicate that perceived workload, during both normal and disrupted phases of the experiment, decreased as the level of automation increased and performance was most consistent (i.e. showed the least variation between participants) with the highest level of automation. The results give a strong case in favour of automation, particularly in terms of demonstrating the potential for automation to reduce workload, but also suggest much benefit can achieved from a mid-level of automation potentially at a lower cost and complexity. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  17. Assessing V and V Processes for Automation with Respect to Vulnerabilities to Loss of Airplane State Awareness

    NASA Technical Reports Server (NTRS)

    Whitlow, Stephen; Wilkinson, Chris; Hamblin, Chris

    2014-01-01

    Automation has contributed substantially to the sustained improvement of aviation safety by minimizing the physical workload of the pilot and increasing operational efficiency. Nevertheless, in complex and highly automated aircraft, automation also has unintended consequences. As systems become more complex and the authority and autonomy (A&A) of the automation increases, human operators become relegated to the role of a system supervisor or administrator, a passive role not conducive to maintaining engagement and airplane state awareness (ASA). The consequence is that flight crews can often come to over rely on the automation, become less engaged in the human-machine interaction, and lose awareness of the automation mode under which the aircraft is operating. Likewise, the complexity of the system and automation modes may lead to poor understanding of the interaction between a mode of automation and a particular system configuration or phase of flight. These and other examples of mode confusion often lead to mismanaging the aircraftâ€"TM"s energy state or the aircraft deviating from the intended flight path. This report examines methods for assessing whether, and how, operational constructs properly assign authority and autonomy in a safe and coordinated manner, with particular emphasis on assuring adequate airplane state awareness by the flight crew and air traffic controllers in off-nominal and/or complex situations.

  18. An Investigation of Flight Deck Data Link in the Terminal Area

    NASA Technical Reports Server (NTRS)

    Martin, Lynne; Lozito, Sandra; Kaneshige, John; Dulchinos, Vicki; Sharma, Shivanjli

    2013-01-01

    The Next Generation Air Transportation System (NextGen) and Europe's Single European Sky ATM Research (SESAR) concepts require an increased use of trajectory-based operations, including extensive strategic air traffic control clearances. The clearances are lengthy and complex, which necessitate data link communications to allow for message permanence and integration into the autoflight systems (i.e., autoload capability). This paper examines the use of flight deck data link communications for strategic and tactical clearance usage in the terminal area. A human-in-the-loop simulation was conducted using a high-fidelity flight deck simulator, with ten commercial flight crews as participants. Data were collected from six flight scenarios in the San Francisco terminal airspace. The variables of interest were ATC message modality (voice v. data link), temporal quality of the message (tactical v. strategic) and message length. Dependent variables were message response times, communication clarifications, communication-related errors, and pilot workload. Response time results were longer in data link compared to voice, a finding that has been consistently revealed in a number of other simulations [1]. In addition, strategic clearances and longer messages resulted in a greater number of clarifications and errors, suggesting an increase in uncertainty of message interpretation for the flight crews when compared to tactical clearances. The implications for strategic and compound clearance usage in NextGen and SESAR are discussed

  19. Retaining the general practitioner workforce in England: what matters to GPs? A cross-sectional study.

    PubMed

    Dale, Jeremy; Potter, Rachel; Owen, Katherine; Parsons, Nicholas; Realpe, Alba; Leach, Jonathan

    2015-10-16

    The general practice (GP) workforce in England is in crisis, reflected in increasing rates of early retirement and intentions to reduce hours of working. This study aimed to investigate underlying factors and how these might be mitigated. GPs in central England were invited to participate in an on-line survey exploring career plans and views and experiences of work-related pressures. Quantitative data were analysed using logistic regression analysis and principal components analysis. Qualitative data were analysed using a thematic framework approach. Of 1,192 GPs who participated, 978 (82.0 %) stated that they intend to leave general practice, take a career break and/or reduce clinical hours of work within the next five years. This included 488 (41.9 %) who intend to leave practice, and almost a quarter (279; 23.2 %) intending to take a career break. Only 67 (5.6 %) planned to increase their hours of clinical work. For participants planning to leave practice, the issues that most influenced intentions were volume and intensity of workload, time spent on "unimportant tasks", introduction of seven-day working and lack of job satisfaction. Four hundred fifty five participants responded to open questions (39128 words in total). The main themes were the cumulative impact of work-related pressures, the changing and growing nature of the workload, and the consequent stress. Reducing workload intensity, workload volume, administrative activities, with increased time for patient care, no out-of-hour commitments, more flexible working conditions and greater clinical autonomy were identified as the most important requirements to address the workforce crisis. In addition, incentive payments, increased pay and protected time for education and training were also rated as important. New models of professionalism and organisational arrangements may be needed to address the issues described here. Without urgent action, the GP workforce crisis in England seems set to worsen.

  20. Integrated NTP Vehicle Radiation Design

    NASA Technical Reports Server (NTRS)

    Caffrey, Jarvis A.; Rodriquez, Mitchell A.

    2018-01-01

    The development of a nuclear thermal propulsion stage requires consideration for radiation emitted from the nuclear reactor core. Applying shielding mass is an effective mitigating solution, but a better alternative is to incorporate some mitigation strategies into the propulsion stage and crew habitat. In this way, the required additional mass is minimized and the mass that must be applied may in some cases be able to serve multiple purposes. Strategies for crew compartment shielding are discussed that reduce dose from both engine and cosmic sources, and in some cases may also serve to reduce life support risks by permitting abundant water reserves. Early consideration for integrated mitigation solutions in a crewed nuclear thermal propulsion (NTP) vehicle will enable reduced radiation burden from both cosmic and nuclear sources, improved thrust-to-weight ratio or payload capacity by reducing 'dead mass' of shielding, and generally support a more robust risk posture for a NTP-powered Mars mission by permitting shorter trip times and increased water reserves.

  1. Integrated NTP Vehicle Radiation Design

    NASA Technical Reports Server (NTRS)

    Caffrey, Jarvis; Rodriquez, Mitchell

    2018-01-01

    The development of a nuclear thermal propulsion stage requires consideration for radiation emitted from the nuclear reactor core. Applying shielding mass is an effective mitigating solution, but a better alternative is to incorporate some mitigation strategies into the propulsion stage and crew habitat. In this way, the required additional mass is minimized and the mass that must be applied may in some cases be able to serve multiple purposes. Strategies for crew compartment shielding are discussed that reduce dose from both engine and cosmic sources, and in some cases may also serve to reduce life support risks by permitting abundant water reserves. Early consideration for integrated mitigation solutions in a crewed nuclear thermal propulsion (NTP) vehicle will enable reduced radiation burden from both cosmic and nuclear sources, improved thrust-to-weight ratio or payload capacity by reducing 'dead mass' of shielding, and generally support a more robust risk posture for a NTP-powered Mars mission by permitting shorter trip times and increased water reserves

  2. Synergistic Allocation of Flight Expertise on the Flight Deck (SAFEdeck): A Design Concept to Combat Mode Confusion, Complacency, and Skill Loss in the Flight Deck

    NASA Technical Reports Server (NTRS)

    Schutte, Paul; Goodrich, Kenneth; Williams, Ralph

    2016-01-01

    This paper presents a new design and function allocation philosophy between pilots and automation that seeks to support the human in mitigating innate weaknesses (e.g., memory, vigilance) while enhancing their strengths (e.g., adaptability, resourcefulness). In this new allocation strategy, called Synergistic Allocation of Flight Expertise in the Flight Deck (SAFEdeck), the automation and the human provide complementary support and backup for each other. Automation is designed to be compliant with the practices of Crew Resource Management. The human takes a more active role in the normal operation of the aircraft without adversely increasing workload over the current automation paradigm. This designed involvement encourages the pilot to be engaged and ready to respond to unexpected situations. As such, the human may be less prone to error than the current automation paradigm.

  3. KSC-97pc562

    NASA Image and Video Library

    1997-04-04

    STS-83 Payload Specialist Roger K. Crouch is assisted into his launch/entry suit in the Operations and Checkout (O&C) Building. He is the Chief Scientist of the NASA Microgravity Space and Applications Division. He also has served as a Program Scientist for previous Spacelab microgravity missions and is an expert in semiconductor crystal growth. Since Crouch has more than 25 years of experience as a materials scientist, he will be concentrating on the five physics of materials processing experiments in the Middeck Glovebox Facility on the Blue shift. He will also share the workload with Thomas by monitoring the materials furnace experiments during this time. Crouch and six fellow crew members will shortly depart the O&C and head for Launch Pad 39A, where the Space Shuttle Columbia will lift off during a launch window that opens at 2:00 p.m. EST, April 4

  4. KSC-97PC972

    NASA Image and Video Library

    1997-07-01

    STS-94 Payload Specialist Roger K. Crouch prepares to enter the Space Shuttle Columbia at Launch Pad 39A in preparation for launch. He is the Chief Scientist of the NASA Microgravity Space and Applications Division. He also has served as a Program Scientist for previous Spacelab microgravity missions and is an expert in semiconductor crystal growth. Since Crouch has more than 25 years of experience as a materials scientist, he will be concentrating on the five physics of materials processing experiments in the Middeck Glovebox Facility on the Blue shift. He will also share the workload with Thomas by monitoring the materials furnace experiments during this time. Crouch and six fellow crew members will lift off during a launch window that opens at 1:50 p.m. EDT, July 1. The launch window will open 47 minutes early to improve the opportunity to lift off before Florida summer rain showers reach the space center

  5. Enhanced vision flight deck technology for commercial aircraft low-visibility surface operations

    NASA Astrophysics Data System (ADS)

    Arthur, Jarvis J.; Norman, R. M.; Kramer, Lynda J.; Prinzel, Lawerence J.; Ellis, Kyle K.; Harrison, Stephanie J.; Comstock, J. R.

    2013-05-01

    NASA Langley Research Center and the FAA collaborated in an effort to evaluate the effect of Enhanced Vision (EV) technology display in a commercial flight deck during low visibility surface operations. Surface operations were simulated at the Memphis, TN (FAA identifier: KMEM) airfield during nighttime with 500 Runway Visual Range (RVR) in a high-fidelity, full-motion simulator. Ten commercial airline flight crews evaluated the efficacy of various EV display locations and parallax and minification effects. The research paper discusses qualitative and quantitative results of the simulation experiment, including the effect of EV display placement on visual attention, as measured by the use of non-obtrusive oculometry and pilot mental workload. The results demonstrated the potential of EV technology to enhance situation awareness which is dependent on the ease of access and location of the displays. Implications and future directions are discussed.

  6. Enhanced Vision Flight Deck Technology for Commercial Aircraft Low-Visibility Surface Operations

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J., III; Norman, R. Michael; Kramer, Lynda J.; Prinzel, Lawrence J., III; Ellis, Kyle K. E.; Harrison, Stephanie J.; Comstock, J. Ray

    2013-01-01

    NASA Langley Research Center and the FAA collaborated in an effort to evaluate the effect of Enhanced Vision (EV) technology display in a commercial flight deck during low visibility surface operations. Surface operations were simulated at the Memphis, TN (FAA identifier: KMEM) air field during nighttime with 500 Runway Visual Range (RVR) in a high-fidelity, full-motion simulator. Ten commercial airline flight crews evaluated the efficacy of various EV display locations and parallax and mini cation effects. The research paper discusses qualitative and quantitative results of the simulation experiment, including the effect of EV display placement on visual attention, as measured by the use of non-obtrusive oculometry and pilot mental workload. The results demonstrated the potential of EV technology to enhance situation awareness which is dependent on the ease of access and location of the displays. Implications and future directions are discussed.

  7. Air National Guard Fighters the Total Force (Maxwell Paper, Number 1)

    DTIC Science & Technology

    1996-05-01

    child abuse cases, 9 percent rise in spousal abuse reports, and an 11 percent rise in alcohol abuse. While these figures represent only one fighter wing, they highlight some of the potential problems that may be encountered by other active duty units as they too struggle under an ever increasing workload. These problems and a growing belief that long-term readiness may soon suffer if the workload is not reduced, convinced Defense Secretary William Perry to direct a greater role for the Air National Guard in peacetime contingency operations. The Air National Guard is no

  8. Human Mars Ascent Vehicle Configuration and Performance Sensitivities

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara P.; Thomas, Herbert D.; Stephens, Walter; Collins, Tim; Rucker, Michelle; Gernhardt, Mike; Zwack, Matthew R.; Dees, Patrick D.

    2017-01-01

    The total ascent vehicle mass drives performance requirements for the Mars descent systems and the Earth to Mars transportation elements. Minimizing Mars Ascent Vehicle (MAV) mass is a priority and minimizing the crew cabin size and mass is one way to do that. Human missions to Mars may utilize several small cabins where crew members could live for days up to a couple of weeks. A common crew cabin design that can perform in each of these applications is desired and could reduce the overall mission cost. However, for the MAV, the crew cabin size and mass can have a large impact on vehicle design and performance. This paper explores the sensitivities to trajectory, propulsion, crew cabin size and the benefits and impacts of using a common crew cabin design for the MAV. Results of these trades will be presented along with mass and performance estimates for the selected design.

  9. Burnout syndrome and weekly workload of on-call physicians: cross-sectional study.

    PubMed

    Barbosa, Fabiano Timbó; Leão, Bruna Acioly; Tavares, Gisélia Maria Sales; Santos, João Gustavo Rocha Peixoto dos

    2012-01-01

    Burnout syndrome (BS) is characterized by three dimensions: emotional exhaustion, depersonalization and reduced personal fulfillment. The objectives of this study were to evaluate a possible association between BS and weekly workload, and to describe the prevalence of BS and the sociodemographic and occupational profile of on-call physicians in Maceió. Cross-sectional study in intensive care units (ICU) at public and private hospitals in Maceió. A self-administered form was used to evaluate sociodemographic characteristics and BS through the Maslach Burnout Inventory (MBI) among 67 on-call physicians at ICUs in Maceió. Pearson's R correlation test was used to compare workload and emotional exhaustion. For other dimensions, Spearman's S test was used (P < 0.05). Other variables were represented by simple frequencies. The 95% confidence interval was calculated for each variable. Among the physicians studied, 55.22% were female and the mean age was 43.9 ± 8.95 years. The mean weekly workload on call was 43.85 ± 24.49 hours. The frequency of high scores in at least one of the three dimensions of MBI was 70.14%. Despite the high prevalence of BS, especially among physicians who did not practice regular physical activity, our data did not indicate any significant correlation between weekly workload and any of the three dimensions of BS in this sample. The high prevalence of BS draws attention to the importance of investigating other possible causes, in order to prevent and adequately treat it.

  10. International Space Station USOS Crew Quarters Ventilation and Acoustic Design Implementation

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.

    2009-01-01

    The International Space Station (ISS) United States Operational Segment (USOS) has four permanent rack sized ISS Crew Quarters (CQ) providing a private crewmember space. The CQ uses Node 2 cabin air for ventilation/thermal cooling, as opposed to conditioned ducted air from the ISS Temperature Humidity Control System or the ISS fluid cooling loop connections. Consequently, CQ can only increase the air flow rate to reduce the temperature delta between the cabin and the CQ interior. However, increasing airflow causes increased acoustic noise so efficient airflow distribution is an important design parameter. The CQ utilized a two fan push-pull configuration to ensure fresh air at the crewmember s head position and reduce acoustic exposure. The CQ interior needs to be below Noise Curve 40 (NC-40). The CQ ventilation ducts are open to the significantly louder Node 2 cabin aisle way which required significantly acoustic mitigation controls. The design implementation of the CQ ventilation system and acoustic mitigation are very inter-related and require consideration of crew comfort balanced with use of interior habitable volume, accommodation of fan failures, and possible crew uses that impact ventilation and acoustic performance. This paper illustrates the types of model analysis, assumptions, vehicle interactions, and trade-offs required for CQ ventilation and acoustics. Additionally, on-orbit ventilation system performance and initial crew feedback is presented. This approach is applicable to any private enclosed space that the crew will occupy.

  11. Nursing workload in the acute-care setting: A concept analysis of nursing workload.

    PubMed

    Swiger, Pauline A; Vance, David E; Patrician, Patricia A

    2016-01-01

    A pressing need in the field of nursing is the identification of optimal staffing levels to ensure patient safety. Effective staffing requires comprehensive measurement of nursing workload to determine staffing needs. Issues surrounding nursing workload are complex, and the volume of workload is growing; however, many workload systems do not consider the numerous workload factors that impact nursing today. The purpose of this concept analysis was to better understand and define nursing workload as it relates to the acute-care setting. Rogers' evolutionary method was used for this literature-based concept analysis. Nursing workload is influenced by more than patient care. The proposed definition of nursing workload may help leaders identify workload that is unnoticed and unmeasured. These findings could help leaders consider and identify workload that is unnecessary, redundant, or more appropriate for assignment to other members of the health care team. Published by Elsevier Inc.

  12. Status of Commercial Programs at NASA

    NASA Technical Reports Server (NTRS)

    Groen, Frank

    2011-01-01

    NASA's strategy is two-fold: (1) Use Space Act Agreements to support the development of commercial crew transportation capabilities. (2) Use FAR-based contracts for the certification of commercially developed capabilities and for the procurement of crew transportation services to and from the ISS to meet NASA requirements. Focus is on reducing the risk and uncertainties of the development environment and on the incentives provided through competition by separating the design and early development content from the longer-term CTS Certification activities. CCP expects to develop, demonstrate, and certify U.S. commercial crew space transportation capabilities that meet ISS crew transportation needs by the end of FY 2017.

  13. Air Traffic Management Technology Demostration Phase 1 (ATD) Interval Management for Near-Term Operations Validation of Acceptability (IM-NOVA) Experiment

    NASA Technical Reports Server (NTRS)

    Kibler, Jennifer L.; Wilson, Sara R.; Hubbs, Clay E.; Smail, James W.

    2015-01-01

    The Interval Management for Near-term Operations Validation of Acceptability (IM-NOVA) experiment was conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) in support of the NASA Airspace Systems Program's Air Traffic Management Technology Demonstration-1 (ATD-1). ATD-1 is intended to showcase an integrated set of technologies that provide an efficient arrival solution for managing aircraft using Next Generation Air Transportation System (NextGen) surveillance, navigation, procedures, and automation for both airborne and ground-based systems. The goal of the IMNOVA experiment was to assess if procedures outlined by the ATD-1 Concept of Operations were acceptable to and feasible for use by flight crews in a voice communications environment when used with a minimum set of Flight Deck-based Interval Management (FIM) equipment and a prototype crew interface. To investigate an integrated arrival solution using ground-based air traffic control tools and aircraft Automatic Dependent Surveillance-Broadcast (ADS-B) tools, the LaRC FIM system and the Traffic Management Advisor with Terminal Metering and Controller Managed Spacing tools developed at the NASA Ames Research Center (ARC) were integrated into LaRC's Air Traffic Operations Laboratory (ATOL). Data were collected from 10 crews of current 757/767 pilots asked to fly a high-fidelity, fixed-based simulator during scenarios conducted within an airspace environment modeled on the Dallas-Fort Worth (DFW) Terminal Radar Approach Control area. The aircraft simulator was equipped with the Airborne Spacing for Terminal Area Routes (ASTAR) algorithm and a FIM crew interface consisting of electronic flight bags and ADS-B guidance displays. Researchers used "pseudo-pilot" stations to control 24 simulated aircraft that provided multiple air traffic flows into the DFW International Airport, and recently retired DFW air traffic controllers served as confederate Center, Feeder, Final, and Tower controllers. Analyses of qualitative data revealed that the procedures used by flight crews to receive and execute interval management (IM) clearances in a voice communications environment were logical, easy to follow, did not contain any missing or extraneous steps, and required the use of an acceptable workload level. The majority of the pilot participants found the IM concept, in addition to the proposed FIM crew procedures, to be acceptable and indicated that the ATD-1 procedures could be successfully executed in a nearterm NextGen environment. Analyses of quantitative data revealed that the proposed procedures were feasible for use by flight crews in a voice communications environment. The delivery accuracy at the achieve-by point was within +/-5 sec, and the delivery precision was less than 5 sec. Furthermore, FIM speed commands occurred at a rate of less than one per minute, and pilots found the frequency of the speed commands to be acceptable at all times throughout the experiment scenarios.

