Science.gov

Sample records for reduce hydrogen permeation

  1. Hydrogen Permeation Resistant Coatings

    SciTech Connect

    KORINKO, PAUL; ADAMS, THAD; CREECH, GREGGORY

    2005-06-15

    As the National Hydrogen Economy continues to develop and evolve the need for structural materials that can resist hydrogen assisted degradation will become critical. To date austenitic stainless steel materials have been shown to be mildly susceptible to hydrogen attack which results in lower mechanical and fracture strengths. As a result, hydrogen permeation barrier coatings may be applied to these ferrous alloys to retard hydrogen ingress. Hydrogen is known to be very mobile in materials of construction. In this study, the permeation resistance of bare stainless steel samples and coated stainless steel samples was tested. The permeation resistance was measured using a modular permeation rig using a pressure rise technique. The coating microstructure and permeation results will be discussed in this document as will some additional testing.

  2. Hydrogen Permeation Barrier Coatings

    SciTech Connect

    Henager, Charles H.

    2008-01-01

    Gaseous hydrogen, H2, has many physical properties that allow it to move rapidly into and through materials, which causes problems in keeping hydrogen from materials that are sensitive to hydrogen-induced degradation. Hydrogen molecules are the smallest diatomic molecules, with a molecular radius of about 37 x 10-12 m and the hydrogen atom is smaller still. Since it is small and light it is easily transported within materials by diffusion processes. The process of hydrogen entering and transporting through a materials is generally known as permeation and this section reviews the development of hydrogen permeation barriers and barrier coatings for the upcoming hydrogen economy.

  3. Hydrogen-isotope permeation barrier

    DOEpatents

    Maroni, Victor A.; Van Deventer, Erven H.

    1977-01-01

    A composite including a plurality of metal layers has a Cu-Al-Fe bronze layer and at least one outer layer of a heat and corrosion resistant metal alloy. The bronze layer is ordinarily intermediate two outer layers of metal such as austenitic stainless steel, nickel alloys or alloys of the refractory metals. The composite provides a barrier to hydrogen isotopes, particularly tritium that can reduce permeation by at least about 30 fold and possibly more below permeation through equal thicknesses of the outer layer material.

  4. Evaluation of CO2 and CO dopants in hydrogen to reduce hydrogen permeation in the Stirling engine heater head tube alloy CG-27

    NASA Technical Reports Server (NTRS)

    Misencik, J. A.

    1983-01-01

    Tubes of CG-27 alloy, filled with hydrogen doped with various amounts of carbon dioxide and carbon monoxide, were heated in a diesel fuel fired Stirling engine simulator materials test rig for 100 hours at 820 C and at a gas pressure of 15 MPa to determine the effectiveness of the dopants in reducing hydrogen permeation through the hot tube wall. This was done for clean as-heat treated tubes and also for tubes that had previously been exposed for 100 hours to hydrogen doped with 1.0 volume percent carbon dioxide to determine if the lower levels of dopant could maintain a low hydrogen permeation through the hot tube wall. Carbon dioxide, as a dopant in hydrogen, was most effective in reducing hydrogen permeation through clean tubes and in maintaining low hydrogen permeation after prior exposure to 1.0 volume percent carbon dioxide. Only the lowest level of carbon dioxide (0.05 volume percent) was not as effective in the clean or prior exposed tubes. Carbon monoxide as a dopant in hydrogen was less effective than carbon dioxide at a given concentration level. Of the four dopant levels studied; 1.0, 0.5, 0.2, and 0.05 volume percent carbon monoxide, only the 1.0 and 0.5 volume percent were effective in reducing and maintaining low hydrogen permeation through the CG-27.

  5. Reducing hydrogen permeation in 304 stainless steel by compound layers of Al, Zr and Ti oxides films

    NASA Astrophysics Data System (ADS)

    Hernández L, R. T.; Cortes S, V.; Granados S, J.; Orozco S, S.

    2017-01-01

    A single and double layer formed by thin films coatings of aluminium oxide, zirconium oxide and titanium oxide were deposited over 304 stainless steel surface by ultrasonic spray pyrolysis technique. The steel samples were conformed for tensile tests. The purpose of these layers is to reduce hydrogen embrittlement effect in steel. An electrochemical cell was used in hydrogen charged, where a low concentration of sulfuric acid is utilized like electrolytic solution. Tension trials show the change the fracture type in samples with or without coating after hydrogen charged. The embrittlement percent factor and SEM micrographs indicate a reduction of hydrogen permeation for coated samples with double layer.

  6. Evaluation of dopants in hydrogen to reduce hydrogen permeation in candidate Stirling engine heater head tube alloys at 760 deg and 820 deg

    NASA Technical Reports Server (NTRS)

    Misencik, J. A.

    1982-01-01

    Alloy tubes filled with hydrogen doped with various amounts of carbon monoxide, carbon dioxide, ethane, ethylene, methane, ammonia, or water were heated in a diesel fuel-fired Stirling engine simulator materials test rig for 100 hours at 21 MPa and 760 or 820 C to determine the effectiveness of the dopants in reducing hydrogen permeation through the hot tube walls. Ultra high purity (UHP) hydrogen was used for comparison. The tube alloys were N-155, A-286, Incoloy 800, Nitronic 40, 19-9DL, 316 stainless steel, Inconel 718, and HS-188. Carbon dioxide and carbon monoxide in the concentration range 0.2 to 5 vol % were most effective in reducing hydrogen permeation through the hot tube walls for all alloys. Ethane, ethylene, methane, ammonia, and water at the concentrations investigated were not effective in reducing the permeation below that achieved with UHP hydrogen. One series of tests were conducted with UHP hydrogen in carburized tubes. Carburization of the tubes prior to exposure reduced permeation to values similar to those for carbon monoxide; however, carbon dioxide was the most effective dopant.

  7. Effect Of Water On Permeation By Hydrogen

    NASA Technical Reports Server (NTRS)

    Tomazic, William A.; Hulligan, David

    1988-01-01

    Water vapor in working fluid equilibrates with permeability-reducing oxides in metal parts. Report describes study of effects of water on permeation of heater-head tubes by hydrogen in Stirling engine. Experiments performed to determine minimum concentration of oxygen and/or oxygen-bearing gas maintaining oxide coverage adequate for low permeability. Tests showed 750 ppm or more of water effective in maintaining stable, low permeability.

  8. Hydrogenated amorphous carbon coatings on implants drastically reduce biofilm formation and water permeation

    NASA Astrophysics Data System (ADS)

    Bernsmann, Falk; Laube, Norbert; Baldsiefen, Gerhard; Castellucci, Mattia

    2014-11-01

    Inflammations and crystalline bacterial biofilms (encrustations) remain a major complication in long-term artificial urinary tract drainage. To solve this problem we present urological implants with coatings made of amorphous hydrogenated carbon (a-C:H) that show excellent protection from encrustation in-vitro as well as in-vivo. Part of the success of a-C:H coatings is attributed to their ability to act as a diffusion barrier between an implant and the body, which prevents leaching of solvents from polymeric implants. To further enhance their barrier properties a-C:H coatings are combined with parylene coatings to develop diffusion-barrier multilayer coatings with a total thickness between 0.2 μm and 0.8 μm. The combination of the two types of coatings leads to a reduction of water diffusion by a factor of up to ten with respect to uncoated 25 μm thick polyimide sub-strates. The diffusion of water vapour from a controlled atmospheric pressure chamber through coated foils to a vacuum chamber is measured in a custom-built device.

  9. Hydrogen permeation pathways for the hydrogenation reaction of aluminum

    NASA Astrophysics Data System (ADS)

    Saitoh, H.; Machida, A.; Katayama, Y.; Aoki, K.

    2010-09-01

    The hydrogenation of aluminum is inhibited by the slow diffusion of hydrogen in its hydride AlH3, which covers the surface of aluminum in the initial stages of the reaction. Thus, permeation pathways for hydrogen are introduced by either mixing aluminum powder with boron nitride powder or alloying aluminum with gallium at 10 at. % Ga. The aluminum in the composite or alloy is reacted with hydrogen at high pressure and temperature. In both cases, the hydrogenation reaction yields are significantly enhanced, confirming that boron nitride and the liquid phase produced by partial melting of the alloy work efficiently as hydrogen permeation pathways.

  10. Hydrogen Permeation Through Multilayer Metallic Membranes

    NASA Astrophysics Data System (ADS)

    Andrew, Philip L.

    Hydrogen transport across metal surfaces is pertinent not only to the fueling of a fusion reactor, but also to fusion related technologies such as tritium handling. The rates of these processes and that of hydrogen atoms permeating through the metal bulk were obtained by measuring the steady state permeation rate through polycrystalline metal membranes. The experimental investigation focussed on composite membranes made up of iron, palladium and copper layers. The measurements were made under ultrahigh vacuum conditions using either hydrogen molecules or neutral atoms as the incident species. The mathematical dependence of the steady state permeating flux on the incident flux was used to determine whether hydrogen transport at the vacuum/metal interfaces or within the metal bulk (diffusion) is rate-limiting. The chemical composition of the membrane surfaces, measured by Auger Electron Spectroscopy, was found to have a profound effect on surface-limited permeation. The removal of impurities on an iron surface by Ar ion sputtering was found to increase the magnitude and decrease the temperature dependence of the surface-limited permeation rate constant. Deposition of palladium or iron on sputter-cleaned iron surfaces resulted in a reduction of non-metal surface impurities and a further increase in the rate of surface processes. Application of copper on iron, however, had the opposite effect. This is thought to be due to the slow hydrogen adsorption rates peculiar to group IB metals. A thin copper layer on a palladium membrane had a similar effect: hydrogen transport across that surface was impeded. The results are discussed in terms of practical applications of membranes for pumping or detecting hydrogen. In these schemes it is desired that hydrogen, once dissolved in the metal, preferentially exit on the downstream surface.

  11. Effect of chloride ions on adsorption and permeation of hydrogen in iron

    SciTech Connect

    Allam, A.M.; Pickering, H.W.; Ateya, B.G.

    1997-04-01

    Effects of chloride ions on hydrogen absorption into iron and on the hydrogen evolution reaction (HER) on an iron surface were studied in acid and alkaline solutions at 23 C using the permeation method of Devanathan and Stachurski. Cl{sup {minus}} ions reduced the overpotential ({eta}) for HER and, in turn, reduced hydrogen coverage and permeation.Effects on hydrogen permeation were more pronounced in alkaline than in acid solutions. Permeation transients at constant electrode potential of he charging surface and subsequent surface analyses of the uppermost atom layers of the hydrogen-charged iron surface indicated a reversible or low coverage with Cl{sup {minus}} ions, a low hydrogen coverage that was not influenced significantly by Cl{sup {minus}} ion concentration at low {eta}, and a marked effect of Cl{sup {minus}} ions in reducing hydrogen coverage of the surface and permeability in alkaline solutions at high cathodic polarizations.

  12. Hydrogen permeation resistant layers for liquid metal reactors

    SciTech Connect

    McGuire, J.C.

    1980-03-01

    Reviewing the literature in the tritium diffusion field one can readily see a wide divergence in results for both the response of permeation rate to pressure, and the effect of oxide layers on total permeation rates. The basic mechanism of protective oxide layers is discussed. Two coatings which are less hydrogen permeable than the best naturally occurring oxide are described. The work described is part of an HEDL-ANL cooperative research program on Tritium Permeation in Liquid Metal Cooled Reactors. This includes permeation work on hydrogen, deuterium, and tritium with the hydrogen-deuterium research leading to the developments presented.

  13. Hydrogen permeation, diffusion and solubility in IN-100 and Waspaloy

    NASA Technical Reports Server (NTRS)

    Khan, A. S.; Peterson, D. T.

    1990-01-01

    An attempt has been made to determine the permeation rate of hydrogen in IN-100 and Waspaloy by determining the evolution rate of hydrogen from a closed capsule of the test materials. Enclosed vanadium hydride was the source of hydrogen in the capsule. The presentation discusses the treatment of data and assesses the validity of the techniques in permeation measurement. In addition to permeation experiments, the solubility and diffusion of hydrogen in IN-100 and Waspaloy were also determined. For hydrogen diffusion in Waspaloy, Delta H was 38.5 kJ and D(0) was 0.0026 sq cm/sec. For IN-100, Delta H was 68.2 kJ and D(0) was 0.059 sq cm /sec. Both IN-100 and Waspaloy exhibited limited solubility of hydrogen at pressures up to 340 atmospheres hydrogen.

  14. Hydrogen permeation, diffusion and solubility in IN-100 and Waspaloy

    NASA Technical Reports Server (NTRS)

    Khan, A. S.; Peterson, D. T.

    1990-01-01

    An attempt has been made to determine the permeation rate of hydrogen in IN-100 and Waspaloy by determining the evolution rate of hydrogen from a closed capsule of the test materials. Enclosed vanadium hydride was the source of hydrogen in the capsule. The presentation discusses the treatment of data and assesses the validity of the techniques in permeation measurement. In addition to permeation experiments, the solubility and diffusion of hydrogen in IN-100 and Waspaloy were also determined. For hydrogen diffusion in Waspaloy, Delta H was 38.5 kJ and D(0) was 0.0026 sq cm/sec. For IN-100, Delta H was 68.2 kJ and D(0) was 0.059 sq cm /sec. Both IN-100 and Waspaloy exhibited limited solubility of hydrogen at pressures up to 340 atmospheres hydrogen.

  15. Experimental stand for studies of hydrogen isotopes permeation

    SciTech Connect

    Brad, S.; Stefanescu, I.; Stefan, L.; Lazar, A.; Vijulie, M.; Sofilca, N.; Bornea, A.; Vasut, F.; Zamfirache, M.; Bidica, N.; Postolache, C.; Matei, L.

    2008-07-15

    As a result of the high probability of hydrogen isotope permeation through materials used in high-temperature reactor operations, the interaction of hydrogen isotopes with metallic structural materials proposed to be used for fusion reactor designing is of great importance for safety considerations. Determining the parameters of the interaction between hydrogen isotopes and different materials, is therefore essential to accurately calculate recycling, outgassing, loading, permeation and hydrogen embrittlement. The permeation tests were made in collaboration with IFIN Bucuresti inside of a special glove-box to avail their radioactive protection expertise. This investigation programme is ongoing. In this paper we describe the permeation stand facility and the preliminary tests carried out to date. (authors)

  16. Controlled permeation of hydrogen through glass. Final report

    SciTech Connect

    Halvorson, T.; Shelby, J.E. Jr.

    1998-03-01

    Storing hydrogen inside of hollow glass spheres requires that the gas permeate through the glass walls. Hydrogen permeation through glass is relatively slow and the time to charge a sphere or bed of spheres is dependent on many factors. Permeation processes are strongly temperature dependent with behavior that follows an Arrhenius function., Rate is also dependent on the pressure drop driving force across a membrane wall and inversely proportional to thickness. Once filled, glass spheres will immediately begin to leak once the pressure driving force is reversed. Practical systems would take advantage of the fact that keeping the glass at ambient temperatures can minimize outboard leakage even with significant internal pressures. If hydrogen could be loaded and unloaded from glass microspheres with significantly less energy and particularly at near ambient temperature, some of the key barriers to commercializing this storage concept would be broken and further system engineering efforts may make this approach cost-effective. There were two key objectives for this effort. The first was to evaluate the application of hollow glass microspheres for merchant hydrogen storage and distribution and then determine the hydrogen permeation performance required for practical commercial use. The second objective was to identify, through a series of fundamental experiments, a low energy, low temperature field effect that could significantly enhance hydrogen permeation through glass without application of heat. If such an effect could be found, hollow glass microspheres could be much more attractive for hydrogen storage or possibly gas separation applications.

  17. Hydrogen permeation behavior through F82H at high temperature

    SciTech Connect

    Matsuda, S.; Katayama, K.; Shimozori, M.; Fukada, S.; Ushida, H.; Nishikawa, M.

    2015-03-15

    F82H is a primary candidate of structural material and coolant pipe material in a blanket of a fusion reactor. Understanding tritium permeation behavior through F82H is important. In a normal operation of a fusion reactor, the temperature of F82H will be controlled below 550 C. degrees because it is considered that F82H can be used up to 30,000 hours at 550 C. degrees. However, it is necessary to assume the situation where F82H is heated over 550 C. degrees in a severe accident. In this study, hydrogen permeation behavior through F82H was investigated in the temperature range from 500 to 800 C. degrees. In some cases, water vapor was added in a sample gas to investigate an effect of water vapor on hydrogen permeation. The permeability of hydrogen in the temperature range from 500 to 700 C. degrees agreed well with the permeability reported by E. Serra et al. The degradation of the permeability by water vapor was not observed. After the hydrogen permeation reached in a steady state at 700 C. degrees, the F82H sample was heated to 800 C. degrees. The permeability of hydrogen through F82H sample which was once heated up to 800 C. degrees was lower than that of the original one. (authors)

  18. MODEL OF DIFFUSERS / PERMEATORS FOR HYDROGEN PROCESSING

    SciTech Connect

    Hang, T; William Jacobs, W

    2007-08-27

    Palladium-silver (Pd-Ag) diffusers are mainstays of hydrogen processing. Diffusers separate hydrogen from inert species such as nitrogen, argon or helium. The tubing becomes permeable to hydrogen when heated to more than 250 C and a differential pressure is created across the membrane. The hydrogen diffuses better at higher temperatures. Experimental or experiential results have been the basis for determining or predicting a diffuser's performance. However, the process can be mathematically modeled, and comparison to experimental or other operating data can be utilized to improve the fit of the model. A reliable model-based diffuser system design is the goal which will have impacts on tritium and hydrogen processing. A computer model has been developed to solve the differential equations for diffusion given the operating boundary conditions. The model was compared to operating data for a low pressure diffuser system. The modeling approach and the results are presented in this paper.

  19. Permeation of "Hydromer" Film: An Elastomeric Hydrogen-Capturing Biopolymer.

    SciTech Connect

    Karnesky, Richard A.; Friddle, Raymond William; Whaley, Josh A.; Smith, Geoffrey

    2015-12-01

    This report analyzes the permeation resistance of a novel and proprietary polymer coating for hydrogen isotope resistance that was developed by New Mexico State University. Thermal gravimetric analysis and thermal desoprtion spectroscopy show the polymer is stable thermally to approximately 250 deg C. Deuterium gas-driven permeation experiments were conducted at Sandia to explore early evidence (obtained using Brunauer - Emmett - Teller) of the polymer's strong resistance to hydrogen. With a relatively small amount of the polymer in solution (0.15%), a decrease in diffusion by a factor of 2 is observed at 100 and 150 deg C. While there was very little reduction in permeability, the preliminary findings reported here are meant to demonstrate the sensitivity of Sandia's permeation measurements and are intended to motivate the future exploration of thicker barriers with greater polymer coverage.

  20. The Influence of Desorption Kinetics on Hydrogen Permeation in Iron.

    DTIC Science & Technology

    1987-07-30

    grains. Because of the allotropic transition of iron at 9144C and the presence of trace impurities in the bulk, the preparation of an atomically clean and...their presence results in the retardation or enhancement of the desorption process. For example, pre-adsorbed subnionolayers of sulfur , oxygen and...electrochemical permeation study (23]. In that investigation it was noticed that sulfur deposition on the membrane surface resulted in reduced permeation flux

  1. Gas phase hydrogen permeation in alpha titanium and carbon steels

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.; Shah, K. K.; Reeves, B. H.; Gadgeel, V. L.

    1980-01-01

    Commercially pure titanium and heats of Armco ingot iron and steels containing from 0.008-1.23 w/oC were annealed or normalized and machined into hollow cylinders. Coefficients of diffusion for alpha-Ti and alpha-Fe were determined by the lag-time technique. Steady state permeation experiments yield first power pressure dependence for alpha-Ti and Sievert's law square root dependence for Armco iron and carbon steels. As in the case of diffusion, permeation data confirm that alpha-titanium is subject to at least partial phase boundary reaction control while the steels are purely diffusion controlled. The permeation rate in steels also decreases as the carbon content increases. As a consequence of Sievert's law, the computed hydrogen solubility decreases as the carbon content increases. This decreases in explained in terms of hydrogen trapping at carbide interfaces. Oxidizing and nitriding the surfaces of alpha-titanium membranes result in a decrease in the permeation rate for such treatment on the gas inlet surfaces but resulted in a slight increase in the rate for such treatment on the gas outlet surfaces. This is explained in terms of a discontinuous TiH2 layer.

  2. Electrochemical hydrogen permeation studies of several mono- and diamines

    SciTech Connect

    Al-Janabi, Y.T.; Lewis, A.L.; Oweimreen, G.A.

    1995-09-01

    The combined presence of moisture and hydrogen sulfide, known in the oil industry as a sour environment, enhances corrosion reactions at a metal surface as well as promotes the entry of hydrogen atoms, resulting from these reactions, into the metal. Increased entry of hydrogen atoms increases the probability of occurrence of hydrogen-induced cracking. The objective of this study is to evaluate the ability of several organic amines to inhibit the overall process of hydrogen entry and to relate their inhibition abilities to their molecular structures. The diffusion coefficients for the permeation of hydrogen atoms through steel estimated in this study using the time-lag and Laplace methods are of the same order of magnitude as those in the published literature. In several hydrogen permeation curves, a characteristic hump was observed. The authors propose that this hump is due to the trapping of hydrogen at sites other than voids and microvoids. The electrochemical system was also sued to study the effectiveness of diethanolamine (DEA), morpholine (MOR), triethanolamine (TEA), ethylenediamine (EDA), and hexamethylene diamine (HMDA) in inhibiting the entry of hydrogen atoms into steel. The diamines were found to be more effective than the monoamines. A nonlinear relationship was observed between the inhibition effectiveness and the concentration of the amines studied. The inhibiting abilities of the monoamines were similar at the high concentration limit (0.01 M) but followed the trend TEA > MOR > DEA at the low concentration limit (5 {times} 10{sup {minus}5} M). For the diamines the inhibiting abilities were also similar at the high concentration limit (5 {times} 10{sup {minus}3} M) and followed the trend HMDA > EDA at the low concentration limit (5 {times} 10{sup {minus}5} M).

  3. Investigating the effect of heat treatment on hydrogen permeation behavior of API X-70 steel

    NASA Astrophysics Data System (ADS)

    Shirband, Zeynab; Shishesaz, Mohammad Reza; Ashrafi, Ali

    2012-06-01

    Pipeline steels absorb different amounts of hydrogen during transportation of sour oil and gas. Since hydrogen-related damages such as hydrogen-induced cracking are strongly affected by hydrogen permeation behavior of steels, the purpose of this study determined to investigate hydrogen permeation behavior in API X-70 pipeline steel using electrochemical permeation method. The effect of heat treatment was also considered. It was found that hydrogen diffusivity increased by annealing the X-70 and it was decreased by normalizing. The condition was reverse for hydrogen apparent solubility. Finally, it was concluded that change in hydrogen diffusivity can be attributed to changes in grain size due to heat treatment.

  4. Selective permeation of hydrogen gas using cellulose nanofibril film.

    PubMed

    Fukuzumi, Hayaka; Fujisawa, Shuji; Saito, Tsuguyuki; Isogai, Akira

    2013-05-13

    Biobased membranes that can selectively permeate hydrogen gas have been developed from aqueous dispersions of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibrils (TOCN) prepared from wood cellulose: TOCN-coated plastic films and self-standing TOCN films. Compared with TOCNs with sodium, lithium, potassium, and cesium carboxylate groups, TOCN with free carboxyl groups (TOCN-COOH) had much high and selective H2 gas permeation performance. Because permeabilities of H2, N2, O2, and CO2 gases through the membranes primarily depended on their kinetic diameters, the gas permeation behavior of the various TOCNs can be explained in terms of a diffusion mechanism. Thus, the selective H2 gas permeability for TOCN-COOH was probably due to a larger average size in free volume holes present between nanofibrils in the layer and film than those of other TOCNs with metal carboxylate groups. The obtained results indicate that TOCN-COOH membranes are applicable as biobased H2 gas separation membranes in fuel cell electric power generation systems.

  5. Study on the Hydrogen Embrittlement of Aermet100 Using Hydrogen Permeation and SSRT Techniques

    NASA Astrophysics Data System (ADS)

    Hu, Yabo; Dong, Chaofang; Luo, Hong; Xiao, Kui; Zhong, Ping; Li, Xiaogang

    2017-09-01

    Aermet100 steel suffers greatly from hydrogen embrittlement due to its ultra-high strength. During the corrosion process as part of its service life, reduction of H+ in an acidic environment and H2O in a deaerated near-neutral environment are the main sources of hydrogen generation. Hydrogen permeation into Aermet100 steel can occur even in the atmosphere. After tempering, the coherent precipitations can hinder diffusion of hydrogen in the tempered steel, causing the apparent hydrogen diffusivity and steady hydrogen permeation current to decrease. The fracture morphology of tempered Aermet100 steel after a slow strain rate test in an acidic solution is predominantly micro-void coalescence with few inner cracks. As the solution pH decreases, micro-cracks initiate not only on the side surface but also within the steel. Coalition of micro-cracks accelerates the overall cracking process.

  6. Study on the Hydrogen Embrittlement of Aermet100 Using Hydrogen Permeation and SSRT Techniques

    NASA Astrophysics Data System (ADS)

    Hu, Yabo; Dong, Chaofang; Luo, Hong; Xiao, Kui; Zhong, Ping; Li, Xiaogang

    2017-06-01

    Aermet100 steel suffers greatly from hydrogen embrittlement due to its ultra-high strength. During the corrosion process as part of its service life, reduction of H+ in an acidic environment and H2O in a deaerated near-neutral environment are the main sources of hydrogen generation. Hydrogen permeation into Aermet100 steel can occur even in the atmosphere. After tempering, the coherent precipitations can hinder diffusion of hydrogen in the tempered steel, causing the apparent hydrogen diffusivity and steady hydrogen permeation current to decrease. The fracture morphology of tempered Aermet100 steel after a slow strain rate test in an acidic solution is predominantly micro-void coalescence with few inner cracks. As the solution pH decreases, micro-cracks initiate not only on the side surface but also within the steel. Coalition of micro-cracks accelerates the overall cracking process.

  7. High-temperature Hydrogen Permeation in Nickel Alloys

    SciTech Connect

    P. Calderoni; M. Ebner; R. Pawelko

    2010-10-01

    In gas cooled Very High Temperature Reactor concepts, tritium is produced as a tertiary fission product and by activation of graphite core contaminants, such as lithium; of the helium isotope, He-3, that is naturally present in the He gas coolant; and the boron in the B4C burnable poison. Because of its high mobility at the reactor outlet temperatures, tritium poses a risk of permeating through the walls of the intermediate heat exchanger (IHX) or steam generator (SG) systems, potentially contaminating the environment and in particular the hydrogen product when the reactor heat is utilized in connection with a hydrogen generation plant. An experiment to measure tritium permeation in structural materials at temperatures up to 1000 C has been constructed at the Idaho National Laboratory Safety and Tritium Applied Research (STAR) facility within the Next Generation Nuclear Plant program. The design is based on two counter flowing helium loops to represent heat exchanger conditions and was optimized to allow control of the materials surface condition and the investigation of the effects of thermal fatigue. In the ongoing campaign three nickel alloys are being considered because of their high-temperature creep properties, alloy 617, 800H and 230. This paper introduces the general issues related to tritium in the on-going assessment of gas cooled VHTR systems fission product transport and outlines the planned research activities in this area; outlines the features and capabilities of the experimental facility being operated at INL; presents and discusses the initial results of hydrogen permeability measurements in two of the selected alloys and compares them with the available database from previous studies.

  8. Special treatment reduces helium permeation of glass in vacuum systems

    NASA Technical Reports Server (NTRS)

    Bryant, P. J.; Gosselin, C. M.

    1966-01-01

    Internal surfaces of the glass component of a vacuum system are exposed to cesium in gaseous form to reduce helium permeation. The cesium gas is derived from decomposition of cesium nitrate through heating. Several minutes of exposure of the internal surfaces of the glass vessel are sufficient to complete the treatment.

  9. Hydrogen permeation of carbon steel in weak alkaline solution containing hydrogen sulfide and cyanide ion

    SciTech Connect

    Yamakawa, K; Nishimura, R.

    1999-01-01

    The hydrogen permeation behavior of carbon steel (CS) was investigated electrochemically in weak alkaline solutions containing hydrogen sulfide (H{sub 2}S) with various cyanide ion (CN{sup {minus}}) concentrations under open-circuit conditions. Anodic and cathodic polarization behaviors of CS also were investigated under the same environmental conditions. Little hydrogen content (C{sub 0}) was detected in alkaline solutions without CN{sup {minus}}. However, when a small amount of CN was added in the alkaline solution, a rapid increase in C{sub 0} was observed after the induction time, which corresponded to a rapid decrease in rest potential. Surface abrasion also produced a similar increase in C{sub o} in the presence of CN{sup {minus}}. Results were explained in terms of formation and destruction of iron sulfide (FeS), soluble species of H{sub 2}S, and iron dissolution.

  10. Importance of the support material in thin palladium composite membranes for steady hydrogen permeation at elevated temperatures.

    PubMed

    Okazaki, Junya; Ikeda, Takuji; Pacheco Tanaka, David A; Llosa Tanco, Margot A; Wakui, Yoshito; Sato, Koich; Mizukami, Fujio; Suzuki, Toshishige M

    2009-10-14

    Hydrogen permeation performance of palladium membranes supported on porous alpha-alumina and yttria-stabilized zirconia (YSZ) was studied at 300-850 degrees C. The hydrogen permeation flux across the palladium-alpha-alumina membrane decreased markedly during permeation tests conducted at >600 degrees C. The SEM and XPS studies of the post-test membrane revealed the presence of aluminium in the palladium layer. Such migration of aluminium was not observed by heating the palladium-alpha-alumina membrane under an argon atmosphere, indicating that hydrogen is responsible for this phenomenon. Hydrogen-induced strong metal-support interaction might be related to this considerable loss of the hydrogen flux. Reduction of alumina to Al(0) by active hydrogen at the membrane-support interface and subsequent migration of Al(0) into the palladium layer represents the most plausible mechanism for the aluminium diffusion. Actually, Al(0) that migrated into the palladium membrane layer generated less hydrogen-permeable palladium-aluminium alloy or inter-metallic compound phase. In contrast, no such strong interaction was found between the YSZ support and the palladium membrane. This composite membrane exhibited a steady permeation of hydrogen at 650 degrees C for 336 h. Having a remarkably high reduction potential, Y(III) is unlikely to be reduced to Y(0), although Zr(IV) has a comparable reduction potential to that of Al(III). A binary phase diagram shows a liquid alloy phase present for the Pd/Al couple at temperatures greater than 615 degrees C (eutectic point), while an inter-metallic compound or liquid alloy phase in the Pd-Zr binary system is not apparent at temperatures less than 750 degrees C. Consequently, inter-diffusion of zirconium with palladium did not occur during operations at 650 degrees C.

  11. Evaluation of Oxidation and Hydrogen Permeation of Al Containing Duplex Stainless Steels

    SciTech Connect

    Adams, Thad M.; Korinko, Paul; Duncan, Andrew

    2005-06-17

    As the National Hydrogen Economy continues to develop and evolve the need for structural materials that can resist hydrogen assisted degradation will become critical. To date austenitic stainless steel materials have been shown to be mildly susceptible to hydrogen attack which results in lower mechanical and fracture strengths. As a result, hydrogen permeation barrier coatings are typically applied to these steel to retard hydrogen ingress. The focal point of the reported work was to evaluate the potential for intentional alloying of commercial 300-series stainless steels to promote hydrogen permeation resistant oxide scales. Previous research on the Cr- and Fe-oxide scales inherent to 300-series stainless steels has proven to be inconsistent in effecting permeation resistance. The approach undertaken in this research was to add aluminum to the 300-series stainless steels in an attempt to promote a pure Al-oxide or and Al-rich oxide scale. Aloxide had been previously demonstrated to be an effective hydrogen permeation barrier. Results for 304L and 347H alloys doped with Al in concentration from 0.5-3.0 wt% with respect to oxidation kinetic studies, cyclic oxidation and characterization of the oxide scale chemistry are reported herein. Gaseous hydrogen permeation testing of the Al-doped alloys in both the unoxidized and oxidized (600 C, 30 mins) conditions are reported. A critical finding from this work is that at concentration as low as 0.5 wt% Al, the Al stabilizes the ferrite phase in these steels thus producing duplex austenitic-ferritic microstructures. As the Al-content increases the amount of measured ferrite increases thus resulting in hydrogen permeabilities more closely resembling ferritic steels.

  12. Surface effects on hydrogen permeation through Ti-14Al-21Nb alloy

    NASA Technical Reports Server (NTRS)

    Sankaran, Sandara N.; Outlaw, Ronald A.; Clark, Ronald K.

    1991-01-01

    Hydrogen transport through Ti-14Al-21Nb (wt percent) alloy is measured using ultrahigh vacuum permeation techniques over the temperature range of 500 to 900 C and hydrogen pressure range of 0.25 to 10 torr. Hydrogen permeability through the alloy can be described through two different mechanisms depending on th temperature of exposure. In the 675 to 900 C range, the process is diffusion-limited: the permeability has a weak temperature dependence, but the diffusivity has a strong temperature dependence. Below 675 C, the permeation rate of hydrogen is very sensitive to surface controlled processes such as the formation of a barrier layer from contaminants. A physical model explaining the role of surface films on the transport of hydrogen through Ti-14Al-21Nb alloy was described.

  13. Study on hydrogen isotopes permeation in fluidized state of liquid lithium-lead

    SciTech Connect

    Yoshimura, S.; Yoshimura, R.; Okada, M.; Fukada, S.; Edao, Y.

    2015-03-15

    Lithium-lead (Li-Pb) is one of the most promising candidate materials for the liquid blanket of fusion reactors. Hydrogen transfer under a fluidized condition of Li-Pb is investigated experimentally to design a Li-Pb blanket system. Li-Pb eutectic alloy flows inside a Ni tube in the experimental system, where H{sub 2} permeates into and out of the forced Li-Pb flow. The overall H{sub 2} permeation rate is analyzed using a mass balance model. Hydrogen atoms diffuse in Ni and Li-Pb. The steady-state H{sub 2} permeation rate obtained by this experiment is smaller than the result of the calculation model. A resistance factor is introduced to the present analysis in order to evaluate the influence of other H{sub 2} transfer mechanisms, such as diffusion in Li-Pb and dissolution reaction between Ni and Li-Pb. The contribution of the resistance to the overall H{sub 2} permeation rate becomes large when the flow rate of Li-Pb is low. This is because the boundary layer thickness between Ni and Li-Pb affects the overall H{sub 2} permeation rate. When the flow velocity of Li-Pb increases, the thickness of the boundary layer becomes thin, and the driving force of H{sub 2} permeation through the Ni wall becomes bigger. (authors)

  14. Characterization of hydrogen permeation through a corrosion-resistant zinc-nickel-phosphorus alloy

    SciTech Connect

    Durairajan, A.; Krishniyer, A.; Haran, B.S.; White, R.E.; Popov, B.N.

    2000-03-01

    Hydrogen permeation characteristics of a new Zn-Ni-P alloy were studied and compared with that of a Zn-Ni alloy. The Zn-Ni-P alloy was deposited from an acid sulfate both containing 0.5 M nickel sulfate (NiSO{sub 4}), 0.2 M zinc sulfate (ZnSO{sub 4}), 0.5 M sodium sulfate (Na{sub 2}SO{sub 4}), and 100 g/L sodium hypophosphite (NaH{sub 2}PO{sub 2}) at pH 3. The permeation characteristics of the alloy were studied and compared qualitatively with that of Zn-Ni alloy under cathodically polarized and corroding conditions. The Zn-Ni-P alloy had better permeation inhibition characteristics in terms of permeation efficiency through the alloy. The Lyer-Pickering-Zamanzadeh (IPZ) model was used to quantitatively estimate the various kinetic parameters associated with hydrogen permeation for Zn-Ni-P alloy under polarized conditions. The Zn-Ni-P alloy had superior permeation inhibition properties compared to the Zn-Ni alloy.

  15. Effect of Oxide Film on the Reduction of Hydrogen Permeation Rate in Stainless Steel

    NASA Astrophysics Data System (ADS)

    Yamazaki, Takahisa; Ikeshoji, Toshi-Taka; Suzumura, Akio; Naito, Takafumi

    Characteristics of hydrogen permeation in the stainless steel 304 modified by either facing, ion sputtering, carbon coating or annealing were investigated in order to establish the safe hydrogen-energy-infrastructure using welding. A stationary hydrogen flux from the stainless steel surface was measured by using a system with an orifice. The pressure difference of the specimen was able to maintain constant by controlling the gas flow rate from the orifice in low pressure vessel. The hydrogen permeability was low in two cases of a thin stainless steel with fine facing and that annealed at 1370K for 2 hours. In these cases, the specimens’ surfaces were considered to play hydrogen trap role and to prevent from pairing hydrogen atoms. On the other hand, high hydrogen permeability was obtained in the case of Argon plasma cleaning a low-pressure-vessel side surface. These results suggest that oxide film on the specimens’ surface prevent hydrogen desorption.

  16. Gas-phase hydrogen permeation through alpha-titanium - Surface film and dimensional effects

    NASA Technical Reports Server (NTRS)

    Shah, K. K.; Johnson, D. L.

    1982-01-01

    The process of hydrogen transport through alpha-Ti involves simultaneous diffusion and phase boundary reactions at both surfaces, with the relative effect on each surface depending on the extent of surface contamination as well as the physical dimensions of the titanium membrane used. It is shown by the present study that hydrogen permeation in commercially pure alpha-Ti increases exponentially with temperature and is dependent on the first power of the input pressure, whether the surface is as-polished, preoxidized or prenitrided. Permeation decreases in the case of the as-polished condition if nitride or oxide films are formed at the surface in contact with source hydrogen, while increasing slightly for the same condition if such films are formed at the hydrogen exit surface.

  17. Characterization of Hydrogen Permeation in Armco-Fe during Cathodic Polarization in Aqueous Electrolytic Media

    NASA Astrophysics Data System (ADS)

    Charca, Samuel M.; Uwakweh, Oswald N. C.; Shafiq, Basir; Agarwala, Vinod S.

    2008-02-01

    The study of hydrogen permeation behavior in Armco-Fe showed that 0.1 M H2SO4 was a more effective medium for cathodic polarization compared to 0.1 M NaOH. When both electrolytes were “poisoned” with 1.00 g/L Na2HAsO4 · 7H2O, as hydrogen recombination inhibitor, the corresponding hydrogen permeation levels were 3.5 × 10-5 A/cm2 in 0.1 M H2SO4 while 0.75 × 10-5 A/cm2 in 0.1 M NaOH. The breakthrough times were less than 30 s in 0.1 M H2SO4, while about 100 s in the NaOH. With varying amounts of “poisons”, peak permeation of hydrogen (1.75 × 10-5 A/cm2) was achieved with 10 g/L Na2HAsO4 · 7H2O in 0.1 M H2SO4, while the least permeation resulted with 10 g/L (NH2CSH2) Thiourea addition for same level of 1.00 mA/cm2 cathodic polarization.

  18. Solubility and Permeation of Hydrogen Sulfide in Lipid Membranes

    PubMed Central

    Cuevasanta, Ernesto; Denicola, Ana; Alvarez, Beatriz; Möller, Matías N.

    2012-01-01

    Hydrogen sulfide (H2S) is mainly known for its toxicity but has recently been shown to be produced endogenously in mammalian tissues and to be associated with physiological regulatory functions. To better understand the role of biomembranes in modulating its biological distribution and effects; we measured the partition coefficient of H2S in models of biological membranes. The partition coefficients were found to be 2.1±0.2, 1.9±0.5 and 2.0±0.6 in n-octanol, hexane and dilauroylphosphatidylcholine liposome membranes relative to water, respectively (25°C). This two-fold higher concentration of H2S in the membrane translates into a rapid membrane permeability, Pm = 3 cm s−1. We used a mathematical model in three dimensions to gain insight into the diffusion of total sulfide in tissues. This model shows that the sphere of action of sulfide produced by a single cell expands to involve more than 200 neighboring cells, and that the resistance imposed by lipid membranes has a significant effect on the diffusional spread of sulfide at pH 7.4, increasing local concentrations. These results support the role of hydrogen sulfide as a paracrine signaling molecule and reveal advantageous pharmacokinetic properties for its therapeutic applications. PMID:22509322

  19. THE IMPACT OF PARTIAL CRYSTALLIZATION ON THE PERMEATION PROPERTIES BULK AMORPHOUS GLASS HYDROGEN SEPARATION MEMBRANES

    SciTech Connect

    Brinkman, K; Paul Korinko, P; Thad Adams, T; Elise Fox, E; Arthur Jurgensen, A

    2008-11-25

    It is recognized that hydrogen separation membranes are a key component of the emerging hydrogen economy. A potentially exciting material for membrane separations are bulk metallic glass materials due to their low cost, high elastic toughness and resistance to hydrogen 'embrittlement' as compared to crystalline Pd-based membrane systems. However, at elevated temperatures and extended operation times structural changes including partial crystallinity may appear in these amorphous metallic systems. A systematic evaluation of the impact of partial crystallinity/devitrification on the diffusion and solubility behavior in multi-component Metallic Glass materials would provide great insight into the potential of these materials for hydrogen applications. This study will report on the development of time and temperature crystallization mapping and their use for interpretation of 'in-situ' hydrogen permeation at elevated temperatures.

  20. Hydrogen-Induced Cracking Assessment in Pipeline Steels Through Permeation and Crystallographic Texture Measurements

    NASA Astrophysics Data System (ADS)

    Mohtadi-Bonab, M. A.; Karimdadashi, R.; Eskandari, M.; Szpunar, J. A.

    2016-05-01

    Electrochemical hydrogen charging and permeation techniques were used to characterize hydrogen distribution, trapping, and diffusion in X60 and X60 sour service (X60SS) pipeline steels. The results obtained contribute to better understanding of hydrogen-induced cracking (HIC). SEM observations illustrated that all HIC cracks were formed at the center of cross section in the X60 steel after 3-h hydrogen charging and length of cracks increased with charging time. No HIC cracks were recorded at the cross section of X60SS steel after the same charging for different durations. Hydrogen permeation tests showed that the density of reversible hydrogen traps was lower at the center of cross section in the X60SS steel compared to the X60 one, and this is considered as one of the main reasons for high resistance of X60SS steel to HIC. EBSD orientation imaging results proved that the accumulation of <111>||ND-oriented grains at the center of the cross section in the X60SS steel was high. This is also considered as another reason for higher resistance of this steel to HIC. Finally, the center segregation zone with higher hardness value in the X60 steel was more pronounced than in the X60SS steel which made the X60 steel susceptible to HIC cracking.

  1. Glove resistance to permeation by a 7.5% hydrogen peroxide sterilizing and disinfecting solution.

    PubMed

    Monticello, M V; Gaber, D J

    1999-08-01

    This study evaluated 6 types of glove materials for resistance to permeation by a 7.5% hydrogen peroxide liquid chemical germicide. Based on American Society for Testing and Materials Method F739-96, a small piece of glove material was placed in the center of a dual chamber test cell. The challenge and collection chambers of the test cell were filled with the hydrogen peroxide test chemical and the collecting medium (deionized water), respectively. Chemical permeation was determined by measuring the concentration of hydrogen peroxide in the collection medium at various time intervals. Both the polyvinylchloride and disposable latex examination gloves at 4.5 mil thickness provided less than 30 minutes of protection from hydrogen peroxide. The natural rubber latex glove at 16.5 mil lasted for 8 hours without any detectable penetration. Neoprene (15 mil) and nitrile butyl rubber (18 mil) both provided excellent protection throughout the 8-hour test period. Disposable latex examination gloves should be used for short-term exposure to hydrogen peroxide solutions. Thicker rubber latex gloves provided adequate protection and necessary dexterity for conducting intricate tasks. The level of protection depends largely on the thickness and quality of the glove material.

  2. Electrochemical investigation on the hydrogen permeation behavior of 7075-T6 Al alloy and its influence on stress corrosion cracking

    NASA Astrophysics Data System (ADS)

    Zheng, Chuan-bo; Yan, Bing-hao; Zhang, Ke; Yi, Guo

    2015-07-01

    The hydrogen permeation behavior and stress corrosion cracking (SCC) susceptibility of precharged 7075-T6 Al alloy were investigated in this paper. Devanthan-Stachurski (D-S) cell tests were used to measure the apparent hydrogen diffusivity and hydrogen permeation current density of specimens immersed in 3.5wt% NaCl solution. Electrochemical experiment results show that the SCC susceptibility is low during anodic polarization. Both corrosion pits and hydrogen-induced cracking are evident in scanning electron microscope images after the specimens have been charging for 24 h.

  3. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    SciTech Connect

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-03-19

    FeCrAl is an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In our study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. Also, the total tritium inventory inside the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.

  4. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    DOE PAGES

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; ...

    2015-03-19

    FeCrAl is an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In our study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. Also, the total tritium inventory insidemore » the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.« less

  5. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    NASA Astrophysics Data System (ADS)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-06-01

    FeCrAl, an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In this study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. The total tritium inventory inside the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.

  6. Toward enhanced hydrogen generation from water using oxygen permeating LCF membranes.

    PubMed

    Wu, Xiao-Yu; Chang, Le; Uddi, Mruthunjaya; Kirchen, Patrick; Ghoniem, Ahmed F

    2015-04-21

    Hydrogen production from water thermolysis can be enhanced by the use of perovskite-type mixed ionic and electronic conducting (MIEC) membranes, through which oxygen permeation is driven by a chemical potential gradient. In this work, water thermolysis experiments were performed using 0.9 mm thick La0.9Ca0.1FeO3-δ (LCF-91) perovskite membranes at 990 °C in a lab-scale button-cell reactor. We examined the effects of the operating conditions such as the gas species concentrations and flow rates on the feed and sweep sides on the water thermolysis rate and oxygen flux. A single step reaction mechanism is proposed for surface reactions, and three-resistance permeation models are derived. Results show that water thermolysis is facilitated by the LCF-91 membrane especially when a fuel is added to the sweep gas. Increasing the gas flow rate and water concentration on the feed side or the hydrogen concentration on the sweep side enhances the hydrogen production rate. In this work, hydrogen is used as the fuel by construction, so that a single-step surface reaction mechanism can be developed and water thermolysis rate parameters can be derived. Both surface reaction rate parameters for oxygen incorporation/dissociation and hydrogen-oxygen reactions are fitted at 990 °C. We compare the oxygen fluxes in water thermolysis and air separation experiments, and identify different limiting steps in the processes involving various oxygen sources and sweep gases for this 0.9 mm thick LCF-91 membrane. In the air feed-inert sweep case, the bulk diffusion and sweep side surface reaction are the two limiting steps. In the water feed-inert sweep case, surface reaction on the feed side dominates the oxygen permeation process. Yet in the water feed-fuel sweep case, surface reactions on both the feed and sweep sides are rate determining when hydrogen concentration in the sweep side is in the range of 1-5 vol%. Furthermore, long term studies show that the surface morphology changes and

  7. Permeation of several gases through elastomers, with emphasis on the deuterium/hydrogen pair

    SciTech Connect

    Fitch, M.W.; Koros, W.J. ); Nolen, R.L.; Carnes, J.R. )

    1993-02-10

    The diffusion and permeation coefficients for He, H[sub 2], D[sub 2], O[sub 2], and N[sub 2] in a variety of elastomers were measured by simple manometric methods. The elastomers studied were butyl rubber; Hypalon[reg sign] 40 and 45; Viton[reg sign] E60 and GF; Hydrin[reg sign] 100 and filled Hydrin[reg sign] 100; Kraton[reg sign] G, FG, and KG VTEOS; EPDM; epoxidized natural rubber; and neoprene. Consistent with earlier studies, elastomers with higher glass transition temperatures exhibited lower diffusion coefficients. The ratio of diffusion coefficients of the hydrogen isotope pair differed from the purely molecular-weight-based prediction. Deuterium's slightly smaller size relative to hydrogen is consistent with observed deviations from the molecular-weight-based diffusion coefficient ratio.

  8. The Role of Partial Crystallinity on Hydrogen Permeation in Fe–Ni–B–Mo Based Metallic Glass Membranes

    SciTech Connect

    Brinkman, K.; Su, D.; Fox, E.; Korinko, P.; Missimer, D.; Adams, T.

    2011-08-15

    A potentially exciting material for membrane separations are metallic glass materials due to their low cost, high elastic toughness and resistance to hydrogen embrittlement as compared to crystalline Pd-based membrane systems. However, at elevated temperatures and extended operation times structural changes including partial crystallinity may appear in these amorphous metallic systems. This study reports on the investigation of time and temperature dependent crystalline phase formation in conjunction with in situ crystallization/hydrogen permeation experiments at elevated temperatures. At temperatures near 400 C a FeNi crystalline phase appears as 22 vol.% inside the host amorphous matrix and the resulting composite structure remains stable over 3 h at temperature. The hydrogen permeation at 400 C of the partially crystalline material is similar to the fully amorphous material near 5 x 10{sup -9} mol H{sub 2}/m s Pa{sup 1/2}, while ambient temperature electrochemical permeation at 25 C revealed an order of magnitude decrease in the permeation of partially crystalline materials due to differences in the amorphous versus crystalline phase activation energy for hydrogen permeation.

  9. New advancements in the analysis procedures of the electrochemical hydrogen permeation experimental data

    NASA Astrophysics Data System (ADS)

    Al-Faqeer, Faisal M.

    This thesis presents two major breakthroughs on the analysis procedures of the hydrogen permeation data of the electrochemical hydrogen permeation technique to determine all relevant parameters for the hydrogen evolution reaction (HER) and hydrogen absorption reaction (HAR). These include major modifications to the original Iyer-Pickering-Zamanzadeh (IPZ) analysis. The first advancement was modifying the original IPZ analysis for competitive adsorption by including the surface coverage of a second adsorbate. This modification was applied to experimental data from the literature where the effect of iodide ions on HER and HAR was studied and qualitatively evaluated using the original IPZ analysis which ignores the surface coverage of iodide ions and to experimental data carried out in this research on the effect of hexamethylenetetramine, HMTA, on HER and HAR. The new analysis was able to evaluate all relevant parameters which include the exchange current density of the HER, i o, the discharge rate constant, k1, the recombination rate constant, k2, the hydrogen surface coverage, thetaH, and the kinetic-diffusion constant, k, which includes the absorption rate constant, k abs, the desorption rate constant, kdes, hydrogen diffusivity, DH, and the membrane thickness, L, in addition to the surface coverage of iodide ions, theta I-, and HMTA, thetaHMTA. The theta I- and thetaHMTA values were also determined using EQCM and polarization date and showed reasonable agreement with the one determined by the new IPZ analysis. The second advancement was modifying the IPZ analysis to include the thickness effect so that the analysis will be able to evaluate all the parameters including the kabs and k des instead of determining k using one membrane thickness. The original IPZ analysis can evaluate kabs and kdes only if at least three thicknesses are used to evaluate k. This modification will still keep the competitive adsorption conditions and will be bale to determine the surface

  10. Microstructural and mechanical characterizations of rapidly solidified Nb-TiNi hydrogen permeation alloy

    NASA Astrophysics Data System (ADS)

    Nishida, M.; Matsuda, M.; Shimada, Y.; Takashima, K.; Ishikawa, K.; Aoki, K.

    2009-01-01

    The microstructural and mechanical characterizations of the rapidly solidified Nb20Ti40Ni40 (at%) hydrogen permeation alloy have been performed. An as-melt spun ribbon consists of an amorphous phase with sound bending ductility. The successive crystallization of B2-TiNi and bcc-Nb solid solution phases takes place during heating. The amorphous phase is stable in the specimens annealed below 773 K. The specimens annealed from 798 to 923 K are quite brittle, although those consist of fine equiaxed grains less than 50 nm. With annealing above 948 K for prolonged periods the grain size is increased to about 150 nm or more and the hardness is decreased about 260 Hv or less. Consequently, the ductility is recovered. The fracture toughness of as-melt spun and annealed ribbons is also investigated by the micromechanical test.

  11. Dissolution, diffusion and permeation behavior of hydrogen in vanadium: a first-principles investigation.

    PubMed

    Luo, Jian; Zhou, Hong-Bo; Liu, Yue-Lin; Gui, Li-Jiang; Jin, Shuo; Zhang, Ying; Lu, Guang-Hong

    2011-04-06

    Employing a first-principles method, we have studied the stability, diffusivity, and permeation properties of hydrogen (H) and its isotopes in bcc vanadium (V). A single H atom is found to favor the tetrahedral interstitial site (TIS) in V. The charge density distribution exhibits a strong interaction between H and its neighbor V atoms. Analysis of DOS and Bader charge reveals that the occupation number of H-induced low energy states is directly associated with the stability of H in V. Further, H is shown to diffuse between the neighboring TISs with a diffusion barrier of 0.07 eV. Diffusion coefficients and permeabilities of H isotopes in V are estimated with empirical theory. At a typical temperature of 800 K, the diffusion coefficient and the permeability of H are 2.48 × 10(-4) cm(2) s(-1) and 2.19 × 10(-9) mol m(-1) s(-1) Pa(- 1/2), respectively.

  12. Permeation of hydrogen in hastelloy C-276 alloy at high temperature

    SciTech Connect

    Zhang, D.; Liu, W.; Qian, Y.; Que, J.

    2015-03-15

    Tritium is generated by the interaction of neutrons with the lithium and beryllium in the molten salt reactors (MSRs), which use FLiBe as one of solvents of fluoride fuel. Tritium as by-product in the MSRs is an important safety issue because it could easily diffuse into environment through high temperature heat exchangers. The experimental technique of gas driven permeation has been used to investigate the transport parameter of hydrogen in Hastelloy C-276 which is considered as one of the candidate for structure materials. The measurements were carried out at the temperature range of 400-800 Celsius degrees with hydrogen loading pressures ranging from 5*10{sup 3} to 4*10{sup 4} Pa. The H diffusive transport parameters for Hastelloy C-276 follow an Arrhenius law in this temperature range. Regarding diffusivity and Sieverts' constant, Hastelloy C-276 has lower values compared with Ni201 alloy. The possible reason may be the trapping effects, which were formed by the alloying elements of Mo and Cr in the matrix. At the same time, the thin oxidation layer formed by the high Cr content could lead to a slower dissociation process of H{sub 2} at the surface. (authors)

  13. Positive impact of biofilm on reducing the permeation of ampicillin through membrane for membrane bioreactor.

    PubMed

    Shen, Liang; Yuan, Xia; Shen, Weihuang; He, Ning; Wang, Yuanpeng; Lu, Haoliang; Lu, Yinghua

    2014-02-01

    The membrane bioreactor (MBR) has recently been the focus of research for the treatment of emerging contaminants such as antibiotics in wastewater. Although the biofilm on membrane in an MBR has been considered a cause of "membrane biofouling", its positive impact on removing pollutants has not been well-studied. This study was designed to investigate the retention effect on the permeation of ampicillin (AMP) by the biofilm coated on cellulose acetate (CA) membrane (commonly used for MBRs) utilizing a novel method based on microbial sensitivity test. The bioflim layer (thickness of 12-16μm) increased the resistance of the membrane for AMP permeation by 3-28%. Diffusion appeared to be the main driving force for the mass transfer of AMP across the membrane. Besides, the biofilm increased the retention of AMP by 23% but exhibited similar adsorption capacity with comparison of the suspended activated sludge, which indicates that the compact structure of the biofilm was the major contributor for the added retention effect on AMP by the biofilm-coated CA membrane. This study suggests that biofilm (biofouling) in MBRs increases the retention of small-molecule constituents such as antibiotics. A delicate tradeoff between reduced wastewater throughput and increased retention of contaminants should be obtained when an MBR is designed and operated.

  14. Development of Tritium Permeation Analysis Code and Tritium Transport in a High Temperature Gas-Cooled Reactor Coupled with Hydrogen Production System

    SciTech Connect

    Chang H. Oh; Eung S. Kim; Mike Patterson

    2010-06-01

    Abstract – A tritium permeation analyses code (TPAC) was developed by Idaho National Laboratory for the purpose of analyzing tritium distributions in very high temperature reactor (VHTR) systems, including integrated hydrogen production systems. A MATLAB SIMULINK software package was used in developing the code. The TPAC is based on the mass balance equations of tritium-containing species and various forms of hydrogen coupled with a variety of tritium sources, sinks, and permeation models. In the TPAC, ternary fission and neutron reactions with 6Li, 7Li 10B, and 3He were taken into considerations as tritium sources. Purification and leakage models were implemented as main tritium sinks. Permeation of tritium and H2 through pipes, vessels, and heat exchangers were considered as main tritium transport paths. In addition, electroyzer and isotope exchange models were developed for analyzing hydrogen production systems, including high temperature electrolysis and sulfur-iodine processes.

  15. Gas-phase hydrogen permeation through alpha iron, 4130 steel, and 304 stainless steel from less than 100 C to near 600 C

    NASA Technical Reports Server (NTRS)

    Nelson, H. G.; Stein, J. E.

    1973-01-01

    Gas phase hydrogen permeation studies were conducted on hollow, cylindrical membranes of triply zone-refined alpha iron, AISI 304 austenitic stainless steel, and AISI-SAE 4130 steel in both the normalized (ferrite and carbide) and quenched and tempered (martensite) conditions. Membrane temperature was varied from less than 100 C to near 600 C and hydrogen pressure was varied. For one membrane material, normalized 4130 steel, gas phase hydrogen transport under both steady state and nonsteady state conditions was demonstrated to be controlled by lattice diffusion. Additionally, Sievert's law was shown to be applicable. For all membrane materials, expressions for the coefficients for hydrogen permeation were determined by analysis of steady state transport; the coefficients for diffusion were determined by the lag time technique applied to nonsteady state transport; and through a knowledge of the Sievert's constants, the subsurface equilibrium lattice hydrogen concentrations were determined.

  16. (Applications of self-renewing coatings to improved vacuum materials, hydrogen permeation barriers and sputter-resistant materials)

    SciTech Connect

    Not Available

    1985-01-01

    The phenomena of Gibbsian segregation, radiation-induced segregation and radiation-induced precipitation modify the surface composition and properties of alloys and compounds. In some cases, the change in properties is both substantial and useful, the most notable example being that of stainless steel. When surface-modifying phenomena are investigated as a class, a number of additional materials emerge as candidates for study, having potential applications in a number of technologically important areas. These materials are predicted to produce self-sustaining coatings which provide hydrogen permeation barriers, low-sticking and stimulated desorption coefficients for vacuum applications, and low-Z, sputtering-resistant surfaces for fusion applications. Several examples of each type of material are presented, along with a discussion of the experimental verification of their properties and the status of the corresponding applications development program.

  17. The effects of fabrication and annealing on the structure and hydrogen permeation of Pd-Au binary alloy membranes

    SciTech Connect

    Gade, Sabina K; Payzant, E Andrew; Park, Helen J; Thoen, Paul M; Way, J. Douglas

    2009-01-01

    The addition of gold to palladium membranes produces many desirable effects for hydrogen purification, including improved tolerance of sulfur compounds, reduction in hydride phase formation, and, for certain compositions, improved hydrogen permeability. The focus of this work is to determine if sequential plating can be used to produce self-supported alloy membranes with equivalent properties to membranes produced by conventional metallurgical techniques such as cold-working. Sequential electroplating and electroless plating were used to produce freestanding planar Pd-Au membranes with Au contents ranging from 0 to 20 wt%, consisting of Au layers on both sides of a pure Pd core. Membranes were characterized by single-gas permeation measurements, scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS), and high temperature, controlled-atmosphere XRD (HTXRD). Sequentially plated foils tested without any prior annealing had significantly lower H2 permeabilities than either measured or literature values for homogeneous foils of equivalent composition. This effect appears to be due to the formation of stable gold-enriched surface layers. Pretreatment of membranes to 1023 K created membranes with hydrogen permeabilities equivalent to literature values, despite the fact that trace amounts of surface gold remained detectable with XRD.

  18. Novel gel formulations with catanionic aggregates enable prolonged drug release and reduced skin permeation.

    PubMed

    Dew, Noel; Edsman, Katarina; Björk, Erik

    2011-10-01

    The aim of this study was to investigate skin permeation rates of a drug substance when applied in novel gel formulations with catanionic aggregates. Reference gel without catanionic aggregates was compared with formulations with catanionic aggregates composed of tetracaine and either sodium dodecyl sulphate (SDS) or capric acid. Carbomer and SoftCAT were used to compare the effect of different gel types to elucidate if physically cross-linked, 'self-destructing' systems had benefits compared with classical, covalently cross-linked, gels. The rheological investigation showed that the interactions between the SoftCAT polymer and tetracaine/SDS aggregates were stronger than when the tetracaine/capric acid aggregates were used. The skin permeation was measured ex vivo in horizontal Ussing chambers and the permeation of tetracaine was significantly lower when formulations with tetracaine/SDS aggregates were applied (P < 0.001), but not statistically different from the reference when capric acid was used. No morphological differences could be distinguished between the skin samples exposed to the different formulations or the reference. Skin permeation was compared with silicone sheet permeation and the results indicated that silicone sheets could be used as a model of skin when using these formulations. © 2011 The Authors. JPP © 2011 Royal Pharmaceutical Society.

  19. Study of hydrogen isotopes super permeation through vanadium membrane on 'Prometheus' setup

    SciTech Connect

    Musyaev, R. K.; Yukhimchuk, A. A.; Lebedev, B. S.; Busnyuk, A. O.; Notkin, M. E.; Samartsev, A. A.; Livshits, A. I.

    2008-07-15

    To develop the membrane pumping technology by means of superpermeable membranes at RFNC-VNIIEF in the 'Prometheus' setup, the experiments on superpermeation of hydrogen isotopes through metal membranes were carried out. The experimental results on superpermeation of thermal atoms of hydrogen isotopes including tritium through a cylindrical vanadium membrane are presented. The possibility of effective pumping, compression and recuperation of hydrogen isotopes by means of superpermeable membrane was demonstrated. The evaluation of membrane pumping rates and asymmetry degree of pure vanadium membrane was given. The work was performed under the ISTC-2854 project. (authors)

  20. The Use of the Electrochemical Permeation Technique to Study Hydrogen Transport and Trapping in Iron

    DTIC Science & Technology

    1982-02-01

    input side uncoated. (The out- put side, for all studies, was always Pd coated) (11). 22 E 2 " FERROVMC a 6 30 so 90 120 TIME ( S ) x I0 Fig. 3 Permeation...measurements and calculations to be the case (8). Taking for D the experimental value found for Ferrovac E, (Do - 6.1 x lO- 6cm2 / s ), (11), the ratio D /D is...independent of titanium content, were found to be: p - 1 x 10 s -1; and 1.1 x 10-2 < k < 7 x 10-2 4cm3/at’s, with the range due to consider- ing that from one to

  1. Fermented soy permeate reduces cytokine level and oxidative stress in streptozotocin-induced diabetic rats.

    PubMed

    Malardé, Ludivine; Groussard, Carole; Lefeuvre-Orfila, Luz; Vincent, Sophie; Efstathiou, Théo; Gratas-Delamarche, Arlette

    2015-01-01

    Oxidative stress and inflammation are involved in the development of type 1 diabetes and its complications. Because two compounds found in soy, that is, isoflavones and alpha-galactooligosaccharides, have been shown to exert antioxidant and anti-inflammatory effects, this study aimed to assess the effects of a dietary supplement containing these two active compounds, the fermented soy permeate (FSP). We hypothesized that FSP would be able to reduce in vivo oxidative stress and inflammation in streptozotocin (STZ)-induced type 1 diabetic rats. Thirty male Wistar rats were divided into the control placebo, diabetic placebo, and diabetic FSP-supplemented groups. They received daily, by oral gavage, water (placebo groups) or diluted FSP (0.1 g/day; FSP-supplemented group). After 3 weeks, glycemic regulation (glycemia and fructosamine level); the plasma level of carboxymethyllysine (CML), a marker of systemic oxidative stress in diabetes; and the plasma levels of inflammatory markers (CRP, IL-1β, IL-6, and uric acid) were evaluated. Markers of oxidative damage (isoprostanes and GSH/GSSG), antioxidant enzymatic activity (SOD and GPX), and Mn-SOD content were determined in skeletal muscle (gastrocnemius). Diabetic placebo rats exhibited higher CML levels, lower SOD and GPX activities, and decreased Mn-SOD contents. FSP supplementation in diabetic animals normalized the CML and antioxidant enzymatic activity levels and tended to increase Mn-SOD expression. The markers of inflammation whose levels were increased in the diabetic placebo group were markedly decreased by FSP (IL-1β: -75%, IL-6: -46%, and uric acid: -17%), except for CRP. Our results demonstrate that FSP exhibited antioxidant and anti-inflammatory properties in vivo in STZ-induced diabetic rats.

  2. Reducing the natural color of membrane bioreactor permeate with activated carbon or ozone.

    PubMed

    Abegglen, Christian; Joss, Adriano; Boehler, Marc; Buetzer, Simone; Siegrist, Hansruedi

    2009-01-01

    The suitability of two membrane bioreactors for on-site wastewater treatment and reuse in Switzerland was investigated. The treated wastewater was used for toilet flushing and gardening, with water recycling rates of 30% (single family house) and almost 100% (toilets in a cable car station) respectively. Due to the recycling, an increase in a natural yellowish-brown color was observed, leading to double flushing of the toilets, higher cleaning requirements and increased permeate production. Color removal with ozone, powdered (PAC) and granulated (GAC) activated carbon was assessed in laboratory and field experiments. PAC was added directly into the MBR, whereas ozonation and GAC were applied to the permeate. The dosage of ozone or activated carbon depended on the recycling rate and color intensity. If color removal is necessary, PAC is the option best suited to small treatment plants, with a requirement of 30-50 g m(-3) for 30% and 100 g m(-3) for 100% water recycling.

  3. Catalytic hydrogenation and gas permeation properties of metal-containing poly(phenylene oxide) and polysulfone

    SciTech Connect

    Hanrong Gao; Yun Xu; Shijian Liao; Ren Liu; Daorong Yu . Dalian Inst. of Chemical Physics)

    1993-11-10

    Metal-containing polymers, PPL-DPP-Pd, PPO-CPA-Pd, PSF-DPP-Pd, PSF-CPA-Pd (PDD = diphenylphosphinyl, CPA = o-carboxy phenyl amino), PPO-M (M = Pd,Cu,Co,Ni), and PSF-Pd, were prepared by incorporating metal chloride with either modified or unmodified poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and polysulfone (PSF). The Pd-containing polymers exhibit catalytic activity in the hydrogenation of cyclopentadiene under mild conditions both in alcohol solution and in the gas phase. The selectivity in the hydrogenation of diene to monoene in the gas phase can be controlled by adjusting the hydrogen partial pressure. The metal-containing polymers, PPL-M and PSF-Pd, can be cast easily into the membranes. The H[sub 2]/N[sub 2] permselectivity for PPO-M is higher than that for unmodified PPO, whereas the permeability of H[sub 2] changes slightly. The H[sub 2] permeability and H[sub 2]/N[sub 2] permselectivity for the PPO-Pd membrane are up to 67.5 barrers and 135, respectively.

  4. Hydrogen Permeation Performance of Ni-BaZr0.1Ce0.7Y0.2O3-δ Metal-Ceramic Hollow Fiber Membrane

    NASA Astrophysics Data System (ADS)

    Yang, Chun-li; Xu, Qi-ming; Zhu, Zhi-wen; Liu, Wei

    2012-04-01

    A dense Ni-BaZr0.1Ce0.7Y0.2O3-δ (BZCY) cermet hollow fiber is fabricated by sintering NiO-BZCY hollow fiber precursors prepared by phase inversion method in 5%H2/95%Ar and its hydrogen permeation performance is investigated. The Ni-BZCY hollow fiber membrane possesses a “sandwich" structure. Finger-like structures are observed near both the inner and outer surfaces, while a dense layer is present in the center part. With 200 mL/min wet 20%H2/80%N2 on the shell side and 150 mL/min high purity Ar on the core side, the hydrogen permeation flux through the Ni-BZCY hollow fiber membrane at 900 °C is 0.53 μmol/cm2s. Owing to a high packing density, the hydrogen permeation flux per unit volume is greatly improved and membrane components composed of an assembly of hollow fibers may be applied in industrial hydrogen separation.

  5. STRUCTURAL INTERACTIONS OF HYDROGEN WITH BULK AMORPHOUS MICROSTRUCTURES IN METALLIC SYSTEMS UNDERSTANDING THE ROLE OF PARTIAL CRYSTALLINITY ON PERMEATION AND EMBRITTLEMENT

    SciTech Connect

    Brinkman, Kyle; Fox, Elise; Korinko, Paul; Adams, Thad

    2010-05-10

    The development of metallic glasses in bulk form has led to a resurgence of interest into the utilization of these materials for a variety of applications. A potentially exciting application for these bulk metallic glass (BMG) materials is their use as composite membranes to replace high cost Pd/Pd-alloy membranes for enhanced gas separation processes. One of the major drawbacks to the industrial use of Pd/Pd-alloy membranes is that during cycling above and below a critical temperature an irreversible change takes place in the palladium lattice structure which can result in significant damage to the membrane. Furthermore, the cost associated with Pd-based membranes is a potential detractor for their continued use and BMG alloys offer a potentially attractive alternative. Several BMG alloys have been shown to possess high permeation rates, comparable to those measured for pure Pd metal. In addition, high strength and toughness when either in-situ or ex-situ second phase dispersoids are present. Both of these properties, high permeation and high strength/toughness, potentially make these materials attractive for gas separation membranes that could resist hydrogen 'embrittlement'. However, a fundamental understanding of the relationship between partially crystalline 'structure'/devitrification and permeation/embrittlement in these BMG materials is required in order to determine the operating window for separation membranes and provide additional input to the material synthesis community for improved alloy design. This project aims to fill the knowledge gap regarding the impact of crystallization on the permeation properties of metallic glass materials. The objectives of this study are to (i) determine the crystallization behavior in different gas environments of Fe and Zr based commercially available bulk metallic glass and (ii) quantify the effects of partial crystallinity on the hydrogen permeation properties of these metallic glass membranes.

  6. Tritium permeation experiments using reduced activation ferritic/martensitic steel tube and erbium oxide coating

    SciTech Connect

    Takumi Chikada; Masashi Shimada; Robert Pawelko; Takayuki Terai; Takeo Muroga

    2013-09-01

    Low concentration tritium permeation experiments have been performed on uncoated F82H and Er2O3-coated tubular samples in the framework of the Japan-US TITAN collaborative program. Tritium permeability of the uncoated sample with 1.2 ppm tritium showed one order of magnitude lower than that with 100% deuterium. The permeability of the sample with 40 ppm tritium was more than twice higher than that of 1.2 ppm, indicating a surface contribution at the lower tritium concentration. The Er2O3-coated sample showed two orders of magnitude lower permeability than the uncoated sample, and lower permeability than that of the coated plate sample with 100% deuterium. It was also indicated that the memory effect of ion chambers in the primary and secondary circuits was caused by absorption of tritiated water vapor that was generated by isotope exchange reactions between tritium and surface water on the coating.

  7. Alcohol and single-cell protein production by Kluyveromyces in concentrated whey permeates with reduced ash

    SciTech Connect

    Mahmoud, M.M.; Kosikowski, F.V.

    1982-01-01

    Five Kluyveromyces yeasts were grown in concentrated whey permeates under aerobic and anaerobic conditions to produce single-cell protein and ethanol. K. fragilis NRRL Y2415 produced the highest yield of alcohol, 9.1%, and K. bulgaricus ATCC 1605 gave the highest yield of biomass, 13.5 mg/mL. High ash, apparently through Na and K effects, inhibited production of biomass and alcohol. A 0.77% ash was optimum. Lactose utilization was more rapid under aerobic than anaerobic conditions. (NH/sub 4/)/sub 2/SO/sub 4/ and urea supplementation were without effect on yeast growth or were slightly inhibitory. A 1% peptone inclusion gave the highest biomass yield with minimum alcohol production.

  8. Laser peening for reducing hydrogen embrittlement

    SciTech Connect

    Hackel, Lloyd A.; Zaleski, Tania M.; Chen, Hao-Lin; Hill, Michael R.; Liu, Kevin K.

    2010-05-25

    A laser peening process for the densification of metal surfaces and sub-layers and for changing surface chemical activities provides retardation of the up-take and penetration of atoms and molecules, particularly Hydrogen, which improves the lifetime of such laser peened metals. Penetration of hydrogen into metals initiates an embrittlement that leaves the material susceptible to cracking.

  9. Pd doped reduced graphene oxide for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Das, Tapas; Banerjee, Seemita; Sudarsan, V.

    2015-06-01

    Pd nanoparticles dispersed reduced graphene oxide sample has been prepared by a simple chemical method using hydrazine as the reducing agent. Based on XRD and 13C MAS NMR studies it is confirmed that, Pd nanoparticles are effectively mixed with the reduced graphene oxide sample. Maximum hydrogen storage capacity has been estimated to be ˜1.36 wt % at 123K. Improved hydrogen storage capacity of Pd incorporated sample can be explained based on the phenomenon of spillover of atomic hydrogen.

  10. Pd doped reduced graphene oxide for hydrogen storage

    SciTech Connect

    Das, Tapas; Banerjee, Seemita; Sudarsan, V.

    2015-06-24

    Pd nanoparticles dispersed reduced graphene oxide sample has been prepared by a simple chemical method using hydrazine as the reducing agent. Based on XRD and {sup 13}C MAS NMR studies it is confirmed that, Pd nanoparticles are effectively mixed with the reduced graphene oxide sample. Maximum hydrogen storage capacity has been estimated to be ∼1.36 wt % at 123K. Improved hydrogen storage capacity of Pd incorporated sample can be explained based on the phenomenon of spillover of atomic hydrogen.

  11. Chemical modification of paclitaxel (Taxol) reduces P-glycoprotein interactions and increases permeation across the blood-brain barrier in vitro and in situ.

    PubMed

    Rice, Antonie; Liu, Yanbin; Michaelis, Mary Lou; Himes, Richard H; Georg, Gunda I; Audus, Kenneth L

    2005-02-10

    The purpose of this work was to introduce a chemical modification into the paclitaxel (Taxol) structure to reduce interactions with the product of the multidrug resistant type 1 (MDR1) gene, P-glycoprotein (Pgp), resulting in improved blood-brain barrier (BBB) permeability. Specifically, a taxane analogue, Tx-67, with a succinate group added at the C10 position of Taxol, was synthesized and identified as such a candidate. In comparison studies, Tx-67 had no apparent interactions with Pgp, as demonstrated by the lack of enhanced uptake of rhodamine 123 by brain microvessel endothelial cells (BMECs) in the presence of the agent. By contrast, Taxol exposure substantially enhanced rhodamine 123 uptake by BMECs through inhibition of Pgp. The transport across BMEC monolayers was polarized for both Tx-67 and Taxol with permeation in the apical to basolateral direction greater for Tx-67 and substantially reduced for Taxol relative to basolateral to apical permeation. Taxol and cyclosporin A treatments also did not enhance Tx-67 permeation across BMEC monolayers. In an in situ rat brain perfusion study, Tx-67 was demonstrated to permeate across the BBB at a greater rate than Taxol. These results demonstrate that the Taxol analogue Tx-67 had a reduced interaction with Pgp and, as a consequence, enhanced permeation across the blood-brain barrier in vitro and in situ.

  12. THE EFFECT OF CO ON HYDROGEN PERMEATION THROUGH PD AND INTERNALLY OXIDIZED AND UN-OXIDIZED PD ALLOY MEMBRANES

    SciTech Connect

    Shanahan, K.; Flanagan, T.; Wang, D.

    2010-10-20

    The H permeation of internally oxidized Pd alloy membranes such as Pd-Al and Pd-Fe, but not Pd-Y alloys, is shown to be more resistant to inhibition by CO(g) as compared to Pd or un-oxidized Pd alloy membranes. The increased resistance to CO is found to be greater at 423 K than at 473 K or 523 K. In these experiments CO was pre-adsorbed onto the membranes and then CO-free H{sub 2} was introduced to initiate the H permeation.

