Sample records for reduce sediment input

  1. SULFATE-REDUCING BACTERIA IN THE SEAGRASS RHIZOSPHERE

    EPA Science Inventory

    Seagrasses are rooted in anoxic sediments that support high levels of microbial activity including utilization of sulfate as a terminal electron acceptor which is reduced to sulfide. Sulfate reduction in seagrass bed sediments is stimulated by input of organic carbon through the ...

  2. Carbon and Nitrogen Input Fluxes in Subducting Sediments at the Izu-Bonin and Central America Convergent Margins

    NASA Astrophysics Data System (ADS)

    Li, L.; Sadofsky, S. J.; Bebout, G. E.

    2003-12-01

    We are investigating the N and C contents and isotope ratios in subducting sediment sections in the two MARGINS Subduction Factory focus sites, the Izu-Bonin (IB) and Central America (CA) convergent margins (using samples obtained on DSDP/ODP Legs 125, 170, 185, and 205). The sediments from IB (Site 1149, and Leg 129) contain 5 to 661 ppm N with δ 15NAir values of +2.5 to +8.2 per mil (weighted average +4.6 per mil). Reduced-C concentrations range from 0.02 to 0.35% with δ 13CPDB values from -28.1 to -21.7 per mil. Calcite in carbonate-rich layers has δ 13C of +1.7 to +2.8 per mil and δ 18OVSMOW of +28.5 to +29.7 per mil. In comparison with IB, the CA sediment section (Site 1039) has far higher N content (663 to 2380 ppm N with δ 15N of +3.9 to +7.1 per mil; weighted average +5.6 per mil). Calcite in Site 1039 carbonate-rich layers hasδ 13C of +0.1 to +3.0 per mil and δ 18O of +29.9 to +32.1 per mil. At Site 1149, down-section decrease in N content, accompanied by decrease in δ 15N and C/N, is thought to reflect diagenesis, whereas at Site 1039, down-section decrease in N content (near 2000 ppm at surface, near 1000 ppm at 150 km) occurs without an obvious shift in δ 15N (reduced C data not yet available). Based on the C-N concentration data we've obtained, sediment C-N input fluxes are estimated at, for the IB margin, 2.5x106 g/km.year for N, 1.7x107 g/km.year for reduced C, and 9.2x108 g/km.year for oxidized C. For the CA margin, we estimate input fluxes of 8.9x106 g/km.year for N, and 1.3x109 g/km.year for oxidized C (work on reduced C is underway). Our input fluxes for C and N differ significantly from previously published input fluxes for the two margins based on estimated subducting sediment C-N concentrations, but errors are large. For the CA margin, the sediment-only N input flux of 9.8x109 g/year (for the entire 1100 km trench length), based on our results for Site 1039, can be compared with the arc volcanic output flux of 8.1x109 g/year of Fischer et al. (2002, Science; N input flux of 6.4x109 g/year estimated by those authors), indicating the incomplete return of subducted N to the surface in arcs. The magnitude of the N input flux in altered oceanic crust remains unknown (work on AOC N-δ 15N is underway) but should also be considered in such comparisons. All estimates of this type assume uniformity in the incoming sediment section along-strike in active trenches (known not to be the case). Shifts from δ 15N values measured for the two sediment sections to values near +7 per mil for the deeply subducted sediment component as suggested by studies of volcanic gases (e.g., Fischer et al., 2002; Hilton et al., 2002) could be accomplished by moderate loss of isotopically light N during metamorphic devolatilization across forearcs.

  3. A decade of evaluating the ecological effects of grass filter strips on channelized agricultural headwater streams

    USDA-ARS?s Scientific Manuscript database

    Grass filter strips are a widely used conservation practice in the Midwestern United States for reducing nutrient, pesticide, and sediment inputs into agricultural streams. Previous studies have documented the effectiveness of grass filter strips in reducing the input of agricultural pollutants, bu...

  4. Sediment budget analysis of slope channel coupling and in-channel sediment storage in an upland catchment, southeastern Australia

    NASA Astrophysics Data System (ADS)

    Smith, Hugh G.; Dragovich, Deirdre

    2008-11-01

    Slope-channel coupling and in-channel sediment storage can be important factors that influence sediment delivery through catchments. Sediment budgets offer an appropriate means to assess the role of these factors by quantifying the various components in the catchment sediment transfer system. In this study a fine (< 63 µm) sediment budget was developed for a 1.64-km 2 gullied upland catchment in southeastern Australia. A process-based approach was adopted that involved detailed monitoring of hillslope and bank erosion, channel change, and suspended sediment output in conjunction with USLE-based hillslope erosion estimation and sediment source tracing using 137Cs and 210Pb ex. The sediment budget developed from these datasets indicated channel banks accounted for an estimated 80% of total sediment inputs. Valley floor and in-channel sediment storage accounted for 53% of inputs, with the remaining 47% being discharged from the catchment outlet. Estimated hillslope sediment input to channels was low (5.7 t) for the study period compared to channel bank input (41.6 t). However an estimated 56% of eroded hillslope sediment reached channels, suggesting a greater level of coupling between the two subsystems than was apparent from comparison of sediment source inputs. Evidently the interpretation of variability in catchment sediment yield is largely dependent on the dynamics of sediment supply and storage in channels in response to patterns of rainfall and discharge. This was reflected in the sediment delivery ratios (SDR) for individual measurement intervals, which ranged from 1 to 153%. Bank sediment supply during low rainfall periods was reduced but ongoing from subaerial processes delivering sediment to channels, resulting in net accumulation on the channel bed with insufficient flow to transport this material to the catchment outlet. Following the higher flow period in spring of the first year of monitoring, the sediment supplied to channels during this interval was removed as well as an estimated 72% of the sediment accumulated on the channel bed since the start of the study period. Given the seasonal and drought-dependent variability in storage and delivery, the period of monitoring may have an important influence on the overall SDR. On the basis of these findings, this study highlights the potential importance of sediment dynamics in channels for determining contemporary sediment yields from small gullied upland catchments in southeastern Australia.

  5. Variations in sediment texture on the northern Monterey Bay National Marine Sanctuary continental shelf

    USGS Publications Warehouse

    Edwards, B.D.

    2002-01-01

    The storm-protected continental shelf of Monterey Bay, part of the Monterey Bay National Marine Sanctuary, north-central California, is subject to abundant, episodic sediment input from fluvial sources. North of Monterey Bay, conditions of reduced sediment supply combined with the exposed nature of the shelf provide an effective laboratory for studying the contrasting effects of storm- versus fluvial-dominated conditions on modern sedimentation. Textural analyses performed on surface sediment samples collected from more than 380 box cores and MultiCores??? document the existence of a clearly defined mud belt occupying the mid-shelf throughout the region. Inshore sands combined with these mid-shelf muds represent deposits from modern sedimentation processes. In Monterey Bay, where episodic fluvial input from winter storms dominates sedimentation, the mid-shelf mud belt extends across the shelf to the shelf break. North of Monterey Bay, where sediment loads are reduced and both oceanographic and storm processes dominate, the mid-shelf mud belt is bordered by relict sediments occupying the outer shelf. In the study area, mass accumulation rates established by radiochemical studies support the contention that storm-induced along-shelf processes result in northward transport of sediment within the mud belt. The continuity of transport, however, is interrupted by topographic highs which are barriers or inhibitors to sediment transport created by wrench-style tectonics associated with the San Andreas fault system.

  6. Contrasting landscape influences on sediment supply and stream restoration priorities in northern Fennoscandia (Sweden and Finland) and coastal British Columbia.

    PubMed

    Rosenfeld, Jordan; Hogan, Daniel; Palm, Daniel; Lundquist, Hans; Nilsson, Christer; Beechie, Timothy J

    2011-01-01

    Sediment size and supply exert a dominant control on channel structure. We review the role of sediment supply in channel structure, and how regional differences in sediment supply and land use affect stream restoration priorities. We show how stream restoration goals are best understood within a common fluvial geomorphology framework defined by sediment supply, storage, and transport. Land-use impacts in geologically young landscapes with high sediment yields (e.g., coastal British Columbia) typically result in loss of in-stream wood and accelerated sediment inputs from bank erosion, logging roads, hillslopes and gullies. In contrast, northern Sweden and Finland are landscapes with naturally low sediment yields caused by low relief, resistant bedrock, and abundant mainstem lakes that act as sediment traps. Land-use impacts involved extensive channel narrowing, removal of obstructions, and bank armouring with boulders to facilitate timber floating, thereby reducing sediment supply from bank erosion while increasing export through higher channel velocities. These contrasting land-use impacts have pushed stream channels in opposite directions (aggradation versus degradation) within a phase-space defined by sediment transport and supply. Restoration in coastal British Columbia has focused on reducing sediment supply (through bank and hillslope stabilization) and restoring wood inputs. In contrast, restoration in northern Fennoscandia (Sweden and Finland) has focused on channel widening and removal of bank-armouring boulders to increase sediment supply and retention. These contrasting restoration priorities illustrate the consequences of divergent regional land-use impacts on sediment supply, and the utility of planning restoration activities within a mechanistic sediment supply-transport framework.

  7. Mercury cycling in stream ecosystems. 2. Benthic methylmercury production and bed sediment-pore water partitioning.

    PubMed

    Marvin-Dipasquale, Mark; Lutz, Michelle A; Brigham, Mark E; Krabbenhoft, David P; Aiken, George R; Orem, William H; Hall, Britt D

    2009-04-15

    Mercury speciation, controls on methylmercury (MeHg) production, and bed sediment-pore water partitioning of total Hg (THg) and MeHg were examined in bed sediment from eight geochemically diverse streams where atmospheric deposition was the predominant Hg input. Across all streams, sediment THg concentrations were best described as a combined function of sediment percent fines (%fines; particles < 63 microm) and organic content. MeHg concentrations were best described as a combined function of organic content and the activity of the Hg(II)-methylating microbial community and were comparable to MeHg concentrations in streams with Hg inputs from industrial and mining sources. Whole sediment tin-reducible inorganic reactive Hg (Hg(II)R) was used as a proxy measure for the Hg(II) pool available for microbial methylation. In conjunction with radiotracer-derived rate constants of 203Hg(II) methylation, Hg(II)R was used to calculate MeHg production potential rates and to explain the spatial variability in MeHg concentration. The %Hg(II)R (of THg) was low (2.1 +/- 5.7%) and was inversely related to both microbial sulfate reduction rates and sediment total reduced sulfur concentration. While sediment THg concentrations were higher in urban streams, %MeHg and %Hg(II)R were higher in nonurban streams. Sediment pore water distribution coefficients (log Kd's) for both THg and MeHg were inversely related to the log-transformed ratio of pore water dissolved organic carbon (DOC) to bed sediment %fines. The stream with the highest drainage basin wetland density also had the highest pore water DOC concentration and the lowest log Kd's for both THg and MeHg. No significant relationship existed between overlying water MeHg concentrations and those in bed sediment or pore water, suggesting upstream sources of MeHg production may be more important than local streambed production as a driver of water column MeHg concentration in drainage basins that receive Hg inputs primarily from atmospheric sources.

  8. Assessment of heavy metal contamination in the sediments of Nansihu Lake Catchment, China.

    PubMed

    Liu, Enfeng; Shen, Ji; Yang, Liyuan; Zhang, Enlou; Meng, Xianghua; Wang, Jianjun

    2010-02-01

    At present, anthropogenic contribution of heavy metals far exceeds natural input in some aquatic sediment, but the proportions are difficult to differentiate due to the changes in sediment characters. In this paper, the metal (Al, Fe, K, Mg, Ca, Cr, Cu, Ni, and Zn) concentrations, grain size, and total organic carbon (TOC) content in the surface and core sediments of Nansihu Lake Catchment (the open lake and six inflow rivers) were determined. The chemical speciations of the metals (Al, Fe, Cr, Cu, Ni, and Zn) in the surface sediments were also analyzed. Approaches of factor analysis, normalized enrichment factor (EF) and the new non-residual fractions enrichment factor (K(NRF)) were used to differentiate the sources of the metals in the sediments, from detrital clastic debris or anthropogenic input, and to quantify the anthropogenic contamination. The results indicate that natural processes were more dominant in concentrating the metals in the surface and core sediments of the open lake. High concentration of Ca and deficiency of other metals in the upper layers of the sediment core were attributed to the input of carbonate minerals in the catchment with increasing human activities since 1980s. High TOC content magnified the deficiency of the metals. Nevertheless, the EF and K(NRF) both reveal moderate to significant anthropogenic contamination of Cr, Cu, Ni, and Zn in the surface sediments of Laoyun River and the estuary and Cr in the surface sediments of Baima River. The proportion of non-residual fractions (acid soluble, reducible, and oxidizable fractions) of Cr, Cu, Ni, and Zn in the contaminated sediments increased to 37-99% from the background levels less than 30%.

  9. Mercury cycling in stream ecosystems. 2. Benthic methylmercury production and bed sediment - Pore water partitioning

    USGS Publications Warehouse

    Marvin-DiPasquale, Mark; Lutz, Michelle A; Brigham, Mark E.; Krabbenhoft, David P.; Aiken, George R.; Orem, William H.; Hall, Britt D.

    2009-01-01

    Mercury speciation, controls on methylmercury (MeHg) production, and bed sediment−pore water partitioning of total Hg (THg) and MeHg were examined in bed sediment from eight geochemically diverse streams where atmospheric deposition was the predominant Hg input. Across all streams, sediment THg concentrations were best described as a combined function of sediment percent fines (%fines; particles < 63 μm) and organic content. MeHg concentrations were best described as a combined function of organic content and the activity of the Hg(II)-methylating microbial community and were comparable to MeHg concentrations in streams with Hg inputs from industrial and mining sources. Whole sediment tin-reducible inorganic reactive Hg (Hg(II)R) was used as a proxy measure for the Hg(II) pool available for microbial methylation. In conjunction with radiotracer-derived rate constants of 203Hg(II) methylation, Hg(II)R was used to calculate MeHg production potential rates and to explain the spatial variability in MeHg concentration. The %Hg(II)R (of THg) was low (2.1 ± 5.7%) and was inversely related to both microbial sulfate reduction rates and sediment total reduced sulfur concentration. While sediment THg concentrations were higher in urban streams, %MeHg and %Hg(II)R were higher in nonurban streams. Sediment pore water distribution coefficients (log Kd’s) for both THg and MeHg were inversely related to the log-transformed ratio of pore water dissolved organic carbon (DOC) to bed sediment %fines. The stream with the highest drainage basin wetland density also had the highest pore water DOC concentration and the lowest log Kd’s for both THg and MeHg. No significant relationship existed between overlying water MeHg concentrations and those in bed sediment or pore water, suggesting upstream sources of MeHg production may be more important than local streambed production as a driver of water column MeHg concentration in drainage basins that receive Hg inputs primarily from atmospheric sources.

  10. Increased Oxygenation of the Oceans Since the Mid-Cenozoic as Constrained by Cr/Co and Os/Ir Ratios in Oxic Pelagic Sediments

    NASA Astrophysics Data System (ADS)

    Hu, M.; Lee, C.

    2005-12-01

    In terms of redox, the marine sediments can be roughly divided into anoxic to suboxic sediments on the margins and oxic sediments in pelagic (open ocean) environments. The relative amounts of anoxic/suboxic sediments being deposited at any given time could be related to biological productivity and/or the efficiency of the ocean circulation system. How the depositional area of anoxic/suboxic deposition has changed through time is thus of concern. One way to track redox conditions is to investigate variations in the concentrations of redox sensitive trace metals. Most studies along these lines have focused on anoxic sediments. However, one problem with using anoxic sediments to study the global oceans is that such sediments are typically deposited in somewhat isolated basins, whose redox conditions may vary from basin to basin. An alternative approach, taken here, is to examine redox-sensitive elemental ratios in oxic pelagic sediments. This is motivated by the fact that pelagic sediments are more likely to reflect average ocean chemistry. In addition, the redox-sensitive metal contents of oxic sediments represent the complement to anoxic sediments. Choosing an appropriate redox-sensitive elemental ratio which eliminates dilution/concentration effects, requires the identification of trace metals that are preferentially precipitated in oxic conditions and those precipitated in more reducing conditions. Overall elemental behaviors were estimated by comparing hydrogenous or authigenic burial fluxes of various trace metals at given pelagic ODP sites to global riverine input fluxes. If the pelagic burial fluxes of a given element are significantly smaller than the riverine input flux, other burial outputs are implied, and it is hypothesized here that this element may precipitate in reducing conditions, such as in oceanic margin. If, on the other hand, the pelagic burial flux is equal to or greater than the riverine input flux, the implication is that oxic pelagic sediments must account for a significant proportion of the burial output of that element. In this case, we assume that this element is oxic-loving. Results of this work reveal that V, Cr, and Co may be particularly redox-sensitive: V and Cr precipitate in reducing environments while Co precipitates in more oxidizing environments. Results of our study, combined with existing data from the literature, show that Cr/Co ratios decrease with depth in DSDP596, 39, 801A, 319, 321, 465A, 577 in the N and S Pacific. After correcting for sedimentation rate, it is shown that the variation of Cr/Co versus time in all of these cores converge, which suggests that the variations in Cr/Co reflect a true variation in seawater composition. This also supported by the lack of sedimentation constrained by Cr/Co and Ce flux. Cr/Co remains low during the Cretaceous but begins to rise at ~25Ma across the entire Pacific. If the Cr/Co and Os/Ir ratio of inputs to the ocean have not changed much, this trend also matches that Os/Ir in the DSDP 596 site in the south Pacific. One interpretation of these results is that there has been a decrease in the area of anoxic/suboxic sedimentation beginning at this time. If correct, the implication is that there was a fundamental change in the redox conditions of the ocean in the mid-Cenozoic. We speculate that this might have been related to mid-Cenozoic global cooling, which may have increased the efficiency of the oceanic circulation system.

  11. Watershed scale assessment of the impact of forested riparian zones on stream water quality

    Treesearch

    J. A. Webber; K. W. J. Williard; M. R. Whiles; M. L. Stone; J. J. Zaczek; D. K. Davie

    2003-01-01

    Federal and state land management agencies have been promoting forest and grass riparian zones to combat non-point source nutrient and sediment pollution of our nations' waters. The majority of research examining the effectiveness of riparian buffers at reducing nutrient and sediment inputs to streams has been conducted at the field scale. This study took a...

  12. Reconstructed Sediment Mobilization Processes in a Large Reservoir Using Short Sediment Cores

    NASA Astrophysics Data System (ADS)

    Cockburn, J.; Feist, S.

    2014-12-01

    Williston Reservoir in northern British Columbia (56°10'31"N, 124°06'33") was formed when the W.A.C. Bennett Dam was created in the late 1960s, is the largest inland body of water in BC and facilitates hydroelectric power generation. Annually the reservoir level rises and lowers with the hydroelectric dam operation, and this combined with the inputs from several river systems (Upper Peace, Finlay, Parsnip, and several smaller creeks) renews suspended sediment sources. Several short-cores retrieved from shallow bays of the Finlay Basin reveal near-annual sedimentary units and distinct patterns related to both hydroclimate variability and the degree to which the reservoir lowered in a particular year. Thin section and sedimentology from short-cores collected in three bays are used to evaluate sediment mobilization processes. The primary sediment sources in each core location is linked to physical inputs from rivers draining into the bays, aeolian contributions, and reworked shoreline deposits as water levels fluctuate. Despite uniform water level lowering across the reservoir, sediment sequences differed at each site, reflecting the local stream inputs. However, distinct organic-rich units, facilitated correlation across the sites. Notable differences in particle size distributions from each core points to important aeolian derived sediment sources. Using these sedimentary records, we can evaluate the processes that contribute to sediment deposition in the basin. This work will contribute to decisions regarding reservoir water levels to reduce adverse impacts on health, economic activities and recreation in the communities along the shores of the reservoir.

  13. Spatial dependence of reduced sulfur in Everglades dissolved organic matter controlled by sulfate enrichment

    USGS Publications Warehouse

    Poulin, Brett A.; Ryan, Joseph N.; Nagy, Kathryn L.; Stubbins, Aron; Dittmar, Thorsten; Orem, William H.; Krabbenhoft, David P.; Aiken, George R.

    2017-01-01

    Sulfate inputs to the Florida Everglades stimulate sulfidic conditions in freshwater wetland sediments that affect ecological and biogeochemical processes. An unexplored implication of sulfate enrichment is alteration of the content and speciation of sulfur in dissolved organic matter (DOM), which influences the reactivity of DOM with trace metals. Here, we describe the vertical and lateral spatial dependence of sulfur chemistry in the hydrophobic organic acid fraction of DOM from unimpacted and sulfate-impacted Everglades wetlands using X-ray absorption spectroscopy and ultrahigh-resolution mass spectrometry. Spatial variation in DOM sulfur content and speciation reflects the degree of sulfate enrichment and resulting sulfide concentrations in sediment pore waters. Sulfur is incorporated into DOM predominantly as highly reduced species in sulfidic pore waters. Sulfur-enriched DOM in sediment pore waters exchanges with overlying surface waters and the sulfur likely undergoes oxidative transformations in the water column. Across all wetland sites and depths, the total sulfur content of DOM correlated with the relative abundance of highly reduced sulfur functionality. The results identify sulfate input as a primary determinant on DOM sulfur chemistry to be considered in the context of wetland restoration and sulfur and trace metal cycling.

  14. The effect of increasing gravel cover on forest roads for reduced sediment delivery to stream crossings

    Treesearch

    Kristopher Brown; Kevin J. McGuire; W. Michael Aust; W. Cully Hession; C. Andrew Dolloff

    2014-01-01

    Direct sediment inputs from forest roads at stream crossings are a major concern for water quality and aquatic habitat. Legacy road–stream crossing approaches, or the section of road leading to the stream, may have poor water and grade control upon reopening, thus increasing the potential for negative impacts to water quality. Rainfall simulation experiments were...

  15. Plant Growth and Phosphorus Uptake of Three Riparian Grass Species

    USDA-ARS?s Scientific Manuscript database

    Riparian buffers can significantly reduce sediment-bound phosphorus (P) entering surface water, but control of dissolved P inputs is more challenging. Because plant roots remove P from soil solution, it follows that plant uptake will reduce dissolved P losses. We evaluated P uptake of smooth bromegr...

  16. Deriving spatial and temporal patterns of coastal marsh aggradation from hurricane storm surge marker beds

    NASA Astrophysics Data System (ADS)

    Hodge, Joshua; Williams, Harry

    2016-12-01

    This study uses storm surge sediment beds deposited by Hurricanes Audrey (1957), Carla (1961), Rita (2005) and Ike (2008) to investigate spatial and temporal changes in marsh sedimentation on the McFaddin National Wildlife Refuge in Southeastern Texas. Fourteen sediment cores were collected along a transect extending 1230 m inland from the Gulf coast. Storm-surge-deposited sediment beds were identified by texture, organic content, carbonate content, the presence of marine microfossils and 137Cs dating. The hurricane-derived sediment beds facilitate assessment of changes in marsh sedimentation from nearshore to inland locations and over decadal to annual timescales. Spatial variation along the transect reflects varying contributions from three prevailing sediment sources: flooding, overwash and organic sedimentation from marsh plants. Over about the last decade, hurricane overwash has been the predominant sediment source for nearshore locations because of large sediment inputs from Hurricanes Rita and Ike. Farther inland, hurricane inputs diminish and sedimentation is dominated by deposition from flood waters and a larger organic component. Temporal variations in sedimentation reflect hurricane activity, changes in marsh surface elevation and degree of compaction of marsh sediments, which is time-dependent. There was little to no marsh sedimentation in the period 2008-2014, firstly because no hurricanes impacted the study area and secondly because overwash sedimentation prior to 2008 had increased nearshore marsh surface elevations by up to 0.68 m, reducing subsequent inputs from flooding. Marsh sedimentation rates were relatively high in the period 2005-2008, averaging 2.13 cm/year and possibly reflecting sediment contributions from Hurricanes Humberto and Gustav. However, these marsh sediments are highly organic and largely uncompacted. Older, deeper marsh deposits formed between 1961 and 2005 are less organic-rich, more compacted and have an average annual sedimentation rate of 0.38 cm/year, which is closely comparable to long-term sedimentation rates in similar marsh settings nearby. These results demonstrate the utility of using hurricane storm surge marker beds to investigate marsh sedimentation, provide insights into the sedimentary response of coastal marshes to hurricanes and provide useful guidance to public policy aimed at combating the effects of sea-level rise on coastal marshes along the northern Gulf of Mexico.

  17. Relative importance of atmospheric and riverine mercury sources to the northern Gulf of Mexico.

    PubMed

    Rice, Glenn E; Senn, David B; Shine, James P

    2009-01-15

    A box model was developed to quantify the major sources and dominant fates of inorganic mercury (Hg) in the Mississippi River-influenced area of the northern Gulf of Mexico (nGOM). Riverine (75%) and direct atmospheric deposition (25%) deliver 9.7 t Hg y(-1) to this productive fishery; most (80%) accumulates in bottom sediments where it can be methylated and enter foodwebs. Although riverine inputs dominate atmospheric deposition, 75% of the riverine sediment-associated Hg accumulates in only approximately 8% of the study area. Atmospheric deposition can explain most of the Hg accumulating in sediments of the remaining area. Considering the differences in temporal responsiveness of riverine (centuries) and atmospheric (years) Hg inputs to anthropogenic emissions changes, the spatial limits of the riverine Hg source andthe potential dominance of atmospheric deposition over large areas could have implications for the timing of benefits from policies reducing anthropogenic Hg emissions.

  18. Historic impact of watershed change and sedimentation to reefs along west-central Guam

    NASA Astrophysics Data System (ADS)

    Prouty, Nancy G.; Storlazzi, Curt D.; McCutcheon, Amanda L.; Jenson, John W.

    2014-09-01

    Using coral growth parameters (extension, density, calcification rates, and luminescence) and geochemical measurements (barium to calcium rations; Ba/Ca) from coral cores collected in west-central Guam, we provide a historic perspective on sediment input to coral reefs adjacent to the Piti-Asan watershed. The months of August through December are dominated by increased coral Ba/Ca values, corresponding to the rainy season. With river water enriched in barium related to nearshore seawater, coral Ba/Ca ratios are presented as a proxy for input of fine-grained terrigenous sediment to the nearshore environment. The century-long Ba/Ca coral record indicates that the Asan fore reef is within the zone of impact from discharged sediments transported from the Piti-Asan watershed and has experienced increased terrestrial sedimentation since the 1940s. This abrupt shift in sedimentation occurred at the same time as both the sudden denudation of the landscape by military ordinance and the immediate subsequent development of the Asan area through the end of the war, from 1944 through 1945. In response to rapid input of sediment, as determined from coral Ba/Ca values, coral growth rates were reduced for almost two decades, while calcification rates recovered much more quickly. Furthermore, coral luminescence is decoupled from the Ba/Ca record, which is consistent with degradation of soil organic matter through disturbance by forest fires, suggesting a potential index of fire history and degradation of soil organic matter. These patterns were not seen in the cores from nearby reefs associated with watersheds that have not undergone the same degree of landscape denudation. Taken together, these records provide a valuable tool for understanding the compounding effects of land-use change on coral reef health.

  19. Historic impact of watershed change and sedimentation to reefs along west-central Guam

    USGS Publications Warehouse

    Prouty, Nancy G.; Storlazzi, Curt D.; McCutcheon, Amanda L.; Jenson, John W.

    2014-01-01

    Using coral growth parameters (extension, density, calcification rates, and luminescence) and geochemical measurements (barium to calcium rations; Ba/Ca) from coral cores collected in west-central Guam, we provide a historic perspective on sediment input to coral reefs adjacent to the Piti-Asan watershed. The months of August through December are dominated by increased coral Ba/Ca values, corresponding to the rainy season. With river water enriched in barium related to nearshore seawater, coral Ba/Ca ratios are presented as a proxy for input of fine-grained terrigenous sediment to the nearshore environment. The century-long Ba/Ca coral record indicates that the Asan fore reef is within the zone of impact from discharged sediments transported from the Piti-Asan watershed and has experienced increased terrestrial sedimentation since the 1940s. This abrupt shift in sedimentation occurred at the same time as both the sudden denudation of the landscape by military ordinance and the immediate subsequent development of the Asan area through the end of the war, from 1944 through 1945. In response to rapid input of sediment, as determined from coral Ba/Ca values, coral growth rates were reduced for almost two decades, while calcification rates recovered much more quickly. Furthermore, coral luminescence is decoupled from the Ba/Ca record, which is consistent with degradation of soil organic matter through disturbance by forest fires, suggesting a potential index of fire history and degradation of soil organic matter. These patterns were not seen in the cores from nearby reefs associated with watersheds that have not undergone the same degree of landscape denudation. Taken together, these records provide a valuable tool for understanding the compounding effects of land-use change on coral reef health.

  20. Investigations into the differential reactivity of endogenous and exogenous mercury species in coastal sediments.

    PubMed

    Bouchet, S; Rodriguez-Gonzalez, P; Bridou, R; Monperrus, M; Tessier, E; Anschutz, P; Guyoneaud, R; Amouroux, D

    2013-03-01

    Stable isotopic tracer methodologies now allow the evaluation of the reactivity of the endogenous (ambient) and exogenous (added) Hg to further predict the potential effect of Hg inputs in ecosystems. The differential reactivity of endogenous and exogenous Hg was compared in superficial sediments collected in a coastal lagoon (Arcachon Bay) and in an estuary (Adour River) from the Bay of Biscay (SW France). All Hg species (gaseous, aqueous, and solid fraction) and ancillary data were measured during time course slurry experiments under variable redox conditions. The average endogenous methylation yield was higher in the estuarine (1.2 %) than in the lagoonal sediment (0.5 %), although both methylation and demethylation rates were higher in the lagoonal sediment in relation with a higher sulfate-reducing activity. Demethylation was overall more consistent than methylation in both sediments. The endogenous and exogenous Hg behaviors were always correlated but the exogenous inorganic Hg (IHg) partitioning into water was 2.0-4.3 times higher than the endogenous one. Its methylation was just slightly higher (1.4) in the estuarine sediment while the difference in the lagoonal sediment was much larger (3.6). The relative endogenous and exogenous methylation yields were not correlated to IHg partitioning, demonstrating that the bioavailable species distributions were different for the two IHg pools. In both sediments, the exogenous IHg partitioning equaled the endogenous one within a week, while its higher methylation lasted for months. Such results provide an original assessment approach to compare coastal sediment response to Hg inputs.

  1. The Influence of Landslides on Channel Flood Response: A Case Study from the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Bennett, G. L.; Ryan, S. E.; Sholtes, J.; Rathburn, S. L.

    2016-12-01

    Studies have identified the role of thresholds and gradients in stream power in inducing geomorphic change during floods. At much longer time scales, empirical and modeling studies suggest the role of landslides in modifying channel response to external forcing (e.g. tectonic uplift); landslide-delivered sediment may behave as a tool, enhancing channel incision, or as cover, reducing channel incision. However, the influence of landslides on channel response to an individual flood event remains to be elucidated. Here we explore the influence of landslides on channel response to a 200-yr flood in Colorado, USA. From 9 - 15th September 2013 up to 450 mm of rain fell across a 100 km-wide swath of the Colorado Front Range, triggering >1000 landslides and inducing major flooding in several catchments. The flood caused extensive channel erosion, deposition and planform change, resulting in significant damage to property and infrastructure and even loss of life. We use a combination of pre and post flood LiDAR and field mapping to quantify geomorphic change in several catchments spanning the flooded region. We make a reach-by-reach analysis of channel geomorphic change metrics (e.g. volume of erosion) in relation to landslide sediment input and total stream power as calculated from radar-based rainfall measurements. Preliminary results suggest that landslide-sediment input may complicate the predictive relationship between channel erosion and stream power. Low volumes of landslide sediment input appear to enhance channel erosion (a tools effect), whilst very large volumes appear to reduce channel erosion (a cover effect). These results have implications for predicting channel response to floods and for flood planning and mitigation.

  2. Mercury in sediment, water, and fish in a managed tropical wetland-lake ecosystem.

    PubMed

    Malczyk, Evan A; Branfireun, Brian A

    2015-08-15

    Mercury pollution has not been well documented in the inland lakes or fishes of Mexico, despite the importance of freshwater fish as a source of protein in local diets. Total mercury and methylmercury in waters, sediments, and the commercial fish catch were investigated in Lake Zapotlán, Mexico. Concentrations of total and methylmercury were very high in runoff and wastewater inputs, but very low in sediments and surface waters of the open water area of the lake. Concentrations of total mercury in tilapia and carp were very low, consistent with the low concentrations in lake water and sediments. Particle settling, sorption, the biogeochemical environment, and/or bloom dilution are all plausible explanations for the significant reductions in both total mercury and methylmercury. Despite very high loading of mercury, this shallow tropical lake was not a mercury-impaired ecosystem, and these findings may translate across other shallow, alkaline tropical lakes. Importantly, the ecosystem services that seemed to be provided by peripheral wetlands in reducing mercury inputs highlight the potential for wetland conservation or restoration in Mexico. Copyright © 2015. Published by Elsevier B.V.

  3. Input-variable sensitivity assessment for sediment transport relations

    NASA Astrophysics Data System (ADS)

    Fernández, Roberto; Garcia, Marcelo H.

    2017-09-01

    A methodology to assess input-variable sensitivity for sediment transport relations is presented. The Mean Value First Order Second Moment Method (MVFOSM) is applied to two bed load transport equations showing that it may be used to rank all input variables in terms of how their specific variance affects the overall variance of the sediment transport estimation. In sites where data are scarce or nonexistent, the results obtained may be used to (i) determine what variables would have the largest impact when estimating sediment loads in the absence of field observations and (ii) design field campaigns to specifically measure those variables for which a given transport equation is most sensitive; in sites where data are readily available, the results would allow quantifying the effect that the variance associated with each input variable has on the variance of the sediment transport estimates. An application of the method to two transport relations using data from a tropical mountain river in Costa Rica is implemented to exemplify the potential of the method in places where input data are limited. Results are compared against Monte Carlo simulations to assess the reliability of the method and validate its results. For both of the sediment transport relations used in the sensitivity analysis, accurate knowledge of sediment size was found to have more impact on sediment transport predictions than precise knowledge of other input variables such as channel slope and flow discharge.

  4. Legacy phosphorus in the Baltic Sea and implications for reversing eutrophication

    NASA Astrophysics Data System (ADS)

    McCrackin, M. L.; Gustafsson, B.; Humborg, C.; Hong, B.; Svanbäck, A.; Swaney, D. P.; Viktorsson, L.

    2015-12-01

    Eutrophication has depleted concentrations of dissolved oxygen in bottom waters of the Baltic Sea, resulting in the world's largest "dead" zone. A number of measures have been implemented to reduce nutrient inputs and, indeed, between 1995 and 2012 phosphorus (P) loads to the sea deceased 19%. The long-term accumulation and subsequent release of P from both the catchment and marine sediments combined with 30-year water residence times could significantly delay recovery from eutrophication. We estimated net P accumulation (legacy P) for the Baltic Sea using the Net Anthropogenic Phosphorus Inputs (NAPI) approach and historical records of food and feed trade and riverine fluxes. Net P inputs to the catchment peaked at 0.7 million tons per year during the 1970's and since the political and economical changes in Eastern Europe during the 1990's, decreased to 0.2-0.3 million tons per year. P accumulation on land is ten times greater than accumulation in the sea (20 million and 2 million tons, respectively). Of the P retained on land, the majority (18-19 million tons) is in agricultural lands, with the balance in lake sediments. Of the 2 million tons in the sea, two-thirds are in sediments and one-third in the water column. The success of nutrient management actions in reducing river nutrient fluxes will lead to improvement in the Baltic Sea environment, but the massive accumulation of P on land will complicate efforts to achieve complete recovery.

  5. The fate of large sediment inputs in rivers: Implications for watershed and waterway management

    Treesearch

    Thomas E. Lisle

    2000-01-01

    Valued resources in and along stream channels are commonly many river miles downstream of large sediment inputs such as landslides. Evaluating and predicting the arrival, severity, and duration of sediment impacts thus requires an understanding of how river channels digest elevated sediment loads.

  6. A mass balance mercury budget for a mine-dominated lake: Clear Lake, California

    USGS Publications Warehouse

    Suchanek, T.H.; Cooke, J.; Keller, K.; Jorgensen, S.; Richerson, P.J.; Eagles-Smith, Collin A.; Harner, E.J.; Adam, D.P.

    2009-01-01

    The Sulphur Bank Mercury Mine (SBMM), active intermittently from 1873–1957 and now a USEPA Superfund site, was previously estimated to have contributed at least 100 metric tons (105 kg) of mercury (Hg) into the Clear Lake aquatic ecosystem. We have confirmed this minimum estimate. To better quantify the contribution of the mine in relation to other sources of Hg loading into Clear Lake and provide data that might help reduce that loading, we analyzed Inputs and Outputs of Hg to Clear Lake and Storage of Hg in lakebed sediments using a mass balance approach. We evaluated Inputs from (1) wet and dry atmospheric deposition from both global/regional and local sources, (2) watershed tributaries, (3) groundwater inflows, (4) lakebed springs and (5) the mine. Outputs were quantified from (1) efflux (volatilization) of Hg from the lake surface to the atmosphere, (2) municipal and agricultural water diversions, (3) losses from out-flowing drainage of Cache Creek that feeds into the California Central Valley and (4) biotic Hg removal by humans and wildlife. Storage estimates include (1) sediment burial from historic and prehistoric periods (over the past 150–3,000 years) from sediment cores to ca. 2.5m depth dated using dichloro diphenyl dichloroethane (DDD), 210Pb and 14C and (2) recent Hg deposition in surficial sediments. Surficial sediments collected in October 2003 (11 years after mine site remediation) indicate no reduction (but a possible increase) in sediment Hg concentrations over that time and suggest that remediation has not significantly reduced overall Hg loading to the lake. Currently, the mine is believed to contribute ca. 322–331 kg of Hg annually to Clear Lake, which represents ca. 86–99% of the total Hg loading to the lake. We estimate that natural sedimentation would cover the existing contaminated sediments within ca. 150–300 years.

  7. Capturing sediment and nutrients in irrigated terraced landscapes

    NASA Astrophysics Data System (ADS)

    Slaets, Johanna; Schmitter, Petra; Hilger, Thomas; Piepho, Hans-Peter; Dercon, Gerd; Cadisch, Georg

    2016-04-01

    Terraces are often promoted as green filters in landscapes, buffering discharge and constituent peaks. For irrigated rice terraces, however, this mitigating potential has not been assessed at the landscape level. Additionally, sediment and nutrient inputs potentially affect soil fertility in agricultural terraces and therefore yield - the extent of the impact depending on the quality and quantity of the captured material. Quantifying such upland-lowland linkages is particularly important in intensely cultivated landscapes, as declining upland soil fertility could alter beneficial hydrological connectivity between terraces and surrounding landscapes. In this study, we therefore quantified the sediment, sediment-associated organic carbon and nitrogen inputs and losses for a 13 ha paddy rice area, surrounded by upland maize cultivation in Northwest Vietnam in 2010 and 2011. Turbidity sensors were used in combination with a linear mixed model in order to obtain continuous predictions of the constituent concentrations. Sediment texture was determined using mid-infrared spectroscopy. Uncertainty on annual load estimates was quantified by calculating 95% confidence intervals with a bootstrap approach. Sediment inputs from irrigation water to the rice area amounted to 48 Mg ha-1 a-1 and runoff during rainfall events contributed an additional 16 Mg ha-1 a-1. Export from the rice terraces equalled 63 Mg ha-1 a-1 of sediments, resulting in a net balance of 28 Mg ha-1 a-1 or a trapping of almost half of the annual sediment inputs. Runoff contributed one third of the sand inputs, while irrigated sediments were predominantly silty. As paddy outflow contained almost exclusively silt- and clay-sized material, 24 Mg ha-1 a-1 of captured sediments consisted of sand. The sediment-associated organic carbon resulted in a deposit of 1.09 Mg ha-1 a-1. For sediment-associated nitrogen, 0.68 Mg ha-1 a-1 was trapped in the terraces. Combining both sediment-associated and dissolved nitrogen, irrigation water provided a total input of 1.11 Mg ha-1 a-1, of which 54% was in the plant-available forms of ammonium and nitrate - an input larger than the recommended application of chemical fertilizer. Rice terraces were net traps for sediment and protected downstream areas by filtering coarse sediments. Combined with the importance of irrigation water as a source of organic carbon and nitrogen for the rice, this connectivity underscores the vulnerability of agricultural terraces to changes in surrounding land use.

  8. Anaerobic degradation of benzene in diverse anoxic environments

    USGS Publications Warehouse

    Kazumi, J.; Caldwell, M.E.; Suflita, J.M.; Lovely, D.R.; Young, L.Y.

    1997-01-01

    Benzene has often been observed to be resistant to microbial degradation under anoxic conditions. A number of recent studies, however, have demonstrated that anaerobic benzene utilization can occur. This study extends the previous reports of anaerobic benzene degradation to sediments that varied with respect to contamination input, predominant redox condition, and salinity. In spite of differences in methodology, microbial degradation of benzene was noted in slurries constructed with sediments from various geographical locations and range from aquifer sands to fine-grained estuarine muds, under methanogenic, sulfate-reducing, and iron-reducing conditions. In aquifer sediments under methanogenic conditions, benzene loss was concomitant with methane production, and microbial utilization of [14C]benzene yielded 14CO2 and 14CH4. In slurries with estuarine and aquifer sediments under sulfate-reducing conditions, the loss of sulfate in amounts consistent with the stoichiometric degradation of benzene or the conversion of [14C]benzene to 14CO2 indicates that benzene was mineralized. Benzene loss also occurred in the presence of Fe(III) in sediments from freshwater environments. Microbial benzene utilization, however, was not observed under denitrifying conditions. These results indicate that the potential for the anaerobic degradation of benzene, which was once thought to be resistant to non-oxygenase attack, exists in a variety of aquatic sediments from widely distributed locations.

  9. Effect of Oxalic Acid Treatment on Sediment Arsenic Concentrations and Lability under Reducing Conditions

    PubMed Central

    Sun, Jing; Bostick, Benjamin C.; Mailloux, Brian J.; Ross, James M.; Chillrud, Steven N.

    2016-01-01

    Oxalic acid enhances arsenic (As) mobilization by dissolving As host minerals and competing for sorption sites. Oxalic acid amendments thus could potentially improve the efficiency of widely used pump-and-treat (P&T) remediation. This study investigates the effectiveness of oxalic acid on As mobilization from contaminated sediments with different As input sources and redox conditions, and examines whether residual sediment As after oxalic acid treatment can still be reductively mobilized. Batch extraction, column, and microcosm experiments were performed in the laboratory using sediments from the Dover Municipal Landfill and the Vineland Chemical Company Superfund sites. Oxalic acid mobilized As from both Dover and Vineland sediments, although the efficiency rates were different. The residual As in both Dover and Vineland sediments after oxalic acid treatment was less vulnerable to microbial reduction than before the treatment. Oxalic acid could thus improve the efficiency of P&T. X-ray absorption spectroscopy analysis indicated that the Vineland sediment samples still contained reactive Fe(III) minerals after oxalic acid treatment, and thus released more As into solution under reducing conditions than the Dover samples. Therefore, the efficacy of P&T must consider sediment Fe mineralogy when evaluating its overall potential for remediating groundwater As. PMID:26970042

  10. History of metal contamination in Lake Illawarra, NSW, Australia.

    PubMed

    Schneider, Larissa; Maher, William; Potts, Jaimie; Batley, Graeme; Taylor, Anne; Krikowa, Frank; Chariton, Anthony; Zawadzki, Atun; Heijnis, Henk; Gruber, Bernd

    2015-01-01

    Lake Illawarra has a long history of sediment contamination, particularly by metals, as a result of past and current industrial operations and land uses within the catchment. In this study, we examined the history of metal contamination in sediments using metal analysis and (210)Pb and (137)Cs dating. The distributions of copper, zinc, arsenic, selenium, cadmium and lead concentrations within sediment cores were in agreement with historical events in the lake, and indicated that metal contamination had been occurring since the start of industrial activities in Port Kembla in the late 1800 s. Most metal contamination, however, has occurred since the 1960s. Sedimentation rates were found to be 0.2 cm year(-1) in Griffins Bay and 0.3 cm year(-1) in the centre of the lake. Inputs from creeks bringing metals from Port Kembla in the northeast of the lake and a copper slag emplacement from a former copper refinery on the Windang Peninsula were the main sources of metal inputs to Lake Illawarra. The metals of highest concern were zinc and copper, which exceeded the Australian and New Zealand sediment quality guideline values at some sites. Results showed that while historical contamination persists, current management practices have resulted in reduced metal concentrations in surface sediments in the depositional zones in the centre of the lake. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Coastal erosion vs riverline sediment discharge in the Arctic shelfx seas

    USGS Publications Warehouse

    Rachold, V.; Grigoriev, M.N.; Are, F.E.; Solomon, Sean C.; Reimnitz, E.; Kassens, H.; Antonow, M.

    2000-01-01

    This article presents a comparison of sediment input by rivers and by coastal erosion into both the Laptev Sea and the Canadian Beaufort Sea (CBS). New data on coastal erosion in the Laptev Sea, which are based on field measurements and remote sensing information and existing data on coastal erosion in the CBS as well as riverine sediment discharge into both the Laptev Sea and the CBS are included. Strong regional differences in the percentages of coastal ero- sion and riverine sediment supply are observed. The CBS is dominated by the riverine sediment discharge (64.45x106 t a-1) mainly of the Mackenzie River. which is the largest single source of sediments in the Arctic. Riverine sediment discharge into the Laptev Sea amounts to 24.10x106 t a-1, more than 70% of which are related to the Lena River. In comparison with the CBS. the Laptev Sea coast on average delivers approximately twice as much sediment mass per kilometer, a result of higher erosion rates due to higher cliffs and seasonal ice melting. In the Laptev Sea sediment input by coastal erosion (58.4x106 t a-1) is therefore more important than in the CBS and the ratio between riverine and coastal sediment input amounts to 0.4. Coastal erosion supplying 5.6x106 t a-1 is less significant for the sediment budget of the CBS where riverine sediment discharge exceeds coastal sediment input by a factor of ca. 10.

  12. A Froude-scaled model of a bedrock-alluvial channel reach: 2. Sediment cover

    NASA Astrophysics Data System (ADS)

    Hodge, Rebecca A.; Hoey, Trevor B.

    2016-09-01

    Previous research into sediment cover in bedrock-alluvial channels has focussed on total sediment cover, rather than the spatial distribution of cover within the channel. The latter is important because it determines the bedrock areas that are protected from erosion and the start and end of sediment transport pathways. We use a 1:10 Froude-scaled model of an 18 by 9 m reach of a bedrock-alluvial channel to study the production and erosion of sediment patches and hence the spatial relationships between flow, bed topography, and sediment dynamics. The hydraulic data from this bed are presented in the companion paper. In these experiments specified volumes of sediment were supplied at the upstream edge of the model reach as single inputs, at each of a range of discharges. This sediment formed patches, and once these stabilized, flow was steadily increased to erode the patches. In summary: (1) patches tend to initiate in the lowest areas of the bed, but areas of topographically induced high flow velocity can inhibit patch development; (2) at low sediment inputs the extent of sediment patches is determined by the bed topography and can be insensitive to the exact volume of sediment supplied; and (3) at higher sediment inputs more extensive patches are produced, stabilized by grain-grain and grain-flow interactions and less influenced by the bed topography. Bedrock topography can therefore be an important constraint on sediment patch dynamics, and topographic metrics are required that incorporate its within-reach variability. The magnitude and timing of sediment input events controls reach-scale sediment cover.

  13. End-member modelling as a tool for climate reconstruction-An Eastern Mediterranean case study.

    PubMed

    Beuscher, Sarah; Krüger, Stefan; Ehrmann, Werner; Schmiedl, Gerhard; Milker, Yvonne; Arz, Helge; Schulz, Hartmut

    2017-01-01

    The Eastern Mediterranean Sea is a sink for terrigenous sediments from North Africa, Europe and Asia Minor. Its sediments therefore provide valuable information on the climate dynamics in the source areas and the associated transport processes. We present a high-resolution dataset of sediment core M40/4_SL71, which was collected SW of Crete and spans the last ca. 180 kyr. We analysed the clay mineral composition, the grain size distribution within the silt fraction, and the abundance of major and trace elements. We tested the potential of end-member modelling on these sedimentological datasets as a tool for reconstructing the climate variability in the source regions and the associated detrital input. For each dataset, we modelled three end members. All end members were assigned to a specific provenance and sedimentary process. In total, three end members were related to the Saharan dust input, and five were related to the fluvial sediment input. One end member was strongly associated with the sapropel layers. The Saharan dust end members of the grain size and clay mineral datasets generally suggest enhanced dust export into the Eastern Mediterranean Sea during the dry phases with short-term increases during Heinrich events. During the African Humid Periods, dust export was reduced but may not have completely ceased. The loading patterns of two fluvial end members show a strong relationship with the Northern Hemisphere insolation, and all fluvial end members document enhanced input during the African Humid Periods. The sapropel end member most likely reflects the fixation of redox-sensitive elements within the anoxic sapropel layers. Our results exemplify that end-member modelling is a valuable tool for interpreting extensive and multidisciplinary datasets.

  14. End-member modelling as a tool for climate reconstruction—An Eastern Mediterranean case study

    PubMed Central

    Krüger, Stefan; Ehrmann, Werner; Schmiedl, Gerhard; Milker, Yvonne; Arz, Helge; Schulz, Hartmut

    2017-01-01

    The Eastern Mediterranean Sea is a sink for terrigenous sediments from North Africa, Europe and Asia Minor. Its sediments therefore provide valuable information on the climate dynamics in the source areas and the associated transport processes. We present a high-resolution dataset of sediment core M40/4_SL71, which was collected SW of Crete and spans the last ca. 180 kyr. We analysed the clay mineral composition, the grain size distribution within the silt fraction, and the abundance of major and trace elements. We tested the potential of end-member modelling on these sedimentological datasets as a tool for reconstructing the climate variability in the source regions and the associated detrital input. For each dataset, we modelled three end members. All end members were assigned to a specific provenance and sedimentary process. In total, three end members were related to the Saharan dust input, and five were related to the fluvial sediment input. One end member was strongly associated with the sapropel layers. The Saharan dust end members of the grain size and clay mineral datasets generally suggest enhanced dust export into the Eastern Mediterranean Sea during the dry phases with short-term increases during Heinrich events. During the African Humid Periods, dust export was reduced but may not have completely ceased. The loading patterns of two fluvial end members show a strong relationship with the Northern Hemisphere insolation, and all fluvial end members document enhanced input during the African Humid Periods. The sapropel end member most likely reflects the fixation of redox-sensitive elements within the anoxic sapropel layers. Our results exemplify that end-member modelling is a valuable tool for interpreting extensive and multidisciplinary datasets. PMID:28934332

  15. Spatial hydrological flow processes, water quality, sediment and vegetation community distributions in a natural floodplain fen - implication for the Flood Pulse Concept

    NASA Astrophysics Data System (ADS)

    Keizer, Floris; Schot, Paul; Wassen, Martin; Kardel, Ignacy; Okruszko, Tomasz

    2017-04-01

    We studied spatial patterns in inundation water quality, sediment and vegetation distribution in a floodplain fen in Poland to map interacting peatland hydrological processes. Using PCA and K-means cluster analysis, we identified four water types, related to river water inundation, discharge of clean and polluted groundwater, and precipitation and snowmelt dilution. Spatially, these hydrochemical water types are related to known water sources in the floodplain and occupy distinctive zones. River water is found along the river, clean and polluted groundwater at the valley margins and groundwater diluted with precipitation and snowmelt water in the central part of the floodplain. This implies that, despite the floodplain being completely inundated, nutrient input from river flooding occurs only in a relatively narrow zone next to the river. Our findings question the relevance of the edge of inundation, as presented in the Flood Pulse Concept, as delineating the zone of input and turnover of nutrients. Secondly, we studied rich-fen and freshwater vegetation community distributions in relation to the presented inundation water quality types. We successfully determined inundation water quality preference for 14 out of 17 studied rich-fen and freshwater communities in the floodplain. Spatial patterns in preference show vegetation with attributed river water preference to occur close to the river channel, with increasing distance to the river followed by communities with no preference, diluted groundwater preference in the central part, and clean and polluted groundwater preference at the valley margins. In inundation water, nutrients are known to be transported mainly as attached to sediment, besides in dissolved state. This means that in the zone where sediment deposition occurs, nutrient input can be a relevant contribution to the nutrient input of the floodplain. We found a significant decrease in sediment-attached nutrient deposition with distance from the river. Sediment-attached nutrients correlated better to aboveground standing biomass than dissolved nutrients. These findings further reduce the spatial zone where significant nutrient input is influenced by transport from the river, compared to the zone influenced by dissolved nutrients. Our findings indicate the need for a revision of the Flood Pulse Concept for temperate river with multiple water sources, as peatland hydrological processes significantly influence spatial floodplain vegetation distribution.

  16. Headwater fish population responses to planting grass filter strips adjacent to channelized agricultural headwater streams

    USDA-ARS?s Scientific Manuscript database

    Grass filter strips are a widely used conservation practice in the Midwestern United States for reducing nutrient, pesticide, and sediment inputs into agricultural streams. Only a limited amount of information is available on the ecological effects of planting grass filter strips adjacent to channe...

  17. ECOLOGICAL SUSTAINABILITY IN RAPIDLY URBANIZING WATERSHEDS: EVALUATING STRATEGIES DESIGNED TO MITIGATE IMPACTS ON STREAM ECOSYSTEMS

    EPA Science Inventory

    Urbanization has profound impacts on the hydrology and ecology of streams via alteration in water temperatures, peak and base flows, and nutrient, sediment, and contaminant inputs. Storm water management (SWM) is commonly used to reduce these impacts; however, comprehensive w...

  18. Mercury pollution in the lake sediments and catchment soils of anthropogenically-disturbed sites across England.

    PubMed

    Yang, Handong; Turner, Simon; Rose, Neil L

    2016-12-01

    Sediment cores and soil samples were taken from nine lakes and their catchments across England with varying degrees of direct human disturbance. Mercury (Hg) analysis demonstrated a range of impacts, many from local sources, resulting from differing historical and contemporary site usage and management. Lakes located in industrially important areas showed clear evidence for early Hg pollution with concentrations in sediments reaching 400-1600 ng g -1 prior to the mid-19th century. Control of inputs resulting from local management practices and a greater than 90% reduction in UK Hg emissions since 1970 were reflected by reduced Hg pollution in some lakes. However, having been a sink for Hg deposition for centuries, polluted catchment soils are now the major Hg source for most lakes and consequently recovery from reduced Hg deposition is being delayed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Effect of human activities on overall trend of sedimentation in the lower Yellow River, China.

    PubMed

    Jiongxin, Xu

    2004-05-01

    The Yellow River has been intensively affected by human activities, particularly in the past 50 years, including soil-water conservation in the upper and middle drainage basin, flood protection in the lower reaches, and flow regulation and water diversion in the whole drainage basin. All these changes may impact sedimentation process of the lower Yellow River in different ways. Assessing these impacts comprehensively is important for more effective environmental management of the drainage basin. Based on the data of annual river flow, sediment load, and channel sedimentation in the lower Yellow River between 1950 and 1997, the purpose of this paper is to analyze the overall trend of channel sedimentation rate at a time scale of 50 years, and its formative cause. It was found in this study that erosion control measures and water diversion have counteractive impacts on sedimentation rate in the lower Yellow River. Although both annual river flow and sediment decreased, there was no change in channel sedimentation rate. A regression analysis indicated that the sedimentation in the lower Yellow River decreased with the sediment input to the lower Yellow River but increased with the river flow input. In the past 30-40 years, the basin-wide practice of erosion and sediment control measures resulted in a decline in sediment supply to the Yellow River; at the same time, the human development of water resources that required river flow regulation and water diversion caused great reduction in river flow. The former may reduce the sedimentation in the lower Yellow River, but the reduction of river flow increased the sedimentation. When their effects counterbalanced each other, the overall trend of channel sedimentation in the lower Yellow River remained unchanged. This fact may help us to better understand the positive and negative effects of human activities in the Yellow River basin and to pay more attention to the negative effect of the development of water resources. The results of this study demonstrate that, if the overuse of river water cannot be controlled, the reduction of channel sedimentation in the lower Yellow River cannot be realized through the practice of erosion and sediment control measures.

  20. Conceptualizing the role of sediment in sustaining ecosystem services: Sediment-ecosystem regional assessment (SEcoRA).

    PubMed

    Apitz, Sabine E

    2012-01-15

    There is a growing trend to include a consideration of ecosystem services, the benefits that people obtain from ecosystems, within decision frameworks. Not more than a decade ago, sediment management efforts were largely site-specific and held little attention except in terms of managing contaminant inputs and addressing sediments as a nuisance at commercial ports and harbors. Sediments figure extensively in the Millennium Ecosystem Assessment; however, contaminated sediment is not the dominant concern. Rather, the focus is on land and water use and management on the landscape scale, which can profoundly affect soil and sediment quality, quantity and fate. Habitat change and loss, due to changes in sediment inputs, whether reductions (resulting in the loss of beaches, storm protection, nutrient inputs, etc.) or increases (resulting in lake, reservoir and wetland infilling, coral reef smothering, etc.); eutrophication and reductions in nutrient inputs, and disturbance due to development and fishing practices are considered major drivers, with significant consequences for biodiversity and the provision and resilience of ecosystem functions and services. As a mobile connecting medium between various parts of the ecosystem via the hydrocycle, sediments both contaminated and uncontaminated, play both positive and negative roles in the viability and sustainability of social, economic, and ecological objectives. How these roles are interpreted depends upon whether sediment status (defined in terms of sediment quality, quantity, location and transport) is appropriate to the needs of a given endpoint; understanding and managing the dynamic interactions of sediment status on a diverse range of endpoints at the landscape or watershed scale should be the focus of sediment management. This paper seeks to provide a language and conceptual framework upon which sediment-ecosystem regional assessments (SEcoRAs) can be developed in support of that goal. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Sediment budgeting and restoration planning in a heterogeneous landscape, the Root River watershed, southeastern Minnesota.

    NASA Astrophysics Data System (ADS)

    Hemmis, J. M.; Souffront, M.; Stout, J. C.; Belmont, P.

    2014-12-01

    Excessive sedimentation in streams and rivers is one of the top water quality concerns in the U.S. and globally. While sediment is a natural constituent of stream ecosystems, excessive amounts cause high levels of turbidity which can reduce primary and secondary production, reduce nutrient retention, and have negative impacts on fish reproduction and physiology. Fine sediment particles adsorb pollutants such as mercury, metals, polychlorinated biphenyl compounds and bacteria. Key questions remain regarding the origin of excessive sediment as well as the transport pathways of sediment through the landscape and channel network of the 4,300 km2 Root River watershed in southeastern Minnesota. To answer these questions, we are developing a sediment budget to account for inputs, outputs, and changes in sediment storage reservoirs within the system. Because watershed sediment fluxes are determined as the sum of many small changes (erosion and deposition) across a vast area, multiple, redundant techniques are required to adequately constrain all parts of the sediment budget. Specifically, this budget utilizes four years of field research and surveys, an extensive set of sediment fingerprinting data, watershed-wide measurements of channel widening and meander migration, and watershed modeling, all evaluated and extrapolated in a geomorphically sensitive manner. Analyses of sediment deposition within channel cutoffs throughout the watershed help constrain sediment storage. These overlapping methods, reconciled within the hard constraint of direct measurements of water and sediment fluxes, improve the reliability of the budget. The sediment budget highlights important sources and sinks and identifies locations that are likely to be more, or less, sensitive to changes in land and water management to support watershed-wide prioritization of conservation and restoration actions.

  2. Multiple-stressor effects of sediment, phosphorus and nitrogen on stream macroinvertebrate communities.

    PubMed

    Davis, Stephen J; Ó hUallacháin, Daire; Mellander, Per-Erik; Kelly, Ann-Marie; Matthaei, Christoph D; Piggott, Jeremy J; Kelly-Quinn, Mary

    2018-05-10

    Multiple stressors affect stream ecosystems worldwide and their interactions are of particular concern, with gaps existing in understanding stressor impacts on stream communities. Addressing these knowledge gaps will aid in targeting and designing of appropriate mitigation measures. In this study, the agricultural stressors fine sediment (ambient, low, medium, high), phosphorus (ambient, enriched) and nitrogen (ambient, enriched) were manipulated simultaneously in 64 streamside mesocosms to determine their individual and combined effects on the macroinvertebrate community (benthos and drift). Stressor levels were chosen to reflect those typically observed in European agricultural streams. A 21-day colonisation period was followed by a 14-day manipulative period. Results indicate that added sediment had the most pervasive effects, significantly reducing total macroinvertebrate abundance, total EPT abundance and abundances of three common EPT taxa. The greatest effect was at high sediment cover (90%), with decreasing negative impacts at medium (50%) and low (30%) covers. Added sediment also led to higher drift propensities for nine of the twelve drift variables. The effects of nitrogen and phosphorus were relatively weak compared to sediment. Several complex and unpredictable 2-way or 3-way interactions among stressors were observed. While sediment addition generally reduced total abundance at high levels, this decrease was amplified by P enrichment at low sediment, whereas the opposite effect occurred at medium sediment and little effect at high sediment. These results have direct implications for water management as they highlight the importance of managing sediment inputs while also considering the complex interactions which can occur between sediment and nutrient stressors. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Fault structure, properties and activity of the Makran Accretionary Prism and implications for seismogenic potential

    NASA Astrophysics Data System (ADS)

    Smith, G. L.; McNeill, L. C.; Henstock, T.; Bull, J. M.

    2011-12-01

    The Makran subduction zone is the widest accretionary prism in the world (~400km), generated by convergence between the Arabian and Eurasian tectonic plates. It represents a global end-member, with a 7km thick incoming sediment section. Accretionary prisms have traditionally been thought to be aseismic due to the presence of unconsolidated sediment and elevated basal pore pressures. The seismogenic potential of the Makran subduction zone is unclear, despite a Mw 8.1 earthquake in 1945 that may have been located on the plate boundary beneath the prism. In this study, a series of imbricate landward dipping (seaward verging) thrust faults have been interpreted across the submarine prism (outer 70 km) using over 6000km of industry multichannel seismic data and bathymetric data. A strong BSR (bottom simulating reflector) is present throughout the prism (excluding the far east). An unreflective décollement is interpreted from the geometry of the prism thrusts. Two major sedimentary units are identified in the input section, the lower of which contains the extension of the unreflective décollement surface. Between 60%-100% of the input section is currently being accreted. The geometry of piggy-back basin stratigraphy shows that the majority of thrusts, including those over 50km from the trench, are recently active. Landward thrusts show evidence for reactivation after periods of quiescence. Negative polarity fault plane reflectors are common in the frontal thrusts and in the eastern prism, where they may be related to increased fault activity and fluid expulsion, and are rarer in older landward thrusts. Significant NE-SW trending basement structures (The Murray Ridge and Little Murray Ridge) on the Arabian plate intersect the deformation front and affect sediment input to the subduction zone. Prism taper and structure are apparently primarily controlled by sediment supply and the secondary influence of subducting basement ridges. The thick, likely distal, sediment section in the west produces a prism with a simple imbricate structure. As basement depth is reduced over the Little Murray Ridge, the accretionary prism structure (fault spacing and deformation front position) changes. In the east, proximity to the Murray Ridge and triple junction is expressed through a reduction in prism width and reduced fault activity. The resulting prism structure and morphology can ultimately be used to assess likely sediment properties and hence seismic potential at the plate boundary.

  4. Sediment sources and their contribution along northern coast of the South China Sea: Evidence from clay minerals of surface sediments

    NASA Astrophysics Data System (ADS)

    Liu, Jianguo; Yan, Wen; Chen, Zhong; Lu, Jun

    2012-09-01

    Clay minerals of surface sediment samples from nine bays/harbors along northern coast of the South China Sea (SCS) are used for sediment sources and contribution estimation in the study areas. Results reveal that sediments in the study bays/harbors seem to be a mixture of sediments from the Pearl, Hanjiang River and local islands/rivers, but their clay mineral assemblage is distinct from that of Luzon and Taiwan sediments, indicating that sediments are derived mainly from the neighboring sources through riverine input and partly from localized sediments. Due to input of local sediments in the northern SCS, sediments from both east of the Leizhou Peninsula (Area IV) and next to the Pearl River estuary (PRE, Area II) have high smectite percent. Affected by riverine input of the Pearl and Hanjiang Rivers, sediments in west of the PRE (Area III) and east of the PRE (Area I) have high illite (average 47%) and kaolinite (54%) percents, respectively. Sediment contributions of various major sources to the study areas are estimated as the following: (1) the Hanjiang River provide 95% and 84% sediments in Areas I and II, respectively, (2) the Pearl River supply 79% and 29% sediments in Areas III and IV, respectively and (3) local sediments contribute the rest and reach the maximum (˜71%) in Area IV.

  5. USE OF MACROINVERTEBRATE METRICS TO DIFFERENTIATE BETWEEN THE EFFECTS OF DECREASED CANOPY AND INCREASED EMBEDDEDNESS IN STREAMS IN DRAINING AGRICULTURAL CATCHMENTS

    EPA Science Inventory

    Reduced canopy as a result of lost riparian vegetation and increased substrate embeddedness as a result of greater inputs of the fine sediments are two environmental stressor gradients that often covary in streams draining agricultural catchments. An understanding of relationship...

  6. Organic matter in sediments of an acidic mining lake as assessed by lipid analysis. Part I: fatty acids.

    PubMed

    Poerschmann, Juergen; Koschorreck, Matthias; Górecki, Tadeusz

    2012-01-01

    Fatty acid (FA) patterns of sediments collected from the bottom of an acidic mine pit lake (AML) at different depths (surface sediment: 0 to 1cm; deep sediment: 4 to 5 cm) were studied to characterize microbial communities and the sources of sedimentary organic matter (SOM). Studies were performed on the molecular level utilizing source-specific, diagnostic FA biomarkers. The biomarker-based approach has been used widely in marine sediment studies, but has not been applied for sediments from AMLs so far. Combined FA concentrations in the surface sediment were higher compared to those in the deep sediment (497 vs. 127 μg g(-1)d.w., respectively). This was related to deposition of autochthonous biomass and higher terrestrial plants onto the surface sediment, as well as--to lesser extent--with higher bacterial activity on the sediment-water interface. The FA distribution in both sediments was characterized by a strong even-over-odd preference and was bimodal in nature: there was a cluster at nC(14)-nC(18) characteristic of chiefly autochthonous (algal and bacterial) SOM production, and another cluster at nC(22-28) related to input from higher plants. The FA distribution in the surface sediment pointed to higher terrestrial input compared to autochthonous contribution to SOM (67%:33%) as an estimate. Fingerprinting of viable bacteria was accomplished through signature FA markers including branched C(15) and C(17) surrogates, cyclopropanoic acids, 3-hydroxy (OH) acids and monounsaturated surrogates with unusual double bond localization. The abundance of Gram-negative bacteria was higher in the surface sediment as evidenced by total diagnostic 3-OH-fatty acids (37 μg g(-1) versus 25 μg g(-1)). Potential source taxa in both sediment layers included acidophilic iron- and sulfur-oxidizing bacteria including Acidithiobacillus ferrooxidans. High abundances of terminally branched C(15) and C(17) surrogates in both sediments pointed to sulfate- and iron-reducing bacteria. Signature FAs characteristic of methanotrophs were virtually lacking in both sediments. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Modeling bed load transport and step-pool morphology with a reduced-complexity approach

    NASA Astrophysics Data System (ADS)

    Saletti, Matteo; Molnar, Peter; Hassan, Marwan A.; Burlando, Paolo

    2016-04-01

    Steep mountain channels are complex fluvial systems, where classical methods developed for lowland streams fail to capture the dynamics of sediment transport and bed morphology. Estimations of sediment transport based on average conditions have more than one order of magnitude of uncertainty because of the wide grain-size distribution of the bed material, the small relative submergence of coarse grains, the episodic character of sediment supply, and the complex boundary conditions. Most notably, bed load transport is modulated by the structure of the bed, where grains are imbricated in steps and similar bedforms and, therefore, they are much more stable then predicted. In this work we propose a new model based on a reduced-complexity (RC) approach focused on the reproduction of the step-pool morphology. In our 2-D cellular-automaton model entrainment, transport and deposition of particles are considered via intuitive rules based on physical principles. A parsimonious set of parameters allows the control of the behavior of the system, and the basic processes can be considered in a deterministic or stochastic way. The probability of entrainment of grains (and, as a consequence, particle travel distances and resting times) is a function of flow conditions and bed topography. Sediment input is fed at the upper boundary of the channel at a constant or variable rate. Our model yields realistic results in terms of longitudinal bed profiles and sediment transport trends. Phases of aggradation and degradation can be observed in the channel even under a constant input and the memory of the morphology can be quantified with long-range persistence indicators. Sediment yield at the channel outlet shows intermittency as observed in natural streams. Steps are self-formed in the channel and their stability is tested against the model parameters. Our results show the potential of RC models as complementary tools to more sophisticated models. They provide a realistic description of complex morphological systems and help to better identify the key physical principles that rule their dynamics.

  8. Sewage effluent clean-up reduces phosphorus but not phytoplankton in lowland chalk stream (River Kennet, UK) impacted by water mixing from adjacent canal.

    PubMed

    Neal, Colin; Martin, Ellie; Neal, Margaret; Hallett, John; Wickham, Heather D; Harman, Sarah A; Armstrong, Linda K; Bowes, Mike J; Wade, Andrew J; Keay, David

    2010-10-15

    Information is provided on phosphorus in the River Kennet and the adjacent Kennet and Avon Canal in southern England to assess their interactions and the changes following phosphorus reductions in sewage treatment work (STW) effluent inputs. A step reduction in soluble reactive phosphorus (SRP) concentration within the effluent (5 to 13 fold) was observed from several STWs discharging to the river in the mid-2000s. This translated to over halving of SRP concentrations within the lower Kennet. Lower Kennet SRP concentrations change from being highest under base-flow to highest under storm-flow conditions. This represented a major shift from direct effluent inputs to a within-catchment source dominated system characteristic of the upper part to the catchment. Average SRP concentrations in the lower Kennet reduced over time towards the target for good water quality. Critically, there was no corresponding reduction in chlorophyll-a concentration, the waters remaining eutrophic when set against standards for lakes. Following the up gradient input of the main water and SRP source (Wilton Water), SRP concentrations in the canal reduced down gradient to below detection limits at times near its junction with the Kennet downstream. However, chlorophyll concentrations in the canal were in an order of magnitude higher than in the river. This probably resulted from long water residence times and higher temperatures promoting progressive algal and suspended sediment generations that consumed SRP. The canal acted as a point source for sediment, algae and total phosphorus to the river especially during the summer months when boat traffic disturbed the canal's bottom sediments and the locks were being regularly opened. The short-term dynamics of this transfer was complex. For the canal and the supply source at Wilton Water, conditions remained hypertrophic when set against standards for lakes even when SRP concentrations were extremely low. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Paleoreconstruction of organic carbon inputs to an oxbow lake in the Mississippi River watershed: Effects of dam construction and land use change on regional inputs

    NASA Astrophysics Data System (ADS)

    Bianchi, Thomas S.; Galy, Valier; Rosenheim, Brad E.; Shields, Michael; Cui, Xingqian; Van Metre, Peter

    2015-10-01

    We use a dated sediment core from Lake Whittington (USA) in the lower Mississippi River to reconstruct linkages in the carbon cycling and fluvial sediment dynamics over the past 80 years. Organic carbon (OC) sources were characterized using bulk (δ13C, ramped pyrolysis-oxidation (PyrOx) 14C, δ15N, and TN:OC ratios) and compound-specific (lignin phenols and fatty acids, including δ13C and 14C of the fatty acids) analyses. Damming of the Missouri River in the 1950s, other hydrological modifications to the river, and soil conservation measures resulted in reduced net OC export, in spite of increasing OC concentrations. Decreasing δ13C values coincided with increases in δ15N, TN:OC ratios, long-chain fatty acids, and lignin-phenol concentrations, suggesting increased inputs of soil-derived OC dominated by C3 vegetation, mainly resulting from changes in farming practices and crop distribution. However, ramped PyrOx 14C showed no discernible differences downcore in thermochemical stability, indicating a limited impact on soil OC turnover.

  10. Sediment filtration can reduce the N load of the waste water discharge - a full-scale lake experiment

    NASA Astrophysics Data System (ADS)

    Aalto, Sanni L.; Saarenheimo, Jatta; Karvinen, Anu; Rissanen, Antti J.; Ropponen, Janne; Juntunen, Janne; Tiirola, Marja

    2016-04-01

    European commission has obliged Baltic states to reduce nitrate load, which requires high investments on the nitrate removal processes and may increase emissions of greenhouse gases, e.g. N2O, in the waste water treatment plants. We used ecosystem-scale experimental approach to test a novel sediment filtration method for economical waste water N removal in Lake Keurusselkä, Finland between 2014 and 2015. By spatially optimizing the waste water discharge, the contact area and time of nitrified waste water with the reducing microbes of the sediment was increased. This was expected to enhance microbial-driven N transformation and to alter microbial community composition. We utilized 15N isotope pairing technique to follow changes in the actual and potential denitrification rates, nitrous oxide formation and dissimilatory nitrate reduction to ammonium (DNRA) in the lake sediments receiving nitrate-rich waste water input and in the control site. In addition, we investigated the connections between observed process rates and microbial community composition and functioning by using next generation sequencing and quantitative PCR. Furthermore, we estimated the effect of sediment filtration method on waste water contact time with sediment using the 3D hydrodynamic model. We sampled one year before the full-scale experiment and observed strong seasonal patterns in the process rates, which reflects the seasonal variation in the temperature-related mixing patterns of the waste water within the lake. During the experiment, we found that spatial optimization enhanced both actual and potential denitrification rates of the sediment. Furthermore, it did not significantly promote N2O emissions, or N retention through DNRA. Overall, our results indicate that sediment filtration can be utilized as a supplemental or even alternative method for the waste water N removal.

  11. Sedimentation, sediment quality, and upstream channel stability, John Redmond Reservoir, east-central Kansas, 1964-2009

    USGS Publications Warehouse

    Juracek, Kyle E.

    2010-01-01

    A combination of available bathymetric-survey information, bottom-sediment coring, and historical streamgage information was used to investigate sedimentation, sediment quality, and upstream channel stability for John Redmond Reservoir, east-central Kansas. Ongoing sedimentation is reducing the ability of the reservoir to serve several purposes including flood control, water supply, and recreation. The total estimated volume and mass of bottom sediment deposited between 1964 and 2009 in the conservation pool of the reservoir was 1.46 billion cubic feet and 55.8 billion pounds, respectively. The estimated sediment volume occupied about 41 percent of the conservation-pool, water-storage capacity of the reservoir. Water-storage capacity in the conservation pool has been lost to sedimentation at a rate of about 1 percent annually. Mean annual net sediment deposition since 1964 in the conservation pool of the reservoir was estimated to be 1.24 billion pounds per year. Mean annual net sediment yield from the reservoir basin was estimated to be 411,000 pounds per square mile per year Information from sediment cores shows that throughout the history of John Redmond Reservoir, total nitrogen concentrations in the deposited sediment generally were uniform indicating consistent nitrogen inputs to the reservoir. Total phosphorus concentrations in the deposited sediment were more variable than total nitrogen indicating the possibility of changing phosphorus inputs to the reservoir. As the principal limiting factor for primary production in most freshwater environments, phosphorus is of particular importance because increased inputs can contribute to accelerated reservoir eutrophication and the production of algal toxins and taste-and-odor compounds. The mean annual net loads of total nitrogen and total phosphorus deposited in the bottom sediment of the reservoir were estimated to be 2,350,000 pounds per year and 1,030,000 pounds per year, respectively. The estimated mean annual net yields of total nitrogen and total phosphorus from the reservoir basin were 779 pounds per square mile per year and 342 pounds per square mile per year, respectively. Trace element concentrations in the bottom sediment of John Redmond Reservoir generally were uniform over time. As is typical for eastern Kansas reservoirs, arsenic, chromium, and nickel concentrations typically exceeded the threshold-effects guidelines, which represent the concentrations above which toxic biological effects occasionally occur. Trace element concentrations did not exceed the probable-effects guidelines (available for eight trace elements), which represent the concentrations above which toxic biological effects usually or frequently occur. Organochlorine compounds either were not detected or were detected at concentrations that were less than the threshold-effects guidelines. Stream channel banks, compared to channel beds, likely are a more important source of sediment to John Redmond Reservoir from the upstream basin. Other sediment sources include surface-soil erosion in the basin and shoreline erosion in the reservoir.

  12. Arsenic and mercury concentrations in major landscape components of an intensively cultivated watershed.

    PubMed

    Cooper, C M; Gillespie, W B

    2001-01-01

    To provide an understanding of arsenic (As) and mercury (Hg) concentrations in soil, sediment, water, and fish tissues, samples were collected from a Mississippi River alluvial floodplain located in northwest Mississippi. As concentrations increased approximately an order of magnitude from water (5.12 micrograms/l) to fish tissues (36.99 micrograms/kg) and an additional two orders of magnitude in soils, lake sediments, and wetland sediments (5728, 5614, and 6746 micrograms/kg), respectively. Average Hg concentrations in water, soils, lake sediments, and fish were 2.16 micrograms/l, 55.1, 14.5 and 125 micrograms/kg, respectively. As and Hg concentrations were within published ranges for uncontaminated soil, water, and sediments. As concentrations represented a low risk. Hg concentrations were also low but showed a greater tendency to concentrate in fish tissue. The dominant mode of entry of these materials into aquatic systems is through storm-generated runoff. Since both metals accompany sediments, agricultural conservation practices such as reduced tillage, buffer riparian strips, and bordering sediment ponds or drainage wetlands will minimize watershed input to aquatic systems.

  13. Depth Distribution and Assembly of Sulfate-Reducing Microbial Communities in Marine Sediments of Aarhus Bay

    PubMed Central

    Jochum, Lara M.; Chen, Xihan; Lever, Mark A.; Loy, Alexander; Jørgensen, Bo Barker; Schramm, Andreas

    2017-01-01

    ABSTRACT Most sulfate-reducing microorganisms (SRMs) present in subsurface marine sediments belong to uncultured groups only distantly related to known SRMs, and it remains unclear how changing geochemical zones and sediment depth influence their community structure. We mapped the community composition and abundance of SRMs by amplicon sequencing and quantifying the dsrB gene, which encodes dissimilatory sulfite reductase subunit beta, in sediment samples covering different vertical geochemical zones ranging from the surface sediment to the deep sulfate-depleted subsurface at four locations in Aarhus Bay, Denmark. SRMs were present in all geochemical zones, including sulfate-depleted methanogenic sediment. The biggest shift in SRM community composition and abundance occurred across the transition from bioturbated surface sediments to nonbioturbated sediments below, where redox fluctuations and the input of fresh organic matter due to macrofaunal activity are absent. SRM abundance correlated with sulfate reduction rates determined for the same sediments. Sulfate availability showed a weaker correlation with SRM abundances and no significant correlation with the composition of the SRM community. The overall SRM species diversity decreased with depth, yet we identified a subset of highly abundant community members that persists across all vertical geochemical zones of all stations. We conclude that subsurface SRM communities assemble by the persistence of members of the surface community and that the transition from the bioturbated surface sediment to the unmixed sediment below is a main site of assembly of the subsurface SRM community. IMPORTANCE Sulfate-reducing microorganisms (SRMs) are key players in the marine carbon and sulfur cycles, especially in coastal sediments, yet little is understood about the environmental factors controlling their depth distribution. Our results suggest that macrofaunal activity is a key driver of SRM abundance and community structure in marine sediments and that a small subset of SRM species of high relative abundance in the subsurface SRM community persists from the sulfate-rich surface sediment to sulfate-depleted methanogenic subsurface sediment. More generally, we conclude that SRM communities inhabiting the subsurface seabed assemble by the selective survival of members of the surface community. PMID:28939599

  14. Suspended sediments of the modern Amazon and Orinoco rivers

    USGS Publications Warehouse

    Meade, R.H.

    1994-01-01

    The Amazon and Orinoco Rivers are massive transcontinental conveyance systems for suspended sediment. They derive about 90% of their sediment from the Andes that support their western headwaters, transport it for thousands of kilometers across the breadth of the continent and deposit it in the coastal zones of the Atlantic. At their points of maximum suspended-sediment discharge, the Amazon transports an average of 1100-1300 ?? 106 tons per year and the Orinoco transports about 150 ?? 106 tons per year. Relations of sediment discharge to water discharge are complicated by unusual patterns of seasonal storage and remobilization, increased storage and reduced transport of sediment in the middle Orinoco during periods of peak water discharge, and storage of suspended sediment in the lower Amazon during rising discharge and resuspension during falling discharge. Spatial distributions of suspended sediment in cross-sections of both rivers are typically heterogeneous, not only in the vertical sense but also in the lateral. The cross-channel mixing of tributary inputs into the mainstem waters is a slow process that requires several hundred kilometers of downriver transport to complete. Considerable fine-grained sediment is exchanged between rivers and floodplains by the combination of overbank deposition and bank erosion. ?? 1994.

  15. Early glaciation already during the Early Miocene in the Amundsen Sea, Southern Pacific: Indications from the distribution of sedimentary sequences

    NASA Astrophysics Data System (ADS)

    Uenzelmann-Neben, Gabriele; Gohl, Karsten

    2014-09-01

    The distribution and internal architecture of seismostratigraphic sequences observed on the Antarctic continental slope and rise are results of sediment transport and deposition by bottom currents and ice sheets. Analysis of seismic reflection data allows to reconstruct sediment input and sediment transport patterns and to infer past changes in climate and oceanography. We observe four seismostratigraphic units which show distinct differences in location and shape of their depocentres and which accumulated at variable sedimentation rates. We used an age-depth model based on DSDP Leg 35 Site 324 for the Plio/Pleistocene and a correlation with seismic reflection characteristics from the Ross and Bellingshausen Seas, which unfortunately has large uncertainties. For the period before 21 Ma, we interpret low energy input of detritus via a palaeo-delta originating in an area of the Amundsen Sea shelf, where a palaeo-ice stream trough (Pine Island Trough East, PITE) is located today, and deposition of this material on the continental rise under sea ice coverage. For the period 21-14.1 Ma we postulate glacial erosion for the hinterland of this part of West Antarctica, which resulted in a larger depocentre and an increase in mass transport deposits. Warming during the Mid Miocene Climatic Optimum resulted in a polythermal ice sheet and led to a higher sediment supply along a broad front but with a focus via two palaeo-ice stream troughs, PITE and Abbot Trough (AT). Most of the glaciogenic debris was transported onto the eastern Amundsen Sea rise where it was shaped into levee-drifts by a re-circulating bottom current. A reduced sediment accumulation in the deep-sea subsequent to the onset of climatic cooling after 14 Ma indicates a reduced sediment supply probably in response to a colder and drier ice sheet. A dynamic ice sheet since 4 Ma delivered material offshore mainly via AT and Pine Island Trough West (PITW). Interaction of this glaciogenic detritus with a west-setting bottom current resulted in the continued formation of levee-drifts in the eastern and central Amundsen Sea.

  16. Pools, channel form, and sediment storage in wood-restored streams: Potential effects on downstream reservoirs

    NASA Astrophysics Data System (ADS)

    Elosegi, Arturo; Díez, José Ramón; Flores, Lorea; Molinero, Jon

    2017-02-01

    Large wood (LW, or pieces of dead wood longer than 1 m and thicker than 10 cm in diameter) is a key element in forested streams, but its abundance has decreased worldwide as a result of snagging and clearing of riparian forests. Therefore, many restoration projects introduce LW into stream channels to enhance geomorphology, biotic communities, and ecosystem functioning. Because LW enhances the retention of organic matter and sediments, its restoration can reduce siltation in receiving reservoirs, although so far little information on this subject is available. We studied the effects of restoring the natural loading of LW in four streams in the Aiako Harria Natural Park (the Basque Country, Spain) in pool abundance, channel form, and storage of organic matter and sediments. In all reaches log jams induced the formation of new geomorphic features and changes in physical habitat, especially an increase in the number and size of pools and in the formation of gravel bars and organic deposits. The storage of organic matter increased 5- to 88-fold and streambed level rose 7 ± 4 to 21 ± 4 cm on average, resulting in the storage of 35.2 ± 19.7 to 711 ± 375 m3 (733-1400 m3 ha- 1 y- 1) of sediment per reach. Extrapolation of these results to the entire drainage basin suggests that basinwide restoration of LW loading would enhance the retention potential of stream channels by 66,817 ± 27,804 m3 (1075 m3 ha- 1 y- 1) of sediment and by 361 t (5.32 T ha- 1 y- 1) of organic matter, which represents 60% of the estimated annual inputs of sediments to the downstream Añarbe Reservoir and almost twice as much as the annual input of organic matter to the entire river network. Therefore, basinwide restoration of LW loading is a potentially important tool to manage catchments that feed reservoirs, where retention of sediments and organic matter can be considered important ecosystem services as they reduce reservoir siltation.

