Science.gov

Sample records for reduce organophosphate pesticide

  1. Probiotic Lactobacillus rhamnosus Reduces Organophosphate Pesticide Absorption and Toxicity to Drosophila melanogaster

    PubMed Central

    Trinder, Mark; McDowell, Tim W.; Daisley, Brendan A.; Ali, Sohrab N.; Leong, Hon S.; Sumarah, Mark W.

    2016-01-01

    ABSTRACT Organophosphate pesticides used in agriculture can pose health risks to humans and wildlife. We hypothesized that dietary supplementation with Lactobacillus, a genus of commensal bacteria, would reduce absorption and toxicity of consumed organophosphate pesticides (parathion and chlorpyrifos [CP]). Several Lactobacillus species were screened for toleration of 100 ppm of CP or parathion in MRS broth based on 24-h growth curves. Certain Lactobacillus strains were unable to reach stationary-phase culture maxima and displayed an abnormal culture morphology in response to pesticide. Further characterization of commonly used, pesticide-tolerant and pesticide-susceptible, probiotic Lactobacillus rhamnosus strain GG (LGG) and L. rhamnosus strain GR-1 (LGR-1), respectively, revealed that both strains could significantly sequester organophosphate pesticides from solution after 24-h coincubations. This effect was independent of metabolic activity, as L. rhamnosus GG did not hydrolyze CP and no difference in organophosphate sequestration was observed between live and heat-killed strains. Furthermore, LGR-1 and LGG reduced the absorption of 100 μM parathion or CP in a Caco-2 Transwell model of the small intestine epithelium. To determine the effect of sequestration on acute toxicity, newly eclosed Drosophila melanogaster flies were exposed to food containing 10 μM CP with or without supplementation with live LGG. Supplementation with LGG simultaneously, but not with administration of CP 3 days prior (prophylactically), mitigated CP-induced mortality. In summary, the results suggest that L. rhamnosus may be useful for reducing toxic organophosphate pesticide exposure via passive binding. These findings could be transferable to clinical and livestock applications due to affordability and practical ability to supplement products with food-grade bacteria. IMPORTANCE The consequences of environmental pesticide pollution due to widespread usage in agriculture and soil

  2. Probiotic Lactobacillus rhamnosus Reduces Organophosphate Pesticide Absorption and Toxicity to Drosophila melanogaster.

    PubMed

    Trinder, Mark; McDowell, Tim W; Daisley, Brendan A; Ali, Sohrab N; Leong, Hon S; Sumarah, Mark W; Reid, Gregor

    2016-10-15

    Organophosphate pesticides used in agriculture can pose health risks to humans and wildlife. We hypothesized that dietary supplementation with Lactobacillus, a genus of commensal bacteria, would reduce absorption and toxicity of consumed organophosphate pesticides (parathion and chlorpyrifos [CP]). Several Lactobacillus species were screened for toleration of 100 ppm of CP or parathion in MRS broth based on 24-h growth curves. Certain Lactobacillus strains were unable to reach stationary-phase culture maxima and displayed an abnormal culture morphology in response to pesticide. Further characterization of commonly used, pesticide-tolerant and pesticide-susceptible, probiotic Lactobacillus rhamnosus strain GG (LGG) and L. rhamnosus strain GR-1 (LGR-1), respectively, revealed that both strains could significantly sequester organophosphate pesticides from solution after 24-h coincubations. This effect was independent of metabolic activity, as L. rhamnosus GG did not hydrolyze CP and no difference in organophosphate sequestration was observed between live and heat-killed strains. Furthermore, LGR-1 and LGG reduced the absorption of 100 μM parathion or CP in a Caco-2 Transwell model of the small intestine epithelium. To determine the effect of sequestration on acute toxicity, newly eclosed Drosophila melanogaster flies were exposed to food containing 10 μM CP with or without supplementation with live LGG. Supplementation with LGG simultaneously, but not with administration of CP 3 days prior (prophylactically), mitigated CP-induced mortality. In summary, the results suggest that L. rhamnosus may be useful for reducing toxic organophosphate pesticide exposure via passive binding. These findings could be transferable to clinical and livestock applications due to affordability and practical ability to supplement products with food-grade bacteria.

  3. Para Niños Saludables: A Community Intervention Trial to Reduce Organophosphate Pesticide Exposure in Children of Farmworkers

    PubMed Central

    Thompson, Beti; Coronado, Gloria D.; Vigoren, Eric M.; Griffith, William C.; Fenske, Richard A.; Kissel, John C.; Shirai, Jeffry H.; Faustman, Elaine M.

    2008-01-01

    Background Exposure to organophosphate (OP) pesticides is an occupational hazard for farmworkers and affects their children through the take-home pathway. Objectives We examined the effectiveness of a randomized community intervention to reduce pesticide exposure among farmworkers and their children. Methods We conducted a baseline survey of a cross-sectional sample of farmworkers (year 1) in 24 participating communities. Communities were randomized to intervention or control. After 2 years of intervention, a new cross-sectional survey of farmworkers was conducted (year 4). Farmworkers with a child 2–6 years of age were asked to participate in a substudy in which urine was collected from the farmworker and child, and dust was collected from the home and the vehicle driven to work. Results The median concentration of urinary metabolites was higher in year 4 than in year 1 for dimethylthiophosphate (DMTP) and dimethyldithiophosphate in adults and for DMTP for children. There were significant increases within both the intervention and control communities between year 1 and year 4 (p < 0.005); however, the differences were not significant between study communities after adjusting for year (p = 0.21). The dust residue data showed azinphos-methyl having the highest percentage of detects in vehicles (86% and 84% in years 1 and 4, respectively) and in house dust (85% and 83% in years 1 and 4, respectively). There were no significant differences between intervention and control communities after adjusting for year (p = 0.49). Conclusions We found no significant decreases in urinary pesticide metabolite concentrations or in pesticide residue concentrations in house and vehicle dust from intervention community households compared with control community households after adjusting for baseline. These negative findings may have implications for future community-wide interventions. PMID:18470300

  4. The effectiveness of an educational intervention to improve knowledge and perceptions for reducing organophosphate pesticide exposure among Indonesian and South Australian migrant farmworkers

    PubMed Central

    Suratman, Suratman; Ross, Kirstin E; Babina, Kateryna; Edwards, John William

    2016-01-01

    Background Farmworkers are at risk of exposure to organophosphate pesticides (OPs). Improvements of knowledge and perceptions about organophosphate (OP) exposure may be of benefit for the reduction in OP exposure. Purpose The purpose of this study was to examine the effectiveness of an educational intervention to improve knowledge and perceptions for reducing OP exposure among Indonesian and South Australian (SA) migrant farmworkers. Methods This was a quasi-experimental study. The educational intervention used a method of group communication for 30 Indonesian farmworkers and individual communication for seven SA migrant farmworkers. Knowledge and perceptions about OP exposure were measured pre-intervention and 3 months after the intervention. Results Unadjusted intervention effects at follow-up showed statistically significantly improved scores of knowledge (both adverse effects of OPs and self-protection from OP exposure), perceived susceptibility, and perceived barriers among Indonesian farmworkers compared with SA migrant farmworkers. Furthermore, these four significant variables in the unadjusted model and the two other variables (perceived severity and perceived benefits) were statistically significant after being adjusted for the level of education and years working as a farmworker. In contrast, knowledge about adverse effects of OPs was the only variable that was statistically significantly improved among SA migrant farmworkers. The results of this study suggests educational interventions using a method of group communication could be more effective than using individual intervention. Conclusion These improvements provide starting points to change health behavior of farmworkers, particularly to reduce OP exposure, both at the workplace and at home. PMID:26855602

  5. ORGANOPHOSPHATE PESTICIDE DEGRADATION PATHWAYS DURING DRINKING WATER TREATMENT

    EPA Science Inventory

    Free chlorine has been found to react with organophosphate (OP) pesticides resulting in the more toxic oxon products. We will discuss OP pesticide degradation pathways and modeling in the presence of chlorine and chloramines, as well as present a relationship between structure a...

  6. Pesticide loadings of select organophosphate and pyrethroid pesticides in urban public housing.

    EPA Science Inventory

    We investigated the magnitude and distribution of pyrethroid and organophosphate pesticide loadings within public housing dwellings in Boston, Massachusetts and compared the results using various sampling methods. We collected dust matrices from living room and kitchen in 42 apar...

  7. Piezoelectric Biosensors for Organophosphate and Carbamate Pesticides: A Review

    PubMed Central

    Marrazza, Giovanna

    2014-01-01

    Due to the great amount of pesticides currently being used, there is an increased interest for developing biosensors for their detection. Among all the physical transducers, piezoelectric systems have emerged as the most attractive due to their simplicity, low instrumentation costs, possibility for real-time and label-free detection and generally high sensitivity. This paper presents an overview of biosensors based on the quartz crystal microbalance, which have been reported in the literature for organophosphate and carbamate pesticide analysis. PMID:25587424

  8. ORGANOPHOSPHATE PESTICIDE DEGRADATION UNDER DRINKING WATER TREATMENT CONDITIONS

    EPA Science Inventory

    Chlorpyrifos (CP) was used as a model compound to develop experimental methods and prototype modeling tools to forecast the fate of organophosphate (OP) pesticides under drinking water treatment conditions. CP was found to rapidly oxidize to chlorpyrifos oxon (CPO) in the presen...

  9. ORGANOPHOSPHATE PESTICIDE EXPOSURES - WHERE ARE THE HIGH RISK CHILDREN?

    EPA Science Inventory

    Methods to identify children at high-risk for organophosphate (OP) pesticide exposure are difficult to develop because biological markers reflect only recent "snapshots" of exposure due to the short half-life of OP compounds (generally about 24 hours). We conducted a series of p...

  10. Selective Binding of Organophosphate Pesticides Using Molecular Imprinted Polymers

    DTIC Science & Technology

    2005-10-01

    MIPs . SELECTIVE BINDING OF ORGANOPHOSPHATE PESTICIDES USING MOLECULAR IMPRINTED POLYMERS . *Ali M. Saboori...Maryland 20910-7500. ABSTRACT Molecular Imprinted Polymers ( MIPs ) have been used for recognition and binding of different compounds. We are...INTRODUCTION Molecular Imprinted Polymers ( MIPs ) are highly cross-linked polymers , which are formed by cross- linking monomer in

  11. Organophosphate Hydrolase in Conductometric Biosensor for the Detection of Organophosphate Pesticides

    PubMed Central

    Mulyasuryani, Ani; Prasetyawan, Sasangka

    2015-01-01

    The research has developed an enzyme biosensor for the detection organophosphate pesticide residues. The biosensor consists of a pair of screen-printed carbon electrode (SPCEs). One of electrodes contains immobilized organophosphate hydrolase (OPH) on a chitosan membrane by cross-linking it with glutaraldehyde. The area of the electrodes was optimized to 3, 5, and 7 mm2. The OPH was isolated from Pseudomonas putida, and was purified by the ammonium sulfate precipitation method, with 6444 ppm (A) and 7865 ppm (B). The organophosphate pesticide samples were 0–100 ppb in tris-acetate buffer 0.05 M, pH 8.5. The results showed that the best performance of the biosensor was achieved by the enzyme A with an electrode area of 5 mm2. The sensitivity of the biosensor was between 3 and 32 µS/ppb, and the detection limit for the organophosphate pesticides was 40 ppb (diazinon), 30 ppb (malathion), 20 ppb (chlorpyrifos), and 40 ppm (profenofos). PMID:26483607

  12. Oxidative stress indices in Nigerian pesticide applicators and farmers occupationally exposed to organophosphate pesticides

    PubMed Central

    Surajudeen, Yaqub A; Sheu, Rahamon K; Ayokulehin, Kosoko M; Olatunbosun, Arinola G

    2014-01-01

    Background: Reports have clearly indicated the role of oxidative stress in the pathogenesis of organophosphate pesticides (Op) toxicity. However, there is dearth of information on which group of the farm workers is more at risk of Op-induced oxidative stress. Aim: This study determined serum levels of malondialdehyde (MDA), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), myeloperoxidase (MPO), nitric oxide (NO), and serum activity of acetylcholinesterase (AChE) in farm workers exposed to Op. Subjects and Methods: A total of 60 (30 pesticide applicators and 30 farmers) and 30 apparently healthy non-farmers who were nonexposed to Op (controls) were recruited into this study. Serum activity of AChE was determined using high performance liquid chromatography (HPLC), while serum levels of MDA, GSH, and NO and serum activities of CAT, MPO, GPx, and superoxide dismutase (SOD) were determined colorimetrically. Results: Serum activities of AChE and CAT were significantly lower, whereas MPO activity was significantly higher in pesticide applicators compared with controls. Similarly, farmers had significantly reduced serum AChE activity and significantly raised MPO activity compared with controls. However, serum activities of AChE, CAT, and MPO were significantly lower, whereas mean level of MDA was significantly higher in pesticide applicators compared with farmers. Conclusion: This study shows that Op applicators are more exposed to oxidative stress than farmers, thus Op applicators require increased antioxidant supplements than farmers. PMID:25298941

  13. ORGANOPHOSPHATE PESTICIDE DEGRADATION IN THE PRESENCE OF NATURALLY OCCURRING AQUATIC CONSTITUENTS UNDER DRINKING WATER TREATMENT CONDITIONS

    EPA Science Inventory

    Little work to date has solely investigated the kinetics and pathways of pesticide transformations under drinking water treatment conditions. Free chlorine has been found to react with s-triazine, carbamate, and organophosphate pesticides. However, these experimental conditions...

  14. INCREASED SUSCEPTIBILITY OF THE SPONTANEOUSLY HYPERTENSIVE RAT TO CHLORPYRIFOS, AN ORGANOPHOSPHATE PESTICIDE.

    EPA Science Inventory

    Hypertension and hypothermia are common symptoms in rats exposed to chlorpyrifos (CHP), an organophosphate (OP)-based pesticide. CHP inhibits acetylcholinesterase (AChE) activity resulting in central and peripheral stimulation of cholinergic pathways involved in blood pressure ...

  15. Interpreting population estimates of birds following pesticide applications--behavior of male starlings exposed to an organophosphate pesticide

    USGS Publications Warehouse

    Grue, C.E.; Shipley, B.J.; Ralph, C. John; Scott, J. Michael

    1981-01-01

    We determined activity budgets for 10 pairs of captive male Starlings between 7 May and 18 July 1980. Our objective was to quantify changes in behavior after exposure to an organophosphate (OP) pesticide and to assess the impact of changes in behavior on the interpretation of population estimates of birds following pesticide applications. We observed each pair of males for an hour at 07:30 and 09:30 for four days and classified their behavior into one of four categories: flying, perching, foraging, or singing and displaying. At 06:30 on day 2, one male received a single oral dose of 2.5 mg dicrotophos (3-hydroxy-N, N-dimethyl-cis-crotonamide dimethyl phosphate) per kg of body weight; the other male received an equivalent exposure of corn oil. Changes in the activity budgets of OP-dosed and control males were compared using t-tests. Activity of OP-dosed males was significantly (P _ 0.05) reduced within the 2-4 h following exposure. OP-dosed males spent more time perching (46.1%) than controls and less time flying (-96.6%), foraging (-28.5%), and singing and displaying (-49.5%). The frequency of perching (-75.3%), flying (-83.8%), foraging (-54.1%), and singing and displaying (- 59.2%) was significantly reduced. Activity in OP-dosed males returned to normal by 26-28 h posttreatment. Results suggest that movement and vocalization may be significantly reduced in birds exposed to organophosphate and carbamate pesticides. Conventional censusing techniques and population estimating procedures may, therefore, be inadequate to assess changes in bird populations after pesticide applications because of the difficulty in separating decreases in density due to mortality or emigration from reductions in activity.

  16. Central nervous system function and organophosphate insecticide use among pesticide applicators in the Agricultural Health Study

    PubMed Central

    Starks, Sarah E; Gerr, Fred; Kamel, Freya; Lynch, Charles F; Jones, Michael P; Alavanja, Michael C; Sandler, Dale P; Hoppin, Jane A

    2011-01-01

    Acute organophosphate (OP) pesticide exposure is associated with adverse central nervous system (CNS) outcomes, however, little is known about the neurotoxicity of chronic exposures that do not result in acute poisoning. To examine associations between long-term pesticide use and CNS function, neurobehavioral (NB) tests were administered to licensed pesticide applicators enrolled in the Agricultural Health Study (AHS) in Iowa and North Carolina. Between 2006 and 2008, 701 male participants completed nine NB tests to assess memory, motor speed and coordination, sustained attention, verbal learning and visual scanning and processing. Data on ever-use and lifetime days of use of 16 OP pesticides were obtained from AHS interviews conducted before testing between 1993 and 2007 and during the NB visit. The mean age of participants was 61 years (SD = 12). Associations between pesticide use and NB test performance were estimated with linear regression controlling for age and outcome-specific covariates. NB test performance was associated with lifetime days of use of some pesticides. Ethoprop was significantly associated with reduced performance on a test of motor speed and visual scanning. Malathion was significantly associated with poor performance on a test of visual scanning and processing. Conversely, we observed significantly better test performance for five OP pesticides. Specifically, chlorpyrifos, coumaphos, parathion, phorate, and tetrachlorvinphos were associated with better verbal learning and memory; coumaphos was associated with better performance on a test of motor speed and visual scanning; and parathion was associated with better performance on a test of sustained attention. Several associations varied by state. Overall, our results do not provide strong evidence that long-term OP pesticide use is associated with adverse CNS-associated NB test performance among this older sample of pesticide applicators. Potential reasons for these mostly null associations

  17. Response of common grackles to dietary concentrations of four organophosphate pesticides

    USGS Publications Warehouse

    Grue, C.E.

    1982-01-01

    Behavioral and physiological responses of common grackles to dietary concentrations of dicrotophos, fenitrothion, fenthion, and methyl parathion suggest mortality was largely due to pesticide-induced anorexia. Mortality was dose related, though consumption of treated diets was reduced such that birds on different geometrically arranged concentrations of the same pesticide ingested about the same amount of toxicant. Grackles that died lost an average of 28 to 36% of their initial body weight; visible fat was absent and muscle tissue was reduced on the sternum. Mortality of birds exposed to dicrotophos increased between May and August, although chemical intake remained relatively constant, and was associated with a natural decrease in fat and flesh condition in response to increased ambient temperatures and post-nuptial molt. Food consumption in songbirds exposed to organophosphates may be reduced significantly up to 12 hr after exposure ceases because of an unknown effect of these chemicals on their feeding behavior, but not repellency. The results caution against using median lethal dietary concentrations for other than ranking chemicals based on their relative toxicity, particularly in establishing safe environmental levels, and suggest that anorexia and physiological condition may be important factors in mortality of wild birds exposed to organophosphates.

  18. Exposures of children to organophosphate pesticides and their potential adverse health effects.

    PubMed Central

    Eskenazi, B; Bradman, A; Castorina, R

    1999-01-01

    Recent studies show that young children can be exposed to pesticides during normal oral exploration of their environment and their level of dermal contact with floors and other surfaces. Children living in agricultural areas may be exposed to higher pesticide levels than other children because of pesticides tracked into their homes by household members, by pesticide drift, by breast milk from their farmworker mother, or by playing in nearby fields. Nevertheless, few studies have assessed the extent of children's pesticide exposure, and no studies have examined whether there are adverse health effects of chronic exposure. There is substantial toxicologic evidence that repeated low-level exposure to organophosphate (OP) pesticides may affect neurodevelopment and growth in developing animals. For example, animal studies have reported neurobehavorial effects such as impairment on maze performance, locomotion, and balance in neonates exposed (italic)in utero(/italic) and during early postnatal life. Possible mechanisms for these effects include inhibition of brain acetylcholinesterase, downregulation of muscarinic receptors, decreased brain DNA synthesis, and reduced brain weight in offspring. Research findings also suggest that it is biologically plausible that OP exposure may be related to respiratory disease in children through dysregulation of the autonomic nervous system. The University of California Berkeley Center for Children's Environmental Health Research is working to build a community-university partnership to study the environmental health of rural children. This Center for the Health Assessment of Mothers and Children of Salinas, or CHAMACOS in Monterey County, California, will assess (italic)in utero(/italic) and postnatal OP pesticide exposure and the relationship of exposure to neurodevelopment, growth, and symptoms of respiratory illness in children. The ultimate goal of the center is to translate research findings into a reduction of children

  19. Organophosphate pesticide levels in blood and urine of women and newborns living in an agricultural community

    PubMed Central

    Huen, Karen; Bradman, Asa; Harley, Kim; Yousefi, Paul; Barr, Dana Boyd; Eskenazi, Brenda; Holland, Nina

    2014-01-01

    Organophosphate pesticides are widely used and recent studies suggest associations of in utero exposures with adverse birth outcomes and neurodevelopment. Few studies have characterized organophosphate pesticides in human plasma or established how these levels correlate to urinary measurements. We measured organophosphate pesticide metabolites in maternal urine and chlorpyrifos and diazinon in maternal and cord plasma of subjects living in an agricultural area to compare levels in two different biological matrices. We also determined paraoxonase 1 (PON1) genotypes (PON1192 and PON1-108) and PON1 substrate-specific activities in mothers and their newborns to examine whether PON1 may affect organophosphate pesticide measurements in blood and urine. Chlorpyrifos levels in plasma ranged from 0-1726 ng/mL and non-zero levels were measured in 70.5% and 87.5% of maternal and cord samples, respectively. Diazinon levels were lower (0-0.5 ng/mL); non-zero levels were found in 33.3% of maternal plasma and 47.3% of cord plasma. Significant associations between organophosphate pesticide levels in blood and metabolite levels in urine were limited to models adjusting for PON1 levels. Increased maternal PON1 levels were associated with decreased odds of chlorpyrifos and diazinon detection (odds ratio(OR): 0.56 and 0.75, respectively). Blood organophosphate pesticide levels of study participants were similar in mothers and newborns and slightly higher than those reported in other populations. However, compared to their mothers, newborns have much lower quantities of the detoxifying PON1 enzyme suggesting that infants may be especially vulnerable to organophosphate pesticide exposures. PMID:22683313

  20. Pesticide loadings of select organophosphate and pyrethroid pesticides in urban public housing.

    PubMed

    Julien, Rhona; Adamkiewicz, Gary; Levy, Jonathan I; Bennett, Deborah; Nishioka, Marcia; Spengler, John D

    2008-03-01

    We investigated the magnitude and distribution of pyrethroid and organophosphate pesticide loadings within public housing dwellings in Boston, Massachusetts and compared the results using various sampling methods. We collected dust matrices from living room and kitchen in 42 apartments and analyzed for eleven pyrethoids (e.g., permethrin and cyfluthrin) and two organophosphates (chlorpyrifos and diazinon) in house dust using GC/MS. Agreement between sampling methods were evaluated using Spearman correlations and Kappa statistics. Permethrin and chlorpyrifos were detected in kitchen floor wipes in all homes, followed in frequency of detects by diazinon (98%), cypermethrin (90%) and cyfluthrin (71%). At least six pesticides were detected in kitchen floor wipes in the majority of the homes (range 3-8). Positive and statistically significant correlations among dust matrices were observed between kitchen floor wipes and living room vacuum dust, including for diazinon (r=0.62) and cyfluthrin (r=0.69). Detection of several pesticides including banned or restricted use products in some public housing units, underscore the need for alternative pest management strategies that embrace the safe and judicious use of pest control products.

  1. DETERMINING ACTIVE OXIDANT SPECIES REACTING WITH ORGANOPHOSPHATE PESTICIDES IN CHLORINATED DRINKING WATER

    EPA Science Inventory

    Chlorpyrifos (CP) is an organophosphate (OP) pesticide that was used as a model compound to investigate the transformation of OP pesticides at low pH and in the presence of bromide and natural organic matter (NOM) under drinking water treatment conditions. Raman spectroscopy was...

  2. [Health risk control for organophosphate pesticides in Mexico: challenges under the Free Trade Treaty].

    PubMed

    Ortega-Ceseña, J; Espinosa-Torres, F; López-Carrillo, L

    1994-01-01

    This paper discusses recent trends concerning the commercialization of pesticides in Mexico and focuses on organophosphates and their potential health risk impact. It points out the existing lack of knowledge on health effects associated to chronic exposure to organophosphate pesticides. A need for both toxicological and epidemiologic studies of chronic exposure is identified. Regulatory programs for pesticides in Mexico and the United States are also compared. The paper also addresses the possibility of effective enforcement of environmental and health regulations in Mexico as a result of more rigorous surveillance under NAFTA.

  3. Estimates of Tiber River organophosphate pesticide loads to the Tyrrhenian Sea and ecological risk.

    PubMed

    Montuori, Paolo; Aurino, Sara; Garzonio, Fatima; Sarnacchiaro, Pasquale; Polichetti, Salvatore; Nardone, Antonio; Triassi, Maria

    2016-07-15

    The organophosphate pesticides pollution in the Tiber River and its environmental impact on the Tyrrhenian Sea (Central Mediterranean Sea) were estimated. Eight selected organophosphate pesticides (diazinon, dimethoate, malathion, chlorpyrifos, pirimiphos-methyl, fenitrothion, methidathion, tolclofos-methyl) were determined in the water dissolved phase, suspended particulate matter and sediment samples collected from 21 sites in different seasons. Total organophosphate pesticides concentrations ranged from 0.40 to 224.48ngL(-1) in water (as the sum of the water dissolved phase and suspended particulate matter) and from 1.42 to 68.46ngg(-1) in sediment samples. Contaminant discharges of organophosphate pesticides into the sea were calculated in about 545.36kgyear(-1) showing that this river should be consider as one of the main contribution sources of organophosphate pesticides to the Tyrrhenian Sea. In relation to the eco-toxicological assessment, the concentrations of most OPPs in the water and sediments from the Tiber River and its estuary were lower than guideline values.

  4. Organophosphate Pesticide Exposure and Work in Pome Fruit: Evidence for the Take-Home Pesticide Pathway

    PubMed Central

    Coronado, Gloria D.; Vigoren, Eric M.; Thompson, Beti; Griffith, William C.; Faustman, Elaine M.

    2006-01-01

    Organophosphate (OP) pesticides are commonly used in the United States, and farmworkers are at risk for chronic exposure. Using a sample of 218 farmworkers in 24 communities and labor camps in eastern Washington State, we examined the association between agricultural crop and OP pesticide metabolite concentrations in urine samples of adult farmworkers and their children and OP pesticide residues in house and vehicle dust samples. Commonly reported crops were apples (71.6%), cherries (59.6%), pears (37.2%), grapes (27.1%), hops (22.9%), and peaches (12.4%). Crops were grouped into two main categories: pome fruits (apples and pears) and non-pome fruits. Farmworkers who worked in the pome fruits had significantly higher concentrations of dimethyl pesticide metabolites in their urine and elevated azinphos-methyl concentrations in their homes and vehicles than workers who did not work in these crops. Among pome-fruit workers, those who worked in both apples and pears had higher urinary metabolites concentrations and pesticide residue concentrations in dust than did those who worked in a single pome fruit. Children living in households with pome-fruit workers were found to have higher concentrations of urinary dimethyl metabolites than did children of non-pome-fruit workers. Adult urinary concentrations showed significant correlations with both the vehicle and house-dust azinphos-methyl concentrations, and child urinary concentrations were correlated significantly with adult urinary concentrations and with the house-dust azinphos-methyl concentration. The results provide support for the take-home pathway of pesticide exposure and show an association between measures of pesticide exposure and the number of pome-fruit crops worked by farmworkers. PMID:16835050

  5. Immunomodulation by poly-YE reduces organophosphate-induced brain damage.

    PubMed

    Finkelstein, Arseny; Kunis, Gilad; Berkutzki, Tamara; Ronen, Ayal; Krivoy, Amir; Yoles, Eti; Last, David; Mardor, Yael; Van Shura, Kerry; McFarland, Emylee; Capacio, Benedict A; Eisner, Claire; Gonzales, Mary; Gregorowicz, Danise; Eisenkraft, Arik; McDonough, John H; Schwartz, Michal

    2012-01-01

    Accidental organophosphate poisoning resulting from environmental or occupational exposure, as well as the deliberate use of nerve agents on the battlefield or by terrorists, remain major threats for multi-casualty events, with no effective therapies yet available. Even transient exposure to organophosphorous compounds may lead to brain damage associated with microglial activation and to long-lasting neurological and psychological deficits. Regulation of the microglial response by adaptive immunity was previously shown to reduce the consequences of acute insult to the central nervous system (CNS). Here, we tested whether an immunization-based treatment that affects the properties of T regulatory cells (Tregs) can reduce brain damage following organophosphate intoxication, as a supplement to the standard antidotal protocol. Rats were intoxicated by acute exposure to the nerve agent soman, or the organophosphate pesticide, paraoxon, and after 24 h were treated with the immunomodulator, poly-YE. A single injection of poly-YE resulted in a significant increase in neuronal survival and tissue preservation. The beneficial effect of poly-YE treatment was associated with specific recruitment of CD4(+) T cells into the brain, reduced microglial activation, and an increase in the levels of brain derived neurotrophic factor (BDNF) in the piriform cortex. These results suggest therapeutic intervention with poly-YE as an immunomodulatory supplementary approach against consequences of organophosphate-induced brain damage.

  6. Application of graphene for preconcentration and highly sensitive stripping voltammetric analysis of organophosphate pesticide.

    PubMed

    Wu, Shuo; Lan, Xiaoqin; Cui, Lijun; Zhang, Lihui; Tao, Shengyang; Wang, Hainan; Han, Mei; Liu, Zhiguang; Meng, Changgong

    2011-08-12

    Electrochemical reduced β-cyclodextrin dispersed graphene (β-CD-graphene) was developed as a sorbent for the preconcentration and electrochemical sensing of methyl parathion (MP), a representative nitroaromatic organophosphate pesticide with good redox activity. Benefited from the ultra-large surface area, large delocalized π-electron system and the superconductivity of β-CD-graphene, large amount of MP could be extracted on β-CD-graphene modified electrode via strong π-π interaction and exhibited fast accumulation and electron transfer rate. Combined with differential pulse voltammetric analysis, the sensor shows ultra-high sensitivity, good selectivity and fast response. The limit of detection of 0.05 ppb is more than 10 times lower than those obtained from other sorbent based sensors. The method may open up a new possibility for the widespread use of electrochemical sensors for monitoring of ultra-trace OPs.

  7. Association between organophosphate pesticides exposure and thyroid hormones in floriculture workers

    SciTech Connect

    Lacasana, Marina; Lopez-Flores, Inmaculada; Rodriguez-Barranco, Miguel; Aguilar-Garduno, Clemente; Blanco-Munoz, Julia; Perez-Mendez, Oscar; Gamboa, Ricardo; Bassol, Susana; Cebrian, Mariano E.

    2010-02-15

    The ability of organophosphate pesticides to disturb thyroid gland function has been demonstrated by experimental studies on animal, but evidence of such effects on human remains scarce. The aim of this study was to assess the association between exposure to organophosphate compounds and serum levels of thyroid hormones in floriculture workers. A longitudinal study was conducted on 136 male subjects from the State of Mexico and Morelos, Mexico, occupationally exposed to organophosphate pesticides, during agricultural periods of high (rainy season) and low (dry season) levels of pesticide application. Using a structured questionnaire, a survey was carried out on sociodemographic characteristics, anthropometry, clinical history, alcohol and tobacco consumption, residential chemical exposure, and occupational history. Urine and blood samples were taken the day after pesticide application to determine urine dialkylphosphate (DAP) levels, serum levels of TSH, total T{sub 3}, total T{sub 4}, serum PON1 activity, and serum p,p'-DEE levels. The analysis of the association between DAP levels and thyroid hormonal profile was carried out using multivariate generalized estimating equation (GEE) models. Our results showed an increase in both TSH and T{sub 4} hormones in serum associated with a increase in total dimethylphosphate levels (SIGMADMP) in urine (p-trend < 0.001) and a decrease in total T{sub 3} serum levels with an increase of SIGMADMP levels in the urine (p-trend = 0.053). These results suggest that exposure to organophosphate pesticides may be responsible of increasing TSH and T{sub 4} serum hormone levels and decreasing T{sub 3} serum hormone levels, therefore supporting the hypothesis that organophosphate pesticides act as endocrine disruptors in humans.

  8. CAN FLU-LIKE ILLNESS BE AN INDICATION OF RECENT ORGANOPHOSPHATE PESTICIDE EXPOSURE IN PRESCHOOL CHILDREN?

    EPA Science Inventory

    Can flu-like illness be an indication of recent organophosphate pesticide exposure in preschool children? P Mendola*, D Barr, D Walsh, S Hern, S Rhoney, L Needham, E Hilborn, M Gonzales, C Carty, G Robertson, J Creason (US EPA, ORD, NHEERL, Research Triangle Park, NC 27711)
    <...

  9. RESIDENTIAL PESTICIDE USE AND URINARY ORGANOPHOSPHATE METABOLITES IN PRE-SCHOOL CHILDREN

    EPA Science Inventory

    Residential Pesticide Use and Urinary Organophosphate Metabolites in Pre-School Children
    CL Carty1, P Mendola1, D Barr2, L Needham2, D Walsh1

    1Epidemiology and Biomarkers Branch, Human Studies Division, National Health and Environmental Effects Research Laboratory, U.S....

  10. Seasonal and occupational trends of five organophosphate pesticides in house dust.

    PubMed

    Smith, Marissa N; Workman, Tomomi; McDonald, Katie M; Vredevoogd, Melinda A; Vigoren, Eric M; Griffith, William C; Thompson, Beti; Coronado, Gloria D; Barr, Dana; Faustman, Elaine M

    2016-08-24

    Since 1998, the University of Washington's Center for Child Environmental Health Risks Research has followed a community-based participatory research strategy in the Lower Yakima Valley of Washington State to assess pesticide exposure among families of Hispanic farmworkers. As a part of this longitudinal study, house dust samples were collected from both farmworker and non-farmworker households, across three agricultural seasons (thinning, harvest and non-spray). The household dust samples were analyzed for five organophosphate pesticides: azinphos-methyl, phosmet, malathion, diazinon, and chlorpyrifos. Organophosphate pesticide levels in house dust were generally reflective of annual use rates and varied by occupational status and agricultural season. Overall, organophosphate pesticide concentrations were higher in the thinning and harvest seasons than in the non-spray season. Azinphos-methyl was found in the highest concentrations across all seasons and occupations. Farmworker house dust had between 5- and 9-fold higher concentrations of azinphos-methyl than non-farmworker house dust. Phosmet was found in 5-7-fold higher concentrations in farmworker house dust relative to non-farmworker house dust. Malathion and chlorpyriphos concentrations in farmworker house dust ranged between 1.8- and 9.8-fold higher than non-farmworker house dust. Diazinon showed a defined seasonal pattern that peaked in the harvest season and did not significantly differ between farmworker and non-farmworker house dust. The observed occupational differences in four out of five of the pesticide residues measured provides evidence supporting an occupational take home pathway, in which workers may bring pesticides home on their skin or clothing. Further, these results demonstrate the ability of dust samples to inform the episodic nature of organophosphate pesticide exposures and the need to collect multiple samples for complete characterization of exposure potential.Journal of Exposure Science

  11. Pyrethroid and organophosphate pesticide-associated toxicity in two coastal watersheds (California, USA).

    PubMed

    Phillips, Bryn M; Anderson, Brian S; Hunt, John W; Siegler, Katie; Voorhees, Jennifer P; Tjeerdema, Ron S; McNeill, Katie

    2012-07-01

    Portions of the Santa Maria River and Oso Flaco Creek watersheds in central California, USA, are listed as impaired under section 303(d) of the Clean Water Act and require development of total maximum daily load (TMDL) allocations. These listings are for general pesticide contamination, but are largely based on historic monitoring of sediment and fish tissue samples that showed contamination by organochlorine pesticides. Recent studies have shown that toxicity in these watersheds is caused by organophosphate pesticides (water and sediment) and pyrethroid pesticides (sediment). The present study was designed to provide information on the temporal and spatial variability of toxicity associated with these pesticides to better inform the TMDL process. Ten stations were sampled in four study areas, one with urban influences, and the remaining in agriculture production areas. Water toxicity was assessed with the water flea Ceriodaphnia dubia, and sediment toxicity was assessed with the amphipod Hyalella azteca. Stations in the lower Santa Maria River had the highest incidence of toxicity, followed by stations influenced by urban inputs. Toxicity identification evaluations and chemical analysis demonstrated that the majority of the observed water toxicity was attributed to organophosphate pesticides, particularly chlorpyrifos, and that sediment toxicity was caused by mixtures of pyrethroid pesticides. The results demonstrate that both agriculture and urban land uses are contributing toxic concentrations of these pesticides to adjacent watersheds, and regional water quality regulators are now using this information to develop management objectives.

  12. Chronic exposure to organophosphate (OP) pesticides and neuropsychological functioning in farm workers: a review

    PubMed Central

    Lucero, Boris Andrés; Iglesias, Verónica Paz; Muñoz, María Pía; Cornejo, Claudia Alejandra; Achu, Eduardo; Baumert, Brittney; Hanchey, Arianna; Concha, Carlos; Brito, Ana María; Villalobos, Marcos

    2016-01-01

    Background Previous studies have demonstrated that acute poisoning from exposure to organophosphate (OP) pesticides in agricultural workers causes adverse health effects. However, neuropsychological and cognitive effects of chronic occupational exposure to OP pesticides remain controversial. Objective To identify, evaluate, and systematize existing evidence regarding chronic exposure to OP pesticides and neuropsychological effects in farmworkers. Methods Using the PubMed search engine, a systematic review process was implemented and replicated according to the PRISMA statement. Eligibility criteria included workers over 18 years of age exposed to OP pesticides as well as assessment of neuropsychological and cognitive functioning. Search terms were in English and Spanish languages and included organophosphate and workers. Results Of the search results, 33 of 1,256 articles meet eligibility criteria. Twenty-four studies found an association between chronic occupational exposure to OP pesticides and low neuropsychological performance in workers. We classified nine of the studies to have study design limitations. Studies indicated occupational exposure to OP pesticides is linked to difficulties in executive functions, psychomotor speed, verbal, memory, attention, processing speed, visual–spatial functioning, and coordination. Nine studies find no relationship between OP pesticides exposure and neuropsychological performance. Conclusions Overall, evidence suggests an association between chronic occupational exposure to OP pesticides and neuropsychological effects. However, there is no consensus about the specific cognitive skills affected. PMID:27128815

  13. Occupational determinants of serum cholinesterase inhibition among organophosphate-exposed agricultural pesticide handlers in Washington State

    PubMed Central

    Hofmann, Jonathan N; Keifer, Matthew C; De Roos, Anneclaire J; Fenske, Richard A; Furlong, Clement E; van Belle, Gerald; Checkoway, Harvey

    2010-01-01

    Objective To identify potential risk factors for serum cholinesterase (BuChE) inhibition among agricultural pesticide handlers exposed to organophosphate (OP) and N-methyl-carbamate (CB) insecticides. Methods We conducted a longitudinal study among 154 agricultural pesticide handlers who participated in the Washington State cholinesterase monitoring program in 2006 and 2007. BuChE inhibition was analyzed in relation to reported exposures before and after adjustment for potential confounders using linear regression. Odds ratios estimating the risk of ‘BuChE depression’ (>20% from baseline) were also calculated for selected exposures based on unconditional logistic regression analyses. Results An overall decrease in mean BuChE activity was observed among study participants at the time of follow-up testing during the OP/CB spray season relative to pre-season baseline levels (mean decrease of 5.6%, P < 0.001). Score for estimated cumulative exposure to OP/CB insecticides in the past 30 days was a significant predictor of BuChE inhibition (β = −1.74, P < 0.001). Several specific work practices and workplace conditions were associated with greater BuChE inhibition, including mixing/loading pesticides and cleaning spray equipment. Factors that were protective against BuChE inhibition included full-face respirator use, wearing chemical-resistant boots, and storing personal protective equipment in a locker at work. Conclusions Despite existing regulations, agricultural pesticide handlers continue to be exposed to OP/CB insecticides at levels resulting in BuChE inhibition. These findings suggest that modifying certain work practices could potentially reduce BuChE inhibition. Replication from other studies will be valuable. PMID:19819864

  14. Bioremediation of pesticide contaminated water using an organophosphate degrading enzyme immobilized on nonwoven polyester textiles.

    PubMed

    Gao, Yuan; Truong, Yen Bach; Cacioli, Paul; Butler, Phil; Kyratzis, Ilias Louis

    2014-01-10

    Bioremediation using enzymes has become an attractive approach for removing hazardous chemicals such as organophosphate pesticides from the environment. Enzymes immobilized on solid carriers are particularly suited for such applications. In this study, the organophosphate degrading enzyme A (OpdA) was covalently immobilized on highly porous nonwoven polyester fabrics for organophosphate pesticide degradation. The fabrics were first activated with ethylenediamine to introduce free amine groups, and the enzyme was then attached using the bifunctional crosslinker glutaraldehyde. The immobilization only slightly increased the Km (for methyl parathion, MP), broadened the pH profile such that the enzyme had significant activity at acidic pH, and enhanced the stability of the enzyme. The OpdA-functionalized fabrics could be stored in a phosphate buffer or in the dry state at 4°C for at least 4 weeks without a large loss of activity. When used in batch mode, the functionalized textiles could degrade 20 μM MP in un-buffered water at liquor to fabric ratios as high as 5000:1 within 2h, and could be used repeatedly. The fabrics could also be made into columns for continuous pesticide degradation. The columns were able to degrade 50 μM MP at high flow rates, and could be used repeatedly over 2 months. These results demonstrate that OpdA immobilized on nonwoven polyester fabrics is useful in environmental remediation of organophosphate compounds.

  15. Interaction between organophosphate pesticide exposure and PON1 activity on thyroid function

    SciTech Connect

    Lacasana, Marina; Lopez-Flores, Inmaculada; Rodriguez-Barranco, Miguel; Aguilar-Garduno, Clemente; Blanco-Munoz, Julia; Perez-Mendez, Oscar; Gamboa, Ricardo; Gonzalez-Alzaga, Beatriz; Bassol, Susana; Cebrian, Mariano E.

    2010-11-15

    Organophosphate pesticides are widely used in agricultural purposes. Recently, a few studies have demonstrated the ability of these chemicals to alter the function of the thyroid gland in human. Moreover, the paraoxonase-1 enzyme (PON1) plays an important role in the toxicity of some organophosphate pesticides, with low PON1 activity being associated with higher pesticide sensitivity. This study evaluates the interaction between exposure to organophosphate compounds and PON1 enzyme activity on serum levels of TSH and thyroid hormones in a population of workers occupationally exposed to pesticides. A longitudinal study was conducted on a population of floriculture workers from Mexico, during two periods of high and low-intensity levels of pesticide application. A structured questionnaire was completed by workers containing questions on sociodemographic characteristics and other variables of interest. Urine and blood samples were taken, and biomarkers of exposure (dialkylphosphates), susceptibility (PON1 polymorphisms and activity) and effect (thyroid hormone levels) were determined. Interaction between dialkylphosphates and PON1 polymorphisms or PON1 activity on hormone levels was evaluated by generalized estimating equation (GEE) models. A significant interaction was found between serum diazoxonase activity and total dialkylphosphates ({Sigma}DAP) on TSH levels. Thus, when PON1 activity was increased we observed a decrease in the percentage of variation of TSH level for each increment in one logarithmic unit of the {Sigma}DAP levels. This interaction was also observed with the PON1{sub 192}RR genotype. These results suggest a stronger association between organophosphate pesticides and thyroid function in individuals with lower PON1 activity.

  16. ORGANOPHOSPHORUS HYDROLASE-BASED ASSAY FOR ORGANOPHOSPHATE PESTICIDES

    EPA Science Inventory

    We report a rapid and versatile Organophosphorus hydrolase (OPH)-based method for measurement of organophosphates. This assay is based on a substrate-dependent change in pH at the local vicinity of the enzyme. The pH change is monitored using fluorescein isothiocyanate (FITC), ...

  17. Peripheral Nervous System Function and Organophosphate Pesticide Use among Licensed Pesticide Applicators in the Agricultural Health Study

    PubMed Central

    Starks, Sarah E.; Hoppin, Jane A.; Kamel, Freya; Lynch, Charles F.; Jones, Michael P.; Alavanja, Michael C.; Sandler, Dale P.

    2012-01-01

    Background: Evidence is limited that long-term human exposure to organophosphate (OP) pesticides, without poisoning, is associated with adverse peripheral nervous system (PNS) function. Objective: We investigated associations between OP pesticide use and PNS function by administering PNS tests to 701 male pesticide applicators in the Agricultural Health Study (AHS). Methods: Participants completed a neurological physical examination (NPx) and electrophysiological tests as well as tests of hand strength, sway speed, and vibrotactile threshold. Self-reported information on lifetime use of 16 OP pesticides was obtained from AHS interviews and a study questionnaire. Associations between pesticide use and measures of PNS function were estimated with linear and logistic regression controlling for age and outcome-specific covariates. Results: Significantly increased odds ratios (ORs) were observed for associations between ever use of 10 of the 16 OP pesticides and one or more of six NPx outcomes. Most notably, abnormal toe proprioception was significantly associated with ever use of 6 OP pesticides, with ORs ranging from 2.03 to 3.06; monotonic increases in strength of association with increasing use was observed for 3 of the 6 pesticides. Mostly null associations were observed between OP pesticide use and electrophysiological tests, hand strength, sway speed, and vibrotactile threshold. Conclusions: This study provides some evidence that long-term exposure to OP pesticides is associated with signs of impaired PNS function among pesticide applicators. PMID:22262687

  18. Semen quality in Peruvian pesticide applicators: association between urinary organophosphate metabolites and semen parameters

    PubMed Central

    Yucra, Sandra; Gasco, Manuel; Rubio, Julio; Gonzales, Gustavo F

    2008-01-01

    Background Organophosphates are broad class of chemicals widely used as pesticides throughout the world. We performed a cross-sectional study of associations between dialkylphosphate metabolites of organophosphates and semen quality among pesticide applicators in Majes (Arequipa), Peru. Methods Thirty-one men exposed to organophosphate (OP) pesticides and 31 non-exposed were recruited (age, 20–60 years). In exposed subjects, semen and a blood sample were obtained one day after the last pesticide application. Subjects were grouped according to levels of OP metabolites in urine. Semen samples were analyzed for sperm concentration, percentage of sperm motility, percentage of normal morphology, semen leucocytes and concentrations of fructose and zinc. Exposure to OP was assessed by measuring six urinary OP metabolites (dimethyl and diethyl phosphates and thiophosphates) by gas chromatography using a single flame photometric detector. Results Diethyldithiophosphate (p = 0.04) and diethylthiophosphate (p = 0.02) better reflected occupational pesticide exposure than other OP metabolites. Semen analysis revealed a significant reduction of semen volume and an increase in semen pH in men with OP metabolites. Multiple regression analysis showed that both occupational exposure to pesticides and the time of exposure to pesticides were more closely related to alterations in semen quality parameters than the single measurement of OP metabolites in urine. Conclusion The study demonstrated that occupational exposure to OP pesticides was more closely related to alterations in semen quality than a single measurement of urine OP metabolites. Current measurement of OP metabolites in urine may not reflect the full risk. PMID:19014632

  19. Study of the mechanism of Flavobacterium sp. for hydrolyzing organophosphate pesticides.

    PubMed

    Ortiz-Hernández, M L; Quintero-Ramírez, R; Nava-Ocampo, A A; Bello-Ramírez, A M

    2003-12-01

    The biotransformation by Flavobacterium sp. of the following organophosphate pesticides was experimentally and theoretically studied: phorate, tetrachlorvinphos, methyl-parathion, terbufos, trichloronate, ethoprophos, phosphamidon, fenitrothion, dimethoate and DEF. The Flavobacterium sp. ATCC 27551 strain bearing the organophosphate-degradation gene was used. Bacteria were incubated in the presence of each pesticide for a duration of 7 days. Parent pesticides were identified and quantified by means of a gas-chromatography mass spectrum system. Activity was considered as the amount (micromol) of each pesticide degraded by Flavobacterium sp. Also, structural parameters obtained by means of the CAChe program package for biomolecules, the reactivity index of phosphorus, of oxygen at the P = O function and of sulfur at the P = S function, and lipophilicity (log Poct) (ALOGPS v. 2.0) were obtained for each pesticide. Pesticides were hydrolyzed at the bond between phosphorous and the heteroatom, producing phosphoric acid and three metabolites. Enzymatic activity was significantly explained by the following multiple linear relationship: Enzymatic activity = 162.2 - 9.5(dihedral angle energy) - 25.0(Total energy) - 0.51(Molecular weight). Finally, a mechanism of Flavobacterium sp. to hydrolyze pesticides was proposed.

  20. Hyperspectral Imagery for Large Area Survey of Organophosphate Pesticides

    DTIC Science & Technology

    2015-03-26

    assumptions made in the course of this research. Some of these were due to the nature of conducting experiments in the lab. Others arose from the...chemicals present. The more volatile nature of these additives may lessen this effect, but was not explored in the course of this research...presented. Relevant Research Organophosphates are esters of phosphoric acid that are widely used as herbicides, insecticides and chemical warfare

  1. Organophosphate pesticides-induced changes in the redox status of rat tissues and protective effects of antioxidant vitamins.

    PubMed

    Mishra, Vibhuti; Srivastava, Nalini

    2015-04-01

    Organophosphates (OPs) pesticides are among the most toxic synthetic chemicals purposefully added in the environment. The common use of OP insecticides in public health and agriculture results in an environmental pollution and a number of acute and chronic poisoning events. Present study was aimed to evaluate the potential of monocrotophos and quinalphos to effect the redox status and glutathione (GSH) homeostasis in rat tissues and find out whether antioxidant vitamins have some protection on the pesticide-induced alterations. The results showed that these pesticides alone or in combination, caused decrease in the levels of GSH and the corresponding increase in the levels of GSSG, decreasing the GSH/GSSG ratio. The results also showed that NADPH/NADP(+) and NADH/NAD(+) ratios were decreased in the liver and brain of rats on exposure with mococrotophos, quinalphos, and their mixture. These pesticides, alone or in combination, caused alterations in the activities of GSH reductase and glucose-6-phosphate dehydrogenase in the rat tissues. However, the expression of the GSH recycling enzymes did not show significant alterations as compared to control. From the results, it can be concluded that these pesticides generate oxidative stress but their effects were not synergistic when given together and prior feeding of antioxidant vitamins tend to reduce the toxicities of these pesticides.

  2. Colorimetric dipstick for assay of organophosphate pesticides and nerve agents represented by paraoxon, sarin and VX.

    PubMed

    Pohanka, Miroslav; Karasova, Jana Zdarova; Kuca, Kamil; Pikula, Jiri; Holas, Ondrej; Korabecny, Jan; Cabal, Jiri

    2010-04-15

    A dipstick for fast assay of nerve agents and organophosphate pesticides was developed. Indicator pH papers were used as detectors. The principle of the assay is based on enzymatic hydrolysis of acetylcholine into acetic acid and choline by acetylcholinesterase. Acidification of the reaction medium due to accumulation of acetic acid was visible. The colour changed from dark red to yellow as the pH indicator recognized pH shift. Presence of an organophosphate pesticide or a nerve agent results in irreversible inhibition of acetylcholinesterase intercepted on the dipstick. The inhibition stops the enzymatic reaction. The inhibition appears as no change of the medium pH. Three compounds were assayed: paraoxon-ethyl as representative organophosphate pesticides and nerve agents sarin and VX. The achieved limit of detection was 5 x 10(-8)M for paraoxon-ethyl and 5 x 10(-9)M for sarin and VX. Dipsticks were found stable for at least one month. Suitability of these dipsticks for routine assay is discussed.

  3. Organophosphate pesticides exposure among farmworkers: pathways and risk of adverse health effects.

    PubMed

    Suratman, Suratman; Edwards, John William; Babina, Kateryna

    2015-01-01

    Organophosphate (OP) compounds are the most widely used pesticides with more than 100 OP compounds in use around the world. The high-intensity use of OP pesticides contributes to morbidity and mortality in farmworkers and their families through acute or chronic pesticides-related illnesses. Many factors contributing to adverse health effects have been investigated by researchers to determine pathways of OP-pesticide exposure among farmers in developed and developing countries. Factors like wind/agricultural pesticide drift, mixing and spraying pesticides, use of personal protective equipment (PPE), knowledge, perceptions, washing hands, taking a shower, wearing contaminated clothes, eating, drinking, smoking, and hot weather are common in both groups of countries. Factors including low socioeconomic status areas, workplace conditions, duration of exposure, pesticide safety training, frequency of applying pesticides, spraying against the wind, and reuse of pesticide containers for storage are specific contributors in developing countries, whereas housing conditions, social contextual factors, and mechanical equipment were specific pathways in developed countries. This paper compares existing research in environmental and behavioural exposure modifying factors and biological monitoring between developing and developed countries. The main objective of this review is to explore the current depth of understanding of exposure pathways and factors increasing the risk of exposure potentially leading to adverse health effects specific to each group of countries.

  4. Bioactive Paper Sensor Based on the Acetylcholinesterase for the Rapid Detection of Organophosphate and Carbamate Pesticides

    PubMed Central

    Badawy, Mohamed E. I.; El-Aswad, Ahmed F.

    2014-01-01

    In many countries, people are becoming more concerned about pesticide residues which are present in or on food and feed products. For this reason, several methods have been developed to monitor the pesticide residue levels in food samples. In this study, a bioactive paper-based sensor was developed for detection of acetylcholinesterase (AChE) inhibitors including organophosphate and carbamate pesticides. Based on the Ellman colorimetric assay, the assay strip is composed of a paper support (1 × 10 cm), onto which a biopolymer chitosan gel immobilized in crosslinking by glutaraldehyde with AChE and 5,5′-dithiobis(2-nitrobenzoic) acid (DTNB) and uses acetylthiocholine iodide (ATChI) as an outside reagent. The assay protocol involves introducing the sample to sensing zone via dipping of a pesticide-containing solution. Following an incubation period, the paper is placed into ATChI solution to initiate enzyme catalyzed hydrolysis of the substrate, causing a yellow color change. The absence or decrease of the yellow color indicates the levels of the AChE inhibitors. The biosensor is able to detect organophosphate and carbamate pesticides with good detection limits (methomyl = 6.16 × 10−4 mM and profenofos = 0.27 mM) and rapid response times (~5 min). The results show that the paper-based biosensor is rapid, sensitive, inexpensive, portable, disposable, and easy-to-use. PMID:25484901

  5. Care of nestlings by wild female starlings exposed to an organophosphate pesticide

    USGS Publications Warehouse

    Grue, C.E.; Powell, G.V.N.; McChesney, M.J.

    1982-01-01

    (1) Our objective was to determine the effect of exposure to an organophosphate pesticide (OP), dicrotophos (3-hydroxy-N,N-dimethyl-cis-scrotonamide dimethyl phosphate), on care of nestlings by wild female starlings (Sturnus vulgaris)....(2) We selected twelve pairs of active nests based on synchrony in the reproductive cycle. When nestlings were 10 days old (day 10), adult males were captured and killed and brood size was adjusted to four. The frequency and temporal distribution of sorties made by each pair of females to feed their young were recorded for 2 h at 18.00 hours on day 11 and 06.00 hours on day 12. One female from each pair was given a single oral dose of dicrotophos (2.5 mg/kg of body weight) dissolved in corn oil; the second female received an equivalent exposure of pure corn oil. Birds were released and their nestlings weighed. Parental care was again monitored between 18.00 and 20.00 hours on day 12 and 06.00 and 08.00 hours on day 13. Females were then captured and they with their young were weighed and killed. Changes in parental care in OP-dosed and control females were compared using paired t-tests. ....(3) The OP-dosed females made significantly (P < 0.5) fewer sorties to feed their young and remained away from their boxes for longer periods of time than controls. Nestlings of OP-treated females lost significantly more weight (X = 9.3%) than nestlings of controls (X = 3.2%). Brain ChE activity in OP-treated females was inhibited an average of 50.7% compared with controls. Weight changes in OP-dosed (X = -8.9%) and control females (X = -8.3%) were similar.....(4) Results indicate that parental care may be significantly reduced in songbirds receiving severe but sublethal exposure to organophosphate pesticides. The potential for a reduction or modification in parental care to alter reproductive success in passerines is discussed..... (5) Techniques utilized, or modifications thereof, may be useful in collecting the additional data needed to

  6. Population-Based Biomonitoring of Exposure to Organophosphate and Pyrethroid Pesticides in New York City

    PubMed Central

    Jacobson, J. Bryan; Kass, Daniel; Barr, Dana Boyd; Davis, Mark; Calafat, Antonia M.; Aldous, Kenneth M.

    2013-01-01

    Background: Organophosphates and pyrethroids are the most common classes of insecticides used in the United States. Widespread use of these compounds to control building infestations in New York City (NYC) may have caused higher exposure than in less-urban settings. Objectives: The objectives of our study were to estimate pesticide exposure reference values for NYC and identify demographic and behavioral characteristics that predict exposures. Methods: The NYC Health and Nutrition Examination Survey was a population-based, cross-sectional study conducted in 2004 among adults ≥ 20 years of age. It measured urinary concentrations of organophosphate metabolites [dimethylphosphate (DMP), dimethylthiophosphate (DMTP), dimethyldithiophosphate, diethylphosphate, diethylthiophosphate, and diethyldithiophosphate] in 883 participants, and pyrethroid metabolites [3-phenoxybenzoic acid (3-PBA), trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (trans-DCCA), 4-fluoro-3-phenoxybenzoic acid, and cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid] in 1,452 participants. We used multivariable linear regression to estimate least-squares geometric mean total dialkylphospate (ΣDAP) and 3-PBA concentrations across categories of predictors. Results: The dimethyl organophosphate metabolites had the highest 95th percentile concentrations (87.4 μg/L and 74.7 μg/L for DMP and DMTP, respectively). The highest 95th percentiles among pyrethroid metabolites were measured for 3-PBA and trans-DCCA (5.23 μg/L and 5.94 μg/L, respectively). Concentrations of ΣDAP increased with increasing age, non-Hispanic white or black compared with Hispanic race/ethnicity, professional pesticide use, and increasing frequency of fruit consumption; they decreased with non-green vegetable consumption. Absolute differences in geometric mean urinary 3-PBA concentrations across categories of predictors were too small to be meaningful. Conclusion: Estimates of exposure to

  7. Urinary concentrations of organophosphate and carbamate pesticides in residents of a vegetarian community.

    PubMed

    Berman, T; Göen, T; Novack, L; Beacher, L; Grinshpan, L; Segev, D; Tordjman, K

    2016-11-01

    Few population studies have measured urinary levels of pesticides in individuals with vegan, vegetarian, or organic diets. The objectives of this study were to evaluate whether a vegan/vegetarian diet was associated with increased exposure to organophosphate and carbamate pesticides, and to evaluate the impact of organic consumption on pesticide exposure in vegans and vegetarians. In the current pilot study conducted in 2013-2014, we collected spot urine samples and detailed 24h recall dietary data in 42 adult residents of Amirim, a vegetarian community in Northern Israel. We measured urinary levels of non-specific organophosphate pesticide metabolites (dialkylphosphates, (DAPs)) and specific metabolites of the current-use pesticides chlorpyrifos (3,5,6-trichloro-2-pyridinol (TCPy)), propoxur (-isopropoxyphenol (IPPX)), and carbaryl (1-naphthol). Six DAP metabolites were detected in between 67 and 100% of urine samples, with highest geometric mean concentrations for dimethylphosphate (19.2μg/g). Creatinine-adjusted median concentrations of total DAPs and of TCPy were significantly higher in Amirim residents compared to the general Jewish population in Israel (0.29μmol/g compared to 0.16, p<0.05 for DAPs and 4.32μg/g compared to 2.34μg/g, p<0.05 for TCPy). Within Amirim residents, we observed a positive association between vegetable intake and urinary TCPy levels (rho=0.47, p<0.05) and lower median total dimethyl phosphate levels in individuals reporting that >25% of the produce they consume is organic (0.065μmol/L compared to 0.22, p<0.05). Results from this pilot study indicate relatively high levels of urinary organophosphate pesticide metabolite concentrations in residents of a vegetarian community, a positive association between vegetable intake and urinary levels of a chlorpyrifos specific metabolite, and lower levels of total dimethyl phosphate in individuals reporting higher intake of organic produce. Results suggest that consumption of organic produce

  8. INDOOR AIR CONCENTRATIONS OF ORGANOCHLORINE, ORGANOPHOSPHATE AND PYRETHROID PESTICIDES IN THE US: FOUR STUDIES, SIX STATES AND TWENTY YEARS

    EPA Science Inventory

    Pesticides used to control indoor pests have transitioned across the chemicals classes of organochlorine, organophosphate, and pyrethroid compounds from the 1980's to the present. This work summarizes the pesticide concentrations measured from the indoor air of homes from four st...

  9. Occupational exposure limits for 30 organophosphate pesticides based on inhibition of red blood cell acetylcholinesterase.

    PubMed

    Storm, J E; Rozman, K K; Doull, J

    2000-09-07

    Toxicity and other relevant data for 30 organophosphate pesticides were evaluated to suggest inhalation occupational exposure limits (OELs), and to support development of a risk assessment strategy for organophosphates in general. Specifically, the value of relative potency analysis and the predictability of inhalation OELs by acute toxicity measures and by repeated oral exposure NOELs was assessed. Suggested OELs are based on the prevention of red blood cell (RBC) acetylcholinesterase (AChE) inhibition and are derived using a weight-of-evidence risk assessment approach. Suggested OEL values range from 0.002 to 2 mg/m(3), and in most cases, are less than current permissible exposure levels (PELs) or threshold limit values(R) (TLVs(R)). The available data indicate that experimental data for most organophosphates evaluated are limited; most organophosphates are equally potent RBC AChE inhibitors in different mammalian species; NOELs from repeated exposure studies of variable duration are usually equivalent; and, no particular grouping based on organophosphate structure is consistently more potent than another. Further, relative potency analyses have limited usefulness in the risk assessment of organophosphates. The data also indicated that equivalent relative potency relationships do not exist across either exposure duration (acute vs. repeated) or exposure route (oral vs. inhalation). Consideration of all variable duration and exposure route studies are therefore usually desirable in the development of an OEL, especially when data are limited. Also, neither acute measures of toxicity nor repeated oral exposure NOELs are predictive of weight-of-evidence based inhalation OELs. These deviations from what is expected based on the common mechanism of action for organophosphates across exposure duration and route - AChE inhibition - is likely due to the lack of synchrony between the timing of target tissue effective dose and the experimental observation of equivalent

  10. ORGANOPHOSPHATE PESTICIDE DEGRADATION UNDER DRINKING WATER TREATMENT CONDITIONS

    EPA Science Inventory

    The Food Quality Protection Act (FQPA) of 1996 requires that all tolerances for pesticide chemical residuals in or on food be considered for anticipated exposure. Drinking water is considered a potential pathway for dietary exposure and there is reliable monitoring data for the ...

  11. Prenatal exposure to the organophosphate pesticide chlorpyrifos and childhood tremor

    PubMed Central

    Rauh, Virginia A.; Garcia, Wanda E.; Whyatt, Robin M.; Horton, Megan K.; Barr, Dana B.; Louis, Elan D.

    2016-01-01

    Background The organophosphate insecticide chlorpyrifos (CPF), widely used for agricultural purposes, has been linked to neurodevelopmental deficits. Possible motor effects at low to moderate levels of exposure have not been evaluated. Methods Prenatal exposure to CPF was measured in umbilical cord blood in a sample of 263 inner-city minority children, who were followed prospectively. At approximately 11 years of age (mean age 10.9 ± 0.85 years, range = 9.0–13.9), during a neuropsychological assessment, children were asked to draw Archimedes spirals. These were rated by a senior neurologist specializing in movement disorders who was blind to CPF exposure level. Results Compared to all other children, those with prenatal CPF exposure in the upper quartile range (n = 43) were more likely to exhibit mild or mild to moderate tremor (≥1) in either arm (p = 0.03), both arms (p = 0.02), the dominant arm (p = 0.01), and the non-dominant arm (p = 0.055). Logistic regression analyses showed significant CPF effects on tremor in both arms, either arm, the dominant arm (p-values < 0.05), and the non-dominant arm (p = 0.06), after adjustment for sex, age at testing, ethnicity, and medication. Conclusion Prenatal CPF exposure is associated with tremor in middle childhood, which may be a sign of the insecticide's effects on nervous system function. PMID:26385760

  12. Detection of trace levels of organophosphate pesticides using an electronic tongue based on graphene hybrid nanocomposites.

    PubMed

    Facure, Murilo H M; Mercante, Luiza A; Mattoso, Luiz H C; Correa, Daniel S

    2017-05-15

    Organophosphate (OP) compounds impose significant strains on public health, environmental/food safety and homeland security, once they have been widely used as pesticides and insecticides and also display potential to be employed as chemical warfare agents by terrorists. In this context, the development of sensitive and reliable chemical sensors that would allow in-situ measurements of such contaminants is highly pursued. Here we report on a free-enzyme impedimetric electronic tongue (e-tongue) used in the analysis of organophosphate pesticides comprising four sensing units based on graphene hybrid nanocomposites. The nanocomposites were prepared by reduction of graphene oxide in the presence of conducting polymers (PEDOT:PSS and polypyrrole) and gold nanoparticles (AuNPs), which were deposited by drop casting onto gold interdigitated electrodes. Impedance spectroscopy measurements were collected in triplicate for each sample analyzed, and the electrical resistance data were treated by Principal Component Analysis (PCA), revealing that the system was able to discriminate OPs at nanomolar concentrations. In addition, the electronic tongue system could detect OPs in real samples, where relations between the principal components and the variation of pesticides in a mixture were established, proving to be useful to analyze and monitor mixtures of OP pesticides. The materials employed provided sensing units with high specific surface area and high conductivity, yielding the development of a sensor with suitable stability, good reproducibility, and high sensitivity towards pesticide samples, being able to discriminate concentrations as low as 0.1nmolL(-1). Our results indicate that the e-tongue system can be used as a rapid, simple and low cost alternative in the analyses of OPs pesticide solutions below the concentration range permitted by legislation of some countries.

  13. Airborne organophosphate pesticides drift in Mediterranean climate: The importance of secondary drift

    NASA Astrophysics Data System (ADS)

    Zivan, Ohad; Segal-Rosenheimer, Michal; Dubowski, Yael

    2016-02-01

    Pesticide application is a short-term air-pollution episode with near and far field effects due to atmospheric drift. In order to better evaluate resulting air concentrations in nearby communities following pesticide application, measurements of airborne pesticides were conducted at ∼70 m from field edge. This was done following three different application events of the organophosphate pesticide Chlorpyrifos in a persimmon orchard. Complementary information on larger spatial scale was obtained using CALPUFF modeling in which application and meteorological data was used to better evaluate dispersion patterns. Measurements indicated high airborne concentrations during application hours (few μg m-3 for 8 h average), which dropped to tens of ng m-3 in the following days. Measured atmospheric concentrations show that secondary drift (i.e., post-application drift) involves significant loads of pesticides and hence should not be ignored in exposure considerations. Furthermore, CALPUFF modeling revealed the complex dispersion pattern when weak winds prevailed, and showed that during the 24 h after application air concentrations reached levels above the hourly Texas effect screening level (0.1 μg m-3). Interestingly, weak winds on the night after application resulted in a secondary peak in measured and modeled air concentrations. Long exposure time (when secondary drift is considered) and concentrations measured following such common air-assisted orchard application, suggest pesticide drift may have health repercussions that are currently unknown, and emphasize the need for further epidemiological studies.

  14. A fluorescent dipyrrinone oxime for the detection of pesticides and other organophosphates.

    PubMed

    Walton, Ian; Davis, Marauo; Munro, Lyndsay; Catalano, Vincent J; Cragg, Peter J; Huggins, Michael T; Wallace, Karl J

    2012-06-01

    An N,N-carbonyl-bridged dipyrrinone oxime has been synthesized and studied as a potential sensor for organophosphates. The molecular sensor underwent a drastic colorimetric response upon formation of the adduct. The pesticide dimethoate was found to produce the biggest spectral response, with a limit of detection equal to 4.0 ppm using UV-visible spectroscopy. Minimal fluorescence "turn on" via a PET mechanism was seen, and molecular modeling studies were used to explain the lower than expected PET response. The X-ray crystal structure of the fluorescent dipyrrinone oxime was also obtained.

  15. Neurobehavioral effects of exposure to organophosphates and pyrethroid pesticides among Thai children

    PubMed Central

    Fiedler, Nancy; Rohitrattana, Juthasiri; Siriwong, Wattasit; Suttiwan, Panrapee; Strickland, Pam Ohman; Ryan, P. Barry; Rohlman, Diane S.; Panuwet, Parinya; Barr, Dana Boyd; Robson, Mark G.

    2015-01-01

    The use of pesticides for crop production has grown rapidly in Thailand during the last decade, resulting in significantly greater potential for exposure among children living on farms. Although some previous studies assessed exposures to pesticides in this population, no studies have been conducted to evaluate corresponding health effects. Twenty-four children from a rice farming community (exposed) and 29 from an aquaculture (shrimp) community (control) completed the study. Participants completed a neurobehavioral test battery three times at 6 month intervals: Session I: preliminary orientation; Session II: high pesticide use season; Session III: low pesticide-use season. Only sessions II and III were used in the analyses. High and low pesticide use seasons were determined by pesticide use on rice farms. Urinary metabolites of organophosphates (OPs) and pyrethroids (PYR) were analyzed from first morning void samples collected the day of neurobehavioral testing. Rice farm participants had significantly higher concentrations of dialkylphosphates (DAPs) (common metabolites of OPs) and TCPy (a specific metabolite of chlorpyrifos) than aquaculture farm children regardless of season. But, TCPy was significantly higher during the low rather than the high pesticide use season for both participant groups. Rice farm children had significantly higher DCCA, a metabolite of PYR, than aquaculture participants only during the high exposure season. Otherwise, no significant differences in PYR metabolites were noted between the participant groups or seasons. No significant adverse neurobehavioral effects were observed between participant groups during either the high or low pesticide use season. After controlling for differences in age and the Home Observation for Measurement of the Environment (HOME) scores, DAPs, TCPy, and PYR were not significant predictors of adverse neurobehavioral performance during either season. Increasing DAP and PYR metabolites predicted some relatively

  16. Simultaneous degradation of organophosphate and organochlorine pesticides by Sphingobium japonicum UT26 with surface-displayed organophosphorus hydrolase.

    PubMed

    Cao, Xiangyu; Yang, Chao; Liu, Ruihua; Li, Qiang; Zhang, Wei; Liu, Jianli; Song, Cunjiang; Qiao, Chuanling; Mulchandani, Ashok

    2013-04-01

    A genetically engineered microorganism (GEM) capable of simultaneously degrading organophosphate and organochlorine pesticides was constructed for the first time by display of organophosphorus hydrolase (OPH) on the cell surface of a hexachlorocyclohexane (HCH)-degrading Sphingobium japonicum UT26. The GEM could potentially be used for removing the two classes of pesticides that may be present in mixtures at contaminated sites. A surface anchor system derived from the truncated ice nucleation protein (INPNC) from Pseudomonas syringae was used to target OPH onto the cell surface of UT26, reducing the potential substrate uptake limitation. The surface localization of INPNC-OPH fusion was verified by cell fractionation, western blot, proteinase accessibility, and immunofluorescence microscopy. Furthermore, the functionality of the surface-exposed OPH was demonstrated by OPH activity assays. Surface display of INPNC-OPH fusion (82 kDa) neither inhibited cell growth nor affected cell viability. The engineered UT26 could degrade parathion as well as γ-HCH rapidly in minimal salt medium. The removal of parathion and γ-HCH by engineered UT26 in sterile and non-sterile soil was also studied. In both soil samples, a mixture of parathion (100 mg kg(-1)) and γ-HCH (10 mg kg(-1)) could be degraded completely within 15 days. Soil treatment results indicated that the engineered UT26 is a promising multifunctional bacterium that could be used for the bioremediation of multiple pesticide-contaminated environments.

  17. Longitudinal trends in organophosphate incidents reported to the National Pesticide Information Center, 1995–2007

    PubMed Central

    2009-01-01

    Background Regulatory decisions to phase-out the availability and use of common organophosphate pesticides among the general public were announced in 2000 and continued through 2004. Based on revised risk assessments, chlorpyrifos and diazinon were determined to pose unacceptable risks. To determine the impact of these decisions, organophosphate (OP) exposure incidents reported to the National Pesticide Information Center (NPIC) were analyzed for longitudinal trends. Methods Non-occupational human exposure incidents reported to NPIC were grouped into pre- (1995–2000) and post-announcement periods (2001–2007). The number of total OP exposure incidents, as well as reports for chlorpyrifos, diazinon and malathion, were analyzed for significant differences between these two periods. The number of informational inquiries from the general public was analyzed over time as well. Results The number of average annual OP-related exposure incidents reported to NPIC decreased significantly between the pre- and post-announcement periods (p < 0.001). A significant decrease in the number of chlorpyrifos and diazinon reports was observed over time (p < 0.001). No significant difference in the number of incident reports for malathion was observed (p = 0.4), which was not phased-out of residential use. Similar to exposure incidents, the number of informational inquiries received by NPIC declined over time following the phase-out announcement. Conclusion Consistent with other findings, the number of chlorpyrifos and diazinon exposure incidents reported to NPIC significantly decreased following public announcement and targeted regulatory action. PMID:19379510

  18. Association of in utero organophosphate pesticide exposure and fetal growth and length of gestation in an agricultural population.