  13. Microaeration reduces hydrogen sulfide in biogas

    USDA-ARS?s Scientific Manuscript database

    Although there are a variety of biological and chemical treatments for removal of hydrogen sulfide (H2S) from biogas, all require some level of chemical or water inputs and maintenance. In practice, managing biogas H2S remains a significant challenge for agricultural digesters where labor and opera...

  14. Reduced hydrogen embrittlement susceptibility in platinum implanted high strength steel

    NASA Astrophysics Data System (ADS)

    Cowie, J. G.; Lowder, L. J.; Culbertson, R. J.; Kosik, W. E.; Brown, R.

    1991-07-01

    High strength steels suffer from a high susceptibility to hydrogen embrittlement in a corrosive atmosphere, a factor which limits their usefulness. A good catalyst, such as platinum, present on the surface of the steel may lead to a low value of hydrogen overvoltage, thereby reducing the accumulation and subsequent diffusion of atomic hydrogen into the metal. In the present study, platinum was implanted into high strength electroslag remelted (ESR) 4340 steel specimens to a dose of 10 16 atoms/cm 2. Both Pt-implanted and unimplanted specimens were rate charged with hydrogen. The relative concentration of diffusible hydrogen was determined using an electrochemical measurement device known as a Barnacle Electrode. The specimens implanted with platinum exhibited less diffusible hydrogen than the unimplanted steel. Slow strain rate notched-tensile tests, in an aqueous solution of 3.5 wt.% NaCI, were performed in order to evaluate the effect of hydrogen on strength and ductility. The Pt-implanted specimens were able to sustain significantly higher loads before fracture than their unimplanted counterparts. Scanning electron microscopy (SEM) verified the presence of brittle cracking typical of hydrogen embrittlement type failures. Degradation of mechanical properties due to hydrogen embrittlement was thus significantly reduced. This suggested that both the electrochemical and catalytic properties of the Pt-implanted surface were responsible for the improvement in properties.

  15. Hydrogen Gas Driven Permeation through Asymmetric Membranes in Diffusion Limited and Surface Limited Regimes: Interplay between Analytical and Numerical Calculations

    NASA Astrophysics Data System (ADS)

    Pisarev, A.; Bacherov, A.

    Validity of analytical solutions for the gas driven permeation of H in the Diffusion Limited Regime (DLR) and Surface Limited Regime (SLR) is analyzed by comparison with numerical calculations. Margins for analytical formulas have been established in terms of the permeation factors W = KLSp1/2/D on the inlet (W1) and outlet (W2) sides of the membrane. The DLR analytical formula gives perfect result (error less than 0.5%) if both W2 ≥ 104 and W1 ≥ 102 conditions are satisfied simultaneously. Decrease of both margins by two orders of magnitude leads to 10% error. The SLR analytical formula gives a very good result (error less than 0.5%) if both W1 ≤ 10-2 and W2W1 ≤ 10-3 conditions are satisfied simultaneously. Increase of both margins by two orders of magnitude leads to 10% error. It has been shown that the inlet side and the outlet side conditions are different in their importance for validity of the analytical formulas. In DLR the condition is softer on the inlet side and more rigid on the outlet side, while in SLR the condition is softer on the outlet side and more rigid on the inlet side.

  16. The modeling of gas phase permeation through iron and nickel membranes

    NASA Technical Reports Server (NTRS)

    Kuhn, David K.; Shanabarger, Mickey R.

    1989-01-01

    The gas phase permeation of hydrogen through metal membranes encompasses many kinetic processes. This paper reviews a permeation model which incorporates second order gas-surface reaction kinetics with simple bulk diffusion. The model is used to investigate the effect of this particular surface reaction of steady-state permeation. The dependence of the steady-state permeation flux on temperature, pressure, and thickness of the membrane has been calculated. The model predicts that the bulk controlled steady-state flux will change to a surface limited steady-state flux as either the temperature or thickness of the membrane is reduced. Finally, using independently derived parameters, the model is compared with permeation measurements on iron and nickel membranes.

  17. The modeling of gas phase permeation through iron and nickel membranes

    NASA Technical Reports Server (NTRS)

    Kuhn, David K.; Shanabarger, Mickey R.

    1989-01-01

    The gas phase permeation of hydrogen through metal membranes encompasses many kinetic processes. This paper reviews a permeation model which incorporates second order gas-surface reaction kinetics with simple bulk diffusion. The model is used to investigate the effect of this particular surface reaction of steady-state permeation. The dependence of the steady-state permeation flux on temperature, pressure, and thickness of the membrane has been calculated. The model predicts that the bulk controlled steady-state flux will change to a surface limited steady-state flux as either the temperature or thickness of the membrane is reduced. Finally, using independently derived parameters, the model is compared with permeation measurements on iron and nickel membranes.

  18. Pathway of Fermentative Hydrogen Production by Sulfate-reducing Bacteria

    SciTech Connect

    Wall, Judy D.

    2015-02-16

    Biofuels are a promising source of sustainable energy. Such biofuels are intermediate products of microbial metabolism of renewable substrates, in particular, plant biomass. Not only are alcohols and solvents produced in this degradative process but energy-rich hydrogen as well. Non photosynthetic microbial hydrogen generation from compounds other than sugars has not been fully explored. We propose to examine the capacity of the abundant soil anaerobes, sulfate-reducing bacteria, for hydrogen generation from organic acids. These apparently simple pathways have yet to be clearly established. Information obtained may facilitate the exploitation of other microbes not yet readily examined by molecular tools. Identification of the flexibility of the metabolic processes to channel reductant to hydrogen will be useful in consideration of practical applications. Because the tools for genetic and molecular manipulation of sulfate-reducing bacteria of the genus Desulfovibrio are developed, our efforts will focus on two strains, D. vulgaris Hildenborough and Desulfovibrio G20.Therefore total metabolism, flux through the pathways, and regulation are likely to be limiting factors which we can elucidate in the following experiments.

  19. Container and method for absorbing and reducing hydrogen concentration

    DOEpatents

    Wicks, George G.; Lee, Myung W.; Heung, Leung K.

    2001-01-01

    A method for absorbing hydrogen from an enclosed environment comprising providing a vessel; providing a hydrogen storage composition in communication with a vessel, the hydrogen storage composition further comprising a matrix defining a pore size which permits the passage of hydrogen gas while blocking the passage of gaseous poisons; placing a material within the vessel, the material evolving hydrogen gas; sealing the vessel; and absorbing the hydrogen gas released into the vessel by the hydrogen storage composition. A container for absorbing evolved hydrogen gas comprising: a vessel having an interior and adapted for receiving materials which release hydrogen gas; a hydrogen absorbing composition in communication with the interior, the composition defining a matrix surrounding a hydrogen absorber, the matrix permitting the passage of hydrogen gas while excluding gaseous poisons; wherein, when the vessel is sealed, hydrogen gas, which is released into the vessel interior, is absorbed by the hydrogen absorbing composition.

  20. Modeling of multicomponent countercurrent gas permeators

    SciTech Connect

    Kovvali, A.S.; Admassu, W. . Dept. of Chemical Engineering); Vemury, S. . Dept. of Chemical Engineering)

    1994-04-01

    Modeling of gas permeation in hollow-fiber or spiral wound modules necessitates considering the effect of permeate pressure variation along the module length which could have a significant effect on the prediction of the exit compositions and membrane area requirements depending on the membrane characteristics and module geometry. The transport equations governing the permeator performance are a set of coupled nonlinear differential equations. The complexity of the solution procedure for these equations increases with the number of components in the mixture and consideration of pressure variation. Thus, there is a need for simplified solution methodologies which could reduce the computational efforts. This paper presents a solution methodology to solve the multicomponent gas permeator transport equations in a countercurrent flow pattern, taking the permeate pressure variation into consideration. The present method yields analytical expressions for flow rates, permeate pressure, membrane area, and compositions along the length of the permeator.

  1. Gas-driven permeation of deuterium through tungsten and tungsten alloys

    DOE PAGES

    Buchenauer, Dean A.; Karnesky, Richard A.; Fang, Zhigang Zak; ...

    2016-03-25

    Here, to address the transport and trapping of hydrogen isotopes, several permeation experiments are being pursued at both Sandia National Laboratories (deuterium gas-driven permeation) and Idaho National Laboratories (tritium gas- and plasma-driven tritium permeation). These experiments are in part a collaboration between the US and Japan to study the performance of tungsten at divertor relevant temperatures (PHENIX). Here we report on the development of a high temperature (≤1150 °C) gas-driven permeation cell and initial measurements of deuterium permeation in several types of tungsten: high purity tungsten foil, ITER-grade tungsten (grains oriented through the membrane), and dispersoid-strengthened ultra-fine grain (UFG) tungstenmore » being developed in the US. Experiments were performed at 500–1000 °C and 0.1–1.0 atm D2 pressure. Permeation through ITER-grade tungsten was similar to earlier W experiments by Frauenfelder (1968–69) and Zaharakov (1973). Data from the UFG alloy indicates marginally higher permeability (< 10×) at lower temperatures, but the permeability converges to that of the ITER tungsten at 1000 °C. The permeation cell uses only ceramic and graphite materials in the hot zone to reduce the possibility for oxidation of the sample membrane. Sealing pressure is applied externally, thereby allowing for elevation of the temperature for brittle membranes above the ductile-to-brittle transition temperature.« less

  2. Gas-driven permeation of deuterium through tungsten and tungsten alloys

    SciTech Connect

    Buchenauer, Dean A.; Karnesky, Richard A.; Fang, Zhigang Zak; Ren, Chai; Oya, Yasuhisa; Otsuka, Teppei; Yamauchi, Yuji; Whaley, Josh A.

    2016-03-25

    Here, to address the transport and trapping of hydrogen isotopes, several permeation experiments are being pursued at both Sandia National Laboratories (deuterium gas-driven permeation) and Idaho National Laboratories (tritium gas- and plasma-driven tritium permeation). These experiments are in part a collaboration between the US and Japan to study the performance of tungsten at divertor relevant temperatures (PHENIX). Here we report on the development of a high temperature (≤1150 °C) gas-driven permeation cell and initial measurements of deuterium permeation in several types of tungsten: high purity tungsten foil, ITER-grade tungsten (grains oriented through the membrane), and dispersoid-strengthened ultra-fine grain (UFG) tungsten being developed in the US. Experiments were performed at 500–1000 °C and 0.1–1.0 atm D2 pressure. Permeation through ITER-grade tungsten was similar to earlier W experiments by Frauenfelder (1968–69) and Zaharakov (1973). Data from the UFG alloy indicates marginally higher permeability (< 10×) at lower temperatures, but the permeability converges to that of the ITER tungsten at 1000 °C. The permeation cell uses only ceramic and graphite materials in the hot zone to reduce the possibility for oxidation of the sample membrane. Sealing pressure is applied externally, thereby allowing for elevation of the temperature for brittle membranes above the ductile-to-brittle transition temperature.

  3. Deuterium permeation and retention in copper alloys

    NASA Astrophysics Data System (ADS)

    Zhou, Hai-Shan; Liu, Hao-Dong; An, Zhong-Qing; Li, Bo; Xu, Yu-Ping; Liu, Feng; Zhao, Ming-Zhong; Xu, Qian; Ding, Fang; Luo, Guang-Nan

    2017-09-01

    For plasma-facing components of ITER, tritium (T) transport into the coolant by permeation through CuCrZr heat sink will raise T safety and recovery issues. In the present work, hydrogen isotope permeation and retention in copper (Cu) materials have been experimentally studied. Deuterium (D) gas-driven permeation (GDP) experiments have been performed to evaluate the permeability and diffusion coefficients. Meanwhile, D retention properties in these Cu materials are compared by gas absorption and subsequent thermal desorption spectroscopy (TDS). Finally, low energy (several eV) plasma-driven permeation (PDP) of D through Cu and its alloys has been demonstrated. Significant enhancement in D permeation flux compared with that of GDP has been measured.

  4. Investigation of Laser Peening Effects on Hydrogen Charged Stainless Steels

    SciTech Connect

    Zaleski, Tania M.

    2008-10-30

    Hydrogen-rich environments such as fuel cell reactors can exhibit damage caused by hydrogen permeation in the form of corrosion cracking by lowering tensile strength and decreasing material ductility. Coatings and liners have been investigated, but there were few shot-peening or laser peening studies referenced in the literature with respect to preventing hydrogen embrittlement. The surface compressive residual stress induced by laser peening had shown success in preventing stress corrosion cracking (SCC) for stainless steels in power plants. The question arose if the residual stresses induced by laser peening could delay the effects of hydrogen in a material. This study investigated the effect of laser peening on hydrogen penetration into metal alloys. Three areas were studied: laser peening, hydrogenation, and hydrogen detection. This study demonstrated that laser peening does not reduce the hydrogen permeation into a stainless steel surface nor does it prevent hydrogen embrittlement. The effect of laser peening to reduce hydrogen-assisted fatigue was unclear.

  5. Reduced permeation of /sup 14/C-sucrose, /sup 3/H-mannitol and /sup 3/H-inulin across blood-brain barrier in nephrectomized rats

    SciTech Connect

    Preston, E.; Haas, N.; Allen, M.

    1984-01-01

    Experiments were carried out to determine if changes in the concentration-time profile of a blood-borne radiotracer such as /sup 14/C-sucrose would spuriously alter measurements of its permeation across the blood-brain barrier (permeability-area product, PA) based on a 2-compartment (plasma/brain) simple diffusion model. Anesthetized rats which were bilaterally nephrectomized and given a standard intravenous bolus injection of /sup 14/C-sucrose, /sup 3/H-mannitol or /sup 3/H-inulin exhibited an elevated plasma tracer concentration compared to control animals. However, tracer concentration measured in brain parenchyma after 30 min was not proportionally elevated, and PA calculated from the ratio, parenchymal tracer concentration: plasma concentration-time integral, was significantly reduced below control values. In control rats, distortion and elevation of the plasma /sup 14/C-sucrose profile by continuous intravenous infusion did not result in lowered PA values. This suggested that the lowering of PA by nephrectomy reflected reduced cerebrovascular permeability or area or other cerebral influence rather than a deficiency in the 2-compartment model for PA measurement.

  6. Molecular mechanism of plasma sterilization in solution with the reduced pH method: importance of permeation of HOO radicals into the cell membrane

    NASA Astrophysics Data System (ADS)

    Takai, Eisuke; Ikawa, Satoshi; Kitano, Katsuhisa; Kuwabara, Junpei; Shiraki, Kentaro

    2013-07-01

    Sterilization of certain infected areas of the human body surface is necessary for dental and surgical therapies. Because the blood is filled with body fluid, sterilization in solution is essential. In vitro solution sterilization has been successively carried out using a combination of low-temperature atmospheric-pressure plasma and the reduced pH method, where the solution is sufficiently acidic. Here, we show the molecular mechanism of such plasma sterilization in solution based on microbiology. Three kinds of bacteria were inactivated by plasma treatment under various pH conditions. The theoretical and experimental models revealed that the sterilization was characterized by the concentration of hydroperoxy radicals (HOO·), which were dependent on the pH value. Bacterial inactivation rates were proportional to the HOO· concentrations calculated by the theoretical model. To evaluate the penetration of radicals into the cell membrane, a bacterial model using dye-included micelles was used. Decolouration rates of the model were also in proportion with the calculated HOO· concentrations. These results indicate that the key species for plasma sterilization were hydroperoxy radicals. More importantly, the high permeation of hydroperoxy radicals into the cell membrane plays a key role for efficient bactericidal inactivation using the reduced pH method.

  7. Hydrogen transport and hydrogen embrittlement in stainless steels

    SciTech Connect

    Perng, T.P.

    1985-01-01

    In order to understand the kinetics of gaseous hydrogen-induced slow crack growth (SCG) in metastable austenitic stainless steels, hydrogen permeation and/or cracking velocity were measured and compared for three types of stainless steels. These included austenitic, ferritic, and duplex (..gamma../..cap alpha..) alloys. Deformation in AISI 301 resulted in various amounts of ..cap alpha..' martensite, which enhanced the effective hydrogen diffusivity and permeability. No phase transformation was observed in deformed AISI 310. The effective hydrogen diffusivity in this alloy was slightly reduced after plastic deformation, presumably by dislocation trapping. In either the dynamic or static tensile test, AISI 301 exhibited the greatest hydrogen embrittlement and therefore the highest SCG velocity among all the alloys tested in this work. The SCG velocity was believed to be controlled by the rate of accumulation of hydrogen in the embrittlement region ahead of the crack tip and therefore could be explained with the hydrogen transport parameters measured from the permeation experiments. The relatively high SCG velocity in AISI 301 was probably due to the fast transport of hydrogen through the primarily stress-induced ..cap alpha..' phase around the crack. No SCG was observed in AISI 310. The presence of H/sub 2/O vapor was found to reduce both the hydrogen permeation and SCG velocity.

  8. Permeation barrier coating and plasma sterilization of PET bottles and foils

    NASA Astrophysics Data System (ADS)

    Steves, Simon; Deilmann, Michael; Bibinov, Nikita; Awakowicz, Peter

    2009-10-01

    Modern packaging materials such as polyethylene terephthalate (PET) offer various advantages over glass or metal containers. Beside this they only offer poor barrier properties against gas permeation. Therefore, the shelf-live of packaged food is reduced. Additionally, common sterilization methods like heat, hydrogen peroxide or peracetic acid may not be applicable due to reduced heat or chemical resistance of the plastic packaging material. For the plasma sterilization and permeation barrier coating of PET bottles and foils, a microwave driven low pressure plasma reactor is developed based on a modified Plasmaline antenna. The dependencies of important plasma parameters, such as gas mixture, process pressure, power and pulse conditions on oxygen permeation through packaging foil are investigated. A residual permeation as low as J = 1.0 ±0.3 cm^3m-2day-1bar-1 for 60 nm thick silicon oxide (SiOx) coated PET foils is achieved. To discuss this residual permeation, coating defects are visualized by capacitively coupled atomic oxygen plasma etching of coated substrate. A defect density of 3000 mm-2 is revealed responsible for permeation. For plasma sterilization, optimized plasma parameters based on fundamental research of plasma sterilization mechanisms permit short treatment times of a few seconds.

  9. Kinetics of a hydrogen-oxidizing, perchlorate-reducing bacterium.

    PubMed

    Nerenberg, Robert; Kawagoshi, Yasunori; Rittmann, Bruce E

    2006-10-01

    This paper provides the first kinetic parameters for a hydrogen-oxidizing perchlorate-reducing bacterium (PCRB), Dechloromonas sp. PC1. The qmax for perchlorate and chlorate were 3.1 and 6.3 mg/mgDW-day, respectively. The K for perchlorate was 0.14 mg/L, an order of magnitude lower than reported for other PCRB. The yields Y on perchlorate and chlorate were 0.23 and 0.22 mgDW/mg, respectively, and the decay constant b was 0.055/day. The growth-threshold, Smin, for perchlorate was 14 microg/L, suggesting that perchlorate cannot be reduced below this level when perchlorate is the primary electron-acceptor, although it may be possible when oxygen or nitrate is the primary acceptor. Chlorate accumulated at maximum concentrations of 0.6-4.3 mg/L in batch tests with initial perchlorate concentrations ranging from 100 to 600 mg/L. Furthermore, 50 mg/L chlorate inhibited perchlorate reduction with perchlorate at 100 mg/L. This is the first report of chlorate accumulation and inhibition for a pure culture of PCRB. These Chlorate effects are consistent with competitive inhibition between perchlorate and chlorate for the (per)chlorate reductase enzyme.

  10. Process investigations of extreme thermophilic fermentations for hydrogen production: effect of bubble induction and reduced pressure.

    PubMed

    Sonnleitner, Andrea; Peintner, Christian; Wukovits, Walter; Friedl, Anton; Schnitzhofer, Wolfgang

    2012-08-01

    Hydrogen production via thermophilic dark fermentation is considered a sustainable way to produce renewable hydrogen. For industrial scale an optimisation of hydrogen production is of highest importance. The aim of this work was to evaluate induced bubble formation and applying reduced pressure as methods of removing produced hydrogen instead of external gas stripping. Evaluation was carried out in a continuously stirred tank reactor using the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus. The addition of a bubble formation inductor was able to maintain the fermentation, but only at low hydrogen production rates and yields. Applying reduced pressure at a level of 305 mbar, nitrogen stripping could be omitted and hydrogen yields of around 72% of the theoretical maximum were achieved. It was proven, that application of reduced pressure is a promising alternative to inert gas stripping to obtain high hydrogen productivities and yields for thermophilic dark fermentations.

  11. Electrode formulation to reduce weld metal hydrogen and porosity

    SciTech Connect

    Liu, S.; Olson, D.L.; Ibarra, S.

    1994-12-31

    Residual weld metal hydrogen is a major concern in high strength steel welding, especially when the weld is performed under high cooling rate conditions. In the case of underwater wet welding, weld metal porosity is also of importance because of the water environment. The control of both problems can be achieved by means of pyrochemical reactions in the weld pool. The hydrogen-oxygen reaction and carbon-oxygen reaction are fundamental in the control of residual hydrogen in the weld metal and the amount of gas pores entrapped. A simple model was proposed to estimate weld metal residual hydrogen content by monitoring the weld pool deoxidation reactions. Potent deoxidizers such as aluminum will first react with oxygen in the liquid weld pool, followed by other elements present such as silicon and manganese. Carbon and hydrogen will be the last ones to react with oxygen prior to the iron atoms. The Ellingham-Richardson diagram frequently applied in describing steel and iron making processes was used in the modeling. Following the sequence of deoxidation, the chemical make-up of the gas pores and the amount of each chemical species in the pores could be estimated. Carbon monoxide and hydrogen were determined to be the major components in the weld pores. To minimize the amount of weld metal porosity and residual hydrogen content, specially designed consumables that will control the oxygen potential of the weld pool must be developed.

  12. Silicon oxide permeation barrier coating of PET bottles and foils

    NASA Astrophysics Data System (ADS)

    Steves, Simon; Deilmann, Michael; Awakowicz, Peter

    2009-10-01

    Modern packaging materials such as polyethylene terephthalate (PET) have displaced established materials in many areas of food and beverage packaging. Plastic packing materials offer are various advantages concerning production and handling. PET bottles for instance are non-breakable and lightweight compared to glass and metal containers. However, PET offers poor barrier properties against gas permeation. Therefore, the shelf live of packaged food is reduced. Permeation of gases can be reduced by depositing transparent plasma polymerized silicon oxide (SiOx) barrier coatings. A microwave (2.45 GHz) driven low pressure plasma reactor is developed based on a modified Plasmaline antenna to treat PET foils or bottles. To increase the barrier properties of the coatings furthermore a RF substrate bias (13.56 MHz) is applied. The composition of the coatings is analyzed by means of Fourier transform infrared (FTIR) spectroscopy regarding carbon and hydrogen content. Influence of gas phase composition and substrate bias on chemical composition of the coatings is discussed. A strong relation between barrier properties and film composition is found: good oxygen barriers are observed as carbon content is reduced and films become quartz-like. Regarding oxygen permeation a barrier improvement factor (BIF) of 70 is achieved.

  13. Probiotic Pre-treatment Reduces Gliclazide Permeation (ex vivo) in Healthy Rats but Increases It in Diabetic Rats to the Level Seen in Untreated Healthy Rats.

    PubMed

    Al-Salami, Hani; Butt, Grant; Tucker, Ian; Skrbic, Ranko; Golocorbin-Kon, Svetlana; Mikov, Momir

    2008-07-01

    AIM: To investigate the influence of probiotic pre-treatment on the permeation of the antidiabetic drug gliclazide in healthy and diabetic rats. METHODS: Wistar rats (age 2-3 months, weight 350 +/- 50 g) were randomly allocated into one of 4 groups (N = 16 each group): healthy control, healthy probiotic, diabetic control, and diabetic probiotic. Probiotics (75 mg/kg, equal quantities of Lactobacillus acidophilus, Bifidobacterium lactis, and Lactobacillus rhamnosus) were administered twice a day for three days to the appropriate groups after diabetes had been induced with alloxan i.v. 30 mg/kg. Rats were sacrificed, ileal tissues mounted in Ussing chambers and gliclazide (200 microg/mL) was administered for the measurement of the mucosal to serosal absorption Jss((MtoS)) and serosal to mucosal secretion Jss((StoM)) of gliclazide. RESULTS: Treatment of healthy rats with probiotics reduced Jss((MtoS)) of gliclazide from 1.2 +/- 0.3 to 0.3 +/- 0.1 microg/min/cm(2) (P < 0.01) and increased Jss((StoM))from 0.6 +/- 0.1 to 1.4 +/- 0.3 (P < 0.01) resulting in net secretion while, in diabetic tissues, treatment with probiotics increased both Jss((MtoS)) and Jss((StoM))fluxes of gliclazide to the comparable levels of healthy tissues resulting in net absorption. DISCUSSION: In healthy rats, the reduction in Jss((MtoS)) after probiotics administration could be explained by the production of bacterial metabolites that upregulate the mucosal efflux drug transporters Mrp2 that control gliclazide transport. In diabetic rats, the restored fluxes of gliclazide after probiotic treatment, suggests the normalization of the functionality of the drug transporters resulting in a net absorption. CONCLUSION: Probiotics may alter gliclazide transport across rat ileal tissue studied ex vivo.

  14. Effect of hydrogen bond formation/replacement on solubility characteristics, gastric permeation and pharmacokinetics of curcumin by application of powder solution technology.

    PubMed

    Sharma, Vijay; Pathak, Kamla

    2016-11-01

    The present research aimed to improve the dissolution rate and bioavailability of curcumin using the potential of liquisolid technology. Twelve drug-loaded liquisolid systems (LS-1 to LS-12) were prepared using different vehicles (PEG 200, PEG 400 and Tween 80) and curcumin concentrations in vehicle (40%, 50%, 60% and 70%, w/w). The carrier [microcrystalline cellulose (MCC) PH102] to coat (Aerosil(®)) ratio was 20 in all formulations. The systems were screened for pre-compression properties before being compressed to liquisolid tablets (LT-1 to LT-12). Post compression tests and in vitro dissolution of LTs were conducted and the results compared with those obtained for a directly compressed tablet (DCT) made of curcumin, MCC PH102 and Aerosil(®). LTs exhibited higher cumulative drug release (CDR) than the DCT and the optimum formulation, LT-9 (made using Tween 80), was studied by powder XRD, DSC, SEM and FTIR. Ex-vivo permeation of curcumin from LT-9 through goat gastrointestinal mucosa was significantly (P<0.05) enhanced and its oral bioavailability was increased 18.6-fold in New Zealand rabbits. In vitro cytotoxicity (IC50) of LT-9 towards NCL 87 cancer cells was 40.2 µmol/L substantiating its anticancer efficacy. Accelerated stability studies revealed insignificant effects of temperature and humidity on LT-9. In summary, solubility enhancement of curcumin in LTs produced significant improvements in its permeation and bioavailability.

  15. High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing.

    PubMed

    Cheng, Shaoan; Logan, Bruce E

    2011-02-01

    Practical applications of microbial electrolysis cells (MECs) require high hydrogen production rates and a compact reactor. These goals can be achieved by reducing electrode spacing but high surface area anodes are needed. The brush anode MEC with electrode spacing of 2 cm had a higher hydrogen production rate and energy efficiency than an MEC with a flat cathode and a 1-cm electrode spacing. The maximum hydrogen production rate with a 2 cm electrode spacing was 17.8 m(3)/m(3)d at an applied voltage of E(ap)=1 V. Reducing electrode spacing increased hydrogen production rates at the lower applied voltages, but not at the higher (>0.6 V) applied voltages. These results demonstrate that reducing electrode spacing can increase hydrogen production rate, but that the closest electrode spacing do not necessarily produce the highest possible hydrogen production rates.

  16. Polysulfide reduction using sulfate-reducing bacteria in a photocatalytic hydrogen generation system.

    PubMed

    Takahashi, Yui; Suto, Koichi; Inoue, Chihiro; Chida, Tadashi

    2008-09-01

    A hydrogen generation process using photocatalytic reactions has been proposed. In this process, hydrogen sulfide is a source of hydrogen and is turned into polysulfide. In order to establish the cyclic operation of a photocatalytic hydrogen generation system, it is necessary to convert polysulfide back into hydrogen sulfide with a small energy input. This paper proposes the use of sulfate-reducing bacteria (SRB) for the regeneration of hydrogen sulfide. Batch cultivation of natural source SRB samples were carried out using a culture medium containing polysulfide as the only sulfur compound source. SRB produced hydrogen sulfide from several kinds of polysulfide sources, including a photocatalytic hydrogen generation-produces solution. Production lag phase and production rate of hydrogen sulfide were affected by initial polysulfide concentration. SRB activity was inhibited at high initial polysulfide concentrations. SRB enrichment culture T2, exhibited the highest hydrogen sulfide production rate, and was able to utilize several kinds of organic matter as the electron donor. The results suggest the possibility of using large biomass sources, such as sewage sludge and the raw garbage in a hydrogen generation system. We developed speculative estimates that an SRB based hydrogen generation system is feasible.

  17. Applications of light-induced electron-transfer and hydrogen-abstraction processes: photoelectrochemical production of hydrogen from reducing radicals

    SciTech Connect

    Chandrasekaran, K.; Whitten, D.G.

    1980-07-16

    A study of several photoprocesses which generate reducing radicals in similar photoelectrochemical cells was reported. Coupling of a light-induced reaction to produce a photocurrent concurrent with hydrogen generation in a second compartment can occur for a number of electron transfers and hydrogen abstractions in what appears to be a fairly general process. Irradiation of the RuL/sub 3//sup +2//Et/sub 3/N: photoanode compartment leads to production of a photocurrent together with generation of hydrogen at the cathode. A rather different type of reaction that also results in formation of two reducing radicals as primary photoproducts if the photoreduction of ketones and H-heteroaromatics by alcohols and other hydrogen atom donors. Irradiation of benzophenone/2-propanol/MV/sup +2/ solutions in the photoanode compartment (intensity 1.4 x 10/sup -8/ einstein/s) leads to a buildup of moderate levels of MV/sup +/ and to a steady photocurrent of 320 ..mu..A. The MV/sup +/ is oxidized at the anode of the photolyzed compartment with concomitant reduction of H/sup +/ in the cathode compartment. There was no decrease in benzophenone concentration over moderate periods of irradiation, and a steady production of hydrogen in the cathode compartment was observed. The photocurrent produced was linear with the square of absorbed light intensity. The quantum efficiency at the above-indicated intensity is 22%; quantitative analysis of the hydrogen produced gives good agreement with this value. 1 figure, 1 table. (DP)

  18. Management of Leaks in Hydrogen Production, Delivery, and Storage Systems

    SciTech Connect

    Rawls, G

    2006-04-27

    A systematic approach to manage hydrogen leakage from components is presented. Methods to evaluate the quantity of hydrogen leakage and permeation from a system are provided by calculation and testing sensitivities. The following technology components of a leak management program are described: (1) Methods to evaluate hydrogen gas loss through leaks; (2) Methods to calculate opening areas of crack like defects; (3) Permeation of hydrogen through metallic piping; (4) Code requirements for acceptable flammability limits; (5) Methods to detect flammable gas; (6) Requirements for adequate ventilation in the vicinity of the hydrogen system; (7) Methods to calculate dilution air requirements for flammable gas mixtures; and (8) Concepts for reduced leakage component selection and permeation barriers.

  19. Permeation through graphene ripples

    NASA Astrophysics Data System (ADS)

    Liang, Tao; He, Guangyu; Wu, Xu; Ren, Jindong; Guo, Hongxuan; Kong, Yuhan; Iwai, Hideo; Fujita, Daisuke; Gao, Hongjun; Guo, Haiming; Liu, Yingchun; Xu, Mingsheng

    2017-06-01

    Real graphene sheets show limited anti-permeation performance deviating from the ideally flat honeycomb carbon lattice that is impermeable to gases. Ripples in graphene are prevalent and they could significantly influence carrier transport. However, little attention has been paid to the role of ripples in the permeation properties of graphene. Here, we report that gases can permeate through graphene ripples at room temperature. The feasibility of gas permeation through graphene ripples is determined by detecting the initial oxidation sites of Cu surface covered with isolated graphene domain. Nudged elastic band (NEB) calculations demonstrate that the oxygen atom permeation occurs via the formation of C-O-C bond, in which process the energy barrier through the rippled graphene lattice is much smaller than that through a flat graphene lattice, rendering permeation through ripples more favorable. Combining with the recent advances in atoms intercalation between graphene and metal substrate for transfer-free and electrically insulated graphene, this discovery provides new perspectives regarding graphene’s limited anti-permeation performance and evokes for rational design of graphene-based encapsulation for barrier and selective gas separation applications through ripple engineering.

  20. Hydrogen Embrittlement of Metals: Atomic hydrogen from a variety of sources reduces the ductility of many metals.

    PubMed

    Rogers, H C

    1968-03-08

    Hydrogen interacts with many metals to reduce their ductility (2) and frequently their strength also. It enters metals in the atomic form, diffusing very rapidly even at normal temperatures. During melting and fabrication, as well as during use, there are various ways in which metals come in contact with hydrogen and absorb it. The absorbed hydrogen may react irreversibly with oxides or carbides in some metals to produce a permanently degraded structure. It may also recombine at internal surfaces of defects of various types to form gaseous molecular hydrogen under pressures sufficiently high to form metal blisters when the recombination occurs near the outer surface. In other metals, brittle hydrides that lower the mechanical properties of the metal are formed. Another type of embrittlement is reversible, depending on the presence of hydrogen in the metal lattice during deformation for its occurrence. Under some conditions the failure may be delayed for long periods. A number of different mechanisms have been postulated to explain reversible embrittlement. According to some theories hydrogen interferes with the processes of plastic deformation in metals, while according to others it enhances the tendency for cracking.

  1. Validation of a reduced-order jet model for subsonic and underexpanded hydrogen jets

    SciTech Connect

    Li, Xuefang; Hecht, Ethan S.; Christopher, David M.

    2016-01-01

    Much effort has been made to model hydrogen releases from leaks during potential failures of hydrogen storage systems. A reduced-order jet model can be used to quickly characterize these flows, with low computational cost. Notional nozzle models are often used to avoid modeling the complex shock structures produced by the underexpanded jets by determining an “effective” source to produce the observed downstream trends. In our work, the mean hydrogen concentration fields were measured in a series of subsonic and underexpanded jets using a planar laser Rayleigh scattering system. Furthermore, we compared the experimental data to a reduced order jet model for subsonic flows and a notional nozzle model coupled to the jet model for underexpanded jets. The values of some key model parameters were determined by comparisons with the experimental data. Finally, the coupled model was also validated against hydrogen concentrations measurements for 100 and 200 bar hydrogen jets with the predictions agreeing well with data in the literature.

  2. Development of Tritium Permeation Analysis Code (TPAC)

    SciTech Connect

    Eung S. Kim; Chang H. Oh; Mike Patterson

    2010-10-01

    Idaho National Laboratory developed the Tritium Permeation Analysis Code (TPAC) for tritium permeation in the Very High Temperature Gas Cooled Reactor (VHTR). All the component models in the VHTR were developed and were embedded into the MATHLAB SIMULINK package with a Graphic User Interface. The governing equations of the nuclear ternary reaction and thermal neutron capture reactions from impurities in helium and graphite core, reflector, and control rods were implemented. The TPAC code was verified using analytical solutions for the tritium birth rate from the ternary fission, the birth rate from 3He, and the birth rate from 10B. This paper also provides comparisons of the TPAC with the existing other codes. A VHTR reference design was selected for tritium permeation study from the reference design to the nuclear-assisted hydrogen production plant and some sensitivity study results are presented based on the HTGR outlet temperature of 750 degrees C.

  3. Hydrogen gas reduces hyperoxic lung injury via the Nrf2 pathway in vivo

    PubMed Central

    Kawamura, Tomohiro; Wakabayashi, Nobunao; Shigemura, Norihisa; Huang, Chien-Sheng; Masutani, Kosuke; Tanaka, Yugo; Noda, Kentaro; Peng, Ximei; Takahashi, Toru; Billiar, Timothy R.; Okumura, Meinoshin; Toyoda, Yoshiya; Kensler, Thomas W.

    2013-01-01

    Hyperoxic lung injury is a major concern in critically ill patients who receive high concentrations of oxygen to treat lung diseases. Successful abrogation of hyperoxic lung injury would have a huge impact on respiratory and critical care medicine. Hydrogen can be administered as a therapeutic medical gas. We recently demonstrated that inhaled hydrogen reduced transplant-induced lung injury and induced heme oxygenase (HO)-1. To determine whether hydrogen could reduce hyperoxic lung injury and investigate the underlying mechanisms, we randomly assigned rats to four experimental groups and administered the following gas mixtures for 60 h: 98% oxygen (hyperoxia), 2% nitrogen; 98% oxygen (hyperoxia), 2% hydrogen; 98% balanced air (normoxia), 2% nitrogen; and 98% balanced air (normoxia), 2% hydrogen. We examined lung function by blood gas analysis, extent of lung injury, and expression of HO-1. We also investigated the role of NF-E2-related factor (Nrf) 2, which regulates HO-1 expression, by examining the expression of Nrf2-dependent genes and the ability of hydrogen to reduce hyperoxic lung injury in Nrf2-deficient mice. Hydrogen treatment during exposure to hyperoxia significantly improved blood oxygenation, reduced inflammatory events, and induced HO-1 expression. Hydrogen did not mitigate hyperoxic lung injury or induce HO-1 in Nrf2-deficient mice. These findings indicate that hydrogen gas can ameliorate hyperoxic lung injury through induction of Nrf2-dependent genes, such as HO-1. The findings suggest a potentially novel and applicable solution to hyperoxic lung injury and provide new insight into the molecular mechanisms and actions of hydrogen. PMID:23475767

  4. REDUCING ULTRA-CLEAN TRANSPORTATION FUEL COSTS WITH HYMELT HYDROGEN

    SciTech Connect

    Donald P. Malone; William R. Renner

    2003-07-31

    This report describes activities for the third quarter of work performed under this agreement. Atmospheric testing was conducted as scheduled on June 5 through June 13, 2003. The test results were encouraging, however, the rate of carbon dissolution was below expectations. Additional atmospheric testing is scheduled for the first week of September 2003. Phase I of the work to be done under this agreement consists of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product stream. In addition smaller quantities of petroleum coke and a low value refinery stream will be gasified. DOE and EnviRes will evaluate the results of this work to determine the feasibility and desirability of proceeding to Phase II of the work to be done under this agreement, which is gasification of the above-mentioned feeds at a gasifier pressure of approximately 5 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations.

  5. In Situ Measurement of Tritium Permeation Through Stainless Steel

    SciTech Connect

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin; Longhurst, Glen

    2013-06-01

    The TMIST-2 irradiation experiment was conducted in the Advanced Test Reactor at Idaho National Laboratory to evaluate tritium permeation through Type 316 stainless steel (316 SS). The interior of a 316 SS seamless tube specimen was exposed to a 4He carrier gas mixed with a specified quantity of tritium (T2) to yield partial pressures of 0.1, 5, and 50 Pa at 292° and 330°C. In-situ tritium permeation measurements were made by passing a He-Ne sweep gas over the outer surface of the specimen to carry the permeated tritium to a bubbler column for liquid scintillation counting. An irradiation enhancement factor (IEF) was determined by comparing in-situ permeation data with a correlation for ex-reactor hydrogen permeation through austenitic stainless steel developed from literature data and reported by Le Claire. Nominal values for the IEF ranged between 3 and 5 for 316 SS. In-situ permeation data were also used to derive an in-reactor permeation correlation as a function of temperature and pressure. In addition, the triton recoil contribution to tritium permeation, which results from the transmutation of 3He to T, was also evaluated by introducing a 4He carrier gas mixed with 3He at a partial pressure of 1013 Pa at 330°C. Less than 3% of the tritium resulting from 3He transmutation contributed to tritium permeation.

  6. IN-SITU MEASUREMENT OF TRITIUM PERMEATION THROUGH STAINLESS STEEL

    SciTech Connect

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin; Longhurst, Glen R.

    2013-06-01

    The TMIST-2 irradiation experiment was conducted in the Advanced Test Reactor at Idaho National Laboratory to evaluate tritium permeation through Type 316 stainless steel (316 SS). The interior of a 316 SS seamless tube specimen was exposed to a 4He carrier gas mixed with a specified quantity of tritium (T2) to yield partial pressures of 0.1, 5, and 50 Pa at 292° and 330°C. In-situ tritium permeation measurements were made by passing a He-Ne sweep gas over the outer surface of the specimen to carry the permeated tritium to a bubbler column for liquid scintillation counting. An irradiation enhancement factor (IEF) was determined by comparing in-situ permeation data with a correlation for ex-reactor hydrogen permeation through austenitic stainless steel developed from literature data and reported by Le Claire. Nominal values for the IEF ranged between 3 and 5 for 316 SS. In-situ permeation data were also used to derive an in-reactor permeation correlation as a function of temperature and pressure. In addition, the triton recoil contribution to tritium permeation, which results from the transmutation of 3He to T, was also evaluated by introducing a 4He carrier gas mixed with 3He at a partial pressure of 1013 Pa at 330°C. Less than 3% of the tritium resulting from 3He transmutation contributed to tritium permeation.

  7. The role of sodium in the salty taste of permeate.

    PubMed

    Frankowski, K M; Miracle, R E; Drake, M A

    2014-09-01

    Many food companies are trying to limit the amount of sodium in their products. Permeate, the liquid remaining after whey or milk is ultrafiltered, has been suggested as a salt substitute. The objective of this study was to determine the sensory and compositional properties of permeates and to determine if elements other than sodium contribute to the salty taste of permeate. Eighteen whey (n=14) and reduced-lactose (n=4) permeates were obtained in duplicate from commercial facilities. Proximate analyses, specific mineral content, and nonprotein nitrogen were determined. Organic acids and nucleotides were extracted followed by HPLC. Aromatic volatiles were evaluated by gas chromatography-mass spectrometry. Descriptive analysis of permeates and model solutions was conducted using a trained sensory panel. Whey permeates were characterized by cooked/milky and brothy flavors, sweet taste, and low salty taste. Permeates with lactose removed were distinctly salty. The organic acids with the highest concentration in permeates were lactic and citric acids. Volatiles included aldehydes, sulfur-containing compounds, and diacetyl. Sensory tests with sodium chloride solutions confirmed that the salty taste of reduced-lactose permeates was not solely due to the sodium present. Permeate models were created with NaCl, KCl, lactic acid, citric acid, hippuric acid, uric acid, orotic acid, and urea; in addition to NaCl, KCl, lactic acid, and orotic acid were contributors to the salty taste.

  8. Bio-oil Stabilization by Hydrogenation over Reduced Metal Catalysts at Low Temperatures

    SciTech Connect

    Wang, Huamin; Lee, Suh-Jane; Olarte, Mariefel V.; Zacher, Alan H.

    2016-08-30

    Biomass fast pyrolysis integrated with bio-oil upgrading represents a very attractive approach for converting biomass to hydrocarbon transportation fuels. However, the thermal and chemical instability of bio-oils presents significant problems when they are being upgraded, and development of effective approaches for stabilizing bio-oils is critical to the success of the technology. Catalytic hydrogenation to remove reactive species in bio-oil has been considered as one of the most efficient ways to stabilize bio-oil. This paper provides a fundamental understanding of hydrogenation of actual bio-oils over a Ru/TiO2 catalyst under conditions relevant to practical bio-oil hydrotreating processes. Bio-oil feed stocks, bio-oils hydrogenated to different extents, and catalysts have been characterized to provide insights into the chemical and physical properties of these samples and to understand the correlation of the properties with the composition of the bio-oil and catalysts. The results indicated hydrogenation of various components of the bio-oil, including sugars, aldehydes, ketones, alkenes, aromatics, and carboxylic acids, over the Ru/TiO2 catalyst and 120 to 160oC. Hydrogenation of these species significantly changed the chemical and physical properties of the bio-oil and overall improved its thermal stability, especially by reducing the carbonyl content, which represented the content of the most reactive species (i.e., sugar, aldehydes, and ketones). The change of content of each component in response to increasing hydrogen additions suggests the following bio-oil hydrogenation reaction sequence: sugar conversion to sugar alcohols, followed by ketone and aldehyde conversion to alcohols, followed by alkene and aromatic hydrogenation, and then followed by carboxylic acid hydrogenation to alcohols. Hydrogenation of bio-oil samples with different sulfur contents or inorganic material contents suggested that sulfur poisoning of the reduced Ru metal catalysts was

  9. Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials

    SciTech Connect

    Bechtle, Sabine; Kumar, Mukul; Somerday, Brian P.; Launey, Maximilien E.; Ritchie, Robert O.

    2009-05-10

    The feasibility of using 'grain-boundary engineering' techniques to reduce the susceptibility of a metallic material to intergranular embrittlement in the presence of hydrogen is examined. Using thermomechanical processing, the fraction of 'special' grain boundaries was increased from 46% to 75% (by length) in commercially pure nickel samples. In the presence of hydrogen concentrations between 1200 and 3400 appm, the high special fraction microstructure showed almost double the tensile ductility; also, the proportion of intergranular fracture was significantly lower and the J{sub c} fracture toughness values were some 20-30% higher in comparison with the low special fraction microstructure. We attribute the reduction in the severity of hydrogen-induced intergranular embrittlement to the higher fraction of special grain boundaries, where the degree of hydrogen segregation at these boundaries is reduced.

  10. Tritium permeation losses in HYLIFE-II heat exchanger tubes

    SciTech Connect

    Longhurst, G.R.; Dolan, T.J.

    1990-01-01

    Tritium permeation through the intermediate heat exchanger of the HYLIFE-II inertial fusion design concept is evaluated for routine operating conditions. The permeation process is modelled using the Lewis analogy combined with surface recombination. It is demonstrated that at very low driving potentials, permeation becomes proportional to the first power of the driving potential. The model predicts that under anticipated conditions the primary cooling loop will pass about 6% of the tritium entering it to the intermediate coolant. Possible approached to reducing tritium permeation are explored. Permeation is limited by turbulent diffusion transport through the molten salt. Hence, surface barriers with impendance factors typical of present technology can do very little to reduce permeation. Low Flibe viscosity is desirable. An efficient tritium removal system operating on the Flibe before it gets to the intermediate heat exchanger is required. Needs for further research are highlighted. 9 refs., 2 figs., 1 tab.

  11. Permeation of protective clothing materials by methylene chloride and perchloroethylene.

    PubMed

    Vahdat, N

    1987-07-01

    The permeation of methylene chloride and perchloroethylene through seven protective clothing materials was studied to determine the permeation parameters, and to investigate the effect of solubility (polymer weight gain) and material thickness on the permeation parameters. The materials tested were two different nitrile rubbers, neoprene, Combination (a blend of natural rubber, neoprene and nitrile), two different polyvinyl chlorides, and polyvinyl alcohol. Methylene chloride permeated through all materials, except PVA, with breakthrough times in the range of 2 to 8 min, and permeation rates in the range of 1250-5800 micrograms/cm2 X min. PVA and unsupported nitrile offered good protection against perchloroethylene with breakthrough time occurring after 2 hr. Perchloroethylene permeated through the other materials with breakthrough times in the range of 8 to 36 min and permeation rates in the range of 200 to 1600 micrograms/cm2 X min. It was shown that for both chemicals, there is a correlation between the solubility (weight gain) and the ratio of permeation rate to breakthrough time (PR/BT). For all material/chemical pairs, an increase in solubility, increased (PR/BT). The change in material thickness had an effect on breakthrough time and permeation rate, but no effect on normalized breakthrough time. An increase in thickness reduced permeation rate and increased breakthrough time.

  12. The hydrogen-storing microporous silica 'Microcluster' reduces acetaldehyde contained in a distilled spirit.

    PubMed

    Kato, Shinya; Miwa, Nobuhiko

    2016-12-01

    Acetaldehyde is a detrimental substance produced in alcoholic liquor aging. We assessed an ability of hydrogen-storing microporous silica 'Microcluster' (MC+) to reduce acetaldehyde, as compared with autoclave-dehydrogenated MC+ (MC-). Acetaldehyde was quantified spectrophotometrically by an enzymatic method. Authentic acetaldehyde was treated by MC+ for 20min, and decreased from 43.4ppm to 10.9ppm, but maintained at 49.3ppm by MC-. On the other hand, acetaldehyde contained in a distilled spirit was decreased from 29.5ppm to 3.1ppm at 20min by MC+, but not decreased by MC-. Addition of MC+ or MC- to distilled water without acetaldehyde showed no seeming effect on the quantification used. Accordingly acetaldehyde in a distilled spirit is reduced to ethanol by hydrogen contained in MC+, but not by the silica moiety of MC+. Hydrogen gas of 1.2mL was released for 20min from MC+ of 0.59g in water, resulting in dissolved hydrogen of 1.09ppm and an oxidation- reduction potential of -687.0mV indicative of a marked reducing ability. Thus, MC+ has an ability to reduce acetaldehyde in a distilled spirit due to dissolved hydrogen released from MC+.

  13. Dipotassium hydrogen phosphate as reducing agent for the efficient reduction of graphene oxide nanosheets.

    PubMed

    Zhang, Xinmeng; Li, Kezhi; Li, Hejun; Lu, Jinhua

    2013-11-01

    By using dipotassium hydrogen phosphate (K2HPO4·3H2O), an efficient and environmentally friendly route for the reduction of the exfoliated graphene oxide nanosheets (GO) is reported in this work. The chemically reduced graphene oxide nanosheets (RGO) have been analyzed by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectra, X-ray photoelectron spectroscopy, Field emission transmission electron microscopy, Atomic force microscopy, and Thermogravimetric analysis. Considering the analysis results, dipotassium hydrogen phosphate plays a key role in the efficient removal of the oxygen-containing groups in GO, which avoids the use of high toxic and hazardous reducing agents commonly used to obtain RGO in chemical reduction of GO. Dipotassium hydrogen phosphate itself and prepared graphene are environmentally friendly and inexpensive, which may open new opportunities for mass production of graphene by reducing GO.

  14. Hydrogen Gas Reduced Acute Hyperglycemia-Enhanced Hemorrhagic Transformation in a Focal Ischemia Rat Model

    PubMed Central

    CHEN, C.H.; ANATOL, M.; ZHAN, Y.; LIU, W.W.; OSTROWKI, R.P.; TANG, JIPING; ZHANG, J. H.

    2010-01-01

    Hyperglycemia is one of the major factors for hemorrhagic transformation after ischemic stroke. In this study, we tested hydrogen gas on hemorrhagic transformation in a rat focal cerebral ischemia model. Sprague–Dawley rats (n=72) were divided into the following groups: sham; sham treated with hydrogen gas (H2); Middle Cerebral Artery Occlusion (MCAO); and MCAO treated with H2 (MCAO+H2). All the rats received an injection of 50% dextrose (6ml/kg intraperitoneally) and underwent MCAO 15 min later. Following a 90 min ischemic period, hydrogen was inhaled for 2 hr during reperfusion. We measured the level of blood glucose at 0 hr, 0.5 hr, 4 hr, and 6 hr after dextrose injection. Infarct and hemorrhagic volumes, neurologic score, oxidative stress (evaluating by the level of 8OHG, HNE and nitrotyrosine), MMP-2/MMP-9 activity were measured at 24 hr after ischemia. We found that hydrogen inhalation for 2 hr reduced infarct and hemorrhagic volumes and improved neurological functions. This effect of hydrogen is accompanied by a reduction of the expressions of 8OHG, HNE, nitrotyrosine and the activity of MMP-9. Furthermore, a reduction of the blood glucose level from 500±32.51 to 366±68.22 mg/dl at 4 hr after dextrose injection was observed in hydrogen treated animals. However, the treatment had no significant effect on the expression of ZO-1, occluding, collagen IV or AQP4. In conclusion, hydrogen gas reduced the infarction, hemorrhagic transformation, and improved neurological functions in rat. The potential mechanisms of decreased oxidative stress and glucose levels after hydrogen treatment warrant further investigation. PMID:20423721

  15. Hydrogen gas reduced acute hyperglycemia-enhanced hemorrhagic transformation in a focal ischemia rat model.

    PubMed

    Chen, C H; Manaenko, A; Zhan, Y; Liu, W W; Ostrowki, R P; Tang, J; Zhang, J H

    2010-08-11

    Hyperglycemia is one of the major factors for hemorrhagic transformation after ischemic stroke. In this study, we tested the effect of hydrogen gas on hemorrhagic transformation in a rat focal cerebral ischemia model. Sprague-Dawley rats (n=72) were divided into the following groups: sham; sham treated with hydrogen gas (H(2)); Middle Cerebral Artery Occlusion (MCAO); and MCAO treated with H(2) (MCAO+H(2)). All rats received an injection of 50% dextrose (6 ml/kg i.p.) and underwent MCAO 15 min later. Following a 90 min ischemic period, hydrogen was inhaled for 2 h during reperfusion. We measured the level of blood glucose at 0 h, 0.5 h, 4 h, and 6 h after dextrose injection. Infarct and hemorrhagic volumes, neurologic score, oxidative stress (evaluated by measuring the level of 8 Hydroxyguanosine (8OHG), 4-Hydroxy-2-Nonenal (HNE) and nitrotyrosine), and matrix metalloproteinase (MMP)-2/MMP-9 activity were measured at 24 h after ischemia. We found that hydrogen inhalation for 2 h reduced infarct and hemorrhagic volumes and improved neurological functions. This effect of hydrogen was accompanied by a reduction of the expression of 8OHG, HNE, and nitrotyrosine and the activity of MMP-9. Furthermore, a reduction of the blood glucose level from 500+/-32.51 to 366+/-68.22 mg/dl at 4 h after dextrose injection was observed in hydrogen treated animals. However, the treatment had no significant effect on the expression of ZO-1, occludin, collagen IV or aquaporin4 (AQP4). In conclusion, hydrogen gas reduced brain infarction, hemorrhagic transformation, and improved neurological function in rats. The potential mechanisms of decreased oxidative stress and glucose levels after hydrogen treatment warrant further investigation.

  16. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Li, Ji-Sen; Wang, Yu; Liu, Chun-Hui; Li, Shun-Li; Wang, Yu-Guang; Dong, Long-Zhang; Dai, Zhi-Hui; Li, Ya-Fei; Lan, Ya-Qian

    2016-04-01

    Electrochemical water splitting is one of the most economical and sustainable methods for large-scale hydrogen production. However, the development of low-cost and earth-abundant non-noble-metal catalysts for the hydrogen evolution reaction remains a challenge. Here we report a two-dimensional coupled hybrid of molybdenum carbide and reduced graphene oxide with a ternary polyoxometalate-polypyrrole/reduced graphene oxide nanocomposite as a precursor. The hybrid exhibits outstanding electrocatalytic activity for the hydrogen evolution reaction and excellent stability in acidic media, which is, to the best of our knowledge, the best among these reported non-noble-metal catalysts. Theoretical calculations on the basis of density functional theory reveal that the active sites for hydrogen evolution stem from the pyridinic nitrogens, as well as the carbon atoms, in the graphene. In a proof-of-concept trial, an electrocatalyst for hydrogen evolution is fabricated, which may open new avenues for the design of nanomaterials utilizing POMs/conducting polymer/reduced-graphene oxide nanocomposites.

  17. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution

    PubMed Central

    Li, Ji-Sen; Wang, Yu; Liu, Chun-Hui; Li, Shun-Li; Wang, Yu-Guang; Dong, Long-Zhang; Dai, Zhi-Hui; Li, Ya-Fei; Lan, Ya-Qian

    2016-01-01

    Electrochemical water splitting is one of the most economical and sustainable methods for large-scale hydrogen production. However, the development of low-cost and earth-abundant non-noble-metal catalysts for the hydrogen evolution reaction remains a challenge. Here we report a two-dimensional coupled hybrid of molybdenum carbide and reduced graphene oxide with a ternary polyoxometalate-polypyrrole/reduced graphene oxide nanocomposite as a precursor. The hybrid exhibits outstanding electrocatalytic activity for the hydrogen evolution reaction and excellent stability in acidic media, which is, to the best of our knowledge, the best among these reported non-noble-metal catalysts. Theoretical calculations on the basis of density functional theory reveal that the active sites for hydrogen evolution stem from the pyridinic nitrogens, as well as the carbon atoms, in the graphene. In a proof-of-concept trial, an electrocatalyst for hydrogen evolution is fabricated, which may open new avenues for the design of nanomaterials utilizing POMs/conducting polymer/reduced-graphene oxide nanocomposites. PMID:27032372

  18. Laser stimulated grain growth in 304 stainless steel anodes for reduced hydrogen outgassing

    NASA Astrophysics Data System (ADS)

    Gortat, D.; Sparkes, M.; Fairchild, S. B.; Murray, P. T.; Cahay, M. M.; Back, T. C.; Gruen, G. J.; Lockwood, N. P.; O'Neill, W.

    2017-02-01

    Metal anodes in high power microwave (HPM) devices erode during operation due to hydrogen outgassing and plasma formation; both of which are thermally driven phenomena generated by the electron beam impacting the anode's surface. This limits the lowest achievable pressure in an HPM device, which reduces its efficiency. Laser surface melting the 304 stainless steel anodes by a continuous wave fiber laser showed a reduction in hydrogen outgassing by a factor of 4 under 50 keV electron bombardment, compared to that from untreated stainless steel. This is attributed to an increase in the grain size (from 40 - 3516 μm2), which effectively reduces the number of characterized grain boundaries that serve as hydrogen trapping sites, making such laser treated metals excellent candidates for use in HPM applications.

  19. Behavior of tritium permeation induced by water corrosion of alpha iron around room temperature

    SciTech Connect

    Otsuka, T.; Hashizume, K.

    2015-03-15

    Tritium (T) permeation leakage to surroundings is a great safety concern in fission and fusion reactor systems. T permeation potentially occurs from T contaminated water through cooling tubes or storage tank made of metals which dissolve some T evolved by water corrosion. In order to understand behaviors of hydrogen uptake and permeation in pure α-iron (αFe) during water corrosion around room temperature, hydrogen permeation experiments for an αFe membrane have been conducted by means of tritium tracer techniques. The present study suggests that hydrogen produced by water corrosion of αFe is trapped in product oxide layers to delay hydrogen uptake in αFe for a moment. However, the oxide layers do not work as a sufficient barrier for hydrogen uptake. Some of hydrogen dissolved in αFe normally diffuses and permeates through the bulk in the early stage of permeation. In a later stage, hydrogen permeation could be apparently stopped by the disappearance of concentration difference of tritium. Hydrogen partial pressure at the water/αFe interface could be ranged from 0.7 to 9.5 kPa around room temperature.

  20. Dentinal permeation modeling

    NASA Astrophysics Data System (ADS)

    Trunina, Natalia; Derbov, Vladimir; Tuchin, Valery; Altshuler, Gregory

    2008-06-01

    Dentinal permeation is of interest in a wide context of tooth care and treatment, in particular, tooth color improvement using combination of chemical whitening agents and light activation. A simple model of dentinal permeation accounting for the morphology of human tooth dentine and including dentinal tubules, more dense and homogeneous peritubular dentine, and less dense and less homogeneous intertubular dentin is proposed. Calculation of permeability of dentine layer is carried out for H IIO and H IIO II versus the tubule diameter and tubule density taken from the microphotograph analysis. This opens the possibility to calculate the distribution of permeability over the tooth surface taking into account the variations of tubule diameter and density as well as those of the diffusion coefficients and layer thickness

  1. Approaches for reducing the insulator-metal transition pressure in hydrogen

    NASA Technical Reports Server (NTRS)

    Carlsson, A. E.; Ashcroft, N. W.

    1983-01-01

    Two possible techniques for reducing the external pressure required to induce the insulator-metal transition in solid hydrogen are described. One uses impurities to lower the energy of the metallic phase relative to that of the insulating phase. The other utilizes a negative pressure induced in the insulating phase by electron-hole pairs, created either with laser irradiation or pulsed synchrotron sources.

  2. Validation of a reduced-order jet model for subsonic and underexpanded hydrogen jets

    DOE PAGES

    Li, Xuefang; Hecht, Ethan S.; Christopher, David M.

    2016-01-01

    Much effort has been made to model hydrogen releases from leaks during potential failures of hydrogen storage systems. A reduced-order jet model can be used to quickly characterize these flows, with low computational cost. Notional nozzle models are often used to avoid modeling the complex shock structures produced by the underexpanded jets by determining an “effective” source to produce the observed downstream trends. In our work, the mean hydrogen concentration fields were measured in a series of subsonic and underexpanded jets using a planar laser Rayleigh scattering system. Furthermore, we compared the experimental data to a reduced order jet modelmore » for subsonic flows and a notional nozzle model coupled to the jet model for underexpanded jets. The values of some key model parameters were determined by comparisons with the experimental data. Finally, the coupled model was also validated against hydrogen concentrations measurements for 100 and 200 bar hydrogen jets with the predictions agreeing well with data in the literature.« less

  3. Muscle weakness in Ryr1I4895T/WT knock-in mice as a result of reduced ryanodine receptor Ca2+ ion permeation and release from the sarcoplasmic reticulum

    PubMed Central

    Loy, Ryan E.; Orynbayev, Murat; Xu, Le; Andronache, Zoita; Apostol, Simona; Zvaritch, Elena; MacLennan, David H.; Meissner, Gerhard; Melzer, Werner

    2011-01-01

    The type 1 isoform of the ryanodine receptor (RYR1) is the Ca2+ release channel of the sarcoplasmic reticulum (SR) that is activated during skeletal muscle excitation–contraction (EC) coupling. Mutations in the RYR1 gene cause several rare inherited skeletal muscle disorders, including malignant hyperthermia and central core disease (CCD). The human RYR1I4898T mutation is one of the most common CCD mutations. To elucidate the mechanism by which RYR1 function is altered by this mutation, we characterized in vivo muscle strength, EC coupling, SR Ca2+ content, and RYR1 Ca2+ release channel function using adult heterozygous Ryr1I4895T/+ knock-in mice (IT/+). Compared with age-matched wild-type (WT) mice, IT/+ mice exhibited significantly reduced upper body and grip strength. In spite of normal total SR Ca2+ content, both electrically evoked and 4-chloro-m-cresol–induced Ca2+ release were significantly reduced and slowed in single intact flexor digitorum brevis fibers isolated from 4–6-mo-old IT/+ mice. The sensitivity of the SR Ca2+ release mechanism to activation was not enhanced in fibers of IT/+ mice. Single-channel measurements of purified recombinant channels incorporated in planar lipid bilayers revealed that Ca2+ permeation was abolished for homotetrameric IT channels and significantly reduced for heterotetrameric WT:IT channels. Collectively, these findings indicate that in vivo muscle weakness observed in IT/+ knock-in mice arises from a reduction in the magnitude and rate of RYR1 Ca2+ release during EC coupling that results from the mutation producing a dominant-negative suppression of RYR1 channel Ca2+ ion permeation. PMID:21149547

  4. Muscle weakness in Ryr1I4895T/WT knock-in mice as a result of reduced ryanodine receptor Ca2+ ion permeation and release from the sarcoplasmic reticulum.

    PubMed

    Loy, Ryan E; Orynbayev, Murat; Xu, Le; Andronache, Zoita; Apostol, Simona; Zvaritch, Elena; MacLennan, David H; Meissner, Gerhard; Melzer, Werner; Dirksen, Robert T

    2011-01-01

    The type 1 isoform of the ryanodine receptor (RYR1) is the Ca(2+) release channel of the sarcoplasmic reticulum (SR) that is activated during skeletal muscle excitation-contraction (EC) coupling. Mutations in the RYR1 gene cause several rare inherited skeletal muscle disorders, including malignant hyperthermia and central core disease (CCD). The human RYR1(I4898T) mutation is one of the most common CCD mutations. To elucidate the mechanism by which RYR1 function is altered by this mutation, we characterized in vivo muscle strength, EC coupling, SR Ca(2+) content, and RYR1 Ca(2+) release channel function using adult heterozygous Ryr1(I4895T/+) knock-in mice (IT/+). Compared with age-matched wild-type (WT) mice, IT/+ mice exhibited significantly reduced upper body and grip strength. In spite of normal total SR Ca(2+) content, both electrically evoked and 4-chloro-m-cresol-induced Ca(2+) release were significantly reduced and slowed in single intact flexor digitorum brevis fibers isolated from 4-6-mo-old IT/+ mice. The sensitivity of the SR Ca(2+) release mechanism to activation was not enhanced in fibers of IT/+ mice. Single-channel measurements of purified recombinant channels incorporated in planar lipid bilayers revealed that Ca(2+) permeation was abolished for homotetrameric IT channels and significantly reduced for heterotetrameric WT:IT channels. Collectively, these findings indicate that in vivo muscle weakness observed in IT/+ knock-in mice arises from a reduction in the magnitude and rate of RYR1 Ca(2+) release during EC coupling that results from the mutation producing a dominant-negative suppression of RYR1 channel Ca(2+) ion permeation.

  5. Hydrogen sulfide synthesis enzymes reduced in lower esophageal sphincter of patients with achalasia.

    PubMed

    Zhang, L; Zhao, W; Zheng, Z; Wang, T; Zhao, C; Zhou, G; Jin, H; Wang, B

    2016-10-01

    The etiology of achalasia remains largely unknown. Considerable evidence reveals that the lower esophageal sphincter dysfunction is due to the lack of inhibitory neurotransmitter, secondary to esophageal neuronal inflammation or loss. Recent studies suggest hydrogen sulfide may act as an inhibitory transmitter in gastrointestinal tract, but study about hydrogen sulfide in human esophagus still lack. The aim of the study was to investigate if hydrogen sulfide synthesis enzymes could be detected in human esophagus and if the synthesis of the endogenous hydrogen sulfide could be affected in achalasia patients. Tissue samples in cardia, lower esophageal sphincter, 2 cm and 4 cm above lower esophageal sphincter were obtained from achalasia patients undergoing peroral endoscopic myotomy. Control tissues in lower esophageal sphincter were obtained from esophageal carcinoma patients. Expression of cystathionine-β-synthase and cystathionine-γ-lyase in lower esophageal sphincter of achalasia patients and control were detected by immunohistochemical staining. In addition, expression of cystathionine-β-synthase and cystathionine-γ-lyase were compared among different parts of esophagus in achalasia patients. Compared with control, the expression of cystathionine-β-synthase and cystathionine-γ-lyase in lower esophageal sphincter of achalasia patients was significantly reduced (χ(2) = 11.429, P = 0.010). The expression of cystathionine-β-synthase and cystathionine-γ-lyase were lower in lower esophageal sphincter than that in 2 cm and 4 cm above lower esophageal sphincter, respectively (all P < 0.05). In conclusion, the expression of hydrogen sulfide synthesis enzymes, cystathionine-β-synthase and cystathionine-γ-lyase, can be detected in human esophagus and is reduced in patients with achalasia, which implicates the involvement of the two hydrogen sulfide synthesis enzymes in the pathophysiology of achalasia.

  6. Concentration of Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2006-01-01

    Methods for concentrating hydrogen peroxide solutions have been described. The methods utilize a polymeric membrane separating a hydrogen peroxide solution from a sweep gas or permeate. The membrane is selective to the permeability of water over the permeability of hydrogen peroxide, thereby facilitating the concentration of the hydrogen peroxide solution through the transport of water through the membrane to the permeate. By utilizing methods in accordance with the invention, hydrogen peroxide solutions of up to 85% by volume or higher may be generated at a point of use without storing substantial quantities of the highly concentrated solutions and without requiring temperatures that would produce explosive mixtures of hydrogen peroxide vapors.

  7. Tissue dynamics with permeation.

    PubMed

    Ranft, J; Prost, J; Jülicher, F; Joanny, J-F

    2012-06-01

    Animal tissues are complex assemblies of cells, extracellular matrix (ECM), and permeating interstitial fluid. Whereas key aspects of the multicellular dynamics can be captured by a one-component continuum description, cell division and apoptosis imply material turnover between different components that can lead to additional mechanical conditions on the tissue dynamics. We extend our previous description of tissues in order to account for a cell/ECM phase and the permeating interstitial fluid independently. In line with our earlier work, we consider the cell/ECM phase to behave as an elastic solid in the absence of cell division and apoptosis. In addition, we consider the interstitial fluid as ideal on the relevant length scales, i.e., we ignore viscous stresses in the interstitial fluid. Friction between the fluid and the cell/ECM phase leads to a Darcy-like relation for the interstitial fluid velocity and introduces a new characteristic length scale. We discuss the dynamics of a tissue confined in a chamber with a permeable piston close to the homeostatic state where cell division and apoptosis balance, and we calculate the rescaled effective diffusion coefficient for cells. For different mass densities of the cell/ECM component and the interstitial fluid, a treadmilling steady state due to gravitational forces can be found.

  8. Integration of Photothermal Effect and Heat Insulation to Efficiently Reduce Reaction Temperature of CO2 Hydrogenation.

    PubMed

    Zhang, Wenbo; Wang, Liangbing; Wang, Kaiwen; Khan, Munir Ullah; Wang, Menglin; Li, Hongliang; Zeng, Jie

    2017-02-01

    The photothermal effect is applied in CO2 hydrogenation to reduce the reaction temperature under illumination by encapsulating Pt nanocubes and Au nanocages into a zeolitic imidazolate framework (ZIF-8). Under illumination, the heat generated by the photothermal effect of Au nanocages is mainly insulated in the ZIF-8 to form a localized high-temperature region, thereby improving the catalytic activity of Pt nanocubes.

  9. Fractionation of Hydrogen Isotopes by Sulfate- and Nitrate-Reducing Bacteria

    PubMed Central

    Osburn, Magdalena R.; Dawson, Katherine S.; Fogel, Marilyn L.; Sessions, Alex L.

    2016-01-01

    Hydrogen atoms from water and food are incorporated into biomass during cellular metabolism and biosynthesis, fractionating the isotopes of hydrogen—protium and deuterium—that are recorded in biomolecules. While these fractionations are often relatively constant in plants, large variations in the magnitude of fractionation are observed for many heterotrophic microbes utilizing different central metabolic pathways. The correlation between metabolism and lipid δ2H provides a potential basis for reconstructing environmental and ecological parameters, but the calibration dataset has thus far been limited mainly to aerobes. Here we report on the hydrogen isotopic fractionations of lipids produced by nitrate-respiring and sulfate-reducing bacteria. We observe only small differences in fractionation between oxygen- and nitrate-respiring growth conditions, with a typical pattern of variation between substrates that is broadly consistent with previously described trends. In contrast, fractionation by sulfate-reducing bacteria does not vary significantly between different substrates, even when autotrophic and heterotrophic growth conditions are compared. This result is in marked contrast to previously published observations and has significant implications for the interpretation of environmental hydrogen isotope data. We evaluate these trends in light of metabolic gene content of each strain, growth rate, and potential flux and reservoir-size effects of cellular hydrogen, but find no single variable that can account for the differences between nitrate- and sulfate-respiring bacteria. The emerging picture of bacterial hydrogen isotope fractionation is therefore more complex than the simple correspondence between δ2H and metabolic pathway previously understood from aerobes. Despite the complexity, the large signals and rich variability of observed lipid δ2H suggest much potential as an environmental recorder of metabolism. PMID:27531993

  10. Hydrogen peroxide treatment results in reduced curvature values in the Arabidopsis root apex.

    PubMed

    Noriega, Arturo; Tocino, Angel; Cervantes, Emilio

    2009-03-15

    Curvature of a plane curve is a measurement related to its shape. A Mathematica code was developed [Cervantes E, Tocino A. J Plant Physiol 2005;162:1038-1045] to obtain parametric equations from microscopic images of the Arabidopsis thaliana root apex. In addition, curvature values for these curves were given. It was shown that ethylene-insensitive mutants (etr1-1 and ein2-1) have reduced curvature values in the root apex. It has also been shown that blocking ethylene action by norbornadiene, an ethylene inhibitor, results in reduced curvature values in the two outer cell layers of the root apex [Noriega A, Cervantes E, Tocino A. J Plant Physiol 2008, in press]. Because ethylene action has been related with hydrogen peroxide [Desikan R, Hancock JT, Bright J, Harrison J, Weir I, Hooley R, Neill SJ. Plant Physiol 2005;137:831-834], the effect of a treatment with hydrogen peroxide in the curvature values of three successive layers of the root apex in Arabidopsis thaliana was investigated by confocal microscopy. Treatment with 10mM hydrogen peroxide resulted in reduced curvature values in the three layers. The effect was associated with smaller cells having higher circularity indices. The results are discussed in the context of the role of ethylene in development.

  11. Method and System for the Production of Hydrogen at Reduced VHTR Outlet Temperatures

    SciTech Connect

    Chang H. Oh; Eung S. Kim

    2009-10-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility dedicated to hydrogen production, early designs are expected to be dual purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor with electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. The integrated system of a Very High Temperature Reactor (VHTR) and a High Temperature Steam Electrolysis (HTSE) hydrogen production plant is being investigated and this system, as it is currently envisioned, will produce hydrogen by utilizing a highly efficient VHTR with a VHTR outlet temperature of 900°C to supply the necessary energy and electricity to the HTSE unit. Though the combined system may produce hydrogen and electricity with high efficiency, the choices of materials that are suitable for use at 900°C are limited due to high-temperature strength, corrosion, and durability (creep) considerations. The lack of materials that are ASME (American Society of Mechanical Engineers) code-certified at these temperatures is also a problem, and is a barrier to commercial deployment. If the current system concept can be modified to produce hydrogen with comparable efficiency at lower temperatures, then the technical barriers related to materials selection and use might be eliminated, and the integrated system may have a much greater probability of

  12. Reduced kinetic mechanism of ignition for nonpremixed hydrogen/air in a supersonic mixing layer

    SciTech Connect

    Ju, Y.; Niioka, T. . Inst. of Fluid Science)

    1994-11-01

    Transient ignition processes in a two-dimensional spatially evolving supersonic mixing layer consisting of a parallel nonpremixed airstream and a hydrogen stream both with temperatures higher than 1,000 K were investigated numerically by using the full chemistry and its reduced chemistry. A phenomenon different from that examined in previous studies, in which ignition of hydrogen/oxygen mixtures was considered, was found in the nonpremixed case examined here. It was shown that the concentration of O was greater than that of OH before ignition, but became smaller with the development of ignition process. Fourteen important reactions for ignition were obtained and verified using sensitivity analyses of ignition delay time and radical concentrations. Several different four-step and three-step reduced kinetic mechanisms were then deduced by introducing the steady-state approximation to different species. Comparison of these reduced kinetic mechanisms with the full chemistry showed that the steady-state approximation of O used in previous studies caused serious errors in the prediction of ignition delay time in supersonic flow, in which nonpremixed character is predominant and the transport phenomenon is important. Ignition locations predicted with the proper four-step and three-step reduced kinetic mechanisms were within 5% and 20% of those predicted with the full chemistry. Finally, these two reduced mechanisms were used to evaluate the effect of viscous dissipation on ignition in the supersonic shear layer. Good agreements between the results of the present reduced kinetic mechanisms and those of the full chemistry were obtained.

  13. Citric acid fermentation in whey permeate

    SciTech Connect

    Somkuti, G.A.; Bencivengo, M.M.

    1981-01-01

    Acid-whey permeate was used for the production of citric acid by Aspergillus niger. The fermentation proceeded in 2 phases: a growth phase when citric acid was not accumulated, followed by an acidogenic phase when citric acid accumulated and mold growth was greatly reduced. Optimal production of citric acid occurred after 8-12 days at 30 degrees. Maximum citric acid yields were influenced by the initial lactose concentration and reached 10 g/l when the lactose concentration in the acid-whey permeate was adjusted to 15%. MeOH at 2-4% markedly increased the production of citric acid. Fermentation of acid-whey permeate by a mutant strain (A. niger 599-3) was more reproducible, and yields of citric acid were substantially improved. The amount of citric acid produced by A. niger 599-3 was 18-23 g/l after 12-14 days, depending on the lactose content of the whey permeate. Throughout the fermentation, galactose was apparently co-metabolized with glucose.

  14. A hydrogen-oxidizing, Fe(III)-reducing microorganism from the Great Bay estuary, New Hampshire

    USGS Publications Warehouse

    Caccavo, F.; Blakemore, R.P.; Lovley, D.R.