  17. Interactions of Cd and Cu in anaerobic estuarine sediments. 1: Partitioning in geochemical fractions of sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rule, J.H.; Alden, R.W. III

    1996-04-01

    Partitioning of Cd and Cu between geochemical fractions of an anaerobic estuarine sediment was determined after equilibrating fine-sandy sediment with different combinations of added Cd (0, 2.5, 5 mg/kg) and Cu(0, 12.5, 25 mg/kg). Sediments were placed in aquaria with 20 ppt seawater where bioassay test organisms were exposed for 14 d. At the start and conclusion of the experimental period, sediments were sequentially extracted to determine the elemental content of the exchangeable (EP), easily reducible (ERP), organic- sulfide (OSP), moderately reducible (MRP), and acid extractable (AEP) phases. Partitioning of the metals in both the native and treated sediments was,more » for Cd: OSP {much_gt} ERP > AEP > EP (MRP was below detection) and for Cu: OSP {much_gt} AEP > ERP > MRP > EP. Cadmium extracted in all phases and Cu in the EP, RP, and OSP were proportional to the respective treatments. The EP-Cd, ERP-Cd, and OSP-Cd were affected by the Cu treatment and significant interactions occurred between Cd and Cu for the EP-Cd, ERP-Cd, OSP-Cd, EP-Cu, and ERP-Cu. Increasing levels of applied Cd and Cu resulted in greater amounts of EP-Cd and ERP-Cd, fractions that are the most bioavailable and the most readily available for desorption into the water column. A significant conclusion is that the input of nontoxic metals may affect the geochemical phase distribution, potential bioavailability, and toxicity of native sediment metals.« less

  18. The natural sediment regime in rivers: broadening the foundation for ecosystem management

    USGS Publications Warehouse

    Wohl, Ellen E.; Bledsoe, Brian P.; Jacobson, Robert B.; Poff, N. LeRoy; Rathburn, Sara L.; Walters, David M.; Wilcox, Andrew C.

    2015-01-01

    Water and sediment inputs are fundamental drivers of river ecosystems, but river management tends to emphasize flow regime at the expense of sediment regime. In an effort to frame a more inclusive paradigm for river management, we discuss sediment inputs, transport, and storage within river systems; interactions among water, sediment, and valley context; and the need to broaden the natural flow regime concept. Explicitly incorporating sediment is challenging, because sediment is supplied, transported, and stored by nonlinear and episodic processes operating at different temporal and spatial scales than water and because sediment regimes have been highly altered by humans. Nevertheless, managing for a desired balance between sediment supply and transport capacity is not only tractable, given current geomorphic process knowledge, but also essential because of the importance of sediment regimes to aquatic and riparian ecosystems, the physical template of which depends on sediment-driven river structure and function.

  19. The geochemistry of redox sensitive trace metals in sediments

    NASA Astrophysics Data System (ADS)

    Morford, Jennifer L.; Emerson, Steven

    1999-06-01

    We analyzed the redox sensitive elements V, Mo, U, Re and Cd in surface sediments from the Northwest African margin, the U.S. Northwest margin and the Arabian Sea to determine their response under a range of redox conditions. Where oxygen penetrates 1 cm or less into the sediments, Mo and V diffuse to the overlying water as Mn is reduced and remobilized. Authigenic enrichments of U, Re and Cd are evident under these redox conditions. With the onset of sulfate reduction, all of the metals accumulate authigenically with Re being by far the most enriched. General trends in authigenic metal accumulation are described by calculating authigenic fluxes for the 3 main redox regimes: oxic, reducing where oxygen penetrates ≤1 cm, and anoxic conditions. Using a simple diagenesis model and global estimates of organic carbon rain rate and bottom water oxygen concentrations, we calculate the area of sediments below 1000 m water depth in which oxygen penetration is ≤1 cm to be 4% of the ocean floor. We conclude that sediments where oxygen penetrates ≤1 cm release Mn, V and Mo to seawater at rates of 140%-260%, 60%-150% and 5%-10% of their respective riverine fluxes, using the authigenic metal concentrations and accumulation rates from this work and other literature. These sediments are sinks for Re, Cd and U, with burial fluxes of 70%-140%, 30%-80% and 20%-40%, respectively, of their dissolved riverine inputs. We modeled the sensitivity of the response of seawater Re, Cd and V concentrations to changes in the area of reducing sediments where oxygen penetrates ≤1 cm. Our analysis suggests a negligible change in seawater Re concentration, whereas seawater concentrations of Cd and V could have decreased and increased, respectively, by 5%-10% over 20 kyr if the area of reducing sediments increased by a factor of 2 and by 10%-20% if the area increased by a factor of 3. The concentration variations for a factor of 2 increase in the area of reducing sediments are at about the level of uncertainty of Cd/Ca and V/Ca ratios observed in foraminifera shells over the last 40 kyr. This implies that the area of reducing sediments in the ocean deeper than 1000 m (4%) has not been greater than twice the present value in the recent past.

  20. Soil aggregate stability and rainfall-induced sediment transport on field plots as affected by amendment with organic matter inputs

    NASA Astrophysics Data System (ADS)

    Shi, Pu; Arter, Christian; Liu, Xingyu; Keller, Martin; Schulin, Rainer

    2017-04-01

    Aggregate stability is an important factor in soil resistance against erosion, and, by influencing the extent of sediment transport associated with surface runoff, it is thus also one of the key factors which determine on- and off-site effects of water erosion. As it strongly depends on soil organic matter, many studies have explored how aggregate stability can be improved by organic matter inputs into the soil. However, the focus of these studies has been on the relationship between aggregate stability and soil organic matter dynamics. How the effects of organic matter inputs on aggregate stability translate into soil erodibility under rainfall impacts has received much less attention. In this study, we performed field plot experiments to examine how organic matter inputs affect aggregate breakdown and surface sediment transport under field conditions in artificial rainfall events. Three pairs of plots were prepared by adding a mixture of grass and wheat straw to one of plots in each pair but not to the other, while all plots were treated in the same way otherwise. The rainfall events were applied some weeks later so that the applied organic residues had sufficient time for decomposition and incorporation into the soil. Surface runoff rate and sediment concentration showed substantial differences between the treatments with and without organic matter inputs. The plots with organic inputs had coarser and more stable aggregates and a rougher surface than the control plots without organic inputs, resulting in a higher infiltration rate and lower transport capacity of the surface runoff. Consequently, sediments exported from the amended plots were less concentrated but more enriched in suspended particles (<20 µm) than from the un-amended plots, indicating a more size-selective sediment transport. In contrast to the amended plots, there was an increase in the coarse particle fraction (> 250 µm) in the runoff from the plots with no organic matter inputs towards the end of the rainfall events due to emerging bed-load transport. The results show that a single application of organic matter can already cause a large difference in aggregate breakdown, surface sealing, and lateral sediment-associated matter transfer under rainfall impact. Furthermore, we will present terrestrial laser scanning data showing the treatment effects on soil surface structure, as well as data on carbon, phosphorus and heavy metal export associated with the translocation of the sediments.

  1. To fear or to feed: the effects of turbidity on perception of risk by a marine fish.

    PubMed

    Leahy, Susannah M; McCormick, Mark I; Mitchell, Matthew D; Ferrari, Maud C O

    2011-12-23

    Coral reefs are currently experiencing a number of worsening anthropogenic stressors, with nearshore reefs suffering from increasing sedimentation because of growing human populations and development in coastal regions. In habitats where vision and olfaction serve as the primary sources of information, reduced visual input from suspended sediment may lead to significant alterations in prey fish behaviour. Here, we test whether prey compensate for reduced visual information by increasing their antipredator responses to chemically mediated risk cues in turbid conditions. Experiments with the spiny damselfish, Acanthochromis polyacanthus, found that baseline activity levels were reduced by 23 per cent in high turbidity conditions relative to low turbidity conditions. Furthermore, risk cues elicited strong antipredator responses at all turbidity levels; the strongest antipredator responses were observed in high turbidity conditions, with fish reducing their foraging by almost 40 per cent, as compared with 17 per cent for fish in clear conditions. This provides unambiguous evidence of sensory compensation in a predation context for a tropical marine fish, and suggests that prey fish may be able to behaviourally offset some of the fitness reductions resulting from anthropogenic sedimentation of their habitats.

  2. To fear or to feed: the effects of turbidity on perception of risk by a marine fish

    PubMed Central

    Leahy, Susannah M.; McCormick, Mark I.; Mitchell, Matthew D.; Ferrari, Maud C. O.

    2011-01-01

    Coral reefs are currently experiencing a number of worsening anthropogenic stressors, with nearshore reefs suffering from increasing sedimentation because of growing human populations and development in coastal regions. In habitats where vision and olfaction serve as the primary sources of information, reduced visual input from suspended sediment may lead to significant alterations in prey fish behaviour. Here, we test whether prey compensate for reduced visual information by increasing their antipredator responses to chemically mediated risk cues in turbid conditions. Experiments with the spiny damselfish, Acanthochromis polyacanthus, found that baseline activity levels were reduced by 23 per cent in high turbidity conditions relative to low turbidity conditions. Furthermore, risk cues elicited strong antipredator responses at all turbidity levels; the strongest antipredator responses were observed in high turbidity conditions, with fish reducing their foraging by almost 40 per cent, as compared with 17 per cent for fish in clear conditions. This provides unambiguous evidence of sensory compensation in a predation context for a tropical marine fish, and suggests that prey fish may be able to behaviourally offset some of the fitness reductions resulting from anthropogenic sedimentation of their habitats. PMID:21849308

  3. Temporally intensive study of trace metals in sediments and bivalves from a large river-estuarine system: Suisun Bay/delta in San Francisco Bay

    USGS Publications Warehouse

    Luoma, S.N.; Dagovitz, R.; Axtmann, E.

    1990-01-01

    Distributions in time and space of Ag, Cd, Cr, Cu, Pb and Zn were determined in fine-grained sediments and in the filter-feeding bivalve Corbicula sp. of Suisun Bay/delta at the mouth of the Sacramento and San Joaquin Rivers in North San Francisco Bay. Samples were collected from seven stations at near-monthly intervals for 3 years. Aggregated data showed little chronic contamination with Ag, Zn and Pb in the river and estuary. Substantial chronic contamination with Cd, Cu and Cr in Suisun Bay/delta occurred, especially in Corbicula, compared with the lower San Joaquin River. Salinity appeared to have secondary effects, if any, on metal concentrations in sediments and metal bioavailability to bivalves. Space/time distributions of Cr were controlled by releases from a local industry. Analyses of time series suggested substantial inputs of Cu might originate from the Sacramento River during high inflows to the Bay, and Cd contamination had both riverine and local sources. Concentrations of metals in sediments correlated with concentrations in Corbicula only in annually or 3-year aggregated data. Condition index for Corbicula was reduced where metal contamination was most severe. The biological availability of Cu and Cd to benthos was greater in Suisun Bay than in many other estuaries. Thus small inputs into this system could have greater impacts than might occur elsewhere; and organisms were generally more sensitive indicators of enrichment than sediments in this system.

  4. Testing a two-scale focused conservation strategy for reducing phosphorus and sediment loads from agricultural watersheds

    USGS Publications Warehouse

    Carvin, Rebecca; Good, Laura W.; Fitzpatrick, Faith A.; Diehl, Curt; Songer, Katherine; Meyer, Kimberly J.; Panuska, John C.; Richter, Steve; Whalley, Kyle

    2018-01-01

    This study tested a focused strategy for reducing phosphorus (P) and sediment loads in agricultural streams. The strategy involved selecting small watersheds identified as likely to respond relatively quickly, and then focusing conservation practices on high-contributing fields within those watersheds. Two 5,000 ha (12,360 ac) watersheds in the Driftless Area of south central Wisconsin, previously ranked in the top 6% of similarly sized Wisconsin watersheds for expected responsiveness to conservation efforts to reduce high P and sediment loads, were chosen for the study. The stream outlets from both watersheds were monitored from October of 2006 through September of 2016 for streamflow and concentrations of sediment, total P, and, beginning in October of 2009, total dissolved P. Fields and pastures having the highest potential P delivery to the streams in each watershed were identified using the Wisconsin P Index (Good et al. 2012). After three years of baseline monitoring (2006 to 2009), farmers implemented both field- and farm-based conservation practices in one watershed (treatment) as a means to reduce sediment and P inputs to the stream from the highest contributing areas, whereas there were no out-of-the-ordinary conservation efforts in the second watershed (control). Implementation occurred primarily in 2011 and 2012. In the four years following implementation of conservation practices (2013 through 2016), there was a statistically significant reduction in storm-event suspended sediment loads in the treatment watershed compared to the control watershed when the ground was not frozen (p = 0.047). While there was an apparent reduction in year-round suspended sediment event loads, it was not statistically significant at the 95% confidence level (p = 0.15). Total P loads were significantly reduced for runoff events (p < 0.01) with a median reduction of 50%. Total P and total dissolved P concentrations for low-flow conditions were also significantly reduced (p < 0.01) compared to the control watershed. This study demonstrated that a strategy that first identifies watersheds likely to respond to conservation efforts and then focuses implementation on relatively high-contributing fields within those watersheds can be successful in reducing stream P concentrations and loads.

  5. Quantifying and identifying the sources of fine sediment input in a typical Mongolian river basin, the Kharaa River case study

    NASA Astrophysics Data System (ADS)

    Theuring, Phillip

    2013-04-01

    Mongolia is facing a tremendous change of land-use intensification due to expansions in the agricultural sector, an increase of cattle and livestock and a growth of urban settlements by migration of the rural population to the cities. With most of its area located in a semiarid to arid environment, Mongolia is vulnerable to climatic changes that are expected to lead to higher temperatures and increased evapotranspiration. It is expected that this may lead to unfavorable changes in surface water quality caused by increased nutrients and sediment bound pollutants emissions. Increased fine sediment load is associated with nutrient, heavy metal and pollutant input and therefore affects water quality. Previous studies using radionuclide fallout isotope sediment source fingerprinting investigations identified riverbank erosion as the main source of suspended sediment in the Kharaa River. Erosion susceptibility calculations in combination with suspended sediment observations showed strong seasonal and annual variabilities of sediment input and in-stream transport, and a strong connection of erosional behaviour with land-use.The objective of this study is to quantify the current water quality threats by fine sediment inputs in the 15,000 km2 Kharaa River basin in Northern Mongolia by delineating the sources of the fine sediments and estimating the sediment budget.To identify the spatial distribution of sediment sources within the catchment, more than 1000 samples from the river confluences at the outlet of each sub basin into the main tributary were collected during 5 intensive grab sediment sampling campaigns in 2009-11. The fine sediment fraction (<10μm) has been analysed using geochemical tracer techniques for spatial source identification, based on major elements (e.g. Si, Al, Mg, Fe, Na, K, P) and trace elements (e.g. Ba, Pb, Sr, Zn). The contribution of suspended sediment of each sub basin in the main tributary has been evaluated with help of a mixing model. To asses sediment sources the RUSLE based sediment budget model (SedNet) was employed to estimate surface erosion and sediment budget. The spatial origin of the fine sediment in the catchment could be identified by geochemical fingerprinting techniques. This shows that only some subcatchments contribute considerably to the fine sediment load, especially areas with high grazing intensity and degraded riparian vegetation. The estimated average soil loss in the catchment is 0.2 t×ha-1•a-1. The model results reveal a strong influence of the landuse in the catchment on surface erosion and fine sediment input, which will increase with the intensification of agriculture in the catchment.

  6. Can we document if regulation and Best Available Techniques (BAT) have any positive impact on the marine environment? A case based on a steel mill in Greece.

    PubMed

    Panagiotoulias, I; Botsou, F; Kaberi, H; Karageorgis, A P; Scoullos, M

    2017-10-31

    In order to document the impact of Best Available Techniques (BAT) and implementation of regulation on the improvement of the coastal marine environment state, we examined the case of a representative steel mill located at the Gulf of Elefsis (Greece). The evaluation of metal pollution was based on the analysis of major and trace elements, organic carbon, magnetic properties, and sediment accumulation rates, in sediment cores obtained from the vicinity of the plant. The analytical data are discussed in relation to steel production, changes of production routes, and adoption of BAT introduced in order to fulfill EU and national legislation. The results show that the input of pollutants to sediments and the degree of contamination were reduced by approximately 40-70% in the decade 2003-2015 in comparison to the periods of high discharges (1963-2002), whereas the toxicity risks from "high-to-extremely high" were reduced to "medium-to-high."

  7. Arsenic in sediments, groundwater, and streamwater of a glauconitic Coastal Plain terrain, New Jersey, USA-Chemical " fingerprints" for geogenic and anthropogenic sources

    USGS Publications Warehouse

    Barringer, J.L.; Reilly, P.A.; Eberl, D.D.; Blum, A.E.; Bonin, J.L.; Rosman, R.; Hirst, B.; Alebus, M.; Cenno, K.; Gorska, M.

    2011-01-01

    Glauconite-bearing deposits are found worldwide, but As levels have been determined for relatively few. The As content of glauconites in sediments of the Inner Coastal Plain of New Jersey can exceed 100mg/kg, and total As concentrations (up to 5.95??g/L) found historically and recently in streamwaters exceed the State standard. In a major watershed of the Inner Coastal Plain, chemical " fingerprints" were developed for streambed sediments and groundwater to identify contributions of As to the watershed from geologic and anthropogenic sources. The fingerprint for streambed sediments, which included Be, Cr, Fe and V, indicated that As was predominantly of geologic origin. High concentrations of dissolved organic C, nutrients (and Cl-) in shallow groundwater indicated anthropogenic inputs that provided an environment where microbial activity released As from minerals to groundwater discharging to the stream. Particulates in streamwater during high flow constituted most of the As load; the chemical patterns for these particulates resembled the geologic fingerprint of the streambed sediments. The As/Cr ratio of these suspended particles likely indicates they derived not only from runoff, but from groundwater inputs, because As contributed by groundwater is sequestered on streambed sediments. Agricultural inputs of As were not clearly identified, although chemical characteristics of some sediments indicated vehicle-related inputs of metals. Sediment sampling during dry and wet years showed that, under differing hydrologic conditions, local anthropogenic fingerprints could be obscured but the geologic fingerprint, indicating glauconitic sediments as an As source, was robust. ?? 2011.

  8. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA

    USGS Publications Warehouse

    Besser, J.M.; Brumbaugh, W.G.; Ivey, C.D.; Ingersoll, C.G.; Moran, P.W.

    2008-01-01

    We studied the bioavailability and toxicity of copper, zinc, arsenic, cadmium, and lead in sediments from Lake Roosevelt (LR), a reservoir on the Columbia River in Washington, USA that receives inputs of metals from an upstream smelter facility. We characterized chronic sediment toxicity, metal bioaccumulation, and metal concentrations in sediment and pore water from eight study sites: one site upstream in the Columbia River, six sites in the reservoir, and a reference site in an uncontaminated tributary. Total recoverable metal concentrations in LR sediments generally decreased from upstream to downstream in the study area, but sediments from two sites in the reservoir had metal concentrations much lower than adjacent reservoir sites and similar to the reference site, apparently due to erosion of uncontaminated bank soils. Concentrations of acid-volatile sulfide in LR sediments were too low to provide strong controls on metal bioavailability, and selective sediment extractions indicated that metals in most LR sediments were primarily associated with iron and manganese oxides. Oligochaetes (Lumbriculus variegatus) accumulated greatest concentrations of copper from the river sediment, and greatest concentrations of arsenic, cadmium, and lead from reservoir sediments. Chronic toxic effects on amphipods (Hyalella azteca; reduced survival) and midge larvae (Chironomus dilutus; reduced growth) in whole-sediment exposures were generally consistent with predictions of metal toxicity based on empirical and equilibrium partitioning-based sediment quality guidelines. Elevated metal concentrations in pore waters of some LR sediments suggested that metals released from iron and manganese oxides under anoxic conditions contributed to metal bioaccumulation and toxicity. Results of both chemical and biological assays indicate that metals in sediments from both riverine and reservoir habitats of Lake Roosevelt are available to benthic invertebrates. These findings will be used as part of an ongoing ecological risk assessment to determine remedial actions for contaminated sediments in Lake Roosevelt. ?? 2007 Springer Science+Business Media, LLC.

  9. Harmonize input selection for sediment transport prediction

    NASA Astrophysics Data System (ADS)

    Afan, Haitham Abdulmohsin; Keshtegar, Behrooz; Mohtar, Wan Hanna Melini Wan; El-Shafie, Ahmed

    2017-09-01

    In this paper, three modeling approaches using a Neural Network (NN), Response Surface Method (RSM) and response surface method basis Global Harmony Search (GHS) are applied to predict the daily time series suspended sediment load. Generally, the input variables for forecasting the suspended sediment load are manually selected based on the maximum correlations of input variables in the modeling approaches based on NN and RSM. The RSM is improved to select the input variables by using the errors terms of training data based on the GHS, namely as response surface method and global harmony search (RSM-GHS) modeling method. The second-order polynomial function with cross terms is applied to calibrate the time series suspended sediment load with three, four and five input variables in the proposed RSM-GHS. The linear, square and cross corrections of twenty input variables of antecedent values of suspended sediment load and water discharge are investigated to achieve the best predictions of the RSM based on the GHS method. The performances of the NN, RSM and proposed RSM-GHS including both accuracy and simplicity are compared through several comparative predicted and error statistics. The results illustrated that the proposed RSM-GHS is as uncomplicated as the RSM but performed better, where fewer errors and better correlation was observed (R = 0.95, MAE = 18.09 (ton/day), RMSE = 25.16 (ton/day)) compared to the ANN (R = 0.91, MAE = 20.17 (ton/day), RMSE = 33.09 (ton/day)) and RSM (R = 0.91, MAE = 20.06 (ton/day), RMSE = 31.92 (ton/day)) for all types of input variables.

  10. Best Management Practices for sediment control in a Mediterranean agricultural watershed

    NASA Astrophysics Data System (ADS)

    Abdelwahab, Ossama M. M.; Bingner, Ronald L.; Milillo, Fabio; Gentile, Francesco

    2015-04-01

    Soil erosion can lead to severe destruction of agricultural sustainability that affects not only productivity, but the entire ecosystem in the neighboring areas. Sediments transported together with the associated nutrients and chemicals can significantly impact downstream water bodies. Various conservation and management practices implemented individually or integrated together as a system can be used to reduce the negative impacts on agricultural watersheds from soil erosion. Hydrological models are useful tools for decision makers when selecting the most effective combination of management practices to reduce pollutant loads within a watershed system. The Annualized Agricultural Non-point Source (AnnAGNPS) pollutant loading management model can be used to analyze the effectiveness of diverse management and conservation practices that can control or reduce the impact of soil erosion processes and subsequent sediment loads in agricultural watersheds. A 506 km2 Mediterranean medium-size watershed (Carapelle) located in Apulia, Southern Italy was used as a case study to evaluate the model and best management practices (BMPs) for sediment load control. A monitoring station located at the Ordona bridge has been instrumented to continuously monitor stream flow and suspended sediment loads. The station has been equipped with an ultrasound stage meter and a stage recorder to monitor stream flow. An infrared optic probe was used to measure suspended sediment concentrations (Gentile et al., 2010 ). The model was calibrated and validated in the Carapelle watershed on an event basis (Bisantino et al., 2013), and the validated model was used to evaluate the effectiveness of BMPs on sediment reduction. Various management practices were investigated including evaluating the impact on sediment load of: (1) converting all cropland areas into forest and grass covered conditions; (2) converting the highest eroding cropland areas to forest or grass covered conditions; and (3) utilizing a crop rotation of wheat and forage crops (Abdelwahab et al., 2014). Further evaluations include scenarios with additional improvements in the input data, in particular better reflecting the management operations within model input parameters used to represent the current conditions applied in the watershed, and the study of the efficiency of the model in predicting runoff and sediment loads at a monthly and annual scale using un-calibrated parameters. The effect of riparian buffers as a natural trap that reduce runoff and increase the in-situ sediment deposition are also investigated. Acknowledgements This work is carried out in the framework of the Italian Research Project of Relevant Interest (PRIN2010-2011), prot. 20104ALME4, "National network for monitoring, modeling, and sustainable management of erosion processes in agricultural land and hilly-mountainous area" National Coordinator prof. Mario Lenzi (University of Padova). References Gentile F., Bisantino T., Corbino R., Milillo F., Romano G., Trisorio Liuzzi G. (2010) Monitoring and analysis of suspended sediment transport dynamics in the Carapelle torrent (southern Italy). Catena 80, 1-8, doi:10.1016/j.catena.2009.08.004. Bisantino T., Bingner R., Chouaib W., Gentile F., Trisorio Liuzzi G. (2013) Estimation of runoff, peak discharge and sediment load at the event scale in a medium-size Mediterranean watershed using the AnnAGNPS model. Land Degradation & Development, wileyonlinelibrary.com, doi: 10.1002/ldr.2213. Abdelwahab O.M.M., Bingner R.L., Milillo F., Gentile F. (2014) Effectiveness of alternative management scenarios on the sediment load in a Mediterranean agricultural watershed. Journal of Agricultural Engineering, vol. XLV:430, 125-136, doi: 10.4081/jae.2014.430.

  11. Contaminated Coastal Sediments in the Northeastern United States: Changing Sources Over Time

    NASA Astrophysics Data System (ADS)

    Buchholtz ten Brink, M. R.; Bothner, M. H.; Mecray, E. L.

    2001-05-01

    Regional studies of coastal sediments in the northeastern United States, conducted by the U.S. Geological Survey, show that trace metal contamination from land-based activities has occurred near all major urban centers. Concentrations of metals, such as Cu, Pb, Zn, Hg, and Ag, are 2-5 times background levels in sediments of Boston Harbor, Long Island Sound (LIS), offshore of Gulf of Maine coastal cities, and in the New York Bight (NYB). Contaminant accumulations are strongly influenced by sediment lithology and sediment transport properties in local areas, in addition to proximity to pollutant sources. Inventories are greatest in muddy depo-centers of the NYB, western LIS, and Boston Harbor. Based on sediment cores, the onset of metal contamination in the northeast occurs in the mid-1800s, with inputs increasing in the mid-1900s and decreasing (20-50%) from the 1970s to present. The increases correlate with local population growth and abundance of a bacterial sewage indicator, Clostridium perfringens. Increases of N and Corg in cores also reflect population growth and changing wastewater treatment practices. Corg values reach a high of 6% in buried sediments near the NYB disposal sites. Cores from western LIS have increasing values of C, N, and P in the most recently deposited sediments, in contrast to metal concentrations that have decreased in recent years. Cessation of sludge disposal and reduction of chemical discharges have been effective at reducing inputs; however, contaminated sediment deposits remain in rivers (e.g., the Charles), floodplains (e.g., the Housatonic), and coastal sediments. In the future, high concentrations of metal contaminants stored in buried sediments of marine and fluvial systems are likely to be a lingering and significant source of pollution to coastal environments. Until more effective source-reduction occurs, land-use and industrial practices associated with population growth in the northeast will remain dominant factors for nutrient loading. A multi-disciplinary approach, including predictive models that include changing sources and physical, chemical, and biological transport processes, is required to estimate the long-term fate and effect of pollutants currently in coastal sediments.

  12. Prediction and forecast of Suspended Sediment Concentration (SSC) on the Upper Yangtze basin

    NASA Astrophysics Data System (ADS)

    Matos, José Pedro; Hassan, Marwan; Lu, Xixi; Franca, Mário J.

    2017-04-01

    Sediment transport in suspension may represent 90% or more of the global annual flux of sediment. For instance, more than 99% of the sediment supplied to the sea by the Yangtze River is suspended load. Suspended load is an important component for understanding channel dynamics and landscape evolution. Sediments transported in suspension are a major source of nutrients for aquatic organisms in riparian and floodplain habitats, and play a beneficial role acting as a sink in the carbon cycle. Excess of fine sediments may also have adverse effects. It can impair fish spawning by riverbed clogging, disturb foraging efficiency of hunting of river fauna, cause algae and benthos scouring, reduce or inhibit exchanges through the hyporheic region. Accumulation of fine sediments in reservoirs reduces storage capacity. Although fine sediment dynamics has been the focus of many studies, the current knowledge of sediment sources, transfer, and storage is inadequate to address fine sediment dynamics in the landscape. The theoretical derivation of a complete model for suspended sediment transport at the basin scale, incorporating small scale processes of production and transport, is hindered because the underlying mechanisms are produced at different non-similar scales. Availability of long-term reliable data on suspended sediment dynamics is essential to improve our knowledge on transport processes and to develop reliable sediment prediction models. Over the last 60 years, the Yangtze River Commission has been measuring the daily Suspended Sediment Concentration (SSC) at the Pingshan station. This dataset provides a unique opportunity to examine temporal variability and controls of fine sediment dynamics in the Upper Yangtze basin. The objective of this study is to describe temporal variation of fine sediment dynamics at the Pingshan station making use of the extensive sediment monitoring program undertaken at that location. We test several strategies of prediction and forecast applied to the long time series of SSC and streamflow. By changing the base variables between strategies, we improve our understanding of the phenomena driving SSC. Prediction and forecasts are obtained from the various input data sets based on a novel probabilistic data-driven technique, the Generalized Pareto Uncertainty (GPU), which requires very little parametrization. Addressing uncertainty explicitly, this methodology recognizes the stochastic nature of SSC. The GPU was inspired in machine learning concepts and benefits from advances in multi-objective optimization techniques to discard most explicit assumptions about the nature of the uncertainty being modeled. Assumptions that do remain are the need to specify a model for eventual non-stationarity of the series and that there are enough observations to conveniently model the uncertainty. In this contribution, several models are tested with conditioned inputs to focus on specific processes leading affecting SSC. For example, the influence of seasonal and local contributions to SSC can be separated by conditioning the probability estimation on seasonal and local drivers. Probabilistic forecasting models for SSC that account for different drivers of the phenomena are discussed.

  13. Historical trace metal accumulation in the sediments of an urbanized region of the Lake Champlain watershed, Burlington, Vermont

    USGS Publications Warehouse

    Mecray, E.L.; King, J.W.; Appleby, P.G.; Hunt, A.S.

    2001-01-01

    This study documents the history of pollution inputs in the Burlington region of Lake Champlain, Vermont using measurements of anthropogenic metals (Cu, Zn, Cr, Pb, Cd, and Ag) in four age-dated sediment cores. Sediments record a history of contamination in a region and can be used to assess the changing threat to biota over time and to evaluate the effectiveness of discharge regulations on anthropogenic inputs. Grain size, magnetic susceptibility, radiometric dating and pollen stratigraphy were combined with trace metal data to provide an assessment of the history of contamination over the last 350 yr in the Burlington region of Lake Champlain. Magnetic susceptibility was initially used to identify land-use history for each site because it is a proxy indicator of soil erosion. Historical trends in metal inputs in the Burlington region from the seventeenth through the twentieth centuries are reflected in downcore variations in metal concentrations and accumulation rates. Metal concentrations increase above background values in the early to mid nineteenth century. The metal input rate to the sediments increases around 1920 and maximum concentrations and accumulation rates are observed in the late 1960s. Decreases in concentration and accumulation rate between 1970 and the present are observed, for most metals. The observed trends are primarily a function of variations in anthropogenic inputs and not variations in sediment grain size. Grain size data were used to remove texture variations from the metal profiles and results show trends in the anthropogenic metal signals remain. Radiometric dating and pollen stratigraphy provide well-constrained dates for the sediments thereby allowing the metal profiles to be interpreted in terms of land-use history.This study documents the history of pollution inputs in the Burlington region of Lake Champlain, Vermont using measurements of anthropogenic metals (Cu, Zn, Cr, Pb, Cd, and Ag) in four age-dated sediment cores. Sediments record a history of contamination in a region and can be used to assess the changing threat to biota over time and to evaluate the effectiveness of discharge regulations on anthropogenic inputs. Grain size, magnetic susceptibility, radiometric dating and pollen stratigraphy were combined with trace metal data to provide an assessment of the history of contamination over the last 350 yr in the Burlington region of Lake Champlain. Magnetic susceptibility was initially used to identify land-use history for each site because it is a proxy indicator of soil erosion. Historical trends in metal inputs in the Burlington region from the seventeenth through the twentieth centuries are reflected in downcore variations in metal concentrations and accumulation rates. Metal concentrations increase above background values in the early to mid nineteenth century. The metal input rate to the sediments increases around 1920 and maximum concentrations and accumulation rates are observed in the late 1960s. Decreases in concentration and accumulation rate between 1970 and the present are observed for most metals. The observed trends are primarily a function of variations in anthropogenic inputs and not variations in sediment grain size. Grain size data were used to remove texture variations from the metal profiles and results show trends in the anthropogenic metal signals remain. Radiometric dating and pollen stratigraphy provide well-constrained dates for the sediments thereby allowing the metal profiles to be interpreted in terms of land-use history.

  14. EFFECT OF pH, IONIC STRENGTH, DISSOLVED ORGANIC CARBON, TIME, AND PARTICLE SIZE ON METALS RELEASE FROM MINE DRAINAGE IMPACTED STREAMBED SEDIMENTS

    EPA Science Inventory

    Acid-mine drainage (AMD) input to a stream typically results in the stream having a reduced pH, increased concentrations of metals and salts, and decreased biological productivity. Removal and/or treatment of these AMD sources is desired to return the impacted stream(s) to initi...

  15. A record of hydrocarbon input to San Francisco Bay as traced by biomarker profiles in surface sediment and sediment cores

    USGS Publications Warehouse

    Hostettler, F.D.; Pereira, W.E.; Kvenvolden, K.A.; VanGeen, A.; Luoma, S.N.; Fuller, C.C.; Anima, R.

    1999-01-01

    San Francisco Bay is one of the world's largest urbanized estuarine systems. Its water and sediment receive organic input from a wide variety of sources; much of this organic material is anthropogenically derived. To document the spatial and historical record of the organic contaminant input, surficial sediment from 17 sites throughout San Francisco Bay and sediment cores from two locations Richardson Bay and San Pablo Bay were analyzed for biomarker constituents. Biomarkers, that is, 'molecular fossils', primarily hopanes, steranes, and n-alkanes, provide information on anthropogenic contamination, especially that related to petrogenic sources, as well as on recent input of biogenic material. The biomarker parameters from the surficial sediment and the upper horizons of the cores show a dominance of anthropogenic input, whereas the biomarker profiles at the lower horizons of the cores indicate primarily biogenic input. In the Richardson Bay core the gradual upcore transition from lower maturity background organics to a dominance of anthropogenic contamination occurred about 70-100 years ago and corresponds to the industrial development of the San Francisco Bay area. In San Pablo Bay, the transition was very abrupt, reflecting the complex depositional history of the area. This sharp transition, perhaps indicating a depositional hiatus or erosional period, dated at pre-1952, is clearly visible. Below, the hiatus the biomarker parameters are immature; above, they are mature and show an anthropogenic overlay. Higher concentrations of terrigenous n-alkanes in the upper horizons in this core are indicative of an increase in terrigenous organic matter input in San Pablo Bay, possibly a result of water diversion projects and changes in the fresh water flow into the Bay from the Delta. Alternatively, it could reflect a dilution of organic material in the lower core sections with hydraulic mining debris.

  16. Response and recovery of streams to an intense regional flooding event

    NASA Astrophysics Data System (ADS)

    Dethier, E.; Magilligan, F. J.; Renshaw, C. E.; Kantack, K. M.

    2015-12-01

    Determining the relative roles of frequent and infrequent events on landscape form and material transport has implications for understanding landscape development, and informs planning and infrastructure decisions. Flooding due to Tropical Storm Irene in 2011 provides a unique opportunity to examine the effects of a rare, major disturbance across a broad area (14,000 km2). Intense flooding caused variable but widespread channel and riparian reconfiguration, including 995 channel-adjacent mass-wasting events, collectively referred to here as landslides, that mostly occurred in glacial deposits. Of these, about half involved reactivation of existing scars. Landslides were generally small, ranging from 60 - 26,000 m2 in planform, and covered less than 0.01 % of land in the region, yet sediment input from landslides alone (131 mm/kyr when integrated over the study area) exceeded inferred local background erosion rates by 60 times. If Irene inputs are included in a thirty-year erosion record, the estimated erosion rate, 7.2 mm/kyr, aligns closely with long-term regional rates of 5-10 mm/kyr. Landslides also input trees to streams, increasing large wood influence on those reaches. Combined wood and sediment inputs contributed to channel changes downstream of landslides. In four years since Irene, terrestrial lidar and suspended sediment sampling has documented continued large wood and sediment input. Erosion occurred on each of seventeen monitored landslides during snowmelt, but is otherwise limited except during intense precipitation and/or flood events. Repeat lidar models have recorded erosion of up to 5,000 m3 on a single slide in one year, including as much as 4000 m3 during a single event. Tree fall on scarps during erosion events creates sediment traps at the base of landslides, contributing to an observed return to equilibrium slopes. Despite trapping, substantial sediment continues to enter streams. Ninety-five suspended sediment samples from forty sites show that landslides remain important sediment sources. Across a range of flows, 2014 - 2015 sediment flux for a given discharge is an order of magnitude higher than pre-Irene flux. Though landslide slope relaxation suggests incipient recovery from Irene, persistent rapid erosion of large wood and sediment indicates that recovery is still on-going.

  17. Paleoreconstruction of organic carbon inputs to an oxbow lake in the Mississippi River watershed: Effects of dam construction and land use change on regional inputs

    USGS Publications Warehouse

    Bianchi, Thomas S.; Galy, Valier; Rosenheim, Brad E.; Shields, Michael; Cui, Xingquan; Van Metre, Peter C.

    2015-01-01

    We use a dated sediment core from Lake Whittington (USA) in the lower Mississippi River to reconstruct linkages in the carbon cycling and fluvial sediment dynamics over the past 80 years. Organic carbon (OC) sources were characterized using bulk (δ13C, ramped pyrolysis-oxidation (PyrOx) 14C, δ15N, and TN:OC ratios) and compound-specific (lignin phenols and fatty acids, including δ13C and 14C of the fatty acids) analyses. Damming of the Missouri River in the 1950s, other hydrological modifications to the river, and soil conservation measures resulted in reduced net OC export, in spite of increasing OC concentrations. Decreasing δ13C values coincided with increases in δ15N, TN:OC ratios, long-chain fatty acids, and lignin-phenol concentrations, suggesting increased inputs of soil-derived OC dominated by C3 vegetation, mainly resulting from changes in farming practices and crop distribution. However, ramped PyrOx 14C showed no discernible differences downcore in thermochemical stability, indicating a limited impact on soil OC turnover.

  18. Sediment record and atmospheric deposition of brominated flame retardants and organochlorine compounds in Lake Thun, Switzerland: lessons from the past and evaluation of the present.

    PubMed

    Bogdal, Christian; Schmid, Peter; Kohler, Martin; Müller, Claudia E; Iozza, Saverio; Bucheli, Thomas D; Scheringer, Martin; Hungerbühler, Konrad

    2008-09-15

    Chronology of brominated fame retardants (BFRs), a class of currentlywidely used chemicals, was compared to the respective historical profiles of legacy organochlorine compounds in three dated sediment cores from a prealpine lake (Lake Thun, Switzerland). Concentrations of polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs) started to increase in the 1980s-1990s. In the more recent sediment layers, PBDEs still had steady or increasing concentrations, whereas for HBCDs one sediment core revealed a decreasing trend. In contrast to the contemporary BFRs, concentrations of legacy organochlorines, such as polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs), and dichlorodiphenyl trichloroethane (DDT), peaked in deeper sediment layers deposited some decades ago. Measurements of atmospheric deposition and evaluation of wastewater discharges pointtoward deposition on the lake surface as a relevant input pathway and wastewater as a minor source of POPs in Lake Thun. The effect of the environmental awareness and the regulations taken in the 1970s to reduce environmental pollution of organochlorines is well reflected in the analyzed sediment cores. The sediment burden closely follows estimated time trends of consumption and emission of PCBs and DDT. The current residues in sediment of BFRs are still lower than the historical peak levels of organochlorines. However, current atmospheric deposition of BFRs is similar to deposition of PCBs. Considering the high amount of BFRs presently stocked in the anthroposphere in flame proofed materials, further measures to reduce emissions during BFRs life cycle are recommended to prevent high environmental pollution as it occurred for the organochlorine compounds.

  19. Soil fertility in deserts: a review on the influence of biological soil crusts and the effect of soil surface disturbance on nutrient inputs and losses

    USGS Publications Warehouse

    Reynolds, R.; Phillips, S.; Duniway, M.; Belnap, J.

    2003-01-01

    Sources of desert soil fertility include parent material weathering, aeolian deposition, and on-site C and N biotic fixation. While parent materials provide many soil nutrients, aeolian deposition can provide up to 75% of plant-essential nutrients including N, P, K, Mg, Na, Mn, Cu, and Fe. Soil surface biota are often sticky, and help retain wind-deposited nutrients, as well as providing much of the N inputs. Carbon inputs are from both plants and soil surface biota. Most desert soils are protected by cyanobacterial-lichen-moss soil crusts, chemical crusts and/or desert pavement. Experimental disturbances applied in US deserts show disruption of soil surfaces result in decreased N and C inputs from soil biota by up to 100%. The ability to glue aeolian deposits in place is compromised, and underlying soils are exposed to erosion. The ability to withstand wind increases with biological and physical soil crust development. While most undisturbed sites show little sediment production, disturbance by vehicles or livestock produce up to 36 times more sediment production, with soil movement initiated at wind velocities well below commonly-occurring wind speeds. Soil fines and flora are often concentrated in the top 3 mm of the soil surface. Winds across disturbed areas can quickly remove this material from the soil surface, thereby potentially removing much of current and future soil fertility. Thus, disturbances of desert soil surfaces can both reduce fertility inputs and accelerate fertility losses.

  20. Metagenomic Insights into Effects of Chemical Pollutants on Microbial Community Composition and Function in Estuarine Sediments Receiving Polluted River Water.

    PubMed

    Lu, Xiao-Ming; Chen, Chang; Zheng, Tian-Ling

    2017-05-01

    Pyrosequencing and metagenomic profiling were used to assess the phylogenetic and functional characteristics of microbial communities residing in sediments collected from the estuaries of Rivers Oujiang (OS) and Jiaojiang (JS) in the western region of the East China Sea. Another sediment sample was obtained from near the shore far from estuaries, used for contrast (CS). Characterization of estuary sediment bacterial communities showed that toxic chemicals potentially reduced the natural variability in microbial communities, while they increased the microbial metabolic enzymes and pathways. Polycyclic aromatic hydrocarbons (PAHs) and nitrobenzene were negatively correlated with the bacterial community variation. The dominant class in the sediments was Gammaproteobacteria. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) enzyme profiles, dominant enzymes were found in estuarine sediments, which increased greatly, such as 2-oxoglutarate synthase, acetolactate synthase, inorganic diphosphatase, and aconitate hydratase. In KEGG pathway profiles, most of the pathways were also dominated by specific metabolism in these sediments and showed a marked increase, for instance alanine, aspartate, and glutamate metabolism, carbon fixation pathways in prokaryotes, and aminoacyl-tRNA biosynthesis. The estuarine sediment bacterial diversity varied with the polluted river water inputs. In the estuary receiving river water from the more seriously polluted River Oujiang, the sediment bacterial community function was more severely affected.

  1. Monitoring heavy metal concentrations in the sediments of the Moskva and Oka River system- Results of the Volga-Rhine-Project

    NASA Astrophysics Data System (ADS)

    Andresen, Höpke

    2010-05-01

    In the course of the Volga-Rhine-Project sediment, water and pore water samples were collected on the Volga as well as the Moskva and Oka river systems. The sampling area discussed here is located south east of the city of Moscow. Sediment samples were taken along the Moskva River between Moscow and the city of Kolomna, which is approximately 100 km to the southeast of Moscow and in the Oka River close to the confluence with the Moskva River (Kolomna). The first sampling campaign in this region took place in 1993, followed by further sampling in 1997 and 2007. For evaluation of sediment quality classification systems are often used. The geo-accumulation index proposed by Mueller (1979) is a classification system which consists of seven classes given by the following expression: I = log2×Cn- geo 1.5×Bn Where Cn = measured concentration; Bn = background value (Turekian & Wedepol 1961) of element n and 1.5 = background matrix correction factor. The geo-accumulation index consists of seven grades (0-6) which indicate the enrichment of an element compared to the background value. These grades range from 'not polluted' to 'very strongly polluted'. Another possibility to express sediment contamination is to evaluate the effects on the ecosystem. The lowest effect level (LEL) gives the concentrations of the heavy metals in sediment below which no effect on the majority of the sediment dwelling organisms is expected. The probable effect level (PEL) represents the concentration of heavy metals above which the organisms frequently will show adverse effects. Both of these approaches were used to evaluate the results of the Volga-Rhine-Project. In the last two decades the concentrations of heavy metals in the sediments decreased by up to 60%. In 1993 sediments revealed high concentrations of several heavy metals such as chromium, cadmium, lead, zinc, arsenic, nickel and cobalt, whereas in 2007 only two sediment samples were classified as 'very strongly polluted' regarding lead and cadmium concentrations. Additionally six other sediment samples were found to be 'strongly polluted' with cadmium, zinc and lead, respectively. Using the ecotoxicological approach on the sediments, chromium, cadmium and zinc are above the PEL, whereas the content of lead exceeds the LEL. Thus, these metals may still cause toxic effects on the fresh water system. Although the input of heavy metals into the river systems has clearly decreased during the last 20 years, there are still some locations where high concentrations of heavy metals are found, suggesting point sources. Especially cadmium still shows significantly higher concentrations than the background value in the entire sampling area. There are even two sampling points where the cadmium concentrations reach approximately 100x the background value. To determine the temporal variation of the heavy metal input, sediment cores were taken. Heavy metal concentrations increase with depth in the cores and show a maximum at a depth of about 35-40 cm. Some part of this increase may be a result of early diagenesis as well as a result of reduced heavy metal input. The nature of the decline of the heavy metal concentrations is still in progress. Despite all the improvements achieved in environmental protection in Russia, still some problems have to be addressed. Especially in urban areas like the Moscow region the number and the size of illegal dump sites is increasing dramatically, leading to strong inputs of heavy metals and other pollutants into the river systems, with consequences for the sensitive eco systems.

  2. Human health risk assessment in relation to environmental pollution of two artificial freshwater lakes in The Netherlands.

    PubMed

    Albering, H J; Rila, J P; Moonen, E J; Hoogewerff, J A; Kleinjans, J C

    1999-01-01

    A human health risk assessment has been performed in relation to recreational activities on two artificial freshwater lakes along the river Meuse in The Netherlands. Although the discharges of contaminants into the river Meuse have been reduced in the last decades, which is reflected in decreasing concentrations of pollutants in surface water and suspended matter, the levels in sediments are more persistent. Sediments of the two freshwater lakes appear highly polluted and may pose a health risk in relation to recreational activities. To quantify health risks for carcinogenic (e.g., polycyclic aromatic hydrocarbons) as well as noncarcinogenic compounds (e.g., heavy metals), an exposure assessment model was used. First, we used a standard model that solely uses data on sediment pollution as the input parameter, which is the standard procedure in sediment quality assessments in The Netherlands. The highest intake appeared to be associated with the consumption of contaminated fish and resulted in a health risk for Pb and Zn (hazard index exceeded 1). For the other heavy metals and for benzo(a)pyrene, the total averaged exposure levels were below levels of concern. Secondly, input data for a more location-specific calculation procedure were provided via analyses of samples from sediment, surface water, and suspended matter. When these data (concentrations in surface water) were taken into account, the risk due to consumption of contaminated fish decreased by more than two orders of magnitude and appeared to be negligible. In both exposure assessments, many assumptions were made that contribute to a major degree to the uncertainty of this risk assessment. However, this health risk evaluation is useful as a screening methodology for assessing the urgency of sediment remediation actions.

  3. Human health risk assessment in relation to environmental pollution of two artificial freshwater lakes in The Netherlands.

    PubMed Central

    Albering, H J; Rila, J P; Moonen, E J; Hoogewerff, J A; Kleinjans, J C

    1999-01-01

    A human health risk assessment has been performed in relation to recreational activities on two artificial freshwater lakes along the river Meuse in The Netherlands. Although the discharges of contaminants into the river Meuse have been reduced in the last decades, which is reflected in decreasing concentrations of pollutants in surface water and suspended matter, the levels in sediments are more persistent. Sediments of the two freshwater lakes appear highly polluted and may pose a health risk in relation to recreational activities. To quantify health risks for carcinogenic (e.g., polycyclic aromatic hydrocarbons) as well as noncarcinogenic compounds (e.g., heavy metals), an exposure assessment model was used. First, we used a standard model that solely uses data on sediment pollution as the input parameter, which is the standard procedure in sediment quality assessments in The Netherlands. The highest intake appeared to be associated with the consumption of contaminated fish and resulted in a health risk for Pb and Zn (hazard index exceeded 1). For the other heavy metals and for benzo(a)pyrene, the total averaged exposure levels were below levels of concern. Secondly, input data for a more location-specific calculation procedure were provided via analyses of samples from sediment, surface water, and suspended matter. When these data (concentrations in surface water) were taken into account, the risk due to consumption of contaminated fish decreased by more than two orders of magnitude and appeared to be negligible. In both exposure assessments, many assumptions were made that contribute to a major degree to the uncertainty of this risk assessment. However, this health risk evaluation is useful as a screening methodology for assessing the urgency of sediment remediation actions. Images Figure 1 Figure 2 Figure 3 PMID:9872714

  4. Particle mixing processes of Chernobyl fallout in deep Norwegian Sea sediments: Evidence for seasonal effects

    NASA Astrophysics Data System (ADS)

    Balzer, W.

    1996-09-01

    A 1430 m deep station in the Norwegian Sea (Voering Plateau) was occupied five times between May 1986 and February 1987 to investigate the seasonal variation in sediment mixing rates. Cherbnbyl-derived radiocesium, identified by its high proportion of short-lived 134Cs, was used as a tracer for mixing. Most of the nuclide input arrived at the sediment within a narrow time span in June/early July during the beginning of the seasonal biogenic sedimentation pulse. Measured 137Cs profiles in the sediment over time were compared with modelled distributions calculated with a finite difference scheme. The input function of radiocesium to the sea floor was evaluated from the increase of the total inventory with time. Time-invariant mixing coefficients did not provide reasonable fits to either summer or winter distributions. The best fit was obtained with a rate of mixing proportional to the radiocesium input flux, with an average enhancement factor of 6.6 during the two summer months. It appears that the benthic macrofauna are more active during the food supply season and rapidly ingest/bury freshly sedimented materials.

  5. Effects of farmhouse hotel and paper mill effluents on bacterial community structures in sediment and surface water of Nanxi River, China.

    PubMed

    Lu, Xiao-Ming; Lu, Peng-Zhen

    2014-11-01

    The pyrosequencing technique was used to evaluate bacterial community structures in sediment and surface water samples taken from Nanxi River receiving effluents from a paper mill and a farmhouse hotel, respectively. For each sample, 4,610 effective bacterial sequences were selected and used to do the analysis of diversity and abundance, respectively. Bacterial phylotype richness in the sediment sample without effluent input was higher than the other samples, and the surface water sample with addition of effluent from the paper mill contained the least richness. Effluents from both the paper mill and farmhouse hotel have a potential to reduce the bacterial diversity and abundance in the sediment and surface water, especially it is more significant in the sediment. The effect of the paper mill effluent on the sediment and surface water bacterial communities was more serious than that of the farmhouse hotel effluent. Characterization of microbial community structures in the sediment and surface water from two tributaries of the downstream river indicated that various effluents from the paper mill and farmhouse hotel have the similar potential to decrease the natural variability in riverine microbial ecosystems.

  6. Suspended-Sediment Budget for the North Santiam River Basin, Oregon, Water Years 2005-08

    USGS Publications Warehouse

    Bragg, Heather M.; Uhrich, Mark A.

    2010-01-01

    Significant Findings An analysis of sediment transport in the North Santiam River basin during water years 2005-08 indicated that: Two-thirds of sediment input to Detroit Lake originated in the upper North Santiam River subbasin. Two-thirds of the sediment transported past Geren Island originated in the Little North Santiam River subbasin. The highest annual suspended-sediment load at any of the monitoring stations was the result of a debris flow on November 6, 2006, on Mount Jefferson. About 86 percent of the total sediment input to Detroit Lake was trapped in the lake, whereas 14 percent was transported farther downstream. More than 80 percent of the sediment transport in the basin was in November, December, and January. The variance in the annual suspended-sediment loads was better explained by the magnitude of the annual peak streamflow than by the annual mean streamflow.

  7. Biocides in the Yangtze River of China: spatiotemporal distribution, mass load and risk assessment.

    PubMed

    Liu, Wang-Rong; Zhao, Jian-Liang; Liu, You-Sheng; Chen, Zhi-Feng; Yang, Yuan-Yuan; Zhang, Qian-Qian; Ying, Guang-Guo

    2015-05-01

    Nineteen biocides were investigated in the Yangtze River to understand their spatiotemporal distribution, mass loads and ecological risks. Fourteen biocides were detected, with the highest concentrations up to 166 ng/L for DEET in surface water, and 54.3 ng/g dry weight (dw) for triclocarban in sediment. The dominant biocides were DEET and methylparaben, with their detection frequencies of 100% in both phases. An estimate of 152 t/y of 14 biocides was carried by the Yangtze River to the East China Sea. The distribution of biocides in the aquatic environments was significantly correlated to Gross Domestic Product (GDP), total phosphorus (TP) and total nitrogen (TN), suggesting dominant input sources from domestic wastewater of the cities along the river. Risk assessment showed high ecological risks posed by carbendazim in both phases and by triclosan in sediment. Therefore, proper measures should be taken to reduce the input of biocides into the river systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Stable isotopes and Digital Elevation Models to study nutrient inputs in high-Arctic lakes

    NASA Astrophysics Data System (ADS)

    Calizza, Edoardo; Rossi, David; Costantini, Maria Letizia; Careddu, Giulio; Rossi, Loreto

    2016-04-01

    Ice cover, run-off from the watershed, aquatic and terrestrial primary productivity, guano deposition from birds are key factors controlling nutrient and organic matter inputs in high-Arctic lakes. All these factors are expected to be significantly affected by climate change. Quantifying these controls is a key baseline step to understand what combination of factors subtends the biological productivity in Arctic lakes and will drive their ecological response to environmental change. Basing on Digital Elevation Models, drainage maps, and C and N elemental content and stable isotope analysis in sediments, aquatic vegetation and a dominant macroinvertebrate species (Lepidurus arcticus Pallas 1973) belonging to Tvillingvatnet, Storvatnet and Kolhamna, three lakes located in North Spitsbergen (Svalbard), we propose an integrated approach for the analysis of (i) nutrient and organic matter inputs in lakes; (ii) the role of catchment hydro-geomorphology in determining inter-lake differences in the isotopic composition of sediments; (iii) effects of diverse nutrient inputs on the isotopic niche of Lepidurus arcticus. Given its high run-off and large catchment, organic deposits in Tvillingvatnet where dominated by terrestrial inputs, whereas inputs were mainly of aquatic origin in Storvatnet, a lowland lake with low potential run-off. In Kolhamna, organic deposits seem to be dominated by inputs from birds, which actually colonise the area. Isotopic signatures were similar between samples within each lake, representing precise tracers for studies on the effect of climate change on biogeochemical cycles in lakes. The isotopic niche of L. aricticus reflected differences in sediments between lakes, suggesting a bottom-up effect of hydro-geomorphology characterizing each lake on nutrients assimilated by this species. The presented approach proven to be an effective research pathway for the identification of factors subtending to nutrient and organic matter inputs and transfer within each water body, as well as for the modelling of expected changes in nutrient content associated to changes in isotopic composition of sediments. Key words: nitrogen; carbon, sediment; biogeochemical cycle; climate change; hydro-ecology; isotopic niche; Svalbard

  9. Economic impacts of anthropogenic activities on coastlines of the United States

    USGS Publications Warehouse

    Magoon, Orville T.; Williams, S. Jeffress; Lent, Linda K.; Richmond, James A.; Treadwell, Donald D.; Douglass, Scott L.; Edge, Billy L.; Ewing, Lesley C.; Pratt, Anthony P.

    2004-01-01

    Anthropogenic activities primarily impact coasts by reducing sediment inputs, altering sediment transport processes, and accelerating sediment losses to the offshore. These activities include: sand and gravel extraction, navigation and shore protection works; non-structural shoreline management strategies such as beach nourishment, sand by-passing and beach scraping, dams and flood control works; channel and inlet dredging; subsidence caused by fluid extraction and reduction of carbonate beach material. Although many of these activities have improved the quality of life, they also have had unintended effects on the coast. The issues that arise from human alterations of the coast are common to many coastal regions around the world; this paper draws from several areas of the United States to present an overview and provisional assessment of the economic consequences of anthropogenic activities along the Pacific coast.

  10. Temporal and spatial distributions of sediment total organic carbon in an estuary river.

    PubMed

    Ouyang, Y; Zhang, J E; Ou, L-T

    2006-01-01

    Understanding temporal and spatial distributions of naturally occurring total organic carbon (TOC) in sediments is critical because TOC is an important feature of surface water quality. This study investigated temporal and spatial distributions of sediment TOC and its relationships to sediment contaminants in the Cedar and Ortega Rivers, Florida, USA, using three-dimensional kriging analysis and field measurement. Analysis of field data showed that large temporal changes in sediment TOC concentrations occurred in the rivers, which reflected changes in the characteristics and magnitude of inputs into the rivers during approximately the last 100 yr. The average concentration of TOC in sediments from the Cedar and Ortega Rivers was 12.7% with a maximum of 22.6% and a minimum of 2.3%. In general, more TOC accumulated at the upper 1.0 m of the sediment in the southern part of the Ortega River although the TOC sedimentation varied with locations and depths. In contrast, high concentrations of sediment contaminants, that is, total polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), were found in sediments from the Cedar River. There was no correlation between TOC and PAHs or PCBs in these river sediments. This finding is in contradiction to some other studies which reported that the sorption of hydrocarbons is highly related to the organic matter content of sediments. This discrepancy occurred because of the differences in TOC and hydrocarbon source input locations. It was found that more TOC loaded into the southern part of the Ortega River, while almost all of the hydrocarbons entered into the Cedar River. This study suggested that the locations of their input sources as well as the land use patterns should also be considered when relating hydrocarbons to sediment TOC.

  11. Spatial characterization of riparian buffer effects on sediment loads from watershed systems.

    PubMed

    Momm, Henrique G; Bingner, Ronald L; Yuan, Yongping; Locke, Martin A; Wells, Robert R

    2014-09-01

    Understanding all watershed systems and their interactions is a complex, but critical, undertaking when developing practices designed to reduce topsoil loss and chemical/nutrient transport from agricultural fields. The presence of riparian buffer vegetation in agricultural landscapes can modify the characteristics of overland flow, promoting sediment deposition and nutrient filtering. Watershed simulation tools, such as the USDA-Annualized Agricultural Non-Point Source (AnnAGNPS) pollution model, typically require detailed information for each riparian buffer zone throughout the watershed describing the location, width, vegetation type, topography, and possible presence of concentrated flow paths through the riparian buffer zone. Research was conducted to develop GIS-based technology designed to spatially characterize riparian buffers and to estimate buffer efficiency in reducing sediment loads in a semiautomated fashion at watershed scale. The methodology combines modeling technology at different scales, at individual concentrated flow paths passing through the riparian zone, and at watershed scales. At the concentrated flow path scale, vegetative filter strip models are applied to estimate the sediment-trapping efficiency for each individual flow path, which are aggregated based on the watershed subdivision and used in the determination of the overall impact of the riparian vegetation at the watershed scale. This GIS-based technology is combined with AnnAGNPS to demonstrate the effect of riparian vegetation on sediment loadings from sheet and rill and ephemeral gully sources. The effects of variability in basic input parameters used to characterize riparian buffers, onto generated outputs at field scale (sediment trapping efficiency) and at watershed scale (sediment loadings from different sources) were evaluated and quantified. The AnnAGNPS riparian buffer component represents an important step in understanding and accounting for the effect of riparian vegetation, existing and/or managed, in reducing sediment loads at the watershed scale. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Kinetics of hydrophobic organic contaminant extraction from sediment by granular activated carbon.

    PubMed

    Rakowska, M I; Kupryianchyk, D; Smit, M P J; Koelmans, A A; Grotenhuis, J T C; Rijnaarts, H H M

    2014-03-15

    Ex situ solid phase extraction with granular activated carbon (GAC) is a promising technique to remediate contaminated sediments. The methods' efficiency depends on the rate by which contaminants are transferred from the sediment to the surface of GAC. Here, we derive kinetic parameters for extraction of polycyclic aromatic hydrocarbons (PAH) from sediment by GAC, using a first-order multi-compartment kinetic model. The parameters were obtained by modeling sediment-GAC exchange kinetic data following a tiered model calibration approach. First, parameters for PAH desorption from sediment were calibrated using data from systems with 50% (by weight) GAC acting as an infinite sink. Second, the estimated parameters were used as fixed input to obtain GAC uptake kinetic parameters in sediment slurries with 4% GAC, representing the ex situ remediation scenario. PAH uptake rate constants (kGAC) by GAC ranged from 0.44 to 0.0005 d(-1), whereas GAC sorption coefficients (KGAC) ranged from 10(5.57) to 10(8.57) L kg(-1). These values are the first provided for GAC in the presence of sediment and show that ex situ extraction with GAC is sufficiently fast and effective to reduce the risks of the most available PAHs among those studied, such as fluorene, phenanthrene and anthracene. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Laurentide Ice Sheet meltwater and the Atlantic meridional overturning circulation since the last glacial maximum: A view from the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Flower, B. P.; Williams, C.; Brown, E. A.; Hastings, D. W.; Hendricks, J.; Goddard, E. A.

    2010-12-01

    The influence of ice sheet meltwater on the Atlantic meridional overturning circulation (AMOC) since the last glacial maximum represents an important issue in abrupt climate change. Comparison of Greenland and Antarctic ice core records has revealed a complex interhemispheric linkage and led to different models of ocean circulation including the “bipolar seesaw.” Meltwater input from the Laurentide Ice Sheet has been invoked as a cause of proximal sea-surface temperature (SST) and salinity change in the North Atlantic, and of regional to global climate change via its influence on the AMOC. We present published and new Mg/Ca, Ba/Ca, and δ18O data on the planktic foraminifer Globigerinoides ruber from northern Gulf of Mexico sediment cores that provide detailed records of SST, δ18O of seawater (δ18Osw), and inferred salinity for the 20-8 ka interval. Age control for Orca Basin core MD02-2550 is based on >40 AMS 14C dates on Globigerinoides ruber and documents continuous sedimentation at rates >35 cm/kyr. Early meltwater input is inferred from δ18Osw and Ba/Ca data prior to and during the Mystery Interval, consistent with a high sensitivity to solar insolation and greenhouse forcing. New bulk sediment δ18O data show major spikes reaching -5.5‰ ca. 14.6 and 12.6 ka. We speculate that these excursions represent fine carbonate sediment from Canadian Paleozoic marine carbonates, analogous to detrital carbonate in the North Atlantic which has a δ18O value of -5‰. Partial support for our hypothesis comes from SEM photomicrographs of bulk sediment from this section, which show no coccoliths or foraminifera in contrast to other intervals. The biogenic carbonate flux seems to have been greatly reduced by fine sediment input. Inferred peak meltwater flow appears to have been associated with the Bolling warming and meltwater pulse 1a. Finally, meltwater reduction at the start of the Younger Dryas supports models for a diversion to North Atlantic outlets and AMOC reduction ca. 12.9 ka, but alternatively could represent diminished ice melting. Overall, the relations between Gulf of Mexico meltwater input, Heinrich events, Antarctic warm events, and AMOC variability suggest bipolar warming and enhanced seasonality during meltwater episodes. We formulate a “meltwater capacitor” hypothesis for understanding enhanced seasonality in the North Atlantic region during abrupt climate change.

  14. Laboratory studies to characterize the efficacy of sand capping a coal tar-contaminated sediment.

    PubMed

    Hyun, Seunghun; Jafvert, Chad T; Lee, Linda S; Rao, P Suresh C

    2006-06-01

    Placement of a microbial active sand cap on a coal tar-contaminated river sediment has been suggested as a cost effective remediation strategy. This approach assumes that the flux of contaminants from the sediment is sufficiently balanced by oxygen and nutrient fluxes into the sand layer such that microbial activity will reduce contaminant concentrations within the new benthic zone and reduce the contaminant flux to the water column. The dynamics of such a system were evaluated using batch and column studies with microbial communities from tar-contaminated sediment under different aeration and nutrient inputs. In a 30-d batch degradation study on aqueous extracts of coal tar sediment, oxygen and nutrient concentrations were found to be key parameters controlling the degradation rates of polycyclic aromatic hydrocarbons (PAHs). For the five PAHs monitored (naphthalene, fluorene, phenanthrene, anthracene, and pyrene), degradation rates were inversely proportional to molecular size. For the column studies, where three columns were packed with a 20-cm sand layer on the top of a 5 cm of sediment layer, flow was established to sand layers with (1) aerated water, (2) N(2) sparged water, or (3) HgCl(2)-sterilized N(2) sparged water. After steady-state conditions, PAH concentrations in effluents were the lowest in the aerated column, except for pyrene, whose concentration was invariant with all effluents. These laboratory scale studies support that if sufficient aeration can be achieved in the field through either active and passive means, the resulting microbially active sand layer can improve the water quality of the benthic zone and reduce the flux of many, but not all, PAHs to the water column.

  15. High methylmercury production under ferruginous conditions in sediments impacted by sewage treatment plant discharges.

    PubMed

    Bravo, Andrea G; Bouchet, Sylvain; Guédron, Stéphane; Amouroux, David; Dominik, Janusz; Zopfi, Jakob

    2015-09-01

    Sewage treatment plants (STPs) are important point sources of mercury (Hg) to the environment. STPs are also significant sources of iron when hydrated ferric oxide (HFO) is used as a dephosphatation agent during water purification. In this study, we combined geochemical and microbiological characterization with Hg speciation and sediment amendments to evaluate the impact of STP's effluents on monomethylmercury (MMHg) production. The highest in-situ Hg methylation was found close to the discharge pipe in subsurface sediments enriched with Hg, organic matter, and iron. There, ferruginous conditions were prevailing with high concentrations of dissolved Fe(2+) and virtually no free sulfide in the porewater. Sediment incubations demonstrated that the high MMHg production close to the discharge was controlled by low demethylation yields. Inhibition of dissimilatory sulfate reduction with molybdate led to increased iron reduction rates and Hg-methylation, suggesting that sulfate-reducing bacteria (SRB) may not have been the main Hg methylators under these conditions. However, Hg methylation in sediments amended with amorphous Fe(III)-oxides was only slightly higher than control conditions. Thus, in addition to iron-reducing bacteria, other non-SRB most likely contributed to Hg methylation. Overall, this study highlights that sediments impacted by STP discharges can become local hot-spots for Hg methylation due to the combined inputs of i) Hg, ii) organic matter, which fuels bacterial activities and iii) iron, which keeps porewater sulfide concentration low and hence Hg bioavailable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Novel Quantification of Sediment Concentration in Turbidity Currents Through in-situ Measurements of Conductivity and Temperature

    NASA Astrophysics Data System (ADS)

    Xu, J.; Wang, Z.; Gwiazda, R.; Paull, C. K.; Talling, P.; Parsons, D. R.; Maier, K. L.; Simmons, S.; Cartigny, M.

    2017-12-01

    During a large turbidity current event observed by seven moorings placed along Monterey Canyon, offshore central California, in the axial channel between 300 and 1900 meters water depth, a conductivity/temperature sensor placed 11 meters above canyon floor on the mooring at 1500 meters water depth recorded a rapid decrease of conductivity and increase of temperature during the passage of a large turbidity current. The conductivity decline is unlikely caused by fresh water input owing to lack of precipitation in the region prior to the event. We investigated the mechanisms of turbidity currents' high sediment concentration reducing the measured conductivity. By conducting a series of laboratory experiments with a range of different concentrations, grain size, and water temperature combinations, we quantified a relationship between reduced conductivity and the elevated sediment concentration. This relationship can be used for estimating the very high sediment concentrations in a turbidity current with a condition of assuming constant salinity of the ambient seawater. The empirical relationship was then applied to the in-situ time-series of temperature and conductivity measured during this turbidity current. The highest sediment concentration, in the head of the flow, reached nearly 400 g/L (volume concentration 17%). Such a high value, which has yet been reported in literature for an oceanic turbidity current, will have significant implications for the dynamics and deposits of such flows.

  17. Wave Energy Converter (WEC) Array Effects on Wave Current and Sediment Circulation: Monterey Bay CA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Jesse D.; Jones, Craig; Magalen, Jason

    2014-09-01

    The goal s of this study were to develop tools to quantitatively characterize environments where wave energy converter ( WEC ) devices may be installed and to assess e ffects on hydrodynamics and lo cal sediment transport. A large hypothetical WEC array was investigated using wave, hydrodynamic, and sediment transport models and site - specific average and storm conditions as input. The results indicated that there were significant changes in sediment s izes adjacent to and in the lee of the WEC array due to reduced wave energy. The circulation in the lee of the array was also altered; moremore » intense onshore currents were generated in the lee of the WECs . In general, the storm case and the average case show ed the same qualitative patterns suggesting that these trends would be maintained throughout the year. The framework developed here can be used to design more efficient arrays while minimizing impacts on nearshore environmen ts.« less

  18. A Baltic Sea estuary as a phosphorus source and sink after drastic load reduction: seasonal and long-term mass balances for the Stockholm inner archipelago for 1968-2015

    NASA Astrophysics Data System (ADS)

    Walve, Jakob; Sandberg, Maria; Larsson, Ulf; Lännergren, Christer

    2018-05-01

    Internal phosphorus (P) loading from sediments, controlled by hypoxia, is often assumed to hamper the recovery of lakes and coastal areas from eutrophication. In the early 1970s, the external P load to the inner archipelago of Stockholm, Sweden (Baltic Sea), was drastically reduced by improved sewage treatment, but the internal P loading and its controlling factors have been poorly quantified. We use two slightly different four-layer box models to calculate the area's seasonal and annual P balance (input-export) and the internal P exchange with sediments in 1968-2015. For 10-20 years after the main P load reduction, there was a negative P balance, small in comparison to the external load, and probably due to release from legacy sediment P storage. Later, the stabilized, near-neutral P balance indicates no remaining internal loading from legacy P, but P retention is low, despite improved oxygen conditions. Seasonally, sediments are a P sink in spring and a P source in summer and autumn. Most of the deep-water P release from sediments in summer-autumn appears to be derived from the settled spring bloom and is exported to outer areas during winter. Oxygen consumption and P release in the deep water are generally tightly coupled, indicating limited iron control of P release. However, enhanced P release in years of deep-water hypoxia suggests some contribution from redox-sensitive P pools. Increasing deep-water temperatures that stimulate oxygen consumption rates in early summer have counteracted the effect of lowered organic matter sedimentation on oxygen concentrations. Since the P turnover time is short and legacy P small, measures to bind P in Stockholm inner archipelago sediments would primarily accumulate recent P inputs, imported from the Baltic Sea and from Lake Mälaren.

  19. Wastewater Treatment Effluent Reduces the Abundance and Diversity of Benthic Bacterial Communities in Urban and Suburban Rivers

    PubMed Central

    Drury, Bradley; Rosi-Marshall, Emma

    2013-01-01

    In highly urbanized areas, wastewater treatment plant (WWTP) effluent can represent a significant component of freshwater ecosystems. As it is impossible for the composition of WWTP effluent to match the composition of the receiving system, the potential exists for effluent to significantly impact the chemical and biological characteristics of the receiving ecosystem. We assessed the impacts of WWTP effluent on the size, activity, and composition of benthic microbial communities by comparing two distinct field sites in the Chicago metropolitan region: a highly urbanized river receiving effluent from a large WWTP and a suburban river receiving effluent from a much smaller WWTP. At sites upstream of effluent input, the urban and suburban rivers differed significantly in chemical characteristics and in the composition of their sediment bacterial communities. Although effluent resulted in significant increases in inorganic nutrients in both rivers, surprisingly, it also resulted in significant decreases in the population size and diversity of sediment bacterial communities. Tag pyrosequencing of bacterial 16S rRNA genes revealed significant effects of effluent on sediment bacterial community composition in both rivers, including decreases in abundances of Deltaproteobacteria, Desulfococcus, Dechloromonas, and Chloroflexi sequences and increases in abundances of Nitrospirae and Sphingobacteriales sequences. The overall effect of the WWTP inputs was that the two rivers, which were distinct in chemical and biological properties upstream of the WWTPs, were almost indistinguishable downstream. These results suggest that WWTP effluent has the potential to reduce the natural variability that exists among river ecosystems and indicate that WWTP effluent may contribute to biotic homogenization. PMID:23315724

  20. Sediment residence times constrained by uranium-series isotopes: A critical appraisal of the comminution approach

    NASA Astrophysics Data System (ADS)

    Handley, Heather K.; Turner, Simon; Afonso, Juan C.; Dosseto, Anthony; Cohen, Tim

    2013-02-01

    Quantifying the rates of landscape evolution in response to climate change is inhibited by the difficulty of dating the formation of continental detrital sediments. We present uranium isotope data for Cooper Creek palaeochannel sediments from the Lake Eyre Basin in semi-arid South Australia in order to attempt to determine the formation ages and hence residence times of the sediments. To calculate the amount of recoil loss of 234U, a key input parameter used in the comminution approach, we use two suggested methods (weighted geometric and surface area measurement with an incorporated fractal correction) and typical assumed input parameter values found in the literature. The calculated recoil loss factors and comminution ages are highly dependent on the method of recoil loss factor determination used and the chosen assumptions. To appraise the ramifications of the assumptions inherent in the comminution age approach and determine individual and combined comminution age uncertainties associated to each variable, Monte Carlo simulations were conducted for a synthetic sediment sample. Using a reasonable associated uncertainty for each input factor and including variations in the source rock and measured (234U/238U) ratios, the total combined uncertainty on comminution age in our simulation (for both methods of recoil loss factor estimation) can amount to ±220-280 ka. The modelling shows that small changes in assumed input values translate into large effects on absolute comminution age. To improve the accuracy of the technique and provide meaningful absolute comminution ages, much tighter constraints are required on the assumptions for input factors such as the fraction of α-recoil lost 234Th and the initial (234U/238U) ratio of the source material. In order to be able to directly compare calculated comminution ages produced by different research groups, the standardisation of pre-treatment procedures, recoil loss factor estimation and assumed input parameter values is required. We suggest a set of input parameter values for such a purpose. Additional considerations for calculating comminution ages of sediments deposited within large, semi-arid drainage basins are discussed.

  1. Tracing the recently increasing anthropogenic Pb inputs into the East China Sea shelf sediments using Pb isotopic analysis.

    PubMed

    Wang, Deli; Zhao, Zhiqi; Dai, Minhan

    2014-02-15

    This study examined the Pb content and Pb isotopic composition in a sediment core taken from the East China Sea (ECS) shelf, and it was observed that since 2003 the increasing anthropogenic Pb inputs have impacted as far as the ECS shelf sediments. The ECS shelf sediments were generally characterized with low bulk Pb contents (12.5-15.0 μg/g) and relatively lithogenic Pb isotopic signatures (both HCl-leached and residual fractions). However, elevated Pb records along with lighter Pb isotopic signals have occurred in the post-2003 sediments, as a result of a small but increasing anthropogenic Pb contribution from the heavily human perturbed coastal sediments due to the sharply increasing coal consumption in mainland China since 2003. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Recovery of sediment characteristics in moraine, headwater streams of northern Minnesota after forest harvest

    USGS Publications Warehouse

    Vondracek, Bruce C.; Merten, Eric C.; Hemstad, Nathaniel A.; Kolka, Randall K.; Newman, Raymond M.; Verry, Elon S.

    2010-01-01

    We investigated the recovery of sediment characteristics in four moraine, headwater streams in north-central Minnesota after forest harvest. We examined changes in fine sediment levels from 1997 (preharvest) to 2007 (10 years postharvest) at study plots with upland clear felling and riparian thinning, using canopy cover, proportion of unstable banks, surficial fine substrates, residual pool depth, and streambed depth of refusal as response variables. Basin-scale year effects were significant (p < 0.001) for all responses when evaluated by repeated-measures ANOVAs. Throughout the study area, unstable banks increased for several years postharvest, coinciding with an increase in windthrow and fine sediment. Increased unstable banks may have been caused by forest harvest equipment, increased windthrow and exposure of rootwads, or increased discharge and bank scour. Fine sediment in the channels did not recover by summer 2007, even though canopy cover and unstable banks had returned to 1997 levels. After several storm events in fall 2007, 10 years after the initial sediment input, fine sediment was flushed from the channels and returned to 1997 levels. Although our study design did not discern the source of the initial sediment inputs (e.g., forest harvest, road crossings, other natural causes), we have shown that moraine, headwater streams can require an extended period (up to 10 years) and enabling event (e.g., high storm flows) to recover from large inputs of fine sediment.

  3. Recovery of sediment characteristics in moraine, headwater streams of Northern Minnesota after forest harvest

    USGS Publications Warehouse

    Merten, Eric C.; Hemstad, Nathaniel A.; Kolka, Randall K.; Newman, Raymond M.; Verry, Elon S.; Vondracek, Bruce C.

    2010-01-01

    We investigated the recovery of sediment characteristics in four moraine, headwater streams in north-central Minnesota after forest harvest. We examined changes in fine sediment levels from 1997 (preharvest) to 2007 (10 years postharvest) at study plots with upland clear felling and riparian thinning, using canopy cover, proportion of unstable banks, surficial fine substrates, residual pool depth, and streambed depth of refusal as response variables. Basin-scale year effects were significant (p < 0.001) for all responses when evaluated by repeated-measures ANOVAs. Throughout the study area, unstable banks increased for several years postharvest, coinciding with an increase in windthrow and fine sediment. Increased unstable banks may have been caused by forest harvest equipment, increased windthrow and exposure of rootwads, or increased discharge and bank scour. Fine sediment in the channels did not recover by summer 2007, even though canopy cover and unstable banks had returned to 1997 levels. After several storm events in fall 2007, 10 years after the initial sediment input, fine sediment was flushed from the channels and returned to 1997 levels. Although our study design did not discern the source of the initial sediment inputs (e.g., forest harvest, road crossings, other natural causes), we have shown that moraine, headwater streams can require an extended period (up to 10 years) and enabling event (e.g., high storm flows) to recover from large inputs of fine sediment.

  4. Long-term fertilization alters the relative importance of nitrate reduction pathways in salt marsh sediments

    NASA Astrophysics Data System (ADS)

    Peng, Xuefeng; Ji, Qixing; Angell, John H.; Kearns, Patrick J.; Yang, Hannah J.; Bowen, Jennifer L.; Ward, Bess B.

    2016-08-01

    Salt marshes provide numerous valuable ecological services. In particular, nitrogen (N) removal in salt marsh sediments alleviates N loading to the coastal ocean. N removal reduces the threat of eutrophication caused by increased N inputs from anthropogenic sources. It is unclear, however, whether chronic nutrient overenrichment alters the capacity of salt marshes to remove anthropogenic N. To assess the effect of nutrient enrichment on N cycling in salt marsh sediments, we examined important N cycle pathways in experimental fertilization plots in a New England salt marsh. We determined rates of nitrification, denitrification, and dissimilatory nitrate reduction to ammonium (DNRA) using sediment slurry incubations with 15N labeled ammonium or nitrate tracers under oxic headspace (20% oxygen/80% helium). Nitrification and denitrification rates were more than tenfold higher in fertilized plots compared to control plots. By contrast, DNRA, which retains N in the system, was high in control plots but not detected in fertilized plots. The relative contribution of DNRA to total nitrate reduction largely depends on the carbon/nitrate ratio in the sediment. These results suggest that long-term fertilization shifts N cycling in salt marsh sediments from predominantly retention to removal.

  5. Sediment cores from kettle holes in NE Germany reveal recent impacts of agriculture.

    PubMed

    Kleeberg, Andreas; Neyen, Marielle; Schkade, Uwe-Karsten; Kalettka, Thomas; Lischeid, Gunnar

    2016-04-01

    Glacial kettle holes in young moraine regions receive abundant terrigenous material from their closed catchments. Core chronology and sediment accumulation were determined for two semi-permanent kettle holes, designated RG and KR, on arable land close to the villages of Rittgarten and Kraatz, respectively, in Uckermark, NE Germany. Core dating ((210)Pb, (137)Cs) revealed variable sediment accretion rates through time (RG 0.4-23.1 mm a(-1); KR 0.2-35.5 mm a(-1)), with periods of high accumulation corresponding to periods of intensive agricultural activity and consequent erosional inputs from catchments. Sediment composition (C, N, P, S, K, Ca, Fe, Mn, Zn, Cu, Mo, Pb, Cd, Zr) was used to determine sediment source and input processes. At RG, annual P input increased from 0.65 kg ha(-1) in the early nineteenth century to 1.67 kg ha(-1) by 2013. At KR, P input increased from 0.6 to 4.1 kg ha(-1) over the last century. There was a concurrent increase in Fe input in both water bodies. Thus, Fe/P ratios showed no temporal trend and did not differ between RG (18.5) and KR (18.4), indicating similar P mobility. At RG, the S/Fe ratio increased from 0.4 to 2.3, indicating more iron sulphides and thus higher P availability, coinciding with high coverage of duckweed (Spirodela polyrhiza (L.)) and soft hornwort (Ceratophyllum submersum L.). At KR, however, this ratio remained low and relatively unchanged (0.3 ± 0.4), indicating more efficient Fe-P binding and lower hydrophyte productivity. Trends in sediment composition indicate a shift towards eutrophication in both kettle holes, but with differences in timing and magnitude. Other morphologically similar kettle holes in NE Germany that are prone to erosion could have been similarly impacted but may differ in the extent of sediment infilling and degradation of their ecological functions.

  6. When Organic-Rich Turbidites Reach 5000 m: "Cold-Seep Like" Life in the Congo Deep-Sea Fan

    NASA Astrophysics Data System (ADS)

    Pastor, L.; Toffin, L.; Cathalot, C.; Olu, K.; Brandily, C.; Bessette, S.; Lesongeur, F.; Godfroy, A.; Khripounoff, A.; Decker, C.; Taillefert, M.; Rabouille, C.

    2016-12-01

    The Congo canyon, located on the west coast of Africa, is a unique example of a canyon directly connected to a major river (The Congo River). Turbidites are responsible for a large input of terrestrial organic matter at depths up to 5000 m. These high inputs led to global high organic matter mineralization rates, with very localized hot spots that were visually observed and specifically sampled with a ROV. These hot spots, featuring substantial concentration of reduced compounds, mainly methane and sulfides, were recognizable in surface by the presence of reduced sediment patches, bacterial mats, and/or vesicomyid bivalves that host bacterial endosymbionts able to process H2S. In this paper we present geochemical sediment profiles of sulfate, methane, sulfide and dissolved iron together with phylogenetic diversity of 16S rRNA communities. This will give a first understanding of biogeochemical processes occurring in this peculiar ecosystem, mainly sulfate reduction, methanogenesis and subsequent anaerobic oxidation of methane with bacterial and archaeal assemblages similar to cold seeps environments. Iron also seems to play a major role in this system and iron/sulfur interactions as a sink for H2S can probably compete with H2S consumption by chemosynthetic bivalves, estimated at one site by vesicomyds gills incubations in a sulfide-rich solution.