  14. Tanker avionics and aircrew complement evaluation.

    PubMed

    Moss, R W; Barbato, G J

    1982-11-01

    This paper describes an effort to determine control and display criteria for operating SAC's KC-135 tanker with a reduced crew complement. The Tanker Avionics and Aircrew Complement Evaluation (TAACE) Program was a four-phase effort addressing the control and display design issues associated with operating the tanker without the navigator position. Discussed are: the mission analysis phase, during which the tanker's operational responsibilities were defined and documented; the design phase, during which alternative crew station design concepts were developed; the mockup evaluation phase, which accomplished initial SAC crew member assessment of cockpit designs; and the simulation phase, which validated the useability of the crew system redesign. The paper also describes a recommended crew station configuration and discusses some of the philosophy underlying the selection of cockpit hardware and systems.

  15. Effect of Beetroot Juice Supplementation on Aerobic Response during Swimming

    PubMed Central

    Pinna, Marco; Roberto, Silvana; Milia, Raffaele; Marongiu, Elisabetta; Olla, Sergio; Loi, Andrea; Migliaccio, Gian Mario; Padulo, Johnny; Orlandi, Carmine; Tocco, Filippo; Concu, Alberto; Crisafulli, Antonio

    2014-01-01

    The beneficial effects of beetroot juice supplementation (BJS) have been tested during cycling, walking, and running. The purpose of the present study was to investigate whether BJS can also improve performance in swimmers. Fourteen moderately trained male master swimmers were recruited and underwent two incremental swimming tests randomly assigned in a pool during which workload, oxygen uptake (VO2), carbon dioxide production (VCO2), pulmonary ventilation (VE), and aerobic energy cost (AEC) of swimming were measured. One was a control swimming test (CSW) and the other a swimming test after six days of BJS (0.5l/day organic beetroot juice containing about 5.5 mmol of NO3−). Results show that workload at anaerobic threshold was significantly increased by BJS as compared to the CSW test (6.3 ± 1 and 6.7 ± 1.1 kg during the CSW and the BJS test respectively). Moreover, AEC was significantly reduced during the BJS test (1.9 ± 0.5 during the SW test vs. 1.7 ± 0.3 kcal·kg−1·h−1 during the BJS test). The other variables lacked a statistically significant effect with BJS. The present investigation provides evidence that BJS positively affects performance of swimmers as it reduces the AEC and increases the workload at anaerobic threshold. PMID:24481133

  16. Effect of beetroot juice supplementation on aerobic response during swimming.

    PubMed

    Pinna, Marco; Roberto, Silvana; Milia, Raffaele; Marongiu, Elisabetta; Olla, Sergio; Loi, Andrea; Migliaccio, Gian Mario; Padulo, Johnny; Orlandi, Carmine; Tocco, Filippo; Concu, Alberto; Crisafulli, Antonio

    2014-01-29

    The beneficial effects of beetroot juice supplementation (BJS) have been tested during cycling, walking, and running. The purpose of the present study was to investigate whether BJS can also improve performance in swimmers. Fourteen moderately trained male master swimmers were recruited and underwent two incremental swimming tests randomly assigned in a pool during which workload, oxygen uptake (VO₂), carbon dioxide production (VCO₂), pulmonary ventilation (VE), and aerobic energy cost (AEC) of swimming were measured. One was a control swimming test (CSW) and the other a swimming test after six days of BJS (0.5 l/day organic beetroot juice containing about 5.5 mmol of NO₃⁻). Results show that workload at anaerobic threshold was significantly increased by BJS as compared to the CSW test (6.3 ± 1 and 6.7 ± 1.1 kg during the CSW and the BJS test respectively). Moreover, AEC was significantly reduced during the BJS test (1.9 ± 0.5 during the SW test vs. 1.7 ± 0.3 kcal·kg⁻¹1·h⁻¹ during the BJS test). The other variables lacked a statistically significant effect with BJS. The present investigation provides evidence that BJS positively affects performance of swimmers as it reduces the AEC and increases the workload at anaerobic threshold.

  17. Less is sometimes more: a comparison of distance-control and navigated-control concepts of image-guided navigation support for surgeons.

    PubMed

    Luz, Maria; Manzey, Dietrich; Modemann, Susanne; Strauss, Gero

    2015-01-01

    Image-guided navigation (IGN) systems provide automation support of intra-operative information analysis and decision-making for surgeons. Previous research showed that navigated-control (NC) systems which represent high levels of decision-support and directly intervene in surgeons' workflow provide benefits with respect to patient safety and surgeons' physiological stress but also involve several cost effects (e.g. prolonged surgery duration, reduced secondary-task performance). It was hypothesised that less automated distance-control (DC) systems would provide a better solution in terms of human performance consequences. N = 18 surgeons performed a simulated mastoidectomy with NC, DC and without IGN assistance. Effects on surgical performance, physiological effort, workload and situation awareness (SA) were compared. As expected, DC technology had the same benefits as the NC system but also led to less unwanted side effects on surgery duration, subjective workload and SA. This suggests that IGN systems just providing information analysis support are overall more beneficial than higher automated decision-support. This study investigates human performance consequences of different concepts of IGN support for surgeons. Less automated DC systems turned out to provide advantages for patient safety and surgeons' stress similar to higher automated NC systems with, at the same time, reduced negative consequences on surgery time and subjective workload.

  18. Cardiorespiratory effects of inelastic chest wall restriction.

    PubMed

    Miller, Jordan D; Beck, Kenneth C; Joyner, Michael J; Brice, A Glenn; Johnson, Bruce D

    2002-06-01

    We examined the effects of chest wall restriction (CWR) on cardiorespiratory function at rest and during exercise in healthy subjects in an attempt to approximate the cardiorespiratory interactions observed in clinical conditions that result in restrictive lung and/or chest wall changes and a reduced intrathoracic space. Canvas straps were applied around the thorax and abdomen so that vital capacity was reduced by >35%. Data were acquired at rest and during cycle ergometry at 25 and 45% of peak workloads. CWR elicited significant increases in the flow-resistive work performed on the lung (160%) and the gastric pressure-time integral (>400%) at the higher workload, but it resulted in a decrease in the elastic work performed on the lung (56%) compared with control conditions. With CWR, heart rate increased and stroke volume (SV) fell, resulting in >10% fall in cardiac output at rest and during exercise at matched workloads (P < 0.05). Blood pressure and catecholamines were significantly elevated during CWR exercise conditions (P < 0.05). We conclude that CWR significantly impairs SV during exercise and that a compensatory increase in heart rate does not prevent a significant reduction in cardiac output. O(2) consumption appears to be maintained via increased extraction and a redistribution of blood flow via sympathetic activation.

  19. Lean production design using value stream mapping and ergonomics approach for waste elimination on buffing panel upright process

    NASA Astrophysics Data System (ADS)

    Suryoputro, M. R.; Sari, A. D.; Burhanudin, R.; Sugarindra, M.

    2017-12-01

    This study discussed the implementation of ergonomics and value stream mapping issues to reduce the existing waste in the process of buffing upright panel in the XYZ music manufacturing company. Aimed to identify the 9 waste based on the identification in terms of production processes and ergonomic factors, namely environmental health and safety, defects, overproduction, waiting, not utilizing employee knowledge skill and ability, transportation, inventory, motion, and excess process. In addition, ergonomics factors were identified, for example posture using REBA, job safety analysis, and physical workload. This study results indicated that the process is having 21.4% of the potential dangers that could not be accepted and thus potentially lead to lost time. Continued with the physical workload, the score of % cardiovascular load value is still below 30%, which means that the physical workload is normal and allows the addition of work. Meanwhile, in the calculation of posture investigation, the REBA resulted that there was a motion waste identified on the edge buff machine and ryoto with the score of 10 and 8. In conclusion, the results shown that there were 20 overall waste produced, then thus waste were reduced based on the identification and discussion of proposed improvements.

  20. Crew Exercise Fact Sheet

    NASA Technical Reports Server (NTRS)

    Rafalik, Kerrie

    2017-01-01

    Johnson Space Center (JSC) provides research, engineering, development, integration, and testing of hardware and software technologies for exercise systems applications in support of human spaceflight. This includes sustaining the current suite of on-orbit exercise devices by reducing maintenance, addressing obsolescence, and increasing reliability through creative engineering solutions. Advanced exercise systems technology development efforts focus on the sustainment of crew's physical condition beyond Low Earth Orbit for extended mission durations with significantly reduced mass, volume, and power consumption when compared to the ISS.

  1. Crew Exercise

    NASA Technical Reports Server (NTRS)

    Rafalik, Kerrie K.

    2017-01-01

    Johnson Space Center (JSC) provides research, engineering, development, integration, and testing of hardware and software technologies for exercise systems applications in support of human spaceflight. This includes sustaining the current suite of on-orbit exercise devices by reducing maintenance, addressing obsolescence, and increasing reliability through creative engineering solutions. Advanced exercise systems technology development efforts focus on the sustainment of crew's physical condition beyond Low Earth Orbit for extended mission durations with significantly reduced mass, volume, and power consumption when compared to the ISS.

  2. Extending total parenteral nutrition hang time in the neonatal intensive care unit: is it safe and cost effective?

    PubMed

    Balegar V, Kiran Kumar; Azeem, Mohammad Irfan; Spence, Kaye; Badawi, Nadia

    2013-01-01

    To investigate the effects of prolonging hang time of total parenteral nutrition (TPN) fluid on central line-associated blood stream infection (CLABSI), TPN-related cost and nursing workload. A before-after observational study comparing the practice of hanging TPN bags for 48 h (6 February 2009-5 February 2010) versus 24 h (6 February 2008-5 February 2009) in a tertiary neonatal intensive care unit was conducted. The main outcome measures were CLABSI, TPN-related expenses and nursing workload. One hundred thirty-six infants received 24-h TPN bags and 124 received 48-h TPN bags. Median (inter-quartile range) gestation (37 weeks (33,39) vs. 36 weeks (33,39)), mean (±standard deviation) admission weight of 2442 g (±101) versus 2476 g (±104) and TPN duration (9.7 days (±12.7) vs. 9.9 days (±13.4)) were similar (P > 0.05) between the 24- and 48-h TPN groups. There was no increase in CLABSI with longer hang time (0.8 vs. 0.4 per 1000 line days in the 24-h vs. 48-h group; P < 0.05). Annual cost saving using 48-h TPN was AUD 97,603.00. By using 48-h TPN, 68.3% of nurses indicated that their workload decreased and 80.5% indicated that time spent changing TPN reduced. Extending TPN hang time from 24 to 48 h did not alter CLABSI rate and was associated with a reduced TPN-related cost and perceived nursing workload. Larger randomised controlled trials are needed to more clearly delineate these effects. © 2012 The Authors. Journal of Paediatrics and Child Health © 2012 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  3. Active and passive fatigue in simulated driving: discriminating styles of workload regulation and their safety impacts.

    PubMed

    Saxby, Dyani J; Matthews, Gerald; Warm, Joel S; Hitchcock, Edward M; Neubauer, Catherine

    2013-12-01

    Despite the known dangers of driver fatigue, it is a difficult construct to study empirically. Different forms of task-induced fatigue may differ in their effects on driver performance and safety. Desmond and Hancock (2001) defined active and passive fatigue states that reflect different styles of workload regulation. In 2 driving simulator studies we investigated the multidimensional subjective states and safety outcomes associated with active and passive fatigue. Wind gusts were used to induce active fatigue, and full vehicle automation to induce passive fatigue. Drive duration was independently manipulated to track the development of fatigue states over time. Participants were undergraduate students. Study 1 (N = 108) focused on subjective response and associated cognitive stress processes, while Study 2 (N = 168) tested fatigue effects on vehicle control and alertness. In both studies the 2 fatigue manipulations produced different patterns of subjective response reflecting different styles of workload regulation, appraisal, and coping. Active fatigue was associated with distress, overload, and heightened coping efforts, whereas passive fatigue corresponded to large-magnitude declines in task engagement, cognitive underload, and reduced challenge appraisal. Study 2 showed that only passive fatigue reduced alertness, operationalized as speed of braking and steering responses to an emergency event. Passive fatigue also increased crash probability, but did not affect a measure of vehicle control. Findings support theories that see fatigue as an outcome of strategies for managing workload. The distinction between active and passive fatigue is important for assessment of fatigue and for evaluating automated driving systems which may induce dangerous levels of passive fatigue. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  4. Cardiac cycle-synchronized electrical muscle stimulator for lower limb training with the potential to reduce the heart's pumping workload

    PubMed Central

    Matsuse, Hiroo; Akimoto, Ryuji; Kamiya, Shiro; Moritani, Toshio; Sasaki, Motoki; Ishizaki, Yuta; Ohtsuka, Masanori; Nakayoshi, Takaharu; Ueno, Takafumi; Shiba, Naoto; Fukumoto, Yoshihiro

    2017-01-01

    Background The lower limb muscle may play an important role in decreasing the heart’s pumping workload. Aging and inactivity cause atrophy and weakness of the muscle, leading to a loss of the heart-assisting role. An electrical lower limb muscle stimulator can prevent atrophy and weakness more effectively than conventional resistance training; however, it has been reported to increase the heart’s pumping workload in some situations. Therefore, more effective tools should be developed. Methods We newly developed a cardiac cycle-synchronized electrical lower limb muscle stimulator by combining a commercially available electrocardiogram monitor and belt electrode skeletal muscle electrical stimulator, making it possible to achieve strong and wide but not painful muscle contractions. Then, we tested the stimulator in 11 healthy volunteers to determine whether the special equipment enabled lower limb muscle training without harming the hemodynamics using plethysmography and a percutaneous cardiac output analyzer. Results In 9 of 11 subjects, the stimulator generated diastolic augmentation waves on the dicrotic notches and end-diastolic pressure reduction waves on the plethysmogram waveforms of the brachial artery, showing analogous waveforms in the intra-aortic balloon pumping heart-assisting therapy. The heart rate, stroke volume, and cardiac output significantly increased during the stimulation. There was no change in the systolic or diastolic blood pressure during the stimulation. Conclusion Cardiac cycle-synchronized electrical muscle stimulation for the lower limbs may enable muscle training without harmfully influencing the hemodynamics and with a potential to reduce the heart’s pumping workload, suggesting a promising tool for effectively treating both locomotor and cardiovascular disorders. PMID:29117189

  5. A comparison of policies on nurse faculty workload in the United States.

    PubMed

    Ellis, Peggy A

    2013-01-01

    This article describes nurse faculty workload policies from across the nation in order to assess current practice. There is a well-documented shortage of nursing faculty leading to an increase in workload demands. Increases in faculty workload results in difficulties with work-life balance and dissatisfaction threatening to make nursing education less attractive to young faculty. In order to begin an examination of faculty workload in nursing, existing workloads must be known. Faculty workload data were solicited from nursing programs nationwide and analyzed to determine the current workloads. The most common faculty teaching workload reported overall for nursing is 12 credit hours per semester; however, some variations exist. Consideration should be given to the multiple components of the faculty workload. Research is needed to address the most effective and efficient workload allocation for nursing faculty.

  6. Onboard Determination of Vehicle Glide Capability for Shuttle Abort Flight Managment (SAFM)

    NASA Technical Reports Server (NTRS)

    Straube, Timothy; Jackson, Mark; Fill, Thomas; Nemeth, Scott

    2002-01-01

    When one or more main engines fail during ascent, the flight crew of the Space Shuttle must make several critical decisions and accurately perform a series of abort procedures. One of the most important decisions for many aborts is the selection ofa landing site. Several factors influence the ability to reach a landing site, including the spacecraft point of atmospheric entry, the energy state at atmospheric entry, the vehicle glide capability from that energy state, and whether one or more suitable landing sites are within the glide capability. Energy assessment is further complicated by the fact that phugoid oscillations in total energy influence glide capability. Once the glide capability is known, the crew must select the "best" site option based upon glide capability and landing site conditions and facilities. Since most of these factors cannot currently be assessed by the crew in flight, extensive planning is required prior to each mission to script a variety of procedures based upon spacecraft velocity at the point of engine failure (or failures). The results of this preflight planning are expressed in tables and diagrams on mission-specific cockpit checklists. Crew checklist procedures involve leafing through several pages of instructions and navigating a decision tree for site selection and flight procedures - all during a time critical abort situation. With the advent of the Cockpit Avionics Upgrade (CAU), the Shuttle will have increased on-board computational power to help alleviate crew workload during aborts and provide valuable situational awareness during nominal operations. One application baselined for the CAU computers is Shuttle Abort Flight Management (SAFM), whose requirements have been designed and prototyped. The SAFM application includes powered and glided flight algorithms. This paper describes the glided flight algorithm which is dispatched by SAFM to determine the vehicle glide capability and make recommendations to the crew for site selection as well as to monitor glide capability while in route to the selected site. Background is provided on Shuttle entry guidance as well as the various types of Shuttle aborts. SAFM entry requirements and cockpit disp lays are discussed briefly to provide background for Glided Flight algorithm design considerations. The central principal of the Glided Flight algorithm is the use of energy-over-weight (EOW) curves to determine range and crossrange boundaries. The major challenges of this technique are exo-atmospheric flight, and phugoid oscillations in energy. During exo-atmospheric flight, energy is constant, so vehicle EOW is not sufficient to determine glide capability. The paper describes how the exo-atmospheric problem is solved by propagating the vehicle state to an "atmospheric pullout" state defined by Shuttle guidance parameters.

  7. Manned Mars mission communication and data management systems

    NASA Technical Reports Server (NTRS)

    White, Ronald E.

    1986-01-01

    A manned Mars mission will involve a small crew and many complex tasks. The productivity of the crew and the entire mission will depend significantly on effective automation of these tasks and the ease with which the crew can interface with them. The technology to support a manned Mars mission is available today; however, evolving software and electronic technology are enabling many interesting possibilities for increasing productivity and safety while reducing life cycle cost. Some of these advanced technologies are identified.

  8. Position verification systems for an automated highway system.

    DOT National Transportation Integrated Search

    2015-03-01

    Automated vehicles promote road safety, fuel efficiency, and reduced travel time by decreasing traffic : congestion and driver workload. In a vehicle platoon (grouping vehicles to increase road capacity by : managing distance between vehicles using e...

  9. Lowering thresholds for speed limit enforcement impairs peripheral object detection and increases driver subjective workload.

    PubMed

    Bowden, Vanessa K; Loft, Shayne; Tatasciore, Monica; Visser, Troy A W

    2017-01-01

    Speed enforcement reduces incidences of speeding, thus reducing traffic accidents. Accordingly, it has been argued that stricter speed enforcement thresholds could further improve road safety. Effective speed monitoring however requires driver attention and effort, and human information-processing capacity is limited. Emphasizing speed monitoring may therefore reduce resource availability for other aspects of safe vehicle operation. We investigated whether lowering enforcement thresholds in a simulator setting would introduce further competition for limited cognitive and visual resources. Eighty-four young adult participants drove under conditions where they could be fined for travelling 1, 6, or 11km/h over a 50km/h speed-limit. Stricter speed enforcement led to greater subjective workload and significant decrements in peripheral object detection. These data indicate that the benefits of reduced speeding with stricter enforcement may be at least partially offset by greater mental demands on drivers, reducing their responses to safety-critical stimuli on the road. It is likely these results under-estimate the impact of stricter speed enforcement on real-world drivers who experience significantly greater pressures to drive at or above the speed limit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Workload and Stress in New Zealand Universities.

    ERIC Educational Resources Information Center

    Boyd, Sally; Wylie, Cathy

    This study examined the workloads of academic, general, support, library, and technical staff of New Zealand universities. It focused on current levels of workload, changes in workload levels and content, connections between workload and stress, and staff attitudes towards the effects of workload changes and educational reforms on the quality of…

  11. 77 FR 40832 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-11

    ... ability of the flight crew to read primary displays for airplane attitude, altitude, or airspeed, and... displays for airplane attitude, altitude, or airspeed, and consequently reduce the ability of the flight...) malfunctions, which could affect the ability of the flight crew to read primary displays for airplane attitude...

  12. Avionics for a Small Satellite

    NASA Technical Reports Server (NTRS)

    Abbott, Larry; Jochim, David; Schuler, Robert

    2001-01-01

    This paper discusses a small. seven and a half (7.5) inch diameter. satellite that NASA-JSC is developing as a technology demonstrator for an astronaut assistant free flyer. The Free Flyer is designed to off load flight crew work load by performing inspections of the exterior of Space Shuttle or International Space Station. The Free Flyer is designed to be operated by the flight crew thereby reducing the number of Extra Vehicle Activities (EVA) or by an astronaut on the ground further reducing crew work load. The paper focuses on the design constraint of a small satellite and the technology approach used to achieve the set of high performance requirements specified for the Free Flyer. Particular attention is paid to the processor card as it is the heart and system integration point of the Free Flyer.