    1992-01-01

    A dissimilatory Fe(III)- and Mn(IV)-reducing bacterium was isolated from bottom sediments of the Great Bay estuary, New Hampshire. The isolate was a facultatively anaerobic gram-negative rod which did not appear to fit into any previously described genus. It was temporarily designated strain BrY. BrY grew anaerobically in a defined medium with hydrogen or lactate as the electron donor and Fe(III) as the electron acceptor. BrY required citrate, fumarate, or malate as a carbon source for growth on H2 and Fe(III). With Fe(III) as the sole electron acceptor, BrY metabolized hydrogen to a minimum threshold at least 60-fold lower than the threshold reported for pure cultures of sulfate reducers. This finding supports the hypothesis that when Fe(III) is available, Fe(III) reducers can outcompete sulfate reducers for electron donors. Lactate was incompletely oxidized to acetate and carbon dioxide with Fe(III) as the electron acceptor. Lactate oxidation was also coupled to the reduction of Mn(IV), U(VI), fumarate, thiosulfate, or trimethylamine n-oxide under anaerobic conditions. BrY provides a model for how enzymatic metal reduction by respiratory metal-reducing microorganisms has the potential to contribute to the mobilization of iron and trace metals and to the immobilization of uranium in sediments of Great Bay Estuary.

  15. Thermodynamic and Structural Evidence for Reduced Hydrogen Bonding among Water Molecules near Small Hydrophobic Solutes.

    PubMed

    Kim, Jehoon; Tian, Yun; Wu, Jianzhong

    2015-09-10

    The structure of water molecules near a hydrophobic solute remains elusive despite a long history of scrutiny. Here, we re-examine the subtle issue by a combination of thermodynamic analysis for Henry's constants of several nonpolar gases over a broad range of temperatures and molecular dynamic simulations for the water structure in the hydration shell using several popular semiempirical models of liquid water. Both the structural and thermodynamic data indicate that hydrophobic hydration reduces the degree of the hydrogen bonding among water molecules, and the effect becomes more prominent at high temperatures. Hydrogen-bond formation is slightly hindered near a hydrophobic solute due to the restriction of the degree of freedom for water molecules in the solvation shell, and the confinement effect becomes more significant as temperature increases. Reduction in the extent of hydrogen bonding is fully consistent with a positive contribution of a small hydrophobic solute to the solution heat capacity. As predicted by the scaled-particle theory, both Henry's constants and simulation results suggest that the hydration entropy is determined primarily by cavity formation in liquid water, with its magnitude rising with the solute size but declining with temperature.

  16. Global reduced mechanisms for methane and hydrogen combustion with nitric oxide formation constructed with CSP data

    NASA Astrophysics Data System (ADS)

    Massias, A.; Diamantis, D.; Mastorakos, E.; Goussis, D. A.

    1999-06-01

    Reduced mechanisms for methane-air and hydrogen-air combustion including NO formation have been constructed with the computational singular perturbation (CSP) method using the fully automated algorithm described by Massias et al. The analysis was performed on solutions of unstrained adiabatic premixed flames with detailed chemical kinetics described by GRI 2.11 for methane and a 71-reaction mechanism for hydrogen including NOx formation. A 10-step reduced mechanism for methane has been constructed which reproduces accurately laminar burning velocities, flame temperatures and mass fraction distributions of major species for the whole flammability range. Many steady-state species are also predicted satisfactorily. This mechanism is an improvement over the seven-step set of Massias et al, especially for rich flames, because the use of HCNO, HCN and C2H2 as major species results in a better calculation of prompt NO. The present 10-step mechanism may thus also be applicable to diffusion flames. A five-step mechanism for lean and hydrogen-rich combustion has also been constructed based on a detailed mechanism including thermal NO. This mechanism is accurate for a wide range of the equivalence ratio and for pressures as high as 40 bar. For both fuels, the CSP algorithm automatically pointed to the same steady-state species as those identified by laborious analysis or intuition in the literature and the global reactions were similar to well established previous methane-reduced mechanisms. This implies that the method is very well suited for the study of complex mechanisms for heavy hydrocarbon combustion.

  17. Liquid hydrogen suction dip and slosh wave excitation during draining under normal and reduced gravity environments

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Shyu, K. L.

    1992-01-01

    The paper discusses the dynamical behavior of vapor ingestion, liquid residual at the incipience of suction dip, slosh wave excitation under normal and reduced gravity and different flow rates during liquid hydrogen draining. Liquid residuals at the incipience of suction dip increase as the values of gravity decrease. Also liquid residuals increase with the draining flow rates. Lower ratio of Bond number and Weber number are unable to excite slosh waves. Lower flow rates and higher gravity excites waves with lower frequencies and higher wave amplitude slosh waves.

  18. One-step reduced kinetics for lean hydrogen-air deflagration

    SciTech Connect

    Fernandez-Galisteo, D.; Sanchez, A.L.; Linan, A.; Williams, F.A.

    2009-05-15

    A short mechanism consisting of seven elementary reactions, of which only three are reversible, is shown to provide good predictions of hydrogen-air lean-flame burning velocities. This mechanism is further simplified by noting that over a range of conditions of practical interest, near the lean flammability limit all reaction intermediaries have small concentrations in the important thin reaction zone that controls the hydrogen-air laminar burning velocity and therefore follow a steady state approximation, while the main species react according to the global irreversible reaction 2H{sub 2} + O{sub 2} {yields} 2H{sub 2}O. An explicit expression for the non-Arrhenius rate of this one-step overall reaction for hydrogen oxidation is derived from the seven-step detailed mechanism, for application near the flammability limit. The one-step results are used to calculate flammability limits and burning velocities of planar deflagrations. Furthermore, implications concerning radical profiles in the deflagration and reasons for the success of the approximations are clarified. It is also demonstrated that adding only two irreversible direct recombination steps to the seven-step mechanism accurately reproduces burning velocities of the full detailed mechanism for all equivalence ratios at normal atmospheric conditions and that an eight-step detailed mechanism, constructed from the seven-step mechanism by adding to it the fourth reversible shuffle reaction, improves predictions of O and OH profiles. The new reduced-chemistry descriptions can be useful for both analytical and computational studies of lean hydrogen-air flames, decreasing required computation times. (author)

  19. Markedly reduced toxicity of a hydrogen sulphide-releasing derivative of naproxen (ATB-346)

    PubMed Central

    Wallace, John L; Caliendo, Giuseppe; Santagada, Vincenzo; Cirino, Giuseppe

    2010-01-01

    Background and purpose: Hydrogen sulphide is an important mediator of gastric mucosal defence. The use of non-steroidal anti-inflammatory drugs continues to be limited by their toxicity, particularly in the upper gastrointestinal tract. We evaluated the gastrointestinal safety and anti-inflammatory efficacy of a novel hydrogen sulphide-releasing derivative of naproxen, ATB-346 [2-(6-methoxy-napthalen-2-yl)-propionic acid 4-thiocarbamoyl-phenyl ester]. Experimental approach: The ability of ATB-346 versus naproxen to cause gastric damage was evaluated in healthy rats and in rats with compromised gastric mucosal defence. Effects on the small intestine and on the healing of ulcers were also assessed. The ability of ATB-346 to inhibit cyclooxygenase-1 and 2 and to reduce inflammation in vivo was also evaluated. Key results: ATB-346 suppressed gastric prostaglandin E2 synthesis as effectively as naproxen, but produced negligible damage in the stomach and intestine. In situations in which the gastric mucosa was rendered significantly more susceptible to naproxen-induced damage (e.g. ablation of sensory afferent nerves, inhibition of endogenous nitric oxide or hydrogen sulphide synthesis, co-administration with aspirin, antagonism of KIR6.x channels), ATB-346 did not cause significant damage. Unlike naproxen and celecoxib, ATB-346 accelerated healing of pre-existing gastric ulcers. In a mouse airpouch model, ATB-346 suppressed cyclooxygenase-2 activity and inhibited leukocyte infiltration more effectively than naproxen. ATB-346 was as effective as naproxen in adjuvant-induced arthritis in rats, with a more rapid onset of activity. Unlike naproxen, ATB-346 did not elevate blood pressure in hypertensive rats. Conclusions and implications: ATB-346 exhibits anti-inflammatory properties similar to naproxen, but with substantially reduced gastrointestinal toxicity. PMID:20128814

  20. Characterization of reduced natural garnierite and its catalytic activity for carbon monoxide hydrogenation

    SciTech Connect

    Jacobs, P.A.; Nijs, H.H.; Poncelet, G.

    1980-08-01

    Natural garnierite, a nickel-containing mineral from New Caledonia, was reduced in hydrogen. The mineral and its reduced forms were characterized by x-ray diffraction electron microscopy, and microprobe analysis. The reduction was followed volumetrically and the Ni/sup 0/ phase characterized by H/sub 2/ chemisorption. The catalytic activity of this mineral was determined in the hydrogenation reaction of carbon monoxide. Experiments were done in typical methanation and so-called Fischer-Tropsch conditions. The mineral consists of a mixture of a 10-A phase (talc-like fluffy particles) and a 7-A serpentine-like phase (fibers). The major amount of nickel is associated with the talc phase. Minor amounts are in the serpentine fibers and possibly substituted in the lattice of the minerals. Qualitative evidence for a redispersion of Ni in the serpentine fibers is advanced. At the moment this occurs, the turnover numbers of CO disappearance are optimum. Compared to other supports, they are considerably lower. The product distribution is within C/sub 1/-C/sub 4/ and follows closely a Schulz-Flory distribution.

  1. Reduced-order modellin for high-pressure transient flow of hydrogen-natural gas mixture

    NASA Astrophysics Data System (ADS)

    Agaie, Baba G.; Khan, Ilyas; Alshomrani, Ali Saleh; Alqahtani, Aisha M.

    2017-05-01

    In this paper the transient flow of hydrogen compressed-natural gas (HCNG) mixture which is also referred to as hydrogen-natural gas mixture in a pipeline is numerically computed using the reduced-order modelling technique. The study on transient conditions is important because the pipeline flows are normally in the unsteady state due to the sudden opening and closure of control valves, but most of the existing studies only analyse the flow in the steady-state conditions. The mathematical model consists in a set of non-linear conservation forms of partial differential equations. The objective of this paper is to improve the accuracy in the prediction of the HCNG transient flow parameters using the Reduced-Order Modelling (ROM). The ROM technique has been successfully used in single-gas and aerodynamic flow problems, the gas mixture has not been done using the ROM. The study is based on the velocity change created by the operation of the valves upstream and downstream the pipeline. Results on the flow characteristics, namely the pressure, density, celerity and mass flux are based on variations of the mixing ratio and valve reaction and actuation time; the ROM computational time cost advantage are also presented.

  2. Adsorption of iodine on hydrogen-reduced silver-exchanged mordenite: Experiments and modeling

    SciTech Connect

    Nan, Yue; Tavlarides, Lawrence L.; DePaoli, David W.

    2016-08-03

    The adsorption process of iodine, a major volatile radionuclide in the off-gas streams of spent nuclear fuel reprocessing, on hydrogen-reduced silver-exchanged mordenite (Ag0Z) was studied at the micro-scale. The gas-solid mass transfer and reaction involved in the adsorption process were investigated and evaluated with appropriate models. Optimal conditions for reducing the silver-exchanged mordenite (AgZ) in a hydrogen stream were determined. Kinetic and equilibrium data of iodine adsorption on Ag0Z were obtained by performing single-layer adsorption experiments with experimental systems of high precision at 373–473 K over various iodine concentrations. Results indicate approximately 91% to 97% of the iodine adsorption was through the silver-iodine reaction. The effect of temperature on the iodine loading capacity of Ag0Z was discussed. In conclusion, the Shrinking Core model describes the data well, and the primary rate controlling mechanisms were macro-pore diffusion and silver-iodine reaction. © 2016 American Institute of Chemical Engineers AIChE J, 2016

  3. Adsorption of iodine on hydrogen-reduced silver-exchanged mordenite: Experiments and modeling

    SciTech Connect

    Nan, Yue; Tavlarides, Lawrence L.; DePaoli, David W.

    2016-08-03

    The adsorption process of iodine, a major volatile radionuclide in the off-gas streams of spent nuclear fuel reprocessing, on hydrogen-reduced silver-exchanged mordenite (Ag0Z) was studied at the micro-scale. The gas-solid mass transfer and reaction involved in the adsorption process were investigated and evaluated with appropriate models. Optimal conditions for reducing the silver-exchanged mordenite (AgZ) in a hydrogen stream were determined. Kinetic and equilibrium data of iodine adsorption on Ag0Z were obtained by performing single-layer adsorption experiments with experimental systems of high precision at 373–473 K over various iodine concentrations. Results indicate approximately 91% to 97% of the iodine adsorption was through the silver-iodine reaction. The effect of temperature on the iodine loading capacity of Ag0Z was discussed. In conclusion, the Shrinking Core model describes the data well, and the primary rate controlling mechanisms were macro-pore diffusion and silver-iodine reaction. © 2016 American Institute of Chemical Engineers AIChE J, 2016

  4. Adsorption of iodine on hydrogen-reduced silver-exchanged mordenite: Experiments and modeling

    DOE PAGES

    Nan, Yue; Tavlarides, Lawrence L.; DePaoli, David W.

    2016-08-03

    The adsorption process of iodine, a major volatile radionuclide in the off-gas streams of spent nuclear fuel reprocessing, on hydrogen-reduced silver-exchanged mordenite (Ag0Z) was studied at the micro-scale. The gas-solid mass transfer and reaction involved in the adsorption process were investigated and evaluated with appropriate models. Optimal conditions for reducing the silver-exchanged mordenite (AgZ) in a hydrogen stream were determined. Kinetic and equilibrium data of iodine adsorption on Ag0Z were obtained by performing single-layer adsorption experiments with experimental systems of high precision at 373–473 K over various iodine concentrations. Results indicate approximately 91% to 97% of the iodine adsorption wasmore » through the silver-iodine reaction. The effect of temperature on the iodine loading capacity of Ag0Z was discussed. In conclusion, the Shrinking Core model describes the data well, and the primary rate controlling mechanisms were macro-pore diffusion and silver-iodine reaction. © 2016 American Institute of Chemical Engineers AIChE J, 2016« less

  5. Mucus permeating thiomer nanoparticles.

    PubMed

    Köllner, S; Dünnhaupt, S; Waldner, C; Hauptstein, S; Pereira de Sousa, I; Bernkop-Schnürch, A

    2015-11-01

    The aim of this study was to develop and evaluate a novel mucoadhesive drug delivery system based on thiolated poly(acrylic acid) nanoparticles exhibiting mucolytic properties to enhance particle diffusion into deeper mucus regions before adhesion. Mediated by a carbodiimide, cysteine and the mucolytic enzyme papain were covalently attached to poly(acrylic acid) via amide bond formation. The conjugates were co-precipitated with calcium chloride in order to obtain papain modified (PAA-pap) and thiolated nanoparticles (PAA-cys) as well as particles containing both conjugates (PAA-cys-pap). The nanoparticulate systems were characterized regarding particle size distribution and zeta potential. Particle transport was investigated by diffusion studies across intestinal mucus using two different techniques. Furthermore, mucoadhesive properties of all particles were evaluated via rheological measurements. Results demonstrated that all nanoparticles were in a size range of 158-214 nm and showed negative zeta potentials. Due to the presence of papain, the PAA-cys-pap particles were capable of cleaving mucoglycoprotein substructures and consequently exhibited a 2.0-fold higher penetration into the mucus layer in comparison with PAA-cys particles. Within the rheological studies, an 1.9-fold increase in mucoadhesion could be achieved for the nanoparticulate system based on thiolated PAA compared to papain modified particles (PAA-pap). Therefore, the newly developed particulate system (PAA-cys-pap) is characterized by mucoadhesive as well as mucolytic properties. The combination of both effects - mucus-permeating and mucoadhesive properties - might be a promising strategy for the development of oral drug delivery systems to overcome the mucus barrier and providing a prolonged residence time close to the absorption membrane. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Opto-acoustic cell permeation

    SciTech Connect

    Visuri, S R; Heredia, N

    2000-03-09

    Optically generated acoustic waves have been used to temporarily permeate biological cells. This technique may be useful for enhancing transfection of DNA into cells or enhancing the absorption of locally delivered drugs. A diode-pumped frequency-doubled Nd:YAG laser operating at kHz repetition rates was used to produce a series of acoustic pulses. An acoustic wave was formed via thermoelastic expansion by depositing laser radiation into an absorbing dye. Generated pressures were measured with a PVDF hydrophone. The acoustic waves were transmitted to cultured and plated cells. The cell media contained a selection of normally- impermeable fluorescent-labeled dextran dyes. Following treatment with the opto-acoustic technique, cellular incorporation of dyes, up to 40,000 Molecular Weight, was noted. Control cells that did not receive opto-acoustic treatment had unremarkable dye incorporation. Uptake of dye was quantified via fluorescent microscopic analysis. Trypan Blue membrane exclusion assays and fluorescent labeling assays confirmed the vitality of cells following treatment. This method of enhanced drug delivery has the potential to dramatically reduce required drug dosages and associated side effects and enable revolutionary therapies.

  7. Enhanced hydrogenation and reduced lattice distortion in size selected Pd-Ag and Pd-Cu alloy nanoparticles

    SciTech Connect

    Sengar, Saurabh K.; Mehta, B. R.; Kulriya, P. K.; Khan, S. A.

    2013-10-21

    Important correlation between valence band spectra and hydrogenation properties in Pd alloy nanoparticles is established by studying the properties of size selected and monocrystalline Pd, Ag, Cu, Pd-Ag, and Pd-Cu nanoparticles. The X-ray photoelectron spectroscopy and elastic recoil detection analysis show that size induced Pd4d centroid shift is related to enhanced hydrogenation with H/Pd ratio of 0.57 and 0.49 in Pd-Ag and Pd-Cu nanoparticles in comparison to reported bulk values of 0.2 and 0.1, respectively. Pd-alloy nanoparticles show lower hydrogen induced lattice distortion. The reduced distortion and higher hydrogen reactivity of Pd-alloy nanoparticles is important for numerous hydrogen related applications.

  8. Microbial ecology of a perchlorate-reducing, hydrogen-based membrane biofilm reactor.

    PubMed

    Nerenberg, Robert; Kawagoshi, Yasunori; Rittmann, Bruce E

    2008-02-01

    The hydrogen-based membrane biofilm reactor (MBfR) has been shown to reduce perchlorate to below 4 microg/L, but little is known about the microbial ecology of this or other hydrogen-based reactors, especially when influent perchlorate concentrations are much lower than the influent oxygen and nitrate concentrations. Dissimilatory (per)chlorate-reducing bacteria (PCRB) can use oxygen as an electron acceptor, and most can also use nitrate. Since oxygen and nitrate can be reduced concurrently with perchlorate, they may serve as primary electron acceptors, sustaining PCRB when the perchlorate concentrations are very low. We studied five identical MBfRs, all seeded with the same inoculum and initially supplied with oxygen, or oxygen plus nitrate, in the influent. After 20 days, perchlorate was added to four MBfRs at influent concentrations of 100-10,000 microg/L, while the fifth was maintained as a control. One day after perchlorate addition, the MBfRs displayed limited perchlorate reduction, suggesting a low initial abundance of PCRB. However, perchlorate reduction improved significantly over time, and denaturing gradient gel electrophoresis (DGGE) analyses suggested an increasing abundance of a single Dechloromonas species. Fluorescence in-situ hybridization (FISH) tests showed that the Dechloromonas species accounted for 14% of the bacterial count in the control MBfR, and 22%, 31%, and 49% in the MBfRs receiving nitrate plus 100, 1000, and 10,000 microg/L perchlorate, respectively. The abundance was 34% in the MBfR receiving oxygen plus 1000 microg/L perchlorate. These results suggest that oxygen is more favorable than nitrate as a primary electron acceptor for PCRB, that PCRB are present at low levels even without perchlorate, and that the presence of perchlorate, even at low levels relative to nitrate or oxygen, significantly enhances selection for PCRB.

  9. Process and apparatus for reducing the loss of hydrogen from Stirling engines

    SciTech Connect

    Alger, D.L.

    1987-03-24

    A Stirling engine assembly is described which defines a working gas volume therein, the Stirling engine assembly comprising: a working gas reservoir for storing a working gas at a pressure greater than pressure of the working gas in the working volume of the Stirling engine; a trap cell operatively connected between an outlet of the reservoir and the Stirling engine working volume. The trap cell includes an enclosure having porous windows at either end thereof and a sorbent with an affinity for water vapor therein, such that water vapor adsorbed on the sorbent diffuses into the hydrogen passing from the reservoir into the working engine; a compressor means for drawing working gas from the Stirling engine working volume, through the trap cell and pumping the working gas into the hydrogen reservoir. The sorbent in the trap cell at the reduced pressure caused by the compressor adsorbs water vapor from the working gas such that substantially dry working gas is pumped by the compressor into the reservoir. The working gas is doped with water vapor by the tank cell as it passes into the Stirling engine and is dried by the trap cell as it is removed from the working engine for storage in the reservoir to prevent condensation of water vapor in the reservoir.

  10. Hydrogen

    PubMed Central

    Bockris, John O’M.

    2011-01-01

    The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech. PMID:28824125

  11. Facile one-step electrochemical deposition of copper nanoparticles and reduced graphene oxide as nonenzymatic hydrogen peroxide sensor

    NASA Astrophysics Data System (ADS)

    Moozarm Nia, Pooria; Woi, Pei Meng; Alias, Yatimah

    2017-08-01

    For several decades, hydrogen peroxide has exhibited to be an extremely significant analyte as an intermediate in several biological devices as well as in many industrial systems. A straightforward and novel one-step technique was employed to develop a sensitive non-enzymatic hydrogen peroxide (H2O2) sensor by simultaneous electrodeposition of copper nanoparticles (CuNPs) and reduced graphene oxide (rGO). The electroreduction performance of the CuNPs-rGO for hydrogen peroxide detection was studied by cyclic voltammetry (CV) and chronoamperometry (AMP) methods The CuNPs-rGO showed a synergistic effect of reduced graphene oxide and copper nanoparticles towards the electroreduction of hydrogen peroxide, indicating high reduction current. At detection potential of -0.2 V, the CuNPs-rGO sensor demonstrated a wide linear range up to 18 mM with a detection limit of 0.601 mM (S/N = 3). Furthermore, with addition of hydrogen peroxide, the sensor responded very quickly (<3 s). The CuNPs-rGO presents high selectivity, sensitivity, stability and fast amperometric sensing towards hydrogen peroxide which makes it favorable for the development of non-enzymatic hydrogen peroxide sensor.

  12. Molybdenum disulfide nanoparticles decorated reduced graphene oxide: highly sensitive and selective hydrogen sensor.

    PubMed

    Venkatesan, A; Rathi, Servin; Lee, In-Yeal; Park, Jinwoo; Lim, Dongsuk; Kang, Moonshik; Joh, Han-Ik; Kim, Gil-Ho; Kannan, E S

    2017-09-08

    In this work, we report on the hydrogen (H2) sensing behavior of reduced graphene oxide (RGO)/molybdenum disulfide (MoS2) nano particles (NPs) based composite film. The RGO/MoS2 composite exhibited a highly enhanced H2 response (∼15.6%) for 200 ppm at an operating temperature of 60 °C. Furthermore, the RGO/MoS2 composite showed excellent selectivity to H2 with respect to ammonia (NH3) and nitric oxide (NO) which are highly reactive gas species. The composite's response to H2 is 2.9 times higher than that of NH3 whereas for NO it is 3.5. This highly improved H2 sensing response and selectivity of RGO/MoS2 at low operating temperatures were attributed to the structural integration of MoS2 nanoparticles in the nanochannels and pores in the RGO layer.

  13. Molybdenum disulfide nanoparticles decorated reduced graphene oxide: highly sensitive and selective hydrogen sensor

    NASA Astrophysics Data System (ADS)

    Venkatesan, A.; Rathi, Servin; Lee, In-yeal; Park, Jinwoo; Lim, Dongsuk; Kang, Moonshik; Joh, Han-Ik; Kim, Gil-Ho; Kannan, E. S.

    2017-09-01

    In this work, we report on the hydrogen (H2) sensing behavior of reduced graphene oxide (RGO)/molybdenum disulfide (MoS2) nano particles (NPs) based composite film. The RGO/MoS2 composite exhibited a highly enhanced H2 response (∼15.6%) for 200 ppm at an operating temperature of 60 °C. Furthermore, the RGO/MoS2 composite showed excellent selectivity to H2 with respect to ammonia (NH3) and nitric oxide (NO) which are highly reactive gas species. The composite’s response to H2 is 2.9 times higher than that of NH3 whereas for NO it is 3.5. This highly improved H2 sensing response and selectivity of RGO/MoS2 at low operating temperatures were attributed to the structural integration of MoS2 nanoparticles in the nanochannels and pores in the RGO layer.

  14. Hydrogen sulfide reduces serum triglyceride by activating liver autophagy via the AMPK-mTOR pathway.

    PubMed

    Sun, Li; Zhang, Song; Yu, Chengyuan; Pan, Zhenwei; Liu, Yang; Zhao, Jing; Wang, Xiaoyu; Yun, Fengxiang; Zhao, Hongwei; Yan, Sen; Yuan, Yue; Wang, Dingyu; Ding, Xue; Liu, Guangzhong; Li, Wenpeng; Zhao, Xuezhu; Liu, Zhaorui; Li, Yue

    2015-12-01

    Autophagy plays an important role in liver triglyceride (TG) metabolism. Inhibition of autophagy could reduce the clearance of TG in the liver. Hydrogen sulfide (H2S) is a potent stimulator of autophagic flux. Recent studies showed H2S is protective against hypertriglyceridemia (HTG) and noalcoholic fatty liver disease (NAFLD), while the mechanism remains to be explored. Here, we tested the hypothesis that H2S reduces serum TG level and ameliorates NAFLD by stimulating liver autophagic flux by the AMPK-mTOR pathway. The level of serum H2S in patients with HTG was lower than that of control subjects. Sodium hydrosulfide (NaHS, H2S donor) markedly reduced serum TG levels of male C57BL/6 mice fed a high-fat diet (HFD), which was abolished by coadministration of chloroquine (CQ), an inhibitor of autophagic flux. In HFD mice, administration of NaSH increased the LC3BII-to-LC3BI ratio and decreased the p62 protein level. Meanwhile, NaSH increased the phosphorylation of AMPK and thus reduced the phosphorylation of mTOR in a Western blot study. In cultured LO2 cells, high-fat treatment reduced the ratio of LC3BII to LC3BI and the phosphorylation of AMPK, which were reversed by the coadministration of NaSH. Knockdown of AMPK by siRNA in LO2 cells blocked the autophagic enhancing effects of NaSH. The same qualitative effect was observed in AMPKα2(-/-) mice. These results for the first time demonstrated that H2S could reduce serum TG level and ameliorate NAFLD by activating liver autophagy via the AMPK-mTOR pathway.

  15. Effect of nitrate, acetate and hydrogen on native perchlorate-reducing microbial communities and their activity in vadose soil

    PubMed Central

    Nozawa-Inoue, Mamie; Jien, Mercy; Yang, Kun; Rolston, Dennis E.; Hristova, Krassimira R.; Scow, Kate M.

    2011-01-01

    Effect of nitrate, acetate and hydrogen on native perchlorate-reducing bacteria (PRB) was examined by conducting microcosm tests using vadose soil collected from a perchlorate-contaminated site. The rate of perchlorate reduction was enhanced by hydrogen amendment and inhibited by acetate amendment, compared to unamendment. Nitrate was reduced before perchlorate in all amendments. In hydrogen-amended and unamended soils, nitrate delayed perchlorate reduction, suggesting the PRB preferentially use nitrate as an electron acceptor. In contrast, nitrate eliminated the inhibitory effect of acetate amendment on perchlorate reduction and increased the rate and the extent, possibly because the preceding nitrate reduction/denitrification decreased the acetate concentration which was inhibitory to the native PRB. In hydrogen-amended and unamended soils, perchlorate reductase gene (pcrA) copies, representing PRB densities, increased with either perchlorate or nitrate reduction, suggesting either perchlorate or nitrate stimulates growth of the PRB. In contrast, in acetate-amended soil pcrA increased only when perchlorate was depleted: a large portion of the PRB may have not utilized nitrate in this amendment. Nitrate addition did not alter the distribution of the dominant pcrA clones in hydrogen-amended soil, likely because of the functional redundancy of PRB as nitrate-reducers/denitrifiers, whereas acetate selected different pcrA clones from those with hydrogen amendment. PMID:21284679

  16. Hydrogen gas alleviates oxygen toxicity by reducing hydroxyl radical levels in PC12 cells

    PubMed Central

    Yu, Junchao; Yu, Qiuhong; Liu, Yaling; Zhang, Ruiyun; Xue, Lianbi

    2017-01-01

    Hyperbaric oxygen (HBO) therapy through breathing oxygen at the pressure of above 1 atmosphere absolute (ATA) is useful for varieties of clinical conditions, especially hypoxic-ischemic diseases. Because of generation of reactive oxygen species (ROS), breathing oxygen gas at high pressures can cause oxygen toxicity in the central nervous system, leading to multiple neurological dysfunction, which limits the use of HBO therapy. Studies have shown that Hydrogen gas (H2) can diminish oxidative stress and effectively reduce active ROS associated with diseases. However, the effect of H2 on ROS generated from HBO therapy remains unclear. In this study, we investigated the effect of H2 on ROS during HBO therapy using PC12 cells. PC12 cells cultured in medium were exposed to oxygen gas or mixed oxygen gas and H2 at 1 ATA or 5 ATA. Cells viability and oxidation products and ROS were determined. The data showed that H2 promoted the cell viability and inhibited the damage in the cell and mitochondria membrane, reduced the levels of lipid peroxidation and DNA oxidation, and selectively decreased the levels of •OH but not disturbing the levels of O2•-, H2O2, or NO• in PC12 cells during HBO therapy. These results indicated that H2 effectively reduced •OH, protected cells against oxygen toxicity resulting from HBO therapy, and had no effect on other ROS. Our data supported that H2 could be potentially used as an antioxidant during HBO therapy. PMID:28362819

  17. Hydrogen gas alleviates oxygen toxicity by reducing hydroxyl radical levels in PC12 cells.

    PubMed

    Yu, Junchao; Yu, Qiuhong; Liu, Yaling; Zhang, Ruiyun; Xue, Lianbi

    2017-01-01

    Hyperbaric oxygen (HBO) therapy through breathing oxygen at the pressure of above 1 atmosphere absolute (ATA) is useful for varieties of clinical conditions, especially hypoxic-ischemic diseases. Because of generation of reactive oxygen species (ROS), breathing oxygen gas at high pressures can cause oxygen toxicity in the central nervous system, leading to multiple neurological dysfunction, which limits the use of HBO therapy. Studies have shown that Hydrogen gas (H2) can diminish oxidative stress and effectively reduce active ROS associated with diseases. However, the effect of H2 on ROS generated from HBO therapy remains unclear. In this study, we investigated the effect of H2 on ROS during HBO therapy using PC12 cells. PC12 cells cultured in medium were exposed to oxygen gas or mixed oxygen gas and H2 at 1 ATA or 5 ATA. Cells viability and oxidation products and ROS were determined. The data showed that H2 promoted the cell viability and inhibited the damage in the cell and mitochondria membrane, reduced the levels of lipid peroxidation and DNA oxidation, and selectively decreased the levels of •OH but not disturbing the levels of O2•-, H2O2, or NO• in PC12 cells during HBO therapy. These results indicated that H2 effectively reduced •OH, protected cells against oxygen toxicity resulting from HBO therapy, and had no effect on other ROS. Our data supported that H2 could be potentially used as an antioxidant during HBO therapy.

  18. Immobilization of Reduced Graphene Oxide on Hydrogen-Terminated Silicon Substrate as a Transparent Conductive Protector.

    PubMed

    Tu, Yudi; Utsunomiya, Toru; Kokufu, Sho; Soga, Masahiro; Ichii, Takashi; Sugimura, Hiroyuki

    2017-10-02

    Silicon is a promising electrode material for photoelectrochemical and photocatalytic reactions. However, the chemically active surface of silicon will be easily oxidized when exposed to the oxidation environment. We immobilized graphene oxide (GO) onto hydrogen-terminated silicon (H-Si) and reduced it through ultraviolet (UV) and vacuum-ultraviolet (VUV) irradiation. This acted as an ultrathin conductive layer to protect H-Si from oxidation. The elemental evolution of GO was studied by X-ray photoelectron spectroscopy, and it was found that GO was partially reduced soon after the deposition onto H-Si and further reduced after UV or VUV light irradiation. The VUV photoreduction demonstrated ca. 100 times higher efficiency compared to the UV reduction based on the irradiation dose. The saturated oxygen-to-carbon ratio (RO/C) of the reduced graphene oxide (rGO) was 0.21 ± 0.01, which is lower than the photoreduction of GO on SiO2 substrate. This indicated the H-Si played an important role in assisting the photoreduction of GO. No obvious exfoliation of rGO was observed after sonicating the rGO-covered H-Si sample in water, which indicated rGO was immobilized on H-Si. The electrical conductivity of H-Si surface was maintained in the rGO-covered region while the exposed H-Si region became insulating, which was observed by conductive atomic force microscopy. The rGO was verified capable to protect the active H-Si against the oxidation under an ambient environment.

  19. Mn doped MoS2/reduced graphene oxide hybrid for enhanced hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Wu, Liqian; Xu, Xiaobing; Zhao, Yuqi; Zhang, Kaiyu; Sun, Yuan; Wang, Tingting; Wang, Yuanqi; Zhong, Wei; Du, Youwei

    2017-12-01

    The hybrid material of Mn-doped molybdenum disulfide/reduced graphene oxide (Mn-MoS2/rGO) is successfully fabricated through a one-pot hydrothermal method. The hybrid material, evaluated as electrochemical catalyst for the hydrogen evolution reaction (HER), exhibits improved catalytic activity and good stability for the HER in acidic medium with small overpotential (approximately 110 mV). Through analyses, it can be concluded that the improvement for electrochemical HER performance of the hybrid catalyst is ascribed not only to high conductivity mainly from reduced graphene oxide, but also to fundamental catalytic activity enhancement generated by Mn ions doping into the S-edge of MoS2 with a portion of Mo ions replacement. These results verify the facilitation effect of Mn-doping on HER activities, and the Mn-MoS2/rGO hybrid prepared in this work could be employed as a promising alternative to noble metal catalysts in HER.

  20. Hydrothermal synthesis of cobalt oxide porous nanoribbons anchored with reduced graphene oxide for hydrogen peroxide detection

    NASA Astrophysics Data System (ADS)

    Zhang, Xinmeng; Li, Kezhi; Li, Hejun; Lu, Jinhua; Fu, Qiangang; Zhang, Leilei

    2016-08-01

    A new Co3O4-reduced graphene oxide (Co3O4-rGO) nanostructure was successfully prepared by hydrothermal-synthesized Co3O4 porous nanoribbons with an approximate length of 6-17 μm, a width of 21-737 nm, and a thickness of 33-80 nm hybridizing with reduced graphene oxide. The electrochemical properties of the Co3O4-rGO-modified electrode were investigated by the cyclic voltammograms and amperometric current-time method. The modified electrode shows high electrochemical activity for the catalytic reduction and detection of H2O2 in alkaline medium. The nonenzymatic hydrogen peroxide sensor exhibits wide linear range of 1-18.5 mM ( R = 0.99439), high adsorption amount about 3.24 × 10-6 mol/cm2, and a low detection limit of 5.35 × 10-7 M ( S/ N = 3). In addition, the sensor has a fast response (<5 s), good long-term stability, excellent repeatability (3.22 % relative standard deviation), and high selectivity. These outstanding properties of the sensor derive from their particular hybrid structure and synergistic effects between rGO and Co3O4.

  1. Hydrogen separation process

    DOEpatents

    Mundschau, Michael; Xie, Xiaobing; Evenson, IV, Carl; Grimmer, Paul; Wright, Harold

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  2. Gas Permeation Computations with Mathematica

    ERIC Educational Resources Information Center

    Binous, Housam

    2006-01-01

    We show a new approach, based on the utilization of Mathematica, to solve gas permeation problems using membranes. We start with the design of a membrane unit for the separation of a multicomponent mixture. The built-in Mathematica function, FindRoot, allows one to solve seven simultaneous equations instead of using the iterative approach of…

  3. Gas Permeation Computations with Mathematica

    ERIC Educational Resources Information Center

    Binous, Housam

    2006-01-01

    We show a new approach, based on the utilization of Mathematica, to solve gas permeation problems using membranes. We start with the design of a membrane unit for the separation of a multicomponent mixture. The built-in Mathematica function, FindRoot, allows one to solve seven simultaneous equations instead of using the iterative approach of…

  4. Sodium tetraborate decahydrate treatment reduces hydrogen sulfide emissions and the sulfate reducing bacteria population of swine manure

    USDA-ARS?s Scientific Manuscript database

    The emission of odorous and toxic gases from stored livestock manure is well documented, and poses a serious health risk to farmers and livestock. Hydrogen sulfide emissions have been sharply rising with more intensive livestock production and are of particular concern due to its acute toxicity. Num...

  5. Borax and octabor treatment of stored swine manure to reduce sulfate reducing bacteria and hydrogen sulfide emissions

    USDA-ARS?s Scientific Manuscript database

    Odorous gas emissions from stored swine manure are becoming serious environmental and health issues as the livestock industry becomes more specialized, concentrated, and industrialized. These nuisance gasses include hydrogen sulfide (H2S), ammonia, and methane, which are produced as a result of ana...

  6. Preactivated thiomers: Permeation enhancing properties

    PubMed Central

    Wang, Xueqing; Iqbal, Javed; Rahmat, Deni; Bernkop-Schnürch, Andreas

    2012-01-01

    The study was aimed to prepare a series of poly(acrylic acid)-cysteine-2-mercaptonicotinic acid conjugates (preactivated thiomers) and to evaluate the influence of molecular mass or degree of preactivation with 2-mercaptonicotinic acid (2MNA) on their permeation enhancing properties. Preactivated thiomers with different molecular mass and different degree of preactivation were synthesized and categorized on the basis of their molecular mass and degree of preactivation as PAA100-Cys-2MNA (h), PAA250-Cys-2MNA (h), PAA450-Cys-2MNA (h), PAA450-Cys-2MNA (m) and PAA450-Cys-2MNA (l). In vitro permeation studies, the permeation enhancement ability for preactivated thiomers was ranked as PAA450-Cys-2MNA (h) > PAA250-Cys-2MNA (h) > PAA100-Cys-2MNA (h) on both Caco-2 cell monolayers and rat intestinal mucosa. Comparing the influence of degree of preactivation with 2MNA on permeation enhancement, the following order PAA450-Cys-2MNA (h) > PAA450-Cys-2MNA (m) ≈ PAA450-Cys-2MNA (l) on Caco-2 cell monolayers and PAA450-Cys-2MNA (m) > PAA450-Cys-2MNA (h) > PAA450-Cys-2MNA (l) on intestinal mucosa was observed. The Papp of sodium fluorescein was 5.08-fold improved on Caco-2 cell monolayers for PAA450-Cys-2MNA (h) and 2.46-fold improved on intestinal mucosa for PAA450-Cys-2MNA (m), respectively, in comparison to sodium fluorescein in buffer only. These results indicated that preactivated thiomers could be considered as a promising macromolecular permeation enhancing polymer for non-invasive drug administration. PMID:22960503

  7. Effect of water on hydrogen permeability

    NASA Technical Reports Server (NTRS)

    Hulligan, David; Tomazic, William A.

    1987-01-01

    Doping of hydrogen with CO and CO2 was developed to reduce hydrogen permeation in Stirling engines by forming a low permeability oxide coating on the inner surface of the heater head tubes. Although doping worked well, under certain circumstances the protective oxide could be chemically reduced by the hydrogen in the engine. Some oxygen is required in the hydrogen to prevent reduction. Eventually, all the oxygen in the hydrogen gas - whatever its source - shows up as water. This is the result of hydrogen reducing the CO, CO2, or the protective inner surface oxides. This water can condense in the engine system under the right conditions. If the concentration of water vapor is reduced to a low enough level, the hydrogen can chemically reduce the oxide coating, resulting in an increase in permeability. This work was done to define the minimum water content required to avoid this reduction in the oxide coating. The results of this testing show that a minimum of approximately 750 ppm water is required to prevent an increase in permeability of CG-27, a high temperature metal alloy selected for Stirling engine heater tubes.

  8. Structure-Kinetic Relationships of Passive Membrane Permeation from Multiscale Modeling.

    PubMed

    Dickson, Callum J; Hornak, Viktor; Pearlstein, Robert A; Duca, Jose S

    2017-01-11

    Passive membrane permeation of small molecules is essential to achieve the required absorption, distribution, metabolism, and excretion (ADME) profiles of drug candidates, in particular intestinal absorption and transport across the blood-brain barrier. Computational investigations of this process typically involve either building QSAR models or performing free energy calculations of the permeation event. Although insightful, these methods rarely bridge the gap between computation and experiment in a quantitative manner, and identifying structural insights to apply toward the design of compounds with improved permeability can be difficult. In this work, we combine molecular dynamics simulations capturing the kinetic steps of permeation at the atomistic level with a dynamic mechanistic model describing permeation at the in vitro level, finding a high level of agreement with experimental permeation measurements. Calculation of the kinetic rate constants determining each step in the permeation event allows derivation of structure-kinetic relationships of permeation. We use these relationships to probe the structural determinants of membrane permeation, finding that the desolvation/loss of hydrogen bonding required to leave the membrane partitioned position controls the membrane flip-flop rate, whereas membrane partitioning determines the rate of leaving the membrane.

  9. Genetics and Molecular Biology of Hydrogen Metabolism in Sulfate-Reducing Bacteria

    SciTech Connect

    Wall, Judy D.

    2014-12-23

    The degradation of our environment and the depletion of fossil fuels make the exploration of alternative fuels evermore imperative. Among the alternatives is biohydrogen which has high energy content by weight and produces only water when combusted. Considerable effort is being expended to develop photosynthetic systems -- algae, cyanobacteria, and anaerobic phototrophs -- for sustainable H2 production. While promising, this approach also has hurdles such as the harvesting of light in densely pigmented cultures that requires costly constant mixing and large areas for exposure to sunlight. Little attention is given to fermentative H2 generation. Thus understanding the microbial pathways to H2 evolution and metabolic processes competing for electrons is an essential foundation that may expand the variety of fuels that can be generated or provide alternative substrates for fine chemical production. We studied a widely found soil anaerobe of the class Deltaproteobacteria, a sulfate-reducing bacterium to determine the electron pathways used during the oxidation of substrates and the potential for hydrogen production.

  10. Hydrogen Sulfide and/or Ammonia Reduces Spermatozoa Motility through AMPK/AKT Related Pathways

    NASA Astrophysics Data System (ADS)

    Zhao, Yong; Zhang, Wei-Dong; Liu, Xin-Qi; Zhang, Peng-Fei; Hao, Ya-Nan; Li, Lan; Chen, Liang; Shen, Wei; Tang, Xiang-Fang; Min, Ling-Jiang; Meng, Qing-Shi; Wang, Shu-Kun; Yi, Bao; Zhang, Hong-Fu

    2016-11-01

    A number of emerging studies suggest that air pollutants such as hydrogen sulfide (H2S) and ammonia (NH3) may cause a decline in spermatozoa motility. The impact and underlying mechanisms are currently unknown. Boar spermatozoa (in vitro) and peripubertal male mice (in vivo) were exposed to H2S and/or NH3 to evaluate the impact on spermatozoa motility. Na2S and/or NH4Cl reduced the motility of boar spermatozoa in vitro. Na2S and/or NH4Cl disrupted multiple signaling pathways including decreasing Na+/K+ ATPase activity and protein kinase B (AKT) levels, activating Adenosine 5‧-monophosphate (AMP)-activated protein kinase (AMPK) and phosphatase and tensin homolog deleted on chromosome ten (PTEN), and increasing reactive oxygen species (ROS) to diminish boar spermatozoa motility. The increase in ROS might have activated PTEN, which in turn diminished AKT activation. The ATP deficiency (indicated by reduction in Na+/K+ ATPase activity), transforming growth factor (TGFβ) activated kinase-1 (TAK1) activation, and AKT deactivation stimulated AMPK, which caused a decline in boar spermatozoa motility. Simultaneously, the deactivation of AKT might play some role in the reduction of boar spermatozoa motility. Furthermore, Na2S and/or NH4Cl declined the motility of mouse spermatozoa without affecting mouse body weight gain in vivo. Findings of the present study suggest that H2S and/or NH3 are adversely associated with spermatozoa motility.

  11. Creation of Electron-doping Liquid Water with Reduced Hydrogen Bonds.

    PubMed

    Chen, Hsiao-Chien; Mai, Fu-Der; Hwang, Bing-Joe; Lee, Ming-Jer; Chen, Ching-Hsiang; Wang, Shwu-Huey; Tsai, Hui-Yen; Yang, Chih-Ping; Liu, Yu-Chuan

    2016-02-26

    The strength of hydrogen bond (HB) decides water's property and activity. Here we propose the mechanisms on creation and persistence of innovatively prepared liquid water, which is treated by Au nanoparticles (AuNPs) under resonant illumination of green-light emitting diode (LED) to create Au NP-treated (sAuNT) water, with weak HB at room temperature. Hot electron transfer on resonantly illuminated AuNPs, which is confirmed from Au LIII-edge X-ray absorption near edge structure (XANES) spectra, is responsible for the creation of negatively charged sAuNT water with the incorporated energy-reduced hot electron. This unique electronic feature makes it stable at least for one week. Compared to deionized (DI) water, the resulting sAuNT water exhibits many distinct properties at room temperature. Examples are its higher activity revealed from its higher vapor pressure and lower specific heat. Furthermore, Mpemba effect can be successfully explained by our purposed hypothesis based on sAuNT water-derived idea of water energy and HB.

  12. Creation of Electron-doping Liquid Water with Reduced Hydrogen Bonds

    NASA Astrophysics Data System (ADS)

    Chen, Hsiao-Chien; Mai, Fu-Der; Hwang, Bing-Joe; Lee, Ming-Jer; Chen, Ching-Hsiang; Wang, Shwu-Huey; Tsai, Hui-Yen; Yang, Chih-Ping; Liu, Yu-Chuan

    2016-02-01

    The strength of hydrogen bond (HB) decides water’s property and activity. Here we propose the mechanisms on creation and persistence of innovatively prepared liquid water, which is treated by Au nanoparticles (AuNPs) under resonant illumination of green-light emitting diode (LED) to create Au NP-treated (sAuNT) water, with weak HB at room temperature. Hot electron transfer on resonantly illuminated AuNPs, which is confirmed from Au LIII-edge X-ray absorption near edge structure (XANES) spectra, is responsible for the creation of negatively charged sAuNT water with the incorporated energy-reduced hot electron. This unique electronic feature makes it stable at least for one week. Compared to deionized (DI) water, the resulting sAuNT water exhibits many distinct properties at room temperature. Examples are its higher activity revealed from its higher vapor pressure and lower specific heat. Furthermore, Mpemba effect can be successfully explained by our purposed hypothesis based on sAuNT water-derived idea of water energy and HB.

  13. Hydrogen Sulfide and/or Ammonia Reduces Spermatozoa Motility through AMPK/AKT Related Pathways

    PubMed Central

    Zhao, Yong; Zhang, Wei-Dong; Liu, Xin-Qi; Zhang, Peng-Fei; Hao, Ya-Nan; Li, Lan; Chen, Liang; Shen, Wei; Tang, Xiang-Fang; Min, Ling-Jiang; Meng, Qing-Shi; Wang, Shu-Kun; Yi, Bao; Zhang, Hong-Fu

    2016-01-01

    A number of emerging studies suggest that air pollutants such as hydrogen sulfide (H2S) and ammonia (NH3) may cause a decline in spermatozoa motility. The impact and underlying mechanisms are currently unknown. Boar spermatozoa (in vitro) and peripubertal male mice (in vivo) were exposed to H2S and/or NH3 to evaluate the impact on spermatozoa motility. Na2S and/or NH4Cl reduced the motility of boar spermatozoa in vitro. Na2S and/or NH4Cl disrupted multiple signaling pathways including decreasing Na+/K+ ATPase activity and protein kinase B (AKT) levels, activating Adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) and phosphatase and tensin homolog deleted on chromosome ten (PTEN), and increasing reactive oxygen species (ROS) to diminish boar spermatozoa motility. The increase in ROS might have activated PTEN, which in turn diminished AKT activation. The ATP deficiency (indicated by reduction in Na+/K+ ATPase activity), transforming growth factor (TGFβ) activated kinase-1 (TAK1) activation, and AKT deactivation stimulated AMPK, which caused a decline in boar spermatozoa motility. Simultaneously, the deactivation of AKT might play some role in the reduction of boar spermatozoa motility. Furthermore, Na2S and/or NH4Cl declined the motility of mouse spermatozoa without affecting mouse body weight gain in vivo. Findings of the present study suggest that H2S and/or NH3 are adversely associated with spermatozoa motility. PMID:27883089

  14. Low temperature hydrogen sensing using reduced graphene oxide and tin oxide nanoflowers based hybrid structure

    NASA Astrophysics Data System (ADS)

    Venkatesan, A.; Rathi, Servin; Lee, In-Yeal; Park, Jinwoo; Lim, Dongsuk; Kim, Gil-Ho; Kannan, E. S.

    2016-12-01

    In this paper, we have demonstrated a low temperature hydrogen (H2) sensor based on reduced graphene oxide (rGO) and tin oxide nanoflowers (SnO2 NFs) hybrid composite film. The addition of SnO2 NFs into rGO solution inhibits irreversible restacking and agglomeration of rGO and increases the active surface area for interaction with H2. This rGO-SnO2 NFs hybrid film sensor showed an excellent response to H2 at 60 °C at 200 ppm with an improvement of 126% compared to pure rGO which was used as a control sample. The sensor also showed good response and recovery time in comparison to pure rGO film. The highly improved H2 sensing characteristics of rGO-SnO2 NFs hybrid are due to its (a) unique structural geometry that increased the surface area for H2 adsorption, and (b) change in the width of depletion layer at the interface due to H2 interaction.

  15. Creation of Electron-doping Liquid Water with Reduced Hydrogen Bonds

    PubMed Central

    Chen, Hsiao-Chien; Mai, Fu-Der; Hwang, Bing-Joe; Lee, Ming-Jer; Chen, Ching-Hsiang; Wang, Shwu-Huey; Tsai, Hui-Yen; Yang, Chih-Ping; Liu, Yu-Chuan

    2016-01-01

    The strength of hydrogen bond (HB) decides water’s property and activity. Here we propose the mechanisms on creation and persistence of innovatively prepared liquid water, which is treated by Au nanoparticles (AuNPs) under resonant illumination of green-light emitting diode (LED) to create Au NP-treated (sAuNT) water, with weak HB at room temperature. Hot electron transfer on resonantly illuminated AuNPs, which is confirmed from Au LIII-edge X-ray absorption near edge structure (XANES) spectra, is responsible for the creation of negatively charged sAuNT water with the incorporated energy-reduced hot electron. This unique electronic feature makes it stable at least for one week. Compared to deionized (DI) water, the resulting sAuNT water exhibits many distinct properties at room temperature. Examples are its higher activity revealed from its higher vapor pressure and lower specific heat. Furthermore, Mpemba effect can be successfully explained by our purposed hypothesis based on sAuNT water-derived idea of water energy and HB. PMID:26916099

  16. Highly efficient hydrogen generation from formic acid using a reduced graphene oxide-supported AuPd nanoparticle catalyst.

    PubMed

    Yang, Xinchun; Pachfule, Pradip; Chen, Yao; Tsumori, Nobuko; Xu, Qiang

    2016-03-18

    Highly dispersed AuPd alloy nanoparticles have been successfully immobilized on reduced graphene oxide (rGO) using a facile non-noble metal sacrificial method, which exhibit the highest activity at 323 K (turnover frequency, 4840 h(-1)) for hydrogen generation without CO impurity from the formic acid/sodium formate system.

  17. USING RESPIROMETRY TO MEASURE HYDROGEN UTILIZATION IN SULFATE REDUCING BACTERIA IN THE PRESENCE OF COPPER AND ZINC

    EPA Science Inventory

    A respirometric method has been developed to measure hydrogen utilization by sulfate reducing bacteria (SRB). One application of this method has been to test inhibitory metals effects on the SRB culture used in a novel acid mine drainage treatment technology. As a control param...

  18. USING RESPIROMETRY TO MEASURE HYDROGEN UTILIZATION IN SULFATE REDUCING BACTERIA IN THE PRESENCE OF COPPER AND ZINC

    EPA Science Inventory

    A respirometric method has been developed to measure hydrogen utilization by sulfate reducing bacteria (SRB). One application of this method has been to test inhibitory metals effects on the SRB culture used in a novel acid mine drainage treatment technology. As a control param...

  19. Green synthesis of highly reduced graphene oxide by compressed hydrogen gas towards energy storage devices

    NASA Astrophysics Data System (ADS)

    Li, Cheng Chao; Yu, Hong; Yan, Qingyu; Hng, Huey Hoon

    2015-01-01

    Herein, we present a new strategy for the mass production of high-quality reduced graphene oxide (RGO) with a surface area of 354 m2 g-1 using high pressure hydrogen as a reducing agent under hydrothermal conditions. The high pressure used is solely generated from the packing of the gas cylinder itself and a pressure meter could simply fulfil the role of monitoring pressure. The reduction process is green without chemical wastes produced. Comparing to other reported methods, the significant advancements of our strategy lie not only in the high-quality RGO with high C/O ratio, conductivity and surface area, but also in the most environment-friendliness and cost-effectiveness, which make the large scale fabrication feasible. Moreover, clean noble metal nanocrystals such as Pt could be easily in situ deposited onto the surface of RGO nanosheets when noble metal salts are introduced into the system. In particular, the prepared RGO and Pt/RGO show exceptional electrochemical performances in supercapacitors and lithium oxygen batteries because of their clean electrochemical surface, good conductivity and large surface area. Our results reveal that the obtained RGO have a specific capacitance of 884.4 F g-1 at a current density of 0.5 A g-1, and the Pt/RGO electrode can deliver discharge-charge capacities of 1000 mAh g-1 for 40 cycles with a high round-trip efficiencies of 74.9% at 50 mA g-1 when used as Li-O2 battery electrodes.

  20. Development of a plasma driven permeation experiment for TPE

    DOE PAGES

    Buchenauer, Dean; Kolasinski, Robert; Shimada, Masa; ...

    2014-04-18

    Experiments on retention of hydrogen isotopes (including tritium) at temperatures less than 800 ?C have been carried out in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory [1,2]. To provide a direct measurement of plasma driven permeation in plasma facing materials at temperatures reaching 1000 ?C, a new TPE membrane holder has been built to hold test specimens (=1 mm in thickness) at high temperature while measuring tritium permeating through the membrane from the plasma facing side. This measurement is accomplished by employing a carrier gas that transports the permeating tritium from the backside of the membrane to ionmore » chambers giving a direct measurement of the plasma driven tritium permeation rate. Isolation of the membrane cooling and sweep gases from TPE’s vacuum chamber has been demonstrated by sealing tests performed up to 1000 ?C of a membrane holder design that provides easy change out of membrane specimens between tests. Simulations of the helium carrier gas which transports tritium to the ion chamber indicate a very small pressure drop (~700 Pa) with good flow uniformity (at 1000 sccm). Thermal transport simulations indicate that temperatures up to 1000 ?C are expected at the highest TPE fluxes.« less

  1. Development of a plasma driven permeation experiment for TPE

    SciTech Connect

    Buchenauer, Dean; Kolasinski, Robert; Shimada, Masa; Donovan, David; Youchison, Dennis; Merrill, Brad

    2014-04-18

    Experiments on retention of hydrogen isotopes (including tritium) at temperatures less than 800 ?C have been carried out in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory [1,2]. To provide a direct measurement of plasma driven permeation in plasma facing materials at temperatures reaching 1000 ?C, a new TPE membrane holder has been built to hold test specimens (=1 mm in thickness) at high temperature while measuring tritium permeating through the membrane from the plasma facing side. This measurement is accomplished by employing a carrier gas that transports the permeating tritium from the backside of the membrane to ion chambers giving a direct measurement of the plasma driven tritium permeation rate. Isolation of the membrane cooling and sweep gases from TPE’s vacuum chamber has been demonstrated by sealing tests performed up to 1000 ?C of a membrane holder design that provides easy change out of membrane specimens between tests. Simulations of the helium carrier gas which transports tritium to the ion chamber indicate a very small pressure drop (~700 Pa) with good flow uniformity (at 1000 sccm). Thermal transport simulations indicate that temperatures up to 1000 ?C are expected at the highest TPE fluxes.

  2. Protective effects of hydrogen enriched saline on liver ischemia reperfusion injury by reducing oxidative stress and HMGB1 release

    PubMed Central

    2014-01-01

    Background The nuclear protein high-mobility group box 1 (HMGB1) is a key trigger for the inflammatory reaction during liver ischemia reperfusion injury (IRI). Hydrogen treatment was recently associated with down-regulation of the expression of HMGB1 and pro-inflammatory cytokines during sepsis and myocardial IRI, but it is not known whether hydrogen has an effect on HMGB1 in liver IRI. Methods A rat model of 60 minutes 70% partial liver ischemia reperfusion injury was used. Hydrogen enriched saline (2.5, 5 or 10 ml/kg) was injected intraperitoneally 10 minutes before hepatic reperfusion. Liver injury was assessed by serum alanine aminotransferase (ALT) enzyme levels and histological changes. We also measured malondialdehyde (MDA), hydroxynonenal (HNE) and 8-hydroxy-guanosine (8-OH-G) levels as markers of the peroxidation injury induced by reactive oxygen species (ROS). In addition, pro-inflammatory cytokines including TNF-α and IL-6, and high mobility group box B1 protein (HMGB1) were measured as markers of post ischemia-reperfusion inflammation. Results Hydrogen enriched saline treatment significantly attenuated the severity of liver injury induced by ischemia-reperfusion. The treatment group showed reduced serum ALT activity and markers of lipid peroxidation and post ischemia reperfusion histological changes were reduced. Hydrogen enriched saline treatment inhibited HMGB1 expression and release, reflecting a reduced local and systemic inflammatory response to hepatic ischemia reperfusion. Conclusion These results suggest that, in our model, hydrogen enriched saline treatment is protective against liver ischemia-reperfusion injury. This effect may be mediated by both the anti-oxidative and anti-inflammatory effects of the solution. PMID:24410860

  3. Hydrogen water reduces NSE, IL-6, and TNF-α levels in hypoxic-ischemic encephalopathy

    PubMed Central

    Yang, Lin

    2016-01-01

    Abstract This study retrospectively analyzed the efficacy of hydrogen water in the treatment of neonatal hypoxic-ischemic encephalopathy (HIE) and its effect on serum neuron-specific enolase (NSE), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) levels. Forty newborns with HIE who received treatment from April 2014 to April 2015 were divided into a conventional care group and a hydrogen water group according to the different treatment methods applied. Twenty healthy full-term newborns comprised the control group. In the hydrogen water group, 5-mL/kg hydrogen water was orally administered two days after birth daily for 10 days in addition to conventional treatment. After 10 days, efficacy indicators were examined in the HIE groups. The NSE, IL-6, and TNF-α levels were compared among all three groups. The efficacy indicators were significantly lower in the hydrogen water group compared with the conventional group. Before treatment, the serum NSE, IL-6, and TNF-α levels in the HIE groups were higher than those in the control group. After treatment, these levels in the hydrogen water group were lower than those in the conventional group. Hydrogen water lowers serum NSE, IL-6, and TNF-α levels in HIE newborns, thereby exerting a protective effect. PMID:28352827

  4. Hydrogen sulfide reduces RAGE toxicity through inhibition of its dimer formation.

    PubMed

    Zhou, Hong; Ding, Lei; Wu, Zhiyuan; Cao, Xu; Zhang, Qichun; Lin, Li; Bian, Jin-Song

    2017-03-01

    RAGE is important in the development of neurodegenerative diseases. The present study was designed to investigate the effect of hydrogen sulfide (H2S, an endogenous gaseous mediator) on the cytotoxicity caused by RAGE activation during the chronic oxidative stress. Aβ1-42 decreased cell viability and induced cell senescence in SH-SY5Y cells. Treatment with advanced glycation end products (AGEs) induced cell injury in HEK293 cells stably expressing RAGE (HEK293-RAGE) and stimulated inflammatory responses in SH-SY5Y cells. Pretreatment of SH-SY5Y cells with an H2S donor, NaHS, significantly attenuated the above harmful effects caused by Aβ1-42 or AGEs. Western blotting analysis shows that oxidative stress enhanced RAGE protein expression which was attenuated by either NaHS or over-expression of cystathionine β-synthase (CBS), a critical enzyme for producing H2S in brain cells. Both Western blots and split GFP complementation analysis demonstrate that NaHS reduced H2O2-enhanced RAGE dimerization. Immunofluorescence analysis shows that H2O2 up-regulated the membrane expression of wild-type RAGE. However, H2O2-enhanced expression of the RAGE harboring C259S/C310S double mutation (DM-RAGE) was observed in the endoplasmic reticulum. Treatment with NaHS attenuated the effects of H2O2 on the protein expression of WT-RAGE, but not that of DM-RAGE. Cycloheximide chase and ubiquitination assays show that NaHS reduced the half-life of WT-RAGE to a similar level of DM-RAGE. S-sulfhydration assay with the tag-switch technique demonstrate that H2S may directly S-sulfhydrate the C259/C301 residues. Our data suggest that H2S reduces RAGE dimer formation and impairs its membrane stability. The lowered plasma membrane abundance of RAGE therefore helps to protect cells against various RAGE mediated pathological effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. COMPARISON OF HYDROGEN CONCENTRATIONS IN PCE-DEHALOGENATING AND SULFATE-REDUCING ESTUARINE SEDIMENTS

    EPA Science Inventory

    The primary transformation pathway for PCE in anoxic environments is through sequential reductive dehalogenation, and information concerning dehalogenation processes that occur in environments containing alternative electron acceptors (sulfate) is limited. Hydrogen is postulated ...

  6. Inhibition of endogenous hydrogen sulfide formation reduces the organ injury caused by endotoxemia.

    PubMed

    Collin, Marika; Anuar, Farhana B M; Murch, Oliver; Bhatia, Madhav; Moore, Philip K; Thiemermann, Christoph

    2005-10-01

    Hydrogen sulfide (H2S) is a naturally occurring gaseous transmitter, which may play important roles in normal physiology and disease. Here, we investigated the role of H2S in the organ injury caused by severe endotoxemia in the rat. Male Wistar rats were subjected to acute endotoxemia (Escherichia coli lipopolysaccharide (LPS) 6 mg kg(-1) intravenously (i.v.) for 6 h) and treated with vehicle (saline, 1 ml kg(-1) i.v.) or DL-propargylglycine (PAG, 10-100 mg kg(-1) i.v.), an inhibitor of the H2S-synthesizing enzyme cystathionine-gamma-lyase (CSE). PAG was administered either 30 min prior to or 60 min after the induction of endotoxemia. Endotoxemia resulted in circulatory failure (hypotension and tachycardia) and an increase in serum levels of alanine aminotransferase and aspartate aminotransferase (markers for hepatic injury), lipase (indicator of pancreatic injury) and creatine kinase (indicator of neuromuscular injury). In the liver, endotoxemia induced a significant increase in the myeloperoxidase (MPO) activity, and in the expression and activity of the H2S-synthesizing enzymes CSE and cystathionine-beta-synthase. Administration of PAG either prior to or after the injection of LPS dose-dependently reduced the hepatocellular, pancreatic and neuromuscular injury caused by endotoxemia, but not the circulatory failure. Pretreatment of rats with PAG abolished the LPS-induced increase in the MPO activity and in the formation of H2S and in the liver. These findings support the view that an enhanced formation of H2S contributes to the pathophysiology of the organ injury in endotoxemia. We propose that inhibition of H2S synthesis may be a useful therapeutic strategy against the organ injury associated with sepsis and shock.

  7. Significant change of local atomic configurations at surface of reduced activation Eurofer steels induced by hydrogenation treatments

    NASA Astrophysics Data System (ADS)

    Greculeasa, S. G.; Palade, P.; Schinteie, G.; Kuncser, A.; Stanciu, A.; Lungu, G. A.; Porosnicu, C.; Lungu, C. P.; Kuncser, V.

    2017-04-01

    Reduced-activation steels such as Eurofer alloys are candidates for supporting plasma facing components in tokamak-like nuclear fusion reactors. In order to investigate the impact of hydrogen/deuterium insertion in their crystalline lattice, annealing treatments in hydrogen atmosphere have been applied on Eurofer slabs. The resulting samples have been analyzed with respect to local structure and atomic configuration both before and after successive annealing treatments, by X-ray diffractometry (XRD), scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS) and conversion electron Mössbauer spectroscopy (CEMS). The corroborated data point out for a bcc type structure of the non-hydrogenated alloy, with an average alloy composition approaching Fe0.9Cr0.1 along a depth of about 100 nm. EDS elemental maps do not indicate surface inhomogeneities in concentration whereas the Mössbauer spectra prove significant deviations from a homogeneous alloying. The hydrogenation increases the expulsion of the Cr atoms toward the surface layer and decreases their oxidation, with considerable influence on the surface properties of the steel. The hydrogenation treatment is therefore proposed as a potential alternative for a convenient engineering of the surface of different Fe-Cr based alloys.

  8. On a new ironmaking process to produce hydrogen and reduce energy consumption

    NASA Astrophysics Data System (ADS)

    Corbari, Rodrigo

    The primary purpose of the present work is to compute the volume and composition of the products of a theoretical charring unit for high volatile coals. In particular, the compositions of volatile gas and char and the hydrogen yield of the process. The volume of oxygen necessary to supply the energy for the process was also calculated. The model consists of materials and energy balance equations and local thermodynamic equilibrium. The model was combined with experimental results relating the effect of temperature on the extent of devolatilization and chemistry evolution of coal. Results of the model indicated that temperature plays a major role defining the quantities and composition of charring products. The H2 concentration of the volatile gas increased from about 16vol% at 700°C to 47vol% at 900°C, leveling off at approximately 52vol% at 1100°C. The hydrogen yield of the process increased from 7 to 60 percent at 700°C and 1100°C respectively. For a typical high volatile coal considered, the volume of gas generated varied from about 210 to 780 liters/kg-coal(STP) according to temperature and fraction of solids combusted. The char becomes enriched in carbon and depleted in hydrogen as temperature is increased. As much as 97 percent of the hydrogen in coal is removed at 1100°C. In the second part of this study, the kinetics of reduction of iron oxide fines with simulated smelter gas was experimentally studied by thermogravimetry. An equimolar CO/CO2 mixture was selected to simulate the off-gas of a smelter operating with char at 50 percent post combustion. Reduction temperatures ranged from 590°C to 1000°C. Under these conditions, reduction was limited to wustite. Results indicated that the reduction kinetics and dominating reaction mechanism varied with temperature, extent of reduction and type of iron oxide employed. Reduction from hematite to wustite proceeded in two consecutive reaction steps with magnetite as an intermediate oxide. The first reduction

  9. Investigation of hydrogen evolution activity for the nickel, nickel-molybdenum nickel-graphite composite and nickel-reduced graphene oxide composite coatings

    NASA Astrophysics Data System (ADS)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang

    2016-03-01

    The nickel, nickel-molybdenum alloy, nickel-graphite and nickel-reduced graphene oxide composite coatings were obtained by the electrodeposition technique from a nickel sulfate bath. Nanocrystalline molybdenum, graphite and reduced graphene oxide in nickel coatings promoted hydrogen evolution reaction in 0.5 M H2SO4 solution at room temperature. However, the nickel-reduced graphene oxide composite coating exhibited the highest electrocatalytic activity for the hydrogen evolution reaction in 0.5 M H2SO4 solution at room temperature. A large number of gaps between 'cauliflower' like grains could decrease effective area for hydrogen evolution reaction in slight amorphous nickel-molybdenum alloy. The synergistic effect between nickel and reduced graphene oxide promoted hydrogen evolution, moreover, refined grain in nickel-reduced graphene oxide composite coating and large specific surface of reduced graphene oxide also facilitated hydrogen evolution reaction.

  10. Atomically Thin Interfacial Suboxide Key to Hydrogen Storage Performance Enhancements of Magnesium Nanoparticles Encapsulated in Reduced Graphene Oxide.

    PubMed

    Wan, Liwen F; Liu, Yi-Sheng; Cho, Eun Seon; Forster, Jason D; Jeong, Sohee; Wang, Hsiao-Tsu; Urban, Jeffrey J; Guo, Jinghua; Prendergast, David

    2017-09-13

    As a model system for hydrogen storage, magnesium hydride exhibits high hydrogen storage density, yet its practical usage is hindered by necessarily high temperatures and slow kinetics for hydrogenation-dehydrogenation cycling. Decreasing particle size has been proposed to simultaneously improve the kinetics and decrease the sorption enthalpies. However, the associated increase in surface reactivity due to increased active surface area makes the material more susceptible to surface oxidation or other side reactions, which would hinder the overall hydrogenation-dehydrogenation process and diminish the capacity. Previous work has shown that the chemical stability of Mg nanoparticles can be greatly enhanced by using reduced graphene oxide as a protecting agent. Although no bulklike crystalline MgO layer has been clearly identified in this graphene-encapsulated/Mg nanocomposite, we propose that an atomically thin layer of honeycomb suboxide exists, based on first-principles interpretation of Mg K-edge X-ray absorption spectra. Density functional theory calculations reveal that in contrast to conventional expectations for thick oxides this interfacial oxidation layer permits H2 dissociation to the same degree as pristine Mg metal with the added benefit of enhancing the binding between reduced graphene oxide and the Mg nanoparticle, contributing to improved mechanical and chemical stability of the functioning nanocomposite.

  11. A novel application of electrospinning technique in sublingual membrane: characterization, permeation and in vivo study.

    PubMed

    Chen, Jianting; Wang, Xiaoyu; Zhang, Wenji; Yu, Shihui; Fan, Jinwu; Cheng, Bingchao; Yang, Xinggang; Pan, Weisan

    2016-08-01

    Isosorbide dinitrate-polyvinylpyrrolidone (ISDN-PVP) electrospinning fibers were formulated and explored as potentially sublingual membrane. The addition of polyethylene glycol (PEG) to the formulation improved flexibility and reduced fluffiness of the fiber mat. The scanning electron microscopy (SEM) demonstrated that the fibers tended to be cross-linking, and the crosslinking degree increased with the increase of PEG amount. The differential scanning calorimetry (DSC) indicated that ISDN existed in non-crystalline state in the fibers (except at the highest drug content). The infrared spectroscopy suggested that ISDN had better compatibility with the ingredients owing to the hydrogen bonding (or hydrophobic interactions). The fibers were highly favorable for the fabrication of sublingual membrane due to neutral pH, large folding endurance and rapid drug release (complete dissolution within 120 s). The permeation study of ISDN through both dialysis membrane (DM) and porcine sublingual mucosa (SM) were carried out. A significant relationship of drug permeation rate through DM and SM was built up, which indicated that DM could be used to partly simulate SM and assess formulation. The pharmacokinetic study in rats demonstrated that the electrospinning fiber membrane had a higher Cmax and lower Tmax compared to the reference preparation, and the relative bioavailability of the fiber membrane was 151.6%.

  12. Hydrogen therapy may reduce the risks related to radiation-induced oxidative stress in space flight.

    PubMed

    Schoenfeld, Michael P; Ansari, Rafat R; Zakrajsek, June F; Billiar, Timothy R; Toyoda, Yoshiya; Wink, David A; Nakao, Atsunori

    2011-01-01

    Cosmic radiation is known to induce DNA and lipid damage associated with increased oxidative stress and remains a major concern in space travel. Hydrogen, recently discovered as a novel therapeutic medical gas in a variety of biomedical fields, has potent antioxidant and anti-inflammatory activities. It is expected that space mission activities will increase in coming years both in numbers and duration. It is therefore important to estimate and prevent the risks encountered by astronauts due to oxidative stress prior to developing clinical symptoms of disease. We hypothesize that hydrogen administration to the astronauts by either inhalation or drinking hydrogen-rich water may potentially yield a novel and feasible preventative/therapeutic strategy to prevent radiation-induced adverse events. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Scoping Analyses on Tritium Permeation to VHTR Integarted Industrial Application Systems

    SciTech Connect

    Chang H. Oh; Eung S. Kim

    2011-03-01

    Tritium permeation is a very important current issue in the very high temperature reactor (VHTR) because tritium is easily permeated through high temperature metallic surfaces. Tritium permeations in the VHTR-integrated systems were investigated in this study using the tritium permeation analysis code (TPAC) that was developed by Idaho National Laboratory (INL). The INL TPAC is a numerical tool that is based on the mass balance equations of tritium containing species and hydrogen (i.e. HT, H2, HTO, HTSO4, TI) coupled with a variety of tritium sources, sink, and permeation models. In the TPAC, ternary fission and thermal neutron caption reactions with 6Li, 7Li 10B, 3He were taken into considerations as tritium sources. Purification and leakage models were implemented as main tritium sinks. Permeation of tritium and H2 through pipes, vessels, and heat exchangers were considered as main tritium transport paths. In addition, electroyzer and isotope exchange models were developed for analyzing hydrogen production systems including high temperature electrolysis (HTSE) and sulfur-iodine processes.

  14. Kinetic and thermodynamic studies on the disulfide-bond reducing potential of hydrogen sulfide.

    PubMed

    Vasas, Anita; Dóka, Éva; Fábián, István; Nagy, Péter

    2015-04-30

    The significance of persulfide species in hydrogen sulfide biology is increasingly recognized. However, the molecular mechanisms of their formation remain largely elusive. The obvious pathway of the reduction of biologically abundant disulfide moieties by sulfide was challenged on both thermodynamic and kinetic grounds. Using DTNB (5,5'-dithiobis-(2-nitrobenzoic acid), also known as Ellman's reagent) as a model disulfide we conducted a comprehensive kinetic study for its reaction with sulfide. The bimolecular reaction is relatively fast with a second-order rate constant of 889 ± 12 M(-1)s(-1) at pH = 7.4. pH dependence of the rate law revealed that the reaction proceeds via the bisulfide anion species with an initial nucleophilic thiol-disulfide exchange reaction to give 5-thio-2-nitrobenzoic acid (TNB) and TNB-persulfide with a pH independent second-order rate constant of 1090 ± 12 M(-1)s(-1). However, kinetic studies and stoichiometric analyses in a wide range of reactant ratios together with kinetic simulations revealed that it is a multistep process that proceeds via kinetically driven, practically irreversible reactions along the disulfide → persulfide → inorganic polysulfides axis. The kinetic model postulated here, which is fully consistent with the experimental data, suggests that the TNB-persulfide is further reduced by sulfide with a second-order rate constant in the range of 5 × 10(3) - 5 × 10(4) M(-1)s(-1) at pH 7.4 and eventually yields inorganic polysulfides and TNB. The reactions of cystine and GSSG with sulfide were found to be significantly slower and to occur via more complicated reaction schemes. (1)H NMR studies suggest that these reactions also generate Cys-persulfide and inorganic polysulfide species, but in contrast with DTNB, in consecutive equilibrium processes that are sensitive to changes in the reactant and product ratios. Collectively, our results demonstrate that the reaction of disulfides with sulfide is a highly system

  15. Effect of surface modification, microstructure, and trapping on hydrogen diffusion coefficients in high strength alloys

    NASA Astrophysics Data System (ADS)

    Jebaraj Johnley Muthuraj, Josiah

    Cathodic protection is widely used for corrosion prevention. However, this process generates hydrogen at the protected metal surface, and diffusion of hydrogen through the metal may cause hydrogen embrittlement or hydrogen induced stress corrosion cracking. Thus the choice of a metal for use as fasteners depends upon its hydrogen uptake, permeation, diffusivity and trapping. The diffusivity of hydrogen through four high strength alloys (AISI 4340, alloy 718, alloy 686, and alloy 59) was analyzed by an electrochemical method developed by Devanathan and Stachurski. The effect of plasma nitriding and microstructure on hydrogen permeation through AISI 4340 was studied on six different specimens: as-received (AR) AISI 4340, nitrided samples with and without compound layer, samples quenched and tempered (Q&T) at 320° and 520°C, and nitrided samples Q&T 520°C. Studies on various nitrided specimens demonstrate that both the gamma'-Fe 4N rich compound surface layer and the deeper N diffusion layer that forms during plasma nitriding reduce the effective hydrogen diffusion coefficient, although the gamma'-Fe4N rich compound layer has a larger effect. Multiple permeation transients yield evidence for the presence of only reversible trap sites in as-received, Q&T 320 and 520 AISI 4340 specimens, and the presence of both reversible and irreversible trap sites in nitrided specimens. Moreover, the changes in microstructure during the quenching and tempering process result in a significant decrease in the diffusion coefficient of hydrogen compared to as-received specimens. In addition, density functional theory-based molecular dynamics simulations yield hydrogen diffusion coefficients through gamma'- Fe4N one order of magnitude lower than through α-Fe, which supports the experimental measurements of hydrogen permeation. The effect of microstructure and trapping was also studied in cold rolled, solutionized, and precipitation hardened Inconel 718 foils. The effective hydrogen

  16. Reduced graphene oxide: firm support for catalytically active palladium nanoparticles and game changer in selective hydrogenation reactions.