  7. Discriminating sediment archives and sedimentary processes in the arid endorheic Ejina Basin, NW China using a robust geochemical approach

    NASA Astrophysics Data System (ADS)

    Yu, Kaifeng; Hartmann, Kai; Nottebaum, Veit; Stauch, Georg; Lu, Huayu; Zeeden, Christian; Yi, Shuangwen; Wünnemann, Bernd; Lehmkuhl, Frank

    2016-04-01

    Geochemical characteristics have been intensively used to assign sediment properties to paleoclimate and provenance. Nonetheless, in particular concerning the arid context, bulk geochemistry of different sediment archives and corresponding process interpretations are hitherto elusive. The Ejina Basin, with its suite of different sediment archives, is known as one of the main sources for the loess accumulation on the Chinese Loess Plateau. In order to understand mechanisms along this supra-regional sediment cascade, it is crucial to decipher the archive characteristics and formation processes. To address these issues, five profiles in different geomorphological contexts were selected. Analyses of X-ray fluorescence and diffraction, grain size, optically stimulated luminescence and radiocarbon dating were performed. Robust factor analysis was applied to reduce the attribute space to the process space of sedimentation history. Five sediment archives from three lithologic units exhibit geochemical characteristics as follows: (i) aeolian sands have high contents of Zr and Hf, whereas only Hf can be regarded as a valuable indicator to discriminate the coarse sand proportion; (ii) sandy loess has high Ca and Sr contents which both exhibit broad correlations with the medium to coarse silt proportions; (iii) lacustrine clays have high contents of felsic, ferromagnesian and mica source elements e.g., K, Fe, Ti, V, and Ni; (iv) fluvial sands have high contents of Mg, Cl and Na which may be enriched in evaporite minerals; (v) alluvial gravels have high contents of Cr which may originate from nearby Cr-rich bedrock. Temporal variations can be illustrated by four robust factors: weathering intensity, silicate-bearing mineral abundance, saline/alkaline magnitude and quasi-constant aeolian input. In summary, the bulk-composition of the late Quaternary sediments in this arid context is governed by the nature of the source terrain, weak chemical weathering, authigenic minerals, aeolian sand input, whereas pedogenesis and diagenesis exert only limited influences. Hence, this study demonstrates a practical geochemical strategy supplemented by grain size and mineralogical data, to discriminate sediment archives and thereafter enhance our ability to offer more intriguing information about the sedimentary processes in the arid central Asia.

  8. 78 FR 58923 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for the Grotto...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ... stream channel, minimal sedimentation, organic input into caves during rain events, and a sufficient prey..., pp. 111-112; Niemiller et al. 2006, p. 43). Prey availability is related to the organic input that is transported with sediment and other organic materials via sinkholes into stream habitats (Burr et al. 2001, p...

  9. Distinguishing Betwen Effects of Local Inputs (Contaminated Sediments, Point Sources) and Upstream Diffuse Nonpoint Source Input: Refinement of a Watershed Development Index for New England

    EPA Science Inventory

    Assessment tools are being developed to predict diffuse NPS effects from watershed development and distinguish these from local impacts (point sources, contaminated sediments). Using EMAP data from the New England Wadeable Stream Survey and two state datasets (CT, ME), we are de...

  10. A conceptual review of regional-scale controls on the composition of clastic sediment and the co-evolution of continental blocks and their sedimentary cover.

    PubMed

    Cox, R; Lowe, D R

    1995-01-02

    Both sediment recycling and first-cycle input influence the composition of clastic material in sedimentary systems. This paper examines conceptually the roles played by these processes in governing the composition of clastic sediment on a regional scale by outlining the expected effects on sediment composition of protracted sediment recycling and of continuous first-cycle input on a maturing continental block. Generally speaking, long-term recycling tends to enrich sediments in the most chemically and mechanically stable components: quartz in the sand and silt size fractions, and illite among the clay minerals. Sandstones trend towards pure quartz arenites, and mudrocks become more potassic and aluminous. The average grain size of clastic sediment decreases by a combination of progressive attrition of sand grains and ongoing breakdown of primary silicate minerals to finer-grained clay minerals and oxides. Sandstones derived by continuous first-cycle input from an evolving continental crustal source also become increasingly rich in quartz, but in addition become more feldspathic as the proportion of granitic material in the upper continental crust increases during crustal stabilization. Associated mudrocks also become richer in potassium and aluminum, but will have higher K2O/Al2O3 ratios than recycled muds. The average grain size of the sediment may increase with time as the proportion of sand-prone granitic source rocks increases at the expense of more mud-prone volcanic sources. In general, except in instances where chemical weathering is extreme, first-cycle sediments lack the compositional maturity of recycled detritus, and are characterized by the presence of a variety of primary silicate minerals. Sedimentary systems are not usually completely dominated by either recycling or first-cycle detritus. Generally, however, sedimentary systems associated with the earliest phases of formation and accretion of continental crust are characterized by first-cycle input from igneous and metamorphic rocks, whereas those associated with more mature cratons tend to be dominated by recycled sedimentary material.

  11. Organic Matter Loading Modifies the Microbial Community Responsible for Nitrogen Loss in Estuarine Sediments.

    PubMed

    Babbin, Andrew R; Jayakumar, Amal; Ward, Bess B

    2016-04-01

    Coastal marine sediments, as locations of substantial fixed nitrogen loss, are very important to the nitrogen budget and to the primary productivity of the oceans. Coastal sediment systems are also highly dynamic and subject to periodic natural and anthropogenic organic substrate additions. The response to organic matter by the microbial community involved in nitrogen loss processes was evaluated using mesocosms of Chesapeake Bay sediments. Over the course of a 50-day incubation, rates of anammox and denitrification were measured weekly using (15)N tracer incubations, and samples were collected for genetic analysis. Rates of both nitrogen loss processes and gene abundances associated with them corresponded loosely, probably because heterogeneities in sediments obscured a clear relationship. The rates of denitrification were stimulated more, and the fraction of nitrogen loss attributed to anammox slightly reduced, by the higher organic matter addition. Furthermore, the large organic matter pulse drove a significant and rapid shift in the denitrifier community composition as determined using a nirS microarray, indicating that the diversity of these organisms plays an essential role in responding to anthropogenic inputs. We also suggest that the proportion of nitrogen loss due to anammox in these coastal estuarine sediments may be underestimated due to temporal dynamics as well as from methodological artifacts related to conventional sediment slurry incubation approaches.

  12. Analysis of pesticides in surface water and sediment from Yolo Bypass, California, 2004-2005

    USGS Publications Warehouse

    Smalling, Kelly L.; Orlando, James L.; Kuivila, Kathryn

    2005-01-01

    Inputs to the Yolo Bypass are potential sources of pesticides that could impact critical life stages of native fish. To assess the direct inputs during inundation, pesticide concentrations were analyzed in water, in suspended and bed-sediment samples collected from six source watersheds to the Yolo Bypass, and from three sites within the Bypass in 2004 and 2005. Water samples were collected in February 2004 from the six input sites to the Bypass during the first flood event of the year representing pesticide inputs during high-flow events. Samples were also collected along a transect across the Bypass in early March 2004 and from three sites within the Bypass in the spring of 2004 under low-flow conditions. Low-flow data were used to understand potential pesticide contamination and its effects on native fish if water from these areas were used to flood the Bypass in dry years. To assess loads of pesticides to the Bypass associated with suspended sediments, large-volume water samples were collected during high flows in 2004 and 2005 from three sites, whereas bed sediments were collected from six sites in the fall of 2004 during the dry season. Thirteen current-use pesticides were detected in surface water samples collected during the study. The highest pesticide concentrations detected at the input sites to the Bypass corresponded to the first high-flow event of the year. The highest pesticide concentrations at the two sites sampled within the Bypass during the early spring were detected in mid-April following a major flood event as the water began to subside. The pesticides detected and their concentrations in the surface waters varied by site; however, hexazinone and simazine were detected at all sites and at some of the highest concentrations. Thirteen current-use pesticides and three organochlorine insecticides were detected in bed and suspended sediments collected in 2004 and 2005. The pesticides detected and their concentrations varied by site and sediment sample type. Trifluralin, p,p'-DDE, and p,p'-DDT were highest in the bed sediments, whereas oxyfluorfen and thiobencarb were highest in the suspended sediments. With the exception of the three organochlorine insecticides, suspended sediments had higher pesticide concentrations compared with bed sediments, indicating the potential for pesticide transport throughout the Bypass, especially during high-flow events. Understanding the distribution of pesticides between the water and sediment is needed to assess fate and transport within the Bypass and to evaluate the potential effects on native fish.

  13. Volatile organic compounds in Gulf of Mexico sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, T.J.

    1988-01-01

    Volatile organic compounds (VOC), concentrations and compositions were documented for estuarine, coastal, shelf, slope, and deep water sediments from the Gulf of Mexico. VOC were measured (detection limit >0.01 ppb) using a closed-loop stripping apparatus with gas chromatography (GC) and flame ionization, flame photometric, and mass spectrometric detectors. The five primary sources of Gulf of Mexico sediment VOC are: (1) planktonic and benthic fauna and flora; (2) terrestrial material from riverine and atmospheric deposition; (3) anthropogenic inputs: (4) upward migration of hydrocarbons; and (5) transport by bottom currents or slumping. Detected organo-sulfur compounds include alkylated sulfides, thiophene, alkylated thiophenes, andmore » benzothiophenes. Benzothiophenes are petroleum related. Low molecular weight organo-sulfur compounds result from the biological oxidation of organic matter. A lack of organosulfur compounds in the reducing environment of the Orca Basin may result from a lack of free sulfides which are necessary for their production.« less

  14. Spatial and temporal variability of trace element concentrations in an urban subtropical watershed, Honolulu, Hawaii

    USGS Publications Warehouse

    Heinen, De Carlo E.; Anthony, S.S.

    2002-01-01

    Trace metal concentrations in soils and in stream and estuarine sediments from a subtropical urban watershed in Hawaii are presented. The results are placed in the context of historical studies of environmental quality (water, soils, and sediment) in Hawaii to elucidate sources of trace elements and the processes responsible for their distribution. This work builds on earlier studies on sediments of Ala Wai Canal of urban Honolulu by examining spatial and temporal variations in the trace elements throughout the watershed. Natural processes and anthropogenic activity in urban Honolulu contribute to spatial and temporal variations of trace element concentrations throughout the watershed. Enrichment of trace elements in watershed soils result, in some cases, from contributions attributed to the weathering of volcanic rocks, as well as to a more variable anthropogenic input that reflects changes in land use in Honolulu. Varying concentrations of As, Cd, Cu, Pb and Zn in sediments reflect about 60 a of anthropogenic activity in Honolulu. Land use has a strong impact on the spatial distribution and abundance of selected trace elements in soils and stream sediments. As noted in continental US settings, the phasing out of Pb-alkyl fuel additives has decreased Pb inputs to recently deposited estuarine sediments. Yet, a substantial historical anthropogenic Pb inventory remains in soils of the watershed and erosion of surface soils continues to contribute to its enrichment in estuarine sediments. Concentrations of other elements (e.g., Cu, Zn, Cd), however, have not decreased with time, suggesting continued active inputs. Concentrations of Ba, Co, Cr, Ni, V and U, although elevated in some cases, typically reflect greater proportions attributed to natural sources rather than anthropogenic input. ?? 2002 Elsevier Science Ltd. All rights reserved.

  15. Hydrologic connectivity to streams increases nitrogen and phosphorus inputs and cycling in soils of created and natural floodplain wetlands

    USGS Publications Warehouse

    Wolf, Kristin L.; Noe, Gregory B.; Ahn, Changwoo

    2013-01-01

    Greater connectivity to stream surface water may result in greater inputs of allochthonous nutrients that could stimulate internal nitrogen (N) and phosphorus (P) cycling in natural, restored, and created riparian wetlands. This study investigated the effects of hydrologic connectivity to stream water on soil nutrient fluxes in plots (n = 20) located among four created and two natural freshwater wetlands of varying hydrology in the Piedmont physiographic province of Virginia. Surface water was slightly deeper; hydrologic inputs of sediment, sediment-N, and ammonium were greater; and soil net ammonification, N mineralization, and N turnover were greater in plots with stream water classified as their primary water source compared with plots with precipitation or groundwater as their primary water source. Soil water-filled pore space, inputs of nitrate, and soil net nitrification, P mineralization, and denitrification enzyme activity (DEA) were similar among plots. Soil ammonification, N mineralization, and N turnover rates increased with the loading rate of ammonium to the soil surface. Phosphorus mineralization and ammonification also increased with sedimentation and sediment-N loading rate. Nitrification flux and DEA were positively associated in these wetlands. In conclusion, hydrologic connectivity to stream water increased allochthonous inputs that stimulated soil N and P cycling and that likely led to greater retention of sediment and nutrients in created and natural wetlands. Our findings suggest that wetland creation and restoration projects should be designed to allow connectivity with stream water if the goal is to optimize the function of water quality improvement in a watershed.

  16. A probabilistic model of debris-flow delivery to stream channels, demonstrated for the Coast Range of Oregon, USA

    Treesearch

    Daniel J. Miller; Kelly M. Burnett

    2008-01-01

    Debris flows are important geomorphic agents in mountainous terrains that shape channel environments and add a dynamic element to sediment supply and channel disturbance. Identification of channels susceptible to debris-flow inputs of sediment and organic debris, and quantification of the likelihood and magnitude of those inputs, are key tasks for characterizing...

  17. Assessing the El Niño/Southern Oscillation proxy potential of the sediment record from Genovesa Crater Lake, Galápagos

    NASA Astrophysics Data System (ADS)

    Conroy, J.; Overpeck, J. T.; Cole, J. E.; Collins, A.; Bush, M. B.; Steinitz-Kannan, M.

    2009-12-01

    Paleoclimate records from the tropical Pacific Ocean suggest significant changes in sea surface temperature (SST) and El Niño/Southern Oscillation (ENSO) variability during the Holocene, but there are still many spatial and temporal gaps in our understanding of past tropical Pacific climate change. Many of the annually-resolved records of past ENSO variability are short, discontinuous, or from outside the tropical Pacific, whereas those records from the tropical Pacific often do not have the temporal resolution to accurately resolve the timing of individual El Niño events. Paleoclimate records from the Galápagos Islands are ideal for reconstructing past changes in tropical Pacific climate variability, since these islands are located in the heart of the ENSO phenomenon. Records from other lakes in the Galápagos have already suggested significant changes in ENSO frequency and the mean state of the eastern tropical Pacific throughout the Holocene. However, these lake sediment records have interannual temporal resolution at best, hampering our understanding of past ENSO dynamics. Here we present our initial findings from an additional Galápagos lake: Genovesa Crater Lake. The Genovesa sediment record is finely laminated and will likely provide a high-resolution paleoclimate record for this region of the tropical Pacific, as well as a means to test the hypotheses proposed by other ENSO reconstructions. Scanning μ-XRF time series of elemental abundances in the Genovesa sediment cores indicate that peaks in Ca abundance reflect the warm/wet season and El Niño events. We hypothesize that during warm/wet periods, a reduced sea bird population around the typically guanotropic Genovesa Crater Lake reduces the guano input into the lake, allowing layers of relatively clean carbonate to precipitate. During the cool season and La Niña events, guano input dilutes the precipitated carbonate. High-resolution pollen and diatom analyses will provide additional constraints on the history of interannual and longer-term variability in the lake sediment record.

  18. Evaluating agricultural nonpoint-source pollution using integrated geographic information systems and hydrologic/water quality model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tim, U.S.; Jolly, R.

    1994-01-01

    Considerable progress has been made in developing physically based, distributed parameter, hydrologic/water quality (HIWQ) models for planning and control of nonpoint-source pollution. The widespread use of these models is often constrained by the excessive and time-consuming input data demands and the lack of computing efficiencies necessary for iterative simulation of alternative management strategies. Recent developments in geographic information systems (GIS) provide techniques for handling large amounts of spatial data for modeling nonpoint-source pollution problems. Because a GIS can be used to combine information from several sources to form an array of model input data and to examine any combinations ofmore » spatial input/output data, it represents a highly effective tool for HiWQ modeling. This paper describes the integration of a distributed-parameter model (AGNPS) with a GIS (ARC/INFO) to examine nonpoint sources of pollution in an agricultural watershed. The ARC/INFO GIS provided the tools to generate and spatially organize the disparate data to support modeling, while the AGNPS model was used to predict several water quality variables including soil erosion and sedimentation within a watershed. The integrated system was used to evaluate the effectiveness of several alternative management strategies in reducing sediment pollution in a 417-ha watershed located in southern Iowa. The implementation of vegetative filter strips and contour buffer (grass) strips resulted in a 41 and 47% reduction in sediment yield at the watershed outlet, respectively. In addition, when the integrated system was used, the combination of the above management strategies resulted in a 71% reduction in sediment yield. In general, the study demonstrated the utility of integrating a simulation model with GIS for nonpoini-source pollution control and planning. Such techniques can help characterize the diffuse sources of pollution at the landscape level. 52 refs., 6 figs., 1 tab.« less

  19. Can fisheries management make substantial progress towards further reductions in sport fish PCB concentrations?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, L.J.

    1995-12-31

    Great Lakes managers continue to be concerned by PCB concentrations in Great Lakes sport fish. A reduction in sport fish consumption advisory levels would heighten public concern and increase pressure on managers to reduce contaminant levels in sport fish. PCB concentrations in Great Lakes sediments remain high and exchange with the water column is significant. Atmospheric inputs help maintain PCB availability in the Great Lakes. However, it is not technically feasible to control sediment and atmospheric inputs. Here the author uses a detailed age-structured simulation model of chinook salmon, alewife and rainbow smelt to examine the potential for fish managementmore » actions to make progress towards reducing PCB concentrations of sport fish consumed by humans. Chinook salmon PCB concentrations were found to be more affected by prey PCB concentrations than chinook salmon growth rates. Salmonid predators selectively attack the largest prey, but these prey are likely the oldest and most contaminated. The interaction between size selective predation by chinook salmon and their growth rates suggests that there is an ideal stocking level of sport fish that should keep the average prey fish small, and therefore have relatively low PCE concentrations, but not reduce the age structure of the alewife population to include few reproductive individuals. These results are applicable to other stocked salmonids too, (e.g., lake trout, brown trout, coho salmon, steelhead) because they also exhibit size selective predation and their recruitment is primarily by stocking.« less

  20. 14C and delta13C characteristics of organic matter and carbonate in saltmarsh sediments from south west Scotland.

    PubMed

    MacKenzie, A B; Cook, G T; Barth, J; Gulliver, P; McDonald, P

    2004-05-01

    The distribution of contaminant radionuclides from the Sellafield nuclear fuel reprocessing plant was used to establish chronologies for three saltmarsh sediment cores from south west Scotland. delta(13)C and (14)C analyses indicated that the cores provided a useful archive record of variations in input of organic matter and carbonate. The results imply that prior to major releases of contaminant (14)C from Sellafield, the (14)C specific activity of organic matter in Irish Sea offshore sediments was about 24 Bq kg(-1) C, while that of the carbonate component was below the limit of detection. These results provide baseline data for modelling the uptake of contaminant (14)C by the Irish Sea sediment system. The study confirmed that small(13)C analyses provide a sensitive means of apportioning the origin of saltmarsh organic matter between C(3) terrigenous plants, C(4) terrigenous plants and suspended particulate marine organic matter. For the <2 mm fraction of sediment, a clear pattern of decreasing marine organic input was observed in response to increasing elevation of the marsh surface as a result of sediment accumulation. Bulk sediment, including detrital vegetation, had a dominant input from terrigenous plants. The combined use of delta(13)C and (14)C data revealed that organic matter in the marine organic component of the <2 mm fraction of contemporary surface sediments of the saltmarshes is dominated by recycled old organic material.

  1. Heavy metal assessment using geochemical and statistical tools in the surface sediments of Vembanad Lake, Southwest Coast of India.

    PubMed

    Selvam, A Paneer; Priya, S Laxmi; Banerjee, Kakolee; Hariharan, G; Purvaja, R; Ramesh, R

    2012-10-01

    The geochemical distribution and enrichment of ten heavy metals in the surface sediments of Vembanad Lake, southwest coast of India was evaluated. Sediment samples from 47 stations in the Lake were collected during dry and wet seasons in 2008 and examined for heavy metal content (Al, Fe, Mn, Cr, Zn, Ni, Pb, Cu, Co, Cd), organic carbon, and sediment texture. Statistically significant spatial variation was observed among all sediment variables, but negligible significant seasonal variation was observed. Correlation analysis showed that the metal content of sediments was mainly regulated by organic carbon, Fe oxy-hydroxides, and grain size. Principal component analysis was used to reduce the 14 sediment variables into three factors that reveal distinct origins or accumulation mechanisms controlling the chemical composition in the study area. Pollution intensity of the Vembanad Lake was measured using the enrichment factor and the pollution load index. Severe and moderately severe enrichment of Cd and Zn in the north estuary with minor enrichment of Pb and Cr were observed, which reflects the intensity of the anthropogenic inputs related to industrial discharge into this system. The results of pollution load index reveal that the sediment was heavily polluted in northern arm and moderately polluted in the extreme end and port region of the southern arm of the lake. A comparison with sediment quality guideline quotient was also made, indicating that there may be some ecotoxicological risk to benthic organisms in these sediments.

  2. Phosphorus retention and internal loading in the Bay of Quinte, Lake Ontario, using diagenetic modelling.

    PubMed

    Doan, Phuong T K; Watson, Sue B; Markovic, Stefan; Liang, Anqi; Guo, Jay; Mugalingam, Shan; Stokes, Jonathan; Morley, Andrew; Zhang, Weitao; Arhonditsis, George B; Dittrich, Maria

    2018-04-24

    Internal phosphorus (P) loading significantly contributes to hysteresis in ecosystem response to nutrient remediation, but the dynamics of sediment P transformations are often poorly characterized. Here, we applied a reaction-transport diagenetic model to investigate sediment P dynamics in the Bay of Quinte, a polymictic, spatially complex embayment of Lake Ontario, (Canada). We quantified spatial and temporal variability of sediment P binding forms and estimated P diffusive fluxes and sediment P retention in different parts of the bay. Our model supports the notion that diagenetic recycling of redox sensitive and organic bound P forms drive sediment P release. In the recent years, summer sediment P diffusive fluxes varied in the range of 3.2-3.6 mg P m -2  d -1 in the upper bay compared to 1.5 mg P m -2  d -1 in the middle-lower bay. Meanwhile sediment P retention ranged between 71% and 75% in the upper and middle-lower bay, respectively. The reconstruction of temporal trends of internal P loading in the past century, suggests that against the backdrop of reduced external P inputs, sediment P exerts growing control over the lake nutrient budget. Higher sediment P diffusive fluxes since mid-20th century with particular increase in the past 20 years in the shallower upper basins, emphasize limited sediment P retention potential and suggest prolonged ecosystem recovery, highlighting the importance of ongoing P control measures. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Sedimentation of prairie wetlands

    USGS Publications Warehouse

    Gleason, Robert A.; Euliss, Ned H.

    1998-01-01

    Many wetlands in the prairie pothole region are embedded within an agricultural landscape where they are subject to varying degrees of siltation. Cultivation of wetland catchment areas has exacerbated soil erosion; wetlands in agricultural fields receive more sediment from upland areas than wetlands in grassland landscapes and hence are subject to premature filling (i.e., they have shorter topographic lives). Associated impacts from increased turbidity, sediment deposition, and increased surface water input likely have impaired natural wetland functions. Although trapping of sediments by wetlands is often cited as a water quality benefit, sediment input from agricultural fields has potential to completely fill wetlands and shorten their effective life-span. Thus, the value placed on wetlands to trap sediments is in conflict with maximizing the effective topographic life of wetlands. Herein, we provide an overview of sedimentation, identify associated impacts on wetlands, and suggest remedial management strategies. We also highlight the need to evaluate the impact of agricultural practices on wetland functions from an interdisciplinary approach to facilitate development of best management practices that benefit both wetland and agricultural interests.

  4. Natural Environmental Hazards Reflected in High-Altitude Patagonian Lake Sediments (lake Caviahue, Argentina)

    NASA Astrophysics Data System (ADS)

    Müller, Anne; Scharf, Burkhard; von Tümpling, Wolf; Pirrung, Michael

    2009-03-01

    Two 6-m long sediment cores drilled in the two basins of Lake Caviahue give new evidence of the impact of natural hazards such as ash fallouts linked to nearby volcanic eruptions in the ecologically sensitive environment of the high-altitude region of the Argentinan Patagonian Andes. The two cores show distinct signals of changes in autochthonous productivity and terrigenous input into the lake from ash fallout as well as from river load and shore erosion. Multiproxy records of the sediments indicate whether these changes can be related to volcanic activity. High values of magnetic susceptibility in the cores reflect periods of basaltic ash fallouts during eruptions of the nearby Copahue Volcano. The southern basin is located in the prevalent direction of ash fallouts and has been affected by these volcanic inputs more intensely than the northern basin of the lake. In contrast, sedimentation and authochthonous productivity in the northern basin are strongly affected by fluvial inputs such as suspended river load and acidic stream waters.

  5. Natural Environmental Hazards Reflected in High-Altitude Patagonian Lake Sediments (Lake Caviahue, Argentina)

    NASA Astrophysics Data System (ADS)

    Mueller, A.; Pirrung, M.; Scharf, B.; von Tuempling, W.

    2007-05-01

    Two 6-m long sediment cores drilled in the two basins of Lake Caviahue give new evidence of the impact of natural hazards such as ash fallouts linked to nearby volcanic eruptions in the ecologically sensitive environment of the high-altitude region of the Argentinan Patagonian Andes. The two cores show distinct signals of changes in autochthonous productivity and terrigenous input into the lake from ash fallout, river load and shore erosion. Multiproxy records of the sediments indicate whether these changes can be related to volcanic activity. High values of magnetic susceptibility in the cores reflect periods of basaltic ash fallouts during eruptions of the nearby Copahue volcano. The southern basin is located in the prevalent direction of ash fallouts and has been affected by these volcanic inputs more intensely than the northern basin of the lake. In contrast, sedimentation and authochthonous productivity in the northern basin are strongly affected by fluvial inputs such as suspended river load and acidic stream waters.

  6. Spatially explicit feedbacks between seagrass meadow structure, sediment and light: Habitat suitability for seagrass growth

    USGS Publications Warehouse

    Carr, Joel; D'Odorico, Paul; McGlathery, Karen; Wiberg, Patricia L.

    2016-01-01

    In shallow coastal bays where nutrient loading and riverine inputs are low, turbidity, and the consequent light environment are controlled by resuspension of bed sediments due to wind-waves and tidal currents. High sediment resuspension and low light environments can limit benthic primary productivity; however, both currents and waves are affected by the presence of benthic plants such as seagrass. This feedback between the presence of benthic primary producers such as seagrass and the consequent light environment has been predicted to induce bistable dynamics locally. However, these vegetated areas influence a larger area than they footprint, including a barren adjacent downstream area which exhibits reduced shear stresses. Here we explore through modeling how the patchy structure of seagrass meadows on a landscape may affect sediment resuspension and the consequent light environment due to the presence of this sheltered region. Heterogeneous vegetation covers comprising a mosaic of randomly distributed patches were generated to investigate the effect of patch modified hydrodynamics. Actual cover of vegetation on the landscape was used to facilitate comparisons across landscape realizations. Hourly wave and current shear stresses on the landscape along with suspended sediment concentration and light attenuation characteristics were then calculated and spatially averaged to examine how actual cover and mean water depth affect the bulk sediment and light environment. The results indicate that an effective cover, which incorporates the sheltering area, has important controls on the distributions of shear stress, suspended sediment, light environment, and consequent seagrass habitat suitability. Interestingly, an optimal habitat occurs within a depth range where, if actual cover is reduced past some threshold, the bulk light environment would no longer favor seagrass growth.

  7. Erosion and sediment delivery following removal of forest roads

    USGS Publications Warehouse

    Madej, Mary Ann

    2001-01-01

    Erosion control treatments were applied to abandoned logging roads in California, with the goal of reducing road-related sediment input to streams and restoring natural hydrologic patterns on the landscape. Treatment of stream crossings involved excavating culverts and associated road fill and reshaping streambanks. A variety of techniques were applied to road benches, which included decompacting the road surface, placing unstable road fill in more stable locations, and re-establishing natural surface drainage patterns. Following treatment and a 12-year recurrence-interval storm, some road reaches and excavated stream crossings showed evidence of mass movement failures, gullying, bank erosion and channel incision. Post-treatment erosion from excavated stream crossings was related to two variables: a surrogate for stream power (drainage area × channel gradient) and the volume of fill excavated from the channel. Post-treatment erosion on road reaches was related to four explanatory variables: method of treatment, hillslope position (upper, mid-slope or lower), date of treatment, and an interaction term (hillslope position × method of treatment). Sediment delivery from treated roads in upper, middle and lower hillslope positions was 10, 135 and 550 m3 of sediment per kilometre of treated roads, respectively. In contrast, inventories of almost 500 km of forest roads in adjacent catchments indicate that untreated roads produced 1500 to 4700 m3 of sediment per kilometre of road length. Erosion from 300 km of treated roads contributed less than 2 per cent of the total sediment load of Redwood Creek during the period 1978 to 1998. Although road removal treatments do not completely eliminate erosion associated with forest roads, they do substantially reduce sediment yields from abandoned logging roads.

  8. Patterns and trends in sediment toxicity in the San Francisco Estuary

    USGS Publications Warehouse

    Anderson, B.; Hunt, J.; Phillips, B.; Thompson, B.; Lowe, S.; Taberski, K.; Scott, Carr R.

    2007-01-01

    Widespread sediment toxicity has been documented throughout the San Francisco Estuary since the mid-1980s. Studies conducted in the early 1990s as part of the Bay Protection and Toxic Cleanup Program (BPTCP), and more recently as part of the Regional Monitoring Program (RMP) have continued to find sediment toxicity in the Estuary. Results of these studies have shown a number of sediment toxic hotspots located at selected sites in the margins of the Estuary. Recent RMP monitoring has indicated that the magnitude and frequency of sediment toxicity is greater in the winter wet season than in the summer dry season, which suggests stormwater inputs are associated with sediment toxicity. Additionally, spatial trends in sediment toxicity data indicate that toxic sediments are associated with inputs from urban creeks surrounding the Estuary, and from Central Valley rivers entering the northern Estuary via the Delta. Sediment toxicity has been correlated with a number of contaminants, including selected metals, PAHs and organochlorine pesticides. While toxicity identification evaluations (TIEs) suggest that metals are the primary cause of sediment toxicity to bivalve embryos; TIEs conducted with amphipods have been inconclusive. ?? 2006 Elsevier Inc. All rights reserved.

  9. Effect of a dual inlet channel on cell loading in microfluidics.

    PubMed

    Yun, Hoyoung; Kim, Kisoo; Lee, Won Gu

    2014-11-01

    Unwanted sedimentation and attachment of a number of cells onto the bottom channel often occur on relatively large-scale inlets of conventional microfluidic channels as a result of gravity and fluid shear. Phenomena such as sedimentation have become recognized problems that can be overcome by performing microfluidic experiments properly, such as by calculating a meaningful output efficiency with respect to real input. Here, we present a dual-inlet design method for reducing cell loss at the inlet of channels by adding a new " upstream inlet " to a single main inlet design. The simple addition of an upstream inlet can create a vertically layered sheath flow prior to the main inlet for cell loading. The bottom layer flow plays a critical role in preventing the cells from attaching to the bottom of the channel entrance, resulting in a low possibility of cell sedimentation at the main channel entrance. To provide proof-of-concept validation, we applied our design to a microfabricated flow cytometer system (μFCS) and compared the cell counting efficiency of the proposed μFCS with that of the previous single-inlet μFCS and conventional FCS. We used human white blood cells and fluorescent microspheres to quantitatively evaluate the rate of cell sedimentation in the main inlet and to measure fluorescence sensitivity at the detection zone of the flow cytometer microchip. Generating a sheath flow as the bottom layer was meaningfully used to reduce the depth of field as well as the relative deviation of targets in the z-direction (compared to the x-y flow plane), leading to an increased counting sensitivity of fluorescent detection signals. Counting results using fluorescent microspheres showed both a 40% reduction in the rate of sedimentation and a 2-fold higher sensitivity in comparison with the single-inlet μFCS. The results of CD4(+) T-cell counting also showed that the proposed design results in a 25% decrease in the rate of cell sedimentation and a 28% increase in sensitivity when compared to the single-inlet μFCS. This method is simple and easy to use in design, yet requires no additional time or cost in fabrication. Furthermore, we expect that this approach could potentially be helpful for calculating exact cell loading and counting efficiency for a small input number of cells, such as primary cells and rare cells, in microfluidic channel applications.

  10. Record of late Pleistocene glaciation and deglaciation in the southern Cascade Range. I. Petrological evidence from lacustrine sediment in Upper Klamath Lake, southern Oregon

    USGS Publications Warehouse

    Reynolds, R.L.; Rosenbaum, J.G.; Rapp, J.; Kerwin, M.W.; Bradbury, J.P.; Colman, S.; Adam, D.

    2004-01-01

    Petrological and textural properties of lacustrine sediments from Upper Klamath Lake, Oregon, reflect changing input volumes of glacial flour and thus reveal a detailed glacial history for the southern Cascade Range between about 37 and 15 ka. Magnetic properties vary as a result of mixing different amounts of the highly magnetic, glacially generated detritus with less magnetic, more weathered detritus derived from unglaciated parts of the large catchment. Evidence that the magnetic properties record glacial flour input is based mainly on the strong correlation between bulk sediment particle size and parameters that measure the magnetite content and magnetic mineral freshness. High magnetization corresponds to relatively fine particle size and lower magnetization to coarser particle size. This relation is not found in the Buck Lake core in a nearby, unglaciated catchment. Angular silt-sized volcanic rock fragments containing unaltered magnetite dominate the magnetic fraction in the late Pleistocene sediments but are absent in younger, low magnetization sediments. The finer grained, highly magnetic sediments contain high proportions of planktic diatoms indicative of cold, oligotrophic limnic conditions. Sediment with lower magnetite content contains populations of diatoms indicative of warmer, eutrophic limnic conditions. During the latter part of oxygen isotope stage 3 (about 37-25 ka), the magnetic properties record millennial-scale variations in glacial-flour content. The input of glacial flour was uniformly high during the Last Glacial Maximum, between about 21 and 16 ka. At about 16 ka, magnetite input, both absolute and relative to hematite, decreased abruptly, reflecting a rapid decline in glacially derived detritus. The decrease in magnetite transport into the lake preceded declines in pollen from both grass and sagebrush. A more gradual decrease in heavy mineral content over this interval records sediment starvation with the growth of marshes at the margins of the lake and dilution of detrital material by biogenic silica and other organic matter.

  11. Restoring sediment to compensate for human-induced erosion of an estuarine shore

    NASA Astrophysics Data System (ADS)

    Nordstrom, Karl F.; Jackson, Nancy L.; Farrell, Eugene J.; Rafferty, Patricia; Tengwall, Charles

    2016-06-01

    Shoreline erosion is often exacerbated by reduction of sediment inputs because of interference with sediment transport by human structures. We evaluate use of sediment dredged from a navigation channel to establish a feeder beach adjacent to a bulkhead as a solution for addressing erosion of landforms and habitats on sandy estuarine shores. The objectives are to determine how beach volume, position and shape within and downdrift of the fill area change and whether the volumes supplied by dredging match sediment losses caused by human actions. The fill was placed along a 75 m length of shoreline adjacent to a marina in Great South Bay at Fire Island, New York, USA. Changes in beach shape and volume were determined from topographic surveys conducted before and after fill and at half year intervals for 18 months. The quantity of fill was 1747 m3. Maximum shoreline advance due to fill emplacement was 20.7 m. The maximum volume placed at any transect was 28.6 m3 m- 1 of shoreline length. Erosion of the fill occurred rapidly, with landward migration of a conspicuous scarp. The edge of the upland 18 months after the fill was placed was up to 4.6 m farther landward than prior to the fill. Movement of sediment alongshore downdrift of the fill occurred as wave-like pulses, extending the active foreshore bayward, causing accretion of the inner low tide terrace, burying saltmarsh peat outcrops on the foreshore and creating a higher and wider overwash platform over portions of the saltmarshes. Landforms downdrift of the fill area underwent successive stages including erosion (pre-nourishment), accretion, stability (with throughput of sediment) and then erosion. Beach nourishment compensates for human-induced sediment losses. The volume of sediment added from maintenance dredging can slow the rate of erosion but may not prevent long-term shoreline retreat. Restoration and maintenance of coastal landforms and habitats to specific target states at a given location is difficult, but augmenting longshore sediment inputs can allow those locations to undergo cycles of erosion and accretion, creating a variety of landforms and habitats where only erosional forms existed previously. Alternatively, nourishment could occur more frequently and in smaller volumes to reduce fluctuations in accretion-erosion cycles.

  12. Sedimentary hydrocarbons and sterols in a South Atlantic estuarine/shallow continental shelf transitional environment under oil terminal and grain port influences.

    PubMed

    Bet, Rafael; Bícego, Marcia C; Martins, César C

    2015-06-15

    Sterols and hydrocarbons were determined in the surface sediments from the transitional environment between Paranaguá Bay and the shallow continental shelf in the South Atlantic to assess the sources of organic matter (OM) and the contamination status of an area exposed to multiple anthropogenic inputs. Total aliphatic hydrocarbon concentrations were less than 10μgg(-1), which is typical of unpolluted sediments, and related to recent inputs from higher terrestrial plants. Total polycyclic aromatic hydrocarbon ranged from

  13. Sediment concentrations and loads in the Loxahatchee River estuary, Florida, 1980-82

    USGS Publications Warehouse

    Sonntag, Wayne H.; McPherson, Benjamin F.

    1984-01-01

    This study was conducted to estimate the magnitude of sediment loads and the general spatial and temporal patterns of sediment transport in the Loxahatchee River estuary, Florida. Mean concentrations of suspended sediment generally were higher in the Jupiter Inlet area than in the remainder of the embayment area. Concentrations of suspended sediment varied with season and weather conditions. Concentrations in selected tributaries following Tropical Storm Dennis in August 1981 immediately increased as much as 16 times over concentrations before the storm. Suspended-sediment loads from the tributaries were also highly seasonal and storm related. During a 61-day period of above-average rainfall that included Tropical Storm Dennis, 5 major tributaries discharged 926 tons (short) of suspended sediment to the estuary, accounting for 74 percent of the input for the 1981 water year and 49 percent of the input for the 20-month study period. Suspended-sediment loads at Jupiter Inlet and at the mouth of the estuary embayment on both incoming and outgoing tides far exceeded tributary loads, but the direction of long-term, net tidal transport was not determined. (USGS)

  14. Reducing sedimentation of depressional wetlands in agricultural landscapes

    USGS Publications Warehouse

    Skagen, S.K.; Melcher, Cynthia; Haukos, D.A.

    2008-01-01

    Depressional wetlands in agricultural landscapes are easily degraded by sediments and contaminants accumulated from their watersheds. Several best management practices can reduce transport of sediments into wetlands, including the establishment of vegetative buffers. We summarize the sources, transport dynamics, and effect of sediments, nutrients, and contaminants that threaten wetlands and the current knowledge of design and usefulness of grass buffers for protecting isolated wetlands. Buffer effectiveness is dependent on several factors, including vegetation structure, buffer width, attributes of the surrounding watershed (i.e., area, vegetative cover, slope and topography, soil type and structure, soil moisture, amount of herbicides and pesticides applied), and intensity and duration of rain events. To reduce dissolved contaminants from runoff, the water must infiltrate the soil where microbes or other processes can break down or sequester contaminants. But increasing infiltration also diminishes total water volume entering a wetland, which presents threats to wetland hydrology in semi-arid regions. Buffer effectiveness may be enhanced significantly by implementing other best management practices (e.g., conservation tillage, balancing input with nutrient requirements for livestock and crops, precision application of chemicals) in the surrounding watershed to diminish soil erosion and associated contaminant runoff. Buffers require regular maintenance to remove sediment build-up and replace damaged or over-mature vegetation. Further research is needed to establish guidelines for effective buffer width and structure, and such efforts should entail a coordinated, regional, multi-scale, multidisciplinary approach to evaluate buffer effectiveness and impacts. Direct measures in "real-world" systems and field validations of buffer-effectiveness models are crucial next steps in evaluating how grass buffers will impact the abiotic and biotic variables attributes that characterize small, isolated wetlands. ?? 2008 The Society of Wetland Scientists.

  15. Holocene glacier activity reconstructed from proglacial lake Gjøavatnet on Amsterdamøya, NW Svalbard

    NASA Astrophysics Data System (ADS)

    de Wet, Gregory A.; Balascio, Nicholas L.; D'Andrea, William J.; Bakke, Jostein; Bradley, Raymond S.; Perren, Bianca

    2018-03-01

    Well-dated and highly resolved paleoclimate records from high latitudes allow for a better understanding of past climate change. Lake sediments are excellent archives of environmental change, and can record processes occurring within the catchment, such as the growth or demise of an upstream glacier. Here we present a Holocene-length, multi-proxy lake sediment record from proglacial lake Gjøavatnet on the island of Amsterdamøya, northwest Svalbard. Today, Gjøavatnet receives meltwater from the Annabreen glacier and contains a record of changes in glacier activity linked to regional climate conditions. We measured changes in organic matter content, dry bulk density, bulk carbon isotopes, elemental concentrations via Itrax core-scanning, and diatom community composition to reconstruct variability in glacier extent back through time. Our reconstruction indicates that glacially derived sedimentation in the lake decreased markedly at ∼11.1 cal kyr BP, although a glacier likely persisted in the catchment until ∼8.4 cal kyr BP. During the mid-Holocene (∼8.4-1.0 cal kyr BP) there was significantly limited glacial influence in the catchment and enhanced deposition of organic-rich sediment in the lake. The deposition of organic rich sediments during this time was interrupted by at least three multi-centennial intervals of reduced organic matter accumulation (∼5.9-5.0, 2.7-2.0, and 1.7-1.5 cal kyr BP). Considering our chronological information and a sedimentological comparison with intervals of enhanced glacier input, we interpret these intervals not as glacial advances, but rather as cold/dry episodes that inhibited organic matter production in the lake and surrounding catchment. At ∼1.0 cal kyr BP, input of glacially derived sediment to Gjøavatnet abruptly increased, representing the rapid expansion of the Annabreen glacier.

  16. Microbially catalyzed nitrate-dependent metal/radionuclide oxidation in shallow subsurface sediments

    NASA Astrophysics Data System (ADS)

    Weber, K.; Healy, O.; Spanbauer, T. L.; Snow, D. D.

    2011-12-01

    Anaerobic, microbially catalyzed nitrate-dependent metal/radionuclide oxidation has been demonstrated in a variety of sediments, soils, and groundwater. To date, studies evaluating U bio-oxidation and mobilization have primarily focused on anthropogenically U contaminated sites. In the Platte River Basin U originating from weathering of uranium-rich igneous rocks in the Rocky Mountains was deposited in shallow alluvial sediments as insoluble reduced uranium minerals. These reduced U minerals are subject to reoxidation by available oxidants, such nitrate, in situ. Soluble uranium (U) from natural sources is a recognized contaminant in public water supplies throughout the state of Nebraska and Colorado. Here we evaluate the potential of anaerobic, nitrate-dependent microbially catalyzed metal/radionuclide oxidation in subsurface sediments near Alda, NE. Subsurface sediments and groundwater (20-64ft.) were collected from a shallow aquifer containing nitrate (from fertilizer) and natural iron and uranium. The reduction potential revealed a reduced environment and was confirmed by the presence of Fe(II) and U(IV) in sediments. Although sediments were reduced, nitrate persisted in the groundwater. Nitrate concentrations decreased, 38 mg/L to 30 mg/L, with increasing concentrations of Fe(II) and U(IV). Dissolved U, primarily as U(VI), increased with depth, 30.3 μg/L to 302 μg/L. Analysis of sequentially extracted U(VI) and U(IV) revealed that virtually all U in sediments existed as U(IV). The presence of U(IV) is consistent with reduced Fe (Fe(II)) and low reduction potential. The increase in aqueous U concentrations with depth suggests active U cycling may occur at this site. Tetravalent U (U(IV)) phases are stable in reduced environments, however the input of an oxidant such as oxygen or nitrate into these systems would result in oxidation. Thus co-occurrence of nitrate suggests that nitrate could be used by bacteria as a U(IV) oxidant. Most probable number enumeration of nitrate-dependent U(IV) oxidizing microorganisms demonstrated an abundant community ranging from 1.61x104 to 2.74x104 cells g-1 sediment. Enrichments initiated verified microbial U reduction and U oxidation coupled to nitrate reduction. Sediment slurries were serially diluted and incubated over a period of eight weeks and compared to uninoculated controls. Oxidation (0-4,554 μg/L) and reduction (0-55 μg/L) of U exceeded uninoculated controls further providing evidence of a U biogeochemical cycling in these subsurface sediments. The oxidation of U(IV) could contribute to U mobilization in the groundwater and result in decreased water quality. Not only could nitrate serve as an oxidant, but Fe(III) could also contribute to U mobilization. Nitrate-dependent Fe(II) oxidation is an environmentally ubiquitous process facilitated by a diversity of microorganisms. Additional research is necessary in order to establish a role of biogenic Fe(III) oxides in U geochemical cycling at this site. These microbially mediated processes could also have a confounding effect on uranium mobility in subsurface environments.

  17. Effects of agricultural subsidies of nutrients and detritus on fish and plankton of shallow-reservoir ecosystems.

    PubMed

    Pilati, Alberto; Vanni, Michael J; González, María J; Gaulke, Alicia K

    2009-06-01

    Agricultural activities increase exports of nutrients and sediments to lakes, with multiple potential impacts on recipient ecosystems. Nutrient inputs enhance phytoplankton and upper trophic levels, and sediment inputs can shade phytoplankton, interfere with feeding of consumers, and degrade benthic habitats. Allochthonous sediments are also a potential food source for detritivores, as is sedimenting autochthonous phytodetritus, the production of which is stimulated by nutrient inputs. We examined effects of allochthonous nutrient and sediment subsidies on fish and plankton, with special emphasis on gizzard shad (Dorosoma cepedianum). This widespread and abundant omnivorous fish has many impacts on reservoir ecosystems, including negative effects on water quality via nutrient cycling and on fisheries via competition with sportfish. Gizzard shad are most abundant in agriculturally impacted, eutrophic systems; thus, agricultural subsidies may affect reservoir food webs directly and by enhancing gizzard shad biomass. We simulated agricultural subsidies of nutrients and sediment detritus by manipulating dissolved nutrients and allochthonous detritus in a 2 x 2 factorial design in experimental ponds. Addition of nutrients alone increased primary production and biomass of zooplanktivorous fish (bluegill and young-of-year gizzard shad). Addition of allochthonous sediments alone increased algal sedimentation and decreased seston and sediment C:P ratios. Ponds receiving both nutrients and sediments showed highest levels of phytoplankton and total phosphorus. Adult and juvenile gizzard shad biomass was enhanced equally by nutrient or sediment addition, probably because this apparently P-limited detritivore ingested similar amounts of P in all subsidy treatments. Nutrient excretion rates of gizzard shad were higher in ponds with nutrient additions, where sediments were composed mainly of phytodetritus. Therefore, gizzard shad can magnify the direct effects of nutrient subsidies on phytoplankton production, and these multiple effects must be considered in strategies to manage eutrophication and fisheries in warmwater reservoir lakes where gizzard shad can dominate fish biomass.

  18. Depositionally controlled recycling of iron and sulfur in marine sediments and its isotopic consequences

    NASA Astrophysics Data System (ADS)

    Riedinger, N.; Formolo, M.; Arnold, G. L.; Vossmeyer, A.; Henkel, S.; Sawicka, J.; Kasten, S.; Lyons, T. W.

    2011-12-01

    The continental margin off Uruguay and Argentina is characterized by highly dynamic depositional conditions. This variable depositional regime significantly impacts the biogeochemical cycles of iron and sulfur. Mass deposit related redeposition of reduced minerals can lead to the reoxidation of these phases and thus to an overprint of their geochemical primary signatures. Due to rapid burial these oxidized phases are still present in deeper subsurface sediments. To study the effects of sediment relocation on the sulfur and iron inventory we collected shallow and deep subsurface sediment samples via multicorer and gravity cores, respectively, in the western Argentine Basin during the RV Meteor Expedition M78/3 in May-July 2009. The samples were retrieved from shelf, slope and deep basin sites. The concentration and sulfur isotope composition of acid volatile sulfur (AVS), chromium reducible sulfur (CRS), elemental sulfur and total organic sulfur were determined. Furthermore, sequential iron extraction techniques were applied assess the distribution of iron oxide phases within the sediment. The investigated sediments are dominated by terrigenous inputs, with high amounts of reactive ferric iron minerals and only low concentrations of calcium carbonate. Total organic carbon concentrations show strong variation in the shallow subsurface sediments ranging between approximately 0.7 and 6.4 wt% for different sites. These concentrations do not correlate with water depths. Pore water accumulations of hydrogen sulfide are restricted to an interval at the sulfate-methane transition (SMT) zone a few meters below the sediment surface. In these deeper subsurface sediments pyrite is precipitated in this zone of hydrogen sulfide excess, whereas the accumulation of authigenic AVS and elemental sulfur (up to 2000 ppm) occurs at the upper and lower boundary of the sulfidic zone due the reaction of iron oxides with limited amounts of sulfide. Furthermore, our preliminary results indicate that there is a link between modern deposition in the shallow subsurface sediments and the long-term signals being buried and preserved in the deep subsurface layers. The data show that the burial of elemental sulfur into deep subsurface sediments can fuel the deep biosphere and has consequences for isotopic overprints tied, for example, to oxidation and disproportionation processes in the deeper sediments.

  19. The long-term nutrient accumulation with respect to anthropogenic impacts in the sediments from two freshwater marshes (Xianghai Wetlands, Northeast China).

    PubMed

    Wang, Guo-Ping; Liu, Jing-Shuang; Tang, Jie

    2004-12-01

    Sediment cores, representing a range of watershed characteristics and anthropogenic impacts, were collected from two freshwater marshes at the Xianghai wetlands (Ramsar site no. 548) in order to trace the historical variation of nutrient accumulation. Cores were (210)Pb- and (137)Cs-dated, and these data were used to calculate sedimentation rates and sediment accumulation rates. Ranges of dry mass accumulation rates and sedimentation rates were 0.27-0.96 g m(-2)yr(-1) and 0.27-0.90 cm yr(-1), respectively. The effect of human activities on increased sediment accumulation rates was observed. Nutrients (TOC, N, P, and S) in sediment were analyzed and nutrient concentration and accumulation were compared in two marshes with different hydrologic regime: an "open" marsh (E-0) and a partly "closed" marsh (F-0). Differences in physical and chemical characteristics between sediments of "open" and partly "closed" marsh were also observed. The "open" marsh sequestered much higher amounts of TOC (1.82%), N (981.1 mg kg(-1)), P (212.17 mg kg(-1)), and S (759.32 mg kg(-1)) than partly "closed" marsh (TOC: 0.32%, N: 415.35 mg kg(-1), P: 139.64 mg kg(-1), and S: 624.45 mg kg(-1)), and the "open" marsh indicated a rather large historical variability of TOC, N, P, and S inputs from alluvial deposits. Nutrient inputs (2.16-251.80 g TOC m(-2) yr(-1), 0.43-20.12 g N m(-2) yr(-1), 0.39-3.03 g P m(-2) yr(-1), 1.60-15.13 g S m(-2) yr(-1)) into the Xianghai wetlands of China are in the high range compared with reported nutrient accumulation rates for freshwater marshes in USA. The vertical variation, particularly for N, P, and S indicated the input history of the nutrients of the Xianghai wetlands developed in three periods--before 1950s, 1950-1980s, and after 1980s. The ratios between anthropogenic and natural inputs showed that the relative anthropogenic inputs of TOC, N, P, and S have been severalfold (TOC: 1.68-11.21, N: 0.47-3.67, P: 0.24-1.36, and S: 1.46-2.96) greater than values of their natural inputs after 1980s. The result is probably attributable, in part, to two decades of surface coal mining activities, urban sewage, and agriculture runoff within the upstream region of the Huolin River. Our findings suggest that the degree of anthropogenic disturbance within the surrounding watershed regulates wetland sediment, TOC, N, P, and S accumulation.

  20. Geomorphic evolution of the Le Sueur River, Minnesota, USA, and implications for current sediment loading

    USGS Publications Warehouse

    Gran, K.B.; Belmont, P.; Day, S.S.; Jennings, C.; Johnson, Aaron H.; Perg, L.; Wilcock, P.R.

    2009-01-01

    There is clear evidence that the Minnesota River is the major sediment source for Lake Pepin and that the Le Sueur River is a major source to the Minnesota River. Turbidity levels are high enough to require management actions. We take advantage of the well-constrained Holocene history of the Le Sueur basin and use a combination of remote sensing, fi eld, and stream gauge observations to constrain the contributions of different sediment sources to the Le Sueur River. Understanding the type, location, and magnitude of sediment sources is essential for unraveling the Holocene development of the basin as well as for guiding management decisions about investments to reduce sediment loads. Rapid base-level fall at the outlet of the Le Sueur River 11,500 yr B.P. triggered up to 70 m of channel incision at the mouth. Slope-area analyses of river longitudinal profi les show that knickpoints have migrated 30-35 km upstream on all three major branches of the river, eroding 1.2-2.6 ?? 109 Mg of sediment from the lower valleys in the process. The knick zones separate the basin into an upper watershed, receiving sediment primarily from uplands and streambanks, and a lower, incised zone, which receives additional sediment from high bluffs and ravines. Stream gauges installed above and below knick zones show dramatic increases in sediment loading above that expected from increases in drainage area, indicating substantial inputs from bluffs and ravines.

  1. Shifts in microbial community composition following surface application of dredged river sediments.

    PubMed

    Baniulyte, Dovile; Favila, Emmanuel; Kelly, John J

    2009-01-01

    Sediment input to the Illinois River has drastically decreased river depth and reduced habitats for aquatic organisms. Dredging is being used to remove sediment from the Illinois River, and the dredged sediment is being applied to the surface of a brownfield site in Chicago with the goal of revegetating the site. In order to determine the effects of this drastic habitat change on sediment microbial communities, we examined sediment physical, chemical, and microbial characteristics at the time of sediment application to the soil surface as well as 1 and 2 years after application. Microbial community biomass was determined by measurement of lipid phosphate. Microbial community composition was assessed using phospholipid fatty acid (PLFA) analysis, terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes, and clone library sequencing of 16S rRNA genes. Results indicated that the moisture content, organic carbon, and total nitrogen content of the sediment all decreased over time. Total microbial biomass did not change over the course of the study, but there were significant changes in the composition of the microbial communities. PLFA analysis revealed relative increases in fungi, actinomycetes, and Gram positive bacteria. T-RFLP analysis indicated a significant shift in bacterial community composition within 1 year of application, and clone library analysis revealed relative increases in Proteobacteria, Gemmatimonadetes, and Bacteriodetes and relative decreases in Acidobacteria, Spirochaetes, and Planctomycetes. These results provide insight into microbial community shifts following land application of dredged sediment.

  2. Algal Populations and Water Quality in Florida Lakes: Sedimentary Evidence of Anthropogenic Impact

    NASA Astrophysics Data System (ADS)

    Whitmore, M. R.; Whitmore, T. J.; Brenner, M.; Smoak, J.; Curtis, J.

    2004-05-01

    Cyanobacteria and other algae dominate many highly productive Florida (U.S.A.) lakes. Algal proliferation is often attributed to eutrophication during the last century, but it is poorly documented because Florida's water-quality monitoring programs became common only after 1980. We examined sediment cores from 14 hypereutrophic Florida lakes. Study lakes have been subjected to urbanization, agriculture, and to inputs of municipal sewage effluent and food-processing wastes. Major algal-pigment groups were analyzed in sediments using pigment-extraction and spectrophotometric techniques. We compared myxoxanthophyll, oscillaxanthin, total carotenoid, and total chlorophyll pigment profiles with WACALIB-derived limnetic total-P and chlorophyll a inferences based on fossil diatoms, sediment chemistry, and stable isotope (δ 13C & δ 15N) signatures of organic matter. Sedimentary evidence showed that cyanobacterial and algal proliferation appeared during recent decades in 10 study lakes in response to eutrophication. Cyanobacterial increase was very recent and abrupt in 7 lakes. Six lakes showed recovery following nutrient-mitigation programs that reduced sewage and other point-source effluent inputs. Four lakes showed long-term presence of cyanobacterial populations because edaphic nutrient supply causes these lakes to be naturally productive. Three of these naturally eutrophic lakes remained unchanged, but one demonstrated eutrophication followed by subsequent recovery. Correlations were particularly strong among sedimented pigment profiles and diatom-inferred limnetic water-quality profiles. Paleolimnological methods provide informative assessment of anthropogenic influence on lakes when long-term water-quality data are lacking. Historic studies also are useful for evaluating the feasibility of improving water quality through lake-management programs, and for defining appropriate lake restoration goals.

  3. Spatial and temporal variations of aeolian sediment input to the tributaries (the Ten Kongduis) of the upper Yellow River

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Shi, Changxing

    2018-02-01

    The Ten Kongduis of the upper Yellow River, located in Inner Mongolia, northern China, is an area with active wind-water coupled erosion and hence one of the main sediment sources of the Yellow River. In this study, we analyzed the characteristics of spatial and temporal variations of aeolian sediment input to the river channel. For this purpose, three segments of sand dune-covered banks of the Maobula and the Xiliugou kongduis were investigated three times from November 2014 to November 2015 using a 3-D laser scanner, and the displacement of banks of desert reaches of three kongduis was derived from interpreting remote sensing images taking in the years from 2005 to 2015. The data of the surveyed sand dunes reveal that the middle kongduis were fed by aeolian sand through the sand dunes moving towards the river channels. The amount of aeolian sediment input was estimated to be about 14.94 × 104 t/yr in the Maobula Kongdui and about 5.76 × 104 t/yr in the Xiliugou Kongdui during the period from November 2014 to November 2015. According to the interpretation results of remote sensing images, the amount of aeolian sediment input to the Maobula Kongdui was about 15.74 × 104 t in 2011 and 18.2 × 104 t in 2012. In the Xiliugou Kongdui, it was in the range of 9.52 × 104 - 9.99 × 104 t in 2012 and in the springs of 2013 and 2015. In the Hantaichuan Kongdui, it was 7.04 × 104 t in 2012, 7.53 × 104 t in the spring of 2013, and 8.52 × 104 t in the spring of 2015. Owing to the changes in wind and rainfall, both interseasonal and interannual sediment storage and release mechanisms exist in the processes of aeolian sand being delivered into the kongduis. However, all of the aeolian sediment input to the Ten Kongduis should be delivered downstream by the river flows during a long term.

  4. Lipid biomarkers in surface sediments from the Gulf of Genoa (Ligurian Sea) and their potential for palaeo-environmental reconstructions

    NASA Astrophysics Data System (ADS)

    Ruggieri, Nicoletta; Kaiser, Jérôme; Arz, Helge W.; Hefter, Jens; Siegel, Herbert; Mollenhauer, Gesine; Lamy, Frank

    2014-05-01

    A series of molecular organic markers were determined in surface sediments from the Gulf of Genoa (Ligurian Sea) in order to evaluate their potential for palaeo-environmental reconstructions. The interest for the Gulf of Genoa lies in its contrasting coastal and central areas in terms of terrestrial input, oligotrophy, primary production and surface temperature gradient. Moreover, the Gulf of Genoa contains a large potential for climate reconstruction as it is one of the four major Mediterranean centres for cyclogenesis and the ultra high sedimentation rates on the shelf make this area suitable for high resolution environmental reconstruction. Initial results from sediment cores in the coastal area indeed reveal the potential for Holocene environmental reconstruction on up to decadal timescales (see Poster "Reconstruction of late Holocene flooding events in the Gulf of Genoa, Ligurian Sea" by Lamy et al.). During R/V Poseidon cruise P413 (May 2011), ca. 60 sediment cores were taken along the Ligurian shelf, continental slope, and in the basin between off Livorno and the French border. Results based on surface sediments suggest that some biomarker-based proxies are well-suited to reconstruct sea surface temperature (SST), the input of terrestrial organic material (TOM), and marine primary productivity (PP). The estimated UK'37 SST reflects very closely the autumnal mean satellite-based SST distribution, while TEXH86 SSTs correspond to summer SST at offshore sites and to winter SST for the nearshore sites. Using both SST proxies together may thus allow reconstructing past seasonality changes. Proxies for TOM input (terrestrial n-alkane and n-alkanol concentrations, BIT index) have higher values close to the major river mouths and decrease offshore suggesting that these may be used as proxy for the variability in TOM input by runoff. Interestingly, high n-alkane average chain length in the most offshore sites may result from aeolian input from northern Africa. Finally, high concentrations of crenarchaeol and isoprenoid GDGTs in the open basin illustrate the preference of Thaumarchaeota for oligotrophic waters. This study represents a major prerequisite for the future application of lipid biomarkers on sediment cores from the Gulf of Genoa.

  5. Managing sewer solids for the reduction of foul flush effects--Forfar WTP.

    PubMed

    Fraser, A G; Sakrabani, R; Ashley, R M; Johnstone, F M

    2002-01-01

    In times of high sewer flow, conditions can exist which enable previously deposited material to be re-entrained back into the body of the flow column. Pulses of this highly polluted flow have been recorded in many instances at the recently constructed wastewater treatment plant (WTP) in Forfar, Scotland. Investigations have been undertaken to characterise the incoming flows and to suggest remedial measures to manage the quality fluctuations. Initial visits to the works and incoming pipes indicated a high degree of sediment deposition in the two inlet pipes. Analyses were carried out and consequently, changes to the hydraulic regime were made. Measurements of sediment level, sediment quality, wall slime and bulk water quality were monitored in the period following the remedial works to observe any improvements. Dramatic alterations in each of the determinands measured were recorded. Analyses were then undertaken to determine long term sediment behaviour and to assess the future usefulness of existing upstream sediment traps. It was concluded that with proper maintenance of the traps, the new hydraulic regime is sufficient to prevent further significant build up of sediment deposits and reduce impacts on the WTP. Further investigations made by North of Scotland Water Authority highlighted trade inputs to the system which may also have contributed to the now managed foul flush problem.

  6. Impacts of large dams on the complexity of suspended sediment dynamics in the Yangtze River

    NASA Astrophysics Data System (ADS)

    Wang, Yuankun; Rhoads, Bruce L.; Wang, Dong; Wu, Jichun; Zhang, Xiao

    2018-03-01

    The Yangtze River is one of the largest and most important rivers in the world. Over the past several decades, the natural sediment regime of the Yangtze River has been altered by the construction of dams. This paper uses multi-scale entropy analysis to ascertain the impacts of large dams on the complexity of high-frequency suspended sediment dynamics in the Yangtze River system, especially after impoundment of the Three Gorges Dam (TGD). In this study, the complexity of sediment dynamics is quantified by framing it within the context of entropy analysis of time series. Data on daily sediment loads for four stations located in the mainstem are analyzed for the past 60 years. The results indicate that dam construction has reduced the complexity of short-term (1-30 days) variation in sediment dynamics near the structures, but that complexity has actually increased farther downstream. This spatial pattern seems to reflect a filtering effect of the dams on the on the temporal pattern of sediment loads as well as decreased longitudinal connectivity of sediment transfer through the river system, resulting in downstream enhancement of the influence of local sediment inputs by tributaries on sediment dynamics. The TGD has had a substantial impact on the complexity of sediment series in the mainstem of the Yangtze River, especially after it became fully operational. This enhanced impact is attributed to the high trapping efficiency of this dam and its associated large reservoir. The sediment dynamics "signal" becomes more spatially variable after dam construction. This study demonstrates the spatial influence of dams on the high-frequency temporal complexity of sediment regimes and provides valuable information that can be used to guide environmental conservation of the Yangtze River.

  7. Estimating Sediment Delivery to The Rio Maranon, Peru Prior to Large-Scale Hydropower Developments Using High Resolution Imagery from Google Earth and a DJI Phantom 3 Drone

    NASA Astrophysics Data System (ADS)

    Goode, J. R.; Candelaria, T.; Kramer, N. R.; Hill, A. F.

    2016-12-01

    As global energy demands increase, generating hydroelectric power by constructing dams and reservoirs on large river systems is increasingly seen as a renewable alternative to fossil fuels, especially in emerging economies. Many large-scale hydropower projects are located in steep mountainous terrain, where environmental factors have the potential to conspire against the sustainability and success of such projects. As reservoir storage capacity decreases when sediment builds up behind dams, high sediment yields can limit project life expectancy and overall hydropower viability. In addition, episodically delivered sediment from landslides can make quantifying sediment loads difficult. These factors, combined with remote access, limit the critical data needed to effectively evaluate development decisions. In the summer of 2015, we conducted a basic survey to characterize the geomorphology, hydrology and ecology of 620 km of the Rio Maranon, Peru - a major tributary to the Amazon River, which flows north from the semi-arid Peruvian Andes - prior to its dissection by several large hydropower dams. Here we present one component of this larger study: a first order analysis of potential sediment inputs to the Rio Maranon, Peru. To evaluate sediment delivery and storage in this system, we used high resolution Google Earth imagery to delineate landslides, combined with high resolution imagery from a DJI Phantom 3 Drone, flown at alluvial fan inputs to the river in the field. Because hillslope-derived sediment inputs from headwater tributaries are important to overall ecosystem health in large river systems, our study has the potential to contribute to the understanding the impacts of large Andean dams on sediment connectivity to the Amazon basin.

  8. Estimating changes in carbon burial on the western US coastal shelf due to anthropogenic influences on river exports

    NASA Astrophysics Data System (ADS)

    Sauer, M.; Bergamaschi, B. A.; Smith, R. A.; Zhu, Z.; Shih, J.

    2012-12-01

    Flux of nutrients and sediments to the coastal zone varies in response to land-use modification, reservoir construction, management action and population change. It is anticipated that future changes in the flux of these components in response to climate and terrestrial processes will affect carbon (C) burial in the coastal ocean. Coastal oceans store appreciable amounts of C as a result of river inflows: coastal primary production is enhanced by inputs of terrestrially derived nutrients, and C burial is controlled by terrestrial sediment supply. Assessing the capacity and changes to coastal C preservation, therefore, requires estimation of (1) riverine nutrient and sediment delivery to the coastal ocean, and (2) the enhanced C production and sediment deposition in the coastal ocean. The United States Geological Survey (USGS) has embarked on a congressionally-mandated nationwide effort to assess the future effects of climate and land use and land cover change (LULC) on C storage. The USGS has developed alternative scenarios for changes in US LULC from 2006 to 2100 based on the Intergovernmental Panel on Climate Change (IPCC) climate, economic, and demographic scenarios (Sohl et al 2012). These spatially-detailed scenarios provide inputs to national-scale SPARROW watershed models of total nitrogen, total phosphorus, total organic C (TOC), and suspended sediment (Smith et al 1997; Schwarz et al, 2006). The watershed models, in turn, provide inputs of nutrients, TOC, and sediment to a coupled model of coastal transport, production, and sedimentation. This coastal modelling component includes particulate C sedimentation and burial estimated as functions of bathymetry and pycnocline depth (Armstrong, et al 2002; Dunne et al 2007). River borne fluxes of TOC to US Pacific coastal waters under baseline conditions (1992) were 1.59 TgC/yr. Projected future (2050) fluxes under a regionally-downscaled LULC scenario aligned with the IPCC A2 scenario were similar (1.61TgC/yr). C storage in coastal environments as influenced by terrestrial processes represents a significant sink for C in comparison to terrestrial biomass C sinks, and is significantly sensitive to changes in LULC and population. The estimated rate of storage in Pacific coastal waters was 2.0 TgC/yr under baseline conditions. Projection of land use and population changes through 2050 associated with the IPCC A2 scenario had a small effect on coastal C storage processes, reducing C storage by 4% over baseline conditions. Results of this modeling exercise indicate that the size of the C sink associated with terrestrial exports is substantial and sensitive to anthropogenic activity. Thus, future assessments of how terrestrial policy and management actions may alter C storage should include an evaluation of the effects prospective alterations in terrestrial processes have on coastal C storage.

  9. Sediment geochemistry of Corte Madera Marsh, San Francisco Bay, California: have local inputs changed, 1830-2010?

    USGS Publications Warehouse

    Takesue, Renee K.; Jaffe, Bruce E.

    2013-01-01

    Large perturbations since the mid-1800s to the supply and source of sediment entering San Francisco Bay have disturbed natural processes for more than 150 years. Only recently have sediment inputs through the Sacramento-San Joaquin Delta (the Delta) decreased to what might be considered pre-disturbance levels. Declining sediment inputs to San Francisco Bay raise concern about continued tidal marsh accretion, particularly if sea level rise accelerates in the future. The aim of this study is to explore whether the relative amount of local-watershed sediment accumulating in a tidal marsh has changed as sediment supply from the Sacramento-San Joaquin Rivers has decreased. To address this question, sediment geochemical indicators, or signatures, in the fine fraction (silt and clay) of Sacramento River, San Joaquin River, San Francisco Bay, and Corte Madera Creek sediment were identified and applied in sediment recovered from Corte Madera Marsh, one of the few remaining natural marshes in San Francisco Bay. Total major, minor, trace, and rare earth element (REE) contents of fine sediment were determined by inductively coupled plasma mass and atomic emission spectroscopy. Fine sediment from potential source areas had the following geochemical signatures: Sacramento River sediment downstream of the confluence of the American River was characterized by enrichments in chromium, zirconium, and heavy REE; San Joaquin River sediment at Vernalis and Lathrop was characterized by enrichments in thorium and total REE content; Corte Madera Creek sediment had elevated nickel contents; and the composition of San Francisco Bay mud proximal to Corte Madera Marsh was intermediate between these sources. Most sediment geochemical signatures were relatively invariant for more than 150 years, suggesting that the composition of fine sediment in Corte Madera Marsh is not very sensitive to changes in the magnitude, timing, or source of sediment entering San Francisco Bay through the Delta. Nor does there appear to be a ubiquitous increase in the proportion of fine sediment from Corte Madera watershed accumulating in the marsh during the last 20 years when sediment inflows through the Delta have decreased to pre-disturbance levels. We conclude that a large, well-mixed reservoir, such as the transportable fine sediment pool in San Francisco Bay, is the primary source of sediment to Corte Madera Marsh, and this source buffers the marsh against changes in sediment supply from the Delta and local watersheds. This study also found that Corte Madera Marsh sediment between about 10-30 centimeters depth is highly contaminated with lead, likely a legacy of lead smelter operations near Carquinez Strait and leaded gasoline use.

  10. Concentration, composition and sources of PAHs in the coastal sediments of the exclusive economic zone (EEZ) of Qatar, Arabian Gulf.

    PubMed

    Soliman, Y S; Al Ansari, E M S; Wade, T L

    2014-08-30

    Surface sediments were collected from sixteen locations in order to assess levels and sources of polycyclic aromatic hydrocarbons (PAHs) in sediments of Qatar exclusive economic zone (EEZ). Samples were analyzed for 16 parent PAHs, 18 alkyl homologs and for dibenzothiophenes. Total PAHs concentration (∑PAHs) ranged from 2.6 ng g(-1) to 1025 ng g(-1). The highest PAHs concentrations were in sediments in and adjacent to harbors. Alkylated PAHs predominated most of the sampling locations reaching up to 80% in offshore locations. Parent PAHs and parent high molecular weight PAHs dominated location adjacent to industrial activities and urban areas. The origin of PAHs sources to the sediments was elucidated using ternary plot, indices, and molecular ratios of specific compounds such as (Ant/Phe+Ant), (Flt/Flt+Pyr). PAHs inputs to most coastal sites consisted of mixture of petroleum and combustion derived sources. However, inputs to the offshore sediments were mainly of petroleum origin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Dilution of 10Be in detrital quartz by earthquake-induced landslides: Implications for determining denudation rates and potential to provide insights into landslide sediment dynamics

    NASA Astrophysics Data System (ADS)

    West, A. Joshua; Hetzel, Ralf; Li, Gen; Jin, Zhangdong; Zhang, Fei; Hilton, Robert G.; Densmore, Alexander L.

    2014-06-01

    The concentration of 10Be in detrital quartz (10Beqtz) from river sediments is now widely used to quantify catchment-wide denudation rates but may also be sensitive to inputs from bedrock landslides that deliver sediment with low 10Beqtz. Major landslide-triggering events can provide large amounts of low-concentration material to rivers in mountain catchments, but changes in river sediment 10Beqtz due to such events have not yet been measured directly. Here we examine the impact of widespread landslides triggered by the 2008 Wenchuan earthquake on 10Beqtz in sediment samples from the Min Jiang river basin, in Sichuan, China. Landslide deposit material associated with the Wenchuan earthquake has consistently lower 10Beqtz than in river sediment prior to the earthquake. River sediment 10Beqtz decreased significantly following the earthquake downstream of areas of high coseismic landslide occurrence (i.e., with greater than ∼0.3% of the upstream catchment area affected by landslides), because of input of the 10Be-depleted landslide material, but showed no systematic changes where landslide occurrence was low. Changes in river sediment 10Beqtz concentration were largest in small first-order catchments but were still significant in large river basins with areas of 104-105 km. Spatial and temporal variability in river sediment 10Beqtz has important implications for inferring representative denudation rates in tectonically active, landslide-dominated environments, even in large basins. Although the dilution of 10Beqtz in river sediment by landslide inputs may complicate interpretation of denudation rates, it also may provide a possible opportunity to track the transport of landslide sediment. The associated uncertainties are large, but in the Wenchuan case, calculations based on 10Be mixing proportions suggest that river sediment fluxes in the 2-3 years following the earthquake increased by a similar order of magnitude in the 0.25-1 mm and the <0.25 mm size fractions, as determined from 10Beqtz mixing calculations and hydrological gauging, respectively. Such information could provide new insight into sediment transfer, with implications for secondary sediment-related hazards and for understanding the removal of mass from mountains.

  12. Fine sediment in pools: An index of how sediment is affecting a stream channel

    Treesearch

    Tom Lisle; Sue Hilton

    1991-01-01

    One of the basic issues facing managers of fisheries watersheds is how inputs of sediment affect stream channels. In some cases we can measure and even roughly predict effects of land use on erosion and delivery of sediment from hillslopes to streams. But we are at a loss about how a given increase in sediment load will affect channel morphology, flow conditions, and...

  13. Spatial variability of metals in the inter-tidal sediments of the Medway Estuary, Kent, UK.

    PubMed

    Spencer, Kate L

    2002-09-01

    Concentrations of major and trace metals were determined in eight sediment cores collected from the inter-tidal zone of the Medway Estuary, Kent, UK. Metal associations and potential sources have been investigated using principal component analysis. These data provide the first detailed geochemical survey of recent sediments in the Medway Estuary. Metal concentrations in surface sediments lie in the mid to lower range for UK estuarine sediments indicating that the Medway receives low but appreciable contaminant inputs. Vertical metal distributions reveal variable redox zonation across the estuary and historically elevated anthropogenic inputs. Peak concentrations of Cu, Pb and Zn can be traced laterally across the estuary and their positions indicate periods of past erosion and/or non-deposition. However, low rates of sediment accumulation do not allow these sub surface maxima to be used as accurate geochemical marker horizons. The salt marshes and inter-tidal mud flats in the Medway Estuary are experiencing erosion, however the erosion of historically contaminated sediments is unlikely to re-release significant amounts of heavy metals to the estuarine system.

  14. Sediment Budgeting in Dam-Affected Rivers: Assessing the Influence of Damming, Tributaries, and Alluvial Valley Sediment Storage on Sediment Regimes

    NASA Astrophysics Data System (ADS)

    Wilcox, A. C.; Dekker, F. J.; Riebe, C. S.

    2014-12-01

    Although sediment supply is recognized as a fundamental driver of fluvial processes, measuring how dams affect sediment regimes and incorporating such knowledge into management strategies remains challenging. To determine the influences of damming, tributary supply, and valley morphology and sediment storage on downstream sediment supply in a dryland river, the Bill Williams River (BWR) in western Arizona, we measured basin erosion rates using cosmogenic nuclide analysis of beryllium-10 (10Be) at sites upstream and downstream of a dam along the BWR, as well as from tributaries downstream of the dam. Riverbed sediment mixing calculations were used to test if the dam, which blocks sediment supply from the upper 85% of the basin's drainage area, increases the proportion of tributary sediment to residual upstream sediment in mainstem samples downstream of the dam. Erosion rates in the BWR watershed are more than twice as large in the upper catchment (136 t km-2 yr-1) than in tributaries downstream of Alamo Dam (61 t km-2 yr-1). Tributaries downstream of the dam have little influence on mainstem sediment dynamics. The effect of the dam on reducing sediment supply is limited, however, because of the presence of large alluvial valleys along the mainstem BWR downstream of the dam that store substantial sediment and mitigate supply reductions from the upper watershed. These inferences, from our 10Be derived erosion rates and mixing calculations, are consistent with field observations of downstream changes in bed material size, which suggest that sediment-deficit conditions are restricted to a 10 km reach downstream of the dam, and limited reservoir bathymetry data. Many studies have suggested that tributary sediment inputs downstream of dams play a key role in mitigating dam-induced sediment deficits, but here we show that in a dryland river with ephemeral tributaries, sediment stored in alluvial valleys can also play a key role and in some cases trumps the role of tributaries.

  15. It Takes Two to Tango: When and Where Dual Nutrient (N & P) Reductions Are Needed to Protect Lakes and Downstream Ecosystems.

    PubMed

    Paerl, Hans W; Scott, J Thad; McCarthy, Mark J; Newell, Silvia E; Gardner, Wayne S; Havens, Karl E; Hoffman, Daniel K; Wilhelm, Steven W; Wurtsbaugh, Wayne A

    2016-10-06

    Preventing harmful algal blooms (HABs) is needed to protect lakes and downstream ecosystems. Traditionally, reducing phosphorus (P) inputs was the prescribed solution for lakes, based on the assumption that P universally limits HAB formation. Reduction of P inputs has decreased HABs in many lakes, but was not successful in others. Thus, the "P-only" paradigm is overgeneralized. Whole-lake experiments indicate that HABs are often stimulated more by combined P and nitrogen (N) enrichment rather than N or P alone, indicating that the dynamics of both nutrients are important for HAB control. The changing paradigm from P-only to consideration of dual nutrient control is supported by studies indicating that (1) biological N fixation cannot always meet lake ecosystem N needs, and (2) that anthropogenic N and P loading has increased dramatically in recent decades. Sediment P accumulation supports long-term internal loading, while N may escape via denitrification, leading to perpetual N deficits. Hence, controlling both N and P inputs will help control HABs in some lakes and also reduce N export to downstream N-sensitive ecosystems. Managers should consider whether balanced control of N and P will most effectively reduce HABs along the freshwater-marine continuum.

  16. The dilemma of controlling cultural eutrophication of lakes

    PubMed Central

    Schindler, David W.

    2012-01-01

    The management of eutrophication has been impeded by reliance on short-term experimental additions of nutrients to bottles and mesocosms. These measures of proximate nutrient limitation fail to account for the gradual changes in biogeochemical nutrient cycles and nutrient fluxes from sediments, and succession of communities that are important components of whole-ecosystem responses. Erroneous assumptions about ecosystem processes and lack of accounting for hysteresis during lake recovery have further confused management of eutrophication. I conclude that long-term, whole-ecosystem experiments and case histories of lake recovery provide the only reliable evidence for policies to reduce eutrophication. The only method that has had proven success in reducing the eutrophication of lakes is reducing input of phosphorus. There are no case histories or long-term ecosystem-scale experiments to support recent claims that to reduce eutrophication of lakes, nitrogen must be controlled instead of or in addition to phosphorus. Before expensive policies to reduce nitrogen input are implemented, they require ecosystem-scale verification. The recent claim that the ‘phosphorus paradigm’ for recovering lakes from eutrophication has been ‘eroded’ has no basis. Instead, the case for phosphorus control has been strengthened by numerous case histories and large-scale experiments spanning several decades. PMID:22915669

  17. Rapid climate fluctuations over the past millennium: evidence from a lacustrine record of Basomtso Lake, southeastern Tibetan Plateau

    PubMed Central

    Li, Kai; Liu, Xingqi; Herzschuh, Ulrike; Wang, Yongbo

    2016-01-01

    Abrupt climate changes and fluctuations over short time scales are superimposed on long-term climate changes. Understanding rapid climate fluctuations at the decadal time scale over the past millennium will enhance our understanding of patterns of climate variability and aid in forecasting climate changes in the future. In this study, climate changes on the southeastern Tibetan Plateau over the past millennium were determined from a 4.82-m-long sediment core from Basomtso Lake. At the centennial time scale, the Medieval Climate Anomaly (MCA), Little Ice Age (LIA) and Current Warm Period (CWP) are distinct in the Basomtso region. Rapid climate fluctuations inferred from five episodes with higher sediment input and likely warmer conditions, as well as seven episodes with lower sediment input and likely colder conditions, were well preserved in our record. These episodes with higher and lower sediment input are characterized by abrupt climate changes and short time durations. Spectral analysis indicates that the climate variations at the centennial scale on the southeastern Tibetan Plateau are influenced by solar activity during the past millennium. PMID:27091591

  18. Characteristics of bioavailable organic phosphorus in sediment and its contribution to lake eutrophication in China.

    PubMed

    Ni, Zhaokui; Wang, Shengrui; Wang, Yuemin

    2016-12-01

    This study aims to establish the relative importance of sediment organic phosphorus (P o ) to the total P and the major classes of organic molecules that contribute to sediment P o , determined by measuring their susceptibility to enzymatic hydrolysis, across a suite of lakes ranging from oligotrophic to eutrophic status. The results showed that P o accounted for 21-60% of total P, and bioavailable P o accounted for 9-34% of P o in the sediments. The bioavailable P o includes mainly labile (H 2 O-P o ) and moderately labile (NaOH-P o ) P forms. For H 2 O-P o (accounting for only1.4% of P o ), 53% (average) was labile monoester P, 28% was diester P and 17% was phytate-like P. For NaOH-P o (accounting for 9-33% of P o ), 32% was labile monoester P, 33% was phytate-like P and 18% was diester P. The composition of bioavailable P o , determined by enzyme assays, was related to the lake nutrient levels, which implies that sediment bioavailable P o could act as an effective indicator for lake eutrophic status. With the increase of lake nutrient levels, bioavailable P o content and alkaline phosphatase activity in the sediment all increased, indicating that P o represents an important and bioavailable source of P that increases with eutrophication, and could contribute to internal loading and resistance of eutrophic lakes to remediation. This implies that eutrophic lakes would maintain long-term eutrophic status and algal bloom phenomena even after the external input of P was controlled and the total P concentration of water has declined. Thus, in order to reduce the release risk of sediment P more efficiently and effectively, sediment P control technique should focus not only on reducing the total P and inorganic P, but should also pay close attention to the removal of bioavailable P o . Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Uncertainty in the Modeling of Tsunami Sediment Transport

    NASA Astrophysics Data System (ADS)

    Jaffe, B. E.; Sugawara, D.; Goto, K.; Gelfenbaum, G. R.; La Selle, S.

    2016-12-01

    Erosion and deposition from tsunamis record information about tsunami hydrodynamics and size that can be interpreted to improve tsunami hazard assessment. A recent study (Jaffe et al., 2016) explores sources and methods for quantifying uncertainty in tsunami sediment transport modeling. Uncertainty varies with tsunami properties, study site characteristics, available input data, sediment grain size, and the model used. Although uncertainty has the potential to be large, case studies for both forward and inverse models have shown that sediment transport modeling provides useful information on tsunami inundation and hydrodynamics that can be used to improve tsunami hazard assessment. New techniques for quantifying uncertainty, such as Ensemble Kalman Filtering inversion, and more rigorous reporting of uncertainties will advance the science of tsunami sediment transport modeling. Uncertainty may be decreased with additional laboratory studies that increase our understanding of the semi-empirical parameters and physics of tsunami sediment transport, standardized benchmark tests to assess model performance, and the development of hybrid modeling approaches to exploit the strengths of forward and inverse models. As uncertainty in tsunami sediment transport modeling is reduced, and with increased ability to quantify uncertainty, the geologic record of tsunamis will become more valuable in the assessment of tsunami hazard. Jaffe, B., Goto, K., Sugawara, D., Gelfenbaum, G., and La Selle, S., "Uncertainty in Tsunami Sediment Transport Modeling", Journal of Disaster Research Vol. 11 No. 4, pp. 647-661, 2016, doi: 10.20965/jdr.2016.p0647 https://www.fujipress.jp/jdr/dr/dsstr001100040647/

  20. The influence of network structure upon sediment routing in two disturbed catchments, East Cape, New Zealand

    NASA Astrophysics Data System (ADS)

    Walley, Yasmin; Tunnicliffe, Jon; Brierley, Gary

    2018-04-01

    Lateral inputs from hillslopes and tributaries exert a variable impact upon the longitudinal connectivity of sediment transfer in river systems with differing drainage network configurations. Network topology influences channel slope and confinement at confluence zones, thereby affecting patterns of sediment storage and the conveyance of sediments through catchments. Rates of disturbance response, patterns of sediment propagation, and the implications for connectivity and recovery were assessed in two neighbouring catchments with differing network configurations on the East Cape of New Zealand. Both catchments were subject to forest clearing in the late 1940s and a major cyclonic storm in 1988. However, reconstruction of landslide runout pathways, and characterization of connectivity using a Tokunaga framework, demonstrates different patterns and rates of sediment transfer and storage in a dendritic network relative to a more elongate, herringbone drainage network. The dendritic network has a higher rate of sediment transfer between storage sites in successive Strahler orders, whereas longitudinal connectivity along the fourth-order mainstem is disrupted by lateral sediment inputs from multiple low-order tributaries in the more elongate, herringbone network. In both cases the most dynamic ('hotspot') reaches are associated with a high degree of network side-branching.