    PubMed

    Eskenazi, Brenda; Harley, Kim; Bradman, Asa; Weltzien, Erin; Jewell, Nicholas P; Barr, Dana B; Furlong, Clement E; Holland, Nina T

    2004-07-01

    Although pesticide use is widespread, little is known about potential adverse health effects of in utero exposure. We investigated the effects of organophosphate pesticide exposure during pregnancy on fetal growth and gestational duration in a cohort of low-income, Latina women living in an agricultural community in the Salinas Valley, California. We measured nonspecific metabolites of organophosphate pesticides (dimethyl and diethyl phosphates) and metabolites specific to malathion (malathion dicarboxylic acid), chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridinyl) phosphoro-thioate], and parathion (4-nitrophenol) in maternal urine collected twice during pregnancy. We also measured levels of cholinesterase in whole blood and butyryl cholinesterase in plasma in maternal and umbilical cord blood. We failed to demonstrate an adverse relationship between fetal growth and any measure of in utero organophosphate pesticide exposure. In fact, we found increases in body length and head circumference associated with some exposure measures. However, we did find decreases in gestational duration associated with two measures of in utero pesticide exposure: urinary dimethyl phosphate metabolites [beta(adjusted) = -0.41 weeks per log10 unit increase; 95% confidence interval (CI), -0.75 -- -0.02; p = 0.02], which reflect exposure to dimethyl organophosphate compounds such as malathion, and umbilical cord cholinesterase (beta(adjusted) = 0.34 weeks per unit increase; 95% CI, 0.13-0.55; p = 0.001). Shortened gestational duration was most clearly related to increasing exposure levels in the latter part of pregnancy. These associations with gestational age may be biologically plausible given that organophosphate pesticides depress cholinesterase and acetylcholine stimulates contraction of the uterus. However, despite these observed associations, the rate of preterm delivery in this population (6.4%) was lower than in a U.S. reference population.

  19. Is there a relationship between the WHO hazard classification of organophosphate pesticide and outcomes in suicidal human poisoning with commercial organophosphate formulations?

    PubMed

    Peter, John Victor; Jerobin, Jayakumar; Nair, Anupama; Bennett, Anjana

    2010-06-01

    The WHO classification of pesticides by hazard is based primarily on the acute oral and dermal toxicity to rats. In several Asian countries there is no legislation against the sale of Class I insecticides. We evaluated if there was an association between the WHO hazard Class I, II or III organophosphate compound and outcomes in human poisoning. Two-hundred and fifty-one patients with mean (SD) age of 30.4 (11.8) years, admitted with symptomatic poisoning and treated with atropine and supportive care, were followed up until death or hospital discharge. The admission pseudocholinesterase level of 818.8 (1368) IU/L indicated significant suppression of cholinesterase activity. Class I compounds were ingested by 126, Class II by 113 and Class III by 12 patients. The hospital mortality rate was 16.7%, 5.3% and 0% with Class I, II and III organophosphate compounds, respectively (P=0.01). Ventilatory requirements were higher with Class I compared with Class II poisoning (77.0% vs. 54.9%, P<0.001). Patients with Class I poisoning needed mechanical ventilation for a longer period (10.55 (7.4) vs. 7.0 (5.2) days, P=0.002). The linear relationship between the WHO hazard class and mortality in acute organophosphate poisoning mandates the restriction of the sale of organophosphate compounds associated with higher lethality amongst humans.

  20. Pathophysiological effects of chronic toxicity with synthetic pyrethroid, organophosphate and chlorinated pesticides on bone health of broiler chicks.

    PubMed

    Garg, Umesh K; Pal, Asim K; Jha, Gautam J; Jadhao, Sanjay B

    2004-01-01

    This experiment evaluated effects following chronic toxicity with 20 ppm fenvalerate (synthetic pyrethroid), 2 ppm monocrotophos (organophosphate) and 2 ppm endosulfan (chlorinated hydrocarbon) on bone health of broiler chicks. A total of 120 chicks were divided equally into 4 groups and were fed poultry mash without (control) or mixed with different pesticides for 8 weeks. Body mass, serum calcium and phosphorus levels were unaffected due to pesticides treatment. However, increase an (p < 0.01) in serum alkaline phosphatase activity was noted and serum total protein decreased (p < 0.01) in all treated groups. Roentogenography revealed destructive changes in the upper part of the femur in the monocrotophos group. Endosulfan intoxicated chicks had increased numbers of trabeculae in the medullary cavity. Microscopic alterations of the costochondral junction in intoxicated chicks were similar. The zones of proliferating, maturing and degenerating, and calcifying cartilage cells were reduced in width and the metaphysis in treated birds showed a reduced number of cartilage cells and thinner trabeculae. Due to toxicity, the capillary scaffolding of the degenerating cartilage cells was reduced and a larger number of transverse trabeculae could be seen in the metaphysis. Appositional bone growth studied by the tetracyclicline labeling technique indicated decreased active osteons.

  1. Mishandling and exposure of farm workers in Qatar to organophosphate pesticides.

    PubMed

    Shomar, Basem; Al-Saad, Khalid; Nriagu, Jerome

    2014-08-01

    We used a combination of subjective (questionnaire) and objective (urinary metabolites) measurements to evaluate factors that can predict the exposure of farm workers in Qatar to organophosphate pesticides and to assess whether the levels of exposure are associated with any self-reported health outcomes. The results show that pesticides were being extensively mishandled in the farms. Very few (<2%) of the farm workers knew the names of the pesticide they were using, and about one-third of the participants did not know the amount of pesticides to be applied to the crops. Nearly all (96%) of the participants had participated in mixing pesticides together before use and few (29%) used protective clothing while engaged in this operation. A significant number of participants (18%) had no knowledge that pesticides are a health hazard. At least one dialkyllphosphate (DAP) metabolite was detected in every worker. The geometric mean (GM) concentration of the dimethylalkylphosphates (DMAP) was 108 nM (range, from below the limit of detection (LOD) to 351 nM), and the GM for the diethylalkylphosphates (DEAP) was 43 nM (range, LOD-180 nM). The GM for total concentration of the metabolites (DAP) of 146 nM (maximum value estimated to be 531 nM) is below the values that have been reported for farmers in some countries, but higher than the levels in the general populations of many countries. We explored the influence of metal exposure and found consistent and negative relationships between the DAP metabolites and the concentrations of most of the trace elements in the urine of the farm workers; the negative associations were statistically significant for Cr, Mn, Fe, Ni, As, and Pb. We suspect that the negative associations are not source-dependent but may be reflective of antagonistic relationships in human metabolism of OPPs and trace metals; hence we recommend that metals should be included as co-factors in assessing the health effects of OPP exposure.

  2. Nanoparticle-Based Electrochemical Immunosensor for the Detection of Phosphorylated Acetylcholinesterase: An Exposure Biomarker of Organophosphate Pesticides and Nerve AgentsOrganophosphate Pesticides and Nerve Agents

    SciTech Connect

    Liu, Guodong; Wang, Jun; Barry, Richard C.; Petersen, Catherine E.; Timchalk, Charles; Gassman, Paul L.; Lin, Yuehe

    2008-11-01

    A nanoparticle-based electrochemical immunosensor has been developed for the detection of phosphorylated acetylcholinesterase (AChE) adducts, which is a potential exposure biomarker for organophosphate pesticides (OP) and chemical warfare nerve agent exposures. Zirconia nanoparticles (ZrO2 NPs) were used as selective sorbents to capture the phosphorylated AChE adduct, and quantum dots (ZnS@CdS, QDs) were used as tags to label monoclonal anti-AChE antibody to track the immunorecognition events. The sandwich-like immunoreactions were performed among the ZrO2 NPs, which were pre-coated on a screen printed electrode (SPE) by electrodeposition, phosphorylated AChE and QD-anti-AChE. The captured QD tags were determined on the SPE by electrochemical stripping analysis of its metallic component (cadmium) after an acid-dissolution step. Paraoxon was used as a model OP insecticide to prepare the phosphorylated AChE adduct to demonstrate the proof of principle for this sensor technology. The paraoxon-AChE adduct was characterized by Fourier Transform Infrared Spectrum, and the binding affinity of anti-AChE to the paraoxon-AChE was validated with an enzyme-linked immunosorbent assay. The parameters (e.g., amount of ZrO2 NP, QD-anti-AChE concentration,) that govern the electrochemical response of immunosensors were optimized. The voltammetric response of the immunosensor is highly linear over the range of 10 pM to 4 nM paraoxon-AChE, and the limit of detection is estimated to be 8 pM. This new nanoparticle-based electrochemical immunosensor thus provides a sensitive and quantitative tool for biomonitoring exposure to OP pesticides and nerve agents.

  3. Neurobehavioral effects of exposure to organophosphates and pyrethroid pesticides among Thai children.

    PubMed

    Fiedler, Nancy; Rohitrattana, Juthasiri; Siriwong, Wattasit; Suttiwan, Panrapee; Ohman Strickland, Pam; Ryan, P Barry; Rohlman, Diane S; Panuwet, Parinya; Barr, Dana Boyd; Robson, Mark G

    2015-05-01

    The use of pesticides for crop production has grown rapidly in Thailand during the last decade, resulting in significantly greater potential for exposure among children living on farms. Although some previous studies assessed exposures to pesticides in this population, no studies have been conducted to evaluate corresponding health effects. Twenty-four children from a rice farming community (exposed) and 29 from an aquaculture (shrimp) community (control) completed the study. Participants completed a neurobehavioral test battery three times at 6 month intervals: Session I: preliminary orientation; Session II: high pesticide use season; Session III: low pesticide-use season. Only sessions II and III were used in the analyses. High and low pesticide use seasons were determined by pesticide use on rice farms. Urinary metabolites of organophosphates (OPs) and pyrethroids (PYR) were analyzed from first morning void samples collected the day of neurobehavioral testing. Rice farm participants had significantly higher concentrations of dialkylphosphates (DAPs) (common metabolites of OPs) and TCPy (a specific metabolite of chlorpyrifos) than aquaculture farm children during both seasons. But, TCPy was significantly higher during the low rather than the high pesticide use season for both participant groups. Rice farm children had significantly higher DCCA, a metabolite of PYR, than aquaculture participants only during the high exposure season. Otherwise, no significant differences in PYR metabolites were noted between the participant groups or seasons. No significant adverse neurobehavioral effects were observed between participant groups during either the high or low pesticide use season. After controlling for differences in age and the Home Observation for Measurement of the Environment (HOME) scores, DAPs, TCPy, and PYR were not significant predictors of adverse neurobehavioral performance during either season. Increasing DAP and PYR metabolites predicted some relatively

  4. Neurodevelopmental effects in children associated with exposure to organophosphate pesticides: a systematic review.

    PubMed

    Muñoz-Quezada, María Teresa; Lucero, Boris A; Barr, Dana B; Steenland, Kyle; Levy, Karen; Ryan, P Barry; Iglesias, Veronica; Alvarado, Sergio; Concha, Carlos; Rojas, Evelyn; Vega, Catalina

    2013-12-01

    Many studies have investigated the neurodevelopmental effects of prenatal and early childhood exposures to organophosphate (OP) pesticides among children, but they have not been collectively evaluated. The aim of the present article is to synthesize reported evidence over the last decade on OP exposure and neurodevelopmental effects in children. The Data Sources were PubMed, Web of Science, EBSCO, SciVerse Scopus, SpringerLink, SciELO and DOAJ. The eligibility criteria considered were studies assessing exposure to OP pesticides and neurodevelopmental effects in children from birth to 18 years of age, published between 2002 and 2012 in English or Spanish. Twenty-seven articles met the eligibility criteria. Studies were rated for evidential consideration as high, intermediate, or low based upon the study design, number of participants, exposure measurement, and neurodevelopmental measures. All but one of the 27 studies evaluated showed some negative effects of pesticides on neurobehavioral development. A positive dose-response relationship between OP exposure and neurodevelopmental outcomes was found in all but one of the 12 studies that assessed dose-response. In the ten longitudinal studies that assessed prenatal exposure to OPs, cognitive deficits (related to working memory) were found in children at age 7 years, behavioral deficits (related to attention) seen mainly in toddlers, and motor deficits (abnormal reflexes) seen mainly in neonates. No meta-analysis was possible due to different measurements of exposure assessment and outcomes. Eleven studies (all longitudinal) were rated high, 14 studies were rated intermediate, and two studies were rated low. Evidence of neurological deficits associated with exposure to OP pesticides in children is growing. The studies reviewed collectively support the hypothesis that exposure to OP pesticides induces neurotoxic effects. Further research is needed to understand effects associated with exposure in critical windows of

  5. Simultaneous determination of eight metabolites of organophosphate and pyrethroid pesticides in urine.

    PubMed

    Guo, Xin Y; Sun, Li S; Huang, Meng Y; Xu, Wei L; Wang, Ying; Wang, Na

    2017-01-02

    A simultaneous method for quantifying eight metabolites of organophosphate pesticides and pyrethroid pesticides in urine samples has been established. The analytes were extracted using liquid-liquid extraction coupled with WCX solid phase extraction (SPE) cartridges. Eight metabolites were chemically derivatized before analysis using gas chromatography-tandem mass spectrometry (GC-MS-MS). The separation was performed on a HP-5MS capillary column (30 m × 0.25 mm × 0.25 µm) with temperature programming. The detection was performed under electro-spray ionization (ESI) in multiple reaction monitoring (MRM) mode. An internal standard method was used. The extraction solvent, types of SPE cartridges and eluents were optimized by comparing the sample recoveries under different conditions. The results showed that the calibration curves of the five organophosphorus pesticides metabolites were linear in the range of 0.2-200 μg/L (r(2) ≥ 0.992) and that of the three pyrethroid pesticides metabolites were linear in the range of 0.025-250 μg/L (r(2) ≥ 0.991). The limits of detection (LODs, S/N ≥ 3) and the limits of quantification (LOQs, S/N ≥ 10) of the eight metabolites were 0.008-0.833 μg/L and 0.25-2.5 μg/L, respectively. The recoveries of the eight metabolites ranged from 54.08% to 82.49%. This efficient, stable, and cost-effective method is adequate to handle the large number of samples required for surveying the exposure level of organophosphorus and pyrethroid pesticides in the general population.

  6. Neurodevelopmental effects in children associated with exposure to organophosphate pesticides: A systematic review

    PubMed Central

    Muñoz-Quezada, María Teresa; Lucero, Boris A.; Barr, Dana B.; Steenland, Kyle; Levy, Karen; Ryan, P. Barry; Iglesias, Veronica; Alvarado, Sergio; Concha, Carlos; Rojas, Evelyn; Vega, Catalina

    2013-01-01

    Many studies have investigated the neurodevelopmental effects of prenatal and early childhood exposures to organophosphate (OP) pesticides among children, but they have not been collectively evaluated. The aim of the present article is to synthesize reported evidence over the last decade on OP exposure and neurodevelopmental effects in children. The Data Sources were PubMed, Web of Science, EBSCO, SciVerse Scopus, SpringerLink, SciELO and DOAJ. The eligibility criteria considered were studies assessing exposure to OP pesticides and neurodevelopmental effects in children from birth to 18 years of age, published between 2002 and 2012 in English or Spanish. Twenty-seven articles met the eligibility criteria. Studies were rated for evidential consideration as high, intermediate, or low based upon the study design, number of participants, exposure measurement, and neurodevelopmental measures. All but one of the 27 studies evaluated showed some negative effects of pesticides on neurobehavioral development. A positive dose–response relationship between OP exposure and neurodevelopmental outcomes was found in all but one of the 12 studies that assessed dose–response. In the ten longitudinal studies that assessed prenatal exposure to OPs, cognitive deficits (related to working memory) were found in children at age 7 years, behavioral deficits (related to attention) seen mainly in toddlers, and motor deficits (abnormal reflexes) seen mainly in neonates. No meta-analysis was possible due to different measurements of exposure assessment and outcomes. Eleven studies (all longitudinal) were rated high, 14 studies were rated intermediate, and two studies were rated low. Evidence of neurological deficits associated with exposure to OP pesticides in children is growing. The studies reviewed collectively support the hypothesis that exposure to OP pesticides induces neurotoxic effects. Further research is needed to understand effects associated with exposure in critical windows

  7. The impact of organophosphate pesticides in orchards on earthworms in the Western Cape, South Africa.

    PubMed

    Reinecke, S A; Reinecke, A J

    2007-02-01

    Earthworm population density was measured in and adjacent to an orchard in an agricultural area in the Western Cape, South Africa. Worm densities were very low in orchards (22/m(2)) compared to adjacent uncultivated fields (152/m(2)) at a distance from the orchards. The possible effect of organophosphate pesticides on the earthworms was investigated. Background soil concentrations of chlorpyrifos prior to the start of the spraying season were low (0.2-2.7 microg/kg) but persistent for up to 6 months after the last spraying event, and the pesticide was, as a result of rainfall, transported to nontarget areas by runoff. Background concentrations of azinphos methyl were higher than those of chlorpyrifos (1.6-9.8 microg/kg) but not detectable 2 weeks after a spraying event. Azinphos methyl was mostly transported by wind (spray drift) to adjacent areas. A microcosm study indicated effects of chlorpyrifos on earthworms as determined by measuring biomass change and Cholinesterase inhibition. It is concluded that earthworms were affected detrimentally by the pesticides due to chronic (chlorpyrifos) and intermittent (azinphos methyl) exposure.

  8. Predictors of exposure to organophosphate pesticides in schoolchildren in the Province of Talca, Chile

    PubMed Central

    Muñoz-Quezada, Maria Teresa; Iglesias, Verónica; Lucero, Boris; Steenland, Kyle; Barr, Dana Boyd; Levy, Karen; Ryan, P. Barry; Alvarado, Sergio; Concha, Carlos

    2012-01-01

    Background Few data exist in Latin America concerning the association between organophosphate (OP) urinary metabolites and the consumption of fruits and vegetables and other exposure risk variables in schoolchildren. Methods We collected samples of urine from 190 Chilean children aged 6-12 years, fruits and vegetables, water and soil from schools and homes, and sociodemographic data through a questionnaire. We measured urinary dialkylphosphate (DAP) OP metabolites and OP pesticide residues in food consumed by these 190 children during two seasons: December 2010 (summer) and May 2011(fall). We analyzed the relationship between urinary DAP concentrations and pesticide residues in food, home pesticide use, and residential location. Results Diethylalkylphosphates (DEAP) and dimethylalkylphosphates (DMAP) were detected in urine in 76% and 27% of samples, respectively. Factors associated with urinary DEAP included chlorpyrifos in consumed fruits (p<0.0001), urinary creatinine (p<0.0001), rural residence (p=0.02) and age less than 9 years (p=0.004). Factors associated with urinary DMAP included the presence of phosmet residues in fruits (p<0.0001), close proximity to a farm (p=0.002), home fenitrothion use (p=0.009), and season (p<0.0001). Conclusions Urinary DAP levels in Chilean school children were high compared previously reported studies. The presence of chlorpyrifos and phosmet residues in fruits was the major factor predicting urinary DAP metabolite concentrations in children. PMID:22732215

  9. Sensitivity of Costa Rica's native cladoceran Daphnia ambigua and Simocephalus serrulatus to the organophosphate pesticide ethoprophos.

    PubMed

    Arias-Andrés, María; Torres, Freylan Mena; Vargas, Seiling; Solano, Karla

    2014-01-01

    The study of pesticide toxicity in aquatic environments is assessed with ecotoxicological tests and most research has been performed using species from temperate regions. In the present study, series of acute (48 hrs) toxicity tests to compare the sensibility of two indigenous cladocera of Costa Rica and two reference species were used in temperate regions to the organophosphate pesticide, Ethoprophos. Additionally, reproduction tests using S. serrulatus with sub lethal concentrations of ethoprophos and a control were assayed to check its sensitivity over a longer period exposure. The sensitivity of Costa Rica's native species Daphnia ambigua (EC50 48 hr: 12.9 +/- 3.0 microg(l(-1)) and Simocephalus serrulatus (10.6 +/- 2.1 microg l(-1)) to ethoprophos were higher (p < 0.05) when compared to the exotic species Daphnia magna (289.8 +/- 77.4 microg l(-1)), and were comparable to that of the more widely distributed species, Ceriodaphnia dubia (18.2 +/- 5.2 microg l(-1)). No effect on S. serrulatus reproduction was observed at concentrations between 1 and 4 microg l(-1). This study provides information that can be considered in the selection of species for ecosystem studies of pesticide toxicity in neotropical regions.

  10. Bioconcentration and Acute Intoxication of Brazilian Freshwater Fishes by the Methyl Parathion Organophosphate Pesticide

    PubMed Central

    Bosco de Salles, João; Matos Lopes, Renato; de Salles, Cristiane M. C.; Cassano, Vicente P. F.; de Oliveira, Manildo Marcião; Cunha Bastos, Vera L. F.; Bastos, Jayme Cunha

    2015-01-01

    Three species of freshwater Brazilian fishes (pacu, Piaractus mesopotamicus; piavussu, Leporinus macrocephalus, and curimbatá, Prochilodus lineatus) were exposed to an acute dose of 5 ppm methyl parathion organophosphate pesticide. Three to five individuals per species were exposed, one at a time, to 40 liters tap water spiked with Folidol 600. Pesticide concentrations and cholinesterase (ChE) activities were evaluated in serum, liver, brain, heart, and muscle. The bioconcentration of methyl parathion was similar for all studied fishes. Brain tissue showed the highest pesticide concentration, reaching 80 ppm after exposure for 30 min to methyl parathion. Three to 5 hours of 5 ppm methyl parathion exposure provoked the death of all P. lineatus at 92% brain AChE inhibition, whereas fish from the other two species survived for up to 78 hours with less than 80% brain AChE inhibition. Our results indicate that acute toxic effects of methyl parathion to fish are correlated with brain AChE sensitivity to methyl paraoxon. PMID:26339593

  11. Bioconcentration and Acute Intoxication of Brazilian Freshwater Fishes by the Methyl Parathion Organophosphate Pesticide.

    PubMed

    de Salles, João Bosco; Lopes, Renato Matos; de Salles, Cristiane M C; Cassano, Vicente P F; de Oliveira, Manildo Marcião; Bastos, Vera L F Cunha; Bastos, Jayme Cunha

    2015-01-01

    Three species of freshwater Brazilian fishes (pacu, Piaractus mesopotamicus; piavussu, Leporinus macrocephalus, and curimbatá, Prochilodus lineatus) were exposed to an acute dose of 5 ppm methyl parathion organophosphate pesticide. Three to five individuals per species were exposed, one at a time, to 40 liters tap water spiked with Folidol 600. Pesticide concentrations and cholinesterase (ChE) activities were evaluated in serum, liver, brain, heart, and muscle. The bioconcentration of methyl parathion was similar for all studied fishes. Brain tissue showed the highest pesticide concentration, reaching 80 ppm after exposure for 30 min to methyl parathion. Three to 5 hours of 5 ppm methyl parathion exposure provoked the death of all P. lineatus at 92% brain AChE inhibition, whereas fish from the other two species survived for up to 78 hours with less than 80% brain AChE inhibition. Our results indicate that acute toxic effects of methyl parathion to fish are correlated with brain AChE sensitivity to methyl paraoxon.

  12. Case histories of organophosphate pesticides killing birds of prey in the United States

    USGS Publications Warehouse

    Henny, C.J.; Kolbe, E.J.; Hill, E.F.; Blus, L.J.

    1985-01-01

    Since 1982 when secondary. poisoning of Red-tailed Hawks (Buteo jamaicensis) was documented following the recommended use of famphur on cattle, the Patuxent Wildlife Research Center has tested for organophosphate (OP) poisoning in selected birds of prey found dead. This report documents the circumstances for a number of. cases where birds of prey were killed by OP pesticides in the United States. Many of the cases were brought to our attention by the U S. Fish and Wildlife Service Division of Law Enforcement The cases may be divided into three categories: misuse, approved use, and unknown. Now that we are looking for OP poisoning of birds of prey, we are finding it more frequently than previously suspected.

  13. Development of a versatile organophosphorous-hydrolase-based assay for organophosphate pesticides

    NASA Astrophysics Data System (ADS)

    Rogers, Kim R.; Wang, Yi; Mulchandani, Ashok; Mulchandani, P.; Chen, Wilfred

    1999-02-01

    We report a rapid and versatile organophosphorus hydrolase (OPH)-based method for measurement of organophosphate pesticides. This assay is based on a substrate-dependant change in pH near the active site of the enzyme. The pH change is monitored using fluorescein isothiocyanate (FITC) which is covalently immobilized to the enzyme. This method employs FITC-labeled enzyme adsorbed to polymethylmethacrylate beads. Analytes were measured using a microbead fluorescence analyzer. The dynamic concentration range for the assay extends from 25 (mu) M to 400 (mu) M for paraoxon with a detection limit of 8 (mu) M. This assay compared favorably to an HPLC method for monitoring the concentration of coumaphos in bioremediation filtrate samples.

  14. An efficient thermostable organophosphate hydrolase and its application in pesticide decontamination.

    PubMed

    Del Giudice, Immacolata; Coppolecchia, Rossella; Merone, Luigia; Porzio, Elena; Carusone, Teresa Maria; Mandrich, Luigi; Worek, Franz; Manco, Giuseppe

    2016-04-01

    In vitro evolution of enzymes represents a powerful device to evolve new or to improve weak enzymatic functions. In the present work a semi-rational engineering approach has been used to design an efficient and thermostable organophosphate hydrolase, starting from a lactonase scaffold (SsoPox from Sulfolobus solfataricus). In particular, by in vitro evolution of the SsoPox ancillary promiscuous activity, the triple mutant C258L/I261F/W263A has been obtained which, retaining its inherent stability, showed an enhancement of its hydrolytic activity on paraoxon up to 300-fold, achieving absolute values of catalytic efficiency up to 10(5) M(-1) s(-1). The kinetics and structural determinants of this enhanced activity were thoroughly investigated and, in order to evaluate its potential biotechnological applications, the mutant was tested in formulations of different solvents (methanol or ethanol) or detergents (SDS or a commercial soap) for the cleaning of pesticide-contaminated surfaces.

  15. Associations of Prenatal Exposure to Organophosphate Pesticide Metabolites with Gestational Age and Birth Weight

    PubMed Central

    Rauch, Stephen A.; Braun, Joe M.; Barr, Dana Boyd; Calafat, Antonia M.; Khoury, Jane; Montesano, M. Angela; Yolton, Kimberly

    2012-01-01

    Background: Prenatal exposure to organophosphate (OP) insecticides, a widely used class of pesticides, may be associated with decreased gestational age and lower birth weight. Single nucleotide polymorphisms in paroxanase (PON1) enzyme genotypes may modify the relationships between OP exposure and perinatal outcomes. Objective: We examined the relationship of prenatal OP insecticide exposure, measured using urinary dialkyl phosphate (DAP) metabolite concentrations, with gestational age and birth weight. Methods: We measured the concentrations of six nonspecific DAP metabolites of OP insecticides in two maternal spot urine samples collected in a prospective birth cohort. We performed multivariable regression to examine associations between the sum of six DAP concentrations (ΣDAP) with gestational age and birth weight. We also examined whether these associations differed according to infant PON1192 and PON1–108 genotypes. Results: Among 306 mother–infant dyads, a 10-fold increase in ΣDAP concentrations was associated with a decrease in covariate-adjusted gestational age [–0.5 weeks; 95% confidence interval (CI): –0.8, –0.1] and birth weight (–151 g; CI: –287, –16); the decrements in birth weight were attenuated after adjusting for gestational age. The relationship between ΣDAP concentrations and gestational age was stronger for white (–0.7 weeks; CI: –1.1, –0.3) than for black (–0.1 weeks; 95% CI: –0.9, 0.6) newborns. In contrast, there was a greater decrease in birth weight with increasing urinary ΣDAP concentrations for black (–188 g; CI: –395, 19) than for white (–118 g; CI: –296, 60) newborns. Decrements in birth weight and gestational age associated with ΣDAP concentrations were greatest among infants with PON1192QR and PON–108CT genotypes. Conclusions: Prenatal urinary ΣDAP concentrations were associated with shortened gestation and reduced birth weight in this cohort, but the effects differed by race/ethnicity and PON

  16. Contamination levels of selected organochlorine and organophosphate pesticides in the Selangor River, Malaysia between 2002 and 2003.

    PubMed

    Leong, Kok Hoong; Tan, L L Benjamin; Mustafa, Ali Mohd

    2007-01-01

    In Malaysia, rivers are the main source of public water supplies. This study was conducted from 2002 to 2003 to determine the levels of selected organochlorine and organophosphate pesticides in the Selangor River in Malaysia. Surface water samples have been collected seasonally from nine sites along the river. A liquid-liquid extraction followed by gas chromatography-mass spectrometry technique was used to determine the trace levels of these pesticide residues. The organochlorine pesticides detected were lindane, heptachlor, endosulfan, dieldrin, endosulfan sulfate, o,p'-DDT, p,p'-DDT, o,p'-DDE and p,p'-DDE whereas for organophosphate pesticides, they were chlorpyrifos and diazinon. At the river upstream where a dam is located for public water supply, incidents of pesticide levels exceeding the European Economic Community Directive of water quality standards have occurred. Furthermore, the wetland ecosystems located at the downstream of the river which houses the fireflies community is being threatened by occasional pesticide levels above EPA limits for freshwater aquatic organisms. The occurrence of these residual pesticides in the Selangor River can be attributed to the intense agriculture and urban activity.

  17. Pesticides

    MedlinePlus

    ... control. Examples of different kinds of pesticides include insecticides, rodenticides, and herbicides, to name a few. Top ... can lead to severe toxicity requiring hospitalization. Organophosphate insecticides also work by increasing the amount of acetylcholine ...

  18. Dynamic modeling of organophosphate pesticide load in surface water in the northern San Joaquin Valley watershed of California

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Zhang, X.; Liu, X.; Ficklin, D. L.; Zhang, M.

    2008-12-01

    The hydrology, sediment, and pesticide transport components of the Soil and Water Assessment Tool (SWAT) were evaluated on the northern San Joaquin Valley watershed of California. The Nash Sutcliffe coefficients for monthly stream flow and sediment load ranged from 0.49 to 0.99 over the watershed during the study period of 1992 to 2005. The calibrated SWAT model was applied to simulate fate and transport processes of two organophosphate pesticides of diazinon and chlorpyrifos at watershed scale. The model generated satisfactory predictions of dissolved pesticide loads relative to the monitoring data. The model also showed great success in capturing spatial patterns of dissolved diazinon and chlorpyrifos loads according to the soil properties and landscape morphology over the large agricultural watershed. This study indicated that curve number was the major factor influencing the hydrology while pesticide fate and transport were mainly affected by surface runoff and pesticide application timing in the study area.

  19. Atmospheric transport of organophosphate pesticides from California's Central Valley to the Sierra Nevada Mountains

    USGS Publications Warehouse

    Zabik, John M.; Seiber, James N.

    1993-01-01

    Atmospheric transport of organophosphate pesticides from California's Central Valley to the Sierra Nevada mountains was assessed by collecting air- and wet-deposition samples during December, January, February, and March, 1990 to 1991. Large-scale spraying of these pesticides occurs during December and January to control insect infestations in valley orchards. Sampling sites were placed at 114- (base of the foothills), 533-, and 1920-m elevations. Samples acquired at these sites contained chlorpyrifos [phosphorothioic acid; 0,0-diethyl 0-(3,5,6-trichloro-2-pyridinyl) ester], parathion [phosphorothioic acid, 0-0-diethylo-(4-nitrophenyl) ester], diazinon {phosphorothioic acid, 0,0-diethyl 0-[6-methyl-2-(1-methylethyl)-4-pyrimidinyl] ester} diazinonoxon {phosphoric acid, 0,0-diethyl 0-[6-methyl-2-(1-methylethyl)-4-pyrimidinyl] ester}, and paraoxon [phosphoric acid, 0,0-diethyl 0-(4-nitrophenyl) ester] in both air and wet deposition samples. Air concentrations of chloropyrifos, diazinon and parathion ranged from 13 to 13 000 pg/m3 at the base of the foothills. At 533-m air concentrations were below the limit of quantification (1.4 pg/m3) to 83 pg/m3 and at 1920 m concentrations were below the limit of quantification. Concentrations in wet deposition varied with distance and elevation from the Central Valley. Rainwater concentrations at the base of the foot hills ranged from 16 to 7600 pg/mL. At 533-m rain and snow water concentrations ranged from below the limit of quantification (1.3 pg/mL) to 140 pg/mL and at 1920 m concentrations ranged from below the limit of quantification to 48 pg/mL. These findings indicate that atmospheric transport of pesticides applied in the valley to the Sierra Nevada mountains is occurring, but the levels decrease as distance and elevation increase from the valley floor.

  20. Prenatal Exposure to Organophosphate Pesticides and IQ in 7-Year-Old Children

    PubMed Central

    Bouchard, Maryse F.; Chevrier, Jonathan; Harley, Kim G.; Kogut, Katherine; Vedar, Michelle; Calderon, Norma; Trujillo, Celina; Johnson, Caroline; Bradman, Asa; Barr, Dana Boyd

    2011-01-01

    Context: Organophosphate (OP) pesticides are neurotoxic at high doses. Few studies have examined whether chronic exposure at lower levels could adversely affect children’s cognitive development. Objective: We examined associations between prenatal and postnatal exposure to OP pesticides and cognitive abilities in school-age children. Methods: We conducted a birth cohort study (Center for the Health Assessment of Mothers and Children of Salinas study) among predominantly Latino farmworker families from an agricultural community in California. We assessed exposure to OP pesticides by measuring dialkyl phosphate (DAP) metabolites in urine collected during pregnancy and from children at 6 months and 1, 2, 3.5, and 5 years of age. We administered the Wechsler Intelligence Scale for Children, 4th edition, to 329 children 7 years of age. Analyses were adjusted for maternal education and intelligence, Home Observation for Measurement of the Environment score, and language of cognitive assessment. Results: Urinary DAP concentrations measured during the first and second half of pregnancy had similar relations to cognitive scores, so we used the average of concentrations measured during pregnancy in further analyses. Averaged maternal DAP concentrations were associated with poorer scores for Working Memory, Processing Speed, Verbal Comprehension, Perceptual Reasoning, and Full-Scale intelligence quotient (IQ). Children in the highest quintile of maternal DAP concentrations had an average deficit of 7.0 IQ points compared with those in the lowest quintile. However, children’s urinary DAP concentrations were not consistently associated with cognitive scores. Conclusions: Prenatal but not postnatal urinary DAP concentrations were associated with poorer intellectual development in 7-year-old children. Maternal urinary DAP concentrations in the present study were higher but nonetheless within the range of levels measured in the general U.S. population. PMID:21507776

  1. A Complex Interaction Between Reduced Reelin Expression and Prenatal Organophosphate Exposure Alters Neuronal Cell Morphology

    PubMed Central

    Mullen, Brian R.; Ross, Brennan; Chou, Joan Wang; Khankan, Rana; Khialeeva, Elvira; Bui, Kimberly

    2016-01-01

    Genetic and environmental factors are both likely to contribute to neurodevelopmental disorders including schizophrenia, autism spectrum disorders, and major depressive disorders. Prior studies from our laboratory and others have demonstrated that the combinatorial effect of two factors—reduced expression of reelin protein and prenatal exposure to the organophosphate pesticide chlorpyrifos oxon—gives rise to acute biochemical effects and to morphological and behavioral phenotypes in adolescent and young adult mice. In the current study, we examine the consequences of these factors on reelin protein expression and neuronal cell morphology in adult mice. While the cell populations that express reelin in the adult brain appear unchanged in location and distribution, the levels of full length and cleaved reelin protein show persistent reductions following prenatal exposure to chlorpyrifos oxon. Cell positioning and organization in the hippocampus and cerebellum are largely normal in animals with either reduced reelin expression or prenatal exposure to chlorpyrifos oxon, but cellular complexity and dendritic spine organization is altered, with a skewed distribution of immature dendritic spines in adult animals. Paradoxically, combinatorial exposure to both factors appears to generate a rescue of the dendritic spine phenotypes, similar to the mitigation of behavioral and morphological changes observed in our prior study. Together, our observations support an interaction between reelin expression and chlorpyrifos oxon exposure that is not simply additive, suggesting a complex interplay between genetic and environmental factors in regulating brain morphology. PMID:27364165

  2. CATALYTIC DETOXIFICATION OF NERVE AGENT AND PESTICIDE ORGANOPHOSPHATES BY BUTYRYLCHOLINESTERASE ASSISTED WITH NON-PYRIDINIUM OXIMES

    PubMed Central

    Radić, Zoran; Dale, Trevor; Kovarik, Zrinka; Berend, Suzana; Garcia, Edzna; Zhang, Limin; Amitai, Gabriel; Green, Carol; Radić, Božica; Duggan, Brendan M.; Ajami, Dariush; Rebek, Julius; Taylor, Palmer

    2016-01-01

    SYNOPSIS We present here a comprehensive in vitro, ex vivo and in vivo study on hydrolytic detoxification of nerve agent and pesticide organophosphates (OPs) catalyzed by purified human butyrylcholinesterase (hBChE) in combination with novel non-pyridinium oxime reactivators. We identified 2-trimethylammonio-6-hydroxybenzaldehyde oxime (TAB2OH) as an efficient reactivator of OP-hBChE conjugates formed by the nerve agents, VX and cyclosarin, and the pesticide, paraoxon. It was also functional in reactivation of sarin and tabun inhibited hBChE. A three to five-fold enhancement of in vitro reactivation of VX, cyclosarin and paraoxon inhibited hBChE was observed, when compared to the commonly used N-methylpyridinium aldoxime reactivator, 2PAM. Kinetic analysis showed the enhancement resulted from improved molecular recognition of corresponding OP-hBChE conjugates by TAB2OH. The unique features of TAB2OH stem from an exocyclic quaternary nitrogen and a hydroxyl, both ortho to an oxime group on a benzene ring. pH dependences reveal participation of the hydroxyl (pKa=7.6) forming an additional ionizing nucleophile to potentiate the oxime (pKa=10) at physiological pH. The TAB2OH protective indices in therapy of sarin and paraoxon exposed mice were enhanced by 30% – 60% when they were treated with a combination of TAB2OH and sub-stoichiometric hBChE. These results establish that oxime-assisted catalysis is feasible for OP bioscavenging. PMID:23216060

  3. PON1 and Neurodevelopment in Children from the CHAMACOS Study Exposed to Organophosphate Pesticides in Utero

    PubMed Central

    Eskenazi, Brenda; Huen, Karen; Marks, Amy; Harley, Kim G.; Bradman, Asa; Barr, Dana Boyd; Holland, Nina

    2010-01-01

    Background Paraoxonase 1 (PON1) detoxifies oxon derivatives of some organophosphate (OP) pesticides, and its genetic polymorphisms influence enzyme activity and quantity. We previously reported that maternal urinary concentrations of dialkyl phosphate (DAP) metabolites, a marker of OP pesticide exposure, were related to poorer mental development and maternally reported symptoms consistent with pervasive developmental disorder (PDD) in 2-year-olds participating in the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) study. Objective We determined whether PON1 genotypes and enzyme measurements were associated with child neurobehavioral development and whether PON1 modified the association of in utero exposure to OPs (as assessed by maternal DAPs) and neurobehavior. Methods We measured DAP concentrations in maternal urine during pregnancy, PON1192 and PON1−108 genotypes in mothers and children, and arylesterase (ARYase) and paraoxonase (POase) in maternal, cord, and 2-year-olds’ blood. We assessed 353 2-year-olds on the Mental Development Index (MDI) and Psychomotor Development Index (PDI) of the Bayley Scales of Infant Development and queried their mothers on the Child Behavior Checklist to obtain a score for PDD. Results Children with the PON1−108T allele had poorer MDI scores and somewhat poorer PDI scores. Children were less likely to display PDD when they or their mothers had higher ARYase activity and when their mothers had higher POase activity. The association between DAPs and MDI scores was strongest in children with PON1−108T allele, but this and other interactions between DAPs and PON1 polymorphisms or enzymes were not significant. Conclusion PON1 was associated with child neurobehavioral development, but additional research is needed to confirm whether it modifies the relation with in utero OP exposure. PMID:21126941

  4. Ecotoxicity of two organophosphate pesticides chlorpyrifos and dichlorvos on non-targeting cyanobacteria Microcystis wesenbergii.

    PubMed

    Sun, Kai-Feng; Xu, Xiang-Rong; Duan, Shun-Shan; Wang, You-Shao; Cheng, Hao; Zhang, Zai-Wang; Zhou, Guang-Jie; Hong, Yi-Guo

    2015-10-01

    Organophosphate pesticides (OPs), as a replacement for the organochlorine pesticides, are generally considered non-toxic to plants and algae. Chlorpyrifos and dichlorvos are two OPs used for pest control all over the world. In this study, the dose-response of cyanobacteria Microcystis wesenbergii on OPs exposure and the stimulating effect of OPs with and without phosphorus source were investigated. The results showed that high concentrations of chlorpyrifos and dichlorvos caused significant decrease of chlorophyll a content. The median inhibitory concentrations (EC50) of chlorpyrifos and dichlorvos at 96 h were 15.40 and 261.16 μmol L(-1), respectively. Growth of M. wesenbergii under low concentration of OPs (ranged from 1/10,000 to 1/20 EC50), was increased by 35.85 % (chlorpyrifos) and 41.83 % (dichlorvos) at 120 h, respectively. Correspondingly, the highest enhancement on the maximum quantum yield (F v/F m) was 4.20 % (24 h) and 9.70 % (48 h), respectively. Chlorophyll fluorescence kinetics, known as O-J-I-P transients, showed significant enhancements in the O-J, J-I, and I-P transients under low concentrations of dichlorvos at 144 h, while enhancements of chlorophyll fluorescence kinetics induced by low concentrations of chlorpyrifos were only observed in the J-I transient at 144 h. Significant decreases of chlorophyll content, F v/F m and O-J-I-P transients with OPs as sole phosphorus source were found when they were compared with inorganic phosphate treatments. The results demonstrated an evidently hormetic dose-response of M. wesenbergii to both chlorpyrifos and dichlorvos, where high dose (far beyond environmental concentrations) exposure caused growth inhibition and low dose exposure induced enhancement on physiological processes. The stimulating effect of two OPs on growth of M. wesenbergii was negligible under phosphate limitation.

  5. Organophosphate insecticide use and cancer incidence among spouses of pesticide applicators in the Agricultural Health Study

    PubMed Central

    Lerro, Catherine C.; Koutros, Stella; Andreotti, Gabriella; Friesen, Melissa C.; Alavanja, Michael C.; Blair, Aaron; Hoppin, Jane A.; Sandler, Dale P.; Lubin, Jay H.; Ma, Xiaomei; Zhang, Yawei; Beane Freeman, Laura E.

    2016-01-01

    Objectives Organophosphates (OP) are among the most commonly used insecticides. OPs have been linked to cancer risk in some epidemiologic studies, which have been largely conducted in predominantly male populations. We evaluated personal use of specific OPs and cancer incidence among female spouses of pesticide applicators in the prospective Agricultural Health Study cohort. Methods At enrollment (1993–1997) spouses provided information about ever use of specific pesticides, including ten OPs, demographic information, reproductive health history, and other potential confounders. We used Poisson regression to estimate relative risks (RRs) and 95% confidence intervals (95% CIs) for all cancers diagnosed through 2010 for North Carolina and 2011 for Iowa. Results Among 30,003 women, 25.9% reported OP use, and 718 OP-exposed women were diagnosed with cancer during the follow-up period. Any OP use was associated with an elevated risk of breast cancer (RR = 1.20, 95% CI: 1.01, 1.43). Malathion, the most commonly reported OP, was associated with increased risk of thyroid cancer (RR = 2.04, 95% CI: 1.14, 3.63) and decreased risk of non-Hodgkin lymphoma (RR = 0.64, 95% CI: 0.41, 0.99). Diazinon use was associated with ovarian cancer (RR = 1.87, 95% CI: 1.02, 3.43). Conclusions We observed increased risk with OP use for several hormonally-related cancers, including breast, thyroid, and ovary, suggesting potential for hormonally-mediated effects. This study represents the first comprehensive analysis of OP use and cancer risk among women, and thus a need for further evaluation. PMID:26150671

  6. Electrochemical Sensor for Organophosphate Pesticides and Nerve Agents Using Zirconia Nanoparticles as Selective Sorbents

    SciTech Connect

    Liu, Guodong; Lin, Yuehe

    2005-09-15

    Electrochemical sensor for detection of organophosphate (OP) pesticides and nerve agents using zirconia (ZrO₂) nanoparticles as selective sorbents is presented. Zirconia nanoparticles were electrodynamically deposited onto the polycrystalline gold electrode by cyclic voltammetry. Because of a strong affinity of zirconia to the phosphoric group, nitroaromatic OPs strongly bind to the ZrO₂ nanoparticle surface. The electrochemical characterization and anodic stripping voltammetric performance of bound OPs were evaluated using cyclic voltammetric and square-wave voltammetric (SWV) analysis. SWV was used to monitor the amount of bound OPs and provide simple, fast, and facile quantitative methods for nitroaromatic OP compounds. The sensor surface can be regenerated by successively running SWV scanning. Operational parameters, including the amount of nanoparticles, adsorption time, and the pH of the reaction medium have been optimized. The stripping voltammetric response is highly linear over the 5–200 ng/mL (ppb) methyl parathion range examined (2-min adsorption), with a detection limit of 1 ng/mL (10 min accumulation), and good precision (RSD=5.3 %, n = 10). The promising stripping voltammetric performances open new opportunities for fast, simple, and sensitive analyzing of OPs in environmental and biological samples. These findings can lead to a widespread use of electrochemical sensors to detect OP contaminates.

  7. Use of cholinesterase activity in monitoring organophosphate pesticide exposure of cattle produced in tropical areas.

    PubMed

    Pardío, V T; Ibarra, N; Rodríguez, M A; Waliszewski, K N

    2001-12-01

    The use of cholinesterase activity as a biochemical method for monitoring organophosphate pesticide exposure in cattle is described herein. Determination of cholinesterase activity of whole blood, erythrocyte, and plasma was carried out according to the Ellman modified kinetic method. The mean baseline acetylcholinesterase activities of 9.549 +/- 3.619 IU/mL in whole blood, 9.444 +/- 3.006 IU/mL in erythrocytes, and 0.149 +/- 0.063 IU/mL in plasma were estimated for steers from the control group. Results of multivariate analysis showed that the general responses between the control and experimental groups (in vivo, monitoring and case studies) treated with Coumaphos and Fenthion were statistically different, and the general responses of these experimental groups were statistically different over time as well. Among the fractions that were analyzed, the erythrocyte acetylcholinesterase activity could be adequate for the diagnosis of exposure or acute poisoning in cattle as it showed a good within-run and between-run precision with CVs <10% better than those in plasma.

  8. Alterations in gene expression in Caenorhabditis elegans associated with organophosphate pesticide intoxication and recovery

    PubMed Central

    2013-01-01

    Background The principal toxicity of acute organophosphate (OP) pesticide poisoning is the disruption of neurotransmission through inhibition of acetylcholinesterase (AChE). However, other mechanisms leading to persistent effects and neurodegeneration remain controversial and difficult to detect. Because Caenorhabditis elegans is relatively resistant to OP lethality—particularly through the inhibition of AChE—studies in this nematode provide an opportunity to observe alterations in global gene expression following OP exposure that cannot be readily observed in less resistant organisms. Results We exposed cultures of worms in axenic, defined medium to dichlorvos under three exposure protocols. In the first, worms were exposed continuously throughout the experiment. In the second and third, the worms were exposed for either 2 or 8 h, the dichlorvos was washed out of the culture, and the worms were allowed to recover. We then analyzed gene expression using whole genome microarrays from RNA obtained from worms sampled at multiple time points throughout the exposure. The worms showed a time-dependent increase in the expression of genes involved in stress responses. Early in the exposure, the predominant effect was on metabolic processes, while at later times, an immune-like response and cellular repair mechanisms dominated the expression pattern. Following removal of dichlorvos, the gene expression in the worms appeared to relatively rapidly return to steady-state levels. Conclusion The changes in gene expression observed in the worms following exposure to dichlorvos point towards two potential mechanisms of toxicity: inhibition of AChE and mitochondrial disruption. PMID:23631360

  9. Construction of a genetically engineered microorganism that simultaneously degrades organochlorine and organophosphate pesticides.

    PubMed

    Yang, Jijian; Liu, Ruihua; Song, Wenli; Yang, Yao; Cui, Feng; Qiao, Chuanling

    2012-02-01

    Field contamination with pesticide mixtures of organophosphates (OPs) and organochlorines (OCs) is becoming global issues to be solved urgently. The strategy of utilizing engineered microorganisms that have an ability to simultaneously degrade OPs and OCs has increasingly received great interest. In this work, an OP degradation gene (mpd) and an OC degradation gene (linA) were simultaneously introduced into Escherichia coli by using two compatible plasmids, resulting in strains with both OP degradation and OC degradation capabilities. To overcome the potential substrate uptake limitation, MPH was displayed on the cell surface of Escherichia coli using the N- and C-terminal domains of ice nucleation protein (INPNC) as an anchoring motif. The surface localization of INPNC-MPH was verified by cell fractionation, Western blot, proteinase accessibility, and immunofluorescence microscopy. Furthermore, both LinA and green fluorescent protein (GFP) were functionally co-expressed in the MPH-displaying Escherichia coli. The engineered Escherichia coli degraded OPs as well as OCs rapidly, and it can be easily monitored by GFP fluorescence.

  10. Immobilization of the enzyme GpdQ on magnetite nanoparticles for organophosphate pesticide bioremediation.

    PubMed

    Daumann, Lena J; Larrabee, James A; Ollis, David; Schenk, Gerhard; Gahan, Lawrence R

    2014-02-01

    Annually thousands of people die or suffer from organophosphate (pesticide) poisoning. In order to remove these toxic compounds from the environment, the use of enzymes as bioremediators has been proposed. We report here a Ser127Ala mutant based on the enzyme glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes. The mutant, with improved metal binding abilities, has been immobilized using glutaraldehyde on PAMAM dendrimer-modified magnetite nanoparticles. The immobilized system was characterized using elemental analysis as well as infrared, transmission electron and X-ray photoelectron spectroscopies. The amount of GpdQ that was immobilized with the optimized procedure was 1.488 nmol per g MNP. A kinetic assay has been designed to evaluate the activity of the system towards organophosphoester substrates. The specific activity towards BPNPP directly after immobilization was 3.55 μmol mg(-1)min(-1), after one week 3.39 μmol mg(-1)min(-1) and after 120 days 3.36 μmol mg(-1)min(-1), demonstrating that the immobilized enzyme was active for multiple cycles and could be stored on the nanoparticles for a prolonged period.

  11. Review on the use of enzymes for the detection of organochlorine, organophosphate and carbamate pesticides in the environment.

    PubMed

    Van Dyk, J Susan; Pletschke, Brett

    2011-01-01

    Pesticides are released intentionally into the environment and, through various processes, contaminate the environment. Three of the main classes of pesticides that pose a serious problem are organochlorines, organophosphates and carbamates. While pesticides are associated with many health effects, there is a lack of monitoring data on these contaminants. Traditional chromatographic methods are effective for the analysis of pesticides in the environment, but have limitations and prevent adequate monitoring. Enzymatic methods have been promoted for many years as an alternative method of detection of these pesticides. The main enzymes that have been utilised in this regard have been acetylcholinesterase, butyrylcholinesterase, alkaline phosphatase, organophosphorus hydrolase and tyrosinase. The enzymatic methods are based on the activation or inhibition of the enzyme by a pesticide which is proportional to the concentration of the pesticide. Research on enzymatic methods of detection, as well as some of the problems and challenges associated with these methods, is extensively discussed in this review. These methods can serve as a tool for screening large samples which can be followed up with the more traditional chromatographic methods of analysis.

  12. Screening of the presence organophosphates and organochlorines pesticide residues in vegetables and fruits using gas chromatography-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Putri, Dillani; Aryana, Nurhani; Aristiawan, Yosi; Styarini, Dyah

    2017-01-01

    Pesticides is commonly used to improve the quality of agricultural product, especially in vegetables and fruits. Due to pesticide residues in the product become a concern to consumer health, monitoring and analysis of pesticide residues in agriculture product need to be established. The certified reference material (CRM) is often benefited to obtain accurate results in analysis. It is required as the quality control to improve quality assurance of the testing results. Unfortunately in Indonesia, the development of matrix CRM for the analysis of pesticide residues in vegetables and fruits is still limited. This study is aimed to determine the type of commodity and target analyte to be employed in the development of CRM for pesticides in vegetables and fruits. As the preliminary study, the screening of 11 commodities of fresh vegetables and fruits has been conducted to review the information about the presence of organophosphates (OPs) and organochlorines (OCs) in the sample. In this analysis, QuEChERS technique was used in the extraction process and the qualitative analysis was evaluated by using GC-MS. The results showed that strawberry and celery contain residues of pesticide chlorpyrifos. Further analysis of the commodity celery from seven different places has been conducted, resulting that from 3 of all 7 samples (43%) were positive containing chlorpyrifos. Therefore, the development of CRM for chlorpyrifos in celery will be our next research project.

  13. Prenatal Exposure to Organophosphate Pesticides and Reciprocal Social Behavior in Childhood

    PubMed Central

    Furlong, Melissa A.; Engel, Stephanie M.; Barr, Dana Boyd; Wolff, Mary S.

    2014-01-01

    Prenatal exposure to organophosphate pesticides (OPs) has been associated with adverse neurodevelopmental outcomes in childhood, including low IQ, Pervasive Developmental Disorder (PDD), attention problems and ADHD. Many of these disorders involve impairments in social functioning. Thus, we investigated the relationship between biomarkers of prenatal OP exposure and impaired reciprocal social behavior in childhood, as measured by the Social Responsiveness Scale (SRS). Using a multi-ethnic urban prospective cohort of mother-infant pairs in New York City recruited between 1998 and 2002 (n=404) we examined the relation between third trimester maternal urinary levels of dialkylphosphate (ΣDAP) OP metabolites and SRS scores among 136 children who returned for the 7–9 year visit. Overall, there was no association between OPs and SRS scores, although in multivariate adjusted models, associations were heterogeneous by race and by sex. Among blacks, each 10-fold increase in total diethylphosphates (ΣDEP) was associated with poorer social responsiveness (β = 5.1 points, 95% confidence interval (CI) 0.8, 9.4). There was no association amongst whites or Hispanics, or for total ΣDAP or total dimethylphosphate (ΣDMP) biomarker levels. Additionally, stratum-specific models supported a stronger negative association among boys for ΣDEPs (β = 3.5 points, 95% CI 0.2, 6.8), with no notable association among girls. Our results support an association of prenatal OP exposure with deficits in social functioning among blacks and among boys, although this may be in part reflective of differences in exposure patterns. PMID:24934853

  14. The role of multifunctional drug therapy as an antidote to combat experimental subacute neurotoxicity induced by organophosphate pesticides.

    PubMed

    Singh, Satinderpal; Prakash, Atish; Kaur, Shamsherjit; Ming, Long Chiau; Mani, Vasudevan; Majeed, Abu Bakar Abdul

    2016-08-01

    Organophosphate pesticides are used in agriculture where they are associated with numerous cases of intentional and accidental misuse. These toxicants are potent inhibitors of cholinesterases leading to a massive build-up of acetylcholine which induces an array of deleterious effects, including convulsions, oxidative damage and neurobehavioral deficits. Antidotal therapies with atropine and oxime yield a remarkable survival rate, but fail to prevent neuronal damage and behavioral problems. It has been indicated that multifunction drug therapy with potassium channel openers, calcium channel antagonists and antioxidants (either single-agent therapy or combination therapy) may have the potential to prevent cell death and/or slow down the processes of secondary neuronal damage. The aim of the present study, therefore, was to make a relative assessment of the potential effects of nicorandil (2 mg/kg), clinidipine (10 mg/kg), and grape seed proanthocyanidin (GSPE) extract (200 mg/kg) individually against subacute chlorpyrifos induced toxicity. The test drugs were administered to Wistar rats 2 h after exposure to Chlorpyrifos (CPF). Different behavioral studies and biochemical estimation has been carried in the study. The results showed that chronic administration of CPF significantly impaired learning and memory, along with motor coordination, and produced a marked increase in oxidative stress along with significantly reduced acetylcholine esterase (AChE) activity. Treatment with nicorandil, clinidipine and GSPE was shown to significantly improve memory performance, attenuate oxidative damage and enhance AChE activity in rats. The present study also suggests that a combination of nicorandil, clinidipine, and GSPE has a better neuroprotective effect against subacute CPF induced neurotoxicity than if applied individually. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1017-1026, 2016.

  15. Self assembly of acetylcholinesterase on a gold nanoparticles–graphene nanosheet hybrid for organophosphate pesticide detection using polyelectrolyte as a linker

    SciTech Connect

    Wang, Ying; Zhang, Sheng; Du, Dan; Shao, Yuyan; Li, Zhaohui; Wang, Jun; Engelhard, Mark H.; Li, Jinghong; Lin, Yuehe

    2011-04-14

    A nanohybrid of gold nanoparticles (Au NPs) and chemically reduced graphene oxide nanosheets (cr-Gs) was synthesized by in situ growth of Au NPs on the surface of graphene nanosheets in the presence of poly(diallyldimethylammonium chloride) (PDDA), which not only improved the dispersion of Au NPs but also stabilized cholinesterase with high activity and loading efficiency. The obtained nanohybrid was characterized by TEM, XRD, XPS, and electrochemistry. Then an enzyme nanoassembly (AChE/Au NPs/cr-Gs) was prepared by self-assembling acetylcholinesterase (AChE) on Au NP/cr-Gs nanohybrid. An electrochemical sensor based on AChE/Au NPs/cr-Gs was further developed for ultrasensitive detection of organophosphate pesticide. The results demonstrate that the developed approach provides a promising strategy to improve the sensitivity and enzyme activity of electrochemical biosensors.

  16. DETOXIFICATION OF ORGANOPHOSPHATE PESTICIDES BY IMMOBILIZED ESCHERICHIA COLI EXPRESSING ORGANOPHOSPHORUS HYDROLASE ON CELL SURFACE. (R823663)

    EPA Science Inventory

    An improved whole-cell technology for detoxifying organophosphate nerve agents was recently developed based on genetically engineered Escherichia coli with organophosphorus hydrolase anchored on the surface. This article reports the immobilization of these novel biocatalys...

  17. Histopathological alterations, biochemical responses and acetylcholinesterase levels in Clarias gariepinus as biomarkers of exposure to organophosphates pesticides.

    PubMed

    Doherty, V F; Ladipo, M K; Aneyo, I A; Adeola, A; Odulele, W Y

    2016-05-01

    Organophosphate pesticides, commonly used in large scale farming, have been found to be major contaminants in aquatic environment. Clarias gariepinus was exposed to acute and sublethal concentrations of phostoxin and DD Force to evaluate single and joint action toxicity of the organophosphates. Effects of phostoxin and DD force on antioxidant enzymes, fish organs and acetylcholinesterase levels in fingerlings and juveniles of C. gariepinus were also investigated. The lethal concentrations (96 h LC50) for phostoxin and DD Force were 0.631 and 1.759 mg/l, respectively. The results obtained from the bioassay showed that phostoxin was 2.8× more toxic than DD Force after exposure of C. gariepinus. Joint action toxicity evaluations of phostoxin and DD Force showed that the interaction between the chemicals was synergistic (RTU >1). The biochemical responses in the exposed fish differed significantly (P < 0.05) from the control fish. The result of acetylcholinesterase study revealed significant difference between acetylcholinesterase levels in the exposed fish and control, with reduction in the acetylcholineterase level in fish exposed to sublethal concentrations of phostoxin and DD Force. Haematological studies revealed an increase in WBC, RBC, PCV and platelets in the exposed fish. Histopathology of the gills showed shortened primary lamellae, loss of secondary lamellae and loss of ceratobrachial bones. In the acute toxicity studies, respiratory stress, erratic swimming and instant death of fish were observed in the exposed fish. This study reveals that changes in histopathology and acetylcholinesterase level are good biomarkers and can be successfully used to detect exposure to organophosphates pesticides in fish.

  18. Paraoxonase-1 genetic polymorphisms and susceptibility to DNA damage in workers occupationally exposed to organophosphate pesticides

    SciTech Connect

    Singh, Satyender; Kumar, Vivek; Thakur, Sachin; Banerjee, Basu Dev; Rautela, Rajender Singh; Grover, Shyam Sunder; Rawat, Devendra Singh; Pasha, Syed Tazeen; Jain, Sudhir Kumar; Ichhpujani, Rattan Lal; Rai, Arvind

    2011-04-15

    Human paraoxonase 1 (PON1) is a lipoprotein-associated enzyme involved in the detoxification of organophosphate pesticides (OPs) by hydrolyzing the bioactive oxons. Polymorphisms of the PON1 gene are responsible for variation in the expression and catalytic activity of PON1 enzyme. In the present study, we have determined (a) the prevalence of two common PON1 polymorphisms, (b) the activity of PON1 and acetylcholinesterase enzymes, and (c) the influence of PON1 genotypes and phenotypes variation on DNA damage in workers exposed to OPs. We examined 230 subjects including 115 workers exposed to OPs and an equal number of normal healthy controls. The results revealed that PON1 activity toward paraoxon (179.19 {+-} 39.36 vs. 241.52 {+-} 42.32 nmol/min/ml in controls) and phenylacetate (112.74 {+-} 17.37 vs. 134.28 {+-} 25.49 {mu}mol/min/ml in controls) was significantly lower in workers than in control subjects (p < 0.001). No significant difference was observed in the distribution of genotypes and allelic frequencies of PON1{sub 192}QR (Gln/Arg) and PON1{sub 55}LM (Leu/Met) in workers and control subjects (p > 0.05). The PON1 activity toward paraoxonase was found to be significantly higher in the R/R (Arg/Arg) genotypes than Q/R (Gln/Arg) and lowest in Q/Q (Gln/Gln) genotypes in both workers and control subjects (p < 0.001). For PON1{sub 55}LM (Leu/Met), PON1 activity toward paraoxonase was observed to be higher in individuals with L/L (Leu/Leu) genotypes and lowest in individuals with M/M (Met/Met) genotypes in both groups (p < 0.001). No influence of PON1 genotypes and phenotypes was seen on the activity of acetylcholinesterase and arylesterase. The DNA damage was observed to be significantly higher in workers than in control subjects (p < 0.05). Further, the individuals who showed least paraoxonase activity i.e., those with (Q/Q [Gln/Gln] and M/M [Met/Met]) genotypes showed significantly higher DNA damage compared to other isoforms in workers exposed to OPs (p < 0

  19. Organophosphate Pesticide Exposure and Attention in Young Mexican-American Children: The CHAMACOS Study

    PubMed Central

    Marks, Amy R.; Harley, Kim; Bradman, Asa; Kogut, Katherine; Barr, Dana Boyd; Johnson, Caroline; Calderon, Norma; Eskenazi, Brenda

    2010-01-01

    Background Exposure to organophosphate (OP) pesticides, well-known neurotoxicants, has been associated with neurobehavioral deficits in children. Objectives We investigated whether OP exposure, as measured by urinary dialkyl phosphate (DAP) metabolites in pregnant women and their children, was associated with attention-related outcomes among Mexican-American children living in an agricultural region of California. Methods Children were assessed at ages 3.5 years (n = 331) and 5 years (n = 323). Mothers completed the Child Behavior Checklist (CBCL). We administered the NEPSY-II visual attention subtest to children at 3.5 years and Conners’ Kiddie Continuous Performance Test (K-CPT) at 5 years. The K-CPT yielded a standardized attention deficit/hyperactivity disorder (ADHD) Confidence Index score. Psychometricians scored behavior of the 5-year-olds during testing using the Hillside Behavior Rating Scale. Results Prenatal DAPs (nanomoles per liter) were nonsignificantly associated with maternal report of attention problems and ADHD at age 3.5 years but were significantly related at age 5 years [CBCL attention problems: β = 0.7 points; 95% confidence interval (CI), 0.2–1.2; ADHD: β = 1.3; 95% CI, 0.4–2.1]. Prenatal DAPs were associated with scores on the K-CPT ADHD Confidence Index > 70th percentile [odds ratio (OR) = 5.1; 95% CI, 1.7–15.7] and with a composite ADHD indicator of the various measures (OR = 3.5; 95% CI, 1.1–10.7). Some outcomes exhibited evidence of effect modification by sex, with associations found only among boys. There was also limited evidence of associations between child DAPs and attention. Conclusions In utero DAPs and, to a lesser extent, postnatal DAPs were associated adversely with attention as assessed by maternal report, psychometrician observation, and direct assessment. These associations were somewhat stronger at 5 years than at 3.5 years and were stronger in boys. PMID:21126939

  20. A single method for detecting 11 organophosphate pesticides in human plasma and breastmilk using GC-FPD.

    PubMed

    Naksen, Warangkana; Prapamontol, Tippawan; Mangklabruks, Ampica; Chantara, Somporn; Thavornyutikarn, Prasak; Robson, Mark G; Ryan, P Barry; Barr, Dana Boyd; Panuwet, Parinya

    2016-07-01

    Organophosphate (OP) pesticides are widely used for crop protection in many countries including Thailand. Aside from causing environmental contamination, they affect human health especially by over-stimulating of the neurotransmission system. OP pesticides, as with other non-persistent pesticides, degrade quickly in the environment as well as are metabolized quite rapidly in humans. Assessing human exposures to these compounds requires analytical methods that are sensitive, robust, and most importantly, suitable for specific laboratory settings. The aim of this study was to develop and validate an analytical method for measuring 11 OP pesticide residues in human plasma and breast milk. Analytes in both plasma and breast milk samples were extracted with acetone and methylene chloride, cleaned-up using aminopropyl solid phase extraction cartridges, and analyzed by gas chromatography with flame photometric detection. The optimized method exhibited good linearity, with the coefficients of determination of 0.996-0.999 and <7% error about the slope. Extraction recoveries from spiked plasma and breast milk samples at low and medium concentrations (0.8-5.0 and 1.6-10ngmL(-1), respectively) ranged from 59.4% (ethion) to 94.0% (chlorpyrifos). Intra-batch and inter-batch precisions ranged from 2.3-18.9% and 5.8-19.5%, respectively. Method detection limits of plasma and breast milk ranged from 0.18-1.36 and 0.09-2.66ngmL(-1), respectively. We analyzed 63 plasma and 30 breastmilk samples collected from farmworkers in Chiang Mai Province to determine the suitability of this method for occupational exposure assessment. Of the 11 pesticides measured, seven were detected in plasma samples and five were detected in breast milk samples. Mass spectrometry was used to confirm results. Overall, this method is rapid and reliable. It offers the laboratories with limited access to mass spectrometry a capacity to investigate levels OP pesticides in plasma and breastmilk in those

  1. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of organophosphate pesticides in filtered water by gas chromatography with flame photometric detection

    USGS Publications Warehouse

    Jha, Virendra K.; Wydoski, Duane S.

    2002-01-01

    A method for the isolation of 20 parent organophosphate pesticides and 5 pesticide degradates from filtered natural-water samples is described. Seven of these compounds are reported permanently with an estimated concentration because of performance issues. Water samples are filtered to remove suspended particulate matter, and then 1 liter of filtrate is pumped through disposable solid-phase extraction columns that contain octadecyl-bonded porous silica to extract the compounds. The C-18 columns are dried with nitrogen gas, and method compounds are eluted from the columns with ethyl acetate. The extract is analyzed by dual capillary-column gas chromatography with flame photometric detection. Single-operator method detection limits in all three water-matrix samples ranged from 0.004 to 0.012 microgram per liter. Method performance was validated by spiking all compounds into three different matrices at three different concentrations. Eight replicates were analyzed at each concentration level in each matrix. Mean recoveries of method compounds spiked in surface-water samples ranged from 39 to 149 percent and those in ground-water samples ranged from 40 to 124 percent for all pesticides except dimethoate. Mean recoveries of method compounds spiked in reagent-water samples ranged from 41 to 119 percent for all pesticides except dimethoate. Dimethoate exhibited reduced recoveries (mean of 43 percent in low- and medium-concentration level spiked samples and 20 percent in high-concentration level spiked samples) in all matrices because of incomplete collection on the C-18 column. As a result, concen-trations of dimethoate and six other compounds (based on performance issues) in samples are reported in this method with an estimated remark code.

  2. Oregon Indigenous Farmworkers: Results of Promotor Intervention on Pesticide Knowledge and Organophosphate Metabolite Levels

    PubMed Central

    McCauley, Linda; Runkle, Jennifer D.; Samples, Julie; Williams, Bryan; Muniz, Juan F; Semple, Marie; Shadbeh, Nargess

    2013-01-01

    Objectives Examine changes in health beliefs, pesticide safety knowledge, and biomarkers of pesticide exposure in indigenous farmworker who received enhanced pesticide safety training compared to those receiving the standard training. Methods Farmworkers in Oregon were randomly assigned to either a promotores pesticide safety training program or a standard video-based training. Spot urine samples were analyzed for dialkylphosphate (DAP) urinary metabolites. Pre/post intervention questionnaires were used to measure pesticide safety knowledge, health beliefs and work practices. Results Baseline to follow-up improvements in total pesticide knowledge scores were higher in the promotor group compared to the video. Pairwise differences in mean concentrations of DAP metabolite levels showed declines from baseline to follow-up for both intervention groups. Conclusions Results showed reductions in pesticide exposure in indigenous-language speaking farmworkers who receive enhanced pesticide safety training. PMID:24064776

  3. Toxic influence of organophosphate, carbamate, and organochlorine pesticides on cellular metabolism of lipids, proteins, and carbohydrates: a systematic review.

    PubMed

    Karami-Mohajeri, Somayyeh; Abdollahi, Mohammad

    2011-09-01

    Pesticides, including organophosphate (OP), organochlorine (OC), and carbamate (CB) compounds, are widely used in agricultural and indoor purposes. OP and CB act as acetyl cholinesterase (AChE) inhibitors that affect lots of organs such as peripheral and central nervous systems, muscles, liver, pancreas, and brain, whereas OC are neurotoxic involved in alteration of ion channels. There are several reports about metabolic disorders, hyperglycemia, and also oxidative stress in acute and chronic exposures to pesticides that are linked with diabetes and other metabolic disorders. In this respect, there are several in vitro and in vivo but few clinical studies about mechanism underlying these effects. Bibliographic databases were searched for the years 1963-2010 and resulted in 1652 articles. After elimination of duplicates or irrelevant papers, 204 papers were included and reviewed. Results indicated that OP and CB impair the enzymatic pathways involved in metabolism of carbohydrates, fats and protein within cytoplasm, mitochondria, and proxisomes. It is believed that OP and CB show this effect through inhibition of AChE or affecting target organs directly. OC mostly affect lipid metabolism in the adipose tissues and change glucose pathway in other cells. As a shared mechanism, all OP, CB and OC induce cellular oxidative stress via affecting mitochondrial function and therefore disrupt neuronal and hormonal status of the body. Establishing proper epidemiological studies to explore exact relationships between exposure levels to these pesticides and rate of resulted metabolic disorders in human will be helpful.

  4. Organophosphate Pesticide Residues in Drinking Water from Artesian Wells and Health Risk Assessment of Agricultural Communities, Thailand.

    PubMed

    Jaipieam, S; Visuthismajarn, P; Sutheravut, P; Siriwong, W; Thoumsang, S; Borjan, M; Robson, M

    2009-01-01

    Organophosphate pesticide (OPPs) concentrations in artesian wells located in Thai agricultural and non-agricultural communities were studied during both wet and dry seasons. A total of 100 water samples were collected and subjects were asked to complete a survey. Gas chromatography flame photometric detector was used for OPP analysis. The average OPP concentration in the agricultural communities (0.085 and 0.418 microg/l in dry and wet season) was higher than in the non-agricultural communities (0.004 microg/l in both seasons). Ingestion of OPPs in contaminated water in the agricultural communities were estimated to be 0.187 and 0.919 microg/day during the dry and wet seasons, respectively, and 0.008 microg/day during both seasons in the non-agricultural communities. Agricultural communities were exposed to pesticide residues under the oral chronic reference dose. This study suggests that people in agricultural communities may be exposed to significantly greater levels of pesticides than non-agricultural populations during the dry and wet seasons (p < .001, .001).

  5. Is hair analysis for dialkyl phosphate metabolites a suitable biomarker for assessing past acute exposure to organophosphate pesticides?

    PubMed

    Tsatsakis, A M; Tutudaki, M; Tzatzarakis, M N; Dawson, A; Mohamed, F; Christaki, M; Alegakis, A K

    2012-03-01

    In the present paper, the possibility to use dialkyl phosphate metabolites (DAPs) hair segmental analysis as a biomarker of past acute exposure to organophosphates is examined. Hair samples of four acute poisoning survivors were collected and segmental hair analysis was performed. The total hair samples were divided to 1 cm segments and analysed by gas chromatography-mass spectrometry (GC-MS) for the presence of four DAP metabolites, dimethyl phosphate (DMP), diethyl phosphate (DEP), diethyl thiophosphate (DETP) and diethyl dithiophosphate (DEDTP). Results were examined under the light of pesticide type and time of hair sample collection. Although DAPs were detected all along the hair shaft, higher concentrations (peaks) were detected in the segments proximate to the suicide period. It was also observed that the elevated concentrations of the present metabolites corresponded to the ones produced by the ingested parent compound. Conclusively, measurements of DAPs in the appropriate hair segments of OP-poisoned patients can be used for assessing past acute exposure to organophosphates in certain cases.

  6. Spatial distribution and partitioning of organophosphates pesticide in water and sediment from Sarno River and Estuary, Southern Italy.