    PubMed

    Cano, Manuela; Benito, Ana M; Urriolabeitia, Esteban P; Arenal, Raul; Maser, Wolfgang K

    2013-11-07

    Simultaneous decomposition and reduction of a Pd(2+) complex in the presence of graphene oxide (GO) lead to the formation of Pd(0)-nanoparticles (Pd-NPs) with average sizes of 4 nm firmly anchored on reduced graphene oxide (RGO) sheets. The Pd-NP/RGO hybrids exhibited remarkable catalytic activity and selectivity in mild hydrogenation reactions where the acidic properties of RGO play an active role and may act as an important game-changer.

  17. Further experiments on the stability of laminar and turbulent hydrogen-air flames at reduced pressures

    NASA Technical Reports Server (NTRS)

    Fine, Burton

    1957-01-01

    Stability limits for laminar and turbulent hydrogen-air burner flames were measured as a function of pressure, burner diameter, and composition. On the basis of a simple flame model, turbulent flashback involved a smaller effective penetration distance than laminar flashback. No current theoretical treatment predicts the observed pressure and diameter dependence of laminar and turbulent blowoff.

  18. Distribution of molybdenum oxidation states in reduced Mo/TiO sub 2 catalysts: Correlation with benzene hydrogenation activity

    SciTech Connect

    Quincy, R.B.; Houalla, M.; Proctor, A.; Hercules, D.M. )

    1990-02-22

    A 5 wt % MoO{sub 3}/TiO{sub 2} catalyst was reduced in hydrogen at various temperatures to produce a surface with average Mo oxidation states between +6 and 0. The changes in molybdenum oxidation states as a function of the extent of reduction were monitored by gravimetric analyses and x-ray photoelectron spectroscopy (XPS, ESCA), and the results were correlated with benzene hydrogenation activity. ESCA Mo 3d{sub 5/2} binding energy values for the various Mo oxidation states on a 5 wt % MoO{sub 3}/TiO{sub 2} catalyst show a shift of 5.1 eV between Mo{sup +6} (232.7 eV) and Mo{sup 0} (227.6 eV). The benzene hydrogenation activity was found to depend strongly on the extent of reduction of the Mo phase. Comparison of benzene hydrogenation activity with the distribution of Mo oxidation states determined by ESCA suggests that molybdenum ions with an oxidation state of +2 are the most active species.

  19. Apparatus and methods for detecting chemical permeation

    DOEpatents

    Vo-Dinh, Tuan

    1994-01-01

    Apparatus and methods for detecting the permeation of hazardous or toxic chemicals through protective clothing are disclosed. The hazardous or toxic chemicals of interest do not possess the spectral characteristic of luminescence. The apparatus and methods utilize a spectrochemical modification technique to detect the luminescence quenching of an indicator compound which upon permeation of the chemical through the protective clothing, the indicator is exposed to the chemical, thus indicating chemical permeation.

  20. Permeation hysteresis in PdCu membranes.

    PubMed

    Yuan, Lixiang; Goldbach, Andreas; Xu, Hengyong

    2008-10-09

    H 2 permeation hysteresis has been observed during cycling of a 3 mum thick supported PdCu membrane with approximately 50 atom % Pd through the fcc/bcc (face-centered cubic/body-centered cubic) miscibility gap between 723 and 873 K. Structural investigations after annealing of membrane fragments under H 2 at 823 K reveal retardation of the fcc(H) --> bcc(H) transition, which is attributed to the occurrence of metastable hydrogenated fcc PdCu(H) phases. The H(2) flux at 0.1 MPa H(2) pressure difference in the well-annealed bcc single phase regime below 723 K can be described by J(H2) = (1.3 +/- 0.2) mol.m (-2).s (-1) exp[(-11.1 +/- 0.6) kJ.mol (-1)/( RT)] and that in the fcc single phase regime above 873 K by J(H2) = (7 +/- 2) mol.m (-2).s (-1) exp[(-30.3 +/- 2.5) kJ.mol (-1)/( RT)].

  1. Permeation impact on metallization degradation

    NASA Astrophysics Data System (ADS)

    Peike, C.; Hoffmann, S.; Hülsmann, P.; Weiß, K.-A.; Koehl, M.; Bentz, P.

    2012-10-01

    The degradation of the inorganic components in a PV module is, besides polymer degradation, one of the most important aspects of PV module aging. Especially the corrosion of the cell metallization may lead to significant decreases in PV module performance. But in which way the metallization corrosion is affected by the permeation of atmospheric gases is not understood, yet. In order to investigate this permeation impact, laminates with a systematic variation of back-sheet and encapsulation materials as well as different laminate set-ups were made. Two different kinds of encapsulation (EVA and PVB) and four different back-sheet materials (TAPT, PA and two different TPT foils) were used. Standard cells with a two and three bus bar set-up were used. The laminates were subjected to damp-heat aging tests with a relative humidity of 80% at 80°C and 90°C, respectively. The degradation was investigated by means of electroluminescence imaging, Raman spectroscopy and microscopy. Special attention was paid to the spatial distribution of corrosion effects on the cell. Furthermore, the occurrence of a typical damp-heat induced damage, apparent as a shaded area in the electroluminescence images, should be investigated. A corrosion of the grid and the ribbons could be observed. EDX measurements revealed the grid corrosion to go along with the formation of needles of lead compounds from the silver paste.

  2. Reducing SS 304/316 hydrogen outgassing to 2x10{sup -15} torr l/cm{sup 2} s

    SciTech Connect

    Sasaki, Y. Tito

    2007-07-15

    Significant reduction in the outgassing rate of 300-series stainless steel is routinely attained through combination of electropolishing and vacuum baking. Preferential removal of Ni, Fe, and Mn from the surface of stainless steel by electropolishing creates a chromium-enriched surface. It also reduces the atomic surface area of the work piece closer to its geometric surface area. When the material is vacuum fired to remove interstitial hydrogen, the resultant stainless steel exhibits an outgassing rate of about 2x10{sup -15} torr l/cm{sup 2} s, as well as drastically reduced adsorption, absorption, and catalytic behaviors.

  3. Strategy to eliminate catalyst hot-spots in the partial oxidation of methane: enhancing its activity for direct hydrogen production by reducing the reactivity of lattice oxygen.

    PubMed

    Wen, Cun; Liu, Yi; Guo, Yun; Wang, Yanqin; Lu, Guanzhong

    2010-02-14

    Hydrogen can be produced over Er(2)O(3) in methane oxidation (oxygen/methane = 26). The reactivity of lattice oxygen in the catalyst plays a main role in the conversion of surface hydroxyl species to hydrogen or water. Adding a rare earth element into a catalyst can reduce the reactivity of lattice oxygen, resulting in increased hydrogen production, to eliminate catalyst hot-spots.

  4. Ocular drug permeation following experimental excimer laser treatment on the isolated pig eye.

    PubMed

    Scholz, Martina; Schründer, Stephan; Gärtner, Sven; Keipert, Sigrid; Hartmann, Christian; Pleyer, Uwe

    2002-04-01

    Excimer laser photorefractive keratectomy (PRK) is a well-established procedure which is frequently applied to correct myopia. Since structural alterations of the corneal epithelium occur after the treatment, a different drug permeation can be assumed. To investigate the effects of PRK on drug permeation, excimer laser ablations with varying depths were performed on isolated pig eyes. The permeation of lipophilic (diclofenac-sodium; D-Na) and hydrophilic (pilocarpine-hydrochloride; P-HCl model drugs were studied in vitro. Under these experimental conditions, P-HCl demonstrated a significant (p < 0.05) enhancement of permeation in relation to the ablation depth. In contrast, corneal epithelial thickness scarcely influenced the permeation rate of D-Na. Not until removing the entire epithelium did a significantly increased permeability occur, when compared to untreated cornea. These results suggest that PRK may significantly reduce the corneal barrier function and alter pharmacokinetics of topical medication.

  5. Tritium permeation characterization of materials for fusion and generation IV very high temperature reactors

    SciTech Connect

    Thomson, S.; Pilatzke, K.; McCrimmon, K.; Castillo, I.; Suppiah, S.

    2015-03-15

    The objective of this work is to establish the tritium-permeation properties of structural alloys considered for Fusion systems and very high temperature reactors (VHTR). A description of the work performed to set up an apparatus to measure permeation rates of hydrogen and tritium in 304L stainless steel is presented. Following successful commissioning with hydrogen, the test apparatus was commissioned with tritium. Commissioning tests with tritium suggest the need for a reduction step that is capable of removing the oxide layer from the test sample surfaces before accurate tritium-permeation data can be obtained. Work is also on-going to clearly establish the temperature profile of the sample to correctly estimate the tritium-permeability data.

  6. Tritium permeation characterization of Al2O3/FeAl coatings as tritium permeation barriers on 321 type stainless steel containers

    NASA Astrophysics Data System (ADS)

    Yang, Feilong; Xiang, Xin; Lu, Guangda; Zhang, Guikai; Tang, Tao; Shi, Yan; Wang, Xiaolin

    2016-09-01

    Accurate tritium transport properties of prospective tritium permeation barriers (TPBs) are essential to tritium systems in fusion reactors. By passing a temperature and rate-controlled sweeping gas over specimen surfaces to carry the permeated tritium to an ion chamber, the gas-driven permeation of tritium has been performed on 321 type stainless steel containers with Al2O3/FeAl barriers, to determine the T-permeation resistant performance and mechanism of the barrier. The tritium permeability of the Al2O3/FeAl coated container was reduced by 3 orders of magnitude at 500-700 °C by contrast with that of the bare one, which meets the requirement of the tritium permeation reduction factor (PRF) of TPBs for tritium operating components in the CN-HCCB TBM. The Al2O3/FeAl barrier resists the tritium permeation by the diffusion in the bulk substrate at a limited number of defect sites with an effective area and thickness, suggesting that the TPB quality is a very important factor for efficient T-permeation resistance.

  7. Photoinduced electron transfer pathways in hydrogen-evolving reduced graphene oxide-boosted hybrid nano-bio catalyst.

    PubMed

    Wang, Peng; Dimitrijevic, Nada M; Chang, Angela Y; Schaller, Richard D; Liu, Yuzi; Rajh, Tijana; Rozhkova, Elena A

    2014-08-26

    Photocatalytic production of clean hydrogen fuels using water and sunlight has attracted remarkable attention due to the increasing global energy demand. Natural and synthetic dyes can be utilized to sensitize semiconductors for solar energy transformation using visible light. In this study, reduced graphene oxide (rGO) and a membrane protein bacteriorhodopsin (bR) were employed as building modules to harness visible light by a Pt/TiO2 nanocatalyst. Introduction of the rGO boosts the nano-bio catalyst performance that results in hydrogen production rates of approximately 11.24 mmol of H2 (μmol protein)(-1) h(-1). Photoelectrochemical measurements show a 9-fold increase in photocurrent density when TiO2 electrodes were modified with rGO and bR. Electron paramagnetic resonance and transient absorption spectroscopy demonstrate an interfacial charge transfer from the photoexcited rGO to the semiconductor under visible light.

  8. Magic wavelength for the hydrogen 1 S -2 S transition: Contribution of the continuum and the reduced-mass correction

    NASA Astrophysics Data System (ADS)

    Adhikari, C. M.; Kawasaki, A.; Jentschura, U. D.

    2016-09-01

    Recently, we studied the magic wavelength for the atomic hydrogen 1 S -2 S transition [A. Kawasaki, Phys. Rev. A 92, 042507 (2015), 10.1103/PhysRevA.92.042507]. An explicit summation over virtual atomic states of the discrete part of the hydrogen spectrum was performed to evaluate the atomic polarizability. In this paper, we supplement the contribution of the continuum part of the spectrum and add the reduced-mass correction. The magic wavelength, at which the lowest-order ac Stark shifts of the 1 S and 2 S states are equal, is found to be 514.6 nm. The ac Stark shift at the magic wavelength is -221.6 Hz /(kW /cm2) , and the slope of the ac Stark shift at the magic wavelength under a change of the driving laser frequency is -0.2157 Hz /[GHz (kW /cm2)] .

  9. Tritium permeation and recovery for the helium-cooled molten salt fusion breeder

    SciTech Connect

    Sherwood, A.E.

    1984-09-01

    Design concepts are presented to control tritium permeation from a molten salt/helium fusion breeder reactor. This study assumes tritium to be a gas dissolved in molten salt, with TF formation suppressed. Tritium permeates readily through the hot steel tubes of the reactor and steam generator and will leak into the steam system at the rate of about one gram per day in the absence of special permeation barriers, assuming that 1% of the helium coolant flow rate is processed for tritium recovery at 90% efficiency per pass. The proposed permeation barrier for the reactor tubes is a 10 ..mu..m layer of tungsten which, in principle, will reduce tritium blanket permeation by a factor of about 300 below the bare-steel rate. A research and development effort is needed to prove feasibility or to develop alternative barriers. A 1 mm aluminum sleeve is proposed to suppress permeation through the steam generator tubes. This gives a calculated reduction factor of more than 500 relative to bare steel, including a factor of 30 due to an assumed oxide layer. The permeation equations are developed in detail for a multi-layer tube wall including a frozen salt layer and with two fluid boundary-layer resistances. Conditions are discussed for which Sievert's or Henry's Law materials become flux limiters. An analytical model is developed to establish the tritium split between wall permeation and reactor-tube flow.

  10. Tritium/hydrogen barrier development

    SciTech Connect

    Hollenberg, G.W.; Simonen, E.P.; Kalinen, G.; Terlain, A.

    1994-06-01

    A review of hydrogen permeation barriers that can be applied to structural metals used in fusion power plants is presented. Both implanted and chemically available hydrogen isotopes must be controlled in fusion plants. The need for permeation barriers appears strongest in Li17-Pb blanket designs, although barriers also appear necessary for other blanket and coolant systems. Barriers that provide greater than a 1000 fold reduction in the permeation of structural metals are desired. In laboratory experiments, aluminide and titanium ceramic coatings provide permeation reduction factors, PRFS, from 1000 to over 100,000 with a wide range of scatter. The rate-controlling mechanism for hydrogen permeation through these barriers may be related to the number and type of defects in the barriers. Although these barriers appear robust and resistant to liquid metal corrosion, irradiation tests which simulate blanket environments result in very low PRFs in comparison to laboratory experiments, i.e., <150. It is anticipated from fundamental research activities that the REID enhancement of hydrogen diffusion in oxides may contribute to the lower permeation reduction factors during in-reactor experiments.

  11. Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress.

    PubMed

    Kim, Sang Yong; Lim, Jung-Hyun; Park, Myoung Ryoul; Kim, Young Jin; Park, Tae Il; Seo, Yong Won; Choi, Kyeong Gu; Yun, Song Joong

    2005-03-31

    Antioxidant enzymes are related to the resistance to various abiotic stresses including salinity. Barley is relatively tolerant to saline stress among crop plants, but little information is available on barley antioxidant enzymes under salinity stress. We investigated temporal and spatial responses of activities and isoform profiles of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), non-specific peroxidase (POX), and glutathione reductase (GR) to saline stress in barley seedlings treated with 200 mM NaCl for 0, 1, 2, 5 days, respectively. In the control plant, hydrogen peroxide content was about 2-fold higher in the root than in the shoot. Under saline stress, hydrogen peroxide content was decreased drastically by 70% at 2 d after NaCl treatment (DAT) in the root. In the leaf, however, the content was remained unchanged by 2 DAT and increased about 14 % at 5 DAT. In general, the activities of antioxidant enzymes were increased in the root and shoot under saline stress. But the increase was more significant and consistent in the root. The activities of SOD, CAT, APX, POX, and GR were increased significantly in the root within 1 DAT, and various elevated levels were maintained by 5 DAT. Among the antioxidant enzymes, CAT activity was increased the most drastically. The significant increase in the activities of SOD, CAT, APX, POX, and GR in the NaCl-stressed barley root was highly correlated with the increased expression of the constitutive isoforms as well as the induced ones. The hydrogen peroxide content in the root.

  12. Effect of iontophoresis and permeation enhancers on the permeation of an acyclovir gel.

    PubMed

    Vaghani, Subhash S; Gurjar, Mitesh; Singh, Sachin; Sureja, Sunil; Koradia, Shailesh; Jivani, N P; Patel, M M

    2010-10-01

    The purpose of the present study was to explore the combined effect of chemical enhancers and iontophoresis on the in vitro permeation of acyclovir gel across porcine skin. Acyclovir gel was formulated using carbopol 940 and hydroxypropyl methylcellulose K4M (HPMC K4M). Effect of drug concentration on the delivery of acyclovir was examined. Increasing drug concentration of acyclovir enhanced its flux across the skin. Incorporation of permeation enhancers (menthol, n-methyl-2-pyrrolidone and polyethylene glycol 400) into the gel resulted in enhanced acyclovir permeation when combined with iontophoresis. Menthol showed the highest drug permeation and when combined with iontophoresis it significantly increased the acyclovir skin permeation.

  13. [Hydrogen-rich saline attenuates hyperalgesia and reduces cytokines in rats with post-herpetic neuralgia via activating autophagy].

    PubMed

    Ma, Hongtao; Chen, Hongguang; Dong, Aili; Wang, Yanyan; Bian, Yingxue; Xie, Keliang

    2017-02-01

    Objective To investigate the role of autophagy in hydrogen-rich saline attenuating post-herpetic neuralgia (PHN) in rats. Methods A total of 100 male SD rats were randomly divided into the five groups (n=20): control group, PHN group, PHN group treated with hydrogen-rich saline (PHN-H2 group), PHN group treated with hydrogen-rich saline and 3-MA (PHN-H2-3-MA group), PHN group treated with hydrogen-rich saline and rapamycin (PHN-H2-Rap group). PHN models were established by varicella-zoster virus (VZV) inoculation. After modeling, 15 mg/kg 3-MA or 10 mg/kg rapamycin were intraperitoneally injected in corresponding rats with PHN once two days for 3 times. Hydrogen-rich saline (10 mL/kg) was injected intraperitoneally twice a day for 7 consecutive days in PHN-H2 group, PHN-H2-3-MA group and PHN-H2-Rap group after VZV injection. The paw withdrawal thresholds (PWT) of 50 rats were detected at 3, 7, 14 and 21 days after modeling. Spinal cord enlargements of the other 50 rats were collected to examine tumor necrosis factor α (TNF-α), interleukine 1β (IL-1β) and IL-6 by ELISA and autophagy protein microtubule-associated protein 1 light chain 3 (LC3), beclin 1 and P62 by Western blotting. Results Compared with the control group, the rats in the PHN group presented with decreased PWT, increased levels of TNF-α, IL-1β, IL-6, LC3II and beclin 1, and down-regulated P62 expression. Compared with PHN group, the rats in the PHN-H2 group and PHN-H2-Rap group showed increased PWT, decreased levels of TNF-α, IL-1β and IL-6, further up-regulated expressions of LC3 and beclin 1 as well as P62 expression. Compared with PHN-H2 group, the rats in the PHN-H2-3-MA group had reduced PWT, elevated expressions of TNF-α, IL-1β and IL-6, suppressed expressions of LC3 and beclin 1, and enhanced p62 expression. Conclusion Hydrogen-rich saline attenuated PWT and inhibited the release of cytokines TNF-α, IL-1β, IL-6 in rats with PHN via activating autophagy.

  14. Urea hydrogen peroxide reduces the numbers of lactobacilli, nourishes yeast, and leaves no residues in the ethanol fermentation.

    PubMed

    Narendranath, N V; Thomas, K C; Ingledew, W M

    2000-10-01

    Urea hydrogen peroxide (UHP) at a concentration of 30 to 32 mmol/liter reduced the numbers of five Lactobacillus spp. (Lactobacillus plantarum, L. paracasei, Lactobacillus sp. strain 3, L. rhamnosus, and L. fermentum) from approximately 10(7) to approximately 10(2) CFU/ml in a 2-h preincubation at 30 degrees C of normal-gravity wheat mash at approximately 21 g of dissolved solids per ml containing normal levels of suspended grain particles. Fermentation was completed 36 h after inoculation of Saccharomyces cerevisiae in the presence of UHP, even when wheat mash was deliberately contaminated (infected) with L. paracasei at approximately 10(7) CFU/ml. There were no significant differences in the maximum ethanol produced between treatments when urea hydrogen peroxide was used to kill the bacteria and controls (in which no bacteria were added). However, the presence of L. paracasei at approximately 10(7) CFU/ml without added agent resulted in a 5.84% reduction in the maximum ethanol produced compared to the control. The bactericidal activity of UHP is greatly affected by the presence of particulate matter. In fact, only 2 mmol of urea hydrogen peroxide per liter was required for disinfection when mashes had little or no particulate matter present. No significant differences were observed in the decomposition of hydrogen peroxide in normal-gravity wheat mash at 30 degrees C whether the bactericidal agent was added as H(2)O(2) or as urea hydrogen peroxide. NADH peroxidase activity (involved in degrading H(2)O(2)) increased significantly (P = 0.05) in the presence of 0.75 mM hydrogen peroxide (sublethal level) in all five strains of lactobacilli tested but did not persist in cells regrown in the absence of H(2)O(2). H(2)O(2)-resistant mutants were not expected or found when lethal levels of H(2)O(2) or UHP were used. Contaminating lactobacilli can be effectively managed by UHP, a compound which when used at ca. 30 mmol/liter happens to provide near-optimum levels of

  15. Urea Hydrogen Peroxide Reduces the Numbers of Lactobacilli, Nourishes Yeast, and Leaves No Residues in the Ethanol Fermentation

    PubMed Central

    Narendranath, N. V.; Thomas, K. C.; Ingledew, W. M.

    2000-01-01

    Urea hydrogen peroxide (UHP) at a concentration of 30 to 32 mmol/liter reduced the numbers of five Lactobacillus spp. (Lactobacillus plantarum, L. paracasei, Lactobacillus sp. strain 3, L. rhamnosus, and L. fermentum) from ∼107 to ∼102 CFU/ml in a 2-h preincubation at 30°C of normal-gravity wheat mash at ∼21 g of dissolved solids per ml containing normal levels of suspended grain particles. Fermentation was completed 36 h after inoculation of Saccharomyces cerevisiae in the presence of UHP, even when wheat mash was deliberately contaminated (infected) with L. paracasei at ∼107 CFU/ml. There were no significant differences in the maximum ethanol produced between treatments when urea hydrogen peroxide was used to kill the bacteria and controls (in which no bacteria were added). However, the presence of L. paracasei at ∼107 CFU/ml without added agent resulted in a 5.84% reduction in the maximum ethanol produced compared to the control. The bactericidal activity of UHP is greatly affected by the presence of particulate matter. In fact, only 2 mmol of urea hydrogen peroxide per liter was required for disinfection when mashes had little or no particulate matter present. No significant differences were observed in the decomposition of hydrogen peroxide in normal-gravity wheat mash at 30°C whether the bactericidal agent was added as H2O2 or as urea hydrogen peroxide. NADH peroxidase activity (involved in degrading H2O2) increased significantly (P = 0.05) in the presence of 0.75 mM hydrogen peroxide (sublethal level) in all five strains of lactobacilli tested but did not persist in cells regrown in the absence of H2O2. H2O2-resistant mutants were not expected or found when lethal levels of H2O2 or UHP were used. Contaminating lactobacilli can be effectively managed by UHP, a compound which when used at ca. 30 mmol/liter happens to provide near-optimum levels of assimilable nitrogen and oxygen that aid in vigorous fermentation performance by yeast. PMID:11010858

  16. Electrochemical Synthesis of Polypyrrole, Reduced Graphene Oxide, and Gold Nanoparticles Composite and Its Application to Hydrogen Peroxide Biosensor

    PubMed Central

    Wu, Baoyan; Zhao, Na; Hou, Shihua; Zhang, Cong

    2016-01-01

    Here we report a facile eco-friendly one-step electrochemical approach for the fabrication of a polypyrrole (PPy), reduced graphene oxide (RGO), and gold nanoparticles (nanoAu) biocomposite on a glassy carbon electrode (GCE). The electrochemical behaviors of PPy–RGO–nanoAu and its application to electrochemical detection of hydrogen peroxide were investigated by cyclic voltammetry. Graphene oxide and pyrrole monomer were first mixed and casted on the surface of a cleaned GCE. After an electrochemical processing consisting of the electrooxidation of pyrrole monomer and simultaneous electroreduction of graphene oxide and auric ions (Au3+) in aqueous solution, a PPy–RGO–nanoAu biocomposite was synthesized on GCE. Each component of PPy–RGO–nanoAu is electroactive without non-electroactive substance. The obtained PPy–RGO–nanoAu/GCE exhibited high electrocatalytic activity toward hydrogen peroxide, which allows the detection of hydrogen peroxide at a negative potential of about −0.62 V vs. SCE. The amperometric responses of the biosensor displayed a sensitivity of 40 µA/mM, a linear range of 32 µM–2 mM, and a detection limit of 2.7 µM (signal-to-noise ratio = 3) with good stability and acceptable reproducibility and selectivity. The results clearly demonstrate the potential of the as-prepared PPy–RGO–nanoAu biocomposite for use as a highly electroactive matrix for an amperometric biosensor. PMID:28335348

  17. Electrochemical Synthesis of Polypyrrole, Reduced Graphene Oxide, and Gold Nanoparticles Composite and Its Application to Hydrogen Peroxide Biosensor.

    PubMed

    Wu, Baoyan; Zhao, Na; Hou, Shihua; Zhang, Cong

    2016-11-21

    Here we report a facile eco-friendly one-step electrochemical approach for the fabrication of a polypyrrole (PPy), reduced graphene oxide (RGO), and gold nanoparticles (nanoAu) biocomposite on a glassy carbon electrode (GCE). The electrochemical behaviors of PPy-RGO-nanoAu and its application to electrochemical detection of hydrogen peroxide were investigated by cyclic voltammetry. Graphene oxide and pyrrole monomer were first mixed and casted on the surface of a cleaned GCE. After an electrochemical processing consisting of the electrooxidation of pyrrole monomer and simultaneous electroreduction of graphene oxide and auric ions (Au(3+)) in aqueous solution, a PPy-RGO-nanoAu biocomposite was synthesized on GCE. Each component of PPy-RGO-nanoAu is electroactive without non-electroactive substance. The obtained PPy-RGO-nanoAu/GCE exhibited high electrocatalytic activity toward hydrogen peroxide, which allows the detection of hydrogen peroxide at a negative potential of about -0.62 V vs. SCE. The amperometric responses of the biosensor displayed a sensitivity of 40 µA/mM, a linear range of 32 µM-2 mM, and a detection limit of 2.7 µM (signal-to-noise ratio = 3) with good stability and acceptable reproducibility and selectivity. The results clearly demonstrate the potential of the as-prepared PPy-RGO-nanoAu biocomposite for use as a highly electroactive matrix for an amperometric biosensor.

  18. Inhaled hydrogen gas therapy for prevention of noise-induced hearing loss through reducing reactive oxygen species.

    PubMed

    Kurioka, Takaomi; Matsunobu, Takeshi; Satoh, Yasushi; Niwa, Katsuki; Shiotani, Akihiro

    2014-12-01

    Reactive oxygen species (ROS) that form in the inner ear play an important role in noise-induced hearing loss (NIHL). Recent studies have revealed that molecular hydrogen (H2) has great potential for reducing ROS. In this study, we examined the potential of hydrogen gas to protect against NIHL. We tested this hypothesis in guinea pigs with 0.5%, 1.0% and 1.5% H2 inhalation in air for 5h a day after noise exposure, for five consecutive days. All animals underwent measurements for auditory brainstem response after the noise exposure; the results revealed that there was a better improvement in the threshold shift for the 1.0% and 1.5% H2-treated groups than the non-treated group. Furthermore, outer hair cell (OHC) loss was examined 7 days after noise exposure. A significantly higher survival rate of OHCs was observed in the 1.0% and 1.5% H2-treated group as compared to that of the non-treated group in the basal turn. Immunohistochemical analyses for 8-hydroxy-2'-deoxyguanosine (8-OHdG) were performed to examine the amount of oxidative DNA damage. While strong immunoreactivities against 8-OHdG were observed of the non-treated group, the H2-treated group showed decreased immunoreactivity for 8-OHdG. These findings strongly suggest that inhaled hydrogen gas protects against NIHL.

  19. Development of Automotive Liquid Hydrogen Storage Systems

    NASA Astrophysics Data System (ADS)

    Krainz, G.; Bartlok, G.; Bodner, P.; Casapicola, P.; Doeller, Ch.; Hofmeister, F.; Neubacher, E.; Zieger, A.

    2004-06-01

    Liquid hydrogen (LH2) takes up less storage volume than gas but requires cryogenic vessels. State-of-the-art applications for passenger vehicles consist of double-wall cylindrical tanks that hold a hydrogen storage mass of up to 10 kg. The preferred shell material of the tanks is stainless steel, since it is very resistant against hydrogen brittleness and shows negligible hydrogen permeation. Therefore, the weight of the whole tank system including valves and heat exchanger is more than 100 kg. The space between the inner and outer vessel is mainly used for thermal super-insulation purposes. Several layers of insulation foils and high vacuums of 10-3 Pa reduce the heat entry. The support structures, which keep the inner tank in position to the outer tank, are made of materials with low thermal conductivity, e.g. glass or carbon fiber reinforced plastics. The remaining heat in-leak leads to a boil-off rate of 1 to 3 percent per day. Active cooling systems to increase the stand-by time before evaporation losses occur are being studied. Currently, the production of several liquid hydrogen tanks that fulfill the draft of regulations of the European Integrated Hydrogen Project (EIHP) is being prepared. New concepts of lightweight liquid hydrogen storage tanks will be investigated.

  20. Electrochemically reduced water exerts superior reactive oxygen species scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water

    PubMed Central

    Hamasaki, Takeki; Harada, Gakuro; Nakamichi, Noboru; Kabayama, Shigeru; Teruya, Kiichiro; Fugetsu, Bunshi; Gong, Wei; Sakata, Ichiro; Shirahata, Sanetaka

    2017-01-01

    Electrochemically reduced water (ERW) is produced near a cathode during electrolysis and exhibits an alkaline pH, contains richly dissolved hydrogen, and contains a small amount of platinum nanoparticles. ERW has reactive oxygen species (ROS)-scavenging activity and recent studies demonstrated that hydrogen-dissolved water exhibits ROS-scavenging activity. Thus, the antioxidative capacity of ERW is postulated to be dependent on the presence of hydrogen levels; however, there is no report verifying the role of dissolved hydrogen in ERW. In this report, we clarify whether the responsive factor for antioxidative activity in ERW is dissolved hydrogen. The intracellular ROS scavenging activity of ERW and hydrogen-dissolved water was tested by both fluorescent stain method and immuno spin trapping assay. We confirm that ERW possessed electrolysis intensity-dependent intracellular ROS-scavenging activity, and ERW exerts significantly superior ROS-scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water. ERW retained its ROS-scavenging activity after removal of dissolved hydrogen, but lost its activity when autoclaved. An oxygen radical absorbance capacity assay, the 2,2-diphenyl-1-picrylhydrazyl assay and chemiluminescence assay could not detect radical-scavenging activity in both ERW and hydrogen-dissolved water. These results indicate that ERW contains electrolysis-dependent hydrogen and an additional antioxidative factor predicted to be platinum nanoparticles. PMID:28182635

  1. Electrochemically reduced water exerts superior reactive oxygen species scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water.

    PubMed

    Hamasaki, Takeki; Harada, Gakuro; Nakamichi, Noboru; Kabayama, Shigeru; Teruya, Kiichiro; Fugetsu, Bunshi; Gong, Wei; Sakata, Ichiro; Shirahata, Sanetaka

    2017-01-01

    Electrochemically reduced water (ERW) is produced near a cathode during electrolysis and exhibits an alkaline pH, contains richly dissolved hydrogen, and contains a small amount of platinum nanoparticles. ERW has reactive oxygen species (ROS)-scavenging activity and recent studies demonstrated that hydrogen-dissolved water exhibits ROS-scavenging activity. Thus, the antioxidative capacity of ERW is postulated to be dependent on the presence of hydrogen levels; however, there is no report verifying the role of dissolved hydrogen in ERW. In this report, we clarify whether the responsive factor for antioxidative activity in ERW is dissolved hydrogen. The intracellular ROS scavenging activity of ERW and hydrogen-dissolved water was tested by both fluorescent stain method and immuno spin trapping assay. We confirm that ERW possessed electrolysis intensity-dependent intracellular ROS-scavenging activity, and ERW exerts significantly superior ROS-scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water. ERW retained its ROS-scavenging activity after removal of dissolved hydrogen, but lost its activity when autoclaved. An oxygen radical absorbance capacity assay, the 2,2-diphenyl-1-picrylhydrazyl assay and chemiluminescence assay could not detect radical-scavenging activity in both ERW and hydrogen-dissolved water. These results indicate that ERW contains electrolysis-dependent hydrogen and an additional antioxidative factor predicted to be platinum nanoparticles.

  2. Cadmium-Induced Hydrogen Accumulation Is Involved in Cadmium Tolerance in Brassica campestris by Reestablishment of Reduced Glutathione Homeostasis.

    PubMed

    Wu, Qi; Su, Nana; Chen, Qin; Shen, Wenbiao; Shen, Zhenguo; Xia, Yan; Cui, Jin

    2015-01-01

    Hydrogen gas (H2) was recently proposed as a therapeutic antioxidant and signaling molecule in clinical trials. However, the underlying physiological roles of H2 in plants remain unclear. In the present study, hydrogen-rich water (HRW) was used to characterize the physiological roles of H2 in enhancing the tolerance of Brassica campestris against cadmium (Cd). The results showed that both 50 μM CdCl2 and 50%-saturated HRW induced an increase of endogenous H2 in Brassica campestris seedlings, and HRW alleviated Cd toxicity related to growth inhibition and oxidative damage. Seedlings supplied with HRW exhibited increased root length and reduced lipid peroxidation, similar to plants receiving GSH post-treatment. Additionally, seedlings post-treated with HRW accumulated higher levels of reduced glutathione (GSH) and ascorbic acid (AsA) and showed increased GST and GPX activities in roots. Molecular evidence illustrated that the expression of genes such as GS, GR1 and GR2, which were down-regulated following the addition of Cd, GSH or BSO, could be reversed to varying degrees by the addition of HRW. Based on these results, it could be proposed that H2 might be an important regulator for enhancing the tolerance of Brassica campestris seedlings against Cd, mainly by governing reduced glutathione homeostasis.

  3. Cadmium-Induced Hydrogen Accumulation Is Involved in Cadmium Tolerance in Brassica campestris by Reestablishment of Reduced Glutathione Homeostasis

    PubMed Central

    Chen, Qin; Shen, Wenbiao; Shen, Zhenguo; Xia, Yan; Cui, Jin

    2015-01-01

    Hydrogen gas (H2) was recently proposed as a therapeutic antioxidant and signaling molecule in clinical trials. However, the underlying physiological roles of H2 in plants remain unclear. In the present study, hydrogen-rich water (HRW) was used to characterize the physiological roles of H2 in enhancing the tolerance of Brassica campestris against cadmium (Cd). The results showed that both 50 μM CdCl2 and 50%-saturated HRW induced an increase of endogenous H2 in Brassica campestris seedlings, and HRW alleviated Cd toxicity related to growth inhibition and oxidative damage. Seedlings supplied with HRW exhibited increased root length and reduced lipid peroxidation, similar to plants receiving GSH post-treatment. Additionally, seedlings post-treated with HRW accumulated higher levels of reduced glutathione (GSH) and ascorbic acid (AsA) and showed increased GST and GPX activities in roots. Molecular evidence illustrated that the expression of genes such as GS, GR1 and GR2, which were down-regulated following the addition of Cd, GSH or BSO, could be reversed to varying degrees by the addition of HRW. Based on these results, it could be proposed that H2 might be an important regulator for enhancing the tolerance of Brassica campestris seedlings against Cd, mainly by governing reduced glutathione homeostasis. PMID:26445361

  4. Gastrointestinal Inhibition of Sodium-Hydrogen Exchanger 3 Reduces Phosphorus Absorption and Protects against Vascular Calcification in CKD.

    PubMed

    Labonté, Eric D; Carreras, Christopher W; Leadbetter, Michael R; Kozuka, Kenji; Kohler, Jill; Koo-McCoy, Samantha; He, Limin; Dy, Edward; Black, Deborah; Zhong, Ziyang; Langsetmo, Ingrid; Spencer, Andrew G; Bell, Noah; Deshpande, Desiree; Navre, Marc; Lewis, Jason G; Jacobs, Jeffrey W; Charmot, Dominique

    2015-05-01

    In CKD, phosphate retention arising from diminished GFR is a key early step in a pathologic cascade leading to hyperthyroidism, metabolic bone disease, vascular calcification, and cardiovascular mortality. Tenapanor, a minimally systemically available inhibitor of the intestinal sodium-hydrogen exchanger 3, is being evaluated in clinical trials for its potential to (1) lower gastrointestinal sodium absorption, (2) improve fluid overload-related symptoms, such as hypertension and proteinuria, in patients with CKD, and (3) reduce interdialytic weight gain and intradialytic hypotension in ESRD. Here, we report the effects of tenapanor on dietary phosphorous absorption. Oral administration of tenapanor or other intestinal sodium-hydrogen exchanger 3 inhibitors increased fecal phosphorus, decreased urine phosphorus excretion, and reduced [(33)P]orthophosphate uptake in rats. In a rat model of CKD and vascular calcification, tenapanor reduced sodium and phosphorus absorption and significantly decreased ectopic calcification, serum creatinine and serum phosphorus levels, circulating phosphaturic hormone fibroblast growth factor-23 levels, and heart mass. These results indicate that tenapanor is an effective inhibitor of dietary phosphorus absorption and suggest a new approach to phosphate management in renal disease and associated mineral disorders. Copyright © 2015 by the American Society of Nephrology.

  5. The Role of Vanadium Carbide Traps in Reducing the Hydrogen Embrittlement Susceptibility of High Strength Alloy Steels.

    DTIC Science & Technology

    1998-08-01

    A723 steel was not sufficient to induce any appreciable embrittlement. 7.0 4.0 HY80 X 0.0i-r 50 4340 r—,—,—|—i—i—i—r—t—i—i—i—i—I—i—’—’—> l...carbide, V4C3) was identified in the A723 steel by x- ray diffraction. V4C3 traps effectively reduced the hydrogen concentrations at the crack ...ALLOY STEELS G. L. SPENCER D. J. DUQUETTE AUGUST 1998 US ARMY ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER CLOSE COMBAT ARMAMENTS CENTER

  6. Dermal permeation of biocides and aromatic chemicals in three generic formulations of metalworking fluids.

    PubMed

    Vijay, Vikrant; White, Eugene M; Kaminski, Michael D; Riviere, Jim E; Baynes, Ronald E

    2009-01-01

    Metalworking fluids (MWF) are complex mixtures consisting of a variety of components and additives. A lack of scientific data exists regarding the dermal permeation of its components, particularly biocides. The aim of this study was to evaluate the dermal permeation of biocides and other aromatic chemicals in water and in three generic soluble oil, semi-synthetic, and synthetic MWF types in order to evaluate any differences in their permeation profiles. An in vitro flow-through diffusion cell study was performed to determine dermal permeation. An infinite dose of different groups of chemicals (6 biocides and 29 aromatic chemicals) was applied to porcine skin, with perfusate samples being collected over an 8-h period. Perfusate samples were analyzed by gas chromatography/mass spectrometry (GC-MS) and ultra-performance liquid chromatography/mass spectroscopy (UPLC-MS), and permeability was calculated from the analysis of the permeated chemical concentration-time profile. In general, the permeation of chemicals was highest in aqueous solution, followed by synthetic, semi-synthetic, and soluble oil MWF. The absorption profiles of most of the chemicals including six biocides were statistically different among the synthetic and soluble oil MWF formulations, with reduced permeation occurring in oily formulations. Permeation of almost all chemicals was statistically different between aqueous and three MWF formulation types. Data from this study show that permeation of chemicals is higher in a generic synthetic MWF when compared to a soluble oil MWF. This indicates that a soluble oil MWF may be safer than a synthetic MWF in regard to dermal permeation of chemicals to allow for an increased potential of systemic toxicity. Therefore, one may conclude that a synthetic type of formulation has more potential to produce contact dermatitis and induce systemic toxicological effects. The dilution of these MWF formulations with water may increase dermal permeability of biocides

  7. Development of Press Hardening Steel with High Resistance to Hydrogen Embrittlement

    NASA Astrophysics Data System (ADS)

    Bian, Jian; Mohrbacher, Hardy; Lu, Hongzhou; Wang, Wenjun

    Press hardening has become the state-of-art technology in the car body manufacturing to enhance safety standard and to reduce CO2 emission of new vehicles. However the delayed cracking due to hydrogen embrittlement remains to be a critical issue. Generally press hardening steel is susceptible to hydrogen embrittlement due to ultra-high strength and martensitic microstructure. The hydrogen charging tests clearly demonstrate that only a few ppm of diffusible hydrogen is sufficient to cause such embrittlement. Currently the hydrogen embrittlement cannot be detected in the press hardened components and the embitteled components could collapse in the crash situation with fatal consequences arisen through dramatic loss in both strength and ductility. This paper introduces a new metallurgical solution to increase the resistance to hydrogen embrittlement of conventional press hardening steel based on 22MnB5 by Nb microalloying. In the hydrogen embrittlement and permeation tests the impact of Nb microalloying on the hydrogen embrittlement behavior was investigated under different hydrogen charging conditions and constant load. The test results revealed that Nb addition increases the resistance to hydrogen embrittlement due to reduced hydrogen diffusivity. The focus of this paper is to investigate the precipitation behavior of microalloying elements by using TEM and STEM and to find out the mechanisms leading to higher performance against hydrogen embrittlement of Nb alloyed steels.

  8. Reduced Toxicity Fuel Satellite Propulsion System Including Catalytic Decomposing Element with Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J. (Inventor)

    2002-01-01

    A reduced toxicity fuel satellite propulsion system including a reduced toxicity propellant supply for consumption in an axial class thruster and an ACS class thruster. The system includes suitable valves and conduits for supplying the reduced toxicity propellant to the ACS decomposing element of an ACS thruster. The ACS decomposing element is operative to decompose the reduced toxicity propellant into hot propulsive gases. In addition the system includes suitable valves and conduits for supplying the reduced toxicity propellant to an axial decomposing element of the axial thruster. The axial decomposing element is operative to decompose the reduced toxicity propellant into hot gases. The system further includes suitable valves and conduits for supplying a second propellant to a combustion chamber of the axial thruster, whereby the hot gases and the second propellant auto-ignite and begin the combustion process for producing thrust.

  9. Reduced Toxicity Fuel Satellite Propulsion System Including Catalytic Decomposing Element with Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J. (Inventor)

    2002-01-01

    A reduced toxicity fuel satellite propulsion system including a reduced toxicity propellant supply for consumption in an axial class thruster and an ACS class thruster. The system includes suitable valves and conduits for supplying the reduced toxicity propellant to the ACS decomposing element of an ACS thruster. The ACS decomposing element is operative to decompose the reduced toxicity propellant into hot propulsive gases. In addition the system includes suitable valves and conduits for supplying the reduced toxicity propellant to an axial decomposing element of the axial thruster. The axial decomposing element is operative to decompose the reduced toxicity propellant into hot gases. The system further includes suitable valves and conduits for supplying a second propellant to a combustion chamber of the axial thruster, whereby the hot gases and the second propellant auto-ignite and begin the combustion process for producing thrust.

  10. Computational Studies of Molecular Permeation through Connexin26 Channels.

    PubMed

    Luo, Yun; Rossi, Angelo R; Harris, Andrew L

    2016-02-02

    A signal property of connexin channels is the ability to mediate selective diffusive movement of molecules through plasma membrane(s), but the energetics and determinants of molecular movement through these channels have yet to be understood. Different connexin channels have distinct molecular selectivities that cannot be explained simply on the basis of size or charge of the permeants. To gain insight into the forces and interactions that underlie selective molecular permeation, we investigated the energetics of two uncharged derivatized sugars, one permeable and one impermeable, through a validated connexin26 (Cx26) channel structural model, using molecular dynamics and associated analytic tools. The system is a Cx26 channel equilibrated in explicit membrane/solvent, shown by Brownian dynamics to reproduce key conductance characteristics of the native channel. The results are consistent with the known difference in permeability to each molecule. The energetic barriers extend through most of the pore length, rather than being highly localized as in ion-specific channels. There is little evidence for binding within the pore. Force decomposition reveals how, for each tested molecule, interactions with water and the Cx26 protein vary over the length of the pore and reveals a significant contribution from hydrogen bonding and interaction with K(+). The flexibility of the pore width varies along its length, and the tested molecules have differential effects on pore width as they pass through. Potential sites of interaction within the pore are defined for each molecule. The results suggest that for the tested molecules, differences in hydrogen bonding and entropic factors arising from permeant flexibility substantially contribute to the energetics of permeation. This work highlights factors involved in selective molecular permeation that differ from those that define selectivity among atomic ions.

  11. Application of bacteriophages to reduce biofilms formed by hydrogen sulfide producing bacteria on surfaces in a rendering plant.

    PubMed

    Gong, Chao; Jiang, Xiuping

    2015-08-01

    Hydrogen sulfide producing bacteria (SPB) in raw animal by-products are likely to grow and form biofilms in the rendering processing environments, resulting in the release of harmful hydrogen sulfide (H2S) gas. The objective of this study was to reduce SPB biofilms formed on different surfaces typically found in rendering plants by applying a bacteriophage cocktail. Using a 96-well microplate method, we determined that 3 SPB strains of Citrobacter freundii and Hafnia alvei are strong biofilm formers. Application of 9 bacteriophages (10(7) PFU/mL) from families of Siphoviridae and Myoviridae resulted in a 33%-70% reduction of biofilm formation by each SPB strain. On stainless steel and plastic templates, phage treatment (10(8) PFU/mL) reduced the attached cells of a mixed SPB culture (no biofilm) by 2.3 and 2.7 log CFU/cm(2) within 6 h at 30 °C, respectively, as compared with 2 and 1.5 log CFU/cm(2) reductions of SPB biofilms within 6 h at 30 °C. Phage treatment was also applied to indigenous SPB biofilms formed on the environmental surface, stainless steel, high-density polyethylene plastic, and rubber templates in a rendering plant. With phage treatment (10(9) PFU/mL), SPB biofilms were reduced by 0.7-1.4, 0.3-0.6, and 0.2-0.6 log CFU/cm(2) in spring, summer, and fall trials, respectively. Our study demonstrated that bacteriophages could effectively reduce the selected SPB strains either attached to or in formed biofilms on various surfaces and could to some extent reduce the indigenous SPB biofilms on the surfaces in the rendering environment.

  12. Increase of tritium permeation through resistant metals at 323 K by lattice defects

    SciTech Connect

    Maienschein, J.L.; McMurphy, F.E.; Duval, V.L.

    1988-09-01

    The authors report data on tritium permeation at 323 K and 373 K through annealed and single crystal copper for comparison with earlier data on unannealed copper, and show that tritium transport along grain boundaries or other lattice defects controls the overall rate at 323 K in unannealed material. Measurements on unannealed and annealed gold foil also indicate the importance of defect transport, although with gold the authors could not reduce the defect concentration sufficiently to measure permeation through the metal lattice. They also include permeation data on aluminum, molybdenum, tungsten, beryllium, cadmium, tritium, lead, rhenium, and silver; all of these were probably dominated by tritium transport along lattice defects.

  13. Influence of phosvitin and calcium gluconate concentration on permeation and intestinal absorption of calcium ions.

    PubMed

    Dolińska, Barbara; Łopata, Katarzyna; Mikulska, Agnieszka; Leszczyńska, Lucyna; Ryszka, Florian

    2012-06-01

    The effect of egg yolk phosvitin on the permeation and absorption of calcium was investigated in vitro in relation to calcium gluconate concentration. Obtained results indicate that phosvitin significantly reduces the intestinal calcium absorption from 1 and 10 mM of calcium gluconate solution. It is associated with the formation of the complex of Ca (II) ions with phosvitin. The process of calcium permeation increases under phosvitin influence when calcium gluconate concentrations rise up to 10 mM. At a higher concentration of calcium gluconate (20 mM), no effect of phosvitin was seen on permeation of calcium ions.

  14. [Effect of reduced oxygen concentrations and hydrogen sulfide on the amino acid metabolism and mesenchymal cells proliferation].

    PubMed

    Plotnikova, L N; Berezovskii, V A; Veselskii, S P

    2015-01-01

    We investigated the effect of hydrogen sulfide donor (10(-12) mol/l NaHS--I group) alone and together with the reduced oxygen concentrations (5% O2--II group, 3% O2--III group, 24 h) on the biological processes of human stem cells culture. It was shown that the cells proliferation by the third day of cultivation in I, II and III group decreased 1,7; 2,8 and 4,2 times. On the 4th day of culture proliferation inhibited in I, II and III group by 29; 33 and 54% compared to the control. Thus, adverse effects NaHS enhanced by reducing the oxygen concentration. It was established that in all experimental versions rapidly absorbed from the culture medium amino acids: cysteine and cystine, serine and aspartic acid, valine and tryptophan, proline and hydroxyproline, which are involved in the synthesis of proteins, in particular collagen. In the culture medium increased the concentration of free amino acids of the three factions: arginine, histidine and taurine; glycine and methionine; alanine and glutamine. We believe that in the applied concentration of hydrogen sulfide donor in conditions of low oxygen in a gaseous medium incubation inhibits the proliferation and alters the amino acid metabolism of human cells line 4BL.

  15. Apparatus and methods for detecting chemical permeation

    DOEpatents

    Vo-Dinh, T.

    1994-12-27

    Apparatus and methods for detecting the permeation of hazardous or toxic chemicals through protective clothing are disclosed. The hazardous or toxic chemicals of interest do not possess the spectral characteristic of luminescence. The apparatus and methods utilize a spectrochemical modification technique to detect the luminescence quenching of an indicator compound which upon permeation of the chemical through the protective clothing, the indicator is exposed to the chemical, thus indicating chemical permeation. The invention also relates to the fabrication of protective clothing materials. 13 figures.

  16. Permeation rates for RTF metal hydride vessels

    SciTech Connect

    Klein, J.E.

    1992-05-21

    Contamination rates have been estimated for the RTF nitrogen heating and cooling system (NH and CS) due to tritium permeation through the walls of metal hydride vessels. Tritium contamination of the NH and CS will be seen shortly after start-up of the RTF with the majority of it coming from the TCAP units. Contamination rates of the NH and CS are estimated to exceed 400 Ci/year after three years of operation and will elevate tritium concentrations in the NH and CS above 6 {times} 10{sup {minus}3} {mu}Ci/cc. To reduce tritium activity in the NH and CS, a stripper or ``getter`` bed may need to be installed in the NH and CS. Increasing the purge rate of nitrogen from the NH and CS is shown to be an impractical method for reducing tritium activity due to the high purge rates required. Stripping of the NH and CS nitrogen in the glove box stripper system will give a temporary lowering of tritium activity in the NH and CS, but tritium activity will return to its previous level in approximately two weeks.

  17. Evaluation and Characterization of Membranes for H2SO4/Water and I2/HI/H2O Water Separation and Hydrogen Permeation for the S-I Cycle

    SciTech Connect

    Frederick R. Stewart

    2006-10-01

    In this report are the findings into three membrane separation studies for potential application to the Sulfur-Iodine (S-I) thermochemical cycle. The first is the removal of water from hydriodic acid/iodine mixtures. In the S-I cycle, iodine is added to the product of the Bunsen reaction to facilitate the separation of sulfuric acid (H2SO4) from hydriodic acid (HI). The amount of iodine can be as high as 83% of the overall mass load of the Bunsen product stream, which potentially introduces a large burden on the cycle’s efficiency. Removal of water from the HI and iodine mixture would substantially reduce the amount of required additional iodine. In this work, performance data for Nafion® and sulfonated poly (ether ether ketone) (SPEEK) membranes is shown.

  18. Development of Comprehensive Detailed and Reduced Reaction Mechanisms for Syngas and Hydrogen Combustion

    SciTech Connect

    Chih-Jen Sung; Hai Wang; Angela Violi

    2009-02-28

    The collaborative research initiative culminated in amassing a substantial combustion database of experimental results for dry and moist mixtures of syngas and hydrogen (SGH), including autoignition times using a rapid compression machine as well as laminar flame speeds using a counterflow twin-flame configuration. These experimental data provided the basis for assessment of the kinetics of SGH combustion at elevated pressures using global uncertainty analysis methods. A review of the fundamental combustion characteristics of H{sub 2}/CO mixtures, with emphasis on ignition and flame propagation at high pressures was also conducted to understand the state of the art in SGH combustion. Investigation of the reaction kinetics of CO+HO{sub 2}{center_dot} {yields} CO{sub 2} + {center_dot}OH and HO{sub 2}+OH {yields} H{sub 2}O+O{sub 2} by ab initio calculations and master equation modeling was further carried out in order to look into the discrepancies between the experimental data and the results predicted by the mechanisms.

  19. Pistacia lentiscus fruit oil reduces oxidative stress in human skin explants caused by hydrogen peroxide.

    PubMed

    Ben Khedir, S; Moalla, D; Jardak, N; Mzid, M; Sahnoun, Z; Rebai, T

    2016-10-01

    We investigated the efficacy of Pistacia lentiscus fruit oil (PLFO) for protecting human skin from damage due to oxidative stress. PLFO contains natural antioxidants including polyphenols, sterols and tocopherols. We compared the antioxidant potential of PLFO with extra virgin olive oil (EVOO). Explants of healthy adult human skin were grown in culture with either PLFO or EVOO before adding hydrogen peroxide (H2O2). We also used cultured skin explants to investigate the effects of PLFO on lipid oxidation and depletion of endogenous antioxidant defense enzymes including glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) one day after 2 h exposure to H2O2. We found that PLFO scavenged radicals and protected skin against oxidative injury. PLFO exhibited greater antioxidant and free radical scavenging activity than EVOO. Skin explants treated with PLFO inhibited H2O2 induced MDA formation by inhibition of lipid oxidation. In addition, the oil inhibited H2O2 induced depletion of antioxidant defense enzymes including GPx, SOD and CAT. We found that treatment with PLFO repaired skin damage owing to its antioxidant properties.

  20. Iridium- and Osmium-decorated Reduced Graphenes as Promising Catalysts for Hydrogen Evolution.

    PubMed

    Lim, Chee Shan; Sofer, Zdeněk; Toh, Rou Jun; Eng, Alex Yong Sheng; Luxa, Jan; Pumera, Martin

    2015-06-22

    Renewable energy sources are highly sought after as a result of numerous worldwide problems concerning the environment and the shortage of energy. Currently, the focus in the field is on the development of catalysts that are able to provide water splitting catalysis and energy storage for the hydrogen evolution reaction (HER). While platinum is an excellent material for HER catalysis, it is costly and rare. In this work, we investigated the electrocatalytic abilities of various graphene-metal hybrids to replace platinum for the HER. The graphene materials were doped with 4f metals, namely, iridium, osmium, platinum and rhenium, as well as 3d metals, namely, cobalt, iron and manganese. We discovered that a few hybrids, in particular iridium- and osmium-doped graphenes, have the potential to become competent electrocatalysts owing to their low costs and-more importantly-to their promising electrochemical performances towards the HER. One of the more noteworthy observations of this work is the superiority of these two hybrids over MoS2 , a well-known electrocatalyst for the HER.

  1. Magnetron sputtering of metallic coatings onto elastomeric substrates for a decrease in fuel permeation rate

    NASA Astrophysics Data System (ADS)

    Myntti, Matthew F.

    The purpose of this research was to investigate the application of a metallic coating by magnetron sputtering onto elastomeric substrates, as an inhibiting layer to permeation transport. The metallic coatings which were deposited were aluminum, titanium, and copper. The substrates used were NBR, FVMQ, and FKM elastomers. The permeating fluids were ASTM Fuel C, isooctane, and toluene. The magnetron sputtering properties of these metallic elements were unique to each material, with the titanium sputtering rate being very low. The sputtering rates of these materials correlated well with their sublimation temperature. It was found that some of the metallic particles which were sputtered onto the substrates, implanted into the surface of the elastomeric membranes, with the total amount and distance of implantation being related to the density of the substrate material. The permeation of these solvents through the composite materials was reduced by the presence of these coatings with the reduction in permeation rate ranging from 12 to 25% for Fuel C. The pervaporation properties of these substrates were also evaluated. It was found from this analysis that for the FVMQ and NBR substrates, the permeation rate of the permeating solute molecules was proportional to the size of the permeation molecule. The substrate materials were not significantly stiffened by the addition of the thin metallic coatings. The coated materials were cohesive and well adhered, as determined by stretching of the substrate materials with the metallic layer in place. Upon stretching, there was no evidence of damage to the metallic coating.

  2. Role of hydrogen and oxygen fugacity on incorporation of nitrogen and carbon in reduced magmas of the early Earth

    NASA Astrophysics Data System (ADS)

    Kadik, A. A.; Litvin, Yu. A.

    2009-04-01

    Role of hydrogen and oxygen fugacity on incorporation of nitrogen and carbon in reduced magmas of the early Earth A. A. Kadik (1) and Yu. A. Litvin (2)., (1) V.I.Vernadsky Institute of Geochemistry and Analytical Chemistry, RAS, Kosygin St. 19, Moscow 119991, Russia, (2) Institute of Experimental Mineralogy, RAS, Chernogolovka, Mosсow distr. 142432, Russia kadik@geokhi.ru / 7-495-137-7200 In a series of experiments in the system Fe-bearing melt + molten Fe metallic phase + N+ H conducted at 4 GPa and 1550°C and logfO2 from 2 to 4 below logfO2 (IW), we have characterised the nature and quantified the abundance's of N- and H-compound dissolved in an model silicate melt (NaAlSi3O8 80% wt +FeO 20% wt). Experiments were carried out in an anvil-with-hole apparatus. The technique of fO2 buffering employed relies upon the diffusion of H2 through Pt to achieve equal chemical potentials of H2 in the inner Pt capsule and outer solid fO2 buffer assembly in the presence of H2O. The fO2 imposed on the charge is controlled by the equilibrium between H2 buffered externally, and the Fe-bearing melt. To create a low fO2 in the experiments, 2, 3, 5 and 7 wt % of finely dispersed Si3N4 was added to the glass powder (NaAlSi3O8 80% + FeO 20% wt). The initial Si3N4 was unstable under experimental conditions and was completely consumed according to the reactions: Si3N4(initial) + 3O2 → 3SiO2(melt) + 4N(melt) with the subsequent participation of nitrogen in reactions with hydrogen and components of silicate melts. The infrared and Raman spectroscopy of glasses indicates a remarkable feature of N-H interaction with a reduced silicate: an appreciable change in the mechanism of their dissolution with a decrease in fO2. The most part of nitrogen reacts with hydrogen with formation of N-H complexes. The most likely nitrogen-bearing species is represented by NH3 and NH4+ group. Except for N-H complexes hydrogen is expressed under the oxidized form OH and H2O. Some hydrogen is present in a

  3. Potential of desensitizing toothpastes to reduce the hydrogen peroxide diffusion in teeth with cervical lesions.

    PubMed

    Dávila-Sánchez, Andrés; Montenegro, Andrés Fernando; Alfonso, Arana-Gordillo; Farago, Paulo Vitor; Loguercio, Alessandro D; Reis, Alessandra

    2016-06-01

    To evaluate the occlusive potential of four toothpastes by atomic force microscopy (AFM) before and after bleaching and quantify the hydrogen peroxide (HP) diffusion into the pulp chamber after application of desensitizing toothpastes in teeth with cervical lesions. In 52 human extracted premolars, 2-mm deep artificial cervical lesions (ACL) were prepared and rinsed with EDTA for 10 seconds. Then teeth were adapted in a brushing machine and brushed with one of the following toothpastes [Regular toothpaste with no occlusive compounds Colgate Cavity Protection (CP), Oral-B Pro Health (OB), Colgate ProRelief (PR) and Sensodyne Rapid Relief (RR)] under constant loading (250 g; 4.5 cycles/seconds; 3 minutes). In 13 teeth (control group), no artificial cervical lesion was prepared. After that, the teeth were bleached with 35% HP with three 15-minute applications. The HP diffusion was measured spectrophotometrically as a stable red product based on HP reaction with 4-aminoanthipyrine and phenol in presence of peroxidase, at a wavelength of 510 nm and the dentin surfaces of ACL were evaluated before and after bleaching by AFM. Data was statistically analyzed by one-way ANOVA and Tukey's test (alpha = 0.05). In the AFM images, some modifications of the dentin surface were observed after application of OB and RR. However, only for RR the formation of a surface deposit was produced, which occluded the majority of the dentin tubules. Also, only for RR, this deposit was not modified/removed by bleaching. Despite this, all groups with ACL showed higher HP penetration than sound teeth, regardless of the toothpaste used (P < 0.001).

  4. Nitric oxide-releasing flurbiprofen reduces formation of proinflammatory hydrogen sulfide in lipopolysaccharide-treated rat.

    PubMed

    Anuar, Farhana; Whiteman, Matthew; Siau, Jia Ling; Kwong, Shing Erl; Bhatia, Madhav; Moore, Philip K

    2006-04-01

    The biosynthesis of both nitric oxide (NO) and hydrogen sulfide (H2S) is increased in lipopolysaccharide (LPS)-injected mice and rats but their interaction in these models is not known. In this study we examined the effect of the NO donor, nitroflurbiprofen (and the parent molecule flurbiprofen) on NO and H2S metabolism in tissues from LPS-pretreated rats. Administration of LPS (10 mg kg(-1), i.p.; 6 h) resulted in an increase (P<0.05) in plasma TNF-alpha, IL-1beta and nitrate/nitrite (NO(x)) concentrations, liver H2S synthesis (from added cysteine), CSE mRNA, inducible nitric oxide synthase (iNOS), myeloperoxidase (MPO) activity (marker for neutrophil infiltration) and nuclear factor-kappa B (NF-kappaB) activation. Nitroflurbiprofen (3-30 mg kg(-1), i.p.) administration resulted in a dose-dependent inhibition of the LPS-mediated increase in plasma TNF-alpha, IL-1beta and NO(x) concentration, liver H2S synthesis (55.00+/-0.95 nmole mg protein(-1), c.f. 62.38+/-0.47 nmole mg protein(-1), n = 5, P<0.05), CSE mRNA, iNOS, MPO activity and NF-kappaB activation. Flurbiprofen (21 mg kg(-1), i.p.) was without effect. These results show for the first time that nitroflurbiprofen downregulates the biosynthesis of proinflammatory H2S and suggest that such an effect may contribute to the augmented anti-inflammatory activity of this compound. These data also highlight the existence of 'crosstalk' between NO and H2S in this model of endotoxic shock.

  5. Distinctive Oxidative Stress Responses to Hydrogen Peroxide in Sulfate Reducing Bacteria Desulfovibrio vulgaris Hildenborough

    SciTech Connect

    Zhou, Aifen; He, Zhili; Redding, A.M.; Mukhopadhyay, Aindrila; Hemme, Christopher L.; Joachimiak, Marcin P.; Bender, Kelly S.; Keasling, Jay D.; Stahl, David A.; Fields, Matthew W.; Hazen, Terry C.; Arkin, Adam P.; Wall, Judy D.; Zhou, Jizhong

    2009-01-01

    Response of Desulfovibrio vulgaris Hildenborough to hydrogen peroxide (H2O2, 1 mM) was investigated with transcriptomic, proteomic and genetic approaches. Microarray data demonstrated that gene expression was extensively affected by H2O2 with the response peaking at 120 min after H2O2 treatment. Genes affected include those involved with energy production, sulfate reduction, ribosomal structure and translation, H2O2 scavenging, posttranslational modification and DNA repair as evidenced by gene coexpression networks generated via a random matrix-theory based approach. Data from this study support the hypothesis that both PerR and Fur play important roles in H2O2-induced oxidative stress response. First, both PerR and Fur regulon genes were significantly up-regulated. Second, predicted PerR regulon genes ahpC and rbr2 were derepressedin Delta PerR and Delta Fur mutants and induction of neither gene was observed in both Delta PerR and Delta Fur when challenged with peroxide, suggesting possible overlap of these regulons. Third, both Delta PerR and Delta Fur appeared to be more tolerant of H2O2 as measured by optical density. Forth, proteomics data suggested de-repression of Fur during the oxidative stress response. In terms of the intracellular enzymatic H2O2 scavenging, gene expression data suggested that Rdl and Rbr2 may play major roles in the detoxification of H2O2. In addition, induction of thioredoxin reductase and thioredoxin appeared to be independent of PerR and Fur. Considering all data together, D. vulgaris employed a distinctive stress resistance mechanism to defend against increased cellular H2O2, and the temporal gene expression changes were consistent with the slowdown of cell growth at the onset of oxidative stress.

  6. Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature.

    PubMed

    Gao, Yongjun; Ma, Ding; Wang, Chunlei; Guan, Jing; Bao, Xinhe

    2011-02-28

    Reduced graphene oxide was used as a catalyst for reduction of nitrobenzene at room temperature. High catalytic activity and stability were exhibited in circular experiments. The catalytic procedure was in situ monitored by NMR and N-phenylhydroxylamine was proved to be the intermediate in this catalytic reaction.

  7. Shape-Dependent Activity of Ceria for Hydrogen Electro-Oxidation in Reduced-Temperature Solid Oxide Fuel Cells.

    PubMed

    Tong, Xiaofeng; Luo, Ting; Meng, Xie; Wu, Hao; Li, Junliang; Liu, Xuejiao; Ji, Xiaona; Wang, Jianqiang; Chen, Chusheng; Zhan, Zhongliang

    2015-11-04

    Single crystalline ceria nanooctahedra, nanocubes, and nanorods are hydrothermally synthesized, colloidally impregnated into the porous La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) scaffolds, and electrochemically evaluated as the anode catalysts for reduced temperature solid oxide fuel cells (SOFCs). Well-defined surface terminations are confirmed by the high-resolution transmission electron microscopy--(111) for nanooctahedra, (100) for nanocubes, and both (110) and (100) for nanorods. Temperature-programmed reduction in H2 shows the highest reducibility for nanorods, followed sequentially by nanocubes and nanooctahedra. Measurements of the anode polarization resistances and the fuel cell power densities reveal different orders of activity of ceria nanocrystals at high and low temperatures for hydrogen electro-oxidation, i.e., nanorods > nanocubes > nanooctahedra at T ≤ 450 °C and nanooctahedra > nanorods > nanocubes at T ≥ 500 °C. Such shape-dependent activities of these ceria nanocrystals have been correlated to their difference in the local structure distortions and thus in the reducibility. These findings will open up a new strategy for design of advanced catalysts for reduced-temperature SOFCs by elaborately engineering the shape of nanocrystals and thus selectively exposing the crystal facets. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Low Temperature Hydrogen Transport Using Palladium/Copper Membrane

    SciTech Connect

    Lessing, Paul Alan; Wood, Henry Carwin; Zuck, Larry Douglas

    2003-06-01

    Results are presented from low temperature hydrogen permeation experiments using a palladium/copper membrane. Inlet pressure was varied from 5 psig to 180 psig, while temperature was varied from 25°C to 275°C. The palladium/copper membranes exhibited flow stability problems at low temperatures and pressures when using ultra high purity hydrogen. A preconditioning step of high temperatures and inlet pressures of pure hydrogen was necessary to stimulate any substantial permeate flows. After pre-conditioning, results showed zero hydrogen flow when using 3–4% hydrogen mixed with helium or argon. It is thought that the inert gas atoms were adsorbed into the membrane surface and thus blocked the hydrogen atom dissolution. When using pure hydrogen at low to moderate temperatures and low pressures, no measurable permeate flow was observed. Also, zero permeate flow was observed at relatively high temperatures (e.g., 150°C) and a low inlet pressure (5 psig). The cause of the zero permeate flow, when using pure hydrogen, was attributed to interface control of the permeation process. Interface control could be due to: (a) insufficient energy to split the hydrogen molecule into hydrogen atoms, or (b) a reversible phase change from beta to alpha of crystals at the near surface.

  9. IMPLEMENTING HEAT SEALED BAG RELIEF & HYDROGEN & METANE TESTING TO REDUCE THE NEED TO REPACK HANFORD TRANSURANIC (TRU) WASTE

    SciTech Connect

    MCDONALD, K.M.

    2005-01-20

    The Department of Energy's site at Hanford has a significant quantity of drums containing heat-sealed bags that required repackaging under previous revisions of the TRUPACT-II Authorized Methods for Payload Control (TRAMPAC) before being shipped to the Waste Isolation Pilot Plant (WIPP). Since glovebox repackaging is the most rate-limiting and resource-intensive step for accelerating Hanford waste certification, a cooperative effort between Hanford's TRU Program and the WIPP site significantly reduced the number of drums requiring repackaging. More specifically, recent changes to the TRAMPAC (Revision 19C), allow relief for heat-sealed bags having more than 390 square inches of surface area. This relief is based on data provided by Hanford on typical Hanford heat-sealed bags, but can be applied to other sites generating transuranic waste that have waste packaged in heat-sealed bags. The paper provides data on the number of drums affected, the attendant cost savings, and the time saved. Hanford also has a significant quantity of high-gram drums with multiple layers of confinement including heat-scaled bags. These higher-gram drums are unlikely to meet the decay-heat limits required for analytical category certification under the TRAMPAC. The combination of high-gram drums and accelerated reprocessing/shipping make it even more difficult to meet the decay-heat limits because of necessary aging requirements associated with matrix depletion. Hydrogen/methane sampling of headspace gases can be used to certify waste that does not meet decay-heat limits of the more restrictive analytical category using the test category. The number of drums that can be qualified using the test category is maximized by assuring that the detection limit for hydrogen and methane is as low as possible. Sites desiring to ship higher-gram drums must understand the advantages of using hydrogen/methane sampling and shipping under the test category. Headspace gas sampling, as specified by the WIPP

  10. Investigation of non-magnetic alloys for the suppression of tritium permeation. Final report

    SciTech Connect

    Turnbull, John C.; Kessler, S. William; Eastman, G. Yale

    1980-07-01

    This report describes a small (300 man hour) literature survey relating to the suppression of tritium loss by permeation through the walls of fusion reactors. The program was based on prior in-house Thermacore work to suppress hydrogen permeation into high temperature (800/sup 0/C) heat pipes. The Thermacore approach involves selection of a steel with a small (.5 to 5%) aluminum content. The aluminum is diffused to the surface and oxidized. The present work was aimed at identification of alloys which might combine low tritium permeation with other properties desired in fusion reactor vessels, heat exchangers, lithium-handling plumbing and other components likely to contain tritium. These properties include low radiation damage, low magnetic permeability, high temperature strength, and compatibility with potential heat transfer and blanket materials. The work consisted of two tasks: Problem Definition and Literature Search and Analysis.

  11. Hydrogen transport in nickel-base alloys

    NASA Astrophysics Data System (ADS)

    Turnbull, A.; Ballinger, R. G.; Hwang, I. S.; Morra, M. M.; Psaila-Dombrowski, M.; Gates, R. M.

    1992-12-01

    The electrochemical permeation technique has been used to characterize hydrogen transport and trapping in pure nickel and in alloys 600, X-750, and 718 at a temperature of 80 °C. The “effective diffusivity ” of hydrogen atoms in alloy 600 is reduced by a factor of about 5 compared to pure nickel. This is attributed to both compositional changes and the presence of [(Ti, Nb)C] carbides. Aging of alloy 600, with subsequent M23C6 carbide precipitation, does not significantly influence the measured “effective diffusivity,” which is explained by the dominant effect of preexisting [(Ti, Nb)C] carbides. The “effective diffusivity” of hydrogen atoms in solution-annealed alloy X-750 is reduced by a factor of about 9 compared to that of pure nickel. This is also attributed to compositional changes and [(Ti,Nb)C] carbides. Aging of alloy X-750, which causes precipitation of γ'[Ni3(Al, Ti)], reduces the “effective diffusivity” by an additional factor of 5 or more. Double aging at 885 °C/24 hours, 704 °C/20 hours following hot working yields the greatest reduction in “effective diffusivity.” Analysis of permeation transients using a diffusion- trapping model indicates a binding energy associated with trapping due to the γ phase of be- tween -31 and -37 kJ/mol. The “effective diffusivity” of hydrogen in alloy 718 is about 40 pct greater than for alloy X-750 for the same double and direct aging treatments. The average “effective diffusivities” of the double-aged and direct-aged alloy 718 are comparable, but the permeation transients for the double-aged treatment are significantly steeper. The double-aged treatment with predominantly δ phase (orthorhombic Ni3Nb) yields a binding energy of about -30 kJ/mol. Analysis of the direct aged-treated 718, which contains predominantly γ″ phase (body-centered tetragonal Ni3Nb) gave a binding energy between -23 and -27 kJ/mol. Seg- regation of hydrogen atoms to the γ matrix interface, combined with a

  12. Evaluation of a Hydrogen Fuel Cell Powered Blended-Wing-Body Aircraft Concept for Reduced Noise and Emissions

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Freh, Joshua E.; Olson, Erik D.

    2004-01-01

    This report describes the analytical modeling and evaluation of an unconventional commercial transport aircraft concept designed to address aircraft noise and emission issues. A blended-wing-body configuration with advanced technology hydrogen fuel cell electric propulsion is considered. Predicted noise and emission characteristics are compared to a current technology conventional configuration designed for the same mission. The significant technology issues which have to be addressed to make this concept a viable alternative to current aircraft designs are discussed. This concept is one of the "Quiet Green Transport" aircraft concepts studied as part of NASA's Revolutionary Aerospace Systems Concepts (RASC) Program. The RASC Program was initiated to develop revolutionary concepts that address strategic objectives of the NASA Enterprises, such as reducing aircraft noise and emissions, and to identify advanced technology requirements for the concepts.

  13. Attenuation of hydrogen peroxide and ferric reducing/antioxidant power serum levels in colorectal cancer patients with intestinal parasitic infection.

    PubMed

    Chandramathi, Samudi; Suresh, Kumar Govind; Anita, Zarina Bustam; Kuppusamy, Umah Rani

    2009-04-01

    This study assessed several common oxidative indices in subjects infected with intestinal parasites, as well as in colorectal cancer (CRC) patients both with and without intestinal parasites. Serum levels of malondialdehyde (MDA), ferric reducing/antioxidant power (FRAP), and hydrogen peroxide (H(2)O(2)) were measured, as were plasma levels of advanced oxidation protein products (AOPP), all according to established methods. The presence of intestinal parasites was confirmed by stool examination. All intestinal parasiteinfected subjects and CRC patients showed the presence of oxidative stress. Thirtysix percent of the CRC patients had intestinal parasitic infections. The levels of H(2)O(2) and FRAP in parasite-infected subjects were significantly higher than in CRC patients, but these levels were significantly lower in the CRC patients with parasitic infections. Parasitic infection and CRC may contribute to oxidative stress independently, but when present together, the oxidative stress burden imposed by parasites may be attenuated.