  13. MAT - MULTI-ATTRIBUTE TASK BATTERY FOR HUMAN OPERATOR WORKLOAD AND STRATEGIC BEHAVIOR RESEARCH

    NASA Technical Reports Server (NTRS)

    Comstock, J. R.

    1994-01-01

    MAT, a Multi-Attribute Task battery, gives the researcher the capability of performing multi-task workload and performance experiments. The battery provides a benchmark set of tasks for use in a wide range of laboratory studies of operator performance and workload. MAT incorporates tasks analogous to activities that aircraft crew members perform in flight, while providing a high degree of experiment control, performance data on each subtask, and freedom to use non-pilot test subjects. The MAT battery primary display is composed of four separate task windows which are as follows: a monitoring task window which includes gauges and warning lights, a tracking task window for the demands of manual control, a communication task window to simulate air traffic control communications, and a resource management task window which permits maintaining target levels on a fuel management task. In addition, a scheduling task window gives the researcher information about future task demands. The battery also provides the option of manual or automated control of tasks. The task generates performance data for each subtask. The task battery may be paused and onscreen workload rating scales presented to the subject. The MAT battery was designed to use a serially linked second computer to generate the voice messages for the Communications task. The MATREMX program and support files, which are included in the MAT package, were designed to work with the Heath Voice Card (Model HV-2000, available through the Heath Company, Benton Harbor, Michigan 49022); however, the MATREMX program and support files may easily be modified to work with other voice synthesizer or digitizer cards. The MAT battery task computer may also be used independent of the voice computer if no computer synthesized voice messages are desired or if some other method of presenting auditory messages is devised. MAT is written in QuickBasic and assembly language for IBM PC series and compatible computers running MS-DOS. The code in MAT is written for Microsoft QuickBasic 4.5 and Microsoft Macro Assembler 5.1. This package requires a joystick and EGA or VGA color graphics. An 80286, 386, or 486 processor machine is highly recommended. The standard distribution medium for MAT is a 5.25 inch 360K MS-DOS format diskette. The files are compressed using the PKZIP file compression utility. PKUNZIP is included on the distribution diskette. MAT was developed in 1992. IBM PC is a registered trademark of International Business Machines. MS-DOS, Microsoft QuickBasic, and Microsoft Macro Assembler are registered trademarks of Microsoft Corporation. PKZIP and PKUNZIP are registered trademarks of PKWare, Inc.

  14. CO2 Washout Testing of the REI and EM-ACES Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kate; Norcross, Jason

    2011-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy and eventually unconsciousness or even death. Symptoms depend on several factors including partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject and physiological differences between subjects. The objective of this test was to characterize inspired oronasal ppCO2 in the Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES) across a range of workloads and flow rates for which ground testing is nominally performed. Three subjects were tested in each suit. In all but one case, each subject performed the test twice to allow for comparison between tests. Suit pressure was maintained at 4.3 psid. Subjects wore the suit while resting, performing arm ergometry, and walking on a treadmill to generate metabolic workloads of approximately 500 to 3000 BTU/hr. Supply airflow was varied at 6, 5 and 4 actual cubic feet per minute (ACFM) at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the total CO2 production measured by an additional gas analyzer at the air outlet from the suit. Real-time metabolic rate was used to adjust the arm ergometer or treadmill workload to meet target metabolic rates. In both suits, inspired CO2 was primarily affected by the metabolic rate of the subject, with increased metabolic rate resulting in increased inspired ppCO2. Suit flow rate also affected inspired ppCO2, with decreased flow causing small increases in inspired ppCO2. The effect of flow was more evident at metabolic rates greater than or equal to 2000 BTU/hr. Results were consistent between suits, with the EM-ACES demonstrating slightly better CO2 washout than the REI suit, but not statistically significant. Regression equations were developed for each suit to predict the mean inspired ppCO2 as a function of metabolic rate and suit flow rate. This paper provides detailed descriptions of the test hardware, methodology and results, as well as implications for future ground testing in the REI and EM-ACES.

  15. Maximum Movement Workloads and High-Intensity Workload Demands by Position in NCAA Division I Collegiate Football.

    PubMed

    Sanders, Gabriel J; Roll, Brad; Peacock, Corey A; Kollock, Roger O

    2018-05-02

    Sanders, GJ, Roll, B, Peacock, CA, and Kollock, RO. Maximum movement workloads and high-intensity workload demands by position in NCAA division I collegiate football. J Strength Cond Res XX(X): 000-000, 2018-The purpose of the study was to quantify the average and maximum (i.e., peak) movement workloads, and the percent of those workloads performed at high intensity by NCAA division I football athletes during competitive games. Using global positioning system devices (Catapult Sports), low, moderate, and high and total multidirectional movement workloads were quantified by each position. Strategically achieving maximal workloads may improve both conditioning and rehabilitation protocols for athletes as they prepare for competition or return to play after an injury. A total of 40 football athletes were included in the analysis. For the data to be included, athletes were required to participate in ≥75% of the offensive or defensive snaps for any given game. There was a total of 286 data downloads from 13 different games for 8 different football positions. Data were calculated and compared by offensive and defensive position to establish the mean, SD, and maximum workloads during competitive games. The percent high-intensity workload profile was established to assess the total number and percent of high-intensity movement workloads by position. The profile was calculated by dividing a position's maximal high-intensity movement workload by the total (e.g., sum of maximal low, moderate, and high-intensity movements) movement workload. One-way analysis of variances revealed that there was a main effect of football position for total movement workloads and the percent of workloads performed at high intensities (p ≤ 0.025 for all). Maximal high-intensity workloads were 1.6-4.3 times greater than average high-intensity workloads, and the percent of total workloads performed at high intensities varied greatly by position. Strategically training for and using maximal movement workloads can help ensure that athletes are achieving workloads that are similar to the greatest demands of a competitive game.

  16. Manual and automatic flight control during severe turbulence penetration

    NASA Technical Reports Server (NTRS)

    Johnston, D. E.; Klein, R. H.; Hoh, R. H.

    1976-01-01

    An analytical and experimental investigation of possible contributing factors in jet aircraft turbulence upsets was conducted. Major contributing factors identified included autopilot and display deficiencies, the large aircraft inertia and associated long response time, and excessive pilot workload. An integrated flight and thrust energy management director system was synthesized. The system was incorporated in a moving-base simulation and evaluated using highly experienced airline pilots. The evaluation included comparison of pilot workload and flight performance during severe turbulence penetration utilizing four control/display concepts: manual control with conventional full panel display, conventional autopilot (A/P-A) with conventional full panel display, improved autopilot (A/P-B) with conventional full panel display plus thrust director display, and longitudinal flight director with conventional full panel display plus thrust director display. Simulation results show improved performance, reduced pilot workload, and a pilot preference for the autopilot system controlling to the flight director command and manual control of thrust following the trim thrust director.

  17. Summary of Tactile User Interfaces Techniques and Systems

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly

    2005-01-01

    Mental workload can be de.ned as the ratio of demand to allocated resources. Multiple-resource theory stresses the importance of distribution of tasks and information across various human sensory channels to reduce mental workload. One sensory channel that has been of interest since the late 1800s is touch. Unlike the more typical displays that target vision or hearing, tactile displays present information to the user s sense of touch. We present a summary of different methods for tactile display, historic and more recent systems that incorporate tactile display for information presentation, advantages and disadvantages of targeting the tactile channel, and future directions in tactile display research.

  18. Summary of Tactile User Interfaces Techniques and Systems

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly

    2004-01-01

    Mental workload can be defined as the ratio of demand to allocated resources. Multiple- resource theory stresses the importance of distribution of tasks and information across various sensory channels of the human to reduce mental workload. One sensory channel that has been of interest since the late 1800s is touch. Unlike the more typical displays that target vision or hearing, tactile displays present information to the user s sense of touch. We present a summary of different methods for tactile display; historic and more recent systems that incorporate tactile display for information presentation; advantages and disadvantages of targeting the tactile channel; and future directions in tactile display research.

  19. The role of communications, socio-psychological, and personality factors in the maintenance of crew coordination

    NASA Technical Reports Server (NTRS)

    Foushee, H. C.

    1981-01-01

    The influence of group dynamics on the capability of aircraft crew members to make full use of the resources available on the flight deck in order to maintain flight safety is discussed. Instances of crewmembers withholding altimeter or heading information from the captain are cited as examples of domineering attitudes from command pilots and overconscientiousness on the parts of copilots, who may refuse to relay information forcefully enough or to take control of the aircraft in the case of pilot incapacitation. NASA studies of crew performance in controlled, simulator settings, concentrating on communication, decision making, crew interaction, and integration showed that efficient communication reduced errors. Acknowledgements served to encourage correct communication. The best crew performance is suggested to occur with personnel who are capable of both goal and group orientation. Finally, one bad effect of computer controlled flight is cited to be the tendency of the flight crew to think that someone else is taking care of difficulties in threatening situations.

  20. Optimized bioregenerative space diet selection with crew choice

    NASA Technical Reports Server (NTRS)

    Vicens, Carrie; Wang, Carolyn; Olabi, Ammar; Jackson, Peter; Hunter, Jean

    2003-01-01

    Previous studies on optimization of crew diets have not accounted for choice. A diet selection model with crew choice was developed. Scenario analyses were conducted to assess the feasibility and cost of certain crew preferences, such as preferences for numerous-desserts, high-salt, and high-acceptability foods. For comparison purposes, a no-choice and a random-choice scenario were considered. The model was found to be feasible in terms of food variety and overall costs. The numerous-desserts, high-acceptability, and random-choice scenarios all resulted in feasible solutions costing between 13.2 and 17.3 kg ESM/person-day. Only the high-sodium scenario yielded an infeasible solution. This occurred when the foods highest in salt content were selected for the crew-choice portion of the diet. This infeasibility can be avoided by limiting the total sodium content in the crew-choice portion of the diet. Cost savings were found by reducing food variety in scenarios where the preference bias strongly affected nutritional content.

  1. The effects of speech controls on performance in advanced helicopters in a double stimulation paradigm

    NASA Technical Reports Server (NTRS)

    Bortolussi, Michael R.; Vidulich, Michael A.

    1991-01-01

    The potential benefit of speech as a control modality has been investigated with mixed results. Earlier studies suggests that speech controls can reduce the potential of manual control overloads and improve time-sharing performance. However, these benefits were not without costs. Pilots reported higher workload levels associated with the use of speech controls. To further investigate these previous findings, an experiment was conducted in a simulation of an advanced single-pilot, scout/attack helicopter at NASA-Ames' ICAB (interchangeable cab) facility. Objective performance data suggested that speech control modality was effective in reducing interference of discrete, time-shared responses during continuous flight control activity. Subjective ratings, however, indicated that the speech control modality increased workload. Post-flight debriefing indicated that these results were mainly due to the increased effort to speak precisely to a less than perfect voice recognition system.

  2. LED instrument approach instruction display

    NASA Technical Reports Server (NTRS)

    Meredith, B. D.; Kelly, W. L., IV; Crouch, R. K.

    1979-01-01

    A display employing light emitting diodes (LED's) was developed to demonstrate the feasibility of such displays for presenting landing and navigation information to reduce the workload of general aviation pilots during IFR flight. The display consists of a paper tape reader, digital memory, control electronics, digital latches, and LED alphanumeric displays. A presentable digital countdown clock-timer is included as part of the system to provide a convenient means of monitoring time intervals for precise flight navigation. The system is a limited capability prototype assembled to test pilot reaction to such a device under simulated IFR operation. Pilot opinion indicates that the display is helpful in reducing the IFR pilots workload when used with a runway approach plate. However, the development of a compact, low power second generation display was recommended which could present several instructions simultaneously and provide information update capability. A microprocessor-based display could fulfill these requirements.

  3. Spikes in acute workload are associated with increased injury risk in elite cricket fast bowlers.

    PubMed

    Hulin, Billy T; Gabbett, Tim J; Blanch, Peter; Chapman, Paul; Bailey, David; Orchard, John W

    2014-04-01

    To determine if the comparison of acute and chronic workload is associated with increased injury risk in elite cricket fast bowlers. Data were collected from 28 fast bowlers who completed a total of 43 individual seasons over a 6-year period. Workloads were estimated by summarising the total number of balls bowled per week (external workload), and by multiplying the session rating of perceived exertion by the session duration (internal workload). One-week data (acute workload), together with 4-week rolling average data (chronic workload), were calculated for external and internal workloads. The size of the acute workload in relation to the chronic workload provided either a negative or positive training-stress balance. A negative training-stress balance was associated with an increased risk of injury in the week after exposure, for internal workload (relative risk (RR)=2.2 (CI 1.91 to 2.53), p=0.009), and external workload (RR=2.1 (CI 1.81 to 2.44), p=0.01). Fast bowlers with an internal workload training-stress balance of greater than 200% had a RR of injury of 4.5 (CI 3.43 to 5.90, p=0.009) compared with those with a training-stress balance between 50% and 99%. Fast bowlers with an external workload training-stress balance of more than 200% had a RR of injury of 3.3 (CI 1.50 to 7.25, p=0.033) in comparison to fast bowlers with an external workload training-stress balance between 50% and 99%. These findings demonstrate that large increases in acute workload are associated with increased injury risk in elite cricket fast bowlers.

  4. Enhanced and Synthetic Vision for Terminal Maneuvering Area NextGen Operations

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Bailey, Randall E.; Ellis, Kyle K. E.; Norman, R. Michael; Williams, Steven P.; Arthur, Jarvis J., III; Shelton, Kevin J.; Prinzel, Lawrence J., III

    2011-01-01

    Synthetic Vision Systems and Enhanced Flight Vision System (SVS/EFVS) technologies have the potential to provide additional margins of safety for aircrew performance and enable operational improvements for low visibility operations in the terminal area environment with equivalent efficiency as visual operations. To meet this potential, research is needed for effective technology development and implementation of regulatory and design guidance to support introduction and use of SVS/EFVS advanced cockpit vision technologies in Next Generation Air Transportation System (NextGen) operations. A fixed-base pilot-in-the-loop simulation test was conducted at NASA Langley Research Center that evaluated the use of SVS/EFVS in NextGen low visibility ground (taxi) operations and approach/landing operations. Twelve crews flew approach and landing operations in a simulated NextGen Chicago O Hare environment. Various scenarios tested the potential for EFVS for operations in visibility as low as 1000 ft runway visibility range (RVR) and SVS to enable lower decision heights (DH) than can currently be flown today. Expanding the EFVS visual segment from DH to the runway in visibilities as low as 1000 RVR appears to be viable as touchdown performance was excellent without any workload penalties noted for the EFVS concept tested. A lower DH to 150 ft and/or possibly reduced visibility minima by virtue of SVS equipage appears to be viable when implemented on a Head-Up Display, but the landing data suggests further study for head-down implementations.

  5. Development of an Agent Based Model to Estimate and Reduce Time to Restoration of Storm Induced Power Outages

    NASA Astrophysics Data System (ADS)

    Walsh, T.; Layton, T.; Mellor, J. E.

    2017-12-01

    Storm damage to the electric grid impacts 23 million electric utility customers and costs US consumers $119 billion annually. Current restoration techniques rely on the past experiences of emergency managers. There are few analytical simulation and prediction tools available for utility managers to optimize storm recovery and decrease consumer cost, lost revenue and restoration time. We developed an agent based model (ABM) for storm recovery in Connecticut. An ABM is a computer modeling technique comprised of agents who are given certain behavioral rules and operate in a given environment. It allows the user to simulate complex systems by varying user-defined parameters to study emergent, unpredicted behavior. The ABM incorporates the road network and electric utility grid for the state, is validated using actual storm event recoveries and utilizes the Dijkstra routing algorithm to determine the best path for repair crews to travel between outages. The ABM has benefits for both researchers and utility managers. It can simulate complex system dynamics, rank variable importance, find tipping points that could significantly reduce restoration time or costs and test a broad range of scenarios. It is a modular, scalable and adaptable technique that can simulate scenarios in silico to inform emergency managers before and during storm events to optimize restoration strategies and better manage expectations of when power will be restored. Results indicate that total restoration time is strongly dependent on the number of crews. However, there is a threshold whereby more crews will not decrease the restoration time, which depends on the total number of outages. The addition of outside crews is more beneficial for storms with a higher number of outages. The time to restoration increases linearly with increasing repair time, while the travel speed has little overall effect on total restoration time. Crews traveling to the nearest outage reduces the total restoration time, while crews going to the outage with most customers affected increases the overall restoration time but more quickly decreases the customers remaining without power. This model can give utility company managers the ability to optimize their restoration strategies before or during a storm event to reduce restoration times and costs.

  6. Surgeons' display reduced mental effort and workload while performing robotically assisted surgical tasks, when compared to conventional laparoscopy.

    PubMed

    Moore, Lee J; Wilson, Mark R; McGrath, John S; Waine, Elizabeth; Masters, Rich S W; Vine, Samuel J

    2015-09-01

    Research has demonstrated the benefits of robotic surgery for the patient; however, research examining the benefits of robotic technology for the surgeon is limited. This study aimed to adopt validated measures of workload, mental effort, and gaze control to assess the benefits of robotic surgery for the surgeon. We predicted that the performance of surgical training tasks on a surgical robot would require lower investments of workload and mental effort, and would be accompanied by superior gaze control and better performance, when compared to conventional laparoscopy. Thirty-two surgeons performed two trials on a ball pick-and-drop task and a rope-threading task on both robotic and laparoscopic systems. Measures of workload (the surgery task load index), mental effort (subjective: rating scale for mental effort and objective: standard deviation of beat-to-beat intervals), gaze control (using a mobile eye movement recorder), and task performance (completion time and number of errors) were recorded. As expected, surgeons performed both tasks more quickly and accurately (with fewer errors) on the robotic system. Self-reported measures of workload and mental effort were significantly lower on the robotic system compared to the laparoscopic system. Similarly, an objective cardiovascular measure of mental effort revealed lower investment of mental effort when using the robotic platform relative to the laparoscopic platform. Gaze control distinguished the robotic from the laparoscopic systems, but not in the predicted fashion, with the robotic system associated with poorer (more novice like) gaze control. The findings highlight the benefits of robotic technology for surgical operators. Specifically, they suggest that tasks can be performed more proficiently, at a lower workload, and with the investment of less mental effort, this may allow surgeons greater cognitive resources for dealing with other demands such as communication, decision-making, or periods of increased complexity in the operating room.

  7. Computational prediction of the effects of the intra-aortic balloon pump on heart failure with valvular regurgitation using a 3D cardiac electromechanical model.

    PubMed

    Kim, Chang-Hyun; Song, Kwang-Soup; Trayanova, Natalia A; Lim, Ki Moo

    2018-05-01

    Intra-aortic balloon pump (IABP) is normally contraindicated in significant aortic regurgitation (AR). It causes and aggravates pre-existing AR while performing well in the event of mitral regurgitation (MR). Indirect parameters, such as the mean systolic pressure, product of heart rate and peak systolic pressure, and pressure-volume are used to quantify the effect of IABP on ventricular workload. However, to date, no studies have directly quantified the reduction in workload with IABP. The goal of this study is to examine the effect of IABP therapy on ventricular mechanics under valvular insufficiency by using a computational model of the heart. For this purpose, the 3D electromechanical model of the failing ventricles used in previous studies was coupled with a lumped parameter model of valvular regurgitation and the IABP-treated vascular system. The IABP therapy was disturbed in terms of reducing the myocardial tension generation and contractile ATP consumption by valvular regurgitation, particularly in the AR condition. The IABP worsened the problem of ventricular expansion induced as a result of the regurgitated blood volume during the diastole under the AR condition. The IABP reduced the LV stroke work in the AR, MR, and no regurgitation conditions. Therefore, the IABP helped the ventricle to pump blood and reduced the ventricular workload. In conclusion, the IABP partially performed its role in the MR condition. However, it was disturbed by the AR and worsened the cardiovascular responses that followed the AR. Therefore, this study computationally proved the reason for the clinical contraindication of IABP in AR patients.

  8. Flight Crew Survey Responses from the Interval Management (IM) Avionics Phase 2 Flight Test

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Swieringa, Kurt A.; Wilson, Sara R.; Roper, Roy D.; Hubbs, Clay E.; Goess, Paul A.; Shay, Richard F.