    PubMed

    Montuori, Paolo; Aurino, Sara; Nardone, Antonio; Cirillo, Teresa; Triassi, Maria

    2015-06-01

    The organophosphates pesticide (OPP) pollution in the Sarno River and its environmental impact on the Gulf of Naples (Tyrrhenian Sea, Central Mediterranean Sea) were estimated. Nine selected OPPs (diazinon, dimethoate, malathion, chlorpyrifos, dichlorvos, fenitrothion, methidathion, tolclofos-methyl, azinphos-methyl) were determined in the water dissolved phase (DP), suspended particulate matter (SPM) and sediment samples. Total OPP concentrations ranged from 5.58 to 39.25 ng L(-1) in water (as the sum of the DP and SPM) and from 0.19 to 3.98 ng g(-1) in sediment samples. Contaminant discharges of OPPs into the sea were calculated in about 48,064.08 g year(-1), showing that this river should account as one of the main contribution sources of OPPs to the Tyrrhenian Sea.

  7. Use of biomarkers to indicate exposure of children to organophosphate pesticides: implications for a longitudinal study of children's environmental health.

    PubMed Central

    Wessels, Denise; Barr, Dana B; Mendola, Pauline

    2003-01-01

    Because of their history of widespread use in the United States and unknown long-term health effects, organophosphate pesticides (OPs) are being considered as a chemical class of interest in planning for the National Children's Study, a longitudinal study of children's environmental health. The availability and appropriate use of biomarkers to determine absorbed doses of environmental chemicals such as OPs are critical issues. Biomarkers of OP exposure are typically measured in blood and urine; however, postpartum meconium has been shown to be a promising matrix for assessing cumulative in utero exposure to the fetus, and studies are currently in progress to determine the utility of using saliva and amniotic fluid as matrices. In this article, we discuss the advantages and disadvantages of the currently available OP exposure monitoring methods (cholinesterase inhibition in blood, pesticides in blood, metabolites in urine and alternative matrices); study design issues for a large, long-term study of children's environmental health; and current research and future research needs. Because OPs are rapidly metabolized and excreted, the utility of one-time spot measurements of OP biomarkers is questionable unless background exposure levels are relatively stable over time or a specific time frame of interest for the study is identified and samples are collected accordingly. Biomarkers of OP exposure can be a valuable tool in epidemiology of children's environmental health, as long as they are applied and interpreted appropriately. PMID:14644670

  8. Associations of maternal organophosphate pesticide exposure and PON1 activity with birth outcomes in SAWASDEE birth cohort, Thailand.

    PubMed

    Naksen, Warangkana; Prapamontol, Tippawan; Mangklabruks, Ampica; Chantara, Somporn; Thavornyutikarn, Prasak; Srinual, Niphan; Panuwet, Parinya; Ryan, P Barry; Riederer, Anne M; Barr, Dana Boyd

    2015-10-01

    Prenatal organophosphate (OP) pesticide exposure has been reported to be associated with adverse birth outcomes and neurodevelopment. However, the mechanisms of toxicity of OP pesticides on human fetal development have not yet been elucidated. Our pilot study birth cohort, the Study of Asian Women and Offspring's Development and Environmental Exposures (SAWASDEE cohort) aimed to evaluate environmental chemical exposures and their relation to birth outcomes and infant neurodevelopment in 52 pregnant farmworkers in Fang district, Chiang Mai province, Thailand. A large array of data was collected multiple times during pregnancy including approximately monthly urine samples for evaluation of pesticide exposure, three blood samples for pesticide-related enzyme measurements and questionnaire data. This study investigated the changes in maternal acetylcholinesterase (AChE) and paraoxonase 1 (PON1) activities and their relation to urinary diakylphosphates (DAPs), class-related metabolites of OP pesticides, during pregnancy. Maternal AChE, butyrylcholinesterase (BChE) and PON1 activities were measured three times during pregnancy and urinary DAP concentrations were measured, on average, 8 times from enrollment during pregnancy until delivery. Among the individuals in the group with low maternal PON1 activity (n=23), newborn head circumference was negatively correlated with log10 maternal ∑DEAP and ∑DAP at enrollment (gestational age=12±3 weeks; β=-1.0 cm, p=0.03 and β=-1.8 cm, p<0.01, respectively) and at 32 weeks pregnancy (β=-1.1cm, p=0.04 and β=-2.6 cm, p=0.01, respectively). Furthermore, among these mothers, newborn birthweight was also negatively associated with log10 maternal ∑DEAP and ∑DAP at enrollment (β=-219.7 g, p=0.05 and β=-371.3g, p=0.02, respectively). Associations between maternal DAP levels and newborn outcomes were not observed in the group of participants with high maternal PON1 activity. Our results support previous findings from US birth

  9. Associations of maternal organophosphate pesticide exposure and PON1 activity with birth outcomes in SAWASDEE birth cohort, Thailand

    PubMed Central

    Naksen, Warangkana; Prapamontol, Tippawan; Mangklabruks, Ampica; Chantara, Somporn; Thavornyutikarn, Prasak; Srinual, Niphan; Panuwet, Parinya; Ryan, P. Barry; Riederer, Anne M.; Barr, Dana Boyd

    2015-01-01

    Prenatal organophosphate (OP) pesticide exposure has been reported to be associated with adverse birth outcomes and neurodevelopment. However, the mechanisms of toxicity of OP pesticides on human fetal development have not yet been elucidated. Our pilot study birth cohort, the Study of Asian Women and Offspring’s Development and Environmental Exposures (SAWASDEE cohort) aimed to evaluate environmental chemical exposures and their relation to birth outcomes and infant neurodevelopment in 52 pregnant farmworkers in Fang district, Chiang Mai province, Thailand. A large array of data was collected multiple times during pregnancy including approximately monthly urine samples for evaluation of pesticide exposure, three blood samples for pesticide-related enzyme measurements and questionnaire data. This study investigated the changes in maternal acetylcholinesterase (AChE) and paraoxonase 1 (PON1) activities and their relation to urinary diakylphosphates (DAPs), class-related metabolites of OP pesticides, during pregnancy. Maternal AChE, butyrylcholinesterase (BChE) and PON1 activities were measured three times during pregnancy and urinary DAP concentrations were measured, on average, 8 times from enrollment during pregnancy until delivery. Among the individuals in the group with low maternal PON1 activity (n = 23), newborn head circumference was negatively correlated with log10 maternal ΣDEAP and ΣDAP at enrollment (gestational age=12±3 weeks; β = −1.0 cm, p = 0.03 and β = −1.8 cm, p <0.01, respectively) and at 32 weeks pregnancy (β = −1.1 cm, p = 0.04 and β = −2.6 cm, p = 0.01, respectively). Furthermore, among these mothers, newborn birthweight was also negatively associated with log10 maternal ΣDEAP and ΣDAP at enrollment (β = −219.7 g, p = 0.05 and β = −371.3 g, p = 0.02, respectively). Associations between maternal DAP levels and newborn outcomes were not observed in the group of participants with high maternal PON1 activity. Our results

  10. Mechanism of organophosphates (nerve gases and pesticides) and antidotes: electron transfer and oxidative stress.

    PubMed

    Kovacic, Peter

    2003-12-01

    Evidence indicates that nerve gas toxins operate in ways in addition to inhibition of acetylcholine esterase. Alternative bioactivities are discussed with focus on electron transfer. The main class, including pralidoxime (2-PAM), incorporates conjugated iminium and oxime moieties that are electron affinic. Various physiological properties of iminium and oxime species are reviewed. The organophosphates encompass both nerve gases and insecticides, possessing similar properties, but different activities. Toxic manifestations are apparently due, in part, to oxidative stress. Alkylation of DNA takes place which may lead to generation of reactive oxygen species. Structure-activity relationships are examined, including reduction potentials and the captodative effect.

  11. Carbon quantum dots as fluorescence resonance energy transfer sensors for organophosphate pesticides determination.

    PubMed

    Wu, Xiaoli; Song, Yang; Yan, Xu; Zhu, Chengzhou; Ma, Yongqiang; Du, Dan; Lin, Yuehe

    2017-03-07

    Carbon quantum dots (CQDs) obtained from natural organics attract significant attention due to the abundance of carbon sources, varieties of heteroatom doping (such as N, S, P) and good biocompatibility of precursor. In this study, tunable fluorescence emission CQDs originated from chlorophyll were synthesized and characterized. The fluorescence emission can be effectively quenched by gold nanoparticles (Au NPs) via fluorescence resonance energy transfer (FRET). Thiocholine, which was produced from acetylthiocholine (ATC) by the hydrolysis of butyrylcholinesterase (BChE), could cause the aggregation of Au NPs and the corresponding recovery of FRET-quenched fluorescence emission. The catalytic activity of BChE could be irreversibly inhibited by organophosphorus pesticides (OPs), thus, the recovery effect was reduced. By evaluating the fluorescence emission intensity of CQDs, a FRET-based sensing platform for OPs determination was established. Paraoxon was studied as an example of OPs. The sensing platform displayed a linear relationship with the logarithm of the paraoxon concentrations in the range of 0.05-50μgL(-1) and the limit of detection (LOD) was 0.05μgL(-1). Real sample study in tap and river water revealed that this sensing platform was repeatable and accurate. The results indicate that the OP sensor is promising for applications in food safety and environmental monitoring.

  12. LEVELS OF ORGANOCHLORINE, ORGANOPHOSPHATE, AND PYRETHROID PESTICIDES IN CTEPP NORTH CAROLINA MULTIMEDIA SAMPLES

    EPA Science Inventory

    CTEPP (Children's Total Exposure to Persistent Pesticides and Other Persistent Organic Pollutants) is a pilot study of the possible exposures of 257 preschool children and their primary adult caregivers to pollutants commonly found in their everyday environments. Sampling was p...

  13. Tips for Reducing Pesticide Impacts on Wildlife

    EPA Pesticide Factsheets

    This Web page provides tips for pesticide users in residential and agricultural settings, as well as tips for certified pesticide applicators for ways to protect wildlife from potentially harmful effects of pesticides.

  14. Effects of dimethoate (30% EC), an organophosphate pesticide on liver of common carp, Cyprinus carpio.

    PubMed

    Singh, Ram Nayan

    2013-05-01

    Organ histopathology and changes in biochemical parameters in fish are good biomarkers of aquatic pollution. This study is an attempt to assess the effects of dimethoate, an organophosphate insecticide on the liver of common carp (C. carpio). Healthy individual fish were exposed to 0.40 mg l(-1) (25% of 96 hr LC50) concentration of dimethoate, for short term (96 hr). Liver of the exposed fish exhibited alterations like disruption of regular arrangement of hepatocytes, congestion and rupture of vessels; hemorrhage, cytoplasmic vacuolization, pyknotic nuclei and necrosis. Biochemical parameters viz. total liver protein (p < 0.001) and liver glycogen (p < 0.001) registered a significant decrease and blood glucose (p < 0.001) exhibited significant increase throughout exposure.

  15. Metabonomic analysis of quercetin against the toxicity of chronic exposure to a mixture of four organophosphate pesticides in rat plasma.

    PubMed

    Cao, Can; Zeng, Yan; Shi, Haidan; Yang, Shuang; Bao, Wei; Qi, Lei; Liu, Ying; Zhao, Xiujun

    2016-09-01

    1. A metabonomics approach was performed to investigate the effect of quercetin on the toxicity of chronic exposure to a mixture of four organophosphate pesticides (OPs) at their corresponding no-observed-adverse-effect level (NOAEL). The rats were divided into six groups (n = 10/group): control, two different doses of quercetin, OPs mixture and different doses of quercetin plus OPs mixture-treated groups. 2. Nine metabolites, including two quercetin metabolites and seven endogenous metabolites were identified in plasma. The intensities of metabolites significantly changed in the OP mixture-treated group compared with the control group (p < 0.01), such as lysoPE (16:0/0:0), lysoPC (17:0/0:0), lysoPC (15:0/0:0) and 4-pyridoxic acid, significantly increased; by contrast, the intensities of arachidonic acid and citric acid significantly decreased. Anomalous intensity changes in aforementioned metabolites were alleviated in the OP mixture plus 50 mg/kgċbw/d quercetin-treated group compared with the OP mixture-treated group (p < 0.05). 3. The results indicated that quercetin elicited partial protective effects against the toxicity induced by a mixture of OPs, which include regulation of lipid metabolism, improvement of tricarboxylic acid (TCA) cycle disorders, enhancement of antioxidant defence system to protect the liver.

  16. Biosensor based on acetylcholinesterase immobilized onto layered double hydroxides for flow injection/amperometric detection of organophosphate pesticides.

    PubMed

    Gong, Jingming; Guan, Zhangqiong; Song, Dandan

    2013-01-15

    We developed a highly sensitive flow injection/amperometric biosensor for the detection of organophosphate pesticides (OPs) using layered double hydroxides (LDHs) as the immobilization matrix of acetylcholinesterase (AChE). LDHs provided a biocompatible microenvironment to keep the bioactivity of AChE, due to the intrinsic properties of LDHs (such as a regular structure, good mechanical, chemical and thermal stabilities, and swelling properties). By integrating the flow injection analysis (FIA) with amperometric detection, the resulting AChE-LDHs modified electrode greatly catalyzed the oxidation of the enzymatically generated thiocholine product, and facilitated the detection automation, thus increasing the detection sensitivity. The analytical conditions for the FIA/amperometric detection of OPs were optimized by using methyl parathion (MP) as a model. The inhibition of MP was proportional to its concentration ranging from 0.005 to 0.3μg mL(-1) and 0.3 to 4.0μg mL(-1) with a detection limit 0.6ng mL(-1) (S/N=3). The developed biosensor exhibited good reproducibility and acceptable stability.

  17. Effect of quercetin against mixture of four organophosphate pesticides induced nephrotoxicity in rats.

    PubMed

    Li, Sifan; Cao, Can; Shi, Haidan; Yang, Shuang; Qi, Lei; Zhao, Xiujuan; Sun, Changhao

    2016-01-01

    1. It has been demonstrated that the ingestion of foods containing quercetin protects against the toxicity of single pesticides. The aim of this study is to make a comprehensive elaboration about the protective effect of quercetin against multi-organophosphorous pesticides induced nephrotoxicity by measuring indices in rat kidney, urine and serum. Rats were divided into six groups (n = 10/group): control, two different doses of quercetin, pesticide mixture (PM), and different doses of quercetin plus PM-treated groups. 2. The following parameters were significantly changed in PM-treated groups compared with the control (p < 0.01). In kidney, malondialdehyde level raised; catalase, superoxide dismutase activities and glutathione levels were decreased. Comet assay of nephrocytes showed that the proportion of DNA in the tail and tail length increased. In urine, β2-microglobulin, retinol-conjugated protein levels and N-acetyl-β-D-glucosaminidase activity showed increasing response; meanwhile uric acid level was decreased. In serum, creatinine and urea nitrogen levels were increased. However, the anomaly changes of indexes mentioned above in PM-treated group were alleviated when simultaneously administrated with 50 mg/kg body weight/day quercetin (p < 0.05). 3. From the present findings, it can be evaluated that quercetin may protect against adverse effects resulted from multi-organophosphorous pesticides with significant high levels of uptake in man provided.

  18. Integrated Use of Biomarkers (O : N Ratio and Acetylcholinesterase Inhibition) on Aulacomya ater (Molina, 1782) (Bivalvia: Mytilidae) as a Criteria for Effects of Organophosphate Pesticide Exposition

    PubMed Central

    Führer, Eduardo; Rudolph, Anny; Espinoza, Claudio; Díaz, Rodrigo; Gajardo, Marisol; Camaño, Nuria

    2012-01-01

    The effect of residual concentrations of organophosphate pesticide chlorpyrifos (Lorsban 4E) on the activity of the acetylcholinesterase enzyme and oxygen : nitrogen ratio in the mussel Aulacomya ater was analyzed. Toxicity tests show a sensitivity to the pesticide in the bivalve estimated at 16 μg L−1 (LC50−96 hours). Concentrations between 0.2 and 1.61 μg L−1 were able to inhibit significantly the AChE activity, and concentrations between 0.8 and 1.61 μg L−1 stimulate ammonia excretion and decrease oxygen : ammonia-N (O : N) ratio, with respect to the control group. A. ater proved to be a species sensitive to pesticide exposure and easy to handle in lab conditions. Thus, it is recommended as a bioindicator for use in programs of environmental alertness in the Eastern South Pacific coastal zone. PMID:22619673

  19. Characterization and in vitro sensitivity of cholinesterases of gilthead seabream (Sparus aurata) to organophosphate pesticides.

    PubMed

    Albendín, G; Arellano, J M; Mánuel-Vez, M P; Sarasquete, C; Arufe, M I

    2016-10-06

    The characterization of cholinesterase activity in brain and muscle of gilthead seabream was carried out using four specific substrates and three selective inhibitors. In addition, K m and V max were calculated from the Michaelis-Menten equation for ASCh and BSCh substrates. Finally, the in vitro sensitivity of brain and muscle cholinesterases to three organophosphates (OPs) was also investigated by estimating inhibition kinetics. The results indicate that AChE is the enzyme present in the brain, whereas in muscle, a typical AChE form is present along with an atypical form of BChE. Very low ChE activity was found in plasma with all substrates used. The inhibitory potency of the studied OPs on brain and muscle AChEs based on bimolecular inhibition constants (k i ) was: omethoate < dichlorvos < azinphosmethyl-oxon. Furthermore, muscle BChE was found to be several orders of magnitude (from 2 to 4) more sensitive than brain and muscle AChE inhibition by dichlorvos and omethoate.

  20. Oxidative stress and genetic damage among workers exposed primarily to organophosphate and pyrethroid pesticides.

    PubMed

    Zepeda-Arce, Rigoberto; Rojas-García, Aurora Elizabeth; Benitez-Trinidad, Alma; Herrera-Moreno, José Francisco; Medina-Díaz, Irma Martha; Barrón-Vivanco, Briscia S; Villegas, Germán Pier; Hernández-Ochoa, Isabel; Sólis Heredia, María de Jesús; Bernal-Hernández, Yael Y

    2017-02-24

    The indiscriminate use of pesticides in agriculture and public health campaigns has been associated with an increase of oxidative stress and DNA damage, resulting in health outcomes. Some defense mechanisms against free radical-induced oxidative damage include the antioxidant enzyme systems. The aim of this study was to determine the levels of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and the relationship of antioxidant enzyme levels with DNA damage among sprayers (workers) occupationally exposed to pesticides. The determinations of MDA and antioxidant enzymes were performed spectrophotometrically. The genotoxic effects were evaluated using the comet assay. The results showed a marginally significant decrease in SOD and CAT activities in the high exposure group compared to the control group. For MDA, statistically significant differences were found among people working long term vs. those working temporarily (P = 0.02) as sprayers. In the moderate exposure group, a positive correlation was observed between MDA levels and GPx activity. In the high exposure group, a negative correlation was observed between GR and CAT activities, and between MDA levels and GPx activities. Furthermore, in the high exposure group, a positive correlation between DNA damage parameters and MDA levels was observed. The results suggest an important role of antioxidant enzymes for the protection of DNA damage caused by occupational exposure to pesticides.

  1. Metabonomic analysis of the joint toxic action of long-term low-level exposure to a mixture of four organophosphate pesticides in rat plasma.

    PubMed

    Du, Longfei; Li, Sifan; Qi, Lei; Hou, Yurong; Zeng, Yan; Xu, Wei; Wang, Hong; Zhao, Xiujuan; Sun, Changhao

    2014-05-01

    In previously published articles, we evaluated the toxicity of four organophosphate (OP) pesticides (dichlorvos, dimethoate, acephate, and phorate) in rats using metabonomic technology at their corresponding no observed adverse effect levels (NOAELs). The results show that a single pesticide did not elicit a toxic response. The joint toxic action of four pesticides (at their corresponding NOAELs) was evaluated by metabolomic analysis of rat plasma under experimental conditions similar to those of the four single OP pesticides. The pesticides were administered daily to rats through drinking water for 24 weeks. The mixture of four pesticides showed a joint toxic action at the NOAELs of each pesticide. The 19 metabolites were statistically significantly changed in all the treated groups compared with those in the control group (p < 0.05 or p < 0.01). Exposure to OP pesticides resulted in increased lysoPC (15 : 0/0 : 0), lysoPC (16 : 0/0 : 0), lysoPC (O-18 : 0/0 : 0), lysoPC (P-19 : 1(12Z)/0 : 0), lysoPC (18 : 1(9Z)/0 : 0), lysoPC (18 : 0/0 : 0), lysoPC (20 : 4(5Z, 8Z, 11Z, 14Z)/0 : 0), lysoPE (16 : 0/0 : 0), lysoPC (17 : 0/0 : 0), 4-pyridoxic acid, glutamic acid, glycocholic acid, and arachidonic acid, as well as decreased C16 sphinganine, C17 sphinganine, phytosphingosine, indoleacrylic acid, tryptophan, and iodotyrosine in rat plasma. The results indicate that the mixture of OP pesticides induced oxidative stress, liver and renal dysfunction, disturbed the metabolism of lipids and amino acids, and interfered with the function of the thyroid gland. The present plasma results provided complementarities with our previous metabolomic analysis of the rat urine profile exposed to a mixture of four OP pesticides, and also contributed to the understanding of the mechanism of joint toxic action.

  2. Brain anomalies in children exposed prenatally to a common organophosphate pesticide

    PubMed Central

    Rauh, Virginia A.; Perera, Frederica P.; Horton, Megan K.; Whyatt, Robin M.; Bansal, Ravi; Hao, Xuejun; Liu, Jun; Barr, Dana Boyd; Slotkin, Theodore A.; Peterson, Bradley S.

    2012-01-01

    Prenatal exposure to chlorpyrifos (CPF), an organophosphate insecticide, is associated with neurobehavioral deficits in humans and animal models. We investigated associations between CPF exposure and brain morphology using magnetic resonance imaging in 40 children, 5.9–11.2 y, selected from a nonclinical, representative community-based cohort. Twenty high-exposure children (upper tertile of CPF concentrations in umbilical cord blood) were compared with 20 low-exposure children on cortical surface features; all participants had minimal prenatal exposure to environmental tobacco smoke and polycyclic aromatic hydrocarbons. High CPF exposure was associated with enlargement of superior temporal, posterior middle temporal, and inferior postcentral gyri bilaterally, and enlarged superior frontal gyrus, gyrus rectus, cuneus, and precuneus along the mesial wall of the right hemisphere. Group differences were derived from exposure effects on underlying white matter. A significant exposure × IQ interaction was derived from CPF disruption of normal IQ associations with surface measures in low-exposure children. In preliminary analyses, high-exposure children did not show expected sex differences in the right inferior parietal lobule and superior marginal gyrus, and displayed reversal of sex differences in the right mesial superior frontal gyrus, consistent with disruption by CPF of normal behavioral sexual dimorphisms reported in animal models. High-exposure children also showed frontal and parietal cortical thinning, and an inverse dose–response relationship between CPF and cortical thickness. This study reports significant associations of prenatal exposure to a widely used environmental neurotoxicant, at standard use levels, with structural changes in the developing human brain. PMID:22547821

  3. In Vitro Rat Hepatic and Intestinal Metabolism of the Organophosphate Pesticides Chlorpyrifos and Diazinon

    SciTech Connect

    Poet, Torka S. ); Wu, Hong ); Kousba, Ahmed A. ); Timchalk, Charles

    2003-04-01

    Chlorpyrifos (CPF) and diazinon (DZN) are thionophosphorus organophosphate, insecticides; their toxicity is mediated through CYP450 metabolism to CPF-oxon and DZN-oxon, respectively. Conversely, CYP450s also detoxify these OPs to trichloropyridinol (TCP) and 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMHP), respectively. In addition, A-esterase metabolism of CPF- and DZN-oxon also form TCP and IMHP. This study evaluated the role intestinal and hepatic metabolism may play in the first-pass elimination of CPF and DZN. Similar CYP450- and A-esterase-mediated metabolic profiles were demonstrated in microsomes from liver or isolated intestinal enterocytes. In enterocyte microsomes, the CYP450 metabolic efficiency (Vmax/Km) for metabolism to the oxon metabolites was~5-fold greater for CPF than DZN. Compared on a per nmol P450 basis, the Vmax for CPF in enterocytes was~2-3 times higher than in liver microsomes for the production of CPF-oxon and TCP. The affinity (Km) for the metabolism of CPF to CPF-oxon was comparable in liver and enterocyte microsomes, however the enterocyte Km for TCP production was higher (lower affinity). The smaller volume of intestine, lower amount of CYP450, and higher Km for TCP in the enterocyte microsomes, resulted in a lower catalytic efficiency (2 and 62 times) than in liver for oxon and TCP. A-esterase-mediated metabolism of CPF- and DZN-oxon was also demonstrated in liver and enterocyte microsomes. Although A-esterase affinity for the substrates were comparable in hepatic and enterocyte microsomes, the Vmax were 48 - to 275-fold, in the liver. These results suggest that intestinal metabolism may impact first-pass metabolism of CPF and DZN, especially following low-dose oral exposures.

  4. Sensitivity of nestling and adult starlings to dicrotophos, an organophosphate pesticide

    USGS Publications Warehouse

    Grue, C.E.; Shipley, B.K.

    1984-01-01

    The 24-hr median lethal dose (LD50) of dicrotophos (3-hydroxy-N,N-dimethyl-cis-crotonamide dimethyl phosphate) for free-living 5-day-old nestling European starlings (Sturnus vulgaris, LDso = 4.92 mg/kg body wt) was about one-half that obtained for free-living 15day-old nestlings (9.59 mg/kg) and captive adult males (8.37 mg/kg) and females (8.47 mg/ kg). Nestlings and adults with low pretreatment body weights appeared to be more vulnerable to organophosphate (OP) exposure. Brain cholinesterase (ChE) activity was severely depressed in all birds that died (74-94%); the degree of inhibition did not vary with age or sex. Inhibition of brain ChE in 5-day-old nestlings alive 24 hr post dose (X = 28-43%) was lower than that of 15-day-old (X = 55-68%) and adult (X = 55-77%) survivors. Body weights of OP-dosed birds that died were depressed an average of 20 to 46% in 5-day-olds, 7 to 20% in 15-day-olds, and 0 to 10% in adults; weight losses varied inversely with age and dosage, and directly with time to death. Average weight losses in 5- and 15-day-old survivors (X < 31 and 26%, respectively) varied directly with dose and exceeded comparable values for adults (X = 3-15%). Results suggest that (1) young nestling songbirds may be nearly twice as sensitive as adults to OPs, (2) growth of nestlings may be severely depressed following OP exposure, and (3) recovery of brain ChE activity following exposure to ChE inhibitors may be more rapid in nestlings than adults.

  5. Single-Step Production of a Recyclable Nanobiocatalyst for Organophosphate Pesticides Biodegradation Using Functionalized Bacterial Magnetosomes

    PubMed Central

    Ginet, Nicolas; Pardoux, Romain; Adryanczyk, Géraldine; Garcia, Daniel; Brutesco, Catherine; Pignol, David

    2011-01-01

    Enzymes are versatile catalysts in laboratories and on an industrial scale; improving their immobilization would be beneficial to broadening their applicability and ensuring their (re)use. Lipid-coated nano-magnets produced by magnetotactic bacteria are suitable for a universally applicable single-step method of enzyme immobilization. By genetically functionalizing the membrane surrounding these magnetite particles with a phosphohydrolase, we engineered an easy-to-purify, robust and recyclable biocatalyst to degrade ethyl-paraoxon, a commonly used pesticide. For this, we genetically fused the opd gene from Flavobacterium sp. ATCC 27551 encoding a paraoxonase to mamC, an abundant protein of the magnetosome membrane in Magnetospirillum magneticum AMB-1. The MamC protein acts as an anchor for the paraoxonase to the magnetosome surface, thus producing magnetic nanoparticles displaying phosphohydrolase activity. Magnetosomes functionalized with Opd were easily recovered from genetically modified AMB-1 cells: after cellular disruption with a French press, the magnetic nanoparticles are purified using a commercially available magnetic separation system. The catalytic properties of the immobilized Opd were measured on ethyl-paraoxon hydrolysis: they are comparable with the purified enzyme, with Km (and kcat) values of 58 µM (and 178 s−1) and 43 µM (and 314 s−1) for the immobilized and purified enzyme respectively. The Opd, a metalloenzyme requiring a zinc cofactor, is thus properly matured in AMB-1. The recycling of the functionalized magnetosomes was investigated and their catalytic activity proved to be stable over repeated use for pesticide degradation. In this study, we demonstrate the easy production of functionalized magnetic nanoparticles with suitably genetically modified magnetotactic bacteria that are efficient as a reusable nanobiocatalyst for pesticides bioremediation in contaminated effluents. PMID:21738665

  6. Single-step production of a recyclable nanobiocatalyst for organophosphate pesticides biodegradation using functionalized bacterial magnetosomes.

    PubMed

    Ginet, Nicolas; Pardoux, Romain; Adryanczyk, Géraldine; Garcia, Daniel; Brutesco, Catherine; Pignol, David

    2011-01-01

    Enzymes are versatile catalysts in laboratories and on an industrial scale; improving their immobilization would be beneficial to broadening their applicability and ensuring their (re)use. Lipid-coated nano-magnets produced by magnetotactic bacteria are suitable for a universally applicable single-step method of enzyme immobilization. By genetically functionalizing the membrane surrounding these magnetite particles with a phosphohydrolase, we engineered an easy-to-purify, robust and recyclable biocatalyst to degrade ethyl-paraoxon, a commonly used pesticide. For this, we genetically fused the opd gene from Flavobacterium sp. ATCC 27551 encoding a paraoxonase to mamC, an abundant protein of the magnetosome membrane in Magnetospirillum magneticum AMB-1. The MamC protein acts as an anchor for the paraoxonase to the magnetosome surface, thus producing magnetic nanoparticles displaying phosphohydrolase activity. Magnetosomes functionalized with Opd were easily recovered from genetically modified AMB-1 cells: after cellular disruption with a French press, the magnetic nanoparticles are purified using a commercially available magnetic separation system. The catalytic properties of the immobilized Opd were measured on ethyl-paraoxon hydrolysis: they are comparable with the purified enzyme, with K(m) (and k(cat)) values of 58 µM (and 178 s(-1)) and 43 µM (and 314 s(-1)) for the immobilized and purified enzyme respectively. The Opd, a metalloenzyme requiring a zinc cofactor, is thus properly matured in AMB-1. The recycling of the functionalized magnetosomes was investigated and their catalytic activity proved to be stable over repeated use for pesticide degradation. In this study, we demonstrate the easy production of functionalized magnetic nanoparticles with suitably genetically modified magnetotactic bacteria that are efficient as a reusable nanobiocatalyst for pesticides bioremediation in contaminated effluents.

  7. Pesticides in Schools: Reducing the Risks.

    ERIC Educational Resources Information Center

    New York State Office of the Attorney General, Albany.

    This report presents findings of state-wide use of pesticides in New York public schools along with a description of the survey, information about the potential dangers of these chemicals, and the steps schools and communities can take to minimize pesticide use. Findings show that 87 percent of New York's schools use pesticides that contain…

  8. Biosensor Based on Self-Assembling Acetylcholinesterase on Carbon Nanotubes for Flow injection/Amperometric Detection of Organophosphate Pesticides and Nerve Agents

    SciTech Connect

    Liu, Guodong; Lin, Yuehe

    2006-02-01

    A highly sensitive flow-injection amperometric biosensor for organophosphate pesticides and nerve agents based on self-assembly of acetylcholinesterase (AChE) on carbon nanotube (CNT)-modified glassy carbon (GC) electrode is described. AChE is immobilized on the negatively-charged CNT surface by alternatively assembling a cationic polydiallyldimethylammonium chloride (PDDA) layer and an AChE layer. Transmission electron microscopy images confirm the formation of layer-by-layer nanostructures on carboxyl functionalized CNTs. The unique sandwich-like structure (PDDA/AChE/PDDA) on the CNT surface formed by self-assembly provides a favorable microenvironment to keep the bioactivity of AChE and to prevent enzyme molecule leakage. The electrocatalytic activity of CNT leads to a greatly improved electrochemical detection of the enzymatically generated thiocholine product, including a low oxidation overvoltage (+150 mV), higher sensitivity, and stability. The developed PDDA/AChE/PDDA/CNT/GC biosensor integrated into a flow injection system was used to monitor organophosphate pesticides and nerve agents, such as paraoxon. The sensor performance, including inhibition time and regeneration conditions, was optimized with respect to operating conditions. Under the optimal conditions, the biosensor was used to measure as low as 0.4 pM paraoxon with a 6-min inhibition time. The biosensor had excellent operational lifetime stability with no decrease in the activity of enzymes for more than 20 repeated measurements over a 1-week period. The developed biosensor system is an ideal tool for online monitoring of organophosphate pesticides and nerve agents.

  9. Effect of an organophosphate pesticide, monocrotophos, on phosphate-solubilizing efficiency of soil fungal isolates.

    PubMed

    Jain, Rachna; Garg, Veena; Saxena, Jyoti

    2015-01-01

    Soil is a sink of pesticide residues as well as microorganisms. Fungi are well known for solubilization of inorganic phosphates, and this activity of fungal isolates may be affected by the presence of pesticide residues in the soil. In the present study, five generically different fungal isolates, viz. Aspergillus niger JQ660373, Aspergillus flavus, Penicillium aculeatum JQ660374, Fusarium pallidoroseum and Macrophomina sp., were tested and compared for their phosphate-solubilizing ability in the absence and presence of monocrotophos (500 mg L(-1)). After 168 h of incubation, four times high amount of tricalcium phosphate was solubilized by isolates in the growth medium containing monocrotophos in comparison to control (without monocrotophos). Concurrently, 78 % of the applied monocrotophos was degraded by these fungal isolates. Kinetics of phosphate solubilization shifted from logarithmic to power model in the presence of monocrotophos. Similarly, the phosphatase activity was also found significantly high in the presence of monocrotophos. The combined order of phosphate solubilization as well as monocrotophos degradation was found to be A. niger JQ660373 > P. aculeatum JQ660374 > A. flavus > F. pallidoroseum > Macrophomina sp. On the contrary, phosphate solubilization negatively correlated with the pH of the growth medium. Hence, it could be concluded that these fungal species efficiently solubilize inorganic phosphates and monocrotophos poses a positive effect on their ability and in turn degraded by them. To the best of our knowledge, this is the first report on P solubilization by Macrophomina sp. and F. pallidoroseum.

  10. Organophosphate Pesticide Exposure in School-Aged Children Living in Rice and Aquacultural Farming Regions of Thailand

    PubMed Central

    Rohitrattana, Juthasiri; Siriwong, Wattasit; Tunsaringkarn, Tanasorn; Panuwet, Parinya; Ryan, P. Barry; Barr, Dana Boyd; Robson, Mark G.; Fiedler, Nancy

    2015-01-01

    Organophosphate pesticides (OPs) are widely used in agricultural sectors in Thailand. Previous studies have documented that children residing in agricultural areas have higher exposure to OPs than children living in other residential areas. The objective of this study was to quantify urinary biomarkers of OP exposure and determine the environmental conditions and activities that predict their levels among children living in Central Thailand farming regions. In October 2011, 53 6–8-year-old participants were recruited from Pathum Thani Province, Thailand. Twenty-four lived in rice farming communities at Khlong Luang District where OPs are the pesticides used frequently. Twenty-nine participants, living in aquacultural farming communities at Lum Luk Ka District where OPs are not used, were recruited to serve as controls for pathways of exposure (e.g., residential, dietary) other than occupational/paraoccupational exposures encountered in rice farming. Household environments and participants’ activities were assessed using a parental structured interview. Urine samples (first morning voids) were collected from participants for OP urinary metabolite (i.e., dialkylphosphates [DAPs] and 3,5,6-trichloro-2-pyridinol [TCPy]) measurements. The levels of most urinary OP metabolites were significantly higher in participants who lived in a rice farming community than those who lived in an aquacultural farming community (P < .05). The results from linear regression analysis revealed that the frequency of OP application on rice farms (}.DAP: P = .001; TCPy: P = .001) and living in a rice farming community (}.DAP: P = .009; TCPy: P < .001) were significant predictors of urinary DAP metabolite levels in participants. Increasing TCPy levels were significantly related to proximity to rice farm (P = .03), being with parent while working on a farm (P = .02), playing on a farm (P = .03), and the presence of observable dirt accumulated on the child's body (P = .02). In conclusion, OP

  11. Organophosphate pesticide exposure in school-aged children living in rice and aquacultural farming regions of Thailand.

    PubMed

    Rohitrattana, Juthasiri; Siriwong, Wattasit; Tunsaringkarn, Tanasorn; Panuwet, Parinya; Ryan, P Barry; Barr, Dana Boyd; Robson, Mark G; Fiedler, Nancy

    2014-01-01

    Organophosphate pesticides (OPs) are widely used in agricultural sectors in Thailand. Previous studies have documented that children residing in agricultural areas have higher exposure to OPs than children living in other residential areas. The objective of this study was to quantify urinary biomarkers of OP exposure and determine the environmental conditions and activities that predict their levels among children living in Central Thailand farming regions. In October 2011, 53 6-8-year-old participants were recruited from Pathum Thani Province, Thailand. Twenty-four lived in rice farming communities at Khlong Luang District where OPs are the pesticides used frequently. Twenty-nine participants, living in aquacultural farming communities at Lum Luk Ka District where OPs are not used, were recruited to serve as controls for pathways of exposure (e.g., residential, dietary) other than occupational/paraoccupational exposures encountered in rice farming. Household environments and participants' activities were assessed using a parental structured interview. Urine samples (first morning voids) were collected from participants for OP urinary metabolite (i.e., dialkylphosphates [DAPs] and 3,5,6-trichloro-2-pyridinol [TCPy]) measurements. The levels of most urinary OP metabolites were significantly higher in participants who lived in a rice farming community than those who lived in an aquacultural farming community (P < .05). The results from linear regression analysis revealed that the frequency of OP application on rice farms (∑DAP: P = .001; TCPy: P = .001) and living in a rice farming community (∑DAP: P = .009; TCPy: P < .001) were significant predictors of urinary DAP metabolite levels in participants. Increasing TCPy levels were significantly related to proximity to rice farm (P = .03), being with parent while working on a farm (P = .02), playing on a farm (P = .03), and the presence of observable dirt accumulated on the child's body (P = .02). In conclusion, OP

  12. Association of Organophosphate Pesticide Exposure and Paraoxonase with Birth Outcome in Mexican-American Women

    PubMed Central

    Harley, Kim G.; Huen, Karen; Aguilar Schall, Raul; Holland, Nina T.; Bradman, Asa; Barr, Dana Boyd; Eskenazi, Brenda

    2011-01-01

    Background Epidemiologic studies suggest that maternal organophosphorus (OP) pesticide exposure is associated with poorer fetal growth, but findings are inconsistent. We explored whether paraoxonase (PON1), a key enzyme involved in detoxification of OPs, could be an effect modifier in this association. Methods The study population included 470 pregnant women enrolled in the CHAMACOS Study, a longitudinal cohort study of mothers and children living in an agricultural region of California. We analyzed urine samples collected from mothers twice during pregnancy for dialkyl phosphate (DAP) metabolites of OP pesticides. We analyzed maternal and fetal (cord) blood samples for PON1 genotype (PON1192 and PON1−108) and enzyme activity (paraoxonase and arylesterase). Infant birth weight, head circumference, and gestational age were obtained from medical records. Results Infants' PON1 genotype and activity were associated with birth outcome, but mothers' were not. Infants with the susceptible PON1−108TT genotype had shorter gestational age (β = −0.5 weeks, 95% Confidence Interval (CI): −0.9, 0.0) and smaller head circumference (β = −0.4 cm, 95% CI: −0.7, 0.0) than those with the PON1−108CC genotype. Infants' arylesterase and paraoxonase activity were positively associated with gestational age. There was some evidence of effect modification with DAPs: maternal DAP concentrations were associated with shorter gestational age only among infants of the susceptible PON1−108TT genotype (p-valueinteraction = 0.09). However, maternal DAP concentrations were associated with larger birth weight (p-valueinteraction = 0.06) and head circumference (p-valueinteraction<0.01) in infants with non-susceptible genotypes. Conclusions Infants whose PON1 genotype and enzyme activity levels suggested that they might be more susceptible to the effects of OP pesticide exposure had decreased fetal growth and length of gestation. PON1 may be another factor contributing

  13. Acetylcholinesterase-polyaniline biosensor investigation of organophosphate pesticides in selected organic solvents.

    PubMed

    Somerset, Vernon S; Klink, Michael J; Baker, Priscilla G L; Iwuoha, Emmanuel I

    2007-01-01

    The behavior of an amperometric organic-phase biosensor consisting of a gold electrode modified first with a mercaptobenzothiazole self-assembled monolayer, followed by electropolymerization of polyaniline in which acetylcholinesterase as enzyme was immobilized, has been developed and evaluated for organophosphorous pesticide detection. The voltammetric results have shown that the formal potential shifts anodically as the Au/MBT/PANI/AChE/PVAc thick-film biosensor responded to acetylthiocholine substrate addition under anaerobic conditions in selected organic solvent media containing 2% v/v 0.05 M phosphate buffer, 0.1 M KCl (pH 7.2) solution. Detection limits in the order of 0.147 ppb for diazinon and 0.172 ppb for fenthion in acetone-saline phosphate buffer solution, and 0.180 ppb for diazinon and 0.194 ppb for fenthion in ethanol-saline phosphate buffer solution has been achieved.

  14. Determination of Organophosphate Pesticides at a Carbon Nanotube/Organophosphorus Hydrolase Electrochemical Biosensor

    SciTech Connect

    Deo, R P.; Wang, Joseph; Block, I; Mulchandani, Ashok; Joshi, K; Trojanowicz, M; Scholz, F; Chen, Wilfred; Lin, Yuehe

    2005-02-08

    An amperometric biosensor for organophosphorus (OP) pesticides based on a carbon-nanotube (CNT) modified transducer and an organophosphorus hydrolase (OPH) biocatalyst is described. A bilayer approach with the OPH layer atop of the CNT film was used for preparing the CNT/OPH biosensor. The CNT layer leads to a greatly improved anodic detection of the enzymatically-generated p-nitrophenol product, including higher sensitivity and stability. The sensor performance was optimized with respect to the surface modification and operating conditions. Under the optimal conditions the biosensor was used to measure as low as 0.15 {micro}M paraoxon and 0.8 {micro}M methyl parathion with sensitivities of 25 and 6 nA/{micro}M, respectively.

  15. Assessing the connection between organophosphate pesticide poisoning and mental health: A comparison of neuropsychological symptoms from clinical observations, animal models and epidemiological studies.

    PubMed

    Stallones, Lorann; Beseler, Cheryl L

    2016-01-01

    Psychiatry and psychology are beginning to recognize the importance of lead, mercury and heavy metals as causal partners in the development of mental disorders. Further, mental health researchers and clinicians are embracing the idea that the combined effects of genetics and environmental exposures can result in perturbations in brain neurochemistry leading to psychiatric disorders. The purpose of this review is to examine the biological foundations for the epidemiological observations previously identified by reviewing the toxicology literature and relating it to epidemiological studies addressing the role of poisoning with organophosphate pesticides (OPs) in neurobehavioral and neuropsychological disorders. The goal of this review is to raise awareness in the mental health community about the possibility that affective disorders might be the result of contributions from environmental and occupational pesticide poisoning.

  16. Agent orange herbicides, organophosphate and triazinic pesticides analysis in olive oil and industrial oil mill waste effluents using new organic phase immunosensors.

    PubMed

    Martini, Elisabetta; Merola, Giovanni; Tomassetti, Mauro; Campanella, Luigi

    2015-02-15

    New immunosensors working in organic solvent mixtures (OPIEs) for the analysis of traces of different pesticides (triazinic, organophosphates and chlorurates) present in hydrophobic matrices such as olive oil were developed and tested. A Clark electrode was used as transducer and peroxidase enzyme as marker. The competitive process took place in a chloroform-hexane 50% (V/V) mixture, while the subsequent enzymatic final measurement was performed in decane and using tert-butylhydroperoxide as substrate of the enzymatic reaction. A linear response of between about 10nM and 5.0μM was usually obtained in the presence of olive oil. Recovery tests were carried out in commercial or artisanal extra virgin olive oil. Traces of pesticides were also checked in the oily matrix, in pomace and mill wastewaters from an industrial oil mill. Immunosensors show good selectivity and satisfactory precision and recovery tests performed in olive oil gave excellent results.

  17. Pesticides reduce regional biodiversity of stream invertebrates.

    PubMed

    Beketov, Mikhail A; Kefford, Ben J; Schäfer, Ralf B; Liess, Matthias

    2013-07-02

    The biodiversity crisis is one of the greatest challenges facing humanity, but our understanding of the drivers remains limited. Thus, after decades of studies and regulation efforts, it remains unknown whether to what degree and at what concentrations modern agricultural pesticides cause regional-scale species losses. We analyzed the effects of pesticides on the regional taxa richness of stream invertebrates in Europe (Germany and France) and Australia (southern Victoria). Pesticides caused statistically significant effects on both the species and family richness in both regions, with losses in taxa up to 42% of the recorded taxonomic pools. Furthermore, the effects in Europe were detected at concentrations that current legislation considers environmentally protective. Thus, the current ecological risk assessment of pesticides falls short of protecting biodiversity, and new approaches linking ecology and ecotoxicology are needed.

  18. Organophosphate pesticide method development and presence of chlorpyrifos in the feet of nearctic-neotropical migratory songbirds from Canada that over-winter in Central America agricultural areas.

    PubMed

    Alharbi, Hattan A; Letcher, Robert J; Mineau, Pierre; Chen, Da; Chu, Shaogang

    2016-02-01

    Recent modeling analysis suggests that numerous birds may be at risk of acute poisoning in insecticide-treated fields. Although the majority of avian field studies on pesticides have focused on treated seed, granule, insect or vegetation (oral exposure) ingestion, dermal exposure is an important exposure route when birds come into contact with deposited pesticides on foliage and other surfaces. Some nearctic-neotropical migratory songbirds are likely exposed to pesticides on their non-breeding habitats and include treated crops, plantations or farmlands. In the present study, we developed a method for four environmentally-relevant organophosphate (OP) pesticides (fenthion, fenamiphos, chlorpyrifos and diazinon) in the feet of migratory songbirds (i.e. Common yellowthroat, Gray catbird, Indigo bunting, America redstart, Northern waterthrush, Northern parula, and an additional 12 species of warblers). A total of 190 specimens of the 18 species of songbirds were sampled from available window-killed birds (spring of 2007 and 2011) in downtown Toronto, Canada. The species that were available most likely over-wintered in Mexican/Central American crops such as citrus, coffee and cacao. The feet of the dead birds were sampled and where OP foot exposure likely occurred during over-wintering foraging on pesticide-treated crops. Chlorpyrifos was the only measurable OP (pg mg feet weight(-1)) and in the 2011-collected feet of Black throated blue warbler (0.5), Tennessee warbler (1.0), Northern parula (1.2), Northern waterthrush (0.6), Common yellowthroat (1.0) and the Blue winged warbler (0.9). Dermal contact with OP pesticides during over-wintering in agricultural areas resulted in low levels of chlorpyrifos and long time retention on the feet of a subset of songbirds.

  19. Residues of organophosphate pesticides used in vegetable cultivation in ambient air, surface water and soil in Bueng Niam Subdistrict, Khon Kaen, Thailand.

    PubMed

    Harnpicharnchai, Kallaya; Chaiear, Naesinee; Charerntanyarak, Lertchai

    2013-11-01

    Agricultural pesticide utilization is one of the important problems in rural and urban crop-cultivated areas, with the majority of pollutants dispersing via ambient air, water and other natural pathways. This study was therefore conducted in a specially selected village which is known to be a leading vegetable growing area in Khon Kaen Province. The aim of the study was to assess pesticide residues, and measure the seasonal fluctuations in organophosphate concentrations during 2010 in the environment of a risk area. Samples from selected sites were collected in two phases: Phase I was in summer (during March to May) and Phase II was in winter (during October to December). A total of 150 samples were analyzed using gas chromatography with flame photometric detection. The results showed that dicrotophos, chlorpyrifos, profenofos and ethion were found at the highest concentrations in soil and at the lowest concentrations in ambient air (p<0.001). The highest mean concentration of a pesticide in ambient air samples was 0.2580 +/- 0.2686 mg/m(3) for chlorpyrifos in summer and 0.1003 +/- 0.0449 mg/m(3) for chlorpyrifos in winter. In surface water samples, the highest mean concentration of a pesticide was 1.3757 +/- 0.5014 mg/l for dicrotophos in summer and 0.3629 +/- 0.4338 mg/l for ethion in winter. The highest mean concentration of a pesticide in soil samples was 42.2893 +/- 39.0711 mg/kg ethion in summer and 90.0000 +/- 24.1644 mg/kg of ethion in winter.

  20. Vortex-assisted liquid-liquid microextraction combined with gas chromatography-mass spectrometry for the determination of organophosphate pesticides in environmental water samples and wines.

    PubMed

    Zacharis, Constantinos K; Christophoridis, Christophoros; Fytianos, Konstantinos

    2012-09-01

    A simple vortex-assisted liquid-liquid microextraction protocol followed by GC-MS is proposed for the determination of 12 organophosphate pesticides residues in environmental water samples and wines. The sample pretreatment employs the usage of low-density organic solvent. The parameters affecting the extraction efficiency (type and volume of organic extraction solvent, sample pH, ionic strength, extraction time, and centrifugation speed) were carefully examined. A mild emulsification process was involved by the addition of 40 μL toluene into 10 mL sample followed by sequential vortex-based agitation and manual shaking for 3 min. Following the extraction, the pesticide-rich organic solvent was recovered by centrifugation at 4000 rpm for 5 min. A fraction of the floated toluene was then collected and analyzed by GC-MS in SIM mode. Under the optimized conditions, the enrichment factor ranged between 65 and 389. Satisfactory linearity was observed for all pesticides tested with correlation coefficients higher than 0.9945 while the LODs were in the range of 2-11 ng L(-1) . The main advantages of the proposed method are the simplicity of operation, rapidity, low cost, and high sensitivity.

  1. Multianalyte determination of different classes of pesticides (acidic, triazines, phenyl ureas, anilines, organophosphates, molinate and propanil) by liquid chromatography-electrospray-tandem mass spectrometry.

    PubMed

    Borba da Cunha, Ana C; López de Alda, Maria J; Barceló, Damià; Pizzolato, Tania M; dos Santos, Joao Henrique Z

    2004-02-01

    This work describes the optimization of a liquid chromatography-electrospray-tandem mass spectrometry (LC-ESI-MS-MS) method for the multianalyte determination of twenty pesticides, selected based on current regulations and extent of use. Chromatographic separation was carried out on a Purospher STAR RP-18e column using gradient acetonitrile-water as mobile phase. Triazines, phenylureas, organophosphates, anilines, and molinate were determined in the positive ionization mode, and acidic pesticides and propanil in the negative ion mode. Two different precursor ion-product ion transitions were selected for each analyte and monitored under time scheduled multiple reaction monitoring (MRM) conditions. The optimized method was shown to be linear in the range 1 to 1000 ng/mL with correlation coefficients higher than 0.99 for all but one (diazinon) of the analytes, very sensitive (with limits of detection between 0.010 and 4.528 ng/mL), and repeatable (with relative standard deviations, calculated from the replicate analysis of standard mixtures, lower than 14%). The present work was also devoted to the elucidation of the structures of the principal fragment ions obtained after collision-induced dissociation of the pesticides investigated, an aspect often overlooked in the literature.

  2. Exposure to organophosphate (OP) pesticides and health conditions in agricultural and non-agricultural workers from Maule, Chile.

    PubMed

    Muñoz-Quezada, María Teresa; Lucero, Boris; Iglesias, Verónica; Levy, Karen; Muñoz, María Pía; Achú, Eduardo; Cornejo, Claudia; Concha, Carlos; Brito, Ana María; Villalobos, Marcos

    2017-02-01

    The objective was to evaluate the characteristics of exposure to OP pesticides and health status in Chilean farm workers from the Maule Region. An occupational health questionnaire was administered in 207 agricultural and non-agricultural workers. For the group of agricultural workers, we asked about specific occupational exposure history and symptoms of OP pesticide poisoning. The main health problem of the exposed group was previous OP pesticide poisoning (p < 0.001). Fifty-six percent of agricultural workers reported symptoms consistent with acute OP pesticide poisoning. The use of respiratory personal protective equipment and younger age were protective against these symptoms, and number of years of OP pesticide exposure was positively associated with reporting symptoms of poisoning. Of the pesticide applicators 47 % reported using chlorpyrifos. The regulations regarding use and application of pesticides should be strengthened, as should training and intervention with workers to improve the use of personal protective equipment.

  3. Development of an ion-pair liquid chromatography-high resolution mass spectrometry method for determination of organophosphate pesticide metabolites in large-scale biomonitoring studies.

    PubMed

    Cequier, Enrique; Sakhi, Amrit Kaur; Haug, Line Småstuen; Thomsen, Cathrine

    2016-07-08

    Organophosphate based pesticides are widely used in the agricultural sector, and exposure to these chemicals is common for the general population. Pesticides are toxic due to the inhibition of acetylcholinesterases, and the potential for adverse health effects have been investigated in past and recent studies. Human biomonitoring of organophosphate pesticide exposure is carried out through the determination of the metabolites in urine (dialkylphosphates, DAPs). Hereby we present a new method for determination of the 6 non-specific metabolites dimethyl phosphate (DMP), diethyl phosphate (DEP), dimethyl thiophosphate (DMTP), diethyl thiophosphate (DETP), dimethyl dithiophosphate (DMDTP), and diethyl dithiophosphate (DEDTP) in urine based on off-line solid phase extraction (anion exchange, 96-well plates) followed by ion-pair ultra-performance liquid chromatography time-of-flight mass spectrometry. Recoveries and accuracies in control urine spiked at 5ng/mL ranged from 48% to109% and from 91% to 115%, respectively. The method limits of detection for the DAPs were 1.2ng/mL for DMP, 0.38ng/mL for DEP, 0.20ng/mL for DMTP, 0.33ng/mL for DETP, 0.64ng/mL for DMDTP, and 0.15ng/mL for DEDTP. The method was applied to samples from a Norwegian mother/child study group (n=48/56) and the DAPs detection frequencies in urine from mothers and children were about: 40% for DMP, 95% for DEP, 96% for DMTP, 50% for DETP, 15% for DMDTP, and 1% for DEDTP. In both mothers and children, the most abundant DAPs were DMTP (median 2.4/5.2ng/mL) and DEP (median 2.6/3.4ng/mL) followed by DMP (median 1.5/2.1ng/mL). The SG corrected concentrations of DEP and DETP in mothers were statistically higher than in children (p-value<0.05; Mann-Whitney test) which might suggest a higher exposure to pesticides in these mothers, or significant differences in toxicokinetics between adults and children. The method was proven robust and suitable for large-scale biomonitoring studies.

  4. Analysis of the detection of organophosphate pesticides in aqueous solutions using polymer-coated single IDT sensors

    NASA Astrophysics Data System (ADS)

    McCarthy, Michael

    The single interdigital transducer (IDT) device was investigated as a micro-chemical sensor for the detection of organophosphates compounds in aqueous solutions. The compounds of interest are: parathion, parathion-methyl, and paraoxon. The polymers used as a partially-selective coating for the direct detection of these compounds are 2,2'-diallylbisphenol A- 1,1,3,3,5,5-hexamethyltrisiloxane (BPA-HMTS) and polyepichlorohydrin (PECH). BPA-HMTS is synthesized here at Marquette University. The measurement of interest for the single IDT is the change radiation resistance. The radiation resistance represents the energy stored in the propagating acoustic wave. As analyte absorbs into the polymer coating, changes in the film's properties will undergo resulting in a change in the radiation resistance i.e the acoustic wave properties. The film's properties changing include: added mass, viscoelastic properties, thickness, and dielectric properties. These properties will contribute to an overall change in the radiation resistance. A linear change in the radiation resistance is expected to occur for increasing concentrations of an organophosphate. The experimental results indicate that BPA-HMTS shows greater sensitivity towards the organophosphates than PECH. Both polymers showed greatest to lowest sensitivity to parathion, parathion-methyl, and paraoxon respectively. Thicker films tested for both polymers, 0.75μm thick, show a higher response due to a more pronounced effect of mass loading than the thinner films tested, 0.50μm. The response times for BPA-HMTS were much faster than for PECH. Both films showed fastest to slowest response time to paraoxon, parathion-methyl, and parathion respectively. The sensor is tested for reproducibility for the polymer BP-HMTS. A sensor array consisting of separately tested devices from this work as well as work done by a previous student is utilized to increase the selectivity of the three organophosphates. Radial plots are performed for

  5. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory : determination of organophosphate pesticides in bottom sediment by gas chromatography with flame photometric detection

    USGS Publications Warehouse

    Jha, Virendra Kumar; Wydoski, Duane S.

    2003-01-01

    A method for the isolation of 20 parent organophosphate pesticides and 5 pesticide degradates from bottom-sediment samples is described. The compound O-ethyl-O-methyl-S-proplyphosphorothioate is reported as an estimated concentration because of variable performance. In this method, the sediment samples are centrifuged to remove excess waster mixed with anhydrous sodium sulfate and Soxhlet extracted overnight with dichloromethane (93 percent) and methanol (7 percent). The extract is concentrated and then filtered through a 0.2-micrometer polytetrafluoroethylene membrane syringe filter. An aliquot of the sample extract is quantitatively injected onto two polystyrene-divinylbenzene gel-permeation chromatographic columns connected in series. The compounds are eluted with dichloromethane and a fraction is collected for analysis, with some coextracted interferences, including elemental sulfur, separated and discarded. The aliquot is concentrated and solvent exchanged to ethyl acetate. The extract is analyzed by dual capillary-column gas chromatography with flame photometric detection. Single-operator method detection limits in sodium sulfate matrix samples ranged from 0.81 to 2 micrograms per kilogram. Method performance was validated by spiking all compounds into three different solid matrices (sodium sulfate, bed sediment from Clear Creek, and bed sediment from Evergreen Lake) at three different concentrations. Eight replicates were analyzed at each concentration in each matrix. Mean recoveries of method compounds spiked in Clear Creek samples ranged from 43 to 110 percent, and those in Evergreen Lake samples ranged from 62 to 118 percent for all pesticides. Mean recoveries of method compounds spiked in reagent sodium sulfate samples ranged from 41 to 101 percent for all pesticides. The only exception was O-ethyl-O-methyl-S-propylphosphorothioate, which had an average recovery of 35 percent, and, thus, sample concentration is reported as estimated ('E' remark code).

  6. Acetylcholinesterase activity in Corbicula fluminea Mull., as a biomarker of organophosphate pesticide pollution in Pinacanauan River, Philippines.

    PubMed

    Beltran, Kimberly S; Pocsidio, Glorina N

    2010-06-01

    Organophosphates are known to inhibit the enzyme acetylcholinesterase. In this study, the AChE activity from the total soft tissues of Corbicula fluminea Mull. was used as a biomarker of organophosphate pollution in Pinacanauan River. Clams were collected from two different sites and at different seasons of the year. A colorimetric assay on the total soft tissues of the clams showed a directly proportional relationship between enzyme activity and condition of the riverine system. In vitro experiments on the total soft tissue, adductor muscles, digestive glands, and gills were conducted to assess the degree of localization of AChE as well as the sensitivity and tolerance of the enzymes in these tissues to varying concentrations of malathion. The degree of enzyme localization from highest to lowest is as follows: adductor muscle > gills > digestive gland whereas sensitivity to OP from greatest to least is: gills > adductor muscles > digestive gland.

  7. Evaluating the Effectiveness of Native Grass Riparian Buffer Strips to Reduce Pesticide Runoff

    NASA Astrophysics Data System (ADS)

    Grossman, K.; Brown, D. L.

    2007-12-01

    Organophosphate pesticides such as diazinon have been a major source of non-point source water pollution in the Sacramento Valley watershed of central California. Diazinon is commonly listed as a pollutant for many tributaries of the Sacramento River on the US Clean Water Act section 303(d) list of impaired waterways. This pesticide is applied either aerially or as a foliar spray to nut and stone-fruit orchards during dormancy, which coincides with the rainy season in northern California. A study was conducted to determine if planting native grasses in the riparian zone was effective in reducing the amount of diazinon entering the surface water in streams flowing through these orchards. Native grasses have deeper root systems and were hypothesized to be more effective in sorbing diazinon and preventing its runoff than non-native grasses. In 2004, nine 20 foot by 20 foot riparian buffer plots were constructed along the banks of the South Fork of Walker Creek, west of the town of Orland in the Sacramento Valley. Three of the nine plots were maintained as bare ground, three were left with resident weeds including dense non-native grasses, and three were planted with native grasses, which included purple needlegrass (Nassella pulchra), creeping wildrye (Elymus triticoides), and deergrass (Muhlenbergia rigens). The experimental design simulated orchard runoff by applying mixtures of water and diazinon at observed field concentrations. The pesticide load was evenly applied across the top of each buffer plot at a rate consistent with local runoff rates in an average storm. Rainfall on the buffer plots was simulated with overhead sprinklers at a rate of 0.75 inches per hour, also an average storm for this area. Runoff was monitored at the downslope side of the plots with flumes funneled to large holding tanks. From these tanks, composite water samples were collected after runoff had ceased. The samples were analyzed for diazinon concentration, nitrates, and total suspended

  8. Application of ultraperformance liquid chromatography/mass spectrometry-based metabonomic techniques to analyze the joint toxic action of long-term low-level exposure to a mixture of organophosphate pesticides on rat urine profile.

    PubMed

    Du, Longfei; Wang, Hong; Xu, Wei; Zeng, Yan; Hou, Yurong; Zhang, Yuqiu; Zhao, Xiujuan; Sun, Changhao

    2013-07-01

    In previously published articles, we evaluated the toxicity of four organophosphate (OP) pesticides (dichlorvos, dimethoate, acephate, and phorate) to rats using metabonomic technology at their corresponding no observed adverse effect level (NOAEL). Results show that a single pesticide elicits no toxic response. This study aimed to determine whether chronic exposure to a mixture of the above four pesticides (at their corresponding NOAEL) can lead to joint toxic action in rats using the same technology. Pesticides were administered daily to rats through drinking water for 24 weeks. The above mixture of the four pesticides showed joint toxic action at the NOAEL of each pesticide. The metabonomic profiles of rats urine were analyzed by ultraperformance liquid chromatography/mass spectrometry. The 16 metabolites statistically significantly changed in all treated groups compared with the control group. Dimethylphosphate and dimethyldithiophosphate exclusively detected in all treated groups can be used as early, sensitive biomarkers for exposure to a mixture of the OP pesticides. Moreover, exposure to the OP pesticides resulted in increased 7-methylguanine, ribothymidine, cholic acid, 4-pyridoxic acid, kynurenine, and indoxyl sulfate levels, as well as decreased hippuric acid, creatinine, uric acid, gentisic acid, C18-dihydrosphingosine, phytosphingosine, suberic acid, and citric acid. The results indicated that a mixture of OP pesticides induced DNA damage and oxidative stress, disturbed the metabolism of lipids, and interfered with the tricarboxylic acid cycle. Ensuring food safety requires not only the toxicology test data of each pesticide for the calculation of the acceptable daily intake but also the joint toxic action.

  9. THE EFFECTS OF AN ORGANOPHOSPHATE (OP)-CARBAMATE (CB) PESTICIDE MIXTURE ON CORE TEMPERATURE AND MOTOR ACTIVITY IN THE RAT.

    EPA Science Inventory

    Pesticide risk assessment has traditionally been based on the toxicological response to single agents. Dose-additivity has been the default in risk assessment evaluations of pesticides with a common mechanism of action, but there could be supra-additive or infra-additive inter...

  10. Reduced expression of exocytotic proteins caused by anti-cholinesterase pesticides in Brachionus calyciflorus (Rotifera: Monogononta).

    PubMed

    Pérez-Legaspi, I A; Rico-Martínez, R; Quintanar, J L

    2015-08-01

    The organophosphate and carbamate pesticides methyl-parathion and carbaryl have a common action mechanism: they inhibit acetylcholinesterase enzyme by blocking the transmission of nerve impulses. However, they can alter the expression of exocytotic membrane proteins (SNARE), by modifying release of neurotransmitters and other substances. This study evaluated the adverse effects of the pesticides methyl-parathion and carbaryl on expression of SNARE proteins: Syntaxin-1, Syntaxin-4 and SNAP-23 in freshwater rotifer Brachionus calyciflorus. Protein expression of these three proteins was analyzed before and after exposure to these two pesticides by Western Blot. The expression of Syntaxin-1, Syntaxin-4 and SNAP-23 proteins in B. calyciflorussignificantly decreases with increasing concentration of either pesticides. This suggests that organophosphates and carbamates have adverse effects on expression of membrane proteins of exocytosis by altering the recognition, docking and fusion of presynaptic and vesicular membranes involved in exocytosis of neurotransmitters. Our results demonstrate that the neurotoxic effect of anticholinesterase pesticides influences the interaction of syntaxins and SNAP-25 and the proper assembly of the SNARE complex.

  11. Determination of residual carbamate, organophosphate, and phenyl urea pesticides in drinking and surface water by high-performance liquid chromatography/tandem mass spectrometry.

    PubMed

    Hao, Chunyan; Nguyen, Bick; Zhiao, Xiaoming; Chen, Ernie; Yang, Paul

    2010-01-01

    Methods using SPE followed by HPLC/MS/MS analysis were developed and validated for the determination of 39 pesticides in different aquatic environmental matrixes. The target pesticides included 12 carbamates, 15 organophosphates, and 12 phenyl ureas, out of which 16 are regulated in North America. Method detection limits were in the low ng/L range using the U.S. Environmental Protection Agency's protocol and multiple reaction monitoring (MRM) data acquisition, meeting the regulatory needs in the United States, Canada, and European Union. Isotope-labeled compounds were used as injection internal standards, as well as method surrogates to improve the data quality. QC/QA data (e.g., method recovery and within-run and between-run method precision) derived from multiyear monitoring activities were used to demonstrate method ruggedness. The same QC/QA data also showed that the method exerted no obvious matrix effect on the target analytes. Parameters that affect method performance, such as preservatives, pH values, sample storage time, and sample extract storage time, were also studied in detail. Accredited by the Canadian Association for Laboratory Accreditation and licensed by the Ontario government for drinking water analysis, these methods have been applied to the analysis of drinking water, ground water, and surface water samples collected in the province of Ontario, Canada, to ensure the pristine nature of Ontario's aquatic environment. Using the scheduled MRM (sMRM) data acquisition algorithm, it was demonstrated that sMRM improved the S/N of extracted ion chromatograms by at least two- to six-fold and, therefore, enhanced the short- and long-term instrument precision, demonstrated the ability to offer high throughput multiresidue analysis, and allowed the use of two MRM transitions for each compound to achieve higher confidence for compound identification.

  12. Toxic effects of pesticide mixtures at a molecular level: their relevance to human health.

    PubMed

    Hernández, Antonio F; Parrón, Tesifón; Tsatsakis, Aristidis M; Requena, Mar; Alarcón, Raquel; López-Guarnido, Olga

    2013-05-10

    Pesticides almost always occur in mixtures with other ones. The toxicological effects of low-dose pesticide mixtures on the human health are largely unknown, although there are growing concerns about their safety. The combined toxicological effects of two or more components of a pesticide mixture can take one of three forms: independent, dose addition or interaction. Not all mixtures of pesticides with similar chemical structures produce additive effects; thus, if they act on multiple sites their mixtures may produce different toxic effects. The additive approach also fails when evaluating mixtures that involve a secondary chemical that changes the toxicokinetics of the pesticide as a result of its increased activation or decreased detoxification, which is followed by an enhanced or reduced toxicity, respectively. This review addresses a number of toxicological interactions of pesticide mixtures at a molecular level. Examples of such interactions include the postulated mechanisms for the potentiation of pyrethroid, carbaryl and triazine herbicides toxicity by organophosphates; how the toxicity of some organophosphates can be potentiated by other organophosphates or by previous exposure to organochlorines; the synergism between pyrethroid and carbamate compounds and the antagonism between triazine herbicides and prochloraz. Particular interactions are also addressed, such as those of pesticides acting as endocrine disruptors, the cumulative toxicity of organophosphates and organochlorines resulting in estrogenic effects and the promotion of organophosphate-induced delayed polyneuropathy.

  13. Subacute developmental exposure of zebrafish to the organophosphate pesticide metabolite, chlorpyrifos-oxon, results in defects in Rohon-Beard sensory neuron development

    PubMed Central

    Jacobson, Saskia M.; Birkholz, Denise A.; McNamara, Marcy L.; Bharate, Sandip B.; George, Kathleen M.

    2010-01-01

    Organophosphate pesticides (OPs) are environmental toxicants known to inhibit the catalytic activity of acetylcholinesterase (AChE) resulting in hypercholinergic toxicity symptoms. In developing embryos, OPs have been hypothesized to affect both cholinergic and non-cholinergic pathways. In order to understand the neurological pathways affected by OP exposure during embryogenesis, we developed a subacute model of OP developmental exposure in zebrafish by exposing embryos to a dose of the OP metabolite chlorpyrifos oxon (CPO) that is non-lethal and significantly inhibited AChE enzymatic activity compared to control embryos (43% at 1 day post-fertilization (dpf) and 11% at 2 dpf). Phenotypic analysis of CPO-exposed embryos demonstrated that embryonic growth, as analyzed by gross morphology, was normal in 85% of treated embryos. Muscle fiber formation was similar to control embryos as analyzed by birefringence, and nicotinic acetylcholine receptor (nAChR) cluster formation was quantitatively similar to control embryos as analyzed by α-bungarotoxin staining. These results indicate that partial AChE activity during the early days of zebrafish development is sufficient for general development, muscle fiber, and nAChR development. Rohon-Beard (RB) sensory neurons exhibited aberrant peripheral axon extension and gene expression profiling suggests that several genes responsible for RB neurogenesis are down-regulated. Stability of CPO in egg water at 28.5 °C was determined by HPLC-UV-MS analysis which revealed that the CPO concentration used in our studies hydrolyzes in egg water with a half-life of one day. The result that developmental CPO exposure affected RB neurogenesis without affecting muscle fiber or nAChR cluster formation demonstrates that zebrafish are a strong model system for characterizing subtle neurological pathologies resulting from environmental toxicants. PMID:20701988

  14. EPA Awards $500,000 to Help Reduce Childrens Exposure to Pesticides

    EPA Pesticide Factsheets

    WASHINGTON-- U.S. Environmental Protection Agency (EPA) announced two grants to help reduce students', teachers' and staffs' exposure to pests and pesticides in our nation's schools, while saving money, energy and pesticide treatment costs.

  15. EPA Awards $500,000 to Help Reduce Childrens Exposure to Pesticides

    EPA Pesticide Factsheets

    (03/17/2016 - ATLANTA)-- U.S. Environmental Protection Agency (EPA) announced two grants to help reduce students', teachers' and staffs' exposure to pests and pesticides in our nation's schools, while saving money, energy and pesticide treatment cost

  16. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory : determination of organophosphate pesticides in whole water by continuous liquid-liquid extraction and capillary-column gas chromatography with flame photometric detection

    USGS Publications Warehouse

    Jha, Virendra K.; Wydoski, Duane S.

    2003-01-01

    A method for the isolation of 20 parent organophosphate pesticides and 5 organophosphate pesticide degradates from natural-water samples is described. Compounds are extracted from water samples with methylene chloride using a continuous liquid-liquid extractor for 6 hours. The solvent is evaporated using heat and a flow of nitrogen to a volume of 1 milliliter and solvent exchanged to ethyl acetate. Extracted compounds are determined by capillary-column gas chromatography with flame photometric detection. Single-operator derived method detection limits in three water-matrix samples ranged from 0.003 to 0.009 microgram per liter. Method performance was validated by spiking all compounds in three different matrices at three different concentrations. Eight replicates were analyzed at each concentration in each matrix. Mean recoveries of most method compounds spiked in surface-water samples ranged from 54 to 137 percent and those in ground-water samples ranged from 40 to 109 percent for all pesticides. Recoveries in reagent-water samples ranged from 42 to 104 percent for all pesticides. The only exception was O-ethyl-O-methyl-S-propylphosphorothioate, which had variable recovery in all three matrices ranging from 27 to 79 percent. As a result, the detected concentration of O-ethyl-O-methyl-S-propylphosphorothioate in samples is reported in this method with an estimated remark code. Based on the performance issue, two more compounds, disulfoton and ethion monoxon, also will be reported in this method with an estimated remark code. Estimated-value compounds, which are ?E-coded? in the data base, do not meet the performance criteria for unqualified quantification, but are retained in the method because the compounds are important owing to high use or potential environmental effects and because analytical performance has been consistent and reproducible.