  14. Reducing Collisional Breakup Of A System Of Charged Particles To Practical Computation: Electron-Impact Ionization Of Hydrogen

    SciTech Connect

    McCurdy, C.W.; Baertschy, M.; Isaacs, W.A.; Rescigno, T.N.

    2001-08-24

    It has been a goal of researchers in the area of atomic collisions for nearly half a century to reduce to practical computation the simplest problem in collisional ionization: the electron-impact ionization of atomic hydrogen. The principal barrier to solving this problem has been the difficult boundary conditions that apply to the complete breakup of a system charged particles. We describe how this goal has been accomplished in the last five years by the application of the mathematical transformation of ''exterior complex scaling'' together with an appropriate formalism for computing the breakup amplitudes from a numerical representation of the complete solution of the Schrodinger equation. Some successes of other recent approaches to this problem are also described.

  15. Evaluation of an Aircraft Concept With Over-Wing, Hydrogen-Fueled Engines for Reduced Noise and Emissions

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Olson, Erik D.

    2002-01-01

    This report describes the analytical modeling and evaluation of an unconventional commercial transport aircraft concept designed to address aircraft noise and emission issues. A strut-braced wing configuration with overwing, ultra-high bypass ratio, hydrogen fueled turbofan engines is considered. Estimated noise and emission characteristics are compared to a conventional configuration designed for the same mission and significant benefits are identified. The design challenges and technology issues which would have to be addressed to make the concept a viable alternative to current aircraft designs are discussed. This concept is one of the "Quiet Green Transport" aircraft concepts studied as part of NASA's Revolutionary Aerospace Systems Concepts (RASC) Program. The RASC Program seeks to develop revolutionary concepts that address strategic objectives of the NASA Enterprises, such as reducing aircraft noise and emissions, and to identify enabling advanced technology requirements for the concepts.

  16. Reduced and Validated Kinetic Mechanisms for Hydrogen-CO-sir Combustion in Gas Turbines

    SciTech Connect

    Yiguang Ju; Frederick Dryer

    2009-02-07

    Rigorous experimental, theoretical, and numerical investigation of various issues relevant to the development of reduced, validated kinetic mechanisms for synthetic gas combustion in gas turbines was carried out - including the construction of new radiation models for combusting flows, improvement of flame speed measurement techniques, measurements and chemical kinetic analysis of H{sub 2}/CO/CO{sub 2}/O{sub 2}/diluent mixtures, revision of the H{sub 2}/O{sub 2} kinetic model to improve flame speed prediction capabilities, and development of a multi-time scale algorithm to improve computational efficiency in reacting flow simulations.

  17. Design of (Nb, Mo)40Ti30Ni30 alloy membranes for combined enhancement of hydrogen permeability and embrittlement resistance.

    PubMed

    Li, Xinzhong; Liang, Xiao; Liu, Dongmei; Chen, Ruirun; Huang, Feifei; Wang, Rui; Rettenmayr, Markus; Su, Yanqing; Guo, Jingjie; Fu, Hengzhi

    2017-03-16

    The effect of substitution of Nb by Mo in Nb40Ti30Ni30 was investigated with respect to microstructural features and hydrogen dissolution, diffusion and permeation. As-cast Nb40-xMoxTi30Ni30 (x = 0, 5, 10) alloys consist of primary bcc-Nb phase and binary eutectic (bcc-Nb + B2-TiNi). The substitution of Nb by Mo reduces the hydrogen solubility in alloys, but may increase (x = 5) or decrease (x = 10) the apparent hydrogen diffusivity and permeability. As-cast Nb35Mo5Ti30Ni30 exhibits a combined enhancement of hydrogen permeability and embrittlement resistance as compared to Nb40Ti30Ni30. This work confirms that Mo is a desirable alloying element in Nb that can contribute to a reduction in hydrogen absorption and an increase in intrinsic hydrogen diffusion, thus improving embrittlement resistance with minimal permeability penalty.

  18. Pt-functionalized reduced graphene oxide for excellent hydrogen sensing at room temperature

    SciTech Connect

    Ghosh, Ruma; Guha, Prasanta Kumar E-mail: physkr@phy.iitkgp.ernet.in; Santra, Sumita; Ray, Samit Kumar E-mail: physkr@phy.iitkgp.ernet.in

    2015-10-12

    Cost effective and faster detection of H{sub 2} has always remained a challenge. We report synthesis of reduced graphene oxide (RGO)–Pt composite and its application as highly sensitive and selective H{sub 2} sensors at room temperature. Four samples by varying the ratio of RGO and Pt were prepared to test their sensing performance. The tests were carried out in inert (N{sub 2}) ambience as well as air ambience. It was observed that the RGO:Pt (1:3) 1 h reduced sample demonstrated the best H{sub 2} sensing performance in terms of sensitivity, response time, and recovery time at room temperature. Its response varied from ∼19% (200 ppm) to 57% (5000 ppm) against H{sub 2} in air ambience. Also, the response time and recovery time of the RGO:Pt (1:3) sample were found to be as fast as 65 s and 230 s against 5000 ppm, respectively, in air ambience. In N{sub 2} ambience, the RGO:Pt (1:3) sample demonstrated the best response of −97% (500 ppm), but its recovery was found to be poor. The RGO–Pt composite formation was verified by high resolution transmission electron microscopy and X-ray photoelectron spectroscopy. The detailed physics behind the sensing mechanisms have been explained and experimentally verified in this work.

  19. Reduced graphene oxide/InGaZn mixed oxide nanocomposite photocatalysts for hydrogen production.

    PubMed

    Martha, Satyabadi; Padhi, Deepak Ku; Parida, Kulamani

    2014-02-01

    A series of reduced graphene oxide and indium-gallium-zinc mixed oxide (RGO/IGZ) nanocomposites were successfully synthesised by a simple one-step hydrothermal method. The as-synthesised nanocomposites were characterised by crystallographic, microscopic, and spectroscopic methods to explore the robust photocatalytic activity of the prepared materials. XRD patterns confirmed the formation of highly pure, single-phase, hexagonal In2 Ga2 ZnO7 with no impurity-related peaks. All the photocatalysts absorbed visible light as observed from the diffuse reflectance UV/Vis spectra. The electron-hole recombination is effectively minimised by the formation of an RGO/metal oxide nanocomposite, which was successfully derived from a photoluminescence (PL) study and photoelectrochemical measurements. The decoration of IGZ nanocrystals onto reduced graphene sheets leads to significant quenching of its luminescent intensity, dramatically improved photocurrent generation (33 times more than neat IGZ) and significantly enhanced photostability. The high photocatalytic activity for H2 production is explained by the strong interaction between the IGZ nanocrystals with RGO sheets, low PL intensity, high photocurrent and large surface area. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Permeation properties of the hair cell mechanotransducer channel provide insight into its molecular structure

    PubMed Central

    Pan, B.; Waguespack, J.; Schnee, M. E.; LeBlanc, C.

    2012-01-01

    Mechanoelectric transducer (MET) channels, located near stereocilia tips, are opened by deflecting the hair bundle of sensory hair cells. Defects in this process result in deafness. Despite this critical function, the molecular identity of MET channels remains a mystery. Inherent channel properties, particularly those associated with permeation, provide the backbone for the molecular identification of ion channels. Here, a novel channel rectification mechanism is identified, resulting in a reduced pore size at positive potentials. The apparent difference in pore dimensions results from Ca2+ binding within the pore, occluding permeation. Driving force for permeation at hyperpolarized potentials is increased because Ca2+ can more easily be removed from binding within the pore due to the presence of an electronegative external vestibule that dehydrates and concentrates permeating ions. Alterations in Ca2+ binding may underlie tonotopic and Ca2+-dependent variations in channel conductance. This Ca2+-dependent rectification provides targets for identifying the molecular components of the MET channel. PMID:22323630

  1. Carbon-coated ceramic membrane reactor for the production of hydrogen by aqueous-phase reforming of sorbitol.

    PubMed

    Neira D'Angelo, M F; Ordomsky, V; Schouten, J C; van der Schaaf, J; Nijhuis, T A

    2014-07-01

    Hydrogen was produced by aqueous-phase reforming (APR) of sorbitol in a carbon-on-alumina tubular membrane reactor (4 nm pore size, 7 cm long, 3 mm internal diameter) that allows the hydrogen gas to permeate to the shell side, whereas the liquid remains in the tube side. The hydrophobic nature of the membrane serves to avoid water loss and to minimize the interaction between the ceramic support and water, thus reducing the risks of membrane degradation upon operation. The permeation of hydrogen is dominated by the diffusivity of the hydrogen in water. Thus, higher operation temperatures result in an increase of the flux of hydrogen. The differential pressure has a negative effect on the flux of hydrogen due to the presence of liquid in the larger pores. The membrane was suitable for use in APR, and yielded 2.5 times more hydrogen than a reference reactor (with no membrane). Removal of hydrogen through the membrane assists in the reaction by preventing its consumption in undesired reactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Evaluation of whey, milk, and delactosed permeates as salt substitutes.

    PubMed

    Smith, S T; Metzger, L; Drake, M A

    2016-11-01

    Whey and milk permeates are by-products of high-protein dairy powder manufacture. Previous work has shown that these permeates contribute to salty taste without contributing significantly to sodium content. The objective of this study was to explore the sensory characteristics and compositional analysis of permeates from different milk and whey streams and a low-sodium product application made from them. Skim milk, Cheddar, cottage, and Mozzarella cheese whey permeates were manufactured in triplicate, and delactosed whey permeate was obtained in triplicate. Composition (protein, fat, solids, minerals) was conducted on permeates. Organic acid composition was determined using HPLC. Volatile compounds were extracted from permeates by solid phase microextraction with gas chromatography-mass spectrometry. A trained sensory panel documented sensory attributes of permeates and cream of broccoli soups with and without salt or permeates followed by consumer acceptance testing (n=105) on the soups. Cottage cheese whey permeate contained a higher lactic acid content than other permeates, which has been shown to contribute to a higher salty taste. Cottage cheese whey permeate also contained potato or brothy and caramel flavors and sour and salty tastes, whereas delactosed whey permeate had high intensities of cardboard and beefy or brothy flavors and salty taste. Milk, Cheddar, and Mozzarella cheese whey permeates were characterized by sweet taste and cooked milky flavor. Permeates with higher cardboard flavor had higher levels of aldehydes. All permeates contributed to salty taste and to salty taste perception in soups; although the control soup with added salt was perceived as saltier and was preferred by consumers over permeate soups. Soup with permeate from cottage cheese was the least liked of all soups, likely due to its sour taste. All other permeate soups scored at parity for liking. These results demonstrate the potential for milk, whey, and delactosed permeates from

  3. Hydrogen sulfide production by sulfate-reducing bacteria utilizing additives eluted from plastic resins.

    PubMed

    Tsuchida, Daisuke; Kajihara, Yusuke; Shimidzu, Nobuhiro; Hamamura, Kengo; Nagase, Makoto

    2011-06-01

    In the present study it was demonstrated that organic additives eluted from plastic resins could be utilized as substrates by sulfate-reducing bacteria. Two laboratory-scale experiments, a microcosm experiment and a leaching experiment, were conducted using polyvinyl chloride (PVC) as a model plastic resin. In the former experiment, the conversion of sulfate to sulfide was evident in microcosms that received plasticized PVC as the sole carbon source, but not in those that received PVC homopolymer. Additionally, dissolved organic carbon accumulated only in microcosms that received plasticized PVC, indicating that the dissolved organic carbon originated from additives. In the leaching experiment, phenol and bisphenol A were found in the leached solutions. These results suggest that the disposal of waste plastics in inert waste landfills may result in the production of H(2)S.

  4. Prediction of Hydrogen Entry and Permeation in Metals and Alloys

    DTIC Science & Technology

    1992-01-01

    Kato, H. J. Grabke, B. Egert, and G. Panzner, Cor- the publication costs of this article. ros. Sci., 24, 591 (1984). 6. E. G. Dafft, K. Bohnenkamp , and H...Codes 6000 1 ATTN. Electronic Materials 6300 1 Sciences Division 1 2627 1 Naval Air Development Center Commander Code 606 David Taylor Research Warminster...PA 18974 1 Center ATTN: Dr . J. DeLuccia Bethesda, MD 20084 Commanding Officer Naval Underwater System Ctr. Naval Surface Warfare Center Newport, RI

  5. Prediction of Hydrogen Entry and Permeation in Metals and Alloys

    DTIC Science & Technology

    1993-01-01

    rCiwv (coA) 4Time 5(min) SECTION 3 ANOTHER GRAIN BOUNDARY CORROSION PROCESS IN SENSITIZED STAINLESS STEEL William K. Kelly, Rajan N. Iyer and Howard W...61801 Scientific Advisor Washington DC 20380 ATTN: Code AX DOD Metals Information Analysis Ct. (MIAC) CINDAS /Purdue University WestLafayette IN 47906

  6. Evaluation of the transdermal permeation of different paraben combinations through a pig ear skin model.

    PubMed

    Caon, Thiago; Costa, Ana Carolina Oliveira; de Oliveira, Marcone Augusto Leal; Micke, Gustavo Amadeu; Simões, Cláudia Maria Oliveira

    2010-05-31

    Although parabens have several features of ideal preservatives, different studies have shown that they may affect human health due to their estrogenic activity. Therefore, various strategies have been applied to reduce their skin penetration. However, the effect of paraben combinations on transdermal permeation has not yet been investigated. Thus, the objective of this study was to evaluate paraben permeation in pig ear skin using a Franz diffusion cell system with capillary electrophoresis detection, in order to identify which paraben combinations (defined by a factorial design) have the lowest skin permeation. The permeation of isolated parabens was also evaluated and the permeation characteristics, obtained by the Moser model, confirmed that lipophilicity and molecular weight may influence the systemic absorption of these compounds. In previous tests using isolated parabens, methyl and ethyl parabens presented greater retention in the epidermis compared to the dermis, while propyl and butyl parabens had similar retention profiles in these layers. An increase in ethanol concentration and experimental time promoted greater parabens retention in the dermis compared to the epidermis. The binary combinations of methyl and ethyl parabens as well as of methyl and propyl parabens (added to several cosmetic products in order to increase the antimicrobial spectrum) reduced significantly their permeation rates through pig ear skin (with the exception of EP), probably due to the high retention of these parabens in the epidermis and dermis.

  7. Enhanced Evaporation Strength through Fast Water Permeation in Graphene-Oxide Deposition.

    PubMed

    Tong, Wei Li; Ong, Wee-Jun; Chai, Siang-Piao; Tan, Ming K; Hung, Yew Mun

    2015-06-23

    The unique characteristic of fast water permeation in laminated graphene oxide (GO) sheets has facilitated the development of ultrathin and ultrafast nanofiltration membranes. Here we report the application of fast water permeation property of immersed GO deposition for enhancing the performance of a GO/water nanofluid charged two-phase closed thermosyphon (TPCT). By benchmarking its performance against a silver oxide/water nanofluid charged TPCT, the enhancement of evaporation strength is found to be essentially attributed to the fast water permeation property of GO deposition instead of the enhanced surface wettability of the deposited layer. The expansion of interlayer distance between the graphitic planes of GO deposited layer enables intercalation of bilayer water for fast water permeation. The capillary force attributed to the frictionless interaction between the atomically smooth, hydrophobic carbon structures and the well-ordered hydrogen bonds of water molecules is sufficiently strong to overcome the gravitational force. As a result, a thin water film is formed on the GO deposited layers, inducing filmwise evaporation which is more effective than its interfacial counterpart, appreciably enhanced the overall performance of TPCT. This study paves the way for a promising start of employing the fast water permeation property of GO in thermal applications.

  8. Implications of recent implantation-driven permeation experiments for fusion reactor safety

    SciTech Connect

    Longhurst, G.R.; Anderl, R.A.; Struttmann, D.A.

    1986-01-01

    Metal structures exposed to the plasma in tritium-burning fusion reactors will be subject to implantation-driven permeation (IDP) of tritium. Permeation rates for IDP in fusion structural materials are usually high because the tritium atoms enter the material without having to go through the dissociation and solution steps required of tritium-bearing gas molecules. These surface processes, which may be rate limiting in PDP, actually enhance permeation in IDP by inhibiting the return of tritium to the plasma side of the structure. Experiments have been conducted at the Idaho National Engineering Laboratory (INEL) to investigate the nature of IDP by simulating conditions experienced by structures exposed to the plasma. These experiments have shown that surface conditions are important to tritium permeation in materials endothermic to hydrogen solution such as austenitic and ferritic steels. In reactive metals such as vanadium, surface processes appear to totally control the permeation. The purpose of this paper is to review the progress of those experiments and to discuss the implications that the results have regarding the tritium-related safety concerns of fusion reactors.

  9. Permeation mechanisms of pulsed microwave plasma deposited silicon oxide films for food packaging applications

    NASA Astrophysics Data System (ADS)

    Deilmann, Michael; Grabowski, Mirko; Theiß, Sebastian; Bibinov, Nikita; Awakowicz, Peter

    2008-07-01

    Silicon oxide barrier layers are deposited on polyethylene terephthalate as permeation barriers for food packaging applications by means of a low pressure microwave plasma. Hexamethyldisiloxane (HMDSO) and oxygen are used as process gases to deposit SiOx coatings via pulsed low pressure plasmas. The layer composition of the coating is investigated by Fourier transform infrared spectroscopy and energy dispersive x-ray spectroscopy to show correlations with barrier properties of the films. The oxygen permeation barrier is determined by the carrier gas method using an electrochemical detector. The transition from low to high barrier films is mapped by the transition from organic SiOxCyHz layers to quartz-like SiO1.7 films containing silanol bound hydrogen. A residual permeation as low as J = 1 ± 0.3 cm3 m-2 day-1 bar-1 is achieved, which is a good value for food packaging applications. Additionally, the activation energy Ep of oxygen permeation is analysed and a strong increase from Ep = 31.5 kJ mol-1 for SiOx CyHz-like coatings to Ep = 53.7 kJ mol-1 for SiO1.7 films is observed by increasing the oxygen dilution of HMDSO:O2 plasma. The reason for the residual permeation of high barrier films is discussed and coating defects are visualized by capacitively coupled atomic oxygen plasma etching of coated substrates. A defect density of 3000 mm-2 is revealed.

  10. Enhanced Evaporation Strength through Fast Water Permeation in Graphene-Oxide Deposition

    NASA Astrophysics Data System (ADS)

    Li Tong, Wei; Ong, Wee-Jun; Chai, Siang-Piao; Tan, Ming K.; Mun Hung, Yew

    2015-06-01

    The unique characteristic of fast water permeation in laminated graphene oxide (GO) sheets has facilitated the development of ultrathin and ultrafast nanofiltration membranes. Here we report the application of fast water permeation property of immersed GO deposition for enhancing the performance of a GO/water nanofluid charged two-phase closed thermosyphon (TPCT). By benchmarking its performance against a silver oxide/water nanofluid charged TPCT, the enhancement of evaporation strength is found to be essentially attributed to the fast water permeation property of GO deposition instead of the enhanced surface wettability of the deposited layer. The expansion of interlayer distance between the graphitic planes of GO deposited layer enables intercalation of bilayer water for fast water permeation. The capillary force attributed to the frictionless interaction between the atomically smooth, hydrophobic carbon structures and the well-ordered hydrogen bonds of water molecules is sufficiently strong to overcome the gravitational force. As a result, a thin water film is formed on the GO deposited layers, inducing filmwise evaporation which is more effective than its interfacial counterpart, appreciably enhanced the overall performance of TPCT. This study paves the way for a promising start of employing the fast water permeation property of GO in thermal applications.

  11. Enhanced Evaporation Strength through Fast Water Permeation in Graphene-Oxide Deposition

    PubMed Central

    Li Tong, Wei; Ong, Wee-Jun; Chai, Siang-Piao; Tan, Ming K.; Mun Hung, Yew

    2015-01-01

    The unique characteristic of fast water permeation in laminated graphene oxide (GO) sheets has facilitated the development of ultrathin and ultrafast nanofiltration membranes. Here we report the application of fast water permeation property of immersed GO deposition for enhancing the performance of a GO/water nanofluid charged two-phase closed thermosyphon (TPCT). By benchmarking its performance against a silver oxide/water nanofluid charged TPCT, the enhancement of evaporation strength is found to be essentially attributed to the fast water permeation property of GO deposition instead of the enhanced surface wettability of the deposited layer. The expansion of interlayer distance between the graphitic planes of GO deposited layer enables intercalation of bilayer water for fast water permeation. The capillary force attributed to the frictionless interaction between the atomically smooth, hydrophobic carbon structures and the well-ordered hydrogen bonds of water molecules is sufficiently strong to overcome the gravitational force. As a result, a thin water film is formed on the GO deposited layers, inducing filmwise evaporation which is more effective than its interfacial counterpart, appreciably enhanced the overall performance of TPCT. This study paves the way for a promising start of employing the fast water permeation property of GO in thermal applications. PMID:26100977

  12. Drug silica nanocomposite: preparation, characterization and skin permeation studies.

    PubMed

    Pilloni, Martina; Ennas, Guido; Casu, Mariano; Fadda, Anna Maria; Frongia, Francesca; Marongiu, Francesca; Sanna, Roberta; Scano, Alessandra; Valenti, Donatella; Sinico, Chiara

    2013-01-01

    The aim of this work was to evaluate silica nanocomposites as topical drug delivery systems for the model drug, caffeine. Preparation, characterization, and skin permeation properties of caffeine-silica nanocomposites are described. Caffeine was loaded into the nanocomposites by grinding the drug with mesoporous silica in a ball mill up to 10 h and the efficiency of the process was studied by XRPD. Formulations were characterized by several methods that include FTIR, XRPD, SEM and TEM. The successful loading of caffeine was demonstrated by XRPD and FTIR. Morphology was studied by SEM that showed particle size reduction while TEM demonstrated formation of both core-shell and multilayered caffeine-silica structures. Solid-state NMR spectra excluded chemical interactions between caffeine and silica matrix, thus confirming that no solid state reactions occurred during the grinding process. Influence of drug inclusion in silica nanocomposite on the in vitro caffeine diffusion into and through the skin was investigated in comparison with a caffeine gel formulation (reference), using newborn pig skin and vertical Franz diffusion cells. Results from the in vitro skin permeation experiments showed that inclusion into the nanocomposite reduced and delayed caffeine permeation from the silica nanocomposite in comparison with the reference, independently from the amount of the tested formulation.

  13. The use of permeation tube device and the development of empirical formula for accurate permeation rate

    USDA-ARS?s Scientific Manuscript database

    A series of laboratory experiments were conducted to assess the accuracy of permeation tube (PT) devices using a calibration gas generator system to measure permeation rate (PR) of volatile organic compounds (VOCs). Calibration gas standards of benzene, toluene, and m-xylene (BTX) were produced from...

  14. Percutaneous Permeation of Topical Phtalocyanine Studied by Photoacoustic Measurements

    NASA Astrophysics Data System (ADS)

    Silva, E. P. O.; Beltrame, M.; Cardoso, L. E.; Barja, P. R.

    2012-11-01

    The purpose of this study was to evaluate the percutaneous permeation of topical hydroxy-(29 H,31 H-phthalocyaninato)aluminum (PcAlOH) on pig ear skin employing photoacoustic (PA) measurements. The PcAlOH was incorporated in an emulsion with assessed stability parameters of pH and short- and long-term stability tests. Pig skin was prepared through a heat separation technique, and the outer skin of the cartilage was removed with a scalpel. Skin samples were then cut and treated with sodium bromide 2 mol . L-1 for 6 h at 37 °C. The epidermis layer was washed with purified water, dried, and stored under reduced pressure until use. The skin permeation kinetics were determined by PA measurements as a function of time, performed with an open PA cell developed at Universidade do Vale do Paraíba. Short- and long-term stability tests showed no phase separation. A significant difference was found between the typical times for percutaneous permeation of the emulsion base and the emulsion + PcAlOH. The study showed two absorption transients due to the physical diffusion of molecules in the skin sample. The first is attributed to the penetration of molecules that promptly passed through the lipid barrier, while the second is related to the molecules that had greater difficulty of passing through. This slower component in the absorption curves is attributed to the penetration of PcAlOH, a planar molecule whose percutaneous penetration is more difficult. The study indicates that the formulations containing PcAlOH have stable characteristics and show promising results in absorption into the skin. The presence of the photosensitive agent in the formulation contributed significantly to the larger time constant observed. PA measurements allowed the evaluation of the penetration kinetics of PcAlOH in pig ear skin; the methodology employed may be used in the determination of the percutaneous permeation of phthalocyanines in further studies.

  15. Percutaneous permeation measurement of topical phthalocyanine by photoacoustic technique

    NASA Astrophysics Data System (ADS)

    Silva, Emanoel P. O.; Barja, Paulo R.; Cardoso, Luiz E.; Beltrame, Milton

    2012-11-01

    This investigation have studied photoacoustic (PA) technique to percutaneous permeation of topical hydroxy-(29H,31H-phthalocyaninate) aluminum (PcAlOH) on pig ear skin. The PcAlOH was incorporated in an emulsion (O/W) (1 mg/dl) with assessed stability parameters of: pH, short and long term stability tests (in the several conditions). The skin was prepared through a heat separation technique, and with a scalpel, the outer skin of the cartilage was removed. The skins were then cut into 4 cm2 pieces and treated with sodium bromide 2 mol/L for 6 h at 37 °C. The epidermis layer was washed with purified water, dried, and stored under reduced pressure until use. The skin permeation kinetics was determined by photoacoustic technique in an open photoacoustic cell. Short (after preparation) and long-term stability tests showed no phase separation. The emulsion developed pH 7.6 and after incorporating the pH was unchanged. The typical times for percutaneous permeation of the emulsion base and emulsion + PcAlOH were 182 (±6) and 438 (±3) s, respectively. This study indicated that the formulations containing PcAlOH have stabile characteristics and show promising results in absorption into the skin. The presence of the photosensitive agent in the formulation contributed significantly to the greater absorption time than observed in the base formulation. The used photoacoustic technical to examine the penetration kinetics of PcAlOH in pig ear skin was adequate and may be employed in the determination of the percutaneous permeation of phthalocyanines.

  16. Hydrogen Evolution as a Consumption Mode of Reducing Equivalents in Green Algal Fermentation 1

    PubMed Central

    Ohta, Souichi; Miyamoto, Kazuhisa; Miura, Yoshiharu

    1987-01-01

    Dark anaerobic fermentation in the green algae Chlamydomonas MGA 161, Chlamydomonas reinhardtii, Chlorella pyrenoidosa, and Chlorococcum minutum was studied. Our isolate, Chlamydomonas MGA 161, was unusual in having high H2 but almost no formate. The fermentation pattern in Chlamydomonas MGA 161 was altered by changes in the NaCl or NH4Cl concentration. Glycerol formation increased at low (0.1%) and high (7%) NaCl concentrations; starch degradation, and formation of ethanol, H2, and CO2 increased with the addition of NH4Cl to above 5 millimolar in N-deficient cells. C. reinhardtii and C. pyrenoidosa exhibited a very similar anaerobic metabolism, forming formate, acetate and ethanol in a ratio of about 2:2:1. C. minutum was also unusual in forming acetate, glycerol, and CO2 as its main products, with H2, formate, and ethanol being formed in negligible amounts. In the presence of CO, ethanol formation increased twofold in Chlamydomonas MGA 161 and C. reinhardtii, but the fermentation pattern in C. minutum did not change. An experiment with hypophosphite addition showed that dark H2 evolution of the Escherichia coli type could be ruled out in Chlamydomonas MGA 161 and C. reinhardtii. Among the green algae investigated, three fermentation types were identified by the distribution pattern of the end products, which reflected the consumption mode of reducing equivalents in the cells. PMID:16665317

  17. Effect of helium irradiation on deuterium permeation behavior in tungsten

    NASA Astrophysics Data System (ADS)

    Uemura, Yuki; Sakurada, Shodai; Fujita, Hiroe; Azuma, Keisuke; Zhou, Quilai; Hatano, Yuji; Yoshida, Naoaki; Watanabe, Hideo; Oyaizu, Makoto; Isobe, Kanetsugu; Shimada, Masashi; Buchenauer, Dean; Kolasinski, Robert; Chikada, Takumi; Oya, Yasuhisa

    2017-07-01

    In this study, we measured deuterium (D) gas-driven permeation through tungsten (W) foils that had been pre-damaged by helium ions (He+). The goal of this work was to determine how ion-induced damage affects hydrogen isotope permeation. At 873 K, the D permeability for W irradiated by 3.0 keV He+ was approximately one order of magnitude lower than that for un-damaged W. This difference diminished with increasing temperature. Even after heating to 1173 K, the permeability returned to less than half of the value measured for un-damaged W. We propose that this is due to nucleation of He bubbles near the surface which potentially serve as a barrier to diffusion deeper into the bulk. Exposure at higher temperatures shows that the D permeability and diffusion coefficients return to levels observed for undamaged material. It is possible that these effects are linked to annealing of defects introduced by ion damage, and whether the defects are stabilized by the presence of trapped He.

  18. The hydrogen value chain: applying the automotive role model of the hydrogen economy in the aerospace sector to increase performance and reduce costs

    NASA Astrophysics Data System (ADS)

    Frischauf, Norbert; Acosta-Iborra, Beatriz; Harskamp, Frederik; Moretto, Pietro; Malkow, Thomas; Honselaar, Michel; Steen, Marc; Hovland, Scott; Hufenbach, Bernhard; Schautz, Max; Wittig, Manfred; Soucek, Alexander

    2013-07-01

    Hydrogen will assume a key role in Europe's effort to adopt its energy dependent society to satisfy its needs without releasing vast amounts of greenhouse gases. The paradigm shift is so paramount that one speaks of the "Hydrogen Economy", as the energy in this new and ecological type of economy is to be distributed by hydrogen. However, H2 is not a primary energy source but rather an energy carrier, a means of storing, transporting and distributing energy, which has to be generated by other means. Various H2 storage methods are possible; however industries' favourite is the storage of gaseous hydrogen in high pressure tanks. The biggest promoter of this storage methodology is the automotive industry, which is currently preparing for the generation change from the fossil fuel internal combustion engines to hydrogen based fuel cells. The current roadmaps foresee a market roll-out by 2015, when the hydrogen supply infrastructure is expected to have reached a critical mass. The hydrogen economy is about to take off as being demonstrated by various national mobility strategies, which foresee several millions of electric cars driving on the road in 2020. Fuel cell cars are only one type of "electric car", battery electric as well as hybrid cars - all featuring electric drive trains - are the others. Which type of technology is chosen for a specific application depends primarily on the involved energy storage and power requirements. These considerations are very similar to the ones in the aerospace sector, which had introduced the fuel cell already in the 1960s. The automotive sector followed only recently, but has succeeded in moving forward the technology to a level, where the aerospace sector is starting considering to spin-in terrestrial hydrogen technologies into its technology portfolio. Target areas are again high power/high energy applications like aviation, manned spaceflight and exploration missions, as well as future generation high power telecommunication

  19. NOSH-aspirin (NBS-1120), a dual nitric oxide and hydrogen sulfide-releasing hybrid, reduces inflammatory pain.

    PubMed

    Fonseca, Miriam D; Cunha, Fernando Q; Kashfi, Khosrow; Cunha, Thiago M

    2015-06-01

    The development of nitric oxide (NO)- and hydrogen sulfide (H2S)-releasing nonsteroidal anti-inflammatory drugs (NSAIDs) has generated more potent anti-inflammatory drugs with increased safety profiles. A new hybrid molecule incorporating both NO and H2S donors into aspirin (NOSH-aspirin) was recently developed. In the present study, the antinociceptive activity of this novel molecule was compared with aspirin in different models of inflammatory pain. It was found that NOSH-aspirin inhibits acetic acid-induced writhing response and carrageenan (Cg)-induced inflammatory hyperalgesia in a dose-dependent (5-150 μmol/kg, v.o.) manner, which was superior to the effect of the same doses of aspirin. NOSH-aspirin's antinociceptive effect was also greater and longer compared to aspirin upon complete Freund's adjuvant (CFA)-induced inflammatory hyperalgesia. Mechanistically, NOSH-aspirin, but not aspirin, was able to reduce the production/release of interleukin-1 beta (IL-1β) during Cg-induced paw inflammation. Furthermore, NOSH-aspirin, but not aspirin, reduced prostaglandin E2-induced hyperalgesia, which was prevented by treatment with a ATP-sensitive potassium channel (KATP) blocker (glibenclamide; glib.). Noteworthy, the antinociceptive effect of NOSH-aspirin was not associated with motor impairment. The present results indicate that NOSH-aspirin seems to present greater potency than aspirin to reduce inflammatory pain in several models. The enhanced effects of NOSH-aspirin seems to be due to its ability to reduce the production of pronociceptive cytokines such as IL-1 β and directly block hyperalgesia caused by a directly acting hyperalgesic mediator in a mechanism dependent on modulation of KATP channels. In conclusion, we would like to suggest that NOSH-aspirin represents a prototype of a new class of analgesic drugs with more potent effects than the traditional NSAID, aspirin.

  20. TiO{sub 2} nanocomposite with reduced graphene oxide through facile blending and its photocatalytic behavior for hydrogen evolution

    SciTech Connect

    Pei, Fuyun; Liu, Yingliang; Zhang, Li; Wang, Shengping; Xu, Shengang Cao, Shaokui

    2013-08-01

    Graphical abstract: - Highlights: • TRG-COOH nanocomposite as a photocatalyst for hydrogen evolution is prepared. • The reduction of graphene oxide reconstructs a part of conjugated structure. • The band gap is red-shifted due to the reconstruction of conjugated structure. • RG-COOH covered and anchored by P25 blocks the aggregation and the stacking. • The photocatalytic efficiency of TRG-COOH was increased under 500 W Xenon lamp. - Abstract: TRG-COOH nanocomposite is prepared as a photocatalyst for hydrogen evolution by blending TiO{sub 2} with reduced graphene oxide (RG-COOH). TRG-COOH is characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectra, X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), and photoluminescent spectra. XPS result shows the reduction of monolayer graphene oxide (GO). The band gap is red-shifted from 3.25 eV for P25, which consists of 20% rutile and 80% anatase, to 2.95 eV for TGO and then to 2.80 eV for TRG-COOH due to the introduction of GO and the reconstruction of conjugated structure. TEM image illustrates that RG-COOH in TRG-COOH is covered and anchored by P25, which blocks the aggregation of TiO{sub 2} nanoparticles and the stacking of monolayer graphene. This allows RG-COOH to take a good role of electron-sink and electron-transporting bridge. The photocatalytic efficiency of TRG-COOH is respectively increased under Xenon lamp about 8.9 and 2.7 times compared to P25 and TGO.

  1. Reduced Graphene Oxide Coating with Anticorrosion and Electrochemical Property-Enhancing Effects Applied in Hydrogen Storage System.

    PubMed

    Du, Yi; Li, Na; Zhang, Tong-Ling; Feng, Qing-Ping; Du, Qian; Wu, Xing-Hua; Huang, Gui-Wen

    2017-08-30

    Low-capacity retention is the most prominent problem of the magnesium nickel alloy (Mg2Ni), which prevents it from being commercially applied. Here, we propose a practical method for enhancing the cycle stability of the Mg2Ni alloy. Reduced graphene oxide (rGO) possesses a graphene-based structure, which could provide high-quality barriers that block the hydroxyl in the aqueous electrolyte; it also possesses good hydrophilicity. rGO has been successfully coated on the amorphous-structured Mg2Ni alloy via electrostatic assembly to form the rGO-encapsulated Mg2Ni alloy composite (rGO/Mg2Ni). The experimental results show that ζ potentials of rGO and the modified Mg2Ni alloy are totally opposite in water, with values of -11.0 and +22.4 mV, respectively. The crumpled structure of rGO sheets and the contents of the carbon element on the surface of the alloy are measured using scanning electron microscopy, transmission electron microscopy, and energy dispersive spectrometry. The Tafel polarization test indicates that the rGO/Mg2Ni system exhibits a much higher anticorrosion ability against the alkaline solution during charging/discharging. As a result, high-capacity retentions of 94% (557 mAh g(-1)) at the 10th cycle and 60% (358 mAh g(-1)) at the 50th cycle have been achieved, which are much higher than the results on Mg2Ni capacity retention combined with the absolute value reported so far to our knowledge. In addition, both the charge-transfer reaction rate and the hydrogen diffusion rate are proven to be boosted with the rGO encapsulation. Overall, this work demonstrates the effective anticorrosion and electrochemical property-enhancing effects of rGO coating and shows its applicability in the Mg-based hydrogen storage system.

  2. Monodisperse Ag/Pd core/shell nanoparticles assembled on reduced graphene oxide as highly efficient catalysts for the transfer hydrogenation of nitroarenes.

    PubMed

    Metin, Önder; Can, Hasan; Şendil, Kıvılcım; Gültekin, Mehmet Serdar

    2017-07-15

    Addressed herein is a facile seed-mediated synthesis of Ag/Pd core/shell nanoparticles (NPs) and their assembly on reduced graphene oxide (rGO) to catalyze the transfer hydrogenation of nitroarenes to anilines using ammonia borane (AB) as a hydrogen donor under ambient conditions. Monodisperse Ag/Pd core/shell NPs with controllable Pd shell-thickness were synthesized by the means of thermal decomposition of palladium(II) bromide over as-prepared Ag NPs in the mixture of oleylamine and oleic acid at 220°C. As-synthesized Ag/Pd core/shell NPs were characterized by TEM, HR-TEM, XRD, XPS, UV-Vis spectroscopy and ICP-MS and then they were assembled on reduced graphene oxide (rGO). Next, rGO@Ag/Pd catalysts were tested in the transfer hydrogenation of nitroarenes in which ammonia borane (AB) was used as a hydrogen donor at room temperature. It was demonstrated that the thickness of the Pd shell has a significant effect on the catalytic activity of rGO@Ag/Pd catalysts and the 1.75nm Pd shell provided the highest performance in the transfer hydrogenation reactions. The rGO@Ag/Pd catalyzed transfer hydrogenation reactions were tested over a variety of nitroarenes (total 16 examples) and they were all converted to the corresponding aniline derivatives with high yields in 5-15min under ambient conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Involvement of glucose-6-phosphate dehydrogenase in reduced glutathione maintenance and hydrogen peroxide signal under salt stress.

    PubMed

    Wang, Xiaomin; Ma, Yuanyuan; Huang, Chenghong; Li, Jisheng; Wan, Qi; Bi, Yurong

    2008-06-01

    Cellular redox homeostasis is essential for plant growth, development as well as for the resistance to biotic and abiotic stresses, which is governed by the complex network of prooxidant and antioxidant systems. Recently, new evidence has been published that NADPH, produced by glucose-6-phosephate dehydrogenase enzyme (G6PDH), not only acted as the reducing potential for the output of reduced glutathione (GSH), but was involved in the activity of plasma membrane (PM) NADPH oxidase under salt stress, which resulted in hydrogen peroxide (H(2)O(2)) accumulation. H(2)O(2) acts as a signal in regulating G6PDH activity and expression, and the activities of the enzymes in the glutathione cycle as well, through which the ability of GSH regeneration was increased under salt stress. Thus, G6PDH plays a critical role in maintaining cellular GSH levels under long-term salt stress. In this addendum, a hypothetical model for the roles of G6PDH in modulating the intracellular redox homeostasis under salt stress is presented.

  4. Enhanced wet hydrogen peroxide catalytic oxidation performances based on CuS nanocrystals/reduced graphene oxide composites

    NASA Astrophysics Data System (ADS)

    Qian, Jing; Wang, Kun; Guan, Qingmeng; Li, Henan; Xu, Hui; Liu, Qian; Liu, Wei; Qiu, Baijing

    2014-01-01

    CuS nanocrystals/reduced graphene oxide (CuS NCs/rGO) composites were prepared by a facile one-pot solvothermal reaction. In this solvothermal system, thioacetamide was found to perform the dual roles of sulphide source and reducing agent, resulting in the formation of CuS NCs and simultaneous reduction of graphene oxide (GO) sheets to rGO sheets. In addition, CuS NCs/rGO composites were further used as heterogeneous catalysts in the wet hydrogen peroxide catalytic oxidation process, with methylene blue as a model organic dye. The introduction of rGO to CuS NCs could effectively enhance the catalytic activity of CuS NCs, and the resultant CuS NCs/rGO composites with a starting GO amount of 5 wt% showed the highest catalytic activity. Furthermore, the CuS NCs/rGO composites showed high catalytic activity over a broad pH operation range from 3.0 to 11.0 under ambient conditions, and still retained 90% of the original catalytic activity after reuse in five cycles.

  5. Single Membrane Reactor Configuration for Separation of Hydrogen, Carbon Dioxide and Hydrogen Sulfide

    SciTech Connect

    Micheal Roberts; Robert Zabransky; Shain Doong; Jerry Lin

    2008-05-31

    . Several different types of dual-phase membranes were fabricated and tested for their CO{sub 2} permeation in reducing conditions without the presence of oxygen. Although the flux was quite low, on the order of 0.01-0.001 cc STP/cm{sup 2}/min, the selectivity of CO{sub 2}/He was almost infinite at temperatures of about 800 C. A different type of dual-phase membrane prepared by Arizona State University (ASU) was also tested at GTI for CO{sub 2} permeation. The measured CO{sub 2} fluxes were 0.015 and 0.02 cc STP/cm{sup 2}/min at 750 and 830 C, respectively. These fluxes were higher than the previous flux obtained ({approx}0.01 cc STP/cm{sup 2}/min) using the dual-phase membranes prepared by GTI. Further development in membrane development should be conducted to improve the CO{sub 2} flux. ASU has also focused on high temperature permeation/separation experiments to confirm the carbon dioxide separation capabilities of the dual-phase membranes with La{sup 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (LSCF6482) supports infiltrated with a Li/Na/K molten carbonate mixture (42.5/32.5/25.0 mole %). The permeation experiments indicated that the addition of O{sub 2} does improve the permeance of CO{sub 2} through the membrane. A simplified membrane reactor model was developed to evaluate the performance of the process. However, the simplified model did not allow the estimation of membrane transport area, an important parameter for evaluating the feasibility of the proposed membrane reactor technology. As a result, an improved model was developed. Results of the improved membrane reactor model show that the membrane shift reaction has promise as a means to simplify the production of a clean stream of hydrogen and a clean stream of carbon dioxide. The focus of additional development work should address the large area required for the CO{sub 2} membrane as identified in the modeling calculations. Also, a more detailed process flow diagram should be developed that includes

  6. Solar hydrogen generation by nanoscale p-n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide.

    PubMed

    Meng, Fanke; Li, Jiangtian; Cushing, Scott K; Zhi, Mingjia; Wu, Nianqiang

    2013-07-17

    Molybdenum disulfide (MoS2) is a promising candidate for solar hydrogen generation but it alone has negligible photocatalytic activity. In this work, 5-20 nm sized p-type MoS2 nanoplatelets are deposited on the n-type nitrogen-doped reduced graphene oxide (n-rGO) nanosheets to form multiple nanoscale p-n junctions in each rGO nanosheet. The p-MoS2/n-rGO heterostructure shows significant photocatalytic activity toward the hydrogen evolution reaction (HER) in the wavelength range from the ultraviolet light through the near-infrared light. The photoelectrochemical measurement shows that the p-MoS2/n-rGO junction greatly enhances the charge generation and suppresses the charge recombination, which is responsible for enhancement of solar hydrogen generation. The p-MoS2/n-rGO is an earth-abundant and environmentally benign photocatalyst for solar hydrogen generation.

  7. Water permeation through single-layer graphyne membrane

    NASA Astrophysics Data System (ADS)

    Kou, Jianlong; Zhou, Xiaoyan; Chen, Yanyan; Lu, Hangjun; Wu, Fengmin; Fan, Jintu

    2013-08-01

    We report the molecular dynamics simulations of spontaneous and continuous permeation of water molecules through a single-layer graphyne-3 membrane. We found that the graphyne-3 membrane is more permeable to water molecules than (5, 5) carbon nanotube membranes of similar pore diameter. The remarkable hydraulic permeability of the single-layer graphyne-3 membrane is attributed to the hydrogen bond formation, which connects the water molecules on both sides of the monolayer graphyne-3 membrane and aids to overcome the resistance of the nanopores, and to the relatively lower energy barrier at the pore entrance. Consequently, the single-layer graphyne-3 membrane has a great potential for application as membranes for desalination of sea water, filtration of polluted water, etc.

  8. Modelling of tritium permeation through beryllium as plasma facing material

    NASA Astrophysics Data System (ADS)

    Berardinucci, L.

    1998-10-01

    Due to a number of technological properties and, first of all, to a low atomic number, beryllium will be used as plasma facing material in ITER. Tritium control, including both the permeation through and inventory in the beryllium, is of great importance for the safety of the device. Experimental data have shown that, under ITER-like plasma conditions, the plasma facing surfaces of the beryllium develop high porosity (bubbles) and become saturated with bubbles, leading to a strong uptake of tritium and deuterium ions almost independent of the incident flux. At fluxes typical of ITER, surface erosion of beryllium should be also taken into account. A computational model has been used with the computer code TMAP4 to reproduce the available experimental data concerning hydrogen ion implantation in beryllium. The results described in this paper refer to the first wall of the European Helium Cooled Pebble Bed Blanket (HCPB) Test Blanket Module (TBM-I).

  9. Mechanisms of gas permeation through polymer membranes

    SciTech Connect

    Stern, S.A.

    1991-01-01

    The objective of the present study is to investigate the mechanisms of gas transport in and through polymer membranes and the dependence of these mechanisms on pressure and temperature. This information is required for the development of new, energy-efficient membrane processes for the separation of industrial gas mixtures. Such processes are based on the selective permeation of the components of gas mixtures through nonporous polymer membranes. Recent work has been focused on the permeation of gases through membranes made from glassy polymers, i.e., at temperatures below the glass transition of the polymers (Tg). Glassy polymers are very useful membrane materials for gas separations because of their high selectivity toward different gases. Gases permeate through nonporous polymer membranes by a solution-diffusion'' process. Consequently, in order to understand the characteristics of this process it is necessary to investigate also the mechanisms of gas solution and diffusion in glassy polymers. 23 refs., 10 figs., 4 tabs.

  10. Spiral-wound permeators for purifications and recovery

    SciTech Connect

    Schell, W.J.; Houston, C.D.

    1982-10-01

    Describes how cellulose acetate membrane systems, with their great selectivity and high permeation rates for gas separations, enable a modular system to process a wide range of feed flow rates. Up to 6 membrane elements are connected in series in a single, 22-ft (6.7-m) long pipe or tube. A rubber U-cup attached to the element serves to seal the element with the inner diameter of the pressure tube, thereby forcing the feed gas to flow through the element. Pressure tubes usually contain 6 elements each and are mounted in racks on a skid. Unlike hollow-fiber type systems, elements may be replaced in the field on an individual basis by operating personnel, thus enabling users to take advantage of improved membrane elements. Separex Corp. also developed a hydrogen recovery system which utilizes 4 in. (102-mm) diameter spiralwound elements to recover hydrogen from the off-gas of a UOP ''Butamer'' process in a LPG processing complex. Concludes that this process can be used in natural gas purification and dehydration, production of high-purity CO/sub 2/ for enhanced oil recovery, and purification and recovery of hydrogen in a variety of chemical and refinery applications.

  11. Submersed sensing electrode used in fuel-cell type hydrogen detector

    NASA Technical Reports Server (NTRS)

    Niedrach, L. W.; Rudek, F. P.; Rutkoneski, M. D.

    1971-01-01

    Electrode has silicone rubber diffusion barrier with fixed permeation constant for hydrogen. Barrier controls flow of hydrogen to anode and Faraday relationship establishes upper limit for current through cell. Electrode fabrication is described.

  12. Apparatus Measures Permeation Of Gases Through Coupons

    NASA Technical Reports Server (NTRS)

    Adam, Steven J.; Morrow, Jim T.; David, Carey E.

    1995-01-01

    Apparatus measures permeation of any variety of commercially available pure or mixed gases through polymeric or other material coupons of various thicknesses. Permeability measured at wide range of temperatures and pressures. Includes residual-gas-analyzer (RGA) sensor head and associated circuitry, and vacuum system. Also includes manifold with valves, through which gas of interest allowed to permeate through test coupon before traveling downstream to evacuated RGA sensor head. Temperature of test coupon monitored by thermocouple and maintained at specified value above ambient by use of electrical heating mantle or below ambient by use of bath of ethylene glycol, water, and dry ice.

  13. Increase or decrease hydrogen sulfide exert opposite lipolysis, but reduce global insulin resistance in high fatty diet induced obese mice.

    PubMed

    Geng, Bin; Cai, Bo; Liao, Feng; Zheng, Yang; Zeng, Qiang; Fan, Xiaofang; Gong, Yongsheng; Yang, Jichun; Cui, Qing Hua; Tang, Chaoshu; Xu, Guo Heng

    2013-01-01

    Adipose tissue expressed endogenous cystathionine gamma lyase (CSE)/hydrogen sulfide (H2S) system. H2S precursor inhibited catecholamine stimulated lipolysis. Thus, we hypothesized that CSE/H2S system regulates lipolysis which contributed to the pathogenesis of insulin resistance. We treated rat adipocyte with DL-propargylglycine (PAG, a CSE inhibitor), L-cysteine (an H2S precursor) plus pyridoxial phosphate (co-enzyme) or the H2S chronic release donor GYY4137, then the glycerol level was assayed for assessing the lipolysis. Then, the effects of PAG and GYY4137 on insulin resistance in high fatty diet (HFD) induced obese mice were investigated. Here, we found that PAG time-dependently increased basal or isoproterenol stimulated lipolysis. However, L-cysteine plus pyridoxial phosphate or GYY4137 significantly reduced it. PAG increased phosphorylated protein kinase A substrate, perilipin 1 and hormone sensitive lipase, but L-cysteine and GYY4137 decreased the parameters. In HFD induced obese mice, PAG increased adipose basal lipolysis, thus blunted fat mass increase, resulting in lowering insulin resistance evidenced by reduction of fasting glucose, insulin level, HOMA index, oral glucose tolerance test (OGTT) curve area and elevating the insulin tolerance test (ITT) response. GYY4137 inhibited lipolysis in vivo without increasing fat mass, but also ameliorated the insulin resistance in HFD mice. These results implicated that inhibition endogenous CSE/H2S system in adipocytes increased lipolysis by a protein kinase A-perilipin/hormone-sensitive lipase pathway, thus blunted fat mass increase and reduced insulin resistance in obese mice; giving H2S donor decreased lipolysis, also reduced insulin resistance induced by HFD. Our data showed that increase or decrease H2S induced opposite lipolysis, but had the same effect on insulin resistance. The paradoxical regulation may be resulted from different action of H2S on metabolic and endocrine function in adipocyte.

  14. Increase or Decrease Hydrogen Sulfide Exert Opposite Lipolysis, but Reduce Global Insulin Resistance in High Fatty Diet Induced Obese Mice

    PubMed Central

    Geng, Bin; Cai, Bo; Liao, Feng; Zheng, Yang; Zeng, Qiang; Fan, Xiaofang; Gong, Yongsheng; Yang, Jichun; Cui, Qing hua; Tang, Chaoshu; Xu, Guo heng

    2013-01-01

    Objective Adipose tissue expressed endogenous cystathionine gamma lyase (CSE)/hydrogen sulfide (H2S) system. H2S precursor inhibited catecholamine stimulated lipolysis. Thus, we hypothesized that CSE/H2S system regulates lipolysis which contributed to the pathogenesis of insulin resistance. Methods We treated rat adipocyte with DL-propargylglycine (PAG, a CSE inhibitor), L-cysteine (an H2S precursor) plus pyridoxial phosphate (co-enzyme) or the H2S chronic release donor GYY4137, then the glycerol level was assayed for assessing the lipolysis. Then, the effects of PAG and GYY4137 on insulin resistance in high fatty diet (HFD) induced obese mice were investigated. Results Here, we found that PAG time-dependently increased basal or isoproterenol stimulated lipolysis. However, L-cysteine plus pyridoxial phosphate or GYY4137 significantly reduced it. PAG increased phosphorylated protein kinase A substrate, perilipin 1 and hormone sensitive lipase, but L-cysteine and GYY4137 decreased the parameters. In HFD induced obese mice, PAG increased adipose basal lipolysis, thus blunted fat mass increase, resulting in lowering insulin resistance evidenced by reduction of fasting glucose, insulin level, HOMA index, oral glucose tolerance test (OGTT) curve area and elevating the insulin tolerance test (ITT) response. GYY4137 inhibited lipolysis in vivo without increasing fat mass, but also ameliorated the insulin resistance in HFD mice. Conclusion These results implicated that inhibition endogenous CSE/H2S system in adipocytes increased lipolysis by a protein kinase A-perilipin/hormone-sensitive lipase pathway, thus blunted fat mass increase and reduced insulin resistance in obese mice; giving H2S donor decreased lipolysis, also reduced insulin resistance induced by HFD. Our data showed that increase or decrease H2S induced opposite lipolysis, but had the same effect on insulin resistance. The paradoxical regulation may be resulted from different action of H2S on metabolic and

  15. Effect of phosphatidylserine on the basal and GABA-activated Cl- permeation across single nerve membranes from rabbit Deiters' neurons

    SciTech Connect

    Rapallino, M.V.; Cupello, A.; Mainardi, P.; Besio, G.; Loeb, C.W. )

    1990-06-01

    The permeation of labeled Cl- ions across single plasma membranes from Deiters' neurons has been studied in the presence of various concentrations of phosphatidylserine (PS) on their extracellular side. PS reduces significantly basal Cl- permeation only at 10(-5) M on the membrane exterior. No effect was found at other concentrations. GABA activable 36Cl- permeation is heavily reduced and almost abolished at 10(-11) - 10(-5) M phosphatidylserine. This exogenous phosphatidylserine effect is difficult to interpret in relation to the function of the endogenous phospholipid. However, it may be involved in the epileptogenic effect in vivo of exogenous phosphatidylserine administration to rats.

  16. Hydrogen-fed biofilm reactors reducing selenate and sulfate: Community structure and capture of elemental selenium within the biofilm.

    PubMed

    Ontiveros-Valencia, Aura; Penton, Christopher R; Krajmalnik-Brown, Rosa; Rittmann, Bruce E

    2016-08-01

    Remediation of selenate (SeO4 (2-) ) contamination through microbial reduction is often challenging due to the presence of sulfate (SO4 (2-) ), which can lead to competition for the electron donor and the co-production of toxic H2 S. Microbial reduction of SeO4 (2-) in the presence of SO4 (2-) was studied in two hydrogen-based membrane biofilm reactors (MBfRs). One MBfR was initiated with SO4 (2-) -reducing conditions and gradually shifted to SeO4 (2-) reduction. The second MBfR was developed with a SeO4 (2-) -reducing biofilm, followed by SO4 (2-) introduction. Biofilms within both MBfRs achieved greater than 90% SeO4 (2-) reduction, even though the SeO4 (2-) concentration ranged from 1,000-11,000 μg/L, more than 20-200 times the maximum contaminant level for drinking water (50 μg/L). Biofilm microbial community composition, assessed by 16S rRNA gene-based amplicon pyrosequencing, was distinct between the two MBfRs and was framed by alterations in SeO4 (2-) loading. Specifically, high SeO4 (2-) loading resulted in communities mainly composed of denitrifying bacteria (e.g., Denitratisoma and Dechloromonas). In contrast, low loading led to mostly sulfate-reducing bacteria (i.e., Desulfovibrio) and sulfur-oxidizing bacteria (i.e., Sulfuricurvum and Sulfurovum). SeO4 (2-) was reduced to elemental selenium (Se°), which was visualized within the biofilm as crystalloid aggregates, with its fate corresponding to that of biofilm solids. In conclusion, microbial biofilm communities initiated under either SeO4 (2-) or SO4 (2-) -reducing conditions attained high SeO4 (2-) removal rates even though their microbial community composition was quite distinct. Biotechnol. Bioeng. 2016;113: 1736-1744. © 2016 Wiley Periodicals, Inc.

  17. Mechanisms of Vapor Permeation Through Multilayer Barrier Films: Lag Time Versus Equilibrium Permeation

    SciTech Connect

    Graff, Gordon L.; Williford, Rick E.; Burrows, Paul E.

    2004-08-15

    Multilayer, thin-film organic/inorganic composite barrier layers have recently been reported to achieve water vapor permeation rates (WVTR) of <10 5 g/m2/day at 25oC/40%RH on polyethylene terephthalate substrates. Using both transient and steady-state vapor permeation measurements combined with classical Fickian diffusion models, we determine the mechanism of vapor permeation through such barrier structures and show that results obtained to date are limited not by equilibrium diffusion but by lag-time effects caused by the extremely long effective path length for the diffusing gas. The implications for further improvement of flexible thin film vapor barriers are discussed.

  18. Mechanochemical hydrogenation of coal

    DOEpatents

    Yang, Ralph T.; Smol, Robert; Farber, Gerald; Naphtali, Leonard M.

    1981-01-01

    Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

  19. A reagentless non-enzymatic hydrogen peroxide sensor presented using electrochemically reduced graphene oxide modified glassy carbon electrode.

    PubMed

    Mutyala, Sankararao; Mathiyarasu, Jayaraman

    2016-12-01

    Herein, we report a simple, facile and reproducible non-enzymatic hydrogen peroxide (H2O2) sensor using electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The modified electrode was characterized by Fourier transform infrared (FT-IR), UV-Visible, scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. Cyclic voltammetric (CV) analysis revealed that ERGO/GCE exhibited virtuous charge transfer properties for a standard redox systems and showed excellent performance towards electroreduction of H2O2. Amperometric study using ERGO/GCE showed high sensitivity (0.3μA/μM) and faster response upon the addition of H2O2 at an applied potential of -0.25V vs. Ag/AgCl. The detection limit is assessed to be 0.7μM (S/N=3) and the time to reach a stable study state current is <3s for a linear range of H2O2 concentration (1-16μM). In addition, the modified electrode exhibited good reproducibility and long-term stability. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. MoO2 nanoparticles on reduced graphene oxide/polyimide-carbon nanotube film as efficient hydrogen evolution electrocatalyst

    NASA Astrophysics Data System (ADS)

    Li, Xin; Jiang, Yimin; Jia, Lingpu; Wang, Chunming

    2016-02-01

    Hydrogen evolution reaction (HER) through low-cost and earth-abundant electrocatalysts at low overpotentials is a crucial project to clean energy. Molybdenum dioxide/reduced graphene oxide/polyimide-carbon nanotube (MoO2/RGO/PI-CNT) film was synthesized by a simple electrodeposition method as an efficient catalyst for HER. MoO2 nanoparticles with a small size of 10-20 nm uniformly disperse on the RGO surface. The large quantity and small size of MoO2 nanoparticles afford large surface area for HER, greatly enhancing the electrocatalytic performance of MoO2/RGO/PI-CNT film. The HER electrocatalytic property of MoO2/RGO/PI-CNT film in acidic solution is evaluated by linear sweep voltammetry (LSV). MoO2/RGO/PI-CNT film exhibit a high electrocatalytic activity for HER at a small onset overpotential (-110 mV vs RHE) with a high current density (10.0 mA cm-2) and a good stability. The low Tafel slope (68 mV dec-1) reveals the Volmer-Heyrovsky mechanism for HER. The comparison between MoO2/RGO/PI-CNT film and other catalysts indicate that the MoO2/RGO/PI-CNT film had a great performance for HER. This work presents a new thought for the synthesis of MoO2/RGO/PI-CNT film as an efficient HER electrocatalyst.

  1. Hydrogen Sulfide Offers Neuroprotection on Traumatic Brain Injury in Parallel with Reduced Apoptosis and Autophagy in Mice

    PubMed Central

    Wang, Tao; Dong, Wenwen; Chen, Xiping; Tao, Luyang

    2014-01-01

    Hydrogen sulfide (H2S), a novel gaseous mediator, has been recognized as an important neuromodulator and neuroprotective agent in the central nervous system. The present study was undertaken to study the effects of exogenous H2S on traumatic brain injury (TBI) and the underlying mechanisms. The effects of exogenous H2S on TBI were examined by using measurement of brain edema, behavior assessment, propidium iodide (PI) staining, and Western blotting, respectively. Compared to TBI groups, H2S pretreatment had reduced brain edema, improved motor performance and ameliorated performance in Morris water maze test after TBI. Immunoblotting results showed that H2S pretreatment reversed TBI-induced cleavage of caspase-3 and decline of Bcl-2, suppressed LC3-II, Beclin-1 and Vps34 activation and maintained p62 level in injured cortex and hippocampus post TBI. The results suggest a protective effect and therapeutic potential of H2S in the treatment of brain injury and the protective effect against TBI may be associated with regulating apoptosis and autophagy. PMID:24466346

  2. Polyvinylpyrrolidone stabilized-Ru nanoclusters loaded onto reduced graphene oxide as high active catalyst for hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Zhang, Jiao; Hao, Jinghao; Ma, Qianli; Li, Chuanqi; Liu, Yushan; Li, Baojun; Liu, Zhongyi

    2017-06-01

    Ruthenium/reduced graphene oxide nanocomposites (Ru/rGO NCs) were synthesized via an electrostatic self-assembly approach. Polyvinylpyrrolidone (PVP) stabilized and positively charged metallic ruthenium nanoclusters about 1.2 nm were synthesized and uniformly loaded onto negatively charged graphene oxide (GO) sheets via strong electrostatic interactions. The as-prepared Ru/rGO NCs exhibited superior performance in catalytic hydrolysis of sodium borohydride (NaBH4) to generate H2. The hydrogen generation rate was up to 14.87 L H2 min-1 gcat -1 at 318 K with relatively low activation energy of 38.12 kJ mol-1. Kinetics study confirmed that the hydrolysis of NaBH4 was first order with respect to concentration of catalysts. Besides, the conversion of NaBH4 remained at 97% and catalytic activity retained more than 70% after 5 reaction cycles at room temperature. These results suggested that the Ru/rGO NCs have a promising prospect in the field of clean energy.

  3. Hydrogen peroxide induces premature acrosome reaction in rat sperm and reduces their penetration of the zona pellucida.

    PubMed

    Hsu, P C; Hsu, C C; Guo, Y L

    1999-11-29

    Recent studies have demonstrated that mammalian sperm are capable of generating reactive oxygen species (ROS) and that this activity is significantly accelerated in subfertile subjects. The observed decrease in penetration of zona-intact oocyte might be explained by chemical-induced ROS-related early onset of capacitation and premature acrosome reaction, but the mechanism is not clear. We determine whether zona-intact oocyte penetration capability in rat epididymal sperm was affected by premature acrosome reaction in rat sperm treated with hydrogen peroxide (H2O2) and calcium ionophore A23187 or H2O2 and lysophosphatidyl choline. Chlortetracycline fluorescence assay was used to study the status of acrosome reaction on epididymal sperm. The sperm-oocyte binding and penetration assay was used to evaluate the capability for zona pellucida penetration. There was a positive linear correlation between the frequency of acrosome-reacted sperm and capability of sperm-oocyte binding and penetration in zona-free oocytes. In the zona-intact oocytes, the sperm-oocyte penetration rate was suppressed as the proportions of acrosome-reacted sperm increased. In summary, this study showed that premature acrosome reaction reduced rat sperm's capability of penetrating zona-intact oocytes. However, this reduction is not seen in zona-free oocytes. These findings may provide a basis for understanding the effects of sperm ROS generation on zona pellucida penetration in male reproductive toxicology.

  4. Layer-controllable WS2-reduced graphene oxide hybrid nanosheets with high electrocatalytic activity for hydrogen evolution.

    PubMed

    Zhang, Jian; Wang, Qi; Wang, Lianhui; Li, Xing'ao; Huang, Wei

    2015-06-21

    In this study, an efficient poly(vinylpyrrolidone) (PVP)-assisted hydrothermal method for the in situ growth of WS2 nanosheets with layer-controllability on reduced graphene oxide (rGO) is reported. The number of layers (from a monolayer to ∼25 layers) of the exfoliated WS2 can be accurately controlled by adjusting the amount of PVP. The layer structure and the morphology of the as-prepared hybrids are confirmed by field emission scanning electron microscopy and high-resolution transmission microscopy. The X-ray diffraction, Raman, and X-ray photoemission spectroscopy of the obtained WS2-rGO hybrid nanosheets indicate highly crystallized structures, a clear Raman shift and a stoichiometry, which is dependent on the number of layers. Furthermore, these highly active and durable catalysts exhibit an electrocatalytic current density of 10 mA cm(-2) at a small hydrogen evolution reaction (HER) overpotential (-170 mV) and a Tafel slope of 52 mV dec(-1) with an excellent electrocatalytic stability (after 6 months storage).

  5. Layer-controllable WS2-reduced graphene oxide hybrid nanosheets with high electrocatalytic activity for hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Wang, Qi; Wang, Lianhui; Li, Xing'ao; Huang, Wei

    2015-06-01

    In this study, an efficient poly(vinylpyrrolidone) (PVP)-assisted hydrothermal method for the in situ growth of WS2 nanosheets with layer-controllability on reduced graphene oxide (rGO) is reported. The number of layers (from a monolayer to ~25 layers) of the exfoliated WS2 can be accurately controlled by adjusting the amount of PVP. The layer structure and the morphology of the as-prepared hybrids are confirmed by field emission scanning electron microscopy and high-resolution transmission microscopy. The X-ray diffraction, Raman, and X-ray photoemission spectroscopy of the obtained WS2-rGO hybrid nanosheets indicate highly crystallized structures, a clear Raman shift and a stoichiometry, which is dependent on the number of layers. Furthermore, these highly active and durable catalysts exhibit an electrocatalytic current density of 10 mA cm-2 at a small hydrogen evolution reaction (HER) overpotential (-170 mV) and a Tafel slope of 52 mV dec-1 with an excellent electrocatalytic stability (after 6 months storage).

  6. Intraperitoneally administered, hydrogen-rich physiologic solution protects against postoperative ileus and is associated with reduced nitric oxide production.

    PubMed

    Okamoto, Ayana; Kohama, Keisuke; Aoyama-Ishikawa, Michiko; Yamashita, Hayato; Fujisaki, Noritomo; Yamada, Taihei; Yumoto, Tetsuya; Nosaka, Nobuyuki; Naito, Hiromichi; Tsukahara, Kohei; Iida, Atsuyoshi; Sato, Keiji; Kotani, Joji; Nakao, Atsunori

    2016-09-01

    Postoperative ileus, a transient impairment of bowel motility initiated by intestinal inflammation, is common after an abdominal operation and leads to increased hospital stays and costs. Hydrogen has potent anti-inflammatory and antioxidant properties and potential therapeutic value. Solubilized hydrogen may be a portable and practical means of administering therapeutic hydrogen gas. We hypothesized that intraperitoneal administration of hydrogen-rich saline would ameliorate postoperative ileus. Ileus was induced via surgical manipulation in mice and rats. The peritoneal cavity was filled with 1.0 mL saline or hydrogen-rich saline (≥1.5-2.0 ppm) before closure of the abdominal incision. Intestinal transit was assessed 24 hours postoperatively. Inflammation was examined by quantitation of neutrophil extravasation and expression of proinflammatory markers. Nitric oxide production was assessed in cultured muscularis propria. Surgical manipulation resulted in a marked delay in intestinal transit and was associated with upregulation of proinflammatory cytokines and increased neutrophil extravasation. Bowel dysmotility, induced by surgical manipulation and inflammatory events, was significantly attenuated by intra-abdominal administration of hydrogen-rich saline. Nitric oxide production in the muscle layers of the bowel was inhibited by hydrogen treatment. A single intraperitoneal dose of hydrogen-rich saline ameliorates postoperative ileus by inhibiting the inflammatory response and suppressing nitric oxide production. Copyright © 2016.

  7. Effects of reducing temperatures on the hydrogen storage capacity of double-walled carbon nanotubes with Pd loading.

    PubMed

    Sheng, Qu; Wu, Huimin; Wexler, David; Liu, Huakun

    2014-06-01

    The effects of different temperatures on the hydrogen sorption characteristics of double-walled carbon nanotubes (DWCNTs) with palladium loading have been investigated. When we use different temperatures, the particle sizes and specific surface areas of the samples are different, which affects the hydrogen storage capacity of the DWCNTs. In this work, the amount of hydrogen storage capacity was determined (by AMC Gas Reactor Controller) to be 1.70, 1.85, 2.00, and 1.93 wt% for pristine DWCNTS and for 2%Pd/DWCNTs-300 degrees C, 2%Pd/DWCNTs-400 degrees C, and 2%Pd/DWCNTs-500 degrees C, respectively. We found that the hydrogen storage capacity can be enhanced by loading with 2% Pd nanoparticles and selecting a suitable temperature. Furthermore, the sorption can be attributed to the chemical reaction between atomic hydrogen and the dangling bonds of the DWCNTs.

  8. Combination of borax and quebracho condensed tannins treatment to reduce hydrogen sulfide, ammonia and greenhouse gas emissions from stored swine manure

    USDA-ARS?s Scientific Manuscript database

    Livestock producers are acutely aware for the need to reduce gaseous emissions from stored livestock waste and have been trying to identify new technologies to address the chronic problem. Besides the malodor issue, toxic gases emitted from stored livestock manure, especially hydrogen sulfide (H2S)...

  9. Hybrid catalytic-DBD plasma reactor for the production of hydrogen and preferential CO oxidation (CO-PROX) at reduced temperatures.

    PubMed

    Rico, Víctor J; Hueso, José L; Cotrino, José; Gallardo, Victoria; Sarmiento, Belén; Brey, Javier J; González-Elipe, Agustín R

    2009-11-07

    Dielectric Barrier Discharges (DBD) operated at atmospheric pressure and working at reduced temperatures (T < 115 degrees C) and a copper-manganese oxide catalyst are combined for the direct decomposition and the steam reforming of methanol (SRM) for hydrogen production and for the preferential oxidation of CO (CO-PROX).

  10. Pediatric Cystic Fibrosis Sputum Can Be Chemically Dynamic, Anoxic, and Extremely Reduced Due to Hydrogen Sulfide Formation

    PubMed Central

    Cowley, Elise S.; Kopf, Sebastian H.; LaRiviere, Alejandro

    2015-01-01

    ABSTRACT Severe and persistent bacterial lung infections characterize cystic fibrosis (CF). While several studies have documented the microbial diversity within CF lung mucus, we know much less about the inorganic chemistry that constrains microbial metabolic processes and their distribution. We hypothesized that sputum is chemically heterogeneous both within and between patients. To test this, we measured microprofiles of oxygen and sulfide concentrations as well as pH and oxidation-reduction potentials in 48 sputum samples from 22 pediatric patients with CF. Inorganic ions were measured in 20 samples from 12 patients. In all cases, oxygen was depleted within the first few millimeters below the sputum-air interface. Apart from this steep oxycline, anoxia dominated the sputum environment. Different sputum samples exhibited a broad range of redox conditions, with either oxidizing (16 mV to 355 mV) or reducing (−300 to −107 mV) potentials. The majority of reduced samples contained hydrogen sulfide and had a low pH (2.9 to 6.5). Sulfide concentrations increased at a rate of 0.30 µM H2S/min. Nitrous oxide was detected in only one sample that also contained sulfide. Microenvironmental variability was observed both within a single patient over time and between patients. Modeling oxygen dynamics within CF mucus plugs indicates that anoxic zones vary as a function of bacterial load and mucus thickness and can occupy a significant portion of the mucus volume. Thus, aerobic respiration accounts only partially for pathogen survival in CF sputum, motivating research to identify mechanisms of survival under conditions that span fluctuating redox states, including sulfidic environments. PMID:26220964

  11. A non-enzymatic amperometric hydrogen peroxide sensor based on iron nanoparticles decorated reduced graphene oxide nanocomposite.

    PubMed

    Amanulla, Baishnisha; Palanisamy, Selvakumar; Chen, Shen-Ming; Velusamy, Vijayalakshmi; Chiu, Te-Wei; Chen, Tse-Wei; Ramaraj, Sayee Kannan

    2017-02-01

    A simple and facile green process was used for the synthesis of iron nanoparticles (FeNPs) decorated reduced graphene oxide (rGO) nanocomposite by using Ipomoea pes-tigridis leaf extract as a reducing and stabilizing agent. The as-prepared rGO/FeNPs nanocomposite was characterized by transmission electron microscopy, X-ray spectroscopy and Fourier transform infrared spectroscopy. The nanocomposite was further modified on the glassy carbon electrode and used for non-enzymatic sensing of hydrogen peroxide (H2O2). Cyclic voltammetry results reveal that rGO/FeNPs nanocomposite has excellent electro-reduction behavior to H2O2 when compared to the response of FeNPs and rGO modified electrodes. Furthermore, the nanocomposite modified electrode shows 9 and 6 folds enhanced reduction current response to H2O2 than that of rGO and FeNPs modified electrodes. Amperometric method was further used to quantify the H2O2 using rGO/FeNPs nanocomposite, and the response was linear over the concentration ranging from 0.1μM to 2.15mM. The detection limit and sensitivity of the sensor were estimated as 0.056μM and 0.2085μAμM(-1)cm(-2), respectively. The fabricated sensor also utilized for detection of H2O2 in the presence of potentially active interfering species, and found high selectivity towards H2O2. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. [Hydrogen sulfide reduces lipopolysaccharide-induced acute lung injury and inhibits expression of phosphorylated p38 MAPK in rats].

    PubMed

    Fan, Ya-Min; Huang, Xin-Li; Dong, Ze-Fei; Ling, Yi-Ling

    2012-12-25

    To investigate the influence of hydrogen sulfide (H₂S) on p38 MAPK signaling pathway during acute lung injury (ALI) caused by lipopolysaccharide (LPS), the rats were randomly divided into six groups: control group, LPS group, LPS + NaHS group, LPS + PPG (cystathionine-γ-lyase inhibitor) group, NaHS group and PPG group. The rats were sacrificed 6 h after injection and lung tissues were obtained. The structure of lung tissues and the number of polymorphonuclear leucocyte (PMN) was observed under optical microscope; the lung myeloperoxidase (MPO) activity, superoxide dismutase (SOD) activity and malondialdehyde (MDA) content were tested; intercellular adhesion molecule-1 (ICAM-1) protein expression changes were detected by immunohistochemical staining; phosphorylated p38 MAPK (p-p38 MAPK) protein expression was detected by Western blotting. The results showed that the lung injury in LPS group was observed, at the same time the MPO activity, the content of MDA, ICAM-1 and p-p38 MAPK protein expressions, the number of PMN were all higher than those in control group (all P < 0.05). Pre-injection of NaHS alleviated the changes induced by LPS, while pre-injection of PPG aggravated those alterations (all P < 0.05). ICAM-1 and p-p38 MAPK protein expressions in lung tissue were positively correlated (r = 0.923, P < 0.01). The results suggest that H2S may reduce LPS-induced ALI through inhibiting the conjugation of p38 MAPK and reducing the expression of ICAM-1.

  13. Hydrogen diffusion and trapping in nickel

    NASA Technical Reports Server (NTRS)

    Louthan, M. R., Jr.; Donovan, J. A.; Caskey, G. R., Jr.

    1975-01-01

    An analysis of hydrogen transport in pure polycrystalline nickel foils and rods at 300-550 K shows that both trapping and short-circuit diffusion are present and have small yet significant effects on permeation, evolution, and absorption. Both effects appear to be associated primarily with the dislocation substructure of nickel. Relations describing hydrogen transport in nickel are obtained using the data on deuterium permeation, tritium absorption, and outgassing in pure polycrystalline nickel together with earlier measurements of diffusivity and solubility of hydrogen isotopes.

  14. Hydrogen diffusion and trapping in nickel

    NASA Technical Reports Server (NTRS)

    Louthan, M. R., Jr.; Donovan, J. A.; Caskey, G. R., Jr.

    1975-01-01

    An analysis of hydrogen transport in pure polycrystalline nickel foils and rods at 300-550 K shows that both trapping and short-circuit diffusion are present and have small yet significant effects on permeation, evolution, and absorption. Both effects appear to be associated primarily with the dislocation substructure of nickel. Relations describing hydrogen transport in nickel are obtained using the data on deuterium permeation, tritium absorption, and outgassing in pure polycrystalline nickel together with earlier measurements of diffusivity and solubility of hydrogen isotopes.