    2017-01-01

    The Interval Management (IM) Avionics Phase 2 flight test used three aircraft over a nineteen day period to operationally evaluate a prototype IM avionics. Quantitative data were collected on aircraft state data and IM spacing algorithm performance, and qualitative data were collected through end-of-scenario and end-of-day flight crew surveys. The majority of the IM operations met the performance goals established for spacing accuracy at the Achieve-by Point and the Planned Termination Point, however there were operations that did not meet goals for a variety of reasons. While the positive spacing accuracy results demonstrate the prototype IM avionics can contribute to the overall air traffic goal, critical issues were also identified that need to be addressed to enhance IM performance. The first category was those issues that impacted the conduct and results of the flight test, but are not part of the IM concept or procedures. These included the design of arrival and approach procedures was not ideal to support speed as the primary control mechanism, the ground-side of the Air Traffic Management Technology Demonstration (ATD-1) integrated concept of operations was not part of the flight test, and the high workload to manually enter the information required to conduct an IM operation. The second category was issues associated with the IM spacing algorithm or flight crew procedures. These issues include the high frequency of IM speed changes and reversals (accelerations), a mismatch between the deceleration rate used by the spacing algorithm and the actual aircraft performance, and some spacing error calculations were sensitive to normal operational variations in aircraft airspeed or altitude which triggered additional IM speed changes. Once the issues in these two categories are addressed, the future IM avionics should have considerable promise supporting the goals of improving system throughput and aircraft efficiency.

  9. Human Rating Requirements for NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Berdich, Debbie

    2008-01-01

    NASA s Constellation Program (CxP) will conduct a series of human space expeditions of increasing scope, starting with missions supporting the International Space Station and expanding to encompass the Moon and Mars. Although human-rating is an integral part of all CxP activities throughout their life cycle, NASA Procedural Requirements document NPR 8705.2B, Human-Rating Requirements (HRR) for Space Flight Systems, defines the additional processes, procedures, and requirements necessary to produce human-rated space systems that protect the safety of crew members and passengers on these NASA missions. In order to be in compliance with 8705.2B the CxP must show appropriate implementation or progression toward the HRR, or justification for an exception. Compliance includes an explanation of how the CxP intends to meet the HRR, analyses to be performed to determine implementation; and a matrix to trace the HRR to CxP requirements. The HRR requires the CxP to establish a human system integration team (HSIT), consisting of astronauts, mission operations personnel, training personnel, ground processing personnel, human factors personnel, and human engineering experts, with clearly defined authority, responsibility, and accountability to lead the human-system integration. For example, per the HRR the HSIT is involved in the evaluation of crew workload, human-in-the-loop usability evaluations, determining associated criteria, and in assessment of how these activities influenced system design. In essence, the HSIT is invaluable in CxP s ability to meet the three fundamental tenets of human rating: the process of designing, evaluating, and assuring that the total system can safely conduct the required human missions; the incorporation of design features and capabilities that accommodate human interaction with the system to enhance overall safety and mission success; and the incorporation of design features and capabilities to enable safe recovery of the crew from hazardous situations.

  10. Crew accidents reported during 3 years on a cruise ship.

    PubMed

    Dahl, Eilif; Ulven, Arne; Horneland, Alf Magne

    2008-01-01

    To register and analyze data from all crew injuries reported to the medical center of a cruise ship with a median crew of 630 during a three-year period and to determine high risk areas, equipment and behavior. All crew injuries reported to the medical center aboard were registered on a standardized form at first visit. An injury was classified at follow-up as 'lost time accident' (LTA) if it caused the victim to be off work for more than one day and/or to be signed off for medical attention (medical sign-off). During 3 years, 361 injuries (23% women) were reported aboard. Thirty percent were LTA. The marine department accounted for 14% (deck 5%; engine 9%), the hotel'department for 79% and contractors for 7% of the reports. Filipinos comprised half the crew, reported 35% of the accidents, and their rate of serious injuries were lower than non-Filipino crew (p<0.01). Hotel crew had a higher rate of LTA occurring during work than marine crew (p<0.05). The dancers' rate of serious injuries was higher than other hotel crew (p<0.05) and marine crew (p<0.01). The upper extremity was the most frequently injured body part (51%), open wounds the most common injury type (37%), and galleys the most common accident location (30%). Less than one in ten reported injuries caused medical sign-off. Well-equipped, competent medical staff aboard can after crew injury effectively reduce time off work, as well as number of referrals to medical specialists ashore, helicopter evacuations and ship diversions, and medical sign-off.

  11. Cyber Safety and Security for Reduced Crew Operations (RCO)

    NASA Technical Reports Server (NTRS)

    Driscoll, Kevin R.; Roy, Aloke; Ponchak, Denise S.; Downey, Alan N.

    2017-01-01

    NASA and the Aviation Industry is looking into reduced crew operations (RCO) that would cut today's required two-person flight crews down to a single pilot with support from ground-based crews. Shared responsibility across air and ground personnel will require highly reliable and secure data communication and supporting automation, which will be safety-critical for passenger and cargo aircraft. This paper looks at the different types and degrees of authority delegation given from the air to the ground and the ramifications of each, including the safety and security hazards introduced, the mitigation mechanisms for these hazards, and other demands on an RCO system architecture which would be highly invasive into (almost) all safety-critical avionics. The adjacent fields of unmanned aerial systems and autonomous ground vehicles are viewed to find problems that RCO may face and related aviation accident scenarios are described. The paper explores possible data communication architectures to meet stringent performance and information security (INFOSEC) requirements of RCO. Subsequently, potential challenges for RCO data communication authentication, encryption and non-repudiation are identified.

  12. Human Mars Ascent Configuration and Design Sensitivities

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara P.; Gernhardt, Mike; Collins, Tim; Martin, John

    2017-01-01

    Human missions to Mars may utilize several small cabins where crew members could live for days up to a couple of weeks. At the end of a Mars surface mission the Mars Ascent Vehicle (MAV) crew cabin would carry the crew to their destination in orbit in a matter of hours or days. Other small cabins in support of a Mars mission would include pressurized rovers that allow crew members to travel great distances from their primary habitat on Mars while unconstrained by time limits of typical EVAs. An orbital crew taxi could allow for exploration of the moons of Mars with minimum impact to the primary Earth-Mars transportation systems. A common crew cabin design that can perform in each of these applications is desired and could reduce the overall mission cost. However, for the MAV, the crew cabin size and mass can have a large impact on vehicle design and performance. The total ascent vehicle mass drives performance requirements for the Mars descent systems and the Earth to Mars transportation elements. Minimizing MAV mass is a priority and minimizing the crew cabin size and mass is one way to do that. This paper explores the benefits and impacts of using a common crew cabin design for the MAV. Results of a MAV configuration trade study will be presented along with mass and performance estimates for the selected design.

  13. Crew and Display Concepts Evaluation for Synthetic / Enhanced Vision Systems

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Kramer, Lynda J.; Prinzel, Lawrence J., III

    2006-01-01

    NASA s Synthetic Vision Systems (SVS) project is developing technologies with practical applications that strive to eliminate low-visibility conditions as a causal factor to civil aircraft accidents and replicate the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. Enhanced Vision System (EVS) technologies are analogous and complementary in many respects to SVS, with the principle difference being that EVS is an imaging sensor presentation, as opposed to a database-derived image. The use of EVS in civil aircraft is projected to increase rapidly as the Federal Aviation Administration recently changed the aircraft operating rules under Part 91, revising the flight visibility requirements for conducting operations to civil airports. Operators conducting straight-in instrument approach procedures may now operate below the published approach minimums when using an approved EVS that shows the required visual references on the pilot s Head-Up Display. An experiment was conducted to evaluate the complementary use of SVS and EVS technologies, specifically focusing on new techniques for integration and/or fusion of synthetic and enhanced vision technologies and crew resource management while operating under the newly adopted FAA rules which provide operating credit for EVS. Overall, the experimental data showed that significant improvements in SA without concomitant increases in workload and display clutter could be provided by the integration and/or fusion of synthetic and enhanced vision technologies for the pilot-flying and the pilot-not-flying.

  14. Enhancing Team Performance for Long-Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Orasanu, Judith M.

    2009-01-01

    Success of exploration missions will depend on skilled performance by a distributed team that includes both the astronauts in space and Mission Control personnel. Coordinated and collaborative teamwork will be required to cope with challenging complex problems in a hostile environment. While thorough preflight training and procedures will equip creW'S to address technical problems that can be anticipated, preparing them to solve novel problems is much more challenging. This presentation will review components of effective team performance, challenges to effective teamwork, and strategies for ensuring effective team performance. Teamwork skills essential for successful team performance include the behaviors involved in developing shared mental models, team situation awareness, collaborative decision making, adaptive coordination behaviors, effective team communication, and team cohesion. Challenges to teamwork include both chronic and acute stressors. Chronic stressors are associated with the isolated and confined environment and include monotony, noise, temperatures, weightlessness, poor sleep and circadian disruptions. Acute stressors include high workload, time pressure, imminent danger, and specific task-related stressors. Of particular concern are social and organizational stressors that can disrupt individual resilience and effective mission performance. Effective team performance can be developed by training teamwork skills, techniques for coping with team conflict, intracrew and intercrew communication, and working in a multicultural team; leadership and teamwork skills can be fostered through outdoor survival training exercises. The presentation will conclude with an evaluation of the special requirements associated with preparing crews to function autonomously in long-duration missions.

  15. Taming Time with Flexible Work.

    ERIC Educational Resources Information Center

    Stamps, David

    1995-01-01

    Because of increasing incidence of burnout among midlevel managers, many companies are reducing workload schedules, an arrangement that would have been unthinkable 10 years ago. Surveys have made the case that flexible work arrangements increase employee happiness and, therefore, productivity. (JOW)

  16. PitScan: Computer-Assisted Feature Detection

    NASA Astrophysics Data System (ADS)

    Wagner, R. V.; Robinson, M. S.

    2018-04-01

    We developed PitScan to assist in searching the very large LROC image dataset for pits — unusual <200m wide vertical-walled holes in the Moon's surface. PitScan reduces analysts' workload by pre-filtering images to identify possible pits.

  17. [Effects of mental workload on work ability in primary and secondary school teachers].

    PubMed

    Xiao, Yuanmei; Li, Weijuan; Ren, Qingfeng; Ren, Xiaohui; Wang, Zhiming; Wang, Mianzhen; Lan, Yajia

    2015-02-01

    To investigate the change pattern of primary and secondary school teachers' work ability with the changes in their mental workload. A total of 901 primary and secondary school teachers were selected by random cluster sampling, and then their mental workload and work ability were assessed by National Aeronautics and Space Administration-Task Load Index (NASA-TLX) and Work Ability Index (WAI) questionnaires, whose reliability and validity had been tested. The effects of their mental workload on the work ability were analyzed. Primary and secondary school teachers' work ability reached the highest level at a certain level of mental workload (55.73< mental workload ≤ 64.10). When their mental workload was lower than the level, their work ability had a positive correlation with the mental workload. Their work ability increased or maintained stable with the increasing mental workload. Moreover, the percentage of teachers with good work ability increased, while that of teachers with moderate work ability decreased. But when their mental workload was higher than the level, their work ability had a negative correlation with the mental workload. Their work ability significantly decreased with the increasing mental workload (P < 0.01). Furthermore, the percentage of teachers with good work ability decreased, while that of teachers with moderate work ability increased (P < 0.001). Too high or low mental workload will result in the decline of primary and secondary school teachers' work ability. Moderate mental workload (55.73∼64.10) will benefit the maintaining and stabilization of their work ability.

  18. Heavy vehicle driver workload assessment. Task 4, review of workload and related research

    DOT National Transportation Integrated Search

    This report reviews literature on workload measures and related research. It depicts the preliminary development of a theoretical basis for relating driving workload to highway safety and a selective review of driver performance evaluation, workload ...

  19. Orion Post-Landing Crew Thermal Control Modeling and Analysis Results

    NASA Technical Reports Server (NTRS)

    Cross, Cynthia D.; Bue, Grant; Rains, George E.

    2009-01-01

    In a vehicle constrained by mass and power, it is necessary to ensure that during the process of reducing hardware mass and power that the health and well being of the crew is not compromised in the design process. To that end, it is necessary to ensure that in the final phase of flight - recovery, that the crew core body temperature remains below the crew cognitive deficit set by the Constellation program. This paper will describe the models used to calculate the thermal environment of the spacecraft after splashdown as well as the human thermal model used to calculate core body temperature. Then the results of these models will be examined to understand the key drivers for core body temperature. Finally, the analysis results will be used to show that additional cooling capability must be added to the vehicle to ensure crew member health post landing.

  20. Transport pilot workload - A comparison of two subjective techniques

    NASA Technical Reports Server (NTRS)

    Battiste, Vernol; Bortolussi, Michael

    1988-01-01

    Although SWAT and NASA-TLX workload scales have been compared on numerous occasions, they have not been compared in the context of transport operations. Transport pilot workload has traditionally been classified as long periods of low workload with occasional spikes of high workload. Thus, the relative sensitivity of the scales to variations in workload at the low end of the scale were evaluated. This study was a part of a larger study which investigated workload measures for aircraft certification, conducted in a Phase II certified Link/Boeing 727 simulator. No significant main effects were found for any performance-based measures of workload. However, both SWAT and NASA-TLX were sensitive to differences between high and low workload flights and to differences among flight segments. NASA-TLX (but not SWAT) was sensitive to the increase in workload during the cruise segment of the high workload flight. Between-subject variability was high for SWAT. NASA-TLX was found to be stable when compared in the test/retest paradigm. A test/retest by segment interaction suggested that this was not the case for SWAT ratings.

  1. The training—injury prevention paradox: should athletes be training smarter and harder?

    PubMed Central

    Gabbett, Tim J

    2016-01-01

    Background There is dogma that higher training load causes higher injury rates. However, there is also evidence that training has a protective effect against injury. For example, team sport athletes who performed more than 18 weeks of training before sustaining their initial injuries were at reduced risk of sustaining a subsequent injury, while high chronic workloads have been shown to decrease the risk of injury. Second, across a wide range of sports, well-developed physical qualities are associated with a reduced risk of injury. Clearly, for athletes to develop the physical capacities required to provide a protective effect against injury, they must be prepared to train hard. Finally, there is also evidence that under-training may increase injury risk. Collectively, these results emphasise that reductions in workloads may not always be the best approach to protect against injury. Main thesis This paper describes the ‘Training-Injury Prevention Paradox’ model; a phenomenon whereby athletes accustomed to high training loads have fewer injuries than athletes training at lower workloads. The Model is based on evidence that non-contact injuries are not caused by training per se, but more likely by an inappropriate training programme. Excessive and rapid increases in training loads are likely responsible for a large proportion of non-contact, soft-tissue injuries. If training load is an important determinant of injury, it must be accurately measured up to twice daily and over periods of weeks and months (a season). This paper outlines ways of monitoring training load (‘internal’ and ‘external’ loads) and suggests capturing both recent (‘acute’) training loads and more medium-term (‘chronic’) training loads to best capture the player's training burden. I describe the critical variable—acute:chronic workload ratio—as a best practice predictor of training-related injuries. This provides the foundation for interventions to reduce players risk, and thus, time-loss injuries. Summary The appropriately graded prescription of high training loads should improve players’ fitness, which in turn may protect against injury, ultimately leading to (1) greater physical outputs and resilience in competition, and (2) a greater proportion of the squad available for selection each week. PMID:26758673

  2. Reconsidering the conceptualization of nursing workload: literature review.

    PubMed

    Morris, Roisin; MacNeela, Padraig; Scott, Anne; Treacy, Pearl; Hyde, Abbey

    2007-03-01

    This paper reports a literature review that aimed to analyse the way in which nursing intensity and patient dependency have been considered to be conceptually similar to nursing workload, and to propose a model to show how these concepts actually differ in both theoretical and practical terms. The literature on nursing workload considers the concepts of patient 'dependency' and nursing 'intensity' in the realm of nursing workload. These concepts differ by definition but are used to measure the same phenomenon, i.e. nursing workload. The literature search was undertaken in 2004 using electronic databases, reference lists and other available literature. Papers were sourced from the Medline, Psychlit, CINAHL and Cochrane databases and through the general search engine Google. The keywords focussed on nursing workload, nursing intensity and patient dependency. Nursing work and workload concepts and labels are defined and measured in different and often contradictory ways. It is vitally important to understand these differences when using such conceptualizations to measure nursing workload. A preliminary model is put forward to clarify the relationships between nursing workload concepts. In presenting a preliminary model of nursing workload, it is hoped that nursing workload might be better understood so that it becomes more visible and recognizable. Increasing the visibility of nursing workload should have a positive impact on nursing workload management and on the provision of patient care.

  3. Evaluation of a New Automated Processing System (TACAS™ Pro) for Liquid-Based Procedures.

    PubMed

    Kuramoto, Hiroyuki; Sugimoto, Naoko; Iwami, Yoshiko; Kato, Chizuyo; Hori, Masuko; Iida, Manichi

    2015-01-01

    To evaluate a fully automated processing system (TACAS™ Pro) for liquid-based procedures (LBPs). Materials were 3,483 and additionally 502 specimens that were taken at Kanagawa Health Service Association. Specimens obtained with a Cervex-Brush® were first smeared to glass slides using one side of the brush and then processed to TACAS Pro. (1) The microscopy watching time per normal case was 3.65 ± 0.85 min in the conventional procedure, whereas in the LBP it was 1.95 ± 0.60 min, and the latter reduced workload to 53%. (2) The handling time of TACAS Pro per day was 2 h and 25.8 min. The workload at a laboratory offset it and revealed the work saving to be 63.8%. (3) Unsatisfactory rates were 0% in the conventional procedure, whereas in the LBP it was 1.88% at first. The latter rate decreased to 0.5% after system improvement. (4) Specimens which may disturb microscopy analysis were found in 1.06%, including 3 cases of possible carry-over of cells to the following slides. An additional study with the revised system confirmed no carry-over. (5) Incidences of abnormal cytology were consistent between the two methods. The revised automated processing system TACAS Pro is a feasible and useful LBP and reduces the workload of cytology laboratories. © 2015 S. Karger AG, Basel.

  4. Classification Systems for Individual Differences in Multiple-task Performance and Subjective Estimates of Workload

    NASA Technical Reports Server (NTRS)

    Damos, D. L.

    1984-01-01

    Human factors practitioners often are concerned with mental workload in multiple-task situations. Investigations of these situations have demonstrated repeatedly that individuals differ in their subjective estimates of workload. These differences may be attributed in part to individual differences in definitions of workload. However, after allowing for differences in the definition of workload, there are still unexplained individual differences in workload ratings. The relation between individual differences in multiple-task performance, subjective estimates of workload, information processing abilities, and the Type A personality trait were examined.

  5. Crew Exploration Vehicle Environmental Control and Life Support Development Status

    NASA Technical Reports Server (NTRS)

    Lewis, John F.; Barido, Richard; Carrasquillo, Robyn; Cross, Cindy; Peterson, Laurie; Tuan, George

    2009-01-01

    The Orion Crew Exploration Vehicle (CEV) is the first crew transport vehicle to be developed by the National Aeronautics and Space Administration (NASA) in the last thirty years. The CEV is being developed to transport the crew safely from the Earth to the Moon and back again. This year, the vehicle continued to go through design refinements to reduce weight, meet requirements, and operate reliably. Preliminary Design Review was performed and long lead procurement items were started. The design of the Orion Environmental Control and Life Support (ECLS) system, which includes the life support and active thermal control systems, is progressing through the design stage into manufacturing. This paper covers the Orion ECLS development from April 2009 to April 2010.

  6. Crew Exploration Vehicle Environmental Control and Life Support Ddevelopment Status

    NASA Technical Reports Server (NTRS)

    Lewis, John F.; Barido, Richard A.; Carrasquillo, Robyn; Cross, Cynthia d.; Rains, Ed; Tuan, George C.