  17. Effect of vitamins A, E and C on liver enzyme activity in rats exposed to organophosphate pesticide diazinon.

    PubMed

    Shokrzadeh, Mohammad; Shobi, Sepideh; Attar, Hossein; Shayegan, Sahel; Payam, Sakineh Sadat Hosseini; Ghorbani, Faezeh

    2012-10-01

    Diazinon, a commonly used organophosphorus pesticide, has been widely used throughout the world in agriculture and horticulture to control insects that feed on crops, ornamentals, lawns, fruits, vegetables and other food products. The toxicity of the DZN causes adverse effects on many organs. The purpose of this study was to examine the protective effect of vitamins A, E and C on liver enzymes alanine transaminase (ALT), Aspartate aminotransferase (AST) and Lactate Dehydrogenase (LDH) in rats exposed to diazinon. In this study, male wistar rats were randomly divided into 10 different groups. The groups were administered normal saline, soybean oil (as the solvent for diazinon and fat-soluble vitamins), diazinon, (30 mg kg(-1), vitamins E, C and A (100, 500 mg kg(-1) and 400 IU kg(-1), respectively) and a combination of diazinon with the same dose of each vitamin intraperitoneally i.p.daily for 14 days. Seven days after the final injection, the animals were anesthetized and blood samples were taken. The photometric method was used to measure the activity of the enzymes. The activities of ALT and AST in the diazinon group were significantly higher than that observed in the control group; however, the diazinon/vitamin E, A, C group displayed significant reduction in ALT and AST activities compared to the diazinon group. The lowest level of LDH enzyme activity was observed in the dazinon/vitamin C group and this was statistically lower than the diazinon group. The results of this study revealed that vitamin E, A and C have a potent protective effect against diazinon-induced hepatotoxicity in rats, which may be due to the scavenging of free radicals and increased antioxidant status.

  18. Case report: an unusual heart rhythm associated with organophosphate poisoning.

    PubMed

    Gul, Enes Elvin; Can, Ilknur; Kusumoto, Fred M

    2012-09-01

    Organophosphate pesticides have emerged as a common cause of poisoning, particularly in developing countries. The most common electrocardiographic abnormalities observed in organophosphate poisoning are sinus tachycardia, QT interval prolongation, and, very rarely, ventricular arrhythmias. We report a case of organophosphate poisoning associated with atrial fibrillation, right bundle branch block, QT interval prolongation, and intermittent narrow QRS complexes that were most likely due to automaticity from the region of the left posterior fascicle.

  19. New EPA Guidance for Testing Pesticides Will Reduce Animal Testing

    EPA Pesticide Factsheets

    EPA is issuing guidance for requesting waivers of acute dermal toxicity testing requirements for pesticide formulations, which will lead to fewer animal tests for acute dermal toxicity for pesticides.

  20. Pesticides

    MedlinePlus

    ... and pets. Proper disposal of pesticides is also important - it can help protect the environment. Biologically-based pesticides are becoming more popular. They often are safer than traditional pesticides. Environmental Protection Agency

  1. Pesticides.

    ERIC Educational Resources Information Center

    Sherma, Joseph

    1989-01-01

    This review is devoted to methods for the determination of residues of pesticides and some related industrial chemicals. Topics include: residue methods, sampling, chromatography, organochlorine pesticides, organophosphorus pesticides, carbamate insecticides, herbicides, fungicides, pyrethrins, fumigants, and related chemicals. (MVL)

  2. ANDROGEN RECEPTOR ANTAGONISM BY THE ORGANOPHOSPHATE INSECTICIDE FENITROTHION

    EPA Science Inventory

    Androgen receptor antagonism by the organophosphate insecticide fenitrothion. Tamura, H., Maness, S.C., Reischmann, K. Dorman, D.C., Gray, L.E., and Gaido, K.W. (2000). Toxicol. Sci.

    Organophosphate insecticides represent one of the most widely used classes of pesticide...

  3. Genetic factors potentially reducing fitness cost of organophosphate-insensitive acetylcholinesterase(s) in Rhipicephalus (Boophilus) microplus (Acari: Ixodidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acaricidal activity of organophosphate (OP) and carbamate acaricides is believed to result from inhibition of acetylcholinesterase (AChE). Previous studies in Rhipicephalus (Boophilus) microplus demonstrated the presence of three presumptive AChE genes (BmAChEs). Biochemical characterization of re...

  4. Organophosphate and carbamate poisoning.

    PubMed

    King, Andrew M; Aaron, Cynthia K

    2015-02-01

    Organophosphates (OPs) and carbamates have a wide variety of applications, most commonly as pesticides used to eradicate agricultural pests or control populations of disease-carrying vectors. Some OP and carbamates have therapeutic indications such as physostigmine. Certain organophosphorus compounds, known as nerve agents, have been employed in chemical warfare and terrorism incidents. Both classes inhibit acetylcholinesterase (AChE) enzymes, leading to excess acetylcholine accumulation at nerve terminals. In the setting of toxicity from either agent class, clinical syndromes result from excessive nicotinic and muscarinic neurostimulation. The toxic effects from OPs and carbamates differ with respect to reversibility, subacute, and chronic effects. Decontamination, meticulous supportive care, aggressive antimuscarinic therapy, seizure control, and administration of oximes are cornerstones of management.

  5. Groups of Pesticides in Registration Review

    EPA Pesticide Factsheets

    Review cases are in groups of related pesticides: organophosphates, N-methyl carbamates, pyrethroids pyrethrins and synergists, sulfonylureas, neonicotinoids, fumigants, triazines, imidazolinones, isothiazolinones, and pyridines.

  6. Exposure to an organophosphate pesticide, individually or in combination with other Gulf War agents, impairs synaptic integrity and neuronal differentiation, and is accompanied by subtle microvascular injury in a mouse model of Gulf War agent exposure.

    PubMed

    Ojo, Joseph O; Abdullah, Laila; Evans, James; Reed, Jon Mike; Montague, Hannah; Mullan, Michael J; Crawford, Fiona C

    2014-04-01

    Gulf War illness (GWI) is a currently untreatable multi-symptom disorder experienced by 1990-1991 Persian Gulf War (GW) veterans. The characteristic hallmarks of GWI include cognitive dysfunction, tremors, migraine, and psychological disturbances such as depression and anxiety. Meta-analyses of epidemiological studies have consistently linked these symptomatic profiles to the combined exposure of GW agents such as organophosphate-based and pyrethroid-based pesticides (e.g. chlorpyrifos (CPF) and permethrin (PER) respectively) and the prophylactic use of pyridostigmine bromide (PB) as a treatment against neurotoxins. Due to the multi-symptomatic presentation of this illness and the lack of available autopsy tissue from GWI patients, very little is currently known about the distinct early pathological profile implicated in GWI (including its influence on synaptic function and aspects of neurogenesis). In this study, we used preclinical models of GW agent exposure to investigate whether 6-month-old mice exposed to CPF alone, or a combined dose of CPF, PB and PER daily for 10 days, demonstrate any notable pathological changes in hippocampal, cortical (motor, piriform) or amygdalar morphometry. We report that at an acute post-exposure time point (after 3 days), both exposures resulted in the impairment of synaptic integrity (reducing synaptophysin levels) in the CA3 hippocampal region and altered neuronal differentiation in the dentate gyrus (DG), demonstrated by a significant reduction in doublecortin positive cells. Both exposures also significantly increased astrocytic GFAP immunoreactivity in the piriform cortex, motor cortex and the basolateral amygdala and this was accompanied by an increase in (basal) brain acetylcholine (ACh) levels. There was no evidence of microglial activation or structural deterioration of principal neurons in these regions following exposure to CPF alone or in combination with PB and PER. Evidence of subtle microvascular injury was

  7. Pesticides

    MedlinePlus

    ... herbicides for destroying weeds and other unwanted vegetation, insecticides for controlling a wide variety of insects, fungicides ... Is It Safe? Movie (English & Spanish Versions) Some Natural Pesticide Alternatives (English) (114KB) Some Natural Pesticide Alternatives ( ...

  8. Reducing pesticide use while preserving crop productivity and profitability on arable farms.

    PubMed

    Lechenet, Martin; Dessaint, Fabrice; Py, Guillaume; Makowski, David; Munier-Jolain, Nicolas

    2017-03-01

    Achieving sustainable crop production while feeding an increasing world population is one of the most ambitious challenges of this century(1). Meeting this challenge will necessarily imply a drastic reduction of adverse environmental effects arising from agricultural activities(2). The reduction of pesticide use is one of the critical drivers to preserve the environment and human health. Pesticide use could be reduced through the adoption of new production strategies(3-5); however, whether substantial reductions of pesticide use are possible without impacting crop productivity and profitability is debatable(6-17). Here, we demonstrated that low pesticide use rarely decreases productivity and profitability in arable farms. We analysed the potential conflicts between pesticide use and productivity or profitability with data from 946 non-organic arable commercial farms showing contrasting levels of pesticide use and covering a wide range of production situations in France. We failed to detect any conflict between low pesticide use and both high productivity and high profitability in 77% of the farms. We estimated that total pesticide use could be reduced by 42% without any negative effects on both productivity and profitability in 59% of farms from our national network. This corresponded to an average reduction of 37, 47 and 60% of herbicide, fungicide and insecticide use, respectively. The potential for reducing pesticide use appeared higher in farms with currently high pesticide use than in farms with low pesticide use. Our results demonstrate that pesticide reduction is already accessible to farmers in most production situations. This would imply profound changes in market organization and trade balance.

  9. Mania following organophosphate poisoning.

    PubMed

    Mohapatra, Satyakam; Rath, Neelmadhav

    2014-11-01

    Organophosphate poisoning is the most common poisoning in developing countries. Although the acute muscarinic and nicotinic side-effects of organophosphate poisoning are well known and easily recognized, but neuropsychiatric changes are rarely reported. We are reporting a case of a 33-year-old female who developed manic episode following acute organophosphate poisoning.

  10. Relationship of carcinogenicity and cellular proliferation induced by mutagenic noncarcinogens vs carcinogens. III. Organophosphate pesticides vs tris(2,3-dibromopropyl)phosphate.

    PubMed

    Cunningham, M L; Elwell, M R; Matthews, H B

    1994-10-01

    Our laboratory has been examining the mechanisms whereby chemicals produce mutagenicity in short-term in vitro assays yet fail to produce carcinogenesis in 2-year rodent bioassays. Previous studies indicated that some mutagenic hepatocarcinogens increased cell proliferation in the target organ, the liver, while other structurally related mutagens that were noncarcinogenic failed to do so. We demonstrate in this report that another mutagenic carcinogen, tris(2,3-dibromopropyl phosphate), increased cell proliferation that was localized in the outer medulla of the kidney. This was also the target site for carcinogenesis in a 2-year bioassay and is another example of the association between chemically induced cell proliferation and carcinogenesis. This study also reports the absence of increased cell proliferation in the liver or kidney after exposure in the diet to the mutagenic organophosphate insecticides dimethoate, dioxathion, and dichlorvos following dietary exposure for 2 weeks at the same dose levels and routes of exposure that did not increase the tumor incidence in either organ in 2-year carcinogenesis assays. The present studies support the tenet that chemically induced cell proliferation may be a necessary prerequisite for chemical carcinogenesis, since in rat liver and kidney there was neither cell proliferation after 2 weeks nor tumor development after 2 years dietary exposure to the mutagenic organophosphate insecticides dimethoate, dioxathion, and dichlorvos.

  11. Evaluation of core cultivation practices to reduce ecological risk of pesticides in runoff from Agrostis palustris.

    PubMed

    Rice, Pamela J; Horgan, Brian P; Rittenhouse, Jennifer L

    2010-06-01

    Pesticides associated with the turfgrass industry have been detected in storm runoff and surface waters of urban watersheds, invoking concern of their potential environmental effects and a desire to reduce their transport to nontarget locations. Quantities of chlorpyrifos, dicamba, dimethylamine salt of 2,4-dichlorophenoxyacetic acid (2,4-D), flutolanil, and mecoprop-p (MCPP) transported in runoff from bentgrass (Agrostis palustris) fairway turf managed with solid tine (ST) or hollow tine (HT) core cultivation were compared to determine which cultivation practice is more efficient at mitigating environmental risk. Plots receiving HT core cultivation showed a 10 and 55% reduction in runoff volume and a 15 to 57% reduction in pesticide transport with runoff at 63 d and 2 d following core cultivation. Estimated environmental concentrations of the pesticides in a surface water receiving runoff from turf managed with ST core cultivation exceeded the median lethal concentration (LC50) or median effective concentration (EC50) of nine aquatic organisms evaluated. Replacing ST core cultivation with HT core cultivation reduced surface water concentrations of the pesticides to levels below the LC50 and EC50 for most these aquatic organisms, lessening risk associated with pesticides in runoff from the fairway turf. Results of the present research provide quantitative information that will allow for informed decisions on cultural practices that can maximize pesticide retention at the site of application, improving pest control in turf while minimizing environmental contamination and adverse effects associated with the off-site transport of pesticides.

  12. Biosensor System for Continuous Monitoring of Organophosphate Aerosols (Postprint)

    DTIC Science & Technology

    2007-05-01

    detection of a range of organophosphates including paraoxon, demeton-S and malathion . 15. SUBJECT TERMS enzyme immobilization; butyrylcholinesterase...for detection of a range of organophosphates including paraoxon, demeton-S and malathion . 2007 Elsevier B.V. All rights reserved. ydrol c s i e c r s...OPH ydrolyzes a range of OPs including pesticides (e.g. parathion nd malathion ) and chemical warfare agents (e.g. soman, sarin nd VX) (Dumas et al

  13. Biosensor for Continuous Monitoring of Organophosphate Aerosols (Preprint)

    DTIC Science & Technology

    2006-12-01

    of a range of organophosphates inclnding paraoxon, demeton-S and malathion . The detection limits ofthe Ev1ERs for specific organophosphates are...pesticides such as parathion and malathion and chemical warfare agents such as soman, sarin and VX (Dumas et al., 1989; Di Sioudi et cl.. 1Q99...continuously at 412 run for malathion and demeton-S and 400 11m for paraoxon. Ellman’s reagent within the mobile phase reacts with free thiols generated

  14. Role of paraoxonase 1 (PON1) in organophosphate metabolism: Implications in neurodegenerative diseases

    SciTech Connect

    Androutsopoulos, Vasilis P.; Kanavouras, Konstantinos; Tsatsakis, Aristidis M.

    2011-11-15

    Organophosphate pesticides are a class of compounds that are widely used in agricultural and rural areas. Paraoxonase 1 (PON1) is a phase-I enzyme that is involved in the hydrolysis of organophosphate esters. Environmental poisoning by organophosphate compounds has been the main driving force of previous research on PON1 enzymes. Recent discoveries in animal models have revealed the important role of the enzyme in lipid metabolism. However although PON1 function is well established in experimental models, the contribution of PON1 in neurodegenerative diseases remains unclear. In this minireview we summarize the involvement of PON1 genotypes in the occurrence of Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis. A brief overview of latest epidemiological studies, regarding the two most important PON1 coding region polymorphisms PON1-L55M and PON1-Q192R is presented. Positive and negative associations of PON1 with disease occurrence are reported. Notably the MM and RR alleles contribute a risk enhancing effect for the development of some neurodegenerative diseases, which may be explained by the reduced lipoprotein free radical scavenging activity that may give rise to neuronal damage, through distinct mechanism. Conflicting findings that fail to support this postulate may represent the human population ethnic heterogeneity, different sample size and environmental parameters affecting PON1 status. We conclude that further epidemiological studies are required in order to address the exact contribution of PON1 genome in combination with organophosphate exposure in populations with neurodegenerative diseases.

  15. Role of paraoxonase 1 (PON1) in organophosphate metabolism: implications in neurodegenerative diseases.

    PubMed

    Androutsopoulos, Vasilis P; Kanavouras, Konstantinos; Tsatsakis, Aristidis M

    2011-11-01

    Organophosphate pesticides are a class of compounds that are widely used in agricultural and rural areas. Paraoxonase 1 (PON1) is a phase-I enzyme that is involved in the hydrolysis of organophosphate esters. Environmental poisoning by organophosphate compounds has been the main driving force of previous research on PON1 enzymes. Recent discoveries in animal models have revealed the important role of the enzyme in lipid metabolism. However although PON1 function is well established in experimental models, the contribution of PON1 in neurodegenerative diseases remains unclear. In this minireview we summarize the involvement of PON1 genotypes in the occurrence of Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis. A brief overview of latest epidemiological studies, regarding the two most important PON1 coding region polymorphisms PON1-L55M and PON1-Q192R is presented. Positive and negative associations of PON1 with disease occurrence are reported. Notably the MM and RR alleles contribute a risk enhancing effect for the development of some neurodegenerative diseases, which may be explained by the reduced lipoprotein free radical scavenging activity that may give rise to neuronal damage, through distinct mechanism. Conflicting findings that fail to support this postulate may represent the human population ethnic heterogeneity, different sample size and environmental parameters affecting PON1 status. We conclude that further epidemiological studies are required in order to address the exact contribution of PON1 genome in combination with organophosphate exposure in populations with neurodegenerative diseases.

  16. Effect of hypochlorite oxidation on cholinesterase-inhibition assay of acetonitrile extracts from fruits and vegetables for monitoring traces of organophosphate pesticides.

    PubMed

    Kitamura, Kentaro; Maruyama, Kaori; Hamano, Sachiko; Kishi, Tomohiro; Kawakami, Tsuyoshi; Takahashi, Yasuo; Onodera, Sukeo

    2014-02-01

    A reproducible method for monitoring traces of cholinesterase (ChE) inhibitors in acetonitrile extracts from fruits and vegetables is described. The method is based on hypochlorite oxidation and ChE inhibition assay. Four common representative samples of produce were selected from a supermarket to investigate the effect of different matrices on pesticides recoveries and assay precision. The samples were extracted with acetonitrile to prepare them for ChE inhibition assays: if necessary, clean-up was performed using dispersive solid-phase extraction for gas chromatography-mass spectrometry (GC/MS) analyses. Chlorine was tested as an oxidising reagent for the conversion of thiophosphorus pesticides (P=S compounds) into their P=O analogues, which have high ChE-inhibiting activity. Chlorine consumption of individual acetonitrile extracts was determined and was strongly dependent on the individual types of fruits and vegetables. After treating the acetonitrile extracts with an excess hypochlorite at 25°C for 15 min, the ChE-inhibiting activities and detection limits for each chlorine-treated pesticide solution were determined. Matrix composition did not interfere significantly with the determination of the pesticides. Enhanced anti-ChE activities leading to low detection limits (ppb levels) were observed for the chlorine-treated extracts that were spiked with chlorpyrifos, diazinon, fenitrothion, and isoxathion. This combination of oxidative derivatisation and ChE inhibition assays was used successfully to monitor and perform semi-quantitative determination of ChE inhibitors in apple, tomato, cucumber, and strawberry samples.

  17. Pesticide use, exposure, and risk: A joint Israeli-Palestinian perspective.

    PubMed

    Richter, E D; Safi, J

    1997-01-01

    The major predictors of health risk from pesticide exposure are quantity and toxicity of pesticides reaching end-users, field workers, and persons (including children) with casual and indirect exposures to field and food residues, drift, and contaminated groundwater. Past work in Israel and the Palestinian National Authority has documented risks for acute poisoning, daily illness, transient neurotoxic effects, and potential cancer hazards in workers, populations exposed to pesticide drift, and the general population. Risk assessment predicts that reduction in use of agents with high toxicity and pesticide substitution are desired strategies for achieving the largest reductions in risk, but successful implementation and program sustainability depend on maintaining crop yield and increasing farmer earnings. A joint pilot Israeli-Palestinian-NGO program aims to determine whether crop yields and profits can be sustained while reducing pesticide use, promoting integrated pest management, and restricting ecosystem damage. The project involves six components: (1) assessments of health risk and crop yield in relation to pesticide use and exposure; (2) training health-agricultural teams to introduce and evaluate crop growth and managements with reduced pesticide use; (3) tracing and stopping import and trade in banned or restricted pesticides; (4) restricting child labor; (5) promoting information delivery and worker and community right-to-know and right-to-act; and (6) establishing a uniform regional standard for protection of workers and the general public. Preliminary evidence (organochlorines and breast cancer, organophosphates and illness in field workers) indicates that (1) a reduction of use is the foremost determinant of a reduction in health risk; (2) cotton yield can be increased despite a reduction in pesticide use (organophosphates); and (3) a reduction in pesticide use (organophosphates and organochlorines) has to be part of a crop rotation program for food

  18. Evaluation of vegetable production management practices to reduce the ecological risk of pesticides.

    PubMed

    Rice, Pamela J; Hapeman, Cathleen J; McConnell, Laura L; Sadeghi, Ali M; Teasdale, John R; Coffman, C Benjamin; McCarty, Gregory W; Abdul-Baki, Aref A; Starr, James L

    2007-11-01

    The ability of agricultural management practices to reduce the ecological risks of pesticides was evaluated. Risk quotients, a mathematical description of the relationship between exposure and toxicity, and hazard ratings, a rank of the potential risk of pesticides to aquatic environments, were calculated for conventional and alternative cultivation practices for tomatoes: Poly-Bare, raised beds covered with polyethylene mulch with bare-soil furrows; Poly-Rye, raised beds covered with polyethylene mulch with cereal rye (Secale cereale) grown in the furrows; and Vetch, raised beds and furrows planted with hairy vetch seed (Vicia villosa). Evaluations were conducted using measured pesticide concentrations in runoff at the edge-of-field and estimated environmental concentrations in an adjacent creek and a theoretical pond receiving the runoff. Runoff from Poly-Bare presented the greatest risk to ecosystem health and to sensitive organisms, whereas the use of Vetch minimized these risks. Previous studies have shown that harvest yields were maintained and that runoff volume, soil loss, and off-site transport of pesticides measured in runoff were reduced using the alternative management practices (Poly-Rye and Vetch). Together, these results indicate that the alternative management practices (Poly-Rye and Vetch) have a less adverse impact on the environment than the conventional management practice (Poly-Bare) while providing growers with an acceptable economic return. In addition, the present study demonstrates the need to consider the management practice when assessing the potential risks and hazards for certain pesticides.

  19. Organophosphate-induced delayed polyneuropathy.

    PubMed

    Lotti, Marcello; Moretto, Angelo

    2005-01-01

    Organophosphate-induced delayed polyneuropathy (OPIDP) is a rare toxicity resulting from exposure to certain organophosphorus (OP) esters. It is characterised by distal degeneration of some axons of both the peripheral and central nervous systems occurring 1-4 weeks after single or short-term exposures. Cramping muscle pain in the lower limbs, distal numbness and paraesthesiae occur, followed by progressive weakness, depression of deep tendon reflexes in the lower limbs and, in severe cases, in the upper limbs. Signs include high-stepping gait associated with bilateral foot drop and, in severe cases, quadriplegia with foot and wrist drop as well as pyramidal signs. In time, there might be significant recovery of the peripheral nerve function but, depending on the degree of pyramidal involvement, spastic ataxia may be a permanent outcome of severe OPIDP. Human and experimental data indicate that recovery is usually complete in the young. At onset, the electrophysiological changes include reduced amplitude of the compound muscle potential, increased distal latencies and normal or slightly reduced nerve conduction velocities. The progression of the disease, usually over a few days, may lead to non-excitability of the nerve with electromyographical signs of denervation. Nerve biopsies have been performed in a few cases and showed axonal degeneration with secondary demyelination. Neuropathy target esterase (NTE) is thought to be the target of OPIDP initiation. The ratio of inhibitory powers for acetylcholinesterase and NTE represents the crucial guideline for the aetiological attribution of OP-induced peripheral neuropathy. In fact, pre-marketing toxicity testing in animals selects OP insecticides with cholinergic toxicity potential much higher than that to result in OPIDP. Therefore, OPIDP may develop only after very large exposures to insecticides, causing severe cholinergic toxicity. However, this was not the case with certain triaryl phosphates that were not used as

  20. Evaluation of core cultivation practices to reduce ecological risk of pesticides in runoff from turf

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pesticides associated with the turfgrass industry have been detected in storm runoff and surface waters of urban watersheds; raising concern of their potential environmental effects and a desire to reduce their transport to non-target locations. Runoff studies were conducted to compare the effective...

  1. Perspectives of Mothers in Farmworker Households on Reducing the Take-Home Pathway of Pesticide Exposure

    ERIC Educational Resources Information Center

    Strong, Larkin L.; Starks, Helene E.; Meischke, Hendrika; Thompson, Beti

    2009-01-01

    Farmworkers carry pesticide residue home on their clothing, boots, and skin, placing other household members at risk, particularly children. Specific precautions are recommended to reduce this take-home pathway, yet few studies have examined the perspectives of farmworkers and other household members regarding these behaviors and the reasons for…

  2. Evaluation of Core Cultivation Practices to Reduce Ecological Risk of Pesticides in Runoff from Agrostis palustris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pesticides associated with the turfgrass industry have been detected in storm runoff and surface waters of urban watersheds; invoking concern of their potential environmental effects and a desire to reduce their transport to non-target locations. Quantities of chlorpyrifos, dicamba, dimethylamine s...

  3. Photoprotection by plant extracts: a new ecological means to reduce pesticide photodegradation.

    PubMed

    Eyheraguibel, Boris; Richard, Claire; Ledoigt, Gérard; Ter Halle, Alexandra

    2010-09-08

    A pesticide's reactivity toward light at the leaf surface after crop treatment is rarely considered, although such degradation reactions directly affect the pesticide's effectiveness. To overcome these limitations, the use of plant pigments was proposed as a new class of photoprotecting agent. The photoprotecting properties of seven plant pigments were tested under controlled conditions over herbicide sulcotrione. Grape wine extracts were tested over a panel of pesticides from distinct chemical families. The addition of plant extracts almost systematically reduced the pesticide's photoreactivity. The grape wine extracts improve at least by 38% the half-life of photolysis of almost all of the active ingredients tested, except for the herbicide triclopyr. Fustictree extract increases by 82% the photostability of the herbicide sulcotrione. Plant extracts mainly act as sunscreens; that is, the photostabilization of the active ingredient is due to the competitive energy absorption of UV photon. The use of natural plant extracts is a promising strategy to limit pesticide photodegradation. It is a way to develop sustainable and innovative technology for the plant protection industry, being beneficial from both economic and ecological points of view.

  4. Acute pesticide poisoning and pesticide registration in Central America

    SciTech Connect

    Wesseling, Catharina . E-mail: cwesseli@una.ac.cr; Corriols, Marianela; Bravo, Viria

    2005-09-01

    The International Code of Conduct on the Distribution and Use of Pesticides of the Food and Agriculture Organization (FAO) of the United Nations has been for 20 years the most acknowledged international initiative for reducing negative impact from pesticide use in developing countries. We analyzed pesticide use and poisoning in Central America, particularly in Costa Rica and Nicaragua, and evaluated whether registration decisions are based on such data, in accordance with the FAO Code. Extensive use of very hazardous pesticides continues in Central America and so do poisonings with organophosphates, carbamates, endosulfan and paraquat as the main causative agents. Central American governments do not carry out or commission scientific risk assessments. Instead, guidelines from international agencies are followed for risk management through the registration process. Documentation of pesticide poisonings during several decades never induced any decision to ban or restrict a pesticide. However, based on the official surveillance systems, in 2000, the ministers of health of the seven Central American countries agreed to ban or restrict twelve of these pesticides. Now, almost 4 years later, restrictions have been implemented in El Salvador and in Nicaragua public debate is ongoing. Chemical and agricultural industries do not withdraw problematic pesticides voluntarily. In conclusion, the registration processes in Central America do not comply satisfactorily with the FAO Code. However, international regulatory guidelines are important in developing countries, and international agencies should strongly extend its scope and influence, limiting industry involvement. Profound changes in international and national agricultural policies, steering towards sustainable agriculture based on non-chemical pest management, are the only way to reduce poisonings.

  5. A public health initiative for reducing access to pesticides as a means to committing suicide: findings from a qualitative study.

    PubMed

    Mohanraj, Rani; Kumar, Shuba; Manikandan, Sarojini; Kannaiyan, Veerapandian; Vijayakumar, Lakshmi

    2014-08-01

    Widespread use of pesticides among farmers in rural India, provides an easy means for suicide. A public health initiative involving storage of pesticides in a central storage facility could be a possible strategy for reducing mortality and morbidity related to pesticide poisoning. This qualitative study explored community perceptions towards a central pesticide storage facility in villages in rural South India. Sixteen focus group discussions held with consenting adults from intervention and control villages were followed by eight more a year after initiation of the storage facility. Analysis revealed four themes, namely, reasons for committing suicide and methods used, exposure to pesticides and first-aid practices, storage and disposal of pesticides, and perceptions towards the storage facility. The facility was appreciated as a means of preventing suicides and for providing a safe haven for pesticide storage. The participatory process that guided its design, construction and location ensured its acceptability. Use of qualitative methods helped provide deep insights into the phenomenon of pesticide suicide and aided the understanding of community perceptions towards the storage facility. The study suggests that communal storage of pesticides could be an important step towards reducing pesticide suicides in rural areas.

  6. Role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to organophosphate pesticides

    SciTech Connect

    Singh, Satyender; Kumar, Vivek; Vashisht, Kapil; Singh, Priyanka; Banerjee, Basu Dev; Rautela, Rajender Singh; Grover, Shyam Sunder; Rawat, Devendra Singh; Pasha, Syed Tazeen; Jain, Sudhir Kumar; Rai, Arvind

    2011-11-15

    Organophosphate pesticides (OPs) are primarily metabolized by several xenobiotic metabolizing enzymes (XMEs). Very few studies have explored genetic polymorphisms of XMEs and their association with DNA damage in pesticide-exposed workers. The present study was designed to determine the role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to OPs. We examined 284 subjects including 150 workers occupationally exposed to OPs and 134 normal healthy controls. The DNA damage was evaluated using the alkaline comet assay and genotyping was done using PCR-RFLP. The results revealed that the PONase activity toward paraoxonase and AChE activity was found significantly lowered in workers as compared to control subjects (p < 0.001). Workers showed significantly higher DNA damage compared to control subjects (14.37 {+-} 2.15 vs. 6.24 {+-} 1.37 tail% DNA, p < 0.001). Further, the workers with CYP2D6*3 PM and PON1 (QQ and MM) genotypes were found to have significantly higher DNA damage when compared to other genotypes (p < 0.05). In addition, significant increase in DNA damage was also observed in workers with concomitant presence of certain CYP2D6 and PON1 (Q192R and L55M) genotypes which need further extensive studies. In conclusion, the results indicate that the PON1 and CYP2D6 genotypes can modulate DNA damage elicited by some OPs possibly through gene-environment interactions. -- Highlights: Black-Right-Pointing-Pointer Role of CYP1A1, CYP3A5, CYP2C, CYP2D6 and PON1 genotypes on DNA damage. Black-Right-Pointing-Pointer Workers exposed to some OPs demonstrated increased DNA damage. Black-Right-Pointing-Pointer CYP2D6 *3 PM and PON1 (Q192R and L55M) genotypes are associated with DNA damage. Black-Right-Pointing-Pointer Concomitant presence of certain CYP2D6 and PON1 genotypes can increase DNA damage.

  7. Evaluation of individual and combined management practices to reduce the off-site transport of pesticides from golf course turf.

    PubMed

    Rice, Pamela J; Horgan, Brian P; Hamlin, Jennifer L

    2017-04-01

    The detection of pesticides, associated with turfgrass management, in storm runoff and surface waters of urban watersheds has raised concerns regarding their source, potential environmental effects and a need for strategies to reduce their inputs. In previous research we discovered that hollow tine core cultivation (HTCC) was more effective than other management practices for reducing the off-site transport of pesticides with runoff from creeping bentgrass turf managed as a golf course fairway. This was primarily the result of enhanced infiltration and reduced runoff volumes associated with turf managed with hollow tines. In this study we evaluated the addition of verticutting (VC) to HTCC (HTCC+VC) in an attempt to further enhance infiltration and mitigate the off-site transport of pesticides with runoff from managed turf. Overall, greater or equal quantities of pesticides were transported with runoff from plots managed with HTCC+VC compared to HTCC or VC alone. For the pesticides evaluated HTCCpesticides while HTCC=VC=HTCC+VC for the low mobility pesticides. It is likely the addition of VC following HTCC further increased compaction and reduced availability of recently exposed soil sorptive sites produced from the HTCC. Results of this research provides guidance to golf course managers on selection of management practices that assure quality turf while minimizing off-site transport of pesticides, improving pesticide efficacy and the environmental stewardship of managed biological systems.

  8. Impacts of pesticides in a Central California estuary.

    PubMed

    Anderson, Brian; Phillips, Bryn; Hunt, John; Siegler, Katie; Voorhees, Jennifer; Smalling, Kelly; Kuivila, Kathy; Hamilton, Mary; Ranasinghe, J Ananda; Tjeerdema, Ron

    2014-03-01

    in the estuary. This study suggests that the same pyrethroid and organophosphate pesticides that have been shown to cause water and sediment toxicity in urban and agriculture water bodies throughout California, have the potential to affect estuarine habitats. The results establish baseline data in the Santa Maria River estuary to allow evaluation of ecosystem improvement as management initiatives to reduce pesticide runoff are implemented in this watershed.

  9. Intravenous lipid emulsions combine extracorporeal blood purification: a novel therapeutic strategy for severe organophosphate poisoning.

    PubMed

    Zhou, Yaguang; Zhan, Chengye; Li, Yongsheng; Zhong, Qiang; Pan, Hao; Yang, Guangtian

    2010-02-01

    Organophosphorus (OP) pesticide self-poisoning is a major clinical problem in rural Asia and it results in the death of 200,000 people every year. At present, it is lack of effective methods to treat severe organophosphate poisoning. The high mortality rate lies on the amount of toxic absorption. Intravenous lipid emulsions can be used as an antidote in fat-soluble drug poisoning. The detoxification mechanism of intravenous lipid emulsions is "lipid sink", which lipid emulsions can dissolve the fat-soluble drugs and separate poison away from the sites of toxicity. Most of organophosphorus pesticides are highly fat-soluble. So, intravenous lipid emulsions have the potentially clinical applications in treatment of OP poisoning. Extracorporeal blood purification especially charcoal hemoperfusion is an efficient way to eliminate the poison contents from the blood. We hypothesize that the combination of intravenous lipid emulsions and charcoal hemoperfusion can be used to cure severe organophosphate poisoning. This novel protocol of therapy comprises two steps: one is obtained intravenous access to infuse lipid emulsions as soon as possible; another is that charcoal hemoperfusion will be used to clear the OP substances before the distribution of OP compounds in tissue is not complete. The advantages of this strategy lie in three points. Firstly, it will alleviate the toxic effect of OP pesticide in the patients by isolation and removal the toxic contents. Secondly, the dosage of antidotes can be reduced and its side-effects will be eased. Thirdly, a large bolus of fatty acids provide energy substrate for the patients who are nil by mouth. We consider that it would become a feasible, safe and efficient detoxification intervention in the alleviation of severe organophosphate poisoning, which would also improve the outcome of the patients.

  10. Effects of reduced-risk pesticides and plant growth regulators on rove beetle (Coleoptera: Staphylinidae) adults.

    PubMed

    Echegaray, Erik R; Cloyd, Raymond A

    2012-12-01

    In many regions, pest management of greenhouse crops relies on the use of biological control agents; however, pesticides are also widely used, especially when dealing with multiple arthropod pests and attempting to maintain high esthetic standards. As such, there is interest in using biological control agents in conjunction with chemical control. However, the prospects of combining natural enemies and pesticides are not well known in many systems. The rove beetle, Atheta coriaria (Kraatz), is a biological control agent mainly used against fungus gnats (Bradysia spp.). This study evaluated the effects of reduced-risk pesticides and plant growth regulators on A. coriaria adult survival, development, and prey consumption under laboratory conditions. Rove beetle survival was consistently higher when adults were released 24 h after rather than before applying pesticides. The pesticides acetamiprid, lambda-cyhalothrin, and cyfluthrin were harmful to rove beetle adults, whereas Beauveria bassiana (Balsamo) Vuillemin, azadirachtin, and organic oils (cinnamon oils, rosemary oil, thyme oil, and clove oil) were nontoxic to A. coriaria adults. Similarly, the plant growth regulators acymidol, paclobutrazol, and uniconazole were not harmful to rove beetle adults. In addition, B. bassiana, azadirachtin, kinoprene, organic oils, and the plant growth regulators did not negatively affect A. coriaria development. However, B. bassiana did negatively affect adult prey consumption. This study demonstrated that A. coriaria may not be used when applying the pesticides, acetamiprid, lambda-cyhalothrin, and cyfluthrin, whereas organic oils, B. bassiana, azadirachtin, and the plant growth regulators evaluated may be used in conjunction with A. coriaria adults. As such, these compounds may be used in combination with A. coriaria in greenhouse production systems.

  11. Development, validation and application of a SDME/GC-FID methodology for the multiresidue determination of organophosphate and pyrethroid pesticides in water.

    PubMed

    Pinheiro, Anselmo de Souza; de Andrade, Jailson B

    2009-10-15

    A single-drop microextraction (SDME) procedure was developed for the analysis of organophosphorus and pyrethroid pesticides in water by gas chromatography (GC) with flame ionization detection (GC-FID). The significant parameters that affect SDME performance, such as the selection of microextraction solvent, solvent volume, extraction time, and stirring rate, were studied and optimized using a tool screening factorial design. The limits of detection (LODs) in water for the four investigated compounds were between 0.3 and 3.0 microgL(-1), with relative standard deviations ranging from 7.7 to 18.8%. Linear response data were obtained in the concentration range of 0.9-6.0 microg L(-1) (lambda-cyhalothrin), 3.0-60.0 microg L(-1) (methyl parathion), 9.0-60.0 microg L(-1) (ethion), and 9.0-30.0 microg L(-1) (permethrin), with correlation coefficients ranging from 0.9337 to 0.9977. The relative recoveries for the spiked water ranged from 73.0 to 104%. Environmental water samples (n=26) were successfully analyzed using the proposed method and methyl parathion presented concentration up to 2.74 microg L(-1). The SDME method, coupled with GC-FID analysis, provided good precision, accuracy, and reproducibility over a wide linear range. Other highlights of the method include its ease of use and its requirement of only small volumes of both organic solvent and sample.

  12. A gene-environment study of the paraoxonase 1 gene and pesticides in amyotrophic lateral sclerosis.

    PubMed

    Morahan, Julia M; Yu, Bing; Trent, Ronald J; Pamphlett, Roger

    2007-05-01

    Sporadic amyotrophic lateral sclerosis (SALS) causes progressive muscle weakness because of the loss of motor neurons. SALS has been associated with exposure to environmental toxins, including pesticides and chemical warfare agents, many of which are organophosphates. The enzyme paraoxonase 1 (PON1) detoxifies organophosphates and the efficacy of this enzyme varies with polymorphisms in the PON1 gene. To determine if an impaired ability to break down organophosphates underlies some cases of SALS, we compared the frequencies of PON1 polymorphisms in SALS patients and controls and investigated gene-environment interactions with self-reported pesticide/herbicide exposure. The PON1 coding polymorphisms L55M, Q192R and I102V, and the promoter polymorphisms -909c>g, -832g>a, -162g>a and -108c>t, were genotyped in 143 SALS patients and 143 matched controls. Statistical comparisons were carried out at allele, genotype and haplotype levels. The PON1 promoter allele -108t, which reduces PON1 expression, was strongly associated with SALS. Overall, promoter haplotypes that decrease PON1 expression were associated with SALS, whereas haplotypes that increase expression were associated with controls. Coding polymorphisms did not correlate with SALS. Gene-environment interactions were identified at the allele level for some promoter SNPs and pesticide/herbicide exposure, but not at the genotype or haplotype level. In conclusion, some PON1 promoter polymorphisms may predispose to SALS, possibly by making motor neurons more susceptible to organophosphate-containing toxins.

  13. A site-specific farm-scale GIS approach for reducing groundwater contamination by pesticides

    SciTech Connect

    Mulla, D.J.; Perillo, C.A.; Cogger, C.G.

    1996-05-01

    It has been proposed to vary pesticide applications by patterns in surface organic C to reduce the potential for contamination of groundwater. To evaluate the feasibility of this {open_quotes}precision farming{close_quotes} approach, data for carbofuran concentrations from 57 locations sampled to a depth of 180 cm were fit to the convective-dispersive equation. Fitted values for pore water velocity (v) ranged from 0.17 to 1.92 cm d{sup -1}, with a mean of 0.68 cm d{sup -1}. Values for dispersion (D) ranged from 0.29 to 13.35 cm{sup 2} d{sup -1}, with a mean of 2.57. With this data, risks of pesticide leaching were estimated at each location using the attenuation factor (AF) model, and a dispersion based leached factor (LF) model. Using the AF model gave two locations with a very high pesticide leaching risk, 6 with a low risk, and 2 with no risk. Using the LF model, 6 had a high risk, 13 had a medium risk, 18 had a low risk, and 20 had no risk. Pesticide leaching risks were not correlated with any measured surface soil properties. Much of the variability in leaching risk was because of velocity variations, so it would be incorrect to assume that surface organic C content controls the leaching risk. 30 refs., 1 fig., 3 tabs.

  14. The investigation of the LED-activated FeFNS-TiO2 nanocatalyst for photocatalytic degradation and mineralization of organophosphate pesticides in water.

    PubMed

    Hossaini, Hiwa; Moussavi, Gholamreza; Farrokhi, Mehrdad

    2014-08-01

    This study evaluated the preparation and characterization of an efficient doped TiO2 as a novel catalyst for degradation of diazinon model pesticide using LED-activated photocatalysis. TiO2 was doped using N, NS, FeNS, and FeFNS. The FeFNS-doped TiO2 showed the highest catalytic activity in LED/photocatalysis. FeFNS-doped TiO2 is a mesoporous nanocrystal powder with a mean pore diameter of 10.2 nm, a specific surface area of 104.4 m(2)/g and a crystallite size of 6.7 nm. LED/photocatalysis using FeFNS-doped TiO2 improved diazinon degradation by 52.3% over that of as-made plain TiO2 at an optimum solution pH of 7. The diazinon degradation in LED/photocatalysis using FeFNS-doped TiO2 increased from 44.8% to 96.3% when the catalyst concentration increased from 25% to 300%at a reaction time of 100 min. The degradation and mineralization of diazinon during LED/photocatalysis with FeFNS-doped TiO2 catalyst followed the pseudo-first-order reaction model with the rate constants of 0.973 h(-1) and 0.541 h(-1), respectively. The FeFNS-doped TiO2 was found to be an efficient catalyst that was photoactivated using UV-LED lamps. LED/photocatalysis with FeFNS-doped TiO2 catalyst is a promising alternative to conventional UV/TiO2photocatalysis for producing free OH radicals for use in the degradation and mineralization of water toxic contaminants.

  15. Source reduction in Florida's salt marshes: management to reduce pesticide use and enhance the resource.

    PubMed

    Carlson, Douglas B

    2006-09-01

    Source reduction as part of an integrated pest management program is a cornerstone of the American Mosquito Control Association's Pesticide Environmental Stewardship Program Strategy Document to reduce pesticide risk. Since the early 1980s, Florida has made important strides in implementing environmentally sound source reduction strategies in salt marshes while managing them for both mosquito control and natural resource enhancement. The political mechanism for this progress has been interagency cooperation through the Florida Coordinating Council on Mosquito Control and its Subcommittee on Managed Marshes. Challenges in accomplishing source reduction continue because both public and private lands are involved. Public lands include those owned by federal (e.g., U.S. Fish and Wildlife Service, National Park Service), state (Florida Department of Environmental Protection), and local governments, and they have a diversity of management objectives. This diversity adds to the challenge facing mosquito control agencies in providing mosquito control services while protecting and enhancing the environment.

  16. Environmental impact of pesticides in Egypt.

    PubMed

    Mansour, Sameeh A

    2008-01-01

    The first use of petroleum-derived pesticides in Egyptian agriculture was initiated in 1950. Early applications consisted of distributing insecticidal dusts containing DDT/BHC/S onto cotton fields. This practice was followed by use of toxaphene until 1961. Carbamates, organophosphates, and synthetic pyrethroids were subsequently used, mainly for applications to cotton. In addition to the use of about 1 million metric tons (t) of pesticides in the agricultural sector over a 50-yr period, specific health and environmental problems are documented in this review. Major problems represented and discussed in this review are human poisoning, incidental toxicity to farm animals, insect pest resistance, destruction of beneficial parasites and predators, contamination of food by pesticide residues, and pollution of environmental ecosystems. Several reports reveal that chlorinated hydrocarbon pesticide residues are still detectable in several environmental compartments; however, these residues are in decline. Since 1990, there is a growing movement toward reduced consumption of traditional pesticides and a tendency to expand use of biopesticides, including "Bt," and plant incorporated protectants (PIPs). On the other hand, DDT and lindane were used for indoor and hygienic purposes as early as 1952. Presently, indoor use of pesticides for pest control is widespread in Egypt. Accurate information concerning the types and amounts of Egyptian household pesticide use, or numbers of poisoning or contamination incidents, is unavailable. Generally, use of indoor pesticides is inadequately managed. The results of a survey of Egyptian farmers' attitudes toward pesticides and their behavior in using them garnered new insights as to how pesticides should be better controlled and regulated in Egypt.

  17. Pesticide and toxicity reduction using an integrated vegetated treatment system.

    PubMed

    Anderson, Brian; Phillips, Bryn; Hunt, John; Largay, Bryan; Shihadeh, Rami; Tjeerdema, Ronald

    2011-05-01

    The California, USA, central coast is one of the most productive agricultural areas in the world, and numerous stakeholders are working there to implement conservation practices to reduce contaminated runoff. Practices include vegetated treatment systems (VTS) designed to promote contaminant reduction and breakdown. The current study evaluated the effectiveness of a vegetated drainage ditch incorporating a sedimentation basin, a vegetated section, and a Landguard organophosphate-A (OP-A) enzyme dosing system. The VTS was constructed on a working farm and was designed to remove organophosphate and pyrethroid pesticides, the primary pesticides causing toxicity in Salinas Valley watersheds. The present study was conducted during five separate irrigation events on tailwater runoff containing mixtures of pesticides and suspended sediments. Water samples were collected at four stations within the system, and these were subjected to chemical analyses and tested for toxicity to Ceriodaphnia dubia. All inflow samples were highly toxic to C. dubia, and this was largely because of diazinon. Treatment of diazinon-contaminated runoff was only partially effective using aquatic vegetation. All diazinon remaining after vegetated treatment was effectively removed after treatment with the Landguard OP-A enzyme. Chemical analysis of the VTS water samples showed that pyrethroid and organochlorine pesticide concentrations in water were greatly reduced in the sedimentation section of the ditch, and these pesticides were further reduced in the vegetated section of the ditch. The overall conclusion from these analyses is that the VTS was effective at reducing the more hydrophobic organochlorine and pyrethroid pesticides from water. The water-soluble pesticide diazinon was not sufficiently removed during the VTS residence times observed in this study; however, residual diazinon was effectively removed using Landguard OP-A.

  18. Potential use of organic waste substances as an ecological technique to reduce pesticide ground water contamination

    NASA Astrophysics Data System (ADS)

    El Bakouri, Hicham; Morillo, José; Usero, José; Ouassini, Abdelhamid

    2008-05-01

    SummaryThe heavy use of pesticides in agriculture has meant that the fate due to their movement after their application continue to be a real problem for the environment. In this work, a viable eco-remediation technique based on the use of natural organic substances (NOS) that characterize the Mediterranean region is proposed to demonstrate the efficiency of endosulfan sulphate removal from water. Experimental results showed that the pH of pesticide solutions and temperature negatively affect the adsorption process. According to adsorption kinetic data, 5 h were considered as the equilibrium time for realizing adsorption isotherm. The Freundlich isotherm model describes better the adsorption process of endosulfan sulphate on NOS tested. The Freundlich constant Kf depended mainly on the nature of each adsorbent and ranged from 5.56 for straw to 13.54 for date stones. The adsorption tests gave very satisfying results and point to the possible application of these supports as an ecological remediation technique to reduce pesticide contamination of aquatic ecosystems.

  19. Use of farming and agro-industrial wastes as versatile barriers in reducing pesticide leaching through soil columns.

    PubMed

    Fenoll, J; Ruiz, E; Flores, P; Vela, N; Hellín, P; Navarro, S

    2011-03-15

    Increased interest has been recently focused on assessing the influence of the addition of organic wastes related to movement of pesticides in soils of low organic matter (OM) content. This study reports the effect of two different amendments, animal manure (composted sheep manure) and agro-industrial waste (spent coffee grounds) on the mobility of 10 pesticides commonly used for pepper protection on a clay-loam soil (OM = 0.22%). The tested compounds were azoxystrobin, cyprodinil, fludioxonil, hexaconazole, kresoxim-methyl, pyrimethanil, tebuconazole, and triadimenol (fungicides), pirimicarb (insecticide), and propyzamide (herbicide). Breakthrough curves were obtained from disturbed soil columns. Cumulative curves obtained from unamended soil show a leaching of all pesticides although in different proportions (12-65% of the total mass of compound applied), showing triadimenol and pirimicarb the higher leachability. Significant correlation (r = 0.93, p<0.01) was found between the observed and bibliographical values of GUS index. The addition of the amendments used drastically reduced the movement of the studied pesticides. Only two pesticides were found in leachates from amended soils, pyrimethanil (<1%) for both, and pirimicarb (44%) in the soil amended with spent coffee grounds. A decrease in pesticide leaching was observed with the increase in dissolved organic matter (DOM) of leachates. The results obtained point to the interest in the use of organic wastes in reducing the pollution of groundwater by pesticide drainage.

  20. Biosensor based on Prussian blue nanocubes/reduced graphene oxide nanocomposite for detection of organophosphorus pesticides

    SciTech Connect

    Zhang, Lin; Zhang, Aidong; Du, Dan; Lin, Yuehe

    2012-07-13

    We demonstrate a facile procedure to efficiently prepare Prussian blue nanocubes/reduced graphene oxide (PBNCs/rGO) nanocomposite by directly mixing Fe3+ and [Fe(CN)6]3 in the presence of GO in polyethyleneimine aqueous solution, resulting in a novel acetylcholinesterase (AChE) biosensor for detection of organophosphorus pesticides (OPs). The obtained nanocomposite was characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) microanalysis. It was clearly observed that the nanosheet has been decorated with cubic PB nanoparticles and nearly all the nanoparticles are distributed uniformly only on the surface of the reduced GO. No isolated PB nanoparticles were observed, indicating the strong interaction between PB nanocubes and the reduced GO and the formation of PBNCs/rGO nanocomposite. The obtained PBNCs/rGO based AChE biosensor make the peak potential shift negatively to 220 mV. The AChE biosensor shows rapid response and high sensitivity for detection of monocrotophos. These results suggest that the PBNCs/rGO hybrids nanocomposite exhibited high electrocatalytic activity towards the oxidation of thiocholine, which lead to the sensitive detection of OP pesticides.

  1. Community uptake of safe storage boxes to reduce self-poisoning from pesticides in rural Sri Lanka

    PubMed Central

    Konradsen, Flemming; Pieris, Ravi; Weerasinghe, Manjula; van der Hoek, Wim; Eddleston, Michael; Dawson, Andrew H

    2007-01-01

    Background Acute poisoning by agricultural pesticides is a well established global public health problem. Keeping pesticides under safe storage is now promoted as a potential way to reduce the number of severe poisoning cases. However, there have been no published studies documenting the feasibility of such an approach. Therefore, the objective of the study presented here was to determine community perceptions and use of in-house safe storage boxes for pesticides in rural Sri Lanka. Methods Boxes with a lock, to be used for the in-house safe storage of pesticides, were distributed to 200 randomly selected farming households in two agricultural communities. A baseline survey determined pesticide storage practices and household characteristics prior to distribution. The selected households were encouraged to make use of the box at community meetings and during a single visit to each household one month after distribution. No further encouragement was offered. A follow-up survey assessed storage practices seven months into the project. Results Following the distribution of the boxes the community identified a number of benefits including the protection of pesticide containers against exposure from the rain and sun and a reduced risk of theft. Data were analysed for 172 households that reported agricultural use of pesticides at follow-up. Of these, 141 (82%) kept pesticides in the house under lock against 3 (2%) at baseline. As expected, the distribution of boxes significantly reduced the number of households storing pesticides in the field, from 79 (46%) at baseline to 4 (2%) at follow-up. There was a significant increase in the number of households keeping pesticides safe from children between baseline (64%) and seven months after the distribution of boxes (89%). The same was true for adults although less pronounced with 51% at baseline and 66% at follow-up. Conclusion The farming community appreciated the storage boxes and made storage of pesticides safer

  2. Reducing Farmworker Residential Pesticide Exposure: Evaluation of a Lay Health Advisor Intervention

    PubMed Central

    Arcury, Thomas A.; Marín, Antonio; Snively, Beverly M.; Hernández-Pelletier, Mercedes; Quandt, Sara A.

    2011-01-01

    The goal of this analysis is to evaluate the effectiveness of a promotora program for teaching women in Latino farmworker families about pesticide safety and increasing pesticide safety behaviors. Volunteer promotoras delivered a pesticide safety curriculum (intervention) and nutrition curriculum (control) to farmworker women residing in western North Carolina and Virginia. Pre- and post-intervention interviews assessed differences in delivery of the intervention, recognition of the intervention, pesticide knowledge, pesticide exposures behaviors, and integrated pest management behaviors. Participants in the intervention group reported significantly more receipt of pesticide education and greater recognition of the key messages. However, their knowledge, pesticide exposure behaviors, and integrated pest management behaviors did not change. A more structured program is needed to be sure that the dose of interventions is large enough to overcome educational and cultural characteristics of immigrant communities. Policy changes are needed to address circumstances outside of farmworkers’ control that affect pesticide exposure. PMID:18287581

  3. Reducing farmworker residential pesticide exposure: evaluation of a lay health advisor intervention.

    PubMed

    Arcury, Thomas A; Marín, Antonio; Snively, Beverly M; Hernández-Pelletier, Mercedes; Quandt, Sara A

    2009-07-01

    The goal of this analysis is to evaluate the effectiveness of a promotora program for teaching women in Latino farmworker families about pesticide safety and increasing pesticide safety behaviors. Volunteer promotoras delivered a pesticide safety curriculum (intervention) and nutrition curriculum (control) to farmworker women residing in western North Carolina and Virginia. Pre-and postintervention interviews assessed differences in delivery of the intervention, recognition of the intervention, pesticide knowledge, pesticide exposures behaviors, and integrated pest management behaviors. Participants in the intervention group reported significantly more receipt of pesticide education and greater recognition of the key messages. However, their knowledge, pesticide exposure behaviors, and integrated pest management behaviors did not change. A more structured program is needed to be sure that the dose of interventions is large enough to overcome educational and cultural characteristics of immigrant communities. Policy changes are needed to address circumstances outside of farmworkers' control that affect pesticide exposure.

  4. An in vivo zebrafish screen identifies organophosphate antidotes with diverse mechanisms of action.

    PubMed

    Jin, Shan; Sarkar, Kumar S; Jin, Youngnam N; Liu, Yan; Kokel, David; Van Ham, Tjakko J; Roberts, Lee D; Gerszten, Robert E; Macrae, Calum A; Peterson, Randall T

    2013-01-01

    Organophosphates are a class of highly toxic chemicals that includes many pesticides and chemical weapons. Exposure to organophosphates, either through accidents or acts of terrorism, poses a significant risk to human health and safety. Existing antidotes, in use for over 50 years, have modest efficacy and undesirable toxicities. Therefore, discovering new organophosphate antidotes is a high priority. Early life stage zebrafish exposed to organophosphates exhibit several phenotypes that parallel the human response to organophosphates, including behavioral deficits, paralysis, and eventual death. Here, we have developed a high-throughput zebrafish screen in a 96-well plate format to find new antidotes that counteract organophosphate-induced lethality. In a pilot screen of 1200 known drugs, we identified 16 compounds that suppress organophosphate toxicity in zebrafish. Several in vitro assays coupled with liquid chromatography/tandem mass spectrometry-based metabolite profiling enabled determination of mechanisms of action for several of the antidotes, including reversible acetylcholinesterase inhibition, cholinergic receptor antagonism, and inhibition of bioactivation. Therefore, the in vivo screen is capable of discovering organophosphate antidotes that intervene in distinct pathways. These findings suggest that zebrafish screens might be a broadly applicable approach for discovering compounds that counteract the toxic effects of accidental or malicious poisonous exposures.

  5. An In Vivo Zebrafish Screen Identifies Organophosphate Antidotes with Diverse Mechanisms of Action

    PubMed Central

    Jin, Shan; Sarkar, Kumar S.; Jin, Youngnam N.; Liu, Yan; Kokel, David; Van Ham, Tjakko J.; Roberts, Lee D.; Gerszten, Robert E.; MacRae, Calum A.; Peterson, Randall T.

    2014-01-01

    Organophosphates are a class of highly toxic chemicals that includes many pesticides and chemical weapons. Exposure to organophosphates, either through accidents or acts of terrorism, poses a significant risk to human health and safety. Existing antidotes, in use for over 50 years, have modest efficacy and undesirable toxicities. Therefore, discovering new organophosphate antidotes is a high priority. Early life stage zebrafish exposed to organophosphates exhibit several phenotypes that parallel the human response to organophosphates, including behavioral deficits, paralysis, and eventual death. Here, we have developed a high-throughput zebrafish screen in a 96-well plate format to find new antidotes that counteract organophosphate-induced lethality. In a pilot screen of 1200 known drugs, we identified 16 compounds that suppress organophosphate toxicity in zebrafish. Several in vitro assays coupled with liquid chromatography/tandem mass spectrometry–based metabolite profiling enabled determination of mechanisms of action for several of the antidotes, including reversible acetylcholinesterase inhibition, cholinergic receptor antagonism, and inhibition of bioactivation. Therefore, the in vivo screen is capable of discovering organophosphate antidotes that intervene in distinct pathways. These findings suggest that zebrafish screens might be a broadly applicable approach for discovering compounds that counteract the toxic effects of accidental or malicious poisonous exposures. PMID:22960781

  6. Management technologies can reduce the environmental risk of pesticides in agricultural production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pesticide use in agriculture, the potential risk posed by pesticides when they are transported beyond the intended target, and their effects on human and environmental health have been of public concern for many years. We utilized 5 years of field data, quantifying pesticide transport with runoff fr...

  7. Assessing Diet as a Modifiable Risk Factor for Pesticide Exposure

    PubMed Central

    Oates, Liza; Cohen, Marc

    2011-01-01

    The effects of pesticides on the general population, largely as a result of dietary exposure, are unclear. Adopting an organic diet appears to be an obvious solution for reducing dietary pesticide exposure and this is supported by biomonitoring studies in children. However, results of research into the effects of organic diets on pesticide exposure are difficult to interpret in light of the many complexities. Therefore future studies must be carefully designed. While biomonitoring can account for differences in overall exposure it cannot necessarily attribute the source. Due diligence must be given to appropriate selection of participants, target pesticides and analytical methods to ensure that the data generated will be both scientifically rigorous and clinically useful, while minimising the costs and difficulties associated with biomonitoring studies. Study design must also consider confounders such as the unpredictable nature of chemicals and inter- and intra-individual differences in exposure and other factors that might influence susceptibility to disease. Currently the most useful measures are non-specific urinary metabolites that measure a range of organophosphate and synthetic pyrethroid insecticides. These pesticides are in common use, frequently detected in population studies and may provide a broader overview of the impact of an organic diet on pesticide exposure than pesticide-specific metabolites. More population based studies are needed for comparative purposes and improvements in analytical methods are required before many other compounds can be considered for assessment. PMID:21776202

  8. Needs assessment for reducing pesticide risk: a case study with farmers in Vietnam.

    PubMed

    Phung, Dung Tri; Connell, Des; Miller, Greg; Rutherford, Shannon; Chu, Cordia

    2013-01-01

    The objective of this study was to identify the needs for and solutions to pesticide risk reduction for farmers in Vietnam, using a comprehensive needs assessment model applied for evaluating community needs and policy development. Four kinds of needs were evaluated using qualitative research methods. A comparative analysis of pesticide regulations was used to identify comparative needs. In-depth interviews with authorities and experts were conducted to identify normative needs. Observations on farmer's practice were used to identify expressed needs, and focus group discussions among farmers were implemented to identify felt needs. The needs for pesticide regulations obtained from comparative analysis and experts include enhancement of pesticide legislation; multisectoral involvement in pesticide regulations; improvement of capacity for sectors involving in pesticide regulations; risk-benefit guidance for pesticide registration; reforms of pesticide regulations relating to the restriction, cancellation, suspension, transport, storage, and disposal of pesticides; and the development of occupational hygiene and safety policy and programs for agricultural activities. The expressed needs based on field observations comprise improvement in knowledge and behavior of farmers about pesticide safety with specific areas, and supports in safety facilities and personal protective equipment. The key request from farmers include needs about technical training for occupational safety and hygiene of pesticide application, and support for safety facilities for pesticide application and protective equipment. The results of comprehensive needs assessment were useful in the development of a range of strategies in legislative improvement, workplace and personal hygiene, information and training, and medical surveillance and pesticide poisoning first aids for pesticide risk reduction for Vietnamese farmers.

  9. Recognition and Management of Pesticide Poisonings. Third Edition.

    ERIC Educational Resources Information Center

    Morgan, Donald P.

    This manual aids health professionals in recognizing and treating pesticide poisonings. Suggested treatments are appropriate for implementation in the small hospitals and clinics which usually receive the victims of pesticide poisoning. Classes of compounds covered include: (1) organophosphate cholinesterase-inhibiting pesticides; (2) carbamate…

  10. COMPARISON OF FIVE EXTRACTION METHODS ON INCURRED AND FORTIFIED PESTICIDES IN COMPOSITE DIETS: BLENDER, SOXHLET, ASE, MICROWAVE AND SFE

    EPA Science Inventory

    The USEPA National Exposure Research Laboratory studies dietary exposure to a diverse group of semi-volatile pesticides by analyzing 24 hour duplicate composite diets. The pesticides of interest include organochlorines, organophosphates, anilines, and triazines. Currently, there ...

  11. Evaluation of Candidate Genes for cholinesterase Activity in Farmworkers Exposed to organophosphorous Pesticides-Association of SNPs in BCHE

    EPA Science Inventory

    Background: Organophosphate pesticides act as cholinesterase inhibitors, and as such may give rise to potential neurological effects. Cholinesterase activity is a useful, indirect measurement of pesticide exposure, especially in high-risk individuals such as farmworkers. To und...

  12. Sperm viability and gene expression in honey bee queens (Apis mellifera) following exposure to the neonicotinoid insecticide Imidacloprid and the organophosphate Acaricide Coumaphos

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Honey bee population declines are a global concern. Numerous factors appear to cause the decline including parasites, pathogens, malnutrition and pesticides. Residues of the organophosphate acaricide coumaphos and the neonicotinoid insecticide imidacloprid, widely used to combat Varroa mites and for...

  13. Watershed scale influence of pesticide reduction practices on pesticides and fishes within channelized agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Implementation of pesticide reduction practices to reduce pesticide usage within agricultural watersheds has the potential to reduce pesticide concentrations within agricultural streams. The watershed scale influence of pesticide reduction practices on pesticides and the biota within agricultural he...

  14. Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency.

    PubMed

    Feltham, Hannah; Park, Kirsty; Goulson, Dave

    2014-04-01

    Bumblebees and other pollinators provide a vital ecosystem service for the agricultural sector. Recent studies however have suggested that exposure to systemic neonicotinoid insecticides in flowering crops has sub-lethal effects on the bumblebee workforce, and hence in reducing queen production. The mechanism behind reduced nest performance, however, remains unclear. Here we use Radio Frequency Identification (RFID) technology to test whether exposure to a low, field realistic dose (0.7 ppb in sugar water and 6 ppb in pollen) of the neonicotinoid imidacloprid, reduces worker foraging efficiency. Whilst the nectar foraging efficiency of bees treated with imidacloprid was not significantly different than that of control bees, treated bees brought back pollen less often than control bees (40 % of trips vs 63 % trips, respectively) and, where pollen was collected, treated bees brought back 31 % less pollen per hour than controls. This study demonstrates that field-realistic doses of these pesticides substantially impacts on foraging ability of bumblebee workers when collecting pollen, and we suggest that this provides a causal mechanism behind reduced queen production in imidacloprid exposed colonies.

  15. Pesticide exposure in children.

    PubMed

    Roberts, James R; Karr, Catherine J

    2012-12-01

    Pesticides are a collective term for a wide array of chemicals intended to kill unwanted insects, plants, molds, and rodents. Food, water, and treatment in the home, yard, and school are all potential sources of children's exposure. Exposures to pesticides may be overt or subacute, and effects range from acute to chronic toxicity. In 2008, pesticides were the ninth most common substance reported to poison control centers, and approximately 45% of all reports of pesticide poisoning were for children. Organophosphate and carbamate poisoning are perhaps the most widely known acute poisoning syndromes, can be diagnosed by depressed red blood cell cholinesterase levels, and have available antidotal therapy. However, numerous other pesticides that may cause acute toxicity, such as pyrethroid and neonicotinoid insecticides, herbicides, fungicides, and rodenticides, also have specific toxic effects; recognition of these effects may help identify acute exposures. Evidence is increasingly emerging about chronic health implications from both acute and chronic exposure. A growing body of epidemiological evidence demonstrates associations between parental use of pesticides, particularly insecticides, with acute lymphocytic leukemia and brain tumors. Prenatal, household, and occupational exposures (maternal and paternal) appear to be the largest risks. Prospective cohort studies link early-life exposure to organophosphates and organochlorine pesticides (primarily DDT) with adverse effects on neurodevelopment and behavior. Among the findings associated with increased pesticide levels are poorer mental development by using the Bayley index and increased scores on measures assessing pervasive developmental disorder, inattention, and attention-deficit/hyperactivity disorder. Related animal toxicology studies provide supportive biological plausibility for these findings. Additional data suggest that there may also be an association between parental pesticide use and adverse birth

  16. Evaluation of individual and combined management practices to reduce the off-site transport of pesticides from golf course turf

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The detection of pesticides, associated with turfgrass management, in storm runoff and surface waters of urban watersheds has raised concerns regarding their source, potential environmental effects and a need for strategies to reduce their inputs. In previous research we discovered that hollow tine ...

  17. Is there a role for progesterone in the management of acute organophosphate poisoning during pregnancy?

    PubMed

    Jafarzadeh, Mostafa; Nasrabadi, Zeynab Nasri; Sheikhazadi, Ardeshir; Abbaspour, Abdollah; Vasigh, Shayesteh; Yousefinejad, Vahid; Marashi, Sayed Mahdi

    2013-06-01

    Organophosphates are commonly used pesticides and cause about one million unintentional and 2 million suicidal exposures with up to 300,000 fatalities every year around the world. Toxicity of organophosphates is due to inhibition cholinesterase activity and prolonging the effects of acetylcholine in the receptor site. Clinical features of organophosphate poisoning are defecation, urination, miosis, bronchorrhea, emesis, lacrimation and salivation. Spontaneous abortion reported some when in pregnant patients. Intravenous administration of benzodiazepines, atropine and pralidoxime is the formal treatment of this toxicity. Atropine and pralidoxime have been assigned to pregnancy class C by the FDA and should be recommended for use in pregnant women clinically suffer organophosphate poisoning. Benzodiazepines have been assigned to pregnancy class D and should be avoided during pregnancy. Clinical experiments suggest transplacental transfer of organophosphates is possible, and fetal sensitivity is probable, but a single acute overdose most likely don't make any physical deformities, therefore termination of pregnancy is not imperative. Nonetheless, no definite strategy focused on maintaining pregnancy. Here we propose an idea that in any female case of acute organophosphate poisoning in childbearing range of age, maternal serum Beta-HCG should be tested for pregnancy and prophylactic progesterone should be used in pregnant cases of organophosphate poisoning.

  18. Evaluation of Core Cultivation Practices to Reduce Ecological Risk of Pesticides in Runoff from Agrostis palustris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly managed biotic systems such as golf courses and commercial landscapes often require multiple applications of pesticides that may be transported with runoff to areas beyond the intended site. Pesticides have been detected in surface waters of rural and urban watersheds raising questions conce...

  19. Amitraz: a mimicker of organophosphate poisoning.

    PubMed

    Dhooria, Sahajal; Behera, Digambar; Agarwal, Ritesh

    2015-10-01

    Amitraz is used as an ectoparasiticide for dogs and cattle. Human poisoning due to amitraz may be misdiagnosed as organophosphate/carbamate (OPC) toxicity, since amitraz poisoning shares several clinical features (miosis, bradycardia and hypotension) encountered with OPC poisoning. A 19-year-old man with an alleged history of suicidal ingestion of a pesticide presented with drowsiness and was found to have constricted pupils, hypotension and bradycardia. He was diagnosed as a case of OPC poisoning and was treated with atropine and pralidoxime prior to presentation to our centre. Absence of a hypersecretory state, and the presence of hyperglycaemia and hypothermia along with a normal serum cholinesterase level suggested an alternate possibility. Retrieval of the poison container confirmed the diagnosis of amitraz poisoning. The patient made a rapid recovery with supportive management. Clinician awareness is key to successful management of this poisoning, which carries a good prognosis.

  20. Central respiratory failure during acute organophosphate poisoning.

    PubMed

    Carey, Jennifer L; Dunn, Courtney; Gaspari, Romolo J

    2013-11-01

    Organophosphate (OP) pesticide poisoning is a global health problem with over 250,000 deaths per year. OPs affect neuronal signaling through acetylcholine (Ach) neurotransmission via inhibition of acetylcholinesterase (AChE), leading to accumulation of Ach at the synaptic cleft and excessive stimulation at post-synaptic receptors. Mortality due to OP agents is attributed to respiratory dysfunction, including central apnea. Cholinergic circuits are integral to many aspects of the central control of respiration, however it is unclear which mechanisms predominate during acute OP intoxication. A more complete understanding of the cholinergic aspects of both respiratory control as well as neural modification of pulmonary function is needed to better understand OP-induced respiratory dysfunction. In this article, we review the physiologic mechanisms of acute OP exposure in the context of the known cholinergic contributions to the central control of respiration. We also discuss the potential central cholinergic contributions to the known peripheral physiologic effects of OP intoxication.

  1. Fluorescence Spectroscopy Approaches for the Development of a Real-Time Organophosphate Detection System Using an Enzymatic Sensor

    PubMed Central

    Carullo, Paola; Cetrangolo, Giovanni Paolo; Mandrich, Luigi; Manco, Giuseppe; Febbraio, Ferdinando

    2015-01-01

    Organophosphates are organic substances that contain a phosphoryl or a thiophosphoryl bond. They are mainly used around the world as pesticides, but can also be used as chemical warfare agents. Their detection is normally entrusted to techniques like GC- and LC-MS that, although sensitive, do not allow their identification on site and in real time. We have approached their identification by exploiting the high-affinity binding of these compounds with the esterase 2 from Alicyclobacillus acidocaldarius. Using an in silico analysis to evaluate the binding affinities of the enzyme with organophosphate inhibitors, like paraoxon, and other organophosphate compounds, like parathion, chlorpyriphos, and other organophosphate thio-derivatives, we have designed fluorescence spectroscopy experiments to study the quenching of the tryptophan residues after esterase 2 binding with the organophosphate pesticides. The changes in the fluorescence signals permitted an immediate and quantitative identification of these compounds from nano- to picomolar concentrations. A fluorescence based polarity-sensitive probe (ANS) was also employed as a means to understand the extent of the interactions involved, as well as to explore other ways to detect organophosphate pesticides. Finally, we designed a framework for the development of a biosensor that exploits fluorescence technology in combination with a sensitive and very stable bio-receptor. PMID:25671511

  2. Generalized Haber's law for exponential concentration decline, with application to riparian-aquatic pesticide ecotoxicity.

    PubMed

    Bogen, Kenneth T; Reiss, Richard

    2012-02-01

    A simple analytic solution to the dynamic version of Haber's law was derived, conditional on a specified toxic load exponent (n) and on exponential decline in environmental toxicant concentration. Such conditions are particularly relevant to assessing ecotoxicity risk posed (e.g., to juvenile salmonids) by agricultural organophosphate (OP) pesticides that are subject to degradation and/or dissipation. A dynamic Haber's law model was fit to previously published detailed data on lethality for two aquatic species induced by six agricultural OP pesticides, and more crude fits were obtained to less detailed data on five other OP and on two non-OP pesticides, indicating that for lethality, a range of 0.5 ≤ n ≤ 1.5 may be typical for OP pesticides. The AgDRIFT(®) stream deposition model was next used to establish that first-order or exponential loss, with dilution half-times on the order of ≤0.01 days, pertains approximately to pesticide residues in streams that arise after aerial application of agricultural pesticides 100 feet upwind. The analytic model was then applied to demonstrate that pesticide concentrations deposited in downwind streams following an aerial application are effectively diluted by about 50- to 300-fold from their initial concentration. Riparian ecotoxicity risk assessment models that ignore this effective dilution, and base pesticide-specific estimates of reduced survival on the initial concentrations, are therefore unrealistically conservative.

  3. Community-based intervention to reduce pesticide exposure to farmworkers and potential take-home exposure to their families.

    PubMed

    Bradman, Asa; Salvatore, Alicia L; Boeniger, Mark; Castorina, Rosemary; Snyder, John; Barr, Dana B; Jewell, Nicholas P; Kavanagh-Baird, Geri; Striley, Cynthia; Eskenazi, Brenda

    2009-01-01

    The US EPA Worker Protection Standard requires pesticide safety training for farmworkers. Combined with re-entry intervals, these regulations are designed to reduce pesticide exposure. Little research has been conducted on whether additional steps may reduce farmworker exposure and the potential for take-home exposure to their families. We conducted an intervention with 44 strawberry harvesters (15 control and 29 intervention group members) to determine whether education, encouragement of handwashing, and the use of gloves and removable coveralls reduced exposure. Post-intervention, we collected foliage and urine samples, as well as hand rinse, lower-leg skin patch, and clothing patch samples. Post-intervention loading of malathion on hands was lower among workers who wore gloves compared to those who did not (median=8.2 vs. 777.2 microg per pair, respectively (P<0.001)); similarly, median MDA levels in urine were lower among workers who wore gloves (45.3 vs. 131.2 microg/g creatinine, P<0.05). Malathion was detected on clothing (median=0.13 microg/cm(2)), but not on skin. Workers who ate strawberries had higher malathion dicarboxylic acid levels in urine (median=114.5 vs. 39.4 microg/g creatinine, P<0.01). These findings suggest that wearing gloves reduces pesticide exposure to workers contacting strawberry foliage containing dislodgeable residues. Additionally, wearing gloves and removing work clothes before returning home could reduce transport of pesticides to worker homes. Behavioral interventions are needed to reduce consumption of strawberries in the field.