  15. Gel Permeation Chromatography of Fluoroether Polymers

    NASA Technical Reports Server (NTRS)

    Korus, Roger A.; Rosser, Robert W.

    1978-01-01

    A Method is described for determining the molecular weight distribution of fluorinated polymers by gel permeation chromatography. Porous silica-packed columns are used with Freon 113 as the chromatographic solvent. Fluoroether oligomers are used for column calibration in the molecular weight range of 1400 to 12000.

  16. Permeation of volatile compounds through starch films.

    PubMed

    Yilmaz, Gülden; Jongboom, Remy O J; Feil, Herman; van Dijk, Cees; Hennink, Wim E

    2004-01-01

    The aim of this study was to gain insight into the factors that affect the permeation of volatiles through starch films. These films were obtained by casting gelatinized starch/water/glycerol mixtures. The films were dried and conditioned under different conditions (temperature and relative humidity) resulting in films that vary in the degree of starch crystallinity and glycerol and water content. The permeation of two model volatiles (carvone and diacetyl) at 20 degrees C and at 30, 60, or 90% relative humidity (RH) was analyzed gravimetrically. Further, the solubility of the two model compounds (under conditions where the permeation experiments were carried out) was determined. From the obtained permeation and solubility data, the diffusion coefficients of these compounds in the different starch films were calculated. The crystallinity in the starch films increased with increasing water content of the films during preparation. The water content of the resulting films in turn increased with increasing glycerol and when the films were exposed to a higher RH during drying or conditioning. For films with the same composition, the flux for diacetyl was greater than for carvone. The solubilities of diacetyl and carvone were slightly dependent on the properties of the films. It was found that with increasing starch crystallinity the diffusion coefficient for both compounds decreases, which is probably due to the impermeability of starch crystallites. Interestingly, in films with about the same extent of crystallinity, the diffusion can be described with the free volume model, with water and glycerol determining the amount of free volume.

  17. Permeating the Culture of a State Association

    ERIC Educational Resources Information Center

    Reeves, Pat

    2009-01-01

    In the four years since Courageous Journey was launched, the impact has permeated the Michigan Association of School Administrators (MASA). Already, 16 of 47 council and executive board members have joined a cohort. The Courageous Journey's Seven Points of Learning (or seven major superintendent responsibilities) help frame the organization's…

  18. Hydrogen-Rich Saline Protects against Ischemia/Reperfusion Injury in Grafts after Pancreas Transplantations by Reducing Oxidative Stress in Rats

    PubMed Central

    Luo, Zhu-Lin; Cheng, Long; Fang, Chen; Xiang, Ke; Xu, Hao-Tong; Tang, Li-Jun; Wang, Tao; Tian, Fu-Zhou

    2015-01-01

    Purpose. This study aimed to investigate the therapeutic potential of hydrogen-rich saline on pancreatic ischemia/reperfusion (I/R) injury in rats. Methods. Eighty heterotopic pancreas transplantations (HPT) were performed in syngenic rats. The receptors were randomized blindly into the following three groups: the HPT group and two groups that underwent transplantation and administration of hydrogen-rich saline (HS, >0.6 mM, 6 mL/kg) or normal saline (NS, 6 mL/kg) via the tail vein at the beginning of reperfusion (HPT + HS group, HPT + NS group). Samples from the pancreas and blood were taken at 12 hours after reperfusion. The protective effects of hydrogen-rich saline against I/R injury were evaluated by determining the changes in histopathology and measuring serological parameters, oxidative stress-associated molecules, and proinflammatory cytokines. Results. Administration of hydrogen-rich saline produced notable protection against pancreatic I/R injury in rats. Histopathological improvements and recovery of impaired pancreatic function were observed. In addition, TNF-α, IL-1β, and IL-6 were reduced markedly in the HPT + HS group. Additionally, there were noticeable inhibitory effects on the pancreatic malondialdehyde level and considerable recruitment of SOD and GPx, which are antioxidants. Conclusion. Hydrogen-rich saline treatment significantly attenuated the severity of pancreatic I/R injury in rats, possibly by reducing oxidative stress and inflammation. PMID:25873757

  19. Process for the production of hydrogen peroxide

    DOEpatents

    Datta, R.; Randhava, S.S.; Tsai, S.P.

    1997-09-02

    An integrated membrane-based process method for producing hydrogen peroxide is provided comprising oxidizing hydrogenated anthraquinones with air bubbles which were created with a porous membrane, and then contacting the oxidized solution with a hydrophilic membrane to produce an organics free, H{sub 2}O{sub 2} laden permeate. 1 fig.

  20. Process for the production of hydrogen peroxide

    DOEpatents

    Datta, Rathin; Randhava, Sarabjit S.; Tsai, Shih-Perng

    1997-01-01

    An integrated membrane-based process method for producing hydrogen peroxide is provided comprising oxidizing hydrogenated anthraquinones with air bubbles which were created with a porous membrane, and then contacting the oxidized solution with a hydrophilic membrane to produce an organics free, H.sub.2 O.sub.2 laden permeate.

  1. Permeation of Membranes by Ribose and its Diastereomers

    NASA Astrophysics Data System (ADS)

    Wei, C.; Pohorille, A.

    2010-04-01

    The favorable permeation of membranes by ribose over its diastereomers and permeation of nucleosides is investigated with molecular dynamics simulations. The relevance of our calculations to understanding the origins of life is also discussed.

  2. Hydrogen-resistant heat pipes for bimodal reactors

    SciTech Connect

    North, M.T.; Anderson, W.G.

    1997-01-01

    A sodium heat pipe that is tolerant of hydrogen permeation was developed for bimodal space power applications. Hydrogen permeation out of the heat pipe is enhanced by using a condenser design with a re-entrant annular gas cavity and an array of small diameter, thin-walled tubes to increase the permeation area. An experimental heat pipe with a nickel envelope was fabricated and tested. The heat pipe operated between 993K and 1073K, using sodium as the working fluid. During steady-state operation, hydrogen gas was injected into the heat pipe. The response of the heat pipe was monitored while the hydrogen permeated out of the heat pipe in the condenser section. For each of the tests run, the hydrogen gas was removed from the heat pipe in approximately 5 to 10 minutes. A model of the experimental heat pipe was developed to predict the enhancement in the hydrogen permeation rate out of the heat pipe. A significant improvement in the rate at which hydrogen permeates out of a heat pipe was predicted for the use of the special condenser geometry developed here. Agreement between the model and the experimental results was qualitatively good. Inclusion of the additional effects of fluid flow in the heat pipe are recommended for future work. {copyright} {ital 1997 American Institute of Physics.}

  3. Two-Dimensional Au-Nanoprism/Reduced Graphene Oxide/Pt-Nanoframe as Plasmonic Photocatalysts with Multiplasmon Modes Boosting Hot Electron Transfer for Hydrogen Generation.

    PubMed

    Lou, Zaizhu; Fujitsuka, Mamoru; Majima, Tetsuro

    2017-02-16

    Two-dimensional Au-nanoprism/reduced graphene oxide (rGO)/Pt-nanoframe was synthesized as plasmonic photocatalyt, exhibiting activity of photocatalytic hydrogen generation greater than those of Au-nanorod/rGO/Pt-nanoframe and metallic plasmonic photocatalyst Pt-Au. The single-particle plasmonic photoluminescence study demonstrated that Au-nanorod has only a longitudinal plasmon resonance mode for hot electron transfer to rGO, while Au-nanoprism has in-plane dipole and multipole surface plasmon resonance modes for hot electron transfer, leading to highly efficient charge separation for hydrogen generation.

  4. Investigation of hydrogen plasma treatment for reducing defects in silicon quantum dot superlattice structure with amorphous silicon carbide matrix

    PubMed Central

    2014-01-01

    We investigate the effects of hydrogen plasma treatment (HPT) on the properties of silicon quantum dot superlattice films. Hydrogen introduced in the films efficiently passivates silicon and carbon dangling bonds at a treatment temperature of approximately 400°C. The total dangling bond density decreases from 1.1 × 1019 cm-3 to 3.7 × 1017 cm-3, which is comparable to the defect density of typical hydrogenated amorphous silicon carbide films. A damaged layer is found to form on the surface by HPT; this layer can be easily removed by reactive ion etching. PMID:24521208

  5. Weakened N3 Hydrogen Bonding by 5-Formylcytosine and 5-Carboxylcytosine Reduces Their Base-Pairing Stability.

    PubMed

    Dai, Qing; Sanstead, Paul J; Peng, Chunte Sam; Han, Dali; He, Chuan; Tokmakoff, Andrei

    2016-02-19

    In the active cytosine demethylation pathway, 5-methylcytosine (5mC) is oxidized sequentially to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Thymine DNA glycosylase (TDG) selectively excises 5fC and 5caC but not cytosine (C), 5mC, and 5hmC. We propose that the electron-withdrawing properties of -CHO and -COOH in 5fC and 5caC increase N3 acidity, leading to weakened hydrogen bonding and reduced base pair stability relative to C, 5mC, and 5hmC, thereby facilitating the selective recognition of 5fC and 5caC by TDG. Through (13)C NMR, we measured the pKa at N3 of 5fC as 2.4 and the two pKa's of 5caC as 2.1 and 4.2. We used isotope-edited IR spectroscopy coupled with density functional theory (DFT) calculations to site-specifically assign the more acidic pKa of 5caC to protonation at N3, indicating that N3 acidity is increased in 5fC and 5caC relative to C. IR and UV melting studies of self-complementary DNA oligomers confirm reduced stability for 5fC-G and 5caC-G base pairs. Furthermore, while the 5fC-G base pair stability is insensitive to pH, the 5caC-G stability is reduced as pH decreases and the carboxyl group is increasingly protonated. Despite suggestions that 5fC and 5caC may exist in rare tautomeric structures which form wobble GC base pairs, our two-dimensional infrared (2D IR) spectroscopy of 5fC and 5caC free nucleosides confirms that both bases are predominantly in the canonical amino-keto form. Taken together, these findings support our model that weakened base pairing ability for 5fC and 5caC in dsDNA contributes to their selective recognition by TDG.

  6. Hydrogen Embrittlement Susceptibility and Hydrogen-Induced Additive Stress of 7050 Aluminum Alloy Under Various Aging States

    NASA Astrophysics Data System (ADS)

    Qi, W. J.; Song, R. G.; Qi, X.; Li, H.; Wang, Z. X.; Wang, C.; Jin, J. R.

    2015-09-01

    Hydrogen embrittlement susceptibility of 7050 aluminum alloy under various aging states has been investigated by means of cathodic hydrogen permeation, slow strain rate test, hydrogen determinator, x-ray diffraction, and scanning electron microscope, and effect of hydrogen on atomic binding force of charged alloy has been calculated by free electron theory in this paper. Simultaneously, hydrogen-induced additive stress (σad) of 7050 aluminum alloy hydrogen charged with different current densities under various aging states have been investigated by flowing stress differential method. The results showed that hydrogen concentration of examined alloy increased with increasing charging time or current density under the same aging state. Hydrogen segregation occurred at grain boundaries which enlarged the crystal lattice constant, meanwhile, it reduced the average bonding energy and interatomic bonding force of the grain boundary atoms, thus resulting in hydrogen embrittlement; moreover, σad of 7050 aluminum alloy increased linearly with increasing hydrogen concentration under the same aging state, i.e., under aged: σad = -1.61 + 9.93 × 105 C H, peak aged: σad = -1.55 + 9.67 × 105 C H, over aged: σad = -0.16 + 9.35 × 105 C H, correspondingly, σad increased the susceptibility to hydrogen embrittlement ( I HE) further. Under the same charging condition, aging states had a great influence on σad and I HE, the under-aged state alloy was of the highest, the over-aged state alloy was of the lowest, and peak-aged was in the middle.

  7. Hydrogen gas production is associated with reduced interleukin-1β mRNA in peripheral blood after a single dose of acarbose in Japanese type 2 diabetic patients.

    PubMed

    Tamasawa, Atsuko; Mochizuki, Kazuki; Hariya, Natsuyo; Saito, Miyoko; Ishida, Hidenori; Doguchi, Satako; Yanagiya, Syoko; Osonoi, Takeshi

    2015-09-05

    Acarbose, an α-glucosidase inhibitor, leads to the production of hydrogen gas, which reduces oxidative stress. In this study, we examined the effects of a single dose of acarbose immediately before a test meal on postprandial hydrogen gas in breath and peripheral blood interleukin (IL)-1β mRNA expression in Japanese type 2 diabetic patients. Sixteen Japanese patients (14 men, 2 women) participated in this study. The mean±standard deviation age, hemoglobin A1c and body mass index were 52.1±15.4 years, 10.2±2.0%, and 27.7±8.0kg/m(2), respectively. The patients were admitted into our hospital for 2 days and underwent test meals at breakfast without (day 1) or with acarbose (day 2). We performed continuous glucose monitoring and measured hydrogen gas levels in breath, and peripheral blood IL-1β mRNA levels before (0min) and after the test meal (hydrogen gas: 60, 120, 180, and 300min; IL-1β: 180min). The induction of hydrogen gas production and the reduction in peripheral blood IL-1β mRNA after the test meal were not significant between days 1 (without acarbose) and 2 (with acarbose). However, the changes in total hydrogen gas production from day 1 to day 2 were closely and inversely associated with the changes in peripheral blood IL-1β mRNA levels. Our results suggest that an increase in hydrogen gas production is inversely associated with a reduction of the peripheral blood IL-1β mRNA level after a single dose of acarbose in Japanese type 2 diabetic patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Plastidial Expression of Type II NAD(P)H Dehydrogenase Increases the Reducing State of Plastoquinones and Hydrogen Photoproduction Rate by the Indirect Pathway in Chlamydomonas reinhardtii1.

    PubMed

    Baltz, Anthony; Dang, Kieu-Van; Beyly, Audrey; Auroy, Pascaline; Richaud, Pierre; Cournac, Laurent; Peltier, Gilles

    2014-07-01

    Biological conversion of solar energy into hydrogen is naturally realized by some microalgae species due to a coupling between the photosynthetic electron transport chain and a plastidial hydrogenase. While promising for the production of clean and sustainable hydrogen, this process requires improvement to be economically viable. Two pathways, called direct and indirect photoproduction, lead to sustained hydrogen production in sulfur-deprived Chlamydomonas reinhardtii cultures. The indirect pathway allows an efficient time-based separation of O2 and H2 production, thus overcoming the O2 sensitivity of the hydrogenase, but its activity is low. With the aim of identifying the limiting step of hydrogen production, we succeeded in overexpressing the plastidial type II NAD(P)H dehydrogenase (NDA2). We report that transplastomic strains overexpressing NDA2 show an increased activity of nonphotochemical reduction of plastoquinones (PQs). While hydrogen production by the direct pathway, involving the linear electron flow from photosystem II to photosystem I, was not affected by NDA2 overexpression, the rate of hydrogen production by the indirect pathway was increased in conditions, such as nutrient limitation, where soluble electron donors are not limiting. An increased intracellular starch was observed in response to nutrient deprivation in strains overexpressing NDA2. It is concluded that activity of the indirect pathway is limited by the nonphotochemical reduction of PQs, either by the pool size of soluble electron donors or by the PQ-reducing activity of NDA2 in nutrient-limited conditions. We discuss these data in relation to limitations and biotechnological improvement of hydrogen photoproduction in microalgae.

  9. Cytoprotection of pyruvic acid and reduced beta-nicotinamide adenine dinucleotide against hydrogen peroxide toxicity in neuroblastoma cells.

    PubMed

    Mazzio, Elizabeth A; Soliman, Karam F A

    2003-05-01

    Elevated production of hydrogen peroxide (H2O2) in the central nervous system has been implicated in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease, ischemic reperfusion, stroke, and Alzheimer's disease. Pyruvic acid has a critical role in energy metabolism and a capability to nonenzymatically decarboxylate H2O2 into H2O. This study examined the effects of glycolytic regulation of pyruvic acid on H2O2 toxicity in murine neuroblastoma cells. Glycolytic energy substrates including D-(+)-glucose, D-(-) fructose and the adenosine transport blocker dipyridamole, were not effective in providing protection against H2O2 toxicity, negating energy as a factor. On the other hand, pyruvic acid completely prevented H2O2 toxicity, restoring the loss of ATP and cell viability. H2O2 toxicity was also attenuated by D-fructose 1,6 diphosphate (FBP), phospho (enol) pyruvate (PEP), niacinamide, beta-nicotinamide adenine dinucleotide (beta-NAD+), and reduced form (beta-NADH). Both FBP and PEP exerted positive kinetic effects on pyruvate kinase (PK) activity. Interestingly, only pyruvic acid and beta-NADH exhibited powerful stoichiometric H2O2 antioxidant properties. Further, beta-NADH may exert positive effects on PK activity. Subsequent pyruvic acid accumulation can lead to the recycling of beta-NAD+ through lactate dehydrogenase and beta-NADH through glyceraldehyde-3-phosphate dehydrogenase. It was concluded from these studies that intracellular pyruvic acid and beta-NADH appear to act in concert through glycolysis, to enhance H2O2 intracellular antioxidant capacity in neuroblastoma cells. Future research will be required to examine whether similar effects are observed in primary neuronal culture or intact tissue.

  10. Nitric oxide reduces hydrogen peroxide accumulation involved in water stress-induced subcellular anti-oxidant defense in maize plants.

    PubMed

    Sang, Jianrong; Jiang, Mingyi; Lin, Fan; Xu, Shucheng; Zhang, Aying; Tan, Mingpu

    2008-02-01

    Nitric oxide (NO) is a bioactive molecule involved in many biological events, and has been reported as pro-oxidant as well as anti-oxidant in plants. In the present study, the sources of NO production under water stress, the role of NO in water stress-induced hydrogen peroxide (H2O2) accumulation and subcellular activities of anti-oxidant enzymes in leaves of maize (Zea mays L.) plants were investigated. Water stress induced defense increases in the generation of NO in maize mesphyll cells and the activity of nitric oxide synthase (NOS) in the cytosolic and microsomal fractions of maize leaves. Water stress-induced defense increases in the production of NO were blocked by pretreatments with inhibitors of NOS and nitrate reductase (NR), suggesting that NO is produced from NOS and NR in leaves of maize plants exposed to water stress. Water stress also induced increases in the activities of the chloroplastic and cytosolic anti-oxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR), and the increases in the activities of anti-oxidant enzymes were reduced by pretreatments with inhibitors of NOS and NR. Exogenous NO increases the activities of water stress-induced subcellular anti-oxidant enzymes, which decreases accumulation of H2O2. Our results suggest that NOS and NR are involved in water stress-induced NO production and NOS is the major source of NO. The potential ability of NO to scavenge H2O2 is, at least in part, due to the induction of a subcellular anti-oxidant defense.

  11. Chlorinated phenol treatment and in situ hydrogen peroxide production in a sulfate-reducing bacteria enriched bioelectrochemical system.

    PubMed

    Miran, Waheed; Nawaz, Mohsin; Jang, Jiseon; Lee, Dae Sung

    2017-04-05

    Wastewaters are increasingly being considered as renewable resources for the sustainable production of electricity, fuels, and chemicals. In recent years, bioelectrochemical treatment has come to light as a prospective technology for the production of energy from wastewaters. In this study, a bioelectrochemical system (BES) enriched with sulfate-reducing bacteria (SRB) in the anodic chamber was proposed and evaluated for the biodegradation of recalcitrant chlorinated phenol, electricity generation (in the microbial fuel cell (MFC)), and production of hydrogen peroxide (H2O2) (in the microbial electrolysis cell (MEC)), which is a very strong oxidizing agent and often used for the degradation of complex organics. Maximum power generation of 253.5 mW/m(2), corresponding to a current density of 712.0 mA/m(2), was achieved in the presence of a chlorinated phenol pollutant (4-chlorophenol (4-CP) at 100 mg/L (0.78 mM)) and lactate (COD of 500 mg/L). In the anodic chamber, biodegradation of 4-CP was not limited to dechlorination, and further degradation of one of its metabolic products (phenol) was observed. In MEC operation mode, external voltage (0.2, 0.4, or 0.6 V) was added via a power supply, with 0.4 V producing the highest concentration of H2O2 (13.3 g/L-m(2) or 974 μM) in the cathodic chamber after 6 h of operation. Consequently, SRB-based bioelectrochemical technology can be applied for chlorinated pollutant biodegradation in the anodic chamber and either net current or H2O2 production in the cathodic chamber by applying an optimum external voltage.

  12. Hydrogen-rich water enhances cadmium tolerance in Chinese cabbage by reducing cadmium uptake and increasing antioxidant capacities.

    PubMed

    Wu, Qi; Su, Nana; Cai, Jiangtao; Shen, Zhenguo; Cui, Jin

    2015-03-01

    The aim of the present paper was to understand the specific mechanism of hydrogen-rich water (HRW) in alleviating cadmium (Cd) toxicity in Chinese cabbage (Brassica campestris spp. chinensis L.). Our results showed that the addition of 50% saturation HRW significantly alleviated the Cd toxic symptoms, including the improvement of both root elongation and seedling growth inhibition. These responses were consistent with a significant decrease of Cd accumulation in roots and shoots, which was further confirmed by the histochemical staining. Molecular evidence illustrated that Cd-induced up-regulations of IRT1 and Nramp1 genes, responsible for Cd absorption, were blocked by HRW. By contrast, Cd-induced up-regulation of the HMA3 gene, which regulates Cd sequestration into the root vacuoles, was substantially strengthened by HRW. Furthermore, compared with those in Cd stress alone, the expressions of HMA2 and HMA4, which function in the transportation of Cd to xylem, were repressed by co-treatment with HRW. HRW enhanced the activities of antioxidant enzymes, including superoxide dismutase, guaiacol peroxidase, catalase and ascorbate peroxidase. These results were further confirmed by the alleviation of oxidative damage, as indicated by the decrease of thiobarbituric acid reactive substances (TBARS) and reactive oxygen species (ROS) production. Taken together, these results suggest that the improvement of Cd tolerance by HRW was associated with reduced Cd uptake and increased antioxidant defense capacities. Therefore, the application of HRW may be a promising strategy to improve Cd tolerance of Chinese cabbage. Copyright © 2014 Elsevier GmbH. All rights reserved.

  13. PROTON-CONDUCTING DENSE CERAMIC MEMBRANES FOR HYDROGEN SEPARATION

    SciTech Connect

    Jerry Y.S. Lin

    2002-12-01

    This project is aimed at preparation of thin membranes of a modified strontium ceramic material on porous substrates with improved hydrogen permeance. The research work conducted in this reporting period was focused on studying synthesis methods for preparation of thin thulium doped strontium cerate (SrCe{sub 0.95}Tm{sub 0.05}O{sub 3}, SCTm) membranes. The following two methods were studied in the past year: (1) polymeric-gel casting and (2) dry-pressing. The polymeric-gel casting method includes preparation of mixed metal oxide gel and coating of the gel on a macroporous alumina support. Micrometer thick SCTm films of the perovskite structure can be obtained by this method. However, the deposited films are not hermetic and it may require about 50 coatings in order to obtain gas-tight SCTm films by this method. Asymmetric SCTm membranes consisting of a thick macroporous SCTm support and a thin SCTm layer can be effectively prepared by the dry-pressing method. The membranes were prepared by pressing together a thick layer of coarse SCTm powder and a thin layer of finer SCTm powder, followed by calcination and sintering under proper conditions. The asymmetric SCTm membranes have desired phase structure and are hermetic. Hydrogen permeation flux through the SCT membranes is inversely proportional to the thickness of the dense layer of the asymmetric membranes. The results show a substantial improvement in hydrogen permeation flux by reducing the SCTm membrane thickness.

  14. Apparatus For Tests Of Embrittlement By Hydrogen

    NASA Technical Reports Server (NTRS)

    Christianson, Rollin C.; Lycou, Peter P.

    1992-01-01

    Test apparatus exposes disk specimens to hydrogen in controlled, repeatable way simulating conditions in use. Disk specimen constitutes thin wall between pressure and vacuum chambers. Test proceeds until hydrogen weakens disk enough that it ruptures. Aluminum impact plate absorbs debris from ruptured disk. Apparatus replicates aspects of service environments relevant to embrittlement by hydrogen in such equipment as storage tanks, valves, and fluid-handling components containing hydrogen at high absolute or gauge pressure. Hydrogen inside permeates stressed material and produces gradient of concentration as hydrogen diffuses through material to low-pressure side.

  15. Tritium Permeation Estimate from APT and CLWR-TEF Waste Packages

    SciTech Connect

    Clark, E.A.

    1999-03-18

    The amount of tritium permeating out of waste containers has been estimated for the Accelerator Production of Tritium project (APT) and for the Commercial Light Water Reactor - Tritium Extraction Facility project (CLWR-TEF). The waste packages analyzed include the Aluminum, Window, Tungsten, Lead, and Steel packages for the APT project, and the overpack of extracted Tritium Producing Burnable Absorber Rods (TPBARs) for the CLWR-TEF project. All of the tritium contained in the waste was assumed to be available as a gas in the free volume inside the waste container at the beginning of disposal, and to then permeate the stainless steel waste container. From estimates of the tritium content of each waste form, the void or free volume of the package, disposal temperature and container geometry, the amount of tritium exiting the waste container by permeation was calculated. Two tritium permeation paths were considered separately: through the entire wall surface area and through the weld area only, the weld area having reduced thickness and significantly less surface area compared to the wall area. Permeation out of the five APT waste containers at 50 degrees Celsius is mainly through the welds, and at 100 degrees Celsius is through the permeation out of the entire wall surface area. The largest maximum offgas rate from an APT waste stream at 50 degrees Celsius (estimated disposal temperature) was 1.8E-6 Ci/year from the weld of the Window waste package, and the smallest maximum offgas rate was 3.7E-5 Ci/year from the weld of the Lead waste package. Permeation from the CLWR-TEF overpack at 40 degrees Celsius is mainly through the entire wall surface area, with a maximum offgas rate of 1.3E-5 Ci/year.

  16. Ionic Selectivity and Permeation Properties of Human PIEZO1 Channels.

    PubMed

    Gnanasambandam, Radhakrishnan; Bae, Chilman; Gottlieb, Philip A; Sachs, Frederick

    2015-01-01

    Members of the eukaryotic PIEZO family (the human orthologs are noted hPIEZO1 and hPIEZO2) form cation-selective mechanically-gated channels. We characterized the selectivity of human PIEZO1 (hPIEZO1) for alkali ions: K+, Na+, Cs+ and Li+; organic cations: TMA and TEA, and divalents: Ba2+, Ca2+, Mg2+ and Mn2+. All monovalent ions permeated the channel. At a membrane potential of -100 mV, Cs+, Na+ and K+ had chord conductances in the range of 35-55 pS with the exception of Li+, which had a significantly lower conductance of ~ 23 pS. The divalents decreased the single-channel permeability of K+, presumably because the divalents permeated slowly and occupied the open channel for a significant fraction of the time. In cell-attached mode, 90 mM extracellular divalents had a conductance for inward currents carried by the divalents of: 25 pS for Ba2+ and 15 pS for Ca2+ at -80 mV and 10 pS for Mg2+ at -50 mV. The organic cations, TMA and TEA, permeated slowly and attenuated K+ currents much like the divalents. As expected, the channel K+ conductance increased with K+ concentration saturating at ~ 45 pS and the KD of K+ for the channel was 32 mM. Pure divalent ion currents were of lower amplitude than those with alkali ions and the channel opening rate was lower in the presence of divalents than in the presence of monovalents. Exposing cells to the actin disrupting reagent cytochalasin D increased the frequency of openings in cell-attached patches probably by reducing mechanoprotection.

  17. Electron-bifurcating transhydrogenase is central to hydrogen isotope fractionation during lipid biosynthesis in sulfate reducing bacteria

    NASA Astrophysics Data System (ADS)

    Leavitt, W.; Flynn, T. M.; Suess, M.; Bradley, A. S.

    2015-12-01

    A significant range in microbial lipid 2H/1H ratios is observed in modern marine sediments [Li et al. 2009. GCA]. The magnitude of hydrogen isotope fractionation between microbial lipids and growth water (2ɛlipid-H2O) is hypothesized to relate to the central carbon and energy metabolism [Zhang et al. 2009. PNAS]. These observations have raised the intriguing possibility for culture independent identification of the dominant metabolic pathways operating in environments critical to the geological record. One such metabolism we would like to track for its global significance in sedimentary carbon cycling is bacterial sulfate reduction [Jørgensen. 1982. Nature]. To-date, heterotrophic sulfate reducing bacteria (SRB) have been observed to produce lipids that are depleted in fatty acid H-isotope composition, relative to growth water (2ɛlipid-H2O ~ -125 to -175 ‰), with experiments on different substrates yielding little variability [Campbell et al. 2009. GCA; Osburn. 2013; Dawson et al. 2015. Geobiology]. In stark contrast, aerobic heterotrophs show a wide range in fractionations (2ɛlipid-H2O ~ +300 to -125‰) which seems to scale with the route cellular carbon metabolism [Zhang et al. 2009. PNAS; Heinzelmann et al. 2015. Front Microbio]. Recent work in aerobic methylotrophs [Bradley et al. 2014. AGU] implicates transhydrogenase (TH) activity as a critical control on 2ɛlipid-H2O. This work suggests a specific driving mechanism for this range in fractionation is the ratio of intracellular NADPH/NADH, and more fundamentally, the intracellular redox state. In SRB a key component of energy metabolism is the activity of electron-bifurcating TH [Price et al. 2014. Front Microbio], for which a recent transposon mutant library has generated a number of knockouts in the target gene [Kuehl et al. 2014. mBio] in the model organism Desulfovibrio alaskensis strain G20. In this study we compare growth rates, fatty acid concentrations and 2ɛlipid-H2O from wild type and TH

  18. Permeation of hair dye ingredients, p-phenylenediamine and aminophenol isomers, through protective gloves.

    PubMed

    Lee, Hsiao-Shu; Lin, Yu-Wen

    2009-04-01

    Skin irritation and contact allergies are skin disorders common to hairdressers. The predominant oxidative hair dye components, such as p-phenylenediamine (PPD) and aminophenol isomers, can cause contact dermatitis. Use of protective gloves can prevent dermal contact with skin irritants. This study investigates the permeation behaviors of p-aminophenol (PAP), m-aminophenol (MAP), o-aminophenol (OAP) and PPD in single and mixed challenge solutions with disposable natural rubber latex (NRL) gloves, disposable polyvinylchloride (PVC) gloves and neoprene (NP) gloves. The challenge solutions were 4% PPD (w/v), 3% OAP (w/v), 2% PAP (w/v) and 2% MAP (w/v) in ethanol or 12% hydrogen peroxide solutions. The cocktail solutions of the four chemicals were also tested. An American Society for Testing and Materials type permeation cell, ethanol liquid collection and gas chromatography-flame ionization detection of samples taken from the collection medium every 10 min facilitated determination of breakthrough times (BTs), cumulative permeated masses and steady-state permeation rates (SSPRs). Experiments were 4 h long for the NRL and PVC gloves and 8 h for NP gloves. No chemicals tested broke through the NP gloves when exposed for 8 h. In the ethanol solution, PPD and OAP started breaking through the PVC gloves at 40 min. The SSPRs of PVC gloves were higher than those for NRL gloves in all challenge conditions for both single chemicals and mixtures. No tested chemicals in hydrogen peroxide solutions permeated the gloves during the 4-h tests. The chemical composition of the challenge solution was a main effecter of BTs and SSPRs for the NRL glove. For disposable PVC gloves, the main factors of BTs were molecular size [molar volume (MV)] and polarity (logK(ow)), and the primary factors of SSPRs were concentration, MV and logK(ow). In conclusion, disposable NRL gloves and disposable PVC gloves should not be used repeatedly for handling the hair dye products. Hydrogen peroxide did not

  19. Permeation characteristics of gramicidin conformers.

    PubMed Central

    Busath, D; Szabo, G

    1988-01-01

    To investigate the molecular origin of decreased conductance in variant gramicidin channels, we examined the current-voltage (IV) characteristics of single Val1-gramicidin A channels. Unlike standard channels, all variant channels showed pronounced rectification even though bathing solutions were symmetrical. Moreover, channels of lower conductance consistently showed more pronounced rectification. Analysis within the framework of a three-barrier, two-site, single-filing model indicates that the shape of the variant channel IVs could be best explained by an increase in binding affinity near one of the two channel entrances. This conclusion was further tested by characterizing single channel IVs in bi-ionic solutions having different cationic species at each channel entrance. In Cs/Na bi-ionic solutions, reversal potentials of variant channels often differed by a small but significant amount from those of standard channels. When a membrane potential was applied, the ionic currents tended to be reduced more when flowing from the Na+ side than the Cs+ side. These observations support the conclusion that variant channels have increased binding affinity at one end of the channel. Furthermore, H+ currents were increased while Ag+ currents were unaltered for most variant channels exhibiting decreased Na+ or Cs+ currents. The increased H+ conductance argues against long-range coulombic forces as the basis for decreased Na+ or Cs+ conductance while the normal Ag+ conductance suggests that the binding site field strength increases by a change in carbonyl geometry at the channel entrance. PMID:2455549

  20. Reduction in skin permeation of N,N-diethyl-m-toluamide (DEET) by altering the skin/vehicle partition coefficient.

    PubMed

    Ross1, J S; Shah, J C

    2000-07-03

    Reported adverse side effects after using N,N-diethyl-m-toluamide (DEET)-containing mosquito repellent products appear to be the result of significant absorption of DEET through human skin. The overall objective was to develop formulations of DEET with significantly reduced permeation using the basic principles and model of skin permeation based on Fick's laws of diffusion at steady state. Ternary phase diagrams of DEET with water and semipolar solvents, ethanol, PG and PEG 400, showed an increase in the aqueous solubility of DEET. This resulted in a linear decline in octanol/water PC with an increase in the concentration of the solvent. Permeation of DEET across human skin was studied from vehicles containing various amounts of PG and PEG 400 using an infinite dose technique and Franz diffusion cell. DEET's flux reduced with increasing PG concentration and the flux from 90% PG was 9.9+/-2.1 microg/cm(2) h, 6-fold lower than flux of pure DEET control, 63.2+/-24.5 microg/cm(2) h. Flux was reduced 6-fold from 60% PEG 400 solution, and permeation of DEET was totally prevented from 90% PEG 400 which was very viscous. However, a combination of 60% PEG 400 with 30% PG not only reduced permeation 9-fold but was suitable as a vehicle for formulation. The decrease in flux and permeability of DEET with increasing concentration of solvent appeared to be a direct result of decrease in skin/vehicle PC and octanol/water PC. This study clearly demonstrates that alternative formulations can be developed for DEET aimed at reduced permeation and toxicity unlike the current formulations some of which contain ethanol which has been shown to enhance permeation of DEET. A similar approach can be used for developing formulations of other industrial and occupational agents to prevent their skin permeation when a user may be exposed to them.

  1. Percutaneous permeation modifiers: enhancement versus retardation.

    PubMed

    Kaushik, Diksha; Batheja, Priya; Kilfoyle, Brian; Rai, Vishwas; Michniak-Kohn, Bozena

    2008-05-01

    The use of permeation enhancers to compromise the barrier properties of skin has been ongoing for decades. However, toxicity associated with certain xenobiotics has led to the development of permeation retardants. Since both enhancers and retardants modify the surface layer of the skin, they can be collectively referred to as penetration modifiers. This review attempts to outline a comparison of two types of penetration modifiers: enhancers and retardants. In addition to reports of enhancement and retardation by modifiers, we also provide evidence as to why we should group these compounds together, since we have found that retardants can become enhancers in different formulation environments. Since modifiers influence drug delivery, further exploration of these compounds is required to understand their modifying action on the properties of skin.

  2. Permeation properties of polymer/clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Kalendova, A.; Merinska, D.; Gerard, J. F.

    2012-07-01

    The important characteristics of polymer/clay nanocomposites are stability, barrier properties and in the case of polyvinyl chloride also plasticizer migration into other materials. Therefore, the permeation properties of polymer/clay nanocomposites are discussed in this paper. The attention was focused to the polyethylene (PE) and polyvinyl chloride (PVC). Natural type of montmorillonite MMTNa+ and modified types of montmorillonite from Southern Clay Products were used as the inorganic phase. As the compounding machine, one screw Buss KO-kneader was employed. The principal aim is to fully exfoliate the clay into polymer matrix and enhanced the permeation properties. Prepared samples were tested for O2 and CO2 permeability. Polymer/clay nanocomposite structure was determined on the base of X-ray diffraction and electron microscopy (TEM).

  3. Alteration of skin hydration and its barrier function by vehicle and permeation enhancers: a study using TGA, FTIR, TEWL and drug permeation as markers.

    PubMed

    Shah, D K; Khandavilli, S; Panchagnula, R

    2008-09-01

    Vehicles and permeation enhancers (PEs) used in transdermal drug delivery (TDD) of a drug can affect skin hydration, integrity and permeation of the solute administered. This investigation was designed to study the effect of the most commonly used vehicles and PEs on rat skin hydration, barrier function and permeation of an amphiphilic drug, imipramine hydrochloride (IMH). An array of well-established techniques were used to confirm the findings of the study. Thermogravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy were used to determine changes in skin hydration. Alteration of the stratum corneum (SC) structure was investigated using FTIR studies. To monitor the barrier function alteration, transepidermal water loss (TEWL) measurement and permeation studies were performed. Our findings indicate that with hydration, there was an increase in the bound water content of the skin, and pseudoequilibrium of hydration (a drastic decrease in hydration rate) was achieved at around 12 h. Hydration increased the ratio between amide-I and amide-II peaks in FTIR and reduced the C-H stretching peak area. Both propylene glycol (PG) and ethanol (EtOH) dehydrated skin, with the latter showing a predominant effect. Furthermore, it was confirmed that PG and EtOH decreased the bound water content due to alteration in the protein domains and extraction of SC lipids, respectively. The effect of hydration on the SC was found to be similar to that reported for temperature. Permeation studies revealed that the dehydration caused by vehicles decreased IMH flux, whereas the flux was enhanced by PEs. The role of partition was predominant for the permeation of IMH through dehydrated skin. A synergistic effect was observed for PG and menthol in the enhancement of IMH. Further findings provided strong evidence that PG affects protein domains and EtOH extracts lipids from the bilayer. Both PG and EtOH, with or without PEs, increased TEWL. Initial TEWL was well

  4. Synthesis of Ni3S2 nanotube arrays on nickel foam by catalysis of thermal reduced graphene for hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Jinlong, Lv; Miura, Hideo; Meng, Yang; Tongxiang, Liang

    2017-03-01

    The thermal reduced graphene oxide deposition on nickel foam was successfully synthesized by ultrasonic and subsequent thermal reduction process. Ultrathin mesoporous Ni3S2 was formed on the bare nickel foam after hydrothermal process, while Ni3S2 nanotube arrays were formed on the surface of nickel foam with the thermal reduced graphene oxide due to catalysis action of thermal reduced graphene oxide. The resulting Ni3S2 nanotube arrays exhibited higher catalytic activity than ultrathin mesoporous Ni3S2 for hydrogen evolution reaction. In addition, and excellent stability was also obtained in Ni3S2 nanotube arrays.

  5. Zeolite membranes: microstructure characterization and permeation mechanisms.

    PubMed

    Yu, Miao; Noble, Richard D; Falconer, John L

    2011-11-15

    Since their first synthesis in the 1940s, zeolites have found wide applications in catalysis, ion-exchange, and adsorption. Although the uniform, molecular-size pores of zeolites and their excellent thermal and chemical stability suggest that zeolites could be an ideal membrane material, continuous polycrystalline zeolite layers for separations were first prepared in the 1990s. Initial attempts to grow continuous zeolite layers on porous supports by in situ hydrothermal synthesis have resulted in membranes with the potential to separate molecules based on differences in molecular size and adsorption strength. Since then, further synthesis efforts have led to the preparation of many types of zeolite membranes and better quality membranes. However, the microstructure features of these membranes, such as defect size, number, and distribution as well as structure flexibility were poorly understood, and the fundamental mechanisms of permeation (adsorption and diffusion), especially for mixtures, were not clear. These gaps in understanding have hindered the design and control of separation processes using zeolite membranes. In this Account, we describe our efforts to characterize microstructures of zeolite membranes and to understand the fundamental adsorption and diffusion behavior of permeating solutes. This Account will focus on the MFI membranes which have been the most widely used but will also present results on other types of zeolite membranes. Using permeation, x-ray diffraction, and optical measurements, we found that the zeolite membrane structures are flexible. The size of defects changed due to adsorption and with variations in temperature. These changes in defect sizes can significantly affect the permeation properties of the membranes. We designed methods to measure mixture adsorption in zeolite crystals from the liquid phase, pure component adsorption in zeolite membranes, and diffusion through zeolite membranes. We hope that better understanding can lead

  6. Can microbially-generated hydrogen sulfide account for the rates of U(VI) reduction by a sulfate-reducing bacterium?

    SciTech Connect

    Boonchayaanant, Benjaporn; Gu, Baohua; Wang, Wei; Ortiz, Monica E; Criddle, Craig

    2010-01-01

    In situ remediation of uranium contaminated soil and groundwater is attractive because a diverse range of microbial and abiotic processes reduce soluble and mobile U(VI) to sparingly soluble and immobile U(IV). Often these processes are linked. Sulfate-reducing bacteria (SRB), for example, enzymatically reduce U(VI) to U(IV), but they also produce hydrogen sulfide that can itself reduce U(VI). This study evaluated the relative importance of these processes for Desulfovibrio aerotolerans, a SRB isolated from a U(VI)-contaminated site. For the conditions evaluated, the observed rate of SRB-mediated U(VI) reduction can be explained by the abiotic reaction of U(VI) with the microbially-generated H{sub 2}S. The presence of trace ferrous iron appeared to enhance the extent of hydrogen sulfide-mediated U(VI) reduction at 5 mM bicarbonate, but had no clear effect at 15 mM. During the hydrogen sulfide-mediated reduction of U(VI), a floc formed containing uranium and sulfur. U(VI) sequestered in the floc was not available for further reduction.

  7. Hydrogen diffusion fuel cell

    SciTech Connect

    Struthers, R.C.

    1987-08-04

    This patent describes a fuel cell comprising; an elongate case; a thin, flat separator part of non-porous, di-electric, hydrogen-permeable material between the ends of and extending transverse the case and defining anode and cathode chambers; a thin, flat anode part of non-porous, electric conductive, hydrogen-permeable metallic material in the anode chamber in flat contacting engagement with and co-extensive with the separator part; a flat, porous, catalytic cathode part in the cathode chamber in contacting engagement with the separator part; hydrogen supply means supplying hydrogen to the anode part within the anode chamber; oxidant gas supply means supplying oxidant gas to the cathode part within the cathode chamber; and, an external electric circuit connected with and between the anode and cathode parts. The anode part absorbs and is permeated by hydrogen supplied to it and diffuses the hydrogen to hydrogen ions and free electrons; the free electrons in the anode part are conducted from the anode part into the electric circuit to perform useful work. The hydrogen ions in the anode part move from the anode part through the separator part and into the cathode part. Free electrons are conducted by the electric circuit into the cathode part. The hydrogen ions, oxidant gas and free electrons in the cathode part react and generate waste, heat and water.

  8. Steric and interactive barrier properties of intestinal mucus elucidated by particle diffusion and peptide permeation.

    PubMed

    Boegh, Marie; García-Díaz, María; Müllertz, Anette; Nielsen, Hanne Mørck

    2015-09-01

    The mucus lining of the gastrointestinal tract epithelium is recognized as a barrier to efficient oral drug delivery. Recently, a new in vitro model for assessment of drug permeation across intestinal mucosa was established by applying a biosimilar mucus matrix to the surface of Caco-2 cell monolayers. The aim of the present study was to gain more insight into the steric and interactive barrier properties of intestinal mucus by studying the permeation of peptides and model compounds across the biosimilar mucus as well as across porcine intestinal mucus (PIM). As PIM disrupted the Caco-2 cell monolayers, a cell-free mucus barrier model was implemented in the studies. Both the biosimilar mucus and the PIM reduced the permeation of the selected peptide drugs to varying degrees illustrating the interactive properties of both mucus matrices. The reduction in peptide permeation was decreased depending on the cationicity and H-bonding capacity of the permeant clearly demonstrated by using the biosimilar mucus, whereas the larger inter sample variation of the PIM matrix obstructed similarly clear conclusions. Thus, for mechanistic studies of permeation across mucus and mucosa the biosimilar mucus offers a relevant and reproducible alternative to native mucus. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Liposomal buccal mucoadhesive film for improved delivery and permeation of water-soluble vitamins.

    PubMed

    Abd El Azim, Heba; Nafee, Noha; Ramadan, Alyaa; Khalafallah, Nawal

    2015-07-05

    This study aims at improving the buccal delivery of vitamin B6 (VB6) as a model highly water-soluble, low permeable vitamin. Two main strategies were combined; first VB6 was entrapped in liposomes, which were then formulated as mucoadhesive film. Both plain and VB6-loaded liposomes (LPs) containing Lipoid S100 and propylene glycol (∼ 200 nm) were then incorporated into mucoadhesive film composed of SCMC and HPMC. Results showed prolonged release of VB6 (72.65%, T50% diss 105 min) after 6h from LP-film compared to control film containing free VB6 (96.37%, T50% diss 30 min). Mucoadhesion was assessed both ex vivo on chicken pouch and in vivo in human. Mucoadhesive force of 0.2N and residence time of 4.4h were recorded. Ex vivo permeation of VB6, across chicken pouch mucosa indicated increased permeation from LP-systems compared to corresponding controls. Interestingly, incorporation of the vesicles in mucoadhesive film reduced the flux by 36.89% relative to LP-dispersion. Meanwhile, both films provided faster initial permeation than the liquid forms. Correlating the cumulative percent permeated ex vivo with the cumulative percent released in vitro indicated that LPs retarded VB6 release but improved permeation. These promising results represent a step forward in the field of buccal delivery of water-soluble vitamins.

  10. Permeation of halide anions through phospholipid bilayers occurs by the solubility-diffusion mechanism

    NASA Technical Reports Server (NTRS)

    Paula, S.; Volkov, A. G.; Deamer, D. W.

    1998-01-01

    Two alternative mechanisms are frequently used to describe ionic permeation of lipid bilayers. In the first, ions partition into the hydrophobic phase and then diffuse across (the solubility-diffusion mechanism). The second mechanism assumes that ions traverse the bilayer through transient hydrophilic defects caused by thermal fluctuations (the pore mechanism). The theoretical predictions made by both models were tested for halide anions by measuring the permeability coefficients for chloride, bromide, and iodide as a function of bilayer thickness, ionic radius, and sign of charge. To vary the bilayer thickness systematically, liposomes were prepared from monounsaturated phosphatidylcholines (PC) with chain lengths between 16 and 24 carbon atoms. The fluorescent dye MQAE (N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide) served as an indicator for halide concentration inside the liposomes and was used to follow the kinetics of halide flux across the bilayer membranes. The observed permeability coefficients ranged from 10(-9) to 10(-7) cm/s and increased as the bilayer thickness was reduced. Bromide was found to permeate approximately six times faster than chloride through bilayers of identical thickness, and iodide permeated three to four times faster than bromide. The dependence of the halide permeability coefficients on bilayer thickness and on ionic size were consistent with permeation of hydrated ions by a solubility-diffusion mechanism rather than through transient pores. Halide permeation therefore differs from that of a monovalent cation such as potassium, which has been accounted for by a combination of the two mechanisms depending on bilayer thickness.

  11. Permeation of halide anions through phospholipid bilayers occurs by the solubility-diffusion mechanism

    NASA Technical Reports Server (NTRS)

    Paula, S.; Volkov, A. G.; Deamer, D. W.

    1998-01-01

    Two alternative mechanisms are frequently used to describe ionic permeation of lipid bilayers. In the first, ions partition into the hydrophobic phase and then diffuse across (the solubility-diffusion mechanism). The second mechanism assumes that ions traverse the bilayer through transient hydrophilic defects caused by thermal fluctuations (the pore mechanism). The theoretical predictions made by both models were tested for halide anions by measuring the permeability coefficients for chloride, bromide, and iodide as a function of bilayer thickness, ionic radius, and sign of charge. To vary the bilayer thickness systematically, liposomes were prepared from monounsaturated phosphatidylcholines (PC) with chain lengths between 16 and 24 carbon atoms. The fluorescent dye MQAE (N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide) served as an indicator for halide concentration inside the liposomes and was used to follow the kinetics of halide flux across the bilayer membranes. The observed permeability coefficients ranged from 10(-9) to 10(-7) cm/s and increased as the bilayer thickness was reduced. Bromide was found to permeate approximately six times faster than chloride through bilayers of identical thickness, and iodide permeated three to four times faster than bromide. The dependence of the halide permeability coefficients on bilayer thickness and on ionic size were consistent with permeation of hydrated ions by a solubility-diffusion mechanism rather than through transient pores. Halide permeation therefore differs from that of a monovalent cation such as potassium, which has been accounted for by a combination of the two mechanisms depending on bilayer thickness.

  12. Crystallization kinetics of amorphous lactose, whey-permeate and whey powders.

    PubMed

    Ibach, Alexander; Kind, Matthias

    2007-07-23

    Amorphous lactose, whey-permeate and whey powders have been converted to their crystalline forms by exposure to air at various temperatures and relative humidities. The total time required for sorption, induction and crystallization of these powders was observed by following the time-dependent mass change of the powders during treatment. These experiments have shown that higher temperatures and relative humidities lead to shorter crystallization times. Lactose crystallizes within 1 min at an air temperature of 100 degrees C and relative air humidity of 80%, whereas whey-permeate and whey powders requires up to 5 min at the same set of conditions. Thus, as previously described, the presence of proteins and salts in the whey-permeate and whey powders reduces the crystallization rate. The rate constants and activation energies have been determined over a range of temperatures and humidities to enable the calculation of crystallization times for the design of an industrial process that crystallizes whey and whey-permeate powders. Finally, the crystallization rates found in this work are sufficiently fast to be applicable in an industrial process that crystallizes whey and whey-permeate powders.

  13. Insulin loaded mucus permeating nanoparticles: Addressing the surface characteristics as feature to improve mucus permeation.

    PubMed

    Pereira de Sousa, Irene; Moser, Thomas; Steiner, Corinna; Fichtl, Barbara; Bernkop-Schnürch, Andreas

    2016-03-16

    It was the aim of this study to combine two strategies - namely the virus-mimicking strategy and the surface PEGylation strategy - in order to generate highly mucus permeating nanocarriers for oral insulin delivery. Chondroitin sulphate was covalently conjugated with poly(ethylene glycol) 5 kDa at different degree of modification and with the functionalized polymers NPs were formulated via complexation with chitosan. NPs were characterized by particle size, zeta potential, surface hydrophilicity and permeation ability in porcine mucus and on excised mucosa. The NPs presented a size between 510 and 670 nm and a zeta potential between -1 and -5 mV when dispersed in simulated intestinal fluid. The mucus permeation test revealed a correlation between the NPs hydrophilicity and their ability to move through mucus. A 5-fold higher amount of NPs with the higher degree of PEGylation could permeate through fresh mucus compared to non-PEGylated NPs. Moreover, highly PEGylated NPs showed a 3.7-fold greater ability to be retained in intestinal mucosa against buffer flow compared to unmodified NPs. Finally, insulin was incorporated with a payload of 2.18% and the release profile showed a 65% release within 4h. Results of this study provide strong evidence for the potential of combining different surface modification strategies in order to improve the mucus permeating properties of NPs for oral peptide delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Estimating skin permeation. The validation of five mathematical skin permeation models.

    PubMed

    Wilschut, A; ten Berge, W F; Robinson, P J; McKone, T E

    1995-04-01

    This study provides an analysis of the reliability of five mathematical models, simulating permeation of substances through the skin from aqueous solutions. An extensive database was generated, containing data on 123 measured permeation coefficients of 99 different chemicals and their physicochemical properties. In addition, in this database all relevant experimental conditions are included. The coefficients of the different skin permeation models were estimated by non-linear multiple regression, using the octanol-water partition coefficient and the molecular weight as independent parameters. The reliability of the models was evaluated by testing variation of regression coefficients and of residual variance for subsets of data, randomly selected from the complete database. Three models were considered to provide reliable estimations of the skin permeation coefficient. These are based on the McKone and Howd model, the Guy and Potts model and the Robinson model. The last-mentioned two models were adaptations, because MW0.5 as independent parameter provided a better fit than MW (MW = molecular weight) in the original models. The McKone and Howd model and the Robinson model have the advantage, that they predict more precisely the skin permeation of highly hydrophilic and highly lipophilic chemicals compared to the Guy and Potts model. The revised Robinson model resulted always in the smallest residual variance.

  15. Effect of bread baking on the bioavailability of hydrogen-reduced iron powder added to unenriched refined wheat flour.

    PubMed

    Maekawa, Atsushi A; Glahn, Raymond P; Lei, Xin Gen; Miller, Dennis D

    2006-10-18

    Elemental iron powders are widely used to fortify flour and other cereal products. Our objective was to test the hypothesis that baking enhances the bioavailability of elemental iron powders by oxidizing Fe(0) to Fe(2+) or Fe(3+). An in vitro digestion/Caco-2 cell culture model and a piglet model were used to measure bioavailability. Bread flour, either unfortified or fortified with hydrogen-reduced (HR) iron powder or FeSO(4) (300 mg Fe/kg flour), was baked into bread. For the in vitro studies, bread samples were treated with pepsin at pH 2, 3, 4, 5, 6, or 7 and subsequently incubated with pancreatic enzymes at pH 7 in a chamber positioned above monolayers of cultured Caco-2 cells. Ferritin formation in the cells was used as an index of iron bioavailability. Ferritin formation in cells fed HR Fe bread was similar to cells fed FeSO(4) bread when the peptic digestion was conducted at a pH 2 but lower when the peptic phase was conducted at pH 3, 4, 5, 6, or 7 (P < 0.05). Pig diets containing 35% dried bread were prepared and fed to cross-bred (Hampshire x Landrace x Yorkshire) anemic pigs in two studies. The rate of increase in hemoglobin Fe over the feeding period was used to calculate relative biological value (RBV), an index of iron bioavailability. In the first pig study, RBV of HR Fe added to flour prior to baking was 47.9% when compared to FeSO(4) fortified flour (P < 0.05). In the second pig study, a third treatment consisting of unfortified bread with HR iron added during diet mixing (after bread baking) was included. RBVs of the HR Fe diet (Fe added after baking) and HR Fe diet (Fe added before baking) were 40.1% and 53.5%, respectively, compared to the FeSO(4) diet. Differences in RBV between the HR Fe (before and after baking) and FeSO(4) (before baking) treatment groups were significant, but the difference between the before and after HR treatment groups was not significant. We conclude that bread baking does not enhance the bioavailability of elemental

  16. Protonation equilibrium and hydrogen production by a dinuclear cobalt-hydride complex reduced by cobaltocene with trifluoroacetic acid.

    PubMed

    Mandal, Sukanta; Shikano, Shinya; Yamada, Yusuke; Lee, Yong-Min; Nam, Wonwoo; Llobet, Antoni; Fukuzumi, Shunichi

    2013-10-16

    A dinuclear Co complex with bis(pyridyl)pyrazolato (bpp(-)) and terpyridine (trpy) ligands, [Co(III)2(trpy)2(μ-bpp)(OH)(OH2)](4+) (1(4+)), undergoes three-electron reduction by cobaltocene in acetonitrile to produce 1(+), which is in the protonation equilibrium with the Co(II)Co(III)-hydride complex, and the further protonation of the hydride by trifluoroacetic acid yields hydrogen quantitatively. The kinetic study together with the detection of the Co(II)Co(III)-hydride complex revealed the mechanism of the hydrogen production by the reaction of 1(+) with trifluoroacetic acid.

  17. Increase of tritium permeation through resistant metals at 323 K by lattice defects

    SciTech Connect

    Maienschein, J. L.; McMurphy, F. E.; DuVal, V. L.

    1988-01-01

    We report data on tritium permeation at 323 K and 373 K through annealed and single crystal copper for comparison with our earlier data on unannealed copper, and show that tritium transport along grain boundaries or other lattice defects controls the overall rate at 323 K in unannealed material. Measurements on unannealed and annealed gold foil also indicate the importance of defect transport, although with gold we could not reduce the defect concentration sufficiently to measure permeation through the metal lattice. We also include permeation data on aluminum, molybdenum, tungsten, beryllium, cadmium, iridium, lead, rhenium, and silver; all of these were probably dominated by tritium transport along lattice defects. 24 refs., 3 figs., 3 tabs.

  18. The permeation behavior of deuterium through 1Cr18Ni9Ti stainless steel with TiN+TiC-TiN multiple films

    SciTech Connect

    Xiong, Y.; Song, J.; Luo, D.; Lei, Q.; Chen, C.

    2015-03-15

    The prevention of tritium losses via permeation through structure components is an important issue in fusion technology. The production of thin layers on materials with low diffusivity and/or low surface recombination constants (so-called permeation barriers) seems to be the most practical method to reduce or hinder the permeation of tritium through materials. TiN+TiC+TiN multiple films are deposited on the surface of 1Cr18Ni9Ti stainless steel by ion-beam assisted deposition technology. The characteristics of films are tested by XPS ASEM and XRD, which shows that the film are compact and uniform with a thickness of about 15 μm, and have a good adherence with the substrate below 773 K. The diffraction peaks in the XRD patterns for TiC and TiN are broadened, implying that the multiple films are deposited on the surface of 1Cr18Ni9Ti stainless steel. Meanwhile, the C-H bonded CH{sub 4}-appears in the infrared spectra of multiple films, suggesting that the CH{sub 4}- is in a static state, so hydrogen atom cannot migrate from the site bonded with carbon to a neighboring site. The measured deuterium permeability in 1Cr18Ni9Ti stainless steel coated with multiple films is 2-3 orders of magnitude lower than that of pure 1Cr18Ni9Ti stainless steel substrate from 473 K to 773 K. However, this barrier is partly destroyed above 773 K.

  19. Effect of L-menthol and 1,8-cineole on phase behavior and molecular organization of SC lipids and skin permeation of zidovudine.

    PubMed

    Narishetty, Sunil T K; Panchagnula, Ramesh

    2005-01-20

    The aim of this investigation was to study the effect of 1,8-cineole and L-menthol on phase behavior and molecular organization of Stratum corneum (SC) lipids and permeation of zidovudine (AZT) across human cadaver skin (HCS). Permeation studies were conducted across HCS using Franz diffusion cells at 37 degrees C. Differential scanning calorimetry (DSC) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) were employed to understand the effect of terpenes on phase behavior and molecular organization of a model SC lipid system consisting of an equimolar mixture of ceramide, palmitic acid and cholesterol. Both 1,8-cineole and L-menthol applied at 5% w/v in 66.6% ethanol as a vehicle significantly enhanced the pseudosteady state flux of AZT across HCS. The vehicle reduced the number of endothermic transitions observed in the DSC thermogram of a hydrated model SC lipid system from three to two with a lowered midtransition temperature (Tm), while the inclusion of terpenes resulted in a single but very broad endothermic transition for the model SC lipid system. Correspondingly, ATR-FTIR studies revealed that both 1,8-cineole and L-menthol increased CH2 stretching frequencies on either side of lipid transition in addition to lowering the Tm of model SC lipid system by approximately 2-8 degrees C. The alterations observed in the amide-I frequencies of model SC lipid system after the inclusion of terpenes suggest that they disrupt the interlamellar hydrogen-bonding network at the polar head group region. Further, terpenes also increased the hydration levels of the lipid system probably by forming new aqueous channels. These results indicate that terpenes enhance transdermal permeation of AZT and other drugs by transforming SC lipids from a highly ordered orthorhombic perpendicular subcellular packing to a less ordered hexagonal subcell packing.

  20. Mechanism of toxicity of hydrogen peroxide

    SciTech Connect

    Imlay, J.A.

    1987-01-01

    We examined the capacity of hydrogen peroxide to injure E. coli. Externally applied hydrogen peroxide rapidly permeates the bacterial cell and causes at least two classes of potentially lethal damage. These classes were initially distinguished by the kinetics of their production. Additional distinctions have been made regarding the chemistry of cell injury and the details of the cell response. One class of cell damage consists of DNA lesions; if unrepaired, mode one killing results. Hydrogen peroxide does not directly attack the DNA. Instead, ferrous iron reduces the peroxide to generate a hydroxyl-radical-like species, which acts as a DNA oxidant. The peculiar kinetics of mode-one killing may reflect an high reaction rate between this radical and peroxide itself. Interestingly, NADH may chemically reduce ferric iron in order to start and maintain the sequence of redox reactions. The target of the other class of cell damage is unknown. This damage, unlike that associated with mode-one killing, does not rely upon Fenton chemistry. Scavenging enzymes, such as catalase and superoxide dismutase, contribute to resisting oxidative stress. Increases in catalase titer accelerate detoxification of peroxide and are responsible for the protective effects of oxyR induction. When oxidants elude this defense and nick DNA, a variety of enzymes-exonuclease III, endonuclease IV, and DNA polymerase I-repair the damage.

  1. Effect of water on hydrogen permeability. [Stirling engines

    NASA Technical Reports Server (NTRS)

    Hulligan, D. D.; Tomazic, W. A.

    1984-01-01

    Doping of hydrogen with CO or CO2 was developed to reduce hydrogen permeation in Stirling engines by forming low permeability oxide coatings in the heater tubes. An end product of this process is water - which can condense in the cold parts of the engine system. If the water vapor is reduced to a low enough level, the hydrogen can reduce the oxide coating resulting in increased permeability. The equilibrium level of water (oxygen bearing gas) required to avoid reduction of the oxide coating was investigated. Results at 720 C and 13.8 MPa have shown that: (1) pure hydrogen will reduce the coating; (2) 500 ppm CO (500 ppm water equivalent) does not prevent the reduction; and (3) 500 ppm CO2 (1000 ppm water) appears to be close to the equilibrium level. Further tests are planned to define the equilibrium level more precisely and to extend the data to 820 C and 3.4, 6.9, and 13.8 MPa.

  2. Development of a permeation panel to test dermal protective clothing against sprayed coatings.

    PubMed

    Ceballos, Diana M; Yost, Michael G; Whittaker, Stephen G; Reeb-Whitaker, Carolyn; Camp, Janice; Dills, Russell

    2011-03-01

    Design, construct, and characterize an apparatus to evaluate dermal protective clothing for resistance to polymerizing materials. Specifically, we evaluated the permeation of the most common glove material used in automotive collision repair (0.10-0.13 mm or 4-5 mil latex) with representative isocyanate-containing clear coats. Our ultimate goal is to make informed recommendations on dermal protective materials to prevent isocyanate exposures and reduce the likelihood of occupational illness in automotive collision repair and other industries. A novel permeation panel was developed to assess dermal protective clothing. With this apparatus, up to eight test materials may be evaluated under typical-spray application conditions. Solid collection media comprised of 1-(2-pyridyl)-piperazine (2-PP)-coated fiberglass filters or colorimetric SWYPE™ pads were placed behind test materials to capture permeants. The 2-PP-coated filters were subsequently analyzed using a modified OSHA42/PV2034 method. Color change in the SWYPEs provided an immediate field estimate of breakthrough time. In addition, Teflon filters were mounted proximal to the permeation cells to measure the mass of clear coat applied to the panel and to evaluate loading homogeneity. This study evaluated the permeation of isocyanates through 0.10-0.13 mm latex glove material at a fixed time (30 min post-spraying) and over a time course (6-91 min post-spraying). Monomers 1,6-hexamethylene diisocyanate (HDI) and isophorone diisocyanate (IPDI) permeated through (0.10-0.13 mm) latex glove material under typical glove use conditions (30 min). The latex glove material exhibited immediate breakthrough, with a permeation rate of 2.9 ng min(-1) cm(-2). The oligomeric forms of HDI and IPDI did not permeate the latex glove material. The spray application at 71 ± 5 °F was fairly homogeneous (33.7 ± 8 mg weight of dry clear coat per 5 cm(2)). The permeation panel is a viable method to assess dermal protective clothing

  3. Electro-Conductive Membranes for Permeation Enhancement and Fouling Mitigation: A Short Review

    PubMed Central

    Pantuso, Elvira; De Filpo, Giovanni; Nicoletta, Fiore Pasquale

    2017-01-01

    The research on electro-conductive membranes has expanded in recent years. These membranes have strong prospective as key components in next generation water treatment plants because they are engineered in order to enhance their performance in terms of separation, flux, fouling potential, and permselectivity. The present review summarizes recent developments in the preparation of electro-conductive membranes and the mechanisms of their response to external electric voltages in order to obtain an improvement in permeation and mitigation in the fouling growth. In particular, this paper deals with the properties of electro-conductive polymers and the preparation of electro-conductive polymer membranes with a focus on responsive membranes based on polyaniline, polypyrrole and carbon nanotubes. Then, some examples of electro-conductive membranes for permeation enhancement and fouling mitigation by electrostatic repulsion, hydrogen peroxide generation and electrochemical oxidation will be presented. PMID:28788091

  4. Electro-Conductive Membranes for Permeation Enhancement and Fouling Mitigation: A Short Review.

    PubMed

    Formoso, Patrizia; Pantuso, Elvira; De Filpo, Giovanni; Nicoletta, Fiore Pasquale

    2017-07-28

    The research on electro-conductive membranes has expanded in recent years. These membranes have strong prospective as key components in next generation water treatment plants because they are engineered in order to enhance their performance in terms of separation, flux, fouling potential, and permselectivity. The present review summarizes recent developments in the preparation of electro-conductive membranes and the mechanisms of their response to external electric voltages in order to obtain an improvement in permeation and mitigation in the fouling growth. In particular, this paper deals with the properties of electro-conductive polymers and the preparation of electro-conductive polymer membranes with a focus on responsive membranes based on polyaniline, polypyrrole and carbon nanotubes. Then, some examples of electro-conductive membranes for permeation enhancement and fouling mitigation by electrostatic repulsion, hydrogen peroxide generation and electrochemical oxidation will be presented.

  5. Characterization of Thin Film Polymers Through Dynamic Mechanical Analysis and Permeation

    NASA Technical Reports Server (NTRS)

    Herring, Helen

    2003-01-01

    Thin polymer films are being considered, as candidate materials to augment the permeation resistance of cryogenic hydrogen fuel tanks such as would be required for future reusable launch vehicles. To evaluate performance of candidate films after environmental exposure, an experimental study was performed to measure the thermal/mechanical and permeation performance of six, commercial-grade materials. Dynamic storage modulus, as measured by Dynamic Mechanical Analysis, was found over a range of temperatures. Permeability, as measured by helium gas diffusion, was found at room temperature. Test data was correlated with respect to film type and pre-test exposure to moisture, elevated temperature, and cryogenic temperature. Results indicated that the six films were comparable in performance and their resistance to environmental degradation.

  6. Combined borax and tannin treatment of stored dairy manure to reduce bacterial populations and hydrogen sulfide emissions

    USDA-ARS?s Scientific Manuscript database

    Background: Anaerobic digestion of organic residues in stored livestock manure is associated with the production of odors and emissions. Hydrogen sulfide (H2S) is one such emission that can reach hazardous levels during manure storage and handling, posing a risk to both farmers and livestock. New te...

  7. Method and means of reducing erosion of components of plasma devices exposed to helium and hydrogen isotope radiation

    DOEpatents

    Kaminsky, Manfred S.; Das, Santosh K.; Rossing, Thomas D.

    1977-01-25

    Surfaces of components of plasma devices exposed to radiation by atoms or ions of helium or isotopes of hydrogen can be protected from damage due to blistering by shielding the surfaces with a structure formed by sintering a powder of aluminum or beryllium and its oxide or by coating the surfaces with such a sintered metal powder.

  8. Inhibitory Effects of Condensed Tannins on Sulfate-Reducing Bacteria Populations and Hydrogen Sulfide Production from Swine Manure

    USDA-ARS?s Scientific Manuscript database

    Odorous compounds and emissions associated with consolidated storage of swine manure are produced as a result of anaerobic microbial digestion of materials present in the manure. Hydrogen sulfide (H2S) is one such offensive and toxic odorant that can reach hazardous levels during manure storage and...

  9. Stress Corrosion Cracking and Hydrogen Embrittlement of Thick Section High Strength Low Alloy Steel

    DTIC Science & Technology

    1986-06-01

    it permeates the environment. Hydrogen has a very large mobility in metals, many orders of magnitude higher than that of other interstitially dissolved ...permeation of the metal matrix and the subsequent alteration of its basic properties. Once dissolved , the interaction of the atomic hydrogen with the...Deformation Theory of Beachem (42] suggests that the presence of sufficiently concentrated hydrogen dissolved in the highly stressed region at the

  10. Permeation of indomethacin from semisolid preparations through various semipermeable membranes.

    PubMed

    Tichý, Eduard; Žabka, Marián; Broska, Katarína; Potúčková, Miroslava; Šimunková, Veronika; Halenárová, Andrea

    2013-09-01

    The aim of this study was to evaluate and compare the permeation of model drug indomethacin (IND) from various types of gels through several semipermeable membranes. Permeation of IND from gels based on carbomer (CA), hydroxyethylcellulose (HEC), and polyacrylamid/laureth-7/isoparaffin was performed via diffusion cell method through membranes: shed snake skin, full thickness chicken skin, mucosa of pork small intestine, and cellophane. The least permeation of IND was observed in the case of shed snake skin and full thickness chicken skin. It did not exceed 5.4% of original amount in the preparation after 3 h of measurement regardless the type of gel. In the case of mucosa of pork small intestine and cellophane the permeated amount of IND ranged from 9.4 to 55.4% depending on the type of gelling agent used. There was also quite a significant influence of a gelling agent on the permeation of IND observed. The permeation of IND was highest from CA gel, where it ranged from 0.6 to 52.2% of original amount in the preparation depending on the type of membrane used. Gelling agent inhibiting the permeation the most was HEC, where the permeated amount of IND did not exceed 12.3% regardless the type of membrane used. In general the permeated amount of IND through biological membranes containing stratum corneum represented just a small part of the amount in original preparation. Gelling agent has significant effect on the extent and rate of permeation.

  11. Use of hydrogen peroxide in combination with nisin, sodium lactate and citric acid for reducing transfer of bacterial pathogens from whole melon surfaces to fresh-cut pieces.

    PubMed

    Ukuku, Dike O; Bari, M L; Kawamoto, S; Isshiki, K

    2005-10-15

    Hydrogen peroxide (2.5%) alone or hydrogen peroxide (1%) in combination with nisin (25 microg/ml), sodium lactate (1%), and citric acid (0.5%) (HPLNC) were investigated as potential sanitizers for reducing Escherichia coli O157:H7 or Listeria monocytogenes populations on whole cantaloupe and honeydew melons. Whole cantaloupes inoculated with E. coli O157:H7 and L. monocytogenes at 5.27 and 4.07 log10 CFU/cm2, respectively, and whole honeydew melons inoculated with E. coli O157:H7 and L. monocytogenes at 3.45 and 3.05 log10 CFU/cm2, respectively, were stored at 5 degrees C for 7 days. Antimicrobial washing treatments were applied to inoculated whole melons on days 0 or 7 of storage and surviving bacterial populations and the numbers transferred to fresh-cut pieces were determined. At days 0 and 7 treatment with HPLNC significantly (p<0.05) reduced the numbers of both pathogens, by 3 to 4 log CFU/cm2 on both types of whole melon. Treatment with HPLNC was significantly (p<0.05) more effective than treatment with 2.5% hydrogen peroxide. While fresh-cut pieces prepared from stored whole melons were negative for the pathogens by both direct plating and by enrichment, fresh-cut pieces from cantaloupe melons treated with 2.5% hydrogen peroxide were positive for both pathogens and pieces from honeydew melons were positive for E. coli 0157:H7. The native microflora on fresh-cut melons were also substantially reduced by HPLNC treatment of whole melons. The results suggest that HPLNC could be used to decontaminate whole melon surfaces and so improve the microbial safety and quality of fresh-cut melons.

  12. PERMEABILITY, SOLUBILITY, AND INTERACTION OF HYDROGEN IN POLYMERS- AN ASSESSMENT OF MATERIALS FOR HYDROGEN TRANSPORT

    SciTech Connect

    Kane, M

    2008-02-05

    Fiber-reinforced polymer (FRP) piping has been identified as a leading candidate for use in a transport system for the Hydrogen Economy. Understanding the permeation and leakage of hydrogen through the candidate materials is vital to effective materials system selection or design and development of safe and efficient materials for this application. A survey of the literature showed that little data on hydrogen permeation are available and no mechanistically-based models to quantitatively predict permeation behavior have been developed. However, several qualitative trends in gaseous permeation have been identified and simple calculations have been performed to identify leakage rates for polymers of varying crystallinity. Additionally, no plausible mechanism was found for the degradation of polymeric materials in the presence of pure hydrogen. The absence of anticipated degradation is due to lack of interactions between hydrogen and FRP and very low solubility coefficients of hydrogen in polymeric materials. Recommendations are made to address research and testing needs to support successful materials development and use of FRP materials for hydrogen transport and distribution.

  13. Incorporation of whey permeate, a dairy effluent, in ethanol fermentation to provide a zero waste solution for the dairy industry.

    PubMed

    Parashar, Archana; Jin, Yiqiong; Mason, Beth; Chae, Michael; Bressler, David C

    2016-03-01

    This study proposes a novel alternative for utilization of whey permeate, a by-product stream from the dairy industry, in wheat fermentation for ethanol production using Saccharomyces cerevisiae. Whey permeates were hydrolyzed using enzymes to release fermentable sugars. Hydrolyzed whey permeates were integrated into wheat fermentation as a co-substrate or to partially replace process water. Cold starch hydrolysis-based simultaneous saccharification and fermentation was done as per the current industrial protocol for commercial wheat-to-ethanol production. Ethanol production was not affected; ethanol yield efficiency did not change when up to 10% of process water was replaced. Lactic acid bacteria in whey permeate did not negatively affect the co-fermentation or reduce ethanol yield. Whey permeate could be effectively stored for up to 4 wk at 4 °C with little change in lactose and lactic acid content. Considering the global abundance and nutrient value of whey permeate, the proposed strategy could improve economics of the dairy and biofuel sectors, and reduce environmental pollution. Furthermore, our research may be applied to fermentation strategies designed to produce value-added products other than ethanol. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Glutaraldehyde permeation: choosing the proper glove.

    PubMed

    Jordan, S L; Stowers, M F; Trawick, E G; Theis, A B

    1996-04-01

    Six different gloves were tested with five different aqueous glutaraldehyde formulations to determine each glove's resistance to permeation. When tested against 2% or 3.4% glutaraldehyde solutions, nitrile rubber, butyl rubber, a synthetic surgical glove, and polyethylene were each impermeable for at least 4 hours. The two latex gloves tested showed glutaraldehyde breakthrough at 45 minutes. When the latex gloves were doubled, the time to first breakthrough increased to 3 to 4 hours. With 50% glutaraldehyde, only butyl rubber and nitrile rubber were impermeable for extended periods. The surgical synthetic glove had breakthrough at 1 hour, whereas polyethylene and the two latex gloves had breakthrough in less than 1 hour.

  15. Organic fluid permeation through fluoropolymer membranes

    DOEpatents

    Nemser, Stuart M.; Kosaraju, Praveen; Bowser, John

    2015-07-14

    Separation of the components of liquid mixtures is achieved by contacting a liquid mixture with a nonporous membrane having a fluoropolymer selectively permeable layer and imposing a pressure gradient across the membrane from feed side to permeate side. Unusually high transmembrane flux is obtained when the membrane is subjected to one or more process conditions prior to separation. These include (a) leaving some residual amount of membrane casting solvent in the membrane, and (b) contacting the membrane with a component of the mixture to be separated for a duration effective to saturate the membrane with the component.

  16. Effect of absorbents on permeation of norfloxacin.

    PubMed

    Singh, G N; Gupta, R P

    1988-10-01

    Norfloxacin is a very potent drug. Adsorption of this drug may account for a significant fraction of total dose, hence the adsorption effect is of great significance. In the present investigation adsorption interaction study various adsorbents, was undertaken using, viz., activated charcoal, bentonite, kaolin, potato starch, talc and lactose by permeation technique. It was observed that forces through which the adsorption interaction is mediated are important to the effect obtained in vitro and that with further knowledge it may be possible to predict in vivo effect from the results of in vitro findings.