    2010-01-01

    The Orion Crew Exploration Vehicle (CEV) is the first crew transport vehicle to be developed by the National Aeronautics and Space Administration (NASA) in the last thirty years. The CEV is being developed to transport the crew safely from the Earth to the Moon and back again. This year, the vehicle continued to go through design refinements to reduce weight, meet requirements, and operate reliably. Preliminary Design Review was performed and long lead procurement items were started. The design of the Orion Environmental Control and Life Support (ECLS) system, which includes the life support and active thermal control systems, is progressing through the design stage into manufacturing. This paper covers the Orion ECLS development from April 2009 to April 2010

  7. NASA Crew Personal Active Dosimeters (CPADs): Leveraging Novel Terrestrial Personal Radiation Monitoring Capabilities for Space Exploration

    NASA Technical Reports Server (NTRS)

    Leitgab, Martin; Semones, Edward; Lee, Kerry

    2016-01-01

    The NASA Space Radiation Analysis Group (SRAG) is developing novel Crew Personal Active Dosimeters (CAPDs) for upcoming crewed space exploration missions and beyond. To reduce the resource footprint of the project a COTS dosimeter base is used for the development of CPADs. This base was identified from evaluations of existing COTS personal dosimeters against the concept of operations of future crewed missions and tests against detection requirements for radiation characteristic of the space environment. CPADs exploit operations efficiencies from novel features for space flight personal dosimeters such as real-time dose feedback, and autonomous measuring and data transmission capabilities. Preliminary CPAD design, results of radiation testing and aspects of operational integration will be presented.

  8. Nurses and stress: recognizing causes and seeking solutions.

    PubMed

    Happell, Brenda; Dwyer, Trudy; Reid-Searl, Kerry; Burke, Karena J; Caperchione, Cristina M; Gaskin, Cadeyrn J

    2013-05-01

    To identify, from the perspectives of nurses, occupational stressors and ways in which they may be reduced. Nurses commonly experience high levels of occupational stress, with negative consequences for their physical and psychological health, health-care organisations and community. There is minimal research on reducing occupational stress. Six focus groups were conducted with 38 registered nurses using a qualitative exploratory approach. Participants were asked to identify sources of occupational stress and possible workplace initiatives to reduce stress. Sources of occupational stress were: high workloads, unavailability of doctors, unsupportive management, human resource issues, interpersonal issues, patients' relatives, shift work, car parking, handover procedures, no common area for nurses, not progressing at work and patient mental health. Suggestions for reduction included: workload modification, non-ward-based initiatives, changing shift hours, forwarding suggestions for change, music, special events, organisational development, ensuring nurses get breaks, massage therapists, acknowledgement from management and leadership within wards. The findings highlight the need to understand local perspectives and the importance of involving nurses in identifying initiatives to reduce occupational stress. Health-care environments can be enhanced through local understanding of the occupational stressors and productively engaging nurses in developing stress reduction initiatives. Nurse managers must facilitate such processes. © 2013 Blackwell Publishing Ltd.

  9. Evaluation of Pushback Decision-Support Tool Concept for Charlotte Douglas International Airport Ramp Operations

    NASA Technical Reports Server (NTRS)

    Hayashi, Miwa; Hoang, Ty; Jung, Yoon C.; Malik, Waqar; Lee, Hanbong; Dulchinos, Victoria L.

    2015-01-01

    This paper proposes a new departure pushback decision-support tool (DST) for airport ramp-tower controllers. It is based on NASA's Spot and Runway Departure Advisor (SARDA) collaborative decision-making concept, except with the modification that the gate releases now are controlled by tactical pushback (or gate-hold) advisories instead of strategic pre-assignments of target pushback times to individual departure flights. The proposed ramp DST relies on data exchange with the airport traffic control tower (ATCT) to coordinate pushbacks with the ATCT's flow-management intentions under current operational constraints, such as Traffic Management Initiative constraints. Airlines would benefit in reduced taxi delay and fuel burn. The concept was evaluated in a human-in-the-loop simulation experiment with current ramp-tower controllers at the Charlotte Douglas International Airport as participants. The results showed that the tool helped reduce taxi time by one minute per flight and overall departure flight fuel consumption by 10-12% without reducing runway throughput. Expect Departure Clearance Time (EDCT) conformance also was improved when advisories were provided. These benefits were attained without increasing the ramp-tower controllers' workload. Additionally, the advisories reduced the ATCT controllers' workload.

  10. Vision-based semi-autonomous outdoor robot system to reduce soldier workload

    NASA Astrophysics Data System (ADS)

    Richardson, Al; Rodgers, Michael H.

    2001-09-01

    Sensors and computational capability have not reached the point to enable small robots to navigate autonomously in unconstrained outdoor environments at tactically useful speeds. This problem is greatly reduced, however, if a soldier can lead the robot through terrain that he knows it can traverse. An application of this concept is a small pack-mule robot that follows a foot soldier over outdoor terrain. The solder would be responsible to avoid situations beyond the robot's limitations when encountered. Having learned the route, the robot could autonomously retrace the path carrying supplies and munitions. This would greatly reduce the soldier's workload under normal conditions. This paper presents a description of a developmental robot sensor system using low-cost commercial 3D vision and inertial sensors to address this application. The robot moves at fast walking speed and requires only short-range perception to accomplish its task. 3D-feature information is recorded on a composite route map that the robot uses to negotiate its local environment and retrace the path taught by the soldier leader.

  11. Supporting Academic Workloads in Online Learning

    ERIC Educational Resources Information Center

    Haggerty, Carmel E.

    2015-01-01

    Academic workloads in online learning are influenced by many variables, the complexity of which makes it difficult to measure academic workloads in isolation. While researching issues associated with academic workloads, professional development stood out as having a substantive impact on academic workloads. Many academics in applied health degrees…

  12. Workload - An examination of the concept

    NASA Technical Reports Server (NTRS)

    Gopher, Daniel; Donchin, Emanuel

    1986-01-01

    The relations between task difficulty and workload and workload and performance are examined. The architecture and limitations of the central processor are discussed. Various procedures for measuring workload are described and evaluated. Consideration is given to normative and descriptive approaches; subjective, performance, and arousal measures; performance operating characteristics; and psychophysiological measures of workload.

  13. Pilot Workload and Speech Analysis: A Preliminary Investigation

    NASA Technical Reports Server (NTRS)

    Bittner, Rachel M.; Begault, Durand R.; Christopher, Bonny R.

    2013-01-01

    Prior research has questioned the effectiveness of speech analysis to measure the stress, workload, truthfulness, or emotional state of a talker. The question remains regarding the utility of speech analysis for restricted vocabularies such as those used in aviation communications. A part-task experiment was conducted in which participants performed Air Traffic Control read-backs in different workload environments. Participant's subjective workload and the speech qualities of fundamental frequency (F0) and articulation rate were evaluated. A significant increase in subjective workload rating was found for high workload segments. F0 was found to be significantly higher during high workload while articulation rates were found to be significantly slower. No correlation was found to exist between subjective workload and F0 or articulation rate.

  14. The Workload Curve: Subjective Mental Workload.

    PubMed

    Estes, Steven

    2015-11-01

    In this paper I begin looking for evidence of a subjective workload curve. Results from subjective mental workload assessments are often interpreted linearly. However, I hypothesized that ratings of subjective mental workload increase nonlinearly with unitary increases in working memory load. Two studies were conducted. In the first, the participant provided ratings of the mental difficulty of a series of digit span recall tasks. In the second study, participants provided ratings of mental difficulty associated with recall of visual patterns. The results of the second study were then examined using a mathematical model of working memory. An S curve, predicted a priori, was found in the results of both the digit span and visual pattern studies. A mathematical model showed a tight fit between workload ratings and levels of working memory activation. This effort provides good initial evidence for the existence of a workload curve. The results support further study in applied settings and other facets of workload (e.g., temporal workload). Measures of subjective workload are used across a wide variety of domains and applications. These results bear on their interpretation, particularly as they relate to workload thresholds. © 2015, Human Factors and Ergonomics Society.

  15. Assessing Continuous Operator Workload With a Hybrid Scaffolded Neuroergonomic Modeling Approach.

    PubMed

    Borghetti, Brett J; Giametta, Joseph J; Rusnock, Christina F

    2017-02-01

    We aimed to predict operator workload from neurological data using statistical learning methods to fit neurological-to-state-assessment models. Adaptive systems require real-time mental workload assessment to perform dynamic task allocations or operator augmentation as workload issues arise. Neuroergonomic measures have great potential for informing adaptive systems, and we combine these measures with models of task demand as well as information about critical events and performance to clarify the inherent ambiguity of interpretation. We use machine learning algorithms on electroencephalogram (EEG) input to infer operator workload based upon Improved Performance Research Integration Tool workload model estimates. Cross-participant models predict workload of other participants, statistically distinguishing between 62% of the workload changes. Machine learning models trained from Monte Carlo resampled workload profiles can be used in place of deterministic workload profiles for cross-participant modeling without incurring a significant decrease in machine learning model performance, suggesting that stochastic models can be used when limited training data are available. We employed a novel temporary scaffold of simulation-generated workload profile truth data during the model-fitting process. A continuous workload profile serves as the target to train our statistical machine learning models. Once trained, the workload profile scaffolding is removed and the trained model is used directly on neurophysiological data in future operator state assessments. These modeling techniques demonstrate how to use neuroergonomic methods to develop operator state assessments, which can be employed in adaptive systems.

  16. Higher mental workload is associated with poorer laparoscopic performance as measured by the NASA-TLX tool.

    PubMed

    Yurko, Yuliya Y; Scerbo, Mark W; Prabhu, Ajita S; Acker, Christina E; Stefanidis, Dimitrios

    2010-10-01

    Increased workload during task performance may increase fatigue and facilitate errors. The National Aeronautics and Space Administration-Task Load Index (NASA-TLX) is a previously validated tool for workload self-assessment. We assessed the relationship of workload and performance during simulator training on a complex laparoscopic task. NASA-TLX workload data from three separate trials were analyzed. All participants were novices (n = 28), followed the same curriculum on the fundamentals of laparoscopic surgery suturing model, and were tested in the animal operating room (OR) on a Nissen fundoplication model after training. Performance and workload scores were recorded at baseline, after proficiency achievement, and during the test. Performance, NASA-TLX scores, and inadvertent injuries during the test were analyzed and compared. Workload scores declined during training and mirrored performance changes. NASA-TLX scores correlated significantly with performance scores (r = -0.5, P < 0.001). Participants with higher workload scores caused more inadvertent injuries to adjacent structures in the OR (r = 0.38, P < 0.05). Increased mental and physical workload scores at baseline correlated with higher workload scores in the OR (r = 0.52-0.82; P < 0.05) and more inadvertent injuries (r = 0.52, P < 0.01). Increased workload is associated with inferior task performance and higher likelihood of errors. The NASA-TLX questionnaire accurately reflects workload changes during simulator training and may identify individuals more likely to experience high workload and more prone to errors during skill transfer to the clinical environment.

  17. NASA space station automation: AI-based technology review. Executive summary

    NASA Technical Reports Server (NTRS)

    Firschein, O.; Georgeff, M. P.; Park, W.; Cheeseman, P. C.; Goldberg, J.; Neumann, P.; Kautz, W. H.; Levitt, K. N.; Rom, R. J.; Poggio, A. A.

    1985-01-01

    Research and Development projects in automation technology for the Space Station are described. Artificial Intelligence (AI) based technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics.

  18. The Relationship of Self-Efficacy and Complacency in Pilot-Automation Interaction

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III

    2002-01-01

    Pilot 'complacency' has been implicated as a contributing factor in numerous aviation accidents and incidents. The term has become more prominent with the increase in automation technology in modern cockpits and, therefore, research has been focused on understanding the factors that may mitigate its effect on pilot-automation interaction. The study examined self-efficacy of supervisory monitoring and the relationship between complacency on strategy of pilot use of automation for workload management under automation schedules that produce the potential for complacency. The results showed that self-efficacy can be a 'double-edged' sword in reducing potential for automation-induced complacency but limiting workload management strategies and increasing other hazardous states of awareness.

  19. Job satisfaction and stressors for working in out-of-hours care - a pilot study with general practitioners in a rural area of Germany.

    PubMed

    Leutgeb, R; Frankenhauser-Mannuß, J; Scheuer, M; Szecsenyi, J; Goetz, Katja

    2018-06-22

    Challenging work environment, high workload, and increasing physician shortages characterize current rural general practice in Germany and in most European Countries. These factors extend into Out-Of-Hours Care (OOHC). However, little research about potential stressors for general practitioners (GPs) in OOHC settings is available. This pilot study aimed to evaluate workload, different elements of job satisfaction and stressors for GPs in OOHC and to analyze whether these aspects are associated with overall job satisfaction. Cross-sectional survey with a sample of 320 GPs who are working in OOHC was used to measure workload in OOHC, job satisfaction (using the Warr-Cook-Wall scale) and stressors with the effort-reward imbalance questionnaire. In order to assess associations between workload, job satisfaction and stressors at work we performed descriptive analyses as well as multivariable regression analyses. The response rate was 40.9%. Over 80% agreed that OOHC was perceived as a stressor and 79% agreed that less OOHC improved job satisfaction. Only 42% of our sample were satisfied with their overall job satisfaction. The regression analysis showed that the modification of current OOHC organization was significantly associated with overall job satisfaction. Our results suggest that OOHC in the current form is a relevant stressor in daily work of rural GPs in Germany and one of the reasons for a decreasing overall job satisfaction. Strategic changes such as the implementation of structural reforms e.g. reducing frequency of OOHC duties for each GP and improving continuing professional development options related to OOHC are needed to address current workload challenges experienced by GPs providing OOHC in Germany.

  20. No effect of elevated operating lung volumes on airway function during variable workrate exercise in asthmatic humans.

    PubMed

    Klansky, Andrew; Irvin, Charlie; Morrison-Taylor, Adriane; Ahlstrand, Sarah; Labrie, Danielle; Haverkamp, Hans Christian

    2016-07-01

    In asthmatic adults, airway caliber fluctuates during variable intensity exercise such that bronchodilation (BD) occurs with increased workrate whereas bronchoconstriction (BC) occurs with decreased workrate. We hypothesized that increased lung mechanical stretch would prevent BC during such variable workrate exercise. Ten asthmatic and ten nonasthmatic subjects completed two exercise trials on a cycle ergometer. Both trials included a 28-min exercise bout consisting of alternating four min periods at workloads equal to 40 % (Low) and 70% (High) peak power output. During one trial, subjects breathed spontaneously throughout exercise (SVT), such that tidal volume (VT) and end-inspiratory lung volume (EILV) were increased by 0.5 and 0.6 liters during the high compared with the low workload in nonasthmatic and asthmatic subjects, respectively. During the second trial (MVT), VT and EILV were maintained constant when transitioning from the high to the low workload. Forced exhalations from total lung capacity were performed during each exercise workload. In asthmatic subjects, forced expiratory volume 1.0 s (FEV1.0) increased and decreased with the increases and decreases in workrate during both SVT (Low, 3.3 ± 0.3 liters; High, 3.6 ± 0.2 liters; P < 0.05) and MVT (Low, 3.3 ± 0.3 liters; High, 3.5 ± 0.2 liters; P < 0.05). Thus increased lung stretch during MVT did not prevent decreases in airway caliber when workload was reduced. We conclude that neural factors controlling airway smooth muscle (ASM) contractile activity during whole body exercise are more robust determinants of airway caliber than the ability of lung stretch to alter ASM actin-myosin binding and contraction. Copyright © 2016 the American Physiological Society.

  1. The role of human-automation consensus in multiple unmanned vehicle scheduling.

    PubMed

    Cummings, M L; Clare, Andrew; Hart, Christin

    2010-02-01

    This study examined the impact of increasing automation replanning rates on operator performance and workload when supervising a decentralized network of heterogeneous unmanned vehicles. Futuristic unmanned vehicles systems will invert the operator-to-vehicle ratio so that one operator can control multiple dissimilar vehicles connected through a decentralized network. Significant human-automation collaboration will be needed because of automation brittleness, but such collaboration could cause high workload. Three increasing levels of replanning were tested on an existing multiple unmanned vehicle simulation environment that leverages decentralized algorithms for vehicle routing and task allocation in conjunction with human supervision. Rapid replanning can cause high operator workload, ultimately resulting in poorer overall system performance. Poor performance was associated with a lack of operator consensus for when to accept the automation's suggested prompts for new plan consideration as well as negative attitudes toward unmanned aerial vehicles in general. Participants with video game experience tended to collaborate more with the automation, which resulted in better performance. In decentralized unmanned vehicle networks, operators who ignore the automation's requests for new plan consideration and impose rapid replans both increase their own workload and reduce the ability of the vehicle network to operate at its maximum capacity. These findings have implications for personnel selection and training for futuristic systems involving human collaboration with decentralized algorithms embedded in networks of autonomous systems.

  2. Job demands-resources predicting burnout and work engagement among Belgian home health care nurses: A cross-sectional study.

    PubMed

    Vander Elst, Tinne; Cavents, Carolien; Daneels, Katrien; Johannik, Kristien; Baillien, Elfi; Van den Broeck, Anja; Godderis, Lode

    A better knowledge of the job aspects that may predict home health care nurses' burnout and work engagement is important in view of stress prevention and health promotion. The Job Demands-Resources model predicts that job demands and resources relate to burnout and work engagement but has not previously been tested in the specific context of home health care nursing. The present study offers a comprehensive test of the Job-Demands Resources model in home health care nursing. We investigate the main and interaction effects of distinctive job demands (workload, emotional demands and aggression) and resources (autonomy, social support and learning opportunities) on burnout and work engagement. Analyses were conducted using cross-sectional data from 675 Belgian home health care nurses, who participated in a voluntary and anonymous survey. The results show that workload and emotional demands were positively associated with burnout, whereas aggression was unrelated to burnout. All job resources were associated with higher levels of work engagement and lower levels of burnout. In addition, social support buffered the positive relationship between workload and burnout. Home health care organizations should invest in dealing with workload and emotional demands and stimulating the job resources under study to reduce the risk of burnout and increase their nurses' work engagement. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Orion Pad Abort 1 Crew Module Inertia Test Approach and Results

    NASA Technical Reports Server (NTRS)

    Herrera, Claudia; Harding, Adam

    2010-01-01

    The Flight Loads Laboratory at the Dryden Flight Research Center conducted tests to measure the inertia properties of the Orion Pad Abort 1 (PA-1) Crew Module. These measurements were taken to validate analytical predictions of the inertia properties of the vehicle and assist in reducing uncertainty for derived aero performance results calculated post launch. The first test conducted was to determine the Ixx of the Crew Module. This test approach used a modified torsion pendulum test step up that allowed the suspended Crew Module to rotate about the x axis. The second test used a different approach to measure both the Iyy and Izz properties. This test used a Knife Edge fixture that allowed small rotation of the Crew Module about the y and z axes. Discussions of the techniques and equations used to accomplish each test are presented. Comparisons with the predicted values used for the final flight calculations are made. Problem areas, with explanations and recommendations where available, are addressed. Finally, an evaluation of the value and success of these techniques to measure the moments of inertia of the Crew Module is provided.

  4. Quantifying Pilot Contribution to Flight Safety during Hydraulic Systems Failure

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Etherington, Timothy J.; Bailey, Randall E.; Kennedy, Kellie D.

    2017-01-01

    Accident statistics cite the flight crew as a causal factor in over 60% of large transport aircraft fatal accidents. Yet, a well-trained and well-qualified pilot is acknowledged as the critical center point of aircraft systems safety and an integral safety component of the entire commercial aviation system. The latter statement, while generally accepted, cannot be verified because little or no quantitative data exists on how and how many accidents/incidents are averted by crew actions. A joint NASA/FAA high-fidelity motion-base human-in-the-loop test was conducted using a Level D certified Boeing 737-800 simulator to evaluate the pilot's contribution to safety-of-flight during routine air carrier flight operations and in response to aircraft system failures. To quantify the human's contribution, crew complement (two-crew, reduced crew, single pilot) was used as the independent variable in a between-subjects design. This paper details the crew's actions, including decision-making, and responses while dealing with a hydraulic systems leak - one of 6 total non-normal events that were simulated in this experiment.