  1. Distribution and origins of n-alkanes, hopanes, and steranes in rivers and marine sediments from Southwest Caspian coast, Iran: implications for identifying petroleum hydrocarbon inputs.

    PubMed

    Shirneshan, Golshan; Bakhtiari, Alireza Riyahi; Memariani, Mahmoud

    2016-09-01

    The occurrence of n-alkanes and biomarkers (hopane and sterane) in surface sediments from Southwestern coasts of Caspian Sea and 28 rivers arriving to this lake, determined with a gas chromatography-mass spectrometry method, was used to assess the impacts of anthropogenic activities in the studied area. The concentrations of total n-alkanes (Σ21 n-alkane) in costal and riverine sediments varied from 249.2 to 3899.5 and 56 to 1622.4 μg g(-1), respectively. An evaluation of the source diagnostic indices indicated that petroleum related sources (petrogenic) were mainly contributed to n-alkanes in costal and most riverine sediments. Only the hydrocarbons in sediment of 3 rivers were found to be mainly of biogenic origin. Principal component analysis using hopane diagnostic ratios in costal and riverine sediments, and Anzali, Turkmenistan, and Azerbaijan oils were used to identify the sources of hydrocarbons in sediments. It was indicated that the anthropogenic contributions in most of the costal sediment samples are dominated with inputs of oil spills from Turkmenistan and Azerbaijan countries.

  2. Fuels planning: science synthesis and integration; environmental consequences fact sheet 12: Water Erosion Prediction Project (WEPP) Fuel Management (FuMe) tool

    Treesearch

    William Elliot; David Hall

    2005-01-01

    The Water Erosion Prediction Project (WEPP) Fuel Management (FuMe) tool was developed to estimate sediment generated by fuel management activities. WEPP FuMe estimates sediment generated for 12 fuel-related conditions from a single input. This fact sheet identifies the intended users and uses, required inputs, what the model does, and tells the user how to obtain the...

  3. Multi-timescale sediment responses across a human impacted river-estuary system

    NASA Astrophysics Data System (ADS)

    Chen, Yining; Chen, Nengwang; Li, Yan; Hong, Huasheng

    2018-05-01

    Hydrological processes regulating sediment transport from land to sea have been widely studied. However, anthropogenic factors controlling the river flow-sediment regime and subsequent response of the estuary are still poorly understood. Here we conducted a multi-timescale analysis on flow and sediment discharges during the period 1967-2014 for the two tributaries of the Jiulong River in Southeast China. The long-term flow-sediment relationship remained linear in the North River throughout the period, while the linearity showed a remarkable change after 1995 in the West River, largely due to construction of dams and reservoirs in the upland watershed. Over short timescales, rainstorm events caused the changes of suspended sediment concentration (SSC) in the rivers. Regression analysis using synchronous SSC data in a wet season (2009) revealed a delayed response (average 5 days) of the estuary to river input, and a box-model analysis established a quantitative relationship to further describe the response of the estuary to the river sediment input over multiple timescales. The short-term response is determined by both the vertical SSC-salinity changes and the sediment trapping rate in the estuary. However, over the long term, the reduction of riverine sediment yield increased marine sediments trapped into the estuary. The results of this study indicate that human activities (e.g., dams) have substantially altered sediment delivery patterns and river-estuary interactions at multiple timescales.

  4. Assessment of nitrogen and phosphate balance and the roles of bacteria and viruses at the water-sediment interface in the Allal El Fassi reservoir (Morocco).

    PubMed

    Alaoui-Mhamdi, Mohamed; Dhib, Amel; Bouhaddioui, Abderrahim; Ziadi, Boutheina; Turki, Souad; Aleya, Lotfi

    2014-09-01

    Balances of nitrogen and phosphate were studied in the Allal El Fassi reservoir (Morocco); the results showing that nitrogen input (296 mg m(-2) d(-1)) was 161% higher than output (183 mg m(-2) d(-1)). Phosphate input (35.65 mg m(-2) d(-1)) was 865% higher than output (4.12 mg m(-2) d(-1)), causing a progressive increase in the internal phosphate stock. Sedimentation flux was equally high (53.80 and 18 mg m(-2) d(-1)) for both nitrogen and phosphate input, mainly from the Sebou River and in particulate form which immediately settles upon arrival in the reservoir. The release of nitrogen and phosphate from the sediment (5.40 and 1.15 mg m(-2) d(-1), respectively) depended on physicochemical and biological (bacteria and viruses) variability and the calcareous nature of the catchment basin. Calcium-bound phosphate prevailed in the reservoir. Drastic control of phosphate input is suggested to avoid accumulation of calcium-bound phosphate which may dissociate and thereby contribute to eutrophication.

  5. a Dual Proxy of Oceanic Weathering Inputs: Rare Earth Element Patterns and nd Isotopes from Metalliferous Sediment Cores

    NASA Astrophysics Data System (ADS)

    Sherrell, R. M.; Wright, J. D.; Hamelin, B.; Michard, A.

    2002-12-01

    Recent interest in reconstructing Nd isotopic distributions in the past ocean using Fe-Mn crusts, oxide coatings on sediment particles, foraminifera shells and fish teeth has raised questions about relative influence of water mass mixing vs. variations in weathering input. We have explored the utility of hydrothermal metalliferous sediments for generating high-resolution records of both Nd isotopes and rare earth element (REE) patterns in deepwater. We present a 135kyr record of high precision REE data, preliminary Nd isotope ratios, and δ18O from a 2.3 m core collected at 3180m at 11S on the East Pacific Rise (EPR). REEs are dominated (\\>96%) by seawater REEs adsorbed to Fe particles in these metalliferous carbonates; the hydrothermal REE source itself is negligible. Downcore variations in Nd/Er (proxy for light/heavy pattern fractionation) are not large (10%) but are easily quantified by our ICP-MS method (precision 1%), and reproducibly correspond to δ18O shifts. The largest Nd/Er excusions occur during deglaciations, e.g. Nd/Er=5.1 to 4.4 mol/mol between glacial MIS 6 and interglacial MIS 5e. If these variations reflect composition of ambient deepwater, then the results are opposite those expected by reduced influence of Atlantic component water (high Nd/Er) during glacials. Prelimininary ɛNd values for samples taken at Nd/Er extrema in MIS 1, 2, 5e and 6 are nearly invarient at -3.5+/-0.4, in excellent agreement with modern water column ɛNd for Pacific deepwater at this depth. Thus, while paleo-ɛNd shows virtually no change over 135kyr, REE pattern does carry information, but not, we believe, about water mass mixing changes. We suggest instead that Nd/Er reflects climatically-influenced weathering inputs to the Pacific REE pool. We propose a sea-level-driven mechanism: glacial low sea-stand reduces the extent of estuarine environments in which the light-REE-depleted seawater pattern is imparted, causing 1) more direct input of unfractionated crustal REE sources, and 2) release of REEs during erosion of high Nd/Er shelf sediments. This mechanism, unlike tectonically-driven shifts in weathering sources, can occur on glacial/interglacial timescales, and is expected to result in negligible change in Nd isotopic input, consistent with observations. Alternative mechanisms could involve temporal variations in the flux and composition of water column particles. In a first application to longer timescales, a low-resolution Cenozoic record from DSDP Leg 92, shows much larger but smooth variation of 50% in Nd/Er between 28 and 1.5 Ma, with high values from 28 to 20 Ma, decreasing during the mid-Miocene to values similar to modern at <8 Ma. ɛNd varies from -3 (near present deepwater value) to ~-6, but does not co-vary simply with Nd/Er. The combination of Nd/Er and ɛNd constitutes a new tandem proxy that may reveal changes in the style and/or source of weathering inputs to the past ocean, not interpretable from ɛNd alone. The results may have implications for climate-linked changes in the oceanic supply of biogeochemically important elements such as Fe and P.

  6. A New Dual Proxy of Oceanic Weathering Inputs: Rare Earth Element Patterns and Nd Isotopes From Metalliferous Sediment Cores

    NASA Astrophysics Data System (ADS)

    Sherrell, R.; Wright, J.; Michard, A.; Hamelin, B.

    Recent interest in reconstructing Nd isotopic distributions in the past ocean using Fe- Mn crusts, oxide coatings on sediment particles, foraminifera shells and fish teeth has raised questions about relative influence of water mass mixing vs. variations in weath- ering input. We have explored the utility of hydrothermal metalliferous sediments for generating high-resolution records of both Nd isotopes and rare earth element (REE) patterns in deepwater. We present a 135kyr record of high precision REE data, pre- liminary Nd isotope ratios, and 18O from a 2.3 m core collected at 3180m at 11S on the East Pacific Rise (EPR). REEs are dominated ( 96%) by seawater REEs adsorbed to Fe particles in these metalliferous carbonates; the hydrothermal REE source itself is negligible. Downcore variations in Nd/Er (proxy for light/heavy pattern fractiona- tion) are not large (10%) but are easily quantified by our ICP-MS method (precision 1%), and reproducibly correspond to 18O shifts. The largest Nd/Er excusions occur during deglaciations, e.g. Nd/Er=5.1 to 4.4 mol/mol between glacial MIS 6 and inter- glacial MIS 5e. If these variations reflect composition of ambient deepwater, then the results are opposite those expected by reduced influence of Atlantic component water (high Nd/Er) during glacials. Prelimininary Nd values for samples taken at Nd/Er ex- trema in MIS 1, 2, 5e and 6 are nearly invarient at -3.5+/-0.4, in excellent agreement with modern water column Nd for Pacific deepwater at this depth. Thus, while paleo- Nd shows virtually no change over 135kyr, REE pattern does carry information, but not, we believe, about water mass mixing changes. We suggest instead that Nd/Er re- flects climatically-influenced weathering inputs to the Pacific REE pool. We propose a sea-level-driven mechanism: glacial low sea-stand reduces the extent of estuarine environments in which the light-REE-depleted seawater pattern is imparted, causing 1) more direct input of unfractionated crustal REE sources, and 2) release of REEs during erosion of high Nd/Er shelf sediments. This mechanism, unlike tectonically- driven shifts in weathering sources, can occur on glacial/interglacial timescales, and is expected to result in negligible change in Nd isotopic input, consistent with ob- servations. Alternative mechanisms could involve temporal variations in the flux and composition of water column particles. In a first application to longer timescales, a low-resolution Cenozoic record from DSDP Leg 92, shows much larger but smooth variation of 50% in Nd/Er between 28 and 1.5 Ma, with high values from 28 to 20 Ma, decreasing during the mid-Miocene to values similar to modern at <8 Ma. Nd varies from -3 (near present deepwater value) to -6, but does not co-vary simply with Nd/Er. The combination of Nd/Er and Nd constitutes a new tandem proxy that may reveal changes in the style and/or source of weathering inputs to the past ocean, not interpretable from Nd alone. The results may have implications for climate-linked changes in the oceanic supply of biogeochemically important elements such as Fe and P.

  7. Sedimentation in the chaparral: how do you handle unusual events?

    Treesearch

    Raymond M. Rice

    1982-01-01

    Abstract - Processes of erosion and sedimentation in steep chaparral drainage basins of southern California are described. The word ""hyperschedastic"" is coined to describe the sedimentation regime which is highly variable because of the interaction of marginally stable drainage basins, great variability in storm inputs, and the random occurrence...

  8. (210)Pb and composition data of near-surface sediments and interstitial waters evidencing anthropogenic inputs in Amazon River mouth, Macapá, Brazil.

    PubMed

    Nery, José Reinaldo Cardoso; Bonotto, Daniel Marcos

    2011-04-01

    Activity profiles of excess (210)Pb determined in three sediment cores from Amazon River mouth, Macapá city, Brazil, provided the evaluation of sedimentation rates, contributing to a better knowledge of the hydrological conditions in the site that is the capital of Amapá State and is drained by the waters of the huge Amazon River. Chemical data were also determined in the sediments, allowing identify signatures coupled to anthropogenic inputs held in the past in Amapá State. Significant direct relationships between LOI (loss on ignition) and organic matter were found for all sediments profiles. Silica was found to be inversely related to organic matter in the three profiles; its decrease accompanied an increase on the specific surface of the sediments. This relationship was confirmed by a great number of inverse significant correlations among silica and oxides Na(2)O, K(2)O, CaO, MgO, Al(2)O(3), P(2)O(5), Fe(2)O(3) and MnO. It was possible to identify the role of organic matter on adsorption of several oxides in the core sediments profiles. Apparent sediment mass accumulation rates corresponding to values between 450 and 2510 mg cm(-2)yr(-1) were obtained, and are compatible with the results of others studies. The (210)Pb activities in one sampling point suggested the occurrence of anthropogenic inputs related to the initial period of the mining activities conducted in Serra do Navio, Amapá State, for the commercialization of Mn ores. This was reinforced by the abrupt fluctuations in chemical data obtained for the sediments and composition of the interstitial waters occurring there. The Atlantic hurricane activity also appeared to affect the sedimentation rates in the area, as two different values were recorded in each profile. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Integrative investigations on sediments in the Belauer See catchment (northern Germany)

    NASA Astrophysics Data System (ADS)

    Dreibrodt, Stefan

    2015-04-01

    The Holocene history of lake development, catchment vegetation, soil formation and human impact since the onset of the Neolithic period was reconstructed via the analysis of sediment sequences at Lake Belau (northern Germany). The chronology of the annually laminated lake sediment sequence was established via varve counts, radiocarbon dating and tephra analysis. Sequences of colluvial sediments and buried soils studied in 19 large exposures and supplementing auger cores within the lake catchment area were dated via radiocarbon dating and archaeological dating of embedded artifacts. The long term development of the lake status was found to be strongly influenced by local human activity. This is indicated by coincidence of phases of landscape openness deduced from pollen data with input of detritus and solutes into the lake. A comparison with palaeo-climate reconstructions reveals that calcite precipitation in the lake reflects climate variability at least to a certain degree. Calibrating the sediment record of the sub-recent lake sediments (micro-facies) on limnological and meteorological records discovered the influence of the NAO as well as solar activity on the limnological processes during the last century reflected by distinguished sedimentation patterns. A comparative study of additional laminated surface sediment sequences from northern Germany corroborates the results. A high resolution reconstruction of Neolithic weather conditions in northern Germany based on the varves of Lake Belau and Lake Poggensee was facilitated by the calibration. The quantitative records of sediments originating from soil erosion (colluvial sediments, allochthonous input into the lake) illustrate the dominance of short distance surface processes (slopes) acting in Holocene mid-latitude landscapes. Coincidence of gully incision in the lake catchment area and increased allochthonous input into the lake indicates the former occurrence of hydrological high energy runoff events (e. g. in the 14th century or at ca. 200 cal BC) whose regional significance is testable via comparative investigations in additional lake catchments.

  10. Historical and seasonal dynamics of phosphorus mobility in Sancha Lake of Southwest China's Sichuan Province.

    PubMed

    Jia, Binyang; Tang, Ya; Yang, Bo; Huang, Jen-How

    2017-01-01

    Phosphorus (P) fractionations in the surface sediment of Sancha Lake in China's southwestern Sichuan Province were examined to assess the potential P release at the water-sediment interface and to understand its seasonal (2009-2010) and historical dynamics (1989-2010) in the surface water. Elevated P concentrations were detected in the sediment at main reservoir inflow, south canal of the Dujiangyan irrigation network, and intensive cage fish farming area, accounting for 32 and 40% of current total P discharges. The highest total P concentration (11,200 μg P g -1 ) was observed in the upper sediment below intensive fish farming area with a specific enrichment of HCl-P (51% of total P) mainly from fish feeds and feces. These sediments had larger MgCl 2 -P pools with higher diffusive P fluxes (0.43-0.47 mg m -2  d -1 ) from surface sediment than those from other areas (0.25-0.42 mg m -2  d -1 ). The general small proportion of MgCl 2 -P (5.7-10%) and low diffusive P fluxes from surface sediment (<0.02% of sediment P storage (0-1 cm)) indicate low mobility and slow release of P from sediments. The sediment as an internal P source led to a 3-4-year lag for P concentration decrease in the surface water after restriction of anthropogenic P discharges since 2005. Thus, the peak P concentration in April and September could be explained as a combined effect of supplementing internal loading via reductive processes in sediments and seasonal water vertical circulation in the early spring and fall. Policy played a crucial role in reducing P inputs to the lake.

  11. Fingerprinting of bed sediment in the Tay Estuary, Scotland: an environmental magnetism approach

    NASA Astrophysics Data System (ADS)

    Jenkins, Pierre A.; Duck, Rob W.; Rowan, John S.; Walden, John

    Sediment fingerprinting is commonly used for sediment provenance studies in lakes, rivers and reservoirs and on hillslopes and floodplains. This investigation explores the mixing of terrestrial and marine-derived sediment in the Tay Estuary, Scotland, using mineral magnetic attributes for fingerprinting. Samples representative of the estuary sediments and of four sources (end-members) were subjected to a suite of magnetic susceptibility and remanence measurements. Sediment samples from the beds of the Rivers Tay and Earn represented fluvial inputs while samples from the Angus and Fife coasts represented marine input. Multivariate discriminant and factor analysis showed that the sources could be separated on the basis of six magnetic parameters in a simple multivariate unmixing model to identify source contributions to estuarine bed sediments. Multi-domain magnetite signatures, characteristic of unweathered bedrock, dominate the magnetic measurements. Overall contributions of 3% from the River Earn, 17% from the River Tay, 29% from the Angus coast and 51% from the Fife coast source end-members, demonstrated the present-day regime of marine sediment derivation in the Tay Estuary. However, this conceals considerable spatial variability both along-estuary and in terms of sub-environments, with small-scale variations in sediment provenance reflecting local morphology, particularly areas of channel convergence.

  12. Storage filters upland suspended sediment signals delivered from watersheds

    USGS Publications Warehouse

    Pizzuto, James E.; Keeler, Jeremy; Skalak, Katherine; Karwan, Diana

    2017-01-01

    Climate change, tectonics, and humans create long- and short-term temporal variations in the supply of suspended sediment to rivers. These signals, generated in upland erosional areas, are filtered by alluvial storage before reaching the basin outlet. We quantified this filter using a random walk model driven by sediment budget data, a power-law distributed probability density function (PDF) to determine how long sediment remains stored, and a constant downstream drift velocity during transport of 157 km/yr. For 25 km of transport, few particles are stored, and the median travel time is 0.2 yr. For 1000 km of transport, nearly all particles are stored, and the median travel time is 2.5 m.y. Both travel-time distributions are power laws. The 1000 km travel-time distribution was then used to filter sinusoidal input signals with periods of 10 yr and 104 yr. The 10 yr signal is delayed by 12.5 times its input period, damped by a factor of 380, and is output as a power law. The 104 yr signal is delayed by 0.15 times its input period, damped by a factor of 3, and the output signal retains its sinusoidal input form (but with a power-law “tail”). Delivery time scales for these two signals are controlled by storage; in-channel transport time is insignificant, and low-frequency signals are transmitted with greater fidelity than high-frequency signals. These signal modifications are essential to consider when evaluating watershed restoration schemes designed to control sediment loading, and where source-area geomorphic processes are inferred from the geologic record.

  13. Impact of a large tropical reservoir on riverine transport of sediment, carbon, and nutrients to downstream wetlands

    NASA Astrophysics Data System (ADS)

    Kunz, Manuel J.; Wüest, Alfred; Wehrli, Bernhard; Landert, Jan; Senn, David B.

    2011-12-01

    Large dams can have major ecological and biogeochemical impacts on downstream ecosystems such as wetlands and riparian habitats. We examined sediment removal and carbon (C), nitrogen (N), and phosphorus (P) cycling in Itezhi-Tezhi Reservoir (ITT; area = 364 km2, hydraulic residence time = 0.7 yr), which is located directly upstream of a high ecological value floodplain ecosystem (Kafue Flats) in the Zambezi River Basin. Field investigations (sediment cores, sediment traps, water column samples), mass balance estimates, and a numerical biogeochemical reservoir model were combined to estimate N, P, C, and sediment removal, organic C mineralization, primary production, and N fixation. Since dam completion in 1978, 330 × 103 tons (t) of sediment and 16 × 103, 1.5 × 103, 200 t of C, N, and P, respectively, have accumulated annually in ITT sediments. Approximately 50% of N inputs and 60% of P inputs are removed by the reservoir, illustrating its potential in decreasing nutrients to the downstream Kafue Flats floodplain. The biogeochemical model predicted substantial primary production in ITT (˜280 g C m-2 yr-1), and significant N-fixation (˜30% for the total primary production) was required to support primary production due to marginal inputs of inorganic N. Model simulations indicate that future hydropower development in the reservoir, involving the installation of turbines driven by hypolimnetic water, will likely result in the delivery of low-oxygen waters to downstream ecosystems and increased outputs of dissolved inorganic N and P by a factor of ˜4 and ˜2 compared to current dam management, respectively.

  14. Non-steady state diagenesis of organic and inorganic sulfur in lake sediments

    NASA Astrophysics Data System (ADS)

    Couture, Raoul-Marie; Fischer, Rachele; Van Cappellen, Philippe; Gobeil, Charles

    2016-12-01

    Sulfur controls the fate of many geochemical elements in lake sediments, including iron, phosphorus and environmentally important trace elements. We measured the speciation of pore-water and sediment-bound sulfur (aqueous sulfate and sulfides, elemental sulfur, iron monosulfide, pyrite, organic sulfur) and supporting geochemical variables (carbon, oxygen, iron) in the sediments of a perennially oxygenated and a seasonally anoxic basin of an oligotrophic lake in Québec, using a combination of pore-water analyses, sequential extractions and X-ray absorption near edge structure. A non-steady state early diagenetic model was developed and calibrated against this extensive dataset to help unravel the pathways and quantify the rates of S transformations. Results suggest that the main source of S to the sediments is the settling of organic ester-sulfate (R-O-SO3-H). Hydrolysis of these compounds provides an additional source of sulfate for anaerobic microbial oxidation of sedimentary organic matter, releasing sulfide to the pore-water. Reduced solid-bound S species accumulate as thiols (R-SH) and iron sulfides in the perennially oxygenated and seasonally anoxic basin, respectively. The model-estimated rate constant for R-SH formation is lower than previously estimated for this particular lacustrine site, but similar to that proposed for marine shelf sediments. The solid sediment S profiles, however, carry the imprint of the time-dependent sulfate input to the lake. Iron sulfide enrichments formed during past decades of elevated atmospheric SO4 deposition are presently dissolving. In the sediments of the perennially oxygenated basin this reaction hampers the build-up of Fe(III) (oxy)hydroxide near the sediment-water interface.

  15. Contrasting fates of organic matter in locations having different organic matter inputs and bottom water O2 concentrations

    NASA Astrophysics Data System (ADS)

    Mai-Thi, Ngoc-Nu; St-Onge, Guillaume; Tremblay, Luc

    2017-11-01

    The goals of this work were to study sedimentary organic matter (OM) composition and transformation since the end of the last deglaciation and to evaluate the influence of contrasting depositional conditions on these parameters. One station was located in the Lower St. Lawrence Estuary (LSLE) where the current bottom waters are hypoxic and receive terrigenous and marine OM. The other station, located in the Gulf of St. Lawrence (GSL), has more oxygenated bottom waters and almost only marine OM inputs. Analyses included enantiomers of amino acids (L and D-AA) and muramic acid that provide different markers of OM alteration state and reactivity and of bacterial contribution to OM composition and diagenesis. The markers clearly indicated the increase in OM alteration state with depth in the sediments of the LSLE and the GSL. The steady decrease in AA yields with depth confirmed the preferential degradation of AA compared to the rest of the OM. The OM in the surface sediment of the LSLE was less altered than that of the GSL and was enriched in bacterial biomass as indicated by much higher muramic acid yields. Results indicated that an important degradation of particulate organic matter occurs in the water column in the GSL, while it takes place mostly in the sediments in the LSLE. The presence of heterogeneous OM and hypoxic conditions in the LSLE likely reduce OM degradation rate in its deep water layer. However, the zone near the water-sediment interface is responsible for large variations in AA composition at both locations. A relatively new redox index, based on AA composition, was tested and appeared robust. This study highlights the importance of ambient conditions in determining the fate of OM and in the biogeochemical cycles of vital elements.

  16. Spatiotemporal appraisal of TBT contamination and imposex along a tropical bay (Todos os Santos Bay, Brazil).

    PubMed

    Artifon, Vanda; Castro, Ítalo Braga; Fillmann, Gilberto

    2016-08-01

    A spatiotemporal evaluation of butyltin contamination was performed between 2010 and 2012 along Todos os Santos Bay (Northeast Brazil) using surface sediments, bivalve tissues (Anomalocardia brasiliana and Mytella guyanensis), and imposex occurrence (Stramonita rustica). The spatial study detected high tributyltin (TBT) levels (maximum values of 262 ng Sn g (-1) - 21,833 ng Sn g(-1) of total organic carbon - for surface sediments and 421 ng Sn g(-1) for bivalve tissues) in the innermost part of the bay. The TBT levels detected in M. guyanensis tissues might cause human health risk since local population consumes these organisms. These high concentrations observed in the bivalves might result in ingestions higher than the safe limits established by European Food Safety Authority (250 ng TBT kg(-1) day(-1)). Considering the temporal evaluation, no difference (p > 0.05) was observed between TBT concentrations in sediments obtained during the two sampling campaigns (2010/2011 and 2012). However, the increasing predominance of TBT metabolites (butyltin degradation index (BDI) >1) in more recent sediments indicates further degradation of old TBT inputs. In spite of that, recent inputs are still evident at this region. Nevertheless, a reduction of imposex parameters in S. rustica over the last decade suggests an overall decline in the TBT contamination, at least in the outermost and possible less impacted region of the bay. The TBT contamination is probably reducing due to the national and international legislative restrictions on the use of TBT as antifouling biocide. The contamination levels, however, are still relevant especially in the inner part of Todos os Santos Bay since they are above those that are likely to cause toxicity to the biota.

  17. UV filters, ethylhexyl methoxycinnamate, octocrylene and ethylhexyl dimethyl PABA from untreated wastewater in sediment from eastern Mediterranean river transition and coastal zones.

    PubMed

    Amine, Helmieh; Gomez, Elena; Halwani, Jalal; Casellas, Claude; Fenet, Hélène

    2012-11-01

    UVF may occur in the aquatic environment through two principal sources: direct inputs from recreational activities and indirect wastewater- and river-borne inputs. The aim of this study was to obtain a first overview of levels of three UVF (EHMC, OC and OD-PABA) in coastal areas subjected to river inputs, untreated wastewater discharges and dumpsite leachates. We selected three eastern Mediterranean rivers that have been impacted for decades by untreated wastewater release and collected sediment in the coastal zone during the hot and humid seasons. Western Mediterranean sites receiving treated wastewaters were analyzed for comparison. The results gave an overview of sediment contamination under these two contrasted situations representative of Mediterranean coastal areas without bathing activities. The analysis of the three UVF revealed the ubiquity and high point source contamination by EHMC and OC in transition and coastal zones, with levels as high as 128 ng g(-1)d.w. OD-PABA was also frequently detected, but at lower concentrations (

  18. Centennial record of anthropogenic impacts in Galveston Bay: Evidence from trace metals (Hg, Pb, Ni, Zn) and lignin oxidation products.

    PubMed

    Al Mukaimi, Mohammad E; Kaiser, Karl; Williams, Joshua R; Dellapenna, Timothy M; Louchouarn, Patrick; Santschi, Peter H

    2018-06-01

    During the 20th century the impacts of industrialization and urbanization in Galveston Bay resulted in significant shifts in trace metals (Hg, Pb, Ni, Zn) and vascular plant biomarkers (lignin phenols) recorded within the surface sediments and sediment cores profile. A total of 22 sediment cores were collected in Galveston Bay in order to reconstruct the historical input of Hg, Pb, Ni, Zn and terrestrial organic matter. Total Hg (T-Hg) concentration ranged between 6 and 162 ng g -1 in surface sediments, and showed decreasing concentrations southward from the Houston Ship Channel (HSC) toward the open estuary. Core profiles of T-Hg and trace metals (Ni, Zn) showed substantial inputs starting in 1905, with peak concentrations between 1960 and 1970's, and decreasing thereafter with exception to Pb, which peaked around 1930-1940s. Stable carbon isotopes and lignin phenols showed an increasing input of terrestrial organic matter driven by urban development within the watershed in the early 1940s. Both the enrichment factor and the geoaccumulation index (I geo ) for T-Hg as a measure of the effectiveness of environmental management practices showed substantial improvements since the 1970s. The natural recovery rate in Galveston Bay since the peak input of T-Hg was non-linear and displayed a slow recovery during the twenty-first century. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Discharge modulates stream metabolism dependence on fine particulate organic carbon in a Mediterranean WWTP-influenced stream

    NASA Astrophysics Data System (ADS)

    Drummond, J. D.; Bernal, S.; Meredith, W.; Schumer, R.; Martí Roca, E.

    2017-12-01

    Waste water treatment plant (WWTP) effluents constitute point source inputs of fine sediment, nutrients, carbon, and microbes to stream ecosystems. A range of responses to these inputs may be observed in recipient streams, including increases in respiration rates, which augment CO2 emissions to the atmosphere. Yet, little is known about which fractions of organic carbon (OC) contribute the most to stream metabolism in WWTP-influenced streams. Fine particulate OC (POC) represents ca. 40% of the total mass of OC in river networks, and is generally more labile than dissolved OC. Therefore, POC inputs from WWTPs could contribute disproportionately to higher rates of heterotrophic metabolism by stream microbial communities. The aim of this study was to investigate the influence of POC inputs from a WWTP effluent on the metabolism of a Mediterranean stream over a wide range of hydrologic conditions. We hypothesized that POC inputs would have a positive effect on respiration rates, and that the response to POC availability would be larger during low flows when the dilution capacity of the recipient stream is negligible. We focused on the easily resuspended fine sediment near the sediment-water interface (top 3 cm), as this region is a known hot spot for biogeochemical processes. For one year, samples of resuspended sediment were collected bimonthly at 7 sites from 0 to 800 m downstream of the WWTP point source. We measured total POC, organic matter (OM) content (%), and the associated metabolic activity of the resuspended sediment using the resazurin-resorufin smart tracer system as a proxy for aerobic ecosystem respiration. Resuspended sediment showed no difference in total POC over the year, while the OM content increased with decreasing discharge. This result together with the decreasing trend of total POC observed downstream of the point source during autumn after a long dry period, suggests that the WWTP effluent was the main contributor to stream POC. Furthermore, there was a positive relationship between aerobic ecosystem respiration and OM content in resuspended sediments. Our results suggest that WWTP effluents can be important sources of POC to recipient streams, and that the increased availability of POC enhances aerobic ecosystem respiration, especially when the dilution capacity of the recipient streams is low.

  20. Overland flow, sediment output and nutrient loss from certain forested sites in the central Himalaya, India

    NASA Astrophysics Data System (ADS)

    Pathak, P. C.; Pandey, A. N.; Singh, J. S.

    1984-03-01

    Overland flow, sediment output and input and output of precipitation nutrients were evaluated on six forested sites in the central Himalaya during the 1981 and 1982 monsoon seasons. Overland flow was significantly different across the forests and the months of the rainy season. It was positively related with rainfall quantity and intensity, and was negatively related with tree canopy cover and with ground vegetation cover. Average overland flow was only 0.66% of the total incident rainfall, indicating that these sites are subsurface-flow systems. Sediment output was positively related to overland flow. Rainfall added a significant amount of nutrients to the forests. This extra-system input was greater than loss through overland flow + sediment output. The loss of nutrients from the forested sites was in the order: Mg > C > Ca > K = N = P.

  1. Effects of algal-derived carbon on sediment methane ...

    EPA Pesticide Factsheets

    Nutrient loading is known to have adverse consequences for aquatic ecosystems, particularly in the form of algal blooms that may result. These blooms pose problems for humans and wildlife, including harmful toxin release, aquatic hypoxia and increased costs for water treatment. Another potential disservice resulting from algal blooms is the enhanced production of methane (CH4), a potent greenhouse gas, in aquatic sediments. Laboratory experiments have shown that algal biomass additions to sediment cores increase rates of CH4 production, but it is unclear whether or not this effect occurs at the ecosystem scale. The goal of this research was to explore the link between algal-derived carbon and methane production in the sediment of a eutrophic reservoir located in southwest Ohio, using a sampling design that capitalized on spatial and temporal gradients in autochthonous carbon input to sediments. Specifically, we aimed to determine if the within-reservoir gradient of sediment algal-derived organic matter and sediment CH4 production rates correlate. This was done by retrieving sediment cores from 15 sites within the reservoir along a known gradient of methane emission rates, at two separate time points in 2016: late spring before the sediments had received large amounts of algal input and mid-summer after algal blooms had been prevalent in the reservoir. Potential CH4 production rates, sediment organic matter source, and microbial community composition were charac

  2. Organic matter compositions and loadings in soils and sediments along the Fly River, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Goñi, Miguel A.; Moore, Eric; Kurtz, Andrew; Portier, Evan; Alleau, Yvan; Merrell, David

    2014-09-01

    The compositions and loadings of organic matter in soils and sediments from a diverse range of environments along the Fly River system were determined to investigate carbon transport and sequestration in this region. Soil horizons from highland sites representative of upland sources have organic carbon contents (%OC) that range from 0.3 to 25 wt%, carbon:nitrogen ratios (OC/N) that range from 7 to 25 mol/mol, highly negative stable carbon isotopic compositions (δ13Corg < -26‰) and variable concentrations of lignin phenols (1 < LP < 5 mg/100 mg OC). These compositions reflect inputs from local vegetation, with contributions from bedrock carbon in the deeper mineral horizons. Soils developed on the levees of active floodplains receive inputs of allochthonous materials by overbank deposition as well as autochthonous inputs from local vegetation. In the forested upper floodplain reaches, %OC contents are lower than upland soils (0.8-1.5 wt%) as are OC/N ratios (9-15 mol/mol) while δ13Corg (-25 to -28‰) and LP (2-6 mg/100 mg OC) values are comparable to upland soils. These results indicate that organic matter present in these active floodplain soils reflect local (primarily C3) vegetation inputs mixed with allochthonous organic matter derived from eroded bedrock. In the lower reaches of the floodplain, which are dominated by swamp grass vegetation, isotopic compositions were less negative (δ13Corg > -25‰) and non-woody vegetation biomarkers (cinnamyl phenols and cutin acids) more abundant relative to upper floodplain sites. Soils developed on relict Pleistocene floodplain terraces, which are typically not flooded and receive little sediment from the river, were characterized by low %OC contents (<0.6 wt%), low OC/N ratios (<9 mol/mol), more positive δ13Corg signatures (>-21‰) and low LP concentrations (∼3 mg/100 mg OC). These relict floodplain soils contain modern carbon that reflects primarily local (C3 or C4) vegetation sources. Total suspended solids collected along the river varied widely in overall concentrations (1 < TSS < 9000 mg/L), %OC contents (0.1-60 wt%), OC/N ratios (7-17 mol/mol) and δ13Corg signatures (-26 to -32‰). These compositions reflect a mixture of C3 vascular plants and freshwater algae. However, little of this algal production appears to be preserved in floodplain soils. A comparison of organic carbon loadings of active floodplain soils (0.2 and 0.5 mg C/m2) with previous studies of actively depositing sediments in the adjacent delta-clinoform system (0.4-0.7 mg C/m2) indicates that Fly River floodplain sediments are less effective at sequestering organic carbon than deltaic sediments. Furthermore, relict Pleistocene floodplain sites with low or negligible modern sediment accumulation rates display significantly lower loadings (0.1-0.2 mg C/m2). This deficit in organic carbon likely reflects mineralization of sedimentary organic carbon during long term oxidative weathering, further reducing floodplain carbon storage.

  3. [Research of input water ratio's impact on the quality of effluent water from hydrolysis reactor].

    PubMed

    Liang, Kang-Qiang; Xiong, Ya; Qi, Mao-Rong; Lin, Xiu-Jun; Zhu, Min; Song, Ying-Hao

    2012-11-01

    Based on high SS/BOD and low C/N ratio of waste water of municipal wastewater treatment plant, the structure of currently existing hydrolysis reactor was reformed to improve the influent quality. In order to strengthen the sludge hydrolysis and improve effluent water quality, two layers water distributors were set up so that the sludge hydrolysis zone was formed between the two layers distribution. For the purpose of the hydrolysis reactor not only plays the role of the primary sedimentation tank but also improves the effluent water biodegradability, input water ratios of the upper and lower water distributor in the experiment were changed to get the best input water ratio to guide the large-scale application of this sort hydrolysis reactor. Results show, four kinds of input water ratio have varying degrees COD and SS removal efficiency, however, input water ratio for 1 : 1 can substantially increase SCOD/COD ratio and VFA concentration of effluent water compared with the other three input water ratios. To improve the effluent biodegradability, input water ratio for 1 : 1 was chosen for the best input water ratio. That was the ratio of flow of upper distributor was 50%, and the ratio of the lower one was 50%, at this case it can reduce the processing burden of COD and SS for follow-up treatment, but also improve the biodegradability of the effluent.

  4. Development of a mercury speciation, fate, and biotic uptake (BIOTRANSPEC) model: Application to Lahontan Reservoir (Nevada, USA)

    USGS Publications Warehouse

    Gandhi, N.; Bhavsar, S.P.; Diamond, M.L.; Kuwabara, J.S.; Marvin-DiPasquale, M.; Krabbenhoft, D.P.

    2007-01-01

    A mathematically linked mercury transport, speciation, kinetic, and simple biotic uptake (BIOTRANSPEC) model has been developed. An extension of the metal transport and speciation (TRANSPEC) model, BIOTRANSPEC estimates the fate and biotic uptake of inorganic (Hg(II)), elemental (Hg(0)) and organic (MeHg) forms of mercury and their species in the dissolved, colloidal (e.g., dissolved organic matter [DOM]), and particulate phases of surface aquatic systems. A pseudo-steady state version of the model was used to describe mercury dynamics in Lahontan Reservoir (near Carson City, NV, USA), where internal loading of the historically deposited mercury is remobilized, thereby maintaining elevated water concentrations. The Carson River is the main source of total mercury (THg), of which more than 90% is tightly bound in a gold-silver-mercury amalgam, to the system through loadings in the spring, with negligible input from the atmospheric deposition. The speciation results suggest that aqueous species are dominated by Hg-DOM, Hg(OH)2, and HgClOH. Sediment-to-water diffusion of MeHg and Hg-DOM accounts for approximately 10% of total loadings to the water column. The water column acts as a net sink for MeHg by reducing its levels through two competitive processes: Uptake by fish, and net MeHg demethylation. Although reservoir sediments produce significant amounts of MeHg (4 g/d), its transport from sediment to water is limited (1.6 g/d), possibly because of its adsorption on metal oxides of iron and manganese at the sediment-water interface. Fish accumulate approximately 45% of the total MeHg mass in the water column, and 9% of total MeHg uptake by fish leaves the system because of fishing. Results from this new model reiterate the previous conclusion that more than 90% of THg input is retained in sediment, which perpetuates elevated water concentrations. ?? 2007 SETAC.

  5. Using nonlinear forecasting to learn the magnitude and phasing of time-varying sediment suspension in the surf zone

    USGS Publications Warehouse

    Jaffe, B.E.; Rubin, D.M.

    1996-01-01

    The time-dependent response of sediment suspension to flow velocity was explored by modeling field measurements collected in the surf zone during a large storm. Linear and nonlinear models were created and tested using flow velocity as input and suspended-sediment concentration as output. A sequence of past velocities (velocity history), as well as velocity from the same instant as the suspended-sediment concentration, was used as input; this velocity history length was allowed to vary. The models also allowed for a lag between input (instantaneous velocity or end of velocity sequence) and output (suspended-sediment concentration). Predictions of concentration from instantaneous velocity or instantaneous velocity raised to a power (up to 8) using linear models were poor (correlation coefficients between predicted and observed concentrations were less than 0.10). Allowing a lag between velocity and concentration improved linear models (correlation coefficient of 0.30), with optimum lag time increasing with elevation above the seabed (from 1.5 s at 13 cm to 8.5 s at 60 cm). These lags are largely due to the time for an observed flow event to effect the bed and mix sediment upward. Using a velocity history further improved linear models (correlation coefficient of 0.43). The best linear model used 12.5 s of velocity history (approximately one wave period) to predict concentration. Nonlinear models gave better predictions than linear models, and, as with linear models, nonlinear models using a velocity history performed better than models using only instantaneous velocity as input. Including a lag time between the velocity and concentration also improved the predictions. The best model (correlation coefficient of 0.58) used 3 s (approximately a quarter wave period) of the cross-shore velocity squared, starting at 4.5 s before the observed concentration, to predict concentration. Using a velocity history increases the performance of the models by specifying a more complete description of the dynamical forcing of the flow (including accelerations and wave phase and shape) responsible for sediment suspension. Incorporating such a velocity history and a lag time into the formulation of the forcing for time-dependent models for sediment suspension in the surf zone will greatly increase our ability to predict suspended-sediment transport.

  6. Sediment budgets as an organizing framework in fluvial geomorphology

    Treesearch

    Leslie Reid; Thomas Dunne

    2016-01-01

    Sediment budgets describe the input, transport, storage, and export of sediment in a geomorphic system. Such budgets can be used to address questions regarding how changes in catchment conditions affect channels, how long the effects will last, and what the sequence of responses will be. This chapter defines and describes budget components, outlines strategies...

  7. A distributed analysis of Human impact on global sediment dynamics

    NASA Astrophysics Data System (ADS)

    Cohen, S.; Kettner, A.; Syvitski, J. P.

    2012-12-01

    Understanding riverine sediment dynamics is an important undertaking for both socially-relevant issues such as agriculture, water security and infrastructure management and for scientific analysis of landscapes, river ecology, oceanography and other disciplines. Providing good quantitative and predictive tools in therefore timely particularly in light of predicted climate and landuse changes. Ever increasing human activity during the Anthropocene have affected sediment dynamics in two major ways: (1) an increase is hillslope erosion due to agriculture, deforestation and landscape engineering and (2) trapping of sediment in dams and other man-made reservoirs. The intensity and dynamics between these man-made factors vary widely across the globe and in time and are therefore hard to predict. Using sophisticated numerical models is therefore warranted. Here we use a distributed global riverine sediment flux and water discharge model (WBMsed) to compare a pristine (without human input) and disturbed (with human input) simulations. Using these 50 year simulations we will show and discuss the complex spatial and temporal patterns of human effect on riverine sediment flux and water discharge.

  8. Sedimentation rates in the marshes of Sand Lake National Wildlife Refuge

    USGS Publications Warehouse

    Gleason, R.A.; Euliss, N.H.; Holmes, C.W.

    2003-01-01

    Impoundments located within river systems in the Northern Great Plains are vulnerable to sediment inputs because intensive agriculture in watersheds has increased soil erosion and sediments in rivers. At the request of the U.S. Fish and Wildlife Service (FWS), we evaluated the vertical accretion of sediment in the Mud Lake impoundment of Sand Lake National Wildlife Refuge (NWR), Brown County, South Dakota. The Mud Lake impoundment was created in 1936 by constructing a low-head dam across the James River. We collected sediment cores from the Mud Lake impoundment during August 2000 for determination of vertical accretion rates. Accretion rates were estimated using cesium-13 7 and lead-210 isotopic dating techniques to estimate sediment accretion over the past 100 years. Accretion rates were greatest near the dam (1.3 cm yr-1) with less accretion (0.2 cm yr-1) occurring in the upper reaches of Mud Lake. As expected, accretion was highest near the dam where water velocities and greater water depth facilitates sediment deposition. Higher rates of sedimentation (accretion> 2.0 cm year-1) occurred during the 1990s when river flows were especially high. Since 1959, sediment accretion has reduced maximum pool depth of Mud Lake near the dam by 55 cm. Assuming that sediment accretion rates remain the same in the future, we project Mud Lake will have a maximum pool depth of 77 and 51 cm by 2020 and 2040, respectively. Over this same time frame, water depths in the upper reaches of Mud Lake would be reduced to< 2 cm. Projected future loss of water depth will severely limit the ability of managers to manipulate pool levels in Mud Lake to cycle vegetation and create interspersion of cover and water to meet current wildlife habitat management objectives. As predicted for major dams constructed on rivers throughout the world, Mud Lake will have a finite life span. Our data suggests that the functional life span of Mud Lake since construction will be < 100 years. We anticipate that over the next 20 years, sediments entering Mud Lake will reduce water depths to the point that current wildlife management objectives cannot be achieved through customary water-level manipulations. Sedimentation impacts are not unique to the Sand Lake NWR. It is widely accepted that impoundments trap sediments and shallow impoundments, such as those managed by the FWS, are especially vulnerable. Given the ecological impacts associated with loss of water depths, we recommend that managers begin evaluating the long-term wildlife management goals for the refuge relative to associated costs and feasibility of options available to enhance and maximize the life span of existing impoundments, including upper watershed management.

  9. Suspending sediment transport, sedimentation, and resuspension in Lake Houston, Texas: Implications for water quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matty, J.M.; Anderson, J.B.; Dunbar, R.B.

    1987-01-01

    Lake Houston is a man-made reservoir located northeast of Houston, Texas. The purpose of this investigation was to document suspended sediment transport, sedimentation, and resuspension in the lake with a view towards estimating the influence of sedimentation on water quality. Sediment traps were placed in strategic locations in the lake to collect suspended sediments. Samples were analyzed for bulk density, grain size, organic carbon, and a number of trace elements. These data were analyzed along with meteorological data to examine those factors which regulate suspended sediment input and dispersal, and the role of suspended sediments in controlling water quality withinmore » the lake. Sediment input to the lake depends primarily on the intensity of rainfall in the watershed. Sediment movement within the lake is strongly influenced by wave activity, which resuspends sediments from shallow areas, and by wind-driven circulation. The increased residence time of suspended sediments due to resuspension allows greater decomposition of organic matter and the release of several trace elements from sediments to the water column. Virtually all samples from sediment traps suspended between 1 and 5 m above the lake bottom contain medium to coarse silt, and even some very fine sand-sized material. This implies that circulation in Lake Houston is periodically intense enough to transport this size material in suspension. During winter, northerly winds with sustained velocities of greater than 5 m/sec provide the most suitable condition for rapid (< 1 d) transport of suspended sediment down the length of the lake. Fluctuations in current velocities and the subsequent suspension/deposition of particles may explain variations in the abundance of coliform bacteria in Lake Houston.« less

  10. Rapid Sediment Accumulation Results in High Methane Effluxes from Coastal Sediments

    PubMed Central

    Lenstra, Wytze; Jong, Dirk; Meysman, Filip J. R.; Sapart, Célia J.; van der Veen, Carina; Röckmann, Thomas; Gonzalez, Santiago; Slomp, Caroline P.

    2016-01-01

    Globally, the methane (CH4) efflux from the ocean to the atmosphere is small, despite high rates of CH4 production in continental shelf and slope environments. This low efflux results from the biological removal of CH4 through anaerobic oxidation with sulfate in marine sediments. In some settings, however, pore water CH4 is found throughout the sulfate-bearing zone, indicating an apparently inefficient oxidation barrier for CH4. Here we demonstrate that rapid sediment accumulation can explain this limited capacity for CH4 removal in coastal sediments. In a saline coastal reservoir (Lake Grevelingen, The Netherlands), we observed high diffusive CH4 effluxes from the sediment into the overlying water column (0.2–0.8 mol m-2 yr-1) during multiple years. Linear pore water CH4 profiles and the absence of an isotopic enrichment commonly associated with CH4 oxidation in a zone with high rates of sulfate reduction (50–170 nmol cm-3 d-1) both suggest that CH4 is bypassing the zone of sulfate reduction. We propose that the rapid sediment accumulation at this site (~ 13 cm yr-1) reduces the residence time of the CH4 oxidizing microorganisms in the sulfate/methane transition zone (< 5 years), thus making it difficult for these slow growing methanotrophic communities to build-up sufficient biomass to efficiently remove pore water CH4. In addition, our results indicate that the high input of organic matter (~ 91 mol C m-2 yr-1) allows for the co-occurrence of different dissimilatory respiration processes, such as (acetotrophic) methanogenesis and sulfate reduction in the surface sediments by providing abundant substrate. We conclude that anthropogenic eutrophication and rapid sediment accumulation likely increase the release of CH4 from coastal sediments. PMID:27560511

  11. Geological Development of the Izu-Bonin Forearc Since the Eocene Based on Biostratigraphic, Rock Magnetic, and Sediment Provenance Observations from IODP Expedition 352 Drill Cores

    NASA Astrophysics Data System (ADS)

    Petronotis, K. E.; Robertson, A.; Kutterolf, S.; Avery, A.; Baxter, A.; Schindlbeck, J. C.; Wang, K. L.; Acton, G.

    2016-12-01

    International Ocean Discovery Program (IODP) Expedition 352 recovered early Oligocene to recent sediments above Eocene igneous basement at 4 sites in the Izu-Bonin Forearc. The sites were selected to investigate the forearc region since subduction initiation in the Eocene, with Sites U1439 and U1442 being cored into the upper trench slope and Sites U1440 and U1441 into the lower trench slope. Postcruise studies of biostratigraphy, sediment chemistry, tephra composition and chronology and magnetic properties, along with observations from prior coring help constrain the regional geological development. Volcanic activity in the area, as inferred from its influence on sediment composition, has varied between long periods of activity and quiescence. Combined whole-rock sediment chemistry and tephra compositions suggest that during the Oligocene to earliest Miocene ( 30-22 Ma) tuffaceous input of predominantly dacitic composition was mainly derived from the intra-oceanic Izu-Bonin Arc. The early Miocene interval ( 22-15 Ma) lacks tuffaceous input, as supported by rock magnetic data. During this period, the forearc subsided beneath the carbonate compensation depth (CCD), as evidenced by radiolarian-bearing mud and metal-rich silty clay. This was followed by input of tephra with bimodal felsic and mafic compositions from the Izu-Bonin Arc from 15 to 5 Ma. Middle Miocene to Quaternary time was characterized by increased carbonate preservation, coupled with abundant, predominantly felsic tephra input, which is chemically indicative of a Japan continental arc source (Honshu), with additional chemically distinctive input from the Izu-Bonin Arc. Extending back to 32 Ma, tephra layers can be correlated between the upper-slope sites, extrapolated to the less well-dated lower-slope sites, and further correlated with onland Japanese tephra (Kutterolf et al., 2016; Goldschmidt Conference). Overall, the new results provide an improved understanding of the regional tectonic evolution.

  12. Groundwater-driven nutrient inputs to coastal lagoons: The relevance of lagoon water recirculation as a conveyor of dissolved nutrients.

    PubMed

    Rodellas, Valentí; Stieglitz, Thomas C; Andrisoa, Aladin; Cook, Peter G; Raimbault, Patrick; Tamborski, Joseph J; van Beek, Pieter; Radakovitch, Olivier

    2018-06-16

    Evaluating the sources of nutrient inputs to coastal lagoons is required to understand the functioning of these ecosystems and their vulnerability to eutrophication. Whereas terrestrial groundwater processes are increasingly recognized as relevant sources of nutrients to coastal lagoons, there are still limited studies evaluating separately nutrient fluxes driven by terrestrial groundwater discharge and lagoon water recirculation through sediments. In this study, we assess the relative significance of these sources in conveying dissolved inorganic nutrients (NO 3 - , NH 4 + and PO 4 3- ) to a coastal lagoon (La Palme lagoon; France, Mediterranean Sea) using concurrent water and radon mass balances. The recirculation of lagoon water through sediments represents a source of NH 4 + (1900-5500 mol d -1 ) and PO 4 3- (22-71 mol d -1 ), but acts as a sink of NO 3 - . Estimated karstic groundwater-driven inputs of NO 3 - , NH 4 + and PO 4 3- to the lagoon are on the order of 200-1200, 1-12 and 1.5-8.7 mol d -1 , respectively. A comparison between the main nutrient sources to the lagoon (karstic groundwater, recirculation, diffusion from sediments, inputs from a sewage treatment plant and atmospheric deposition) reveals that the recirculation of lagoon water through sediments is the main source of both dissolved inorganic nitrogen (DIN) and phosphorous (DIP) to La Palme lagoon. These results are in contrast with several studies conducted in systems influenced by terrestrial groundwater inputs, where groundwater is often assumed to be the main pathway for dissolved inorganic nutrient loads. This work highlights the important role of lagoon water recirculation through permeable sediments as a major conveyor of dissolved nutrients to coastal lagoons and, thus, the need for a sound understanding of the recirculation-driven nutrient fluxes and their ecological implications to sustainably manage lagoonal ecosystems. Copyright © 2018. Published by Elsevier B.V.

  13. Authigenesis of trace metals in energetic tropical shelf environments

    USGS Publications Warehouse

    Breckel, E.J.; Emerson, S.; Balistrieri, L.S.

    2005-01-01

    We evaluated authigenic changes of Fe, Mn, V, U, Mo, Cd and Re in suboxic, periodically remobilized, tropical shelf sediments from the Amazon continental shelf and the Gulf of Papua. The Cd/Al, Mo/Al, and U/Al ratios in Amazon shelf sediments were 82%, 37%, and 16% less than those in Amazon River suspended sediments, respectively. Very large depletions of U previously reported in this environment were not observed. The Cd/Al ratios in Gulf of Papua sediments were 76% lower than measurements made on several Papua New Guinea rivers, whereas U/Al ratios in the shelf sediments were enriched by approximately 20%. Other metal/Al ratios in the Papua New Guinea river suspended sediments and continental shelf sediments were not distinguishably different. Comparison of metal/Al ratios to grain size distributions in Gulf of Papua samples indicates that our observations cannot be attributed to differences in grain size between the river suspended sediments and continental shelf sediments. These two shelves constitute a source of dissolved Cd to the world ocean equal to 29-100% of the dissolved Cd input from rivers, but only 3% of the dissolved Mo input and 4% of the dissolved U input. Release of Cd, Mo, and U in tropical shelf sediments is likely a result of intense Fe and Mn oxide reduction in pore waters and resuspension of the sediments. Since we do not observe depletions of particulate Fe and Mn in the shelf sediments most of these dissolved metals must reoxidize in the overlying waters and reprecipitate. As Cd exhibits the largest losses on these tropical shelves, we examined the ability of newly formed Fe and Mn oxides to adsorb dissolved Cd using a geochemical diffuse double-layer surface complexation model and found the oxide surfaces are relatively ineffective at readsorbing Cd in seawater due to surface-site competition by Mg and Ca. If the remobilization and reoxidation of Fe and Mn occurs frequently enough before sediment is buried significant amounts of Cd may be removed from the oxide surfaces. Because a much greater percentage of Mn than Fe becomes remobilized in these shelf sediments, metals closely associated with Mn oxides (like Cd) are more likely to show losses during deposition. ?? 2005 Elsevier Ltd. All rights reserved.

  14. Suspended sediment flux modeling with artificial neural network: An example of the Longchuanjiang River in the Upper Yangtze Catchment, China

    NASA Astrophysics Data System (ADS)

    Zhu, Yun-Mei; Lu, X. X.; Zhou, Yue

    2007-02-01

    Artificial neural network (ANN) was used to model the monthly suspended sediment flux in the Longchuanjiang River, the Upper Yangtze Catchment, China. The suspended sediment flux was related to the average rainfall, temperature, rainfall intensity and water discharge. It is demonstrated that ANN is capable of modeling the monthly suspended sediment flux with fairly good accuracy when proper variables and their lag effect on the suspended sediment flux are used as inputs. Compared with multiple linear regression and power relation models, ANN can generate a better fit under the same data requirement. In addition, ANN can provide more reasonable predictions for extremely high or low values, because of the distributed information processing system and the nonlinear transformation involved. Compared with the ANNs that use the values of the dependent variable at previous time steps as inputs, the ANNs established in this research with only climate variables have an advantage because it can be used to assess hydrological responses to climate change.

  15. A baseline study on the concentration of trace elements in the surface sediments off Southwest coast of Tamil Nadu, India.

    PubMed

    Godson, Prince S; Magesh, N S; Peter, T Simon; Chandrasekar, N; Krishnakumar, S; Vincent, Salom Gnana Thanga

    2018-01-01

    Forty two surface sediment samples were collected in order to document baseline elemental concentration along the Southwest coast of Tamil Nadu, India. The elements detected were Manganese (Mn), Zinc (Zn), Iron (Fe), Copper (Cu), Nickel (Ni) and Lead (Pb). The concentration of Fe and Mn was primarily controlled by the riverine input. The source of Pb and Zn is attributed to leaded petrol and anti-biofouling paints. The calculated index (EF, Igeo and CF) suggests that the sediments of the study area are significantly enriched with all elements except Pb. The contamination factor showed the order of Mn>Zn>Fe>Cu>Ni>Pb. The sediment pollution index (SPI) revealed that the sediments belonged to low polluted to dangerous category. The correlation matrix and dendrogram showed that the elemental distribution was chiefly controlled by riverine input as well as anthropogenic activity in the coast. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Interplay between spatially explicit sediment sourcing, hierarchical river-network structure, and in-channel bed material sediment transport and storage dynamics

    NASA Astrophysics Data System (ADS)

    Czuba, Jonathan A.; Foufoula-Georgiou, Efi; Gran, Karen B.; Belmont, Patrick; Wilcock, Peter R.

    2017-05-01

    Understanding how sediment moves along source to sink pathways through watersheds—from hillslopes to channels and in and out of floodplains—is a fundamental problem in geomorphology. We contribute to advancing this understanding by modeling the transport and in-channel storage dynamics of bed material sediment on a river network over a 600 year time period. Specifically, we present spatiotemporal changes in bed sediment thickness along an entire river network to elucidate how river networks organize and process sediment supply. We apply our model to sand transport in the agricultural Greater Blue Earth River Basin in Minnesota. By casting the arrival of sediment to links of the network as a Poisson process, we derive analytically (under supply-limited conditions) the time-averaged probability distribution function of bed sediment thickness for each link of the river network for any spatial distribution of inputs. Under transport-limited conditions, the analytical assumptions of the Poisson arrival process are violated (due to in-channel storage dynamics) where we find large fluctuations and periodicity in the time series of bed sediment thickness. The time series of bed sediment thickness is the result of dynamics on a network in propagating, altering, and amalgamating sediment inputs in sometimes unexpected ways. One key insight gleaned from the model is that there can be a small fraction of reaches with relatively low-transport capacity within a nonequilibrium river network acting as "bottlenecks" that control sediment to downstream reaches, whereby fluctuations in bed elevation can dissociate from signals in sediment supply.

  17. Effect of penguin and seal excrement on mercury distribution in sediments from the Ross Sea region, East Antarctica.

    PubMed

    Nie, Yaguang; Liu, Xiaodong; Sun, Liguang; Emslie, Steven D

    2012-09-01

    Total mercury (Hg) concentration and several other geochemical parameters were determined for five sediment profiles from the Antarctic Ross Sea region. Our data exhibit significant positive correlations between Hg concentration and total organic carbon (TOC) content in all profiles, suggesting the predominant role of organic matter (OM) as a Hg carrier. The OM in the sediments originates primarily from penguin guano and algae. High Hg content in guano and a positive correlation between Hg and a guano bio-element (phosphorus, P) in the ornithogenic sediment profiles (MB6, BI and CC) indicate that Hg was strongly influenced by guano input. The bottom sediments of MB6 with seal hairs contain relatively high Hg. This increase is attributed to the input of seal excrement, suggesting that sedimentary Hg may be an effective trophic-level indicator from seals to penguins. The enrichment factor (EF) for Hg was calculated and the results indicated apparent Hg enrichment in the sediment profiles from the Ross Sea region caused by bio-vectors such as penguins and seals. Compared with typical sediments from other sites in Antarctica and the SQGs (sediment quality guidelines), the total amount of Hg in our study area is still not considered to be adversely high. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Lead contamination of subarctic lakes and its response to reduced atmospheric fallout: can the recovery process be counteracted by the ongoing climate change?

    PubMed

    Klaminder, Jonatan; Hammarlund, Dan; Kokfelt, Ulla; Vonk, Jorien E; Bigler, Christian

    2010-04-01

    Can a climate-triggered export of old contaminants from the soil alter the lead (Pb) contaminant burden of subarctic lakes? To address this question, we reconstructed the pollution history of three high latitude lakes situated in a region where a recent climatic shift has occurred. Dated sediment records were used as archives of past Pb inputs to the lakes, where the difference in the (206)Pb/(207)Pb ratio between atmospheric contaminants ((206)Pb/(207)Pb ratio <1.16) and geogenic Pb in the catchment soil ((206)Pb/(207)Pb ratio >1.22) were used to trace fluxes of Pb contaminants. Lead contaminants were found in sediments deposited since Roman times. A significant export of Pb from the soil contaminant pool is indicated in two of the lakes surrounded by near-shore permafrost soils. Here, levels of Pb contaminants and (206)Pb/(207)Pb ratios of sediments deposited after the 1970s appear not to have been strongly affected by the >or=90% reduction in atmospheric deposition rates and increasing (206)Pb/(207)Pb ratios of atmospheric Pb since the 1990s. We concluded that soil processes stimulated by the ongoing climate change at high latitudes might work counteractive to efforts to reduce contaminant levels in subarctic lakes.

  19. Late Holocene carbon and nitrogen input into the Java Sea recorded in sediment cores off rivers from Java and Kalimantan

    NASA Astrophysics Data System (ADS)

    Herbeck, Lucia; Kwiatkowski, Cornelia; Mohtadi, Mahyar; Jennerjahn, Tim

    2014-05-01

    Beginning a few thousand years ago, global climate and environmental change have become more and more affected by human activities. Hence, quantifying the 'human component' becomes increasingly important in order to predict future developments. Indonesia and the surrounding oceans are key in this respect, because it is in the region (i) that receives the highest inputs of water, sediment and associated dissolved and particulate substances and (ii) that suffers from anthropogenically modified landscapes and coastal zones. As opposing the global trend, land-based human activities have increased the sediment input into the ocean from Indonesia since pre-human times. Nevertheless, there are strong gradients in land use/cover and resulting river fluxes within Indonesia as, for example, between Java and Kalimantan. Major goal of this study is to identify the contribution of human activities in river catchments (i.e. land use/cover change, hydrological alterations) to gradients in carbon and nitrogen deposition in sediments of the Java Sea between densely populated Java and sparsely populated Kalimantan during the Late Holocene. We hypothesized that the riverine input of C and N increased during the late Holocene and increased more off Java than off Kalimantan. Sediment cores (80 to 130 cm long) off major river mouths from Java (2 cores off Bengawan Solo) and Kalimantan (1 core off Pembuang, 1 core off Jelai) were dated and analysed for Corg, Ntot, carbonate and stable isotope composition (δ13Corg, δ15N) in 3 cm intervals. Sedimentation rates off the Kalimantan rivers with 0.05-0.11 cm yr-1 were higher than off the Bengawan Solo, the largest river catchment on Java (<0.04 cm yr-1). Ntot contents in all sediment cores were low with ~0.07% and varied little over time. A higher Corg content, molar C/N ratio and variability over the past 5000 years in all parameters in the core closer to the river mouth off the Bengawan Solo than the one further offshore indicates that terrestrial input into the Java Sea was limited to approx. 15 km off the river mouth. Both cores off Kalimantan and the core off Java close to the Bengawan Solo had similar Corg contents (~0.8%) and molar C/N-ratios (11-19). δ13Corg of -24‰ and low carbonate contents (~7%) indicate an even higher contribution of terrigenous organic matter off the Kalimantan rivers than off the Bengawan Solo, where δ13Corg of -22‰ and CaCO3 contents of ~17% rather point to marine phytoplankton as major organic matter source. Our preliminary results indicate a higher input of terrigenous organic matter from Kalimantan than from Java and show little evidence for anthropogenic impact on organic matter inputs into the Java Sea during the late Holocene.

  20. A 500 year sediment lake record of anthropogenic and natural inputs to Windermere (English Lake District) using double-spike lead isotopes, radiochronology, and sediment microanalysis.

    PubMed

    Miller, Helen; Croudace, Ian W; Bull, Jonathan M; Cotterill, Carol J; Dix, Justin K; Taylor, Rex N

    2014-07-01

    A high-resolution record of pollution is preserved in recent sediments from Windermere, the largest lake in the English Lake District. Data derived from X-ray core scanning (validated against wavelength dispersive X-ray fluorescence), radiochronological techniques ((210)Pb and (137)Cs) and ultrahigh precision, double-spike mass spectrometry for lead isotopes are combined to decipher the anthropogenic inputs to the lake. The sediment record suggests that while most element concentrations have been stable, there has been a significant increase in lead, zinc, and copper concentrations since the 1930s. Lead isotope down-core variations identify three major contributory sources of anthropogenic (industrial) lead, comprising gasoline lead, coal combustion lead (most likely source is coal-fired steam ships), and lead derived from Carboniferous Pb-Zn mineralization (mining activities). Periods of metal workings do not correlate with peaks in heavy metals due to the trapping efficiency of up-system lakes in the catchment. Heavy metal increases could be due to flood-induced metal inwash after the cessation of mining and the weathering of bedrock in the catchment. The combination of sediment analysis techniques used provides new insights into the pollutant depositional history of Windermere and could be similarly applied to other lake systems to determine the timing and scale of anthropogenic inputs.

  1. Linear alkylbenzenes as tracers of sewage-sludge-derived inputs of organic matter, PCBs, and PAHs to sediments at the 106-mile deep water disposal site

    USGS Publications Warehouse

    Lamoureux, E.M.; Brownawell, Bruce J.; Bothner, Michael H.

    1996-01-01

    Linear alkylbenzenes (LABs) are sensitive source-specific tracers of sewage inputs to the marine environment. Because they are highly particle reactive and nonspecifically sorbed to organic matter, LABs are potential tracers of the transport of both sludge-derived organic matter and other low solubility hydrophobic contaminants (e.g., PCBs and PAHs); sediment trap studies at the 106-Mile Site have shown LABs to be valuable in testing models of sludge deposition to the sea floor. In this study we report on the distributions of LABs, PCBs, PAHs, and Ag in surface sediments collected within a month of the complete cessation of dumping (July, 1992) in the vicinity of the dump site. Total LAB concentrations were lower than those measured by Takada and coworkers in samples from nearby sites collected in 1989. LABs from both studies appear to be significantly depleted (6 to 25-fold) in surface sediments relative to excess Ag (another sludge tracer) when compared to sewage sludge and sediment trap compositions. Comparison of LAB sediment inventories to model predictions of sludge particle fluxes supports the contention that LABs have been lost from the bed. The use of LABs to examine the short-or long-term fate of sludge derived materials in deep-sea sediments should be questioned. The causes of this LAB depletion are unclear at this point, and we discuss several hypotheses. The concentrations of total PCBs and PAHs are both correlated with sludge tracers, suggesting that there may be a measurable contribution of sludge-derived inputs on top of other nonpoint sources of these contaminant classes. This possibility is consistent with the composition of these contaminants determined in recent and historical analyses of sewage sludge.

  2. The Tsitsikamma coastal shelf, Agulhas Bank, South Africa: example of an isolated Holocene sediment trap

    NASA Astrophysics Data System (ADS)

    Flemming, Burg W.; Keith Martin, A.

    2018-02-01

    Under certain geomorphological conditions, sandy sediments supplied to a coast may become trapped in nearshore sedimentary compartments because these are laterally confined by bedload boundaries or convergences. Where sediment supply is small or the shoreface very steep, and accommodation space as a consequence large, the trapping mechanism may be very efficient. The Tsitsikamma coast along the South African south coast is a case in point, the sediment supplied by local rivers over the past 12 ka having been trapped in a nearshore sediment wedge extending at least 5 km offshore. On the basis of high-resolution seismic surveys, the volume of the sediment wedge has been estimated at 1,354×106 m3. As 5% of this volume is considered to have been contributed by bioclastic material of marine origin, the terrestrial input would be 1,286×106 m3. This amounts to an average annual terrestrial sediment input of 0.1072×106 m3. Using a detailed sediment yield map, the modern mean annual sediment supply to the Tsitsikamma coast by local rivers has been estimated at 0.1028×106 m3. Unless coincidental, the remarkable similarity of the two values suggests that the current climatic conditions along the Tsitsikamma coast correspond to the Holocene mean. This conclusion is supported by the currently available climate data for the South African south coast.

  3. The dominance of dispersion in the evolution of bed material waves in gravel-bed rivers

    Treesearch

    Thomas E. Lisle; Yantao Cui; Gary Parker; James E. Pizzuto; Annjanette M. Dodd

    2001-01-01

    Abstract - Bed material waves are temporary zones of sediment accumulation created by large sediment inputs. Recent theoretical, experimental and field studies examine factors in fluencing dispersion and translation of bed material waves in quasi-uniform, gravel-bed channels. Exchanges of sediment between a channel and its floodplain are...

  4. Post-landslide recovery patterns in a coast redwood forest

    Treesearch

    Leslie M. Reid; Elizabeth Keppeler; Sue Hilton

    2017-01-01

    Large landslides can exert a lasting influence on hillslope and channel form and can continue to contribute to high in-stream sediment loads long after the event. We used discharge and suspended sediment concentration data from the Caspar Creek Experimental Watersheds to evaluate the temporal distribution of sediment inputs from 11 landslides of 100 to 5500 m

  5. Distribution and bioavailability of cadmium in ornithogenic coral-sand sediments of the Xisha archipelago, South China Sea.

    PubMed

    Liu, Xiaodong; Lou, Chuangneng; Xu, Liqiang; Sun, Liguang

    2012-09-01

    Total cadmium (Cd) concentrations in four ornithogenic coral-sand sedimentary profiles displayed a strong positive correlation with guano-derived phosphorus, but had no correlation with plant-originated organic matter in the top sediments. These results indicate that the total Cd distributions were predominantly controlled by guano input. Bioavailable Cd and zinc (Zn) had a greater input rate in the top sediments with respect to total Cd and total Zn, and a positive correlation with total organic carbon (TOC) derived from plant humus. Multi-regression analysis showed that the total Cd and TOC explained over 80% of the variation of bioavailable Cd, suggesting that both guano and plant inputs could significantly influence the distribution of bioavailable Cd, and that plant biocycling processes contribute more to the recent increase of bioavailable Cd. A pollution assessment indicates that the Yongle archipelago is moderately to strongly polluted with guano-derived Cd. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Evaluation of metals and hydrocarbons in sediments from a tropical tidal flat estuary of Southern Brazil.

    PubMed

    Costa, Eduardo S; Grilo, Caroline F; Wolff, George A; Thompson, Anu; Figueira, Rubens Cesar Lopes; Neto, Renato Rodrigues

    2015-03-15

    Although the Passagem Channel estuary, Espírito Santo State, Brazil, is located in an urbanized and industrialized region, it has a large mangrove system. Here we examined natural and anthropogenic inputs that may influence trace metal (Cd, Cr, Cu, Ni, Sc, Pb and Zn) and hydrocarbon (n-alkane and terpane) deposition in three sediment cores collected in the tidal flat zone of the estuary. The cores were also analyzed for carbonate, grain size and stable isotopic composition (δ(13)Corg. and δ(15)Ntotal). Metal enrichment and its association to petroleum hydrocarbons in the surficial sediments of one of the cores, indicate crude oil and derivative inputs, possibly from small vessels and road run-off from local heavy automobile traffic. At the landward sites, the major contributions for metals and hydrocarbons are from natural sources, but in one case, Cu may have been enriched by domestic effluent inputs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The effect of deposited fine sediment on summer survival and growth of rainbow trout in riffles of a small stream

    Treesearch

    Bret C. Harvey; Jason L. White; Rodney J. Nakamoto

    2009-01-01

    Elevated fine-sediment inputs to streams can alter a variety of conditions and processes, including the amount of fine sediment stored in riffles. We sought to measure the influence of deposited fine sediment on the survival and growth of juvenile rainbow trout Oncorhynchus mykiss (106–130 mm fork length) using a field experiment that included 18 enclosures in riffles...

  8. Polycyclic aromatic hydrocarbons (PAHs) in the water column and sediment core of Deep Bay, South China

    NASA Astrophysics Data System (ADS)

    Qiu, Yao-Wen; Zhang, Gan; Liu, Guo-Qing; Guo, Ling-Li; Li, Xiang-Dong; Wai, Onyx

    2009-06-01

    The levels of 15 polycyclic aromatic hydrocarbons (PAHs) were determined in seawater, suspended particulate matter (SPM), surface sediment and core sediment samples of Deep Bay, South China. The average concentrations Σ 15PAHs were 69.4 ± 24.7 ng l -1 in seawater, 429.1 ± 231.8 ng g -1 in SPM, and 353.8 ± 128.1 ng g -1 dry weight in surface sediment, respectively. Higher PAH concentrations were observed in SPM than in surface sediment. Temporal trend of PAH concentrations in core sediment generally increased from 1948 to 2004, with higher concentrations in top than in sub-surface, implying a stronger recent input of PAHs owing to the rapid economic development in Shenzhen. Compared with historical data, the PAH levels in surface sediment has increased, and this was further confirmed by the increasing trend of PAHs in the core sediment. Phenanthrene, fluoranthene and pyrene dominated in the PAH composition pattern profiles in the Bay. Compositional pattern analysis suggested that PAHs in the Deep Bay were derived from both pyrogenic and petrogenic sources, and diesel oil leakage, river runoff and air deposition may serve as important pathways for PAHs input to the Bay. Significant positive correlations between partition coefficient in surface sediment to that in water ( KOC) of PAH and their octanol/water partition coefficients ( KOW) were observed, suggesting that KOC of PAHs in sediment/water of Deep Bay may be predicted by the corresponding KOW.

  9. Heavy Metal Enrichment in laminated lake sediments from N-Germany and N-Poland: Geochemical background, enrichment history and land surface changes

    NASA Astrophysics Data System (ADS)

    Hoelzmann, Philipp; Brauer, Achim; Dräger, Nadine; Kienel, Ulrike; Obremska, Milena; Ott, Florian; Słowinski, Michał

    2017-04-01

    For three lake sediment records, situated in rural environments in NE-Germany (Lake Tiefer See) and N-Poland (Lake Czechowskie, Lake Głęboczek), we present a detailed heavy metal enrichment history with sub-decadal resolution for the last 200 years. We determine the local and specific geogenic background values on the base of heavy-metal analysis of pre-industrial sediments and different sediment types (e.g. calcareous gyttja, organic gyttja etc.). These results provide means to calculate and quantify anthropogenic heavy metal accumulations and enrichment factors as well as to define regional measures for a state of reference, reflecting natural conditions without human impact. All three lakes show a similar pattern of relatively low heavy metal concentrations and only Pb, Zn and Cd show a clear parallel pattern of enrichment starting around 1850. This heavy metal enrichment mainly results from atmospheric input due to increasing industrialization within the framework of the Industrial Revolution. Highest concentrations of Cd, Zn, and Pb occur around 1960 to 1980 and thereafter a clear pattern of declining anthropogenic input is registered. This data is supplemented by calculations of mass accumulation rates to determine heavy metal input to the lakes for the past 200 years. For Lake Czechowskie the heavy metal input to the lake is compared to an on average five year resolved pollen record that reflects changes in land use and vegetation.

  10. Early diagenesis in the sediments of the Congo deep-sea fan dominated by massive terrigenous deposits: Part II - Iron-sulfur coupling

    NASA Astrophysics Data System (ADS)

    Taillefert, Martial; Beckler, Jordon S.; Cathalot, Cécile; Michalopoulos, Panagiotis; Corvaisier, Rudolph; Kiriazis, Nicole; Caprais, Jean-Claude; Pastor, Lucie; Rabouille, Christophe

    2017-08-01

    Deep-sea fans are well known depot centers for organic carbon that should promote sulfate reduction. At the same time, the high rates of deposition of unconsolidated metal oxides from terrigenous origin may also promote metal-reducing microbial activity. To investigate the eventual coupling between the iron and sulfur cycles in these environments, shallow sediment cores (< 50 cm) across various channels and levees in the Congo River deep-sea fan ( 5000 m) were profiled using a combination of geochemical methods. Interestingly, metal reduction dominated suboxic carbon remineralization processes in most of these sediments, while dissolved sulfide was absent. In some 'hotspot' patches, however, sulfate reduction produced large sulfide concentrations which supported chemosynthetic-based benthic megafauna. These environments were characterized by sharp geochemical boundaries compared to the iron-rich background environment, suggesting that FeS precipitation efficiently titrated iron and sulfide from the pore waters. A companion study demonstrated that methanogenesis was active in the deep sediment layers of these patchy ecosystems, suggesting that sulfate reduction was promoted by alternative anaerobic processes. These highly reduced habitats could be fueled by discrete, excess inputs of highly labile natural organic matter from Congo River turbidites or by exhumation of buried sulfide during channel flank erosion and slumping. Sulfidic conditions may be maintained by the mineralization of decomposition products from local benthic macrofauna or bacterial symbionts or by the production of more crystalline Fe(III) oxide phases that are less thermodynamically favorable than sulfate reduction in these bioturbated sediments. Overall, the iron and sulfur biogeochemical cycling in this environment is unique and much more similar to a coastal ecosystem than a deep-sea environment.

  11. 75 FR 62358 - Stakeholder Input on Stormwater Rulemaking Related to the Chesapeake Bay; Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-08

    ... including, but not limited to, nitrogen, phosphorus, and sediment in the Chesapeake Bay Watershed; requiring... specificity of the minimum control measures could include considerations for nitrogen, phosphorus and sediment...

  12. Geological and paleontological results from the WISSARD (Whillans Ice Stream Subglacial Access Research Drilling) Project

    NASA Astrophysics Data System (ADS)

    Scherer, R. P.; Powell, R. D.; Coenen, J. J.; Hodson, T. O.; Puttkammer, R.; Tulaczyk, S. M.

    2015-12-01

    The WISSARD project recovered sediment cores and other geological materials from beneath the Whillans Ice Stream in West Antarctica during two drilling seasons; Subglacial Lake Whillans (SLW) in 2013 and 100km downstream at the ice stream grounding-zone (WGZ) in 2015. SLW is characterized by 2 m of freshwater with a high suspended-sediment load, whereas WGZ has a 10 m column of clear, fully marine water with an active community of marine organisms. Three coring devices were deployed as part of WISSARD, including (1) a multicorer, which recovers 3 unaltered sediment-water interface cores, up to 0.5m, (2) a piston corer, also deployed as a gravity corer, with a 3m core barrel, and (3) a percussion coring system with a 5m core barrel. Sediments recovered from SLW are muddy diamicton with minimal stratification. The sediments are characteristic of active till, not water-column deposition. The till is weak and effective stresses very low, thus till flux from deformation must also be low. Water through flow is sufficient to carry suspended clays and silts, but not transfer large volumes of sediment in the current glaciological regime. Microfossils and geochemical tracers (e.g., biomarkers, 10Be and 14C) in SLW sediments indicate Pleistocene input from open water conditions, plus input and mixing of components derived from older Cenozoic strata. Diatoms and other sedimentary characteristics of SLW are entirely consistent with material previously recovered from upstream sites on the Whillans Ice Stream (UpB), but show evidence of further cumulative subglacial shear strain, suggesting downstream translation as deforming till. Sedimentary components from WGZ indicate significant input from sources other than from the Whillans Ice Stream. Sediment cores include distinct stratigraphic variability, with differing geochemical and sedimentary components indicative of input from changing source beds. Components indicate a mixture of Quaternary and older components. The lower ca. 10m of ice at WGZ contained abundant sedimentary debris, and active melting and rainout of basal debris was observed. We attribute much of the stratigraphy of the upper sedimentary layers at WGZ, which include soft mud and rock clasts, to ongoing basal melting. This may represent recent grounding line retreat.

  13. Assessment of heavy metal contamination in the sediment of the River Ghaghara, a major tributary of the River Ganga in Northern India

    NASA Astrophysics Data System (ADS)

    Singh, Harendra; Pandey, Ruby; Singh, Sudhir Kumar; Shukla, D. N.

    2017-11-01

    The present study includes a systematic analysis of sediment contamination by heavy metals of the River Ghaghara flowing through the Uttar Pradesh and Bihar in Indian Territory. To estimate the geochemical environment of the river, seven heavy metals, namely Co, Cu, Cr, Ni, Cd, Zn, and Pb were examined from the freshly deposited river bed sediment. All the sediment samples were collected on a seasonal basis for the assessment of fluctuation in 2014-2015 and after preparation samples were analyzed using standard procedure. Result showed that heavy metal concentration ranged between 11.37 and 18.42 mg/kg for Co, 2.76 and 11.74 mg/kg for Cu, 61.25 and 87.68 mg/kg for Cr, 15.29 and 25.59 mg/kg for Ni, 0.21 and 0.28 mg/kg for Cd, 13.26 and 17.59 mg/kg for Zn, 10.71 and 14.26 mg/kg for Pb in different season. Metal contamination factor indicates the anthropogenic input in the river sediment was in the range of (0.62-0.97) for Co, (0.04-0.26) for Cu, (0.68-0.97) for Cr, (0.22-0.38) for Ni, (0.70-0.93) for Cd, (0.14-0.19) for Zn, and (0.54-0.71) for Pb. The highest contamination degree of the sediment was noticed as 4.01 at Ayodhya and lowest as 3.16 at Katerniaghat. Geo-accumulation index was noted between (0 and 1) which showed that sediment was uncontaminated to moderately contaminated and may have adverse affects on freshwater ecology of the river. Pollution load index (PLI) was found highest at Chhapra which was 0.45 and lowest at Katerniaghat which was 0.35 and it indicates that the river sediment has a low level of contamination. Significant high correlation was observed between Co, Cu, and Zn, it suggests same source of contamination input is mainly due to human settlement and agriculture activity. Positive correlation between Zn, Co, Cu, Cr, and Ni indicated a natural origin of these elements in the river sediment. Cluster analysis suggests grouping of similar polluted sites. The strong similarity between Co, Zn, Pb, Ni, Cu, and Cd showed relationship of these metals come from the same origin, which is possibly from natural and anthropogenic input which was also confirmed by correlation analysis. Using the various pollution indicators it was found that the river bed sediment is less contaminated by toxic metals during the study but the sediment quality may degrade in the near future due to increasing anthropogenic inputs in the river basin, hence proper management strategies are required to control the direct dumping of wastewater in the river.

  14. The Triassic upwelling system of Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Yurchenko, I.; Graham, S. A.

    2017-12-01

    The Middle to Upper Triassic Shublik Formation of Arctic Alaska is a laterally and vertically heterogeneous rock unit that has been analyzed both in outcrop and in the subsurface. The Shublik Formation sediments are distinguished by a characteristic set of lithologies that include glauconitic, phosphatic, organic-rich, and cherty facies consistent with a coastal upwelling zone deposition interpretation. It is often recognized by abundance of impressions and shells of distinctive Triassic bivalves. To understand main controls on lithofacies distributions, this study reviews and refines lithologic and paleoenvironmental interpretations of the Shublik Formation, and incorporates the newly acquired detailed geochemical analyses of two complete Shublik cores. This work focuses on organic geochemistry (analyses of biomarkers and diamondoids), chemostratigraphy (hand-held XRF), and iron speciation analysis to reconstruct paleoproductivity and redox conditions. Based on the available evidence, during Shublik deposition, an upwelling-influenced open shelf resulted in high nutrient supply that stimulated algal blooms leading to high net organic productivity, reduced water transparency, oxygen deficiency, and water column stratification. Evidence of such eutrophic conditions is indicated by the lack of photic benthic organisms, bioturbation and trace fossils, and dominance of the monospecific light-independent epibenthic bivalves. The flat, subcircular, thin shells of these carbonate-secreting organisms allowed them to adapt to dysoxic conditions, and float on soft, soupy, muddy substrate. The distinctive clay- and organic-rich facies with abundant bivalves occurred on the mid to outer stable broad shelf, and were deposited when organic productivity at times overlapped with periods of increased siliciclastic input controlled by sea level and changes in local sediment dispersal systems, and therefore are more spatially and temporally localized than the widespread clay-poor facies. The overall lithofacies distribution in the Shublik Formation can therefore be described by the interplay of sea level, detrital sediment input, local bathymetry and hydrodynamic conditions without requiring changes in organic sources input or redox conditions.

  15. Carbonate chemistry in a Kennebec Estuary softshell clam flat: Seasonal variability and implications for blue carbon mitigation

    NASA Astrophysics Data System (ADS)

    Miller, H. R.; Jurcic, B.; Indrick, R.; LaVigne, M.