  17. The effect of baking soda/hydrogen peroxide dentifrice (Mentadent) and a 0.12 percent chlorhexidine gluconate mouthrinse (Peridex) in reducing gingival bleeding.

    PubMed

    Taller, S H

    1993-01-01

    The purpose of this study was to determine the effectiveness of a baking soda/hydrogen peroxide dentifrice, Mentadent, and a 0.12 percent chlorhexidine gluconate mouthrinse, Peridex, in reducing gingival bleeding. Forty subjects were divided into three groups; the baking soda group, the chlorhexidine group and the control group. All groups received oral hygiene instruction and brushed and flossed three times per day. Bleeding point scores were evaluated at baseline and at five weeks. The baking soda/hydrogen peroxide group used the supplied dentifrice as their sole toothpaste. The 0.12 percent chlorhexidine group used the mouthrinse twice per day. The control group performed oral hygiene as instructed. At five weeks, the 0.12 percent chlorhexidine mouthrinse significantly reduced gingival bleeding. The dentifrice and control groups revealed no statistically significant reductions. The results indicate that the 0.12 percent chlorhexidine mouthrinse is useful in improving oral health, whereas the baking soda/hydrogen peroxide dentifrice offered no advantages to conventional oral hygiene.

  18. Effect of a DC external electric field on the properties of a nonuniform microwave discharge in hydrogen at reduced pressures

    NASA Astrophysics Data System (ADS)

    Lebedev, Yu. A.; Krashevskaya, G. V.; Tatarinov, A. V.; Titov, A. Yu.; Epshtein, I. L.

    2017-01-01

    The effect of a dc external electrical field on the properties of a highly nonuniform electrode microwave discharge in hydrogen at a pressure of 1 Torr was studied using optical emission spectroscopy and selfconsistent two-dimensional simulations. It is shown that the negative voltage applied to the antenna electrode with respect to the grounded chamber increases the discharge radiation intensity, while the positive voltage does not affect the discharge properties. The simulation results agree well with the experimental data.

  19. Experimental investigation of defect-assisted and intrinsic water vapor permeation through ultrabarrier films

    SciTech Connect

    Kim, Hyungchul; Singh, Ankit Kumar; Wang, Cheng-Yin; Fuentes-Hernandez, Canek; Kippelen, Bernard; Graham, Samuel

    2016-03-15

    In the development of ultrabarrier films for packaging electronics, the effective water vapor transmission rate is a combination of permeation through pinhole defects and the intrinsic permeation through the actual barrier film. While it is possible to measure the effective permeation rate through barriers, it is important to develop a better understanding of the contribution from defects to the overall effective barrier performance. Here, we demonstrate a method to investigate independently defect-assisted permeation and intrinsic permeation rates by observing the degradation of a calcium layer encapsulated with a hybrid barrier film, that is, prepared using atomic layer deposition (ALD) and plasma enhanced deposition (PECVD). The results are rationalized using an analytical diffusion model to calculate the permeation rate as a function of spatial position within the barrier. It was observed that a barrier film consisting of a PECVD SiN{sub x} layer combined with an ALD Al{sub 2}O{sub 3}/HfO{sub x} nanolaminate resulted in a defect-assisted water vapor transmission rate (WVTR) of 4.84 × 10{sup −5} g/m{sup 2} day and intrinsic WVTR of 1.41 × 10{sup −4} g/m{sup 2} day at 50 °C/85% RH. Due to the low defect density of the tested barrier film, the defect-assisted WVTR was found to be three times lower than the intrinsic WVTR, and an effective (or total) WVTR value was 1.89 × 10{sup −4} g/m{sup 2} day. Thus, improvements of the barrier performance should focus on reducing the number of defects while also improving the intrinsic barrier performance of the hybrid layer.

  20. Experimental investigation of defect-assisted and intrinsic water vapor permeation through ultrabarrier films

    NASA Astrophysics Data System (ADS)

    Kim, Hyungchul; Singh, Ankit Kumar; Wang, Cheng-Yin; Fuentes-Hernandez, Canek; Kippelen, Bernard; Graham, Samuel

    2016-03-01

    In the development of ultrabarrier films for packaging electronics, the effective water vapor transmission rate is a combination of permeation through pinhole defects and the intrinsic permeation through the actual barrier film. While it is possible to measure the effective permeation rate through barriers, it is important to develop a better understanding of the contribution from defects to the overall effective barrier performance. Here, we demonstrate a method to investigate independently defect-assisted permeation and intrinsic permeation rates by observing the degradation of a calcium layer encapsulated with a hybrid barrier film, that is, prepared using atomic layer deposition (ALD) and plasma enhanced deposition (PECVD). The results are rationalized using an analytical diffusion model to calculate the permeation rate as a function of spatial position within the barrier. It was observed that a barrier film consisting of a PECVD SiNx layer combined with an ALD Al2O3/HfOx nanolaminate resulted in a defect-assisted water vapor transmission rate (WVTR) of 4.84 × 10-5 g/m2 day and intrinsic WVTR of 1.41 × 10-4 g/m2 day at 50 °C/85% RH. Due to the low defect density of the tested barrier film, the defect-assisted WVTR was found to be three times lower than the intrinsic WVTR, and an effective (or total) WVTR value was 1.89 × 10-4 g/m2 day. Thus, improvements of the barrier performance should focus on reducing the number of defects while also improving the intrinsic barrier performance of the hybrid layer.

  1. Cu2ZnSnS4/MoS2-Reduced Graphene Oxide Heterostructure: Nanoscale Interfacial Contact and Enhanced Photocatalytic Hydrogen Generation.

    PubMed

    Ha, Enna; Liu, Wei; Wang, Luyang; Man, Ho-Wing; Hu, Liangsheng; Tsang, Shik Chi Edman; Chan, Chris Tsz-Leung; Kwok, Wai-Ming; Lee, Lawrence Yoon Suk; Wong, Kwok-Yin

    2017-01-03

    Hydrogen generation from water using noble metal-free photocatalysts presents a promising platform for renewable and sustainable energy. Copper-based chalcogenides of earth-abundant elements, especially Cu2ZnSnS4 (CZTS), have recently arisen as a low-cost and environment-friendly material for photovoltaics and photocatalysis. Herein, we report a new heterostructure consisting of CZTS nanoparticles anchored onto a MoS2-reduced graphene oxide (rGO) hybrid. Using a facile two-step method, CZTS nanoparticles were in situ grown on the surface of MoS2-rGO hybrid, which generated high density of nanoscale interfacial contact between CZTS and MoS2-rGO hybrid. The photoexcited electrons of CZTS can be readily transported to MoS2 through rGO backbone, reducing the electron-hole pair recombination. In photocatalytic hydrogen generation under visible light irradiation, the presence of MoS2-rGO hybrids enhanced the hydrogen production rate of CZTS by 320%, which can be attributed to the synergetic effect of increased charge separation by rGO and more catalytically active sites from MoS2. Furthermore, this CZTS/MoS2-rGO heterostructure showed much higher photocatalytic activity than both Au and Pt nanoparticle-decorated CZTS (Au/CZTS and Pt/CZTS) photocatalysts, indicating the MoS2-rGO hybrid is a better co-catalyst for photocatalytic hydrogen generation than the precious metal. The CZTS/MoS2-rGO system also demonstrated stable photocatalytic activity for a continuous 20 h reaction.

  2. Protective effects of hydrogen-rich saline in a rat model of permanent focal cerebral ischemia via reducing oxidative stress and inflammatory cytokines.

    PubMed

    Li, Jianjun; Dong, Yushu; Chen, Hongguang; Han, Huanzhi; Yu, Yonghao; Wang, Guolin; Zeng, Yi; Xie, Keliang

    2012-11-27

    Hydrogen gas (H(2)) as a new medical gas exerts organ-protective effects through regulating oxidative stress, inflammation and apoptosis. In contrast to H(2), hydrogen-rich saline (HS) may be more suitable for clinical application. The present study was designed to investigate whether HS can offer a neuroprotective effect in a rat model of permanent focal cerebral ischemia and what mechanism(s) underlies the effect. Sprague-Dawley rats were subjected to permanent focal cerebral ischemia induced by permanent middle cerebral artery occlusion (pMCAO). Different doses of HS or normal saline were intraperitoneally administered at 5min after pMCAO or sham operation followed by injections at 6h, 12h and 24h. Here, we found that HS treatment significantly reduced infarct volume and improved neurobehavioral outcomes at 24h, 48h and 72h after pMCAO operation in a dose-dependent manner (P<0.05). Moreover, we found that HS treatment dose-dependently increased the activities of endogenous antioxidant enzymes (SOD and CAT) as well as decreased the levels of oxidative products (8-iso-PGF2α and MDA) and inflammatory cytokines (TNF-α and HMGB1) in injured ipsilateral brain tissues at 6h, 12h and 24h after pMCAO operation (P<0.05). Thus, hydrogen-rich saline dose-dependently exerts a neuroprotective effect against permanent focal cerebral ischemia, and its beneficial effect is at least partially mediated by reducing oxidative stress and inflammation. Molecular hydrogen may be an effective therapeutic strategy for stroke patients.

  3. Cu2ZnSnS4/MoS2-Reduced Graphene Oxide Heterostructure: Nanoscale Interfacial Contact and Enhanced Photocatalytic Hydrogen Generation

    PubMed Central

    Ha, Enna; Liu, Wei; Wang, Luyang; Man, Ho-Wing; Hu, Liangsheng; Tsang, Shik Chi Edman; Chan, Chris Tsz-Leung; Kwok, Wai-Ming; Lee, Lawrence Yoon Suk; Wong, Kwok-Yin

    2017-01-01

    Hydrogen generation from water using noble metal-free photocatalysts presents a promising platform for renewable and sustainable energy. Copper-based chalcogenides of earth-abundant elements, especially Cu2ZnSnS4 (CZTS), have recently arisen as a low-cost and environment-friendly material for photovoltaics and photocatalysis. Herein, we report a new heterostructure consisting of CZTS nanoparticles anchored onto a MoS2-reduced graphene oxide (rGO) hybrid. Using a facile two-step method, CZTS nanoparticles were in situ grown on the surface of MoS2-rGO hybrid, which generated high density of nanoscale interfacial contact between CZTS and MoS2-rGO hybrid. The photoexcited electrons of CZTS can be readily transported to MoS2 through rGO backbone, reducing the electron-hole pair recombination. In photocatalytic hydrogen generation under visible light irradiation, the presence of MoS2-rGO hybrids enhanced the hydrogen production rate of CZTS by 320%, which can be attributed to the synergetic effect of increased charge separation by rGO and more catalytically active sites from MoS2. Furthermore, this CZTS/MoS2-rGO heterostructure showed much higher photocatalytic activity than both Au and Pt nanoparticle-decorated CZTS (Au/CZTS and Pt/CZTS) photocatalysts, indicating the MoS2-rGO hybrid is a better co-catalyst for photocatalytic hydrogen generation than the precious metal. The CZTS/MoS2-rGO system also demonstrated stable photocatalytic activity for a continuous 20 h reaction. PMID:28045066

  4. Cu2ZnSnS4/MoS2-Reduced Graphene Oxide Heterostructure: Nanoscale Interfacial Contact and Enhanced Photocatalytic Hydrogen Generation

    NASA Astrophysics Data System (ADS)

    Ha, Enna; Liu, Wei; Wang, Luyang; Man, Ho-Wing; Hu, Liangsheng; Tsang, Shik Chi Edman; Chan, Chris Tsz-Leung; Kwok, Wai-Ming; Lee, Lawrence Yoon Suk; Wong, Kwok-Yin

    2017-01-01

    Hydrogen generation from water using noble metal-free photocatalysts presents a promising platform for renewable and sustainable energy. Copper-based chalcogenides of earth-abundant elements, especially Cu2ZnSnS4 (CZTS), have recently arisen as a low-cost and environment-friendly material for photovoltaics and photocatalysis. Herein, we report a new heterostructure consisting of CZTS nanoparticles anchored onto a MoS2-reduced graphene oxide (rGO) hybrid. Using a facile two-step method, CZTS nanoparticles were in situ grown on the surface of MoS2-rGO hybrid, which generated high density of nanoscale interfacial contact between CZTS and MoS2-rGO hybrid. The photoexcited electrons of CZTS can be readily transported to MoS2 through rGO backbone, reducing the electron-hole pair recombination. In photocatalytic hydrogen generation under visible light irradiation, the presence of MoS2-rGO hybrids enhanced the hydrogen production rate of CZTS by 320%, which can be attributed to the synergetic effect of increased charge separation by rGO and more catalytically active sites from MoS2. Furthermore, this CZTS/MoS2-rGO heterostructure showed much higher photocatalytic activity than both Au and Pt nanoparticle-decorated CZTS (Au/CZTS and Pt/CZTS) photocatalysts, indicating the MoS2-rGO hybrid is a better co-catalyst for photocatalytic hydrogen generation than the precious metal. The CZTS/MoS2-rGO system also demonstrated stable photocatalytic activity for a continuous 20 h reaction.

  5. Improvement of biohydrogen production using a reduced pressure fermentation.

    PubMed

    Kisielewska, M; Dębowski, M; Zieliński, M

    2015-10-01

    This study investigated the effect of reduced pressure on biohydrogen production in an upflow anaerobic sludge blanket (UASB) reactor from whey permeate. The results showed that the reduced pressure fermentation was more effective in enhancing biohydrogen production than dark fermentative hydrogen production at atmospheric pressure. Mesophilic fermentative biohydrogen production was investigated at a constant hydraulic retention time (HRT) of 24 h and increasing organic loading rates (OLRs) of 20, 25, 30, 35 kg COD/m(3) day. The reduced pressure fermentation was successfully operated at all OLRs tested. The maximum proportion of hydrogen in biogas of 47.7 %, volumetric hydrogen production rate (VHPR) of 7.10 L H2/day and hydrogen yield of 4.55 mol H2/kg COD removed occurred at the highest OLR. Increase in OLR affected the hydrogen production in UASB reactor exploited at atmospheric pressure. The reduced pressure process was able to remarkably improve the biohydrogen performance at high OLRs.

  6. Energetics of water permeation through fullerene membrane

    PubMed Central

    Isobe, Hiroyuki; Homma, Tatsuya; Nakamura, Eiichi

    2007-01-01

    Lipid bilayer membranes are important as fundamental structures in biology and possess characteristic water-permeability, stability, and mechanical properties. Water permeation through a lipid bilayer membrane occurs readily, and more readily at higher temperature, which is largely due to an enthalpy cost of the liquid-to-gas phase transition of water. A fullerene bilayer membrane formed by dissolution of a water-soluble fullerene, Ph5C60K, has now been shown to possess properties entirely different from those of the lipid membranes. The fullerene membrane is several orders of magnitude less permeable to water than a lipid membrane, and the permeability decreases at higher temperature. Water permeation is burdened by a very large entropy loss and may be favored slightly by an enthalpy gain, which is contrary to the energetics observed for the lipid membrane. We ascribe this energetics to favorable interactions of water molecules to the surface of the fullerene molecules as they pass through the clefts of the rigid fullerene bilayer. The findings provide possibilities of membrane design in science and technology. PMID:17846427

  7. Subdiffusion in Membrane Permeation of Small Molecules

    PubMed Central

    Chipot, Christophe; Comer, Jeffrey

    2016-01-01

    Within the solubility–diffusion model of passive membrane permeation of small molecules, translocation of the permeant across the biological membrane is traditionally assumed to obey the Smoluchowski diffusion equation, which is germane for classical diffusion on an inhomogeneous free-energy and diffusivity landscape. This equation, however, cannot accommodate subdiffusive regimes, which have long been recognized in lipid bilayer dynamics, notably in the lateral diffusion of individual lipids. Through extensive biased and unbiased molecular dynamics simulations, we show that one-dimensional translocation of methanol across a pure lipid membrane remains subdiffusive on timescales approaching typical permeation times. Analysis of permeant motion within the lipid bilayer reveals that, in the absence of a net force, the mean squared displacement depends on time as t0.7, in stark contrast with the conventional model, which assumes a strictly linear dependence. We further show that an alternate model using a fractional-derivative generalization of the Smoluchowski equation provides a rigorous framework for describing the motion of the permeant molecule on the pico- to nanosecond timescale. The observed subdiffusive behavior appears to emerge from a crossover between small-scale rattling of the permeant around its present position in the membrane and larger-scale displacements precipitated by the formation of transient voids. PMID:27805049

  8. Testing Physical Models of Passive Membrane Permeation

    PubMed Central

    Leung, Siegfried S. F.; Mijalkovic, Jona; Borrelli, Kenneth; Jacobson, Matthew P.

    2012-01-01

    The biophysical basis of passive membrane permeability is well understood, but most methods for predicting membrane permeability in the context of drug design are based on statistical relationships that indirectly capture the key physical aspects. Here, we investigate molecular mechanics-based models of passive membrane permeability and evaluate their performance against different types of experimental data, including parallel artificial membrane permeability assays (PAMPA), cell-based assays, in vivo measurements, and other in silico predictions. The experimental data sets we use in these tests are diverse, including peptidomimetics, congeneric series, and diverse FDA approved drugs. The physical models are not specifically trained for any of these data sets; rather, input parameters are based on standard molecular mechanics force fields, such as partial charges, and an implicit solvent model. A systematic approach is taken to analyze the contribution from each component in the physics-based permeability model. A primary factor in determining rates of passive membrane permeation is the conformation-dependent free energy of desolvating the molecule, and this measure alone provides good agreement with experimental permeability measurements in many cases. Other factors that improve agreement with experimental data include deionization and estimates of entropy losses of the ligand and the membrane, which lead to size-dependence of the permeation rate. PMID:22621168

  9. Subdiffusion in Membrane Permeation of Small Molecules.

    PubMed

    Chipot, Christophe; Comer, Jeffrey

    2016-11-02

    Within the solubility-diffusion model of passive membrane permeation of small molecules, translocation of the permeant across the biological membrane is traditionally assumed to obey the Smoluchowski diffusion equation, which is germane for classical diffusion on an inhomogeneous free-energy and diffusivity landscape. This equation, however, cannot accommodate subdiffusive regimes, which have long been recognized in lipid bilayer dynamics, notably in the lateral diffusion of individual lipids. Through extensive biased and unbiased molecular dynamics simulations, we show that one-dimensional translocation of methanol across a pure lipid membrane remains subdiffusive on timescales approaching typical permeation times. Analysis of permeant motion within the lipid bilayer reveals that, in the absence of a net force, the mean squared displacement depends on time as t(0.7), in stark contrast with the conventional model, which assumes a strictly linear dependence. We further show that an alternate model using a fractional-derivative generalization of the Smoluchowski equation provides a rigorous framework for describing the motion of the permeant molecule on the pico- to nanosecond timescale. The observed subdiffusive behavior appears to emerge from a crossover between small-scale rattling of the permeant around its present position in the membrane and larger-scale displacements precipitated by the formation of transient voids.

  10. Inhibition of hydrogen sulfide, methane, and total gas production and sulfate-reducing bacteria in in vitro swine manure by tannins, with focus on condensed quebracho tannins.

    PubMed

    Whitehead, Terence R; Spence, Cheryl; Cotta, Michael A

    2013-09-01

    Management practices from large-scale swine production facilities have resulted in the increased collection and storage of manure for off-season fertilization use. Odor and emissions produced during storage have increased the tension among rural neighbors and among urban and rural residents. Production of these compounds from stored manure is the result of microbial activity of the anaerobic bacteria populations during storage. In the current study, the inhibitory effects of condensed quebracho tannins on in vitro swine manure for reduction of microbial activity and reduced production of gaseous emissions, including the toxic odorant hydrogen sulfide produced by sulfate-reducing bacteria (SRB), was examined. Swine manure was collected from a local swine facility, diluted in anaerobic buffer, and mixed with 1 % w/v fresh feces. This slurry was combined with quebracho tannins, and total gas and hydrogen sulfide production was monitored over time. Aliquots were removed periodically for isolation of DNA to measure the SRB populations using quantitative PCR. Addition of tannins reduced overall gas, hydrogen sulfide, and methane production by greater than 90 % after 7 days of treatment and continued to at least 28 days. SRB population was also significantly decreased by tannin addition. qRT-PCR of 16S rDNA bacteria genes showed that the total bacterial population was also decreased in these incubations. These results indicate that the tannins elicited a collective effect on the bacterial population and also suggest a reduction in the population of methanogenic microorganisms as demonstrated by reduced methane production in these experiments. Such a generalized effect could be extrapolated to a reduction in other odor-associated emissions during manure storage.

  11. In situ measurement of tritium permeation through stainless steel

    SciTech Connect

    Walter G. Luscher; David J. Senor; Kevin K. Clayton; Glen R. Longhurst

    2013-06-01

    The TMIST-2 irradiation experiment was conducted in the Advanced Test Reactor at Idaho National Laboratory to evaluate tritium permeation through Type 316 stainless steel (316 SS). The interior of a 316 SS seamless tube specimen was exposed to a 4He carrier gas mixed with a specified quantity of tritium (T2) to yield partial pressures of 0.1, 5, and 50 Pa at 292 degrees C and 330 degrees C. In situ tritium permeation measurements were made by passing a He-Ne sweep gas over the outer surface of the specimen to carry the permeated tritium to a bubbler column for liquid scintillation counting. Results from in situ permeation measurements were compared with predictions based on an ex-reactor permeation correlation in the literature. In situ permeation data were also used to derive an in-reactor permeation correlation as a function of temperature and pressure over the ranges considered in this study. In addition, the triton recoil contribution to tritium permeation, which results from the transmutation of 3He to T, was also evaluated by introducing a 4He carrier gas mixed with 3He at a partial pressure of 1013 Pa at 330 degrees C. Less than 3% of the tritium resulting from 3He transmutation contributed to tritium permeation.

  12. Permeation of low-Z atoms through carbon sheets: Density functional theory study on energy barriers and deformation effects

    SciTech Connect

    Huber, Stefan E. E-mail: Michael.probst@uibk.ac.at; Mauracher, Andreas; Probst, Michael E-mail: Michael.probst@uibk.ac.at

    2013-12-15

    Energetic and geometric aspects of the permeation of the atoms hydrogen to neon neutral atoms through graphene sheets are investigated by investigating the associated energy barriers and sheet deformations. Density functional theory calculations on cluster models, where graphene is modeled by planar polycyclic aromatic hydrocarbons (PAHs), provide the energies and geometries. Particularities of our systems, such as convergence of both energy barriers and deformation curves with increasing size of the PAHs, are discussed. Three different interaction regimes, adiabatic, planar and vertical, are investigated by enforcing different geometrical constraints. The adiabatic energy barriers range from 5 eV for hydrogen to 20 eV for neon. We find that the permeation of oxygen and carbon into graphene is facilitated by temporary chemical bonding while for other, in principle reactive atoms, it is not. We discuss implications of our results for modeling chemical sputtering of graphite.

  13. Hydrogen plasma reduced black TiO2sbnd B nanowires for enhanced photoelectrochemical water-splitting

    NASA Astrophysics Data System (ADS)

    Tian, Zhangliu; Cui, Huolei; Zhu, Guilian; Zhao, Wenli; Xu, JiJian; Shao, Feng; He, Jianqiao; Huang, Fuqiang

    2016-09-01

    Black TiO2 with various nanostructures and phase constitutions have been reported to exhibit excellent photocatalytic and photoelectrochemical (PEC) performance. Here, we report the fabrication of black nanostructured TiO2sbnd B through hydrogen plasma assisted reduction and its enhanced PEC properties for the first time. Both the obtained TiO2sbnd B and black TiO2sbnd B are single crystalline nanowires, while the black TiO2sbnd B samples exhibit much stronger visible and infrared light absorption. The optimal black TiO2sbnd B sample obtained by hydrogen plasma treatment at 425 °C yields a photocurrent density of 0.85 mA cm-2, a rather low onset potential of -0.937 VAg/AgCl and a high applied bias photon-to-current efficiency (ABPE) of 0.363%, which is far superior to the TiO2sbnd B (0.15 mA cm-2 photocurrent, -0.917 VAg/AgCl onset potential and 0.138% ABPE). The significantly enhanced PEC performance of the black TiO2sbnd B is ascribed to the introduction of moderate surface oxygen vacancies. These results indicate that the black TiO2sbnd B is a promising material for PEC application and solar energy utilization.

  14. Catalytic Hydrogenation of the Sweet Principles of Stevia rebaudiana, Rebaudioside B, Rebaudioside C, and Rebaudioside D and Sensory Evaluation of Their Reduced Derivatives

    PubMed Central

    Prakash, Indra; Campbell, Mary; Chaturvedula, Venkata Sai Prakash

    2012-01-01

    Catalytic hydrogenation of rebaudioside B, rebaudioside C, and rebaudioside D; the three ent-kaurane diterpene glycosides isolated from Stevia rebaudiana was carried out using Pd(OH)2. Reduction of steviol glycosides was performed using straightforward synthetic chemistry with the catalyst Pd(OH)2 and structures of the corresponding dihydro derivatives were characterized on the basis of 1D and 2D nuclear magnetic resonance (NMR) spectral data indicating that all are novel compounds being reported for the first time. Also, the taste properties of all reduced compounds were evaluated against their corresponding original steviol glycosides and sucrose. PMID:23203115

  15. Catalytic hydrogenation of the sweet principles of Stevia rebaudiana, Rebaudioside B, Rebaudioside C, and Rebaudioside D and sensory evaluation of their reduced derivatives.

    PubMed

    Prakash, Indra; Campbell, Mary; Chaturvedula, Venkata Sai Prakash

    2012-11-16

    Catalytic hydrogenation of rebaudioside B, rebaudioside C, and rebaudioside D; the three ent-kaurane diterpene glycosides isolated from Stevia rebaudiana was carried out using Pd(OH)(2). Reduction of steviol glycosides was performed using straightforward synthetic chemistry with the catalyst Pd(OH)(2) and structures of the corresponding dihydro derivatives were characterized on the basis of 1D and 2D nuclear magnetic resonance (NMR) spectral data indicating that all are novel compounds being reported for the first time. Also, the taste properties of all reduced compounds were evaluated against their corresponding original steviol glycosides and sucrose.

  16. Gastrointestinal behavior of nano- and microsized fenofibrate: In vivo evaluation in man and in vitro simulation by assessment of the permeation potential.

    PubMed

    Hens, Bart; Brouwers, Joachim; Corsetti, Maura; Augustijns, Patrick

    2015-09-18

    The purpose of this study was (i) to evaluate the gastrointestinal behavior of micro- and nanosized fenofibrate in humans and (ii) to develop a simple yet qualitatively predictive in vitro setup that simulates the observed absorption-determining factors. Commercially available micro- and nanoparticles of fenofibrate (Lipanthyl® and Lipanthylnano®, respectively) were administered orally to five healthy volunteers in fasting and postprandial conditions. Intraluminal and systemic drug concentrations were determined as reference data for the development of a predictive in vitro setup. To capture the observed solubility/permeability interplay, in vitro dissolution testing was performed in the presence of a permeation bag with sink conditions. In fasting conditions, intake of nanosized fenofibrate generated increased duodenal concentrations compared to microsized fenofibrate, which was reflected in an improved systemic exposure. In postprandial conditions, duodenal concentrations were greatly enhanced for both formulations, however without an accompanying increase in systemic exposure. It appeared that micellar encapsulation of the highly lipohilic fenofibrate limited its potential to permeate from fed state intestinal fluids. To capture these in vivo observations in an in vitro setup, classic dissolution testing was combined with permeation assessment into a permeation bag with sink conditions. In case of fasting conditions, the dissolution/permeation approach allowed for an improved discriminative power between micro- and nanosized fenofibrate by better simulating the dynamic interplay of dissolution and absorption. In case of postprandial conditions, the observed solubility-permeability interplay could be simulated using the dissolution/permeation approach in combination with biorelevant media (FeSSGFFortimel and FeSSIF-V2) to mimic micellar entrapment and reduced permeation potential of fenofibrate. For the first time, reduced permeation of a lipophilic drug

  17. Combination moisture and hydrogen getter

    DOEpatents

    Harrah, L.A.; Mead, K.E.; Smith, H.M.

    1983-09-20

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (1) a solid acetylenic compound and (2) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  18. Combination moisture and hydrogen getter

    DOEpatents

    Harrah, Larry A.; Mead, Keith E.; Smith, Henry M.

    1983-01-01

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  19. Combination moisture and hydrogen getter

    DOEpatents

    Not Available

    1982-04-29

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the reusltant hydrogen.

  20. Electrical insulator assembly with oxygen permeation barrier

    DOEpatents

    Van Der Beck, R.R.; Bond, J.A.

    1994-03-29

    A high-voltage electrical insulator for electrically insulating a thermoelectric module in a spacecraft from a niobium-1% zirconium alloy wall of a heat exchanger filled with liquid lithium while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator has a single crystal alumina layer (SxAl[sub 2]O[sub 3], sapphire) with a niobium foil layer bonded thereto on the surface of the alumina crystal facing the heat exchanger wall, and a molybdenum layer bonded to the niobium layer to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface. 3 figures.

  1. Electrical insulator assembly with oxygen permeation barrier

    DOEpatents

    Van Der Beck, Roland R.; Bond, James A.

    1994-01-01

    A high-voltage electrical insulator (21) for electrically insulating a thermoelectric module (17) in a spacecraft from a niobium-1% zirconium alloy wall (11) of a heat exchanger (13) filled with liquid lithium (16) while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator (21) has a single crystal alumina layer (SxAl.sub.2 O.sub.3, sapphire) with a niobium foil layer (32) bonded thereto on the surface of the alumina crystal (26) facing the heat exchanger wall (11), and a molybdenum layer (31) bonded to the niobium layer (32) to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface.

  2. An unheated permeation device for calibrating atmospheric VOC measurements

    NASA Astrophysics Data System (ADS)

    Brito, J.; Zahn, A.

    2011-10-01

    The development of an unpowered permeation device for continuous calibration of in-situ instruments measuring atmospheric volatile organic compounds (VOCs) is described. Being lightweight and compact, and containing only negligible amounts of chemicals, the device is especially suited for field use such as on board aircraft. Its speciality is to maintain the permeation process in thermal equilibrium, so that the instantaneous permeation rate can be ascribed to a simple temperature measurement. This equilibrium state is maintained by a combination of three features: (i) a thin PTFE membrane as permeation medium which guarantees short stabilization times, (ii) a water bath as heat buffer, and (iii) a vacuum-panel based insulation, in which features (ii) and (iii) minimize temperature drifts to ~30 mK h-1 per Kelvin temperature difference to the environment. The respective uncertainty of the permeation rate due to thermal non-equilibrium is kept below 1%. An extensive theory part details the major permeation processes of gases through porous polymers, being Fick's diffusion, Knudsen flow, and viscous flow. Both the measured stabilization time and the measured temperature dependence of the permeation rate independently indicate that the permeation can be described by a viscous flow model, where diffusion of the gas molecules in large pores (having a diameter of >0.05 μm) dominates.

  3. An unheated permeation device for calibrating atmospheric VOC measurements

    NASA Astrophysics Data System (ADS)

    Brito, J.; Zahn, A.

    2011-05-01

    The development of an unpowered permeation device for continuous calibration of in-situ instruments measuring atmospheric volatile organic compounds (VOCs) is described. Being lightweight and compact, and containing only negligible amounts of chemicals, the device is especially suited for field use such as onboard aircraft. Its speciality is to maintain the permeation process in thermal equilibrium, i.e. the instantaneous permeation rate can be ascribed via a simple temperature measurement. This equilibrium state is maintained by a combination of three features: (i) a thin PTFE membrane as permeation medium which guarantees short stabilization times, (ii) a water bath as heat buffer, and (iii) a vacuum-panel based insulation, in which features (ii) and (iii) minimize temperature drifts. The uncertainty of the permeation rate due to thermal non-equilibrium is kept below 1 %. An extensive theory part details the major permeation processes of gases through porous polymers, being Fick's diffusion, Knudsen flow, and viscous flow. Both the measured stabilization time and the measured temperature dependence of the permeation rate independently indicate that the permeation can be described by a viscous flow model, where diffusion of the gas molecules in large pores (having a diameter of >0.05 μm) dominates.

  4. Apparatus to measure permeation of a gas through a membrane

    DOEpatents

    Nunes, Geoffrey

    2013-03-05

    The present invention relates to an apparatus to measure permeation of a gas through a membrane. The membrane is mounted on a flange with two sealing areas. The region between the sealing areas defines an annular space. The annular space is swept with a gas in order to carry away any of the permeating gas which may leak through the sealing areas.

  5. Reduced Order Modeling of SLS Liquid Hydrogen Pre-Valve Flow Guide to Enable Rapid Transient Analysis

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Mulder, Andrew

    2017-01-01

    NASA is developing a new launch vehicle, called the Space Launch System (SLS), which is intended on taking humans out of low earth orbit to destinations including the moon, asteroids, and Mars. The propulsion system for the core stage of this vehicle includes four RS-25 Liquid Hydrogen/Oxygen rocket engines. These engines are upgraded versions of the Space Shuttle Main Engines (SSME); the upgrades include higher power levels and affordability enhancements. As with any new vehicle, the Main Propulsion System (MPS), which include the feedlines and ancillary hardware connecting the engines to the fuel and oxidizer tanks, had to be redesigned (figure 1 - export clearance in progress), as the previous MPS for the SSME's was inherently part of the Space Shuttle System, which had a completely different overall configuration.

  6. Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants

    SciTech Connect

    Carl R. Evenson; Harold A. Wright; Adam E. Calihman; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Mahendra Sunkara; Jyothish Thangala; Clive Brereton; Warren Wolfs; James Lockhart

    2005-10-31

    During this quarter composite layered membrane size was scaled-up and tested for permeation performance. Sintering conditions were optimized for a new cermet containing a high permeability metal and seals were developed to allow permeability testing. Theoretical calculations were performed to determine potential sulfur tolerant hydrogen dissociation catalysts. Finally, work was finalized on mechanical and process & control documentation for a hydrogen separation unit.

  7. Hydrogen consentration meter utilizing a diffusion tube composed of 2 1/4 C r

    DOEpatents

    Roy, Prodyot; Sandusky, David W.; Hartle, Robert T.

    1979-01-01

    A diffusion tube hydrogen meter for improving the sensitivity and response time for the measurement of hydrogen in liquid sodium. The improved hydrogen meter has a composite membrane composed of pure nickel sleeve fitted, for example, over a 2 1/4 Cr-1 Mo steel or niobium diffusion tube. Since the hydrogen permeation rate through 2 1/4 Cr-1 Mo steels is a factor of four higher than pure nickel, and the permeation rate of hydrogen through niobium is two orders of magnitude greater than the 2 1/4 Cr-1 Mo steel, this results in a decrease in response time and an increase in the sensitivity.

  8. Effect of chemical permeation enhancers on stratum corneum barrier lipid organizational structure and interferon alpha permeability.

    PubMed

    Moghadam, Shadi H; Saliaj, Evi; Wettig, Shawn D; Dong, Chilbert; Ivanova, Marina V; Huzil, J Torin; Foldvari, Marianna

    2013-06-03

    The outermost layer of the skin, known as the stratum corneum (SC), is composed of dead corneocytes embedded in an intercellular lipid matrix consisting of ceramides, free fatty acids, and cholesterol. The high level of organization within this matrix protects the body by limiting the permeation of most compounds through the skin. While essential for its protective functions, the SC poses a significant barrier for the delivery of topically applied pharmaceutical agents. Chemical permeation enhancers (CPEs) can increase delivery of small drug compounds into the skin by interacting with the intercellular lipids through physical processes including extraction, fluidization, increased disorder, and phase separation. However, it is not clear whether these same mechanisms are involved in delivery of biotherapeutic macromolecules, such as proteins. Here we describe the effect of three categories of CPEs {solvents [ethanol, propylene glycol, diethylene glycol monoethyl ether (transcutol), oleic acid], terpenes [menthol, nerol, camphor, methyl salicylate], and surfactants [Tween 80, SDS, benzalkonium chloride, polyoxyl 40 hydrogenated castor oil (Cremophor RH40), didecyldimethylammonium bromide (DDAB), didecyltrimethylammonium bromide (DTAB)]} on the lipid organizational structure of human SC as determined by X-ray scattering studies. Small- and wide-angle X-ray scattering studies were conducted to correlate the degree of structural changes and hydrocarbon chain packing in SC lipids caused by these various classes of CPEs to the extent of permeation of interferon alpha-2b (IFNα), a 19 kDa protein drug, into human skin. With the exception of solvents, propylene glycol and ethanol, all classes of CPEs caused increased disordering of lamellar and lateral packing of lipids. We observed that the highest degree of SC lipid disordering was caused by surfactants (especially SDS, DDAB, and DTAB) followed by terpenes, such as nerol. Interestingly, in vitro skin permeation studies

  9. Hydrogen Purification Using Natural Zeolite Membranes

    NASA Technical Reports Server (NTRS)

    DelValle, William

    2003-01-01

    The School of Science at Universidad del Turabo (UT) have a long-lasting investigation plan to study the hydrogen cleaning and purification technologies. We proposed a research project for the synthesis, phase analysis and porosity characterization of zeolite based ceramic perm-selective membranes for hydrogen cleaning to support NASA's commitment to achieving a broad-based research capability focusing on aerospace-related issues. The present study will focus on technology transfer by utilizing inorganic membranes for production of ultra-clean hydrogen for application in combustion. We tested three different natural zeolite membranes (different particle size at different temperatures and time of exposure). Our results show that the membranes exposured at 900 C for 1Hr has the most higher permeation capacity, indicated that our zeolite membranes has the capacity to permeate hydrogen.

  10. The study of drug permeation through natural membranes.

    PubMed

    Ansari, Mehdi; Kazemipour, Maryam; Aklamli, Monireh

    2006-12-11

    In this study, natural membranes such as the outer membrane of Prunus persica (peach) and Lycopersicon esculentum (tomato), the inner layer of the egg of Gallus domesticus (hen) and the middle membrane of the Allium cepa (onion) were used as controlling barriers for permeation of some model drugs with different MW and lipophilicities. Drug permeation studies were done by using modified Franz diffusion cell. The permeation of drugs through these natural membranes was compared to permeation of them through human skin and synthetic cellophane membrane. Results showed that the rate and amount of diclofenac permeated through onion membrane was not significantly different from that with tomato (p>0.17), egg (p>0.29) and human skin (p>0.93). Permeation of diclofenac through tomato skin and cellophane was not significantly different (p>0.35). Permeation of diclofenac through all studied membranes except for human skin that follows the Fickian kinetic followed non-Fickian mechanism and their permeabilities were not significantly different from each other (p>0.05). Permeation of metronidazole through onion membrane and tomato skin were not significantly different from human skin (p>0.053 and 0.38, respectively). All membranes were significantly different from each other (p<0.0001) for permeation of erythromycin as a relatively large molecular weight and lipohilic molecule through human skin and other studied membranes. Permeation of diclofenac through human skin and metronidazole through egg and tomato skin followed Fick's first law. Diffusion of diclofenac through onion, tomato, egg, cellophane, and peach; metronidazole through onion, peach, cellophane, and human skin, and erythromycin through all studied membranes followed non-Fickian mechanism for diffusion. Statistical analysis showed the most similarity between onion and human skin for diclofenac, tomato and human skin for metronidazole, onion and cellophane for erythromycin.

  11. Hydrogen-Rich Water Ameliorates Total Body Irradiation-Induced Hematopoietic Stem Cell Injury by Reducing Hydroxyl Radical

    PubMed Central

    Xue, Xiaolei; Han, Xiaodan; Li, Yuan; Lu, Lu; Li, Deguan

    2017-01-01

    We examined whether consumption of hydrogen-rich water (HW) could ameliorate hematopoietic stem cell (HSC) injury in mice with total body irradiation (TBI). The results indicated that HW alleviated TBI-induced HSC injury with respect to cell number alteration and to the self-renewal and differentiation of HSCs. HW specifically decreased hydroxyl radical (∙OH) levels in the c-kit+ cells of 4 Gy irradiated mice. Proliferative bone marrow cells (BMCs) increased and apoptotic c-kit+ cells decreased in irradiated mice uptaken with HW. In addition, the mean fluorescence intensity (MFI) of γ-H2AX and percentage of 8-oxoguanine positive cells significantly decreased in HW-treated c-kit+ cells, indicating that HW can alleviate TBI-induced DNA damage and oxidative DNA damage in c-kit+ cells. Finally, the cell cycle (P21), cell apoptosis (BCL-XL and BAK), and oxidative stress (NRF2, HO-1, NQO1, SOD, and GPX1) proteins were significantly altered by HW in irradiated mouse c-kit+ cells. Collectively, the present results suggest that HW protects against TBI-induced HSC injury. PMID:28243358

  12. The Effect of Temperature and Hydrogen Limited Growth on the Fractionation of Sulfur Isotopes by Thermodesulfatator indicus, a Deep-sea Hydrothermal Vent Sulfate-Reducing Bacterium

    NASA Astrophysics Data System (ADS)

    Hoek, J.; Reysenbach, A.; Habicht, K.; Canfield, D. E.

    2004-12-01

    Sulfate-reducing bacteria fractionate sulfur isotopes during dissimilatory sulfate reduction, producing sulfide depleted in 34S. Although isotope fractionation during sulfate reduction of pure cultures has been extensively studied, most of the research to date has focused on mesophilic sulfate reducers, particularly for the species Desulfovibrio desulfuricans. Results from these studies show that: 1) fractionations range from 3-46‰ with an average around 18‰ , 2) when organic electron donors are utilized, the extent of fractionation is dependent on the rate of sulfate reduction, with decreasing fractionations observed with higher specific rates, 3) fractionations are suppressed with low sulfate concentrations, and when hydrogen is used as the electron donor. High specific sulfate-reduction rates are encountered when sulfate-reducing bacteria metabolize at their optimal temperature and under non-limiting substrate conditions. Changes in both temperature and substrate availability could shift fractionations from those expressed under optimal growth conditions. Sulfate reducers may frequently experience substrate limitation and sub-optimal growth temperatures in the environment. Therefore it is important to understand how sulfate-reducing bacteria fractionate sulfur isotopes under conditions that more closely resemble the restrictions imposed by the environment. In this study the fractionation of sulfur isotopes by Thermodesulfatator indicus was explored during sulfate reduction under a wide range of temperatures and with both hydrogen-saturating and hydrogen-limited conditions. T. indicus is a thermophilic (temperature optimum = 70° C) chemolithotrophic sulfate-reducing bacterium, which was recently isolated from a deep-sea hydrothermal vent on the Central Indian Ridge. This bacterium represents the type species of a new genus and to date is the most deeply branching sulfate-reducing bacterium known. T. indicus was grown in carbonate-buffered salt-water medium

  13. Polydimethylsiloxane-based permeation passive air sampler. Part II: Effect of temperature and humidity on the calibration constants.

    PubMed

    Seethapathy, Suresh; Górecki, Tadeusz

    2010-12-10

    Polydimethylsiloxane (PDMS) has low permeability towards water vapour and low energy of activation of permeation towards volatile organic compounds (VOCs) when compared to many other polymers. Suitability of the material for use in permeation-type passive air samplers was tested as it theoretically should reduce uptake rate variations due to temperature changes and eliminate or reduce complications arising from sorbent saturation by water vapour. The calibration constants of a simple autosampler vial-based permeation passive sampler equipped with a PDMS membrane (Waterloo Membrane Sampler(®)) were determined for various analytes at different temperatures. From the data, the activation energy of permeation for PDMS towards the analytes was determined. The analytes studied belonged to various classes of compounds with wide ranging polarities, including n-alkanes, aromatic hydrocarbons, esters and alcohols. The results confirmed Arrhenius-type relationship between temperature and calibration constant and the energy of activation of permeation for PDMS ranged from -5kJ/mole for butylbenzene to -17kJ/mole for sec-butylacetate. Calibration constants of the samplers towards n-alkanes and aromatic hydrocarbons determined at humidities between 30% and 91% indicated no statistically significant variations in the uptake rate with changes in humidity for 9 of the 11 analytes studied. The results confirmed the suitability of the sampler for deployment in high humidity areas and under varying temperature conditions.

  14. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect

    Carl R. Evenson; Anthony F. Sammells; Richard T. Treglio; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Clive Brereton; Warren Wolfs; James Lockhart

    2004-10-21

    During this quarter, work was focused on characterizing the stability of layered composite membranes in a one hundred percent permeate environment. Permeation data was also collected on cermets as a function of thickness. A thin film deposition procedure was used to deposit dense thin BCY/Ni onto a tubular porous support. Thin film tubes were then tested for permeation at ambient pressure. Process flow diagrams were prepared for inclusion of hydrogen separation membranes into IGCC power plants under varying conditions. Finally, membrane promoted alkane dehydrogenation experiments were performed.

  15. Hydrogen effects on material behavior; Proceedings of the 4th International Conference on the Effect of Hydrogen on the Behavior of Materials, Moran, WY, Sept. 12-15, 1989

    SciTech Connect

    Moody, N.R.; Thompson, A.W.

    1990-01-01

    The present conference discusses hydrogen permeation, trapping, and transport in metals, hydrogen-induced phase transformations, hydrogen embrittlement studies on stainless steels, hydrogen effects on advanced materials, hydrogen-associated fracture processes, crack growth susceptibility, and hydrogen-resistant engineering alloys and applications. Attention is given to the behavior of hydrogen in evaporated metal films, hydrogen diffusivity in alpha-beta Zr alloys, acoustic emissions from steels containing hydrogen, synergistic effects of He and H isotopes in FCC metals, hydrogen transport by dislocations in Al alloys, the effect of hydrogen precipitation in an Al-{sup 9}Mg alloy, hydrogen effects on Ti oxidation in water vapor, hydrogen effects on the behavior of duplex stainless steels, hydrogen embrittlement of superalloys, hydrogen embrittlement of TiAl alloys, hydrogen-enhanced decohesion in Fe-Si single crystals, cathodic hydrogen embrittlement of a duplex stainless steel, and hydrogen embrittlement in lean uranium alloys.

  16. In vitro permeation characteristics of moxifloxacin from oil drops through excised goat, sheep, buffalo and rabbit corneas.

    PubMed

    Pawar, P K; Majumdar, D K

    2007-11-01

    The objective of present investigation was to study the in vitro permeation characteristics of moxifloxacin from oil drops through freshly excised goat, sheep, buffalo and rabbit corneas. Moxifloxacin, 0.043 to 0.048% (w/v) ophthalmic solutions with or without (0.5% v/v) benzyl alcohol were made in arachis, castor, cottonseed, olive, soybean, sunflower and sesame oils. Permeation studies were conducted by putting 1 ml oil formulation on cornea (0.50 cm2) fixed between donor and receptor compartments of an all glass modified Franz diffusion cell and measuring the drug permeated in receptor (containing 10 ml bicarbonate ringer, pH 7.4 at 37 degrees C under stirring) by spectrophotometry at 291 nm, after 120 min. Post permeation corneal hydration was measured to assess corneal damage. The study was designed with paired corneas i.e. one cornea of an animal received formulation without benzyl alcohol while the contralateral cornea received formulation with benzyl alcohol. Moxifloxacin ophthalmic solution in castor oil showed maximum permeation with all the corneas. Addition of benzyl alcohol, a preservative, to oil drops reduced permeation of moxifloxacin from each oil drop, with corneas of all the species. Partition experiments with moxifloxacin oil drops and phosphate buffer (pH 7.4) indicated higher partitioning of drug in the oil phase, in presence of benzyl alcohol. Thus results of permeation are consistent with the partition characteristics of drug between oil and aqueous phase. Corneal hydration obtained with all the formulations was between 75 to 80% indicating no corneal damage.

  17. Numerical simulation of permeation from deposited droplets: Model expansion

    NASA Astrophysics Data System (ADS)

    Severe, Geralda; Meldon, Jerry H.

    1992-04-01

    A previously published model of permeation from a droplet has been expanded. The effects of downstream mass transfer resistance and concentration dependence of the diffusion coefficient are included. An attempt was made to fit experimental results for the permeation of di- iso-propyl- methyl-phosphonate (DIMP) through Neoprene and natural rubber. Simulated data do not reproduce the initial pronounced delay of experimental permeation. Furthermore, no rationale was identified for the anomalous dependence of 'breakthrough time' upon barrier thickness observed with several experimental systems.

  18. Permeation absorption sampler with multiple detection

    DOEpatents

    Zaromb, Solomon

    1990-01-01

    A system for detecting analytes in air or aqueous systems includes a permeation absorption preconcentrator sampler for the analytes and analyte detectors. The preconcentrator has an inner fluid-permeable container into which a charge of analyte-sorbing liquid is intermittently injected, and a fluid-impermeable outer container. The sample is passed through the outer container and around the inner container for trapping and preconcentrating the analyte in the sorbing liquid. The analyte can be detected photometrically by injecting with the sorbing material a reagent which reacts with the analyte to produce a characteristic color or fluorescence which is detected by illuminating the contents of the inner container with a light source and measuring the absorbed or emitted light, or by producing a characteristic chemiluminescence which can be detected by a suitable light sensor. The analyte can also be detected amperometrically. Multiple inner containers may be provided into which a plurality of sorbing liquids are respectively introduced for simultaneously detecting different analytes. Baffles may be provided in the outer container. A calibration technique is disclosed.

  19. Permeation enhancer strategies in transdermal drug delivery.

    PubMed

    Marwah, Harneet; Garg, Tarun; Goyal, Amit K; Rath, Goutam

    2016-01-01

    Today, ∼74% of drugs are taken orally and are not found to be as effective as desired. To improve such characteristics, transdermal drug delivery was brought to existence. This delivery system is capable of transporting the drug or macromolecules painlessly through skin into the blood circulation at fixed rate. Topical administration of therapeutic agents offers many advantages over conventional oral and invasive techniques of drug delivery. Several important advantages of transdermal drug delivery are prevention from hepatic first pass metabolism, enhancement of therapeutic efficiency and maintenance of steady plasma level of the drug. Human skin surface, as a site of drug application for both local and systemic effects, is the most eligible candidate available. New controlled transdermal drug delivery systems (TDDS) technologies (electrically-based, structure-based and velocity-based) have been developed and commercialized for the transdermal delivery of troublesome drugs. This review article covers most of the new active transport technologies involved in enhancing the transdermal permeation via effective drug delivery system.

  20. Combining Chemical Permeation Enhancers for Synergistic Effects.

    PubMed

    du Toit, Trizel; Malan, Maides M; Lemmer, Hendrik J R; Gouws, Chrisna; Aucamp, Marique E; Breytenbach, Wilma J; Hamman, Josias H

    2016-10-01

    Currently, macromolecular drugs such as proteins are mainly administered by means of injections due to their low intestinal epithelial permeability and poor stability in the gastrointestinal tract. This study investigated binary combinations of chemical drug absorption enhancers to determine if synergistic drug absorption enhancement effects exist. Aloe vera, Aloe ferox and Aloe marlothii leaf gel materials, as well as with N-trimethyl chitosan chloride (TMC), were combined in different ratios and their effects on the transepithelial electrical resistance (TEER), as well as the transport of FITC-dextran across Caco-2 cell monolayers, were measured. The isobole method was applied to determine the type of interaction that exists between the absorption enhancers combinations. The TEER results showed synergism existed for the combinations between A. vera and A. marlothii, A. marlothii and A. ferox as well as A. vera and TMC. Antagonism interactions also occurred and can probably be explained by chemical reactions between the chemical permeation enhancers, such as complex formation. In terms of FITC-dextran transport, synergism was found for combinations between A. vera and A. marlothii, A. marlothii and A. ferox, A. vera and TMC, A. ferox and TMC and A. marlothii and TMC, whereas antagonism was observed for A. vera and A. ferox. The combinations where synergism was obtained have the potential to be used as effective drug absorption enhancers at lower concentrations compared to the single components.

  1. Cytoplasmic permeation pathway of neurotransmitter transporters.

    PubMed

    Rudnick, Gary

    2011-09-06

    Ion-coupled solute transporters are responsible for transporting nutrients, ions, and signaling molecules across a variety of biological membranes. Recent high-resolution crystal structures of several transporters from protein families that were previously thought to be unrelated show common structural features indicating a large structural family representing transporters from all kingdoms of life. This review describes studies that led to an understanding of the conformational changes required for solute transport in this family. The first structure in this family showed the bacterial amino acid transporter LeuT, which is homologous to neurotransmitter transporters, in an extracellularly oriented conformation with a molecule of leucine occluded at the substrate site. Studies with the mammalian serotonin transporter identified positions, buried in the LeuT structure, that defined a potential pathway leading from the cytoplasm to the substrate binding site. Modeling studies utilized an inverted structural repeat within the LeuT crystal structure to predict the conformation of LeuT in which the cytoplasmic permeation pathway, consisting of positions identified in SERT, was open for diffusion of the substrate to the cytoplasm. From the difference between the model and the crystal structures, a simple "rocking bundle" mechanism was proposed, in which a four-helix bundle changed its orientation with respect to the rest of the protein to close the extracellular pathway and open the cytoplasmic one. Subsequent crystal structures from structurally related proteins provide evidence supporting this model for transport.

  2. Wnt co-receptor LRP5/6 overexpression confers protection against hydrogen peroxide-induced neurotoxicity and reduces tau phosphorylation in SH-SY5Y cells.

    PubMed

    Zhang, Luqi; Bahety, Priti; Ee, Pui Lai Rachel

    2015-08-01

    Emerging studies have suggested the involvement of dysregulated Wnt/β-catenin cascade in the etiology of Alzheimer's disease (AD). Recently, genetic variations in Wnt co-receptor low density lipoprotein receptor-related protein (LRP) 6 causing reduced Wnt signaling has been linked to late-onset AD. Here, we hypothesized that overexpression of Wnt co-receptors LRP5 and LRP6 would serve as an effective new approach in reducing neurotoxicity induced by oxidative stress and decreasing tau phosphorylation in SH-SY5Y human neuroblastoma cells. Our results showed that overexpression of LRP5 and LRP6 in SH-SY5Y cells activates Wnt signaling and downstream proliferation genes, whereas knockdown of the co-receptors represses Wnt signaling and the transcription of proliferative markers. We further demonstrated that overexpression of LRP5 and LRP6 protects SH-SY5Y from cell death caused by hydrogen peroxide-induced oxidative stress, inhibits GSK3β activity and subsequently reduces tau phosphorylation. Together, our findings suggest that rescuing LRP5/6-mediated Wnt signaling improves neuronal cell survival and reduces tau phosphorylation, which support the hypothesis that Wnt signaling might be an attractive therapeutic strategy for managing AD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Facile fabrication of Pt-Ag bimetallic nanoparticles decorated reduced graphene oxide for highly sensitive non-enzymatic hydrogen peroxide sensing.

    PubMed

    Zhang, Cong; Zhang, Yanyan; Du, Xin; Chen, Yuan; Dong, Wenhao; Han, Bingkai; Chen, Qiang

    2016-10-01

    A new electrocatalyst, Pt-Ag bimetallic nanoparticles decorated reduced graphene oxide nanocomposite, was successfully synthesized by a facile, eco-friendly and controllable route. The morphological characterization of RGO/Pt-Ag NPs nanocomposite was examined by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) analyzer, X-ray diffraction (XRD) spectrum, and Fourier transform infrared spectrum (FT-IR), respectively. And then, the RGO/Pt-Ag NPs nanocomposite was immobilized on the surface of glassy carbon (GC) electrode to fabricate a novel and highly sensitive non-enzymatic hydrogen peroxide sensor. The electrochemical behaviors of the prepared sensor were investigated by cyclic voltammetry and chronoamperometry. The sensor showed excellent performance toward H2O2 with sensitivity as high as 699.6 μA mM(-1)cm(-2) and 402.7 μA mM(-1)cm(-2), wide linear range of 0.005-1.5mM and 1.5-7mM, and low detection limit of 0.04μM (S/N=3). Moreover, the prepared hydrogen peroxide sensor was applied to in real samples with satisfactory results. These excellent results indicate that the prepared RGO/Pt-Ag NPs nanocomposite has broad application prospect in the field of sensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Reducing Line Edge Roughness of PS-b-PMMA pattern by inducing hydrogen bonding at the interface of the block copolymer microdomains

    NASA Astrophysics Data System (ADS)

    Lee, Kyu Seong; Han, Sung Hyun; Jang, Sangshin; Park, Jicheol; Kwak, Jongheon; Kim, Jin Kon

    Sharp interface between two blocks in block copolymer nano pattern is one of the important issues in industrial applications to nano-patterning. We utilized hydrogen bonding between N-(4-aminomethyl-benzyl)-4-hydroxymethyl-bezamide (BA) and urea (U) at the interface of polystyrene-block-poly(methyl methacrylate) copolymer (PS-PMMA). For this purpose, we first synthesized PS by ATRP, then the end group was converted to amino group. Next, it was reacted with BA, followed by reaction with 4-pentynoic acid, resulting in alkyne-terminated group (PS-U-BA-alkyne). Also, azide-terminated PMMA was prepared by anionic polymerization followed by end functionalization. Finally, by the azide-alkyne click reaction between PS-U-BA-alkyne and PMMA-azide, PS-U-BA-PMMA was synthesized. We prepared vertical oriented lamellar nanopatterns on pre-patterned wafers and investigated line edge roughness (LER) after removing PMMA block by dry etching process. We found that LER was reduced compared with PS-PMMA without hydrogen bonding.

  5. Hydrogen-Selective Membrane

    DOEpatents

    Collins, John P.; Way, J. Douglas

    1995-09-19

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 .mu.m but typically less than about 20 .mu.m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m.sup.2.s at a temperature of greater than about 500.degree. C. and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500.degree. C. and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400.degree. C. and less than about 1000.degree. C. before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process.

  6. Hydrogen-selective membrane

    DOEpatents

    Collins, J.P.; Way, J.D.

    1995-09-19

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2}s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

  7. Hydrogen-selective membrane

    DOEpatents

    Collins, J.P.; Way, J.D.

    1997-07-29

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2} s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

  8. Hydrogen-selective membrane

    DOEpatents

    Collins, John P.; Way, J. Douglas

    1997-01-01

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 .mu.m but typically less than about 20 .mu.m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m.sup.2. s at a temperature of greater than about 500.degree. C. and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500.degree. C. and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400.degree. C. and less than about 1000.degree. C. before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process.

  9. The effect of coatings on retention and permeation in SS 316L APT tritium production tubes

    NASA Astrophysics Data System (ADS)

    Hertz, K. L.; Causey, R. A.; Cowgill, D. F.

    2004-01-01

    The accelerator production of tritium (APT) design calls for thousands of thin-walled tubes to be filled with 3He gas. The reaction of the spallation neutrons with this gas will result in the bombardment of the interior of these tubes with energetic tritons and protons. For APT to be able to meet its tritium production goals, it is necessary that the holdup of the tritium in the tube walls be minimized. To examine the tritium retention characteristics of stainless steel, one of the tube reference materials, accelerator implantation experiments were performed. In these experiments, deuterium was used in place of tritium to eliminate the problem of tritium contamination. Deuterons with energies up to 200 keV and protons with energies up to 600 keV were implanted into stainless steel (SS 316L) samples to fluences as high as 5 × 10 22 D/m 2 and 5 × 10 22 p/m 2. Thermal desorption spectroscopy showed that approximately 3% of the deuterium was retained within the sample. Approximately 0.5% of the deuterium permeated through to the back surface of the sample where a zirconium getter trapped the deuterium. The deuterium trapped in the zirconium layer was measured by nuclear reaction analysis. Eight-micron thick copper and nickel coatings were applied to the implantation side of the stainless steel substrate in an attempt to reduce the retention and permeation of the deuterium. The copper-coated stainless steel was not successful in reducing the retention and permeation, however the nickel coated stainless steel reduced both the retention and permeation substantially.

  10. Energy concentration and phosphorus digestibility in whey powder, whey permeate, and low-ash whey permeate fed to weanling pigs.

    PubMed

    Kim, B G; Lee, J W; Stein, H H

    2012-01-01

    Two experiments were conducted to determine DE and ME, the apparent total tract digestibility (ATTD) of P, and the standardized total tract digestibility (STTD) of P in whey powder (3,646 kcal/kg), whey permeate (3,426 kcal/kg), and low-ash whey permeate (3,657 kcal/kg) fed to weanling pigs. The DE and ME in the 3 whey products were determined using 32 barrows (9.2 ± 0.4 kg of BW). A basal diet based on corn, soybean meal, and fish meal and 3 diets containing 70% of the basal diet and 30% of each whey product were prepared. Each diet was fed to 8 pigs that were housed individually in metabolism cages. The total collection method was used for fecal and urine collections with 5-d adaptation and 5-d collection periods, and the difference procedure was used to calculate DE and ME in the 3 whey products. The concentrations of DE in whey powder and low-ash whey permeate were greater (P < 0.001) than in whey permeate (3,646 and 3,683 vs. 3,253 kcal/kg of DM). The concentrations of ME in whey powder and low-ash whey permeate were also greater (P < 0.001) than in whey permeate (3,462 and 3,593 vs. 3,081 kcal/kg of DM). The ATTD and STTD of P in the 3 whey products were determined using 32 barrows (11.0 ± 0.81 kg of BW). Three cornstarch-sucrose-based diets containing 30% of each whey product as the sole source of P were prepared. A P-free diet that was used to estimate the basal endogenous losses of P was also formulated. The ATTD of P in whey powder and in whey permeate was greater (P < 0.001) than in low-ash whey permeate (84.3 and 86.1 vs. 55.9%), but the STTD values for P were not different among the 3 ingredients (91.2, 93.1, and 91.8% in whey powder, whey permeate, and low-ash whey permeate, respectively). In conclusion, whey permeate contains less GE, DE, and ME than whey powder and low-ash whey permeate, but all 3 ingredients have an excellent digestibility of P.

  11. A Feasibility Study of Pressure Retarded Osmosis Power Generation System based on Measuring Permeation Volume using Reverse Osmosis Membrane

    NASA Astrophysics Data System (ADS)

    Enomoto, Hiroshi; Fujitsuka, Masashi; Hasegawa, Tomoyasu; Kuwada, Masatoshi; Tanioka, Akihiko; Minagawa, Mie

    Pressure Retarded Osmosis (PRO) power generation system is a hydroelectric power system which utilize permeation flow through a semi-permeable membrane. Permeation flow is generated by potential energy of salinity difference between sea water and fresh water. As membrane cost is expensive, permeation performance of membrane must be higher to realize PRO system. We have investigated Reverse Osmosis (RO) membrane products as semi-permeable membrane and measured permeation volume of a few products. Generation power by membrane area calculated from permeation volume is about 0.62W/m2. But by our improvements (more salt water volume, spacer of fresh water channel with a function of discharging concentrated salinity, extra low pressure type of membrane, washing support layer of membrane when generation power reduces to half), generation power may be 2.43W/m2. Then power system cost is about 4.1 million yen/kW. In addition, if support layer of membrane makes thinner and PRO system is applied to the equipment that pumping power on another purpose is avairable (wastewater treatment plant located at the seaside, thermal and nuclear power plant or sea water desalination plant), generation power may be more. By these improvements PRO system may be able to realize at the cost close to photovoltaic power system.

  12. PERMEATION OF MULTIFUNCTIONAL ACRYLATES THROUGH SELECTED PROTECTIVE GLOVE MATERIALS

    EPA Science Inventory

    In support of the Premanufacture Notification (PMN) program of the Environmental Protection Agency's Office of Toxic Substances, the resistance of three glove materials to permeation by multifunctional acrylate compounds was evaluated through a program for the Office of Research ...

  13. PERMEATION OF MULTIFUNCTIONAL ACRYLATES THROUGH SELECTED PROTECTIVE GLOVE MATERIALS

    EPA Science Inventory

    In support of the Premanufacture Notification (PMN) program of the Environmental Protection Agency's Office of Toxic Substances, the resistance of three glove materials to permeation by multifunctional acrylate compounds was evaluated through a program for the Office of Research ...

  14. Coal Ash Behavior in Reducing Environments (CABRE) III Year 6 - Activity 1.10 - Development of a National Center for Hydrogen

    SciTech Connect

    Stanislowski, Joshua; Azenkeng, Alexander; McCollor, Donald; Galbreath, Kevin; Jensen, Robert; Lahr, Brent

    2012-03-31

    The Energy & Environmental Research Center (EERC) has been conducting research on gasification for six decades. One of the objectives of this gasification research has been to maximize carbon conversion and the water–gas shift process for optimal hydrogen production and syngas quality. This research focus and experience were a perfect fit for the National Center for Hydrogen Technology ® (NCHT®) Program at the EERC for improving all aspects of coal gasification, which ultimately aids in the production and purification of hydrogen. A consortia project was developed under the NCHT Program to develop an improved predictive model for ash formation and deposition under the project entitled “Coal Ash Behavior in Reducing Environments (CABRE) III: Development of the CABRE III Model.” The computer-based program is now applicable to the modeling of coal and ash behavior in both entrained-flow and fluidized-bed gasification systems to aid in overall gasification efficiency. This model represents a significant improvement over the CABRE II model and runs on a Microsoft Windows PC platform. The major achievements of the CABRE III model are partitioning of inorganic transformations between various phases for specific gas cleanup equipment; slag property predictions, including standard temperature–viscosity curves and slag flow and thickness; deposition rates in gasification cleanup equipment; provision for composition analysis for all input and output streams across all process equipment, including major elements and trace elements of interest; composition analysis of deposit streams for various deposit zones, including direct condensation on equipment surfaces (Zone A), homogeneous particulate deposition (Zone B), and entrained fly ash deposition (Zone C); and physical removal of ash in cyclones based on D50 cut points. Another new feature of the CABRE III model is a user-friendly interface and detailed reports that are easily exportable into Word documents, Excel

  15. Hydrogen formation by an arsenate-reducing Pseudomonas putida, isolated from arsenic-contaminated groundwater in West Bengal, India.

    PubMed

    Freikowski, Dominik; Winter, Josef; Gallert, Claudia

    2010-12-01

    Anaerobic growth of a newly isolated Pseudomonas putida strain WB from an arsenic-contaminated soil in West Bengal, India on glucose, L: -lactate, and acetate required the presence of arsenate, which was reduced to arsenite. During aerobic growth in the presence of arsenite arsenate was formed. Anaerobic growth of P. putida WB on glucose was made possible presumably by the non-energy-conserving arsenate reductase ArsC with energy derived only from substrate level phosphorylation. Two moles of acetate were generated intermediarily and the reducing equivalents of glycolysis and pyruvate decarboxylation served for arsenate reduction or were released as H(2). Anaerobic growth on acetate and lactate was apparently made possible by arsenate reductase ArrA coupled to respiratory electron chain energy conservation. In the presence of arsenate, both substrates were totally oxidized to CO(2) and H(2) with part of the H(2) serving for respiratory arsenate reduction to deliver energy for growth. The growth yield for anaerobic glucose degradation to acetate was Y (Glucose) = 20 g/mol, leading to an energy coefficient of Y (ATP) = 10 g/mol adenosine-5'-triphosphate (ATP), if the Emden-Meyerhof-Parnas pathway with generation of 2 mol ATP/mol glucose was used. During growth on lactate and acetate no substrate chain phosphorylation was possible. The energy gain by reduction of arsenate was Y (Arsenate) = 6.9 g/mol, which would be little less than one ATP/mol of arsenate.

  16. Skin permeation of testosterone and its ester derivatives in rats.

    PubMed

    Kim, M K; Lee, C H; Kim, D D

    2000-04-01

    To establish the optimum conditions for improving the transdermal delivery of testosterone, we studied the relationship between the lipophilicity of testosterone ester derivatives and the rat skin permeation rate of testosterone. We performed a rat skin permeation study of testosterone and its commercially available ester derivatives, testosterone hemisuccinate, testosterone propionate and testosterone-17beta-cypionate, using an ethanol/water co-solvent system. The aqueous solubility and rat skin permeation rate of each drug, saturated in various compositions of an ethanol/water system, was determined at 37 degrees C. The aqueous solubility of testosterone and its ester derivatives increased exponentially as the volume fraction of ethanol increased up to 100% (v/v). The stability of testosterone propionate in both the skin homogenate and the extract was investigated to observe the enzymatic degradation during the skin permeation process. Testosterone propionate was found to be stable in the isotonic buffer solution and in the epidermis-side extract for 10h at 37 degrees C. However, in the skin homogenate and the dermis-side extract testosterone propionate rapidly degraded producing testosterone, implying that testosterone propionate rapidly degraded to testosterone during the skin permeation process. The steady-state permeation rates of testosterone in the ethanol/water systems increased exponentially as the volume fraction of ethanol increased, reaching the maximum value (2.69+/-0.69 microg cm(-2)h(-1)) at 70% (v/v) ethanol in water, and then decreasing with further increases in the ethanol volume fraction. However, in the skin permeation study with testosterone esters saturated in 70% (v/v) ethanol in water system, testosterone esters were hardly detected in the receptor solution, probably due to the rapid degradation to testosterone during the skin permeation process. Moreover, a parabolic relationship was observed between the permeation rate of testosterone and

  17. Hydrogen in Drinking Water Reduces Dopaminergic Neuronal Loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine Mouse Model of Parkinson's Disease

    PubMed Central

    Fujita, Kyota; Seike, Toshihiro; Yutsudo, Noriko; Ohno, Mizuki; Yamada, Hidetaka; Yamaguchi, Hiroo; Sakumi, Kunihiko; Yamakawa, Yukiko; Kido, Mizuho A.; Takaki, Atsushi; Katafuchi, Toshihiko; Tanaka, Yoshinori

    2009-01-01

    It has been shown that molecular hydrogen (H2) acts as a therapeutic antioxidant and suppresses brain injury by buffering the effects of oxidative stress. Chronic oxidative stress causes neurodegenerative diseases such as Parkinson's disease (PD). Here, we show that drinking H2-containing water significantly reduced the loss of dopaminergic neurons in PD model mice using both acute and chronic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The concentration-dependency of H2 showed that H2 as low as 0.08 ppm had almost the same effect as saturated H2 water (1.5 ppm). MPTP-induced accumulation of cellular 8-oxoguanine (8-oxoG), a marker of DNA damage, and 4-hydroxynonenal (4-HNE), a marker of lipid peroxidation were significantly decreased in the nigro-striatal dopaminergic pathway in mice drinking H2-containing water, whereas production of superoxide (O2•−) detected by intravascular injection of dihydroethidium (DHE) was not reduced significantly. Our results indicated that low concentration of H2 in drinking water can reduce oxidative stress in the brain. Thus, drinking H2-containing water may be useful in daily life to prevent or minimize the risk of life style-related oxidative stress and neurodegeneration. PMID:19789628

  18. Cadmium-Induced Hydrogen Sulfide Synthesis Is Involved in Cadmium Tolerance in Medicago sativa by Reestablishment of Reduced (Homo)glutathione and Reactive Oxygen Species Homeostases

    PubMed Central

    Cui, Weiti; Chen, Huiping; Zhu, Kaikai; Jin, Qijiang; Xie, Yanjie; Cui, Jin; Xia, Yan; Zhang, Jing; Shen, Wenbiao

    2014-01-01

    Until now, physiological mechanisms and downstream targets responsible for the cadmium (Cd) tolerance mediated by endogenous hydrogen sulfide (H2S) have been elusive. To address this gap, a combination of pharmacological, histochemical, biochemical and molecular approaches was applied. The perturbation of reduced (homo)glutathione homeostasis and increased H2S production as well as the activation of two H2S-synthetic enzymes activities, including L-cysteine desulfhydrase (LCD) and D-cysteine desulfhydrase (DCD), in alfalfa seedling roots were early responses to the exposure of Cd. The application of H2S donor sodium hydrosulfide (NaHS), not only mimicked intracellular H2S production triggered by Cd, but also alleviated Cd toxicity in a H2S-dependent fashion. By contrast, the inhibition of H2S production caused by the application of its synthetic inhibitor blocked NaHS-induced Cd tolerance, and destroyed reduced (homo)glutathione and reactive oxygen species (ROS) homeostases. Above mentioned inhibitory responses were further rescued by exogenously applied glutathione (GSH). Meanwhile, NaHS responses were sensitive to a (homo)glutathione synthetic inhibitor, but reversed by the cotreatment with GSH. The possible involvement of cyclic AMP (cAMP) signaling in NaHS responses was also suggested. In summary, LCD/DCD-mediated H2S might be an important signaling molecule in the enhancement of Cd toxicity in alfalfa seedlings mainly by governing reduced (homo)glutathione and ROS homeostases. PMID:25275379

  19. Cadmium-induced hydrogen sulfide synthesis is involved in cadmium tolerance in Medicago sativa by reestablishment of reduced (homo)glutathione and reactive oxygen species homeostases.

    PubMed

    Cui, Weiti; Chen, Huiping; Zhu, Kaikai; Jin, Qijiang; Xie, Yanjie; Cui, Jin; Xia, Yan; Zhang, Jing; Shen, Wenbiao

    2014-01-01

    Until now, physiological mechanisms and downstream targets responsible for the cadmium (Cd) tolerance mediated by endogenous hydrogen sulfide (H2S) have been elusive. To address this gap, a combination of pharmacological, histochemical, biochemical and molecular approaches was applied. The perturbation of reduced (homo)glutathione homeostasis and increased H2S production as well as the activation of two H2S-synthetic enzymes activities, including L-cysteine desulfhydrase (LCD) and D-cysteine desulfhydrase (DCD), in alfalfa seedling roots were early responses to the exposure of Cd. The application of H2S donor sodium hydrosulfide (NaHS), not only mimicked intracellular H2S production triggered by Cd, but also alleviated Cd toxicity in a H2S-dependent fashion. By contrast, the inhibition of H2S production caused by the application of its synthetic inhibitor blocked NaHS-induced Cd tolerance, and destroyed reduced (homo)glutathione and reactive oxygen species (ROS) homeostases. Above mentioned inhibitory responses were further rescued by exogenously applied glutathione (GSH). Meanwhile, NaHS responses were sensitive to a (homo)glutathione synthetic inhibitor, but reversed by the cotreatment with GSH. The possible involvement of cyclic AMP (cAMP) signaling in NaHS responses was also suggested. In summary, LCD/DCD-mediated H2S might be an important signaling molecule in the enhancement of Cd toxicity in alfalfa seedlings mainly by governing reduced (homo)glutathione and ROS homeostases.

  20. Hydrogen in drinking water reduces dopaminergic neuronal loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease.

    PubMed

    Fujita, Kyota; Seike, Toshihiro; Yutsudo, Noriko; Ohno, Mizuki; Yamada, Hidetaka; Yamaguchi, Hiroo; Sakumi, Kunihiko; Yamakawa, Yukiko; Kido, Mizuho A; Takaki, Atsushi; Katafuchi, Toshihiko; Tanaka, Yoshinori; Nakabeppu, Yusaku; Noda, Mami

    2009-09-30

    It has been shown that molecular hydrogen (H(2)) acts as a therapeutic antioxidant and suppresses brain injury by buffering the effects of oxidative stress. Chronic oxidative stress causes neurodegenerative diseases such as Parkinson's disease (PD). Here, we show that drinking H(2)-containing water significantly reduced the loss of dopaminergic neurons in PD model mice using both acute and chronic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The concentration-dependency of H(2) showed that H(2) as low as 0.08 ppm had almost the same effect as saturated H(2) water (1.5 ppm). MPTP-induced accumulation of cellular 8-oxoguanine (8-oxoG), a marker of DNA damage, and 4-hydroxynonenal (4-HNE), a marker of lipid peroxidation were significantly decreased in the nigro-striatal dopaminergic pathway in mice drinking H(2)-containing water, whereas production of superoxide (O(2)*(-)) detected by intravascular injection of dihydroethidium (DHE) was not reduced significantly. Our results indicated that low concentration of H(2) in drinking water can reduce oxidative stress in the brain. Thus, drinking H(2)-containing water may be useful in daily life to prevent or minimize the risk of life style-related oxidative stress and neurodegeneration.