  5. Laundry Study for a Lunar Outpost

    NASA Technical Reports Server (NTRS)

    Ewert, Michael; Jeng, Frank

    2009-01-01

    In support of the Constellation Program, which will return humans to the moon and establish an Outpost, NASA has conducted an analysis of crew clothing and laundry options. Single-use or "disposable" clothing has been used from Apollo until International Space Station (ISS) missions, meaning that clothes were worn for the whole mission or thrown away when they became too dirty to wear any longer. This is justified for short duration missions; however, as the Constellation mission will last much longer and each individual Outpost mission is expected to last up to 180 days, mission goals and launch penalties for mass and volume may lead to a different conclusion. Furthermore, the habitat atmosphere pressure and therefore oxygen volume percentage will be different from ISS or Shuttle. Almost daily EVA sorties will be a norm during Outpost exploration missions. All of these factors will have impacts on selection of crew clothing and laundry options for Outpost missions. Mass and volume estimates for disposable crew clothing have been shown as a major penalty in long-duration manned space exploration missions in previous analyses. Assuming disposable clothing like ISS, Equivalent System Mass (ESM) of crew clothing and hygiene towels was estimated to be 11,000 kg or about 11% of total life support system ESM for a 10-year Lunar Outpost mission with 4 crew members. Ways to reduce this clothing penalty, which are discussed in this paper, include: a) Reduce clothing supply rate through using clothes made of advanced fabrics; b) Reduce daily usage rate by extending its use duration before disposing; and c) Use laundry and reusable clothing. The report summarizes recent research efforts in advanced clothing, proposed clothing supply rates for Exploration missions, results of a trade-off study between disposable clothing and laundry, and conclusions and suggestions for Constellation Program clothing.

  6. Impact of Conflict Avoidance Responsibility Allocation on Pilot Workload in a Distributed Air Traffic Management System

    NASA Technical Reports Server (NTRS)

    Ligda, Sarah V.; Dao, Arik-Quang V.; Vu, Kim-Phuong; Strybel, Thomas Z.; Battiste, Vernol; Johnson, Walter W.

    2010-01-01

    Pilot workload was examined during simulated flights requiring flight deck-based merging and spacing while avoiding weather. Pilots used flight deck tools to avoid convective weather and space behind a lead aircraft during an arrival into Louisville International airport. Three conflict avoidance management concepts were studied: pilot, controller or automation primarily responsible. A modified Air Traffic Workload Input Technique (ATWIT) metric showed highest workload during the approach phase of flight and lowest during the en-route phase of flight (before deviating for weather). In general, the modified ATWIT was shown to be a valid and reliable workload measure, providing more detailed information than post-run subjective workload metrics. The trend across multiple workload metrics revealed lowest workload when pilots had both conflict alerting and responsibility of the three concepts, while all objective and subjective measures showed highest workload when pilots had no conflict alerting or responsibility. This suggests that pilot workload was not tied primarily to responsibility for resolving conflicts, but to gaining and/or maintaining situation awareness when conflict alerting is unavailable.

  7. Relationship between workload and mind-wandering in simulated driving

    PubMed Central

    2017-01-01

    Mental workload and mind-wandering are highly related to driving safety. This study investigated the relationship between mental workload and mind-wandering while driving. Participants (N = 40) were asked to perform a car following task in driving simulator, and report whether they had experienced mind-wandering upon hearing a tone. After driving, participants reported their workload using the NASA-Task Load Index (TLX). Results revealed an interaction between workload and mind-wandering in two different perspectives. First, there was a negative correlation between workload and mind-wandering (r = -0.459, p < 0.01) for different individuals. Second, from temporal perspective workload and mind-wandering frequency increased significantly over task time and were positively correlated. Together, these findings contribute to understanding the roles of workload and mind-wandering in driving. PMID:28467513

  8. Defining the subjective experience of workload

    NASA Technical Reports Server (NTRS)

    Hart, S. G.; Childress, M. E.; Bortolussi, M.

    1981-01-01

    Flight scenarios that represent different types and levels of pilot workload are needed in order to conduct research about, and develop measures of, pilot workload. In order to be useful, however, the workload associated with such scenarios and the component tasks must be determined independently. An initial study designed to provide such information was conducted by asking a panel of general aviation pilots to evaluate flight-related tasks for the overall, perceptual, physical, and cognitive workload they impose. These ratings will provide the nucleus for a data base of flight-related primary tasks that have been independently rated for workload to use in workload assessment research.

  9. The workload analysis in welding workshop

    NASA Astrophysics Data System (ADS)

    Wahyuni, D.; Budiman, I.; Tryana Sembiring, M.; Sitorus, E.; Nasution, H.

    2018-03-01

    This research was conducted in welding workshop which produces doors, fences, canopies, etc., according to customer’s order. The symptoms of excessive workload were seen from the fact of employees complaint, requisition for additional employees, the lateness of completion time (there were 11 times of lateness from 28 orders, and 7 customers gave complaints). The top management of the workshop assumes that employees’ workload was still a tolerable limit. Therefore, it was required workload analysis to determine the number of employees required. The Workload was measured by using a physiological method and workload analysis. The result of this research can be utilized by the workshop for a better workload management.

  10. Effects of Acute Exposures to Carbon Dioxide Upon Cognitive Functions

    NASA Technical Reports Server (NTRS)

    Scully, R. R.; Alexander, D. J.; Ryder, V. E.; Lam, C. W.; Statish, U.; Basner, M.

    2016-01-01

    Large quantities of carbon dioxide (CO2) originate from human metabolism and typically, within spacecraft, remain about 10-fold higher in concentration than at the earth's surface. There have been recurring complaints by crew members of episodes of "mental viscosity" adversely affecting their performance, and there is evidence from the International Space Station (ISS) that associates CO2 levels with reports of headaches by crewmembers. Additionally, there is concern that CO2 may contribute to vision impairment and intracranial pressure that has been observed in some crewmembers. Consequently, flight rules have been employed to control the level of CO2 below 4 mm Hg, which is well below the existing Spacecraft Maximum Allowable Concentration (SMAC) of 10 mm Hg for 24-hour exposures, and 5.3 mm Hg for exposures of 7 to 180 days. However, the flight rule imposed limit, which places additional demands upon resources and current technology, still exceeds the lower bound of the threshold range for reportable headaches (2 - 5 mm Hg). Headaches, while sometime debilitating themselves, are also symptoms that can provide evidence that physiological defense mechanisms have been breached. The causes of the headaches may elicit other subtle adverse effects that occur at CO2 levels well below that for headaches. The concern that CO2 may have effects at levels below the threshold for headaches appears to be substantiated in unexpected findings that CO2 at concentrations below 2 mm Hg substantially reduced some cognitive functions that are associated with the ability to make complex decisions in conditions that are characterized by volatility, uncertainty, complexity, ambiguity, and delayed feedback. These are conditions that could be encountered by crews in off-nominal situations or during the first missions beyond low earth orbit. If findings of the earlier study are confirmed in crew-like subjects, our findings would provide additional evidence that CO2 may need to be controlled at levels that are well below current spacecraft limits. Our study will extend the earlier study to determine if crew-like subjects are similarly effected by CO2. In addition to employing the Strategic Management Simulation tool, we will use the Cognition battery of psychometric measures that are being utilized aboard the ISS. It will be important to learn, by using Cognition, if additional cognitive domains are sensitive to concentrations of CO2 at or below limits currently controlled by flight rules. While spaceflight Cognition data will greatly enhance the knowledge base related to inflight behavioral health and performance, some of the measures may be influenced by fatigue (related to sleep deprivation and or workload) and changes in circadian rhythms. Therefore our use of this battery of tests in a well-controlled, ground-based study that is free of these potential confounding influences will establish a baseline terrestrial data set against which Cognition data collected in flight may be assessed. The findings from this study will be useful to the NASA Toxicology Office and the National Research Council Committee on Toxicology, which assists NASA in setting environmental standards, for revision of the SMAC for CO2, and for designing further studies on effects of CO2 upon cognitive functions.

  11. Effects of workload preview on task scheduling during simulated instrument flight.

    PubMed

    Andre, A D; Heers, S T; Cashion, P A

    1995-01-01

    Our study examined pilot scheduling behavior in the context of simulated instrument flight. Over the course of the flight, pilots flew along specified routes while scheduling and performing several flight-related secondary tasks. The first phase of flight was flown under low-workload conditions, whereas the second phase of flight was flown under high-workload conditions in the form of increased turbulence and a disorganized instrument layout. Six pilots were randomly assigned to each of three workload preview groups. Subjects in the no-preview group were not given preview of the increased-workload conditions. Subjects in the declarative preview group were verbally informed of the nature of the flight workload manipulation but did not receive any practice under the high-workload conditions. Subjects in the procedural preview group received the same instructions as the declarative preview group but also flew half of the practice flight under the high-workload conditions. The results show that workload preview fostered efficient scheduling strategies. Specifically, those pilots with either declarative or procedural preview of future workload demands adopted an efficient strategy of scheduling more of the difficult secondary tasks during the low-workload phase of flight. However, those pilots given a procedural preview showed the greatest benefits in overall flight performance.

  12. A study of human performance in a rotating environment

    NASA Technical Reports Server (NTRS)

    Green, J. A.; Peacock, J. L.; Holm, A. P.

    1971-01-01

    Consideration is given to the lack of sufficient data relative to the response of man to the attendant oculovestibular stimulations induced by multi-directional movement of an individual within the rotating environment to provide the required design criteria. This was done to determine the overall impact of artificial gravity simulations on potential design configurations and crew operational procedures. Gross locomotion and fine motor performance were evaluated. Results indicate that crew orientation, rotational rates, vehicle design configurations, and operational procedures may be used to reduce the severity of the adverse effects of the Coriolis and cross-coupled angular accelerations acting on masses moving within a rotating environment. Results further indicate that crew selection, motivation, and short-term exposures to the rotating environment may be important considerations for future crew indoctrination and training programs.

  13. Aviation safety and automation technology for subsonic transports

    NASA Technical Reports Server (NTRS)

    Albers, James A.

    1991-01-01

    Discussed here are aviation safety human factors and air traffic control (ATC) automation research conducted at the NASA Ames Research Center. Research results are given in the areas of flight deck and ATC automations, displays and warning systems, crew coordination, and crew fatigue and jet lag. Accident investigation and an incident reporting system that is used to guide the human factors research is discussed. A design philosophy for human-centered automation is given, along with an evaluation of automation on advanced technology transports. Intelligent error tolerant systems such as electronic checklists are discussed along with design guidelines for reducing procedure errors. The data on evaluation of Crew Resource Management (CRM) training indicates highly significant positive changes in appropriate flight deck behavior and more effective use of available resources for crew members receiving the training.

  14. Workload of Team Leaders and Team Members During a Simulated Sepsis Scenario.

    PubMed

    Tofil, Nancy M; Lin, Yiqun; Zhong, John; Peterson, Dawn Taylor; White, Marjorie Lee; Grant, Vincent; Grant, David J; Gottesman, Ronald; Sudikoff, Stephanie N; Adler, Mark; Marohn, Kimberly; Davidson, Jennifer; Cheng, Adam

    2017-09-01

    Crisis resource management principles dictate appropriate distribution of mental and/or physical workload so as not to overwhelm any one team member. Workload during pediatric emergencies is not well studied. The National Aeronautics and Space Administration-Task Load Index is a multidimensional tool designed to assess workload validated in multiple settings. Low workload is defined as less than 40, moderate 40-60, and greater than 60 signify high workloads. Our hypothesis is that workload among both team leaders and team members is moderate to high during a simulated pediatric sepsis scenario and that team leaders would have a higher workload than team members. Multicenter observational study. Nine pediatric simulation centers (five United States, three Canada, and one United Kingdom). Team leaders and team members during a 12-minute pediatric sepsis scenario. National Aeronautics and Space Administration-Task Load Index. One hundred twenty-seven teams were recruited from nine sites. One hundred twenty-seven team leaders and 253 team members completed the National Aeronautics and Space Administration-Task Load Index. Team leader had significantly higher overall workload than team member (51 ± 11 vs 44 ± 13; p < 0.01). Team leader had higher workloads in all subcategories except in performance where the values were equal and in physical demand where team members were higher than team leaders (29 ± 22 vs 18 ± 16; p < 0.01). The highest category for each group was mental 73 ± 13 for team leader and 60 ± 20 for team member. For team leader, two categories, mental (73 ± 17) and effort (66 ± 16), were high workload, most domains for team member were moderate workload levels. Team leader and team member are under moderate workloads during a pediatric sepsis scenario with team leader under high workloads (> 60) in the mental demand and effort subscales. Team leader average significantly higher workloads. Consideration of decreasing team leader responsibilities may improve team workload distribution.

  15. Workload management and geographic disorientation in aviation incidents: A review of the ASRS data base

    NASA Technical Reports Server (NTRS)

    Williams, Henry P.; Tham, Mingpo; Wickens, Christopher D.

    1993-01-01

    NASA's Aviation Safety Reporting System (ASRS) incident reports are reviewed in two related areas: pilots' failures to appropriately manage tasks, and breakdowns in geographic orientation. Examination of 51 relevant reports on task management breakdowns revealed that altitude busts and inappropriate runway usee were the most frequently reported consequences. Task management breakdowns appeared to occur at all levels of expertise, and prominent causal factors were related to breakdowns in crew communications, over-involvement with the flight management system and, for small (general aviation) aircraft, preoccupation with weather. Analysis of the 83 cases of geographic disorientation suggested that these too occurred at all levels of pilot experience. With regard to causal factors, a majority was related to poor cockpit resource management, in which inattention led to a loss of geographic awareness. Other leading causes were related to poor weather and poor decision making. The potential of the ASRS database for contributing to research and design issues is addressed.

  16. A Framework for Modeling Human-Machine Interactions

    NASA Technical Reports Server (NTRS)

    Shafto, Michael G.; Rosekind, Mark R. (Technical Monitor)

    1996-01-01

    Modern automated flight-control systems employ a variety of different behaviors, or modes, for managing the flight. While developments in cockpit automation have resulted in workload reduction and economical advantages, they have also given rise to an ill-defined class of human-machine problems, sometimes referred to as 'automation surprises'. Our interest in applying formal methods for describing human-computer interaction stems from our ongoing research on cockpit automation. In this area of aeronautical human factors, there is much concern about how flight crews interact with automated flight-control systems, so that the likelihood of making errors, in particular mode-errors, is minimized and the consequences of such errors are contained. The goal of the ongoing research on formal methods in this context is: (1) to develop a framework for describing human interaction with control systems; (2) to formally categorize such automation surprises; and (3) to develop tests for identification of these categories early in the specification phase of a new human-machine system.

  17. Examination of Automation-Induced Complacency and Individual Difference Variates

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; DeVries, Holly; Freeman, Fred G.; Mikulka, Peter

    2001-01-01

    Automation-induced complacency has been documented as a cause or contributing factor in many airplane accidents throughout the last two decades. It is surmised that the condition results when a crew is working in highly reliable automated environments in which they serve as supervisory controllers monitoring system states for occasional automation failures. Although many reports have discussed the dangers of complacency, little empirical research has been produced to substantiate its harmful effects on performance as well as what factors produce complacency. There have been some suggestions, however, that individual characteristics could serve as possible predictors of performance in automated systems. The present study examined relationship between the individual differences of complacency potential, boredom proneness, and cognitive failure, automation-induced complacency. Workload and boredom scores were also collected and analyzed in relation to the three individual differences. The results of the study demonstrated that there are personality individual differences that are related to whether an individual will succumb to automation-induced complacency. Theoretical and practical implications are discussed.

  18. Pilot In-Trail Procedure Validation Simulation Study

    NASA Technical Reports Server (NTRS)

    Bussink, Frank J. L.; Murdoch, Jennifer L.; Chamberlain, James P.; Chartrand, Ryan; Jones, Kenneth M.

    2008-01-01

    A Human-In-The-Loop experiment was conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) to investigate the viability of the In-Trail Procedure (ITP) concept from a flight crew perspective, by placing participating airline pilots in a simulated oceanic flight environment. The test subject pilots used new onboard avionics equipment that provided improved information about nearby traffic and enabled them, when specific criteria were met, to request an ITP flight level change referencing one or two nearby aircraft that might otherwise block the flight level change. The subject pilots subjective assessments of ITP validity and acceptability were measured via questionnaires and discussions, and their objective performance in appropriately selecting, requesting, and performing ITP flight level changes was evaluated for each simulated flight scenario. Objective performance and subjective workload assessment data from the experiment s test conditions were analyzed for statistical and operational significance and are reported in the paper. Based on these results, suggestions are made to further improve the ITP.

  19. Manual and automatic control of surface effect ships. [operator steering servomechanisms analysis

    NASA Technical Reports Server (NTRS)

    Clement, W. F.; Shanahan, J. J.; Allen, R. W.

    1975-01-01

    A recent investigation of crew performance in the motion environment of a large generic high speed surface effect ship by means of a motion base simulation addressed some of the helmsman's control task with an external forward visual field of the seascape and navigation and steering displays in the pilot house. In addition to the primary steering control task, a subcritical speed tracking task provided a secondary surrogate for trimming the water speed of the craft. The results of helsmen's steering describing function measurements are presented, and some suggestions for their interpretation are offered. The likely steering loop closures comprise heading and lateral displacement for the course keeping task investigated. Also discussed is the manner in which these loop closures were implemented for automatic steering of the surface effect ship. Regardless of the influence of workload, steering technique, water speed and sea state, the helmsmen apparently adopted a disturbance regulation bandwidth of about 0.2 rad/sec for lateral displacement.

  20. Advanced warfighter machine interface (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Franks, Erin

    2005-05-01

    Future military crewmen may have more individual and shared tasks to complete throughout a mission as a result of smaller crew sizes and an increased number of technology interactions. To maintain reasonable workload levels, the Warfighter Machine Interface (WMI) must provide information in a consistent, logical manner, tailored to the environment in which the soldier will be completing their mission. This paper addresses design criteria for creating an advanced, multi-modal warfighter machine interface for on-the-move mounted operations. The Vetronics Technology Integration (VTI) WMI currently provides capabilities such as mission planning and rehearsal, voice and data communications, and manned/unmanned vehicle payload and mobility control. A history of the crewstation and more importantly, the WMI software will be provided with an overview of requirements and criteria used for completing the design. Multiple phases of field and laboratory testing provide the opportunity to evaluate the design and hardware in stationary and motion environments. Lessons learned related to system usability and user performance are presented with mitigation strategies to be tested in the future.

  1. "Party Line" Information Use Studies and Implications for ATC Datalink Communications

    NASA Technical Reports Server (NTRS)

    Hansman, R. John; Pritchett, Amy; Midkiff, Alan

    1995-01-01

    The perceived importance and utilization of 'party line' information by air carrier flight crews was investigated through pilot surveys and a flight simulation study. The importance, availability, and accuracy of party line information elements were explored through surveys of pilots of several operational types. The survey identified numerous traffic and weather party line information elements which were considered important. These elements were scripted into a full-mission flight simulation which examined the utilization of party line information by studying subject responses to specific information element stimuli. The awareness of the different Party Line elements varied, and awareness was also affected by pilot workload. In addition, pilots were aware of some traffic information elements, but were reluctant to act on Party Line Information alone. Finally, the results of both the survey and the simulation indicated that the importance of party line information appeared to be greatest for operations near or on the airport. This indicates that caution should be exercised when implementing datalink communications in tower and close-in terminal control sectors.

  2. 'Party Line' Information Use Studies and Implications for ATV Datalink Communications

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy; Hansman, R. John; Midkiff, Alan

    1995-01-01

    The perceived importance and utilization of 'party line' information by air carrier flight crews was investigated through pilot surveys and a flight simulation study. The Importance, Availability, and Accuracy of party line information elements were explored through surveys of pilots of several operational types. The survey identified numerous traffic and weather party line information elements which were considered important. These elements were scripted into a full-mission flight simulation which examined the utilization of party line information by studying subject responses to specific information element stimuli. The awareness of the different Party Line elements varied, and awareness was also affected by pilot workload. In addition, pilots were aware of some traffic information elements, but were reluctant to act on Party Line Information alone. Finally, the importance of party line information appears to be greatest for operations near or on the airport. This indicates that caution should be exercised when implementing datalink communications in tower and close-in terminal control sectors.

  3. Individual differences in cardiorespiratory measures of mental workload: An investigation of negative affectivity and cognitive avoidant coping in pilot candidates.

    PubMed

    Grassmann, Mariel; Vlemincx, Elke; von Leupoldt, Andreas; Van den Bergh, Omer

    2017-03-01

    Cardiorespiratory measures provide useful information in addition to well-established self-report measures when monitoring operator capacity. The purpose of our study was to refine the assessment of operator load by considering individual differences in personality and their associations with cardiorespiratory activation. Physiological and self-report measures were analyzed in 115 pilot candidates at rest and while performing a multiple task covering perceptual speed, spatial orientation, and working memory. In the total sample and particularly in individuals with a general tendency to worry a lot, a cognitive avoidant coping style was associated with a smaller task-related increase in heart rate. Negative affectivity was found to moderate the association between cardiac and self-reported arousal. Given that physiological and self-report measures of mental workload are usually combined when evaluating operator load (e.g., in pilot selection and training), our findings suggest that integrating individual differences may reduce unexplained variance and increase the validity of workload assessments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Bioinstrumentation for evaluation of workload in payload specialists: results of ASSESS II

    NASA Astrophysics Data System (ADS)

    Wegmann, Hans M.; Herrmann, Reinhold; Winget, Charles M.