    2016-12-01

    Maine's softshell clam (Mya arenaria) industry brings $20 million to the state annually. Reduced clam flat sediments aragonite saturation state (Ω), a predicted effect of ocean acidification, has been shown to negatively impact shell development in M. arenaria's early life stages. Seagrass restoration has been proposed to benefit Maine clam flats. However, the Gulf of Maine experiences seasonal changes in temperature and freshwater input, and the impacts on the carbonate chemistry of intertidal ecosystems have yet to be quantified. We measured overlying water and surface ( upper 1cm) porewater temperature (T), salinity (S), pH, and alkalinity (TA) biweekly from March to August, 2016 to quantify spatial and seasonal sediment Ω variability in a Kennebec Estuary clam flat (Wyman Bay, Maine). Reduced freshwater flow from spring into summer caused an increase in overlying water S (5-25ppt), TA (400-1800ueq/L), and W (0.09-1.20). Surface sediment pore water S (15-29ppt) and TA (1100-2100ueq/L) also increased in summer; however, Ω was variable and remained well below saturation (<0.40). Overlying water pH (7.38-7.96) and sediment pore water pH (6.85-7.47) showed no seasonal trend. Contrary to the predicted impact of seagrass on clam flat carbonate chemistry, preliminary data show sediment Ω is significantly lower in a site located within S. alterniflora (0.150.05) compared to sites lacking alterniflora (0.210.1) within Wyman Bay. Elevated sediment organic matter concentrations found with grasses (4.6%0.5) vs. without (2.9%0.4) may be produced by the grasses and organisms attracted to the ecosystem, and may result in greater respiration driving pH and Ω down rather than up. The strong correlation between TA and S (R2=0.78-0.99) suggests freshwater flow with spring melt during M. arenaria's planktonic larval stage and rain events (predicted to increase with climate change) can reduce Ω, with potentially negative implications for early M. arenaria life stages.

  16. Mixed sand and gravel beaches: accurate measurement of active layer depth and sediment transport volumes using PIT tagged tracer pebbles

    NASA Astrophysics Data System (ADS)

    Holland, A.; Moses, C.; Sear, D. A.; Cope, S.

    2016-12-01

    As sediments containing significant gravel portions are increasingly used for beach replenishment projects globally, the total number of beaches classified as `mixed sand and gravel' (MSG) increases. Calculations for required replenishment sediment volumes usually assume a uniform layer of sediment transport across and along the beach, but research into active layer (AL) depth has shown variations both across shore and according to sediment size distribution. This study addresses the need for more accurate calculations of sediment transport volumes on MSG beaches by using more precise measurements of AL depth and width, and virtual velocity of tracer pebbles. Variations in AL depth were measured along three main profile lines (from MHWS to MLWN) at Eastoke, Hayling Island (Hampshire, UK). Passive Integrated Transponder (PIT) tagged pebbles were deployed in columns, and their new locations repeatedly surveyed with RFID technology. These data were combined with daily dGPS beach profiles and sediment sampling for detailed analysis of the influence of beach morphodynamics on sediment transport volumes. Data were collected over two consecutive winter seasons: 2014-15 (relatively calm, average wave height <1 m) and 2015-16 (prolonged periods of moderate storminess, wave heights of 1-2 m). The active layer was, on average, 22% of wave height where beach slope (tanβ) is 0.1, with variations noted according to slope angle, sediment distribution, and beach groundwater level. High groundwater levels and a change in sediment proportions in the sandy lower foreshore reduced the AL to 10% of wave height in this area. The disparity in AL depth across the beach profile indicates that traditional models are not accurately representing bulk sediment transport on MSG beaches. It is anticipated that by improving model inputs, beach managers will be better able to predict necessary volumes and sediment grain size proportions of replenishment material for effective management of MSG beaches.

  17. What Controls Sediment Retention in an Emerging Delta?

    NASA Astrophysics Data System (ADS)

    Keogh, M.; Kolker, A.

    2016-12-01

    What controls sediment retention in an emerging delta? Here, we examine the effects of river discharge and flow velocity on sediment retention rate, using a developing crevasse splay in the Lower Mississippi Delta as a study location. With a controlled discharge that ranges from 28 to 280 m3/s, Davis Pond Freshwater Diversion connects the Mississippi River to the adjacent wetland, allowing river water, sediment, and nutrients to flow into the marsh. Although Davis Pond was primarily designed to regulate salinity within Barataria Basin rather than to build land, a new crevasse splay has recently emerged at the mouth of the diversion's outfall channel. Short (5 cm) sediment cores were collected at 22 locations around the Davis Pond receiving basin in spring 2015, fall 2015, and spring 2016. All cores were analyzed for sediment geotechnical parameters including organic content, bulk density, and grain size. Sediment input into the receiving basin was calculated using a ratings curve. Activity of the radioisotope beryllium-7 was used to calculate rates of sediment accumulation and retention. We find that while sediment input is greater during high flow, rate of retention is greater during low flow. This is likely due to the increase in flow velocity that accompanies high discharge, which retains sediment in suspension and leads to more throughput of material. Furthermore, the diversion operation regime of sustained low flow punctuated by short-duration high discharge events has increased soil bulk density, mineral sediment accumulation, and marsh platform elevation. River diversions such as Davis Pond mimic the land-building processes of natural crevasse splays and provide a promising method to restore deltaic wetlands worldwide.

  18. Floodplain trapping and cycling compared to streambank erosion of sediment and nutrients in an agricultural watershed

    USGS Publications Warehouse

    Gillespie, Jaimie; Noe, Gregory; Hupp, Cliff R.; Gellis, Allen; Schenk, Edward R.

    2018-01-01

    Floodplains and streambanks can positively and negatively influence downstream water quality through interacting geomorphic and biogeochemical processes. Few studies have measured those processes in agricultural watersheds. We measured inputs (floodplain sedimentation and dissolved inorganic loading), cycling (floodplain soil nitrogen [N] and phosphorus [P] mineralization), and losses (bank erosion) of sediment, N, and P longitudinally in stream reaches of Smith Creek, an agricultural watershed in the Valley and Ridge physiographic province. All study reaches were net depositional (floodplain deposition > bank erosion), had high N and P sedimentation and loading rates to the floodplain, high soil concentrations of N and P, and high rates of floodplain soil N and P mineralization. High sediment, N, and P inputs to floodplains are attributed to agricultural activity in the region. Rates of P mineralization were much greater than those measured in other studies of nontidal floodplains that used the same method. Floodplain connectivity and sediment deposition decreased longitudinally, contrary to patterns in most watersheds. The net trapping function of Smith Creek floodplains indicates a benefit to water quality. Further research is needed to determine if future decreases in floodplain deposition, continued bank erosion, and the potential for nitrate leaching from nutrient-enriched floodplain soils could pose a long-term source of sediment and nutrients to downstream rivers.

  19. Sediment pulses in mountain rivers. Part 2. Comparison between experiments and numerical predictions

    Treesearch

    Y. Cui; G. Parker; J. E. Pizzuto; T. E. Lisle

    2003-01-01

    Mountain rivers in particular are prone to sediment input in the form of pulses rather than a more continuous supply. These pulses often enter in the form of landslides from adjacent hillslopes or debris flows from steeper tributaries. The activities of humans such as timber harvesting, road building, and urban development can increase the frequency of sediment pulses...

  20. The distribution and composition of hydrocarbons in sediments from the Fladen Ground, North Sea, an area of oil production.

    PubMed

    Ahmed, Abdulwaheed S; Webster, Lynda; Pollard, Pat; Davies, Ian M; Russell, Marie; Walsham, Pam; Packer, Gill; Moffat, Colin F

    2006-02-01

    The distribution and composition of hydrocarbons in sediment from the Fladen Ground oilfield in the northern North Sea have been investigated. The total PAH concentrations (2- to 6-ring parent and alkylated PAHs, including the 16 US EPA PAHs) in sediments were relatively low (<100 microg kg(-1) dry weight). The PAH, the Forties crude and diesel oil equivalent concentrations were generally higher in sediment of fine grain size and higher organic carbon concentration. PAH distributions and concentration ratios indicated a predominantly pyrolytic input, being dominated by the heavier, more persistent, 5- and 6-ring compounds, and with a high proportion of parent PAHs. The n-alkane profiles of a number of the sediments contained small, high boiling point, UCMs, indicative of weathered oil arising from a limited petrogenic input. The geochemical biomarker profiles of the sediments that contained UCMs showed a small bisnorhopane peak and a high proportion of norhopane relative to hopane, indicating that there was contamination from both Middle Eastern and North Sea oils. Therefore contamination was not directly as a result of oil exploration activity in the area. The most likely source of petrogenic contamination was from general shipping activity.

  1. Alkylphenols in surface sediments of the Yellow Sea and East China Sea inner shelf: occurrence, distribution and fate.

    PubMed

    Duan, Xiao-yong; Li, Yan-xia; Li, Xian-guo; Zhang, Da-hai; Gao, Yi

    2014-07-01

    Alkylphenols (APs) have been found as ubiquitous environmental pollutants with reproductive and developmental toxicity. In this study, APs in surface sediments of the Yellow Sea (YS) and East China Sea (ECS) inner shelf were analyzed to assess influences of riverine and atmospheric inputs of pollutants on the marine environment. NP concentrations ranged from 349.5 to 1642.8 ng/g (average 890.1 ng/g) in the YS sediments and from 31.3 to 1423.7 ng/g (average 750.1 ng/g) in the ECS inner shelf sediments. NP distribution pattern was mainly controlled by the sedimentary environment. OP concentration was 0.8-9.3 ng/g (average 4.7 ng/g) in the YS sediments and 0.7-11.1 ng/g (average 5.1 ng/g) in the ECS sediments. Assessment of the influence of distances from land on OP concentrations provided evidence for the predominance of coastal riverine and/or atmospheric inputs rather than long-range transport. And the biological pump may play an important role for sequestration of OP in the nearshore area. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Accumulation and diagenesis of chlorinated hydrocarbons in lacustrine sediments

    USGS Publications Warehouse

    Elsenreich, S.J.; Capel, P.D.; Robbins, J.A.; Bourbonniere, R.

    1989-01-01

    Two sediment cores were taken from the Rochester Basin of eastern Lake Ontario and analyzed for the radionuclides 210Pb and 137Cs and several high molecular weight chlorinated hydrocarbons (CHs). The two sites are geographically proximate but differ in sedimentation rate, permitting sedimentation-dependent processes to be factored out. The 210Pb chronology showed a mixed depth of 3-5 cm and an intrinsic time resolution of 11-14 years. Vertically integrated numbers of deposit-feeding oligochaete worms and burrowing organisms are insufficient to homogenize the sediment on the time scale of CH inputs, which are non steady state. U.S. production and sales of polychlorinated biphenyls (PCBs), DDT, Mirex, and hexachlorobenzene (HCB), as determinants of the shape of the input function, adequately predict the overall shape and, in many cases, details in the sedimentary profile. Sediment focusing factors (FF) inferred from 137Cs and 210Pb inventories averaged 1.17 and 1.74 for cores E-30 and G-32, respectively. This permitted CH accumulation rates to be corrected for focusing. Apparent molecular diffusion coefficients modeled for many of the CHs were about (1-3) ?? 10-9 cm2/s.

  3. Temporal and spatial scales of geomorphic adjustments to reduced competency following flow regulation in bedload-dominated systems

    NASA Astrophysics Data System (ADS)

    Curtis, Katherine E.; Renshaw, Carl E.; Magilligan, Francis J.; Dade, William B.

    2010-05-01

    Because of the combined effects of reduced sediment transport capacity and competency following flow regulation, morphological changes are expected to occur in channels downstream from dams and, specifically, at tributary junctions where local inputs of water and sediment occur. Using a combination of historical aerial photographs, mainstem- and tributary-channel pebble counts, and HEC-RAS flow modeling for two watersheds in south-central VT, one unregulated and the other regulated since 1961, we document the time series of post-regulation channel narrowing and associated bar growth due to the influx of tributary sediment. Channel adjustments at regulated tributary junctions have been significant in ca. 50 years following impoundment, with channels downstream of the confluences narrowing over 15% after an initial ca. 20-year lag before the onset of accelerated narrowing. Moreover, flow modeling suggests that downstream of regulated confluences, the modern median grain size ( d50) along the channel bed is immobile. No significant channel narrowing has occurred either above or below unregulated tributary junctions or on the mainstem upstream of regulated confluences. However, greater channel sediment fining is observed upstream of regulated confluences than above unregulated confluences. Thus, the primary mode of mainstem channel adjustment differs up- and downstream of regulated tributaries. These confluence effects have occurred where the tributary drainage area is only 0.2 times that of the mainstem, well below the threshold ratio of 0.6 required for significant geomorphic effects at unregulated confluences, highlighting the geomorphic scale shift of dams. Lastly, we evaluate the downstream length required for a river to recover from the impacts of impoundment and demonstrate that even distal locations are impacted by flow regulation. Unlike the impacts of flow regulation in the western US where channel incision and bar erosion predominate following impoundment, we find that in situations where bed incision is minimal and where sediment loads are low but bed caliber high, bar growth and channel narrowing are significant adjustments at tributary junctions following impoundment. Therefore, at our sites the effects of dams on reduced competency may be more profound than on reduced sediment transport capacity, highlighting the importance of geologic and geomorphic settings in understanding fluvial responses to impoundment.

  4. The sediment budget of an urban coastal lagoon (Jamaica Bay, NY) determined using 234Th and 210Pb

    NASA Astrophysics Data System (ADS)

    Renfro, Alisha A.; Cochran, J. Kirk; Hirschberg, David J.; Bokuniewicz, Henry J.; Goodbred, Steven L.

    2016-10-01

    The sediment budget of Jamaica Bay (New York, USA) has been determined using the natural particle-reactive radionuclides 234Th and 210Pb. Inventories of excess thorium-234 (234Thxs, half-life = 24.1 d) were measured in bottom sediments of the Bay during four cruises from September 2004 to July 2006. The mean bay-wide inventory for the four sampling periods ranged from 3.5 to 5.0 dpm cm-2, four to six times that expected from 234Th production in the overlying water column. The presence of dissolved 234Th and a high specific activity of 234Thxs on particles at the bay inlet (∼30 dpm g-1) indicated that both dissolved and particulate 234Th could be imported into the bay from the ocean. Based on these observations, a mass balance of 234Th yields an annual input of ∼39 ± 14 × 1010 g sediment into the bay. Mass accumulation rates determined from profiles of excess 210Pb (half-life = 22.3 y) in sediment cores require annual sediment import of 7.4 ± 4.5 × 1010 g. Both radionuclides indicate that there is considerable marine-derived sediment import to Jamaica Bay, consistent with earlier work using 210Pb. Such sediment input may be important in sustaining longer-term accretion rates of salt marshes in the bay.

  5. Modeling Input Errors to Improve Uncertainty Estimates for Sediment Transport Model Predictions

    NASA Astrophysics Data System (ADS)

    Jung, J. Y.; Niemann, J. D.; Greimann, B. P.

    2016-12-01

    Bayesian methods using Markov chain Monte Carlo algorithms have recently been applied to sediment transport models to assess the uncertainty in the model predictions due to the parameter values. Unfortunately, the existing approaches can only attribute overall uncertainty to the parameters. This limitation is critical because no model can produce accurate forecasts if forced with inaccurate input data, even if the model is well founded in physical theory. In this research, an existing Bayesian method is modified to consider the potential errors in input data during the uncertainty evaluation process. The input error is modeled using Gaussian distributions, and the means and standard deviations are treated as uncertain parameters. The proposed approach is tested by coupling it to the Sedimentation and River Hydraulics - One Dimension (SRH-1D) model and simulating a 23-km reach of the Tachia River in Taiwan. The Wu equation in SRH-1D is used for computing the transport capacity for a bed material load of non-cohesive material. Three types of input data are considered uncertain: (1) the input flowrate at the upstream boundary, (2) the water surface elevation at the downstream boundary, and (3) the water surface elevation at a hydraulic structure in the middle of the reach. The benefits of modeling the input errors in the uncertainty analysis are evaluated by comparing the accuracy of the most likely forecast and the coverage of the observed data by the credible intervals to those of the existing method. The results indicate that the internal boundary condition has the largest uncertainty among those considered. Overall, the uncertainty estimates from the new method are notably different from those of the existing method for both the calibration and forecast periods.

  6. Origin of increased terrigenous supply to the NE South American continental margin during Heinrich Stadial 1 and the Younger Dryas

    NASA Astrophysics Data System (ADS)

    Zhang, Yancheng; Chiessi, Cristiano M.; Mulitza, Stefan; Zabel, Matthias; Trindade, Ricardo I. F.; Hollanda, Maria Helena B. M.; Dantas, Elton L.; Govin, Aline; Tiedemann, Ralf; Wefer, Gerold

    2015-12-01

    We investigate the redistribution of terrigenous materials in the northeastern (NE) South American continental margin during slowdown events of the Atlantic Meridional Overturning Circulation (AMOC). The compilation of stratigraphic data from 108 marine sediment cores collected across the western tropical Atlantic shows an extreme rise in sedimentation rates off the Parnaíba River mouth (about 2°S) during Heinrich Stadial 1 (HS1, 18-15 ka). Sediment core GeoB16206-1, raised offshore the Parnaíba River mouth, documents relatively constant 143Nd/144Nd values (expressed as εNd(0)) throughout the last 30 ka. Whereas the homogeneous εNd(0) data support the input of fluvial sediments by the Parnaíba River from the same source area directly onshore, the increases in Fe/Ca, Al/Si and Rb/Sr during HS1 indicate a marked intensification of fluvial erosion in the Parnaíba River drainage basin. In contrast, the εNd(0) values from sediment core GeoB16224-1 collected off French Guiana (about 7°N) suggest Amazon-sourced materials within the last 30 ka. We attribute the extremely high volume of terrigenous sediments deposited offshore the Parnaíba River mouth during HS1 to (i) an enhanced precipitation in the catchment region and (ii) a reduced North Brazil Current, which are both associated with a weakened AMOC.

  7. IODP Expedition 362: Initial results from drilling the Sumatra subduction zone - the role of input materials in shallow seismogenic slip and forearc plateau development

    NASA Astrophysics Data System (ADS)

    McNeill, L. C.; Dugan, B.; Petronotis, K. E.; Expedition 362 Scientists, I.

    2016-12-01

    IODP Expedition 362, August-October, 2016, plans to drill two boreholes within the input section of the Indian oceanic plate entering the North Sumatran subduction zone. In 2004, a Mw 9.2 earthquake ruptured the Sunda subduction zone from North Sumatra to the Andaman Islands, a length of 1500 km. The earthquake and tsunami devastated coastal communities around the Indian Ocean. This earthquake and the 2011 Tohoku-Oki Mw 9.0 earthquake showed unexpectedly shallow megathrust slip. In the case of North Sumatra, this shallow slip was focused beneath a distinctive plateau of the accretionary prism. This intriguing seismogenic behavior and forearc structure are not explained by existing models or by observations at other margins where seismogenic slip typically occurs farther landward. Expedition 362 will use core and log data in conjunction with in situ temperature and pressure measurements to document the lithology, structures, and physical and chemical properties of the input sediments. The input materials of the North Sumatran subduction zone are a distinctive, thick (up to 4-5 km) sequence of primarily Bengal-Nicobar Fan-related sediments. This sequence geophysically shows strong evidence for induration and dewatering and has probably reached the temperatures required for sediment-strengthening diagenetic reactions, and input materials may be key to driving the distinctive slip behavior and long-term forearc structure. The plate boundary fault (décollement) originates within the lower pelagic and submarine fan sediments so sampling this interval will help determine what controls décollement development and how its properties evolve. Initial results from the Expedition and plans for post-expedition experiments and modeling will be presented. These methods will be used to predict physical, thermal, fluid, and mechanical properties and diagenetic evolution of the sediments as stresses and temperatures increase due to burial and subduction. Results will be used to test the role of sediment properties in shallow earthquake slip and in the unusual forearc structure. In addition, the results will contribute to our understanding of a) Bengal-Nicobar fan history and records of Himalayan uplift, erosion and monsoon development, and b) stress conditions in a complexly deforming region of the Indian plate.

  8. Deposition and flux of sediment from the Po River, Italy: An idealized and wintertime numerical modeling study

    USGS Publications Warehouse

    Bever, A.J.; Harris, C.K.; Sherwood, C.R.; Signell, R.P.

    2009-01-01

    Recent studies of sediment dynamics and clinoform development in the northern Adriatic Sea focused on winter 2002-2003 and provided the data and motivation for development of a detailed sediment-transport model for the area near the Po River delta. We used both idealized test cases and more realistic simulations to improve our understanding of seasonal sediment dynamics there. We also investigated the relationship between physical processes and the observed depositional products; e.g. the accumulation of sediment very near the Po River distributary mouths. Sediment transport near the Po River was evaluated using a three-dimensional ocean model coupled to sediment-transport calculations that included wave- and current-induced resuspension, suspended-sediment transport, multiple grain classes, and fluvial input from the Po River. High-resolution estimates from available meteorological and wave models were used to specify wind, wave, and meteorological forcing. Model results indicated that more than half of the discharged sediment remained within 15??km of the Po River distributary mouths, even after two months of intensive reworking by winter storms. During floods of the Po River, transport in the middle to upper water column dominated sediment fluxes. Otherwise, sediment fluxes from the subaqueous portion of the delta were confined to the bottom few meters of the water column, and correlated with increases in current speed and wave energy. Spatial and temporal variation in wind velocities determined depositional patterns and the directions of sediment transport. Northeasterly Bora winds produced relatively more eastward transport, while southwesterly Sirocco winds generated fluxes towards both the north and the south. Eastward transport accounted for the majority of the sediment exported from the subaqueous delta, most likely due to the frequent occurrence of Bora conditions. Progradation of the Po River delta into the Adriatic Sea may restrict the formation of the Western Adriatic Coastal Current, increasing sediment retention at the Po delta and reducing the supply of sediment to the Apennine margin. A positive morphodynamic feedback may therefore be present whereby the extension of the delta into the Adriatic increases sediment accumulation at the delta and facilitates further progradation. ?? 2009 Elsevier B.V.

  9. Uranium in sediments, mussels (Mytilus sp.) and seawater of the Krka river estuary.

    PubMed

    Cuculić, Vlado; Cukrov, Neven; Barisić, Delko; Mlakar, Marina

    2006-01-01

    The response of an aquatic environment to the decrease of phosphate discharges from a technologically improved transhipment terminal, situated at the Croatian Adriatic coast in the port of Sibenik, has been assessed based on uranium activity and concentration in sediment, seawater and mussels Mytilus sp. The highest 238U activities (485+/-16Bqkg(-1) dry weight) were found in the sediment sample collected from the sampling site closest to the terminal. The maximum concentrations in the sediment samples are above the natural ranges and clearly indicate the harbour activities' influence. The 238U/226Ra activity ratios in sediment samples demonstrate the decreasing trend of phosphate ore input. Mussel samples showed levels of 238U activities in the range from 12.1+/-2.9 to 19.4+/-7.2 Bqkg(-1) dry weight, thus being slightly higher than in normally consumed mussels. Only the seawater, taken just above the bottom sediment at the sampling site closest to the terminal, shows a slightly higher uranium concentration (3.1+/-0.2 microgL(-1)) when compared to the samples taken in upper seawater layers (2.1+/-0.2 microgL(-1)) but is in the range of the concentration level of uranium in natural seawater. Since the transhipment terminal in the port of Sibenik was modernised in 1988, discharge of phosphate ore into the seawater was drastically reduced and, consequently, uranium concentration levels in seawater have decreased. However, enhanced uranium activity levels are still found in deeper sediment layer samples and in mussel.

  10. Contribution of wave-induced liquefaction in triggering hyperpycnal flows in Yellow River Estuary

    NASA Astrophysics Data System (ADS)

    Liu, X.; Jia, Y.

    2017-12-01

    Hyperpycnal flows, driven mainly by the gravity of near-bed negatively buoyant layers, are one of the most important processes for moving marine sediment across the earth. The issue of hyperpycnal flows existing in marine environment has drawn increasing scholars' attention since that was observed in situ off the Yellow River estuary in the 1980s. Most researches maintain that hyperpycnal flows in the Yellow River estuary are caused by the high-concentration sediments discharged from the Yellow River into sea, however, other mechanisms have been discounted since the sediment input from the river has been significantly changed due to climate and anthropogenic change. Here we demonstrate that wave-seabed interactions can generate hyperpycnal flows, without river input, by sediment flux convergence above an originally consolidated seabed. Using physical model experiments and multi-sensor field measurements, we characterize the composition-dependent liquefaction properties of the sediment due to wave-induced pore water pressure accumulation. This allows quantification of attenuation of sediment threshold velocity and critical shear stress (predominant variables in transport mechanics) during the liquefaction under waves. Parameterising the wave-seabed interactions in a new concept model shows that high waves propagating over the seabed sediment can act as a scarifier plough remoulding the seabed sediment. This contributes to marine hyperpycnal flows as the sediment is quickly resuspended under accumulating attenuation in strength. Therefore, the development of more integrative numerical models could supply realistic predictions of marine record in response to rising magnitude and frequency of storms.

  11. Spatial and historical distribution of organic phosphorus driven by environment conditions in lake sediments.

    PubMed

    Lü, Changwei; He, Jiang; Wang, Bing

    2018-02-01

    The chemistry of sedimentary organic phosphorus (OP) and its fraction distribution in sediments are greatly influenced by environmental conditions such as terrestrial inputs and runoffs. The linkage of OP with environmental conditions was analyzed on the basis of OP spatial and historical distributions in lake sediments. The redundancy analysis and OP spatial distribution results suggested that both NaOH-OP (OP extracted by NaOH) and Re-OP (residual OP) in surface sediments from the selected 13 lakes reflected the gradient effects of environmental conditions and the autochthonous and/or allochthonous inputs driven by latitude zonality in China. The lake level and salinity of Lake Hulun and the runoff and precipitation of its drainage basin were reconstructed on the basis of the geochemistry index. This work showed that a gradient in weather conditions presented by the latitude zonality in China impacts the OP accumulation through multiple drivers and in many ways. The drivers are mainly precipitation and temperature, governing organic matter (OM) production, degradation rate and transportation in the watershed. Over a long temporal dimension (4000years), the vertical distributions of Re-OP and NaOH-OP based on a dated sediment profile from HLH were largely regulated by the autochthonous and/or allochthonous inputs, which depended on the environmental and climate conditions and anthropogenic activities in the drainage basin. This work provides useful environmental geochemistry information to understand the inherent linkage of OP fractionation with environmental conditions and lake evolution. Copyright © 2017. Published by Elsevier B.V.

  12. Sediment radioisotope dating across a stratigraphic discontinuity in a mining-impacted lake.

    PubMed

    McDonald, C P; Urban, N R

    2007-01-01

    Application of radioisotope sediment dating models to lakes subjected to large anthropogenic sediment inputs can be problematic. As a result of copper mining activities, Torch Lake received large volumes of sediment, the characteristics of which were dramatically different from those of the native sediment. Commonly used dating models (CIC-CSR, CRS) were applied to Torch Lake, but assumptions of these methods are violated, rendering sediment geochronologies inaccurate. A modification was made to the CRS model, utilizing a distinct horizon separating mining from post-mining sediment to differentiate between two focusing regimes. (210)Pb inventories in post-mining sediment were adjusted to correspond to those in mining-era sediment, and a sediment geochronology was established and verified using independent markers in (137)Cs accumulation profiles and core X-rays.

  13. Causes of toxicity to Hyalella azteca in a stormwater management facility receiving highway runoff and snowmelt. Part I: polycyclic aromatic hydrocarbons and metals.

    PubMed

    Bartlett, A J; Rochfort, Q; Brown, L R; Marsalek, J

    2012-01-01

    The Terraview-Willowfield Stormwater Management Facility (TWSMF) receives inputs of multiple contaminants, including metals, polycyclic aromatic hydrocarbons (PAHs), road salt, and nutrients, via highway and residential runoff. Contaminant concentrations in runoff are seasonally dependent, and are typically high in early spring, coinciding with the snowmelt. In order to investigate the seasonal fluctuations of contaminant loading and related changes in toxicity to benthic invertebrates, overlying water and sediment samples were collected in the fall and spring, reflecting low and high contaminant loading, respectively, and four-week sediment toxicity tests were conducted with Hyalella azteca. The effects of metals and PAHs are discussed here; the effects of salts, nutrients, and water quality are discussed in a companion paper. Survival and growth of Hyalella after exposure to fall samples were variable: survival was significantly reduced (64-74% of controls) at three out of four sites, but there were no significant growth effects. More dramatic effects were observed after Hyalella were exposed to spring samples: survival was significantly reduced at the two sites furthest downstream (0-75% of controls), and growth was significantly lower in four out of five sites when comparing Hyalella exposed to site sediment with overlying site water versus site sediment with overlying control water. These seasonal changes in toxicity were not related to metals or PAHs: 1. levels of bioavailable metals were below those expected to cause toxicity, and 2. levels of PAHs in sediment were lowest at sites with the greatest toxicity and highest in water and sediment at sites with no toxicity. Although not associated with toxicity, some metals and PAHs exceeded probable and severe effect levels, and could be a cause for concern if contaminant bioavailability changes. Toxicity in the TWSMF appeared to be primarily associated with water-borne contaminants. The cause(s) of these effects are discussed in our companion manuscript. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  14. Decision analysis of mitigation and remediation of sedimentation within large wetland systems: a case study using Agassiz National Wildlife Refuge

    USGS Publications Warehouse

    Post van der Burg, Max; Jenni, Karen E.; Nieman, Timothy L.; Eash, Josh D.; Knutsen, Gregory A.

    2014-01-01

    Sedimentation has been identified as an important stressor across a range of wetland systems. The U.S. Fish and Wildlife Service has the responsibility of maintaining wetlands within its National Wildlife Refuge System for use by migratory waterbirds and other wildlife. Many of these wetlands could be negatively affected by accelerated rates of sedimentation, especially those located in agricultural parts of the landscape. In this report we document the results of a decision analysis project designed to help U.S. Fish and Wildlife Service staff at the Agassiz National Wildlife Refuge (herein referred to as the Refuge) determine a strategy for managing and mitigating the negative effects of sediment loading within Refuge wetlands. The Refuge’s largest wetland, Agassiz Pool, has accumulated so much sediment that it has become dominated by hybrid cattail (Typha × glauca), and the ability of the staff to control water levels in the Agassiz Pool has been substantially reduced. This project consisted of a workshop with Refuge staff, local and regional stakeholders, and several technical and scientific experts. At the workshop we established Refuge management and stakeholder objectives, a range of possible management strategies, and assessed the consequences of those strategies. After deliberating a range of actions, the staff chose to consider the following three strategies: (1) an inexpensive strategy, which largely focused on using outreach to reduce external sediment inputs to the Refuge; (2) the most expensive option, which built on the first option and relied on additional infrastructure changes to the Refuge to increase management capacity; and (3) a strategy that was less expensive than strategy 2 and relied mostly on existing infrastructure to improve management capacity. Despite the fact that our assessments were qualitative, Refuge staff decided they had enough information to select the third strategy. Following our qualitative assessment, we discussed additional considerations and uncertainties that might affect implementation of this strategy.

  15. Depositional history of organic contaminants on the Palos Verdes Shelf, California

    USGS Publications Warehouse

    Eganhouse, R.P.; Pontolillo, J.

    2000-01-01

    During more than 60 years, sedimentation on the Palos Verdes Shelf has been dominated by time-varying inputs of municipal wastewater from the Los Angeles County Sanitation Districts (LACSD) and debris from the Portuguese Bend Landslide (PBL). The present study examines the depositional history of wastewater-derived organic contaminants at a site approximately 6-8 km downcurrent from the outfall system. Sediments at this location are impacted by contributions from both sources, but the relative influence of the sources has changed over time. Two classes of hydrophobic organic contaminants (chlorinated hydrocarbons, long-chain alkylbenzenes) were determined in sediment cores collected in 1981 and 1992. Using molecular stratigraphy, we determined average sedimentation rates (cm/year) and mass accumulation rates (g cm-2 year-1) for the following periods: 1955-1965, 1965-1971, 1971-1981 and 1981-1992. The results show that sedimentation and mass accumulation rates increased from 1955 to 1971 and decreased from 1971 to 1981. These trends are consistent with historical information on the emission of suspended solids from the outfall system, indicating that the discharge of wastes dominated sedimentation at the site during this period. In the 1980s and early 1990s, however, mass accumulation rates increased in spite of continually decreasing emissions of wastewater solids. Several lines of evidence indicate that this increase was due to mobilization of debris from the PBL during and after unusually strong winter storms in the 1980s. As a result, heavily contaminated sediments deposited during the years of greatest waste emissions (i.e. 1950-1970) have been buried to greater sub-bottom depths, thereby reducing their availability for mobilization to the overlying water column. These results highlight the dynamic nature of sedimentation in contaminated coastal ecosystems and its importance to the long-term fate and effects of toxic substances.

  16. Reoxidation of estuarine sediments during simulated resuspension events: Effects on nutrient and trace metal mobilisation

    NASA Astrophysics Data System (ADS)

    Vidal-Durà, Andrea; Burke, Ian T.; Stewart, Douglas I.; Mortimer, Robert J. G.

    2018-07-01

    Estuarine environments are considered to be nutrient buffer systems as they regulate the delivery of nutrients from rivers to the ocean. In the Humber Estuary (UK) seawater and freshwater mixing during tidal cycles leads to the mobilisation of oxic surface sediments (0-1 cm). However, less frequent seasonal events can also mobilise anoxic subsurface (5-10 cm) sediments, which may have further implications for the estuarine geochemistry. A series of batch experiments were carried out on surface and subsurface sediments taken from along the salinity gradient of the Humber Estuary. The aim was to investigate the geochemical processes driving major element (N, Fe, S, and Mn) redox cycling and trace metal behaviour during simulated resuspension events. The magnitude of major nutrient and metal release was significantly greater during the resuspension of outer estuarine sediments rather than from inner estuarine sediments. When comparing resuspension of surface versus subsurface sediment, only the outer estuary experiments showed significant differences in major nutrient behaviour with sediment depth. In general, any ammonium, manganese and trace metals (Cu and Zn) released during the resuspension experiments were rapidly removed from solution as new sorption sites (i.e. Fe/Mn oxyhydroxides) formed. Therefore Humber estuary sediments showed a scavenging capacity for these dissolved species and hence may act as an ultimate sink for these elements. Due to the larger aerial extent of the outer estuary intertidal mudflats in comparison with the inner estuary area, the mobilisation of the outer estuary sediments (more reducing and richer in sulphides and iron) may have a greater impact on the transport and cycling of nutrients and trace metals. Climate change-associated sea level rise combined with an increasing frequency of major storm events in temperate zones, which are more likely to mobilise deeper sediment regions, will impact the nutrient and metal inputs to the coastal waters, and therefore enhance the likelihood of eutrophication in this environment.

  17. Biogeochemical response of tropical coastal systems to present and past environmental change

    NASA Astrophysics Data System (ADS)

    Jennerjahn, Tim C.

    2012-08-01

    Global climate and environmental change affect the biogeochemistry and ecology of aquatic systems mostly due to a combination of natural and anthropogenic factors. The latter became more and more important during the past few thousand years and particularly during the 'Anthropocene'. However, although they are considered important in this respect as yet much less is known from tropical than from high latitude coasts. Tropical coasts receive the majority of river inputs into the ocean, they harbor a variety of diverse ecosystems and a majority of the population lives there and economically depends on their natural resources. This review delineates the biogeochemical response of coastal systems to environmental change and the interplay of natural and anthropogenic control factors nowadays and in the recent geological past with an emphasis on tropical regions. Weathering rates are higher in low than in high latitude regions with a maximum in the SE Asia/Western Pacific region. On a global scale the net effect of increasing erosion due to deforestation and sediment retention behind dams is a reduced sediment input into the oceans during the Anthropocene. However, an increase was observed in the SE Asia/Western Pacific region. Nitrogen and phosphorus inputs into the ocean have trebled between the 1970s and 1990s due to human activities. As a consequence of increased nutrient inputs and a change in the nutrient mix excessive algal blooms and changes in the phytoplankton community composition towards non-biomineralizing species have been observed in many regions. This has implications for foodwebs and biogeochemical cycles of coastal seas including the release of greenhouse gases. Examples from tropical coasts with high population density and extensive agriculture, however, display deviations from temperate and subtropical regions in this respect. According to instrumental records and observations the present-day biogeochemical and ecological response to environmental change appears to be on the order of decades. A sediment record from the Brazilian continental margin spanning the past 85,000 years, however, depicts that the ecosystem response to changes in climate and hydrology can be on the order of 1000-2000 years. The coastal ocean carbon cycle is very sensitive to Anthropocene changes in land-derived carbon and nutrient fluxes and increasing atmospheric carbon dioxide. As opposing trends in high latitude regions tropical coastal seas display increasing organic matter inputs and reduced calcification rates which have important implications for calcifying organisms and the carbon source or sink function of the coastal ocean. Particularly coral reefs which are thriving in warm tropical waters are suffering from ocean acidification. Nevertheless, they are not affected uniformly and the sensitivity to ocean acidification may vary largely among coral reefs. Therefore, the prediction of future scenarios requires an improved understanding of present and past responses to environmental change with particular emphasis put on tropical regions.

  18. Nutrient budgets, marsh inundation under sea-level rise scenarios, and sediment chronologies for the Bass Harbor Marsh estuary at Acadia National Park

    USGS Publications Warehouse

    Huntington, Thomas G.; Culbertson, Charles W.; Fuller, Christopher C.; Glibert, Patricia; Sturtevant, Luke

    2014-01-01

    Eutrophication in the Bass Harbor Marsh estuary on Mount Desert Island, Maine, is an ongoing problem manifested by recurring annual blooms of green macroalgae species, principally Enteromorpha prolifera and Enteromorpha flexuosa, blooms that appear in the spring and summer. These blooms are unsightly and impair the otherwise natural beauty of this estuarine ecosystem. The macroalgae also threaten the integrity of the estuary and its inherent functions. The U.S. Geological Survey and Acadia National Park have collaborated for several years to better understand the factors related to this eutrophication problem with support from the U.S. Geological Survey and National Park Service Water Quality Assessment and Monitoring Program. The current study involved the collection of hydrologic and water-quality data necessary to investigate the relative contribution of nutrients from oceanic and terrestrial sources during summer 2011 and summer 2012. This report provides data on nutrient budgets for this estuary, sedimentation chronologies for the estuary and fringing marsh, and estuary bathymetry. The report also includes data, based on aerial photographs, on historical changes from 1944 to 2010 in estuary surface area and data, based on surface-elevation details, on changes in marsh area that may accompany sea-level rise. The LOADEST regression model was used to calculate nutrient loads into and out of the estuary during summer 2011 and summer 2012. During these summers, tidal inputs of ammonium to the estuary were more than seven times greater than the combined inputs in watershed runoff and precipitation. In 2011 tidal inputs of nitrate were about four times greater than watershed plus precipitation inputs, and in 2012 tidal inputs were only slightly larger than watershed plus precipitation inputs. In 2011, tidal inputs of total organic nitrogen were larger than watershed input by a factor of 1.6. By contrast, in 2012 inputs of total organic nitrogen in watershed runoff were much larger than tidal inputs, by a factor of 3.6. During the 2011 and 2012 summers, tidal inputs of total dissolved phosphorus to the estuary were more than seven times greater than inputs in watershed runoff. It is evident that during the summer tidal inputs of inorganic nitrogen and total dissolved phosphorus to the estuary exceed inputs from watershed runoff and precipitation. Projected sea-level rise associated with ongoing climate warming will affect the area of land within the Bass Harbor Marsh estuary watershed that is inundated during conditions of mean higher high water and during mean lower low water and hence will affect the vegetation and marsh area. Given 100-centimeter sea-level rise, the inundated area would increase from 25.7 hectares at the current condition to 77.5 hectares at mean higher high water and from 21.6 hectares to 26.7 hectares at mean lower low water. Given 50-centimeter sea-level rise, flooding of the entire marsh surface, which currently occurs only under the highest spring tides, would occur on average every other day. Radioisotope analysis of sediment cores from the estuary indicates that the sediment accumulation rate increased markedly from 1930 to 1980 and was relatively constant (0.4 to 0.5 centimeter per year) from 1980 to 2009. Similarly, from 1980 to 2009 there was a consistently high mass accumulation rate of 0.09 to 0.11 grams per square centimeter per year. The sediment accretion rates determined for the five cores collected from the marsh surface (east and west sides of the estuary) in 2011 show generally higher rates of 0.20 to 0.29 centimeter per year for the period between 1980 to 2011 than for the period before 1980, when sediment accretion rates were 0.06 to 0.25 centimeter per year. The data in this report provide resource managers at Acadia National Park with a baseline that can be used to evaluate future conditions within the estuary. Climate change, sea-level rise, and land-use change within the estuary’s watershed may influence nutrient dynamics, sedimentation, and eutrophication, and these potential effects can be studied in relation to the baseline data provided in this report. The Route 102 Bridge in Tremont, Maine is constructed over a sill that controls the amount of tidal flushing by restricting the duration of the flood tide, and structural changes to the bridge could alter tidal nutrient inputs and residence times for watershed and ocean-derived nutrients in the estuary. Ongoing sea-level rise is likely increasing ocean-derived nutrients and their residence time in the estuary on the one hand and decreasing the residence time of watershed-derived nutrients on the other.

  19. Historical sediment budget and present-day catchment-shoreline coupling at Twofold Bay, southeastern Australia

    NASA Astrophysics Data System (ADS)

    Tamura, T.; Oliver, T.; Hudson, J.; Woodroffe, C. D.

    2017-12-01

    Considering projected impacts of sea-level rise in the 21st century on sandy shorelines, an understanding of long-term sediment budget for individual beaches or coastal compartments supports assessments of shoreline stability. We examined a low-lying coastal beach-ridge barrier in Twofold Bay using optically stimulated luminescence (OSL) dating , airborne LiDAR, sedimentological analysis and seismic data to assess changes in rates of sediment supply to this shoreline through time. Calculations of barrier volume, Twofold Bay bay-floor sediment volume and estimates of sediment delivery from a proximal river system provide a broad-scale assessment of past-sediment budget. Between ca. 7500 years ago and 1500 years ago, sources of sediment for shoreline progradation at Boydtown were bay-floor sediments either inherited or moved into the embayment during late-stage transgression. Progradation rate between ca. 7500-1500 years ago was 0.16 m/yr with subaerial barrier volume accumulating at 0.46 m3/m/yr. Between ca. 1500 years and present day, the Towamba River to the south has delivered additional sediment to the Boydtown shoreline more than doubling shoreline progradation rate to 0.65 m/yr and subaerial barrier accumulation has risen to 1.83 m3/m/yr. The delivery of fluvial sediment from the Towamba River was restricted to the past ca. 1500 years as prior to this, estuary infilling prevented floods delivering sediments to the bay. This recent historical coupling of river sand supply and shoreline progradation rate implies that anthropogenic modifications to the Towamba River catchment such as river damming, or climatic changes reducing rainfall or runoff, would negatively impact the Boydtown Beach shoreline. Conversely increased rainfall or deforestation may increase sediment discharge due to upstream erosion. The Boydtown shoreline within Twofold Bay may be able to maintain its current position in the coming century if fluvial sediment delivery continues. The fact that other shorelines within Twofold Bay are seemingly unaffected by the Towamba River, and most shorelines in southeast Australia receive minimal fluvial sediment input, further emphasises the need to consider nearshore sediment reserves in order to accurately determine sea-level rise impacts on sandy shorelines.

  20. Seasonal variability of suspended sediment transport in the Seine river catchment area (France)

    NASA Astrophysics Data System (ADS)

    Franke, Christine; Baati, Selma; Ayrault, Sophie; Bonte, Philippe; Evrard, Olivier; Kissel, Catherine

    2010-05-01

    This study consists in an innovative application of environmental physico-chemical techniques on fluvial sediments with the aim to trace the seasonal changes in suspended sediment transport of the complex Seine river catchment area in northern France. The aim of this project is to develop a detailed understanding for the discrimination of naturally triggered and anthropogenic induced processes and their temporal changes with weather conditions. With a focus on the heavy metal fraction, we determine the regional distribution of the suspended material and search for environmental fingerprints demonstrating the influence of fluvial transport mechanisms, changes in concentration related to discharge variations or different sediment sources, and in-situ alteration caused by variations in the geochemical conditions (oxy-redox, pH, Eh, etc.). To achieve these goals, we apply a combination of straightforward rock magnetic hysteresis measurements (performed using an AGM2900 at the LSCE) and advanced scanning electron microscopy analyses (SEM). This interdisciplinary approach allows refining the detailed analysis of sediment trap samples, originating from Tessier et al. (2003), as recently shown by Franke et al. (2009). In our preliminary results, we observe a general increase in magnetic concentrations from summer to winter conditions, coupled with a magneto-mineralogic change to rather reduced metallic mineral phases. However, each riversection of the Seine system shows its specific trend line depending on the regional initial input, weathering conditions, drainage area and potential pollution sources. A systematic analysis of the detailed results will allow highlighting the climatic/seasonal influence on the metallic particle assembly. Keywords: Seine river system, environmental magnetism, suspended particulate matter, anthropogenic and natural input, magnetic hysteresis, scanning electron microscopy (SEM),, heavy metal pollution, seasonal variability References: Franke, C., Kissel, C., Robin, E., Bonté, P. and Lagroix, F., 2009, Magnetic particle characterization in the Seine river system: Implications for the determination of natural versus anthropogenic input, Geochem. Geophys. Geosyst., doi:10.1029/2009GC002544. Tessier, L., Bonté, P., Mouchel, J.M., Lefevre, I., Sogon, S., Ayrault, S., Le Cloarec, M.F., 2003, Transport et characterisation des matieres en suspension dans le basin de la Seine : Identification des signatures naturelles et anthropiques, 14èmes Journées Scientifiques de l'Environnement : l'Eau, la Ville, la Vie, Créteil : France 2003. http://hal.archives-ouvertes.fr/docs/00/20/30/84/PDF/4-JSE-2003-Manuscrit-Tessier-HAL-2008-01-08.pdf

  1. Processes and rates of sediment and wood accumulation in the headwater streams of the Oregon Coast Range, U.S.A.

    Treesearch

    C. L. May; R. E. Gresswell

    2003-01-01

    Abstract - Channels that have been scoured to bedrock by debris flows provide unique opportunities to calculate the rate of sediment and wood accumulation in low-order streams, to understand the temporal succession of channel morphology following disturbance, and to make inferences about processes associated with input and transport of sediment. Dendrochronology was...

  2. Can rapid assessment protocols be used to judge sediment impairment in gravel-bed streams? A commentary

    Treesearch

    Thomas E. Lisle; John M. Buffington; Peter R. Wilcock; Kristin Bunte

    2015-01-01

    Land management agencies commonly use rapid assessments to evaluate the impairment of gravel-bed streams by sediment inputs from anthropogenic sources. We question whether rapid assessment can be used to reliably judge sediment impairment at a site or in a region. Beyond the challenges of repeatable and accurate sampling, we argue that a single metric or protocol is...

  3. Mercury Cycling in Sediments of the Northeast Pacific Continental Margin Between Southern California and Central Oregon, USA

    NASA Astrophysics Data System (ADS)

    Heim, W. A.; Coale, K. H.; Chiswell, H.; Olson, A.; Martenuk, S.; Bonnema, A.; Weiss-Penzias, P. S.

    2017-12-01

    Monomethylmercury (MMHg) production by anaerobic bacteria in sediments is considered to be a dominate source of MMHg to sediments and overlying surface water in the coastal environment. In this study, we measured total mercury (Hgt) and MMHg sediment and pore water concentrations and calculated diffusive sediment water exchange fluxes in samples collected on the coastal shelf in the California Current System. Sediment cores and overlying water were collected from 20 stations using a slow-entry multi-corer deployed during 4 oceanographic cruises over two years. The upper few centimeters of undisturbed cores were sectioned at the following depth increments: 0.5, 1, 1.5, 2, 3, 4, 5 cm. Pore waters were extracted via centrifugation and the Hgt and MMHg gradients were used to calculate fluxes into the overlying water column based upon molecular diffusion alone. Sediment concentrations for Hgt and MMHg ranged from 50 to 2338 pmoles g-1 and 0.1 to 9 pmoles g-1 respectively. Pore water and overlying water MMHg concentrations ranged from 0.1 to 2.2 pM and 0.03 to 0.3 pM respectively. Diffusional Hgt and MMHg sediment water fluxes ranged from 1.4 to 7.3 pmoles m-2 d-1 and -0.03 to 1.7 pmoles m-2 d-1 respectively. While the gradients in MMHg showed significant and widespread flux that would indicate an input into the waters of the shelf these fluxes were insufficient to sustain elevated concentrations at the sediment boundary layer, or at the depth of the shelf in general. Measurements made on the northwestern Atlantic shelf are in general an order of magnitude greater than those observed here. We suggest that the narrow eastern shelf of the California Current with little allochthonous inputs contrasts sharply with the broad shelf of the Eastern Seaboard with significant organic carbon, riverine and anthropogenic inputs. In general, the narrow shelf of the California Current seems to reflect the pelagic processes of the off shore regions for this element where water column production predominates the formation of the methylated forms.

  4. Mercury distribution and bioaccumulation in a temperate estuary: Masan Bay, Korea

    NASA Astrophysics Data System (ADS)

    Noh, S.; Kim, E.; Kundu, S. R.; Lee, B.; Han, S.

    2012-12-01

    Masan Bay is a semi-closed and temperate estuary located on the southeastern coast of Korea. Since it is surrounded by highly populated cities (Masan, Changwon, and Jinhae) and large industrial complexes (petrochemical, electrical, plastic, and metal industries), Masan Bay is contaminated with PCBs and PBDEs, as well as heavy metals. In the current study, we investigated the distribution and sources of Hg and methylmercury (MeHg) in surface water, sediment, and biota from Masan Bay, as well as the impact of sediment organic matter and acid-volatile sulfide on the MeHg fraction over the total Hg, as a proxy of MeHg production potential. Concentrations of Hg in the surface seawater and sediment ranged from 1.2 to 5.1 pM and 0.02 to 0.73 nmol g-1, respectively. The Hg input estimation showed that river water discharge is the prime input source of Hg into the bay. This agrees with the sediment Hg distribution, showing a gradual decrease from the inner bay sites toward the mouth of the bay. Concentrations of MeHg in surface seawater and sediment ranged from 0.02 to 0.41 pM and 0.19 to 1.88 pmol g-1, respectively. The MeHg flux estimation showed that the submarine groundwater discharge is the prime input source of MeHg. Sediment %MeHg was significantly higher in the outer bay sites, with a negative correlation with sediment organic matter content. A similar negative relationship was found for AVS and %MeHg. The solid-phase retention of inorganic Hg as a result of Hg binding by sediment organic matter seems to be a key-process to control Hg methylation potential in Masan Bay sediments. The estimated food web magnification factors Hg and MeHg in benthic organisms were 0.119 and 0.168, respectively, which were similar to those of various coastal marine environments. The food web magnification factors for pelagic organisms were higher than benthic organisms, suggesting that pelagic organisms might be at greater risk of Hg and MeHg accumulation.

  5. An historical assessment of trace metal accumulation in Lake Champlain, Vermont

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mecray, E.L.; King, J.W.

    1993-03-01

    The Lake Champlain watershed, with its increased land use, shoreline development, and population, is being threatened by pollutants in the water column and bottom sediments. A comprehensive study is currently being conducted to characterize the bottom sediments of the lake for toxicity and to reconstruct the history of pollutant inputs. Surface sediment samples were collected from 30 stations and analyzed for metal (Cu, Zn, Cr, Pb, Ni, Mn, Fe, Cd, Al, and Ag) concentrations to determine the contaminated regions of the lake. Once the contaminated regions were determined, a Nemesis corer was used to retrieve sediments cores averaging 1 metermore » in length from 10 sites within Lake Champlain. Grain size and metal analyses were conducted at one and two cm intervals down the cores. Grain size data, in combination with metal and radiometric stratigraphy, can serve as an indicator of changing land use in the watershed. The grain size in some cores has a fining upward trend indicating increased land use and soil erosion. Downcore variations in metal concentrations reveal two different regimes. The concentration at depth remain consistently low and are inferred to correspond with the natural background levels. In contrast, the upper section of the cores show abrupt increases in metal concentrations which are attributed to increased anthropogenic inputs. Radiometric ([sup 210] and [sup 137]Cs) and pollen chronostratigraphy of these cores indicates that the increased metal concentrations and the changes in grain size recorded in the upper most sediments is related to increased human disturbance beginning in the late 18th and early 19th centuries. This study demonstrates that the historical record of pollution inputs to Lake Champlain can be reconstructed from the sediment sequences.« less

  6. Chlorinated hydrocarbon pesticides and polychlorinated biphenyls in sediment cores from San Francisco Bay

    USGS Publications Warehouse

    Venkatesan, M.I.; De Leon, R. P.; VanGeen, A.; Luoma, S.N.

    1999-01-01

    Sediment cores of known chronology from Richardson and San Pablo Bays in San Francisco Bay, CA, were analyzed for a suite of chlorinated hydrocarbon pesticides and polychlorinated biphenyls to reconstruct a historic record of inputs. Total DDTs (DDT = 2,4'- and 4,4'-dichlorodiphenyltrichloroethane and the metabolites, 2,4'- and 4,4'-DDE, -DDD) range in concentration from 4-21 ng/g and constitute a major fraction (> 84%) of the total pesticides in the top 70 cm of Richardson Bay sediment. A subsurface maximum corresponds to a peak deposition date of 1969-1974. The first measurable DDT levels are found in sediment deposited in the late 1930's. The higher DDT inventory in the San Pablo relative to the Richardson Bay core probably reflects the greater proximity of San Pablo Bay to agricultural activities in the watershed of the Sacramento and San Joaquin rivers. Total polychlorinated biphenyls (PCBs) occur at comparable levels in the two Bays (< 1-34 ng/g). PCBs are first detected in sediment deposited during the 1930's in Richardson Bay, about a decade earlier than the onset of detectable levels of DDTs. PCB inventories in San Pablo Bay are about a factor of four higher in the last four decades than in Richardson Bay, suggesting a distribution of inputs not as strongly weighed towards the upper reaches of the estuary as DDTs. The shallower subsurface maximum in PCBs compared to DDT in the San Pablo Bay core is consistent with the imposition of drastic source control measures four these constituents in 1970 and 1977 respectively. The observed decline in DDT and PCB levels towards the surface of both cores is consistent with a dramatic drop in the input of these pollutants once the effect of sediment resuspension and mixing is taken into account.

  7. Riparian soil development linked to forest succession above and below dams along the Elwha River, Washington, USA

    USGS Publications Warehouse

    Perry, Laura G; Shafroth, Patrick B.; Perakis, Steven

    2017-01-01

    Riparian forest soils can be highly dynamic, due to frequent fluvial disturbance, erosion, and sediment deposition, but effects of dams on riparian soils are poorly understood. We examined soils along toposequences within three river segments located upstream, between, and downstream of two dams on the Elwha River to evaluate relationships between riparian soil development and forest age, succession, and channel proximity, explore dam effects on riparian soils, and provide a baseline for the largest dam removal in history. We found that older, later-successional forests and geomorphic surfaces contained soils with finer texture and greater depth to cobble, supporting greater forest floor mass, mineral soil nutrient levels, and cation exchange. Forest stand age was a better predictor than channel proximity for many soil characteristics, though elevation and distance from the channel were often also important, highlighting how complex interactions between fluvial disturbance, sediment deposition, and biotic retention regulate soil development in this ecosystem. Soils between the dams, and to a lesser extent below the lower dam, had finer textures and higher mineral soil carbon, nitrogen, and cation exchange than above the dams. These results suggested that decreased fluvial disturbance below the dams, due to reduced sediment supply and channel stabilization, accelerated soil development. In addition, reduced sediment supply below the dams may have decreased soil phosphorus. Soil δ15N suggested that salmon exclusion by the dams had no discernable effect on nitrogen inputs to upstream soils. Recent dam removal may alter riparian soils further, with ongoing implications for riparian ecosystems.

  8. Constraints on the sources of branched GDGTs in open ocean sediments: dust transport or in situ production?

    NASA Astrophysics Data System (ADS)

    Weijers, J.; Schefuss, E.; Kim, J.; Sinninghe Damsté, J. S.; Schouten, S.

    2012-12-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are membrane lipids synthesized by soil bacteria that, upon soil erosion, are transported by rivers to the ocean where they accumulate in the near shore sedimentary archive. The degrees of cyclisation (CBT) and methylation (MBT) of these compounds have been shown to relate to soil pH and annual mean air temperature [1]. Therefore, brGDGTs in near shore sedimentary archives can be used to estimate past continental air temperatures and enable a direct comparison of these to marine sea surface temperature estimates obtained from the same samples. In addition, brGDGT abundance relative to crenarchaeol, an isoprenoid GDGT synthesized by marine pelagic Thaumarchaeota, quantified in the branched vs. isoprenoid tetraether (BIT) index, is an indicator of the relative input of soil organic matter in near shore sediments [2]. High BIT values near river outflows testify of relative strong soil organic matter input and generally the BIT index will decrease off shore to values near 0, the marine end-member value. Even in remote open ocean sediments, however, the BIT index will rarely reach 0 as small amounts of brGDGTs are often present. The occurrence of these brGDGTs in open marine settings might be a result of i) dust input, ii) sediment dispersion from near coastal areas, or iii) in situ production in marine sediments. In order to constrain the origin of branched GDGTs in open marine sediments we analyzed i) atmospheric dust samples taken along an equatorial African coastal transect, ii) marine surface waters near and away of the Congo river outflow, iii) a series of surface sediments at and around the Congo deep sea fan, and iv) a series of open marine surface sediments from different oceans with BIT values < 0.08. Our results show that brGDGTs are present, though in relative low amounts, in dust. Their distribution resembles that of soil input as also found in the Congo deep sea fan, with MBT and CBT values that could be representative of tropical African soils. Strikingly, BIT indices are much lower than expected for soils (0.15-0.42), likely as a result of sea spray on the dust filters. Open ocean sediments, on the contrary, are typically characterized by relative high amounts of cyclopentane containing brGDGTs resulting in low CBT values ranging from -0.4 - 0.8. These values are similarly low as reported earlier in marine sediments near Svalbard [3] and in the East China Sea [4], for which in situ production was invoked. Thus, brGDGT transport by dust does seem possible, though quantities are low. Since open ocean brGDGT distributions are markedly different from those in soils and dust, the latter is most likely not a significant source. Our results indicate that production of brGDGTs in ocean sediments, though in relative low amounts, is much more widespread than previously thought. This emphasizes that the MBT-CBT proxy for continental air temperature should only be used at locations where soil organic matter input is significant as evidenced by high BIT indices. References: [1] Weijers J.W.H. et al. (2007) Geochmim. Cosmochim. Acta 71, 703-713. [2] Hopmans E.C. et al. (2004) Earth Planet. Sci. Lett. 224, 107-116. [3] Peterse F. et al. (2009) Org. Geochem. 40, 692-699. [4] Zhu C. Et al. (2011) Org. Geochem. 42, 376-386.

  9. Nitrogen-limited mangrove ecosystems conserve N through dissimilatory nitrate reduction to ammonium.

    PubMed

    Fernandes, Sheryl Oliveira; Bonin, Patricia C; Michotey, Valérie D; Garcia, Nicole; LokaBharathi, P A

    2012-01-01

    Earlier observations in mangrove sediments of Goa, India have shown denitrification to be a major pathway for N loss. However, percentage of total nitrate transformed through complete denitrification accounted for <0-72% of the pore water nitrate reduced. Here, we show that up to 99% of nitrate removal in mangrove sediments is routed through dissimilatory nitrate reduction to ammonium (DNRA). The DNRA process was 2x higher at the relatively pristine site Tuvem compared to the anthropogenically-influenced Divar mangrove ecosystem. In systems receiving low extraneous nutrient inputs, this mechanism effectively conserves and re-circulates N minimizing nutrient loss that would otherwise occur through denitrification. In a global context, the occurrence of DNRA in mangroves has important implications for maintaining N levels and sustaining ecosystem productivity. For the first time, this study also highlights the significance of DNRA in buffering the climate by modulating the production of the greenhouse gas nitrous oxide.

  10. Measurement and modeling of diclosulam runoff under the influence of simulated severe rainfall.

    PubMed

    van Wesenbeeck, I J; Peacock, A L; Havens, P L

    2001-01-01

    A runoff study was conducted near Tifton, GA to measure the losses of water, sediment, and diclosulam (N-(2,6-dichlorophenyl)-5-ethoxy-7-fluoro-[1,2,4]triazolo-[1,5c]-pyrimidine- 2-sulfonamide), a new broadleaf herbicide, under a 50-mm-in-3-h simulated rainfall event on three separate 0.05-ha plots. Results of a runoff study were used to validate the Pesticide Root Zone Model (PRZM, v. 3.12) using field-measured soil, chemical, and weather inputs. The model-predicted edge-of-field diclosulam loading was within 1% of the average observed diclosulam runoff from the field study; however, partitioning between phases was not as well predicted. The model was subsequently used with worst-case agricultural practice inputs and a 41-yr weather record from Dublin, GA to simulate edge-of-field runoff losses for the two most prevalent soils (Tifton and Bibb) in the southeastern U.S. peanut (Arachis hypogaea L.) market for 328 simulation years, and showed that the 90th percentile runoff amounts, expressed as percent of applied diclosulam, were 1.8, 0.6, and 5.2% for the runoff study plots and Tifton and Bibb soils, respectively. The runoff study and modeling indicated that more than 97% of the total diclosulam runoff was transported off the field by water, with < 3% associated with the sediment. Diclosulam losses due to runoff can be further reduced by lower application rates, tillage and crop residue management practices that reduce edge-of-field runoff, and conservation practices such as vegetated filter strips.

  11. Inaccuracies in sediment budgets arising from estimations of tributary sediment inputs: an example from a monitoring network on the southern Colorado plateau

    USGS Publications Warehouse

    Griffiths, Ronald; Topping, David

    2015-01-01

    Sediment budgets are an important tool for understanding how riverine ecosystems respond to perturbations. Changes in the quantity and grain-size distribution of sediment within river systems affect the channel morphology and related habitat resources. It is therefore important for resource managers to know if a channel reach is in a state of sediment accumulation, deficit or stasis. Many studies have estimated sediment loads from ungaged tributaries using regional sediment-yield equations or other similar techniques. While these approaches may be valid in regions where rainfall and geology are uniform over large areas, use of sediment-yield equations may lead to poor estimations of sediment loads in semi-arid climates, where rainfall events, contributing geology, and vegetation have large spatial variability.

  12. Holocene paleoecology of an estuary on Santa Rosa Island, California

    USGS Publications Warehouse

    Cole, K.L.; Liu, Gaisheng

    1994-01-01

    The middle to late Holocene history and early Anglo-European settlement impacts on Santa Rosa Island, California, were studied through the analysis of sediments in a small estuarine marsh. A 5.4-m-long sediment core produced a stratigraphic and pollen record spanning the last 5200 yr. Three major zones are distinguishable in the core. The lowermost zone (5200 to 3250 yr B.P.) represents a time of arid climate with predominantly marine sediment input and high Chenopodiaceae and Ambrosia pollen values. The intermediate zone (3250 yr B.P. to 1800 A.D.) is characterized by greater fresh water input and high values for Asteraceae and Cyperaceae pollen and charcoal particles. The uppermost zone (1800 A.D. to present) documents the unprecedented erosion, sedimentation, and vegetation change that resulted from the introduction of large exotic herbivores and exotic plants to the island during Anglo-European settlement. The identification of pollen grains of Torrey Pine (Pinus torreyana) documents the persistence of this endemic species on the island throughout the middle to late Holocene.

  13. Challenges of ecosystem restoration in Louisiana - availability of sediment and its management

    NASA Astrophysics Data System (ADS)

    Khalil, S. M.; Freeman, A. M.

    2015-03-01

    Human intervention has impaired the Mississippi River's ability to deliver sediment to its delta wetlands, and as a consequence acute land loss in coastal Louisiana has resulted in an unprecedented ecocatastrophe. To mitigate this degradation, an unparalleled restoration effort is underway. For this effort to be successful and sustainable, various sediment input mechanisms must be integrated, including: building appropriate sediment-diversions; beneficially using the millions of cubic metres of sediment dredged annually from navigational channels; harvesting deposits of sand and suitable sediment from the river and offshore; and related sediment management activities that are compatible with other uses of the river. A comprehensive sediment management plan has been developed to identify and delineate potential sediment sources for restoration, and to provide a framework for managing sediment resources wisely, cost effectively, and in a systematic manner. The Louisiana Sediment Management Plan provides regional strategies for improved comprehensive management of Louisiana's limited sediment resources.

  14. Forestry best management practices relationships with aquatic and riparian fauna: A review

    USGS Publications Warehouse

    Warrington, Brooke M.; Aust, W. Michael; Barrett, Scott M.; Ford, W. Mark; Dolloff, C. Andrew; Schilling, Erik B.; Wigley, T. Bently; Bolding, M. Chad

    2017-01-01

    Forestry best management practices (BMPs) were developed to minimize water pollution from forestry operations by primarily addressing sediment and sediment transport, which is the leading source of pollution from silviculture. Implementation of water quality BMPs may also benefit riparian and aquatic wildlife, although wildlife benefits were not driving forces for BMP development. Therefore, we reviewed literature regarding potential contributions of sediment-reducing BMPs to conservation of riparian and aquatic wildlife, while realizing that BMPs also minimize thermal, nutrient, and chemical pollution. We reached five important conclusions: (1) a significant body of research confirms that forestry BMPs contribute to the protection of water quality and riparian forest structure; (2) data-specific relationships between forestry BMPs and reviewed species are limited; (3) forestry BMPs for forest road construction and maintenance, skid trails, stream crossings, and streamside management zones (SMZs) are important particularly for protection of water quality and aquatic species; (4) stream crossings should be carefully selected and installed to minimize sediment inputs and stream channel alterations; and (5) SMZs promote retention of older-age riparian habitat with benefits extending from water bodies to surrounding uplands. Overall, BMPs developed for protection of water quality should benefit a variety of riparian and aquatic species that are sensitive to changes in water quality or forest structure.

  15. Biological soil crusts in deserts: A short review of their role in soil fertility, stabilization, and water relations

    USGS Publications Warehouse

    Belnap, Jayne

    2003-01-01

    Cyanobacteria and cyanolichens dominate most desert soil surfaces as the major component of biological soil crusts (BSC). BSCs contribute to soil fertility in many ways. BSC can increase weathering of parent materials by up to 100 times. Soil surface biota are often sticky, and help retain dust falling on the soil surface; this dust provides many plant-essential nutrients including N, P, K, Mg, Na, Mn, Cu, and Fe. BSCs also provide roughened soil surfaces that slow water runoff and aid in retaining seeds and organic matter. They provide inputs of newly-fixed carbon and nitrogen to soils. They are essential in stabilizing soil surfaces by linking soil particles together with filamentous sheaths, enabling soils to resist both water and wind erosion. These same sheaths are important in keeping soil nutrients from becoming bound into plant-unavailable forms. Experimental disturbances applied in US deserts show soil surface impacts decrease N and C inputs from soil biota by up to 100%. The ability to hold aeolian deposits in place is compromised, and underlying soils are exposed to erosion. While most undisturbed sites show little sediment production, disturbance by vehicles or livestock produces up to 36 times more sediment production, with soil movement initiated at wind velocities well below commonly-occurring wind speeds. Winds across disturbed areas can quickly remove this material from the soil surface, thereby potentially removing much of current and future soil fertility. Thus, reduction in the cover of cyanophytes in desert soils can both reduce fertility inputs and accelerate fertility losses.

  16. Composition and provenance of terrigenous organic matter transported along submarine canyons in the Gulf of Lion (NW Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Pasqual, Catalina; Goñi, Miguel A.; Tesi, Tommaso; Sanchez-Vidal, Anna; Calafat, Antoni; Canals, Miquel

    2013-11-01

    Previous projects in the Gulf of Lion have investigated the path of terrigenous material in the Rhone deltaic system, the continental shelf and the nearby canyon heads. This study focuses on the slope region of the Gulf of Lion to further describe particulate exchanges with ocean’s interior through submarine canyons and atmospheric inputs. Nine sediment traps were deployed from the heads to the mouths of Lacaze-Duthiers and Cap de Creus submarine canyons and on the southern open slope from October 2005 to October 2006. Sediment trap samples were analyzed by CuO oxidation to investigate spatial and temporal variability in the yields and compositional characteristics of terrigenous biomarkers such as lignin-derived phenols and cutin acids. Sediment trap data show that the Dense Shelf Water Cascading event that took place in the months of winter 2006 (January, February and March) had a profound impact on particle fluxes in both canyons. This event was responsible for the majority of lignin phenol (55.4%) and cutin acid (42.8%) inputs to submarine canyons, with lignin compositions similar to those measured along the mid- and outer-continental shelf, which is consistent with the resuspension and lateral transfer of unconsolidated shelf sediment to the canyons. The highest lithogenic-normalized lignin derived phenols contents in sediment trap samples were found during late spring and summer at all stations (i.e., 193.46 μg VP g-1 lithogenic at deep slope station), when river flow, wave energy and total particle fluxes were relatively low. During this period, lignin compositions were characterized by elevated cinnamyl to vanillyl phenol ratios (>3) at almost all stations, high p-coumaric to ferulic acid ratios (>3) and high yields of cutin acids relative to vanillyl phenols (>1), all trends that are consistent with high pollen inputs. Our results suggest marked differences in the sources and transport processes responsible for terrigenous material export along submarine canyons, mainly consisting of fluvial and shelf sediments during winter and atmospheric dust inputs during spring and summer.

  17. Hydrologic Controls on Sediment Retention in a Diversion-Fed Coastal Wetland

    NASA Astrophysics Data System (ADS)

    Keogh, M.; Kolker, A.; Snedden, G.; Renfro, A. A.

    2017-12-01

    The morphodynamics of river-dominated deltas are largely controlled by the supply and retention of sediment within deltaic wetlands and the rate of relative sea-level rise. Yet, sediment budgets for deltas are often poorly constrained. In the Mississippi River Delta, a system rapidly losing land to natural and anthropogenic causes, restoration efforts seek to build new land through the use of river diversions. At Davis Pond Freshwater Diversion, a new crevasse splay has emerged since construction was completed in 2002. Here, we use beryllium-7 (7Be) activity in sediment cores and USGS measurements of discharge and turbidity to calculate seasonal sediment input, deposition, and retention within the Davis Pond receiving basin. In winter/spring 2015, Davis Pond received 104,000 metric tons of sediment, 43.8% of which was retained within the basin. During this time, mean flow velocity was 0.21 m/s and turbidity was 56 formazin nephelometric units (FNU). In summer/fall 2015, Davis Pond received 35,100 metric tons of sediment, 82.1% of which was retained. Mean flow velocity in summer/fall was 0.10 m/s and turbidity was 55 FNU. The increase in sediment retention from winter/spring 2015 to summer/fall 2015 is likely due to the corresponding drop in water flow velocity, which allowed more sediment to settle out of suspension. Although high water discharge increases sediment input and deposition, increased turbulence associated with higher current velocity may increase sediment throughput and decrease the percent of sediments retained in the system. Sediment retention in Davis Pond is on the high end of the range seen in deltaic wetlands, likely due to the enclosed geometry of the receiving basin. Future diversion design and operation should target moderate water discharge and flow velocities in order to jointly maximize sediment deposition and retention and provide optimal conditions for delta growth.

  18. Distribution of polycyclic aromatic hydrocarbons (PAHs) in rivers and estuaries in Malaysia: a widespread input of petrogenic PAHs.

    PubMed

    Zakaria, Mohamad Pauzi; Takada, Hideshige; Tsutsumi, Shinobu; Ohno, Kei; Yamada, Junya; Kouno, Eriko; Kumata, Hidetoshi

    2002-05-01

    This is the first publication on the distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in riverine and coastal sediments in South East Asia where the rapid transfer of land-based pollutants into aquatic environments by heavy rainfall and runoff waters is of great concern. Twenty-nine Malaysian riverine and coastal sediments were analyzed for PAHs (3-7 rings) by gas chromatography mass spectrometry. Total PAHs concentrations in the sediment ranged from 4 to 924 ng/g. Alkylated homologues were abundant for all sediment samples. The ratio of the sum of methylphenanthrenes to phenanthrene (MP/P), an index of petrogenic PAHs contribution, was more than unity for 26 sediment samples and more than 3 for seven samples for urban rivers covering a broad range of locations. The MP/P ratio showed a strong correlation with the total PAHs concentrations, with an r2 value of 0.74. This ratio and all other compositional features indicated that Malaysian urban sediments are heavily impacted by petrogenic PAHs. This finding is in contrast to other studies reported in many industrialized countries where PAHs are mostly of pyrogenic origin. The MP/P ratio was also significantly correlated with higher molecular weight PAHs such as benzo[a]pyrene, suggesting unique PAHs source in Malaysia which contains both petrogenic PAHs and pyrogenic PAHs. PAHs and hopanes fingerprints indicated that used crankcase oil is one of the major contributors of the sedimentary PAHs. Two major routes of inputs to aquatic environments have been identified: (1) spillage and dumping of waste crankcase oil and (2) leakage of crankcase oils from vehicles onto road surfaces, with the subsequent washout by street runoff. N-Cyclohexyl-2-benzothiazolamine (NCBA), a molecular marker of street dust, was detected in the polluted sediments. NCBA and other biomarker profiles confirmed our hypothesis of the input from street dust contained the leaked crankcase oil. The fingerprints excluded crude oil, fresh lubricating oil, asphalt, and tire-particles as major contributors.

  19. Sediment discharge into a subsiding Louisiana deltaic estuary through a Mississippi River diversion

    USGS Publications Warehouse

    Snedden, G.A.; Cable, J.E.; Swarzenski, C.; Swenson, E.

    2007-01-01

    Wetlands of the Mississippi River deltaic plain in southeast Louisiana have been hydrologically isolated from the Mississippi River by containment levees for nearly a century. The ensuing lack of fluvial sediment inputs, combined with natural submergence processes, has contributed to high coastal land loss rates. Controlled river diversions have since been constructed to reconnect the marshes of the deltaic plain with the river. This study examines the impact of a pulsed diversion management plan on sediment discharge into the Breton Sound estuary, in which duplicate 185 m3 s-1-diversions lasting two weeks each were conducted in the spring of 2002 and 2003. Sediment delivery during each pulse was highly variable (11,300-43,800 metric tons), and was greatest during rising limbs of Mississippi River flood events. Overland flow, a necessary transport mechanism for river sediments to reach the subsiding backmarsh regions, was induced only when diversion discharge exceeded 100 m3 s-1. These results indicate that timing and magnitude of diversion events are both important factors governing marsh sediment deposition in the receiving basins of river diversions. Though the diversion serves as the primary source of river sediments to the estuary, the inputs observed here were several orders of magnitude less than historical sediment discharge through crevasses and uncontrolled diversions in the region, and are insufficient to offset present rates of relative sea level rise. ?? 2006 Elsevier Ltd. All rights reserved.

  20. Novel MixSIAR fingerprint model implementation in a Mediterranean mountain catchment

    NASA Astrophysics Data System (ADS)

    Lizaga, Ivan; Gaspar, Leticia; Blake, William; Palazón, Leticia; Quijano, Laura; Navas, Ana

    2017-04-01

    Increased sediment erosion levels can lead to degraded water and food quality, reduced aquatic biodiversity, decrease reservoir capacity and restrict recreational usage but determining soil redistribution and sediment budgets in watersheds is often challenging. One of the methods for making such determinations applies sediment fingerprinting methods by using sediment properties. The fingerprinting procedure tests a range of source material tracer properties to select a subset that can discriminate between the different potential sediment sources. The present study aims to test the feasibility of geochemical and radioisotopic fingerprint properties to apportion sediment sources within the Barués catchment. For this purpose, the new MixSIAR unmixing model was implemented as statistical tool. A total of 98 soil samples from different land cover sources (Mediterranean forest, pine forest scrubland, agricultural and subsoil) were collected in the Barués catchment (23 km2). This new approach divides the catchment into six different sub-catchments to evaluate how the sediment provenance varies along the river and the percentage of its sources and not only the contribution at the end. For this purpose, target sediments were collected at the end of each sub-catchment to introduce the variation along the entire catchment. Geochemistry and radioisotopic activity were analyzed for each sample and introduced as input parameters in the model. Percentage values from the five sources were different along the different subcatchments and the variations of all of them are summarized at the final target sample located at the end of the catchment. This work represents a good approximation to the fine sediment provenance in Mediterranean agricultural catchments and has the potential to be used for water resource control and future soil management. Identifying sediment contribution from different land uses offers considerable potential to prevent environmental degradation and the decrease in food production and quality.

  1. Use of Composite Fingerprinting Technique to Determine Contribution of Paria River Sediments to Dam-Release Flood Deposits in Marble Canyon, Grand Canyon, Az

    NASA Astrophysics Data System (ADS)

    Chapman, K.; Parnell, R. A.; Smith, M. E.; Grams, P. E.; Mueller, E. R.

    2015-12-01

    The 1963 closure of Glen Canyon Dam drastically reduced the downstream sediment supply and altered daily flow regimes of the Colorado River through Grand Canyon, resulting in significant sandbar erosion downstream of the dam. Dam-release floods, known as High Flow Experiments (HFEs), have occurred six times since 1996 and are intended to rebuild Grand Canyon sandbars using tributary-supplied sediment. In Marble Canyon (first 100 km of Grand Canyon) the targeted tributary is the Paria River which supplies approximately 90% of the annual suspended sediment flux through Marble Canyon; the same input contributed less than 6% prior to the dam. Annual topographic surveys have established that HFEs are effective at rebuilding sandbars. However, the long-term viability of using HFEs for sandbar maintenance is dependent on a sustainable source of sediments comprising HFE deposits. Significant use of non-tributary, main-stem sediments (i.e. pre-dam sand stored in eddies or the channel bed) in HFE deposits would indicate reliance on a limited resource, and diminishing returns in the ability of HFEs to rebuild sandbars. In this study, we sampled vertically throughout 12 bars in Marble Canyon to document temporal and downstream changes in the proportion of sediment sourced from the Paria River during the 2013 and 2014 HFEs. Preliminary data suggest that heavy mineral compositions and concentrations of Ti, S, Cr and Rb, all of which are influenced by grainsize, could be sufficiently capable of differentiating Paria-derived and main-stem sediments when combined into a composite fingerprint (CF). A multivariate mixing model using these CFs quantitatively determines the contribution of Paria-derived sediment in each HFE deposit sample. Mixing model endmembers for non-Paria sand include pre-dam flood deposits in Glen and Marble Canyons, and Marble Canyon dredge samples. These results elucidate the role of contemporary versus legacy sediment in long-term sandbar maintenance.

  2. Marine geochemical cycles of the alkali elements and boron: the role of sediments

    NASA Astrophysics Data System (ADS)

    James, Rachael H.; Palmer, Martin R.

    2000-09-01

    We have analysed the concentrations of Li, K, Rb, Cs, and B, and the isotopic ratios of Li and B of a suite of pore fluids recovered from ODP Sites 1037 (Leg 169; Escanaba Trough) and 1034 (Leg 169S; Saanich Inlet). In addition, we have analysed dissolved K, Rb, and Cs concentrations for estuarine mixing of the Ganges-Brahmaputra river system. Together, these data sets have been used to assess the role of sediments in the marine geochemical cycles of the alkali elements and boron. Uptake onto clay minerals during estuarine mixing removes 20-30% of the riverine input of dissolved Cs and Rb to the oceans. Prior to this study, the only other recognised sink of Rb and Cs was uptake during low-temperature alteration of the oceanic crust. Even with this additional sink there is an excess of inputs over outputs in their modern oceanic mass balance. Pore fluid data show that Li and Rb are transferred into marine sediments during early diagenesis. However, modeling of the Li isotope systematics of the pore fluids from Site 1037 shows that seawater Li taken up during marine sedimentation can be readily returned to solution in the presence of less hydrated cations, such as NH 4+. This process also appears to result in high concentrations of pore fluid Cs (relative to local seawater) due to expulsion of adsorbed Cs from cation exchange sites. Flux calculations based on pore fluid data for a series of ODP sites indicate that early diagenesis of clay sediments removes around 8% of the modern riverine input of dissolved Li. Although NH 4+-rich fluids do result in a flux of Cs to the oceans, on the global scale this input only augments the modern riverine Cs flux by ˜3%. Nevertheless, this may have implications for the fate of radioactive Cs in the natural environment and waste repositories.

  3. Computer programs for computing particle-size statistics of fluvial sediments

    USGS Publications Warehouse

    Stevens, H.H.; Hubbell, D.W.

    1986-01-01

    Two versions of computer programs for inputing data and computing particle-size statistics of fluvial sediments are presented. The FORTRAN 77 language versions are for use on the Prime computer, and the BASIC language versions are for use on microcomputers. The size-statistics program compute Inman, Trask , and Folk statistical parameters from phi values and sizes determined for 10 specified percent-finer values from inputed size and percent-finer data. The program also determines the percentage gravel, sand, silt, and clay, and the Meyer-Peter effective diameter. Documentation and listings for both versions of the programs are included. (Author 's abstract)

  4. When will the TBT go away? Integrating monitoring and modelling to address TBT's delayed disappearance in the Drammensfjord, Norway.

    PubMed

    Arp, Hans Peter H; Eek, Espen; Nybakk, Anita Whitlock; Glette, Tormod; Møskeland, Thomas; Pettersen, Arne

    2014-11-15

    Despite a substantial decrease in the use and production of the marine antifouling agent tributyltin (TBT), its continuing presence in harbors remains a serious environmental concern. Herein a case study of TBT's persistence in the Drammensfjord, Norway, is presented. In 2005, severe TBT pollution was measured in the harbor of the Drammensfjord, with an average sediment concentration of 3387 μg kg(-1). To chart natural recovery in the Drammensfjord, an extensive sampling campaign was carried out over six years (2008-2013), quantifying TBT in water, settling particles and sediments. The monitoring campaign found a rapid decrease in sediment TBT concentration in the most contaminated areas, as well as a decrease in TBT entering the harbor via rivers and urban runoff. Changes observed in the more remote areas of the Drammensfjord, however, were less substantial. These data, along with measured and estimated geophysical properties, were used to parameterize and calibrate a coupled linear water-sediment model, referred to as the Drammensfjord model, to make prognosis on future TBT levels due to natural recovery. Unique to this type of model, the calibration was done using a Bayesian Monte Carlo (BMC) updating approach, which used monitoring data to calibrate predictions, as well as reduce the uncertainty of input parameters. To our knowledge, this is the first use of BMC updating to calibrate a model describing natural recovery in a lake/harbor type system. Prior to BMC updating, the non-calibrated model data agreed with monitoring data by a factor of 4.3. After BMC updating, the agreement was within a factor 3.2. The non-calibrated model predicted an average sediment concentration in the year 2025 of 2.5 μg kg(-1). The BMC calibrated model, however, predicted a higher concentration in the year 2025 of 16 μg kg(-1). This discrepancy was mainly due to the BMC calibration increasing the estimated riverine and runoff TBT emission levels relative to the initial input levels. Future monitoring campaigns can be used for further calibration of emission levels, and a clearer prognosis of when natural recovery will remove TBT pollution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A carbon, nitrogen, and sulfur elemental and isotopic study in dated sediment cores from the Louisiana Shelf

    USGS Publications Warehouse

    Rosenbauer, R.J.; Swarzenski, P.W.; Kendall, C.; Orem, W.H.; Hostettler, F.D.; Rollog, M.E.

    2009-01-01

    Three sediment cores were collected off the Mississippi River delta on the Louisiana Shelf at sites that are variably influenced by recurring, summer-time water-column hypoxia and fluvial loadings. The cores, with established chronology, were analyzed for their respective carbon, nitrogen, and sulfur elemental and isotopic composition to examine variable organic matter inputs, and to assess the sediment record for possible evidence of hypoxic events. Sediment from site MRJ03-3, which is located close to the Mississippi Canyon and generally not influenced by summer-time hypoxia, is typical of marine sediment in that it contains mostly marine algae and fine-grained material from the erosion of terrestrial C4 plants. Sediment from site MRJ03-2, located closer to the mouth of the Mississippi River and at the periphery of the hypoxic zone (annual recurrence of summer-time hypoxia >50%), is similar in composition to core MRJ03-3, but exhibits more isotopic and elemental variability down-core, suggesting that this site is more directly influenced by river discharge. Site MRJ03-5 is located in an area of recurring hypoxia (annual recurrence >75%), and is isotopically and elementally distinct from the other two cores. The carbon and nitrogen isotopic composition of this core prior to 1960 is similar to average particulate organic matter from the lower Mississippi River, and approaches the composition of C3 plants. This site likely receives a greater input of local terrestrial organic matter to the sediment. After 1960 and to the present, a gradual shift to higher values of ??13C and ??15N and lower C:N ratios suggests that algal input to these shelf sediments increased as a result of increased productivity and hypoxia. The values of C:S and ??34S reflect site-specific processes that may be influenced by the higher likelihood of recurring seasonal hypoxia. In particular, the temporal variations in the C:S and ??34S down-core are likely caused by changes in the rate of sulfate reduction, and hence the degree of hypoxia in the overlying water column. Based principally on the down-core C:N and C:S ratios and ??13C and ??34S profiles, sites MRJ03-3 and MRJ03-2 generally reflect more marine organic matter inputs, while site MRJ03-5 appears to be more influenced by terrestrial deposition. ?? 2009 Springer-Verlag.