  4. Community-Based Intervention to Reduce Pesticide Exposure to Farmworkers and Potential Take-Home Exposure to their Families

    PubMed Central

    Bradman, Asa; Salvatore, Alicia L.; Boeniger, Mark; Castorina, Rosemary; Snyder, John; Barr, Dana B.; Jewell, Nicholas P.; Kavanagh-Baird, Geri; Striley, Cynthia; Eskenazi, Brenda

    2015-01-01

    The U.S. EPA Worker Protection Standard requires pesticide safety training for farmworkers. Combined with re-entry intervals, these regulations are designed to reduce pesticide exposure. Little research has been conducted on whether additional steps may reduce farmworker exposure and the potential for take-home exposure to their families. We conducted an intervention with 44 strawberry harvesters (15 control and 29 intervention group members) to determine whether education, encouragement of handwashing, and the use of gloves and removable coveralls reduced exposure. Post-intervention, we collected foliage and urine samples, as well as hand rinse, lower-leg skin patch, and clothing patch samples. Post-intervention loading of malathion on hands was lower among workers who wore gloves compared to those who did not (median = 8.2 vs 777.2 μg/pair, respectively (p<0.001)); similarly, median MDA levels in urine were lower among workers who wore gloves (45.3 vs 131.2 μg/g creatinine, p<0.05). Malathion was detected on clothing (median = 0.13 μg/cm2), but not on skin. Workers who ate strawberries had higher MDA levels in urine (median=114.5 vs 39.4 μg/g creatinine, p<0.01). These findings suggest that wearing gloves reduces pesticide exposure to workers contacting strawberry foliage containing dislodgeable residues. Additionally, wearing gloves and removing work clothes before returning home could reduce transport of pesticides to worker homes. Behavioral interventions are needed to reduce consumption of strawberries in the field. PMID:18368011

  5. Coronary artery bypass grafting in a patient with organophosphate poisoning.

    PubMed

    Pieris, Rajeeva R; Fernando, Ravindra

    2015-08-30

    A 43-year-old male, with no previous history of mental illness, was diagnosed with coronary heart disease, after which he became acutely depressed and attempted suicide by ingesting an organophosphate pesticide. He was admitted to an intensive care unit and treated with pralidoxime, atropine, and oxygen. His coronary occlusion pattern required early coronary artery bypass grafting (CABG) surgery. His family, apprehensive of a repeat suicidal attempt, requested surgery be performed as soon as possible. He recovered well from the OP poisoning and was mentally fit to express informed consent 2 weeks after admission. Seventeen days after poisoning, he underwent coronary artery bypass grafting and recovered uneventfully. Six years later, he remains in excellent health. We report this case because to the best of our knowledge there is no literature regarding CABG performed soon after organophosphate poisoning.

  6. Sensitivity analysis of the STICS-MACRO model to identify cropping practices reducing pesticides losses.

    PubMed

    Lammoglia, Sabine-Karen; Makowski, David; Moeys, Julien; Justes, Eric; Barriuso, Enrique; Mamy, Laure

    2017-02-15

    STICS-MACRO is a process-based model simulating the fate of pesticides in the soil-plant system as a function of agricultural practices and pedoclimatic conditions. The objective of this work was to evaluate the influence of crop management practices on water and pesticide flows in contrasted environmental conditions. We used the Morris screening sensitivity analysis method to identify the most influential cropping practices. Crop residues management and tillage practices were shown to have strong effects on water percolation and pesticide leaching. In particular, the amount of organic residues added to soil was found to be the most influential input. The presence of a mulch could increase soil water content so water percolation and pesticide leaching. Conventional tillage was also found to decrease pesticide leaching, compared to no-till, which is consistent with many field observations. The effects of the soil, crop and climate conditions tested in this work were less important than those of cropping practices. STICS-MACRO allows an ex ante evaluation of cropping systems and agricultural practices, and of the related pesticides environmental impacts.

  7. Pesticide usage and its association with health symptoms among farmers in rural villages in West Java, Indonesia.

    PubMed

    Sekiyama, Makiko; Tanaka, Mika; Gunawan, Budhi; Abdoellah, Oekan; Watanabe, Chiho

    2007-01-01

    The improper handling of pesticides in agriculture has caused serious health problems in many developing countries. In this study, we report the pesticide usage condition among Indonesian farmers and its association with symptoms of pesticide toxicity. A questionnaire survey on personal history regarding agricultural labor, pesticide storage and disposal, pesticide use and health history was conducted using a structured questionnaire in rural Sundanese villages in West Java, Indonesia. The most frequently used pesticides included dithiocarbamates, pyrethroids and organophosphates. In approximately 80% of sprayings, category II pesticides (World Health Organization (WHO) categorization; "moderately hazardous") were used. Many of the subject farmers worked in a highly unsafe occupational environment; protective measures and safe handling were rarely observed, whereas smoking and drinking during spraying were frequently practiced. Correlation analysis revealed that farmers who wore a long sleeve shirt and headgear showed health symptoms less frequently. Moreover, farmers who had skin contact with the spray solution during measuring or mixing (excluding the hands), who wore wet clothing (skin exposure to pesticide), and who smoked and rubbed their eyes during spraying showed more symptoms. Among these factors, headgear use, wearing wet clothing (skin exposure to pesticide), and smoking during spraying were the significant determining factors for developing health symptoms. Preventing such behaviors will be an effective method of reducing health problems among the subject farmers.

  8. Pesticide tolerance of Paenibacillus sp. D1 and its chitinase.

    PubMed

    Singh, Anil Kumar; Ghodke, Indrajeet; Chhatpar, H S

    2009-01-01

    Excessive use of pesticides in agriculture has led to several problems pertaining to loss of soil fertility and environmental degradation. Biological control agents offer the best alternative to reduce use of toxic pesticides. Paenibacillus sp. D1 isolated from the effluent treatment plant of a seafood processing industry exhibited broad spectrum tolerance towards a number of pesticides at concentrations higher than recommended for field applications. The isolate showed enhanced growth and chitinase production in the presence of some protectant fungicides. None of the tested demethylase inhibitor (DMI) fungicides inhibited growth and chitinase production except triadimefon. The isolate was also tolerant to most commonly used insecticides belonging to the organophosphate, carbamate and cyclodiene organochloride classes. Chitinase of Paenibacillus sp. D1 was found to be more tolerant than the organism itself and was highly stable in the presence of pesticides at the temperature under field conditions in Gujarat, India, i.e. 40 degrees C. This was suggestive of its potential in integrated pest management (IPM) to significantly reduce the use of harmful chemicals. To our knowledge this is the first extensive study on pesticide tolerance of the Paenibacillus species and its chitinase.

  9. Municipal bylaw to reduce cosmetic/non-essential pesticide use on household lawns - a policy implementation evaluation

    PubMed Central

    2011-01-01

    Background Pesticide use on urban lawns and gardens contributes to environmental contamination and human exposure. Municipal policies to restrict use and educate households on viable alternatives deserve study. We describe the development and implementation of a cosmetic/non-essential pesticide bylaw by a municipal health department in Toronto, Ontario, Canada and assess changes in resident practices associated with bylaw implementation. Methods Implementation indicators built on a logic model and were elaborated through key informant interviews. Bylaw impacts on awareness and practice changes were documented through telephone surveys administered seasonally pre, during and post implementation (2003-2008). Multivariable logistic regression models assessed associations of demographic variables and gardening season with respondent awareness and practices. Results Implementation indicators documented multiple municipal health department activities and public involvement in complaints from commencement of the educational phase. During the enforcement phases only 40 warning letters and 7 convictions were needed. The number of lawn care companies increased. Among survey respondents, awareness of the bylaw and the Natural Lawn campaign reached 69% and 76% respectively by 2008. Substantial decreases in the proportion of households applying pesticides (25 to 11%) or hiring lawn care companies for application (15 to 5%) occurred. Parallel absolute increases in use of natural lawn care methods occurred among households themselves (21%) and companies they contracted (7%). Conclusions Bylaws or ordinances implemented through education and enforcement are a viable policy option for reducing urban cosmetic pesticide use. PMID:21867501

  10. A meta-analysis of the effects of pesticides and fertilizers on survival and growth of amphibians.

    PubMed

    Baker, Nick J; Bancroft, Betsy A; Garcia, Tiffany S

    2013-04-01

    The input of agrochemicals has contributed to alteration of community composition in managed and associated natural systems, including amphibian biodiversity. Pesticides and fertilizers negatively affect many amphibian species and can cause mortality and sublethal effects, such as reduced growth and increased susceptibility to disease. However, the effect of pesticides and fertilizers varies among amphibian species. We used meta-analytic techniques to quantify the lethal and sublethal effects of pesticides and fertilizers on amphibians in an effort to review the published work to date and produce generalized conclusions. We found that pesticides and fertilizers had a negative effect on survival of -0.9027 and growth of -0.0737 across all reported amphibian species. We also observed differences between chemical classes in their impact on amphibians: inorganic fertilizers, organophosphates, chloropyridinyl, phosphonoglycines, carbamates, and triazines negatively affected amphibian survival, while organophosphates and phosphonoglycines negatively affected amphibian growth. Our results suggest that pesticides and fertilizers are an important stressor for amphibians in agriculturally dominated systems. Furthermore, certain chemical classes are more likely to harm amphibians. Best management practices in agroecosystems should incorporate amphibian species-specific response to agrochemicals as well as life stage dependent susceptibility to best conserve amphibian biodiversity in these landscapes.

  11. Determination of carbamate and organophosphorus pesticides in vegetable samples and the efficiency of gamma-radiation in their removal.

    PubMed

    Chowdhury, Muhammed Alamgir Zaman; Jahan, Iffat; Karim, Nurul; Alam, Mohammad Khorshed; Abdur Rahman, Mohammad; Moniruzzaman, Mohammed; Gan, Siew Hua; Fakhruddin, Abu Naieum Muhammad

    2014-01-01

    In the present study, the residual pesticide levels were determined in eggplants (Solanum melongena) (n = 16), purchased from four different markets in Dhaka, Bangladesh. The carbamate and organophosphorus pesticide residual levels were determined by high performance liquid chromatography (HPLC), and the efficiency of gamma radiation on pesticide removal in three different types of vegetables was also studied. Many (50%) of the samples contained pesticides, and three samples had residual levels above the maximum residue levels determined by the World Health Organisation. Three carbamates (carbaryl, carbofuran, and pirimicarb) and six organophosphates (phenthoate, diazinon, parathion, dimethoate, phosphamidon, and pirimiphos-methyl) were detected in eggplant samples; the highest carbofuran level detected was 1.86 mg/kg, while phenthoate was detected at 0.311 mg/kg. Gamma radiation decreased pesticide levels proportionately with increasing radiation doses. Diazinon, chlorpyrifos, and phosphamidon were reduced by 40-48%, 35-43%, and 30-45%, respectively, when a radiation strength of 0.5 kGy was utilized. However, when the radiation dose was increased to 1.0 kGy, the levels of the pesticides were reduced to 85-90%, 80-91%, and 90-95%, respectively. In summary, our study revealed that pesticide residues are present at high amounts in vegetable samples and that gamma radiation at 1.0 kGy can remove 80-95% of some pesticides.

  12. Aging reduces the bioavailability of even a weakly sorbed pesticide (carbaryl) in soil.

    PubMed

    Ahmad, Riaz; Kookana, Rai S; Megharaj, Mallavarapu; Alston, Angus M

    2004-09-01

    We investigated bioavailability and biodegradation of carbaryl (1-naphthyl methylcarbamate) in a soil with a long history of pesticide contamination from a storage facility located at Mamoon Kanjan, Pakistan. Carbaryl is weakly sorbed and generally considered to be easily degradable in soil. Extraction studies revealed that 49% of the total carbaryl in soil (88.0 mg kg(-1)) was not water-extractable and also not bioavailable, as demonstrated by inoculation of the contaminated soil with a carbaryl-degrading, mixed bacterial culture. Inoculation of the contaminated soil with the carbaryl-degrading culture showed that the bacteria were capable of degrading only the available (i.e., water-extractable) fraction of the pesticide. When the soil was pulverized in a ball mill to enhance the release of residue, an additional 19% of the carbaryl became bioavailable. A significant proportion of residue (approximately 33%) remained unavailable. The long (>12 years) contact time between the pesticide and soil (i.e., aging), allowing possible sequestration into soil nanopores and the organic matter matrices, is suggested to have rendered the pesticide unavailable for microbial degradation. High concentration (88.0 mg kg(-1)) in soil facilitated its persistence and sequestration. Results from the present study demonstrate that even a weakly sorbed and easily degradable pesticide, carbaryl, is effectively sequestrated in soil with time, rendering it partly inaccessible to microorganisms and affecting the bioavailability of the compound.

  13. Cytotoxicity of organophosphate anticholinesterases.

    PubMed

    Cao, C J; Mioduszewski, R J; Menking, D E; Valdes, J J; Katz, E J; Eldefrawi, M E; Eldefrawi, A T

    1999-10-01

    Organophosphate (OP) anticholinesterases were found to modulate metabolic activities of human neuroblastoma cells and hepatocytes, which was detectable by the Cytosensor microphysiometer. The nerve gas ethyl-S-2-diisopropylaminoethyl methylphosphorothiolate (VX), at 10 microM, produced significant reduction in cell metabolism within 2 min, as measured by changes in the acidification rate of the medium. The reduction was dose- and time-dependent and irreversible after 4 h of exposure. Two alkaline degradation products of VX produced no cytotoxicity. Exposure for 24 h to 3 microM VX caused 36% and 94% irreversible loss of metabolism in hepatocytes and neuroblastoma cells, respectively. The insecticides parathion and chlorpyrifos stimulated hepatocyte metabolism but inhibited neuroblastoma cells. Their oxons were more active. Exposure of neuroblastoma cells for 4 h to VX, parathion, paraoxon, diisopropylfluorophosphate or chlorpyrifos gave an LC50 of 65, 775, 640, 340, or 672 microM, respectively, whereas 24 h gave an LC50 of 0.7, 3.7, 2.5, 29, and 31 microM, respectively. Preincubation of hepatocytes with phenobarbital enhanced their response to parathion and VX due to metabolic bioactivation. Atropine partially blocked the effects of VX and paraoxon on both cell types, which suggests the involvement of a muscarinic receptor as the target for cytotoxicity. There was no correlation between OP in vivo neurotoxicity and in vitro cytotoxicity. It is suggested that the former results from their cholinesterase inhibition, while the latter results from action on different targets and requires much higher concentrations.

  14. Reprint of 'Evaluating organophosphate poisoning in human serum with paper'.

    PubMed

    Yen, Tzung-Hai; Chen, Kuan-Hung; Hsu, Min-Yen; Fan, Shu-Ting; Huang, Yu-Fen; Chang, Chia-Ling; Wang, Yu-Ping; Cheng, Chao-Min

    2015-12-01

    This manuscript describes the development and clinical testing of a paper-based, metabolic assay designed for rapid, semi-quantitative measurement of organophosphate poisoning. Paper-based platforms, including point-of-care devices and 96-well plates, provided semi-quantitative information regarding the concentration of AchE (a biomarker for organophosphate poisoning). The paper-based 96-well-plate developed and implemented in this study was used to measure the level of organophosphate poisoning in three different clinical patients. Results were comparable to those obtained using conventional hospital methods currently considered the "gold standard". This diagnostic device offers several advantages over conventional methods, including short operating time (twice as fast as conventional methods), procedure simplicity, and reduced fabrication cost. With further commercialization efforts, the methods described in this manuscript could be applied to a wide range of potential diagnostic applications in the field.

  15. Evaluating organophosphate poisoning in human serum with paper.

    PubMed

    Yen, Tzung-Hai; Chen, Kuan-Hung; Hsu, Min-Yen; Fan, Shu-Ting; Huang, Yu-Fen; Chang, Chia-Ling; Wang, Yu-Ping; Cheng, Chao-Min

    2015-11-01

    This manuscript describes the development and clinical testing of a paper-based, metabolic assay designed for rapid, semi-quantitative measurement of organophosphate poisoning. Paper-based platforms, including point-of-care devices and 96-well plates, provided semi-quantitative information regarding the concentration of AchE (a biomarker for organophosphate poisoning). The paper-based 96-well-plate developed and implemented in this study was used to measure the level of organophosphate poisoning in three different clinical patients. Results were comparable to those obtained using conventional hospital methods currently considered the "gold standard". This diagnostic device offers several advantages over conventional methods, including short operating time (twice as fast as conventional methods), procedure simplicity, and reduced fabrication cost. With further commercialization efforts, the methods described in this manuscript could be applied to a wide range of potential diagnostic applications in the field.

  16. Improvement of POCIS ability to quantify pesticides in natural water by reducing polyethylene glycol matrix effects from polyethersulfone membranes.

    PubMed

    Guibal, Robin; Lissalde, Sophie; Charriau, Adeline; Guibaud, Gilles

    2015-11-01

    The presence of polyethylene glycol compounds (PEG) in extracts from polar organic chemical integrative samplers (POCIS) was shown by high resolution time-of-flight mass spectrometry. PEG compounds, which are released by polyethersulfone (PES) membranes used to build POCIS, can induce matrix effects during quantification of performance reference compounds (PRC, DIA-d5) and target pesticides by mass detection, even after chromatographic separation. Dilution of POCIS extracts can reduce this matrix effect, but dilution may induce a decrease in POCIS performance, primarily for quantification limits. To reduce PEG interference during chromatographic analysis, a simple non-damaging washing protocol for PES membranes is proposed. The method consists of 2 successive baths of washing solution (140 mL per membrane) of ultrapure water (UPW) and methanol (50/50), stirred at 300 rotations per minute (rpm), followed by a final membrane rinse with UPW (140 mL). The signal from PEG compounds was significantly decreased for washed membranes (between 4 and 6 fold lower). After field deployment, total ion current chromatograms of extracts from POCIS built with washed PES membranes did not display a significant PEG fingerprint. This led to improved quantification accuracy for compounds co-eluting with PEG, i.e. PRC (performance and reference compound, DIA-d5) and some pesticides and metabolites. With washed membranes, an accurate quantification of PRC and pesticides sampled by POCIS was indeed possible without a large extract dilution; 10 times instead of the 25 times needed in unwashed conditions. Assuming that the PRC approach corrects for environmental conditions and sampling rates (Rs), a proper PRC (DIA-d5) quantification significantly improved pesticide time weighted average concentration (TWAC) determination in natural water after field deployment.

  17. Assessing the importance of agricultural management practices to reduce the ecological risk of pesticides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of pesticides in agriculture, their potential to be transported beyond the intended target, and their possible risk to human and environmental health has been of public concern for many years. We utilized 5 years of field data from 3 vegetable production systems to evaluate the ability of ag...

  18. Fe2O3 nanoparticles for airborne organophosphate detection

    NASA Astrophysics Data System (ADS)

    Phillips, Joshua; Soliz, Jennifer; Hauser, Adam

    Dire need for early detection of organophosphates (OP) exists in both civilian (pesticide/herbicide buildup) and military (G/V nerve agents) spheres. Nanoparticle materials are excellent candidates for the detection and/or decontamination of hazardous materials, owing to their large surface to volume ratios and tailored surface functionality. Within this category, metal oxides include structures that are stable with the range of normal environmental conditions (temperature, humidity), but have strong, specific reaction mechanisms (hydrolysis, oxidation, catalysis, stoichiometric reaction) with toxic compounds. In this talk, we will present on the suitability of Fe2O3 nanoparticles as airborne organophosphate detectors. 23 nm particles were exposed to a series of organophosphate compounds (dimethyl methylphosphonate, dimethyl chlorophosphonate, diisopropyl methylphosphonate), and studied by x-ray magnetic circular dichroism and x-ray absorption spectroscopy to confirm the stoichiometric Fe2O3 to FeO mechanism and determine magnetic sensor feasibility. AC Impedance Spectroscopy shows both high sensitivity and selectivity via frequency dependence in both impedance and resistivity, suggesting some feasibility for impedimetric devices. We acknowledge funding under Army Research Office STIR Award #W911F-15-1-0104. J.R.S. acknowledges funding from the Defense Threat Reduction Agency under Projects BA13PHM210 and BA07PRO104. J.R.S. also acknowledges funding under a NRC fellowship.

  19. "Mommy, I'm Dying": Learning from a School Pesticide Tragedy.

    ERIC Educational Resources Information Center

    Riley, Becky

    1991-01-01

    Presented is a case in which a child was poisoned on school grounds by organophosphates used to control aphids. Details of the case and the role parents can play in the safety of pesticide use at schools are discussed. (CW)

  20. EPA Method 614: The Determination of Organophosphorus Pesticides in Municipal and Industrial Wastewater

    EPA Pesticide Factsheets

    Method 614 describes procedures for preparation and analysis of samples for determination of organophosphate pesticides in industrial and municipal discharges using a GC with a phosphorus-specific flame photometric detector (FPD).

  1. 75 FR 44181 - Mevinphos; Proposed Data Call-in Order for Pesticide Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ... on the following commodities: Broccoli, cabbage, cauliflower, celery, cucumbers, grapes, lettuce... attention to several data gaps for mevinphos including: 1. A developmental neurotoxicity (DNT) study in rats... inhibition in offspring) as was required for all organophosphate pesticides. 2. Various studies...

  2. Freeze drying reduces the extractability of organochlorine pesticides in fish muscle tissue by microwave-assisted method.

    PubMed

    Zhang, Yanyan; Lin, Nan; Su, Shu; Shen, Guofeng; Chen, Yuanchen; Yang, Chunli; Li, Wei; Shen, Huizhong; Huang, Ye; Chen, Han; Wang, Xilong; Liu, Wenxin; Tao, Shu

    2014-08-01

    Samples of animal origin are usually dried before solvent extraction for analysis of organic contaminants. The freeze drying technique is preferred for hydrophobic organic compounds in practice. In this study, it was shown that the concentration of organochlorine pesticides (OCPs) extracted from fish muscle tissue significantly decreased after the samples were freeze dried. And the reason for this reduced extractability seemed to be the resistance of OCPs associated with freeze-dried muscle protein to solvent extraction. The extractability can be recovered by adding water prior to extraction. It suggests that the dietary exposure risk of OCPs from fish might be underestimated if freeze-dried samples are used.

  3. Reducing the Take-Home Pathway of Pesticide Exposure: Behavioral Outcomes from the ¡Para Niños Saludables! Study

    PubMed Central

    Strong, Larkin L.; Thompson, Beti; Koepsell, Thomas D.; Meischke, Hendrika; Coronado, Gloria D.

    2011-01-01

    Objective To evaluate the effectiveness of a community intervention in promoting adoption of behaviors to reduce the take-home pathway of pesticide exposure in farmworker households. Methods Using two cross-sectional samples of farmworker households in 11 intervention and 12 comparison communities in Washington State, we examined whether differences over time in reported pesticide safety practices varied by community intervention status. Results Pesticide safety practices increased in both intervention and comparison communities over time. Changes were significantly greater in intervention communities for removing work shoes before entering the home (p=0.003) and marginally significantly greater for changing out of work clothes within one hour of arriving home (p=0.05). Conclusions The intervention was associated with modest effects in certain behaviors among farmworkers. Further research is needed to identify successful strategies for reducing the take-home pathway of pesticide exposure. PMID:19620892

  4. Integrated Pest Management Practices Reduce Insecticide Applications, Preserve Beneficial Insects, and Decrease Pesticide Residues in Flue-Cured Tobacco Production.

    PubMed

    Slone, Jeremy D; Burrack, Hannah J

    2016-09-22

    Integrated pest management (IPM) recommendations, including scouting and economic thresholds (ETs), are available for North Carolina flue-cured tobacco growers, although ETs for key pests have not been updated in several decades. Moreover, reported IPM adoption rates by flue-cured tobacco growers remain low, at < 40%, according to NC cooperative extension surveys conducted during the last four years. Previous research has suggested that timing insecticide treatments using currently available ETs can reduce the average number of applications to two or fewer per season. We conducted field-scale trials at nine commercial tobacco farms, three in 2104 and six in 2015, to quantify inputs associated with current scouting recommendations, to determine if current ETs were able to reduce insecticide applications as compared to grower standard practices, and to assess the impacts of reduced insecticide applications on end of season yield and pesticide residues. Two fields were identified at each farm and were scouted weekly for insects. One field was only treated with insecticides if pests reached ET (IPM), while the other field was managed per grower discretion (Grower Standard). IPM fields received an average of two fewer insecticide applications without compromising yield. More insecticide applications resulted in higher pesticide residues in cured leaf samples from Grower Standard fields than those from IPM fields. Reductions in insecticides and management intensity also resulted in larger beneficial insect populations in IPM fields.

  5. Diagnosis & Treatment of Poisoning by Pesticides.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Pesticide Programs.

    This report succinctly discusses the steps necessary to diagnose and treat poisoning from pesticides, especially organophosphates, carbamates and chlorinated hydrocarbons. Immediate and continuing steps in the care of poisoning victims are outlined with supportive information on where to locate emergency assistance. (CS)

  6. Quantitative structure-activity relationships for organophosphates binding to acetylcholinesterase.

    PubMed

    Ruark, Christopher D; Hack, C Eric; Robinson, Peter J; Anderson, Paul E; Gearhart, Jeffery M

    2013-02-01

    Organophosphates are a group of pesticides and chemical warfare nerve agents that inhibit acetylcholinesterase, the enzyme responsible for hydrolysis of the excitatory neurotransmitter acetylcholine. Numerous structural variants exist for this chemical class, and data regarding their toxicity can be difficult to obtain in a timely fashion. At the same time, their use as pesticides and military weapons is widespread, which presents a major concern and challenge in evaluating human toxicity. To address this concern, a quantitative structure-activity relationship (QSAR) was developed to predict pentavalent organophosphate oxon human acetylcholinesterase bimolecular rate constants. A database of 278 three-dimensional structures and their bimolecular rates was developed from 15 peer-reviewed publications. A database of simplified molecular input line entry notations and their respective acetylcholinesterase bimolecular rate constants are listed in Supplementary Material, Table I. The database was quite diverse, spanning 7 log units of activity. In order to describe their structure, 675 molecular descriptors were calculated using AMPAC 8.0 and CODESSA 2.7.10. Orthogonal projection to latent structures regression, bootstrap leave-random-many-out cross-validation and y-randomization were used to develop an externally validated consensus QSAR model. The domain of applicability was assessed by the William's plot. Six external compounds were outside the warning leverage indicating potential model extrapolation. A number of compounds had residuals >2 or <-2, indicating potential outliers or activity cliffs. The results show that the HOMO-LUMO energy gap contributed most significantly to the binding affinity. A mean training R (2) of 0.80, a mean test set R (2) of 0.76 and a consensus external test set R (2) of 0.66 were achieved using the QSAR. The training and external test set RMSE values were found to be 0.76 and 0.88. The results suggest that this QSAR model can be used in

  7. Harnessing Nature’s Diversity: Discovering organophosphate bioscavenger characteristics among low molecular weight proteins

    PubMed Central

    Jacob, Reed B.; Michaels, Kenan C.; Anderson, Cathy J.; Fay, James M.; Dokholyan, Nikolay V.

    2016-01-01

    Organophosphate poisoning can occur from exposure to agricultural pesticides or chemical weapons. This exposure inhibits acetylcholinesterase resulting in increased acetylcholine levels within the synaptic cleft causing loss of muscle control, seizures, and death. Mitigating the effects of organophosphates in our bodies is critical and yet an unsolved challenge. Here, we present a computational strategy that integrates structure mining and modeling approaches, using which we identify novel candidates capable of interacting with a serine hydrolase probe (with equilibrium binding constants ranging from 4 to 120 μM). One candidate Smu. 1393c catalyzes the hydrolysis of the organophosphate omethoate (kcat/Km of (2.0 ± 1.3) × 10−1 M−1s−1) and paraoxon (kcat/Km of (4.6 ± 0.8) × 103 M−1s−1), V- and G-agent analogs respectively. In addition, Smu. 1393c protects acetylcholinesterase activity from being inhibited by two organophosphate simulants. We demonstrate that the utilized approach is an efficient and highly-extendable framework for the development of prophylactic therapeutics against organophosphate poisoning and other important targets. Our findings further suggest currently unknown molecular evolutionary rules governing natural diversity of the protein universe, which make it capable of recognizing previously unseen ligands. PMID:27845442

  8. Pesticide poisoning cases in Ankara and nearby cities in Turkey: an 11-year retrospective analysis.

    PubMed

    Kır, M Ziya; Öztürk, Gülfer; Gürler, Mukaddes; Karaarslan, Bekir; Erden, Gönül; Karapirli, Mustafa; Akyol, Ömer

    2013-05-01

    Since they are available in open markets and pharmacies, pesticides have been widely used all over the country. (Un)intentional poisoning with these compounds is one of the most common causes of chemical poisoning, especially in rural agricultural areas. Pesticide poisonings reported by various countries showed that it is a worldwide health problem with 250,000-370,000 associated deaths each year. In this study, medico-legal deaths between the years 2001 and 2011 in Ankara and nearby cities in Turkey were investigated retrospectively. The autopsies were partly carried out by Ankara Branch of Council of Forensic Medicine. Data were collected from reports of the Morgue Department whose toxicological analyses were performed in the Chemistry Department. The data revealed that 70 cases out of 10,720 autopsied ones had been attributed to fatal pesticide poisoning. The age range was 1-80 years (mean ± SD, 41.33 ± 17.42 years). Most of the cases (60%) were reported from Ankara. Insecticides were the most common (94%) cause of fatal pesticide poisonings, most of them (63%) being organophosphate insecticides. The percentages of pesticide-induced deaths are quite high in our society and should therefore not be underestimated. Accordingly, intensive efforts to reduce occupational and intentional pesticide poisonings are urgently needed in Ankara and nearby cities.

  9. Pesticides and reduced-risk insecticides, native bees and pantropical stingless bees: pitfalls and perspectives.

    PubMed

    Barbosa, Wagner F; Smagghe, Guy; Guedes, Raul Narciso C

    2015-08-01

    Although invertebrates generally have a low public profile, the honey bee, Apis mellifera L., is a flagship species whose popularity likely derives from the products it provides and its perceived ecological services. Therefore, the raging debate regarding honey bee decline has surpassed the realm of beekeepers, academia, industry and regulatory agencies and now also encompasses non-governmental agencies, media, fiction writers and the general public. The early interest and concern about honey bee colony collapse disorder (CCD) soon shifted to the bigger issue of pollinator decline, with a focus on the potential involvement of pesticides in such a phenomenon. Pesticides were previously recognised as the potential culprits of the reported declines, particularly the neonicotinoid insecticides owing to their widespread and peculiar use in agriculture. However, the evidence for the potential pivotal role of these neonicotinoids in honey bee decline remains a matter of debate, with an increased recognition of the multifactorial nature of the problem and the lack of a direct association between the noted decline and neonicotinoid use. The focus on the decline of honey bee populations subsequently spread to other species, and bumblebees became another matter of concern, particularly in Europe and the United States. Other bee species, ones that are particularly important in other regions of the world, remain the object of little concern (unjustifiably so). Furthermore, the continuous focus on neonicotinoids is also in need of revision, as the current evidence suggests that a broad spectrum of compounds deserve attention. Here we address both shortcomings.

  10. Inhibition of cholinesterase activity by soil extracts and predicted environmental concentrations (PEC) to select relevant pesticides in polluted soils.

    PubMed

    Meza, Juan C Sanchez; Perez, Pedro Avila; Salin, Manuel Borja; Salazar, Victor F Pacheco; Lapoint, Tom

    2010-04-01

    The correlation of predicted environmental concentrations (PEC) with cholinesterase activity inhibition detected in soil extracts was determined. PEC was derived from organophosphate (OP) and carbamate (CA) compounds applied to a flower crop area. Samples of surface soil (0 - 30 cm in depth) and subsurface soil (30 to 60 cm in depth) were taken from a flower crop area in which OP pesticides such as acephate ((RS)-N-[methoxy(methylthio)phosphinoyl]acetamide), dimethoate (2-dimethoxyphosphinothioylthio-N-methylacetamide) and methyl parathion (O,O-dimethyl O-4-nitrophenyl phosphorothioate), and CA pesticides such as carbendazim (methyl benzimidazol-2-ylcarbamate), carbofuran (2,3-dihydro-2,2-dimethylbenzofuran-7-yl methylcarbamate) and methomyl (S-methyl (EZ)-N-(methylcarbamoyloxy) thioacetimidate) were applied for two years. Weekly loads of these pesticides were registered to estimate the annual load of each compound. Physicochemical analysis and relative inhibition of cholinesterasic activity were measured for each soil sample. PEC values were estimated with Pesticide Analytical Model (PESTAN), a leach model, for each pesticide using soil sample data obtained from physicochemical analysis. From all pesticides tested, only acephate and methomyl showed a significant correlation (p < 0.01) between PEC values and inhibition cholinesterase activity of soil extracts. These results suggest that inhibition of cholinesterase activity observed in soil extracts is produced mainly by these two pesticides. Further studies could be developed to measure acephate and methomyl concentrations to reduce their environmental impact.

  11. Organophosphates, serine esterase inhibition, and modeling of organophosphate toxicity.

    PubMed

    Chambers, Janice; Oppenheimer, Seth F

    2004-02-01

    The highlighted article in this issue (Ashani and Pistinner, "Estimation of the Upper Limit of Human Butyrylcholinesterase Dose Required for Protection against Organophosphates toxicity: A Mathematically Based Toxicokinetic Model") is an innovative approach to modeling the amount of protective enzyme, human butyrylcholinesterase, that could be administered to humans to protect them from the lethal effects of organophosphate nerve agents. The threat of nerve agent exposures at lethal level regrettably remains a threat to military as well civilian populations, and the authors of this article have used their previous experimental data along with new in vitro data to devise and calibrate a mathematical model that could have practical utility in the prophylaxis of military personnel against chemical warfare agents.

  12. An agriculture and health inter-sectorial research process to reduce hazardous pesticide health impacts among smallholder farmers in the Andes

    PubMed Central

    2011-01-01

    Background The use of highly hazardous pesticides by smallholder farmers constitutes a classic trans-sectoral ‘wicked problem’. We share our program of research in potato and vegetable farming communities in the Andean highlands, working with partners from multiple sectors to confront this problem over several projects. Methods We engaged in iterative cycles of mixed methods research around particular questions, actions relevant to stakeholders, new proposal formulation and implementation followed by evaluation of impacts. Capacity building occurred among farmers, technical personnel, and students from multiple disciplines. Involvement of research users occurred throughout: women and men farmers, non-governmental development organizations, Ministries of Health and Agriculture, and, in Ecuador, the National Council on Social Participation. Results Pesticide poisonings were more widespread than existing passive surveillance systems would suggest. More diversified, moderately developed agricultural systems had lower pesticide use and better child nutrition. Greater understanding among women of crop management options and more equal household gender relations were associated with reduced farm pesticide use and household pesticide exposure. Involvement in more organic agriculture was associated with greater household food security and food sovereignty. Markets for safer produce supported efforts by smallholder farmers to reduce hazardous pesticide use. Participatory interventions included: promoting greater access to alternative methods and inputs in a store co-sponsored by the municipality; producing less harmful inputs such as compost by women farmers; strengthening farmer organizations around healthier and more sustainable agriculture; marketing safer produce among social sectors; empowering farmers to act as social monitors; and using social monitoring results to inform decision makers. Uptake by policy makers has included: the Ecuadorian Ministry of Health

  13. Detoxification of Organophosphate Poisoning Using Nanoparticle Bioscavengers

    PubMed Central

    Pang, Zhiqing; Hu, Che-Ming J.; Fang, Ronnie H.; Luk, Brian T.; Gao, Weiwei; Wang, Fei; Chuluun, Erdembileg; Angsantikul, Pavimol; Thamphiwatana, Soracha; Lu, Weiyue; Jiang, Xinguo; Zhang, Liangfang

    2016-01-01

    Organophosphate poisoning is highly lethal as organophosphates, which are commonly found in insecticides and nerve agents, cause irreversible phosphorylation and inactivation of acetylcholinesterase (AChE), leading to neuromuscular disorders via accumulation of acetylcholine in the body. Direct interception of organophosphates in the systemic circulation thus provides a desirable strategy in treatment of the condition. Inspired by the presence of acetylcholinesterase on red blood cell (RBC) membranes, we explored a biomimetic nanoparticle consisting of a polymeric core surrounded by RBC membranes to serve as an anti-organophosphate agent. Through in vitro studies, we demonstrated that the biomimetic nanoparticles retain the enzymatic activity of membrane-bound AChE and are able to bind to a model organophosphate, dichlorvos, precluding its inhibitory effect on other enzymatic substrates. In a mouse model of organophosphate poisoning, the nanoparticles were shown to improve the AChE activity in the blood and markedly improved the survival of dichlorvos-challenged mice. PMID:26053868

  14. Detoxification of Organophosphate Poisoning Using Nanoparticle Bioscavengers.

    PubMed

    Pang, Zhiqing; Hu, Che-Ming J; Fang, Ronnie H; Luk, Brian T; Gao, Weiwei; Wang, Fei; Chuluun, Erdembileg; Angsantikul, Pavimol; Thamphiwatana, Soracha; Lu, Weiyue; Jiang, Xinguo; Zhang, Liangfang

    2015-06-23

    Organophosphate poisoning is highly lethal as organophosphates, which are commonly found in insecticides and nerve agents, cause irreversible phosphorylation and inactivation of acetylcholinesterase (AChE), leading to neuromuscular disorders via accumulation of acetylcholine in the body. Direct interception of organophosphates in the systemic circulation thus provides a desirable strategy in treatment of the condition. Inspired by the presence of AChE on red blood cell (RBC) membranes, we explored a biomimetic nanoparticle consisting of a polymeric core surrounded by RBC membranes to serve as an anti-organophosphate agent. Through in vitro studies, we demonstrated that the biomimetic nanoparticles retain the enzymatic activity of membrane-bound AChE and are able to bind to a model organophosphate, dichlorvos, precluding its inhibitory effect on other enzymatic substrates. In a mouse model of organophosphate poisoning, the nanoparticles were shown to improve the AChE activity in the blood and markedly improved the survival of dichlorvos-challenged mice.

  15. A comparison of organophosphate degradation genes and bioremediation applications.

    PubMed

    Iyer, Rupa; Iken, Brian; Damania, Ashish

    2013-12-01

    Organophosphates (OPs) form the bulk of pesticides that are currently in use around the world accounting for more than 30% of the world market. They also form the core for many nerve-based warfare agents including sarin and soman. The widespread use and the resultant build-up of OP pesticides and chemical nerve agents has led to the development of major health problems due to their extremely toxic interaction with any biological system that encounters them. Growing concern over the accumulation of OP compounds in our food products, in the soils from which they are harvested and in wastewater run-off has fuelled a growing interest in microbial biotechnology that provides cheap, efficient OP detoxification to supplement expensive chemical methods. In this article, we review the current state of knowledge of OP pesticide and chemical agent degradation and attempt to clarify confusion over identification and nomenclature of two major families of OP-degrading enzymes through a comparison of their structure and function. The isolation, characterization, utilization and manipulation of the major detoxifying enzymes and the molecular basis of degradation of OP pesticides and chemical nerve agents are discussed as well as the achievements and technological advancements made towards the bioremediation of such compounds.

  16. Effects of occupational pesticide exposure on children applying pesticides.

    PubMed

    Abdel Rasoul, Gaafar M; Abou Salem, Mahmoud E; Mechael, Atef A; Hendy, Olfat M; Rohlman, Diane S; Ismail, Ahmed A

    2008-09-01

    Nearly 40% of the Egyptian workforce is employed in agriculture. The cotton industry relies on children and adolescents, who work seasonally, to apply pesticides to the cotton crops. Although previous research has examined adult pesticide exposures in this workforce in Egypt, no research has examined the health effects in adolescents. This study attempts to systematically replicate findings examining the impact of organophosphate pesticide (OP) exposure in adults on Arabic speaking children working as applicators. The aim of this study was to examine the impact of pesticide exposure on children and adolescents spraying cotton fields. Male children currently applying pesticides between the ages of 9 and 15 (Younger, n=30) and 16 and 19 (Older, n=20) were recruited for the study. They completed a neurobehavioral test battery; personality inventory; work, health, and exposure questionnaires; and medical and neurological screening exams. Blood samples were collected to measure acetylcholinesterase. Children not working in agriculture, matched on age and education, served as controls. Both Younger and Older applicator groups, performed significantly worse than the controls on the majority of neurobehavioral tests controlling for age and years of education. The applicators reported significantly more neurological symptoms than the controls and had lower acetylcholinesterase activity. A dose-effect relationship demonstrated that increased years of exposure to organophosphate pesticides is associated with cognitive deficits. This is one of the several studies demonstrating that functional cognitive effects are positively correlated with increased years of exposure to OP pesticides, though primarily in adult populations, building confidence in the association. Since children around the world are exposed to OP pesticides, these studies suggest that the need to evaluate this potential problem is urgent.

  17. Organophosphate-Related Alterations in Myelin and Axonal Transport in the Living Mammalian Brain

    DTIC Science & Technology

    2014-10-01

    subthreshold doses of OPs. Key Words: Pesticide, Organophosphate, Manganese Enhanced Magnetic Resonance Imaging, Gulf War Illness, Alzheimer ‟s...with OPs lies in the fact that reversible AChEs used to treat Alzheimer ‟s disease (e.g., donepezil) have pro-cognitive effects in humans and...favorable effects on the cognitive symptoms in Alzheimer disease (Becker et al., 1998). Prospective efforts to further elucidate the long term consequences

  18. AUTOMATED PRESSURIZED FLUID EXTRACTION WITH IN-LINE CLEAN-UP FOR DETERMINATION OF PESTICIDES IN COMPOSITE DIETS.

    EPA Science Inventory

    USEPA's National Exposure Research Laboratory conducts research to measure the exposure of individuals to chemical pollutants through the diet, as well as other media. In support of this research, methods are being evaluated for determination of organophosphate pesticides in co...

  19. Pesticides and pesticide degradation products in stormwater runoff: Sacramento River Basin, California

    USGS Publications Warehouse

    Domagalski, J.

    1996-01-01

    Pesticides in stormwater runoff, within the Sacramento River Basin, California, were assessed during a storm that occurred in January 1994. Two organophosphate insecticides (diazinon and methidathion), two carbamate pesticides (molinate and carbofuran), and one triazine herbicide (simazine) were detected. Organophosphate pesticide concentrations increased with the rising stage of the hydrographs; peak concentrations were measured near peak discharge. Diazinon oxon, a toxic degradation product of diazinon, made up approximately 1 to 3 percent of the diazinon load. The Feather River was the principal source of organophosphate pesticides to the Sacramento River during this storm. The concentrations of molinate and carbofuran, pesticides applied to rice fields during May and June, were relatively constant during and after the storm. Their presence in surface water was attributed to the flooding and subsequent drainage, as a management practice to degrade rice stubble prior to the next planting. A photodegradation product of molinate, 4-keto molinate, was in all samples where molinate was detected and made up approximately 50 percent of the total molinate load. Simazine, a herbicide used in orchards and to control weeds along the roadways, was detected in the storm runoff, but it was not possible to differentiate the two sources of that pesticide to the Sacramento River.

  20. Use of formulated Trichoderma sp. Tri-1 in combination with reduced rates of chemical pesticide for control of Sclerotinia sclerotiorium on oilseed rape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable strategies for control of Sclerotinia sclerotiorum on oilseed rape are needed. Here we tested combinations of Trichoderma sp. Tri-1, formulated with oilseed rape seedcake and straw, with reduced application rates of the chemical pesticide Carbendazim for control of this pathogen on oils...

  1. Organophosphates and monocyte esterase deficiency.

    PubMed Central

    McClean, E; Mackey, H; Markey, G M; Morris, T C

    1995-01-01

    AIMS--To examine the possibility that monocyte esterase deficiency (MED) could be caused by exposure to organophosphates. METHODS--Pseudocholinesterase, paraoxonase and arylesterase activities were measured in the serum and acetylcholinesterase activity was measured in the red cells of a group of monocyte esterase deficient subjects and compared with the enzyme activities of a control group of monocyte esterase positive subjects. RESULTS--No significant difference was found between the enzyme activities of the monocyte esterase deficient group and the control group for any of the esterases investigated. CONCLUSION--Current or recent exposure to organophosphorus is not the cause of MED. PMID:7560207

  2. Developmental neurotoxicity of organophosphate flame retardants in early life stages of Japanese medaka (Oryzias latipes).

    PubMed

    Sun, Liwei; Tan, Hana; Peng, Tao; Wang, Sisi; Xu, Wenbin; Qian, Haifeng; Jin, Yuanxiang; Fu, Zhengwei

    2016-12-01

    Because brominated flame retardants are being banned or phased out worldwide, organophosphate flame retardants have been used as alternatives on a large scale and have thus become ubiquitous environmental contaminants; this raises great concerns about their environmental health risk and toxicity. Considering that previous research has identified the nervous system as a sensitive target, Japanese medaka were used as an aquatic organism model to evaluate the developmental neurotoxicity of 4 organophosphate flame retardants: triphenyl phosphate, tri-n-butyl phosphate, tris(2-butoxyethyl) phosphate, and tris(2-chloroethyl) phosphate (TCEP). The embryo toxicity test showed that organophosphate flame retardant exposure could decrease hatchability, delay time to hatching, increase the occurrence of malformations, reduce body length, and slow heart rate. Regarding locomotor behavior, exposure to the tested organophosphate flame retardants (except TCEP) for 96 h resulted in hypoactivity for medaka larvae in both the free-swimming and the dark-to-light photoperiod stimulation test. Changes of acetylcholinesterase activity and transcriptional responses of genes related to the nervous system likely provide a reasonable explanation for the neurobehavioral disruption. Overall, the present study clearly demonstrates the developmental neurotoxicity of various organophosphate flame retardants with very different potency and contribute to the determination of which organophosphate flame retardants are appropriate substitutes, as well as the consideration of whether regulations are reasonable and required. Environ Toxicol Chem 2016;35:2931-2940. © 2016 SETAC.

  3. Organophosphate vapor detection on gold electrodes using peptide nanotubes.

    PubMed

    Baker, Peter A; Goltz, Mark N; Schrand, Amanda M; Yoon, Do Young; Kim, Dong-Shik

    2014-11-15

    Peptide nanotubes (PNTs) encapsulating horseradish peroxidase and surface coated with acetylcholinesterase (AChE) were attached to gold screen printed electrodes to construct a novel gas phase organophosphate (OP) biosensor. When the sensor with the AChE enzyme is put in contact with acetylthiocholine (ATCh), the ATCh is hydrolyzed to produce thiocholine, which is then oxidized by horseradish peroxidase (HRP). Direct electron transfer between HRP and electrode is achieved through PNTs. The signal produced by the electron transfer is measured with cyclic voltammetry (CV). The presence of an OP compound inhibits this signal by binding with the AChE enzyme. In this study, gas phase malathion was used as a model OP due to the fact that it displays the identical binding mechanism with acetylcholinesterase (AChE) as its more potent counterparts such as sarin and VX, but has low toxicity, making it more practical and safer to handle. The CV signal was proportionally inhibited by malathion vapor concentrations as low as 12 ppbv. Depending on the method used in their preparation, the electrodes maintained their activity for up to 45 days. This research demonstrates the potential of applying nano-modified biosensors for the detection of low levels of OP vapor, an important development in countering weaponized organophosphate nerve agents and detecting commercially-used OP pesticides.

  4. Review of Pesticide Urinary Biomarker Measurements from Selected US EPA Children's Observational Exposure Studies

    EPA Science Inventory

    Children are exposed to a wide variety of pesticides originating from both outdoor and indoor sources. Several studies were conducted or funded by the EPA over the past decade to investigate children’s exposure to organophosphate and pyrethroid pesticides and the factors that im...

  5. Muscular strength and vibration thresholds during two years after acute poisoning with organophosphate insecticides

    PubMed Central

    Miranda, J; McConnell, R; Wesseling, C; Cuadra, R; Delgado, E; Torres, E; Keifer, M; Lundberg, I

    2004-01-01

    Methods: This study concerns the third of a series of three examinations of hand strength and vibration thresholds in a two year period after acute OP poisoning among 48 Nicaraguan men. The first two examinations were performed at hospital discharge and seven weeks after poisoning, and the present examination two years later. Twenty eight cattle ranchers and fishermen who had never experienced pesticide poisoning were examined as controls, also three times over the two year period. The poisonings were categorised as caused by "non-neuropathic" OPs and "neuropathic" OPs, each subdivided in moderate and severe poisonings. Results: Men poisoned with OP insecticides had persistent reduced hand strength. We previously reported weakness at hospital discharge for OP poisoned in all categories that worsened seven weeks later for those severely poisoned with neuropathic OPs. Strength improved over time, but the poisoned were still weaker than controls two years after the poisoning, most noticeably among the subjects most severely poisoned with neuropathic OPs. Also, index finger and toe vibration thresholds were slightly increased at the end of the two year period, among men with OP poisonings in all categories, but patterns of onset and evolvement of impairment of vibration sensitivity were less clear than with grip and pinch strength. Conclusions: Persistent, mainly motor, impairment of the peripheral nervous system was found in men two years after OP poisoning, in particular in severe occupational and intentional poisonings with neuropathic OPs. This finding is possibly due to remaining organophosphate induced delayed polyneuropathy. PMID:14691285

  6. Biodegradation of pesticides. (Latest citations from the Biobusiness data base). Published Search

    SciTech Connect

    Not Available

    1992-05-01

    The bibliography contains citations concerning the biological degradation of pesticides. Pesticides such as malathion, parathion and DDT, organophosphates and carbamates, herbicides, fungicides, and rodenticides are examined. Coverage includes the isolation of enzymes specifically able to degrade pesticides, field studies of natural degradation and migration of pesticides, and test tube examination of microbial organisms with the ability to digest pesticides. Degradation products, effects of available nutrients on microbial degradation, and pesticide resistance in natural ecosystems are also discussed. (Contains a minimum of 190 citations and includes a subject term index and title list.)

  7. Modern pesticides and bobwhite populations

    USGS Publications Warehouse

    Stromborg, K.L.; Schitoskey, Frank=; Schitoskey, Elizabeth C.; Talent, Larry G.

    1982-01-01

    Bobwhite (Colinus virginianus) are frequently used as test animals for wildlife tests of pesticides. The organophosphate and carbamate pesticides that have replaced the organochlorines have many desirable properties, but they span a wide range of acute toxicities and some of them affe,ct survival, reproduction, food consumption, behavior, and nervous system enzymes in laboratory tests. Applying these laboratory findings to the field requires assumptions about the severity of exposure in the field. Direct field measurements show that birds may be exposed to significant amounts of these pesticides or even more toxic degradation products under some conditions. Adverse population effects may also result from depression of insect populations during the seasons when bobwhites rely on insects for food.

  8. Revised Certification Standards for Pesticide Applicators

    EPA Pesticide Factsheets

    EPA has finalized stronger standards for people who apply restricted use pesticides (RUPs). These revisions to the Certification of Pesticide Applicators rule will reduce the likelihood of harm from the misapplication of toxic pesticides.

  9. The Association Between Ambient Exposure to Organophosphates and Parkinson’s Disease Risk

    PubMed Central

    Wang, Anthony; Cockburn, Myles; Ly, Thomas T.; Bronstein, Jeff; Ritz, Beate

    2014-01-01

    Objectives There is a general consensus that pesticides are involved in the etiology of Parkinson’s disease (PD), although associations between specific pesticides and the risk of developing Parkinson’s disease have not been well studied. This study examines the risk of developing PD associated with specific organophosphate pesticides and their mechanisms of toxicity. Methods This case-control study uses a geographic information system (GIS)-based exposure assessment tool to estimate ambient exposure to 36 commonly used organophosphates (OPs) from 1974-1999. All selected OPs were analyzed individually and also in groups formed according to their presumed mechanisms of toxicity. Results The study included 357 incident PD cases and 752 population controls living in the Central Valley of California. Ambient exposure to each OP evaluated separately increased the risk of developing PD. However, most participants were exposed to combinations of OPs rather than a single pesticide. Risk estimates for OPs grouped according to different presumed functionalities and toxicities were similar and did not allow us to distinguish between them. However, we observed exposure-response patterns with exposure to an increasing number of OPs. Conclusions This study adds strong evidence that OPs are implicated in the etiology of idiopathic PD. However, studies of OPs at low doses reflective of real-world ambient exposure are needed to determine the mechanisms of neurotoxicity. PMID:24436061

  10. EPA Method 507: Determination of Nitrogen- and Phosphorus-Containing Pesticides in Water by Gas Chromatography with a Nitrogen-Phosphorus Detector

    EPA Pesticide Factsheets

    Method 507 describes procedures for sample preparation and analysis using solvent extraction of organophosphate pesticides in drinking water samples which are analyzed using a gas chromatography –nitrogen-phosphorus detector (GC-NPD).

  11. Reconcilable differences: the use of reference material to reduce methodological artifacts in the reporting of organochlorine pesticides and polychlorinated biphenyls.

    PubMed

    de Solla, Shane R; Weseloh, D V Chip; Letcher, Robert J; Hebert, Craig E

    2010-01-01

    Numerous long-term monitoring programs have assessed spatial and temporal trends of organochlorine (OC) pesticides and polychlorinated biphenyls (PCBs). Changes in analytical approaches (e.g., gas chromatography coupled with electron capture detection [GC-ECD] versus mass spectrometric detection [GC-MSD]) can reveal artifacts in the reported concentrations. In-house reference material (RM) was used to determine the analytical artifacts in the measurement of OCs and PCBs in Great Lake herring gull eggs previously analyzed from 1994 to 1996 (GC-ECD) and 1997 to 1999 (GC-MSD). Approximately 19.0% of the variability of PCB congeners in gull eggs was associated with analytical artifacts, and differences among colonies were obscured. Although the discrepancy in sum PCBs (SigmaPCBs) was fairly small (2.1%), some congeners varied considerably between methods (> 60%). After statistically removing the artifacts, only 1.4% of the variability in PCBs of herring gull eggs was associated with artifacts, and differences among gull colonies became apparent. After excluding OCs near the detection limit in the RM, statistically removing the artifacts reduced some of the differences between methods for OCs. Analytical artifacts may potentially render inferences difficult, confounded, and erroneous. When combining contaminant data obtained using different methods, the methods should be assumed to give different results unless demonstrated otherwise. Assessments of the compatibility of analytical methodologies should be made using an appropriate RM.

  12. Plant consumption by grizzly bears reduces biomagnification of salmon-derived polychlorinated biphenyls, polybrominated diphenyl ethers, and organochlorine pesticides.

    PubMed

    Christensen, Jennie R; Yunker, Mark B; MacDuffee, Misty; Ross, Peter S

    2013-04-01

    The present study characterizes the uptake and loss of persistent organic pollutants (POPs) in grizzly bears (Ursus arctos horribilis) by sampling and analyzing their terrestrial and marine foods and fecal material from a remote coastal watershed in British Columbia, Canada. The authors estimate that grizzly bears consume 341 to 1,120 µg of polychlorinated biphenyls (PCBs) and 3.9 to 33 µg of polybrominated diphenyl ethers daily in the fall when they have access to an abundant supply of returning salmon. The authors also estimate that POP elimination by grizzly bears through defecation is very low following salmon consumption (typically <2% of intake) but surprisingly high following plant consumption (>100% for PCBs and organochlorine pesticides). Excretion of individual POPs is largely driven by a combination of fugacity (differences between bear and food concentrations) and the digestibility of the food. The results of the present study are substantiated by a principal components analysis, which also demonstrates a strong role for log KOW in governing the excretion of different POPs in grizzly bears. Collectively, the present study's results reveal that grizzly bears experience a vegetation-associated drawdown of POPs previously acquired through the consumption of salmon, to such an extent that net biomagnification is reduced.

  13. Biological detection and analysis of toxicity of organophosphate- and azadirachtin-based insecticides in Lathyrus sativus L.

    PubMed

    Ganguly, Susmita; Bhattacharya, Sima; Mandi, Sukumar; Tarafdar, Jayanta

    2010-01-01

    In this study, attention was paid to investigate the effect of organophosphate insecticides, profenofos 40% EC, methyl parathion (metacid) 50% EC, and neem-based product nimbecidine 0.03% EC (from Azadirachta indica) on somatic chromosomal behavior, level of leaf protein, and activity of antioxidant enzymes in Lathyrus sativus L., the leguminous herb. The experiments on somatic chromosomes of root tip cells of L. sativus L. revealed that most common type of abnormalities were anaphase bridge, chromosome fragment, breaks, giant interphase, etc. Also, the mitotic index reduced and abnormality index enhanced, which were directly proportional to the rise in concentration as well as time period of exposure of chemicals. The profenofos and metacid induced drastic changes in mitotic index when compared with nimbecidine. The electrophoretic studies of leaf protein of L. sativus L. showed alteration of some major and minor protein bands subjected to spraying of organophosphate insecticides and induced to synthesize additional high molecular mass protein compared to untreated control. Analysis of SOD, EST, and POD activity by non-denaturing polyacrylamide gel electrophoresis showed different patterns of the isoforms. Complete inhibition of EST was observed in profenofos-treated plants, while with metacid- and nimbecidine-treated plants EST was suppressed. Induction and/or increased activities of SOD and POD were generally enhanced. Our present study not only provides the important information for better understanding of the toxic and tolerance mechanisms, but as well can be used as a bio-indicator for contamination by pesticides, which could cause genetic instabilities of natural plant populations and in crop varieties.

  14. Pesticide induced alterations in marrow physiology and depletion of stem and stromal progenitor population: an experimental model to study the toxic effects of pesticide.

    PubMed

    Chatterjee, Sumanta; Basak, Pratima; Chaklader, Malay; Das, Prosun; Pereira, Jacintha Archana; Chaudhuri, Samaresh; Law, Sujata

    2014-01-01

    Long-term exposure of agriculturally used organochloride and organophosphate pesticides have been shown to cause long-lasting hematotoxicity and increased incidence of aplastic anemia in humans. The mechanisms involved in pesticide induced hematotoxicity and the features of toxicity that may play a major role in bone marrow suppression are not known. The aim of the present study was to investigate the hematological consequences of pesticide exposure in swiss albino mice exposed to aqueous mixture of common agriculturally used pesticides for 6 h/day, 5 days/week for 13 weeks. After the end of last exposure, without a recovery period, the strong hematotoxic effect of pesticide was assessed in mice with long-term bone marrow explant culture (LTBMC-Ex) system and cell colony forming assays. Bone marrow explant culture from the pesticide exposed group of mice failed to generate a supportive stromal matrix and did not produce adequate number of hematopoietic cells and found to contain largely the adipogenic precursors. The decreased cell colony numbers in the pesticide exposed group indicated defective maturational and functional status of different marrow cell lineages. As a whole, exposure of mice to the mixture of pesticides reduced the total number of bone marrow cells (granulocytes are the major targets of pesticide toxicity), hematopoietic, and non-hematopoietic progenitor cells and most of the hematological parameters. Replication of primitive stem/progenitor cells in the marrow was decreased following pesticide exposure with G0/G1-phase arrest of most of the cells. The progenitor cells showed decreased percentage of cells in S/G2/M-phase. The increased apoptosis profile of the marrow progenitors (Increased CD95 expression) and primitive stem cells (High Annexin-V positivity on Sca1+ cells) with an elevated intracellular cleaved caspase-3 level on the Sca1+ bone marrow cells provided the base necessary for explaining the deranged bone marrow microenvironmental

  15. Deaths from pesticide poisoning in Spain from 1991 to 1996.

    PubMed

    Garcia-Repetto, R; Soria, M L; Gimenez, M P; Menendez, M; Repetto, M

    1998-06-01

    Data on 184 deaths from pesticide poisonings that occurred in Spain from 1991 to 1996 have been collated via a survey from the National Institute of Toxicology, Sevilla. Organophosphates and carbamates accounted for the majority of the cases. Other substances involved were organochlorines such as endosulfan and the herbicide paraquat.

  16. Detoxification of organophosphate residues using phosphotriesterase and their evaluation using flow based biosensor.

    PubMed

    Mishra, Rupesh K; Istamboulie, George; Bhand, Sunil; Marty, Jean-Louis

    2012-10-01

    Among known pesticide groups, organophosphates (OPs) have grasped attention due to their hazardous nature and their applications as pesticides and chemical weapons. This work presents the development of cost-effective column based biosensor for detoxification of OPs in water and milk. Enzyme phosphotriesterase (PTE) was immobilized on an activated Sepharose 4B via covalent coupling using an Omnifit glass column. Three different OPs, ethyl paraoxon (EPOx), malaoxon (MAO) and chlorpyriphos-oxon (CPO) were spiked in water and milk to test the detoxification of OPs. Mixtures of these pesticides were also tested to check the cumulative detoxification in the real samples. The efficiency of detoxification was evaluated using a highly sensitive acetylcholinesterase (AChE) B394 biosensor based flow system. The column conditions were optimized for the detoxification studied. The method was shown to be promising when we tested real milk samples spiked with OPs. Detoxification obtained in milk was up to 86% whereas in water, 100% detoxification was obtained.

  17. Micronuclei and pesticide exposure.

    PubMed

    Bolognesi, Claudia; Creus, Amadeu; Ostrosky-Wegman, Patricia; Marcos, Ricard

    2011-01-01

    Micronucleus (MN) is a biomarker widely used in biomonitoring studies carried out to determine the genetic risk associated to pesticide exposure. Many in vitro and in vivo studies, as well as epidemiological approaches, have demonstrated the ability of certain chemical pesticides to produce genetic effects including cancer and other chronic pathologies in humans; thus, biomonitoring studies have been carried out to characterise the genetic risk associated to pesticide exposure. It must be noted that 'pesticide exposure' is a broad term covering complex mixtures of chemicals and many variables that can reduce or potentiate their risk. In addition, there are large differences in pesticides used in the different parts of the world. Although pesticides constitute a wide group of environmental pollutants, the main focus on their risk has been addressed to people using pesticides in their working places, at the chemical industry or in the crop fields. Here, we present a brief review of biomonitoring studies carried out in people occupationally exposed to pesticides and that use MN in lymphocytes or buccal cells as a target to determine the induction of genotoxic damage. Thus, people working in the chemical industry producing pesticides, people spraying pesticides and people dedicated to floriculture or agricultural works in general are the subject of specific sections. MN is a valuable genotoxic end point when clear exposure conditions exist like in pesticide production workers; nevertheless, better study designs are needed to overcome the uncertainty in exposure, genetic susceptibility and statistical power in the studies of sprayers and floriculture or agricultural workers.

  18. Microplate assay analysis of the distribution of organophosphate and carbamate resistance in Guatemalan Anopheles albimanus

    PubMed Central

    Brogdon, W. G.; Beach, R. F.; Stewart, J. M.; Castanaza, L.

    1988-01-01

    Simple microplate assay methods for determining the frequency of insecticide resistance in single mosquitos were used to study the distribution and localization of organophosphate and carbamate resistance in field populations of Anopheles albimanus Weidemann in Guatemala, where such resistance, caused by heavy use of agricultural pesticides, has long been assumed to be widespread. Areas of complete susceptibility to organophosphates and carbamates were observed, as well as areas where the resistant phenotypes represented up to 98% of the population. Overall, the resistance levels were lower and more localized than expected. Two mechanisms of resistance were identified by the microassay methods. These were the elevated esterase (nonspecific esterase) and insensitive acetylcholinesterase mechanisms which were selected independently, the former (documented for the first time in Central American anophelines) being predominant. These methods represent a promising new technology for the detection and assessment of resistance and will facilitate improved control strategy decisions. PMID:3262440

  19. Optimization of Therapeutic Strategies for Organophosphate Poisoning

    DTIC Science & Technology

    2008-03-01

    reaction rate constants (Thiermann and others, 1999:234). In 2007, Bartling , Worek, Szinicz, and Thiermann investigated the reactions between...organophosphates and esterases ( Bartling and others 2007:166). In their article the researchers provided chemical kinetic rate constants for several...organophosphates, which proved useful for the work presented in this thesis ( Bartling and others, 2007:169). 31 III. Methodology Modeling Tool Model

  20. Farmers' knowledge, practices and injuries associated with pesticide exposure in rural farming villages in Tanzania

    PubMed Central

    2014-01-01

    Background Pesticides in Tanzania are extensively used for pest control in agriculture. Their usage and unsafe handling practices may potentially result in high farmer exposures and adverse health effects. The aim of this study was to describe farmers’ pesticide exposure profile, knowledge about pesticide hazards, experience of previous poisoning, hazardous practices that may lead to Acute Pesticide Poisoning (APP) and the extent to which APP is reported. Methods The study involved 121 head- of-household respondents from Arumeru district in Arusha region. Data collection involved administration of a standardised questionnaire to farmers and documentation of storage practices. Unsafe pesticide handling practices were assessed through observation of pesticide storage, conditions of personal protective equipment (PPE) and through self-reports of pesticide disposal and equipment calibration. Results Past lifetime pesticide poisoning was reported by 93% of farmers. The agents reported as responsible for poisoning were Organophosphates (42%) and WHO Class II agents (77.6%). Storage of pesticides in the home was reported by 79% of farmers. Respondents with higher education levels were significantly less likely to store pesticides in their home (PRR High/Low = 0.3; 95% CI = 0.1-0.7) and more likely to practice calibration of spray equipment (PRR High/Low = 1.2; 95% CI = 1.03-1.4). However, knowledge of routes of exposure was not associated with safety practices particularly for disposal, equipment wash area, storage and use of PPE . The majority of farmers experiencing APP in the past (79%) did not attend hospital and of the 23 farmers who did so in the preceding year, records could be traced for only 22% of these cases. Conclusions The study found a high potential for pesticide exposure in the selected community in rural Tanzania, a high frequency of self-reported APP and poor recording in hospital records. Farmers’ knowledge levels appeared to be unrelated to their

  1. Mitigating with macrophytes: submersed plants reduce the toxicity of pesticide-contaminated water to zooplankton.

    PubMed

    Brogan, William R; Relyea, Rick A

    2013-03-01

    In ecotoxicology, appreciation is growing for the influence that ecological interactions have on the toxicity of contaminants, such as insecticides, to sensitive species. Most previous studies, however, have focused on factors that exacerbate insecticide effects on species, while factors that may mitigate these effects have been relatively ignored. In aquatic habitats, a small number of studies have shown that submersed macrophytes can remove some insecticides from the water column via sorption. Although examining sorption dynamics is important for understanding the environmental fate of insecticides, whether and to what extent macrophytes actually mitigate insecticide effects on aquatic species remains unknown. In the present study, the authors examined how much and how quickly several realistic densities of the macrophyte Elodea canadensis decreased the toxicity of the insecticide malathion to Daphnia magna, a keystone aquatic herbivore. To do this, the authors quantified Daphnia survival in outdoor test systems (0.95 L) exposed to a factorial combination of five Elodea densities crossed with five malathion concentrations. The authors discovered that malathion's lethality to Daphnia decreased with increasing Elodea density. Furthermore, the rate at which Elodea reduced malathion's toxicity in the water column increased with macrophyte density. These results provide strong evidence that submersed macrophytes can mitigate the ecological impacts of a popular insecticide and further support that ecological interactions can strongly influence contaminant environmental effects.

  2. Effects of pesticides on songbird productivity in conjunction with pecan cultivation in southern Georgia: A multiple-exposure experimental design

    USGS Publications Warehouse

    Patnode, K.A.; White, D.H.

    1991-01-01

    A prototypic experimental design was used to assess sublethal effects of multiple and varied organophosphates and carbamates on reproduction in birds. The design allowed for classification of pesticide exposure according to toxicity of applied compounds and type and frequency of applications. Daily survival rates (DSRs) of nests, eggs, and nestlings were determined for northern mockingbirds (Mimus polyglottos), brown thrashers (Toxostoma rufum), and northern cardinals (Cardinalis cardinalis) nesting along edges of pecan orchards and row crops in southern Georgia [USA]. Egg and nestling DSRs for all species combined varied inversely (P 0.05) among three exposure levels. Brain cholinesterase activities were age-dependent and substantiated adult, but not nestling, exposure. Results suggest that increasing exposure to pesticides may reduce songbird productivity.

  3. The role of the connectivity in the implementation of mitigation measures to reduce the impact of pesticides in the environment under Mediterranean conditions

    NASA Astrophysics Data System (ADS)

    Fernández-Getino García, Ana Patricia; Alonso Prados, Elena; Alonso Prados, José Luis

    2014-05-01

    Regulation 1107/2009 of the European Commission, establishes the procedure and criteria for approval of active substances and authorization of plant protection products in Europe. One of the aspects to be considered is the assessment of the fate and behavior in the environment of pesticides In this assessment a tiered modeling approach is followed according to the models and scenarios developed by the FOrum for the Co-ordination of pesticide fate models and Their USe, (named as FOCUS models/scenarios). They consider different European scenarios to determine the predicted environmental concentration (PEC) in soil, ground water, surface water and sediment at in-field or edge-of-field scales. During the evaluation process, it is frequent to establish different mitigation measures to reduce the impact of pesticides and to ensure an acceptable risk to non-target species. Parallel to this regulatory process, the directive of sustainable use of pesticides (Directive 2009/128/EC) establishes a framework to reduce the impact of use of pesticides where the implementation of mitigation measures to protect aquatic systems and vulnerable areas will play a main role. Therefore, there is a main need to assess how the risk mitigation measures established at field level under regulation 1107/2009 are acting at landscape/catchment level. The characteristics of the climate, relief and soils in Mediterranean region provoke that soil erosion by water is common at different scales. In arable lands soil rates due to inter-rill, rill and gully erosion may exceed 10 ton/ha/year. This process may be modified by human actions. In this scheme, connectivity concept emerges as essential to understand the transfer process of surface water, sediment and micropollutants throughout catchments and the success of the implemented measures for the sustainable management of pesticides at different scales (field, landscape and catchment levels). In this work a review of published monitoring programs of

  4. Practical Pest Management Strategies to Reduce Pesticide Runoff for Argentine Ant (Hymenoptera: Formicidae) Control.

    PubMed

    Greenberg, Les; Rust, Michael K; Richards, Jaben; Wu, Xiaoqin; Kabashima, John; Wilen, Cheryl; Gan, Jay; Choe, Dong-Hwan

    2014-12-01

    The purpose of this study was to involve pest management professionals in the design of application techniques and strategies that would be efficacious and also reduce insecticide runoff. Our study involved measuring both the efficacy of treatments for the Argentine ant, Linepithema humile (Mayr), and the concurrent runoff of fipronil and pyrethroids. Two collaborating companies used low-impact protocols for controlling ants while minimizing runoff. Protocol 1 involved bimonthly treatments, while Protocol 2 was monthly. Both protocols involved an initial treatment with a fipronil spray around the foundation. At the garage door-driveway interface, the fipronil application was done as a pin stream for Protocol 1, and as a crack and crevice application in the expansion joint near the garage for Protocol 2. Protocol 1 replaced most pyrethroid sprays with bifenthrin granules placed around bushes and away from the driveway. For the next treatment on day 63, Protocol 1 also included cyfluthrin spray treatments around the house foundation and crack and crevice applications around the edge of the driveway. For the first treatment in Protocol 2, the fipronil spray was supplemented with spot treatments of cyfluthrin. For subsequent Protocol 2 treatments, botanical insecticides were applied. For weeks 1 and 2 posttreatment combined, Protocol 1 had significantly higher reductions in ant numbers compared with Protocol 2. Thereafter there were no significant differences between the protocols. Runoff of bifenthrin from the granules used with Protocol 1 was much lower than in previous trials involving bifenthrin sprays. Day 1 fipronil runoff for Protocol 2 was significantly lower than that for Protocol 1. This difference may be because of the crack and crevice application applied in Protocol 2. Cyfluthrin runoff was minimal for Protocol 2, which involved spot treatments to supplement the fipronil on day 1, or the botanical insecticides for subsequent treatments. Protocol 1 had a

  5. Prenatal Exposure to Organophosphates, Paraoxonase 1, and Cognitive Development in Childhood

    PubMed Central

    Wetmur, James; Chen, Jia; Zhu, Chenbo; Barr, Dana Boyd; Canfield, Richard L.; Wolff, Mary S.