    1980-11-01

    ASSESS II‡Acronym for Airborne Science/Spacelab Experiments System Simulation. was a cooperative NASA-ESA project which consisted of a detailed simulation of Spacelab operations using the NASA Ames Research Center CV-990 aircraft laboratory. The Medical Experiment reported on in this paper was part of the complex payload consisting of 11 different experiments. Its general purpose was to develop a technology, possibly flown on board of Spacelab, and enabling the assessment of workload through evaluating changes of circadian rhythmicity, sleep disturbances and episodical or cumulative stress. As parameters the following variables were measured: Rectal temperature, ECG, sleep-EEG and -EOG, the urinary excretion of hormones and electrolytes. The results revealed evidence that a Spacelab environment, as simulated in ASSESS II, will lead to internal dissociation of circadian rhythms, to sleep disturbances and to highly stressful working conditions. Altogether these effects will impose considerable workload upon Payload Specialists. It is suggested that an intensive pre-mission system simulation will reduce these impairments to a reasonable degree. The bioinstrumentation applied in this experiment proved to be a practical and reliable tool in assessing the objectives of the study.

  5. A flight investigation of simulated data-link communications during single-pilot IFR flight. Volume 2: Flight evaluations

    NASA Technical Reports Server (NTRS)

    Parker, J. F., Jr.; Duffy, J. W.

    1982-01-01

    Key problems in single pilot instrument flight operations are in the management of flight data and the processing of cockpit information during conditions of heavy workload. A flight data console was developed to allow simulation of a digital data link to replace the current voice communications stem used in air traffic control. This is a human factors evaluation of a data link communications system to determine how such a system might reduce cockpit workload, improve flight proficiency, and be accepted by general aviation pilots. The need for a voice channel as backup to a digital link is examined. The evaluations cover both airport terminal area operations and full mission instrument flight. Results show that general aviation pilots operate well with a digital data link communications system. The findings indicate that a data link system for pilot/ATC communications, with a backup voice channel, is well accepted by general aviation pilots and is considered to be safer, more efficient, and result in less workload than the current voice system.

  6. Running ATLAS workloads within massively parallel distributed applications using Athena Multi-Process framework (AthenaMP)

    NASA Astrophysics Data System (ADS)

    Calafiura, Paolo; Leggett, Charles; Seuster, Rolf; Tsulaia, Vakhtang; Van Gemmeren, Peter

    2015-12-01

    AthenaMP is a multi-process version of the ATLAS reconstruction, simulation and data analysis framework Athena. By leveraging Linux fork and copy-on-write mechanisms, it allows for sharing of memory pages between event processors running on the same compute node with little to no change in the application code. Originally targeted to optimize the memory footprint of reconstruction jobs, AthenaMP has demonstrated that it can reduce the memory usage of certain configurations of ATLAS production jobs by a factor of 2. AthenaMP has also evolved to become the parallel event-processing core of the recently developed ATLAS infrastructure for fine-grained event processing (Event Service) which allows the running of AthenaMP inside massively parallel distributed applications on hundreds of compute nodes simultaneously. We present the architecture of AthenaMP, various strategies implemented by AthenaMP for scheduling workload to worker processes (for example: Shared Event Queue and Shared Distributor of Event Tokens) and the usage of AthenaMP in the diversity of ATLAS event processing workloads on various computing resources: Grid, opportunistic resources and HPC.

  7. Prediction of physical workload in reduced gravity environments

    NASA Technical Reports Server (NTRS)

    Goldberg, Joseph H.

    1987-01-01

    The background, development, and application of a methodology to predict human energy expenditure and physical workload in low gravity environments, such as a Lunar or Martian base, is described. Based on a validated model to predict energy expenditures in Earth-based industrial jobs, the model relies on an elemental analysis of the proposed job. Because the job itself need not physically exist, many alternative job designs may be compared in their physical workload. The feasibility of using the model for prediction of low gravity work was evaluated by lowering body and load weights, while maintaining basal energy expenditure. Comparison of model results was made both with simulated low gravity energy expenditure studies and with reported Apollo 14 Lunar EVA expenditure. Prediction accuracy was very good for walking and for cart pulling on slopes less than 15 deg, but the model underpredicted the most difficult work conditions. This model was applied to example core sampling and facility construction jobs, as presently conceptualized for a Lunar or Martian base. Resultant energy expenditures and suggested work-rest cycles were well within the range of moderate work difficulty. Future model development requirements were also discussed.

  8. Physical activity overcomes the effects of cumulative work time on hypertension prevalence among Brazilian taxi drivers.

    PubMed

    Vieira, Marcelo C; Sperandei, Sandro; Reis, Arianne C

    2016-05-01

    The aim of this study was to assess the physical activity profile of taxi drivers and its relationship with hypertension prevalence in this group of workers. Cross sectional exploratory study. Between November 2008 and April 2009, 491 taxi drivers from Rio de Janeiro, Brazil, answered a questionnaire focusing on previous hypertension diagnosis, occupational characteristics and physical activity habits. Two logistic models were developed to determine risk factors related to hypertension and to find variables associated with a higher probability of sedentarism. Hypertension prevalence was 22.6%. The workload of the group investigated was high. Results indicate that 'age', 'Body Mass Index', 'physical activity', and 'years as a taxi driver' are related to the probability of hypertension. Physical activity was shown to be a protection factor for hypertension, even considering the deleterious effect of time as a taxi driver. Our results also determined that the practice of physical activity is influenced by age, level of education and workload. It is recommended that programs to combat sedentary lifestyles as well as measures to reduce workloads be developed as strategies to prevent hypertension.

  9. Physical activity overcomes the effects of cumulative work time on hypertension prevalence among Brazilian taxi drivers.

    PubMed

    Vieira, M C; Sperandei, S; Reis, A

    2015-02-10

    The aim of this study was to assess the physical activity profile of taxi drivers and its relationship with hypertension prevalence in this group of workers. Cross sectional exploratory study. Between November 2008 and April 2009, 491 taxi drivers from Rio de Janeiro, Brazil, answered a questionnaire focusing on previous hypertension diagnosis, occupational characteristics and physical activity habits. Two logistic models were developed to determine risk factors related to hypertension and to find variables associated with a higher probability of sedentarism. Hypertension prevalence was 22.6%. The workload of the group investigated was high. Results indicate that 'age', 'body mass index', 'physical activity', and 'years as a taxi driver' are related to the probability of hypertension. Physical activity was shown to be a protection factor for hypertension, even considering the deleterious effect of time as a taxi driver. Our results also determined that the practice of physical activity is influenced by age, level of education and workload. It is recommended that programs to combat sedentary lifestyles as well as measures to reduce workloads be developed as strategies to prevent hypertension.

  10. Job-related stress in psychiatric nurses in Japan caring for elderly patients with dementia.

    PubMed

    Yada, Hironori; Abe, Hiroshi; Lu, Xi; Wakizaki, Yuko; Omori, Hisamitsu; Matsuo, Hisae; Ishida, Yasushi; Katoh, Takahiko

    2014-11-01

    We investigated the specificity and structures of job-related stress in psychiatric dementia nurses (PDNs) caring for elderly patients with serious behavioral and psychological symptoms of dementia who required substantial assistance with activities of daily living, in order to obtain fundamental knowledge toward providing mental health care for these nurses. Subjects were 244 nurses [63 PDNs and 181 other psychiatric nurses (OPNs)] Analysis of covariance to examine the specificity of job-related stress in PDNs revealed physical workload and work environment to be more significant stressors, and irritability and anxiety to be more significant stress reactions in PDNs than in OPNs. An examination of PDNs' job-related stress structures established in a structural equation model with two stress reactions confirmed as specific outcomes for PDNs revealed a significant positive influence of work environment on irritability; utilization of techniques for anxiety and physical workload influenced both stress reactions. Our findings highlight the importance of reducing physical workload and environment and establishing a structure for nursing techniques in psychiatric dementia wards to improve the mental health of PDNs.

  11. Mental workload measurement in operator control room using NASA-TLX

    NASA Astrophysics Data System (ADS)

    Sugarindra, M.; Suryoputro, M. R.; Permana, A. I.

    2017-12-01

    The workload, encountered a combination of physical workload and mental workload, is a consequence of the activities for workers. Central control room is one department in the oil processing company, employees tasked with monitoring the processing unit for 24 hours nonstop with a combination of 3 shifts in 8 hours. NASA-TLX (NASA Task Load Index) is one of the subjective mental workload measurement using six factors, namely the Mental demand (MD), Physical demand (PD), Temporal demand (TD), Performance (OP), Effort (EF), frustration levels (FR). Measurement of a subjective mental workload most widely used because it has a high degree of validity. Based on the calculation of the mental workload, there at 5 units (DTU, NPU, HTU, DIST and OPS) at the control chamber (94; 83.33; 94.67; 81, 33 and 94.67 respectively) that categorize as very high mental workload. The high level of mental workload on the operator in the Central Control Room is a requirement to have high accuracy, alertness and can make decisions quickly

  12. Reducing Secondary Insults in Traumatic Brain Injury

    DTIC Science & Technology

    2015-03-01

    from external stimuli ( vibration , noise ) and from acceleration and deceleration forces. During transport, Critical Care Air transport Team crews...provide excess noise and vibration during flight. Hearing protection for patients and flight crew is required to avoid damage. Vibration experi- enced...decelerative forces. In addition, the noise , vibration , and patient agitation associated with the tactical takeoff and land- ing of military cargo

  13. Using the NASA Task Load Index to Assess Workload in Electronic Medical Records.

    PubMed

    Hudson, Darren; Kushniruk, Andre W; Borycki, Elizabeth M

    2015-01-01

    Electronic medical records (EMRs) has been expected to decrease health professional workload. The NASA Task Load Index has become an important tool for assessing workload in many domains. However, its application in assessing the impact of an EMR on nurse's workload has remained to be explored. In this paper we report the results of a study of workload and we explore the utility of applying the NASA Task Load Index to assess impact of an EMR at the end of its lifecycle on nurses' workload. It was found that mental and temporal demands were the most responsible for the workload. Further work along these lines is recommended.

  14. An Alternative Approach to Human Servicing of Crewed Earth Orbiting Spacecraft

    NASA Technical Reports Server (NTRS)

    Mularski, John R.; Alpert, Brian K.

    2017-01-01

    As crewed spacecraft have grown larger and more complex, they have come to rely on spacewalks, or Extravehicular Activities (EVA), for assembly and to assure mission success. Typically, these spacecraft maintain all of the hardware and trained personnel needed to perform an EVA on-board at all times. Maintaining this capability requires up-mass, volume for storage of EVA hardware, crew time for ground and on-orbit training, and on-orbit maintenance of EVA hardware. This paper proposes an alternative methodology, utilizing either launch-on-need hardware and crew or regularly scheduled missions to provide EVA capability for space stations in low Earth orbit after assembly complete. Much the same way that one would call a repairman to fix something at their home these EVAs are dedicated to maintenance and upgrades of the orbiting station. For crew safety contingencies it is assumed the station would be designed such the crew could either solve those issues from inside the spacecraft or use the docked Earth to Orbit vehicles as a return lifeboat, in the same manner as the International Space Station (ISS) which does not rely on EVA for crew safety related contingencies. This approach would reduce ground training requirements for long duration crews, save Intravehicular Activity (IVA) crew time in the form of EVA hardware maintenance and on-orbit training, and lead to more efficient EVAs because they would be performed by specialists with detailed knowledge and training stemming from their direct involvement in the development of the EVA. The on-orbit crew would then be available to focus on the immediate response to any failures such as IVA systems reconfiguration or jumper installation as well as the day-to-day operations of the spacecraft and payloads. This paper will look at how current unplanned EVAs are conducted on ISS, including the time required for preparation, and offer an alternative for future spacecraft. As this methodology relies on the on-time and on-need launch of spacecraft, any space station that utilized this approach would need a robust transportation system, possibly including more than one launch vehicle capable of carrying crew. In addition, the fault tolerance of the future space station would be an important consideration in how much time was available for EVA preparation after the failure. Ideally the fault tolerance of the station would allow for the maintenance tasks to be grouped such that they could be handled by regularly scheduled maintenance visits and not contingency launches. Each future program would have to weigh the risk of on-time launch against the increase in available crew time for the main objective of the spacecraft. This is only one of several ideas that could be used to reduce or eliminate a station's reliance on rapid turnaround EVAs using on-board crew. Others could include having shirt-sleeve access to critical systems or utilizing low pressure temporarily pressurized equipment bays.

  15. Measuring workload in collaborative contexts: trait versus state perspectives.

    PubMed

    Helton, William S; Funke, Gregory J; Knott, Benjamin A

    2014-03-01

    In the present study, we explored the state versus trait aspects of measures of task and team workload in a disaster simulation. There is often a need to assess workload in both individual and collaborative settings. Researchers in this field often use the NASATask Load Index (NASA-TLX) as a global measure of workload by aggregating the NASA-TLX's component items. Using this practice, one may overlook the distinction between traits and states. Fifteen dyadic teams (11 inexperienced, 4 experienced) completed five sessions of a tsunami disaster simulator. After every session, individuals completed a modified version of the NASA-TLX that included team workload measures.We then examined the workload items by using a between-subjects and within-subjects perspective. Between-subjects and within-subjects correlations among the items indicated the workload items are more independent within subjects (as states) than between subjects (as traits). Correlations between the workload items and simulation performance were also different at the trait and state levels. Workload may behave differently at trait (between-subjects) and state (within-subjects) levels. Researchers interested in workload measurement as a state should take a within-subjects perspective in their analyses.

  16. Novel method of measuring the mental workload of anaesthetists during clinical practice.

    PubMed

    Byrne, A J; Oliver, M; Bodger, O; Barnett, W A; Williams, D; Jones, H; Murphy, A

    2010-12-01

    Cognitive overload has been recognized as a significant cause of error in industries such as aviation and measuring mental workload has become a key method of improving safety. The aim of this study was to pilot the use of a new method of measuring mental workload in the operating theatre using a previously published methodology. The mental workload of the anaesthetists was assessed by measuring their response times to a wireless vibrotactile device and the NASA TLX subjective workload score during routine surgical procedures. Primary task workload was inferred from the phase of anaesthesia. Significantly increased response time was associated with the induction phase of anaesthesia compared with maintenance/emergence, non-consultant grade, and during more complex cases. Increased response was also associated with self-reported mental load, physical load, and frustration. These findings are consistent with periods of increased mental workload and with the findings of other studies using similar techniques. These findings confirm the importance of mental workload to the performance of anaesthetists and suggest that increased mental workload is likely to be a common problem in clinical practice. Although further studies are required, the method described may be useful for the measurement of the mental workload of anaesthetists.

  17. Advanced Crew Escape Suit.

    PubMed

    1995-09-01

    Design of the S1032 Launch Entry Suit (LES) began following the Challenger loss and NASA's decision to incorporate a Shuttle crew escape system. The LES (see Figure 1) has successfully supported Shuttle missions since NASA's Return to Flight with STS-26 in September 1988. In 1990, engineers began developing the S1035 Advanced Crew Escape Suit (ACES) to serve as a replacement for the LES. The ACES was designed to be a simplified, lightweight, low-bulk pressure suit which aided self donning/doffing, provided improved comfort, and enhanced overall performance to reduce crew member stress and fatigue. Favorable crew member evaluations of a prototype led to full-scale development and qualification of the S1035 ACES between 1990 and 1992. Production of the S1035 ACES began in February 1993, with the first unit delivered to NASA in May 1994. The S1035 ACES first flew aboard STS-68 in August 1994 and will become the primary crew escape suit when the S1032 LES ends its service life in late 1995. The primary goal of the S1035 development program was to provide improved performance over that of the S1032 to minimize the stress and fatigue typically experienced by crew members. To achieve this, five fundamental design objectives were established, resulting in various material/configuration changes.

  18. Workload and non-contact injury incidence in elite football players competing in European leagues.

    PubMed

    Delecroix, Barthelemy; McCall, Alan; Dawson, Brian; Berthoin, Serge; Dupont, Gregory

    2018-06-02

    The aim of this study was to analyse the relationship between absolute and acute:chronic workload ratios and non-contact injury incidence in professional football players and to assess their predictive ability. Elite football players (n = 130) from five teams competing in European domestic and confederation level competitions were followed during one full competitive season. Non-contact injuries were recorded and using session rate of perceived exertion (s-RPE) internal absolute workload and acute:chronic (A:C) workload ratios (4-weeks, 3-weeks, 2-weeks and week-to-week) were calculated using a rolling days method. The relative risk (RR) of non-contact injury was increased (RR = 1.59, CI95%: 1.18-2.15) when a cumulative 4-week absolute workload was greater than 10629 arbitrary units (AU) in comparison with a workload between 3745 and 10628 AU. When the 3-week absolute workload was more than 8319 AU versus between 2822 and 8318 AU injury risk was also increased (RR= 1.46, CI95% 1.08-1.98). Injury incidence was higher when the 4-week A:C ratio was <0.85 versus >0.85 (RR = 1.31, CI95%: 1.02-1.70) and with a 3-week A:C ratio >1.30 versus <1.30 (RR = 1.37, CI95%: 1.05-1.77). Importantly, none of the A:C workload combinations showed high sensitivity or specificity. In elite European footballers, using internal workload (sRPE) revealed that cumulative workloads over 3 and 4 weeks were associated with injury incidence. Additionally, A:C workloads, using combinations of 2, 3 and 4 weeks as the C workloads were also associated with increased injury risk. No A:C workload combination was appropriate to predict injury.

  19. Toxicological safeguards in the manned Mars missions

    NASA Technical Reports Server (NTRS)

    Coleman, Martin E.

    1986-01-01

    Safeguards against toxic chemical exposures during manned Mars missions (MMMs) will be important for the maintenance of crew health and the accomplishment of mission objectives. Potential sources include offgassing, thermodegradation or combustion of materials, metabolic products of crew members, and escape of chemical from containment. Spacecraft maximum allowable concentration (SMAC) limits will have to be established for potential contaminants during the MMMs. The following factors will be used in establishing these limits: duration of mission, simultaneous exposure to other contaminants, deconditioning of crew members after long periods of reduced gravity, and simultaneous exposure to ionizing radiation. Atmospheric contaminant levels in all compartments of the transit spacecraft and Manned Mars Station (MMS) will be monitored at frequent intervals with a real time analyzer. This analyzer will be highly automated, requiring minimal crew time and expertise. The atmospheric analyzer will find other usages during the MMMs such as analyzing Martian atmospheres and soils, exhaled breath and body fluids of crew members, and reaction products in chemical processing facilities.

  20. CREW CHIEF: A computer graphics simulation of an aircraft maintenance technician

    NASA Technical Reports Server (NTRS)

    Aume, Nilss M.

    1990-01-01

    Approximately 35 percent of the lifetime cost of a military system is spent for maintenance. Excessive repair time is caused by not considering maintenance during design. Problems are usually discovered only after a mock-up has been constructed, when it is too late to make changes. CREW CHIEF will reduce the incidence of such problems by catching design defects in the early design stages. CREW CHIEF is a computer graphic human factors evaluation system interfaced to commercial computer aided design (CAD) systems. It creates a three dimensional man model, either male or female, large or small, with various types of clothing and in several postures. It can perform analyses for physical accessibility, strength capability with tools, visual access, and strength capability for manual materials handling. The designer would produce a drawing on his CAD system and introduce CREW CHIEF in it. CREW CHIEF's analyses would then indicate places where problems could be foreseen and corrected before the design is frozen.

  1. The Cognitive Costs and Benefits of Automation

    DTIC Science & Technology

    2003-10-01

    paper discusses the cognitive costs and benefits related to the automation within the execution of all processes that lead to the course of action...selection. Among the benefits identified, the human workload and the demand of attentional resources can be significantly reduced. A major cognitive cost

  2. ATD-1 ATM Technology Demonstration-1 and Integrated Scheduling

    NASA Technical Reports Server (NTRS)

    Quon, Leighton

    2014-01-01

    Enabling efficient arrivals for the NextGen Air Traffic Management System and developing a set of integrated decision support tools to reduce the high cognitive workload so that controllers are able to simultaneously achieve safe, efficient, and expedient operations at high traffic demand levels.