  6. Evaluating post-glacial aggradational rates and transport processes, and assessing impacts of the Grand Ditch on the Lulu City wetland, Rocky Mountain National Park, Colorado

    NASA Astrophysics Data System (ADS)

    Rubin, Z.; Rathburn, S. L.; Wohl, E. E.

    2009-12-01

    The success of channel restoration rests in accurately assessing the context for, and goal of, restoration. This research aims to assess the historical range of variability of sedimentation rates and identify historic depositional environments, and to therefore contextualize the impacts of recent anthropogenic sediment inputs. In May 2003, a breach in Grand Ditch initiated a debris flow in Rocky Mountain National Park that transported approximately 36,000 m3 of sediment into the Upper Colorado River. Several other failures of Grand Ditch have occurred since 1937. This research was conducted in the Lulu City wetland, a wide, low gradient portion of the Upper Colorado River where fine sediment deposition occurred in 2003. Similarly, aerial photos show a change from a single thread, meandering channel in 1937 to the presently braided system- suggesting an altered sediment regime that has persisted for seventy years. A ground penetrating radar (GPR) survey was completed to investigate post-glacial sedimentation history of the valley. Trenching, coring, and radiocarbon dating methods were also used to further map sediment deposits, assess aggradational rates, and quantify dominant transport processes (channel, overbank, hillslope, beaver dams). Preliminary interpretation of the GPR reflections suggests approximately 10 meters of sediment exists above bedrock. It appears there is a marked difference between the modern (with anthropogenic influence) and historical sediment regimes. Specifically, the dominant transport process has shifted away from overbank and beaver dam deposits towards a regime dominated by hillslope inputs.

  7. A 1000-year record of dry conditions in the eastern Canadian prairies reconstructed from oxygen and carbon isotope measurements on Lake Winnipeg sediment organics

    USGS Publications Warehouse

    Buhay, W.M.; Simpson, S.; Thorleifson, H.; Lewis, M.; King, J.; Telka, A.; Wilkinson, Philip M.; Babb, J.; Timsic, S.; Bailey, D.

    2009-01-01

    A short sediment core (162 cm), covering the period AD 920-1999, was sampled from the south basin of Lake Winnipeg for a suite of multi-proxy analyses leading towards a detailed characterisation of the recent millennial lake environment and hydroclimate of southern Manitoba, Canada. Information on the frequency and duration of major dry periods in southern Manitoba, in light of the changes that are likely to occur as a result of an increasingly warming atmosphere, is of specific interest in this study. Intervals of relatively enriched lake sediment cellulose oxygen isotope values (??18Ocellulose) were found to occur from AD 1180 to 1230 (error range: AD 1104-1231 to 1160-1280), 1610-1640 (error range: AD 1571-1634 to 1603-1662), 1670-1720 (error range: AD 1643-1697 to 1692-1738) and 1750-1780 (error range: AD 1724-1766 to 1756-1794). Regional water balance, inferred from calculated Lake Winnipeg water oxygen isotope values (??18Oinf-lw), suggest that the ratio of lake evaporation to catchment input may have been 25-40% higher during these isotopically distinct periods. Associated with the enriched d??18Ocellulose intervals are some depleted carbon isotope values associated with more abundantly preserved sediment organic matter (d??13COM). These suggest reduced microbial oxidation of terrestrially derived organic matter and/or subdued lake productivity during periods of minimised input of nutrients from the catchment area. With reference to other corroborating evidence, it is suggested that the AD 1180-1230, 1610-1640, 1670-1720 and 1750-1780 intervals represent four distinctly drier periods (droughts) in southern Manitoba, Canada. Additionally, lower-magnitude and duration dry periods may have also occurred from 1320 to 1340 (error range: AD 1257-1363), 1530-1540 (error range: AD 1490-1565 to 1498-1572) and 1570-1580 (error range: AD 1531-1599 to 1539-1606). ?? 2009 John Wiley & Sons, Ltd.

  8. Effects of Land-use/Land-cover and Climate Changes on Water Quantity and Quality in Sub-basins near Major US Cities in the Great Lakes Region

    NASA Astrophysics Data System (ADS)

    Murphy, L.; Al-Hamdan, M. Z.; Crosson, W. L.; Barik, M.

    2017-12-01

    Land-cover change over time to urbanized, less permeable surfaces, leads to reduced water infiltration at the location of water input while simultaneously transporting sediments, nutrients and contaminants farther downstream. With an abundance of agricultural fields bordering the greater urban areas of Milwaukee, Detroit, and Chicago, water and nutrient transport is vital to the farming industry, wetlands, and communities that rely on water availability. Two USGS stream gages each located within a sub-basin near each of these Great Lakes Region cities were examined, one with primarily urban land-cover between 1992 and 2011, and one with primarily agriculture land-cover. ArcSWAT, a watershed model and soil and water assessment tool used in extension with ArcGIS, was used to develop hydrologic models that vary the land-covers to simulate surface runoff during a model run period from 2004 to 2008. Model inputs that include a digital elevation model (DEM), Landsat-derived land-use/land-cover (LULC) satellite images from 1992, 2001, and 2011, soil classification, and meteorological data were used to determine the effect of different land-covers on the water runoff, nutrients and sediments. The models were then calibrated and validated to USGS stream gage data measurements over time. Additionally, the watershed model was run based on meteorological data from an IPCC CMIP5 high emissions climate change scenario for 2050. Model outputs from the different LCLU scenarios were statistically evaluated and results showed that water runoff, nutrients and sediments were impacted by LULC change in four out of the six sub-basins. In the 2050 climate scenario, only one out of the six sub-basin's water quantity and quality was affected. These results contribute to the importance of developing hydrologic models as the dependence on the Great Lakes as a freshwater resource competes with the expansion of urbanization leading to the movement of runoff, nutrients, and sediments off the land.

  9. Impacts of Nitrate Input on Nitrous Oxide Production in Lake Sediments

    NASA Astrophysics Data System (ADS)

    Ruder, C. K.; Schade, J. D.

    2016-12-01

    Denitrification in lake sediments removes nitrogen from the ecosystem and produces the greenhouse gas nitrous oxide (N2O) as a byproduct. However, little is understood about the rates and controls of N2O production in lake sediments. Agricultural activity in lake catchments often results in the runoff of nitrogen fertilizers, leading to increased N inputs in the form of nitrate (NO3-). This study evaluates the influence of nitrate input on N2O concentrations in a series of lakes across a range of agricultural land use intensities. We measured N2O concentrations in lakes across seasons, and also used lake sediment samples to perform anaerobic incubations with NO3- additions, with and without the addition of acetylene (blocking conversion of N2O to N2), to assess denitrification potentials and the rate of N2O production in sediments. Our results suggest that N2O concentrations are strongly impacted by the availability of NO3- across all agricultural land use intensities, with incubation NO3- additions leading to a marked increase in N2O production. However, sediments reacted differently by site in incubations without experimental additions of NO3- or acetylene, with half of the study lakes experiencing net N2O production and half exhibiting net N2O consumption over the course of the 24-hour incubation period. These results suggest the potential influence of sediment organic matter as a control on N2O concentrations. The positive influence of NO3- on N2O production is supported by observational data at each of the study sites, though water column total nitrogen (TN) appears to be a better indicator of dissolved N2O concentrations than aqueous NO3-, perhaps due to variations in internal N recycling. This study concludes that agricultural runoff of NO3- has the potential to enhance sediment N2O production; however, further investigation into the effects of sediment organic matter on N2O production, analysis of N2O vertical diffusion efficiency to link production rates in the sediment to actual surface emissions, and microbial community comparisons between study sites are necessary to adequately model the impact of agricultural land use on emissions of N2O from lakes.

  10. Characterizing the Fate and Mobility of Phosphorus in Utah Lake Sediments

    NASA Astrophysics Data System (ADS)

    Randall, M.; Carling, G. T.; Nelson, S.; Bickmore, B.; Miller, T.

    2016-12-01

    An increasing number of lakes worldwide are impacted by eutrophication and harmful algal blooms due to nutrient inputs. Utah Lake, located in northern Utah, is a eutrophic freshwater lake that is unique because it is naturally shallow, turbid, and alkaline with high dissolved oxygen levels. Recently, the Utah Division of Water Quality has proposed a new rule to limit phosphorus (P) loading to Utah Lake from wastewater treatment plants in an effort to mitigate eutrophication. However, reducing external P loads may not lead to immediate improvements in water quality due to the legacy pool of nutrients in lake sediments. The purpose of this study is to characterize the fate and mobility of P in Utah Lake to better understand P cycling in this unique system. We analyzed P speciation, mineralogy, and binding capacity in lake sediment samples collected from 9 locations across Utah Lake. P concentrations in sediment ranged from 1120 to 1610 ppm, with highest concentrations in Provo Bay near the major metropolitan area. Likewise, P concentrations in sediment pore water were highest in Provo Bay with concentrations up to 4 mg/L. Sequential leach tests indicate that 30-45% of P is bound to apatite and another 40-55% is adsorbed onto the surface of redox sensitive Fe/Mn hydroxides. This was confirmed by SEM images, which showed the highest P concentrations correlating with both Ca (apatite) and Fe (Fe hydroxides). The apatite-bound P fraction is likely immobile, but the P fraction sorbed to Fe/Mn hydroxides is potentially bioavailable under changing redox conditions. Batch sorption results indicate that lake sediments have a high capacity to absorb and remove P from the water column, with an average uptake of 70-96% of P from spiked surface water with concentrations ranging from 1-10 mg/L. Mineral precipitation and sorption to bottom sediments is an efficient removal mechanism of P in Utah Lake, but a significant portion of P may be available for resuspension and cycling in surface waters. Mitigating lake eutrophication is a complex problem that goes beyond reducing nutrient loads to the water body and requires a better understanding of internal P cycling.

  11. Isotopic fingerprints of anthropogenic molybdenum in lake sediments.

    PubMed

    Chappaz, Anthony; Lyons, Timothy W; Gordon, Gwyneth W; Anbar, Ariel D

    2012-10-16

    We measured the molybdenum isotope compositions (δ(98)Mo) of well-dated sediment cores from two lakes in eastern Canada in an effort to distinguish between natural and anthropogenic contributions to these freshwater aquatic systems. Previously, Chappaz et al. (1) ascribed pronounced 20th-century Mo concentration enrichments in these lakes to anthropogenic inputs. δ(98)Mo values in the deeper sediments (reflecting predominantly natural Mo sources) differ dramatically between the two lakes: -0.32 ± 0.17‰ for oxic Lake Tantare and +0.64 ± 0.09‰ for anoxic Lake Vose. Sediment layers previously identified as enriched in anthropogenic Mo, however, reveal significant δ(98)Mo shifts of ± 0.3‰, resulting in isotopically heavier values of +0.05 ± 0.18‰ in Lake Tantare and lighter values of +0.31 ± 0.03‰ in Lake Vose. We argue that anthropogenic Mo modifies the isotopic composition of the recent sediments, and we determine δ(98)Mo(anthropogenic) values of 0.1 ± 0.1‰ (Lake Vose) and 0.2 ± 0.2‰ (Lake Tantare). These calculated inputs are consistent with the δ(98)Mo of molybdenite (MoS(2)) likely delivered to the lakes via smelting of porphyry copper deposits (Lake Vose) or through combustion of coal and oil also containing Mo (Lake Tantare). Our results confirm the utility of Mo isotopes as a promising fingerprint of human impacts and perhaps the specific sources of contamination. Importantly, the magnitudes of the anthropogenic inputs are large enough, relative to the natural Mo cycles in each lake, to have an impact on the microbiological communities.

  12. U.S. Geological Survey ArcMap Sediment Classification tool

    USGS Publications Warehouse

    O'Malley, John

    2007-01-01

    The U.S. Geological Survey (USGS) ArcMap Sediment Classification tool is a custom toolbar that extends the Environmental Systems Research Institute, Inc. (ESRI) ArcGIS 9.2 Desktop application to aid in the analysis of seabed sediment classification. The tool uses as input either a point data layer with field attributes containing percentage of gravel, sand, silt, and clay or four raster data layers representing a percentage of sediment (0-100%) for the various sediment grain size analysis: sand, gravel, silt and clay. This tool is designed to analyze the percent of sediment at a given location and classify the sediments according to either the Folk (1954, 1974) or Shepard (1954) as modified by Schlee(1973) classification schemes. The sediment analysis tool is based upon the USGS SEDCLASS program (Poppe, et al. 2004).

  13. The effect of river pulsing on sedimentation and nutrients in created riparian wetlands.

    PubMed

    Nahlik, Amanda M; Mitsch, William J

    2008-01-01

    Sedimentation under pulsed and steady-flow conditions was investigated in two created flow-through riparian wetlands in central Ohio over 2 yr. Hydrologic pulses of river water lasting for 6 to 8 d were imposed on each wetland from January through June during 2004. Mean inflow rates during pulses averaged 52 and 7 cm d(-1) between pulses. In 2005, the wetlands received a steady-flow regime of 11 cm d(-1) with no major hydrologic fluctuations. Thirty-two sediment traps were deployed and sampled once per month in April, May, June, and July for two consecutive years in each wetland. January through March were not sampled in either year due to frozen water surfaces in the wetlands. Gross sedimentation (sedimentation without normalizing for differences between years) was significantly greater in the pulsing study period (90 kg m(-2)) than in the steady-flow study period (64 kg m(-2)). When normalized for different hydrologic and total suspended solid inputs between years, sedimentation for April through July was not significantly different between pulsing and steady-flow study periods. Sedimentation for the 3 mo that received hydrologic pulses (April, May, and June) was significantly lower during pulsing months than in the corresponding steady-flow months. Large fractions of inorganic matter in collected sediments indicated that allochthonous inputs were the main contributor to sedimentation in these wetlands. Organic matter fractions of collected sediments were consistently greater in the steady-flow study period (1.8 g kg(-1)) than in the pulsed study period (1.5 g kg(-1)), consistent with greater primary productivity in the water column during steady-flow conditions.

  14. The Influence of Erosional Hotspots on Watershed-scale Phosphorus Dynamics in Intensively Managed Agricultural Landscapes

    NASA Astrophysics Data System (ADS)

    Baker, A.; Finlay, J. C.; Gran, K. B.; Karwan, D. L.; Engstrom, D. R.; Atkins, W.; Muramoto-Mathieu, M.

    2017-12-01

    The Minnesota River Basin is an intensively-managed agricultural watershed which contributes disproportionately to downstream sediment and nutrient loading. The Le Sueur River, an actively eroding tributary to the Minnesota River, has been identified as a disproportionate contributor of sediment and nutrients to this system. In an effort to identify best practices for reduction of phosphorus (P) in the context of intensifying agriculture and climate change pressure, we coupled investigation of source sediment P chemistry with an existing fine sediment budget to create a watershed mass balance for sediment-associated P. Sediments collected from primary source areas including agricultural fields, glacial till bluffs, alluvial streambanks, ravines, and agricultural ditches were analyzed for total- and extractable-P, and sorptive properties. Preliminary integration of these data into a mass-balance suggests that less than a quarter of the total-P exported from this watershed can be attributed directly to sediment inputs, likely due to the low P concentration of most sediment sources. While sediment may supply less than 25% of the total-P exiting the Le Sueur, a high proportion of total-P load ( 66% on average) is in particulate form. This finding indicates that sorption of dissolved-P from upstream sources onto fine sediment plays a major role in determining the form and reactivity of P in the watershed. Sorption processes convert dissolved-P into particulate-P, and may substantially alter the fate and reactivity of P in downstream channels and lakes. In highly erosive rivers, as the Le Sueur, where inputs of sediment from deep soil horizons are dominant, the dynamic relationship between sediment and dissolved-P must be evaluated and incorporated into models to forecast potential for P retention and export from the landscape. By incorporating results of this mass balance and analysis of sediment sorptive properties into existing models, we can develop strategies that most effectively address both of these interwoven pollutants to aquatic ecosystems.

  15. Tracking riverborne sediment and contaminants in Commencement Bay, Washington, using geochemical signatures

    USGS Publications Warehouse

    Takesue, Renee K.; Conn, Kathleen E.; Dinicola, Richard S.

    2017-09-29

    Large rivers carry terrestrial sediment, contaminants, and other materials to the coastal zone where they can affect marine biogeochemical cycles and ecosystems. This U.S. Geological Survey study combined river and marine sediment geochemistry and organic contaminant analyses to identify riverborne sediment and associated contaminants at shoreline sites in Commencement Bay, Puget Sound, Washington, that could be used by adult forage fish and other marine organisms. Geochemical signatures distinguished the fine fraction (<0.063 millimeter, mm) of Puyallup River sediment—which originates from Mount Rainier, a Cascade volcano—from glacial fine sediment in lowland bluffs that supply sediment to beaches. In combination with activities of beryllium-7 (7Be), a short-lived radionuclide, geochemical signatures showed that winter 2013–14 sediment runoff from the Puyallup River was transported to and deposited along the north shore of Commencement Bay, then mixed downward into the sediment column. The three Commencement Bay sites at which organic contaminants were measured in surface sediment did not have measurable 7Be activities in that layer, so their contaminant assemblages were attributed to sources from previous years. Concentrations of organic contaminants (the most common of which were polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and fecal sterols) were higher in the <0.063-mm fraction compared to the <2-mm fraction, in winter compared to summer, in river suspended sediment compared to river bar and bank sediment, and in marine sediment compared to river sediment. The geochemical property barium/aluminum (Ba/Al) showed that the median percentage of Puyallup River derived fine surface sediment along the shoreline of Commencement Bay was 77 percent. This finding, in combination with higher concentrations of organic contaminants in marine rather than river sediment, indicates that riverborne sediment-bound contaminants are retained in shallow marine habitats of Commencement Bay. The retention of earlier inputs complicates efforts to identify recent inputs and sources. Understanding modern sources and fates of riverborne sediment and contaminants and their potential ecological impacts will therefore require a suite of targeted geochemical studies in such marine depositional environments.

  16. Cenozoic marine geochemistry of thallium deduced from isotopic studies of ferromanganese crusts and pelagic sediments

    USGS Publications Warehouse

    Rehkamper, M.; Frank, M.; Hein, J.R.; Halliday, A.

    2004-01-01

    Cenozoic records of Tl isotope compositions recorded by ferromanganese (Fe-Mn) crusts have been obtained. Such records are of interest because recent growth surfaces of Fe-Mn crusts display a nearly constant Tl isotope fractionation relative to seawater. The time-series data are complemented by results for bulk samples and leachates of various marine sediments. Oxic pelagic sediments and anoxic marine deposits can be distinguished by their Tl isotope compositions. Both pelagic clays and biogenic oozes are typically characterized by ??205Tl greater than +2.5, whereas anoxic sediments have ??205Tl of less than -1.5 (??205Tl is the deviation of the 205Tl/203Tl isotope ratio of a sample from NIST SRM 997 Tl in parts per 104). Leaching experiments indicate that the high ??205Tl values of oxic sediments probably reflect authigenic Fe-Mn oxyhydroxides. Time-resolved Tl isotope compositions were obtained from six Fe-Mn crusts from the Atlantic, Indian, and Pacific oceans and a number of observations indicate that these records were not biased by diagenetic alteration. Over the last 25 Myr, the data do not show isotopic variations that significantly exceed the range of Tl isotope compositions observed for surface layers of Fe-Mn crusts distributed globally (??205 Tl=+12.8??1.2). This indicates that variations in deep-ocean temperature were not recorded by Tl isotopes. The results most likely reflect a constant Tl isotope composition for seawater. The growth layers of three Fe-Mn crusts that are older than 25 Ma show a systematic increase of ??205Tl with decreasing age, from about +6 at 60-50 Ma to about +12 at 25 Ma. These trends are thought to be due to variations in the Tl isotope composition of seawater, which requires that the oceans of the early Cenozoic either had smaller output fluxes or received larger input fluxes of Tl with low ??205Tl. Larger inputs of isotopically light Tl may have been supplied by benthic fluxes from reducing sediments, rivers, and/or volcanic emanations. Alternatively, the Tl isotope trends may reflect the increasing importance of Tl fluxes to altered ocean crust through time. ?? 2004 Elsevier B.V. All rights reserved.

  17. Population Ecology of Nitrifiers in a Stream Receiving Geothermal Inputs of Ammonium

    PubMed Central

    Cooper, A. Bryce

    1983-01-01

    The distribution, activity, and generic diversity of nitrifying bacteria in a stream receiving geothermal inputs of ammonium were studied. The high estimated rates of benthic nitrate flux (33 to 75 mg of N · m−2 · h−1) were a result of the activity of nitrifiers located in the sediment. Nitrifying potentials and ammonium oxidizer most probable numbers in the sediments were at least one order of magnitude higher than those in the waters. Nitrifiers in the oxygenated surface (0 to 2 cm) sediments were limited by suboptimal temperature, pH, and substrate level. Nitrifiers in deep (nonsurface) oxygenated sediments did not contribute significantly to the changes measured in the levels of inorganic nitrogen species in the overlying waters and presumably derived their ammonium supply from ammonification within the sediment. Ammonium-oxidizing isolates obtained by a most-probable number nonenrichment procedure were species of either Nitrosospira or Nitrosomonas, whereas all those obtained by an enrichment procedure (i.e., selective culture) were Nitrosomonas spp. The efficiency of the most-probable-number method for enumerating ammonium oxidizers was calculated to be between 0.05 and 2.0%, suggesting that measurements of nitrifying potentials provide a better estimate of nitrifying populations. PMID:16346261

  18. Reduced phosphorus retention by anoxic bottom sediments after the remediation of an industrial acidified lake area: Indications from P, Al, and Fe sediment fractions.

    PubMed

    Nürnberg, Gertrud K; Fischer, Rachele; Paterson, Andrew M

    2018-06-01

    Formerly acidified lakes and watersheds can become more productive when recovering from acidity, especially when exposed to anthropogenic disturbance and increased nutrient loading. Occasional toxic cyanobacterial blooms and other signs of eutrophication have been observed for a decade in lakes located in the Sudbury, Ontario, mining area that was severely affected by acid deposition before the start of smelter emission reductions in the 1970s. Oligotrophic Long Lake and its upstream lakes have been exposed to waste water input and development impacts from the City of Greater Sudbury and likely have a legacy of nutrient enrichment in their sediment. Based on observations from other published studies, we hypothesized that P, which was previously adsorbed by metals liberated during acidification caused by the mining activities, is now being released from the sediment as internal P loading contributing to increased cyanobacteria biomass. Support for this hypothesis includes (1) lake observations of oxygen depletion and hypolimnetic anoxia and slightly elevated hypolimnetic total P concentration and (2) P, Al, and Fe fractionation of two sediment layers (0-5, 5-10 cm), showing elevated concentrations of TP and iron releasable P (BD-fraction), decreased concentrations in fractions associated with Al, and fraction ratios indicating decreased sediment adsorption capacity. The comparison with two moderately enriched lakes within 200 km distance, but never directly affected by mining operations, supports the increasing similarity of Long Lake surficial sediment adsorption capacity with that of unaffected lakes. There is cause for concern that increased eutrophication including the proliferation of cyanobacteria of formerly acidic lakes is wide-spread and occurs wherever recovery coincides with anthropogenic disturbances and physical changes related to climate change. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. The use of hydroxyacids as geochemical indicators

    NASA Technical Reports Server (NTRS)

    Cardoso, J. N.; Eglinton, G.

    1983-01-01

    The distributions of hydroxyacids in a variety of recent and ancient sediments have been determined by gas chromatography-mass spectrometry. A lacustrine sediment (Rostherne Mere, U.K.) and two marine situations (Cariaco Trench, Black Sea) were analyzed as examples of recent depositional environments. Beta-hydroxyacids occurred in all of the recent sediments, consistent with their presumed microbial origin, whereas di- and trihydroxyacids were present in the sediments with a significant higher plant input (Black Sea and Rostherne Mere sediments). The two ancient (Eocene) sediments examined, viz, the Greene River (U.S.) and Messel (Germany) oil shales, contained only trace amounts of hydroxyacids. These results provide evidence that hydroxyacids are in general not well preserved over geological time.

  20. RECONSTRUCTION OF CONTAMINANT TRENDS IN A SALT WEDGE ESTUARY WITH SEDIMENT CORES DATED USING A MULTIPLE PROXY APPROACH

    EPA Science Inventory

    The Taunton River is a partially mixed tidal estuary in southeastern Massachusetts (USA) which has received significant contaminant inputs, yet little information exists on the history of discharge and the subsequent fate of these contaminants. Three sediment cores taken along a...

  1. WATER LEVEL AND OXYGEN DELIVERY/UTILIZATION IN POROUS SALT MARSH SEDIMENTS

    EPA Science Inventory

    Increasing terrestrial nutrient inputs to coastal waters is a global water quality issue worldwide, and salt marshes may provide a valuable nutrient buffer, either by direct removal or by smoothing out pulse inputs between sources and sensitive estuarine habitats. A major challen...

  2. Morphological controls on barrier-island response and recovery following natural and anthropogenic perturbations, northern Chandeleur Islands, Louisiana

    NASA Astrophysics Data System (ADS)

    Bernier, J.; Miselis, J. L.

    2016-02-01

    Prevailing oceanographic climate, sediment supply, the magnitude and frequency of storm events, and anthropogenic modifications interact to drive the geomorphic evolution of barrier systems at varying spatial and temporal scales. The Chandeleur Islands east of the Louisiana mainland receive little external sediment input, and alongshore currents generally transport sediment away from the nearshore and littoral system to flanking depositional centers. We analyzed Landsat satellite imagery and lidar datasets from the northern Chandeleur Islands to quantify morphological changes that resulted from storm impacts and human-induced sediment input at intra-annual to decadal time scales. Since 2001, the study area was impacted by multiple tropical systems, including Hurricanes Lili (2002), Katrina (2005), and Isaac (2012). Additionally, between June 2010 and April 2011, in response to the Deepwater Horizon oil spill, the State of Louisiana constructed a 2-m high sand berm extending more than 12 km along the northern Chandeleur Islands platform. Berm emplacement provided a unique opportunity to study how anthropogenic sediment input affects the morphologic response of a naturally evolving barrier system. Land-cover and elevation metrics were utilized to test the hypotheses that (1) island geomorphology, in particular marsh extent, significantly influenced both "instantaneous" and longer term morphologic change and recovery following storm events and (2) redistribution of berm sediment depended on both antecedent morphologic controls as well as spatial variability in berm placement relative to the island platform. Despite the rapid post-construction degradation of the berm, imagery and elevation data suggest that some berm sediment remained in the system. Where the barrier-island was backed by healthy marsh platform, shoreward translation of the berm crest and increased elevations landward of the berm provide evidence of berm sand redistribution onto the emergent island. At the northern end of the study area, new sub-aerial islands were observed on the submerged island platform within the footprint of the pre-Katrina island extent. These data indicate that berm sediment may contribute to continued island recovery under normal climatic conditions.

  3. Reconstructing Early Industrial Contributions to Legacy Trace Metal Contamination in Southwestern Pennsylvania

    NASA Astrophysics Data System (ADS)

    Rossi, R.; Bain, D.; Hillman, A. L.; Pompeani, D. P.; Abbott, M. B.

    2015-12-01

    The remobilization of legacy contamination stored in floodplain sediments remains a threat to ecosystem and human health, particularly with potential changes in global precipitation patterns and flooding regimes. Vehicular and industrial emissions are often the dominant, recognized source of anthropogenic trace metal loadings to ecosystems today. However, loadings from early industrial activities are poorly characterized and potential sources of trace metal inputs. While potential trace metal contamination from these activities is recognized (e.g., the historical use of lead arsenate as a pesticide), the magnitude and distribution of legacy contamination is often unknown. This presentation reconstructs a lake sediment record of trace metal inputs from an oxbow lake in Southwestern Pennsylvania. Sediment cores were analyzed for major and trace metal chemistry, carbon to nitrogen ratios, bulk density, and magnetic susceptibility. Sediment trace metal chemistry in this approximately 250 year record (180 cm) record changes in land use and industry both in the 19th century and the 20th century. Of particular interest is early 19th century loadings of arsenic and calcium to the lake, likely attributable to pesticides and lime used in tanning processes near the lake. After this period of tanning dominated inputs, sediment barium concentrations rise, likely reflecting the onset of coal mining operations and resulting discharge of acid mine drainage to surface waters. In the 20th century portion of our record (70 -20 cm), patterns in sediment zinc, cadmium, and lead concentrations are dominated by the opening and closing of the nearby Donora Zinc Works and the American Steel & Wire Works, infamous facilities in the history of air quality regulation. The most recent sediment chemistry records periods include the enactment of air pollution legislation (~ 35 cm), and the phase out of tetraethyl leaded gasoline (~30 cm). Our study documents the impact of early industry in the Southwestern Pennsylvania region, as well as early industrial coal production/consumption on legacy trace metal contamination. This record suggests that some early industrial processes can rival more recent metal fluxes and should be carefully considered in modern assessments of legacy sediment metal contamination.

  4. Turbidity and Suspended Solids Levels and Loads in a Sediment Enriched Stream: Implications for Impacted Lotic and Lentic Ecosystems

    DTIC Science & Technology

    2007-01-01

    surficial sediment survey of the entire lake , Auer 0 40 80 0 40 80 0 40 80 120 et al. (1996) observed particularly high clastics content (e.g., clay...analysis. In Turbidity in Lake Ontario . Limnol. and Oceanogr. 43:187-199. and Other Sediment Surrogates Workshop, Reno, NV, April James, W.F. and J.W... Lake . These sediment inputs have important implications for the lake , within the context of two on-going rehabilitation programs aimed at contaminated

  5. Sediment impacts on marine sponges.

    PubMed

    Bell, James J; McGrath, Emily; Biggerstaff, Andrew; Bates, Tracey; Bennett, Holly; Marlow, Joseph; Shaffer, Megan

    2015-05-15

    Changes in sediment input to marine systems can influence benthic environments in many ways. Sponges are important components of benthic ecosystems world-wide and as sessile suspension feeders are likely to be impacted by changes in sediment levels. Despite this, little is known about how sponges respond to changes in settled and suspended sediment. Here we review the known impacts of sedimentation on sponges and their adaptive capabilities, whilst highlighting gaps in our understanding of sediment impacts on sponges. Although the literature clearly shows that sponges are influenced by sediment in a variety of ways, most studies confer that sponges are able to tolerate, and in some cases thrive, in sedimented environments. Critical gaps exist in our understanding of the physiological responses of sponges to sediment, adaptive mechanisms, tolerance limits, and the particularly the effect of sediment on early life history stages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Time-integrated sampling of fluvial suspended sediment: a simple methodology for small catchments

    NASA Astrophysics Data System (ADS)

    Phillips, J. M.; Russell, M. A.; Walling, D. E.

    2000-10-01

    Fine-grained (<62·5 µm) suspended sediment transport is a key component of the geochemical flux in most fluvial systems. The highly episodic nature of suspended sediment transport imposes a significant constraint on the design of sampling strategies aimed at characterizing the biogeochemical properties of such sediment. A simple sediment sampler, utilizing ambient flow to induce sedimentation by settling, is described. The sampler can be deployed unattended in small streams to collect time-integrated suspended sediment samples. In laboratory tests involving chemically dispersed sediment, the sampler collected a maximum of 71% of the input sample mass. However, under natural conditions, the existence of composite particles or flocs can be expected to increase significantly the trapping efficiency. Field trials confirmed that the particle size composition and total carbon content of the sediment collected by the sampler were representative statistically of the ambient suspended sediment.

  7. Lignin phenols used to infer organic matter sources to Sepetiba Bay - RJ, Brasil

    NASA Astrophysics Data System (ADS)

    Rezende, C. E.; Pfeiffer, W. C.; Martinelli, L. A.; Tsamakis, E.; Hedges, J. I.; Keil, R. G.

    2010-04-01

    Lignin phenols were measured in the sediments of Sepitiba Bay, Rio de Janeiro, Brazil and in bedload sediments and suspended sediments of the four major fluvial inputs to the bay; São Francisco and Guandu Channels and the Guarda and Cação Rivers. Fluvial suspended lignin yields (Σ8 3.5-14.6 mgC 10 g dw -1) vary little between the wet and dry seasons and are poorly correlated with fluvial chlorophyll concentrations (0.8-50.2 μgC L -1). Despite current land use practices that favor grassland agriculture or industrial uses, fluvial lignin compositions are dominated by a degraded leaf-sourced material. The exception is the Guarda River, which has a slight influence from grasses. The Lignin Phenol Vegetation Index, coupled with acid/aldehyde and 3.5 Db/V ratios, indicate that degraded leaf-derived phenols are also the primary preserved lignin component in the bay. The presence of fringe Typha sp. and Spartina sp. grass beds surrounding portions of the Bay are not reflected in the lignin signature. Instead, lignin entering the bay appears to reflect the erosion of soils containing a degraded signature from the former Atlantic rain forest that once dominated the watershed, instead of containing a significant signature derived from current agricultural uses. A three-component mixing model using the LPVI, atomic N:C ratios, and stable carbon isotopes (which range between -26.8 and -21.8‰) supports the hypothesis that fluvial inputs to the bay are dominated by planktonic matter (78% of the input), with lignin dominated by leaf (14% of the input) over grass (6%). Sediments are composed of a roughly 50-50 mixture of autochthonous material and terrigenous material, with lignin being primarily sourced from leaf.

  8. Isotopic identification of natural vs. anthropogenic lead sources in marine sediments from the inner Ría de Vigo (NW Spain).

    PubMed

    Álvarez-Iglesias, P; Rubio, B; Millos, J

    2012-10-15

    San Simón Bay, the inner part of the Ría de Vigo (NW Spain), an area previously identified as highly polluted by Pb, was selected for the application of Pb stable isotope ratios as a fingerprinting tool in subtidal and intertidal sediment cores. Lead isotopic ratios were determined by inductively coupled plasma mass spectrometry on extracts from bulk samples after total acid digestion. Depth-wise profiles of (206)Pb/(207)Pb, (206)Pb/(204)Pb, (207)Pb/(204)Pb, (208)Pb/(204)Pb and (208)Pb/(207)Pb ratios showed, in general, an upward decrease for both intertidal and subtidal sediments as a consequence of the anthropogenic activities over the last century, or centuries. Waste channel samples from a nearby ceramic factory showed characteristic Pb stable isotope ratios different from those typical of coal and petrol. Natural isotope ratios from non-polluted samples were established for the study area, differentiating sediments from granitic or schist-gneiss sources. A binary mixing model employed on the polluted samples allowed estimating the anthropogenic inputs to the bay. These inputs represented between 25 and 98% of Pb inputs in intertidal samples, and 9-84% in subtidal samples, their contributions varying with time. Anthropogenic sources were apportioned according to a three-source model. Coal combustion-related emissions were the main anthropogenic source Pb to the bay (60-70%) before the establishment of the ceramic factory in the area (in the 1970s) which has since constituted the main source (95-100%), followed by petrol-related emissions. The Pb inputs history for the intertidal area was determined for the 20th century, and, for the subtidal area, the 19th and 20th centuries. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Seasonal nutrient dynamics in a chalk stream: the River Frome, Dorset, UK.

    PubMed

    Bowes, M J; Leach, D V; House, W A

    2005-01-05

    Chalk streams provide unique, environmentally important habitats, but are particularly susceptible to human activities, such as water abstraction, fish farming and intensive agricultural activity on their fertile flood-meadows, resulting in increased nutrient concentrations. Weekly phosphorus, nitrate, dissolved silicon, chloride and flow measurements were made at nine sites along a 32 km stretch of the River Frome and its tributaries, over a 15 month period. The stretch was divided into two sections (termed the middle and lower reach) and mass balances were calculated for each determinand by totalling the inputs from upstream, tributaries, sewage treatment works and an estimate of groundwater input, and subtracting this from the load exported from each reach. Phosphorus and nitrate were retained within the river channel during the summer months, due to bioaccumulation into river biota and adsorption of phosphorus to bed sediments. During the autumn to spring periods, there was a net export, attributed to increased diffuse inputs from the catchment during storms, decomposition of channel biomass and remobilisation of phosphorus from the bed sediment. This seasonality of retention and remobilisation was higher in the lower reach than the middle reach, which was attributed to downstream changes in land use and fine sediment availability. Silicon showed much less seasonality, but did have periods of rapid retention in spring, due to diatom uptake within the river channel, and a subsequent release from the bed sediments during storm events. Chloride did not produce a seasonal pattern, indicating that the observed phosphorus and nitrate seasonality was a product of annual variation in diffuse inputs and internal riverine processes, rather than an artefact of sampling, flow gauging and analytical errors.

  10. Anthropogenic and geogenic Cd, Hg, Pb and Se sources of contamination in a brackish aquifer below agricultural fields

    NASA Astrophysics Data System (ADS)

    Mastrocicco, Micòl; Colombani, Nicolò; Di Giuseppe, Dario; Faccini, Barbara; Ferretti, Giacomo; Coltorti, Massimo

    2015-04-01

    Groundwater quality is often threatened by industrial, agricultural and land use practices (anthropogenic input). In deltaic areas is however difficult to distinguish between geogenic and anthropogenic inorganic contaminants pollution, since these phenomena can influence each other and often display a seasonal cycling. The effect of geogenic groundwater ionic strength (>10 g/l) on the mobility of trace elements like Cd, Hg, Pb and Se was studied in combination with the anthropogenic sources of these elements (fertilizers) in a shallow aquifer. The site is located in the Po river plain (Northern Italy) in an agricultural field belonging to a reclaimed deltaic environment, near Codigoro town. It is 6 ha wide and is drained by a subsurface drainage system made of PVC tile drains with a slope of 3‰, which provides gravity drainage towards two ditches that in turn discharge in a main channel. The whole area has been intensively cultivated with cereal rotation since 1960, mainly using synthetic urea as nitrogen fertilizer at an average rate of 180 kg-N/ha/y and pig slurry at an average rate of 60 kg-N/ha/y. The sediments were analyzed for major and trace elements via XRF, while major ions in groundwater were analyzed via IC and trace elements via ICP-MS. Three monitoring wells, with an inner diameter of 2 cm and screened down to 4 m below ground level, were set up in the field and sampled every four month from 2012 to 2014. The use of intensive depth profiles with resolution of 0.5 m in three different locations, gave insights into groundwater and sediment matrix interactions. To characterize the anthropogenic inputs synthetic urea and pig slurry were analyzed for trace elements via ICP-MS. The synthetic urea is a weak source of Cd and Hg (~1 ppb), while Se and Pb are found below detection limits. The pig slurry is a much stronger source of Se (~19 ppb) and Pb (~23 ppb) and a weak source of Cd (~3 ppb) and Hg (~2 ppb). Although, the mass loading rate pig slurry is three times lower than the synthetic urea on yearly basis. In general Cd, Hg, Pb and Se concentrations were found lower in sandy sediments, since usually these elements concentrate in the clay fraction. Hg, Pb and Se groundwater concentrations generally increased with the ionic strength of the solution witnessing a geogenic origin, while Cd groundwater concentrations were not clearly related to saline groundwater. Most probably, the latter was released both by fertilizers and by sediments during shifts between oxic and reducing conditions. In addition, the elevated soil organic carbon induced reducing conditions throughout the saturated aquifer profile (usually below the tile drains), which further promoted Hg, Pb and Se dissolution. The combined use of high-resolution sediment profiles, seasonal groundwater sampling and end-member analyses seems to be a promising procedure to distinguish between anthropogenic inorganic contaminants input and geogenic contribution in reclaimed deltaic environments.

  11. A 100-year sedimentary record of natural and anthropogenic impacts on a shallow eutrophic lake, Lake Chaohu, China.

    PubMed

    Zan, Fengyu; Huo, Shouliang; Xi, Beidou; Zhu, Chaowei; Liao, Haiqing; Zhang, Jingtian; Yeager, Kevin M

    2012-03-01

    In this study, the sediment profiles of total organic carbon, total nitrogen, C/N ratios, total phosphorus, N/P ratios, C/P ratios, particle sizes, and stable carbon and nitrogen isotopes (δ(13)C and δ(15)N) were used to investigate natural and anthropogenic impacts on Lake Chaohu over the past 100 years. Before 1960, Lake Chaohu experienced low productivity and a relatively steady and low nutrient input. The increasing concentration and fluxes of total organic carbon, total nitrogen, total phosphorus, together with changes in the δ(13)C and δ(15)N of organic material in the sediment cores, suggested that the anthropogenic effects on trophic status first started because of an increase in nutrient input caused by a population increase in the drainage area. With the construction of the Chaohu Dam, an increase in the utilization of fertilizer and the population growth which occurred since 1960, stable depositional conditions and increasing nutrient input resulted in a dominantly algae-derived organic matter source and high productivity. Nutrient input increased most significantly around 1980 following the rapidly growing population, with concomitant urbanization, industrial and agricultural development. This study also revealed that the concentration and distribution of nutrients varied between different areas of sediment within Lake Chaohu because of the influence of different drainage basins and pollution sources. This journal is © The Royal Society of Chemistry 2012

  12. Spatial and temporal patterns in trace element deposition to lakes in the Athabasca oil sands region (Alberta, Canada)

    NASA Astrophysics Data System (ADS)

    Cooke, Colin A.; Kirk, Jane L.; Muir, Derek C. G.; Wiklund, Johan A.; Wang, Xiaowa; Gleason, Amber; Evans, Marlene S.

    2017-12-01

    The mining and processing of the Athabasca oil sands (Alberta, Canada) has been occurring for decades; however, a lack of consistent regional monitoring has obscured the long-term environmental impact. Here, we present sediment core results to reconstruct spatial and temporal patterns in trace element deposition to lakes in the Athabasca oil sands region. Early mining operations (during the 1970s and 1980s) led to elevated V and Pb inputs to lakes located <50 km from mining operations. Subsequent improvements to mining and upgrading technologies since the 1980s have reduced V and Pb loading to near background levels at many sites. In contrast, Hg deposition increased by a factor of ~3 to all 20 lakes over the 20th century, reflecting global-scale patterns in atmospheric Hg emissions. Base cation deposition (from fugitive dust emissions) has not measurably impacted regional lake sediments. Instead, results from a principal components analysis suggest that the presence of carbonate bedrock underlying lakes located close to development appears to exert a first-order control over lake sediment base cation concentrations and overall lake sediment geochemical composition. Trace element concentrations generally did not exceed Canadian sediment quality guidelines, and no spatial or temporal trends were observed in the frequency of guideline exceedence. Our results demonstrate that early mining efforts had an even greater impact on trace element cycling than has been appreciated previously, placing recent monitoring efforts in a critical long-term context.

  13. Sedimentary chronology reinterpreted from Changshou Lake of the Three Gorges Reservoir Area reveals natural and anthropogenic controls on sediment production.

    PubMed

    Anjum, Raheel; Tang, Qiang; Collins, Adrian L; Gao, Jinzhang; Long, Yi; Zhang, Xinbao; He, Xiubin; Shi, Zhonglin; Wen, Anbang; Wei, Jie

    2018-04-17

    Sedimentary archives preserved in geomorphic sinks provide records of historical sediment dynamics and its related natural and anthropogenic controls. This study reinterpreted sedimentary processes in Changshou Lake of the Three Gorges Reservoir Area in China by combining a rainfall erosivity index with multiple tracing proxies, and the impacts of natural and anthropogenic drivers on sediment production were also explored. Erosive rainfalls with low frequency and large magnitude in the rainy season contribute to a substantial proportion of annual total rainfall, which thus can be used to infer erosion and sediment yield events. The sedimentary chronology was determined by comparing rainfall erosivity index with depth distribution of 137 Cs and absolute particle size, which revealed annual sedimentation rates ranging from 1.1 to 2.3 cm a -1 . The multi-proxy dating index and variation of sedimentation rate divided the sediment profile into three major periods. The reference period (1956-1982) displays low variability of TOC, TN, trace metal concentrations, and mean sedimentation rate. In the stressed period (1982-1998), industrial and sewerage discharge led to input and deposition of TOC, TN, and trace metals (e.g., Cd, Co, Cu, Cr, and Ni). The highest annual sediment accumulation rate of 2.3 cm a -1 may be ascribed to the 1982 big flood event. In the present period (1998-2013), increased TOC, TN and decreased trace metals in the top layers of the sediment core indicated changes in lake ecology. Fish farming promoted algal growth and primary productivity which caused eutrophication until 2004-2005. The reduced mean sedimentation rate of 1.7 cm a -1 between 1998 and 2004, and thereafter, may be attributed to soil and water conservation and reforestation policies implemented in the Longxi catchment. Human activities such as deforestation, cultural and industrial revolution, and lake eutrophication associated with fish farming since 1989, therefore led to appreciable limnological variations. Overall, the dated sedimentary profile from Changshou Lake displays high consistency with archived historical events and reflects the impact of both natural and anthropogenic controls on sediment production.

  14. The interactive effects of excess reactive nitrogen and climate change on aquatic ecosystems and water resources of the United States

    USGS Publications Warehouse

    Baron, Jill S.; Hall, E.K.; Nolan, B.T.; Finlay, J.C.; Bernhardt, E.S.; Harrison, J.A.; Chan, F.; Boyer, E.W.

    2012-01-01

    Nearly all freshwaters and coastal zones of the US are degraded from inputs of excess reactive nitrogen (Nr), sources of which are runoff, atmospheric N deposition, and imported food and feed. Some major adverse effects include harmful algal blooms, hypoxia of fresh and coastal waters, ocean acidification, long-term harm to human health, and increased emissions of greenhouse gases. Nitrogen fluxes to coastal areas and emissions of nitrous oxide from waters have increased in response to N inputs. Denitrification and sedimentation of organic N to sediments are important processes that divert N from downstream transport. Aquatic ecosystems are particularly important denitrification hotspots. Carbon storage in sediments is enhanced by Nr, but whether carbon is permanently buried is unknown. The effect of climate change on N transport and processing in fresh and coastal waters will be felt most strongly through changes to the hydrologic cycle, whereas N loading is mostly climate-independent. Alterations in precipitation amount and dynamics will alter runoff, thereby influencing both rates of Nr inputs to aquatic ecosystems and groundwater and the water residence times that affect Nr removal within aquatic systems. Both infrastructure and climate change alter the landscape connectivity and hydrologic residence time that are essential to denitrification. While Nr inputs to and removal rates from aquatic systems are influenced by climate and management, reduction of N inputs from their source will be the most effective means to prevent or to minimize environmental and economic impacts of excess Nr to the nation’s water resources.

  15. Geochemical characterization of Neogene sediments from onshore West Baram Delta Province, Sarawak: paleoenvironment, source input and thermal maturity

    NASA Astrophysics Data System (ADS)

    Togunwa, Olayinka S.; Abdullah, Wan H.

    2017-08-01

    The Neogene strata of the onshore West Baram Province of NW Borneo contain organic rich rock formations particularly within the Sarawak basin. This basin is a proven prolific oil and gas province, thus has been a subject of great interest to characterise the nature of the organic source input and depositional environment conditions as well as thermal maturation. This study is performed on outcrop samples of Lambir, Miri and Tukau formations, which are of stratigraphic equivalence to the petroleum bearing cycles of the offshore West Baram delta province in Sarawak. The investigated mudstone samples are organic rich with a total organic carbon (TOC) content of more than 1.0 wt.%. The integration of elemental and molecular analyses indicates that there is no significant variation in the source input between these formations. The investigated biomarkers parameters achieved from acyclic isoprenoids, terpanes and steranes biomarkers of a saturated hydrocarbon biomarkers revealed that these sediments contain high contribution of land plants with minor marine organic matter input that was deposited and preserved under relatively oxic to suboxic conditions. This is further supported by low total sulphur (TS), high TOC/TN ratios, source and redox sensitive trace elements (V, Ni, Cr, Co and Mo) concentrations and their ratios, which suggest terrigenous source input deposited under oxic to suboxic conditions. Based on the analysed biomarker thermal maturity indicators, it may be deduced that the studied sediments are yet to enter the maturity stage for hydrocarbon generation, which is also supported by measured vitrinite reflectance values of 0.39-0.48% Ro.

  16. History of Inuit Community Exposure to Lead, Cadmium, and Mercury in Sewage Lake Sediments

    PubMed Central

    Hermanson, Mark H.; Brozowski, James R.

    2005-01-01

    Exposure to lead, cadmium, and mercury is known to be high in many arctic Inuit communities. These metals are emitted from industrial and urban sources, are distributed by long-range atmospheric transport to remote regions, and are found in Inuit country foods. Current community exposure to these metals can be measured in food, but feces and urine are also excellent indicators of total exposure from ingestion and inhalation because a high percentage of each metal is excreted. Bulk domestic sewage or its residue in a waste treatment system is a good substitute measure. Domestic waste treatment systems that accumulate metals in sediment provide an accurate historical record of changes in ingestion or inhalation. We collected sediment cores from an arctic lake used for facultative domestic sewage treatment to identify the history of community exposure to Pb, Cd, and Hg. Cores were dated and fluxes were measured for each metal. A nearby lake was sampled to measure combined background and atmospheric inputs, which were subtracted from sewage lake data. Pb, Cd, and Hg inputs from sewage grew rapidly after the onset of waste disposal in the late 1960s and exceeded the rate of population growth in the contributing community from 1970 to 1990. The daily per-person Pb input in 1990 (720,000 ng/person per day) exceeded the tolerable daily intake level. The Cd input (48,000 ng/person per day) and Hg input (19,000 ng/person per day) were below the respective TDI levels at the time. PMID:16203239

  17. Modern Deposition Rates and Patterns of Carbon Burial in Southern Fiordland, New Zealand

    NASA Astrophysics Data System (ADS)

    Ramirez, M. T.; Allison, M. A.; Vetter, L.; Cui, X.; Bianchi, T. S.; Smith, R. W.; Savage, C.; Schüller, S.

    2016-02-01

    Fjords have been recognized as a hotspot of organic carbon burial, as they accumulate a disproportionate quantity of organic carbon given their areal extent in comparison to other marine settings. However, organic carbon is buried in context with other biogenic and mineral sediments, so localized sedimentation processes play a critical role in determining rates of organic carbon burial. Therefore, it is important to assess the local sources and processes responsible for depositing inorganic sediment as a control on the burial of organic carbon. Here we evaluate three fjords in southern New Zealand that are not glaciated, with a sedimentary system that is dominantly controlled by terrigenous input at fjord heads, reworking of sediments over fjord-mouth sills, and landslide events from the steep fjord walls. Sediment cores were collected throughout the three southernmost fjord systems of Fiordland, New Zealand, and analyzed to determine sedimentary fabric, mass accumulation rates, and organic carbon content. Sediment mass accumulation rates from 210Pb geochronology range up to 500 mg/cm2/yr in proximal and distal areas of the fjords, with lower rates (below 200 mg/cm2/yr) in medial reaches, where terrestrial and marine sediment input is minimal. X-radiographs and 210Pb downcore activity trends show evidence of both mass wasting and surface-sediment bioturbation operating throughout the fjords. Percent organic carbon displays a negative correlation with mass accumulation rate and thickness of the sediment surface mixed layer. Rates of organic carbon accumulation ranged from 3.97 to 21.59 mg/cm2/yr, with a mean of 13.41 mg/cm2/yr. Organic carbon accumulation rates are dependent on the sediment accumulation rate and the percent organic carbon of the sediment. Our results highlight the importance of spatial variability in sedimentation processes and rates within fjords when evaluating organic carbon burial in these systems.

  18. Impacts of human activity and extreme weather events on sedimentary organic matter in the Andong salt marsh, Hangzhou Bay, China

    NASA Astrophysics Data System (ADS)

    Loh, Pei Sun; Cheng, Long-Xiu; Yuan, Hong-Wei; Yang, Lin; Lou, Zhang-Hua; Jin, Ai-Min; Chen, Xue-Gang; Lin, Yu-Shih; Chen, Chen-Tung Arthur

    2018-02-01

    In this study, lignin-derived phenols, stable carbon isotopes and bulk elemental compositions were determined along the length of two sediment cores (C1 and C2) from the Andong salt marsh, which is located southwest of Hangzhou Bay, China. The purpose of this study was to determine the short-term changes and their implications along sediment profiles. The 1997 high tide had caused an increase in the terrestrial organic matter (OM) signal from 1996/1997 to 2000 in both cores, which was indicated by a high Λ (total lignin in mg/100 mg OC), TOC, C/N and more negative δ13C values. The slight increases in terrestrial OM along the length of the cores between 2003 and 2006 were most likely attributable to the construction of the Hangzhou Bay Bridge. Both events have likely caused an increase in erosion, and thus, these events have increased the input of terrestrial OM to nearby areas. The effects of the distinctively dry year of 2006 can be observed along C2 between 2006 and 2008 in the steadily declining terrestrial OM signal. The overall slight decrease in terrestrial OM and the distinct increase in TOC along the length of both cores toward the present were most likely because of the overall reduced sediment caused by the trapping of materials within reservoirs. These results show that the reduction in terrestrial OM in the Andong salt marsh for the past 30 years was due to reservoirs and the 2006 drought, but this was counterbalanced by the 1997 high tide event and construction of the Hangzhou Bay Bridge, which resulted in increased erosion and terrestrial OM input.

  19. Techniques for restoration of disturbed coastal wetlands of the Great Lakes

    USGS Publications Warehouse

    Wilcox, Douglas A.; Whillans, Thomas H.

    1999-01-01

    A long history of human-induced degradation of Great Lakes wetlands has made restoration a necessity, but the practice of wetland restoration is relatively new, especially in large lake systems. Therefore, we compiled tested methods and developed additional potential methods based on scientific understanding of Great Lakes wetland ecosytems to providc an overview of approaches for restoration. We addressed this challenge by focusing on four general fields of science: hydrology, sedimentology, chemistry, and biology. Hydrologic remediation methods include restoring hydrologic connections between diked and hydrologically altered wetlands and the lakes, restoring water tables lowered by ditching, and restoring natural variation in lake levels of regulated lakes Superior and Ontario. Sedimentological remediation methods include management of sediment input from uplands, removal or proper management of dams on tributary rivers, and restoration of protective barrier beaches and sand spits. Chemical remediation methods include reducing or eliminating inputs of contaminants from point and non-pont sources, natural sediment remediation by biodegradation and chemical degradation, and active sediment remediation by removal or byin situ treatment Biological remediation methods include control of non-target organisms, enhancing populations of target organisms, and enhancing habitat for target organisms. Some of these method were used in three major restoration projects (Metzger Marsh on Lake Erie and Cootes Paradise and Oshawa Second Marsh on Lake Ontario), which are described as case studies to show practical applications of wetland restoration in the Great Lakes. Successful restoration techniques that do not require continued manipulation must be founded in the basic tenets of ecology and should mimic natural processes. Success is demonstrated by the sustainability, productivity, nutrient-retention ability, invasibility, and biotic interactions within a restored wetland.

  20. Towards understanding carbon recycling at subduction zones - lessons from Central America

    NASA Astrophysics Data System (ADS)

    Hilton, D. R.; Barry, P. H.; Fischer, T. P.

    2010-12-01

    Subduction zones provide the essential pathways for input of carbon from Earth’s external reservoirs (crust, sediments, oceans) to the mantle. However, carbon input to the deep interior is interrupted by outputs via the fore-arc, volcanic front, and back-arc regions. Coupled CO2 and He isotope data for geothermal fluids from throughout Central American (CA) are used to derive estimates of the output carbon flux for comparison with inputs estimated for the subducting Cocos Plate. The carbon flux carried by the incoming sediments is ~1.6 × 109 gCkm-1yr-1[1], as is the ratio of input carbon derived from pelagic limestone (L) and organic sediment (S), i.e., L/S ~10.7. Additionally, the upper 7 km of oceanic (crustal) basement supplies ~9.1 × 108 gCkm-1yr-1[2]: this flux is dominated by L-derived CO2. In terms of output, measured carbon concentrations coupled with flow rates for submarine cold seeps sites at the Costa Rica outer forearc yield CO2 and CH4 fluxes of ~ 6.1 × 103 and 8.0 × 105 (gCkm-1yr-1), respectively [3]. On the Nicoya Peninsula, the Costa Rica Pacific coastline (including the Oso Peninsula) and the Talamanca Mountain Range, coupled CO2-He studies allow recognition of a deep input (3He/4He up to 4RA) and resolution of CO2 into L- and S-components. There is an increase in the L/S ratio arc-ward with the lowest values lying close to diatomaceous ooze in the uppermost sequence of subducting sediment package. This observation is consistent with under-plating and removal of the uppermost organic-rich sediment from deeper subduction. As the input carbon fluxes of the individual sedimentary layers are well constrained [1], we can limit the potential steady-state flux of carbon loss at the subaerial fore-arc to ~ 6 × 107 gCkm-1yr-1, equivalent to ~88% of the input flux of the diatomaceous ooze, or < 4% of the total incoming sedimentary carbon. The greatest loss of slab-derived carbon occurs at the volcanic front. Estimates of the output CO2 flux along the CA front - 2-5 (× 108 gCkm-1yr-1) [4-5] together with identification of a slab origin (~90%) of the CO2, gives output estimates between 12% (Costa Rica) and 29% (El Salvador) of the sedimentary input [6]. The low L/S ratio found along the entire strike of the volcanic front precludes a significant C-contribution from oceanic basement of the subducting slab. Finally, arc-like L/S ratios behind the volcanic front in Honduras [6] indicates the back-arc inventory is composed of either entrained or ancient CO2 but not slab carbon released beyond the region of arc magma generation. Thus, at the CA subduction zone, significant carbon influx to the mantle can occur due to limited fore-arc and back-arc losses and modest C-outputs via the volcanic front. These observations are compared with other subduction zones where sediment lithologies, thermal conditions and water budgets differ, to address the question of understanding intrinsic and extrinsic controls on the mass balance of the mantle carbon reservoir. [1] Li and Bebout, JGR, 2005; [2] Hilton et al., Rev. Min. Geochem., 2002; [3] Furi et al., G-cubed, 2010; [4] Rodriguez et al., JVGR, 2004; [5] Zimmer et al., G-cubed, 2004; [6] De Leeuw et al., EPSL, 2007.

  1. Impact of rapid urbanisation and industrialisation on river sediment metal contamination.

    PubMed

    Hayzoun, H; Garnier, C; Durrieu, G; Lenoble, V; Bancon-Montigny, C; Ouammou, A; Mounier, S

    2014-05-01

    This study aimed at evidencing contaminant inputs from a rapidly growing population and the accompanying anthropogenic activities to river sediments. The Fez metropolitan area and its impacts on the Sebou's sediments (the main Moroccan river) were chosen as a case study. The Fez agglomeration is surrounded by the river Fez, receiving the wastewaters of this developing city and then flowing into the Sebou. The sediment cores from the Fez and Sebou Rivers were extracted and analysed for major elements, butyltins and toxic metals. Normalised enrichment factors and geoaccumulation index were calculated. Toxicity risk was assessed by two sets of sediment quality guideline (SQG) indices. A moderate level of contamination by butyltins was observed, with monobutyltin being the dominant species across all sites and depths. The lowest level of metal pollution was identified in the Sebou's sediments in upstream of Fez city, whilst the Fez' sediments were heavily polluted and exhibited bottom-up accumulation trends, which is a clear signature of recent inputs from the untreated wastewaters of Fez city. Consequently, the sediments of Fez and Sebou at the downstream of the confluence were found to be potentially toxic, according to the SQG levels. This finding is concerned with aquatic organisms, as well as to the riverside population, which is certainly exposed to these pollutants through the daily use of water. This study suggests that although Morocco has adopted environmental regulations aiming at restricting pollutant discharges into the natural ecosystems, such regulations are neither well respected by the main polluters nor efficiently enforced by the authorities.

  2. Impacts of milkfish (Chanos chanos) aquaculture on carbon and nutrient fluxes in the Bolinao area, Philippines.

    PubMed

    Holmer, Marianne; Marbá, Núria; Terrados, Jorge; Duarte, Carlos M; Fortes, Mike D

    2002-07-01

    Sediment oxygen consumption, TCO2 production and nutrient fluxes across the sediment-water interface were measured in sediments within and along a transect from four fish pens with production of milkfish (Chanos chanos) in the Bolinao area, The Philippines. The four fish pens were each representing a specific period in the production cycling. There was a positive linear relationship between the rates of sedimentation inside the fish pens and the sediment oxygen consumption indicating that the benthic processes were controlled by the input of organic matter from fish production. The nutrient fluxes were generally higher inside the fish pens, and nitrate was taken up (1.7-5.8 mmol m(-2) d(-1)) whereas ammonium (1-22 mmol m(-2) d(-1)) and phosphate (0.2-4.7 mmol m(-2) d(-1)) were released from the sediments. The sediments were enriched in organic matter with up to a factor 4 compared to outside. A mass balance for one crop of milkfish was constructed based on production data and on measured fluxes of nutrients in the fish pens to assess the loss of carbon and nutrients to the environment. There was a loss to the surroundings of carbon and nitrogen of 51-68% of the total input, whereas phosphorus was buried in the sediments inside the fish pens which acted as net sinks of phosphorus. The results obtained suggest that fish pen culture as practiced in the Bolinao area, leads to even greater impacts on benthic carbon and nutrient cycling than those found in suspended cage cultures.

  3. Modeling the fate of p,p'-DDT in water and sediment of two typical estuarine bays in South China: Importance of fishing vessels' inputs.

    PubMed

    Fang, Shu-Ming; Zhang, Xianming; Bao, Lian-Jun; Zeng, Eddy Y

    2016-05-01

    Antifouling paint applied to fishing vessels is the primary source of dichloro-diphenyl-trichloroethane (DDT) to the coastal marine environments of China. With the aim to provide science-based support of potential regulations on DDT use in antifouling paint, we utilized a fugacity-based model to evaluate the fate and impact of p,p'-DDT, the dominant component of DDT mixture, in Daya Bay and Hailing Bay, two typical estuarine bays in South China. The emissions of p,p'-DDT from fishing vessels to the aquatic environments of Hailing Bay and Daya Bay were estimated as 9.3 and 7.7 kg yr(-1), respectively. Uncertainty analysis indicated that the temporal variability of p,p'-DDT was well described by the model if fishing vessels were considered as the only direct source, i.e., fishing vessels should be the dominant source of p,p'-DDT in coastal bay areas of China. Estimated hazard quotients indicated that sediment in Hailing Bay posed high risk to the aquatic system, and it would take at least 21 years to reduce the hazards to a safe level. Moreover, p,p'-DDT tends to migrate from water to sediment in the entire Hailing Bay and Daya Bay. On the other hand, our previous research indicated that p,p'-DDT was more likely to migrate from sediment to water in the maricultured zones located in shallow waters of these two bays, where fishing vessels frequently remain. These findings suggest that relocating mariculture zones to deeper waters would reduce the likelihood of farmed fish contamination by p,p'-DDT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Sediment accumulation and mixing in the Penobscot River and estuary, Maine.

    PubMed

    Yeager, K M; Schwehr, K A; Schindler, K J; Santschi, P H

    2018-04-16

    Mercury (Hg) was discharged in the late 1960s into the Penobscot River by the Holtra-Chem chlor-alkali production facility, which was in operation from 1967 to 2000. To assess the transport and distribution of total Hg, and recovery of the river and estuary system from Hg pollution, physical and radiochemical data were assembled from sediment cores collected from 58 of 72 coring stations sampled in 2009. These stations were located throughout the lower Penobscot River, and included four principal study regions, the Penobscot River (PBR), Mendall Marsh (MM), the Orland River (OR), and the Penobscot estuary (ES). To provide the geochronology required to evaluate sedimentary total Hg profiles, 58 of 72 sediment cores were dated using the atmospheric radionuclide tracers 137 Cs, 210 Pb, and 239,240 Pu. Sediment cores were assessed for depths of mixing, and for the determination of sediment accumulation rates using both geochemical (total Hg) and radiochemical data. At most stations, evidence for significant vertical mixing, derived from profiles of 7 Be (where possible) and porosity, was restricted to the upper ~1-3cm. Thus, historic profiles of both total Hg and radionuclides were only minimally distorted, allowing a reconstruction of their depositional history. The pulse input tracers 137 Cs and 239,240 Pu used to assess sediment accumulation rates agreed well, while the steady state tracer 210 Pb exhibited weaker agreement, likely due to irregular lateral sediment inputs. Copyright © 2018. Published by Elsevier B.V.

  5. Impact of estuarine gradients on reductive dechlorination of 1,2,3,4-tetrachlorodibenzo-p-dioxin in river sediment enrichment cultures.

    PubMed

    Dam, Hang T; Häggblom, Max M

    2017-02-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) are among the most persistent organic pollutants. Although the total input of PCDDs into the environment has decreased substantially over the past four decades, their input via non-point sources is still increasing, especially in estuarine metropolitan areas. Here we report on the microbially mediated reductive dechlorination of PCDDs in anaerobic enrichment cultures established from sediments collected from five locations along the Hackensack River, NJ and investigate the impacts of sediment physicochemical characteristics on dechlorination activity. Dechlorination of 1,2,3,4-tetrachlorodibenzo-p-dioxin (1,2,3,4-TeCDD) and abundance of Dehalococcoides spp. negatively correlated with salinity and sulfate concentration in sediments used to establish the cultures. 1,2,3,4-TeCDD was dechlorinated to a lesser extent in cultures established from sediments from the tidally influenced estuarine mouth of the river. In cultures established from low salinity sediments, 1,2,3,4-TeCDD was reductively dechlorinated with the accumulation of 2-monochlorodibenzo-p-dioxin as the major product. Sulfate concentrations above 2 mM inhibited 1,2,3,4-TecDD dechlorination activity. Consecutive lateral- and peri- dechlorination took place in enrichment cultures with a minimal accumulation of 2,3-dichlorodibenzo-p-dioxin in active cultures. A Dehalococcoides spp. community was enriched and accounted for up to 64% of Chloroflexi detected in these sediment cultures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Occurrence of organotin compounds in river sediments under the dynamic water level conditions in the Three Gorges Reservoir Area, China.

    PubMed

    Gao, Jun-Min; Zhang, Ke; Chen, You-Peng; Guo, Jin-Song; Wei, Yun-Mei; Jiang, Wen-Chao; Zhou, Bin; Qiu, Hui

    2015-06-01

    The Three Gorges Project is the largest hydro project in the world, and the water level of the Three Gorges Reservoir (TGR) is dynamic and adjustable with the aim of flood control and electrical power generation. It is necessary to investigate the pollutants and their underlying contamination processes under dynamic water levels to determine their environmental behaviors in the Three Gorges Reservoir Area (TGRA). Here, we report the assessment of organotin compounds (OTs) pollution in the river sediments of the TGRA. Surface sediment samples were collected in the TGRA at low and high water levels. Tributyltin (TBT), triphenyltin (TPhT), and their degradation products in sediments were quantified by gas chromatography-mass spectrometry. Butyltins (BTs) and phenyltins (PhTs) were detected in sediments, and BTs predominated over PhTs in the whole study area under dynamic water level conditions. The concentrations of OTs in sediments varied markedly among locations, and significant concentrations were found in river areas with high levels of boat traffic and wastewater discharge. Sediments at all stations except Cuntan were lightly contaminated with TBT, and total organic carbon (TOC) was a significant factor affecting the fate of TBT in the TGRA. The butyltin and phenyltin degradation indices showed no recent inputs of TBT or TPhT into this region, with the exception of fresh TPhT input at Xiakou Town. Shipping activity, wastewater discharge, and agriculture are the most likely sources of OTs in the TGRA.

  7. Structural evolution of the Nankai inner accretionary prism constrained by thermal structure and sedimentary age of deep borehole samples

    NASA Astrophysics Data System (ADS)

    Fukuchi, R.; Yamaguchi, A.; Ito, H.; Yamamoto, Y.; Ashi, J.

    2017-12-01

    The Nankai accretionary wedge has been developed by subduction of the Philippine Sea Plate beneath the Eurasian and Amur Plate, accompanying forearc basin development upon inner wedge. To evaluate the evolutionary processes of the Nankai inner accretionary wedge, we performed vitrinite reflectance analysis and detrital zircon U-Pb age dating using cuttings retrieved from the Integrated Ocean Drilling Program (IODP) Site C0002 located within the Kumano Basin and penetrates the inner accretionary wedge down to 3058.5 m below the seafloor (mbsf). Although Ro values of vitrinite reflectance tend to increase with depth, there are two reversals (1300-1500 mbsf and 2400-2600 mbsf) of Ro values. The youngest detrital zircon U-Pb age of the cuttings from 2600.5 mbsf is 7.41 Ma, which is obviously younger than shipboard nannofossil ages (9.56-10.54 Ma) at 2245.5 mbsf. Both Ro values and the youngest detrital zircon U-Pb ages show a reversal between 2400-2600 mbsf, suggesting the existence of a thrust fault with sufficient displacement to offset both paleothermal structure and sediment age. Despite similar depositonal age and paleogeothermal gradient, lithofacies in the hanging- and footwall of the 2400-2600 mbsf thrust fault are different; volcaniclastic sediments are rare in the footwall. The lack of volcaniclastic sediments corresponding to the Middle Shikoku Basin facies in the footwall of the thrust suggests that sediments below 2600 mbsf have similar sedimentation background to that of present off-Muroto input site sediments. Thus, our synthesized model of tectonic evolutionary process of deep portion of the Nankai inner accretionary wedge is as follows: 1) 4 Ma: hemipelagic sediments, which deposited similar environment of present off-Muroto input, have accreted ( 4 Ma corresponds to the age of unconformity between forearc basin and accretionary prism (Kinoshita et al., 2009)). 2) 2 Ma: The megasplay fault was activated (Strasser et al., 2009), and Site C0002 sediments moved into inner wedge. Moving direction of the Philippine Sea Plate became NNW to WNW (Kamata and Kodama, 1999). 3) present: inner accretionary wedge has been buried with formation of Kumano forearc basin. Sediments existed offshore of the 4 Ma source area of Site C0002 have moved to off-Muroto input with the motion of the Philippine Sea Plate.

  8. How does sediment affect the hydraulics of bedrock-alluvial rivers?

    NASA Astrophysics Data System (ADS)

    Hodge, Rebecca; Hoey, Trevor; Maniatis, George; Leprêtre, Emilie

    2016-04-01

    Relationships between flow, sediment transport and channel morphology are relatively well established in coarse-grained alluvial channels. Developing equivalent relationships for bedrock-alluvial channels is complicated by the two different components that comprise the channel morphology: bedrock and sediment. These two components usually have very different response times to hydraulic forcing, meaning that the bedrock morphology may be inherited from previous conditions. The influence of changing sediment cover on channel morphology and roughness will depend on the relative magnitudes of the sediment size and the spatial variations in bedrock elevation. We report results from experiments in a 0.9m wide flume designed to quantify the interactions between flow and sediment patch morphology using two contrasting bedrock topographies. The first topography is a plane bed with sand-scale roughness, and the second is a 1:10 scale, 3D printed, model of a bedrock channel with spatially variable roughness (standard deviation of elevations = 12 mm in the flume). In all experiments, a sediment pulse was added to the flume (D50 between 7 and 15 mm) and sediment patches were allowed to stabilise under constant flow conditions. The flow was then incrementally increased in order to identify the discharges at which sediment patches and isolated grains were eroded. In the plane bed experiments ˜20% sediment cover is sufficient to alter the channel hydraulics through the increased roughness of the bed; this impact is expressed as the increased discharge at which isolated grains are entrained. In the scaled bed experiments, partial sediment cover decreased local flow velocities on a relatively smooth area of the bed. At the scale of the entire channel, the bed morphology, and the hydraulics induced by it, was a primary control on sediment cover stability at lower sediment inputs. At higher inputs, where sediment infilled the local bed topography, patches were relatively more stable, suggesting an increased impact on the hydraulics and the role of grain-grain interactions. We draw together these experiments using a theoretical framework to express the impact of sediment cover on channel roughness and hence hydraulics.

  9. Benthic biogeochemical cycling, nutrient stoichiometry, and carbon and nitrogen mass balances in a eutrophic freshwater bay

    USGS Publications Warehouse

    Klump, J.V.; Fitzgerald, S.A.; Waplesa, J.T.

    2009-01-01

    Green Bay, while representing only ,7% of the surface area and ??1.4% of the volume of Lake Michigan, contains one-third of the watershed of the lake, and receives approximately one-third of the total nutrient loading to the Lake Michigan basin, largely from the Fox River at the southern end of the bay. With a history of eutrophic conditions dating back nearly a century, the southern portion of the bay behaves as an efficient nutrient and sediment trap, sequestering much of the annual carbon and nitrogen input within sediments accumulating at up to 1 cm per year. Depositional fluxes of organic matter varied from ??0.1 mol C m-2 yr-1 to >10 mol C m-2 yr-1 and were both fairly uniform in stoichiometric composition and relatively labile. Estimates of benthic recycling derived from pore-water concentration gradients, whole-sediment incubation experiments, and deposition-burial models of early diagenesis yielded an estimated 40% of the carbon and 50% of the nitrogen recycled back into the overlying water. Remineralization was relatively rapid with ??50% of the carbon remineralized within <15 yr of deposition, and a mean residence time for metabolizable carbon and nitrogen in the sediments of 20 yr. On average, organic carbon regeneration occurred as 75% CO2, 15% CH4, and 10% dissolved organic carbon (DOC). Carbon and nitrogen budgets for the southern bay were based upon direct measurements of inputs and burial and upon estimates of export and production derived stoichiometrically from a coupled phosphorus budget. Loadings of organic carbon from rivers were ??3.7 mol m-2 yr-1, 80% in the form of DOC and 20% as particulate organic carbon. These inputs were lost through export to northern Green Bay and Lake Michigan (39%), through sediment burial (26%), and net CO2 release to the atmosphere (35%). Total carbon input, including new production, was 4.54 mol m-2 C yr-1, equivalent to ??10% of the gross annual primary production. Nitrogen budget terms were less well quantified, with nitrogen export ??54% of total inputs and burial ??24%, leaving an unquantified residual loss term in the nitrogen budget of ??22%. ?? 2009.

  10. Sensitivity analysis and uncertainty estimation in ash concentration simulations and tephra deposit daily forecasted at Mt. Etna, in Italy

    NASA Astrophysics Data System (ADS)

    Prestifilippo, Michele; Scollo, Simona; Tarantola, Stefano

    2015-04-01

    The uncertainty in volcanic ash forecasts may depend on our knowledge of the model input parameters and our capability to represent the dynamic of an incoming eruption. Forecasts help governments to reduce risks associated with volcanic eruptions and for this reason different kinds of analysis that help to understand the effect that each input parameter has on model outputs are necessary. We present an iterative approach based on the sequential combination of sensitivity analysis, parameter estimation procedure and Monte Carlo-based uncertainty analysis, applied to the lagrangian volcanic ash dispersal model PUFF. We modify the main input parameters as the total mass, the total grain-size distribution, the plume thickness, the shape of the eruption column, the sedimentation models and the diffusion coefficient, perform thousands of simulations and analyze the results. The study is carried out on two different Etna scenarios: the sub-plinian eruption of 22 July 1998 that formed an eruption column rising 12 km above sea level and lasted some minutes and the lava fountain eruption having features similar to the 2011-2013 events that produced eruption column high up to several kilometers above sea level and lasted some hours. Sensitivity analyses and uncertainty estimation results help us to address the measurements that volcanologists should perform during volcanic crisis to reduce the model uncertainty.

  11. A sandpile model of grain blocking and consequences for sediment dynamics in step-pool streams

    NASA Astrophysics Data System (ADS)

    Molnar, P.

    2012-04-01

    Coarse grains (cobbles to boulders) are set in motion in steep mountain streams by floods with sufficient energy to erode the particles locally and transport them downstream. During transport, grains are often blocked and form width-spannings structures called steps, separated by pools. The step-pool system is a transient, self-organizing and self-sustaining structure. The temporary storage of sediment in steps and the release of that sediment in avalanche-like pulses when steps collapse, leads to a complex nonlinear threshold-driven dynamics in sediment transport which has been observed in laboratory experiments (e.g., Zimmermann et al., 2010) and in the field (e.g., Turowski et al., 2011). The basic question in this paper is if the emergent statistical properties of sediment transport in step-pool systems may be linked to the transient state of the bed, i.e. sediment storage and morphology, and to the dynamics in sediment input. The hypothesis is that this state, in which sediment transporting events due to the collapse and rebuilding of steps of all sizes occur, is analogous to a critical state in self-organized open dissipative dynamical systems (Bak et al., 1988). To exlore the process of self-organization, a cellular automaton sandpile model is used to simulate the processes of grain blocking and hydraulically-driven step collapse in a 1-d channel. Particles are injected at the top of the channel and are allowed to travel downstream based on various local threshold rules, with the travel distance drawn from a chosen probability distribution. In sandpile modelling this is a simple 1-d limited non-local model, however it has been shown to have nontrivial dynamical behaviour (Kadanoff et al., 1989), and it captures the essence of stochastic sediment transport in step-pool systems. The numerical simulations are used to illustrate the differences between input and output sediment transport rates, mainly focussing on the magnification of intermittency and variability in the system response by the processes of grain blocking and step collapse. The temporal correlation in input and output rates and the number of grains stored in the system at any given time are quantified by spectral analysis and statistics of long-range dependence. Although the model is only conceptually conceived to represent the real processes of step formation and collapse, connections will be made between the modelling results and some field and laboratory data on step-pool systems. The main focus in the discussion will be to demonstrate how even in such a simple model the processes of grain blocking and step collapse may impact the sediment transport rates to the point that certain changes in input are not visible anymore, along the lines of "shredding the signals" proposed by Jerolmack and Paola (2010). The consequences are that the notions of stability and equilibrium, the attribution of cause and effect, and the timescales of process and form in step-pool systems, and perhaps in many other fluvial systems, may have very limited applicability.

  12. Arsenic in New Jersey Coastal Plain streams, sediments, and shallow groundwater: effects from different geologic sources and anthropogenic inputs on biogeochemical and physical mobilization processes

    USGS Publications Warehouse

    Barringer, Julia L.; Reilly, Pamela A.; Eberl, Dennis D.; Mumford, Adam C.; Benzel, William M.; Szabo, Zoltan; Shourds, Jennifer L.; Young, Lily Y.

    2013-01-01

    With a history of agriculture in the New Jersey Coastal Plain, anthropogenic inputs of As, such as residues from former pesticide applications in soils, can amplify any geogenic As in runoff. Such inputs contribute to an increased total As load to a stream at high stages of flow. As a result of yet another anthropogenic influence, microbes that reduce and mobilize As beneath the streambeds are stimulated by inputs of dissolved organic carbon (DOC). Although DOC is naturally occurring, anthropogenic contributions from wastewater inputs may deliver increased levels of DOC to subsurface soils and ultimately groundwater. Arsenic concentrations may increase with the increases in pH of groundwater and stream water in developed areas receiving wastewater inputs, as As mobilization caused by pH-controlled sorption and desorption reactions are likely to occur in waters of neutral or alkaline pH (for example, Nimick and others, 1998; Barringer and others, 2007b). Because of the difference in As content of the geologic materials in the two sub-provinces of the Coastal Plain, the amount of As that is mobile in groundwater and stream water is, potentially, substantially greater in the Inner Coastal Plain than in the Outer Coastal Plain. In turn, streams within the Inner and Outer Coastal Plain can receive substantially more As in groundwater discharge from developed areas than from environments where DOC appears to be of natural origin.

  13. 76 FR 37663 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for Tumbling Creek...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... that the species requires adequate water quality, water quantity, water flow, a stable stream channel, minimal sedimentation, and energy input from the guano of bats, particularly gray bats (Myotis grisescens... water levels on Bull Shoals Reservoir (such as increased sedimentation or bank erosion from backwater...

  14. 75 FR 35751 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for Tumbling Creek...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    ... that the species requires adequate water quality, water quantity, water flow, a stable stream channel, minimal sedimentation, and energy input from the guano of bats, particularly gray bats (Myotis grisescens... increased sedimentation or bank erosion from backwater flooding); by significant changes in the existing...

  15. Seasonal and spatial patterns in coupled nitrification-denitrification rates in a large Great Lakes coastal system: The St. Louis River Estuary

    EPA Science Inventory

    Anthropogenic inputs of excess nitrogen (N) to aquatic systems are detrimental, but aquatic plants and sediments have the potential to mitigate N-loading. Sediment processes are driven by microbially mediated N-cycling. Coastal embayments purportedly play a significant role in N-...

  16. Organo-tins in sediments and mussels from the Sado estuarine system (Portugal).

    PubMed

    Quevauviller, P; Lavigne, R; Pinel, R; Astruc, M

    1989-01-01

    Analyses of methyl- and butyl-tin levels in freshwater, estuarine and marine sediments from the Sado estuarine system, and in mussels (Mytilus galloprovincialis) from its adjacent coast, have been performed in order to detect the contaminated areas. The main inputs of tributyl-tin (TBT), along with degradation products di- and monobutyl-tin (DBT and MBT), were detected in the estuarine zone, due to high discharge from shipyards located in this area. These levels are sometimes very high, ranging from 235 to 12,200 ng g(-1) total butyl-tins in sediments. Such inputs lead to higher bioconcentration values in mussels in the estuarine zone, as well as in a harbour located along the adjacent coast. The bioconcentration of organo-tins in mussel tissues could be enhanced in estuarine turbid waters, due to an ingestion of butyl-tins adsorbed onto fine particles, in comparison with non-turbid coastal waters. Debutylation processes occur in both sediments and mussel tissues; in organisms, these processes may lead to the formation of inorganic tin, which may be methylated differently according to the period of the year.

  17. Stratigraphy and historic accumulation of mercury in recent depositional sediments in the Sudbury River, Massachusetts, USA

    USGS Publications Warehouse

    Frazier, Bradley E.; Wiener, James G.; Rada, Ronald G.; Engstrom, Daniel R.

    2000-01-01

    The distribution and deposition of sedimentary mercury in the Sudbury River were linked to an industrial complex (Nyanza site) that operated from 1917 through 1978. In two reservoirs just downstream from the Nyanza site, estimated rates of mercury accumulation increased markedly in the 1920s and 1930s, were greatest during 1976-1982, decreased within 5 years after industrial operations ceased, and have decreased further since capping of contaminated soil at the Nyanza site was completed in 1991. The most contaminated sediments were typically buried, yet the 0- to 1-cm stratum remained substantially contaminated in all cores. Mercury accumulating in the surficial, reservoir sediments was probably from continuing, albeit much lesser, inputs from the Nyanza site, whereas recent inputs to downstream wetland areas were attributed to recycling of sedimentary mercury or to mercury from unidentified local sources. In the reservoirs, burial of highly contaminated sediments is gradually decreasing the amount of sedimentary mercury available for methylation. In downstream wetlands, however, sedimentary mercury seemed to be more available than that in the reservoirs for physical transport and biogeochemical cycling.

  18. Hawaii Regional Sediment Management: Regional Sediment Budget for the Kekaha Region of Kauai, HI

    DTIC Science & Technology

    2013-06-01

    Waimea River . Some sediment passes from the Waimea cell to the west and is deposited in the Kikiaola Harbor entrance channel and basin . Upland... study regions, have been developed by the University of Hawaii Coastal Geology Group (UH CGG) (Fletcher et al. 2012) for the US Geological Survey... Study (WIS) (Hubertz 1992) hindcast dataset were used as input to the model STeady WAVE (STWAVE) (Smith et al. 2001). The model output provides

  19. Importance of Dissolved Neutral Hg-Sulfides, Energy Rich Organic Matter and total Hg Concentrations for Methyl Mercury Production in Sediments

    NASA Astrophysics Data System (ADS)

    Drott, A.; Skyllberg, U.