  1. Transdermal Delivery of Venlafaxine Hydrochloride: The Effects of Enhancers on Permeation Across Pig Ear Skin

    PubMed Central

    Vijaya, C.; Bingi, Manasa; Vigneshwaran, L. V.

    2011-01-01

    Venlafaxine representing a new class of antidepressants is a potent serotonin/ norepinephrine reuptake inhibitor. Transdermal delivery of venlafaxine hydrochloride (VHCl) may result in proper patient compliance by reducing the incidence of the undesirable GI problems generally associated with its plural oral dosing. The present study is an attempt to investigate the improvement of the transdermal flux of the hydrophilic VHCl by certain permeation enhancers viz. glycerin, urea, propylene glycol and mixture of propylene glycol and ethanol across pig ear skin. The cumulative drug release was the highest from the formulation F5 consisting of the mixture of propylene glycol and ethanol in sodium alginate gel with a load of 25% w/w VHCl with 96% permeation enhancement. The steady state flux observed with F5 was 0.203 mg cm-2 hr and an area of 15.27 cm2 would suffice to arrive at a required therapeutic concentration of VHCl in the blood. PMID:22707834

  2. Vehicular hydrogen storage using lightweight tanks (regenerative fuel cell systems)

    SciTech Connect

    Mitlitsky, F; Myers, B; Weisberg, A H

    1999-06-01

    Energy storage systems with extremely high specific energy (>400 Wh/kg) have been designed that use lightweight tankage to contain the gases generated by reversible (unitized) regenerative fuel cells (URFCs). Lawrence Livermore National Laboratory (LLNL) will leverage work for aerospace applications supported by other sponsors (including BMDO, NASA, and USAF) to develop URFC systems for transportation and utility applications. Lightweight tankage is important for primary fuel cell powered vehicles that use on-board storage of hydrogen. Lightweight pressure vessels with state-of-the-art performance factors were designed, and prototypes are being fabricated to meet the DOE 2000 goals (4000 Wh/kg, 12% hydrogen by weight, 700 Wh/liter, and $20/kWh in high volume production). These pressure vessels use technologies that are easily adopted by industrial partners. Advanced liners provide permeation barriers for gas storage and are mandrels for composite overwrap. URFCs are important to the efficient use of hydrogen as a transportation fuel and enabler of renewable energy. H{sub 2}/halogen URFCs may be advantageous for stationary applications whereas H{sub 2}/O{sub 2} or H{sub 2}/air URFCs are advantageous for vehicular applications. URFC research and development is required to improve performance (efficiency), reduce catalyst loading, understand engineering operation, and integrate systems. LLNL has the experimental equipment and advanced URFC membrane electrode assemblies (some with reduced catalyst loading) for evaluating commercial hardware (not funded by DOE in FY1999).

  3. Retinyl palmitate flexible polymeric nanocapsules: characterization and permeation studies.

    PubMed

    Teixeira, Zaine; Zanchetta, Beatriz; Melo, Bruna A G; Oliveira, Luciana L; Santana, Maria H A; Paredes-Gamero, Edgar J; Justo, Giselle Z; Nader, Helena B; Guterres, Sílvia S; Durán, Nelson

    2010-11-01

    Polymeric nanocapsules with elastic characteristics were prepared by the pre-formed polymer interfacial deposition method. The system consists of an oily core of retinyl palmitate with Span 60 and a polymeric wall of poly(D,L-lactide) (PLA). A narrow size distribution (215 nm, P.D.I. 0.10) was showed by dynamic light scattering (DLS) analyses. Particle deformability was observed by transmission electron microscopy (TEM) images and permeation of the particles through two superposed membranes of smaller pore diameters. Permeation studies were achieved using plastic surgery abdominal human skin by Franz diffusion cell. Retinyl palmitate permeates into deep skin layers. Besides, a PLA fluorescent derivative conjugated with Nile blue dye by an amide covalent bound was additionally obtained. Permeation profile of the nanocapsules with the fluorescent polymer was evaluated by confocal laser scanning microscopy (CLSM). The CLSM showed that nanocapsules were distributed uniformly, suggesting that the permeation mechanism through skin is intercellular. Thus, the use of these nanocapsules may be a feasible strategy to enhance the permeation of actives into the skin when delivery to deep layers is aimed.

  4. Catalytic carbon membranes for hydrogen production

    SciTech Connect

    Damle, A.S.; Gangwal, S.K.

    1992-01-01

    Commercial carbon composite microfiltration membranes may be modified for gas separation applications by providing a gas separation layer with pores in the 1- to 10-nm range. Several organic polymeric precursors and techniques for depositing a suitable layer were investigated in this project. The in situ polymerization technique was found to be the most promising, and pure component permeation tests with membrane samples prepared with this technique indicated Knudsen diffusion behavior. The gas separation factors obtained by mixed-gas permeation tests were found to depend strongly on gas temperature and pressure indicating significant viscous flow at high-pressure conditions. The modified membranes were used to carry out simultaneous water gas shift reaction and product hydrogen separation. These tests indicated increasing CO conversions with increasing hydrogen separation. A simple process model was developed to simulate a catalytic membrane reactor. A number of simulations were carried out to identify operating conditions leading to product hydrogen concentrations over 90 percent. (VC)

  5. Microencapsulation of citronella oil for mosquito-repellent application: formulation and in vitro permeation studies.

    PubMed

    Solomon, B; Sahle, F F; Gebre-Mariam, T; Asres, K; Neubert, R H H

    2012-01-01

    Citronella oil (CO) has been reported to possess a mosquito-repellent action. However, its application in topical preparations is limited due to its rapid volatility. The objective of this study was therefore to reduce the rate of evaporation of the oil via microencapsulation. Microcapsules (MCs) were prepared using gelatin simple coacervation method and sodium sulfate (20%) as a coacervating agent. The MCs were hardened with a cross-linking agent, formaldehyde (37%). The effects of three variables, stirring rate, oil loading and the amount of cross-linking agent, on encapsulation efficiency (EE, %) were studied. Response surface methodology was employed to optimize the EE (%), and a polynomial regression model equation was generated. The effect of the amount of cross-linker was insignificant on EE (%). The response surface plot constructed for the polynomial equation provided an optimum area. The MCs under the optimized conditions provided EE of 60%. The optimized MCs were observed to have a sustained in vitro release profile (70% of the content was released at the 10th hour of the study) with minimum initial burst effect. Topical formulations of the microencapsulated oil and non-microencapsulated oil were prepared with different bases, white petrolatum, wool wax alcohol, hydrophilic ointment (USP) and PEG ointment (USP). In vitro membrane permeation of CO from the ointments was evaluated in Franz diffusion cells using cellulose acetate membrane at 32 °C, with the receptor compartment containing a water-ethanol solution (50:50). The receptor phase samples were analyzed with GC/MS, using citronellal as a reference standard. The results showed that microencapsulation decreased membrane permeation of the CO by at least 50%. The amount of CO permeated was dependent on the type of ointment base used; PEG base exhibited the highest degree of release. Therefore, microencapsulation reduces membrane permeation of CO while maintaining a constant supply of the oil

  6. Biohydrogen production through dark fermentation by a microbial consortium using whey permeate as substrate.

    PubMed

    Romão, B B; Batista, F R X; Ferreira, J S; Costa, H C B; Resende, M M; Cardoso, V L

    2014-04-01

    Nowadays, hydrogen produced globally has been synthesized from fossil fuel with limited source. Therefore, research has been developed in order to explore biological H2 production by dark fermentation. The purpose of this work was to evaluate the effect of initial pH and ferrous sulfate and ammonium sulfate concentrations on the production of biohydrogen by dark fermentation. The process was carried out in batch mode under anaerobic conditions, in the absence of light, and at standard room temperature and pressure. A microbial consortium provided by the effluent treatment plant of a local dairy company was inoculated into a synthetic medium supplemented with cheese whey permeate (20 g/L of lactose) as a carbon source. The influence of three variables was analyzed by a central composite design 2((3)), and the optimum results of hydrogen yield (4.13 mol H2/mol lactose) and productivity (86.31 mmol H2/L/day) were achieved at initial pH 7.0 and FeSO4 and (NH4)2SO4 concentrations of 0.6 and 1.5 g/L, respectively. Under these conditions, the kinetic parameters of fermentation were investigated by analyzing the profile of H2 yield and productivity, metabolite concentrations, pH, and concentration of dissolved iron. In the kinetic analysis, the modified Gompertz equation described adequately the fermentative hydrogen production from cheese whey permeate (R (2) = 0.98). The profile of ethanol and volatile organic acids showed that lactic acid and butyric acid were the main metabolites produced, and the sum of both by-products corresponded to about 58 % of the total metabolites.

  7. Nanospherical like reduced graphene oxide decorated TiO2 nanoparticles: an advanced catalyst for the hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Chen, Dejian; Zou, Liling; Li, Shunxing; Zheng, Fengying

    2016-02-01

    Modification of titanium dioxide (TiO2) for H2 generation is a grand challenge due to its high chemical inertness, large bandgap, narrow light-response range and rapid recombination of electrons and holes. Herein, we report a simple process to prepare nanospherical like reduced graphene oxide (NS-rGO) decorated TiO2 nanoparticles (NS-rGO/TiO2) as photocatalysts. This modified TiO2 sample exhibits remarkably significant improvement on visible light absorption, narrow band gap and efficient charge collection and separation. The photocatalytic H2 production rate of NS-rGO/TiO2 is high as 13996 μmol g-1 h-1, which exceeds that obtained on TiO2 alone and TiO2 with parallel graphene sheets by 3.45 and 3.05 times, respectively. This improvement is due to the presence of NS-rGO as an electron collector and transporter. The geometry of NS-rGO should be effective in the design of a graphene/TiO2 composite for photocatalytic applications.

  8. Nanospherical like reduced graphene oxide decorated TiO2 nanoparticles: an advanced catalyst for the hydrogen evolution reaction

    PubMed Central

    Chen, Dejian; Zou, Liling; Li, Shunxing; Zheng, Fengying

    2016-01-01

    Modification of titanium dioxide (TiO2) for H2 generation is a grand challenge due to its high chemical inertness, large bandgap, narrow light-response range and rapid recombination of electrons and holes. Herein, we report a simple process to prepare nanospherical like reduced graphene oxide (NS-rGO) decorated TiO2 nanoparticles (NS-rGO/TiO2) as photocatalysts. This modified TiO2 sample exhibits remarkably significant improvement on visible light absorption, narrow band gap and efficient charge collection and separation. The photocatalytic H2 production rate of NS-rGO/TiO2 is high as 13996 μmol g−1 h−1, which exceeds that obtained on TiO2 alone and TiO2 with parallel graphene sheets by 3.45 and 3.05 times, respectively. This improvement is due to the presence of NS-rGO as an electron collector and transporter. The geometry of NS-rGO should be effective in the design of a graphene/TiO2 composite for photocatalytic applications. PMID:26828853

  9. Hydrogen evolution as a consumption mode of reducing equivalents in green algal fermentation. [Chlamydomonas reinhardii; Chlorella pyrenoidosa; Chlorococcum minutum

    SciTech Connect

    Ohta, S.; Miyamoto, K.; Miura, Y.

    1987-04-01

    Dark anaerobic fermentation in the green algae Chlamydomonas MGA 161, Chlamydomonas reinhardtii, Chlorella pyrenoidosa, and Chlorococcum minutum was studied. Their isolate, Chlamydomonas MGA 161, was unusual in having high H/sub 2/ but almost no formate. The fermentation pattern in Chlamydomonas MGA 161 was altered by changes in the NaCl or NH/sub 4/Cl concentration. Glycerol formation increased at low (0.1%) and high (7%) NaCl concentrations starch degradation, and formation of ethanol, H/sub 2/, and CO/sub 2/ increased with the addition of NH/sub 4/Cl to above 5 millimolar in N-deficient cells. C. reinhardtii and C.pyrenoidosa exhibited a very similar anaerobic metabolism, forming formate, acetate and ethanol in a ratio of about 2:2:1. C. minimum was also unusual in forming acetate, glycerol, and CO/sub 2/ as its main products, with H/sub 2/, formate, and ethanol being formed in negligible amounts. In the presence of CO, ethanol formation increased twofold in Chlamydomonas MGA 161 and C. reinhardtii, but the fermentation pattern in C. minimum did not change. An experiment with hypophosphite addition showed that dark H/sub 2/ evolution of the Escherichia coli type could be ruled out in Chlamydomonas MGA 161 and C. reinhardtii. Among the green algae investigated, three fermentation types were identified by the distribution pattern of the end products, which reflected the consumption model of reducing equivalents in the cells.

  10. Nanospherical like reduced graphene oxide decorated TiO2 nanoparticles: an advanced catalyst for the hydrogen evolution reaction.

    PubMed

    Chen, Dejian; Zou, Liling; Li, Shunxing; Zheng, Fengying

    2016-02-01

    Modification of titanium dioxide (TiO2) for H2 generation is a grand challenge due to its high chemical inertness, large bandgap, narrow light-response range and rapid recombination of electrons and holes. Herein, we report a simple process to prepare nanospherical like reduced graphene oxide (NS-rGO) decorated TiO2 nanoparticles (NS-rGO/TiO2) as photocatalysts. This modified TiO2 sample exhibits remarkably significant improvement on visible light absorption, narrow band gap and efficient charge collection and separation. The photocatalytic H2 production rate of NS-rGO/TiO2 is high as 13996 μmol g(-1) h(-1), which exceeds that obtained on TiO2 alone and TiO2 with parallel graphene sheets by 3.45 and 3.05 times, respectively. This improvement is due to the presence of NS-rGO as an electron collector and transporter. The geometry of NS-rGO should be effective in the design of a graphene/TiO2 composite for photocatalytic applications.

  11. Synthesis, characterization, and electrochemiluminescence of luminol-reduced gold nanoparticles and their application in a hydrogen peroxide sensor.

    PubMed

    Cui, Hua; Wang, Wei; Duan, Chun-Feng; Dong, Yong-Ping; Guo, Ji-Zhao

    2007-01-01

    It was found that chloroauric acid (HAuCl(4)) could be directly reduced by the luminescent reagent luminol in aqueous solution to form gold nanoparticles (AuNPs), the size of which depended on the amount of luminol. The morphology and surface state of as-prepared AuNPs were characterized by transmission electron microscopy, UV/visible spectroscopy, X-ray photoelectron spectroscopy, FTIR spectroscopy, and thermogravimetric analysis. All results indicated that residual luminol and its oxidation product 3-aminophthalate coexisted on the surface of AuNPs through the weak covalent interaction between gold and nitrogen atoms in their amino groups. Subsequently, a luminol-capped AuNP-modified electrode was fabricated by the immobilization of AuNPs on a gold electrode by virtue of cysteine molecules and then immersion in a luminol solution. The modified electrode was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy. The as-prepared modified electrode exhibited an electrochemiluminescence (ECL) response in alkaline aqueous solution under a double-step potential. H2O2 was found to enhance the ECL. On this basis, an ECL sensor for the detection of H2O2 was developed. The method is simple, fast, and reagent free. It is applicable to the determination of H2O2 in the range of 3x10(-7)-1x10(-3) mol L(-1) with a detection limit of 1x10(-7) mol L(-1) (S/N=3).

  12. Glove permeation by semiconductor processing mixtures containing glycol-ether derivatives.

    PubMed

    Zellers, E T; Ke, H Q; Smigiel, D; Sulewski, R; Patrash, S J; Han, M W; Zhang, G Z

    1992-02-01

    exposure of nitrile rubber samples resulted in shorter breakthrough times for all mixture components. In fact, exposure for as little as one-half of the nominal breakthrough time followed by air drying overnight resulted in measurable quantities of one or more of the component solvents at the inner surface of the gloves at the beginning of the next exposure. This effect was not observed with the butyl rubber samples. With the exception of the negative photoresist, heating previously exposed nitrile rubber samples at 70 degrees C for 20 hr prior to retesting reduced or eliminated the effects of residual solvents, permitting reuse of the gloves. The use of thin PVC or natural rubber gloves adjacent to the nitrile gloves provided moderate increases in permeation resistance.(ABSTRACT TRUNCATED AT 400 WORDS)

  13. Hydrogen embrittlement and stress corrosion cracking

    SciTech Connect

    Gibala, R.; Hehemann, R.F.

    1984-01-01

    This book presents proceedings which give an account of knowledge and understanding of hydrogen embrittlement and stress corrosion cracking from the viewpoints of the authors. The book is divided into two sections: (1) hydrogen embrittlement and (2) stress corrosion cracking, with papers by experts in the field contained in each section. Contents include: Hydrogen Embrittlement: Overview on hydrogen degradation phenomena; theories of hydrogen induced cracking of steels; hydrogen embrittlement of steels; hydrogen trapping and hydrogen embrittlement; some recent results on the direct observation of hydrogen trapping in metals and its consequence on embrittlement mechanisms; fracture mechanisms and surface chemistry; investigations of environment-assisted crack growth; the role of microstructure in hydrogen embrittlement; hydrogen related second phase embrittlement of solids. Stress corrosion cracking: Recent observations on the propagation of stress corrosion cracks and their relevance to proposed mechanisms of stress corrosion cracking; films and their importance in the nucleation of stress corrosion cracking stainless steel; stress corrosion cracking of ferritic and austenitic stainless steels; fundamentals of corrosion fatigue behavior of metals and alloys; hydrogen embrittlement and stress corrosion cracking of aluminum alloys; hydrogen permeation and embrittlement studies on metallic glasses; and industrial occurrence of stress corrosion cracking and means for prediction.

  14. Reduced graphene oxide-Hemin-Au nanohybrids: Facile one-pot synthesis and enhanced electrocatalytic activity towards the reduction of hydrogen peroxide.

    PubMed

    Gu, Chang-Jie; Kong, Fen-Ying; Chen, Zhi-Dong; Fan, Da-He; Fang, Hai-Lin; Wang, Wei

    2016-04-15

    A facile and effective strategy is demonstrated for the synthesis of ternary reduced graphene oxide-Hemin-Au (rGO-H-Au) nanohybrids. The nanohybrids were synthesized through a one-pot in situ reduction of GO and HAuCl4 under alkaline conditions using GO, Hemin and HAuCl4 as the starting materials. The synthesis process can be finished within 1h in a solution phase, without adding any additional surfactant, stabilizing agent and toxic or harsh chemical reducing agents. The resulting nanohybrids were characterized by UV-vis spectroscopy, Raman spectroscopy, transmission electron microscopy (TEM), and so on. Electrochemical measurements showed that the rGO-H-Au nanohybrids exhibited good electrocatalytic activity for the reduction of hydrogen peroxide (H2O2). Based on this property, a simple and highly sensitive amperometric biosensor for H2O2 had been developed. The linear relationships were obtained from 0.1 µM to 40 µM and the detection limit was estimated to be 30 nM. The simple and sensitive sensing platform showed great promising applications in the pharmaceutical, clinical and industrial detection of H2O2.

  15. Aniline as a dispersing and stabilizing agent for reduced graphene oxide and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection.

    PubMed

    Liu, Sen; Wang, Lei; Tian, Jingqi; Luo, Yonglan; Zhang, Xinxin; Sun, Xuping

    2011-11-15

    An aqueous dispersion of reduced graphene oxide (rGO) has been successfully prepared via chemical reduction of graphene oxide (GO) by hydrazine hydrate in the presence of aniline for the first time. The noncovalent functionalization of rGO by aniline leads to a rGO dispersion that can be very stable for several months without the observation of any floating or precipitated particles. Several analytical techniques including Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) have been used to characterize the resulting rGO. Taking advantages of the fact reducing ability of aniline toward AgNO(3), we further demonstrated the subsequent decoration of rGO with Ag nanoparticles (AgNPs) by in situ chemical reduction of silver salts. It was found that such AgNP/rGO nanocomposites exhibit good catalytic activity toward the reduction of hydrogen peroxide (H(2)O(2)), leading to an enzymeless sensor with a fast amperometric response time of less than 2s. The linear detection range is estimated to be from 100 μM to 80 mM (r=0.9991), and the detection limit is estimated to be 7.1 μM at a signal-to-noise ratio of 3.

  16. Hydrogen inhalation reduced epithelial apoptosis in ventilator-induced lung injury via a mechanism involving nuclear factor-kappa B activation

    SciTech Connect

    Huang, Chien-Sheng; Kawamura, Tomohiro; Peng, Ximei; Tochigi, Naobumi; Shigemura, Norihisa; Billiar, Timothy R.; Nakao, Atsunori; Toyoda, Yoshiya

    2011-05-06

    Highlights: {yields} Hydrogen is a regulatory molecule with antiinflammatory and antiapoptotic protective effects. {yields} There is very limited information on the pathways regulated in vivo by the hydrogen. {yields} Antiapoptotic abilities of hydrogen were explained by upregulation of the antiapoptotic gene. {yields} NF{kappa}B activation during hydrogen treatment was correlated with elevated antiapoptotic protein. {yields} NF{kappa}B activation associated with increase Bcl-2 may contribute to cytoprotection of hydrogen. -- Abstract: We recently demonstrated the inhalation of hydrogen gas, a novel medical therapeutic gas, ameliorates ventilator-induced lung injury (VILI); however, the molecular mechanisms by which hydrogen ameliorates VILI remain unclear. Therefore, we investigated whether inhaled hydrogen gas modulates the nuclear factor-kappa B (NF{kappa}B) signaling pathway. VILI was generated in male C57BL6 mice by performing a tracheostomy and placing the mice on a mechanical ventilator (tidal volume of 30 ml/kg or 10 ml/kg without positive end-expiratory pressure). The ventilator delivered either 2% nitrogen or 2% hydrogen in balanced air. NF{kappa}B activation, as indicated by NF{kappa}B DNA binding, was detected by electrophoretic mobility shift assays and enzyme-linked immunosorbent assay. Hydrogen gas inhalation increased NF{kappa}B DNA binding after 1 h of ventilation and decreased NF{kappa}B DNA binding after 2 h of ventilation, as compared with controls. The early activation of NF{kappa}B during hydrogen treatment was correlated with elevated levels of the antiapoptotic protein Bcl-2 and decreased levels of Bax. Hydrogen inhalation increased oxygen tension, decreased lung edema, and decreased the expression of proinflammatory mediators. Chemical inhibition of early NF{kappa}B activation using SN50 reversed these protective effects. NF{kappa}B activation and an associated increase in the expression of Bcl-2 may contribute, in part, to the

  17. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect

    Carl R. Evenson; Anthony F. Sammells; Richard Mackay; Richard Treglio; Sara L. Rolfe; Richard Blair; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Jon P. Wagner; Clive Brereton; Warren Wolfs

    2004-07-26

    During this quarter, work was focused on testing layered composite membranes under varying feed stream flow rates at high pressure. By optimizing conditions, H{sub 2} permeation rates as high as 423 mL {center_dot} min{sup -1} {center_dot} cm{sup -2} at 440 C were measured. Membrane stability was investigated by comparison to composite alloy membranes. Permeation of alloyed membranes showed a strong dependence on the alloying element. Impedance analysis was used to investigate bulk and grain boundary conductivity in cermets. Thin film cermet deposition procedures were developed, hydrogen dissociation catalysts were evaluated, and hydrogen separation unit scale-up issues were addressed.

  18. Hydrogen production

    NASA Technical Reports Server (NTRS)

    England, C.; Chirivella, J. E.; Fujita, T.; Jeffe, R. E.; Lawson, D.; Manvi, R.

    1975-01-01

    The state of hydrogen production technology is evaluated. Specific areas discussed include: hydrogen production fossil fuels; coal gasification processes; electrolysis of water; thermochemical production of hydrogen; production of hydrogen by solar energy; and biological production of hydrogen. Supply options are considered along with costs of hydrogen production.

  19. Hydrogen production

    NASA Technical Reports Server (NTRS)

    England, C.; Chirivella, J. E.; Fujita, T.; Jeffe, R. E.; Lawson, D.; Manvi, R.

    1975-01-01

    The state of hydrogen production technology is evaluated. Specific areas discussed include: hydrogen production fossil fuels; coal gasification processes; electrolysis of water; thermochemical production of hydrogen; production of hydrogen by solar energy; and biological production of hydrogen. Supply options are considered along with costs of hydrogen production.

  20. Effects of water-channel attractions on single-file water permeation through nanochannels

    NASA Astrophysics Data System (ADS)

    Xu, Yousheng; Tian, Xingling; Lv, Mei; Deng, Maolin; He, Bing; Xiu, Peng; Tu, Yusong; Zheng, Youqu

    2016-07-01

    Single-file transportation of water across narrow nanochannels such as carbon nanotubes has attracted much attention in recent years. Such permeation can be greatly affected by the water-channel interactions; despite some progress, this issue has not been fully explored. Herein we use molecular dynamics simulations to investigate the effects of water-channel attractions on occupancy, translational (transportation) and orientational dynamics of water inside narrow single-walled carbon nanotubes (SWNTs). We use SWNTs as the model nanochannels and change the strength of water-nanotube attractions to mimic the changes in the hydrophobicity/polarity of the nanochannel. We investigate the dependence of water occupancy inside SWNTs on the water-channel attraction and identify the corresponding threshold values for drying states, wetting-drying transition states, and stably wetting states. As the strength of water-channel attractions increases, water flow increases rapidly first, and then decreases gradually; the maximal flow occurs in the case where the nanochannel is predominately filled with the 1D water wire but with a small fraction of ‘empty states’, indicating that appropriate empty-filling (drying-wetting) switching can promote water permeation. This maximal flow is unexpected, since in traditional view, the stable and tight hydrogen-bonding network of the water wire is the prerequisite for high permeability of water. The underlying mechanism is discussed from an energetic perspective. In addition, the effect of water-channel attractions on reorientational dynamics of the water wire is studied, and a negative correlation between the flipping frequency of water wire and the water-channel attraction is observed. The underlying mechanism is interpreted in term of the axial total dipole moment of inner water molecules. This work would help to better understand the effects of water-channel attractions on wetting properties of narrow nanochannels, and on single

  1. Agonist-induced changes in Ca(2+) permeation through the nociceptor cation channel TRPA1.

    PubMed

    Karashima, Yuji; Prenen, Jean; Talavera, Karel; Janssens, Annelies; Voets, Thomas; Nilius, Bernd

    2010-03-03

    The Ca(2+)-permeable cation channel TRPA1 acts as an ionotropic receptor for various pungent compounds and as a noxious cold sensor in sensory neurons. It is unclear what proportion of the TRPA1-mediated current is carried by Ca(2+) ions and how the permeation pathway changes during stimulation. Here, based on the relative permeability of the nonstimulated channel to cations of different size, we estimated a pore diameter of approximately 11 A. Combined patch-clamp and Fura-2 fluorescence recordings revealed that with 2 mM extracellular Ca(2+), and at a membrane potential of -80 mV, approximately 17% of the inward TRPA1 current is carried by Ca(2+). Stimulation with mustard oil evoked an apparent dilatation of the pore of 3 A and an increase in divalent cation selectivity and fractional Ca(2+) current. Mutations in the putative pore that reduced the divalent permeability and fractional Ca(2+) current also prevented mustard-oil-induced increases in Ca(2+) permeation. It is interesting that fractional Ca(2+) currents for wild-type and mutant TRPA1 were consistently higher than values predicted based on biionic reversal potentials using the Goldman-Hodgkin-Katz equation, suggesting that binding of Ca(2+) in the pore hinders monovalent cation permeation. We conclude that the pore of TRPA1 is dynamic and supports a surprisingly large Ca(2+) influx.

  2. Evaluation of glove material resistance to ethylene glycol dimethyl ether permeation

    SciTech Connect

    Menke, R.; Chelton, C.F.

    1988-08-01

    Some glycol ethers have been reported to cause adverse reproductive effects in exposed male and female workers, and skin absorption has been determined to be an important route of entry of this class of chemicals. Because ethylene glycol dimethyl ether (EGDME) is a possible component of lithium-based primary battery electrolyte systems, a study was undertaken to determine the resistance of various commercially available gloves to permeation of this liquid. The gloves were tested by the ASTM Method F-739-81, and butyl rubber was found to be the most effective barrier to permeation. Further studies determined that the butyl gloves could be reused if they were reconditioned overnight in a vacuum oven at 50 degrees C. When a mixture of ethylene glycol dimethyl ether (30% v/v) and propylene carbonate (70% v/v) was tested, the results indicated that the propylene carbonate retards the permeation of the glycol ether by a factor of 10. This is believed to be caused by the propylene carbonate coating the surface of the butyl membrane to reduce the sorption of EGDME.

  3. 4-Methylbenzylidene camphor microspheres: reconstituted epidermis (Skinethic®) permeation and distribution.

    PubMed

    Monti, D; Chetoni, P; Burgalassi, S; Tampucci, S; Centini, M; Anselmi, C

    2015-06-01

    The UV filter 3(4-methylbenzylidene) camphor (4-MBC) is a common ingredient in sunscreen cosmetic products. However, different 'in vitro' and 'in vivo' studies suggest that 4-MBC can cause endocrine disrupting effects. Therefore, there is a need for new systems able to minimize the skin penetration of this UV filter. The aim of this study was to evaluate cutaneous permeation and distribution, through and into EPISKIN reconstituted epidermis (RE) from an O/W emulsion containing 4-MBC free or encapsulated in polymeric substantive microspheres. Microspheres containing 4-MBC were prepared using the emulsification-solvent evaporation method and characterized for shape and surface morphology and encapsulation efficiency. O/A emulsions containing sunscreen free or encapsulated in microspheres were undergone to permeation tests through RE using vertical diffusion cells. At the end of the in vitro permeation experiments, the skin was subjected to tape stripping procedure to separate stratum corneum from viable epidermis. Each part was properly treated to extract the sunscreen retained and subject to quantitative analysis. The encapsulation of the sunscreen in the microspheres remarkably reduced the permeation of 4-MBC and increased its retention on the skin surface where its action is more desirable. The results of this study confirm the validity of substantive microspheres as an ideal formulation candidate to use in sunscreen preparation as they appear minimizing its systemic uptake and the potential associate toxicological risks. Therefore, more of the active sunscreen remains on the surface of the skin where it is intended to act and a higher activity it will explicate. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  4. Na(+) permeates through L-type Ca(2+) channel in bovine airway smooth muscle.

    PubMed

    Sommer, Bettina; Flores-Soto, Edgar; Reyes-García, Jorge; Díaz-Hernández, Verónica; Carbajal, Verónica; Montaño, Luis M

    2016-07-05

    Membrane depolarization of airway smooth muscle (ASM) opens L-type voltage dependent Ca(2+) channels (L-VDCC) allowing Ca(2+) entrance to produce contraction. In Ca(2+) free conditions Na(+) permeates through L-VDCC in excitable and non-excitable cells and this phenomenon is annulled at µM Ca(2+) concentrations. Membrane depolarization also induces activation of Gq proteins and sarcoplasmic reticulum Ca(2+) release. In bovine ASM, KCl induced a transient contraction sensitive to nifedipine in Ca(2+)free medium, indicating an additional mechanism to the SR-Ca(2+) release. It is possible that Na(+) could permeate through L-VDCC in bovine ASM. KCl induced a transient contraction in Ca(2+) free medium with a fast intracellular Ca(2+) increment, reduced by TMB-8. This contraction was abolished by caffeine and CPA, diminished with nifedipine and augmented by Bay K8644. Increasing extracellular Na(+) concentration in tracheal myocytes, proportionally augmented the SBFI fluorescence ratio, suggesting an increment in the intracellular Na(+) concentration ([Na(+)]i). 50mM Na(+) with and without Ca(2+) induced a [Na(+)]i increment, enhanced by Bay K8644 and inhibited with D-600. In Ca(2+) free medium, KCl increased [Na(+)]i. Ba(2+) currents corresponding to L-VDCC were observed in myocytes and Na(+) permeated in the presence and absence of Ca(2+). SBFI-loaded myocytes in Na(+) and Ca(2+) containing Krebs stimulated with carbachol showed a Na(+) increment with a plateau. D-600 and 2-APB almost abolished the carbachol-induced Na(+) increment. RT-PCR demonstrated that CaV1.2 is the only L-VDCC subunit present in ASM. under physiological conditions, Na(+) permeates through L-VDCC in bovine ASM, probably contributing to sustain membrane depolarization during agonist stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Rheological Properties of Cystic Fibrosis Bronchial Secretion and in Vitro Drug Permeation Study: The Effect of Sodium Bicarbonate.

    PubMed

    Stigliani, Mariateresa; Manniello, Michele Dario; Zegarra-Moran, Olga; Galietta, Luis; Minicucci, Laura; Casciaro, Rosaria; Garofalo, Emilia; Incarnato, Loredana; Aquino, Rita P; Del Gaudio, Pasquale; Russo, Paola

    2016-08-01

    Cystic fibrosis (CF) is characterized by a thick, sticky mucus responsible for both airway obstruction and resistance to drug diffusion, reducing the effectiveness of drug delivery to the lung. Studies of drug-mucus interaction may be a crucial step in therapeutic management of CF. In the present research, the effect of a saline solution of sodium bicarbonate (100 mM) on sputum viscosity and the permeation properties of ketoprofen lysinate (Klys) from a previously developed dry powder inhaler were evaluated. Rheological measurements were performed using an ARES rotational rheometer (Rheometrics, Inc.) with a parallel plate geometry. The gel fraction, separated from the liquid phase of various sputum samples from CF patients was loaded onto the plate. The elastic (G') and the viscous (G") moduli, tan δ (ratio of G" to G') and η* (complex viscosity) were evaluated as frequency-dependent parameters. Drug permeation across CF sputum from dry powders was studied by means of Franz-type vertical diffusion cells. The experiments were conducted on untreated sputum and on sputum treated with bicarbonate. Rheological studies showed that the elastic modulus (G') was always greater than the viscous modulus (G") and the viscosity decreased with increasing frequency, as for pseudo-plastic fluids. Bicarbonate caused a downward shift of both the elastic and viscous moduli, with a reduction in complex viscosity. As to drug permeation, the untreated sputum slowed down drug dissolution and permeation compared to buffer permeability (control). Permeation studies across CF sputum treated with bicarbonate showed higher Klys dissolution/permeation than untreated sputum. The interesting results confirm the previously reported bicarbonate. effectiveness in CF; this weak base seems to act by decreasing high viscosity of the CF bronchial secretion and, potentially, resulting in better mucus clearance and in fighting pulmonary infections.

  6. A liposomal fluorescence assay to study permeation kinetics of drug-like weak bases across the lipid bilayer.

    PubMed

    Eyer, Klaus; Paech, Franziska; Schuler, Friedrich; Kuhn, Phillip; Kissner, Reinhard; Belli, Sara; Dittrich, Petra S; Krämer, Stefanie D

    2014-01-10

    Lipid bilayer permeation is considered the major route for in vivo barrier passage of drugs. Despite this fact, no technique is currently available to measure the kinetics of permeation across a single lipid bilayer of structurally unrelated drug-like solutes. We developed a liposomal fluorescence assay capable to determine permeation kinetics of basic drug-like solutes across lipid bilayers. The assay is based on the hypothesis that permeation of a weak base along a concentration gradient results in net proton release at the cis-side and net proton capture at the trans-side of the bilayer. The resulting pH changes were monitored with pH-sensitive fluorophores: Test compounds were incubated with liposomes containing a pH-sensitive fluorophore at the bilayer surfaces or in the aqueous lumen and fluorescence changes were monitored with a stopped-flow apparatus in solution or by total internal reflection fluorescence microscopy with surface-captured liposomes on a microfluidic platform. Incubation with lipophilic basic drugs resulted in the expected fluorescence changes while incubation with compounds without basic functionality or high polarity did not affect fluorescence. Kinetics of fluorescence changes followed bi-exponential functions. Logarithmic permeation coefficients (logPermapp) determined in solution and by microfluidics technology showed a good correlation (r(2)=0.94, n=7) and logPermapp increased with increasing lipophilicity. Neither diffusion in the aqueous phase nor partitioning into the bilayer was rate-limiting. PEGylation of 2% of the liposomal lipids reduced Permapp by a factor ~300. In conclusion, the presented liposomal fluorescence assay is capable to determine permeation kinetics of weak basic drug-like solutes across lipid bilayers. The method is adaptable to microfluidics technology for high-throughput measurements and can potentially be modified to work for weak acid solutes.

  7. Managing the interactions between sulfate- and perchlorate-reducing bacteria when using hydrogen-fed biofilms to treat a groundwater with a high perchlorate concentration.

    PubMed

    Ontiveros-Valencia, Aura; Tang, Youneng; Krajmalnik-Brown, Rosa; Rittmann, Bruce E

    2014-05-15

    A groundwater containing an unusually high concentration (∼4000 μg/L) of perchlorate (ClO4(-)) and significant (∼60 mg/L) sulfate (SO4(2-)) was treated with hydrogen (H2)-fed biofilms. The objective was to manage the interactions between sulfate-reducing bacteria (SRB) and perchlorate-reducing bacteria (PRB) by controlling the H2-delivery capacity to achieve ClO4(-) reduction to below the detection limit (4 μg/L). Complete ClO4(-) reduction with minimized SO4(2-) reduction was achieved by using two membrane biofilm reactors (MBfRs) in series. The lead MBfR removed >96% ClO4(-), and the lag MBfR further reduced ClO4(-) to below the detection limit. SO4(2-) reduction ranged from 10 to 60%, and lower SO4(2-) reduction corresponded to lower H2 availability (i.e., lower H2 pressure or membranes with lower H2-delivery capacity). Minimizing SO4(2-) reduction improved ClO4(-) removal by increasing the fraction of PRB in the biofilm. High SO4(2-) flux correlated with enrichment of Desulfovibrionales, autotrophic SRB that can compete strongly with denitrifying bacteria (DB) and PRB. Increased SO4(2-) reduction also led to enrichment of: 1) Ignavibacteriales and Thiobacteriales, sulfide-oxidizing bacteria that allow sulfur cycling in the biofilm; 2) Bacteroidales, heterotrophic microorganisms likely using organic sources of carbon (e.g., acetate); and 3) Spirochaetales, which potentially utilize soluble microbial products (SMPs) from autotrophic SRB to produce acetate. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Corneal permeation properties of a charged lipid nanoparticle carrier containing dexamethasone

    PubMed Central

    Ban, Junfeng; Zhang, Yan; Huang, Xin; Deng, Guanghan; Hou, Dongzhi; Chen, Yanzhong; Lu, Zhufen

    2017-01-01

    Drug delivery carriers can maintain effective therapeutic concentrations in the eye. To this end, we developed lipid nanoparticles (L/NPs) in which the surface was modified with positively charged chitosan, which engaged in hydrogen bonding with the phospholipid membrane. We evaluated in vitro corneal permeability and release characteristics, ocular irritation, and drug dynamics of modified and unmodified L/NPs in aqueous humor. The size of L/NPs was uniform and showed a narrow distribution. Corneal permeation was altered by the presence of chitosan and was dependent on particle size; the apparent permeability coefficient of dexamethasone increased by 2.7 and 1.8 times for chitosan-modified and unmodified L/NPs, respectively. In conclusion, a chitosan-modified system could be a promising method for increasing the ocular bioavailability of unmodified L/NPs by enhancing their retention time and permeation into the cornea. These findings provide a theoretical basis for the development of effective drug delivery systems in the treatment of ocular disease. PMID:28243093

  9. Energetic and molecular water permeation mechanisms of the human red blood cell urea transporter B.

    PubMed

    Azouzi, Slim; Gueroult, Marc; Ripoche, Pierre; Genetet, Sandrine; Colin Aronovicz, Yves; Le Van Kim, Caroline; Etchebest, Catherine; Mouro-Chanteloup, Isabelle

    2013-01-01

    Urea transporter B (UT-B) is a passive membrane channel that facilitates highly efficient permeation of urea. In red blood cells (RBC), while the major function of UT-B is to transport urea, it is assumed that this protein is able to conduct water. Here, we have revisited this last issue by studying RBCs and ghosts from human variants with defects of aquaporin 1 (AQP1) or UT-B. We found that UT-B's osmotic water unit permeability (pfunit) is similar to that of AQP1. The determination of diffusional permeability coefficient (Pd) allowed the calculation of the Pf/Pd ratio, which is consistent with a single-file water transport. Molecular dynamic simulations of water conduction through human UT-B confirmed the experimental finding. From these results, we propose an atomistic description of water-protein interactions involved in this permeation. Inside the UT-B pore, five water molecules were found to form a single-file and move rapidly along a channel by hydrogen bond exchange involving two critical threonines. We further show that the energy barrier for water located in the central region coincides with a water dipole reorientation, which can be related to the proton exclusion observed experimentally. In conclusion, our results indicate that UT-B should be considered as a new member of the water channel family.

  10. Energetic and Molecular Water Permeation Mechanisms of the Human Red Blood Cell Urea Transporter B

    PubMed Central

    Azouzi, Slim; Gueroult, Marc; Ripoche, Pierre; Genetet, Sandrine; Colin Aronovicz, Yves; Le Van Kim, Caroline; Etchebest, Catherine; Mouro-Chanteloup, Isabelle

    2013-01-01

    Urea transporter B (UT-B) is a passive membrane channel that facilitates highly efficient permeation of urea. In red blood cells (RBC), while the major function of UT-B is to transport urea, it is assumed that this protein is able to conduct water. Here, we have revisited this last issue by studying RBCs and ghosts from human variants with defects of aquaporin 1 (AQP1) or UT-B. We found that UT-B's osmotic water unit permeability (pfunit) is similar to that of AQP1. The determination of diffusional permeability coefficient (Pd) allowed the calculation of the Pf/Pd ratio, which is consistent with a single-file water transport. Molecular dynamic simulations of water conduction through human UT-B confirmed the experimental finding. From these results, we propose an atomistic description of water–protein interactions involved in this permeation. Inside the UT-B pore, five water molecules were found to form a single-file and move rapidly along a channel by hydrogen bond exchange involving two critical threonines. We further show that the energy barrier for water located in the central region coincides with a water dipole reorientation, which can be related to the proton exclusion observed experimentally. In conclusion, our results indicate that UT-B should be considered as a new member of the water channel family. PMID:24376529

  11. Phytoglycogen improves the water solubility and Caco-2 monolayer permeation of quercetin.

    PubMed

    Chen, Hua; Yao, Yuan

    2017-04-15

    The study examined the capability of phytoglycogen (PG) to improve the water solubility of quercetin (QC). PG-QC formulations were prepared by mixing a QC ethanol solution with a PG aqueous solution followed with vacuum drying of the supernatant. PG-QC formulations with various PG to QC ratios were prepared; the solubility of QC reached 241.76μg/mL at PG/QC ratio of 30/1 compared with approximately 4.32μg/mL of QC alone. The X-ray powder diffraction and FTIR analyses showed a significant reduction of QC crystallinity upon formulating with PG that was associated with the intermolecular hydrogen bonding between the hydroxyl groups of QC and PG. The Caco-2 cell monolayer permeation tests showed that PG-QC formulations resulted in substantially enhanced cellular uptake and transepithelial permeation of QC, which was related to the much-enhanced QC solubility. This study showed the potential of using PG to formulate poorly water-soluble ingredients such as QC.

  12. Hydrogen systems

    SciTech Connect

    Veziroglu, T.N.; Zhu, Y.; Bao, D.

    1985-01-01

    This book presents the papers given at a symposium on hydrogen fuels. Topics considered at the symposium included hydrogen from fossil fuels, electrolysis, photolytic hydrogen generation, thermochemical and photochemical methods of hydrogen production, catalysts, hydrogen biosynthesis, novel and hybrid methods of hydrogen production, storage and handling, metal hydrides and their characteristics, utilization, hydrogen fueled internal combustion engines, hydrogen gas turbines, hydrogen flow and heat transfer, fuel cells, synthetic hydrocarbon fuels, thermal energy transfer, hydrogen purification, research programs, economics, primary energy sources, environmental impacts, and safety.

  13. The hydrogen permeability of Pd{sub 4}S

    SciTech Connect

    O'Brien, Casey; Miller, James; Gellman, Andrew; Morreale, Bryan

    2011-04-01

    Hydrogen permeates rapidly through pure Pd membranes, but H{sub 2}S, a common minor component in hydrogen-containing streams, produces a Pd{sub 4}S film on the Pd surface that severely retards hydrogen permeation. Hydrogen still permeates through the bi-layered Pd{sub 4}S/Pd structure, indicating that the Pd{sub 4}S surface is active for H{sub 2} dissociation; the low hydrogen permeability of the Pd4S film is responsible for the decreased rate of hydrogen transport. In this work, the hydrogen permeability of Pd{sub 4}S was determined experimentally in the 623-773 K temperature range. Bi-layered Pd{sub 4}S/Pd foils were produced by exposing pure Pd foils to H{sub 2}S. H{sub 2} fluxes through the bi-layered Pd{sub 4}S/Pd foils were measured during exposure to both pure H{sub 2} and a 1000 ppm H{sub 2}S in H{sub 2} gas mixture. Our results show that H{sub 2}S slows hydrogen permeation through Pd mainly by producing a Pd{sub 4}S film on the Pd surface that is roughly an order-of-magnitude less permeable to hydrogen (k{sub Pd{sub 4}S} = 10{sup −7.5} exp(−0.22 eV/k{sub B}T) molH{sub 2}/m/s/Pa{sup 1/2}) than pure Pd. The presence of H{sub 2}S in the gas stream results in greater inhibition of hydrogen transport than can be explained by the very low permeability of Pd{sub 4}S. H{sub 2}S may block H2 dissociation sites at the Pd{sub 4}S surface.

  14. Drug Release and Skin Permeation from Lipid Liquid Crystalline Phases

    NASA Astrophysics Data System (ADS)

    Costa-Balogh, F. O.; Sparr, E.; Sousa, J. J. S.; Pais, A. A. C. C.

    We have studied drug release and skin permeation from several different liquid crystalline lipid formulations that may be used to control the respective release rates. We have studied the release and permeation through human skin of a water-soluble and amphiphilic drug, propranolol hydrochloride, from several formulations prepared with monoolein and phytantriol as permeation enhancers and controlled release excipients. Diolein and cineol were added to selected formulations. We observed that viscosity decreases with drug load, wich is compatible with the occurrence of phase changes. Diolein stabilizes the bicontinuous cubic phases leading to an increase in viscosity and sustained release of the drug. The slowest release was found for the cubic phases with higher viscosity. Studies on skin permeation showed that these latter formulations also presented lower permeability than the less viscous monoolein lamellar phases. Formulations containing cineol originated higher permeability with higher enhancement ratios. Thus, the various formulations are adapted to different circumstances and delivery routes. While a slow release is usually desired for drug sustained delivery, the transdermal route may require a faster release. Lamellar phases, which are less viscous, are more adapted to transdermal applications. Thus, systems involving lamellar phases of monoolein and cineol are good candidates to be used as skin permeation enhancers for propranolol hydrochloride.

  15. Permeation enhancers in the transmucosal delivery of macromolecules.

    PubMed

    Sharma, S; Kulkarni, J; Pawar, A P

    2006-06-01

    The present article presents a compilation of information regarding various chemical permeation enhancers useful for transmucosal delivery of macromolecules. In the recent past, biotechnology has provided a great number of macromolecules for treatment of various disorders. With the rise in importance of macromolecules, especially proteins and peptides, an enormous volume of research on various novel routes of drug delivery has been carried out. Inspite of its giving the highest and fastest bioavailability, the parenteral route is not a preferred option, due to its inconvenience and the noncompliance of patients. Mucosal surfaces are the most common and convenient routes for delivering drugs to the body. However, macromolecular drugs such as peptides and proteins are unable to overcome the mucosal barriers and/or are degraded before reaching the blood stream. Transmucosal drug delivery with various bioavailability enhancers is receiving increasing attention as a possible alternative to parenteral delivery of macromolecules. Among the various bioavailability enhancers, chemical permeation enhancers have been most studied. Permeation enhancers reversibly modulate the permeability of the barrier layer in favor of drug absorption. Newer permeation enhancers like zonula occludin toxin, poly-L-arginine, chitosan derivatives etc have shown a significant increase in drug absorption through transmucosal routes without serious damage to the barrier layer. In particular delivery of macromolecules via the nasal and pulmonary routesusing newer permeation enhancers has emerged as a possible alternative to the parenteral delivery ofmacromolecules.

  16. Gas permeation through a high density polyethylene microwave window

    SciTech Connect

    Viet Nguyen-Tuong

    1993-07-01

    Due to its low dielectric constant and low loss tangent, high density polyethylene (HDPE) has been selected for use as a high power microwave vacuum window in the Continuous Electron Beam Accelerator Facility cryounit. This window isolates the cryounit waveguide vacuum from the dry air in the external waveguide system. Gas permeation through the window will lead to cryopumping of the gas onto the cold waveguide walls and the cold ceramic window of the superconducting cavity. The gas load from permeation and outgassing of the window have to be minimized, due to the possibility of arcing when high power is applied through the waveguide. The outgassing and permeation of air through the 3.2 mm thick HDPE window were measured using the throughput method. A typical outgassing rate of 5.0 x 10{sup -1} Torr l/s/cm{sup 2} for samples baked out at 70 C was observed 20 h after pump down and bakeout. The gas load due to permeation through 34 cm{sup 2} of the window was 1.6 x 10 {sup -7} Torr l/s. The gas permeation through the 3.2 mm thick HDPE coated with a 300 nm barrier layer of SiO{sub x} was also investigated. No improvement was observed. It was presumably due to the presence of defects in the deposited SiO{sub x} layer.

  17. In vitro permeation of platinum through African and Caucasian skin.

    PubMed

    Franken, A; Eloff, F C; du Plessis, J; Badenhorst, C J; Du Plessis, J L

    2015-02-03

    The majority of the South African workforce are Africans, therefore potential racial differences should be considered in risk and exposure assessments in the workplace. Literature suggests African skin to be a superior barrier against permeation and irritants. Previous in vitro studies on metals only included skin from Caucasian donors, whereas this study compared the permeation of platinum through African and Caucasian skin. A donor solution of 0.3 mg/ml of potassium tetrachloroplatinate (K₂PtCl₄) dissolved in synthetic sweat was applied to the vertical Franz diffusion cells with full thickness abdominal skin. Skin from three female African and three female Caucasian donors were included (n=21). The receptor solution was removed at various intervals during the 24 h experiment, and analysed with high resolution inductively coupled plasma-mass spectrometry (ICP-MS). Skin was digested and analysed by inductively coupled plasma-optical emission spectrometry (ICP-OES). Significantly higher permeation of platinum through intact African skin (p=0.044), as well as a significantly higher mass of platinum retention in African skin in comparison with Caucasian skin (p=0.002) occurred. Significant inter-donor variation was found in both racial groups (p<0.02). Results indicate that African workers have increased risk of dermal permeation and therefore possible sensitisation caused by dermal exposure to platinum salts. These results are contradictory to limited literature suggesting a superior barrier in African skin and further investigation is necessary to explain the higher permeation through African skin.

  18. Development of ciclopirox nail lacquer with enhanced permeation and retention.

    PubMed

    Thapa, Raj Kumar; Choi, Ju Yeon; Go, Toe Gyung; Kang, Min Hyung; Han, Sang Duk; Jun, Joon-Ho; Son, Mi Won; Yong, Chul Soon; Kim, Jong Oh

    2016-07-01

    Onychomycosis is a prevailing disease caused by fungal infection of nails that mostly affects athletes and the elderly. Ciclopirox is approved by the US Food and Drug Administration for the topical treatment of onychomycosis. However, the desired penetration of ciclopirox into the nail bed has not been achieved via topical application for efficient treatment. Therefore, the main aim of this study was to enhance ciclopirox permeation and retention in nail by the development of a new nail lacquer formulation. We screened the effects of different solvents, alkalizing agents, and permeation enhancers on the permeation of bovine hooves by ciclopirox and its retention in human nail clippings. The results suggest that isopropyl alcohol, potassium hydroxide, and urea as the solvent, alkalizing agent, and permeation enhancer, respectively, improved the permeation of the ciclopirox nail lacquer formulation the most with high flux rates. Comparison of the final formulation and marketed product revealed enhanced retention of ciclopirox from our developed formulation in human nail clippings. Therefore, our newly developed nail lacquer may be a potentially effective formulation for the treatment of onychomycosis in humans.

  19. Vehicle influence on permeation through intact and compromised skin.

    PubMed

    Gujjar, Meera; Banga, Ajay K

    2014-09-10

    The purpose of this study was to compare the transdermal permeation of a model compound, diclofenac diethylamine, from a hydrophilic and lipophilic vehicle across in vitro models simulating compromised skin. Mineral oil served as a lipophilic vehicle while 10mM phosphate buffered saline served as a hydrophilic vehicle. Compromised skin was simulated by tape stripping, delipidization, or microneedle application and compared with intact skin as a control. Transepidermal water loss was measured to assess barrier function. Skin compromised with tape stripping and delipidization significantly (p<0.05) increased permeation of diclofenac diethylamine compared to intact and microneedle treated skin with phosphate buffered saline vehicle. A similar trend in permeation was observed with mineral oil as the vehicle. For both vehicles, permeation across skin increased in the same order and correlated with degree of barrier impairment as indicated by transepidermal water loss values: intactpermeation into and across skin compared to mineral oil vehicle for all simulated models of compromised skin.

  20. Permeation pathway of macromolecules and nanospheres through skin.

    PubMed

    Todo, Hiroaki; Kimura, Eriko; Yasuno, Hirotaka; Tokudome, Yoshihiro; Hashimoto, Fumie; Ikarashi, Yoshiaki; Sugibayashi, Kenji

    2010-01-01

    The permeation pathway of macromolecules and nanospheres through skin was evaluated using fluorescent isothiocyanate (FITC)-dextran (average MW, 4 kDa) (FD-4) and nanospheres (500 nm in diameter) in hairless rat abdominal skin and porcine ear skin as well as a three-dimensional cultured human skin model (cultured skin model). A low molecular hydrophilic compound, sodium fluorescein (FL) (MW, 376 Da), was used for comparison. FL penetrated the stratum corneum and permeated the viable epidermis of hairless rat skin, whereas less permeation of FL was observed through the cultured skin model, suggesting that the primary permeation pathway for the hydrophilic material may be skin appendages through the rat skin. A macromolecular compound, FD-4, was distributed through the hair follicles of the rat skin. In addition, nanospheres were detected in the hair follicles of porcine skin, although no skin permeation was detected. These findings suggest that appendage routes such as hair follicles can be a penetration pathway of macromolecules and nanospheres through skin.

  1. Effects of electrolytic hydrogen in bcc metals

    SciTech Connect

    Armacanqui Tipacti, M.E.

    1986-01-01

    Lattice defects produced in polycrystalline bcc Ti-30Mo, tantalum, and niobium by hydrogen concentration gradients established by cathodic charging were studied. Anomalous hydrogen diffusion in these metals is revealed by x-ray diffraction and hydrogen permeation experiments. There are four main effects observed during cathodic charging: (a) much slower kinetics of the lattice parameter change compared with diffusion-controlled kinetics, (b) nonuniform lattice parameter, depending on grain orientation, (c) change in angle of diffraction, suggesting grain rotation, and (d) appearance of diffraction subpeaks. Hydrogen concentration profiles on charged samples determined by hot vacuum extraction indicate the presence of peaks of high hydrogen content throughout the sample thickness suggesting hydrogen trapping at various locations within the lattice. The traps were identified as dislocations by TEM. Hydrogen permeation experiments carried out to study the observed anomalies indicate that defects are not generated at current densities below 250 ..mu..A/cm/sup 2/ in a solution of 0.1 N NaOH. The calculated magnitude of the stresses at the entry surface sufficient to cause generation of dislocations is found to be a very small fraction of the materials' yield stress. The effects of cathodic charging on thin films of iron, titanium, and tantalum were also studied.

  2. Biofilm increases permeate quality by organic carbon degradation in low pressure ultrafiltration.

    PubMed

    Chomiak, A; Traber, J; Morgenroth, E; Derlon, N

    2015-11-15

    + membrane" composite retained a larger amount of biodegradable foulant than the membrane alone, due to the activity of the biofilm. However, this resulted in an increased biofilm accumulation and reduced flux. In presence of the biofilm, the highest fluxes were observed for control (no foulant) and for small non-biodegradable foulants (PSS 1 kDa). Low fluxes were observed for the accumulating on membrane surface or degradable foulants (exp. B). But, the lowest fluxes were observed in absence of the biofilm (exp. C) due to physical accumulation of the foulants (PSS 80 kDa and Dextran 2000 kDa). Overall our study demonstrates that the presence of biofilms on membrane surfaces has some benefits: (i) biofilm helps to increase the permeate quality and (ii) biofilms protect the membrane from further fouling. Permeate flux stabilizes in the case of biofilm-membrane composite, while it continuously declines in the case of the membrane only. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Core-shell heterostructured multiwalled carbon nanotubes@reduced graphene oxide nanoribbons/chitosan, a robust nanobiocomposite for enzymatic biosensing of hydrogen peroxide and nitrite.

    PubMed

    Mani, Veerappan; Govindasamy, Mani; Chen, Shen-Ming; Chen, Tse-Wei; Kumar, Annamalai Senthil; Huang, Sheng-Tung

    2017-09-19

    A robust nanobiocomposite based on core-shell heterostructured multiwalled carbon nanotubes@reduced graphene oxide nanoribbons (MWCNTs@rGONRs)/chitosan (CHIT) was described for the fabrication of sensitive, selective, reproducible and durable biosensor for hydrogen peroxide (H2O2) and nitrite (NO2(-)). The excellent physicochemical properties of MWCNTs@rGONRs such as, presence of abundant oxygen functionalities, higher area-normalized edge-plane structures and chemically active sites in combination with excellent biocompatibility of CHIT resulting in the versatile immobilization matrix for myoglobin (Mb). The most attractive property of MWCNTs@rGONRs which distinguishes it from other members of graphene family is its rich edge density and edge defects that are highly beneficial for constructing enzymatic biosensors. The direct electron transfer characteristics such as, redox properties, amount of immobilized active Mb, electron transfer efficiency and durability were studied. Being as good immobilization matrix, MWCNTs@rGONRs/CHIT is also an excellent signal amplifier which helped in achieving low detection limits to quantify H2O2 (1 nM) and NO2(-) (10 nM). The practical feasibility of the biosensor was successfully validated in contact lens cleaning solution and meat sample.

  4. Ternary nanohybrid of reduced graphene oxide-nafion@silver nanoparticles for boosting the sensor performance in non-enzymatic amperometric detection of hydrogen peroxide.

    PubMed

    Yusoff, Norazriena; Rameshkumar, Perumal; Mehmood, Muhammad Shahid; Pandikumar, Alagarsamy; Lee, Hing Wah; Huang, Nay Ming

    2017-01-15

    A sensitive and novel electrochemical sensor was developed for the detection of hydrogen peroxide (H2O2) using a reduced graphene oxide-nafion@silver6 (rGO-Nf@Ag6) nanohybrid modified glassy carbon electrode (GC/rGO-Nf@Ag6). The GC/rGO-Nf@Ag6 electrode exhibited an excellent electrochemical sensing ability for determining H2O2 with high sensitivity and selectivity. The detection limit of the electrochemical sensor using the GC/rGO-Nf@Ag6 electrode for H2O2 determination was calculated to be 5.35×10(-7)M with sensitivity of 0.4508µAµM(-1). The coupling between rGO-Nf with silver nanoparticles (AgNPs) significantly boosted the electroanalytical performance by providing more active area for analyte interaction, thereby allowing more rapid interfacial electron transfer process. The interfering effect on the current response of H2O2 was studied and the results revealed that the sensor electrode exhibited an excellent immunity from most common interferents. The proposed non-enzymatic electrochemical sensor was used for determining H2O2 in apple juice, and the sensor electrode provided satisfactory results with reliable recovery values. These studies revealed that the novel GC/rGO-Nf@Ag6 sensor electrode could be a potential candidate for the detection of H2O2.

  5. High sensitive and selective sensing of hydrogen peroxide released from pheochromocytoma cells based on Pt-Au bimetallic nanoparticles electrodeposited on reduced graphene sheets.

    PubMed

    Yu, Guangxia; Wu, Weixiang; Pan, Xiaoqi; Zhao, Qiang; Wei, Xiaoyun; Lu, Qing

    2015-01-26

    In this study, a high sensitive and selective hydrogen peroxide (H2O2) sensor was successfully constructed with Pt-Au bimetallic nanoparticles (Pt-Au NPs)/reduced graphene sheets (rGSs) hybrid films. Various molar ratios of Au to Pt and different electrodeposition conditions were evaluated to control the morphology and electrocatalytic activity of the Pt-Au bimetallic nanoparticles. Upon optimal conditions, wide linear ranges from 1 µM to 1.78 mM and 1.78 mM to 16.8 mM were obtained, with a detection limit as low as 0.31 µM. Besides, due to the synergetic effects of the bimetallic NPs and rGSs, the amperometric H2O2 sensor could operate at a low potential of 0 V. Under this potential, not only common anodic interferences induced from ascorbic acid, uric acid and dopamine, but also the cathodic interference induced from endogenous O2 could be effectively avoided. Furthermore, with rat pheochromocytoma cells (PC 12) as model, the proposed sensor had been successfully used in the detection of H2O2 released from the cancer cells. This method with wide linear ranges and excellent selectivity can provide a promising alternative for H2O2 monitoring in vivo in the fields of physiology, pathology and diagnosis.

  6. High Sensitive and Selective Sensing of Hydrogen Peroxide Released from Pheochromocytoma Cells Based on Pt-Au Bimetallic Nanoparticles Electrodeposited on Reduced Graphene Sheets

    PubMed Central

    Yu, Guangxia; Wu, Weixiang; Pan, Xiaoqi; Zhao, Qiang; Wei, Xiaoyun; Lu, Qing

    2015-01-01

    In this study, a high sensitive and selective hydrogen peroxide (H2O2) sensor was successfully constructed with Pt-Au bimetallic nanoparticles (Pt-Au NPs)/reduced graphene sheets (rGSs) hybrid films. Various molar ratios of Au to Pt and different electrodeposition conditions were evaluated to control the morphology and electrocatalytic activity of the Pt-Au bimetallic nanoparticles. Upon optimal conditions, wide linear ranges from 1 µM to 1.78 mM and 1.78 mM to 16.8 mM were obtained, with a detection limit as low as 0.31 µM. Besides, due to the synergetic effects of the bimetallic NPs and rGSs, the amperometric H2O2 sensor could operate at a low potential of 0 V. Under this potential, not only common anodic interferences induced from ascorbic acid, uric acid and dopamine, but also the cathodic interference induced from endogenous O2 could be effectively avoided. Furthermore, with rat pheochromocytoma cells (PC 12) as model, the proposed sensor had been successfully used in the detection of H2O2 released from the cancer cells. This method with wide linear ranges and excellent selectivity can provide a promising alternative for H2O2 monitoring in vivo in the fields of physiology, pathology and diagnosis. PMID:25629706

  7. Nano-assemblies consisting of Pd/Pt nanodendrites and poly (diallyldimethylammonium chloride)-coated reduced graphene oxide on glassy carbon electrode for hydrogen peroxide sensors.

    PubMed

    Zhang, Yanyan; Zhang, Cong; Zhang, Di; Ma, Min; Wang, Weizhen; Chen, Qiang

    2016-01-01

    Non-enzymatic hydrogen peroxide (H2O2) sensors were fabricated on the basis of glassy carbon (GC) electrode modified with palladium (Pd) core-platinum (Pt) nanodendrites (Pt-NDs) and poly (diallyldimethylammonium chloride) (PDDA)-coated reduced graphene oxide (rGO). A facile wet-chemical method was developed for preparing Pd core-Pt nanodendrites. In this approach, the growth of Pt NDs was directed by Pd nanocrystal which could be regarded as seed. The PDDA-coated rGO could form uniform film on the surface of GC electrode, which provided a support for Pd core- Pt NDs adsorption by self-assembly. The morphologies of the nanocomposites were characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction (spectrum). Electrocatalytic ability of the nanocomposites was evaluated by cyclic voltammetry and chronoamperometric methods. The sensor fabricated by Pd core-Pt NDs/PDDA-rGO/GCE exhibited high sensitivity (672.753 μA mM(-1) cm(-2)), low detection limit (0.027 μM), wider linear range (0.005-0.5mM) and rapid response time (within 5s). Besides, it also exhibited superior reproducibility, excellent anti-interference performance and long-term stability. The present work could afford a viable method and efficient platform for fabricating all kinds of amperometric sensors and biosensors.

  8. Nucleotides with altered hydrogen bonding capacities impede human DNA polymerase η by reducing synthesis in the presence of the major cisplatin DNA adduct.

    PubMed

    Nilforoushan, Arman; Furrer, Antonia; Wyss, Laura A; van Loon, Barbara; Sturla, Shana J

    2015-04-15

    Human DNA polymerase η (hPol η) contributes to anticancer drug resistance by catalyzing the replicative bypass of DNA adducts formed by the widely used chemotherapeutic agent cis-diamminedichloroplatinum (cisplatin). A chemical basis for overcoming bypass-associated resistance requires greater knowledge of how small molecules influence the hPol η-catalyzed bypass of DNA adducts. In this study, we demonstrated how synthetic nucleoside triphosphates act as hPol η substrates and characterized their influence on hPol η-mediated DNA synthesis over unmodified and platinated DNA. The single nucleotide incorporation efficiency of the altered nucleotides varied by more than 10-fold and the higher incorporation rates appeared to be attributable to the presence of an additional hydrogen bond between incoming dNTP and templating base. Finally, full-length DNA synthesis in the presence of increasing concentrations of synthetic nucleotides reduced the amount of DNA product independent of the template, representing the first example of hPol η inhibition in the presence of a platinated DNA template.

  9. Immobilizing gold nanoparticles in mesoporous silica covered reduced graphene oxide: a hybrid material for cancer cell detection through hydrogen peroxide sensing.

    PubMed

    Maji, Swarup Kumar; Sreejith, Sivaramapanicker; Mandal, Amal Kumar; Ma, Xing; Zhao, Yanli

    2014-08-27

    A new kind of two-dimensional (2-D) hybrid material (RGO-PMS@AuNPs), fabricated by the immobilization of ultrasmall gold nanoparticles (AuNPs, ∼3 nm) onto sandwich-like periodic mesopourous silica (PMS) coated reduced graphene oxide (RGO), was employed for both electrocatalytic application and cancer cell detection. The hybrid-based electrode sensor showed attractive electrochemical performance for sensitive and selective nonenzymatic detection of hydrogen peroxide (H2O2) in 0.1 M phosphate buffered saline, with wide linear detection range (0.5 μM to 50 mM), low detection limit (60 nM), and good sensitivity (39.2 μA mM(-1) cm(-2)), and without any interference by common interfering agents. In addition, the sensor exhibited a high capability for glucose sensing and H2O2 detection in human urine. More interestingly, the hybrid was found to be nontoxic, and the electrode sensor could sensitively detect a trace amount of H2O2 in a nanomolar level released from living tumor cells (HeLa and HepG2). Because the hybrid presents significant properties for the detection of bioactive species and certain cancerous cells by the synergistic effect from RGO, PMS, and AuNPs, it could be able to serve as a versatile platform for biosensing, bioanalysis, and biomedical applications.

  10. Sporotalea propionica gen. nov. sp. nov., a hydrogen-oxidizing, oxygen-reducing, propionigenic firmicute from the intestinal tract of a soil-feeding termite.

    PubMed

    Boga, Hamadi I; Ji, Rong; Ludwig, Wolfgang; Brune, Andreas

    2007-01-01

    An unusual propionigenic bacterium was isolated from the intestinal tract of the soil-feeding termite Thoracotermes macrothorax. Strain TmPN3 is a motile, long rod that stains gram-positive, but reacts gram-negative in the KOH test. It forms terminal endospores and ferments lactate, glucose, lactose, fructose, and pyruvate to propionate and acetate via the methyl-malonyl-CoA pathway. Propionate and acetate are formed at a ratio of 2:1, typical of most propionigenic bacteria. Under a H(2)/CO(2) atmosphere, the fermentation product pattern of glucose, fructose, and pyruvate shifts towards propionate formation at the expense of acetate. Cell suspensions reduce oxygen with lactate, glucose, glycerol, or hydrogen as electron donor. In the presence of oxygen, the product pattern of lactate fermentation shifts from propionate to acetate production. 16S rRNA gene sequence analysis showed that strain TmPN3 is a firmicute that clusters among the Acidaminococcaceae, a subgroup of the Clostridiales comprising obligately anaerobic, often endospore-forming bacteria that possess an outer membrane. Based on phenotypic differences and less than 92% sequence similarity to the 16S rRNA gene sequence of its closest relative, the termite hindgut isolate Acetonema longum, strain TmPN3(T) is proposed as the type species of a new genus, Sporotalea propionica gen. nov. sp. nov. (DSM 13327(T), ATCC BAA-626(T)).

  11. Hydrogen-rich saline reduces cell death through inhibition of DNA oxidative stress and overactivation of poly (ADP-ribose) polymerase-1 in retinal ischemia-reperfusion injury

    PubMed Central

    LIU, HONGWEI; HUA, NING; XIE, KELIANG; ZHAO, TINGTING; YU, YONGHAO

    2015-01-01

    Overactivation of poly (ADP-ribose) polymerase 1 (PARP-1), as a result of sustained DNA oxidation in ischemia-reperfusion injury, triggers programmed cell necrosis and apoptosis. The present study was conducted to demonstrate whether hydrogen-rich saline (HRS) has a neuroprotective effect on retinal ischemia reperfusion (RIR) injury through inhibition of PARP-1 activation. RIR was induced by transient elevation of intraocular pressure in rats. HRS (5 ml/kg) was administered peritoneally every day from the beginning of reperfusion in RIR rats until the rats were sacrificed. Retinal damage and cell death was determined using hematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. DNA oxidative stress was evaluated by immunofluorescence staining of 8-hydroxy-2-deoxyguanosine. In addition, the expression of PARP-1 and caspase-3 was investigated by western blot analysis and/or immunohistochemical staining. The results demonstrated that HRS administration improved morphological alterations and reduced apoptosis following RIR injury. Furthermore, the present study found that HRS alleviated DNA oxidation and PARP-1 overactivation in RIR rats. HRS can protect RIR injury by inhibition of PARP-1, which may be involved in DNA oxidative stress and caspase-3-mediated apoptosis. PMID:25954991

  12. A facile approach to prepare crumpled CoTMPyP/electrochemically reduced graphene oxide nanohybrid as an efficient electrocatalyst for hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Ma, Juanjuan; Liu, Lin; Chen, Qian; Yang, Min; Wang, Danping; Tong, Zhiwei; Chen, Zhong

    2017-03-01

    Elaborate design and synthesis of efficient and stable non-Pt electrocatalysts for some renewable energy related conversion/storage processes are one of the major goals of sustainable chemistry. Herein, we report a facile method to fabricate Co porphyrin functionalized electrochemically reduced graphene oxide (CoTMPyP/ERGO) thin film by direct assembly of oppositely charged tetrakis(N-methylpyridyl) porphyrinato cobalt (CoTMPyP) and GO nanosheets under mild conditions followed by an electrochemical reduction procedure. STEM analysis confirms that CoTMPyP nanoaggregates are homogeneously distributed over the graphene surface. The electrochemical properties of CoTMPyP/ERGO were investigated by cyclic voltammetry, linear sweep voltammetry and electrochemical impedance spectroscopy. The results demonstrate that CoTMPyP/ERGO nanohybrid film can serve as excellent electrocatalyst for hydrogen evolution in alkaline solution with high activity and stability. The intimate contact and efficient electron transfer between CoTMPyP and ERGO, as well as the crumpled structure, contribute to the improvement of the electrocatalytic performance.

  13. Synthesis of imine and reduced imine compounds containing aromatic sulfonamide: use as catalyst for in situ generation of ruthenium catalysts in transfer hydrogenation of acetophenone derivatives.

    PubMed

    Dayan, Serkan; Arslan, Fatma; Kayacı, Nilgün; Kalaycioglu, Nilgun Ozpozan

    2014-01-01

    Three imine and three reduced imine ligands containing aromatic sulfonamide (2-7) were isolated by a simple method and characterized by FT-IR, NMR, and elemental analysis. Meanwhile, the interaction of 2-7 ligands with [(p-cymene)RuCl2]2 was analyzed in situ by UV-vis spectrophotometer. The in situ generated catalytic system derived from N-(2-(benzylideneamino)phenyl)-2,4,6-trimethyl-benzenesulfonamides and N-(2-(benzylamino)phenyl)-2,4,6-trimethyl-benzenesulfonamides with [(p-cymene)RuCl2]2 was used as a catalyst in the transfer hydrogenation (TH) of p-substituted acetophenone derivatives. The catalytic systems displayed high activities, which increased in the order 7<4<5<6<1<2<3. The best activity for the TH of 4-chloroacetophenone was provided with the [(p-cymene)RuCl2]2/ligand (3) catalytic system (turnover frequency values: 720 h(-1) for 10 min on S/C: 500/1).

  14. Synthesis of three-dimensional reduced graphene oxide layer supported cobalt nanocrystals and their high catalytic activity in F-T CO2 hydrogenation.

    PubMed

    He, Fei; Niu, Na; Qu, Fengyu; Wei, Shuquan; Chen, Yujin; Gai, Shili; Gao, Peng; Wang, Yan; Yang, Piaoping

    2013-09-21

    The reduced graphene oxide (rGO) supported cobalt nanocrystals have been synthesized through an in situ crystal growth method using Co(acac)2 under solvothermal conditions by using DMF as the solvent. By carefully controlling the reaction temperature, the phase transition of the cobalt nanocrystals from the cubic phase to the hexagonal phase has been achieved. Moreover, the microscopic structure and morphology as well as the reduction process of the composite have been investigated in detail. It is found that oxygen-containing functional groups on the graphene oxide (GO) can greatly influence the formation process of the Co nanocrystals by binding the Co(2+) cations dissociated from the Co(acac)2 in the initial reaction solution at 220 °C, leading to the 3D reticular structure of the composite. Furthermore, this is the first attempt to use a Co/rGO composite as the catalyst in the F-T CO2 hydrogenation process. The catalysis testing results reveal that the as-synthesized 3D structured composite exhibits ideal catalytic activity and good stability, which may greatly extend the scope of applications for this kind of graphene-based metal hybrid material.

  15. Silicon carbide tritium permeation barrier for steel structural components.

    SciTech Connect

    Causey, Rion A.; Garde, Joseph Maurico; Buchenauer, Dean A.; Calderoni, Pattrick; Holschuh, Thomas, Jr.; Youchison, Dennis Lee; Wright, Matt; Kolasinski, Robert D.

    2010-09-01

    Chemical vapor deposited (CVD) silicon carbide (SiC) has superior resistance to tritium permeation even after irradiation. Prior work has shown Ultrametfoam to be forgiving when bonded to substrates with large CTE differences. The technical objectives are: (1) Evaluate foams of vanadium, niobium and molybdenum metals and SiC for CTE mitigation between a dense SiC barrier and steel structure; (2) Thermostructural modeling of SiC TPB/Ultramet foam/ferritic steel architecture; (3) Evaluate deuterium permeation of chemical vapor deposited (CVD) SiC; (4) D testing involved construction of a new higher temperature (> 1000 C) permeation testing system and development of improved sealing techniques; (5) Fabricate prototype tube similar to that shown with dimensions of 7cm {theta} and 35cm long; and (6) Tritium and hermeticity testing of prototype tube.

  16. Constant pressure high throughput membrane permeation testing system

    DOEpatents

    Albenze, Erik J.; Hopkinson, David P.; Luebke, David R.

    2014-09-02

    The disclosure relates to a membrane testing system for individual evaluation of a plurality of planar membranes subjected to a feed gas on one side and a sweep gas on a second side. The membrane testing system provides a pressurized flow of a feed and sweep gas to each membrane testing cell in a plurality of membrane testing cells while a stream of retentate gas from each membrane testing cell is ported by a retentate multiport valve for sampling or venting, and a stream of permeate gas from each membrane testing cell is ported by a permeate multiport valve for sampling or venting. Back pressure regulators and mass flow controllers act to maintain substantially equivalent gas pressures and flow rates on each side of the planar membrane throughout a sampling cycle. A digital controller may be utilized to position the retentate and permeate multiport valves cyclically, allowing for gas sampling of different membrane cells ove