    2011-01-01

    Background: Prenatal exposure to organophosphate pesticides has been shown to negatively affect child neurobehavioral development. Paraoxonase 1 (PON1) is a key enzyme in the metabolism of organophosphates. Objective: We examined the relationship between biomarkers of organophosphate exposure, PON1, and cognitive development at ages 12 and 24 months and 6–9 years. Methods: The Mount Sinai Children’s Environmental Health Study enrolled a multiethnic prenatal population in New York City between 1998 and 2002 (n = 404). Third-trimester maternal urine samples were collected and analyzed for organophosphate metabolites (n = 360). Prenatal maternal blood was analyzed for PON1 activity and genotype. Children returned for neurodevelopment assessments ages 12 months (n = 200), 24 months (n = 276), and 6–9 (n = 169) years of age. Results: Prenatal total dialkylphosphate metabolite level was associated with a decrement in mental development at 12 months among blacks and Hispanics. These associations appeared to be enhanced among children of mothers who carried the PON1 Q192R QR/RR genotype. In later childhood, increasing prenatal total dialkyl- and dimethylphosphate metabolites were associated with decrements in perceptual reasoning in the maternal PON1 Q192R QQ genotype, which imparts slow catalytic activity for chlorpyrifos oxon, with a monotonic trend consistent with greater decrements with increasing prenatal exposure. Conclusion: Our findings suggest that prenatal exposure to organophosphates is negatively associated with cognitive development, particularly perceptual reasoning, with evidence of effects beginning at 12 months and continuing through early childhood. PON1 may be an important susceptibility factor for these deleterious effects. PMID:21507778

  6. BIOSENSORS FOR DIRECT DETERMINATION OF ORGANOPHOSPHATE PESTICIDES. (R828160)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  7. DETERMINATION OF ORGANOPHOSPHATE PESTICIDES IN COMPOSITE DIET SAMPLES

    EPA Science Inventory

    USEPA's National Exposure Research Laboratory conducts research to measure the exposure of individuals to chemical pollutants through the diet, as well as other media. In support of this research, methods are being evaluated for determination of pollutants, including organophosp...

  8. Imidazole Aldoximes Effective in Assisting Butyrylcholinesterase Catalysis of Organophosphate Detoxification

    PubMed Central

    2015-01-01

    Intoxication by organophosphate (OP) nerve agents and pesticides should be addressed by efficient, quickly deployable countermeasures such as antidotes reactivating acetylcholinesterase or scavenging the parent OP. We present here synthesis and initial in vitro characterization of 14 imidazole aldoximes and their structural refinement into three efficient reactivators of human butyrylcholinesterase (hBChE) inhibited covalently by nerve agent OPs, sarin, cyclosarin, VX, and the OP pesticide metabolite, paraoxon. Rapid reactivation of OP–hBChE conjugates by uncharged and nonprotonated tertiary imidazole aldoximes allows the design of a new OP countermeasure by conversion of hBChE from a stoichiometric to catalytic OP bioscavenger with the prospect of oral bioavailability and central nervous system penetration. The enhanced in vitro reactivation efficacy determined for tertiary imidazole aldoximes compared to that of their quaternary N-methyl imidazolium analogues is attributed to ion pairing of the cationic imidazolium with Asp 70, altering a reactive alignment of the aldoxime with the phosphorus in the OP–hBChE conjugate. PMID:24571195

  9. Imidazole aldoximes effective in assisting butyrylcholinesterase catalysis of organophosphate detoxification.

    PubMed

    Sit, Rakesh K; Fokin, Valery V; Amitai, Gabriel; Sharpless, K Barry; Taylor, Palmer; Radić, Zoran

    2014-02-27

    Intoxication by organophosphate (OP) nerve agents and pesticides should be addressed by efficient, quickly deployable countermeasures such as antidotes reactivating acetylcholinesterase or scavenging the parent OP. We present here synthesis and initial in vitro characterization of 14 imidazole aldoximes and their structural refinement into three efficient reactivators of human butyrylcholinesterase (hBChE) inhibited covalently by nerve agent OPs, sarin, cyclosarin, VX, and the OP pesticide metabolite, paraoxon. Rapid reactivation of OP-hBChE conjugates by uncharged and nonprotonated tertiary imidazole aldoximes allows the design of a new OP countermeasure by conversion of hBChE from a stoichiometric to catalytic OP bioscavenger with the prospect of oral bioavailability and central nervous system penetration. The enhanced in vitro reactivation efficacy determined for tertiary imidazole aldoximes compared to that of their quaternary N-methyl imidazolium analogues is attributed to ion pairing of the cationic imidazolium with Asp 70, altering a reactive alignment of the aldoxime with the phosphorus in the OP-hBChE conjugate.

  10. Phyt'Eaux Cités: application and validation of a programme to reduce surface water contamination with urban pesticides.

    PubMed

    Botta, Fabrizio; Fauchon, Nils; Blanchoud, Hélène; Chevreuil, Marc; Guery, Bénédicte

    2012-01-01

    This paper presents first results of Phyt'Eaux Cités, a program put in place by the local water supply agency, the SEDIF (Syndicat des Eaux d'Ile-de-France), in collaboration with 73 local authorities, private societies and institutional offices (365 km(2)). The challenges included: measurement of the previous surface water contamination, control of urban pesticide applications, prevention of pesticide hazard on users and finally a overall reduction of surface water contamination. An inquiry on urban total pesticide amount was coupled with a surface water bi-weekly monitoring to establish the impact of more than 200 molecules upon the Orge River. For 2007, at least 4400 kg and 92 type of pesticides (essentially herbicides) were quantified for all urban users in the Phyt'Eaux Cités perimeter. At the outlet of the Orge River (bi-weekly sampling in 2007), 11 molecules were always detected above 0.1 μg L(-1). They displayed the mainly urban origin of pesticide surface water contamination. Amitrole, AMPA (Aminomethyl Phosphonic Acid), demethyldiuron, diuron, glyphosate and atrazine were quantified with a 100% of frequency in 2007 and 2008 at the Orge River outlet. During the year, peaks of contamination were also registered for MCCP, 2,4 MCPA, 2,4 D, triclopyr, dichlorprop, diflufènican, active substances used in large amount in the urban area. However, some other urban molecules, such as isoxaben or flazasulfuron, were detected with low frequency. During late spring and summer, contamination patterns and load were dominated by glyphosate, amitrole and diuron, essentially applied by cities and urban users. Both isoproturon and chlortoluron were quantified during autumn and winter months according to upstream agricultural practices. In conclusion, 3 years after the beginning of this programme, the cities reduced the use of 68% of the total pesticide amount. An improvement on surface water quality was found from 2008 and during 2009 for all pesticides. In particular

  11. Acetylcholinesterase activity in grass shrimp and aqueous pesticide levels from South Florida drainage canals.

    PubMed

    Key, P B; Fulton, M H; Harman-Fetcho, J A; McConnell, L L

    2003-10-01

    Freshwater drainage canals in South Florida are utilized to manage water in agricultural, urban, and water conservation areas and, as a result, collect urban and agricultural storm runoff that is discharged into the Atlantic Ocean and Gulf of Mexico. Pesticides in this runoff may be toxic to the biota inhabiting these waters. This study evaluated the effects of contaminants in South Florida canals draining into Biscayne Bay on the estuarine grass shrimp (Palaemonetes intermedius), a representative invertebrate species. Results of surface water analysis for pesticides indicated that eight pesticides out of 52 analyzed were detected. The herbicide metolachlor was found at all nine sites in the five canals sampled at concentrations up to 119 ng/L. Atrazine was detected at seven sites at concentrations up to 29 ng/L. Three organophosphate insecticides (chlorpyrifos, malathion, diazinon) were detected at three sites in two canals (Military and North). Grass shrimp from these three sites showed significantly reduced levels of the acetylcholinesterase enzyme as compared to control shrimp. These two canals are similar in the land use areas drained--urban and suburban and agriculture. The results suggest that monitoring organisms for AChE levels can be a means of detecting exposure to organophosphorus pesticide contamination.

  12. AN ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) TESTING OF ENZYMATIC TEST KITS FOR WARFARE AGENTS AND PESTICIDES IN DRINKING WATER

    EPA Science Inventory

    Enzymatic test kits, generally designed to be handheld and portable, detect the presence of chemical agents, carbamate pesticides, and/or organophosphate pesticides by relying on the reaction of the cholinesterase enzyme. Under normal conditions, the enzyme reacts as expected wi...

  13. Pesticide Registration

    EPA Pesticide Factsheets

    This site provides resources for an individual or company wanting to register a pesticide active ingredient or pesticide product in the United States. Features: a manual (blue book), other guidance, and coordinated lists of requirements by pesticide type.

  14. Pesticide-induced quadriplegia in a 55-year-old woman.

    PubMed

    Beavers, Charles T; Parker, Joseph J; Flinchum, Dane A; Weakley-Jones, Barbara A; Jortani, Saeed A

    2014-12-01

    Acephate is a commercial organophosphate pesticide formerly used in households and now used primarily for agriculture. Poisoning symptoms include salivation, lacrimation, urination, defecation, gastrointestinal illness, and emesis. In addition to these classic symptoms, neurodegeneration can result from increased and continued exposure of organophosphates. This 55-year-old woman presented with organophosphate-induced delayed neuropathy in the form of quadriplegia due to the commonly used pesticide acephate. She was exposed to this pesticide through multiple sprayings in her work office with underrecognized poisoning symptoms. She presented to her primary care physician with neuropathic pain and paralysis in her arm following the sprayings and eventual complete paralysis. The patient lived for 2 years following her toxic exposure and quadriplegia. A complete autopsy after her death confirmed a transverse myelitis in her spinal cord. We conclude that in susceptible individuals, acephate in excessive amounts can produce severe delayed neurotoxicity as demonstrated in animal studies.

  15. Reproductive effects in birds exposed to pesticides and industrial chemicals.

    PubMed Central

    Fry, D M

    1995-01-01

    Environmental contamination by agricultural chemicals and industrial waste disposal results in adverse effects on reproduction of exposed birds. The diversity of pollutants results in physiological effects at several levels, including direct effects on breeding adults as well as developmental effects on embryos. The effects on embryos include mortality or reduced hatchability, failure of chicks to thrive (wasting syndrome), and teratological effects producing skeletal abnormalities and impaired differentiation of the reproductive and nervous systems through mechanisms of hormonal mimicking of estrogens. The range of chemical effects on adult birds covers acute mortality, sublethal stress, reduced fertility, suppression of egg formation, eggshell thinning, and impaired incubation and chick rearing behaviors. The types of pollutants shown to cause reproductive effects include organochlorine pesticides and industrial pollutants, organophosphate pesticides, petroleum hydrocarbons, heavy metals, and in a fewer number of reports, herbicides, and fungicides. o,p'-DDT, polychlorinated biphenyls (PCBs), and mixtures of organochlorines have been identified as environmental estrogens affecting populations of gulls breeding in polluted "hot spots" in southern California, the Great Lakes, and Puget Sound. Estrogenic organochlorines represent an important class of toxicants to birds because differentiation of the avian reproductive system is estrogen dependent. PMID:8593865

  16. Reproductive effects in birds exposed to pesticides and industrial chemicals.

    PubMed

    Fry, D M

    1995-10-01

    Environmental contamination by agricultural chemicals and industrial waste disposal results in adverse effects on reproduction of exposed birds. The diversity of pollutants results in physiological effects at several levels, including direct effects on breeding adults as well as developmental effects on embryos. The effects on embryos include mortality or reduced hatchability, failure of chicks to thrive (wasting syndrome), and teratological effects producing skeletal abnormalities and impaired differentiation of the reproductive and nervous systems through mechanisms of hormonal mimicking of estrogens. The range of chemical effects on adult birds covers acute mortality, sublethal stress, reduced fertility, suppression of egg formation, eggshell thinning, and impaired incubation and chick rearing behaviors. The types of pollutants shown to cause reproductive effects include organochlorine pesticides and industrial pollutants, organophosphate pesticides, petroleum hydrocarbons, heavy metals, and in a fewer number of reports, herbicides, and fungicides. o,p'-DDT, polychlorinated biphenyls (PCBs), and mixtures of organochlorines have been identified as environmental estrogens affecting populations of gulls breeding in polluted "hot spots" in southern California, the Great Lakes, and Puget Sound. Estrogenic organochlorines represent an important class of toxicants to birds because differentiation of the avian reproductive system is estrogen dependent.

  17. Reproductive effects in birds exposed to pesticides and industrial chemicals

    SciTech Connect

    Fry, D.M.

    1995-10-01

    Environmental contamination by agricultural chemicals and industrial waste disposal results in adverse effects on reproduction of exposed birds. The diversity of pollutants results in physiological effects at several levels, including direct effects on breeding adults as well as developmental effects on embryos. The effects on embryos include mortality or reduced hatchability, failure of chicks to thrive (wasting syndrome), and teratological effects producing skeletal abnormalities and impaired differentiation of the reproductive and nervous systems through mechanisms of hormonal mimicking of estrogens. The range of chemical effects on adult birds covers acute mortality, sublethal stress, reduced fertility, suppression of egg formation, eggshell thinning, and impaired incubation and chick rearing behaviors. The types of pollutants shown to cause reproductive effects include organochlorine pesticides and industrial pollutants, organophosphate pesticides, petroleum hydrocarbons, heavy metals, and in a fewer number of reports, herbicides, and fungicides. o,p`-DDT, polychlorinated biphenyls (PCBs), and mixtures of organochlorines have been identified as environmental estrogens affecting populations of gulls breeding in polluted {open_quotes}hot spots{close_quotes} in southern California, the Great Lakes, and Puget Sound. Estrogenic organochlorines represent an important class of toxicants to birds because differentiation of the avian reproductive system is estrogen dependent. 85 refs.

  18. Rapid and reliable screening method for detection of 70 pesticides in whole blood by gas chromatography-mass spectrometry using a constructed calibration-locking database.

    PubMed

    Kudo, Keiko; Nagamatsu, Kumi; Umehara, Takahiro; Usumoto, Yosuke; Sameshima, Naomi; Tsuji, Akiko; Ikeda, Noriaki

    2012-03-01

    Pesticide poisoning is one of the most common causes of death by poisoning in Japan, and various kinds of pesticides including organophosphates, carbamates and pyrethroids are listed as causative substances. The purpose of our study was to develop a rapid and reliable screening method for various kinds of pesticides in whole blood by using a unique calibration-locking database and gas chromatography-mass spectrometry. A database of 70 pesticides was constructed using NAGINATA™ software with parameters such as mass spectrum, retention time and qualifier ion/target ion ratio (QT ratio) and calibration curve. Diazepam-d(5) was used as the internal standard for construction of each calibration curve within the range of 0.01-5.0 μg/ml. We examined the applicability of the constructed database by analyzing whole blood samples spiked with 70 pesticides. The pesticides in blood were extracted with hexane under acidic conditions or with an enhanced polymer column (Focus™), subjected to GC-MS, and screened by the pesticides database. Among the 70 pesticides examined, 66 and 62 were successfully identified at the level of 1 and 0.1 μg/ml, respectively, by hexane and 63 and 51 were identified by the Focus column without the use of standard compounds. The time required for data analysis was significantly reduced. Since the established method can produce qualitative and semi-quantitative data without the need for standard substances, this new screening method using NAGINATA™ should be useful for confirming the presence of pesticides in blood in future clinical and forensic cases.

  19. DETERMINATION OF PESTICIDES IN COMPOSITE DIETARY SAMPLES BY GAS CHROMATOGRAPHY/MASS SPECTROMETRY IN THE SELECTED ION MONITORING MODE USING A TEMPERATURE PROGRAMMABLE LARGE VOLUME INJECTOR WITH PRE-SEPARATION COLUMN

    EPA Science Inventory

    Use of a temperature-programmable pre-separation column in the gas chromatographic injection port permits determination of a wide range of semi-volatile pesticides including organochlorines, organophosphates, triazines, and anilines in fatty composite dietary samples while reduci...

  20. Role of Magnetic Resonance Imaging in Diagnosing Neurological Complications in Intermediate Syndrome of Organophosphate Poisoning

    PubMed Central

    Ravikanth, Reddy

    2017-01-01

    Organophosphate poisoning (OP) is a very common mode of suicide in rural and urban areas due to the wide availability of pesticides. The identification of OP and timely referral for appropriate supportive care can be lifesaving. Injury to the central nervous system is a serious entity in acute OP. Application of modern imaging techniques like diffusion weighted imaging increases the diagnostic rate of brain injury in the early period and can provide evidence for medical treatment. We present the imaging features in the intermediate syndrome of OP. PMID:28250609

  1. Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees

    PubMed Central

    Palmer, Mary J.; Moffat, Christopher; Saranzewa, Nastja; Harvey, Jenni; Wright, Geraldine A.; Connolly, Christopher N.

    2013-01-01

    Pesticides that target cholinergic neurotransmission are highly effective, but their use has been implicated in insect pollinator population decline. Honeybees are exposed to two widely used classes of cholinergic pesticide: neonicotinoids (nicotinic receptor agonists) and organophosphate miticides (acetylcholinesterase inhibitors). Although sublethal levels of neonicotinoids are known to disrupt honeybee learning and behaviour, the neurophysiological basis of these effects has not been shown. Here, using recordings from mushroom body Kenyon cells in acutely isolated honeybee brain, we show that the neonicotinoids imidacloprid and clothianidin, and the organophosphate miticide coumaphos oxon, cause a depolarization-block of neuronal firing and inhibit nicotinic responses. These effects are observed at concentrations that are encountered by foraging honeybees and within the hive, and are additive with combined application. Our findings demonstrate a neuronal mechanism that may account for the cognitive impairments caused by neonicotinoids, and predict that exposure to multiple pesticides that target cholinergic signalling will cause enhanced toxicity to pollinators. PMID:23535655

  2. Supercritical fluid extraction of pesticides from a table-ready food composite of plant origin (gazpacho).

    PubMed

    Aguilera, Ana; Brotons, María; Rodríguez, Mariano; Valverde, Antonio

    2003-09-10

    Supercritical fluid carbon dioxide extraction (SFE) has been evaluated for the extraction of 17 organohalogen and organophosphate pesticides in gazpacho (a table-ready food composite containing crude vegetables, white bread, vegetable oil, water, and other minor components) using anhydrous magnesium sulfate as drying agent. The effects of different parameters, such as fat content in gazpacho composites, magnesium sulfate/gazpacho ratio, supercritical fluid volume, pressure, temperature, and static modifier additions, on SFE recoveries from spiked gazpacho samples have been studied. Analyses were performed by gas chromatography (GC) with flame photometric (FPD), electron capture (ECD), and mass spectrometry (MSD) detectors. In most experiments, recoveries obtained for the nonpolar organohalogen pesticides were lower than those obtained for the most polar organophosphate pesticides, but overall pesticide recoveries determined by using the optimal SFE conditions indicate that SFE could be used to determine pesticide residue levels in gazpacho.

  3. Reducing the impact of pesticides on biological control in Australian vineyards: pesticide mortality and fecundity effects on an indicator species, the predatory mite Euseius victoriensis (Acari: Phytoseiidae).

    PubMed

    Bernard, Martina B; Cole, Peter; Kobelt, Amanda; Horne, Paul A; Altmann, James; Wratten, Stephen D; Yen, Alan L

    2010-12-01

    Laboratory bioassays on detached soybean, Glycine max (L.) Merr., leaves were used to test 23 fungicides, five insecticides, two acaricides, one herbicide, and two adjuvants on a key Australian predatory mite species Euseius victoriensis (Womersley) in "worst-case scenario" direct overspray assays. Zero- to 48-h-old juveniles, their initial food, and water supply were sprayed to runoff with a Potter tower; spinosad and wettable sulfur residues also were tested. Tests were standardized to deliver a pesticide dose comparable with commercial application of highest label rates at 1,000 liter/ha. Cumulative mortality was assessed 48 h, 4 d, and 7 d after spraying. Fecundity was assessed for 7 d from start of oviposition. No significant mortality or fecundity effects were detected for the following compounds at single-use application at 1,000 liter/ha: azoxystrobin, Bacillus thuringiensis (Bt) subsp. kurstaki, captan, chlorothalonil, copper hydroxide, fenarimol, glyphosate, hexaconazole, indoxacarb, metalaxyl/copper hydroxide, myclobutanil, nonyl phenol ethylene oxide, phosphorous acid, potassium bicarbonate, pyraclostrobin, quinoxyfen, spiroxamine, synthetic latex, tebufenozide, triadimenol, and trifloxystrobin. Iprodione and penconazole had some detrimental effect on fecundity. Canola oil as acaricide (2 liter/100 liter) and wettable sulfur (200 g/100 liter) had some detrimental effect on survival and fecundity and cyprodinil/fludioxonil on survivor. The following compounds were highly toxic (high 48-h mortality): benomyl, carbendazim, emamectin benzoate, mancozeb, spinosad (direct overspray and residue), wettable sulfur (> or = 400 g/100 liter), and pyrimethanil; pyrimethanil had no significant effect on fecundity of surviving females. Indoxacarb safety to E. victoriensis contrasts with its toxicity to key parasitoids and chrysopid predators. Potential impact of findings is discussed.

  4. Land-based sources of marine pollution: Pesticides, PAHs and phthalates in coastal stream water, and heavy metals in coastal stream sediments in American Samoa.

    PubMed

    Polidoro, Beth A; Comeros-Raynal, Mia T; Cahill, Thomas; Clement, Cassandra

    2017-03-15

    The island nations and territories of the South Pacific are facing a number of pressing environmental concerns, including solid waste management and coastal pollution. Here we provide baseline information on the presence and concentration of heavy metals and selected organic contaminants (pesticides, PAHs, phthalates) in 7 coastal streams and in surface waters adjacent to the Futiga landfill in American Samoa. All sampled stream sediments contained high concentrations of lead, and some of mercury. Several coastal stream waters showed relatively high concentrations of diethyl phthalate and of organophosphate pesticides, above chronic toxicity values for fish and other aquatic organisms. Parathion, which has been banned by the US Environmental Protection Agency since 2006, was detected in several stream sites. Increased monitoring and initiatives to limit non-point source land-based pollution will greatly improve the state of freshwater and coastal resources, as well as reduce risks to human health in American Samoa.

  5. Changing sources and environmental factors reduce the rates of decline of organochlorine pesticides in the Arctic atmosphere

    NASA Astrophysics Data System (ADS)

    Becker, S.; Halsall, C. J.; Tych, W.; Kallenborn, R.; Schlabach, M.; Manø, S.

    2012-05-01

    An extensive database of organochlorine (OC) pesticide concentrations measured at the Norwegian Arctic monitoring station at Ny-Ålesund, Svalbard, was analysed to assess longer-term trends in the Arctic atmosphere. Dynamic Harmonic Regression (DHR) is employed to investigate the seasonal and cyclical behaviour of chlordanes, DDTs and hexachlorobenzene (HCB), and to isolate underlying inter-annual trends. Although a simple comparison of annual mean concentrations (1994-2005) suggest a decline for all of the OCs investigated, the longer-term trends identified by DHR only show a significant decline for p,p'-DDT. Indeed, HCB shows an increase from 2003-2005. This is thought to be due to changes in source types and the presence of impurities in current use pesticides, together with retreating sea ice affecting air-water exchange. Changes in source types were revealed by using isomeric ratios for the chlordanes and DDTs. Declining trends in ratios of trans-chlordane/cis-chlordane (TC/CC) indicate a shift from primary sources, to more "weathered" secondary sources, whereas an increasing trend in o,p'-DDT/p,p'-DDT ratios indicate a shift from use of technical DDT to dicofol. Continued monitoring of these OC pesticides is required to fully understand the influence of a changing climate on the behaviour and environmental cycling of these chemicals in the Arctic as well as possible impacts from "new" sources.

  6. Pharmacokinetic Potentiation of Mixed Organophosphate and Pyrethroid Poison Leading to Prolonged Delayed Neuropathy

    PubMed Central

    Srinivasan, Meenakshi; Amin, Ruhul; Nagiri, Shivashankar Kaniyoor; Kudru, Chandrashekar Udyavara

    2016-01-01

    Organophosphate (OP) and mixed pesticide poisoning remains an important cause of hospital admission. Therefore, physician must be aware of atypical presentations of delayed neurological complications of poisoning by taking proper patient history. We report a case of a 23-year-old female who presented with high stepping gait and muscle wasting in hands. Patient history revealed consumption of approximately 4ml of mixed pesticide, consisting of 50% chlorpyrifos with synthetic pyrethroid, 5% cypermethrin. The prolonged and severe nature of delayed peripheral neuropathy, persisting at two years of follow-up, suggests that even small quantities of OP taken in combination with a pyrethroid can result in significant morbidity and is irreversible. PMID:28050396

  7. Efficacy of constructed wetlands in pesticide removal from tailwaters in the Central Valley, California.

    PubMed

    Budd, Robert; O'Geen, Anthony; Goh, Kean S; Bondarenko, Svetlana; Gan, Jay

    2009-04-15

    Pollutants in agricultural irrigation return flow (tailwater) constitute a significant nonpoint source of pollution in intensive agricultural regions such as the Central Valley of California. Constructed wetlands (CWs) represent a feasible mitigation option to remove pollutants including pesticides in the tailwater. In this study, we evaluated two CWs in the Central Valley for their performance in removing pyrethroid and organophosphate insecticides under field-scale production conditions. Both CWs were found to be highly effective in reducing pyrethroid concentrations in the tailwater, with season-average concentration reductions ranging from 52 to 94%. The wetlands also reduced the flow volume by 68-87%, through percolation and evapotranspiration. When both concentration and volume reductions were considered, the season-average removal of pyrethroids ranged from 95 to 100%. The primary mechanism for pyrethroid removal was through sedimentation of pesticide-laden particles, which was influenced by hydraulic residence time and vegetation density. Temporal analysis indicates a potential efficiency threshold during high flow periods. The season-average removal of chlorpyrifos ranged 52-61%. The wetlands, however, were less effective at removing diazinon, likely due to its limited sorption to sediment particles. Analysis of pesticide partitioning showed that pyrethroids were enriched on suspended particles in the tailwater. Monitoring of pesticide association with suspended solids and bed sediments suggested an increased affinity of pyrethroids for lighter particles with the potential to move further downstream before subject to sedimentation. Results from this study show that flow-through CWs, when properly designed, are an effective practice for mitigating hydrophobic pesticides in the irrigation tailwater.

  8. Organophosphate nerve agent toxicity in Hydra attenuata.

    PubMed

    Lum, Karin T; Huebner, Henry J; Li, Yingchun; Phillips, Timothy D; Raushel, Frank M

    2003-08-01

    The toxicity for analogues of sarin (GB), soman (GD), and VX was evaluated using Hydra attenuata as a model organism. The organophosphate nerve agent analogue simulants used in this investigation included the following: isopropyl p-nitrophenyl methylphosphonate (for GB); pinacolyl p-nitrophenyl methylphosphonate (for GD); and diisopropyl S-(2-diisopropylaminoethyl)phosphorothioate, diethyl S-(2-diisopropylaminoethyl)phosphorothioate, and diethyl S-(2-trimethylaminoethyl)phosphorothioate (for VX). The toxicity of each organophosphate nerve agent was assessed quantitatively by measuring the minimal effective concentration within 92 h in H. attenuata. There is a positive correlation between the molecular hydrophobicity of the compound and its ability to cause toxicity. Results from this study indicate the potential for application of this assay in the field of organophosphate chemical warfare agent detection, as well as for the prediction of toxicity of structurally similar organophosphate compounds. The minimal effective concentration for two of the VX analogues was 2 orders of magnitude more toxic than the analogue for GD and 4 orders of magnitude more toxic than the analogue for GB.

  9. Intranasal delivery of obidoxime to the brain prevents mortality and CNS damage from organophosphate poisoning.

    PubMed

    Krishnan, Jishnu K S; Arun, Peethambaran; Appu, Abhilash P; Vijayakumar, Nivetha; Figueiredo, Taíza H; Braga, Maria F M; Baskota, Sudikshya; Olsen, Cara H; Farkas, Natalia; Dagata, John; Frey, William H; Moffett, John R; Namboodiri, Aryan M A

    2016-03-01

    Intranasal delivery is an emerging method for bypassing the blood brain barrier (BBB) and targeting therapeutics to the CNS. Oximes are used to counteract the effects of organophosphate poisoning, but they do not readily cross the BBB. Therefore, they cannot effectively counteract the central neuropathologies caused by cholinergic over-activation when administered peripherally. For these reasons we examined intranasal administration of oximes in an animal model of severe organophosphate poisoning to determine their effectiveness in reducing mortality and seizure-induced neuronal degeneration. Using the paraoxon model of organophosphate poisoning, we administered the standard treatment (intramuscular pralidoxime plus atropine sulphate) to all animals and then compared the effectiveness of intranasal application of obidoxime (OBD) to saline in the control groups. Intranasally administered OBD was effective in partially reducing paraoxon-induced acetylcholinesterase inhibition in the brain and substantially reduced seizure severity and duration. Further, intranasal OBD completely prevented mortality, which was 41% in the animals given standard treatment plus intranasal saline. Fluoro-Jade-B staining revealed extensive neuronal degeneration in the surviving saline-treated animals 24h after paraoxon administration, whereas no detectable degenerating neurons were observed in any of the animals given intranasal OBD 30min before or 5min after paraoxon administration. These findings demonstrate that intranasally administered oximes bypass the BBB more effectively than those administered peripherally and provide an effective method for protecting the brain from organophosphates. The addition of intranasally administered oximes to the current treatment regimen for organophosphate poisoning would improve efficacy, reducing both brain damage and mortality.

  10. Effect of long-term exposure to pesticides on plasma esterases from plastic greenhouse workers.

    PubMed

    Hernández, Antonio; Gómez, M Amparo; Pena, Gloria; Gil, Fernando; Rodrigo, Lourdes; Villanueva, Enrique; Pla, Antonio

    2004-07-23

    Previous reports in animals considered beta-glucuronidase activity as a novel biomarker of anticholinesterase (organophosphates and carbamates) pesticides exposure. Acid phosphatase activity was also shown to increase after organophosphates exposure. In addition, there is evidence that the paraoxonase status influences sensitivity to specific pesticides. In this study, activities of beta-glucuronidase, acid phosphatase, cholinesterase, and paraoxonase were measured in plasma from plastic greenhouse workers exposed over the long term to different pesticides, including organophosphates and carbamates, in order to evaluate the potential chronic toxicity of pesticides at occupational level. Our results show that activities of paraoxonase and cholinesterase were decreased in applicators of pesticides compared to non-applicators. Likewise, it was found that activities of beta-glucuronidase and acid phosphatase were associated with pesticide exposure in humans, and that both biochemical parameters were related to each other. Interestingly, the paraoxonase B allele (phenotyped in plasma) was associated with a higher risk of inhibition of cholinesterase activity above a 25% level, which supports the hypothesis that paraoxonase phenotypes are associated with susceptibility of humans to anticholinesterase pesticides toxicity.

  11. Impacts of hypersaline acclimation on the acute toxicity of the organophosphate chlorpyrifos to salmonids.

    PubMed

    Maryoung, Lindley A; Lavado, Ramon; Schlenk, Daniel

    2014-07-01

    Acclimation to hypersaline conditions enhances the acute toxicity of certain thioether organophosphate and carbamate pesticides in some species of euryhaline fish. As the organophosphate chlorpyrifos is commonly detected in salmonid waterways, the impacts of hypersaline conditions on its toxicity were examined. In contrast to other previously examined pesticides, time to death by chlorpyrifos was more rapid in freshwater than in hypersaline water (16ppth). The median lethal time (LT50) after 100μg/L chlorpyrifos exposure was 49h (95% CI: 31-78) and 120h (95% CI: 89-162) for rainbow trout (Oncorhynchus mykiss) in freshwater and those acclimated to hypersaline conditions, respectively. Previous studies with hypersaline acclimated fish indicated induction of xenobiotic metabolizing enzymes that may detoxify chlorpyrifos. In the current study, chlorpyrifos metabolism was unaltered in liver and gill microsomes of freshwater and hypersaline acclimated fish. Acetylcholinesterase inhibition in brain and bioavailability of chlorpyrifos from the aqueous exposure media were also unchanged. In contrast, mRNA expression of neurological targets: calcium calmodulin dependent protein kinase II delta, chloride intracellular channel 4, and G protein alpha i1 were upregulated in saltwater acclimated fish, consistent with diminished neuronal signaling which may protect animals from cholinergic overload associated with acetylcholinesterase inhibition. These results indicate targets other than acetylcholinesterase may contribute to the altered toxicity of chlorpyrifos in salmonids under hypersaline conditions.

  12. Highly sensitive and selective amperometric microbial biosensor for direct determination of p-nitrophenyl-substituted organophosphate nerve agents.

    PubMed

    Lei, Yu; Mulchandani, Priti; Wang, Joseph; Chen, Wilfred; Mulchandani, Ashok

    2005-11-15

    We report herein a whole cell-based amperometric biosensor for highly selective, highly sensitive, direct, single-step, rapid, and cost-effective determination of organophosphate pesticides with a p-nitrophenyl substituent. The biosensor was comprised of a p-nitrophenol degrader, Pseudomonas putida JS444, genetically engineered to express organophosphorus hydrolase (OPH) on the cell surface immobilized on the carbon paste electrode. Surface-expressed OPH catalyzed hydrolysis of the p-nitrophenyl substituent organophosphorus pesticides such as paraoxon, parathion, and methyl parathion to release p-nitrophenol, which was subsequently degraded by the enzymatic machinery of P. putida JS444. The electrooxidization current of the intermediates was measured and correlated to the concentration of organophosphates. The best sensitivity and response time were obtained using a sensor constructed with 0.086 mg dry weight of cells operating at 600 mV applied potential (vs Ag/AgCl reference) in 50 mM citrate--phosphate pH 7.5 buffer with 50 microM CoCl2 at room temperature. Under optimum operating conditions the biosensor measured as low as 0.28 ppb of paraoxon, 0.26 ppb of methyl parathion, and 0.29 ppb parathion. These detection limits are comparable to cholinesterase inhibition-based biosensors. Unlike the inhibition-based format, this biosensor manifests a selective response to organophosphate pesticides with a p-nitrophenyl substituent only, has a simplified single-step protocol with short response time, and can be used for repetitive/multiple and on-line analysis. The service life of the microbial amperometric biosensor was 5 days when stored in the operating buffer at 4 degrees C. The new biosensor offers great promise for rapid environmental monitoring of OP pesticides with nitrophenyl substituent.

  13. Increasing pesticide-resistant ectoparasitic infections may increase pesticide poisoning risks in children.

    PubMed

    Diaz, James H

    2008-01-01

    Head louse and scabies mite infestations are common among pre-school and school-age children, and topical pesticides are frequently prescribed to treat such conditions. Ectoparasite resistance to the safest and most commonly prescribed pyrethrin/pyrethroid pesticides for ectoparasitic infections has, however, been increasing since the 1980s. The increasing resistance of these arthropods to the safest pesticides may lead to greater use of more toxic, alternative pesticides to control infestations and to prevent institutional outbreaks. MEDLINE and Cochrane searches, 1966-2008, were conducted to assess the impact of increasing pesticide resistance on prescribing practices for ectoparasitic infections and to describe the evolving global epidemiology of pediatric poisonings by more toxic pediculicides and miticides, including carbamates, organochlorines, and organophosphates. Pharmacists, physicians, and poison control personnel should be fully informed about increasing pesticide resistance among the most commonly encountered ectoparasites of children and the institutionalized and be prepared to prevent and to treat accidental home and institutional pesticide poisonings with more toxic pesticides.

  14. Citizen's Guide to Pest Control and Pesticide Safety

    EPA Pesticide Factsheets

    Teaches consumers how to control pests, choose, use, store, and dispose pesticides safely, reduce exposure when others use pesticides, prevent pesticide poisoning, handle an emergency, and how to choose a pest control company.

  15. Pesticide Volatilization

    EPA Pesticide Factsheets

    We consider the risks posed when pesticides volatilize during or after application. The movement of vapors through the air is not the same as pesticide movement by spray drift, erosion, or windblown soil particles.

  16. Antimicrobial Pesticides

    MedlinePlus

    Jump to main content US EPA United States Environmental Protection Agency Search Search Pesticides Share Facebook Twitter Google+ ... of antimicrobial pesticides (Part 158W) Antimicrobials play an important role in public health and safety. While providing ...

  17. Pesticide Tolerances

    EPA Pesticide Factsheets

    EPA regulates pesticides used to protect crops and sets limits on the amount of pesticide remaining in or on foods in the U.S. The limits on pesticides on foods are called tolerances in the U.S. (maximum residue limits (MRLs) in many other countries).

  18. Mutagenicity Assessment of Organophosphates using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism Assay

    PubMed Central

    Bhinder, Preety; Chaudhry, Asha

    2013-01-01

    Objectives: In this study we have evaluated the mutagenicity of organophosphate pesticides acephate, chlorpyrifos, and profenofos using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay with the mosquito Culex quinquefasciatus taken as an experimental model. Materials and Methods: Second instar larvae were treated with LC20 of each pesticide for 24 h and mutations induced in the sequence of mitochondrial COII gene (690bp) were studied from restriction patterns generated with AluI, PacI, and PsiI restriction endonucleases. Results: Variations in the number and size of digested fragments were recorded from treated individuals compared with controls showing that the restriction enzymes created a cut at different locations. In addition, sequences of COII gene from control and treated individuals were also used to confirm the RFLP patterns. From the sequence alignment data, it was found that mutations caused the destruction and generation of restriction sites in the gene sequence of treated individuals. Conclusion: This study indicates that all the three pesticides had potential to induce mutations in the normal sequence of COII gene and also advocates the use of PCR-RFLP assay as an efficient, rapid, and sensitive technique to detect mutagenicity of pesticides. PMID:24403735

  19. Creation of catalytic antibodies metabolizing organophosphate compounds.

    PubMed

    Kurkova, I N; Smirnov, I V; Belogurov, A A; Ponomarenko, N A; Gabibov, A G

    2012-10-01

    Development of new ways of creating catalytic antibodies possessing defined substrate specificity towards artificial substrates has important fundamental and practical aspects. Low immunogenicity combined with high stability of immunoglobulins in the blood stream makes abzymes potent remedies. A good example is the cocaine-hydrolyzing antibody that has successfully passed clinical trials. Creation of an effective antidote against organophosphate compounds, which are very toxic substances, is a very realistic goal. The most promising antidotes are based on cholinesterases. These antidotes are now expensive, and their production methods are inefficient. Recombinant antibodies are widely applied in clinics and have some advantage compared to enzymatic drugs. A new potential abzyme antidote will combine effective catalysis comparable to enzymes with high stability and the ability to switch on effector mechanisms specific for antibodies. Examples of abzymes metabolizing organophosphate substrates are discussed in this review.

  20. Organophosphate nerve agent detection with europium complexes.

    PubMed

    Schwierking, Jake R; Menzel, Laird W; Menzel, E Roland

    2004-11-05

    We explore the detection of paraoxon, a model compound for nonvolatile organophosphate nerve agents such as VX. The detection utilizes europium complexes with 1,10 phenanthroline and thenoyltrifluoroacetone as sensitizing ligands. Both europium luminescence quenching and luminescence enhancement modalities are involved in the detection, which is simple, rapid, and sensitive. It is adaptable as well to the more volatile fluorophosphate nerve agents. It involves nothing more than visual luminescence observation under sample illumination by an ordinary hand-held ultraviolet lamp.

  1. Relationship Between Organophosphate Toxicity and Choline Metabolism

    DTIC Science & Technology

    1986-06-06

    Effects of the Organophosphates on the Activity of Phospholipase A2 in a Crude Mitochondrial Fraction from Striatumn 43 LIST OF FIGURES Figure I...Activity of Phospholipase A2 in a Crude Mitochondrial Fraction from Rat Striatum 41 8 1I Figure 7. Effects of DFP on the Postmortem Accumulation of...Accumulation of Choline in the Siaitu and Hippocampus 47 Figure 11. Effects of Chronic Paraoxon Adrninis,,ation on the Development of a Myopathy in Rat

  2. Effect of pesticide exposure on acetylcholinesterase activity in subsistence farmers from Campeche, Mexico.

    PubMed

    Rendón von Osten, Jaime; Epomex, Centro; Tinoco-Ojanguren, Rolando; Soares, Amadeu M V M; Guilhermino, Lucia

    2004-08-01

    The authors surveyed agricultural production methods and pesticide use among subsistence farmers (campesinos) in 4 rural communities of Campeche, Mexico. Self-reports of symptoms of poisoning resulting from occupational pesticide exposure were elicited by questionnaire (N = 121), and acetylcholinesterase (AChE) activity during insecticide use was evaluated from blood samples (N = 127). In individuals from 2 of the 4 communities, AChE activity was significantly lower (p < 0.05) than the mean of activity determined for individuals in a reference group. Results of this study show that erythrocyte AChE inhibition provides a good biomarker of exposure to organophosphate pesticides in field studies with human populations. Carbamates, particularly carbofuran, seem to be more associated with exuberant and diversified symptomatology of pesticide exposure than organophosphates. Studies in field communities where both carbamates and organophosphates are suspected to exist should include blood AChE determinations, symptomatology surveys, and socioeconomic questionnaires. The authors recommend that the Mexican National Health Ministry authorities specify additional provisions regarding the use of protective equipment and the adoption of other safety practices during field work, increase information campaigns about the risks of pesticide use and the value of safety practices, and increase programs of medical monitoring and assistance for rural communities dealing with pesticides.

  3. Does organophosphate poisoning cause cardiac injury?

    PubMed

    Aghabiklooei, Abbas; Mostafazadeh, Babak; Farzaneh, Esmaeil; Morteza, Afsaneh

    2013-11-01

    Organophosphates are insecticides which are widely used as a suicidal agent in Iran. They are associated with different types of cardiac complications including cardiac arrest and arrhythmia, however their role in cardiac injury is not known yet. The aim of this study was to investigate the presence of myocardial damage in patients with cholinesterase poisoning.It was a prospective study conducted from January 2008 to March 2010. Cohorts of patients with cholinesterase poisoning due to suicidal attempt who have been referred to Loghman hospital were selected. Patients who have taken more than one poison or were used concomitant drugs were excluded. Physical examination was performed on admission to discover warning sign. Peripheral arterial blood gases, creatine kinase, creatine kinase-myocardial band, troponin-T measurements were performed in all cases. There were 24 patients, 7 of them women, with the mean age of 41.2±15.05 who were included in this study. Non-survivors had significantly higher levels of systolic blood pressure, partial pressure of oxygen in arterial blood, partial pressure of carbon dioxide, bicarbonate Glasgow Coma Scale scoring and longer duration of mechanical ventilation. Our findings showed that cardiac injury is an important cause of death in organophosphate poisoning. It could be hypothesized that cardiac injury is a strong predictor of death in patients with organophosphate poisoning.

  4. Chiral Pesticides: Identification, Description and Environmental Implications

    EPA Science Inventory

    Anthropogenic chemicals, including pesticides, are a major source of contamination and pollution in the environment. Pesticides have many positive uses: increased food production, decreased damage to crops and structures, reduced disease vector populations, and more. Nevertheless...

  5. Pesticides and childhood cancer.

    PubMed Central

    Zahm, S H; Ward, M H

    1998-01-01

    Children are exposed to potentially carcinogenic pesticides from use in homes, schools, other buildings, lawns and gardens, through food and contaminated drinking water, from agricultural application drift, overspray, or off-gassing, and from carry-home exposure of parents occupationally exposed to pesticides. Parental exposure during the child's gestation or even preconception may also be important. Malignancies linked to pesticides in case reports or case-control studies include leukemia, neuroblastoma, Wilms' tumor, soft-tissue sarcoma, Ewing's sarcoma, non-Hodgkin's lymphoma, and cancers of the brain, colorectum, and testes. Although these studies have been limited by nonspecific pesticide exposure information, small numbers of exposed subjects, and the potential for case-response bias, it is noteworthy that many of the reported increased risks are of greater magnitude than those observed in studies of pesticide-exposed adults, suggesting that children may be particularly sensitive to the carcinogenic effects of pesticides. Future research should include improved exposure assessment, evaluation of risk by age at exposure, and investigation of possible genetic-environment interactions. There is potential to prevent at least some childhood cancer by reducing or eliminating pesticide exposure. PMID:9646054

  6. Agricultural pesticide usage and prioritization in South Korea.

    PubMed

    Cha, Eun Shil; Jeong, Mihye; Lee, Won Jin

    2014-01-01

    This study aims to review agricultural pesticide usage and trends and to identify hazardous pesticides for regulation, in terms of public health, in South Korea. The authors collected data on usage and trends of agricultural pesticides through agriculture-related databases. Criteria from the US Environmental Protection Agency classification for carcinogenicity, World Health Organization classification for acute toxicity, and European Union prioritization list for endocrine-disrupting chemicals were used for the hazard categorization of identified individual active ingredients. Pesticides to be prioritized among all pesticides used in South Korea between 2007 and 2011 were selected by taking into account the volume of usage, toxicity, and epidemiological evidence. Annual agricultural use of pesticides has increased rapidly from the 1970s to 1990s in South Korea, but has declined since 2001. The quantity of pesticides used in 2011 was reported as 19,131 tons, and was comprised of 34.7% insecticides, 28.0% fungicides, and 27.1% herbicides. The 50 pesticides with the greatest volume of usage accounted for 82.6% of the total volume of pesticides used between 2007 and 2011, with the most-used active ingredient being machine oil, followed by mancozeb and then paraquat. Organophosphates were the most used among the top 50 pesticides. A total of 24 pesticides were selected for recommendation of intensive regulation in South Korea. In conclusion, the authors described the usage and trends of overall agricultural pesticides, which would serve as a fundamental step forward in managing pesticide in terms of public health. Intensive efforts are required for the prevention of potential health effects from the 24 identified pesticides.

  7. Engineering Pseudomonas putida KT2440 for simultaneous degradation of organophosphates and pyrethroids and its application in bioremediation of soil.

    PubMed

    Zuo, Zhenqiang; Gong, Ting; Che, You; Liu, Ruihua; Xu, Ping; Jiang, Hong; Qiao, Chuanling; Song, Cunjiang; Yang, Chao

    2015-06-01

    Agricultural soils are usually co-contaminated with organophosphate (OP) and pyrethroid pesticides. To develop a stable and marker-free Pseudomonas putida for co-expression of two pesticide-degrading enzymes, we constructed a suicide plasmid with expression cassettes containing a constitutive promoter J23119, an OP-degrading gene (mpd), a pyrethroid-hydrolyzing carboxylesterase gene (pytH) that utilizes the upp gene as a counter-selectable marker for upp-deficient P. putida. By introduction of suicide plasmid and two-step homologous recombination, both mpd and pytH genes were integrated into the chromosome of a robust soil bacterium P. putida KT2440 and no selection marker was left on chromosome. Functional expression of mpd and pytH in P. putida KT2440 was demonstrated by Western blot analysis and enzyme activity assays. Degradation experiments with liquid cultures showed that the mixed pesticides including methyl parathion, fenitrothion, chlorpyrifos, permethrin, fenpropathrin, and cypermethrin (0.2 mM each) were degraded completely within 48 h. The inoculation of engineered strain (10(6) cells/g) to soils treated with the above mixed pesticides resulted in a higher degradation rate than in noninoculated soils. All six pesticides could be degraded completely within 15 days in fumigated and nonfumigated soils with inoculation. Theses results highlight the potential of the engineered strain to be used for in situ bioremediation of soils co-contaminated with OP and pyrethroid pesticides.

  8. An unusual case of organophosphate intoxication of a worker in a plastic bottle recycling plant: an important reminder.

    PubMed

    Wang, C L; Chuang, H Y; Chang, C Y; Liu, S T; Wu, M T; Ho, C K

    2000-11-01

    A young man was sent to our emergency unit because he had suffered from vomiting and cold sweating for 2 days. At the time he was admitted, he had no acute abdominal pains or gastrointestinal symptoms, and a physical examination revealed nothing but a faster heart rate and moist, flushing skin. The patient had worked for 6 years at a plastic bottle-recycling factory, but none of his co-workers had the same symptoms. Nevertheless, because the plant also recycled pesticide bottles, we suspected organophosphate pesticide intoxication. The patient's plasma acetylcholinesterase level was checked, revealing 1498.6 microU/L (normal range: 2,000-5, 000) on the first day and 1,379 microU/L on the second day. Upon questioning, the patient recalled that one of his shoe soles had been damaged and that his foot had been wet from walking all day in rain collected on the factory floor on the day that his symptoms first occurred. We conducted a study in the change of preshift and postshift acetylcholinesterase levels among six of his co-workers on a rainy day. We used the Wilcoxon signed rank test to compare the preshift and postshift plasma acetylcholinesterase levels; no significant difference was revealed (p = 0.600), leaving contamination via the damaged shoe sole suspect. We reviewed the literature on organophosphate intoxication; pesticide bottle-recycling factories were reported to be at a low risk of organophosphate toxicity in the working environment. However, because the potential risk of intoxication is still present, protective equipment such as clothing, gloves, and water-proof shoes should be worn, and employees should be educated on the potential risks.

  9. Effects of a pesticide and a parasite on neurological, endocrine, and behavioral responses of an estuarine fish.

    PubMed

    Renick, Violet Compton; Weinersmith, Kelly; Vidal-Dorsch, Doris E; Anderson, Todd W

    2016-01-01

    In coastal waters, pesticides and parasites are widespread stressors that may separately and interactively affect the physiology, behavior, and survival of resident organisms. We investigated the effects of the organophosphate pesticide chlorpyrifos and the trematode parasite Euhaplorchis californiensis on three important traits of California killifish (Fundulus parvipinnis): neurotransmitter activity, release of the stress hormone cortisol, and behavior. Killifish were collected from a population without E. californiensis, and then half of the fish were experimentally infected. Following a 30 day period for parasite maturation, infected and uninfected groups were exposed to four concentrations of chlorpyrifos (solvent control, 1-3ppb) prior to behavior trials to quantify activity, feeding behavior, and anti-predator responses. Water-borne cortisol release rates were measured non-invasively from each fish prior to infection, one-month post-infection, and following pesticide exposure. Killifish exposed to 3ppb chlorpyrifos exhibited a 74.6±6.8% and 60.5±8.3% reduction in brain and muscle acetylcholinesterase (AChE) activity relative to controls. The rate of cortisol release was suppressed by each chlorpyrifos level relative to controls. Killifish exposed to the medium (2ppb) and high (3ppb) pesticide concentrations exhibited reduced activity and a decrease in mean swimming speed following a simulated predator attack. Muscle AChE was positively related to swimming activity while brain AChE was positively related to foraging behavior. ​No effects of the parasite were observed, possibly because of low metacercariae densities achieved through controlled infections. We found that sublethal pesticide exposure has the potential to modify several organismal endpoints with consequences for reduced fitness, including neurological, endocrine, and behavioral responses in an ecologically abundant fish.

  10. Pediatric Acute Lymphoblastic Leukemia and Exposure to Pesticides

    PubMed Central

    Soldin, Offie P.; Nsouly-Maktabi, Hala; Genkinger, Jeanine M.; Loffredo, Christopher A.; Ortega-Garcia, Juan Antonio; Colantino, Drew; Barr, Dana B.; Luban, Naomi L.; Shad, Aziza T.; Nelson, David

    2013-01-01

    Organophosphates are pesticides ubiquitous in the environment and have been hypothesized as one of the risk factors for acute lymphoblastic leukemia (ALL). In this study, we evaluated the associations of pesticide exposure in a residential environment with the risk for pediatric ALL. This is a case–control study of children newly diagnosed with ALL, and their mothers (n = 41 child–mother pairs) were recruited from Georgetown University Medical Center and Children's National Medical Center in Washington, DC, between January 2005 and January 2008. Cases and controls were matched for age, sex, and county of residence. Environmental exposures were determined by questionnaire and by urinalysis of pesticide metabolites using isotope dilution gas chromatography–high-resolution mass spectrometry. We found that more case mothers (33%) than controls (14%) reported using insecticides in the home (P < 0.02). Other environmental exposures to toxic substances were not significantly associated with the risk of ALL. Pesticide levels were higher in cases than in controls (P < 0.05). Statistically significant differences were found between children with ALL and controls for the organophosphate metabolites diethylthiophosphate (P < 0.03) and diethyldithiophosphate (P < 0.05). The association of ALL risk with pesticide exposure merits further studies to confirm the association. PMID:19571777

  11. Pediatric acute lymphoblastic leukemia and exposure to pesticides.

    PubMed

    Soldin, Offie P; Nsouli-Maktabi, Hala; Nsouly-Maktabi, Hala; Genkinger, Jeanine M; Loffredo, Christopher A; Ortega-Garcia, Juan Antonio; Colantino, Drew; Barr, Dana B; Luban, Naomi L; Shad, Aziza T; Nelson, David

    2009-08-01

    Organophosphates are pesticides ubiquitous in the environment and have been hypothesized as one of the risk factors for acute lymphoblastic leukemia (ALL). In this study, we evaluated the associations of pesticide exposure in a residential environment with the risk for pediatric ALL. This is a case-control study of children newly diagnosed with ALL, and their mothers (n = 41 child-mother pairs) recruited from Georgetown University Medical Center and Children's National Medical Center in Washington, DC, between January 2005 and January 2008. Cases and controls were matched for age, sex, and county of residence. Environmental exposures were determined by questionnaire and by urinalysis of pesticide metabolites using isotope dilution gas chromatography-high-resolution mass spectrometry. We found that more case mothers (33%) than controls (14%) reported using insecticides in the home (P < 0.02). Other environmental exposures to toxic substances were not significantly associated with the risk of ALL. Pesticide levels were higher in cases than in controls (P < 0.05). Statistically significant differences were found between children with ALL and controls for the organophosphate metabolites diethylthiophosphate (P < 0.03) and diethyldithiophosphate (P < 0.05). The association of ALL risk with pesticide exposure merits further studies to confirm the association.

  12. Abnormal Spontaneous Eye Movements as Initial Presentation of Organophosphate Poisoning

    PubMed Central

    De Lima Teixeira, Igor; Bazan, Silméia Garcia Zanati; Schelp, Arthur Oscar; Luvizutto, Gustavo José; De Lima, Fabrício Diniz; Bazan, Rodrigo

    2017-01-01

    Background Atypical ocular bobbing may result from an intentional poisoning from an organophosphate compound. Phenomenology Shown The patient exhibited conjugated, slow, arrhythmic, unpredictable eye movements in all directions, diagnosed as atypical ocular bobbing. Educational Value This is a rare, well‐documented, clinically relevant case for medical students for correct diagnosis and appropriate treatment of organophosphate intoxication. PMID:28243486

  13. Detoxification of organophosphate nerve agents by bacterial phosphotriesterase

    SciTech Connect

    Ghanem, Eman; Raushel, Frank M. . E-mail: raushel@tamu.edu

    2005-09-01

    Organophosphates have been widely used as insecticides and chemical warfare agents. The health risks associated with these agents have necessitated the need for better detoxification and bioremediation tools. Bacterial enzymes capable of hydrolyzing the lethal organophosphate nerve agents are of special interest. Phosphotriesterase (PTE) isolated from the soil bacteria Pseudomonas diminuta displays a significant rate enhancement and substrate promiscuity for the hydrolysis of organophosphate triesters. Directed evolution and rational redesign of the active site of PTE have led to the identification of new variants with enhanced catalytic efficiency and stereoselectivity toward the hydrolysis of organophosphate neurotoxins. PTE has been utilized to protect against organophosphate poisoning in vivo. Biotechnological applications of PTE for detection and decontamination of insecticides and chemical warfare agents are developing into useful tools. In this review, the catalytic properties and potential applications of this remarkable enzyme are discussed.

  14. Study of Inhibition, Reactivation and Aging Processes of Pesticides Using Graphene Nanosheets/Gold Nanoparticles-Based Acetylcholinesterase Biosensor

    SciTech Connect

    Zhang, Lin; Long, Linjuan; Zhang, Weiying; Du, Dan; Lin, Yuehe

    2012-09-10

    Organophosphate (OP) and carbamate pesticides exert their toxicity via attacking the hydroxyl moiety of serine in the 'active site' of acetylcholinesterase (AChE). In this paper we developed a stable AChE biosensor based on self-assembling AChE to graphene nanosheet (GN)-gold nanoparticles (AuNPs) nanocomposite electrode for investigation of inhibition, reactivation and aging processes of different pesticides. It is confirmed that pesticides can inhibit AChE in a short time. OPs poisoning is treatable with oximes while carbarmates exposure is insensitive to oximes. The proposed electrochemical approach thus provides a new simple tool for comparison of pesticide sensitivity and guide of therapeutic intervention.

  15. An optical sensor for pesticide determination based on the autoindicating optical properties of peroxidase.

    PubMed

    de Marcos, Susana; Callizo, Esther; Mateos, Elena; Galbán, Javier

    2014-05-01

    During the enzymatic reaction of the heme-protein Horseradish peroxidase (HRP) with hydrogen peroxide there are changes in the molecular absorption spectra of HRP and its different oxidation states which can be used for quantitative determination of the substrate. One of these intermediate oxidation states is the HRPII, with iron as an oxyferryl. This compound is assumed to be responsible for the organophosphate pesticide degradation in the Fenton reaction. In this work, the enzymatic HRP-H₂O₂ reaction has been studied, based on the effect of different pesticides on the mechanism reaction; these modifications have been used for the quantitative determination of pesticides. A mathematical model has been developed relating to the analytical signal with the pesticide concentration. Three organophosphate pesticides (diazinon, trichlorfon and tetrachlorvinphos) and one sulfamide (dichlofluanid) have been used to demonstrate the viability of the methodology and the accomplishment fulfillment of the model. Tetrachlorvinphos was chosen as the pesticide model to develop the optical sensor film for continuous pesticide determination, consisting of HRP immobilized in a polyacrylamide gel. The sensor can be used for at least 15 days and responds linearly to tetrachlorvinphos concentrations in the range from 4.0 × 10(-7) to 4.0 × 10(-6)mol L(-1). The main advantage of the methodology is its reversibility in contrast to the irreversible Fenton reaction. The HRP-H2O2 methodology has been used to measure the pesticides in a waste water sample spiked with tetrachlorvinphos.

  16. Tolerance of ARPE 19 cells to organophosphorus pesticide chlorpyrifos is limited to concentration and time of exposure.

    PubMed

    Gomathy, Narayanan; Sumantran, Venil N; Shabna, A; Sulochana, K N

    2015-01-01

    Age related macular degeneration is a blinding disease common in elder adults. The prevalence of age related macular degeneration has been found to be 1.8% in the Indian population. Organophosphates are widely used insecticides with well documented neurological effects, and the persistent nature of these compounds in the body results in long term health effects. Farmers exposed to organophosphorus pesticides in USA had an earlier onset of age related macular degeneration when compared to unexposed controls. A recent study found significant levels of an organophosphate, termed chlorpyrifos, in the blood samples of Indian farmers. Therefore, in understanding the link between age related macular degeneration and chlorpyrifos, the need for investigation is important. Our data show that ARPE-19 (retinal pigment epithelial cells) exhibit a cytoprotective response to chlorpyrifos as measured by viability, mitochondrial membrane potential, superoxide dismutase activity, and increased levels of glutathione peroxidase and reduced glutathione, after 24 h exposure to chlorpyrifos. However, this cytoprotective response was absent in ARPE-19 cells exposed to the same range of concentrations of chlorpyrifos for 48 h. These results have physiological significance, since HPLC analysis showed that effects of chlorpyrifos were mediated through its entry into ARPE-19 cells. HPLC analysis also showed that chlorpyrifos remained stable, as we recovered up to 80% of the chlorpyrifos added to 6 different ocular tissues.

  17. Analysis of organo-chlorine pesticides residue in raw coffee with a modified "quick easy cheap effective rugged and safe" extraction/clean up procedure for reducing the impact of caffeine on the gas chromatography-mass spectrometry measurement.

    PubMed

    Bresin, Bruno; Piol, Maria; Fabbro, Denis; Mancini, Maria Antonietta; Casetta, Bruno; Del Bianco, Clorinda

    2015-01-09

    The control of pesticide residues on raw coffee is a task of great importance due to high consumption of this beverage in Italy and in many other countries. High caffeine content can hamper extraction and measurement of any pesticide residue. A tandem extraction protocol has been devised by exploiting the quick easy cheap effective rugged and safe (QuEChERS) scheme for extraction, coupled to a dispersive liquid-liquid micro-extraction (DLLME) in order to drastically reduce caffeine content in the final extract. Gas chromatography-mass spectrometry (GC-MS) has been used for quantification of organo-chlorine pesticides in single ion monitoring (SIM) mode. Method has been validated and performances meet the criteria prescribed by European Union regulations.

  18. Fact Sheets on Pesticides in Schools.

    ERIC Educational Resources Information Center

    National Coalition against the Misuse of Pesticides, Washington, DC.

    This document consists of a collection of fact sheets about the use of pesticides in schools and how to reduce it. The sheets are: (1) "Alternatives to Using Pesticides in Schools: What Is Integrated Pest Management?"; (2) "Health Effects of 48 Commonly Used Pesticides in Schools"; (3) "The Schooling of State Pesticide…

  19. Creation of a protective pulmonary bioshield against inhaled organophosphates using an aerosolized bioscavenger.

    PubMed

    Rosenberg, Yvonne J; Fink, James B

    2016-06-01

    In addition to the global use of organophosphate (OP) pesticides for agriculture, OP nerve agents and pesticides have been employed on battlefields and by terrorists (e.g., a recent sarin attack in Syria). These occurrences highlight the need for an effective countermeasure against OP exposure. Human butyrylcholinesterase (HuBChE) is a leading candidate, but injection of the high doses required for protection present pharmacokinetic challenges. An aerosolized recombinant form (aer-rHuBChE) that can neutralize inhaled OPs at the portal of entry has been assessed for its efficacy in protecting macaques against respiratory toxicity following inhalation exposure to the pesticide paraoxon (aer-Px). While protection in macaques has been demonstrated using the MicroSprayer® delivery device, administration to humans will likely employ a vibrating mesh nebulizer (VMN). Compared to the 50-70% lung deposition achieved in adult humans with a VMN, deposition in macaques is <5%, an initial major obstacle to demonstrating protection. Such problems have been partly overcome by using a more efficient modified VMN and proportionally higher doses, which together generate an effective rHuBChE pulmonary bioshield and protect against high levels of inhaled Px.

  20. Pesticide Standards

    ERIC Educational Resources Information Center

    Shea, Kevin P.

    1976-01-01

    The Environmental Protection Agency chose the American Society of Testing and Materials to develop standardized guidelines for pesticide registration. Since the numbers and uses of pesticides is so wide, establishing ecological and public health guidelines may be difficult. Strong industry and government representation might also hamper the…

  1. Utility of population models to reduce uncertainty and increase value relevance in ecological risk assessments of pesticides: an example based on acute mortality data for daphnids.

    PubMed

    Hanson, Niklas; Stark, John D

    2012-04-01

    Traditionally, ecological risk assessments (ERA) of pesticides have been based on risk ratios, where the predicted concentration of the chemical is compared to the concentration that causes biological effects. The concentration that causes biological effect is mostly determined from laboratory experiments using endpoints on the level of the individual (e.g., mortality and reproduction). However, the protection goals are mostly defined at the population level. To deal with the uncertainty in the necessary extrapolations, safety factors are used. Major disadvantages with this simplified approach is that it is difficult to relate a risk ratio to the environmental protection goals, and that the use of fixed safety factors can result in over- as well as underprotective assessments. To reduce uncertainty and increase value relevance in ERA, it has been argued that population models should be used more frequently. In the present study, we have used matrix population models for 3 daphnid species (Ceriodaphnia dubia, Daphnia magna, and D. pulex) to reduce uncertainty and increase value relevance in the ERA of a pesticide (spinosad). The survival rates in the models were reduced in accordance with data from traditional acute mortality tests. As no data on reproductive effects were available, the conservative assumption that no reproduction occurred during the exposure period was made. The models were used to calculate the minimum population size and the time to recovery. These endpoints can be related to the European Union (EU) protection goals for aquatic ecosystems in the vicinity of agricultural fields, which state that reversible population level effects are acceptable if there is recovery within an acceptable (undefined) time frame. The results of the population models were compared to the acceptable (according to EU documents) toxicity exposure ratio (TER) that was based on the same data. At the acceptable TER, which was based on the most sensitive species (C. dubia

  2. Environmental fate of fungicides and other current-use pesticides in a central California estuary

    USGS Publications Warehouse

    Smalling, Kelly L.; Kuivila, Kathryn; Orlando, James L.; Phillips, Bryn M.; Anderson, Brian S.; Siegler, Katie; Hunt, John W.; Hamilton, Mary

    2013-01-01

    The current study documents the fate of current-use pesticides in an agriculturally-dominated central California coastal estuary by focusing on the occurrence in water, sediment and tissue of resident aquatic organisms. Three fungicides (azoxystrobin, boscalid, and pyraclostrobin), one herbicide (propyzamide) and two organophosphate insecticides (chlorpyrifos and diazinon) were detected frequently. Dissolved pesticide concentrations in the estuary corresponded to the timing of application while bed sediment pesticide concentrations correlated with the distance from potential sources. Fungicides and insecticides were detected frequently in fish and invertebrates collected near the mouth of the estuary and the contaminant profiles differed from the sediment and water collected. This is the first study to document the occurrence of many current-use pesticides, including fungicides, in tissue. Limited information is available on the uptake, accumulation and effects of current-use pesticides on non-target organisms. Additional data are needed to understand the impacts of pesticides, especially in small agriculturally-dominated estuaries.

  3. Environmental fate of fungicides and other current-use pesticides in a central California estuary.

    PubMed

    Smalling, Kelly L; Kuivila, Kathryn M; Orlando, James L; Phillips, Bryn M; Anderson, Brian S; Siegler, Katie; Hunt, John W; Hamilton, Mary

    2013-08-15

    The current study documents the fate of current-use pesticides in an agriculturally-dominated central California coastal estuary by focusing on the occurrence in water, sediment and tissue of resident aquatic organisms. Three fungicides (azoxystrobin, boscalid, and pyraclostrobin), one herbicide (propyzamide) and two organophosphate insecticides (chlorpyrifos and diazinon) were detected frequently. Dissolved pesticide concentrations in the estuary corresponded to the timing of application while bed sediment pesticide concentrations correlated with the distance from potential sources. Fungicides and insecticides were detected frequently in fish and invertebrates collected near the mouth of the estuary and the contaminant profiles differed from the sediment and water collected. This is the first study to document the occurrence of many current-use pesticides, including fungicides, in tissue. Limited information is available on the uptake, accumulation and effects of current-use pesticides on non-target organisms. Additional data are needed to understand the impacts of pesticides, especially in small agriculturally-dominated estuaries.

  4. Application of brain cholinesterase reactivation to differentiate between organophosphorus and carbamate pesticide exposure in wild birds

    USGS Publications Warehouse

    Smith, M.R.; Thomas, N.J.; Hulse, C.

    1995-01-01

    Brain cholinesterase activity was measured to evaluate pesticide exposure in wild birds. Thermal reactivation of brain cholinesterase was used to differentiate between carbamate and organophosphorus pesticide exposure. Brain cholinesterase activity was compared with gas chromatography and mass spectrometry of stomach contents. Pesticides were identified and confirmed in 86 of 102 incidents of mortality from 29 states within the USA from 1986 through 1991. Thermal reactivation of cholinesterase activity was used to correctly predict carbamates in 22 incidents and organophosphates in 59 incidents. Agreement (P < 0.001) between predictions based on cholinesterase activities and GC/MS results was significant.

  5. The epidemiology of pesticide exposure and cancer: A review.

    PubMed

    Jaga, Kushik; Dharmani, Chandrabhan

    2005-01-01

    Cancer is a multifactorial disease with contributions from genetic, environmental, and lifestyle factors. Pesticide exposure is recognized as an important environmental risk factor associated with cancer development. The epidemiology of pesticide exposure and cancer in humans has been studied globally in various settings. Insecticides, herbicides, and fungicides are associated with hemopoetic cancers, and cancers of the prostate, pancreas, liver, and other body systems. The involvement of pesticides in breast cancer has not yet been determined. In developing countries, sufficient epidemiologic research and evidence is lacking to link pesticide exposure with cancer development. Agricultural and industrial workers are high-risk groups for developing cancer following pesticide exposure. Children of farm workers can be exposed to pesticides through their parents. Maternal exposure to pesticides can pose a health risk to the fetus and the newborn. The organophosphates are most the commonly used compounds, but the organochlorines are still permitted for limited use in developing countries. Pesticide exposure, independently or in synergism with modifiable risk factors, is associated with several types of cancer.

  6. Toxicity Assessment of Expired Pesticides to Green Algae Pseudokirchneriella subcapitata

    PubMed Central

    Satyavani, G.; Chandrasehar, G.; Varma, K. Krishna; Goparaju, A.; Ayyappan, S.; Reddy, P. Neelakanta; Murthy, P. Balakrishna

    2012-01-01

    In order to investigate the effect of expired pesticides on the yield and growth rate of green algae Pseudokirchneriella subcapitata, a study was conducted as per the Organisation for Economic Cooperation and Development (OECD) guideline number 201. Fifteen expired pesticide formulations, most commonly used in Indian agriculture, were tested in comparison with their unexpired counterparts. The expired pesticide formulations studied belonged to various class and functional groups: organophosphate, pyrethroid-based insecticides; azole-based fungicides; acetamide, propionate, acetic acid-based herbicides; fungicides mixtures containing two actives—azole and dithiocarbamate. The toxicity endpoints of yield (EyC50: 0–72 h) and growth rate (ErC50: 0–72 h) of Pseudokirchneriella subcapitata for each pesticide formulation (both expired and unexpired pesticides) were determined statistically using TOXSTAT 3.5 version software. The results pointed out that some expired pesticide formulations exhibited higher toxicity to tested algal species, as compared to the corresponding unexpired pesticides. These data thus stress the need for greater care to dispose expired pesticides to water bodies, to avoid the effects on aquatic ecospecies tested. PMID:23762633

  7. Linking Exposure Science to Current and Future Pesticide Risk Assessment: From Biomonitoring to PBPK Modeling to High Throughput Screens

    EPA Science Inventory

    Organophosphate (OP) and pyrethroid (PYR) pesticides are amongst the most widely used insecticides. While useful in their ability to control and remove insects from cattle, crops, and homes, they are inherently linked to varying degrees of toxicity as a result of their actions on...

  8. USE OF MICRO-DAMS IN POTATO FURROWS TO REDUCE EROSION AND RUNOFF AND MINIMISE SURFACE WATER CONTAMINATION THROUGH PESTICIDES.

    PubMed

    Olivier, C; Goffart, J P; Baets, D; Xanthoulis, D; Fonder, N; Lognay, G; Barthélemy, J P; Lebrun, P

    2014-01-01

    The use of micro-dams in potato furrows is an interesting technology to reduce erosion and runoff in hilly areas. These phenomena are major sources of surface water contamination by nutrients and plant protection products (Gillijns et al., 2005). In 2011 Bayer CropScience set up a trial in collaboration with the Walloon Agricultural Research Centre (CRA-W) and ULg-Gembloux Agro-Bio Tech in Huldenberg (Belgium) to demonstrate this technique in potatoes. Micro-dams create barriers between furrows in order to encourage rainwater to infiltrate in the soil rather than to run off. The results from the trial over this year confirm that the application of micro-dams is effective in reducing erosion and runoff significantly. The total loss of plant protection products (PPP) to surface water is dramatically reduced and also strongly depends on the physic-chemical characteristics of the active ingredients. In addition, the technique tends to produce a higher yield of potato tubers as an effect of an optimised utilisation of the available rainwater and nutrients.

  9. (Pesticide chemistry)

    SciTech Connect

    Barnthouse, L.W.

    1990-09-04

    This report summarizes a trip by L. W. Barnthouse of the Environmental Sciences Division (ESD), Oak Ridge National Laboratory (ORNL), to Hamburg, Federal Republic of Germany (FRG), where he participated in the 7th International Congress of Pesticide Chemistry. He chaired a workshop on experimental systems for determining effects of pesticides on nontarget organisms and gave an oral presentation at a symposium on pesticide risk assessment. Before returning to the United States, Dr. Barnthouse visited the Netherlands Institute for Sea Research in Texel, the Netherlands.

  10. Measurement of organophosphate metabolites in postpartum meconium as a potential biomarker of prenatal exposure: a validation study.

    PubMed Central

    Whyatt, R M; Barr, D B

    2001-01-01

    Experimental data have linked exposure to prenatal organophosphates to adverse neurocognitive sequalae. However, epidemiologic research has been hampered by lack of reliable dosimeters. Existing biomarkers reflect short-term exposure only. Measurements of pesticides in postpartum meconium may yield a longer-term dosimeter of prenatal exposure. As the initial step in biomarker validation, this research determined background levels, detection limits, and stabilities of six organophosphate metabolites in meconium: diethylphosphate (DEP), diethylthiophosphate (DETP), diethyldithiophosphate (DEDTP), dimethylphosphate (DMP), dimethylthiophosphate (DMTP), and dimethyldithiophosphate (DMDTP). Calibration curves were also constructed. The meconium was collected from 20 newborns at New York Presbyterian Hospital; analyses were undertaken at the Centers for Disease Control and Prevention (CDC). DEP was detected in 19/20 samples (range 0.8-3.2 microg/g) and DETP was detected in 20/20 (range 2.0-5.6 microg/g). DMP and DEDTP were each detected in 1/20 (at 16 and 1.8 microg/g, respectively). DMTP and DMDTP were not detected. Detection limits were comparable to or lower than those in urine; levels were similar to those seen in adult urine in population-based research. Metabolites were stable at room temperature over 12 hr. Calibration curves were linear over the range tested (0.5-400 microg/g); recoveries ranged from 18% to 66%. Using isotope dilution, recoveries of each analyte in individual samples can be corrected automatically based on the recovery of the respective stable isotope-labeled analogue, making this method fully quantitative. Results indicate that measurements of organophosphate metabolites in meconium have promise as biomarkers of prenatal exposure. Further research is needed to determine the time frame of exposure represented by pesticide levels in meconium and to evaluate the dose-response relationship. PMID:11335191

  11. Citizen's Guide to Pesticides.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Pesticide Programs.

    This guide provides suggestions on pest control and safety rules for pesticide use at home. Pest prevention may be possible by modification of pest habitat: removal of food and water sources, removal or destruction of pest shelter and breeding sites, and good horticultural practices that reduce plant stress. Nonchemical alternatives to pesticides…

  12. Dietary intakes of pesticides based on community duplicate diet samples.

    PubMed

    Melnyk, Lisa Jo; Xue, Jianping; Brown, G Gordon; McCombs, Michelle; Nishioka, Marcia; Michael, Larry C

    2014-01-15

    The calculation of dietary intake of selected pesticides was accomplished using food samples collected from individual representatives of a defined demographic community using a community duplicate diet approach. A community of nine participants was identified in Apopka, FL from which intake assessments of organophosphate (OP) and pyrethroid pesticides were made. From these nine participants, sixty-seven individual samples were collected and subsequently analyzed by gas chromatography/mass spectrometry. Measured concentrations were used to estimate dietary intakes for individuals and for the community. Individual intakes of total OP and pyrethroid pesticides ranged from 6.7 to 996 ng and 1.2 to 16,000 ng, respectively. The community intake was 256 ng for OPs and 3430 ng for pyrethroid pesticides. The most commonly detected pesticide was permethrin, but the highest overall intake was of bifenthrin followed by esfenvalerate. These data indicate that the community in Apopka, FL, as represented by the nine individuals, was potentially exposed to both OP and pyrethroid pesticides at levels consistent with a dietary model and other field studies in which standard duplicate diet samples were collected. Higher levels of pyrethroid pesticides were measured than OPs, which is consistent with decreased usage of OPs. The diversity of pyrethroid pesticides detected in food samples was greater than expected. Continually changing pesticide usage patterns need to be considered when determining analytes of interest for large scale epidemiology studies. The Community Duplicate Diet Methodology is a tool for researchers to meet emerging exposure measurement needs that will lead to more accurate assessments of intake which may enhance decisions for chemical regulation. Successfully determining the intake of pesticides through the dietary route will allow for accurate assessments of pesticide exposures to a community of individuals, thereby significantly enhancing the research benefit

  13. Pesticides and myocardial infarction incidence and mortality among male pesticide applicators in the Agricultural Health Study.