    2007-12-01

    Methyl mercury (MeHg) is the mercury form that biomagnifies to the greatest extent in aquatic food webs. Therefore information about factors determining MeHg concentrations is critical for accurate risk assessment of contaminated environments. The concentration of MeHg in wetlands and sediments is the net result of: 1) methylation rates, 2) demethylation rates, and 3) input/output processes. In this study, the main controls on Hg methylation rates and total concentrations of MeHg, were investigated at eight sites in Sweden with sediments that had been subjected to local Hg contamination either as Hg(0), or as phenyl-Hg. Sediments were selected to represent a gradient in total Hg concentration, temperature climate, salinity, primary productivity, and organic C content and quality. Most sediments were high in organic matter content due to wood fibre efflux from pulp and paper industry. The pore water was analysed for total Hg, MeHg, DOC, H2S(aq), pH, DOC, Cl and Br. The chemical speciation of Hg(II) and MeHg in pore water was calculated using equilibrium models. Potential methylation and demethylation rates in sediments were determined in incubation experiments at 23° C under N2(g) for 48 h, after addition of isotopically enriched 201Hg(II) and Me204Hg. In all surface (0-20 cm) sediments there was a significant (p<0.001) positive relationship between the experimentally determined specific potential methylation rate constant (Km, day-1) and % MeHg (concentrations of MeHg normalized to total Hg) in the sediment. This indicates that MeHg production overruled degradation and input/output processes of MeHg in surface sediments, and that % MeHg in surface sediments may be used as a proxy for net production of MeHg. To our knowledge, these are the first data showing significant positive relationships between short term (48 h) MeHg production and longer term accumulation of MeHg, across a range of sites with different properties (1). If MeHg was not normalized to total Hg, the relationship was not significant. For sub-sets of brackish waters (p<0.001, n=23), southern, high-productivity freshwaters (p<0.001, n=20) as well as northern, low-productivity freshwater (p=0.048, n=6), the sum of neutral Hg-sulfides [Hg(SH)20 (aq)] and [HgS0 (aq)] in the sediment pore water was significantly, positively correlated with both the potential methylation rate constant (Km) and total MeHg concentrations (2). This indicates that methylating sulphate reducing bacteria passively take up neutral Hg-sulfides, which are transformed to MeHg. Differences in slopes of the relationships were explained by differences in primary productivity and availability of energy-rich organic matter to methylating bacteria. High primary productivity at southern freshwater sites, reflected by a low C/N ratio (large contribution from free living algae and bacteria) in the sediment and a high annual temperature sum, resulted in high methylation rates. In conclusion, concentrations of neutral Hg-sulfides and availability of energy rich organic matter, but also total Hg concentrations in sediments are important factors behind net production and accumulation of MeHg . References: (1) Drott et. al. submitted, (2) Drott, A.; Lambertsson, L.; Björn, E.; Skyllberg, U. Importance of dissolved neutral mercury sulfides for methyl mercury production in contaminated sediments. Environmental Science & Technology 2007, 41, 2270-2276.

  20. Late to middle Pleistocene Arctic glacial history implied from a sedimentary record from the Northwind Ridge

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Dong, L.; Shi, X.; Zhu, A.

    2017-12-01

    Abstract: Sediment core ARC6-C21 collected from the Northwind Ridge, western Arctic Ocean, covers the late to middle Quaternary (Marine Isotope Stages (MIS) 1-11), as estimated by correlation to earlier proposed Arctic Ocean stratigraphies and AMS14C dating of the youngest sediments. Detailed examination of the elemental composition of sediment along with grain size in core ARC6-C21 provides important new information about sedimentary environments and provenance. We use increased contents of coarse debris as an indicator of glacier collapse events at the margins of the western Arctic Ocean, and identify the provenance of these events from geochemical composition. Notably, peaks of MgO and CaO, including large dropstones, presumably track the Laurentide Ice Sheet (LIS) discharge events to the Arctic Ocean. Major LIS inputs occurred during the stratigraphic intervals estimated as MIS 3, intra-MIS 5 and 7 events, MIS 8, and MIS 10. Inputs from the East Siberian Ice Sheet (ESIS) and/or Eurasia Ice Sheet (EIS)are inferred from peaks of SiO2, K2O and Na2O associated with coarse sediment. Major ESIS and/or EIS sedimentary events occurred in the intervals estimated as MIS 2, MIS 4, MIS 6, MIS 8 and MIS 10. Keywords: Sediment core, Pleistocene, western Arctic Ocean, geochemistry, grain size, sediment provenance, glaciations

  1. Distribution of aliphatic hydrocarbons, polycyclic aromatic hydrocarbons and organochlorinated pollutants in deep-sea sediments of the Southern Cretan margin, Eastern Mediterranean Sea: a baseline assessment.

    PubMed

    Mandalakis, Manolis; Polymenakou, Paraskevi N; Tselepides, Anastasios; Lampadariou, Nikolaos

    2014-07-01

    Deep sediments from the southern Cretan margin were analyzed to establish baseline levels for various types of organic pollutants before the anticipated intensification of anthropogenic activities. The total concentration of aliphatic hydrocarbons (ΣAH:326-3758ngg(-1), dry weight) was similar to those reported for deep sediments of the western Mediterranean Sea, while considerably lower levels were measured for polycyclic aromatic hydrocarbons (ΣPAH:9-60ngg(-1)). Source-diagnostic ratios suggested that the aliphatic hydrocarbons in sediments were mainly of terrestrial biogenic origin, while polycyclic aromatic hydrocarbons stemmed from the deposition of long-range transported combustion aerosols. Among the organochlorinated compounds analyzed, β-hexachlorocyclohexane (β-HCH:222-7052pgg(-1)), 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (p,p'-DDT:37-2236pgg(-1)) and polychlorinated biphenyls (ΣPCB:38-1182pgg(-1)) showed the highest abundance in sediments. The presence of HCHs and PCBs was attributed to historical inputs that have undergone extensive weathering, whereas an ongoing fresh input was suggested for p,p'-DDT. Multiple linear regression analysis revealed that the levels of the various pollutants in sediments were controlled by different factors, but with organic carbon content playing a prominent role in most cases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Geochemistry of Peruvian near-surface sediments

    NASA Astrophysics Data System (ADS)

    Böning, Philipp; Brumsack, Hans-Jürgen; Böttcher, Michael E.; Schnetger, Bernhard; Kriete, Cornelia; Kallmeyer, Jens; Borchers, Sven Lars

    2004-11-01

    Sixteen short sediment cores were recovered from the upper edge (UEO), within (WO) and below (BO) the oxygen minimum zone (OMZ) off Peru during cruise 147 of R/V Sonne. Solids were analyzed for major/trace elements, total organic carbon, total inorganic carbon, total sulfur, the stable sulfur isotope composition (δ 34S) of pyrite, and sulfate reduction rates (SRR). Pore waters were analyzed for dissolved sulfate/sulfide and δ 34S of sulfate. In all cores highest SRR were observed in the top 5 cm where pore water sulfate concentrations varied little due to resupply of sulfate by sulfide oxidation and/or diffusion of sulfate from bottom water. δ 34S of dissolved sulfate showed only minor downcore increases. Strong 32S enrichments in sedimentary pyrite (to -48‰ vs. V-CDT) are due to processes in the oxidative part of the sulfur cycle in addition to sulfate reduction. Manganese and Co are significantly depleted in Peruvian upwelling sediments most likely due to mobilization from particles settling through the OMZ, whereas release of both elements from reducing sediments only seems to occur in near-coastal sites. Cadmium, Mo and Re are exceptionally enriched in WO sediments (<600 m water depth). High Re and moderate Cd and Mo enrichments are seen in BO sediments (>600 m water depth). Re/Mo ratios indicate anoxic and suboxic conditions for WO and BO sediments, respectively. Cadmium and Mo downcore profiles suggest considerable contribution to UEO/WO sediments by a biodetrital phase, whereas Re presumably accumulates via diffusion across the sediment-water interface to precipitation depth. Uranium is distinctly enriched in WO sediments (due to sulfidic conditions) and in some BO sediments (due to phosphorites). Silver transfer to suboxic BO sediments is likely governed by diatomaceous matter input, whereas in anoxic WO sediments Ag is presumably trapped due to sulfide precipitation. Cadmium, Cu, Zn, Ni, Cr, Ag, and T1 predominantly accumulate via biogenic pre-concentration in plankton remains. Rhenium, Sb, As, V, U and Mo are enriched in accordance with seawater TE availability. Lead and Bi enrichment in UEO surface sediments is likely contributed by anthropogenic activity (mining). Accumulation rates of TOC, Cd, Mo, U, and V from Peruvian and Namibian sediments exceed those from the Oman Margin and Gulf of California due to enhanced preservation off Peru and Namibia.

  3. From Source to Sink of Polycyclic Aromatic Hydrocarbons in Sediments in the East China Seas

    NASA Astrophysics Data System (ADS)

    Guo, Z.; Lin, T.; Hu, L.

    2014-12-01

    The East China Seas (ECSs), including Bohai Sea (77,000 km2), Yellow Sea (400,000 km2) and East China Sea (770,000 km2) have experienced a great variety of demographic and economic conditions which have a profound influence on the source composition of land-based polycyclic aromatic hydrocarbons (PAHs) in the sediments since ECSs's coasts support about 420 million peoples, provide more than half of the national GDP in China in 2007, and are major emission regions of PAHs in China. Furthermore, the ECSs are downwind of the Asian continental outflow in spring and winter driven by the East Asian monsoon. The sources of 16 USEPA priority PAHs in strategically selected surface sediment samples from the ECSs were apportioned using positive matrix factorization model, and the input pathways of PAHs were also revealed in the regions. Four sources were identified: petroleum residue, vehicular emissions, coal combustion and biomass burning. Petroleum residue was the dominant contributor of PAHs in the coast of the Bohai Bay probably due to Haihe River runoff, oil leakage from ships and offshore oil fields. The PAHs in sediments of the coastal East China Sea were mainly sourced from the Yangtze River discharge into the sea. The combined results of PMF, PCA and composition of PAHs suggest that the atmospheric deposition is the dominate input of PAHs for the open seas of Bohai Sea, East China Sea and Yellow Sea; while river input is the major pathway of PAHs in the estuarine and neighborhood coastal areas. The demographic and economic conditions around the ECSs have profound influence on the origins of the land-based PAHs in the sediments of the open seas.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gough, M.A.; Fauzi, R.; Mantoura, C.

    The vascular land plant biopolymers lignin and cutin were surveyed in the surface sediments of coastal and open ocean waters by controlled alkaline CuO oxidation/reaction. Two contrasting oceanic regimes were studied: the northwest Mediterranean (NWM) Sea, which receives significant particulate terrigenous debris through riverine discharge; and the northeast Atlantic (NEA) Ocean, with poorly characterized terrestrial carbon inputs. In the NWM products of lignin and cutin co-occurred at all stations, elevated levels (ca. 0.5-3.0 mg lignin phenols/100 mg organic carbon; ca. 0.01-0.09 mg cutin acids/100 mg organic carbon) were observed for near-shore deltaic and shelf sediments. The influence of terrestrial landmore » plant inputs extended across the shelf and through the slope to the abyssal plain, providing molecular evidence for advective offshore transfer of terrestrial carbon. Mass balance estimates for the basin suggest riverine inputs account for the majority of surface sedimentary ligin/cutin, most of which (>90%) is deposited on the shelf. Products of CuO oxidation of lignin and cutin were also detected in NEA surface sediments, at levels comparable to those observed for the NWM continental slope, and were detectable at low concentrations in the sediments of the abyssal plains (>4,000 m depth). While atmospheric deposition of lignin/cutin-derived material cannot be discounted in this open ocean system, lateral advective transfer of enriched shelf sediments is inferred as a possible transport process. A progressive enrichment in cutin-derived material relative to lignin was observed offshore, with evidence of an increase in the degree of oxidative alteration of lignin residues. Preliminary mass balance calculations applied to the global ocean margin suggest riverine sources of both particulate lignin and cutin are important and that most (>95%) deposition of recognizable land plant biopolymers occurs in shelf seas. 74 refs., 7 figs., 5 tabs.« less

  5. Anthropogenic activities have contributed moderately to increased inputs of organic materials in marginal seas off China.

    PubMed

    Liu, Liang-Ying; Wei, Gao-Ling; Wang, Ji-Zhong; Guan, Yu-Feng; Wong, Charles S; Wu, Feng-Chang; Zeng, Eddy Y

    2013-10-15

    Sediment has been recognized as a gigantic sink of organic materials and therefore can record temporal input trends. To examine the impact of anthropogenic activities on the marginal seas off China, sediment cores were collected from the Yellow Sea, the inner shelf of the East China Sea (ECS), and the South China Sea (SCS) to investigate the sources and spatial and temporal variations of organic materials, i.e., total organic carbon (TOC) and aliphatic hydrocarbons. The concentration ranges of TOC were 0.5-1.29, 0.63-0.83, and 0.33-0.85%, while those of Σn-C14-35 (sum of n-alkanes with carbon numbers of 14-35) were 0.08-1.5, 0.13-1.97, and 0.35-0.96 μg/g dry weight in sediment cores from the Yellow Sea, ECS inner shelf, and the SCS, respectively. Terrestrial higher plants were an important source of aliphatic hydrocarbons in marine sediments off China. The spatial distribution of Σn-C14-35 concentrations and source diagnostic ratios suggested a greater load of terrestrial organic materials in the Yellow Sea than in the ECS and SCS. Temporally, TOC and Σn-C14-35 concentrations increased with time and peaked at either the surface or immediate subsurface layers. This increase was probably reflective of elevated inputs of organic materials to marginal seas off China in recent years, and attributed partly to the impacts of intensified anthropogenic activities in mainland China. Source diagnostics also suggested that aliphatic hydrocarbons were mainly derived from biogenic sources, with a minority in surface sediment layers from petroleum sources, consistent with the above-mentioned postulation.

  6. Thermal plasma treatment of stormwater sediments: comparison between DC non-transferred and partially transferred arc plasma.

    PubMed

    Li, O L; Guo, Y; Chang, J S; Saito, N

    2015-01-01

    The disposal of enormous amount of stormwater sediments becomes an emerging worldwide problem. Stormwater sediments are contaminated by heavy metals, phosphorus, trace organic and hydrocarbons, and cannot be disposed without treatment. Thermal plasma decontamination technology offers a high decomposition rate in a wide range of toxic organic compound and immobilization of heavy metal. In this study, we compared the treatment results between two different modes of thermal plasma: (1) a non-transferred direct current (DC) mode and (2) a partial DC-transferred mode. The reductions of total organic carbon (TOC) were, respectively, 25% and 80% for non-transferred and partially transferred plasma, respectively. Most of the toxic organic compounds were converted majorly to CxHy. In the gaseous emission, the accumulated CxHy, CO, NO and H2S were significantly higher in partially transferred mode than in non-transferred mode. The solid analysis demonstrated that the concentrations of Ca and Fe were enriched by 500% and 40%, respectively. New chemical compositions such as KAlSi3O8, Fe3O4, NaCl and CaSO4 were formed after treatment in partially DC-transferred mode. The power inputs were 1 and 10 kW, respectively, for non-transferred DC mode and a partially DC-transferred mode. With a lower energy input, non-transferred plasma treatment can be used for decontamination of sediments with low TOC and metal concentration. Meanwhile, partially transferred thermal plasma with higher energy input is suitable for treating sediments with high TOC percentage and volatile metal concentration. The organic compounds are converted into valuable gaseous products which can be recycled as an energy source.

  7. Cycling of oxyanion-forming trace elements in groundwaters from a freshwater deltaic marsh

    NASA Astrophysics Data System (ADS)

    Telfeyan, Katherine; Breaux, Alexander; Kim, Jihyuk; Kolker, Alexander S.; Cable, Jaye E.; Johannesson, Karen H.

    2018-05-01

    Pore waters and surface waters were collected from a freshwater system in southeastern Louisiana to investigate the geochemical cycling of oxyanion-forming trace elements (i.e., Mo, W, As, V). A small bayou (Bayou Fortier) receives input from a connecting lake (Lac des Allemands) and groundwater input at the head approximately 5 km directly south of the Mississippi River. Marsh groundwaters exchange with bayou surface water but are otherwise relatively isolated from outside hydrologic forcings, such as tides, storms, and effects from local navigation canals. Rather, redox processes in the marsh groundwaters appear to drive changes in trace element concentrations. Elevated dissolved S(-II) concentrations in marsh groundwaters suggest greater reducing conditions in the late fall and winter as compared to the spring and late summer. The data suggest that reducing conditions in marsh groundwaters initiate the dissolution of Fe(III)/Mn(IV) oxide/hydroxide minerals, which releases adsorbed and/or co-precipitated trace elements into solution. Once in solution, the fate of these elements is determined by complexation with aqueous species and precipitation with iron sulfide minerals. The trace elements remain soluble in the presence of Fe(III)- and SO42-- reducing conditions, suggesting that either kinetic limitations or complexation with aqueous ligands obfuscates the correlation between V and Mo sequestration in sediments with reducing or euxinic conditions.

  8. Metal uptake by phytoplankton during a bloom in South San Francisco Bay: Implications for metal cycling in estuaries

    USGS Publications Warehouse

    Luoma, S.N.; VanGeen, A.; Lee, B.-G.; Cloern, J.E.

    1998-01-01

    The 1994 spring phytoplankton bloom in South San Francisco Bay caused substantial reductions in concentrations of dissolved Cd, Ni, and Zn, but not Cu. We estimate that the equivalent of ~60% of the total annual input of Cd, Ni, and Zn from local waste-water treatment plants is cycled through the phytoplankton in South Bay. The results suggest that processes that affect phytoplankton bloom frequency or intensity in estuaries (e.g. nutrient enrichment) may also affect metal trapping. The bloom was characterized by hydrographic surveys conducted at weekly intervals for 9 weeks. Metal samples were collected from the water column on three occasions, timed to bracket the period when the bloom was predicted. Factors that might confound observations of biological influences, such as freshwater inputs, were relatively constant during the study. Before the bloom, concentrations of dissolved Cd were 0.81 ?? 0.02 nmol kg-1, Zn concentrations were 19.8 ?? 1.5 nmol kg-1, Ni were 42 ?? 1.4 nmol kg-1, and Cu were 37 ?? 1.4 nmol kg-1. The values are elevated relative to riverine and coastal end-members, reflecting inputs from wastewater and(or) sediments. At the height of the bloom, dissolved Zn, Cd, and Ni were reduced to 19, 50, and 75% of their prebloom concentrations, respectively. Dissolved Cu concentrations increased 20%. The mass of Cd taken up by phytoplankton was similar to the mass of Cd removed from solution if particle settling was considered, and Cd concentrations estimated in phytoplankton were higher than concentrations in suspended particulate material (SPM). Particulate concentrations of Zn and Ni during the bloom appeared to be dominated by the influence of changes in resuspension of Zn- and Ni-rich sediments.

  9. Library Construction from Subnanogram DNA for Pelagic Sea Water and Deep-Sea Sediments

    PubMed Central

    Hirai, Miho; Nishi, Shinro; Tsuda, Miwako; Sunamura, Michinari; Takaki, Yoshihiro; Nunoura, Takuro

    2017-01-01

    Shotgun metagenomics is a low biased technology for assessing environmental microbial diversity and function. However, the requirement for a sufficient amount of DNA and the contamination of inhibitors in environmental DNA leads to difficulties in constructing a shotgun metagenomic library. We herein examined metagenomic library construction from subnanogram amounts of input environmental DNA from subarctic surface water and deep-sea sediments using two library construction kits: the KAPA Hyper Prep Kit and Nextera XT DNA Library Preparation Kit, with several modifications. The influence of chemical contaminants associated with these environmental DNA samples on library construction was also investigated. Overall, shotgun metagenomic libraries were constructed from 1 pg to 1 ng of input DNA using both kits without harsh library microbial contamination. However, the libraries constructed from 1 pg of input DNA exhibited larger biases in GC contents, k-mers, or small subunit (SSU) rRNA gene compositions than those constructed from 10 pg to 1 ng DNA. The lower limit of input DNA for low biased library construction in this study was 10 pg. Moreover, we revealed that technology-dependent biases (physical fragmentation and linker ligation vs. tagmentation) were larger than those due to the amount of input DNA. PMID:29187708

  10. Denitrification rates in estuarine sediments of Ashtamudi, Kerala, India.

    PubMed

    Salahudeen, Junaid Hassan; Reshmi, R R; Anoop Krishnan, K; Ragi, M S; Vincent, Salom Gnana Thanga

    2018-05-03

    Estuarine sediments are important sites for denitrification, which is microbially mediated reduction of nitrate to dinitrogen that also influences global climate change by co-production of nitrous oxide, a potent greenhouse gas. Physicochemical properties and nutrients of sediment samples that influence denitrification rate were studied in Ashtamudi estuarine sediments. They were pH, electrical conductivity (EC), salinity, nitrate-nitrogen (NO 3 - -N), exchangeable ammonia (NH 3 - -N), total kjeldahl nitrogen (TKN) and organic carbon (Corg). Sediment samples were collected from six stations during summer, monsoon of 2013 and 13 stations from monsoon 2014 and summer 2015. The sedimentary denitrification potential ranged from 0.49 ± 0.05 to 4.85 ± 0.782 mmol N 2 O m -2 h -1 . Maximum denitrification was observed in S4, which is attributed to a local anthropogenic source coupled with intense rainfall episode preceding the sampling season of monsoon 2013. However, this trend was not repeated in the subsequent monsoon samples. This shows that in Ashtamudi, monsoonal effects do not influence sedimentary denitrification. Among the various environmental variables, NO 3 - -N, Corg and NH 3 -N were the key factors that influence denitrification in the Ashtamudi estuarine sediments. Among these key factors, NO 3 - -N was the limiting factor for denitrification, and hence, it is of prime importance to understand the source of NO 3 - -N that fuel denitrification in the sediments. In Ashtamudi, the concentration of NO 3 - -N in overlying water was very less, which suggests reduced nitrogen yield in the estuary from the fluvial input of Kallada River and agricultural runoff. Sedimentary NO 3 - -N correlated with denitrification which reveals that denitrification is coupled with nitrification in the sediments. This is further explained by the fact that NH 3 -N positively correlated with denitrification. The anoxic sediments were the source of ammonia for nitrous oxide production by nitrogen mineralisation. Also, the Corg in sediment samples were sufficient to support denitrification and Corg was an important factor favouring but not limiting denitrification. The results of sediment denitrification in Ashtamudi can be a model for tropical estuaries experiencing unpredictable rainfall as well as high temperature than temperate systems.

  11. Origins and fates of PAHs in the coastal marine environment off San Diego (California)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, E.Y.; Yu, C.C.; Vista, C.L.

    1995-12-31

    The main inputs of anthropogenic hydrocarbons to the coastal marine environment off San Diego include the Point Lama wastewater outfall (City of San Diego), Tijuana River (crossing the boarder between the US and Mexico) and several storm drains along the coastline and in San Diego Bay, inadvertent spills, and aerial deposition. Samples collected (in January and June 1994) from the Point Loma wastewater effluent, Tijuana River runoff, and microlayer, sediment trap, and surface sediment at several locations adjacent to the Point Loma outfall, entrance of Tijuana River into the ocean, and San Diego Bay (near the San Diego International Airport)more » were analyzed to determine the origins and fates of PAHs in the coastal marine environment. Alkyl homologue distributions (AHDS) for naphthalene indicated a mainly petrogenic origin for low molecular-weight PAHs in the effluent, water column particle, and sediment near the outfall. Parent compound distributions (PCDS) for PAHs with molecular weights 178, 202, 228, 252, 276, and 278 showed combustion-related inputs in the water column particle and sediment, especially for mid to high molecular-weight PAHs. PAHs with molecular weight equal to or higher than 252 were not detected in the effluent. The compositions of PAHs were substantially different in the effluent particulates and filtrates, implying a great deal about the fates of PAHs from the outfall and their bioaccumulation by organisms. PAHs detected in Tijuana River runoff had similar AHDs and PCDs to those of the Point Loma outfall effluent. AHDs in the San Diego Bay sediment exhibited marked seasonal variation; low molecular-weight PAHs were significantly combustion-related in January and more petrogenic in June. Microlayer samples generally contained dominant combustion-generated PAHs. The impact of the wastewater outfall discharge on the nearby water column and sediment appeared compromised by other non-point source inputs.« less

  12. Variations in sedimentological properties in Lake Challa, East Africa: Understanding the source to sink processes

    NASA Astrophysics Data System (ADS)

    Meyer, Inka; Eloy, Jonas; Verschuren, Dirk; De Batist, Marc

    2016-04-01

    The clastic mineral fraction of lacustrine sediments has been proven to provide valuable information about sedimentation dynamics within a lake, and it can be used to define distinct terrestrial source areas and transport mechanisms from source to sink. Down-core variation in the properties of the clastic mineral fraction yields indications for changes in terrestrial sediment sources over time. However, in order to use terrestrial proxies in palaeo-environmental reconstruction, we have to understand and quantify the modern conditions of sediment provenance and deposition at the study site. In this study we present data on grain-size distribution, mineralogy and particle shape of the clastic mineral component of lacustrine sediments from Lake Challa, a small freshwater lake of volcanic origin, located on the eastern slope of Mt. Kilimanjaro. Situated close to the equator, it contains a uniquely long and continuous sediment sequence allowing the study of inter-hemispheric climate dynamics. The finely laminated profundal sediments of Lake Challa are characterized by a fine-grained texture and are mainly composed of organic matter, biogenic silica and authigenic carbonate, with a relatively minor component of detrital mineral that can either originate from erosion of the steep volcanic crater walls or was mobilized by wind from unvegetated areas of the surrounding scrub savannah landscape. In order to distinguish between these two sources of terrestrial sediment input (i.e., local run-off versus distant aeolian) into Lake Challa, and to map out differences in sediment properties, samples were investigated from profundal surface sediments and short cores, as well as on-shore soils from several locations around the lake and from beyond the crater catchment. Variation in grain-size distribution and mineralogy can be linked to distinct terrestrial sources, whereas the shape of single particles gives additional information about transport dynamics. In future, the results from this study will be applied to the down-core record of Lake Challa to reconstruct climate-driven changes in terrigenous sediment input over time.

  13. Tectonics vs. Climate efficiency in triggering detrital input in sedimentary basins: the Po Plain-Venetian-Adriatic Foreland Basin (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Amadori, Chiara; Di Giulio, Andrea; Toscani, Giovanni; Lombardi, Stefano; Milanesi, Riccardo; Panara, Yuri; Fantoni, Roberto

    2017-04-01

    The relative efficiency of tectonics respect to climate in triggering erosion of mountain belts is a classical but still open debate in geosciences. The fact that data both from tectonically active and inactive mountain regions in different latitudes, record a worldwide increase of sediment input to sedimentary basins during the last million years concomitantly with the cooling of global climate and its evolution toward the modern high amplitude oscillating conditions pushed some authors to conclude that Pliocene-Pleistocene climate has been more efficient than tectonics in triggering mountain erosion. Po Plain-Venetian-Adriatic Foreland System, made by the relatively independent Po Plain-Northern Adriatic Basin and Venetian-Friulian Basin, provides an ideal case of study to test this hypothesis and possibly quantify the difference between the efficiency of the two. In fact it is a relatively closed basin (i.e. without significant sediment escape) with a fairly continuous sedimentation (i.e. with a quite continuous sedimentary record) completely surrounded by collisional belts (Alps, Northern Apennines and Dinarides) that experienced only very weak tectonic activity since Calabrian time, i.e. when climate cooling and cyclicity increased the most. We present a quantitative reconstruction of the sediment flow delivered from the surrounding mountain belts to the different part of the basin during Pliocene-Pleistocene time. This flow was obtained through the 3D reconstruction of the Venetian-Friulian and Po Plain Northern Adriatic Basins architecture, performed by means of the seismic-based interpretation and time-to-depth conversion of six chronologically constrained surfaces (seismic and well log data from courtesy of ENI); moreover, a 3D decompaction of the sediment volume bounded by each couple of surfaces has been included in the workflow, in order to avoid compaction-related bias. The obtained results show in both Basins a rapid four-folds increase of the sediment input occurred since mid-Pleistocene time respect to Pliocene-Gelasian times. Even if the absolute amount of sediment arriving in the two basins is quite different, reflecting the different extension of their source regions, this increase occurred concomitantly with both the strong decrease of tectonic activity in the surrounding belts and the onset of major glaciations in the Alpine range. Therefore we argue that a cool, highly oscillating climate, causing glacial-interglacial cycles is approximately 4 times more efficient than tectonics in promoting the erosion of mountain belts and the related detrital input in the surrounding sedimentary basins.

  14. Mass Balance of Perfluoroalkyl Acids in the Baltic Sea

    PubMed Central

    2013-01-01

    A mass balance was assembled for perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorodecanoic acid (PFDA), and perfluorooctanesulfonic acid (PFOS) in the Baltic Sea. Inputs (from riverine discharge, atmospheric deposition, coastal wastewater discharges, and the North Sea) and outputs (to sediment burial, transformation of the chemical, and the North Sea), as well as the inventory in the Baltic Sea, were estimated from recently published monitoring data. Formation of the chemicals in the water column from precursors was not considered. River inflow and atmospheric deposition were the dominant inputs, while wastewater treatment plant (WWTP) effluents made a minor contribution (<5%). A mass balance of the Oder River watershed was assembled to explore the sources of the perfluoroalkyl acids (PFAAs) in the river inflow. It indicated that WWTP effluents made only a moderate contribution to riverine discharge (21% for PFOA, 6% for PFOS), while atmospheric deposition to the watershed was 1–2 orders of magnitude greater than WWTP discharges. The input to the Baltic Sea exceeded the output for all four PFAAs, suggesting that inputs were higher during 2005–2010 than during the previous 20 years despite efforts to reduce emissions of PFAAs. One possible explanation is the retention and delayed release of PFAAs from atmospheric deposition in the soils and groundwater of the watershed. PMID:23528236

  15. How Do River Meanders Change with Sea Level Rise and Fall?

    NASA Astrophysics Data System (ADS)

    Scamardo, J. E.; Kim, W.

    2016-12-01

    River meander patterns are controlled by numerous factors, including variations in water discharge, sediment input, and base level. However, the effect of sea level rise and fall on meandering rivers has not been thoroughly quantified. This study examines geomorphic changes to meandering rivers as a result of sea level rise and fall. Twenty experimental runs using coarse-grained walnut shell sediment (D50= 500 microns) in a flume tank (2.4m x 0.6m x 0.1m) tested the optimal initial conditions for creating meandering rivers in a laboratory setting as well as variations in base level rise and fall rates. Geomorphic changes were recorded by camera images every 20 seconds for a duration of 4 hours per experiment. Seventeen experiments tested the effects of changes in initial base levels, water discharge between 200 and 400 mL/min, and sediment to water input ratios between 1:1000 and 1:250 while measuring sinuosity, channel geometry, and the timescale of the channel to reach a stable form. Sinuosity and channel activity increased with increasing water discharge, initial base level, and the sediment to water ratio to a point after which the activity decreased with increasing sediment input. Base-level change experiments used initial conditions of 400 mL/min, a 1:750 sediment to water input ratio, and a 6 cm initial base-level to induce river meanders for the initial 2 hours before base-level change occurred. Three separate experiments investigated the effects of increasing rates of sea level change: 0.07 cm/min, 0.1 cm/min, and 0.2 cm/min. Experimental sea level was decreased constantly from a high-stand of 6 cm to a low-stand of 2 cm back to the high-stand base-level in each experiment. The rates of change in the experiments scale roughly from central to glacial cycles. In all three experiments, sea level fall induced meander cut-off while sea level rise prompted greater rates of meander bend erosion and meander growth. Sinuosity increased by 12%, 13.5%, and 24%, respectively in the three experiments, with most sinuosity changes occurring in the downstream reach of the channel. These experiments could provide insight into long term effects of sea level change on modern meandering fluvial systems as well as provide a key to interpreting past fluvial changes in the stratigraphic record.

  16. Mercury profiles in sediment from the marginal high of Arabian Sea: an indicator of increasing anthropogenic Hg input.

    PubMed

    Chakraborty, Parthasarathi; Vudamala, Krushna; Chennuri, Kartheek; Armoury, Kazip; Linsy, P; Ramteke, Darwin; Sebastian, Tyson; Jayachandran, Saranya; Naik, Chandan; Naik, Richita; Nath, B Nagender

    2016-05-01

    Total Hg distributions and its speciation were determined in two sediment cores collected from the western continental marginal high of India. Total Hg content in the sediment was found to gradually increase (by approximately two times) towards the surface in both the cores. It was found that Hg was preferentially bound to sulfide under anoxic condition. However, redox-mediated reactions in the upper part of the core influenced the total Hg content in the sediment cores. This study suggests that probable increase in authigenic and allogenic Hg deposition attributed to the increasing Hg concentration in the surface sediment in the study area.

  17. Search for Martian fossil communities: Science strategies, sediment sites, and sample handling

    NASA Technical Reports Server (NTRS)

    Desmarais, David J.

    1988-01-01

    The strategy for locating and sampling possible fossilized Martian organisms benefits from our experience with fossil microbial ecosystems on Earth. Evidence of early life is typically preserved as stromatolites in carbonates and cherts, and as microfossils in cherts, carbonates and shales. Stromatolites, which are laminated flat or domal structures built by microbial communities, are very likely the oldest and most widespread relics of early life. These communities flourished in supratidal to subtidal coastal benthic environments, wherever sunlight was available and where incoming sediments were insufficient to bury the communities before they became established. A logical site for such communities on Mars might be those areas in an ancient lake bed which were furthest from sediment input, but were still sufficiently shallow to have received sunlight. Therefore, although some sites within Valles Marineris might have contained ponded water, the possibly abundant sediment inputs might have overwhelmed stromatolite-like communities. Localized depressions which acted as catchment basins for ancient branched valley systems might be superior sites. Perhaps such depressions received drainage which, because of the relatively modest water discharges implied for these streams, was relatively low in transported sediment. Multiple streams converging on a single basin might have been able to maintain a shallow water environment for extended periods of time.

  18. Application of PAH concentration profiles in lake sediments as indicators for smelting activity.

    PubMed

    Warner, Wiebke; Ruppert, Hans; Licha, Tobias

    2016-09-01

    The ability of lake sediment cores to store long-term anthropogenic pollution establishes them as natural archives. In this study, we focus on the influence of copper shale mining and smelting in the Mansfeld area of Germany, using the depth profiles of two sediment cores from Lake Süßer See. The sediment cores provide a detailed chronological deposition history of polycyclic aromatic hydrocarbons (PAHs) and heavy metals in the studied area. Theisen sludge, a fine-grained residue from copper shale smelting, reaches the lake via deflation by wind or through riverine input; it is assumed to be the main source of pollution. To achieve the comparability of absolute contaminant concentrations, we calculated the influx of contaminants based on the sedimentation rate. Compared to the natural background concentrations, PAHs are significantly more enriched than heavy metals. They are therefore more sensitive and selective for source apportionment. We suggest two diagnostic ratios of PAHs to distinguish between Theisen sludge and its leachate: the ratio fluoranthene to pyrene ~2 and the ratio of PAH with logKOW<5.7 to PAH with a logKOW>5.7 converging to an even lower value than 2.3 (the characteristic of Theisen sludge) to identify the particulate input in lake environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Biogeochemical cycling in an organic-rich coastal marine basin. 8. A sulfur isotopic budget balanced by differential diffusion across the sediment-water interface

    USGS Publications Warehouse

    Chanton, J.P.; Martens, C.S.; Goldhaber, M.B.

    1987-01-01

    The sulfur isotopic composition of the sulfur fluxes occurring in the anoxic marine sediments of Cape Lookout Bight, N.C., U.S.A., was determined, and the result of isotopic mass balance was obtained via the differential diffusion model. Seasonal pore water sulfate ??34S measurements yielded a calculated sulfate input of 0.6%.. Sulfate transported into the sediments via diffusion appeared to be enriched in the lighter isotope because its concentration gradient was steeper, due to the increase in the measured isotopic composition of sulfate with depth. Similarly, the back diffusion of dissolved sulfide towards the sediment-water interface appeared enriched in the heavier isotope. The isotopic composition of this flux was calculated from measurements of the ??34S of dissolved sulfide and was determined to be 15.9%.. The isotopic composition of buried sulfide was determined to be -5.2%. and the detrital sulfur input was estimated to be -6.2%.. An isotope mass balance equation based upon the fluxes at the sediment-water interface successfully predicted the isotopic composition of the buried sulfur flux within 0.5%., thus confirming that isotopes diffuse in response to their individual concentration gradients. ?? 1987.

  20. Terrestrial plant biopolymers in marine sediments

    NASA Astrophysics Data System (ADS)

    Gough, Mark A.; Fauzi, R.; Mantoura, C.; Preston, Martin

    1993-03-01

    The vascular land plant biopolymers lignin and cutin were surveyed in the surface sediments of coastal and open ocean waters by controlled alkaline CuO oxidation/reaction. Two contrasting oceanic regimes were studied: the northwest Mediterranean (NWM) Sea, which receives significant particulate terrigenous debris through riverine discharge; and the northeast Atlantic (NEA) Ocean, with poorly characterised terrestrial carbon inputs. In the NWM products of lignin and cutin co-occurred at all stations, elevated levels (ca. 0.5-3.0 mg lignin phenols/100 mg organic carbon; ca. 0.01-0.09 mg cutin acids/100 mg organic carbon) were observed for near-shore deltaic and shelf sediments. The influence of terrestrial land plant inputs extended across the shelf and through the slope to the abyssal plain, providing molecular evidence for advective offshore transfer of terrestrial carbon. Mass balance estimates for the basin suggest riverine inputs account for the majority of surface sedimentary lignin/cutin, most of which (>90%) is deposited on the shelf. Products of CuO oxidation of lignin and cutin were also detected in NEA surface sediments, at levels comparable to those observed for the NWM continental slope, and were detectable at low concentrations ( ca. 0.5 μgg-1 in the sediments of the abyssal plains (>4,000 m depth). While atmospheric deposition of lignin/cutin-derived material cannot be discounted in this open ocean system, lateral advective transfer of enriched shelf sediments is inferred as a possible transport process. A progressive enrichment in cutin-derived material relative to lignin was observed offshore, with evidence of an increase in the degree of oxidative alteration of lignin residues. To account for these observations, preferential offshore transport of finer and more degraded material is proposed. Nonspecific oxidation products dominated the gas chromatograms of NEA sediments, which appear to originate from marine sources of sedimentary organic carbon. Preliminary mass balance calculations applied to the global ocean margin suggest riverine sources of both particulate lignin and cutin are important and that most (>95%) deposition of recognisable land plant biopolymers occurs in shelf seas.

  1. The geochemistry of coprostanol in waters and surface sediments from Narragansett Bay

    NASA Astrophysics Data System (ADS)

    LeBlanc, Lawrence A.; Latimer, James S.; Ellis, John T.; Quinn, James G.

    1992-05-01

    A geochemical study of coprostanol (5β-Cholestan-3β-ol) was undertaken, to examine the transport and fate of a compound of moderate polarity and reactivity in the marine environment, and also because of the interest in coprostanol for use as a sewage tracer. During 1985-86, 20 sites in Narragansett Bay, including the major point sources and rivers discharging into the bay estuary, were sampled at four different times. In addition, surface sediments from 26 stations in the bay were collected. The large number and diversity of samples allowed for an assessment of major inputs of sewage into the bay as well as the recent fate of sewage-derived particles in surface sediments. Results from the study revealed that 50% of the total particulate coprostanol entering the bay was discharged into the Providence River, primarily due to inputs from the wastewater treatment facility (WWTF) at Fields Point, as well as input from the Pawtuxet and Blackstone Rivers. In the lower bay, the Newport WWTF was the largest single source of coprostanol (37% of the total particulate coprostanol) to the bay. Effluent concentrations of coprostanol from secondary WWTFs were consistently lower than those of primary treatment facilities, demonstrating the usefulness of corporstanol as an indicator of treatment plant efficiency. The distribution of coprostanol in waters and surface sediments showed a gradient of decreasing concentration downbay. When coprostanol concentrations in surface sediments were normalized to organic carbon (OC) concentrations, elevated levels were seen only in the Providence River, with a more or less even distribution throughout the rest of the bay. Results also suggest that coprostanol degrades more rapidly in the water column compared to the petroleum hydrocarbons (PHCs), polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs), however, it is relatively stable once it is buried in the sediments. Coprostanol concentrations in waters (0·02-0·22 μg 1 -1) and surface sediments (0·22-33 μg g -1) were as high or higher than values reported in the literature, indicating that the estuary is impacted by sewage.

  2. Landscape level influence: aquatic primary production in the Colorado River of Glen and Grand canyons

    NASA Astrophysics Data System (ADS)

    Yard, M. D.; Kennedy, T.; Yackulic, C. B.; Bennett, G. E.

    2012-12-01

    Irregular features common to canyon-bound regions intercept solar incidence (photosynthetic photon flux density [PPFD: μmol m-2 s-1]) and can affect ecosystem energetics. The Colorado River in Grand Canyon is topographically complex, typical of most streams and rivers in the arid southwest. Dam-regulated systems like the Colorado River have reduced sediment loads, and consequently increased water transparency relative to unimpounded rivers; however, sediment supply from tributaries and flow regulation that affects erosion and subsequent sediment transport, interact to create spatial and temporal variation in optical conditions in this river network. Solar incidence and suspended sediment loads regulate the amount of underwater light available for aquatic photosynthesis in this regulated river. Since light availability is depth dependent (Beer's law), benthic algae is often exposed to varying levels of desiccation or reduced light conditions due to daily flow regulation, additional factors that further constrain aquatic primary production. Considerable evidence suggests that the Colorado River food web is now energetically dependent on autotrophic production, an unusual condition since large river foodwebs are typically supported by allochthonous carbon synthesized and transported from terrestrial environments. We developed a mechanistic model to account for these regulating factors to predict how primary production might be affected by observed and alternative flow regimes proposed as part of ongoing adaptive management experimentation. Inputs to our model include empirical data (suspended sediment and temperature), and predictive relationships: 1) solar incidence reaching the water surface (topographic complexity), 2) suspended sediment-light extinction relationships (optical properties), 3) unsteady flow routing model (stage-depth relationship), 4) channel morphology (photosynthetic area), and 5) photosynthetic-irradiant response for dominant algae (Cladophora glomerata and associated epiphytes). Initial findings suggest that aquatic primary production varies spatially and temporally in response to natural processes occurring at varying spatial scales and that flow regulation per se has only a minor effect on primary production. All of these physical drivers combined are likely to structure the abundance, distribution, and interaction of aquatic biota found in this ecosystem.

  3. Freezing and hungry? Hydrocarbon degrading microbial communities in Barents Sea sediments around Svalbard

    NASA Astrophysics Data System (ADS)

    Krueger, Martin; Straaten, Nontje

    2017-04-01

    The Polar Regions are characterised by varying temperatures and changing ice coverage, so most of the primary production take place in the warmer season. Consequently, sedimentation rates and nutrient input are low. The diversity and metabolic potentials of the microbial communities inhabiting these sediments in the Northern Barents Sea are largely unknown. Recent reports on natural methane seeps as well as the increase in hydrocarbon exploration activities in the Arctic initiated our studies on the potential of indigenous microbial communities to degrade methane and higher hydrocarbons under in situ pressure and temperature conditions. Furthermore, the subseafloor geochemistry in these areas was studied, together with important microbial groups, like methanotrophs, methanogens, metal and sulfate reducers, which may drive seafloor ecosystems in the Northern Barents Sea. Sediment samples were collected in several areas around Svalbard in the years 2013-2016 ranging from shallow (200m) areas on the Svalbard shelf to deep sea areas on the eastern Yermak Plateau (3200m water depths). Shelf sediments showed the highest organic carbon content which decreased with increasing depths. Iron and manganese as potential electron acceptors were found in the porewater especially in the top 50 cm of the cores, while sulfate was always present in substantial amounts in porewater samples down to the end of the up to two metre long cores. Concentrations of dissolved methane and carbon dioxide were low. The potential of the indigenous microorganisms to degrade methane and higher hydrocarbons as well as different oils under in situ temperatures and pressures was widespread in surface sediments. Degradation rates were higher under aerobic than under anaerobic conditions, and decreased with increasing sediment as well as water depths. Similar pattern were found for other metabolic processes, including sulfate, Fe and Mn reduction as well as carbon dioxide and methane production rates. Ongoing molecular biological analyses of original sediments and enrichment cultures indicate the presence of diverse and varying microbial communities.

  4. Historical trends in organochlorine compounds in river basins identified using sediment cores from reservoirs

    USGS Publications Warehouse

    Van Metre, P.C.; Callender, E.; Fuller, C.C.

    1997-01-01

    This study used chemical analyses of dated sediment cores from reservoirs to define historical trends in water quality in the influent river basins. This work applies techniques from paleolimnology to reservoirs, and in the process, highlights differences between sediment-core interpretations for reservoirs and natural lakes. Sediment cores were collected from six reservoirs in the central and southeastern United States, sectioned, and analyzed for 137Cs and organochlorine compounds. 137Cs analyses were used to demonstrate limited post-depositional mixing, to indicate sediment deposition dates, and to estimate sediment focusing factors. Relative lack of mixing, high sedimentation rates, and high focusing factors distinguish reservoir sediment cores from cores collected in natural lakes. Temporal trends in concentrations of PCBs, total DDT (DDT + DDD + DDE), and chlordane reflect historical use and regulation of these compounds and differences in land use between reservoir drainages. PCB and total DDT core burdens, normalized for sediment focusing, greatly exceed reported cumulative regional atmospheric fallout of PCBs and total DDT estimated using cores from peat hogs and natural lakes, indicating the dominance of fluvial inputs of both groups of compounds to the reservoirs.This study used chemical analyses of dated sediment cores from reservoirs to define historical trends in water quality in the influent river basins. This work applies techniques from paleolimnology to reservoirs, and in the process, highlights differences between sediment-core interpretations for reservoirs and natural lakes. Sediment cores were collected from six reservoirs in the central and southeastern United States, sectioned, and analyzed for 137Cs and organochlorine compounds. 137Cs analyses were used to demonstrate limited post-depositional mixing, to indicate sediment deposition dates, and to estimate sediment focusing factors. Relative lack of mixing, high sedimentation rates, and high focusing factors distinguish reservoir sediment cores from cores collected in natural lakes. Temporal trends in concentrations of PCBs, total DOT (DDT+DDD+DDE), and chlordane reflect historical use and regulation of these compounds and differences in land use between reservoir drainages. PCB and total DDT core burdens, normalized for sediment focusing, greatly exceed reported cumulative regional atmospheric fallout of PCBs and total DDT estimated using cores from peat bogs and natural lakes, indicating the dominance of fluvial inputs of both groups of compounds to the reservoirs.

  5. Effect of zeolite on toxicity of ammonia in freshwater sediments: Implications for toxicity identification evaluation procedures

    USGS Publications Warehouse

    Besser, J.M.; Ingersoll, C.G.; Leonard, E.N.; Mount, D.R.

    1998-01-01

    Techniques for reducing ammonia toxicity in freshwater sediments were investigated as part of a project to develop toxicity identification and evaluation (TIE) procedures for whole sediments. Although ammonia is a natural constituent of freshwater sediments, pollution can lead to ammonia concentrations that are toxic to benthic invertebrates, and ammonia can also contribute to the toxicity of sediments that contain more persistent contaminants. We investigated the use of amendments of a natural zeolite mineral, clinoptilolite, to reduce concentrations of ammonia in sediment pore water. Zeolites have been widely used for removal of ammonia in water treatment and in aqueous TIE procedures. The addition of granulated zeolite to ammonia-spiked sediments reduced pore-water ammonia concentrations and reduced ammonia toxicity to invertebrates. Amendments of 20% zeolite (v/v) reduced ammonia concentrations in pore water by ???70% in spiked sediments with ammonia concentrations typical of contaminated freshwater sediments. Zeolite amendments reduced toxicity of ammonia-spiked sediments to three taxa of benthic invertebrates (Hyalella azteca, Lumbriculus variegatus, and Chironomus tentans), despite their widely differing sensitivity to ammonia toxicity. In contrast, zeolite amendments did not reduce acute toxicity of sediments containing high concentrations of cadmium or copper or reduce concentrations of these metals in pore waters. These studies suggest that zeolite amendments, used in conjunction with toxicity tests with sensitive taxa such as H. azteca, may be an effective technique for selective reduction of ammonia toxicity in freshwater sediments.

  6. Coarse and fine sediment transportation patterns and causes downstream of the Three Gorges Dam

    NASA Astrophysics Data System (ADS)

    Li, Songzhe; Yang, Yunping; Zhang, Mingjin; Sun, Zhaohua; Zhu, Lingling; You, Xingying; Li, Kanyu

    2017-11-01

    Reservoir construction within a basin affects the process of water and sediment transport downstream of the dam. The Three Gorges Reservoir (TGR) affects the sediment transport downstream of the dam. The impoundment of the TGR reduced total downstream sediment. The sediment group d≤0.125 mm (fine particle) increased along the path, but the average was still below what existed before the reservoir impoundment. The sediments group d>0.125 mm (coarse particle) was recharged in the Yichang to Jianli reach, but showed a deposition trend downstream of Jianli. The coarse sediment in the Yichang to Jianli section in 2003 to 2007 was above the value before the TGR impoundment. However, the increase of both coarse and fine sediments in 2008 to 2014 was less than that in 2003 to 2007. The sediment retained in the dam is the major reason for the sediment reduction downstream. However, the retention in different river reaches is affected by riverbed coarsening, discharge, flow process, and conditions of lake functioning and recharging from the tributaries. The main conclusions derived from our study are as follows: 1) The riverbed in the Yichang to Shashi section was relatively coarse, thereby limiting the supply of fine and coarse sediments. The fine sediment supply was mainly controlled by TGR discharge, whereas the coarse sediment supply was controlled by the duration of high flow and its magnitude. 2) The supply of both coarse and fine sediments in the Shashi to Jianli section was controlled by the amount of total discharge. The sediment supply from the riverbed was higher in flood years than that in the dry years. The coarse sediment tended to deposit, and the deposition in the dry years was larger than that in the flood years. 3) The feeding of the fine sediment in the Luoshan to Hankou section was mainly from the riverbed. The supply in 2008 to 2014 was more than that in 2003 to 2007. Around 2010, the coarse sediments transited from depositing to scouring that was probably caused by the increased duration of high flow days. 4) Fine sediments appeared to be deposited in large amounts in the Hankou to Jiujiang section. The coarse sediment was fed by the riverbed scouring, and much more coarse sediments were recharged from the riverbed in the flood years than in the dry years. 5) In the Jiujiang to Datong section, the ratio of fine sediments from the Poyang Lake and that from the riverbed was 1: 2.82. The sediment from the riverbed scouring contributed more to the coarse sediment transportation. The contribution was mainly affected by the input by magnitude and duration of high flows.

  7. Characterization of lake water and ground water movement in the littoral zone of Williams Lake, a closed-basin lake in North central Minnesota

    USGS Publications Warehouse

    Schuster, P.F.; Reddy, M.M.; LaBaugh, J.W.; Parkhurst, R.S.; Rosenberry, D.O.; Winter, T.C.; Antweiler, Ronald C.; Dean, W.E.

    2003-01-01

    Williams Lake, Minnesota is a closed-basin lake that is a flow-through system with respect to ground water. Ground-water input represents half of the annual water input and most of the chemical input to the lake. Chemical budgets indicate that the lake is a sink for calcium, yet surficial sediments contain little calcium carbonate. Sediment pore-water samplers (peepers) were used to characterize solute fluxes at the lake-water-ground-water interface in the littoral zone and resolve the apparent disparity between the chemical budget and sediment data. Pore-water depth profiles of the stable isotopes ??18O and ??2H were non-linear where ground water seeped into the lake, with a sharp transition from lake-water values to ground-water values in the top 10 cm of sediment. These data indicate that advective inflow to the lake is the primary mechanism for solute flux from ground water. Linear interstitial velocities determined from ??2H profiles (316 to 528 cm/yr) were consistent with velocities determined independently from water budget data and sediment porosity (366 cm/yr). Stable isotope profiles were generally linear where water flowed out of the lake into ground water. However, calcium profiles were not linear in the same area and varied in response to input of calcium carbonate from the littoral zone and subsequent dissolution. The comparison of pore-water calcium profiles to pore-water stable isotope profiles indicate calcium is not conservative. Based on the previous understanding that 40-50 % of the calcium in Williams Lake is retained, the pore-water profiles indicate aquatic plants in the littoral zone are recycling the retained portion of calcium. The difference between the pore-water depth profiles of calcium and ??18O and ??2H demonstrate the importance of using stable isotopes to evaluate flow direction and source through the lake-water-ground-water interface and evaluate mechanisms controlling the chemical balance of lakes. Published in 2003 by John Wiley and Sons, Ltd.

  8. Creating a non-linear total sediment load formula using polynomial best subset regression model

    NASA Astrophysics Data System (ADS)

    Okcu, Davut; Pektas, Ali Osman; Uyumaz, Ali

    2016-08-01

    The aim of this study is to derive a new total sediment load formula which is more accurate and which has less application constraints than the well-known formulae of the literature. 5 most known stream power concept sediment formulae which are approved by ASCE are used for benchmarking on a wide range of datasets that includes both field and flume (lab) observations. The dimensionless parameters of these widely used formulae are used as inputs in a new regression approach. The new approach is called Polynomial Best subset regression (PBSR) analysis. The aim of the PBRS analysis is fitting and testing all possible combinations of the input variables and selecting the best subset. Whole the input variables with their second and third powers are included in the regression to test the possible relation between the explanatory variables and the dependent variable. While selecting the best subset a multistep approach is used that depends on significance values and also the multicollinearity degrees of inputs. The new formula is compared to others in a holdout dataset and detailed performance investigations are conducted for field and lab datasets within this holdout data. Different goodness of fit statistics are used as they represent different perspectives of the model accuracy. After the detailed comparisons are carried out we figured out the most accurate equation that is also applicable on both flume and river data. Especially, on field dataset the prediction performance of the proposed formula outperformed the benchmark formulations.

  9. Sediment-water 02 dynamics and feedbacks to sediment oxic, suboxic, and anoxic processes on the Louisiana shelf

    EPA Science Inventory

    The Mississippi and Atchafalaya Rivers annually discharge 674 km3 of freshwater, 86 x 109 moles nitrogen, 5 x 109 moles phosphorus, and 325 x 109 moles organic carbon to the Louisiana shelf. The seasonal input and transport of these materials causes large temporal and spatial va...

  10. Implementation of methane cycling for deep-time global warming simulations with the DCESS Earth system model (version 1.2)

    NASA Astrophysics Data System (ADS)

    Shaffer, Gary; Fernández Villanueva, Esteban; Rondanelli, Roberto; Olaf Pepke Pedersen, Jens; Malskær Olsen, Steffen; Huber, Matthew

    2017-11-01

    Geological records reveal a number of ancient, large and rapid negative excursions of the carbon-13 isotope. Such excursions can only be explained by massive injections of depleted carbon to the Earth system over a short duration. These injections may have forced strong global warming events, sometimes accompanied by mass extinctions such as the Triassic-Jurassic and end-Permian extinctions 201 and 252 million years ago, respectively. In many cases, evidence points to methane as the dominant form of injected carbon, whether as thermogenic methane formed by magma intrusions through overlying carbon-rich sediment or from warming-induced dissociation of methane hydrate, a solid compound of methane and water found in ocean sediments. As a consequence of the ubiquity and importance of methane in major Earth events, Earth system models for addressing such events should include a comprehensive treatment of methane cycling but such a treatment has often been lacking. Here we implement methane cycling in the Danish Center for Earth System Science (DCESS) model, a simplified but well-tested Earth system model of intermediate complexity. We use a generic methane input function that allows variation in input type, size, timescale and ocean-atmosphere partition. To be able to treat such massive inputs more correctly, we extend the model to deal with ocean suboxic/anoxic conditions and with radiative forcing and methane lifetimes appropriate for high atmospheric methane concentrations. With this new model version, we carried out an extensive set of simulations for methane inputs of various sizes, timescales and ocean-atmosphere partitions to probe model behavior. We find that larger methane inputs over shorter timescales with more methane dissolving in the ocean lead to ever-increasing ocean anoxia with consequences for ocean life and global carbon cycling. Greater methane input directly to the atmosphere leads to more warming and, for example, greater carbon dioxide release from land soils. Analysis of synthetic sediment cores from the simulations provides guidelines for the interpretation of real sediment cores spanning the warming events. With this improved DCESS model version and paleo-reconstructions, we are now better armed to gauge the amounts, types, timescales and locations of methane injections driving specific, observed deep-time, global warming events.

  11. Restore McComas Meadows; Meadow Creek Watershed, 2005-2006 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McRoberts, Heidi

    2006-07-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Meadow Creek watershed are coordinated and cost shared with the Nez Perce National Forest. The Nez Perce Tribe began watershed restoration projects within the Meadow Creek watershed of the South Fork Clearwater River in 1996. Progress has been made in restoring the watershed by excluding cattle from critical riparian areas through fencing, planting trees in riparian areas within the meadow and its tributaries, prioritizing culverts for replacement to accommodate fish passage, and decommissioning roads tomore » reduce sediment input. During this contract period work was completed on two culvert replacement projects; Doe Creek and a tributary to Meadow Creek. Additionally construction was also completed for the ditch restoration project within McComas Meadows. Monitoring for project effectiveness and trends in watershed conditions was also completed. Road decommissioning monitoring, as well as stream temperature, sediment, and discharge were completed.« less

  12. Mercury-selenium association in antarctic seal hairs and animal excrements over the past 1,500 years.

    PubMed

    Yin, Xuebin; Sun, Liguang; Zhu, Renbin; Liu, Xiaodong; Ruan, Diyun; Wang, Yuhong

    2007-03-01

    Strong positive correlations between selenium (Se) and total mercury (HgT) contents in the liver of marine mammals and mercury mine workers in modern times have been documented in numerous investigations. Herein, we report a positive correlation between Se and HgT concentrations over the past 1,500 years in the seal hairs and in the lake sediments amended by seal or penguin excrements on King George Island (63 degrees 23' S, 57 degrees 00' W), West Antarctica. Because the changes in the input of Se and Hg into the marine environments of the studied sites do not seem to be synchronous, this striking correlation indicates a self-protection mechanism in Antarctic seals and penguins: Every time there is heavier Hg burden, more Se is accumulated to reduce the toxicity of Hg. This positive correlation between Hg and Se contents in the seal hairs and excrement sediments, however, becomes insignificant in the recent 50 years for unknown reasons.

  13. Nitrogen-limited mangrove ecosystems conserve N through dissimilatory nitrate reduction to ammonium

    PubMed Central

    Fernandes, Sheryl Oliveira; Bonin, Patricia C.; Michotey, Valérie D.; Garcia, Nicole; LokaBharathi, P. A.

    2012-01-01

    Earlier observations in mangrove sediments of Goa, India have shown denitrification to be a major pathway for N loss1. However, percentage of total nitrate transformed through complete denitrification accounted for <0–72% of the pore water nitrate reduced. Here, we show that up to 99% of nitrate removal in mangrove sediments is routed through dissimilatory nitrate reduction to ammonium (DNRA). The DNRA process was 2x higher at the relatively pristine site Tuvem compared to the anthropogenically-influenced Divar mangrove ecosystem. In systems receiving low extraneous nutrient inputs, this mechanism effectively conserves and re-circulates N minimizing nutrient loss that would otherwise occur through denitrification. In a global context, the occurrence of DNRA in mangroves has important implications for maintaining N levels and sustaining ecosystem productivity. For the first time, this study also highlights the significance of DNRA in buffering the climate by modulating the production of the greenhouse gas nitrous oxide. PMID:22639727

  14. Simulating Spatial Variability of Fluvial Sediment Fluxes Within the Magdalena Drainage Basin, Colombia.

    NASA Astrophysics Data System (ADS)

    Kettner, A. J.; Syvitski, J. P.; Restrepo, J. D.

    2008-12-01

    This study explores the application of an empirical sediment flux model BQART, to simulate long-term sediment fluxes of major tributaries of a river system based on a limited number of input parameters. We validate model results against data of the 1612 km long Magdalena River, Colombia, South America, which is well monitored. The Magdalena River, draining a hinterland area of 257,438 km2, of which the majority lies in the Andes before reaching the Atlantic coast, is known for its high sediment yield, 560 t kg- 2 yr-1; higher than nearby South American rivers like the Amazon or the Orinoco River. Sediment fluxes of 32 tributary basins of the Magdalena River were simulated based on the following controlling factors: geomorphic influences (tributary-basin area and relief) derived from high-resolution Shuttle Radar Topography Mission data, tributary basin-integrated lithology based on GIS analysis of lithology data, 30year temperature data, and observed monthly mean discharge data records (varying in record length of 15 to 60 years). Preliminary results indicate that the simulated sediment flux of all 32 tributaries matches the observational record, given the observational error and the annual variability. These simulations did not take human influences into account yet, which often increases sediment fluxes by accelerating erosion, especially in steep mountainous area similar to the Magdalena. Simulations indicate that, with relatively few input parameters, mostly derived from remotely-sensed data or existing compiled GIS datasets, it is possible to predict: which tributaries in an arbitrary river drainage produce relatively high contributions to sediment yields, and where in the drainage basin you might expect conveyance loss.

  15. Testing Models of Modern Glacial Erosion of the St. Elias Mountains, Alaska Using Marine Sediment Provenance

    NASA Astrophysics Data System (ADS)

    Penkrot, M. L.; Jaeger, J. M.; Loss, D. P.; Bruand, E.

    2015-12-01

    The glaciated coastal St. Elias Range in Alaska is a primary site to examine climate-tectonic interactions. Work has primarily focused on the Bering-Bagley and Malaspina-Seward ice fields, utilizing detrital and bedrock zircon and apatite geochronology to examine local exhumation and glacial erosion (Berger et al., 2008; Enkelmann et al., 2009; Headly et al., 2013). These studies argue for specific regions of tectonically focused or climatically widespread glacial erosion. Analyzed zircon and apatite grains are sand size, however glacial erosion favors the production of finer-grained sediments. This study focuses on the geochemical provenance of the silt-size fraction (15-63μm) of surface sediments collected throughout the Gulf of Alaska (GOA) seaward of the Bering and Malaspina glaciers to test if the exhumation patterns observed in zircon and apatites are also applicable for the silt size fraction. Onshore bedrock Al-normalized elemental data were used to delineate sediment sources, and a subset of provenance-applicable elements was chosen. Detrital thermochronologic data suggest that sediment produced by the Bagley/Bering system is derived from bedrock on the windward side with input from the Chugach Metamorphic Complex (CMC) underlying the Bagley only during glacial surge events (Headly et al., 2013). Geochemical observations of GOA silt deposited during the 1994-95 surge event confirm input of CMC sediment (elevated in Cr, Ni, Sc, Sr, depleted in Hf, Pb and Rb relative to Kultieth and Poul Creek formations). We also observe a windward-side sediment source (Kultieth and Poul Creek). It is hypothesized that the sediment carried by the Malaspina is primarily from CMC rock underlying the Seward ice field mixed with Yakataga formation rock that underlies the Seward throat (Headly et al., 2013). Geochemical observations of GOA silt support this hypothesis.

  16. Development of a Sediment Transport Component for DHSVM

    NASA Astrophysics Data System (ADS)

    Doten, C. O.; Bowling, L. C.; Maurer, E. P.; Voisin, N.; Lettenmaier, D. P.

    2003-12-01

    The effect of forest management and disturbance on aquatic resources is a problem of considerable, contemporary, scientific and public concern in the West. Sediment generation is one of the factors linking land surface conditions with aquatic systems, with implications for fisheries protection and enhancement. Better predictive techniques that allow assessment of the effects of fire and logging, in particular, on sediment transport could help to provide a more scientific basis for the management of forests in the West. We describe the development of a sediment transport component for the Distributed Hydrology Soil Vegetation Model (DHSVM), a spatially distributed hydrologic model that was developed specifically for assessment of the hydrologic consequences of forest management. The sediment transport module extends the hydrologic dynamics of DHSVM to predict sediment generation in response to dynamic meteorological inputs and hydrologic conditions via mass wasting and surface erosion from forest roads and hillslopes. The mass wasting component builds on existing stochastic slope stability models, by incorporating distributed basin hydrology (from DHSVM), and post-failure, rule-based redistribution of sediment downslope. The stochastic nature of the mass wasting component allows specification of probability distributions that describe the spatial variability of soil and vegetation characteristics used in the infinite slope model. The forest roads and hillslope surface erosion algorithms account for erosion from rain drop impact and overland erosion. A simple routing scheme is used to transport eroded sediment from mass wasting and forest roads surface erosion that reaches the channel system to the basin outlet. A sensitivity analysis of the model input parameters and forest cover conditions is described for the Little Wenatchee River basin in the northeastern Washington Cascades.

  17. Environmental evolution records reflected by radionuclides in the sediment of coastal wetlands: A case study in the Yellow River Estuary wetland.

    PubMed

    Wang, Qidong; Song, Jinming; Li, Xuegang; Yuan, Huamao; Li, Ning; Cao, Lei

    2016-10-01

    Vertical profiles of environmental radionuclides ( 210 Pb, 137 Cs, 238 U, 232 Th, 226 Ra and 4 0 K) in a sediment core (Y1) of the Yellow River Estuary wetland were investigated to assess whether environmental evolutions in the coastal wetland could be recorded by the distributions of radionuclides. Based on 210 Pb and 137 Cs dating, the average sedimentation rate of core Y1 was estimated to be 1.0 cm y -1 . Vertical distributions of natural radionuclides ( 238 U, 232 Th, 226 Ra and 40 K) changed dramatically, reflecting great changes in sediment input. Concentrations of 238 U, 232 Th, 226 Ra and 40 K all had significant positive relationships with organic matter and clay content, but their distributions were determined by different factors. Factor analysis showed that 238 U was determined by the river sediment input while 226 Ra was mainly affected by the seawater erosion. Environmental changes such as river channel migrations and sediment discharge variations could always cause changes in the concentrations of radionuclides. High concentrations of 238 U and 226 Ra were consistent with high accretion rate. Frequent seawater intrusion decreased the concentration of 226 Ra significantly. The value of 238 U/ 226 Ra tended to be higher when the sedimentation rate was low and tide intrusion was frequent. In summary, environmental evolutions in the estuary coastal wetland could be recorded by the vertical profiles of natural radionuclides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Ins and outs of a complex subduction zone: C cycling along the Sunda margin, Indonesia

    NASA Astrophysics Data System (ADS)

    House, B. M.; Bebout, G. E.; Hilton, D. R.

    2016-12-01

    Subduction of C in marine sediments and altered oceanic crust is the main mechanism for reintroducing C into the deep earth and removing it from communication with the ocean and atmosphere. However, detailed studies of individual margins - which are necessary to understanding global C cycling - are sparse. The thick, C-rich sediment column along the Sunda margin, Indonesia makes understanding this margin crucial for constructing global C cycling budgets. Furthermore it is an ideal location to compare cycling of organic and carbonate C due to the abrupt transition from carbonate-dominated sediments in the SE to sediments rich in organic C from the Nicobar Fan in the NW. To quantify and characterize C available for subduction, we analyzed samples from DSDP 211, 260, 261, and ODP 765, all outboard of the trench, as well as piston and gravity cores of locally-sourced terrigenous trench fill. We created a 3-D model of overall sediment thickness and the thicknesses of geochemically distinct sedimentary units using archived and published seismic profiles to infer unit thicknesses at and along the 2500 km trench. This model vastly improves estimates of the C available for subduction and also reveals that the Christmas Island Seamount Province serves as a barrier to turbidite flow, dividing the regions of the trench dominated by organic and inorganic C input. Incorporating best estimates for the depth of the decollement indicates that the terrigenous trench fill, with up to 1.5 wt % organic C, is entirely accreted as is the thick section of carbonate-rich turbidites that dominate the southeastern portion of the margin (DSDP 261/ODP 765). Organic C accounts for most of the C bypassing the accretionary complex NW of the Christmas Island Seamount Province, and C inputs to the trench are lower there than to the SE where carbonate units near the base of the sediment column are the dominant C source. Release of C from altered oceanic crust - a C reservoir up to 10 times greater than sediments - can resolve the apparent conflict between the carbonate signal in volcanic emissions and scarcity of carbonate in subducting sediments along the NW of the arc. This study lays the foundation for refined methods of comparing subduction inputs and arc outputs of C at convergent margins.

  19. Assessment of multiple sources of anthropogenic and natural chemical inputs to a morphologically complex basin, Lake Mead, USA

    USGS Publications Warehouse

    Rosen, Michael R.; Van Metre, P.C.

    2010-01-01

    Lakes with complex morphologies and with different geologic and land-use characteristics in their sub-watersheds could have large differences in natural and anthropogenic chemical inputs to sub-basins in the lake. Lake Mead in southern Nevada and northern Arizona, USA, is one such lake. To assess variations in chemical histories from 1935 to 1998 for major sub-basins of Lake Mead, four sediment cores were taken from three different parts of the reservoir (two from Las Vegas Bay and one from the Overton Arm and Virgin Basin) and analyzed for major and trace elements, radionuclides, and organic compounds. As expected, anthropogenic contaminant inputs are greatest to Las Vegas Bay reflecting inputs from the Las Vegas urban area, although concentrations are low compared to sediment quality guidelines and to other USA lakes. One exception to this pattern was higher Hg in the Virgin Basin core. The Virgin Basin core is located in the main body of the lake (Colorado River channel) and is influenced by the hydrology of the Colorado River, which changed greatly with completion of Glen Canyon Dam upstream in 1963. Major and trace elements in the core show pronounced shifts in the early 1960s and, in many cases, gradually return to concentrations more typical of pre-1960s by the 1980s and 1990s, after the filling of Lake Powell. The Overton Arm is the sub-basin least effected by anthropogenic contaminant inputs but has a complex 137Cs profile with a series of large peaks and valleys over the middle of the core, possibly reflecting fallout from nuclear tests in the 1950s at the Nevada Test Site. The 137Cs profile suggests a much greater sedimentation rate during testing which we hypothesize results from greatly increased dust fall on the lake and Virgin and Muddy River watersheds. The severe drought in the southwestern USA during the 1950s might also have played a role in variations in sedimentation rate in all of the cores. ?? 2009.

  20. Geochemical, mineralogical and microbiological characteristics of sediment from a naturally reduced zone in a uranium-contaminated aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Kate M.; Kukkadapu, Ravi K.; Qafoku, Nikolla

    2012-05-23

    Localized zones or lenses of naturally reduced sediments have the potential to play a significant role in the fate and transport of redox-sensitive metals and metalloids in aquifers. To assess the mineralogy, microbiology, and redox processes that occur in these zones, we examined several cores from a region of naturally occurring reducing conditions in a uranium-contaminated aquifer (Rifle, CO). Sediment samples from a transect of cores ranging from oxic/suboxic Rifle aquifer sediment to naturally reduced sediment were analyzed for uranium and iron content, oxidation state, and mineralogy, reduced sulfur phases, and solid phase organic carbon content using a suite ofmore » analytical and spectroscopic techniques on bulk sediment and size fractions. Solid-phase uranium concentrations were higher in the naturally reduced zone, with a high proportion of the uranium present as reduced U(IV). The sediments were also elevated in reduced sulfur phases and Fe(II), indicating it is very likely that U(VI), Fe(III), and sulfate reduction occurred or is occurring in the sediment. The microbial community was assessed using lipid- and DNA-based techniques, and statistical redundancy analysis was performed to determine correlations between the microbial community and the geochemistry. Increased concentration of solid phase organic carbon and biomass in the naturally reduced sediment suggests that natural bioreduction is stimulated by a zone of increased organic carbon concentration associated with fine-grained material and lower permeability to groundwater flow. Characterization of the naturally bioreduced sediment provides an understanding of the natural processes that occur in the sediment under reducing conditions and how they may impact natural attenuation of radionuclides and other redox sensitive materials. Results also suggest the importance of recalcitrant organic carbon for maintaining reducing conditions and uranium immobilization.« less

  1. Meltwater input to the southern ocean during the last glacial maximum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shemesh, A.; Burckle, L.H.; Hays, J.D.

    1994-12-02

    Three records of oxygen isotopes in biogenic silica from deep-sea sediment cores from the Atlantic and Indian sectors of the Southern Ocean reveal the presence of isotopically depleted diatomaceous opal in sediment from the last glacial maximum. This depletion is attributed to the presence of lids of meltwater that mixed with surface water along certain trajectories in the Southern Ocean. An increase in the drainage from Antarctica or extensive northward transport of icebergs are among the main mechanisms that could have produced the increase in meltwater input to the glacial Southern Ocean. Similar isotopic trends were observed in older climaticmore » cycles at the same cores.« less

  2. Benthic phosphorus regeneration in the Potomac River Estuary

    USGS Publications Warehouse

    Callender, E.

    1982-01-01

    The flux of dissolved reactive phosphate from Potomac riverine and estuarine sediments is controlled by processes occurring at the water-sediment interface and within surficial sediment. In situ benthic fluxes (0.1 to 2.0 mmoles m-2 day-1) are generally five to ten times higher than calculated diffusive fluxes (0.020 to 0.30 mmoles m-2 day-1). The discrepancy between the two flux estimates is greatest in the transition zone (river mile 50 to 70) and is attributd to macrofaunal irrigation. Both in situ and diffusive fluxes of dissolved reactive phosphate from Potomac tidal river sediments are low while those from anoxic lower estuarine sediments are high. The net accumulation rate of phosphorus in benthic sediment exhibits an inverse pattern. Thus a large fraction of phosphorus is retained by Potomac tidal river sediments, which contain a surficial oxidized layer and oligochaete worms tolerant of low oxygen conditions, and a large fraction of phosphorus is released from anoxic lower estuary sediments. Tidal river sediment pore waters are in equilibrium with amorphous Fe (OH)3 while lower estuary pore waters are significantly undersaturated with respect to this phase. Benthic regeneration of dissolved reactive phosphorus is sufficient to supply all the phosphorus requirements for net primary production in the lower tidal river and transition-zone waters of the Potomac River Estuary. Benthic regeneration supplies approximately 25% as much phosphorus as inputs from sewage treatment plants and 10% of all phosphorus inputs to the tidal Potomac River. When all available point source phosphorus data are put into a steady-state conservation of mass model and reasonable coefficients for uptake of dissolved phosphorus, remineralization of particulate phosphorus, and sedimentation of particulate phosphorus are used in the model, a reasonably accurate simulation of dissolved and particulate phosphorus in the water column is obtained for the summer of 1980. ?? 1982 Dr W. Junk Publishers.

  3. Comparison of turbidity to multi-frequency sideways-looking acoustic-Doppler data and suspended-sediment data in the Colorado River in Grand Canyon

    USGS Publications Warehouse

    Voichick, Nicholas; Topping, David J.

    2010-01-01

    Water clarity is important to biologists when studying fish and other fluvial fauna and flora. Turbidity is an indicator of the cloudiness of water, or reduced water clarity, and is commonly measured using nephelometric sensors that record the scattering and absorption of light by particles in the water. Unfortunately, nephelometric sensors only operate over a narrow range of the conditions typically encountered in rivers dominated by suspended-sediment transport. For example, sediment inputs into the Colorado River in Grand Canyon caused by tributary floods often result in turbidity levels that exceed the maximum recording level of nephelometric turbidity sensors. The limited range of these sensors is one reason why acoustic Doppler profiler instrument data, not turbidity, has been used as a surrogate for suspended sediment concentration and load of the Colorado River in Grand Canyon. However, in addition to being an important water-quality parameter to biologists, turbidity of the Colorado River in Grand Canyon has been used to strengthen the suspended-sediment record through the process of turbidity-threshold sampling; high turbidity values trigger a pump sampler to collect samples of the river at critical times for gathering suspended-sediment data. Turbidity depends on several characteristics of suspended sediment including concentration, particle size, particle shape, color, and the refractive index of particles. In this paper, turbidity is compared with other parameters coupled to suspended sediment, namely suspended-silt and clay concentration and multifrequency acoustic attenuation. These data have been collected since 2005 at four stations with different sediment-supply characteristics on the Colorado River in Grand Canyon. These comparisons reveal that acoustic attenuation is a particularly useful parameter, because it is strongly related to turbidity and it can be measured by instruments that experience minimal fouling and record over the entire range of turbidity encountered in the Colorado River in Grand Canyon. Relating turbidity to acoustic attenuation and suspended-silt and clay concentration provides an additional benefit in that data outliers are revealed that likely identify inflow events from anomalous sources with unusual sediment characteristics.

  4. Initial geochemistry data of the Lake Ohrid (Macedonia, Albania) "DEEP" site sediment record: The ICDP SCOPSCO drilling project

    NASA Astrophysics Data System (ADS)

    Francke, Alexander; Wagner, Bernd; Krastel, Sebastian; Lindhorst, Katja; Mantke, Nicole; Klinghardt, Dorothea

    2014-05-01

    Lake Ohrid, located at the border of Macedonia and Albania is about 30 km long, 15 km wide and up to 290 m deep. Formed within a tectonic graben, Lake Ohrid is considered to be the oldest lake in Europe. The ICDP SCOPSCO (Scientific Collaboration of Past Speciation Conditions in Lake Ohrid) deep drilling campaign at Lake Ohrid in spring 2013 aimed (a) to obtain more precise information about the age and origin of the lake, (b) to unravel the seismotectonic history of the lake area including effects of major earthquakes and associated mass wasting events, (c) to obtain a continuous record containing information on volcanic activities and climate changes in the central northern Mediterranean region, and (d) to better understand the impact of major geological/environmental events on general evolutionary patterns and shaping an extraordinary degree of endemic biodiversity as a matter of global significance. Drilling was carried out by DOSECC (Salt Lake City, USA) using the DLDS (Deep Lake Drilling System) with a hydraulic piston corer for surface sediments and rotation drilling for harder, deeper sediments. Overall, about 2,100 m of sediment were recovered from 4 drill sites. At the "DEEP" site in the center of the lake, seismic data indicated a maximum sediment fill of ca. 700 m, of which the uppermost 568 m sediment were recovered. Initial data from core catcher samples and on-site susceptibility measurements indicate that the sediment sequence covers more than 1.2 million years and provides a continuous archive of environmental and climatological variability in the area. Currently, core opening, core description, XRF and MSCL -scanning, core correlation, and sub-sampling of the sediment cores from the "DEEP" site is conducted at the University of Cologne. High-resolution geochemical data obtained from XRF-scanning imply that the sediments from the "DEEP" site are highly sensitive to climate and environmental variations in the Balkan area over the last few glacial-interglacial cycles. Interglacial periods are characterized by high Ca counts, likely associated with a high content of calcite in the sediments. Previous studies have shown that the calcite contents in sediments from Lake Ohrid are predominantly triggered by precipitation of endogenic calcite resulting from enhanced photosynthesis and higher temperatures. Moreover, high Ca counts mostly correspond to low K counts indicating reduced clastic input and a denser vegetation cover in the catchment. In contrast, high K and low Ca counts characterize glacial periods, indicating reduced precipitation of endognic calcite and enhanced deposition of clastic material. The variations in Ca and K counts mainly represent climatic variations on a glacial-interglacial timescale. Inorganic geochemistry data shall also be used to improve the age control of the "DEEP" site sequence. First findings of macroscopic tephra horizons allow a preliminary age control on the sediment succession, and peaks in K, Sr, Zr, and magnetic susceptibility might indicate the occurrence of cryptotephralayers in the sediment sequence.

  5. Settling characteristics of fine-grained sediments used in Louisiana coastal land building and restoration projects

    NASA Astrophysics Data System (ADS)

    Ghose Hajra, M.

    2016-02-01

    Coastal property development, sea level rise, geologic subsidence, loss of barrier islands, increasing number and intensity of coastal storms and other factors have resulted in water quality degradation, wetlands loss, reduced storm and surge protection, ground settlement, and other challenges in coastal areas throughout the world. One of the goals towards reestablishing a healthy coastal ecosystem is to rebuild wetlands with river diversion or sediment conveyance projects that optimally manage and allocate sediments, minimally impact native flora and fauna, and positively affect the water quality. Engineering properties and material characteristics of the dredged material and foundation soils are input parameters in several mathematical models used to predict the long term behavior of the dredged material and foundation soil. Therefore, proper characterization of the dredged material and foundation soils is of utmost importance in the correct design of a coastal restoration and land reclamation project. The sedimentation and consolidation characteristics of the dredged material as well as their effects on the time rate of settlement of the suspended solid particles and underlying foundation soil depend, among other factors, on the (a) grain size distribution of the dredged material, (b) salinity (fresh, brackish, or saltwater environment) of the composite slurry, and (c) concentration of the solid particles in the slurry. This paper will present the results from column settling tests and self-weight consolidation tests performed on dredged samples obtained from actual restoration projects in Louisiana. The effects of salinity, grain size distribution, and initial particle concentration on the sedimentation and consolidation parameters of the dredged material will also be discussed.

  6. Environmental changes and the Migration Period in northern Germany as reflected in the sediments of Lake Dudinghausen

    NASA Astrophysics Data System (ADS)

    Dreßler, Mirko; Selig, Uwe; Dörfler, Walter; Adler, Sven; Schubert, Hendrik; Hübener, Thomas

    2006-07-01

    Paleolimnological techniques were used to identify environmental changes in and around Lake Dudinghausen (northern Germany) over the past 4800 yr. Diatom-inferred total phosphorus (DI-TP) changes identify four phases of high nutrient levels (2600-2200 BC, 1050-700 BC, 500 BC-AD 100 and AD 1850-1970). During these high DI-TP phases, fossil pollen, sediment geochemistry and archaeological records indicate human activities in the lake catchment. Although the same paleo-indicators suggest increased human settlement and agriculture activity during the late Slavonic Age, the Medieval Time and the Modern Time (AD 1000-1850), DI-TP levels were low during this period. In the sediments, iron and total phosphorus were high from ˜AD 100 to 1850, likely due to increased inflow of iron-rich groundwater into the lake. Increased iron input would have lead to a simultaneous binding and precipitation of phosphate in the upper sediment and overlying water column. As a result, anthropogenic impact on Lake Dudinghausen was masked by these phosphorus-controlling processes from AD 1000 to 1850 and was not evident by means of DI-TP. In accordance with fossil pollen, sediment geochemistry and limited archaeological records, DI-TP levels were low from AD 100-1000. Groundwater levels likely rose during this period as the climate gradually changed toward colder and/or moister conditions. Such climate change likely led to reduced settlement activities and forest regeneration in the catchment area. Our results are concordant with similar studies from central Europe which indicate rapid decreasing settlement activities from AD 100 to 1000.

  7. Impact of natural (storm) and anthropogenic (trawling) sediment resuspension on particulate organic matter in coastal environments

    NASA Astrophysics Data System (ADS)

    Pusceddu, A.; Grémare, A.; Escoubeyrou, K.; Amouroux, J. M.; Fiordelmondo, C.; Danovaro, R.

    2005-12-01

    In order to assess the impact of natural and anthropogenic sediment resuspension on quantity, biochemical composition and bioavailability of particulate organic matter (POM), two field investigations were carried out in two shallow coastal areas of the Mediterranean Sea. In the Gulf of Lions, we investigated the impact of a storm resuspension of sediment, whereas in the Thermaikos Gulf we investigated the impact of bottom trawling. Resuspension in the Gulf of Lions determined the increase of sedimentation rates, modified the composition of the organic fraction of settling particles and decreased the labile fraction of POM, as indicated by a drop in the enzymatically hydrolysable amino acid fraction. The increase in the refractory fraction, following short-term storm-induced resuspension, increased also the contribution of glycine and decreased the contribution of aspartic acid contents to the total amino acid pools. Trawling activities in Thermaikos Gulf determined a significant increase in suspended POM concentrations and important changes in its biochemical composition. After trawling, the protein to carbohydrate ratio decreased (as a result of a major input of sedimentary carbohydrates at the water-sediment interface) and the fraction of enzymatically hydrolysable biopolymeric C decreased by ≈30%, thus reducing the bioavailability of resuspended organic particles. Results of the present study indicate that changes in suspended POM, induced by storms and trawling activities, can have similar consequences on benthic systems and on food webs. In fact, the potential benefit of increased organic particle concentration for suspension feeders, is depressed by the shift of suspended food particles towards a more refractory composition.

  8. The Nicobar Fan and sediment provenance: preliminary results from IODP Expedition 362, NE Indian Ocean

    NASA Astrophysics Data System (ADS)

    Pickering, K. T.; Pouderoux, H.; Milliken, K. L.; Carter, A.; Chemale, F., Jr.; Kutterolf, S.; Mukoyoshi, H.; Backman, J.; McNeill, L. C.; Dugan, B.; Expedition 362 Scientists, I.