  3. Combining Quick-Turnaround and Batch Workloads at Scale

    NASA Technical Reports Server (NTRS)

    Matthews, Gregory A.

    2012-01-01

    NAS uses PBS Professional to schedule and manage the workload on Pleiades, an 11,000+ node 1B cluster. At this scale the user experience for quick-turnaround jobs can degrade, which led NAS initially to set up two separate PBS servers, each dedicated to a particular workload. Recently we have employed PBS hooks and scheduler modifications to merge these workloads together under one PBS server, delivering sub-1-minute start times for the quick-turnaround workload, and enabling dynamic management of the resources set aside for that workload.

  4. Preliminary Investigation of Workload on Intrastate Bus Traffic Controllers

    NASA Astrophysics Data System (ADS)

    Yen Bin, Teo; Azlis-Sani, Jalil; Nur Annuar Mohd Yunos, Muhammad; Ismail, S. M. Sabri S. M.; Tajedi, Noor Aqilah Ahmad

    2016-11-01

    The daily routine of bus traffic controller which involves high mental processes would have a direct impact on the level of workload. To date, the level of workload on the bus traffic controllers in Malaysia is relatively unknown. Excessive workload on bus traffic controllers would affect the control and efficiency of the system. This paper served to study the workload on bus traffic controllers and justify the needs to conduct further detailed research on this field. The objectives of this research are to identify the level of workload on the intrastate bus traffic controllers. Based on the results, recommendations will be proposed for improvements and future studies. The level of workload for the bus traffic controllers is quantified using questionnaire adapted from NASA TLX. Interview sessions were conducted for validation of workload. Sixteen respondents were involved and it was found that the average level of workload based on NASA TLX was 6.91. It was found that workload is not affected by gender and marital status. This study also showed that the level of workload and working experience of bus traffic controllers has a strong positive linear relationship. This study would serve as a guidance and reference related to this field. Since this study is a preliminary investigation, further detailed studies could be conducted to obtain a better comprehension regarding the bus traffic controllers.

  5. FMP study of pilot workload. Qualification of workload via instrument scan

    NASA Technical Reports Server (NTRS)

    Tolel, J. R.; Vivaudou, M.; Harris, R. L., Sr.; Ephrath, A.

    1982-01-01

    Various methods of measuring a pilot's mental workload are discussed. Scanning the various flight instruments with good scan pattern and other verbal tasks during instrument landings is given special attention for measuring pilot workload.

  6. Mental workload measurement: Event-related potentials and ratings of workload and fatigue

    NASA Technical Reports Server (NTRS)

    Biferno, M. A.

    1985-01-01

    Event-related potentials were elicited when a digitized word representing a pilot's call-sign was presented. This auditory probe was presented during 27 workload conditions in a 3x3x3 design where the following variables were manipulated: short-term load, tracking task difficulty, and time-on-task. Ratings of workload and fatigue were obtained between each trial of a 2.5-hour test. The data of each subject were analyzed individually to determine whether significant correlations existed between subjective ratings and ERP component measures. Results indicated that a significant number of subjects had positive correlations between: (1) ratings of workload and P300 amplitude, (2) ratings of workload and N400 amplitude, and (3) ratings of fatigue and P300 amplitude. These data are the first to show correlations between ratings of workload or fatigue and ERP components thereby reinforcing their validity as measures of mental workload and fatigue.

  7. Voice measures of workload in the advanced flight deck: Additional studies

    NASA Technical Reports Server (NTRS)

    Schneider, Sid J.; Alpert, Murray

    1989-01-01

    These studies investigated acoustical analysis of the voice as a measure of workload in individual operators. In the first study, voice samples were recorded from a single operator during high, medium, and low workload conditions. Mean amplitude, frequency, syllable duration, and emphasis all tended to increase as workload increased. In the second study, NASA test pilots performed a laboratory task, and used a flight simulator under differing work conditions. For two of the pilots, high workload in the simulator brought about greater amplitude, peak duration, and stress. In both the laboratory and simulator tasks, high workload tended to be associated with more statistically significant drop-offs in the acoustical measures than were lower workload levels. There was a great deal of intra-subject variability in the acoustical measures. The results suggested that in individual operators, increased workload might be revealed by high initial amplitude and frequency, followed by rapid drop-offs over time.

  8. Crew Health and Performance Improvements with Reduced Carbon Dioxide Levels and the Resource Impact to Accomplish Those Reductions

    NASA Technical Reports Server (NTRS)

    James, John T.; Meyers, Valerie E.; Sipes, Walter; Scully, Robert R.; Matty, Christopher M.

    2011-01-01

    Carbon dioxide (CO2) removal is one of the primary functions of the International Space Station (ISS) atmosphere revitalization systems. Primary CO2 removal is via the ISS s two Carbon Dioxide Removal Assemblies (CDRAs) and the Russian carbon dioxide removal assembly (Vozdukh); both of these systems are regenerable, meaning that their CO2 removal capacity theoretically remains constant as long as the system is operating. Contingency CO2 removal capability is provided by lithium hydroxide (LiOH) canisters, which are consumable, meaning that their CO2 removal capability disappears once the resource is used. With the advent of 6 crew ISS operations, experience showing that CDRA failures are not uncommon, and anecdotal association of crew symptoms with CO2 values just above 4 mmHg, the question arises: How much lower do we keep CO2 levels to minimize the risk to crew health and performance, and what will the operational cost to the CDRAs be to do it? The primary crew health concerns center on the interaction of increased intracranial pressure from fluid shifts and the increased intracranial blood flow induced by CO2. Typical acute symptoms include headache, minor visual disturbances, and subtle behavioral changes. The historical database of CO2 exposures since the beginning of ISS operations has been compared to the incidence of crew symptoms reported in private medical conferences. We have used this database in an attempt to establish an association between the CO2 levels and the risk of crew symptoms. This comparison will answer the question of the level needed to protect the crew from acute effects. As for the second part of the question, operation of the ISS s regenerable CO2 removal capability reduces the limited life of constituent parts. It also consumes limited electrical power and thermal control resources. Operation of consumable CO2 removal capability (LiOH) uses finite consumable materials, which must be replenished in the long term. Therefore, increased CO2 removal means increased resource use, with increased logistical capability to maintain necessary resources on board ISS. We must strike a balance between sufficiently low CO2 levels to maintain crew health and CO2 levels which are operationally feasible for the ISS program

  9. Cardiorespiratory fitness, cardiovascular workload and risk factors among cleaners; a cluster randomized worksite intervention.

    PubMed

    Korshøj, Mette; Krustrup, Peter; Jørgensen, Marie Birk; Prescott, Eva; Hansen, Åse Marie; Kristiansen, Jesper; Skotte, Jørgen Henrik; Mortensen, Ole Steen; Søgaard, Karen; Holtermann, Andreas

    2012-08-13

    Prevalence of cardiovascular risk factors is unevenly distributed among occupational groups. The working environment, as well as lifestyle and socioeconomic status contribute to the disparity and variation in prevalence of these risk factors. High physical work demands have been shown to increase the risk for cardiovascular disease and mortality, contrary to leisure time physical activity. High physical work demands in combination with a low cardiorespiratory fitness infer a high relative workload and an excessive risk for cardiovascular mortality. Therefore, the aim of this study is to examine whether a worksite aerobic exercise intervention will reduce the relative workload and cardiovascular risk factors by an increased cardiorespiratory fitness. A cluster-randomized controlled trial is performed to evaluate the effect of the worksite aerobic exercise intervention on cardiorespiratory fitness and cardiovascular risk factors among cleaners. Cleaners are eligible if they are employed ≥ 20 hours/week, at one of the enrolled companies. In the randomization, strata are formed according to the manager the participant reports to. The clusters will be balanced on the following criteria: Geographical work location, gender, age and seniority. Cleaners are randomized to either I) a reference group, receiving lectures concerning healthy living, or II) an intervention group, performing worksite aerobic exercise "60 min per week". Data collection will be conducted at baseline, four months and 12 months after baseline, at the worksite during working hours. The data collection will consist of a questionnaire-based interview, physiological testing of health and capacity-related measures, and objective diurnal measures of heart rate, physical activity and blood pressure. Primary outcome is cardiorespiratory fitness. Information is lacking about whether an improved cardiorespiratory fitness will affect the cardiovascular health, and additionally decrease the objectively measured relative workload, in a population with high physical work demands. Previous intervention studies have lacked robust objective measurements of the relative workload and physical work demands. This study will monitor the relative workload and general physical activity before, during after the intervention, and contribute to the understanding of the previously observed opposing effects on cardiovascular health and mortality from occupational and leisure time physical activity. The study is registered as ISRCTN86682076.

  10. The effects of control order, feedback, practice, and input device on tracking performance and perceived workload

    NASA Technical Reports Server (NTRS)

    Hancock, P. A.; Robinson, M. A.

    1989-01-01

    The present experiment examined the influence of several task-related factors on tracking performance and concomitant workload. The manipulated factors included tracking order, the presence or absence of knowledge of performance, and the control device. Summed root mean square error (rmse) and perceived workload were measured at the termination of each trial. Perceived workload was measured using the NASA Task Load Index (TLX) and the Subjective Workload Assessment Technique (SWAT). Results indicated a large and expected effect for track order on both performance and the perception of load. In general, trackball input was more accurate and judged for lower load than input using a mouse. The presence or absence of knowledge of performance had little effect on either performance or workload. There were a number of interactions between factors shown in performance that were mirrored by perceived workload scores. Results from each workload scale were equivalent in terms of sensitivity to task manipulations. The pattern of results affirm the utility of these workload measures in assessing the imposed load of multiple task-related variables.

  11. A workload model and measures for computer performance evaluation

    NASA Technical Reports Server (NTRS)

    Kerner, H.; Kuemmerle, K.

    1972-01-01

    A generalized workload definition is presented which constructs measurable workloads of unit size from workload elements, called elementary processes. An elementary process makes almost exclusive use of one of the processors, CPU, I/O processor, etc., and is measured by the cost of its execution. Various kinds of user programs can be simulated by quantitative composition of elementary processes into a type. The character of the type is defined by the weights of its elementary processes and its structure by the amount and sequence of transitions between its elementary processes. A set of types is batched to a mix. Mixes of identical cost are considered as equivalent amounts of workload. These formalized descriptions of workloads allow investigators to compare the results of different studies quantitatively. Since workloads of different composition are assigned a unit of cost, these descriptions enable determination of cost effectiveness of different workloads on a machine. Subsequently performance parameters such as throughput rate, gain factor, internal and external delay factors are defined and used to demonstrate the effects of various workload attributes on the performance of a selected large scale computer system.

  12. CO2 Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject and physiological differences between subjects. Computational Fluid Dynamic (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test is to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III space suit across a range of workload and flow rates. As a secondary objective, results will be compared to the predicted CO2 concentrations and used to refine existing CFD models. These CFD models will then be used to help design an inlet vent configuration for the Z-2 space suit, which maximizes oronasal CO2 washout. This test has not been completed, but is planned for January 2014. The results of this test will be incorporated into this paper. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES). Three subjects will be tested in the Mark-III space suit with each subject performing two test sessions to allow for comparison between tests. Six different helmet inlet vent configurations will be evaluated during each test session. Suit pressure will be maintained at 4.3 psid. Subjects will wear the suit while walking on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute (ACFM) will be tested at each workload. Subjects will wear an oronasal mask with an open port in front of the mouth and will be allowed to breathe freely. Oronasal ppCO2 will be monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate will be calculated from the total oxygen consumption and CO2 production measured by additional gas analyzers at the air outlet from the suit. Real-time metabolic rate measurements will be used to adjust the treadmill workload to meet target metabolic rates. This paper provides detailed descriptions of the test hardware, methodology and results, as well as implications for future inlet vent design and ground testing in the Mark-III.

  13. Balancing computation and communication power in power constrained clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piga, Leonardo; Paul, Indrani; Huang, Wei

    Systems, apparatuses, and methods for balancing computation and communication power in power constrained environments. A data processing cluster with a plurality of compute nodes may perform parallel processing of a workload in a power constrained environment. Nodes that finish tasks early may be power-gated based on one or more conditions. In some scenarios, a node may predict a wait duration and go into a reduced power consumption state if the wait duration is predicted to be greater than a threshold. The power saved by power-gating one or more nodes may be reassigned for use by other nodes. A cluster agentmore » may be configured to reassign the unused power to the active nodes to expedite workload processing.« less

  14. Some Aspects of Psychophysiological Support of Crew Member's Performance Reliability in Space Flight

    NASA Astrophysics Data System (ADS)

    Nechaev, A. P.; Myasnikov, V. I.; Stepanova, S. I.; Isaev, G. F.; Bronnikov, S. V.

    The history of cosmonautics demonstrates many instances in which only crewmembers' intervention allowed critical situations to be resolved, or catastrophes to be prevented. However, during "crew-spacecraft" system operation human is exposed by influence of numerous flight factors, and beforehand it is very difficult to predict their effects on his functional state and work capacity. So, the incidents are known when unfavorable alterations of crewmember's psychophysiological state (PPS) provoked errors in task performance. The objective of the present investigation was to substantiate the methodological approach directed to increase reliability of a crewmember performance (human error prevention) by means of management of his/her PPS. The specific aims of the investigation were: 1) to evaluate the statistical significance of the interrelation between crew errors (CE) and crewmember's PPS, and 2) to develop the way of PPS management. At present, there is no conventional method to assess combined effect of flight conditions (microgravity, confinement, psychosocial factors, etc.) on crewmembers' PPS. For this purpose experts of the Medical Support Group (psychoneurologists and psychologists) at the Moscow Mission Control Center analyze information received during radio and TV contacts with crew. Peculiarities of behavior, motor activity, sleep, speech, mood, emotional reactions, well-being and sensory sphere, trend of dominant interests and volitional acts, signs of deprivation phenomena are considered as separate indicators of crewmember's PPS. The set of qualitative symptoms reflecting PPS alterations and corresponding to them ratings (in arbitrary units) was empirically stated for each indicator. It is important to emphasize that symptoms characterizing more powerful PPS alterations have higher ratings. Quantitative value of PPS integral parameter is calculating by adding up the ratings of all separate indicators over a day, a week, or other temporal interval (in the present investigation - over a week). As a result of processing the data collected during 14 "Mir" station Missions, the significant dependence of CE frequency on value of PPS integral parameter has been established. This dependence demonstrates growth of CE frequency with aggravation of crewmembers' PPS. Additionally, a significant positive correlation between PPS integral parameter and crew work-rest schedule (WRS) intensity has been also found (r=0.71, p<0.05). The WRS intensity was characterized by sleep-wake phase shifts and surplus workload (separate indicators) and quantitative evaluations of both separate and integral indicators were calculated by analogy with psychophysiological parameters. These findings form the basis of the approach to PPS crewmember's management by reduction of the WRS intensity (eliminating separate flight tasks, night work, etc.). Utilization of the approach makes it possible to decrease CE quantity by means of normalization of crewmembers functional state.

  15. Ambulance helicopter contribution to search and rescue in North Norway.

    PubMed

    Glomseth, Ragnar; Gulbrandsen, Fritz I; Fredriksen, Knut

    2016-09-13

    Search and rescue (SAR) operations constitute a significant proportion of Norwegian ambulance helicopter missions, and they may limit the service's capacity for medical operations. We compared the relative contribution of the different helicopter resources using a common definition of SAR-operation in order to investigate how the SAR workload had changed over the last years. We searched the mission databases at the relevant SAR and helicopter emergency medical service (HEMS) bases and the Joint Rescue Coordination Centre (North) for helicopter-supported SAR operations within the potential operation area of the Tromsø HEMS base in 2000-2010. We defined SAR operations as missions over land or sea within 10 nautical miles from the coast with an initial search phase, missions with use of rescue hoist or static rope, and avalanche operations. There were 769 requests in 639 different SAR operations, and 600 missions were completed. The number increased during the study period, from 46 in 2000 to 77 in 2010. The Tromsø HEMS contributed with the highest number of missions and experienced the largest increase, from 10 % of the operations in 2000 to 50 % in 2010. Simple terrain and sea operations dominated, and avalanches accounted for as many as 12 % of all missions. The helicopter crews used static rope or rescue hoist in 141 operations. We have described all helicopter supported SAR operations in our area by combining databases. The Tromsø HEMS service had taken over one half of the missions by 2010. Increased availability for SAR work is one potential explanation. The number of SAR missions increased during 2000-2010, and the Tromsø HEMS experienced the greatest increase in workload.

  16. Heavy vehicle driver workload assessment. Task 5, workload assessment protocol

    DOT National Transportation Integrated Search

    This report presents a description of a prescriptive workload assessment protocol for use in evaluating in-cab devices in heavy vehicles. The primary objective of this heavy vehicle driver workload assessment protocol is to identify the components an...

  17. Timesharing performance as an indicator of pilot mental workload

    NASA Technical Reports Server (NTRS)

    Casper, Patricia A.; Kantowitz, Barry H.; Sorkin, Robert D.

    1988-01-01

    Attentional deficits (workloads) were evaluated in a timesharing task. The results from this and other experiments were incorporated into an expert system designed to provide workload metric selection advice to non-experts in the field interested in operator workload.

  18. A user-oriented synthetic workload generator

    NASA Technical Reports Server (NTRS)

    Kao, Wei-Lun

    1991-01-01

    A user oriented synthetic workload generator that simulates users' file access behavior based on real workload characterization is described. The model for this workload generator is user oriented and job specific, represents file I/O operations at the system call level, allows general distributions for the usage measures, and assumes independence in the file I/O operation stream. The workload generator consists of three parts which handle specification of distributions, creation of an initial file system, and selection and execution of file I/O operations. Experiments on SUN NFS are shown to demonstrate the usage of the workload generator.

  19. MEASURING WORKLOAD OF ICU NURSES WITH A QUESTIONNAIRE SURVEY: THE NASA TASK LOAD INDEX (TLX).

    PubMed

    Hoonakker, Peter; Carayon, Pascale; Gurses, Ayse; Brown, Roger; McGuire, Kerry; Khunlertkit, Adjhaporn; Walker, James M

    2011-01-01

    High workload of nurses in Intensive Care Units (ICUs) has been identified as a major patient safety and worker stress problem. However, relative little attention has been dedicated to the measurement of workload in healthcare. The objectives of this study are to describe and examine several methods to measure workload of ICU nurses. We then focus on the measurement of ICU nurses' workload using a subjective rating instrument: the NASA TLX.We conducted secondary data analysis on data from two, multi-side, cross-sectional questionnaire studies to examine several instruments to measure ICU nurses' workload. The combined database contains the data from 757 ICU nurses in 8 hospitals and 21 ICUs.Results show that the different methods to measure workload of ICU nurses, such as patient-based and operator-based workload, are only moderately correlated, or not correlated at all. Results show further that among the operator-based instruments, the NASA TLX is the most reliable and valid questionnaire to measure workload and that NASA TLX can be used in a healthcare setting. Managers of hospitals and ICUs can benefit from the results of this research as it provides benchmark data on workload experienced by nurses in a variety of ICUs.

  20. MEASURING WORKLOAD OF ICU NURSES WITH A QUESTIONNAIRE SURVEY: THE NASA TASK LOAD INDEX (TLX)

    PubMed Central

    Hoonakker, Peter; Carayon, Pascale; Gurses, Ayse; Brown, Roger; McGuire, Kerry; Khunlertkit, Adjhaporn; Walker, James M.

    2012-01-01

    High workload of nurses in Intensive Care Units (ICUs) has been identified as a major patient safety and worker stress problem. However, relative little attention has been dedicated to the measurement of workload in healthcare. The objectives of this study are to describe and examine several methods to measure workload of ICU nurses. We then focus on the measurement of ICU nurses’ workload using a subjective rating instrument: the NASA TLX. We conducted secondary data analysis on data from two, multi-side, cross-sectional questionnaire studies to examine several instruments to measure ICU nurses’ workload. The combined database contains the data from 757 ICU nurses in 8 hospitals and 21 ICUs. Results show that the different methods to measure workload of ICU nurses, such as patient-based and operator-based workload, are only moderately correlated, or not correlated at all. Results show further that among the operator-based instruments, the NASA TLX is the most reliable and valid questionnaire to measure workload and that NASA TLX can be used in a healthcare setting. Managers of hospitals and ICUs can benefit from the results of this research as it provides benchmark data on workload experienced by nurses in a variety of ICUs. PMID:22773941

Top