    PubMed

    Mills, Katherine T; Blair, Aaron; Freeman, Laura E Beane; Sandler, Dale P; Hoppin, Jane A

    2009-10-01

    Acute organophosphate and carbamate pesticide poisonings result in adverse cardiac outcomes. The cardiac effects of chronic low-level pesticide exposure have not been studied. The authors analyzed self-reported lifetime use of pesticides reported at enrollment (1993-1997) and myocardial infarction mortality through 2006 and self-reported nonfatal myocardial infarction through 2003 among male pesticide applicators in the Agricultural Health Study. Using proportional hazard models, the authors estimated the association between lifetime use of 49 pesticides and fatal and nonfatal myocardial infarction. There were 476 deaths from myocardial infarction among 54,069 men enrolled in the study and 839 nonfatal myocardial infarctions among the 32,024 participants who completed the follow-up interview. Fatal and nonfatal myocardial infarctions were associated with commonly reported risk factors, including age and smoking. There was little evidence of an association between having used pesticides, individually or by class, and myocardial infarction mortality (e.g., insecticide hazard ratio (HR) = 0.91, 95% confidence interval (CI): 0.67, 1.24; herbicide HR = 0.74, 95% CI: 0.49, 1.10) or nonfatal myocardial infarction incidence (e.g., insecticide HR = 0.85, 95% CI: 0.66, 1.09; herbicide HR = 0.91, 95% CI: 0.61, 1.36). There was no evidence of a dose response with any pesticide measure. In a population with low risk for myocardial infarction, the authors observed little evidence of increased risk of myocardial infarction mortality or nonfatal myocardial infarction associated with the occupational use of pesticides.

  14. The legacy of pesticide pollution: An overlooked factor in current risk assessments of freshwater systems.

    PubMed

    Rasmussen, Jes J; Wiberg-Larsen, Peter; Baattrup-Pedersen, Annette; Cedergreen, Nina; McKnight, Ursula S; Kreuger, Jenny; Jacobsen, Dean; Kristensen, Esben A; Friberg, Nikolai

    2015-11-01

    We revealed a history of legacy pesticides in water and sediment samples from 19 small streams across an agricultural landscape. Dominant legacy compounds included organochlorine pesticides, such as DDT and lindane, the organophosphate chlorpyrifos and triazine herbicides such as terbutylazine and simazine which have long been banned in the EU. The highest concentrations of legacy pesticides were found in streams draining catchments with a large proportion of arable farmland suggesting that they originated from past agricultural applications. The sum of toxic units (SumTUD.magna) based on storm water samples from agriculturally impacted streams was significantly higher when legacy pesticides were included compared to when they were omitted. Legacy pesticides did not significantly change the predicted toxicity of water samples to algae or fish. However, pesticide concentrations in bed sediment and suspended sediment samples exceeded safety thresholds in 50% of the samples and the average contribution of legacy pesticides to the SumTUC.riparius was >90%. Our results suggest that legacy pesticides can be highly significant contributors to the current toxic exposure of stream biota, especially macroinvertebrate communities, and that those communities were primarily exposed to legacy pesticides via the sediment. Additionally, our results suggest that neglecting legacy pesticides in the risk assessment of pesticides in streams may severely underestimate the risk of ecological effects.

  15. Study on the interaction of catalase with pesticides by flow injection chemiluminescence and molecular docking.

    PubMed

    Tan, Xijuan; Wang, Zhuming; Chen, Donghua; Luo, Kai; Xiong, Xunyu; Song, Zhenghua

    2014-08-01

    The interaction mechanisms of catalase (CAT) with pesticides (including organophosphates: disulfoton, isofenphos-methyl, malathion, isocarbophos, dimethoate, dipterex, methamidophos and acephate; carbamates: carbaryl and methomyl; pyrethroids: fenvalerate and deltamethrin) were first investigated by flow injection (FI) chemiluminescence (CL) analysis and molecular docking. By homemade FI-CL model of lg[(I0-I)/I]=lgK+nlg[D], it was found that the binding processes of pesticides to CAT were spontaneous with the apparent binding constants K of 10(3)-10(5) L mol(-1) and the numbers of binding sites about 1.0. The binding abilities of pesticides to CAT followed the order: fenvalerate>deltamethrin>disulfoton>isofenphos-methyl>carbaryl>malathion>isocarbophos>dimethoate>dipterex>acephate>methomyl>methamidophos, which was generally similar to the order of determination sensitivity of pesticides. The thermodynamic parameters revealed that CAT bound with hydrophobic pesticides by hydrophobic interaction force, and with hydrophilic pesticides by hydrogen bond and van der Waals force. The pesticides to CAT molecular docking study showed that pesticides could enter into the cavity locating among the four subdomains of CAT, giving the specific amino acid residues and hydrogen bonds involved in CAT-pesticides interaction. It was also found that the lgK values of pesticides to CAT increased regularly with increasing lgP, Mr, MR and MV, suggesting that the hydrophobicity and steric property of pesticide played essential roles in its binding to CAT.

  16. Introduction to Pesticide Labels

    EPA Pesticide Factsheets

    Pesticide product labels provide critical information about how to safely and legally handle and use pesticide products. Unlike most other types of product labels, pesticide labels are legally enforceable. Learn about pesticide product labels.

  17. Pesticide Use Site Index

    EPA Pesticide Factsheets

    The Pesticide Use Site Index will help a company (or other applicant) identify which data requirements are needed to register a pesticide product. It provides information on pesticide use sites and pesticide major use patterns.

  18. Pancreatic pseudocyst after acute organophosphate poisoning.

    PubMed

    Kawabe, Ken; Ito, Tetsuhide; Arita, Yoshiyuki; Sadamoto, Yojiro; Harada, Naohiko; Yamaguchi, Koji; Tanaka, Masao; Nakano, Itsuro; Nawata, Hajime; Takayanagi, Ryoichi

    2006-04-01

    Acute organophosphate poisoning (OP) shows several severe clinical symptoms due to its strong blocking effect on cholinesterase. Acute pancreatitis is one of the complications associated with acute OP, but this association still may not be widely recognized. We report here the case of a 73-year-old man who had repeated abdominal pain during and after the treatment of acute OP. Hyperamylasemia and a 7-cm pseudocyst in the pancreatic tail were noted on investigations. We diagnosed pancreatic pseudocyst that likely was secondary to an episode of acute pancreatitis following acute OP. He was initially treated with a long-term intravenous hyperalimentation, protease inhibitors and octerotide, but eventually required surgical intervention, a cystgastrostomy. Acute pancreatitis and hyperamylasemia are known to be possible complications of acute OP. It is necessary to examine and assess pancreatic damage in patients with acute OP.

  19. Sudden bilateral hearing loss after organophosphate inhalation.

    PubMed

    Dundar, Mehmet Akif; Derin, Serhan; Aricigil, Mitat; Eryilmaz, Mehmet Akif

    2016-12-01

    Sudden bilateral hearing loss are seen rarely and the toxic substance exposure constitutes a small part of etiology. A Fifty-eight-year-old woman admitted to our clinic with sudden bilateral hearing loss shortly after chlorpyrifos-ethyl exposure. Otolaryngologic examination findings were normal. The patient had 40 dB sensorineural hearing loss (SNHL) on the right ear and 48 dB SNHL on the left ear. Additional diagnostic tests were normal. The conventional treatment for sudden hearing loss was performed. On the second week following organophosphate (OP) exposure the patient's hearing loss almost completely resolved. OP's are heavily used in agriculture and should be taken into consideration as an etiologic factor in sudden hearing loss.

  20. Transient Distal Renal Tubular Acidosis in Organophosphate Poisoning

    PubMed Central

    Narayan, Ram; Abdulla, Mansoor C.; Alungal, Jemshad

    2017-01-01

    Renal complications due to organophosphate poisoning are very rare. We are presenting a unique case of transient distal renal tubular acidosis due to organophosphate poisoning, which to the best of our knowledge is the first of its kind. An elderly female after deliberate self-harm with ingestion of chlorpyrifos had multiple ventricular arrhythmias due to hypokalemia secondary to distal renal tubular acidosis which improved completely after treatment.

  1. A mechanistic overview of health associated effects of low levels of organochlorine and organophosphorous pesticides.

    PubMed

    Androutsopoulos, Vasilis P; Hernandez, Antonio F; Liesivuori, Jyrki; Tsatsakis, Aristidis M

    2013-05-10

    Organochlorine and organophosphate pesticides are compounds that can be detected in human populations as a result of occupational or residential exposure. Despite their occurrence in considerably low levels in humans, their biological effects are hazardous since they interact with a plethora of enzymes, proteins, receptors and transcription factors. In this review we summarize the cell and molecular effects of organochlorine and organophosphate pesticides with respect to their toxicity, with particular emphasis on glucose and lipid metabolism, their interaction with some members of the nuclear receptor family of ligand-activated transcription factors, including the steroid and peroxisome proliferator activated receptors that changes the expression of genes involved in lipid metabolism and xenobiotic detoxification. More importantly, evidence regarding the metabolic degradation of pesticides and their accumulation in tissues is presented. Potential non-cholinergic mechanisms after long-term low-dose organophosphate exposure resulting in neurodevelopmental outcomes and neurodegeneration are also addressed. We conclude that the mechanism of pesticide-mediated toxicity is a combination of various enzyme-inhibitory, metabolic and transcriptional events acting at the cellular and molecular level.

  2. Potential developmental neurotoxicity of pesticides used in Europe

    PubMed Central

    Bjørling-Poulsen, Marina; Andersen, Helle Raun; Grandjean, Philippe

    2008-01-01

    Pesticides used in agriculture are designed to protect crops against unwanted species, such as weeds, insects, and fungus. Many compounds target the nervous system of insect pests. Because of the similarity in brain biochemistry, such pesticides may also be neurotoxic to humans. Concerns have been raised that the developing brain may be particularly vulnerable to adverse effects of neurotoxic pesticides. Current requirements for safety testing do not include developmental neurotoxicity. We therefore undertook a systematic evaluation of published evidence on neurotoxicity of pesticides in current use, with specific emphasis on risks during early development. Epidemiologic studies show associations with neurodevelopmental deficits, but mainly deal with mixed exposures to pesticides. Laboratory experimental studies using model compounds suggest that many pesticides currently used in Europe – including organophosphates, carbamates, pyrethroids, ethylenebisdithiocarbamates, and chlorophenoxy herbicides – can cause neurodevelopmental toxicity. Adverse effects on brain development can be severe and irreversible. Prevention should therefore be a public health priority. The occurrence of residues in food and other types of human exposures should be prevented with regard to the pesticide groups that are known to be neurotoxic. For other substances, given their widespread use and the unique vulnerability of the developing brain, the general lack of data on developmental neurotoxicity calls for investment in targeted research. While awaiting more definite evidence, existing uncertainties should be considered in light of the need for precautionary action to protect brain development. PMID:18945337

  3. Monitoring of pesticide residues in vegetarian diet.

    PubMed

    Kumari, Beena; Kathpal, T S

    2009-04-01

    Samples (28) of complete vegetarian diet consumed from morning till night i.e. tea, milk, breakfast, lunch, snacks, dinner, sweet dish etc. were collected from homes, hostels and hotels periodically from Hisar and analysed for detecting the residues of organochlorine, synthetic pyrethriod, organophosphate and carbamate insecticides. The estimation was carried out by using multi-residue analytical technique employing gas chromatograph (GC)-electron capture detector and GC-nitrogen phosphorous detector systems equipped with capillary columns. The whole diet sample was macerated in a mixer grinder and a representative sample in duplicate was analyzed for residues keeping the average daily diet of an adult to be 1,300 g. On comparing the data, it was found that actual daily intake (microgram/person/day) of lindane in two and endosulfan in four samples exceeded the acceptable daily intake. Residues of other pesticides in all the diet samples were lower than the acceptable daily intake (ADI) of the respective pesticides. The study concluded that although all the diet samples were found contaminated with one or the other pesticide, the actual daily intake of only a few pesticides was higher than their respective ADI. More extensive study covering other localities of Haryana has been suggested to know the overall scenario of contamination of vegetarian diet.

  4. Paraoxonase activity and genetic polymorphisms in greenhouse workers with long term pesticide exposure.

    PubMed

    Hernández, Antonio F; Mackness, Bharti; Rodrigo, Lourdes; López, Olga; Pla, Antonio; Gil, Fernando; Durrington, Paul N; Pena, Gloria; Parrón, Tesifón; Serrano, José L; Mackness, Michael I

    2003-11-01

    Serum paraoxonase (PON1) is a high-density lipoprotein (HDL) associated protein, which plays a critical role in the pathogenesis of atherosclerosis, although it was primarily associated with the hydrolysis of organophosphorus compounds. PON1 was initially thought to be independent from physiological or pathological states, although recently some environmental factors have been reported to modulate its activity. In this study, we have investigated the promoter (PON1 -108C/T and -909 C/G) and coding region (PON1 192Q/R and 55L/M) polymorphisms, as well as PON1 activity towards different substrates (paraoxon, phenylacetate and diazoxon) in 102 individuals with long term low dose exposure to pesticides in a plastic greenhouse setting (sprayers), who are probably the group of agricultural workers with the highest exposure to pesticides. PON1 activity towards paraoxon was nonsignificantly decreased (up to 53.5%) in the sprayers subgroup exposed to organophosphates (n = 41) compared with nonsprayers acting as controls (n = 39). None of the genotypes studied was associated significantly with the subgroup of individuals exposed to organophosphates, although differences between sprayers and nonsprayers were observed in the PON1 -909 G/C polymorphism. Among the environmental factors that significantly predicted lower rates of PON1 activity towards paraoxon are, interestingly, the exposure to organophosphates and current smoking. By contrast, the utilization of protective clothing while spraying pesticides inside the greenhouses was positively associated with PON1 activity, very likely by preventing the pesticides from being absorbed. This study suggests that chronic exposure to pesticides might decrease PON1 activity and pinpoints the potential usefulness of monitoring PON1 activity in occupational settings where exposure to organophosphates occurs.

  5. Pesticide use practices in rural Armenia.

    PubMed

    Tadevosyan, Artashes; Tadevosyan, Natalya; Kelly, Kevin; Gibbs, Shawn G; Rautiainen, Risto H

    2013-01-01

    Pesticide use can have adverse effects on both human health and the environment. Inappropriate use of pesticides increases the health risk to those who work with or live around pesticides. Educational programs for agricultural workers on the proper use of pesticides and personal protective equipment coupled with pesticide regulations are important tools to reduce the associated health risks. The authors conducted a survey (N = 2336) on pesticide use practices in the Ararat Valley of Armenia in 2000-2006. This study was a cross-sectional design. A multistage sampling method was implemented in the selection of the study population. The authors developed a questionnaire containing 173 questions to evaluate demographic characteristics, health conditions, and details of pesticides use practices. The intensity of pesticide use was high; 82.8% of respondents used them. More than 150 brand names of pesticides were in use. Unregistered, obsolete, expired, and banned compounds were found in active use. Poor compliance with the basic rules of pesticide safety was found throughout the study population, with 21.3% using gloves and only 11% using respirators. The agricultural workers' knowledge of the toxic properties of these pesticides as well as basic hygienic norms was very low. In some instances, the number of agrichemical applications to crops, particularly cucumbers and melons, reached 40 applications during the growing season. Better protection and training of pesticide users in Armenia is needed.

  6. Queens become workers: pesticides alter caste differentiation in bees.

    PubMed

    Dos Santos, Charles F; Acosta, André L; Dorneles, Andressa L; Dos Santos, Patrick D S; Blochtein, Betina

    2016-08-17

    Bees are important for the world biodiversity and economy because they provide key pollination services in forests and crops. However, pesticide use in crops has adversely affected (decreased) queen production because of increased mortality among larvae. Here, we demonstrated that in vitro-reared queens of a neotropical social bee species (Plebeia droryana) also showed high larval mortality after exposure to an organophosphate pesticide (chlorpyrifos) via larval food. Moreover, most of the surviving larvae that were destined to develop into queens became workers more likely because they ate less food than expected without pesticide skewing thus caste differentiation in this bee species. This adverse effect has not been previously reported for any other social insects, such as honeybees or bumblebees. Queens are essential for breeding and colony growth. Therefore, if our data are applicable to other pantropical social bee species across the globe, it is likely that these bees are at a serious risk of failure to form new colonies.

  7. Queens become workers: pesticides alter caste differentiation in bees

    PubMed Central

    dos Santos, Charles F.; Acosta, André L.; Dorneles, Andressa L.; dos Santos, Patrick D. S.; Blochtein, Betina

    2016-01-01

    Bees are important for the world biodiversity and economy because they provide key pollination services in forests and crops. However, pesticide use in crops has adversely affected (decreased) queen production because of increased mortality among larvae. Here, we demonstrated that in vitro-reared queens of a neotropical social bee species (Plebeia droryana) also showed high larval mortality after exposure to an organophosphate pesticide (chlorpyrifos) via larval food. Moreover, most of the surviving larvae that were destined to develop into queens became workers more likely because they ate less food than expected without pesticide skewing thus caste differentiation in this bee species. This adverse effect has not been previously reported for any other social insects, such as honeybees or bumblebees. Queens are essential for breeding and colony growth. Therefore, if our data are applicable to other pantropical social bee species across the globe, it is likely that these bees are at a serious risk of failure to form new colonies. PMID:27530246

  8. Examining impacts of current-use pesticides in Southern Ontario using in situ exposures of the amphipod Hyalella azteca.

    PubMed

    Bartlett, Adrienne J; Struger, John; Grapentine, Lee C; Palace, Vince P

    2016-05-01

    In situ exposures with Hyalella azteca were used to assess impacts of current-use pesticides in Southern Ontario, Canada. Exposures were conducted over 2 growing seasons within areas of high pesticide use: 1 site on Prudhomme Creek and 3 sites on Twenty Mile Creek. Three sites on Spencer Creek, an area of low pesticide use, were added in the second season. Surface water samples were collected every 2 wk to 3 wk and analyzed for a suite of pesticides. Hyalella were exposed in situ for 1 wk every 4 wk to 6 wk, and survival and acetylcholinesterase (AChE) activity were measured. Pesticides in surface waters reflected seasonal use patterns: lower concentrations in spring and fall and higher concentrations during summer months. Organophosphate insecticides (chlorpyrifos, azinphos methyl, diazinon) and acid herbicides (2,4-dichlorophenoxyacetic acid [2,4-D], mecoprop) were routinely detected in Prudhomme Creek, whereas neutral herbicides (atrazine, metolachlor) dominated the pesticide signature of Twenty Mile Creek. Spencer Creek contained fewer pesticides, which were measured at lower concentrations. In situ effects also followed seasonal patterns: higher survival and AChE activity in spring and fall, and lower survival and AChE activity during summer months. The highest toxicity was observed at Prudhomme Creek and was primarily associated with organophosphates. The present study demonstrated that current-use pesticides in Southern Ontario were linked to in situ effects and identified sites of concern requiring further investigation.

  9. Integrative assessment of multiple pesticides as risk factors for non-Hodgkin's lymphoma among men

    PubMed Central

    De Roos, A J; Zahm, S; Cantor, K; Weisenburger, D; Holmes, F; Burmeister, L; Blair, A

    2003-01-01

    Methods: During the 1980s, the National Cancer Institute conducted three case-control studies of NHL in the midwestern United States. These pooled data were used to examine pesticide exposures in farming as risk factors for NHL in men. The large sample size (n = 3417) allowed analysis of 47 pesticides simultaneously, controlling for potential confounding by other pesticides in the model, and adjusting the estimates based on a prespecified variance to make them more stable. Results: Reported use of several individual pesticides was associated with increased NHL incidence, including organophosphate insecticides coumaphos, diazinon, and fonofos, insecticides chlordane, dieldrin, and copper acetoarsenite, and herbicides atrazine, glyphosate, and sodium chlorate. A subanalysis of these "potentially carcinogenic" pesticides suggested a positive trend of risk with exposure to increasing numbers. Conclusion: Consideration of multiple exposures is important in accurately estimating specific effects and in evaluating realistic exposure scenarios. PMID:12937207

  10. An ultra-sensitive acetylcholinesterase biosensor based on reduced graphene oxide-Au nanoparticles-β-cyclodextrin/Prussian blue-chitosan nanocomposites for organophosphorus pesticides detection.

    PubMed

    Zhao, Haiyan; Ji, Xueping; Wang, Beibei; Wang, Na; Li, Xianrui; Ni, Ruixing; Ren, Jujie

    2015-03-15

    This work reports a novel, ultrasensitive, and selective sensing platform based on a direct electrodeposition of electrochemical reduced graphene oxide (ERGO)-Au nanoparticles (AuNPs)-β-cyclodextrin (β-CD) and Prussian blue-chitosan (PB-CS) on glass carbon electrode (GCE) for efficiently fixed acetylcholinesterase (AChE) to fabricate organophosphorus pesticides (OPs) biosensor. The PB-CS not only effectively catalyzed the oxidation of thiocholine (TCh), but also shifted its oxidation potential from 0.68 to 0.2V, and accordingly the sensitivity of the biosensor was obviously improved. The synergistic effect between ERGO and AuNPs significantly promoted the electron transfer between PB and GCE, and remarkably enhanced the electrochemical oxidation of TCh. Besides, β-CD could interact with substrate by reversible bonding, which is contribute to increase the enrichment of the substrate and improve the selectivity and sensitivity of the biosensor. The integration of ERGO-AuNPs-β-CD with PB-CS provided an advantageous and high-performance platform for sensing applications. Based on the inhibition of OPs on AChE activity, the sensor showed wide linear ranges of 7.98-2.00×10(3)pgmL(-1) and 4.3-1.00×10(3)pgmL(-1) with low detection limits of 4.14pgmL(-1) and 1.15pgmL(-1) for malathion and carbaryl, respectively. The proposed biosensor exhibited short response time, good stability and high sensitivity, which can be used for direct analysis of practical samples.

  11. Silicone wristbands detect individuals' pesticide exposures in West Africa

    PubMed Central

    Scott, Richard P.; Blaustein, Kathy L.; Halbleib, Mary L.; Sarr, Makhfousse; Jepson, Paul C.

    2016-01-01

    We detected between 2 and 10 pesticides per person with novel sampling devices worn by 35 participants who were actively engaged in farming in Diender, Senegal. Participants were recruited to wear silicone wristbands for each of two separate periods of up to 5 days. Pesticide exposure profiles were highly individualized with only limited associations with demographic data. Using a 63-pesticide dual-column gas chromatography–electron capture detector (GC-ECD) method, we detected pyrethoid insecticides most frequently, followed by organophosphate pesticides which have been linked to adverse health outcomes. This work provides the first report of individualized exposure profiles among smallholder farmers in West Africa, where logistical and practical constraints have prevented the use of more traditional approaches to exposure assessment in the past. The wristbands and associated analytical method enabled detection of a broad range of agricultural, domestic, legacy and current-use pesticides, including esfenvalerate, cypermethrin, lindane, DDT and chlorpyrifos. Participants reported the use of 13 pesticide active ingredients while wearing wristbands. All six of the pesticides that were both reportedly used and included in the analytical method were detected in at least one wristband. An additional 19 pesticide compounds were detected beyond those that were reported to be in use, highlighting the importance of measuring exposure in addition to collecting surveys and self-reported use records. The wristband method is a candidate for more widespread use in pesticide exposure and health monitoring, and in the development of evidence-based policies for human health protection in an area where food security concerns are likely to intensify agricultural production and pesticide use in the near future. PMID:27853621

  12. Obsolete pesticides

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Several hundred tons of obsolete pesticide stocks worldwide will pose a threat to humans and the environment until the year 2030 in some regions, unless funding for waste disposal is significantly increased, the United Nations Food and Agriculture Organization (FAO) said in a message directed to donor governments and industry on May 24.“Deadly chemicals are contaminating the soils, groundwater, irrigation, and drinking water,” said Amemayehu Wodageneh, senior expert on obsolete pesticides for FAO. “These ‘forgotten’ stocks are a serious risk, [and] they could cause an environmental tragedy in rural areas and big cities. There is hardly any developing country that is not affected by the hazards of obsolete pesticides.”

  13. Pesticides in Surface and Ground Water of the San Joaquin-Tulare Basins, California: Analysis of Available Data, 1966 Through 1992

    USGS Publications Warehouse

    Domagalski, Joseph L.

    1997-01-01

    Available pesticide data (1966-92) for surface and ground water were analyzed for the San Joaquin-Tulare Basins, California, one of 60 large hydrologic systems being studied as part of the National Water-Quality Assessment Program of the U.S. Geological Survey. Most of the pesticide data were for the San Joaquin Valley, one of the most intensively farmed and irrigated areas of the United States. Data were obtained from the Storage and Retrieval data base of the U.S. Environmental Protection Agency, the water-quality data base of the U.S. Geological Survey, and from data files of State agencies. Pesticides detected in surface water include organochlorine pesticides, organophosphate pesticides, carbamate pesticides, and triazine herbicides. Pesticides detected in ground water include triazine and other organonitrogen herbicides and soil fumi gants. Surface-water data indicate seasonal patterns for the detection of organophosphate and carbamate pesticides, which are attributed to their use on almond orchards and alfafa fields. Organochlorine pesticides were detected primarily in river-bed sediments. Concentrations detected in bed sediments of the San Joaquin River near Vernalis are among the highest of any major river system in the United States. Patterns and timing of pesticide use indicate that pesticides might be present in surface-water systems during most months of a year. The most commonly detected pesticide in ground water is the soil fumigant, dibromochloropropane. Dibromochloropropane, used primarily on vineyards and orchards, was detected in ground water near the city of Fresno. Triazine and other organonitrogen herbicides were detected near vineyards and orchards in the same general locations as the detections of dibromochloropropane. Pesticides were detected in ground water of the east side of the valley floor, where the soils are sandy or coarsegrained, and water-soluble pesticides with long environmental half-lives were used. In contrast, fewer

  14. Efficacy of fresh packed red blood transfusion in organophosphate poisoning

    PubMed Central

    Bao, Hang-xing; Tong, Pei-jian; Li, Cai-xia; Du, Jing; Chen, Bing-yu; Huang, Zhi-hui; Wang, Ying

    2017-01-01

    Abstract The mortality rate caused by organophosphate (OP) poisoning is still high, even the standard treatment such as atropine and oxime improves a lot. To search for alternative therapies, this study was aimed to investigate the effects of packed red blood cell (RBC) transfusion in acute OP poisoning, and compare the therapeutic effects of RBCs at different storage times. Patients diagnosed with OP poisoning were included in this prospective study. Fresh RBCs (packed RBCs stored less than 10 days) and longer-storage RBCs (stored more than 10 days but less than 35 days) were randomly transfused or not into OP poisoning patients. Cholinesterase (ChE) levels in blood, atropine usage and durations, pralidoxime durations were measured. We found that both fresh and longer-storage RBCs (200–400 mL) significantly increased blood ChE levels 6 hours after transfusion, shortened the duration for ChE recovery and length of hospital stay, and reduced the usage of atropine and pralidoxime. In addition, fresh RBCs demonstrated stronger therapeutic effects than longer-storage RBCs. Packed RBCs might be an alternative approach in patients with OP poisoning, especially during early stages. PMID:28296779

  15. Pesticide Exposure and Depression among Male Private Pesticide Applicators in the Agricultural Health Study

    PubMed Central

    Beard, John D.; Umbach, David M.; Hoppin, Jane A.; Richards, Marie; Alavanja, Michael C.R.; Blair, Aaron; Sandler, Dale P.

    2014-01-01

    Background: Pesticide exposure may be positively associated with depression. Few previous studies have considered the episodic nature of depression or examined individual pesticides. Objective: We evaluated associations between pesticide exposure and depression among male private pesticide applicators in the Agricultural Health Study. Methods: We analyzed data for 10 pesticide classes and 50 specific pesticides used by 21,208 applicators enrolled in 1993–1997 who completed a follow-up telephone interview in 2005–2010. We divided applicators who reported a physician diagnosis of depression (n = 1,702; 8%) into those who reported a previous diagnosis of depression at enrollment but not follow-up (n = 474; 28%), at both enrollment and follow-up (n = 540; 32%), and at follow-up but not enrollment (n = 688; 40%) and used polytomous logistic regression to estimate odds ratios (ORs) and 95% CIs. We used inverse probability weighting to adjust for potential confounders and to account for the exclusion of 3,315 applicators with missing covariate data and 24,619 who did not complete the follow-up interview. Results: After weighting for potential confounders, missing covariate data, and dropout, ever-use of two pesticide classes, fumigants and organochlorine insecticides, and seven individual pesticides—the fumigants aluminum phosphide and ethylene dibromide; the phenoxy herbicide (2,4,5-trichlorophenoxy)acetic acid (2,4,5-T); the organochlorine insecticide dieldrin; and the organophosphate insecticides diazinon, malathion, and parathion—were all positively associated with depression in each case group, with ORs between 1.1 and 1.9. Conclusions: Our study supports a positive association between pesticide exposure and depression, including associations with several specific pesticides. Citation: Beard JD, Umbach DM, Hoppin JA, Richards M, Alavanja MCR, Blair A, Sandler DP, Kamel F. 2014. Pesticide exposure and depression among male private pesticide applicators in the

  16. Pesticide mass budget in a stormwater wetland.

    PubMed

    Maillard, Elodie; Imfeld, Gwenaël

    2014-01-01

    Wetlands are reactive landscape zones that provide ecosystem services, including the improvement of water quality. Field studies distinguishing pesticide degradation from retention to evaluate the sink and source functions of wetlands are scarce. This study evaluated based on a complete mass budget the partitioning, retention, and degradation of 12 pesticides in water, suspended solids, sediments, and organisms in a wetland receiving contaminated runoff. The mass budget showed the following: (i) dissolved pesticides accounted for 95% of the total load entering the wetland and the pesticide partitioning between the dissolved phase and the suspended solids varied according to the molecules, (ii) pesticides accumulated primarily in the <250 μm bed sediments during spring and late summer, and (iii) the hydrological regime or the incoming pesticide loads did not influence the pesticide dissipation, which varied according to the molecules and the wetland biogeochemical conditions. The vegetation enhanced the pesticide degradation during the vegetative phase and the pesticides were released during plant senescence. The dithiocarbamates were degraded under oxic conditions in spring, whereas glyphosate and aminomethylphosphonic acid (AMPA) degradation occurred under reducing conditions during the summer. The complete pesticide mass budget indicates the versatility of the pesticide sink and source functions of wetland systems.

  17. Comparative Kinetics and Distribution to Target Tissues of Organophosphates Using Physiologically - Based Pharmacokinetic Modeling

    DTIC Science & Technology

    2008-03-01

    COMPARATIVE KINETICS AND DISTRIBUTION TO TARGET TISSUES OF ORGANOPHOSPHATES USING PHYSIOLOGICALLY...Department of Defense, or the U.S. Government. AFIT/GEM/ENV/08-M20 COMPARATIVE KINETICS AND DISTRIBUTION TO TARGET TISSUES OF ORGANOPHOSPHATES...APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT/GEM/ENV/08-M20 COMPARATIVE KINETICS AND DISTRIBUTION TO TARGET TISSUES OF ORGANOPHOSPHATES

  18. Organophosphate inhibition of avian salt gland Na, K-ATPase activity

    USGS Publications Warehouse

    Eastin, W.C.; Fleming, W.J.; Murray, H.C.

    1982-01-01

    1. Adult black ducks (Anas rubripes) were given freshwater or saltwater (1.5% NaCl) for 11 days and half of each group was also given an organophosphate (17 p.p.m. fenthion) in the diet on days 6-11. 2. After 11 days, ducks drinking saltwater had lost more weight and had higher plasma Na and uric acid concentrations and osmolalities than birds drinking freshwater. 3. Saltwater treatment stimulated the salt gland to increased weight and Na, K-ATPase activity. 4. Fenthion generally reduced plasma and brain cholinesterase activity and depressed cholinesterase and Na, K-ATPase activities in salt glands of birds drinking saltwater.

  19. Investigating the Molecular Mechanisms of Organophosphate and Pyrethroid Resistance in the Fall Armyworm Spodoptera frugiperda

    PubMed Central

    Carvalho, Renato A.; Omoto, Celso; Field, Linda M.; Williamson, Martin S.; Bass, Chris

    2013-01-01

    The fall armyworm Spodoptera frugiperda is an economically important pest of small grain crops that occurs in all maize growing regions of the Americas. The intensive use of chemical pesticides for its control has led to the selection of resistant populations, however, to date, the molecular mechanisms underlying resistance have not been characterised. In this study the mechanisms involved in the resistance of two S. frugiperda strains collected in Brazil to chlorpyrifos (OP strain) or lambda-cyhalothrin (PYR strain) were investigated using molecular and genomic approaches. To examine the possible role of target-site insensitivity the genes encoding the organophosphate (acetylcholinesterase, AChE) and pyrethroid (voltage-gated sodium channel, VGSC) target-site proteins were PCR amplified. Sequencing of the S. frugiperda ace-1 gene identified several nucleotide changes in the OP strain when compared to a susceptible reference strain (SUS). These result in three amino acid substitutions, A201S, G227A and F290V, that have all been shown previously to confer organophosphate resistance in several other insect species. Sequencing of the gene encoding the VGSC in the PYR strain, identified mutations that result in three amino acid substitutions, T929I, L932F and L1014F, all of which have been shown previously to confer knockdown/super knockdown-type resistance in several arthropod species. To investigate the possible role of metabolic detoxification in the resistant phenotype of the OP and PYR stains all EST sequences available for S. frugiperda were used to design a gene-expression microarray. This was then used to compare gene expression in the resistant strains with the susceptible reference strain. Members of several gene families, previously implicated in metabolic resistance in other insects were found to be overexpressed in the resistant strains including glutathione S-transferases, cytochrome P450s and carboxylesterases. Taken together these results provide

  20. Environmental and occupational pesticide exposure and human sperm parameters: a systematic review.

    PubMed

    Martenies, Sheena E; Perry, Melissa J

    2013-05-10

    Of continuing concern are the associations between environmental or occupational exposures to pesticides and semen quality parameters. Prior research has indicated that there may be associations between exposure to pesticides of a variety of classes and decreased sperm health. The intent of this review was to summarize the most recent evidence related to pesticide exposures and commonly used semen quality parameters, including concentration, motility and morphology. The recent literature was searched for studies published between January 2007 and August 2012 that focused on environmental or occupational pesticide exposures. Included in the review are 17 studies, 15 of which reported significant associations between exposure to pesticides and semen quality indicators. Two studies also investigated the roles genetic polymorphisms may play in the strength or directions of these associations. Specific pesticides targeted for study included dichlorodiphenyltrichloroethane (DDT), hexachlorocyclohexane (HCH), and abamectin. Pyrethroids and organophosphates were analyzed as classes of pesticides rather than as individual compounds, primarily due to the limitations of exposure assessment techniques. Overall, a majority of the studies reported significant associations between pesticide exposure and sperm parameters. A decrease in sperm concentration was the most commonly reported finding among all of the pesticide classes investigated. Decreased motility was also associated with exposures to each of the pesticide classes, although these findings were less frequent across studies. An association between pesticide exposure and sperm morphology was less clear, with only two studies reporting an association. The evidence presented in this review continues to support the hypothesis that exposures to pesticides at environmentally or occupationally relevant levels may be associated with decreased sperm health. Future work in this area should focus on associations between specific

  1. Developmental Exposure to Organophosphate Flame Retardants Elicits Overt Toxicity and Alters Behavior in Early Life Stage Zebrafish (Danio rerio)

    PubMed Central

    Dishaw, Laura V.; Hunter, Deborah L.; Padnos, Beth; Padilla, Stephanie; Stapleton, Heather M.

    2014-01-01

    Organophosphate flame retardants (OPFRs) are common replacements for the phased-out polybrominated diphenyl ethers (PBDEs) and have been detected at high concentrations in environmental samples. OPFRs are structurally similar to organophosphate pesticides and may adversely affect the developing nervous system. This study evaluated the overt toxicity, uptake, and neurobehavioral effects of tris (1,3-dichloro-2-propyl) phosphate (TDCPP), tris (2-chloroethyl) phosphate (TCEP), tris (1-chloro-2-propyl) phosphate (TCPP), and tris (2,3-dibromopropyl) phosphate (TDBPP) in early life stage zebrafish. Chlorpyrifos was used as a positive control. For overt toxicity and neurobehavioral assessments, zebrafish were exposed from 0 to 5 days postfertilization (dpf). Hatching, death, or malformations were evaluated daily. Teratogenic effects were scored by visual examination on 6 dpf. To evaluate uptake and metabolism, zebrafish were exposed to 1 µM of each organophosphate (OP) flame retardant and collected on 1 and 5 dpf to monitor accumulation. Larval swimming activity was measured in 6 dpf larvae to evaluate neurobehavioral effects of exposures below the acute toxicity threshold. TDBPP elicited the greatest toxicity at >1 µM. TDCPP and chlorpyrifos were overtly toxic at concentrations ≥10 µM, TCEP, and TCPP were not overtly toxic at the doses tested. Tissue concentrations increased with increasing hydrophobicity of the parent chemical after 24 h exposures. TDCPP and TDBPP and their respective metabolites were detected in embryos on 5 dpf. For all chemicals tested, developmental exposures that were not overtly toxic significantly altered larval swimming activity. These data indicate that OPFRs adversely affect development of early life stage zebrafish. PMID:25239634

  2. Developmental exposure to organophosphate flame retardants elicits overt toxicity and alters behavior in early life stage zebrafish (Danio rerio).

    PubMed

    Dishaw, Laura V; Hunter, Deborah L; Padnos, Beth; Padilla, Stephanie; Stapleton, Heather M

    2014-12-01

    Organophosphate flame retardants (OPFRs) are common replacements for the phased-out polybrominated diphenyl ethers (PBDEs) and have been detected at high concentrations in environmental samples. OPFRs are structurally similar to organophosphate pesticides and may adversely affect the developing nervous system. This study evaluated the overt toxicity, uptake, and neurobehavioral effects of tris (1,3-dichloro-2-propyl) phosphate (TDCPP), tris (2-chloroethyl) phosphate (TCEP), tris (1-chloro-2-propyl) phosphate (TCPP), and tris (2,3-dibromopropyl) phosphate (TDBPP) in early life stage zebrafish. Chlorpyrifos was used as a positive control. For overt toxicity and neurobehavioral assessments, zebrafish were exposed from 0 to 5 days postfertilization (dpf). Hatching, death, or malformations were evaluated daily. Teratogenic effects were scored by visual examination on 6 dpf. To evaluate uptake and metabolism, zebrafish were exposed to 1 µM of each organophosphate (OP) flame retardant and collected on 1 and 5 dpf to monitor accumulation. Larval swimming activity was measured in 6 dpf larvae to evaluate neurobehavioral effects of exposures below the acute toxicity threshold. TDBPP elicited the greatest toxicity at >1 µM. TDCPP and chlorpyrifos were overtly toxic at concentrations ≥10 µM, TCEP, and TCPP were not overtly toxic at the doses tested. Tissue concentrations increased with increasing hydrophobicity of the parent chemical after 24 h exposures. TDCPP and TDBPP and their respective metabolites were detected in embryos on 5 dpf. For all chemicals tested, developmental exposures that were not overtly toxic significantly altered larval swimming activity. These data indicate that OPFRs adversely affect development of early life stage zebrafish.

  3. Occurrence and distribution of pesticides in surface waters of the Hood River basin, Oregon, 1999-2009

    USGS Publications Warehouse

    Temple, Whitney B.; Johnson, Henry M.

    2011-01-01

    The U.S. Geological Survey analyzed pesticide and trace-element concentration data from the Hood River basin collected by the Oregon Department of Environmental Quality (ODEQ) from 1999 through 2009 to determine the distribution and concentrations of pesticides in the basin's surface waters. Instream concentrations were compared to (1) national and State water-quality standards established to protect aquatic organisms and (2) concentrations that cause sublethal or lethal effects in order to assess their potential to adversely affect the health of salmonids and their prey organisms. Three salmonid species native to the basin are listed as "threatened" under the U.S. Endangered Species Act: bull trout, steelhead, and Chinook salmon. A subset of 16 sites was sampled every year by the ODEQ for pesticides, with sample collection targeted to months of peak pesticide use in orchards (March-June and September). Ten pesticides and four pesticide degradation products were analyzed from 1999 through 2008; 100 were analyzed in 2009. Nineteen pesticides were detected: 11 insecticides, 6 herbicides, and 2 fungicides. Two of four insecticide degradation products were detected. All five detected organophosphate insecticides and the one detected organochlorine insecticide were present at concentrations exceeding water-quality standards, sublethal effects thresholds, or acute toxicity values in one or more samples. The frequency of organophosphate detection in the basin decreased during the period of record; however, changes in sampling schedule and laboratory reporting limits hindered clear analysis of detection frequency trends. Detected herbicide and fungicide concentrations were less than water-quality standards, sublethal effects thresholds, or acute toxicity values. Simazine, the most frequently detected pesticide, was the only herbicide detected at concentrations within an order of magnitude (factor of 10) of concentrations that impact salmonid olfaction. Some detected

  4. Residential Proximity to Agricultural Pesticide Applications and Childhood Acute Lymphoblastic Leukemia

    PubMed Central

    Rull, Rudolph P.; Gunier, Robert; Von Behren, Julie; Hertz, Andrew; Crouse, Vonda; Buffler, Patricia A.; Reynolds, Peggy

    2009-01-01

    Ambient exposure from residential proximity to applications of agricultural pesticides may contribute to the risk of childhood acute lymphoblastic leukemia (ALL). Using residential histories collected from the families of 213 ALL cases and 268 matched controls enrolled in the Northern California Childhood Leukemia Study, the authors assessed residential proximity within a half-mile (804.5 meters) of pesticide applications by linking address histories with reports of agricultural pesticide use. Proximity was ascertained during different time windows of exposure, including the first year of life and the child’s lifetime through the date of diagnosis for cases or reference for controls. Agricultural pesticides were categorized a priori into groups based on similarities in toxicological effects, physicochemical properties, and target pests or uses. The effects of moderate and high exposure for each group of pesticides were estimated using conditional logistic regression. Elevated ALL risk was associated with lifetime moderate exposure, but not high exposure, to certain physicochemical categories of pesticides, including organophosphates, cholorinated phenols, and triazines, and with pesticides classified as insecticides or fumigants. A similar pattern was also observed for several toxicological groups of pesticides. These findings suggest future directions for the identification of specific pesticides that may play a role in the etiology of childhood leukemia. PMID:19700145

  5. Laundering as decontamination of apparel fabrics: residues of pesticides from six chemical classes.

    PubMed

    Nelson, C; Laughlin, J; Kim, C; Rigakis, K; Raheel, M; Scholten, L

    1992-07-01

    Research on reducing the level of pesticide residue on a textile substrate has examined many variables under many different conditions. This study controlled fiber type and the use of prewash product in an examination of residue levels for a number of pesticides in different pesticide classes. For all pesticides examined, the use of prewash lowered pesticide residues regardless of fiber type. Differences in pesticide residue level attributable to fiber type were not consistent.

  6. Comparative Dietary Toxicities of Pesticides to Birds

    USGS Publications Warehouse

    Heath, R.G.; Spann, J.W.; Hill, E.F.; Kreitzer, J.F.

    1972-01-01

    This report presents measurements of the lethal dietary toxicity of 89 pesticidal chemicals to young bowhites, Japanese quail, ring-necked pheasants, and mallards. Toxicity is expressed as the median lethal concentration (LC 50) of active chemical in a 5-day ad libitum diet. LC 50's and associated statistics are derived by methods of probit analysis. Endrin consistently was the most toxic chemical while aldrin and dieldrin were among the six most toxic chemicals of those tested on all species. In general, organophosphates were less toxic than aldrin or dieldrin and herbicides were of a low order of toxicity. There were obvious inconsistencies in the relative sensitivity of the four species to various chemicals.

  7. Introduction to Pesticide Incidents

    EPA Pesticide Factsheets

    Pesticides incidents must be reported by pesticide registrants. Others, such as members of the public and environmental professionals, would like to report pesticide incidents. This website will explain and facilitate such incident reporting.

  8. National Pesticide Information Center

    MedlinePlus

    ... Health Safe Use Practices Food Safety Environment Air Water Soil Wildlife Plants Pest Control Identify Your Pest Learn About Your Pest Control Your Pest Integrated Pest Management Pesticide Products NPRO: Pesticide Product Search Pesticide Ingredients ...

  9. Endangered Species: Pesticide Restrictions

    EPA Pesticide Factsheets

    Our goal is to protect threatened and endangered species and their habitats, without placing unnecessary burden on agriculture and pesticide users. Pesticide limitations are developed to ensure safe use of pesticides in order to meet this goal.

  10. Pesticides and Human Health

    MedlinePlus

    ... Active Ingredients Other/Inert Ingredients Low-Risk Pesticides Organic Pesticide Ingredients Pesticide Incidents Human Exposure Pet Exposure ... toxic products , and those that are natural or organic , can cause health problems if someone is exposed ...

  11. Cytogenetic monitoring in a population occupationally exposed to pesticides in Ecuador.

    PubMed Central

    Paz-y-Miño, César; Bustamante, Gabriela; Sánchez, María Eugenia; Leone, Paola E

    2002-01-01

    We analyzed the incidence of structural and numerical chromosomal aberrations (CAs) in workers of a plantation of flowers located in Quito, Ecuador, in South America. This study included 41 individuals occupationally exposed to 27 pesticides, some of which are restricted in many countries and are classified as extremely toxic by the World Health Organization; among these are aldicarb and fenamiphos. The same number of individuals of the same age, sex, and geographic area were selected as controls. Workers exposed to these pesticides showed an increased frequency of CA compared with control group (20.59% vs. 2.73%; p < 0.001). We conclude that screening for CA is an adequate biomarker for evaluating and detecting genotoxicity resulting from exposure to pesticides. Levels of erythrocyte acetylcholinesterase were also determined as a complementary metabolic study. Levels below the optimal (> 28 U/mL blood) were found in 88% of exposed individuals; this clearly shows the effect of organophosphate pesticides. When comparing the levels of acetylcholinesterase and structural CA frequencies, there was a negative linear correlation (r = 0.416; p < 0.01). We conclude that by using both analyses it may be possible to estimate damage produced by exposure to organophosphate pesticides. PMID:12417477

  12. Microflow liquid chromatography coupled to mass spectrometry--an approach to significantly increase sensitivity, decrease matrix effects, and reduce organic solvent usage in pesticide residue analysis.

    PubMed

    Uclés Moreno, Ana; Herrera López, Sonia; Reichert, Barbara; Lozano Fernández, Ana; Hernando Guil, María Dolores; Fernández-Alba, Amadeo Rodríguez

    2015-01-20

    This manuscript reports a new pesticide residue analysis method employing a microflow-liquid chromatography system coupled to a triple quadrupole mass spectrometer (microflow-LC-ESI-QqQ-MS). This uses an electrospray ionization source with a narrow tip emitter to generate smaller droplets. A validation study was undertaken to establish performance characteristics for this new approach on 90 pesticide residues, including their degradation products, in three commodities (tomato, pepper, and orange). The significant benefits of the microflow-LC-MS/MS-based method were a high sensitivity gain and a notable reduction in matrix effects delivered by a dilution of the sample (up to 30-fold); this is as a result of competition reduction between the matrix compounds and analytes for charge during ionization. Overall robustness and a capability to withstand long analytical runs using the microflow-LC-MS system have been demonstrated (for 100 consecutive injections without any maintenance being required). Quality controls based on the results of internal standards added at the samples' extraction, dilution, and injection steps were also satisfactory. The LOQ values were mostly 5 μg kg(-1) for almost all pesticide residues. Other benefits were a substantial reduction in solvent usage and waste disposal as well as a decrease in the run-time. The method was successfully applied in the routine analysis of 50 fruit and vegetable samples labeled as organically produced.

  13. Pesticide modelling for a small catchment using SWAT-2000.

    PubMed

    Kannan, Narayanan; White, Sue M; Worrall, Fred; Whelan, Mick J

    2006-01-01

    Pesticides in stream flow from the 142 ha Colworth catchment in Bedfordshire, UK were monitored from October 1999 to December 2000. About 47% of the catchment is tile-drained and different pesticides and cropping patterns have recently been evaluated in terms of their effect on nutrient and pesticide losses to the stream. The data from Colworth were used to test soil and water assessment tool (SWAT) 2000 predictions of pesticide concentrations at the catchment outlet. A sound model set-up to carry out pesticide modelling was created by means of hydrological modelling with proper simulation of crop growth and evapotranspiration. The pesticides terbuthylazine, terbutryn, cyanazine and bentazone were modelled. There was close agreement between SWAT-predicted pesticide concentration values and observations. Scenario trials were conducted to explore management options for reducing pesticide loads arriving at the catchment outlet. The results obtained indicate that SWAT can be used as a tool to understand pesticide behavior at the catchment scale.

  14. Organophosphate residues in grasshoppers from sprayed rangelands

    USGS Publications Warehouse

    Stromborg, K.L.; McEwen, L.C.; Lamont, Thair

    1984-01-01

    Grasshoppers (Orthoptera) were collected in pastures that had been sprayed with malathion and acephate to estimate the secondary exposure of insectivorous birds to these pesticides. Residues of malathion were below 3 ppm at 30 'and 54 hours after spraying and no malaoxon was detected. In contrast, acephate was found at 8 and 9 ppm 4 hours after spray; 3-5 ppm of the toxic metabolite methamidophos were also detected at that time. By 53 hours postspray, acephate levels declined to 2 ppm and methamidophos to less than 1 ppm. These results suggest that although malathion may not be a hazard to insectivorous species. acephate may be hazardous through metabolic transformation to methamidophos.

  15. Transfer of pesticides to the brew during mate drinking process and their relationship with physicochemical properties.

    PubMed

    Pérez-Parada, Andrés; González, Joaquín; Pareja, Lucía; Geis-Asteggiante, Lucía; Colazzo, Marcos; Niell, Silvina; Besil, Natalia; González, Gabriel; Cesio, Verónica; Heinzen, Horacio

    2010-11-01

    In order to evaluate the extraction of pesticide residues that are transferred to the brew during mate drinking process of P.U.1 yerba mate leaves (Ilex paraguariensis), a special device to simulate the way in which mate is drunk in Uruguay was developed. The transfer to the brew of 12 organophosphates, 5 synthethic pyrethroids and one organochlorine pesticide from spiked samples was studied. The relationship between the transfer data thus obtained and physicochemical properties like water solubility (Ws), octanol-water coefficient (Kow) and Henry's constant (H) was evaluated. The extractability of the pesticide residues from yerba mate can be correlated with log Ws and log Kow. These transfer values allowed the calculation of ARLs (acceptable residue level) for the pesticides following Food and Agriculture Organization (FAO), World Health Organizaion (WHO) guidelines. These results can help the future establishment of maximum residue levels (MRLs).

  16. Predicting children's short-term exposure to pesticides: results of a questionnaire screening approach.

    PubMed Central

    Sexton, Ken; Adgate, John L; Eberly, Lynn E; Clayton, C Andrew; Whitmore, Roy W; Pellizzari, Edo D; Lioy, Paul J; Quackenboss, James J

    2003-01-01

    The ability of questionnaires to predict children's exposure to pesticides was examined as part of the Minnesota Children's Pesticide Exposure Study (MNCPES). The MNCPES focused on a probability sample of 102 children between the ages of 3 and 13 years living in either urban (Minneapolis and St. Paul, MN) or nonurban (Rice and Goodhue Counties in Minnesota) households. Samples were collected in a variety of relevant media (air, food, beverages, tap water, house dust, soil, urine), and chemical analyses emphasized three organophosphate insecticides (chlorpyrifos, diazinon, malathion) and a herbicide (atrazine). Results indicate that the residential pesticide-use questions and overall screening approach used in the MNCPES were ineffective for identifying and oversampling children/households with higher levels of individual target pesticides. PMID:12515690

  17. Pesticide risk behaviors and factors influencing pesticide use among farmers in Kuwait.

    PubMed

    Jallow, Mustapha F A; Awadh, Dawood G; Albaho, Mohammed S; Devi, Vimala Y; Thomas, Binson M

    2017-01-01

    The widespread overuse of pesticides in agriculture has generated increasing concerns about the negative effects of pesticides on human health and the environment. Understanding farmers' perceptions of risk of pesticides and the determinants of pesticide overuse is important to modifying their behavior towards reducing pesticide use. A survey of 250 randomly selected smallholder vegetable farmers in Kuwait was conducted to quantify the extent of pesticide use, their pesticide risk perceptions and factors influencing their pesticide use behaviors. The majority of the farmers perceived pesticides pose some risk to the environment (65%) and human health (70.5%), while younger farmers were more likely to perceive this risk than older farmers. When asked to rate how risky pesticides were regarding several aspects of human health and the environment on a scale of 1(not risky) to 5 (extremely risky), concern was highest for the health of applicators (x̅=4.28) and lowest for air quality (x̅=2.32). The risk perceptions of the farmers did not have a positive influence on their pesticide use practices. A total of 76 pesticide active ingredients were found in use, and 9% of these belong to the WHO toxicity class II (moderately hazardous). On average, farmers applied 12.8kg of active ingredients per hectare per year, and 58% of the farmers were found to have overused pesticides, with an average overuse rate of 2.5kg. Pesticide application frequency ranged from two times a month up to once a week, depending on the crop. A binary probit model reveals that farmers' inadequate knowledge of pesticides, the influence of pesticide retailers and lack of access to non-synthetic methods of pest control are positively associated with pesticide overuse, while the propensity to overuse decreases with higher levels of education, training in Integrated Pest Management (IPM) and the safe use and handling of pesticides, and access to extension support. Comprehensive intervention measures for

  18. Fate of pesticides during beer brewing.

    PubMed

    Inoue, Tomonori; Nagatomi, Yasushi; Suga, Keiko; Uyama, Atsuo; Mochizuki, Naoki

    2011-04-27

    The fates of more than 300 pesticide residues were investigated in the course of beer brewing. Ground malt artificially contaminated with pesticides was brewed via steps such as mashing, boiling, and fermentation. Analytical samples were taken from wort, spent grain, and beer produced at certain key points in the brewing process. The samples were extracted and purified with the QuEChERS (Quick Easy Cheap Effective Rugged and Safe) method and were then analyzed by LC-MS/MS using a multiresidue method. In the results, a majority of pesticides showed a reduction in the unhopped wort and were adsorbed onto the spent grain after mashing. In addition, some pesticides diminished during the boiling and fermentation. This suggests that the reduction was caused mainly by adsorption, pyrolysis, and hydrolysis. After the entire process of brewing, the risks of contaminating beer with pesticides were reduced remarkably, and only a few pesticides remained without being removed or resolved.

  19. Nonpoint sources of pesticides in the San Joaquin River, California; input from winter storms, 1992-93

    USGS Publications Warehouse

    Domagalski, Joseph L.

    1995-01-01

    Organophosphate insecticides, including chlor- pyrifos, diazinon, and methidathion, are applied to dormant orchards in the San Joaquin Valley, California, during late December through January. This time frame coincides with the period of heaviest rainfall in the valley, and rainfall mobilizes a portion of these pesticides from the orchards. The pesticides enter the San Joaquin River and have been detected along the perennial reach of the river. A storm on the evening of February 7 and the morning of February 8, 1993, deposited more than an inch and a half of rain in the San Joaquin Valley. Two distinct peaks of organophosphate pesticide concentrations were measured at the mouth of the San Joaquin River during a single rise in discharge. Both peaks were attributed to contrasts between the soil texture and hydrology of the eastern and western valley. The fine soil texture and small size of the western tributary basins contributed to rapid runoff. Diazinon concentrations peaked within hours after rainfall ended and then decreased because of a combination of dilution with pesticide-free runoff from the nearby Coast Ranges and decreased pesticide concentrations in the agricultural runoff. Data for the Merced River, a large tributary of the eastern San Joaquin Valley, are sparse, but indicate that peak concentrations occurred at least a day after those of the western tributary streams. That delay may be due to the presence of well-drained soils, the larger size of the drainage basins, and the management of surface-water drainage networks. Runoff from a subsequent storm, on February 18 and 19, contained significantly lower concentrations of most organophosphate pesticides, indicating that runoff from the first storm had already removed most of the pesticides available for rainfall-induced transport.

  20. Exposure to non-persistent pesticides and thyroid function: A systematic review of epidemiological evidence.

    PubMed

    Campos, Élida; Freire, Carmen

    2016-08-01

    Numerous pesticides are recognized for their endocrine-disrupting properties. Non-persistent pesticides such as organophosphates, dithiocarbamates and pyrethroids may interfere with thyroid function as suggested by animal studies. However, the influence of chronic exposure to these compounds on thyroidal functions in humans remains to be determined. The present study aimed to review epidemiological evidence for an association between exposure to non-persistent pesticides and circulating levels of thyroid hormones (thyroxin [T4] and triiodothyronine [T3]) and thyroid-stimulating hormone (TSH). A systematic review was conducted using MEDLINE, SCOPUS and Virtual Health Library (BVS) databases. Articles were limited to original studies and reports published in English, Portuguese or Spanish. Nineteen epidemiological studies were identified, 17 of which were cross-sectional, 14 were of occupationally exposed workers and 11 used exposure biomarkers. Fungicides and organophosphates (OP) insecticides were the most studied pesticides. Although methodological heterogeneity between studies was noted, particularly regarding study design, exposure assessment, and control of confounding, most of them showed associations with changes in T3 and T4, and/or TSH levels, while results from a few of these are consistent with experimental data supporting the findings that non-persistent pesticide exposure exerts hypothyroid-like effects. However, reporting quality was moderate to poor in 50% of the studies, particularly regarding method of selection of participants and discussion of external validity. Overall, current knowledge regarding the impact of non-persistent pesticides on human thyroid function is still limited. Given the widespread use of pesticides, future research should assess effects of exposure to currently-used pesticides in cohort studies combining comprehensive questionnaire-based assessment and biomarkers. Investigators need to pay particular attention to exposure

  1. Pesticides' influence on wine fermentation.

    PubMed

    Caboni, Pierluigi; Cabras, Paolo

    2010-01-01

    Wine quality strongly depends on the grape quality. To obtain high-quality wines, it is necessary to process healthy grapes at the correct ripeness stage and for this reason the farmer has to be especially careful in the prevention of parasite attacks on the grapevine. The most common fungal diseases affecting grape quality are downy and powdery mildew (Plasmopara viticola and Uncinula necator), and gray mold (Botrytis cinerea). On the other hand, the most dangerous insects are the grape moth (Lobesia botrana), vine mealybug (Planococcus ficus), and the citrus mealybug (Planococcus citri). Farmers fight grape diseases and insects applying pesticides that can be found at harvest time on grapes. The persistence of pesticides depends on the chemical characteristic of the active ingredients as well as on photodegradation, thermodegradation, codistillation, and enzymatic degradation. The pesticide residues on grapes can be transferred to the must and this can influence the selection and development of yeast strains. Moreover, yeasts can also influence the levels of the pesticides in the wine by reducing or adsorbing them on lees. During the fermentative process, yeasts can cause the disappearance of pesticide residues by degradation or absorption at the end of the fermentation when yeasts are deposited as lees. In this chapter, we reviewed the effect of commonly used herbicides, insecticides, and fungicides on yeasts. We also studied the effect of alcoholic and malolactic fermentation on pesticide residues.

  2. Development of a fieldable rapid pesticide exposure analysis sensing system

    NASA Astrophysics Data System (ADS)

    Spencer, Kevin M.; Clauson, Susan L.; Spencer, Sarah A.; Sylvia, James M.; Vallejos, Quirina M.; Quandt, Sara A.; Arcury, Thomas A.

    2010-04-01

    Despite the recent interest in organically grown foods, most agricultural crops use multiple pesticides to optimize yield. There are many persons whose health may be affected by the spraying; there is the active applicator and the passive neighbors. In between these extremes are the farm workers who pick the crops anywhere from days to weeks after application. How much pesticide residue are these workers exposed to during a workday and how much is transferred back to the residence? Despite the low vapor pressures, what is the true concentration of pesticides surrounding a person when pesticides adsorbed to particulate matter are included? What is the relationship between the concentration around an individual and the amount adsorbed/ingested? To answer these questions on a statistically significant scale in actual field conditions, a portable, fast, inexpensive measurement device is required. We present herein results obtained using Surface-Enhanced Raman Spectroscopy (SERS) that demonstrate the capability to detect < 100 organophosphate, organochlorine and carbamate-based pesticides in the vapor phase as well as the ability of SERS sensors to detect a particular analyte in a synthetic urine matrix. We will also present data collected from CDC quantified urine samples and will present results obtained in a field test wherein SERS sensors wore worn as dosimeters in the field and real-time vapor sampling of the farm workers barracks was performed. The issue of potential interferences will also be discussed.

  3. MICROCHIP ENZYMATIC ASSAY OF ORGANOPHOSPHATE NERVE AGENTS. (R830900)

    EPA Science Inventory

    An on-chip enzymatic assay for screening organophosphate (OP) nerve agents, based on a pre-column reaction of organophosphorus hydrolase (OPH), electrophoretic separation of the phosphonic acid products, and their contactless-conductivity detection, is described. Factors affec...

  4. Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases

    PubMed Central

    Le Cointe, Ronan; Simon, Thomas E.; Delarue, Patrick; Hervé, Maxime; Leclerc, Melen; Poggi, Sylvain

    2016-01-01

    Reducing our reliance on pesticides is an essential step towards the sustainability of agricultural production. One approach involves the rational use of pesticides combined with innovative crop management. Most control strategies currently focus on the temporal aspect of epidemics, e.g. determining the optimal date for spraying, regardless of the spatial mechanics and ecology of disease spread. Designing innovative pest management strategies incorporating the spatial aspect of epidemics involves thorough knowledge on how disease control affects the life-history traits of the pathogen. In this study, using Rhizoctonia solani/Raphanus sativus as an example of a soil-borne pathosystem, we investigated the effects of a chemical control currently used by growers, Monceren® L, on key epidemiological components (saprotrophic spread and infectivity). We tested the potential “shield effect” of Monceren® L on pathogenic spread in a site-specific application context, i.e. the efficiency of this chemical to contain the spread of the fungus from an infected host when application is spatially localized, in our case, a strip placed between the infected host and a recipient bait. Our results showed that Monceren® L mainly inhibits the saprotrophic spread of the fungus in soil and may prevent the fungus from reaching its host plant. However, perhaps surprisingly we did not detect any significant effect of the fungicide on the pathogen infectivity. Finally, highly localized application of the fungicide—a narrow strip of soil (12.5 mm wide) sprayed with Monceren® L—significantly decreased local transmission of the pathogen, suggesting lowered risk of occurrence of invasive epidemics. Our results highlight that detailed knowledge on epidemiological processes could contribute to the design of innovative management strategies based on precision agriculture tools to improve the efficacy of disease control and reduce pesticide use. PMID:27668731

  5. Organic chemicals in the environment: Pesticides in the San Joaquin River, California: Inputs from dormant sprayed orchards

    USGS Publications Warehouse

    Domagalski, J.L.; Dubrovsky, N.M.; Kratzer, C.R.

    1997-01-01

    Rainfall-induced runoff mobilized pesticides to the San Joaquin River and its tributaries during a 3.8-cm rainstorm beginning the evening of 7 February and lasting through the morning of 8 Feb. 1993. Two distinct peaks of organophosphate pesticide concentrations were measured at the mouth of the San Joaquin River. These two peaks were attributed to contrasts between the soil texture, basin size, pesticide-use patterns, and hydrology of the eastern and western San Joaquin Valley. The fine soil texture and small size of the western tributary basins contributed to rapid runoff. In western valley streams, diazinon concentrations peaked within hours of the rainfall's end and then decreased because of a combination of dilution with pesticide- free runoff from the nearby Coast Ranges and decreasing concentrations in the agricultural runoff. Peak concentrations for the Merced River, a large tributary of the eastern San Joaquin Valley, occurred at least a day later than those of the western tributary streams. That delay may be due to the presence of well-drained soils in the eastern San Joaquin Valley, the larger size of the Merced River drainage basin, and the management of surface-water drainage networks. A subsequent storm on 18 and 19 February resulted in much lower concentrations of most organophosphate pesticides suggesting that the first storm had mobilized most of the pesticides that were available for rainfall-induced transport.

  6. Fluorescent chemosensors for toxic organophosphorus pesticides: a review.

    PubMed

    Obare, Sherine O; De, Chandrima; Guo, Wen; Haywood, Tajay L; Samuels, Tova A; Adams, Clara P; Masika, Noah O; Murray, Desmond H; Anderson, Ginger A; Campbell, Keith; Fletcher, Kenneth

    2010-01-01

    Many organophosphorus (OP) based compounds are highly toxic and powerful inhibitors of cholinesterases that generate serious environmental and human health concerns. Organothiophosphates with a thiophosphoryl (P=S) functional group constitute a broad class of these widely used pesticides. They are related to the more reactive phosphoryl (P=O) organophosphates, which include very lethal nerve agents and chemical warfare agents, such as, VX, Soman and Sarin. Unfortunately, widespread and frequent commercial use of OP-based compounds in agricultural lands has resulted in their presence as residues in crops, livestock, and poultry products and also led to their migration into aquifers. Thus, the design of new sensors with improved analyte selectivity and sensitivity is of paramount importance in this area. Herein, we review recent advances in the development of fluorescent chemosensors for toxic OP pesticides and related compounds. We also discuss challenges and progress towards the design of future chemosensors with dual modes for signal transduction.

  7. Fluorescent Chemosensors for Toxic Organophosphorus Pesticides: A Review

    PubMed Central

    Obare, Sherine O.; De, Chandrima; Guo, Wen; Haywood, Tajay L.; Samuels, Tova A.; Adams, Clara P.; Masika, Noah O.; Murray, Desmond H.; Anderson, Ginger A.; Campbell, Keith; Fletcher, Kenneth

    2010-01-01

    Many organophosphorus (OP) based compounds are highly toxic and powerful inhibitors of cholinesterases that generate serious environmental and human health concerns. Organothiophosphates with a thiophosphoryl (P=S) functional group constitute a broad class of these widely used pesticides. They are related to the more reactive phosphoryl (P=O) organophosphates, which include very lethal nerve agents and chemical warfare agents, such as, VX, Soman and Sarin. Unfortunately, widespread and frequent commercial use of OP-based compounds in agricultural lands has resulted in their presence as residues in crops, livestock, and poultry products and also led to their migration into aquifers. Thus, the design of new sensors with improved analyte selectivity and sensitivity is of paramount importance in this area. Herein, we review recent advances in the development of fluorescent chemosensors for toxic OP pesticides and related compounds. We also discuss challenges and progress towards the design of future chemosensors with dual modes for signal transduction. PMID:22163587

  8. Occupational pesticide intoxications among farmers in Bolivia: a cross-sectional study

    PubMed Central

    Jørs, Erik; Morant, Rafael Cervantes; Aguilar, Guido Condarco; Huici, Omar; Lander, Flemming; Bælum, Jesper; Konradsen, Flemming

    2006-01-01

    Background Pesticide use and its consequences are of concern in Bolivia due to an intensive and increasing use. Methods To assess the magnitude and reasons for occupational pesticide intoxication, a cross-sectional study with interviews and blood-tests was performed among 201 volunteer farmers from 48 villages in the temperate and subtropical valleys in the eastern part of the Andes Mountains in Bolivia. Of these 171 male farmers using pesticides in their agricultural production were used in the statistical analysis, including linear- and logistic regression analysis. Results This study documented a frequent use of the most toxic pesticides among farmers who have had almost no instructions in how to use pesticides and protect themselves against the dangers of intoxication, reflected in the hazardous practices used when handling pesticides. Symptoms of intoxications were common in connection with spraying operations. The risk of experiencing symptoms and the serum cholinesterase activity were influenced by whether or not organophosphates were used and the number of times sprayed. The experience of symptoms was moreover influenced by the hygienic and personal protective measures taken during spraying operations while this had no influence on the serum cholinesterase level. Conclusion The study showed that occupational pesticide intoxications were common among farmers and did depend on multiple factors. Pesticide use is probably one of the largest toxicological problems in Bolivia, and a coordinated action by authorities, society and international bodies is needed to limit the number of intoxications and the environmental pollution. PMID:16630337

  9. Pesticide poisoning in domestic animals and livestock in Austria: a 6 years retrospective study.

    PubMed

    Wang, Yingzi; Kruzik, Paul; Helsberg, Albert; Helsberg, Inge; Rausch, Wolf-Dieter

    2007-07-04

    A 6 years retrospective study of pesticide poisonings in domestic animals and livestock from 1999 to 2004 submitted to the Institute for Medical Chemistry, University of Veterinary Medicine, Vienna in Austria was compiled and analysed. Totally 380 pesticide analysis requests were referred by veterinary practitioners, from the Institute for Pathology of the above university, by regional and central governments as well as local police departments and district administrations, animal protectionist groups, public health authorities and private clients. Among the total number of suspected samples for pesticides, 175 (46.1%) cases were found positive to contain pesticides of various kinds. Among the pesticides found, carbamate insecticides were most prominent, representing 50.3% of the total positive cases. These compounds were followed by rodenticides-anticoagulants with 18.9% of the positive results, by organophosphate insecticides 5.1%, and by the rodenticides-nonanticoagulant 3.4%, the other 22.3% included molluscicides, herbicides, etc. In totally 225 animals, 123 animals were found positive for pesticide intoxication, among them 47.2% were dogs, 34.1% were cats 9.8% of other species and 8.9% of unspecified animal samples. The pesticides were characterized by HPLC-techniques using commercially available standards. The aim of this Austrian survey was to determine the incidence and frequency of confirmed pesticide intoxications in animals in Austria and to emphasize its relevance in veterinary practice for livestock and domestic animals.

  10. Scientists Probe Pesticide Dynamics

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1974

    1974-01-01

    Summarizes discussions of a symposium on pesticide environmental dynamics with emphases upon pesticide transport processes, environmental reactions, and partitioning in air, soil, water and living organisms. Indicates that the goal is to attain knowledge enough to predict pesticide behavior and describe pesticide distribution with models and…

  11. Organic Pesticide Ingredients

    MedlinePlus

    ... W X Y Z A-Z Index Health & Environment Human Health Animal Health Safe Use Practices Food Safety ... Low-Risk Pesticides Organic Pesticide Ingredients Pesticide Incidents Human Exposure Pet Exposure Environmental Incident Illegal Pesticide Activity Problem With Labels or ...

  12. Occupational pesticide exposures and respiratory health.

    PubMed

    Ye, Ming; Beach, Jeremy; Martin, Jonathan W; Senthilselvan, Ambikaipakan

    2013-11-28

    Pesticides have been widely used to control pest and pest-related diseases in agriculture, fishery, forestry and the food industry. In this review, we identify a number of respiratory symptoms and diseases that have been associated with occupational pesticide exposures. Impaired lung function has also been observed among people occupationally exposed to pesticides. There was strong evidence for an association between occupational pesticide exposure and asthma, especially in agricultural occupations. In addition, we found suggestive evidence for a link between occupational pesticide exposure and chronic bronchitis or COPD. There was inconclusive evidence for the association between occupational pesticide exposure and lung cancer. Better control of pesticide uses and enforcement of safety behaviors, such as using personal protection equipment (PPE) in the workplace, are critical for reducing the risk of developing pesticide-related symptoms and diseases. Educational training programs focusing on basic safety precautions and proper uses of personal protection equipment (PPE) are possible interventions that could be used to control the respiratory diseases associated with pesticide exposure in occupational setting.

  13. Occupational Pesticide Exposures and Respiratory Health

    PubMed Central

    Ye, Ming; Beach, Jeremy; Martin, Jonathan W.; Senthilselvan, Ambikaipakan

    2013-01-01

    Pesticides have been widely used to control pest and pest-related diseases in agriculture, fishery, forestry and the food industry. In this review, we identify a number of respiratory symptoms and diseases that have been associated with occupational pesticide exposures. Impaired lung function has also been observed among people occupationally exposed to pesticides. There was strong evidence for an association between occupational pesticide exposure and asthma, especially in agricultural occupations. In addition, we found suggestive evidence for a link between occupational pesticide exposure and chronic bronchitis or COPD. There was inconclusive evidence for the association between occupational pesticide exposure and lung cancer. Better control of pesticide uses and enforcement of safety behaviors, such as using personal protection equipment (PPE) in the workplace, are critical for reducing the risk of developing pesticide-related symptoms and diseases. Educational training programs focusing on basic safety precautions and proper uses of personal protection equipment (PPE) are possible interventions that could be used to control the respiratory diseases associated with pesticide exposure in occupational setting. PMID:24287863

  14. Sulfhydryl-specific PEGylation of phosphotriesterase cysteine mutants for organophosphate detoxification.

    PubMed

    Daffu, Gurdip K; Lopez, Patricia; Katz, Francine; Vinogradov, Michael; Zhan, Chang-Guo; Landry, Donald W; Macdonald, Joanne

    2015-11-01

    The catalytic bioscavenger phosphotriesterase (PTE) is experimentally an effective antidote for organophosphate poisoning. We are interested in the molecular engineering of this enzyme to confer additional functionality, such as improved in vivo longevity. To this aim, we developed PTE cysteine mutants with free sulfhydryls to allow macromolecular attachments to the protein. A library of PTE cysteine mutants were assessed for efficiency in hydrolysing the toxic pesticide metabolite paraoxon, and screened for attachment with a sulfhydryl-reactive small molecule, fluorescein 5-maleimide (F5M), to examine cysteine availability. We established that the newly incorporated cysteines were readily available for labelling, with R90C, E116C and S291C displaying the highest affinity for binding with F5M. Next, we screened for efficiency in attaching a large macromolecule, a 30 000 Da polyethylene glycol (PEG) molecule. Using a solid-phase PEGylation strategy, we found the E116C mutant to be the best single-mutant candidate for attachment with PEG30. Kinetic activity of PEGylated E116C, with paraoxon as substrate, displayed activity approaching that of the unPEGylated wild-type. Our findings demonstrate, for the first time, an efficient cysteine mutation and subsequent method for sulfhydryl-specific macromolecule attachment to PTE.

  15. Coding region paraoxonase polymorphisms dictate accentuated neuronal reactions in chronic, sub-threshold pesticide exposure.

    PubMed

    Browne, R Orie; Moyal-Segal, Liat Ben; Zumsteg, Dominik; David, Yaron; Kofman, Ora; Berger, Andrea; Soreq, Hermona; Friedman, Alon

    2006-08-01

    Organophosphate pesticides (OPs), known inhibitors of acetylcholinesterase (AChE), are used extensively throughout the world. Recent studies have focused on the ACHE/PON1 locus as a determinant of inherited susceptibility to environmental OP exposure. To explore the relationship of the corresponding gene-environment interactions with brain activity, we integrated neurophysiologic, neuropsychological, biochemical, and genetic methods. Importantly, we found that subthreshold OP exposure leads to discernible physiological consequences that are significantly influenced by inherited factors. Cortical EEG analyses by LORETA revealed significantly decreased theta activity in the hippocampus, parahippocampal regions, and the cingulate cortex, as well as increased beta activity in the prefrontal cortex of exposed individuals-areas known to play a role in cholinergic-associated cognitive functions. Through neuropsychological testing, we identified an appreciable deficit in the visual recall in exposed individuals. Other neuropsychological tests revealed no significant differences between exposed and non-exposed individuals, attesting to the specificity of our findings. Biochemical analyses of blood samples revealed increases in paraoxonase and arylesterase activities and reduced serum acetylcholinesterase activity in chronically exposed individuals. Notably, specific paraoxonase genotypes were found to be associated with these exposure-related changes in blood enzyme activities and abnormal EEG patterns. Thus, gene-environment interactions involving the ACHE/PON1 locus may be causally involved in determining the physiological response to OP exposure.

  16. Determinants of Butyrylcholinesterase Inhibition Among Agricultural Pesticide Handlers in Washington State: An Update

    PubMed Central

    Krenz, Jennifer E.; Hofmann, Jonathan N.; Smith, Theresa R.; Cunningham, Rad N.; Fenske, Richard A.; Simpson, Christopher D.; Keifer, Matthew

    2015-01-01

    Objectives: Organophosphate (OP) and N-methyl-carbamate (CB) insecticides are used widely in agriculture to manage insect pests of economic importance. Agricultural workers are more likely to suffer exposure because of the widespread use of OP/CBs in agriculture, and pesticide-related illnesses among handlers may be more severe when compared to other farm workers. The goal of this study was to identify occupational and personal characteristics associated with butyrylcholinesterase (BuChE) inhibition in participants recruited from the Washington State Cholinesterase Monitoring Program from 2006 to 2011. Methods: We conducted a longitudinal study among agricultural pesticide handlers in Washington State during the OP/CB spray season (March–July) over a 6-year period (2006–2011). Linear mixed effects regression models were used to evaluate BuChE inhibition in relation to self-reported occupational and personal characteristics. Results: Relative to pre-season baseline levels, the mean decrease in BuChE activity during the OP/CB spray season over all years of the study period was 3.77% (P < 0.001). Greater BuChE inhibition was observed among handlers who reported using multiple OP/CBs (β = −2.70, P = 0.045), mixed or loaded OP/CBs (β = −3.97, P = 0.002), did not store personal protective equipment (PPE) in a locker at work (β = −3.4, P = 0.014), or did not wear chemical-resistant boots (β = −16.6, P < 0.001). Discussion and Conclusions: The Washington State Cholinesterase Monitoring Program has provided a valuable opportunity to evaluate potential sources of OP/CB exposure among agricultural pesticide handlers. Several previously reported associations were confirmed in the current analysis, which included a larger number of pesticide handlers enrolled over a longer time period. The use of multiple OP/CBs and mixing/loading activities were significant risk factors, and the use of chemical-resistant boots and lockers for PPE storage were protective factors

  17. Effects of halving pesticide use on wheat production

    NASA Astrophysics Data System (ADS)

    Hossard, L.; Philibert, A.; Bertrand, M.; Colnenne-David, C.; Debaeke, P.; Munier-Jolain, N.; Jeuffroy, M. H.; Richard, G.; Makowski, D.

    2014-03-01

    Pesticides pose serious threats to both human health and the environment. In Europe, farmers are encouraged to reduce their use, and in France a recent environmental policy fixed a target of halving the pesticide use by 2018. Organic and integrated cropping systems have been proposed as possible solutions for reducing pesticide use, but the effect of reducing pesticide use on crop yield remains unclear. Here we use a set of cropping system experiments to quantify the yield losses resulting from a reduction of pesticide use for winter wheat in France. Our estimated yield losses resulting from a 50% reduction in pesticide use ranged from 5 to 13% of the yield obtained with the current pesticide use. At the scale of the whole country, these losses would decrease the French wheat production by about 2 to 3 millions of tons, which represent about 15% of the French wheat export.

  18. Effects of halving pesticide use on wheat production.

    PubMed

    Hossard, L; Philibert, A; Bertrand, M; Colnenne-David, C; Debaeke, P; Munier-Jolain, N; Jeuffroy, M H; Richard, G; Makowski, D

    2014-03-20

    Pesticides pose serious threats to both human health and the environment. In Europe, farmers are encouraged to reduce their use, and in France a recent environmental policy fixed a target of halving the pesticide use by 2018. Organic and integrated cropping systems have been proposed as possible solutions for reducing pesticide use, but the effect of reducing pesticide use on crop yield remains unclear. Here we use a set of cropping system experiments to quantify the yield losses resulting from a reduction of pesticide use for winter wheat in France. Our estimated yield losses resulting from a 50% reduction in pesticide use ranged from 5 to 13% of the yield obtained with the current pesticide use. At the scale of the whole country, these losses would decrease the French wheat production by about 2 to 3 millions of tons, which represent about 15% of the French wheat export.

  19. Effects of halving pesticide use on wheat production

    PubMed Central

    Hossard, L.; Philibert, A.; Bertrand, M.; Colnenne-David, C.; Debaeke, P.; Munier-Jolain, N.; Jeuffroy, M. H.; Richard, G.; Makowski, D.

    2014-01-01

    Pesticides pose serious threats to both human health and the environment. In Europe, farmers are encouraged to reduce their use, and in France a recent environmental policy fixed a target of halving the pesticide use by 2018. Organic and integrated cropping systems have been proposed as possible solutions for reducing pesticide use, but the effect of reducing pesticide use on crop yield remains unclear. Here we use a set of cropping system experiments to quantify the yield losses resulting from a reduction of pesticide use for winter wheat in France. Our estimated yield losses resulting from a 50% reduction in pesticide use ranged from 5 to 13% of the yield obtained with the current pesticide use. At the scale of the whole country, these losses would decrease the French wheat production by about 2 to 3 millions of tons, which represent about 15% of the French wheat export. PMID:24651597

  20. Pesticide Urinary Metabolite Levels of Children in Eastern North Carolina Farmworker Households

    PubMed Central

    Arcury, Thomas A.; Grzywacz, Joseph G.; Barr, Dana B.; Tapia, Janeth; Chen, Haiying; Quandt, Sara A.

    2007-01-01

    Background In this investigation we documented the pesticide urinary metabolite levels of farmworker children in North Carolina, determined the number of different metabolites detected for each child, and delineated risk factors associated with the number of metabolites. Methods Urine samples were collected from 60 Latino farmworker children 1–6 years of age (34 female, 26 male). Interviews were completed by their mothers in Spanish. We analyzed urine samples for 14 pesticide metabolites, including the organophosphate pesticides chlorpyrifos, coumaphos, diazinon, isazaphos, malathion, pirimiphos, and parathion and its methyl counterpart; a common metabolite of at least 18 pyrethroid insecticides; the repellent DEET; and the herbicides 2,4,5-trichlorphenoxyacetic acid, 2,4-dichlorophenoxyacetic acid, acetochlor, atrazine, and metolachlor. Predictors included measures of paraoccupational, residential, and environmental exposure, child characteristics, and mother characteristics. Results Thirteen metabolites were present in the urine samples. Organophosphate pesticide metabolites were detected in a substantial proportion of children, particularly metabolites of parathion/methyl parathion (90.0%; geometric mean 1.00 μg/L), chlorpyrifos/chlorpyrifos methyl (83.3%; geometric mean 1.92 μg/L), and diazinon (55.0%; geometric mean 10.56 μg/L). The number of metabolites detected ranged from 0 to 7, with a mode of 4 detected (28.3%). Boys, children living in rented housing, and children with mothers working part-time had more metabolites detected. Conclusions Children in farmworker homes experience multiple sources of pesticide exposure. Pesticides may remain in their environments for long periods. Environmental and occupational health changes are needed to address these exposures. Research is needed with more precise measures of exposure and on the health effects of concurrent exposure to multiple pesticides. PMID:17687456

  1. Pesticide Toxicity Index: a tool for assessing potential toxicity of pesticide mixtures to freshwater aquatic organisms

    USGS Publications Warehouse

    Nowell, Lisa H.; Norman, Julia E.; Moran, Patrick W.; Martin, Jeffrey D.; Stone, Wesley W.

    2014-01-01

    Pesticide mixtures are common in streams with agricultural or urban influence in the watershed. The Pesticide Toxicity Index (PTI) is a screening tool to assess potential aquatic toxicity of complex pesticide mixtures by combining measures of pesticide exposure and acute toxicity in an additive toxic-unit model. The PTI is determined separately for fish, cladocerans, and benthic invertebrates. This study expands the number of pesticides and degradates included in previous editions of the PTI from 124 to 492 pesticides and degradates, and includes two types of PTI for use in different applications, depending on study objectives. The Median-PTI was calculated from median toxicity values for individual pesticides, so is robust to outliers and is appropriate for comparing relative potential toxicity among samples, sites, or pesticides. The Sensitive-PTI uses the 5th percentile of available toxicity values, so is a more sensitive screening-level indicator of potential toxicity. PTI predictions of toxicity in environmental samples were tested using data aggregated from published field studies that measured pesticide concentrations and toxicity to Ceriodaphnia dubia in ambient stream water. C. dubia survival was reduced to ≤ 50% of controls in 44% of samples with Median-PTI values of 0.1–1, and to 0% in 96% of samples with Median-PTI values > 1. The PTI is a relative, but quantitative, indicator of potential toxicity that can be used to evaluate relationships between pesticide exposure and biological condition.

  2. Field methods to evaluate effects of pesticides on wildlife of the northwestern United States

    USGS Publications Warehouse

    Henny, C.J.

    1987-01-01

    Field .methods used to evaluate the impact of organochlorine and organophosphate pesticides on wildlife populations in the Pacific Northwest are reviewed. Five field studies, presented in a CASE HISTORY format, illustrate study designs .and thetypes of information collected. The pesticides investigated included DDT, heptachlor, endr1n, and famphur, and the species studied included the American kestrel (Falco sparverius), Canada goose (Branta canadensis}, black--crowned night-heron (Nycticorax nycticorac), and black-billed magpie (Pica pica). Wildlife biologists conducting field studies of pesticides encounter a variety of design and logistics problems. However, a number of procedures are now available to the researcher for field evaluations. The three principa1 types of insecticides (organochlorines (OC's), organophosphates (OP's) and carbamates (CB's) require different field approaches. In this paper, five field studies, conducted by my colleagues and me between 1974 and 1982, in the northwestern portion of the United States (Washington, Oregon, Idaho, and northern Nevada), are reviewed to illustrate procedures for evaluating the effects of these insecticides.on wildlife populations. Althought most OC pesticides were banned in the United States during the 1970's (.for review, see F1eming et al. 1983), we studied several OC applications, including the last major DDT spray project in 1974. Use of OP's and CB's increased during the 1970's and 1980s as the OC's were phased out.

  3. Chiral pesticides: Identification, description, and environmental implications

    USGS Publications Warehouse

    Ulrich, Elin M.; Morrison, Candice N.; Goldsmith, Michael R.; Foreman, William T.

    2012-01-01

    Anthropogenic chemicals, including pesticides, are a major source of contamination and pollution in the environment. Pesticides have many positive uses: increased food production, decreased damage to crops and structures, reduced disease vector populations, and more. Nevertheless, pesticide exposure can pose risks to humans and the environment, so various mitigation strategies are exercised to make them safer, minimize their use, and reduce their unintended environment effects. One strategy that may help achieve these goals relies on the unique properties of chirality or molecular asymmetry. Some common terms related to chirality are defined in Table 1.

  4. Health risk for children and adults consuming apples with pesticide residue.

    PubMed

    Lozowicka, Bozena

    2015-01-01

    The presence of pesticide residues in apples raises serious health concerns, especially when the fresh fruits are consumed by children, particularly vulnerable to the pesticide hazards. This study demonstrates the results from nine years of investigation (2005-2013) of 696 samples of Polish apples for 182 pesticides using gas and liquid chromatography and spectrophotometric techniques. Only 33.5% of the samples did not contain residues above the limit of detection. In 66.5% of the samples, 34 pesticides were detected, of which maximum residue level (MRL) was exceeded in 3%. Multiple residues were present in 35% of the samples with two to six pesticides, and one sample contained seven compounds. A study of the health risk for children, adults and the general population consuming apples with these pesticides was performed. The pesticide residue data have been combined with the consumption of apples in the 97.5 percentile and the mean diet. A deterministic model was used to assess the chronic and acute exposures that are based on the average and high concentrations of residues. Additionally, the "worst-case scenario" and "optimistic case scenario" were used to assess the chronic risk. In certain cases, the total dietary pesticide intake calculated from the residue levels observed in apples exceeds the toxicological criteria. Children were the group most exposed to the pesticides, and the greatest short-term hazard stemmed from flusilazole at 624%, dimethoate at 312%, tebuconazole at 173%, and chlorpyrifos methyl and captan with 104% Acute Reference Dose (ARfD) each. In the cumulative chronic exposure, among the 17 groups of compounds studied, organophosphate insecticides constituted 99% acceptable daily intake (ADI). The results indicate that the occurrence of pesticide residues in apples could not be considered a serious public health problem. Nevertheless, an investigation into continuous monitoring and tighter regulation of pesticide residues is recommended.

  5. Mitigating pesticide pollution in China requires law enforcement, farmer training, and technological innovation.

    PubMed

    Li, Huizhen; Zeng, Eddy Y; You, Jing

    2014-05-01

    To feed an ever-growing population, it is necessary to take all measures to increase crop yields, including the use of pesticides. It has long been a difficult task to boost agricultural production and simultaneously minimize the impact of pesticide application on the environment, particularly in China, a developing country with more than 1.3 billion people. China has recently become the world's leading producer and consumer of pesticides, with production and consumption reaching 265 tons and 179 tons, respectively, in 2011, and a national average pesticide application dosage of more than 14 kg/ha. The large quantities of pesticides applied in agricultural fields have resulted in serious environmental deterioration. Organochlorine pesticides, such as dichloro-diphenyl-trichloroethane and hexachlorohexane, have become ubiquitous in the environment of China, with spatial distributions in soils and aquatic systems similar to their historic application patterns in different geographic regions: southeast > central > northwest. Pollution by current-use pesticides, for example, organophosphates and pyrethroids, has also been of great concern. To mitigate pesticide pollution in China, a significant reduction in pesticide inputs into the environment is mandatory. This can be accomplished only with joint efforts by the government, professionals, and citizens in combination with rigorous enforcement of laws and regulations, training of farmers in pesticide knowledge and environmental awareness, and technological innovation for producing low-risk pesticides and developing efficient application approaches. Restoring contaminated sites is also an urgent task. Finally, food security and environmental pollution are not problems for a sole country, and international cooperation and communication are necessary.

  6. Biodegradation of pesticide profenofos by the free and immobilized cells of Pseudoxanthomonas suwonensis strain HNM.

    PubMed

    Talwar, Manjunatha P; Ninnekar, Harichandra Z

    2015-09-01

    Profenofos is an organophosphate pesticide used extensively in agriculture to control pests. A bacterium capable of degrading profenofos was isolated from pesticide-contaminated soil samples and identified as Pseudoxanthomonas suwonensis strain HNM based on its morphological and biochemical characteristics and phylogenetic analysis of 16S rRNA gene sequences. 4-Bromo-2-chlorophenol was identified as a metabolite of profenofos degradation by HPLC and GC-MS analysis. The organism degraded profenofos by hydrolysis to yield 4-bromo-2-chlorophenol which was further utilized as carbon source for growth. The organism utilized various organophosphate pesticides such as temephos, quinalphos, and chloropyrifos as carbon sources. The optimum conditions for degradation of profenofos by P. suwonensis strain HMN were found to be at pH 7 and 30 °C. We have investigated the rate of degradation of profenofos by the free and immobilized cells of P. suwonensis strain HNM in various matrices such as sodium alginate (SA), sodium alginate-polyvinyl alcohol (SA-PVA), and SA-bentonite clay. The rate of degradation of 3 and 6 mM profenofos by the freely suspended cells were compared with that by immobilized cells in batches and semi-continuous with shaken cultures. The SA-bentonite clay-immobilized cells showed higher rate of degradation of 3 and 6 mM profenofos then freely suspended cells and cells immobilized in SA and SA-PVA. The SA-bentonite clay-immobilized cells of P. suwonensis strain HNM could be reused for more than 32 cycles without losing their degradation capacity. Thus, the immobilized cells are more efficient than freely suspended cells for the degradation of organophosphate pesticide contaminated water.

  7. [Pretreatment of organophosphate poisoning: potential interests of huperzine A].

    PubMed

    Lallement, G

    2000-01-01

    Pyridostigmine which is widely used as pretreatment of organophosphate poisoning protects cholinesterases of peripheral nervous system. Other molecules able to also protect the central nervous system are under study and, among them, huperzine A. This paper gives an overview of the current investigations about the efficacy and the innocuity of this molecule (study of the mechanisms of action, biological targets, behavioural manifestations) and brings out its potential interests.

  8. Design, Synthesis and Study of Catalysts for Organophosphate Ester Hydrolysis.

    DTIC Science & Technology

    1985-07-01

    catalysts for phosphate ester hydrolyses which are modelled after carbonic anhydrase (CA) and alkaline phosphatase (APase). Section II describes the...Catalysts for Hydrolysis of Phosphate Esters. Alkaline phosphatases (APases) are Zn(II)- and Mg(II)- containing metalloenzymes found in virtually every...E TA "APR 14 07 k-1 le -p /m mm Alkaline phosphatase , models, catalysis, organophosphate ester, hydrolysis, metal ion 2"n.VUAC? - ",N-060 p MV ad& N

  9. Comparison of pesticide residues in surface water and ground water of agriculture intensive areas

    PubMed Central

    2014-01-01

    The organochlorines (OClPs) and organophosphates (OPPs) pesticides in surface and ground water having intensive agriculture activity were investigated to evaluate their potential pollution and risks on human health. As per USEPA 8081 B method, liquid-liquid extraction followed by Gas-Chromatographic technique with electron capture detector and mass selective detector (GC-MS) were used for monitoring of pesticides. Among organochlorines, α,β,γ,δ HCH’s, aldrin, dicofol, DDT and its derivatives, α,β endosulphan’s and endosulphan-sulphate were analysed; dichlorovos, ethion, parathion-methyl, phorate, chlorpyrifos and profenofos were determined among organophosphates. As compared to ground water, higher concentrations of OClPs and OPPs were found in surface water. Throughout the monitoring study, α - HCH (0.39 μg/L in Amravati region),α - endosulphan (0.78 μg/L in Yavatmal region), chlorpyrifos (0.25 μg/L in Bhandara region) and parathion-methyl (0.09 μg/L in Amravati region) are frequently found pesticide in ground water, whereas α,β,γ-HCH (0.39 μg/L in Amravati region), α,β - endosulphan (0.42 μg/L in Amravati region), dichlorovos (0.25 μg/L in Yavatmal region), parathion-methyl (0.42 μg/L in Bhandara region), phorate (0.33 μg/L in Yavatmal region) were found in surface water. Surface water was found to be more contaminated than ground water with more number of and more concentrated pesticides. Among pesticides water samples are found to be more contaminated by organophosphate than organochlorine. Pesticides in the surface water samples from Bhandara and Yavatmal region exceeded the EU (European Union) limit of 1.0 μg/L (sum of pesticide levels in surface water) but were within the WHO guidelines for individual pesticides. PMID:24398360

  10. Prevalence of tinnitus in workers exposed to noise and organophosphates

    PubMed Central

    Delecrode, Camila Ribas; de Freitas, Thais Domingues; Frizzo, Ana Claúdia Figueiredo; Cardoso, Ana Claúdia Vieira

    2012-01-01

    Summary Introduction: Research on the workplace has emphasized the effects of noise exposure on workers' hearing, but has not considered the effects of agrochemicals. Aim: To evaluate and correlate the hearing level and tinnitus of workers exposed simultaneously to noise and organophosphates in their workplace and to measure tinnitus distress on their quality of life. Method: A retrospective clinical study. We evaluated 82 organophosphate sprinklers from the São Paulo State Regional Superintendence who were active in the fight against dengue and who were exposed to noise and organophosphates. We performed pure tone audiometry and applied the translated THI (Tinnitus Handicap Inventory) questionnaire. Results: Of the sample, 28.05% reported current tinnitus or had presented tinnitus, and the workers with tinnitus had an increased incidence of abnormal audiometry. The average hearing threshold for the 4–8-kHz frequency range of the workers with current tinnitus was higher than that of the others, and was most affected at the 4-kHz frequency. The THI score ranged 0–84, with an average score of 13.1. Twelve (52.17%) workers had THI scores consistent with discrete handicap. Conclusion: There is an increased incidence of abnormal pure tone audiometry in workers with tinnitus, and its impact on the workers' quality of life was discrete. The correlation between average hearing threshold and tinnitus distress was weak. PMID:25991953

  11. Impaired mitochondrial functions in organophosphate induced delayed neuropathy in rats.

    PubMed

    Masoud, Anwar; Kiran, Ravi; Sandhir, Rajat

    2009-12-01

    Acute exposure to organophosphates induces a delayed neurodegenerative condition known as organophosphate-induced delayed neuropathy (OPIDN). The mechanism of OPIDN has not been fully understood as it does not involve cholinergic crisis. The present study has been designed to evaluate the role of mitochondrial dysfunctions in the development of OPIDN. OPIDN was induced in rats by administering acute dose of monocrotophos (MCP, 20 mg/kg body weight, orally) or dichlorvos (DDVP, 200 mg/kg body weight, subcutaneously), 15-20 min after treatment with antidotes [atropine (20 mg/kg body weight) and 2-PAM (100 mg/kg body weight) intraperitoneally]. MDA levels were observed to be higher and thiol content was lower in mitochondria from brain regions of OP exposed animals. This was accompanied by decreased activities of the mitochondrial enzymes; NADH dehydrogenase, succinate dehydrogenase, and cytochrome oxidase. In addition, mitochondrial functions assessed by MTT reduction also confirmed mitochondrial dysfunctions following development of OPIDN. The spatial long-term memory evaluated using elevated plus-maze test was observed to be deficit in OPIDN. The results suggest impaired mitochondrial functions as a mechanism involved in the development of organophosphate induced delayed neuropathy.

  12. Non-cancer health effects of pesticides

    PubMed Central

    Sanborn, M.; Kerr, K.J.; Sanin, L.H.; Cole, D.C.; Bassil, K.L.; Vakil, C.

    2007-01-01

    OBJECTIVE To investigate whether there are associations between exposure to pesticides and 4 chronic non-cancer health effects: dermatologic, neurologic, reproductive, and genotoxic effects. DATA SOURCES We searched PreMedline, MEDLINE, and LILACS using the key word pesticide combined with the term for the specific health effect being searched. Reviewers scanned the references of all articles for additional relevant studies. STUDY SELECTION Studies since 1992 were assessed using structured inclusion and quality-of-methods criteria. Studies scoring <4 on a 7-point global methodologic quality scale were excluded. In total, 124 studies were included. These studies had a mean quality score of 4.88 out of 7. SYNTHESIS Strong evidence of association with pesticide exposure was found for all neurologic outcomes, genotoxicity, and 4 of 6 reproductive effects: birth defects, fetal death, altered growth, and other outcomes. Exposure to pesticides generally doubled the level of genetic damage as measured by chromosome aberrations in lymphocytes. Only a few high-quality studies focused on the dermatologic effects of pesticides. In some of these studies, rates of dermatitis were higher among those who had had high exposure to pesticides on the job. CONCLUSION Evidence from research on humans consistently points to positive associations between pesticide exposure and 3 of the 4 non-cancer health outcomes studied. Physicians have a dual role in educating individual patients about the risks of exposure and in reducing exposure in the community by advocating for restrictions on use of pesticides. PMID:17934035

  13. Sediment-associated pesticides in an urban stream in Guangzhou, China: implication of a shift in pesticide use patterns.

    PubMed

    Li, Huizhen; Sun, Baoquan; Lydy, Michael J; You, Jing

    2013-04-01

    Pesticide use patterns in China have changed in recent years; however, the study of the environmental fate of current-use pesticides (CUPs) and their ecotoxicological significance in aquatic ecosystems is limited. In the present study, sediments were collected from an urban stream in the Chinese city of Guangzhou. Sediment-associated legacy organochlorine pesticides and CUPs-including organophosphates, pyrethroids, fipronil, and abamectin-were analyzed. Additionally, the relative toxicity of the sediments was evaluated with 10-d bioassays using Chironomus dilutus. Fifteen of 16 sediments collected from the stream were acutely toxic to C. dilutus, with 81% of the samples causing 100% mortality. Abamectin, fipronil, and pyrethroids (mainly cypermethrin) were identified as the principal contributors to the noted toxicity in the midges, with median predicted toxic units of 1.63, 1.63, and 1.03, respectively. Sediments taken from downstream sites, where residential and industrial regions were located, had elevated CUP concentrations and sediment toxicity compared with upstream sites. The present study is the first of its kind to link sediment CUPs, fipronil, and abamectin concentrations with toxicity in urban streams in China with a focus on shifting pesticide usage patterns.

  14. Responses of the iguanid lizard Anolis carolinensis to four organophosphorus pesticides

    USGS Publications Warehouse

    Hall, R.J.; Clark, D.R.

    1982-01-01

    Dose related mortality and cholinesterase effects of parathion, methyl parathion, azinphos-methyl and malathion on Anolis carolinensis were investigated. The comparative effects of the four compounds on fish, birds and mammals are well known, but the effects of organophosphates on reptiles have not been studied critically. Sensitivity and patterns of mortality from exposure to the pesticides resemble those of birds and mammals rather than those of other poikilothermic vertebrates. Possible symptoms of epinephrine accumulation were observed in exposed animals; this side effect is consistent with the known mechanisms of the pesticides. Our findings indicate that brain cholinesterase activity is related to dose, that 50% inhibition of cholinesterase is associated with death and that 40% inhibition indicates sublethal exposure. Anolis lizards are frequently exposed to pesticides in the field and they may be useful in monitoring the hazards posed to a variety of wildlife species.

  15. INTERACTION OF ORGANOPHOSPHATE PESTICIDES AND RELATED COMPOUNDS WITH THE ANDROGEN RECEPTOR

    EPA Science Inventory

    Identification of several environmental chemicals capable of binding to the androgen receptor (AR) and interfering with its normal function has heightened concern for adverse effects across a broad spectrum of environmental chemicals. We previously demonstrated AR antagonist act...

  16. Global Alterations in Gene Expression During Organophosphate Pesticide Intoxication and Recovery: Interim Report

    DTIC Science & Technology

    2006-04-01

    result in death from respiratory failure; less severe exposures may cause salivation , lacrimation, incontinence, and convulsions followed by...HEPES, glucose. The osmolarity and pH of Washout Buffer are similar to CeHR medium. Chemistry Stock solutions of dichlorvos {99.4% [CASRN: 62-73-7...dichlorvos in water vary depending on pH , but are typically in the day to week range (ATSDR, 1997). We tested the stability of dichlorvos in CeHR medium and

  17. Downregulation of human paraoxonase 1 (PON1) by organophosphate pesticides in HepG2 cells.

    PubMed

    Medina-Díaz, Irma Martha; Ponce-Ruiz, Néstor; Ramírez-Chávez, Bryana; Rojas-García, Aurora Elizabeth; Barrón-Vivanco, Briscia S; Elizondo, Guillermo; Bernal-Hernández, Yael Y

    2017-02-01

    Paraoxonase 1 (PON1) is a calcium-dependent esterase synthesized primarily in the liver and secreted into the plasma where it is associated with high-density lipoproteins (HDL). PON1 hydrolyzes and detoxifies some toxic metabolites of organophosphorus compounds (OPs) such as methyl parathion and chlorpyrifos. Thus, PON1 activity and expression levels are important for determining susceptibility against OPs poisoning. Some studies have demonstrated that OPs can modulate gene expression through interactions with nuclear receptors. In this study, we evaluated the effects of methyl parathion and chlorpyrifos on the modulation of PON1 in Human Hepatocellular Carcinoma (HepG2) cells by real-time PCR, PON1 activity assay, and western blot. The results showed that the treatments with methyl parathion and chlorpyrifos decreased PON1 mRNA and immunoreactive protein and increased inflammatory cytokines in HepG2 cells. The effects of methyl parathion and chlorpyrifos on the downregulation of PON1 gene expression in HepG2 cells may provide evidence of OPs cytotoxicity related to oxidative stress and an inflammatory response. A decrease in the expression of the PON1 gene may increase the susceptibility to OPs intoxication and the risk of diseases related to inflammation and oxidative stress. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 490-500, 2017.

  18. Removal of two organophosphate pesticides by a bacterial consortium immobilized in alginate or tezontle.

    PubMed

    Yañez-Ocampo, Gustavo; Sanchez-Salinas, Enrique; Jimenez-Tobon, Gloria Alicia; Penninckx, Michel; Ortiz-Hernández, María Laura

    2009-09-15

    In order to remove methyl-parathion (MP) and tetrachlorvinphos (TCF), a bacterial consortium was immobilized with two supports consisting of alginate beads or stones of tezontle colonized by biofilm. Removal kinetics were recorded for suspended and immobilized consortium using a mineral salt medium supplemented with MP and TCF at 25mg/L and with 0.1% (w/v) glucose as a co-substrate. The viability of the consortium cultivated in suspension was maintained for 6 days, whereas the viability of the consortium immobilized in alginate and tezontle supports was maintained for up to 11 and 13 days, respectively. Growth was enhanced when using glucose as a co-substrate. The percentage of MP removed was significantly higher (alpha=0.05) when consortium was immobilized in alginate beads and biofilm on tezontle as compared to suspension culture.

  19. DISPARITIES IN CARDIOVASCULAR RISK FROM ORGANOPHOSPHATE-BASED PESTICIDE EXPOSURE IN SUSCEPTIBLE POPULATIONS.

    EPA Science Inventory

    High blood pressure (hypertension), the most common of all cardiovascular (CVD) diseases, is a major cause of morbidity and mortality in the United States, and a large percentage of the population manifests a genetic predisposition. Hypertension is polygenetically inherited, envi...

  20. National Pesticide Standard Repository

    EPA Pesticide Factsheets

    EPA's National Pesticide Standards Repository collects and maintains an inventory of analytical “standards” of registered pesticides in the United States, as well as some that are not currently registered for food and product testing and monitoring.

  1. Pesticide Registration Information System

    EPA Pesticide Factsheets

    PRISM provides an integrated, web portal for all pesticide related data, communications, registrations and transactions for OPP and its stakeholders, partners and customers. PRISM supports Strategic Goal 4 by automating pesticide registration processes.

  2. The Pesticide Problem.

    ERIC Educational Resources Information Center

    Bosch, Van Den Robert

    1979-01-01

    Contains a discussion of insects' ability to survive, of the development of pesticides and the introduction of DDT, of the problems of pesticide use and resistance to insecticides, and of the advantages of integrated pest control. (BB)

  3. Exploring Pesticide Pollution

    ERIC Educational Resources Information Center

    Rillo, Thomas J.

    1974-01-01

    Examines environmental problems associated with the use of pesticides, and suggests thirty learning activities designed to give elementary school children a better understanding of the problem of pesticide pollution. (JR)

  4. Revoking Pesticide Tolerances

    EPA Pesticide Factsheets

    EPA revokes pesticide tolerances when all registrations of a pesticide have been canceled in the U.S. and the tolerances are not needed for imported foods or when there are no registered uses for certain crops.

  5. Pesticides and Pregnancy

    MedlinePlus

    Pesticides and Pregnancy In every pregnancy, a woman starts out with a 3-5% chance of having ... risk. This sheet talks about whether exposure to pesticides may increase the risk for birth defects over ...

  6. Pesticide Labeling Questions & Answers

    EPA Pesticide Factsheets

    Pesticide manufacturers, applicators, state regulatory agencies, and other stakeholders raise questions or issues about pesticide labels. The questions on this page are those that apply to multiple products or address inconsistencies among product labels.

  7. Effectiveness of cleaning practices in removing pesticides from home environments.

    PubMed

    McCauley, Linda A; Travers, Rachelle; Lasarev, Michael; Muniz, Juan; Nailon, Regina

    2006-01-01

    The deposition of agricultural pesticides in the homes of agricultural workers and residents of agricultural communities is a major environmental health concern. The effectiveness of home cleaning activities in removing pesticides from home surfaces has not been tested. An intervention study was conducted to assess the effectiveness of cleaning windowsills, floors and carpets in a sample of 10 farmworker homes. Baseline measures of organophosphorus (OP) pesticide residues were obtained, a standardized cleaning intervention was applied and follow-up measures of pesticide residues were obtained within 24-48 hours after the cleaning and 12 months later. House dust was analyzed for six OP pesticides. All homes had detectable baseline levels of OP pesticides on floors and windowsills. Cleaning of linoleum floors was ineffective in removing total pesticide residues and cleaning effectiveness varied among the pesticides. The cleaning of total OP pesticides on the windowsills was effective (median decrease was 0.0029 microg/cm(2), 1-sided p-value = 0.01). Steam cleaning carpets essentially reduced the amounts to non-detectable levels. In 12 months the levels in carpets had accumulated to one-third of the baseline levels. These results provide evidence that cleaning practices can reduce the amount of pesticides in agricultural homes; however the type of surface being cleaned and the pesticides present in the home may influence results.

  8. A multi-residue method for simultaneous determination of 74 pesticides in Chinese material medica using modified QuEChERS sample preparation procedure and gas chromatography tandem mass spectrometry.

    PubMed

    Liu, Xiao-qin; Li, Yun-fei; Meng, Wen-ting; Li, Dong-xiang; Sun, Henry; Tong, Ling; Sun, Guo-xiang

    2016-03-15

    The present study is focused on the development of an analytical method for the simultaneous analysis of seventy-four pesticides belonging to different chemical classes (organochlorines, organophosphates, pyrethroids, dinitroanilines, dicarboximides, triazoles, etc.) in Chinese material medica. The samples were extracted according to the acetate QuEChERS protocol. To reduce the amount of co-extracted compounds, n-hexane instead of acetonitrile was employed as the extraction solvent. To improve the overall recoveries of problematic basic and base-sensitive compounds, sodium acetate was used to adjust the pH to a neutral condition, and florisil combined with octadecyl-modified silica (C18) were utilized in the cleanup step. The samples were analysed by GC-MS/MS, and quantified by matrix-matched calibration. The validation study was carried out on two representative herbs, Chuanxiong Rhizoma and Angelica Sinensis Radix. In two matrices, the linearity of the calibration was good between 5 and 250 ng/mL concentration ranges, and the limits of quantification (LOQs) less than 0.01 mg/kg for most pesticides. At the LOQs and ten times the LOQs, the mean recoveries of almost all pesticides were within 70-120%, with relative standard deviations (RSDs) lower than 10%. The method was applied on twenty real samples. Seven batches of Chuanxiong and five batches of Danggui were found to contain the residues. The combination of modified QuEChERS and GC-MS/MS offers low cost of analysis as well as excellent accuracy and sensitivity. This method could be especially useful for trace analysis of pesticide residues in complex matrices.

  9. Pesticide use and incident diabetes among wives of farmers in the Agricultural Health Study

    PubMed Central

    Starling, Anne P.; Umbach, David M.; Kamel, Freya; Long, Stuart; Sandler, Dale P.; Hoppin, Jane A.

    2014-01-01

    Objective To estimate associations between use of specific agricultural pesticides and incident diabetes in women. Methods We used data from the Agricultural Health Study, a large prospective cohort of pesticide applicators and their spouses in Iowa and North Carolina. For comparability with previous studies of farmers, we limited analysis to 13,637 farmers’ wives who reported ever personally mixing or applying pesticides at enrollment (1993-1997), who provided complete data on required covariates and diabetes diagnosis, and who reported no previous diagnosis of diabetes at enrollment. Participants reported ever-use of 50 specific pesticides at enrollment and incident diabetes at one of two follow-up interviews within an average of 12 years of enrollment. We fit Cox proportional hazards models with age as the time scale and adjusting for state and body mass index to estimate hazard ratios (HR) and 95% confidence intervals (CI) for each of 45 pesticides with sufficient users. Results Five pesticides were positively associated with incident diabetes (n=688; 5%): three organophosphates, fonofos (HR=1.56, 95% CI=1.11, 2.19), phorate (HR=1.57, 95% CI=1.14, 2.16), and parathion (HR=1.61, 95% CI=1.05, 2.46); the organochlorine dieldrin (HR=1.99, 95% CI=1.12, 3.54); and the herbicide 2,4,5-T/2,4,5-TP (HR=1.59, 95% CI=1.00, 2.51). With phorate and fonofos together in one model to account for their correlation, risks for both remained elevated, though attenuated compared to separate models. Conclusions Results are consistent with previous studies reporting an association between specific organochlorines and diabetes and add to growing evidence that certain organophosphates also may increase risk. PMID:24727735

  10. Reagentless bidirectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples.

    PubMed

    Hossain, S M Zakir; Luckham, Roger E; McFadden, Meghan J; Brennan, John D

    2009-11-01

    A reagentless bioactive paper-based solid-phase biosensor was developed for detection of acetylcholinesterase (AChE) inhibitors, including organophosphate pesticides. The assay strip is composed of a paper support (1 x 10 cm), onto which AChE and a chromogenic substrate, indophenyl acetate (IPA), were entrapped using biocompatible sol-gel derived silica inks in two different zones (e.g., sensing and substrate zones). The assay protocol involves first introducing the sample to the sensing zone via lateral flow of a pesticide-containing solution. Following an incubation period, the opposite end of the paper support is placed into distilled deionized water (ddH(2)O) to allow lateral flow in the opposite direction to move paper-bound IPA to the sensing area to initiate enzyme catalyzed hydrolysis of the substrate, causing a yellow-to-blue color change. The modified sensor is able to detect pesticides without the use of any external reagents with excellent detection limits (bendiocarb approximately 1 nM; carbaryl approximately 10 nM; paraoxon approximately 1 nM; malathion approximately 10 nM) and rapid response times (approximately 5 min). The sensor strip showed negligible matrix effects in detection of pesticides in spiked milk and apple juice samples. Bioactive paper-based assays on pesticide residues collected from food samples showed good agreement with a conventional mass spectrometric assay method. The bioactive paper assay should, therefore, be suitable for rapid screening of trace levels of organophosphate and carbamate pesticides in environmental and food samples.

  11. The effect of stress on the acute neurotoxicity of the organophosphate insecticide chlorpyrifos

    SciTech Connect

    Hancock, Sandra; Ehrich, Marion; Hinckley, Jonathan; Pung, Thitiya; Jortner, Bernard S. . E-mail: bjortner@vt.edu

    2007-03-15

    A study was conducted to determine if multiple exposures to several stress paradigms might affect the anticholinesterase effect of subsequently administered organophosphate insecticide chlorpyrifos. Male Sprague-Dawley rats were subject to daily periods of restraint, swimming, a combination of the two, or neither of the two (controls) (n = 8/group) for 5 days per week over a six-week period. The most profound stress, as measured by reduced body weight gain and elevated levels of plasma corticosterone, was swimming. On day 39 of the study, shortly after the daily stress episode, one half of the rats in each group was dosed with 60 mg/kg chlorpyrifos subcutaneously. This had no effect on subsequent levels of plasma corticosterone. There were no stress-related differences in the degree of chlorpyrifos-induced inhibition of brain acetylcholinesterase in animals sacrificed on day 43.

  12. Pesticides and the Environment.

    ERIC Educational Resources Information Center

    Neufeld, Gaylen

    1973-01-01

    Consideration of the dangers of pesticides to the world ecosystem as well as the economic necessity which an affluent society has created are the two sides of the pesticide problem discussed in this issue. An attempt is made to clarify the issue, to recognize the ways that pesticides exert their effects, and to relate what measures can be taken to…

  13. The Pesticide Scorecard

    ERIC Educational Resources Information Center

    Weber, Jerome B.

    1977-01-01

    A scheme for comparing the relative toxicities and environmental safety of agricultural pesticides is presented. It is based on the sum of four key factors: (1) oral toxicity to rats, (2) oral toxicity to fish, (3) longevity, and (4) bioaccumulation. Thirty-one pesticides are ranked by these factors. The ranking indicates that new pesticides are…

  14. Purification and characterization of methyl parathion hydrolase from Burkholderia cepacia capable of degrading organophosphate insecticides.

    PubMed

    Ekkhunnatham, Anirut; Jongsareejit, Boonsri; Yamkunthong, Wanphen; Wichitwechkarn, Jesdawan

    2012-04-01

    Methyl parathion hydrolase (MPH) from a methyl parathion-degrading Burkholderia cepacia indigenous to Thailand was purified to apparent homogeneity by three steps of column chromatography using Resource S, Sephadex G100, and Octyl Sepharose 4FF columns. Its molecular mass was determined to be 35 kDa, and the pI to be 8.5. The recombinant plasmid pGT1, containing the MPH-encoding gene, mpdB, cloned into pGEX-4T-2 was over-expressed in Escherichia coli as GST-MPH fusion protein. The recombinant MPH was purified to homogeneity by a single step, using GSTPrep FF affinity column, with the molecular mass identical to that of the native enzyme. The purified enzyme had the specific activity of about 1,600 unit mg(-1) protein and the yield of about 75%, a 39-fold increase in recovery compared to that of the native enzyme. The optimal temperature and pH were 25°C and 9.0, respectively. The MPH was stable, with its activity unchanged for 48 h at 4°C, and reduced to 50% after 5 h and to 45% after 48 h at 25°C. The enzyme activity remained 80-90% after 8-15 h at pH 6-7. Cd(2+), Co(2+), and Zn(2+) ions at the concentration of 1 mM enhanced the activity; while sodium dodecyl sulfate (SDS), dithiothreitol (DTT) and ethylenediaminetetraacetate (EDTA) reduced it. The enzyme also showed cross reactivity with other insecticides within the organophosphate group, and the kinetic parameters for individual substrates were investigated. Since MPH from B. cepacia has wide potential applications in detoxification and detection of organophosphate compounds, this study provides important basis for its future use.

  15. Pesticide Program Dialogue Committee: Pesticide Incidents Workgroup

    EPA Pesticide Factsheets

    EPA formed this workgroup to assist in meeting its long-term goal of creating a publically-available framework that improves the reporting, quality and efficient use of pesticide incident data to ensure high-quality, science-based pesticide decisions.

  16. Surfactant effects on environmental behavior of pesticides.

    PubMed

    Katagi, Toshiyuki

    2008-01-01

    The potential effects of adjuvants, including surfactants used in pesticide formulation, have been extensively studied for many small organic chemicals, but similar investigation on pesticides is limited in most cases. Solubilizing effects leading to the apparently increased water solubility of a pesticide are commonly known through the preparation of formulations, but fundamental profiles, especially for a specific monodisperse surfactant, are not fully studied. Reduced volatilization of a pesticide from the formulation can be explained by analogy of a very simple organic chemical, but the actual mechanism for the pesticide is still obscure. In contrast, from the point of view of avoiding groundwater contamination with a pesticide, adsorption/desorption profiles in the presence of surfactants and adjuvants have been examined extensively as well as pesticide mobility in the soil column. The basic mechanism in micelle-catalyzed hydrolysis is well known, and theoretical approaches including the PPIE model have succeeded in explaining the observed effects of surfactants, but its application to pesticides is also limited. Photolysis, especially in an aqueous phase, is in the same situation. The dilution effect in the real environment would show these effects on hydrolysis and photolysis to be much less than expected from the laboratory basic studies, but more information is necessary to examine the practical extent of the effects in an early stage of applying a pesticide formulation to crops and soil. Many adjuvants, including surfactants, are biodegradable in the soil environment, and thus their effects on the biodegradation of a pesticide in soil and sediment may be limited, as demonstrated by field trials. Not only from the theoretical but also the practical aspect, the foliar uptake of pesticide in the presence of adjuvants has been investigated extensively and some prediction on the ease of foliar uptake can be realized in relation to the formulation technology

  17. Pesticide exposure, safety issues, and risk assessment indicators.

    PubMed

    Damalas, Christos A; Eleftherohorinos, Ilias G

    2011-05-01

    Pesticides are widely used in agricultural production to prevent or control pests, diseases, weeds, and other plant pathogens in an effort to reduce or eliminate yield losses and maintain high product quality. Although pesticides are developed through very strict regulation processes to function with reasonable certainty and minimal impact on human health and the environment, serious concerns have been raised about health risks resulting from occupational exposure and from residues in food and drinking water. Occupational exposure to pesticides often occurs in the case of agricultural workers in open fields and greenhouses, workers in the pesticide industry, and exterminators of house pests. Exposure of the general population to pesticides occurs primarily through eating food and drinking water contaminated with pesticide residues, whereas substantial exposure can also occur in or around the home. Regarding the adverse effects on the environment (water, soil and air contamination from leaching, runoff, and spray drift, as well as the detrimental effects on wildlife, fish, plants, and other non-target organisms), many of these effects depend on the toxicity of the pesticide, the measures taken during its application, the dosage applied, the adsorption on soil colloids, the weather conditions prevailing after application, and how long the pesticide persists in the environment. Therefore, the risk assessment of the impact of pesticides either on human health or on the environment is not an easy and particularly accurate process because of differences in the periods and levels of exposure, the types of pesticides used (regarding toxicity and persistence), and the environmental characteristics of the areas where pesticides are usually applied. Also, the number of the criteria used and the method of their implementation to assess the adverse effects of pesticides on human health could affect risk assessment and would possibly affect the characterization of the already

  18. Body mass index as a prognostic factor in organophosphate-poisoned patients.

    PubMed

    Lee, Duk Hee; Jung, Koo Young; Choi, Yoon Hee; Cheon, Young Jin

    2014-07-01

    Organophosphate poisoning is a serious clinical entity and considerable morbidity and mortality. Several factors have been identified to predict outcomes of organophosphate poisoning. Organophosphates are lipophilic and therefore predicted to have a large volume of distribution and to rapidly distribute into tissue and fat. Thus, toxic effects of organophosphate would be expected to last longer in obese patients. We investigated the relationship between obesity and clinical course in 112 acute organophosphate-poisoned patients from an initial medical record review of 234 patients. One hundred twenty-two patients were excluded: 6 were children, 14 had an uncertain history of exposure and of uncertain agent, 10 were transferred to another hospital, 67 were discharged from the emergency department because their toxicity was mild, 21 had carbamate poisoning, and 4 did not have height or weight checked. Clinical features, body mass index, Glasgow Coma Scale, laboratory findings, serum cholinesterase activity, electrocardiogram finding, management, and outcomes were examined. The lipid solubility of the implicated organophosphate was characterized by its octanol/water coefficient. Forty of 112 patients were obese. Obese patients who were poisoned by high lipophilicity organophosphate compounds had a need for longer use of mechanical ventilation, intensive care unit care, and total length of admission. Body mass index can provide a guide to physicians in predicting clinical course and management in organophosphate-poisoned patients.

  19. Organophosphate poisoning in a 12-day-old infant: case report.

    PubMed

    O'Reilly, D A; Heikens, G T

    2011-01-01

    A 12-day-old infant girl was admitted with increasing lethargy and respiratory distress. Initial treatment was for pneumonia but deterioration despite appropriate treatment prompted review of her diagnosis and consideration of organophosphate poisoning. There was a brisk response to atropine. To our knowledge, this is the youngest infant reported to have been exposed to poisoning by organophosphates.

  20. Pesticides in surface water measured at select sites in the Sacramento River basin, California, 1996-1998

    USGS Publications Warehouse

    Domagalski, Joseph L.

    2000-01-01

    Pesticides were measured in one urban stream, one agricultural stream, one site on the Sacramento River, and one large flood control channel over a period of 18 months during 1996-1998. All sites were located within the Sacramento River Basin of California. Measurements were made on 83 pesticides or pesticide transformation products by either gas chromatography/mass spectrometry or by high performance liquid chromatography with ultraviolet light spectrometry. Some pesticides were detected frequently at the agricultural stream and downstream in the Sacramento River and at the flood control channel of the Sacramento River. These were pesticides related to rice farming (molinate, carbofuran, thiobencarb, and bentazon); herbicides used both agriculturally or for roadside maintenance (diuron, simazine, and metolachlor); or insecticides used on orchards and row corps (diazinon and chlorpyrifos). No pesticide concen-trations above enforceable water quality criteria were measured at either the agricultural site or the Sacramento River sites. In contrast to the agricul-tural site, insecticides used for household, lawn, or garden maintenance were the most frequently detected pesticides at the urban site. Diazinon, an organophosphate insecticide, exceeded recom-mended criteria for the protection of aquatic life, and the diazinon levels were frequently above known toxic levels for certain zooplankton species at the urban site. Because of the low discharge of the urban stream, pesticide concentrations were greatly diluted upon mixing with Sacramento River water.

  1. Organophosphate acetylcholine esterase inhibitor poisoning from a home-made shampoo.

    PubMed

    Sadaka, Yair; Broides, Arnon; Tzion, Raffi Lev; Lifshitz, Matitiahu

    2011-07-01

    Organophosphate acetylcholine esterase inhibitor poisoning is a major health problem in children. We report an unusual cause of organophosphate acetylcholine esterase inhibitor poisoning. Two children were admitted to the pediatric intensive care unit due to organophosphate acetylcholine esterase inhibitor poisoning after exposure from a home-made shampoo that was used for the treatment of head lice. Owing to no obvious source of poisoning, the diagnosis of organophosphate acetylcholine esterase inhibitor poisoning in one of these patients was delayed. Both patients had an uneventful recovery. Organophosphate acetylcholine esterase inhibitor poisoning from home-made shampoo is possible. In cases where the mode of poisoning is unclear, direct questioning about the use of home-made shampoo is warranted, in these cases the skin and particularly the scalp should be rinsed thoroughly as soon as possible.

  2. HYPOTHYROIDISM AND PESTICIDE USE AMONG MALE PRIVATE PESTICIDE APPLICATORS IN THE AGRICULTURAL HEALTH STUDY

    PubMed Central

    Goldner, Whitney S.; Sandler, Dale P.; Yu, Fang; Shostrom, Valerie; Hoppin, Jane A.; Kamel, Freya; LeVan, Tricia D.

    2013-01-01

    Objective Evaluate the association between thyroid disease and use of insecticides, herbicides, fumigants/fungicides in male applicators in the Agricultural Health Study. Methods We examined the association between use of 50 specific pesticides and self-reported hypothyroidism, hyperthyroidism, and ‘other’ thyroid disease among 22,246 male pesticide applicators. Results There was increased odds of hypothyroidism with ever-use of the herbicides 2,4-D, 2,4,5-T, 2,4,5-TP, alachlor, dicamba, and petroleum oil. Hypothyroidism was also associated with ever-use of eight insecticides: organochlorines chlordane, DDT, heptachlor, lindane, and toxaphene; organophosphates diazinon and malathion; and the carbamate carbofuran. Exposure-response analysis showed increasing odds with increasing level of exposure for the herbicides alachlor and 2,4-D, and the insecticides aldrin, chlordane, DDT, lindane, and parathion. Conclusions There is an association between hypothyroidism and specific herbicides and insecticides in male applicators, similar to previous results for spouses. PMID:24064777

  3. Environmental pesticide exposure in Honduras following hurricane Mitch.

    PubMed Central

    Balluz, L.; Moll, D.; Diaz Martinez, M. G.; Merida Colindres, J. E.; Malilay, J.

    2001-01-01

    OBJECTIVE: To investigate whether environmental contamination occurred in the wake of hurricane Mitch (30-31 October 1998), we conducted a population-based cross-sectional household survey in the barrio of Istoca, Department of Choluteca, Honduras. The goals were to evaluate chemical contamination of potable water and the extent of human exposure to chemicals as a result of extensive flooding. METHODS: The survey consisted of an environmental exposure assessment, which included assaying water and soil samples for contaminants, and taking blood and urine samples from 45 adolescents aged 15-18 years. We also made a subjective questionnaire assessment of 155 households. FINDINGS: There was significant contamination of the soil in Istoca, but no water contamination in the aftermath of hurricane Mitch. The soil levels of chlopyrifos and parathion were 30- and 1000-times higher, respectively, than the Environmental Data Quality Level. However, the most striking finding was the detection of elevated levels of chlorinated and organophosphate pesticides in adolescents. Toxicological analyses of serum specimens showed that 51% of the samples had elevated levels of 1,1-dichloro-2,2-bis-(p-chlorophenyl) ethylene (p,p-DDE) (range, 1.16-96.9 ng/ml) (US reference mean = 3.5 ng/ml) in adults). Dieldrin levels > 0.2 ng/ml were also present in 23% of the serum specimens (serum levels of this analyte in US adolescents are < 0.2 ng/ml). Of 43 urine samples analysed for organophosphate metabolites, 18.6% contained diethyl phosphate (DEP) at levels which were greater that the reference mean of 6.45 micrograms/g creatinine. We also detected elevated levels of p-nitrophenol (p-NP) and of 3,5,6-trichloro-2-pyridinol (3,5,6-TCPY) in 91% and 42% of the samples, respectively. CONCLUSIONS: The elevated levels of chlorinated pesticides were surprising, since although these substances were banned in Honduras 15 years ago it appears that they are still being used in the country. Moreover

  4. Assessing pesticide exposure of the aquatic environment in tropical catchments

    NASA Astrophysics Data System (ADS)

    Weiss, Frederik; Zurbrügg, Christian; Eggen, Rik; Castillo, Luisa; Ruepert, Clemens; Stamm, Christian

    2015-04-01

    Today, pesticides are intensively used in agriculture across the globe. Worldwide about 2.4×106 tons of pesticides are used annually on 1.6×109 ha of arable land. This yields a global average use of pesticides of 1.53 kg ha-1 year-1. Available data suggest that the use in the agricultural sector will continue to grow. Recently it was estimated that within the last decade, the world pesticide market increased by 93% and the Brazilian market alone by 190%. Though pesticides are intensively used in many low and middle income countries (LAMICs), scientifically sound data of amounts and types of pesticide use and the resulting impact on water quality are lacking in many of these countries. Therefore it is highly relevant to: i) identify risk areas where pesticides affect environmental health, ii) understand the environmental behavior of pesticides in vulnerable tropical ecosystems; and iii) develop possible mitigation options to reduce their exposure to ecosystems and humans. Here we present a project that will focus on assessing pesticide exposure of the aquatic environment and humans in tropical catchments of LAMICs. A catchment in the Zarcero province in Costa Rica will be the test case. Pesticide exposure will be assessed by passive sampling. In order to cover a broad range of compounds of possible use, two sampling devices will be used: SDB membranes for collecting polar compounds and silicon sheets for accumulating apolar pesticides. Extracts will be subsequently analysed by GC-MSMS and LC-HRMS.

  5. Reliability of the TTC approach: learning from inclusion of pesticide active substances in the supporting database.

    PubMed

    Feigenbaum, Alexandre; Pinalli, Roberta; Giannetto, Marco; Barlow, Susan

    2015-01-01

    Data on pesticide active substances were used to assess the reliability of the Threshold of Toxicological Concern (TTC) approach. Pesticides were chosen as a robust test because of their potential for toxicity. 328 pesticide substances were classified on the basis of their chemical structure, according to the generic scheme proposed by the European Food Safety Authority. 43 carbamates and organophosphates were allocated to the group for neurotoxicity alerts, and 279 substances to Cramer structural Class III. For Class III, the 5th percentile value as calculated from the cumulative distribution curve of the no-observed-effect levels (0.20 mg/kg bw per day), was slightly higher than that determined by Munro (0.15 mg/kg bw per day) from his original database. The difference is explained by the inclusion of carbamates and organophosphates in Munro's Class III. Consideration of the acceptable daily intakes and their underlying toxicity data showed that the TTC approach is conservative for 96.2% of the substances. Overall, this analysis gives added support to the utility of the generic scheme of application of the TTC approach for hazard assessment of substances for which few or no experimental toxicity data are available. A convenient alternative to the Cramer decision tree is proposed.

  6. Influence of pesticide use in fruit orchards during blooming on honeybee mortality in 4 experimental apiaries.

    PubMed

    Calatayud-Vernich, Pau; Calatayud, Fernando; Simó, Enrique; Suarez-Varela, Maria Morales; Picó, Yolanda

    2016-01-15

    Samples of dead honey bees (Apis mellifera L.) were collected periodically from 4 different locations during citrus and stone fruit trees blooming season to evaluate the potential impact of agrochemicals on honey bee death rate. For the determination of mortality, dead honey bee traps were placed in front of the experimental hives entrance located in areas of intensive agriculture in Valencian Community (Spain). A total of 34 bee samples, obtained along the monitoring period, were analyzed by means of QuEChERS extraction method and screened for 58 pesticides or their degradation products by LC-MS/MS. An average of four pesticides per honey bee sample was detected. Coumaphos, an organophosphate acaricide used against varroosis in the experimental hives, was detected in 94% of the samples. However, this acaricide was unlikely to be responsible for honey bee mortality because its constantly low concentration during all the monitoring period, even before and after acute mortality episodes. The organophosphates chlorpyrifos and dimethoate, as well as the neonicotinoid imidacloprid, were the most frequently detected agrochemicals. Almost 80% of the samples had chlorpyrifos, 68% dimethoate, and 32% imidacloprid. Maximum concentrations for these three compounds were 751, 403, 223 ng/g respectively. Influence of these pesticides on acute honey bee mortality was demonstrated by comparing coincidence between death rate and concentrations of chlorpyrifos, dimethoate and imidacloprid.

  7. Pesticides and children.

    PubMed

    Garry, Vincent F

    2004-07-15

    Prevention and control of damage to health, crops, and property by insects, fungi, and noxious weeds are the major goals of pesticide applications. As with use of any biologically active agent, pesticides have unwanted side-effects. In this review, we will examine the thesis that adverse pesticide effects are more likely to occur in children who are at special developmental and behavioral risk. Children's exposures to pesticides in the rural and urban settings and differences in their exposure patterns are discussed. The relative frequency of pesticide poisoning in children is examined. In this connection, most reported acute pesticide poisonings occur in children younger than age 5. The possible epidemiological relationships between parental pesticide use or exposure and the risk of adverse reproductive outcomes and childhood cancer are discussed. The level of consensus among these studies is examined. Current concerns regarding neurobehavioral toxicity and endocrine disruption in juxtaposition to the relative paucity of toxicant mechanism-based studies of children are explored.

  8. Work characteristics and pesticide exposures among migrant agricultural families: a community-based research approach.

    PubMed Central

    McCauley, L A; Lasarev, M R; Higgins, G; Rothlein, J; Muniz, J; Ebbert, C; Phillips, J

    2001-01-01

    There are few data on pesticide exposures of migrant Latino farmworker children, and access to this vulnerable population is often difficult. In this paper we describe a community-based approach to implement culturally appropriate research methods with a migrant Latino farmworker community in Oregon. Assessments were conducted in 96 farmworker homes and 24 grower homes in two agricultural communities in Oregon. Measurements included surveys of pesticide use and work protection practices and analyses of home-dust samples for pesticide residues of major organophosphates used in area crops. Results indicate that migrant farmworker housing is diverse, and the amounts and types of pesticide residues found in homes differ. Azinphos-methyl (AZM) was the pesticide residue found most often in both farmworker and grower homes. The median level of AZM in farmworker homes was 1.45 ppm compared to 1.64 ppm in the entry area of grower homes. The median level of AZM in the play areas of grower homes was 0.71 ppm. The levels of AZM in migrant farmworker homes were most associated with the distance from fields and the number of agricultural workers in the home. Although the levels of AZM in growers and farmworker homes were comparable in certain areas, potential for disproportionate exposures occur in areas of the homes where children are most likely to play. The relationship between home resident density, levels of pesticide residues, and play behaviors of children merit further attention. PMID:11401767

  9. NMDA antagonists exert distinct effects in experimental organophosphate or carbamate poisoning in mice

    SciTech Connect

    Dekundy, Andrzej . E-mail: andrzej.dekundy@merz.de; Kaminski, Rafal M.; Zielinska, Elzbieta; Turski, Waldemar A.

    2007-03-15

    Organophosphate (OP) and carbamate acetylcholinesterase (AChE) inhibitors produce seizures and lethality in mammals. Anticonvulsant and neuroprotective properties of N-methyl-D-aspartate (NMDA) antagonists encourage the investigation of their effects in AChE inhibitor-induced poisonings. In the present study, the effects of dizocilpine (MK-801, 1 mg/kg) or 3-((RS)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP, 10 mg/kg), alone or combined with muscarinic antagonist atropine (1.8 mg/kg), on convulsant and lethal properties of an OP pesticide dichlorvos or a carbamate drug physostigmine, were studied in mice. Both dichlorvos and physostigmine induced dose-dependent seizure activity and lethality. Atropine did not prevent the occurrence of convulsions but decreased the lethal effects of both dichlorvos and physostigmine. MK-801 or CPP blocked or attenuated, respectively, dichlorvos-induced convulsions. Contrariwise, NMDA antagonists had no effect in physostigmine-induced seizures or lethality produced by dichlorvos or physostigmine. Concurrent pretreatment with atropine and either MK-801 or CPP blocked or alleviated seizures produced by dichlorvos, but not by physostigmine. Both MK-801 and CPP co-administered with atropine enhanced its antilethal effects in both dichlorvos and physostigmine poisoning. In both saline- and AChE inhibitor-treated mice, no interaction of the investigated antidotes with brain cholinesterase was found. The data indicate that both muscarinic ACh and NMDA receptor-mediated mechanisms contribute to the acute toxicity of AChE inhibitors, and NMDA receptors seem critical to OP-induced seizures.

  10. Distribution and determinants of urinary biomarkers of exposure to organophosphate insecticides in Puerto Rican pregnant women

    PubMed Central

    Lewis, Ryan C.; Cantonwine, David E.; Anzalota Del Toro, Liza V.; Calafat, Antonia M.; Valentin-Blasini, Liza; Davis, Mark D.; Montesano, M. Angela; Alshawabkeh, Akram N.; Cordero, José F.

    2015-01-01

    Globally, human exposures to organophosphate (OP) insecticides may pose a significant burden to the health of mothers and their developing fetuses. Unfortunately, relevant data is limited in certain areas of the world concerning sources of exposure to OP insecticides in pregnant populations. To begin to address this gap in information for Puerto Rico, we studied repeated measures of urinary concentrations of 10 OP insecticide metabolites among 54 pregnant women from the northern karst region of the island. We also collected demographic data and self-reported information on the consumption of fruits, vegetables, and legumes in the past 48-hr before urine collection and home pest-related issues. We calculated the distributions of the urinary biomarkers and compared them to women of reproductive age from the general U.S. population. We also used statistical models accounting for correlated data to assess within-subject temporal variability of the urinary biomarkers and to identify predictors of exposure. We found that for all but two metabolites (para-nitrophenol [PNP], diethylthiophosphate [DETP]), 50th or 95th percentile urinary concentrations (the metric that was used for comparison was based on the biomarker’s detection frequency) of the other eight metabolites (3,5,6-trichloro-2-pyridinol [TCPY], 2-isopropyl-4-methyl-6-hydroxy-pyrimidine, malathion dicarboxylic acid, diethylphosphate, diethyldithiophosphate, dimethylphosphate, dimethylthiophosphate [DMTP], dimethyldithiophosphate) were somewhat lower in our cohort compared with similarly aged women from the continental United States. TCPY, PNP, DETP, and DMTP, which were the only urinary metabolites detected in greater than 50% of the samples, had poor reproducibility (intraclass correlation coefficient range: 0.19–0.28) during pregnancy. Positive predictors of OP insecticide exposure included: age; marital or employment status; consumption of cherries, grape juice, peanuts, peanut butter, or raisins; and

  11. PHYSIOLOGICAL DYSFUNCTION IN ESTUARINE MYSIDS AND LARVAL DECAPODS WITH CHRONIC PESTICIDE EXPOSURE

    EPA Science Inventory

    A variety of physiological functions was examined in an estuarine mysid (Mysidopsis bahia) during life-cycle exposures to four classes of pesticides. Pesticide exposure initially elevated respiration rates of juveniles. These increased metabolic requirements reduced the amount of...

  12. From Vegetated Ditches to Rice Fields: Thinking Outside the Box for Pesticide Mitigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Innovative mitigation strategies are necessary to address pesticide contamination of surface waters. Since 1998, extensive research has been conducted on the ability of vegetated agricultural drainage ditches to reduce pesticide transport to aquatic receiving systems. Recently, new research has pr...

  13. Studies on the Enzymatic Hydrolysis of Organophosphate Poisons in Pigs.

    DTIC Science & Technology

    1982-11-01

    Idantlty by Woe« numb«-; Hydrolysis Of the OrganO- phosphate paraoxon was studied in Yorkshire pig, rat and human sera. Enzymatic hydrolysis ...D-A123 269 UNCLASSIFIED STUDIES ON THE ENZYMATIC HYDROLYSIS OF ORGflNOPHOSPHATE 1/i POISONS IN PIGS(U) LETTERNAN ARMY INST OF RESEARCH...ON THE ENZYMATIC HYDROLYSIS OF ORGANOPHOSPHATE POISONS IN PIGS Part 1. pH and Ion Effects in Sera from Pigs, Rats, and Humans PETER SCHMID, PhD

  14. Much caution does no harm! Organophosphate poisoning often causes pancreatitis.

    PubMed

    Yoshida, Shozo; Okada, Hideshi; Nakano, Shiho; Shirai, Kunihiro; Yuhara, Toshiyuki; Kojima, Hiromasa; Doi, Tomoaki; Kato, Hisaaki; Suzuki, Kodai; Morishita, Kentaro; Murakami, Eiji; Ushikoshi, Hiroaki; Toyoda, Izumi; Ogura, Shinji

    2015-01-01

    Organophosphate poisoning (OP) results in various poisoning symptoms due to its strong inhibitory effect on cholinesterase. One of the occasional complications of OP is pancreatitis. A 62-year-old woman drank alcohol and went home at midnight. After she quarreled with her husband and drank 100 ml of malathion, a parasympathomimetic organophosphate that binds irreversibly to cholinesterase, she was transported to our hospital in an ambulance. On admission, activated charcoal, magnesium citrate, and pralidoxime methiodide (PAM) were used for decontamination after gastric lavage. Abdominal computed tomography detected edema of the small intestine and colon with doubtful bowel ischemia, and acute pancreatitis was suspected. Arterial blood gas analysis revealed severe lactic acidosis. The Ranson score was 6 and the APACHE II (Acute Physiology and Chronic Health Evaluation) score was 14. Based on these findings, severe acute pancreatitis was diagnosed. One day after admission, hemodiafiltration (HDF) was started for the treatment of acute pancreatitis. On the third hospital day, OP symptoms were exacerbated, with muscarinic manifestations including bradycardia and hypersalivation and decreased plasma cholinesterase activity. Atropine was given and the symptoms improved. The patient's general condition including hemodynamic status improved. Pancreatitis was attenuated by 5 days of HDF. Ultimately, it took 14 days for acute pancreatitis to improve, and the patient discharged on hospital day 32. Generally, acute pancreatitis associated with OP is mild. In fact, one previous report showed that the influence of organophosphates on the pancreas disappears in approximately 72 hours, and complicated acute pancreatitis often improves in 4-5 days. However, it was necessary to treat pancreatitis for more than 2 weeks in this case. Therefore, organophosphate-associated pancreatitis due to malathion is more severe. Although OP sometime causes severe necrotic pancreatitis or

  15. A Modeled Comparison of Direct and Food Web-Mediated Impacts of Common Pesticides on Pacific Salmon

    PubMed Central

    Macneale, Kate H.; Spromberg, Julann A.; Baldwin, David H.; Scholz, Nathaniel L.

    2014-01-01

    In the western United States, pesticides used in agricultural and urban areas are often detected in streams and rivers that support threatened and endangered Pacific salmon. Although concentrations are rarely high enough to cause direct salmon mortality, they can reach levels sufficient to impair juvenile feeding behavior and limit macroinvertebrate prey abundance. This raises the possibility of direct adverse effects on juvenile salmon health in tandem with indirect effects on salmon growth as a consequence of reduced prey abundance. We modeled the growth of ocean-type Chinook salmon (Oncorhynchus tshawytscha) at the individual and population scales, investigating insecticides that differ in how long they impair salmon feeding behavior and in how toxic they are to salmon compared to macroinvertebrates. The relative importance of these direct vs. indirect effects depends both on how quickly salmon can recover and on the relative toxicity of an insecticide to salmon and their prey. Model simulations indicate that when exposed to a long-acting organophosphate insecticide that is highly toxic to salmon and invertebrates (e.g., chlorpyrifos), the long-lasting effect on salmon feeding behavior drives the reduction in salmon population growth with reductions in prey abundance having little additional impact. When exposed to short-acting carbamate insecticides at concentrations that salmon recover from quickly but are lethal to invertebrates (e.g., carbaryl), the impacts on salmon populations are due primarily to reductions in their prey. For pesticides like carbaryl, prey sensitivity and how quickly the prey community can recover are particularly important in determining the magnitude of impact on their predators. In considering both indirect and direct effects, we develop a better understanding of potential impacts of a chemical stressor on an endangered species and identify data gaps (e.g., prey recovery rates) that contribute uncertainty to these assessments. PMID

  16. Interethnic variability of plasma paraoxonase (PON1) activity towards organophosphates and PON1 polymorphisms among Asian populations--a short review.

    PubMed

    Mohamed Ali, Safiyya; Chia, Sin Eng

    2008-08-01

    Organophosphate (OP) poisoning is a progressively worrying phenomenon as worldwide pesticide production and consumption has doubled. On average, WHO estimates that 3% of agricultural workers in developing Asian countries suffer an episode of pesticide poisoning every year. Furthermore, the threat of OP usage in terrorism is existent, as seen by the subway tragedy in Tokyo in 1995 where sarin was used. Despite these alarming facts, there is currently no global system to track poisonings related to pesticide use. Human serum paraoxonase (PON1) is the enzyme that hydrolyses OP compounds. Serum PON1 levels and activity vary widely among different ethnic populations. Two commonly studied polymorphisms of PON1 are PON1Q192R and PON1L55M. PON1R192 hydrolyses paraoxon faster than PON1Q192 but hydrolyses diazoxon, sarin and soman eight times slower, and vice versa. PON1M55 has lower plasma levels of PON1 than PON1L55. As the prevalence of the different alleles and genotypic distribution vary between the Asian populations we studied, we propose the necessity to study PON1 polymorphisms and its role in OP toxicity in Asian populations. This would help safeguard the proper care of agricultural workers who might be affected by OP poisoning, and alert relevant anti biological terrorism agencies on possible risks involved in the event of an OP attack and provide effective counter measures.