    2017-12-01

    IODP Expedition 362 (6 Aug-6 Oct 2016) was designed to drill the input materials of the north Sumatran subduction zone, part of the 5000 km long Sunda subduction system and to understand the origin of the Mw 9.2 earthquake and tsunami that devastated coastal communities around the Indian Ocean in 2004 linked to unexpectedly shallow seismogenic slip and a distinctive forearc prism structure (1,2,3). Two sites, U1480 and U1481 on the Indian oceanic plate 250 km SW of the subduction zone on the eastern flank of the Ninetyeast Ridge, were drilled, cored, and logged to a maximum depth of 1500 m below seafloor. The input materials of the north Sumatran subduction zone are a thick (up to 4-5 km) succession mainly of Bengal-Nicobar Fan siliciclastic sediments overlying a mainly pelagic/hemipelagic succession, with igneous and volcaniclastic material above oceanic basement. At Sites U1480 and U1481, above the igneous basement ( 60-70 Ma), the sedimentary succession comprises deep-marine tuffaceous deposits with igneous intrusions, overlain by pelagic deposits, including chalk, and a thick Nicobar Fan succession of sediment gravity-flow (SGF) deposits, mainly turbidites and muddy debrites. The Nicobar Fan deposits (estimated total volume of 9.2 x 106 km3: 3) represent >90% of the input section at the drill sites and many of the beds are rich in plant material. These beds are intercalated with calcareous clays. Sediment accumulation rates reached 10-40 cm/kyr in the late Miocene to Pliocene, but were much reduced since 1.6 Ma. The onset of Nicobar Fan deposition at the drill sites ( 9.5 Ma; 2) is much younger than was anticipated precruise ( 30-40 Ma), based on previous regional analyses of Bengal-Nicobar Fan history and presumptions of gradual fan progradation. Our preliminary results suggest that the Nicobar Fan was active between 1.6 and 9.5 Ma, and possibly since 30 Ma (3). The observed mineralogical assemblage of the SGF deposits and zircon age dating are consistent with a provenance from a northerly Himalayan and Indo-Burmese source area. 1. Dugan, McNeill, Petronotis, and the Expedition 362 Scientists, 2017. https://doi.org/10.14379/iodp.pr.362.2017. 2. Hüpers, and the Expedition 362 Scientists. Science, 356, 841-844. 3. McNeill, and the Expedition 362 Scientists 2017. Earth and Planetary Science Letters, in press.

  9. Predicting improved optical water quality in rivers resulting from soil conservation actions on land.

    PubMed

    Dymond, J R; Davies-Colley, R J; Hughes, A O; Matthaei, C D

    2017-12-15

    Deforestation in New Zealand has led to increased soil erosion and sediment loads in rivers. Increased suspended fine sediment in water reduces visual clarity for humans and aquatic animals and reduces penetration of photosynthetically available radiation to aquatic plants. To mitigate fine-sediment impacts in rivers, catchment-wide approaches to reducing soil erosion are required. Targeting soil conservation for reducing sediment loads in rivers is possible through existing models; however, relationships between sediment loads and sediment-related attributes of water that affect both ecology and human uses of water are poorly understood. We present methods for relating sediment loads to sediment concentration, visual clarity, and euphotic depth. The methods require upwards of twenty concurrent samples of sediment concentration, visual clarity, and euphotic depth at a river site where discharge is measured continuously. The sediment-related attributes are related to sediment concentration through regressions. When sediment loads are reduced by soil conservation action, percentiles of sediment concentration are necessarily reduced, and the corresponding percentiles of visual clarity and euphotic depth are increased. The approach is demonstrated on the Wairua River in the Northland region of New Zealand. For this river we show that visual clarity would increase relatively by approximately 1.4 times the relative reduction of sediment load. Median visual clarity would increase from 0.75m to 1.25m (making the river more often suitable for swimming) after a sediment load reduction of 50% associated with widespread soil conservation on pastoral land. Likewise euphotic depth would increase relatively by approximately 0.7 times the relative reduction of sediment load, and the median euphotic depth would increase from 1.5m to 2.0m with a 50% sediment load reduction. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Regional-scale input of dispersed and discrete volcanic ash to the Izu-Bonin and Mariana subduction zones

    NASA Astrophysics Data System (ADS)

    Scudder, Rachel P.; Murray, Richard W.; Schindlbeck, Julie C.; Kutterolf, Steffen; Hauff, Folkmar; McKinley, Claire C.

    2014-11-01

    We have geochemically and statistically characterized bulk marine sediment and ash layers at Ocean Drilling Program Site 1149 (Izu-Bonin Arc) and Deep Sea Drilling Project Site 52 (Mariana Arc), and have quantified that multiple dispersed ash sources collectively comprise ˜30-35% of the hemipelagic sediment mass entering the Izu-Bonin-Mariana subduction system. Multivariate statistical analyses indicate that the bulk sediment at Site 1149 is a mixture of Chinese Loess, a second compositionally distinct eolian source, a dispersed mafic ash, and a dispersed felsic ash. We interpret the source of these ashes as, respectively, being basalt from the Izu-Bonin Front Arc (IBFA) and rhyolite from the Honshu Arc. Sr-, Nd-, and Pb isotopic analyses of the bulk sediment are consistent with the chemical/statistical-based interpretations. Comparison of the mass accumulation rate of the dispersed ash component to discrete ash layer parameters (thickness, sedimentation rate, and number of layers) suggests that eruption frequency, rather than eruption size, drives the dispersed ash record. At Site 52, the geochemistry and statistical modeling indicates that Chinese Loess, IBFA, dispersed BNN (boninite from Izu-Bonin), and a dispersed felsic ash of unknown origin are the sources. At Site 1149, the ash layers and the dispersed ash are compositionally coupled, whereas at Site 52 they are decoupled in that there are no boninite layers, yet boninite is dispersed within the sediment. Changes in the volcanic and eolian inputs through time indicate strong arc-related and climate-related controls.

  11. Trends in chlorinated hydrocarbon levels in Hudson River basin sediments.

    PubMed

    Bopp, R F; Chillrud, S N; Shuster, E L; Simpson, H J; Estabrooks, F D

    1998-08-01

    Analysis of sections from dated sediment cores were used to establish geographic distributions and temporal trends of chlorinated hydrocarbon contaminant levels in sediments from natural waters of the Hudson River basin. Radiometric dating was based primarily on the depth distribution of 137(Cs) in the cores and on the occurrence of detectable levels of 7(Be) in surface sediment samples. Eighteen sampling sites included several along the main stem of the Hudson, its major tributaries, and components of the New York/New Jersey (NY/NJ) harbor complex. Drinking-water reservoirs were sampled to place upper limits on atmospheric inputs. Core sections were analyzed for polychlorinated biphenyls (PCBs), 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT)-derived compounds, chlordane, and dioxins. Sediment concentrations of most contaminants at most sites have decreased significantly since the mid-1960s. The data provide a basinwide perspective on major point-source inputs of PCBs to the upper Hudson River and of 2,3,7,8-tetrachlorodibenzo-p-dioxin and DDT to the lower Passaic River. Evidence was found for significant but poorly characterized sources of PCBs and chlordane to the western NY/NJ harbor, and of highly chlorinated dioxins to the upstream sites on the main stem of the Hudson. The results indicate that analysis of dated sediment samples is a most effective and efficient monitoring tool for the study of large-scale geographic and temporal trends in levels of particle-associated contaminants.

  12. Response of a macrotidal estuary to changes in anthropogenic mercury loading between 1850 and 2000.

    PubMed

    Sunderland, Elsie M; Dalziel, John; Heyes, Andrew; Branfireun, Brian A; Krabbenhoft, David P; Gobas, Frank A P C

    2010-03-01

    Methylmercury (MeHg) bioaccumulation in marine food webs poses risks to fish-consuming populations and wildlife. Here we develop and test an estuarine mercury cycling model for a coastal embayment of the Bay of Fundy, Canada. Mass budget calculations reveal that MeHg fluxes into sediments from settling solids exceed losses from sediment-to-water diffusion and resuspension. Although measured methylation rates in benthic sediments are high, rapid demethylation results in negligible net in situ production of MeHg. These results suggest that inflowing fluvial and tidal waters, rather than coastal sediments, are the dominant MeHg sources for pelagic marine food webs in this region. Model simulations show water column MeHg concentrations peaked in the 1960s and declined by almost 40% by the year 2000. Water column MeHg concentrations respond rapidly to changes in mercury inputs, reaching 95% of steady state in approximately 2 months. Thus, MeHg concentrations in pelagic organisms can be expected to respond rapidly to mercury loading reductions achieved through regulatory controls. In contrast, MeHg concentrations in sediments have steadily increased since the onset of industrialization despite recent decreases in total mercury loading. Benthic food web MeHg concentrations are likely to continue to increase over the next several decades at present-day mercury emissions levels because the deep active sediment layer in this system contains a large amount of legacy mercury and requires hundreds of years to reach steady state with inputs.

  13. Concentration distribution and assessment of several heavy metals in sediments of west-four Pearl River Estuary

    NASA Astrophysics Data System (ADS)

    Wang, Shanshan; Cao, Zhimin; Lan, Dongzhao; Zheng, Zhichang; Li, Guihai

    2008-09-01

    Grain size parameters, trace metals (Co, Cu, Ni, Pb, Cr, Zn, Ba, Zr and Sr) and total organic matter (TOM) of 38 surficial sediments and a sediment core of west-four Pearl River Estuary region were analyzed. The spacial distribution and the transportation procession of the chemical element in surficial sediments were studied mainly. Multivariate statistics are used to analyses the interrelationship of metal elements, TOM and the grain size parameters. The results demonstrated that terrigenous sediment taken by the rivers are main sources of the trace metal elements and TOM, and the lithology of parent material is a dominating factor controlling the trace metal composition in the surficial sediment. In addition, the hydrodynamic condition and landform are the dominating factors controlling the large-scale distribution, while the anthropogenic input in the coastal area alters the regional distribution of heavy metal elements Co, Cu, Ni, Pb, Cr and Zn. The enrichment factor (EF) analysis was used for the differentiation of the metal source between anthropogenic and naturally occurring, and for the assessment of the anthropogenic influence, the deeper layer content of heavy metals were calculated as the background values and Zr was chosen as the reference element for Co, Cu, Ni, Pb, Cr and Zn. The result indicate prevalent enrichment of Co, Cu, Ni, Pb and Cr, and the contamination of Pb is most obvious, further more, the peculiar high EF value sites of Zn and Pb probably suggest point source input.

  14. Response of a macrotidal estuary to changes in anthropogenic mercury loading between 1850 and 2000

    USGS Publications Warehouse

    Sunderl, E.M.; Dalziel, J.; Heyes, A.; Branfireun, B.A.; Krabbenhoft, D.P.; Gobas, F.A.P.C.

    2010-01-01

    Methylmercury (MeHg) bioaccumulation in marine food webs poses risks to fish-consuming populations and wildlife. Here we develop and test an estuarine mercury cycling model for a coastal embayment of the Bay of Fundy, Canada. Mass budget calculations reveal that MeHg fluxes into sediments from settling solids exceed losses from sediment-to-water diffusion and resuspension. Although measured methylation rates in benthic sediments are high, rapid demethylation results in negligible net in situ production of MeHg. These results suggest that inflowing fluvial and tidal waters, rather than coastal sediments, are the dominant MeHg sources for pelagic marine food webs in this region. Model simulations show water column MeHg concentrations peaked in the 1960s and declined by almost40% by the year 2000. Water column MeHg concentrations respond rapidly to changes in mercury inputs, reaching 95% of steady state in approximately 2 months. Thus, MeHg concentrations in pelagic organisms can be expected to respond rapidly to mercury loading reductions achieved through regulatory controls. In contrast MeHg concentrations in sediments have steadily increased since the onset of industrialization despite recent decreases in total mercury loading. Benthic food web MeHg concentrations are likely to continue to increase over the next several decades at present-day mercury emissions levels because the deep active sediment layer in this system contains a large amount of legacy mercury and requires hundreds of years to reach steady state with inputs. ?? 2010 American Chemical Society.

  15. Coastal change from a massive sediment input: Dam removal, Elwha River, Washington, USA

    USGS Publications Warehouse

    Warrick, Jonathan A.; Gelfenbaum, Guy R.; Stevens, Andrew; Miller, Ian M.; Kaminsky, George M.; Foley, Melissa M.

    2015-01-01

    The removal of two large dams on the Elwha River, Washington, provides an ideal opportunity to study coastal morphodynamics during increased sediment supply. The dam removal project exposed ~21 million cubic meters (~30 million tonnes) of sediment in the former reservoirs, and this sediment was allowed to erode by natural river processes. Elevated rates of sand and gravel sediment transport in the river occurred during dam removal. Most of the sediment was transported to the coast, and this renewed sediment supply resulted in hundreds of meters of seaward expansion of the river delta since 2011. Our most recent survey in January 2015 revealed that a cumulative ~3.5 million m3 of sediment deposition occurred at the delta since the beginning of the dam removal project, and that aggradation had exceeded 8 m near the river mouth. Some of the newly deposited sediment has been shaped by waves and currents into a series of subaerial berms that appear to move shoreward with time.

  16. Geochemical, mineralogical and microbiological characteristics of sediment from a naturally reduced zone in a uranium-contaminated aquife

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, K M; K Kukkadapu, R K; Qafoku, N P

    2012-05-23

    Localized zones or lenses of naturally reduced sediments have the potential to play a significant role in the fate and transport of redox-sensitive metals and metalloids in aquifers. To assess the mineralogy, microbiology and redox processes that occur in these zones, several cores from a region of naturally occurring reducing conditions in a U-contaminated aquifer (Rifle, CO) were examined. Sediment samples from a transect of cores ranging from oxic/suboxic Rifle aquifer sediment to naturally reduced sediment were analyzed for U and Fe content, oxidation state, and mineralogy; reduced S phases; and solid-phase organic C content using a suite of analyticalmore » and spectroscopic techniques on bulk sediment and size fractions. Solid-phase U concentrations were higher in the naturally reduced zone, with a high proportion of the U present as U(IV). The sediments were also elevated in reduced S phases and Fe(II), indicating it is very likely that U(VI), Fe(III), and SO4 reduction has occurred or is occurring in the sediment. The microbial community was assessed using lipid- and DNA-based techniques, and statistical redundancy analysis was performed to determine correlations between the microbial community and the geochemistry. Increased concentrations of solid-phase organic C and biomass in the naturally reduced sediment suggests that natural bioreduction is stimulated by a zone of increased organic C concentration associated with fine-grained material and lower permeability to groundwater flow. Characterization of the naturally bioreduced sediment provides an understanding of the natural processes that occur in the sediment under reducing conditions and how they may impact natural attenuation of radionuclides and other redox sensitive materials. Results also suggest the importance of recalcitrant organic C for maintaining reducing conditions and U immobilization.« less

  17. Geochemical, mineralogical and microbiological characteristics of sediment from a naturally reduced zone in a uranium-contaminated aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, K. M.; Kukkadapu, R. K.; Qafoku, N. P.

    2012-08-01

    Localized zones or lenses of naturally reduced sediments have the potential to play a significant role in the fate and transport of redox-sensitive metals and metalloids in aquifers. To assess the mineralogy, microbiology and redox processes that occur in these zones, several cores from a region of naturally occurring reducing conditions in a U-contaminated aquifer (Rifle, CO) were examined. Sediment samples from a transect of cores ranging from oxic/suboxic Rifle aquifer sediment to naturally reduced sediment were analyzed for U and Fe content, oxidation state, and mineralogy; reduced S phases; and solid-phase organic C content using a suite of analyticalmore » and spectroscopic techniques on bulk sediment and size fractions. Solid-phase U concentrations were higher in the naturally reduced zone, with a high proportion of the U present as U(IV). The sediments were also elevated in reduced S phases and Fe(II), indicating it is very likely that U(VI), Fe(III), and SO 4 reduction has occurred or is occurring in the sediment. The microbial community was assessed using lipid- and DNA-based techniques, and statistical redundancy analysis was performed to determine correlations between the microbial community and the geochemistry. Increased concentrations of solid-phase organic C and biomass in the naturally reduced sediment suggests that natural bioreduction is stimulated by a zone of increased organic C concentration associated with fine-grained material and lower permeability to groundwater flow. Characterization of the naturally bioreduced sediment provides an understanding of the natural processes that occur in the sediment under reducing conditions and how they may impact natural attenuation of radionuclides and other redox sensitive materials. Results also suggest the importance of recalcitrant organic C for maintaining reducing conditions and U immobilization.« less

  18. Bioturbation delays attenuation of DDT by clean sediment cap but promotes sequestration by thin-layered activated carbon.

    PubMed

    Lin, Diana; Cho, Yeo-Myoung; Werner, David; Luthy, Richard G

    2014-01-21

    The effects of bioturbation on the performance of attenuation by sediment deposition and activated carbon to reduce risks from DDT-contaminated sediment were assessed for DDT sediment-water flux, biouptake, and passive sampler (PE) uptake in microcosm experiments with a freshwater worm, Lumbriculus variegatus. A thin-layer of clean sediment (0.5 cm) did not reduce the DDT flux when bioturbation was present, while a thin (0.3 cm) AC cap was still capable of reducing the DDT flux by 94%. Bioturbation promoted AC sequestration by reducing the 28-day DDT biouptake (66%) and DDT uptake into PE (>99%) compared to controls. Bioturbation further promoted AC-sediment contact by mixing AC particles into underlying sediment layers, reducing PE uptake (55%) in sediment compared to the AC cap without bioturbation. To account for the observed effects from bioturbation, a mass transfer model together with a biodynamic model were developed to simulate DDT flux and biouptake, respectively, and models confirmed experimental results. Both experimental measurements and modeling predictions imply that thin-layer activated carbon placement on sediment is effective in reducing the risks from contaminated sediments in the presence of bioturbation, while natural attenuation process by clean sediment deposition may be delayed by bioturbation.

  19. Storms, channel changes, and a sediment budget for an urban-suburban stream, Difficult Run, Virginia, USA

    USGS Publications Warehouse

    Gellis, Allen C.; Myers, Michael; Noe, Gregory; Hupp, Cliff R.; Shenk, Edward; Myers, Luke

    2017-01-01

    Determining erosion and deposition rates in urban-suburban settings and how these processes are affected by large storms is important to understanding geomorphic processes in these landscapes. Sediment yields in the suburban and urban Upper Difficult Run are among the highest ever recorded in the Chesapeake Bay watershed, ranging from 161 to 376 Mg/km2/y. Erosion and deposition of streambanks, channel bed, and bars and deposition of floodplains were monitored between 1 March 2010 and 18 January 2013 in Upper Difficult Run, Virginia, USA. We documented the effects of two large storms, Tropical Storm Lee (September 2011), a 100-year event, and Super Storm Sandy (October 2012) a 5-year event, on channel erosion and deposition. Variability in erosion and deposition rates for all geomorphic features, temporally and spatially, are important conclusions of this study. Tropical Storm Lee was an erosive event, where erosion occurred on 82% of all streambanks and where 88% of streambanks that were aggrading before Tropical Storm Lee became erosional. Statistical analysis indicated that drainage area explains linear changes (cm/y) in eroding streambanks and that channel top width explains cross-sectional area changes (cm2/y) in eroding streambanks and floodplain deposition (mm/y). A quasi-sediment budget constructed for the study period using the streambanks, channel bed, channel bars, and floodplain measurements underestimated the measured suspended-sediment load by 61% (2130 Mg/y). Underestimation of the sediment load may be caused by measurement errors and to contributions from upland sediment sources, which were not measured but estimated at 36% of the gross input of sediment. Eroding streambanks contributed 42% of the gross input of sediment and accounted for 70% of the measured suspended-sediment load. Similar to other urban watersheds, the large percentage of impervious area in Difficult Run and direct runoff of precipitation leads to increased streamflow and streambank erosion. This study emphasizes the importance of streambanks in urban-suburban sediment budgets but also suggests that other sediment sources, such as upland sources, which were not measured in this study, can be an important source of sediment.

  20. Environmental assessment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Santander Bay, Northern Spain.

    PubMed

    Viguri, J; Verde, J; Irabien, A

    2002-07-01

    Samples of intertidal surface sediments (0-2 cm) were collected in 17 stations of the Santander Bay, Cantabric Sea, Northern Spain. The concentrations of polycyclic aromatic hydrocarbons (PAHs), 16, were analysed by HPLC and MS detection. Surface sediments show a good linear correlation among the parameters of the experimental organic matter evaluation, where total carbon (TC) and loss on ignition (LOI) are approximately 2.5 and 5 times total organic carbon (TOC). A wide range of TOC from 0.08% to 4.1%, and a broad distribution of the sum of sigma16PAHs, from 0.02 to 344.6 microg/g d.w., which can be correlated by an exponential equation to the TOC, has been identified. A qualitative relationship may be established between the industrial input along the rivers and the concentration of sigma6PAHs in the sediments of the estuaries: Boo estuary (8404-4631 microg/g OC), Solia-San Salvador estuaries (305-113 microg/g OC) and Cubas estuary (31-32 microg/g OC). This work shows a dramatic change in the spatial distribution in the concentration of PAHs of intertidal surface sediments. The left edge of the Bay has the main traffic around the city and the major source of PAHs is from combustion processes and estuarine inputs, leading to medium values of PAHs in the sediments; the right edge of the Bay has much lesser anthropogenic activities leading to lower values of PAHs in sediments. The distribution of individual PAHs in sediments varies widely depending on their structure and molecular weight; the 4-6 ring aromatics predominate in polluted sediments due to their higher persistence. The isomer ratio does not allow any clear identification of the PAHs origin. Environmental evaluation according to Dutch guidelines and consensus sediment quality guidelines based on ecotoxicological data leads to the same conclusion, sediments in the Santander Bay show a very different environmental quality depending on the spatial position from heavily polluted/medium effects to non-polluted/below threshold effects. These results indicate that local sources of PAHs, especially estuary discharges, lead to very different qualities of sediments in coastal zones, where traffic and industrial activities take place.

  1. Geochemistry of sulfur in the Florida Everglades; 1994 through 1999

    USGS Publications Warehouse

    Bates, Anne L.; Orem, W.H.; Harvey, J.W.; Spiker, E. C.

    2000-01-01

    In this report, we present data on the geochemistry of sulfur in sediments and in surface water, groundwater, and rainwater in the Everglades region in south Florida. The results presented here are part of a larger study intended to determine the roles played by the cycling of carbon, nitrogen, phosphorus, and sulfur in the ecology of the south Florida wetlands. The geochemistry of sulfur in the region is particularly important because of its link to the production of toxic methylmercury through processes mediated by sulfate reducing bacteria. Sediment cores were collected from the Everglades Agricultural Area (EAA), Water Conservation Areas (WCAs) 1A and 2A, from Lake Okeechobee, and from Taylor Slough in the southern Everglades. Water collection was more widespread and includes surface water from WCAs 1A, 2A, 3A, 2B, the EAA, Taylor Slough, Lake Okeechobee, and the Kissimmee River. Groundwater was collected from The Everglades Nutrient Removal Area (ENR) and from WCA 2A. Rainwater was collected at two month intervals over a period of one year from the ENR and from WCA 2A. Water was analyzed for sulfate concentration and sulfate sulfur stable isotopic ratio (34S/32S). Sediment cores were analyzed for total sulfur concentration and/or for concentrations of sulfur species (sulfate, organic sulfur, disulfides, and acid volatile sulfides (AVS)) and for their stable sulfur isotopic ratio. Results show a decrease in total sulfur content (1.57 to 0.61 percent dry weight) with depth in two sediment cores collected in WCA 2A, indicating that there has been an increase in total sulfur content in recent times. A sediment core from the center of Lake Okeechobee shows a decrease in total sulfur content with depth (0.28 to 0.08 percent dry weight). A core from the periphery of the lake (South Bay) likewise shows a decrease in total sulfur content with depth (1.00 to 0.69 percent dry weight), however, the overall sulfur content is greater than that near the center at all depths. This suggests input of sulfur in recent times, especially near the lake margins. Sediments show a general decrease in sulfur concentration with depth, probably because of increases in sulfur input to the marshes in recent times. Regional differences in the concentrations and stable isotopic ratios of sulfate sulfur in surface water show that sulfur contamination to the northern Everglades likely originates from canals draining the EAA.

  2. Numerical Model of Channel and Aquatic Habitat Response to Sediment Pulses in Mountain Rivers of Central Idaho

    NASA Astrophysics Data System (ADS)

    Lewicki, M.; Buffington, J. M.; Thurow, R. F.; Isaak, D. J.

    2006-12-01

    Mountain rivers in central Idaho receive pulsed sediment inputs from a variety of mass wasting processes (side-slope landslides, rockfalls, and tributary debris flows). Tributary debris flows and hyperconcentrated flows are particularly common due to winter "rain-on-snow" events and summer thunderstorms, the effects of which are amplified by frequent wildfire and resultant changes in vegetation, soil characteristics, and basin hydrology. Tributary confluences in the study area are commonly characterized by debris fans built by these repeated sediment pulses, providing long-term controls on channel slope, hydraulics and sediment transport capacity in the mainstem channel network. These long-term impacts are magnified during debris-flow events, which deliver additional sediment and wood debris to the fan and may block the mainstem river. These changes in physical conditions also influence local and downstream habitat for aquatic species, and can impact local human infrastructure (roads, bridges). Here, we conduct numerical simulations using a modified version of Cui's [2005] network routing model to examine bedload transport and debris-fan evolution in medium- sized watersheds (65-570 km2) of south-central Idaho. We test and calibrate the model using data from a series of postfire debris-flow events that occurred from 2003-4. We investigate model sensitivity to different controlling factors (location of the pulse within the stream network, volume of the pulse, and size distribution of the input material). We predict that on decadal time scales, sediment pulses cause a local coarsening of the channel bed in the vicinity of the sediment input, and a wave of downstream fining over several kilometers of the river (as long as the pulse material is not coarser than the stream bed itself). The grain-size distribution of the pulse influences its rate of erosion, the rate and magnitude of downstream fining, and the time required for system recovery. The effects of textural fining on spawning habitat depend on the size of sediment in the wave relative to that of the downstream channel; fining can improve spawning habitat availability in channels that are otherwise too coarse, or degrade habitat availability in finer-grained channels. Despite the perceived negative effects of sediment pulses, they can be important sources of gravel and wood debris, creating downstream spawning sites and productive wood-forced habitats. Field observations illustrate that opportunistic salmonids will spawn along the margins of recently deposited debris fans, emphasizing the biological value of such disturbances and the plasticity of salmonids to natural disturbances.

  3. Deposition and chemistry of bottom sediments in Cochiti Lake, north-central New Mexico

    USGS Publications Warehouse

    Wilson, Jennifer T.; Van Metre, Peter C.

    2000-01-01

    Bottom sediments were sampled at seven sites in Cochiti Lake in September 1996. Sediment cores penetrating the entire lacustrine sediment sequence were collected at one site near the dam. Surficial sediments were sampled at the near-dam site and six other sites located along the length of the reservoir. Analyses included grain size, major and trace elements, organochlorine compounds, polycyclic aromatic hydrocarbons (PAH's), and radionuclides. Concentrations of trace elements, organic compounds, and radionuclides are similar to those in other Rio Grande reservoirs and are low compared to published sediment-quality guidelines. Most elements and compounds that were detected did not show trends in the age estimated sediment cores with the exception of a decreasing trend in total DDT concentrations from about 1980 to 1992. The mixture of PAH's suggests that the increase is caused by inputs of fuel-related PAH and not combustion- related PAH.

  4. Chlorine-36 dating of saline sediments: Preliminary results from Searles Lake, California

    USGS Publications Warehouse

    Phillips, F.M.; Smith, G.I.; Bentley, H.W.; Elmore, D.; Gove, H.E.

    1983-01-01

    Measurements have been made of the ratios of chlorine-36 to chlorine in five halite samples from Searles Lake sediments, previously dated by carbon-14, thorium-230, and magnetostratigraphic techniques. The ages calculated from the chlorine ratios are generally concordant with those from the other methods, implying the constancy of the chlorine input ratio over the last million years.

  5. Low temperature hydrothermal maturation of organic matter in sediments from the Atlantis II Deep, Red Sea.

    PubMed

    Simoneit, B R; Grimalt, J O; Hayes, J M; Hartman, H

    1987-01-01

    Hydrocarbons and bulk organic matter of two sediment cores (No. 84 and 126, CHAIN 61 cruise) located within the Atlantis II Deep have been analyzed. Although the brines overlying the coring areas were reported to be sterile, microbial inputs and minor terrestrial sources the major sedimentary organic material. This input is derived from the upper water column above the brines. Both steroid and triterpenoid hydrocarbons show that extensive acid-catalyzed reactions are occurring in the sediments. In comparison with other hydrothermal (Guaymas Basin) or intrusive systems (Cape Verde Rise), the Atlantis II Deep exhibits a lower degree of thermal maturation. This is easily deduced from the elemental composition of the kerogens and the absence of polynuclear aromatic hydrocarbons of a pyrolytic origin in the bitumen. The lack of carbon number preference among the n-alkanes suggests, especially in the case of the long chain homologs, that the organic matter of Atlantis II Deep sediments has undergone some degree of catagenesis. However, the yields of hydrocarbons are much lower than those observed in other hydrothermal areas. The effect of lower temperature and poor source-rock characteristics appear to be responsible for the differences.

  6. New constraints on subduction inputs and volatile outputs along the Aleutian Arc

    NASA Astrophysics Data System (ADS)

    Lopez, T. M.; Fischer, T. P.; Plank, T. A.; Rizzo, A. L.; Rasmussen, D. J.; Cottrell, E.; Werner, C. A.; Kern, C.; Ilanko, T.; Buff, L.; Andrys, J.; Kelley, K. A.

    2017-12-01

    Volatile cycling drives volcanism in subduction zone settings. At arcs, volatiles can originate from the subducted slab, mantle wedge and/or crust. Each region has characteristic isotopic signatures, which can be used to fingerprint volatile provenance. We speculate that differences in subduction parameters, such as convergence angle, plate coupling and subducted sediment fluxes, may lead to differences in volatile provenance, which may in turn influence volcanic eruption style and frequency. Here we combine updated constraints on subduction inputs and volatile outputs to provide new insights into volatile cycling within the Aleutian Arc. The high proportion of organic carbon (80-100% to total carbon) in sediments subducting at the Aleutian trench stands out globally and predicts a light carbon isotopic composition of recycled volcanic fluids. We assess volatile outputs on volcanic timescales and along the arc by combining carbon (C), nitrogen (N) and helium (He) isotopic compositions of volcanic gases and new analyses of He and, where possible, C isotopes in olivine-hosted fluid inclusions. From our preliminary isotopic analyses of volcanic gases, we find a greater proportion of mantle-derived volatiles released from the Western segment of the Aleutian Arc (>40% mantle) compared with other volcanic arcs around the world (<30% mantle), where volatiles are sourced primarily from subducted or upper crustal carbonates. This trend may be due to the oblique convergence and low subducted sediment input in this region. The Aleutian Arc also exhibits among the lightest carbon isotope ratios of arcs worldwide (δ13C = -10 to -15‰), especially in the central part of the arc, where organic-bearing terrigneous sediment fills the trench and the convergence rate is high. New constraints on subduction inputs and outputs presented here will help discriminate between upper crustal and subducted carbon sources, and provide further insights into volatile cycling and subduction processes within the Aleutian Arc.

  7. Permafrost Mobilization from the Watershed to the Colville River Delta: Evidence from Biomarkers and 14C Ramped Pyrolysis

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Bianchi, T. S.; Cui, X.; Rosenheim, B. E.; Ping, C. L.; Kanevskiy, M. Z.; Hanna, A. M.; Allison, M. A.

    2016-12-01

    As temperatures in the Arctic rise abnormally fast, permafrost in the region is vulnerable to extensive thawing. This could release previously frozen organic carbon (OC) into the contemporary carbon cycle, giving a positive feedback on global warming. Recent research has found the presence of particulate permafrost in rivers, deltas, and continental shelves in the Arctic, but little direct evidence exists on the mechanism of transportation of previously frozen soils from watershed to the coast. The Colville River in northern Alaska is the largest North American Arctic River with a continuous permafrost within its watershed. Previous work has found evidence for the deposition of previously frozen soils in the Colville River delta (Schreiner et al., 2014). Here, we compared the bulk organic carbon thermal properties, ages of soils and river and delta sediments from the Colville River drainage system using 14C Ramped Pyrolysis and chemical biomarkers. Our data show that deep permafrost soils as well as river and delta sediments had similar pyrograms and biomarker signatures, reflecting transport of soils from watershed to the delta. Surface soil had pyrograms indicative of less stable (more biodegradable) OC than deeper soil horizons. Similarity in pyrograms of deep soils and river sediment indicated the limited contribution of surface soils to riverine particulate OC inputs. Sediments in the delta showed inputs of yedoma (ice-rich syngenetic permafrost with large ice wedges) from the watershed sources (e.g., river bank erosion) in addition to peat inputs, that were largely from coastal erosion.

  8. The Influence of Topography on Subaqueous Sediment Gravity Flows and the Resultant Deposits: Examples from Deep-water Systems in Offshore Morocco and Offshore Trinidad

    NASA Astrophysics Data System (ADS)

    Deng, H.; Wood, L.; Overeem, I.; Hutton, E.

    2016-12-01

    Submarine topography has a fundamental control on the movement of sediment gravity flows as well as the distribution, morphology, and internal heterogeneity of resultant overlying, healing-phase, deep-water reservoirs. Some of the most complex deep-water topography is generated through both destructive and constructive mass transport processes. A series of numerical models using Sedflux software have been constructed over high resolution mass transport complexes (MTCs) top paleobathymetric surfaces mapped from 3D seismic data in offshore Morocco and offshore eastern Trinidad. Morocco's margin is characterized by large, extant rafted blocks and a flow perpendicular fabric. Trinidad's margin is characterized by muddier, plastic flows and isolated extrusive diapiric buttresses. In addition, Morocco's margin is a dry, northern latitude margin that lacks major river inputs, while Trinidad's margin is an equatorial, wet climate that is fed by the Orinoco River and delta. These models quantitatively delineate the interaction of healing-phase gravity flows on the tops of two very different topographies and provide insights into healing-phase reservoir distribution and stratigraphic trap development. Slopes roughness, curvatures, and surface shapes are measured and quantified relative to input points to quantify depositional surface character. A variety of sediment gravity flow types have been input and the resultant interval assessed for thickness and distribution relative to key topography parameters. Mathematical relationships are to be analyzed and compared with seismic data interpretation of healing-phase interval character, toward an improved model of gravity sedimentation and topography interactions.

  9. Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides in water columns from the Pearl River and the Macao harbor in the Pearl River Delta in South China.

    PubMed

    Luo, Xiaojun; Mai, Bixian; Yang, Qingshu; Fu, Jiamo; Sheng, Guoying; Wang, Zhishi

    2004-06-01

    Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) were measured in suspended particles and dissolved phase from the Baiertang water column and the Macao water column samples as collected from the Guangzhou channel of the Pearl River and the Macao harbor, where the sediments were heavily contaminated with organic pollutants. Total OCPs concentration varies from 23.4 to 61.7 ng/l in Baiertang water column and from 25.2 to 67.8 ng/l in Macao column, while total PAHs concentration varies from 987.1 to 2878.5 ng/l in the Baiertang water column and from 944.0 to 6654.6 ng/l in the Macao column. The vertical distribution profiles of pollutants and the partition of pollutants between particles and dissolved phases indicate that the sediments in Baiertang act as an important source of selected pollutants, and the pollutants in water of this region were mainly originated from the release and re-suspension of contaminants residing in the sediments. The sediments in Macao harbor act as a reservoir for organochlorine pesticides, such as DDTs mainly introduced by river inflow from Xijiang and PAHs input by brackish water from the Lingdingyang estuary. Combustion of fossil fuels and petroleum input are the main sources of PAHs in the Macao water column, while combustion of fossil fuels and coal is responsible for the PAHs in the Baiertang water column. The ratios of DDT/(DDD+DDE) for the Macao water column samples demonstrate that such chemicals were input into this region in recent times.

  10. Exposure of inshore corals to suspended sediments due to wave-resuspension and river plumes in the central Great Barrier Reef: A reappraisal

    NASA Astrophysics Data System (ADS)

    Orpin, Alan R.; Ridd, Peter V.

    2012-09-01

    Suspended sediment in the coastal zone is an important limiting factor for the growth and health of inshore coral reefs. The Great Barrier Reef (GBR) lagoon receives sediment from a number of tropical rivers and the physical and biological effects of riverine discharge and turbidity within the lagoon are of considerable scientific and public interest. Published data from two inshore regions of the GBR are reviewed herein to evaluate the relative influence of river plumes and wave resuspension on suspended sediment concentration (SSC) around coral communities over a range of timescales. Data from Cleveland Bay and from other sites near the mouth of the Tully River show that wave resuspension is the most dominant mechanism controlling SSC at inshore reefs. At many nearshore areas today fine-grained bed sediment is abundant, consistent with millennial-scale geological evidence of sediment dispersal prior to European settlement and catchment impacts. Flocculation, particle settling and dilution occurs within the river plume, and riverine sediment concentrations at reefs directly attributable to individual flood inputs is significantly reduced, suggesting that the plume component is a relatively small contribution to the total suspended sediment mass balance over inter-annual timescales. Resuspension events can generate higher ambient SSC than that measured in flood waters (e.g. Tully River). In addition, while visually spectacular, satellite and aerial images offer limited quantitative information of total sediment load carried by hypopycnal plumes, as many of these plumes may contain algal blooms but relatively low concentrations of suspended sediment (ca. <5 mg/l). Nonetheless, the cumulative effect of sediment-laden plumes may be a vector for other adsorbed contaminants of potential ecological concern, but coral smothering by hypopycnal plumes alone appears an unlikely impact particularly at inner- and middle-shelf reefs exposed to high wave energy and resuspension. Terrigenous sediment dispersal and turbidity within the GBR is governed by physical processes common to many continental shelves globally. Despite the examples examined in detail herein, the role of frequency, magnitude and duration in determining the impact or exposure of corals to elevated SSCs is poorly constrained by limited quantitative measurements during events, and our ability to place these into a broader temporal context. More high-quality observational data, at meaningful length-scales, can only enhance our ability to disentangle potential behavioural shifts in environmental responses.

  11. An analysis of organic matter sources for surface sediments in the central South Yellow Sea, China: evidence based on macroelements and n-alkanes.

    PubMed

    Zhang, Shengyin; Li, Shuanglin; Dong, Heping; Zhao, Qingfang; Lu, Xinchuan; Shi, Ji'an

    2014-11-15

    By analyzing the composition of n-alkane and macroelements in the surface sediments of the central South Yellow Sea of China, we evaluated the influencing factors on the distribution of organic matter. The analysis indicates that the distribution of total organic carbon (TOC) was low in the west and high in the east, and TOC was more related to Al2O3 content than medium diameter (MD). The composition of n-alkanes indicated the organic matter was mainly derived from terrestrial higher plants. Contributions from herbaceous plants and woody plants were comparable. The comprehensive analysis of the parameters of macroelements and n-alkanes showed the terrestrial organic matter in the central South Yellow Sea was mainly from the input of the modern Yellow River and old Yellow River. However, some samples exhibited evident input characteristics from petroleum sources, which changed the original n-alkanes of organic matter in sediments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Sources markers in aerosols, oceanic particles and sediments

    NASA Astrophysics Data System (ADS)

    Saliot, A.

    2009-02-01

    This review presents some diagnostic criteria used for identifying and quantifying terrestrial organic matter inputs to the ocean. Coupled to the isotopic composition of total organic carbon, the analysis of stable biomarkers permits to trace higher plant contributions in aerosols, dusts, sedimenting particles and dissolved phase in the water column and ultimately in recent and ancient sediments and soils. Some applications are presented, based on the analysis of n-alkyl compounds by a combination of gas chromatography and mass spectrometry (n-alkanes, n-alkanols, n-alkanoic acids and wax esters). Another approach has been developed using the analysis of macromolecular compounds present in higher plants. Abundances of the phenolic compounds from lignin, benzene carboxylic acids obtained during cupric oxide oxidation, Curie pyrolysis are used to characterise terrestrial organic matter sources and inputs. Finally due to the importance of biomass burning in continent-ocean transfers, biomarkers are presented in the polycyclic aromatic hydrocarbon class and for monosaccharide derivatives from the breakdown of cellulose.

  13. Human Impact on the Geomorphological Evolution of the Opak River Following the 2010 Large Volcanic Event of the Merapi (Indonesia)

    NASA Astrophysics Data System (ADS)

    Gob, F.; Gautier, E.; Virmoux, C.; Grancher, D.; Tamisier, V.; Primanda, K. W.; Wibowo, S. B.

    2016-12-01

    During large eruptions, active volcanos may introduce very large quantities of sediment to the drainage system through tephra falls and pyroclastic flows, thus modifying the river system. Once remobilized, the sediment inputs propagate downstream as a sediment wave modifying the channel geometry of the river and reloading the sediment cascade of the catchments. Considering the extreme nature of the volcanic events, the parameters that control the post-eruption evolution of the river system are generally only described as natural and the role played by human activities seems negligible. Communities that live on the volcano slopes and foothills are rather considered to suffer from natural disasters associated with the eruption and its consequences (lahars, etc.) or take advantage of the benefits of the volcanic environment (rich soil, mining and geothermal resources, etc.). This study examines the impact of human influence on the fluvial readjustment of a Javanese river impacted by a major eruption of the Merapi volcano (Indonesia) in October/November 2010. The basin of the Opak River was subject to substantial sediment input related to massive pyroclastic deposits that were remobilized by numerous lahars during the year after the eruption. Two study sites were equipped in order to evaluate the morphodynamic evolution of the riverbed of the Opak River. Topographic surveys, bedload particle marking and suspended sediment sampling revealed an important sediment mobilization during efficient flash-floods. Surprisingly, no bed aggradation related to the progradation of a sediment wave was observed. Two years after the eruptive event, marked bed incision was observed. The Opak River readjustment differs from that of other fluvial systems affected by massive eruptions in two ways. Firstly, the local population massively extracted the sand and blocks injected by the eruption as they represent a valuable economic resource. Secondly, several dams trapped the major part of the sediment load remobilized by lahars.

  14. Chemical evolution of the Salton Sea, California: Nutrient and selenium dynamics

    USGS Publications Warehouse

    Schroeder, R.A.; Orem, W.H.; Kharaka, Y.K.

    2002-01-01

    The Salton Sea is a 1000-km2 terminal lake located in the desert area of southeastern California. This saline (???44 000 mg l-1 dissolved solids) lake started as fresh water in 1905-07 by accidental flooding of the Colorado River, and it is maintained by agricultural runoff of irrigation water diverted from the Colorado River. The Salton Sea and surrounding wetlands have recently acquired substantial ecological importance because of the death of large numbers of birds and fish, and the establishment of a program to restore the health of the Sea. In this report, we present new data on the salinity and concentration of selected chemicals in the Salton Sea water, porewater and sediments, emphasizing the constituents of concern: nutrients (N and P), Se and salinity. Chemical profiles from a Salton Sea core estimated to have a sedimentation rate of 2.3 mm yr-1 show increasing concentrations of OC, N, and P in younger sediment that are believed to reflect increasing eutrophication of the lake. Porewater profiles from two locations in the Sea show that diffusion from bottom sediment is only a minor source of nutrients to the overlying water as compared to irrigation water inputs. Although loss of N and Se by microbial-mediated volatilization is possible, comparison of selected element concentrations in river inputs and water and sediments from the Salton Sea indicates that most of the N (from fertilizer) and virtually all of the Se (delivered in irrigation water from the Colorado River) discharged to the Sea still reside within its bottom sediment. Laboratory simulation on mixtures of sediment and water from the Salton Sea suggest that sediment is a potential source of N and Se to the water column under aerobic conditions. Hence, it is important that any engineered changes made to the Salton Sea for remediation or for transfer of water out of the basin do not result in remobilization of nutrients and Se from the bottom sediment into the overlying water.

  15. Mercury accumulation and attenuation at a rapidly forming delta with a point source of mining waste

    PubMed Central

    Johnson, Bryce E.; Esser, Bradley K.; Whyte, Dyan C.; Ganguli, Priya M.; Austin, Carrie M.; Hunt, James R.

    2009-01-01

    The Walker Creek intertidal delta of Tomales Bay, California is impacted by a former mercury mine within the watershed. Eleven short sediment cores (10 cm length) collected from the delta found monomethylmercury (MMHg) concentrations ranging from 0.3 to 11.4 ng/g (dry wt.), with lower concentrations occurring at the vegetated marsh and upstream channel locations. Algal mats common to the delta’s sediment surface had MMHg concentrations ranging from 7.5 to 31.5 ng/g, and the top 1 cm of sediment directly under the mats had two times greater MMHg concentrations compared to adjacent locations without algal covering. Spatial trends in resident biota reflect enhanced MMHg uptake at the delta compared to other bay locations. Eighteen sediment cores, 1 to 2 meters deep, collected from the 1.2 km2 delta provide an estimate of a total mercury (Hg) inventory of 2500 ± 500 kg. Sediment Hg concentrations ranged from pre-mining background conditions of approximately 0.1 μg/g to a post-mining maximum of 5 μg/g. Sediment accumulation rates were determined from three sediment cores using measured differences of 137Cs activity. We estimate a pre-mining Hg accumulation of less than 20 kg/yr, and a period of maximum Hg accumulation in the 1970s and 1980s with loading rates greater than 50 kg/yr, corresponding to the failure of a tailings dam at the mine site. At the time of sampling (2003) over 40 kg/yr of Hg was still accumulating at the delta, indicating limited recovery. We attribute observed spatial evolution of elevated Hg levels to ongoing inputs and sediment re-working, and estimate the inventory of the anthropogenic fraction of total Hg to be at least 1500 ± 300 kg. We suggest ongoing sediment inputs and methylation at the deltaic surface support enhanced mercury levels for resident biota and transfer to higher trophic levels throughout the Bay. PMID:19539980

  16. The use of composite fingerprints to quantify sediment sources in a wildfire impacted landscape, Alberta, Canada.

    PubMed

    Stone, M; Collins, A L; Silins, U; Emelko, M B; Zhang, Y S

    2014-03-01

    There is increasing global concern regarding the impacts of large scale land disturbance by wildfire on a wide range of water and related ecological services. This study explores the impact of the 2003 Lost Creek wildfire in the Crowsnest River basin, Alberta, Canada on regional scale sediment sources using a tracing approach. A composite geochemical fingerprinting procedure was used to apportion the sediment efflux among three key spatial sediment sources: 1) unburned (reference) 2) burned and 3) burned sub-basins that were subsequently salvage logged. Spatial sediment sources were characterized by collecting time-integrated suspended sediment samples using passive devices during the entire ice free periods in 2009 and 2010. The tracing procedure combines the Kruskal-Wallis H-test, principal component analysis and genetic-algorithm driven discriminant function analysis for source discrimination. Source apportionment was based on a numerical mass balance model deployed within a Monte Carlo framework incorporating both local optimization and global (genetic algorithm) optimization. The mean relative frequency-weighted average median inputs from the three spatial source units were estimated to be 17% (inter-quartile uncertainty range 0-32%) from the reference areas, 45% (inter-quartile uncertainty range 25-65%) from the burned areas and 38% (inter-quartile uncertainty range 14-59%) from the burned-salvage logged areas. High sediment inputs from burned and the burned-salvage logged areas, representing spatial source units 2 and 3, reflect the lasting effects of forest canopy and forest floor organic matter disturbance during the 2003 wildfire including increased runoff and sediment availability related to high terrestrial erosion, streamside mass wasting and river bank collapse. The results demonstrate the impact of wildfire and incremental pressures associated with salvage logging on catchment spatial sediment sources in higher elevation Montane regions where forest growth and vegetation recovery are relatively slow. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Hydrodynamic Controls on Archaeal Tetraether Lipid Compositions in Washington Margin Sediments: Insights From Compound-Specific Radiocarbon Measurements

    NASA Astrophysics Data System (ADS)

    Uchida, M.; Eglinton, T. I.; Montlucon, D. B.; Pearson, A.; Hayes, J. M.

    2008-12-01

    Continental margin sediments represent a large sink of organic carbon derived from marine and terrestrial sources. Archaeal glycerol dibiphytanyl glycerol tetraether lipids (GDGTs) are derived from both marine and terrestrial sources and have been used both for reconstruction of paleo sea surface temperatures and as an index of terrestrial carbon input to the marine sediments. However, the sources and modes of supply as well as the preservation of GDGTs in marginal sediments are poorly understood. The distribution and deposition of GDGTs is further complicated by hydrodynamic processes. We have analyzed a suite of surface sediment samples collected along a transect from the mouth of the Columbia River, across the Washington Margin, to the Cascadia Basin in the northeast Pacific Ocean. Sediments were separated according to their grain size and hydrodynamic properties, and the organic matter characterized in terms of its bulk elemental, isotopic, and molecular properties. Here we present radiocarbon measurements on individual GDGTs, alkenones, and fatty acids from size-fractionated sediments from shelf and slope sediments, and discuss the results in the context of previous studies of the molecular abundances and isotopic compositions of sedimentary organic matter for in this region. Systematic variations in elemental, isotopic and molecular-level composition are observed across the different particle classes. Moreover, these variations are manifested in the isotopic composition of different molecular markers of both marine and terrestrial sources organic matter. Both marine-derived lipids, including alkenones and marine archaeal tetraethers, and soil microbe-derived tetraether lipids show strong distributional and isotopic variations among the size-fractionated sediments. These variations in terrestrial and marine biomarker properties inform on the sources, particle dynamics, and transport history of organic matter buried on river-influenced continental margins. The implications of these findings for the application of molecular markers as proxies of organic matter input, and on the interpretation of past marine and continental environmental conditions from sedimentary records will also be discussed.

  18. Sedimentary evolution and ecosystem change in Ahémé lake, south-west Benin

    NASA Astrophysics Data System (ADS)

    Amoussou, Ernest; Totin Vodounon, Henri S.; Vissin, Expédit W.; Mahé, Gil; Oyédé, Marc Lucien

    2018-04-01

    Tropical moist ecosystems, such as Ahémé lake, south-west Benin, are increasingly marked by water degradation, linked with the activities of increasing riparian populations. The objective of this study is to analyze sedimentary dynamics and its influence on the changing ecosystem of Ahémé lake from 1961-2010. Data used to carry out the study are records of precipitation, flows, turbidity, suspended sediment, mineral elements and bathymetry. Grain size data from the sieving of sediment samples were used to interpret suspended solids distribution in the lake. Linear correlation coefficients were used to assess the degree of dependence between rainfall and runoff inputs to the lake. Lake depth measurements in some areas of the lake serve to determine the rate of infilling. The sorting index was used to highlight the distribution and origin of sediments in the lake. The results show a degradation of the lake Ahémé ecosystem characterized by infilling of its bed, a high correlation (r = 0.90) between rainfall and runoff, seasonal change in physicochemical parameters (total suspended sediment decrease by -91 %) and decrease in fish production by 135.8 t yr-1. The highest mean suspended sediment concentrations in lake inputs occur during high water periods (123 mg L-1) compared to low water periods (11.2 mg L-1).

  19. Integrative neural networks model for prediction of sediment rating curve parameters for ungauged basins

    NASA Astrophysics Data System (ADS)

    Atieh, M.; Mehltretter, S. L.; Gharabaghi, B.; Rudra, R.

    2015-12-01

    One of the most uncertain modeling tasks in hydrology is the prediction of ungauged stream sediment load and concentration statistics. This study presents integrated artificial neural networks (ANN) models for prediction of sediment rating curve parameters (rating curve coefficient α and rating curve exponent β) for ungauged basins. The ANN models integrate a comprehensive list of input parameters to improve the accuracy achieved; the input parameters used include: soil, land use, topographic, climatic, and hydrometric data sets. The ANN models were trained on the randomly selected 2/3 of the dataset of 94 gauged streams in Ontario, Canada and validated on the remaining 1/3. The developed models have high correlation coefficients of 0.92 and 0.86 for α and β, respectively. The ANN model for the rating coefficient α is directly proportional to rainfall erosivity factor, soil erodibility factor, and apportionment entropy disorder index, whereas it is inversely proportional to vegetation cover and mean annual snowfall. The ANN model for the rating exponent β is directly proportional to mean annual precipitation, the apportionment entropy disorder index, main channel slope, standard deviation of daily discharge, and inversely proportional to the fraction of basin area covered by wetlands and swamps. Sediment rating curves are essential tools for the calculation of sediment load, concentration-duration curve (CDC), and concentration-duration-frequency (CDF) analysis for more accurate assessment of water quality for ungauged basins.

  20. Temporal shifts in reef lagoon sediment composition, Discovery Bay, Jamaica

    NASA Astrophysics Data System (ADS)

    Perry, Christopher T.; Taylor, Kevin G.; Machent, Philip G.

    2006-03-01

    Discovery Bay, north Jamaica, forms a large (1.5 km wide), deep (up to 56 m) embayment that acts as a sink for reef-derived and lagoonal carbonate sediments. Since the mid-1960s, the bay has also provided a sink for inputs of bauxite sediment that are spilled during loading at a boat terminal constructed within Discovery Bay. Bauxite has accumulated across much of the southern section of the bay with surficial sediments presently composed of up to 35 weight% non-carbonate. Cores recovered from sites on the western side of the bay provide a stratigraphic record of this history of bauxite contamination across water depths from 5 to 25 m. The bauxite-influenced upper sediment horizons are clearly visible in each core from the distinctive red-brown colouration of the sediment. These sediments are composed of approximately 10% non-carbonate (bauxite) and have Fe contents of around 2-3000 μg/g (up to 7000 μg/g). The thickness of this upper bauxite-contaminated sequence increases down transect (approximately 18 cm in the shallowest core, to around 47 cm in the deepest core), and in each core overlies a sequence of 'clean' lagoon carbonates. These typically are poorly sorted carbonate sands with variable amounts of coral rubble. Down-core data on CaCO 3 and Fe content provide a chemical record of decreasing sediment contamination with depth, with the lower 'clean' carbonates composed of only around 2% non-carbonate and <700 μg/g Fe. Down-core sediment-constituent data also indicate significant changes in sediment production at the shallowest sites. At depths of 5 and 10 m, sediment assemblages have shifted from diverse assemblages of coral, mollusc, Amphiroa and Halimeda in the clean lagoon sands, to assemblages dominated by Halimeda and Amphiroa within the surficial sediments. At the deeper sites, no major down-core shifts in sediment constituents occur. These sites thus record a rather complex history of changes in sediment composition and chemistry. Clear shifts in chemistry and stratigraphy occur in all the cores and reflect progressive bauxite contamination in the near-surface horizons. These inputs, however, do not appear to have directly affected carbonate production, since the major constituent changes appear to be a response to more regional declines in coral community and reef status.

  1. Controls on hillslope stability in a mountain river catchment

    NASA Astrophysics Data System (ADS)

    Golly, Antonius; Turowski, Jens; Hovius, Niels; Badoux, Alexandre

    2015-04-01

    Sediment transport in fluvial systems accounts for a large fraction of natural hazard damage costs in mountainous regions and is an important factor for risk mitigation, engineering and ecology. Although sediment transport in high-gradient channels gathered research interest over the last decades, sediment dynamics in steep streams are generally not well understood. For instance, the sourcing of the sediment and when and how it is actually mobilized is largely undescribed. In the Erlenbach, a mountain torrent in the Swiss Prealps, we study the mechanistic relations between in-channel hydrology, channel morphology, external climatic controls and the surrounding sediment sources to identify relevant process domains for sediment input and their characteristic scales. Here, we analyze the motion of a slow-moving landslide complex that was permanently monitored by time-lapse cameras over a period of 70 days at a 30 minutes interval. In addition, data sets for stream discharge, air temperature and precipitation rates are available. Apparent changes in the channel morphology, e.g. the destruction of channel-spanning bed forms, were manually determined from the time-lapse images and were treated as event marks in the time series. We identify five relevant types of sediment displacement processes emerging during the hillslope motion: concentrated mud flows, deep seated hillslope failure, catastrophic cavity failure, hillslope bank erosion and individual grain loss. Generally, sediment displacement occurs on a large range of temporal and spatial scales and sediment dynamics in steep streams not only depend on large floods with long recurrence intervals. We find that each type of displacement acts in a specific temporal and spatial domain with their characteristic scales. Different external climatic forcing (e.g. high-intensity vs. long-lasting precipitation events) promote different displacement processes. Stream morphology and the presence of boulders have a large effect on sediment input through deep seated failures and cavity failures while they have only minor impact on the other process types. In addition to large floods, which are generally recognized to produce huge amounts of sediment, we identify two relevant climatic regimes that play an important role for the sediment dynamics: a) long-lasting but low-intensity rainfall that explicitly trigger specific sediment displacement processes on the hillslopes and b) smaller discharge events with recurrence intervals of approximately one year that mobilize sediments from the hillslope's toes along the channel.

  2. Community managed forests dominate the catchment sediment cascade in the mid-hills of Nepal: A compound-specific stable isotope analysis.

    PubMed

    Upadhayay, Hari Ram; Smith, Hugh G; Griepentrog, Marco; Bodé, Samuel; Bajracharya, Roshan Man; Blake, William; Cornelis, Wim; Boeckx, Pascal

    2018-05-08

    Soil erosion by water is critical for soil, lake and reservoir degradation in the mid-hills of Nepal. Identification of the nature and relative contribution of sediment sources in rivers is important to mitigate water erosion within catchments and siltation problems in lakes and reservoirs. We estimated the relative contribution of land uses (i.e. sources) to suspended and streambed sediments in the Chitlang catchment using stable carbon isotope signature (δ 13 C) of long-chain fatty acids as a tracer input for MixSIAR, a Bayesian mixing model used to apportion sediment sources. Our findings reveal that the relative contribution of land uses varied between suspended and streambed sediment, but did not change over the monsoon period. Significant over- or under-prediction of source contributions could occur due to overlapping source tracer values, if source groups are classified on a catchment-wide basis. Therefore, we applied a novel deconvolutional framework of MixSIAR (D-MixSIAR) to improve source apportionment of suspended sediment collected at tributary confluences (i.e. sub-catchment level) and at the outlet of the entire catchment. The results indicated that the mixed forest was the dominant (41 ± 13%) contributor of sediment followed by broadleaf forest (15 ± 8%) at the catchment outlet during the pre-wet season, suggesting that forest disturbance as well as high rainfall and steep slopes interact for high sediment generation within the study catchment. Unpaved rural road tracks located on flat and steep slopes (11 ± 8 and 9 ± 7% respectively) almost equally contributed to the sediment. Importantly, agricultural terraces (upland and lowland) had minimal contribution (each <7%) confirming that proper terrace management and traditional irrigation systems played an important role in mitigating sediment generation and delivery. Source contributions had a small temporal, but large spatial, variation in the sediment cascade of Chitlang stream. D-MixSIAR provided significant improvement regarding spatially explicit sediment source apportionment within the entire catchment system. This information is essential to prioritize implementation measures to control erosion in community managed forests to reduce sediment loadings to Kulekhani hydropower reservoir. In conclusion, using compound-specific stable isotope (CSSI) tracers for sediment fingerprinting in combination with a deconvolutional Bayesian mixing model offers a versatile approach to deal with the large tracer variability within catchment land uses and thus to successfully apportion multiple sediment sources. Copyright © 2018. Published by Elsevier B.V.

  3. Influence of sea level rise on iron diagenesis in an east Florida subterranean estuary

    USGS Publications Warehouse

    Roy, M.; Martin, J.B.; Cherrier, J.; Cable, J.E.; Smith, C.G.

    2010-01-01

    Subterranean estuary occupies the transition zone between hypoxic fresh groundwater and oxic seawater, and between terrestrial and marine sediment deposits. Consequently, we hypothesize, in a subterranean estuary, biogeochemical reactions of Fe respond to submarine groundwater discharge (SGD) and sea level rise. Porewater and sediment samples were collected across a 30-m wide freshwater discharge zone of the Indian River Lagoon (Florida, USA) subterranean estuary, and at a site 250. m offshore. Porewater Fe concentrations range from 0.5 ??M at the shoreline and 250. m offshore to about 286 ??M at the freshwater-saltwater boundary. Sediment sulfur and porewater sulfide maxima occur in near-surface OC-rich black sediments of marine origin, and dissolved Fe maxima occur in underlying OC-poor orange sediments of terrestrial origin. Freshwater SGD flow rates decrease offshore from around 1 to 0.1. cm/day, while bioirrigation exchange deepens with distance from about 10. cm at the shoreline to about 40. cm at the freshwater-saltwater boundary. DOC concentrations increase from around 75 ??M at the shoreline to as much as 700 ??M at the freshwater-saltwater boundary as a result of labile marine carbon inputs from marine SGD. This labile DOC reduces Fe-oxides, which in conjunction with slow discharge of SGD at the boundary, allows dissolved Fe to accumulate. Upward advection of fresh SGD carries dissolved Fe from the Fe-oxide reduction zone to the sulfate reduction zone, where dissolved Fe precipitates as Fe-sulfides. Saturation models of Fe-sulfides indicate some fractions of these Fe-sulfides get dissolved near the sediment-water interface, where bioirrigation exchanges oxic surface water. The estimated dissolved Fe flux is approximately 0.84 ??M Fe/day per meter of shoreline to lagoon surface waters. Accelerated sea level rise predictions are thus likely to increase the Fe flux to surface waters and local primary productivity, particularly along coastlines where groundwater discharges through sediments. ?? 2010 Elsevier Ltd.

  4. Sediment Management Methods to Reduce Dredging: Part 2, Sediment Collector Technology

    DTIC Science & Technology

    2017-04-01

    Approved for public release; distribution is unlimited. ERDC TN-DOER-T13 April 2017 Sediment Management Methods to Reduce Dredging: Part 2...DOER) Program technical note (TN) is the second in a series evaluating sediment management methods to reduce dredging through a research task (RT...in the DOER Program.1 This TN presents an evaluation of sediment collector technology, one promising new device that may help better manage

  5. Vegetation death and rapid loss of surface elevation in two contrasting Mississippi delta salt marshes: The role of sedimentation, autocompaction and sea-level rise

    USGS Publications Warehouse

    Day, J.W.; Kemp, G.P.; Reed, D.J.; Cahoon, D.R.; Boumans, R.M.; Suhayda, J.M.; Gambrell, R.

    2011-01-01

    From 1990 to 2004, we carried out a study on accretionary dynamics and wetland loss in salt marshes surrounding two small ponds in the Mississippi delta; Old Oyster Bayou (OB), a sediment-rich area near the mouth of the Atchafalaya River and Bayou Chitigue (BC), a sediment-poor area about 70. km to the east. The OB site was stable, while most of the marsh at BC disappeared within a few years. Measurements were made of short-term sedimentation, vertical accretion, change in marsh surface elevation, pond wave activity, and marsh soil characteristics. The OB marsh was about 10. cm higher than BC; the extremes of the elevation range for Spartina alterniflora in Louisiana. Vertical accretion and short-term sedimentation were about twice as high at BC than at OB, but the OB marsh captured nearly all sediments deposited, while the BC marsh captured <30%. The OB and BC sites flooded about 15% and 85% of the time, respectively. Marsh loss at BC was not due to wave erosion. The mineral content of deposited sediments was higher at OB. Exposure and desiccation of the marsh surface at OB increased the efficiency that deposited sediments were incorporated into the marsh soil, and displaced the marsh surface upward by biological processes like root growth, while also reducing shallow compaction. Once vegetation dies, there is a loss of soil volume due to loss of root turgor and oxidation of root organic matter, which leads to elevation collapse. Revegetation cannot occur because of the low elevation and weak soil strength. The changes in elevation at both marsh sites are punctuated, occurring in steps that can either increase or decrease elevation. When a marsh is low as at BC, a step down can result in an irreversible change. At this point, the option is not restoration but creating a new marsh with massive sediment input either from the river or via dredging. ?? 2010 Elsevier B.V.

  6. Modeling Tidal Wetland Resiliency in the Face of Predicted Accelerated Sea-Level Rise

    NASA Astrophysics Data System (ADS)

    Schile, L. M.; Callaway, J.; Morris, J. T.; Kelly, M.

    2014-12-01

    Tidal wetland ecosystems are dynamic coastal habitats that, in California, often occur at the complex nexus of aquatic environments, diked and leveed baylands, and modified upland habitat. Because of their prime location and rich peat soil, many wetlands have been reduced, degraded, and/or destroyed, and yet their important role in carbon sequestration, nutrient and sediment filtering, and as habitat requires us to further examine their sustainability in light of predicted climate change. Predictions of climate change effects for the San Francisco Bay Estuary present a future with reduced summer freshwater input and increased sea levels. We examined the applicability and accuracy of the Marsh Equilibrium Model (MEM), a zero-dimensional model that models organic and inorganic accretion rates under a given rate of sea-level rise. MEM was calibrated using data collected from salt and brackish marshes in the San Francisco Bay Estuary to examine wetland resiliency under a range of sea-level rise and suspended sediment concentration scenarios. At sea-level rise rates 100 cm/century and lower, wetlands remained vegetated. Once sea levels rise above 100 cm, marshes begin to lose ability to maintain elevation, and the presence of adjacent upland habitat becomes increasingly important for marsh migration. The negative effects of sea-level rise on elevations were compounded as suspended sediment concentrations decreased. Results from this study emphasize that the wetland landscape in the bay is threatened with rising sea levels, and there are a limited number of wetlands that will be able to migrate to higher ground as sea levels rise.

  7. Design of adaptation actions to compensate the hydrological impact of the river regulation by dams on the Ebro Delta (Spain): combining modeling and field work.

    NASA Astrophysics Data System (ADS)

    Contreras, Darío; Jurado, Alicia; Carpintero, Miriam; Rovira, Albert; Polo, María J.

    2016-04-01

    River regulation by dams for both flood control and water storage has allowed to decrease both uncertainty and risks associated to extreme hydrological events. However, the alteration of the natural river flow regime and the detraction of high water volumes usually lead to significant effects downstream on the morphology, water quality, ecological status of water… and this is particularly relevant in the transitional waters since the sea level rise poses an additional threat on such conditions. The Ebro River, in northeastern Spain, is one of the highly regulated rivers in Spain with the dams located in the mainstream. Besides an estimated decrease of a 30% of the freshwater inputs, the sediment delivery to the final delta in the Mediterranean has dramatically been decreased up to a 99%, with environmental risks associated to the reduction of the emerged areas from the loss of sediment supply, the impact on the subsidence dynamics, and the sea level rise. The Ebro Delta suffers a mean regression of 10 m per year, and the persistence of macrophyte development in the final reach of the river due to the low water mean flow regime. The project LIFE EBRO-ADMICLIM (ENV/ES/001182), coordinated by the IRTA in Catalonia (Spain), puts forwards pilot actions for adaptation to and mitigation of climate change in the Ebro Delta. An integrated approach is proposed for managing water, sediment and habitats (rice fields and wetlands), with the multiple aim of optimizing ground elevation, reducing coastal erosion, increasing the accumulation (sequestration) of carbon in the soil, reducing emissions of greenhouse gases (GHG), and improving water quality. This work presents the pilot actions included in the project to mitigate the loss of water flow and sediment supply to the delta. Sediment injections at different points upstream have been designed to calibrate and validate a sediment transport model coupled to a 2D-hydrodinamic model of the river. The combination of an a-priori approach theoretical modeling with the pilot field actions leads to an efficient design of these injections, an estimation of their efficiency, the calibration of the flow and sediment transport model for the simulation of different options of regular recirculation of sediments from the dams' tails, and the identification of thresholds for their operationality. The use of physical approaches for modeling the hydrological impacts of dam regulation provides an efficient tool for the design of field work and potential adaption actions.

  8. Monitoring of Hydrocarbons in Sediment and Biota Related to Oil and Gas Development in Near- and Off-Shore Areas of the Arctic Beaufort Sea, Alaska

    NASA Astrophysics Data System (ADS)

    Durell, G.; Hardin, J.; Libby, S.

    2016-02-01

    There is increasing interest in extracting oil and gas from offshore environments of Alaska. The Arctic Nearshore Impact Monitoring in Development Area (ANIMIDA) project, started in 1999, has been producing information to evaluate potential effects of oil and gas activities in the Alaskan Beaufort Sea. ANIMIDA was preceded by the Beaufort Sea Monitoring Program. Monitoring has mostly been in pre-drilling locations, but also during development and production periods. Surveys were conducted to assess bottom sediment, sediment cores, suspended sediment, and biota for polycyclic aromatic hydrocarbons (PAH), saturated hydrocarbons, biological and petroleum markers, and geophysical parameters. The concentrations measured in sediments and biota were at or near background throughout most of the Beaufort Sea. There were no significant differences between exploration, production, and background locations, and the concentrations were consistently below those of ecological concern. For instance, TPAH in sediment ranged from below 100 to about 1,000 µg/kg and were controlled primarily by sediment characteristics (e.g., grain size and organic carbon). Hydrocarbons in sediments were from petrogenic, pyrogenic, and biogenic sources. Small areas with indications of input of anthropogenic chemicals were identified by sensitive diagnostic analysis techniques and are possibly associated with historic exploratory drilling and vessels. Sediment cores indicate a uniform historical deposition of hydrocarbons, although some evidence of past drilling activities were observed. Fish, amphipods, and clams contained background levels of hydrocarbons and showed no evidence of effects from accumulation of contaminants; TPAH concentrations were below 100 µg/kg in most biota. Noteworthy interannual fluctuations were observed for PAH concentrations in sediment and biota, likely due to winnowing of sediment fines by large storms and annual variations in river discharges. Significant natural sources were identified; rivers deliver about 80% of the annual suspended solids to Beaufort Sea within a 2-3 week period each spring with significant input of hydrocarbons from terrestrial sources. The ANIMIDA project has provided monitoring information that can confidently be used for future environmental management.

  9. Sources and distributions of branched and isoprenoid tetraether lipids on the Amazon shelf and fan: Implications for the use of GDGT-based proxies in marine sediments

    NASA Astrophysics Data System (ADS)

    Zell, Claudia; Kim, Jung-Hyun; Hollander, David; Lorenzoni, Laura; Baker, Paul; Silva, Cleverson Guizan; Nittrouer, Charles; Sinninghe Damsté, Jaap S.

    2014-08-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs) in river fan sediments have been used successfully to reconstruct mean annual air temperature (MAAT) and soil pH of the Congo River drainage basin. However, in a previous study of Amazon deep-sea fan sediments the reconstructed MAATs were ca. 10 °C colder than the actual MAAT of the Amazon basin. In this study we investigated this apparent offset, by comparing the concentrations and distributions of brGDGTs in Amazon River suspended particulate matter (SPM) and sediments to those in marine SPM and surface sediments. The riverine brGDGT input was evident from the elevated brGDGT concentrations in marine SPM and surface sediments close to the river mouth. The distributions of brGDGTs in marine SPM and sediments varied widely, but generally showed a higher relative abundance of methylated and cyclic brGDGTs than those in the river. Since this difference in brGDGT distribution was also found in intact polar lipid (IPL)-derived brGDGTs, which were more recently produced, the change in the marine brGDGT distribution was most likely due to marine in situ production. Consequently, the MAATs calculated based on the methylation of branched tetraethers (MBT) and the cyclisation of branched tetraethers (CBT) were lower and the CBT-derived pH values were higher than those of the Amazon basin. However, SPM and sediments from stations close to the river mouth still showed MBT/CBT values that were similar to those of the river. Therefore, we recommend caution when applying the MBT/CBT proxy, it should only be used in sediment cores that were under high river influence. The influence of riverine derived isoprenoid GDGT (isoGDGT) on the isoGDGT-based TEX86 temperature proxy was also examined in marine SPM and sediments. An input of riverine isoGDGTs from the Amazon River was apparent, but its influence on the marine TEX86 was minor since the TEX86 of SPM in the Amazon River was similar to that in the marine SPM and sediments.

  10. Sediment Loading from Crab Creek and Other Sources to Moses Lake, Washington, 2007 and 2008

    USGS Publications Warehouse

    Magirl, Christopher S.; Cox, Stephen E.; Mastin, Mark C.; Huffman, Raegan L.

    2010-01-01

    The average sediment-accumulation rate on the bed of Moses Lake since 1980, based on the identification of Mount St. Helens ash in lakebed cores, was 0.24 inches per year. Summed over the lake surface area, the average sediment-accumulation rate on the lakebed is 190,000 tons per year. Based on USGS stream-gaging station data, the average annual sediment load to Moses Lake from Crab Creek was 32,000 tons per year between 1943 and 2008; the post Mount St. Helens eruption annual load from Crab Creek was calculated to be 13,000 tons per year. The total mass input from Crab Creek and other fluvially derived sediment sources since 1980 has been about 20,000 tons per year. Eolian sediment loading to Moses Lake was about 50,000 tons per year before irrigation and land-use development largely stabilized the Moses Lake dune field. Currently, eolian input to the lake is less than 2,000 tons per year. Considering all sediment sources to the lake, most (from 80 to 90 percent) of post-1980 lakebed-sediment accumulation is from autochthonous, or locally formed, mineral matter, including diatom frustuals and carbonate shells, derived from biogenic production in phytoplankton and zooplankton. Suspended-sediment samples collected from Crab Creek and similar nearby waterways in 2007 and 2008 combined with other USGS data from the region indicated that a proposed Bureau of Reclamation supplemental feed of as much as 650 cubic feet per second through Crab Creek might initially contain a sediment load of as much as 1,500 tons per day. With time, however, this sediment load would decrease to about 10 tons per day in the sediment-supply-limited creek as available sediment in the channel is depleted. Sediment loads in the supplemental feed ultimately would be similar to loads in other bypass canals near Moses Lake. Considering the hydrology and geomorphology of the creek over multiple years, there is little evidence that the proposed supplemental feed would substantially increase the overall sediment load from Crab Creek to Moses Lake relative to natural, background conditions. Because Moses Lake is relatively shallow and subject to significant wind-driven circulation currents, mixing also would redistribute some of the fluvial sediment load deposited from Crab Creek throughout Parker Horn and the rest of Moses Lake, further mitigating the local effect of Crab Creek sedimentation near the City of Moses Lake.

  11. Metal pollution loading, Manzalah lagoon, Nile delta, Egypt: Implications for aquaculture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegel, F.R.; Slaboda, M.L.; Stanley, D.J.

    1994-03-01

    High cultural enrichment factors are found for Hg (13 x), Pb (22.1 x), and other potentially toxic metals (e.g., Sn, Zn, Cu, Ag) in the upper 20 cm of sediment cores from the southeastern Ginka subbasin of Manzalah lagoon, Nile delta, Egypt. Cores from other areas of the lagoon show little metal loading. Metal loading followed the closure of the Aswan High Dam, the availability of abundant cheap electricity, and the development of major power-based industries. Industrial wastes containing potentially toxic metals are dumped into the Nile delta drain system. The load carried by Bahr El-Baqar drain discharges into themore » Ginka subbasin, which acts as a sink and results in metal loading of the sediment deposited there. Further development of aquaculture in this subbasin, of food-stuff agriculture on recently reclaimed lagoon bottom, or where irrigation waters come from Bahr El-Baqar drain or its discharge should be halted or strictly limited until potentially toxic metals in the drain waters and sediment are removed and polluted input drastically reduced. This environmental assessment of heavy metals in aquaculture or agriculture development should extend to other waterbodies in the northern Nile delta, particularly Idku lagoon and Lake Mariut, where industrial metal-bearing wastes discharge into the waterbodies. 21 refs., 7 figs., 3 tabs.« less

  12. How well does the Post-fire Erosion Risk Management Tool (ERMiT) really work?

    NASA Astrophysics Data System (ADS)

    Robichaud, Peter; Elliot, William; Lewis, Sarah; Miller, Mary Ellen

    2016-04-01

    The decision of where, when, and how to apply the most effective postfire erosion mitigation treatments requires land managers to assess the risk of damaging runoff and erosion events occurring after a fire. The Erosion Risk Management Tool (ERMiT) was developed to assist post fire assessment teams identify high erosion risk areas and effectiveness of various mitigation treatments to reduce that risk. ERMiT is a web-based application that uses the Water Erosion Prediction Project (WEPP) technology to estimate erosion, in probabilistic terms, on burned and recovering forest, range, and chaparral lands with and without the application of mitigation treatments. User inputs are processed by ERMiT to combine rain event variability with spatial and temporal variabilities of hillslope burn severity and soil properties which are then used as WEPP inputs. Since 2007, the model has been used in making hundreds of land management decisions in the US and elsewhere. We use eight published field study sites in the Western US to compare ERMiT predictions to observed hillslope erosion rates. Most sites experience only a few rainfall events that produced runoff and sediment except for a California site with a Mediterranean climate. When hillslope erosion occurred, significant correlations occurred between the observed hillslope erosion and those predicted by ERMiT. Significant correlation occurred for most mitigation treatments as well as the five recovery years. These model validation results suggest reasonable estimates of probabilistic post-fire hillslope sediment delivery when compared to observation.

  13. Modern deposition rates and patterns of organic carbon burial in Fiordland, New Zealand

    NASA Astrophysics Data System (ADS)

    Ramirez, Michael T.; Allison, Mead A.; Bianchi, Thomas S.; Cui, Xingqian; Savage, Candida; Schüller, Susanne E.; Smith, Richard W.; Vetter, Lael

    2016-11-01

    Fjords are disproportionately important for global organic carbon (OC) burial relative to their spatial extent and may be important in sequestering atmospheric CO2, providing a negative climate feedback. Within fjords, multiple locally variable delivery mechanisms control mineral sediment deposition, which in turn modulates OC burial. Sediment and OC sources in Fiordland, New Zealand, include terrigenous input at fjord heads, sediment reworking over fjord-mouth sills, and landslide events from steep fjord walls. Box cores were analyzed for sedimentary texture, sediment accumulation rate, and OC content to evaluate the relative importance of each delivery mechanism. Sediment accumulation was up to 3.4 mm/yr in proximal and distal fjord areas, with lower rates in medial reaches. X-radiograph and 210Pb stratigraphy indicate mass wasting and surface-sediment bioturbation throughout the fjords. Sediment accumulation rates are inversely correlated with %OC. Spatial heterogeneity in sediment depositional processes and rates is important when evaluating OC burial within fjords.

  14. Fish and fire: Post-wildfire sediment dynamics and implications for the viability of trout populations

    NASA Astrophysics Data System (ADS)

    Murphy, B. P.; Czuba, J. A.; Belmont, P.; Budy, P.; Finch, C.

    2017-12-01

    Episodic events in steep landscapes, such as wildfire and mass wasting, contribute large pulses of sediment to rivers and can significantly alter the quality and connectivity of fish habitat. Understanding where these sediment inputs occur, how they are transported and processed through the watershed, and their geomorphic effect on the river network is critical to predicting the impact on ecological aquatic communities. The Tushar Mountains of southern Utah experienced a severe wildfire in 2010, resulting in numerous debris flows and the extirpation of trout populations. Following many years of habitat and ecological monitoring in the field, we have developed a modeling framework that links post-wildfire debris flows, fluvial sediment routing, and population ecology in order to evaluate the impact and response of trout to wildfire. First, using the Tushar topographic and wildfire parameters, as well as stochastic precipitation generation, we predict the post-wildfire debris flow probabilities and volumes of mainstem tributaries using the Cannon et al. [2010] model. This produces episodic hillslope sediment inputs, which are delivered to a fluvial sediment, river-network routing model (modified from Czuba et al. [2017]). In this updated model, sediment transport dynamics are driven by time-varying discharge associated with the stochastic precipitation generation, include multiple grain sizes (including gravel), use mixed-size transport equations (Wilcock & Crowe [2003]), and incorporate channel slope adjustments with aggradation and degradation. Finally, with the spatially explicit adjustments in channel bed elevation and grain size, we utilize a new population viability analysis (PVA) model to predict the impact and recovery of fish populations in response to these changes in habitat. Our model provides a generalizable framework for linking physical and ecological models and for evaluating the extirpation risk of isolated fish populations throughout the Intermountain West to the increasing threat of wildfire.

  15. Time-averaged fluxes of lead and fallout radionuclides to sediments in Florida Bay

    USGS Publications Warehouse

    Robbins, J.A.; Holmes, C.; Halley, R.; Bothner, Michael H.; Shinn, E.; Graney, J.; Keeler, G.; TenBrink, M.; Orlandini, K.A.; Rudnick, D.

    2000-01-01

    Recent, unmixed sediments from mud banks of central Florida Bay were dated using 210Pb/226Ra, and chronologies were verified by comparing sediment lead temporal records with Pb/Ca ratios in annual layers of coral (Montastrea annularis) located on the ocean side of the Florida Keys. Dates of sediment lead peaks (1978±2) accord with prior observations of a 6 year lag between the occurrence of maximum atmospheric lead in 1972 and peak coral lead in 1978. Smaller lags of 1–2 years occur between the maximum atmospheric radionuclide fallout and peaks in sediment temporal records of 137Cs and Pu. Such lags are consequences of system time averaging (STA) in which atmospherically delivered particle-associated constituents accumulate and mix in a (sedimentary?) reservoir before transferring to permanent sediments and coral. STA model calculations, using time-dependent atmospheric inputs, produced optimized profiles in excellent accord with measured sediment 137Cs, Pu, lead, and coral lead distributions. Derived residence times of these particle tracers (16±1, 15.7±0.7, 19±3, and 16±2 years, respectively) are comparable despite differences in sampling locations, in accumulating media, and in element loading histories and geochemical properties. For a 16 year weighted mean residence time, STA generates the observed 6 year lead peak lag. Evidently, significant levels of nondegradable, particle-associated contaminants can persist in Florida Bay for many decades following elimination of external inputs. Present results, in combination with STA model analysis of previously reported radionuclide profiles, suggest that decade-scale time averaging may occur widely in recent coastal marine sedimentary environments.

  16. Implications of sediment transport by subglacial water flow for interpreting contemporary glacial erosion rates

    NASA Astrophysics Data System (ADS)

    Beaud, Flavien; Flowers, Gwenn E.; Venditti, Jeremy G.

    2017-04-01

    The role of glaciers in landscape evolution is central to the interactions between climate and tectonic forces at high latitudes and in mountainous regions. Sediment yields from glacierized basins are used to quantify contemporary erosion rates on seasonal to decadal timescales, often under the assumption that subglacial water flow is the main contributor to these yields. Two recent studies have furthermore used such sediment fluxes to calibrate a glacial erosion rule, where erosion rate scales with ice sliding speed raised to a power greater than one. Subglacial sediment transport by water flow has however seldom been studied, thus the controls on sediment yield from glacierized basins remain enigmatic. To bridge this gap, we develop a 1-D model of morphodynamics in semi-circular bedrock-floored subglacial channels. We adapt a sediment conservation law from the fluvial literature, developed for both mixed bedrock / alluvial and alluvial conditions, to subglacial channels. Channel evolution is a function of the traditional melt-opening due to viscous heat dissipation from the water flow, and creep closure of the overlying ice, to which we add the closure or enlargement due to sediment deposition or removal, respectively. Using a simple ice geometry representing a land-terminating glacier, we find that the shear stresses produced by the water flow on the bed decrease significantly near the terminus. As the ice thins, creep closure decreases and large hydraulic potential gradients cannot be sustained. The resulting gradients in sediment transport lead to a bottleneck, and sediment accumulates if the sediment supply is adequate. A similar bottleneck occurs if a channel is well established and water discharge drops. Whether such constriction happens in space of time, in the presence of a sufficiently large sediment supply sediment accumulates temporarily near the terminus, followed shortly thereafter by enhanced sediment transport. Reduction in the cross-sectional area of the channel by sediment storage leads to enhanced shear stresses and transport rates. As a result, assuming a constant sediment input and a seasonal water forcing sediment delivery to the proglacial environment undergoes two phases determined by a combination of meltwater discharge and channel development. In the stage of the melt season dominated by channel growth and increasing discharge, the sediment yield is virtually constant and matches the input. In contrast, during the stage dominated by channel closure and decreasing discharge the sediment yield exhibits daily fluctuations caused by temporary sediment storage in the channel. Our findings thus suggest that contemporary sediment yields may be controlled by the dynamics of subglacial water flow in the vicinity of the terminus. This provides a new perspective for the interpretation of proglacial sediment fluxes, fluxes which are central to refining glacial erosion laws utilized in landscape evolution models.

  17. The internal strength of rivers: autogenic processes in control of the sediment load (Tana River, Kenya)

    NASA Astrophysics Data System (ADS)

    Geeraert, Naomi; Ochieng Omengo, Fred; Tamooh, Fredrick; Paron, Paolo; Bouillon, Steven; Govers, Gerard

    2014-05-01

    The construction of sediment rating curves for monitoring stations is a widely used technique to budget sediment fluxes. Changes in the relationship between discharge and sediment concentrations over time are often attributed to human-induced changes in catchment characteristics, such as land use change, dam construction or soil conservation measures and many models have been developed to quantitatively link catchment characteristics and river sediment load. Conversely, changes in river sediment fluxes are often interpreted as indications of major changes in the catchment. By doing so, autogenic processes, taking place within the river channel, are overlooked despite the increasing awareness of their importance. We assessed the role of autogenic processes on the sediment load of Tana River (Kenya). The Tana river was impacted by major dam construction between 1968 and 1988, effectively blocking at least 80% of the sediment transfer from the highlands to the lower river reaches. However, a comparison of pre-dam sediment fluxes at Garissa (located 250 km downstream of the dams) with recent measurements shows that sediment fluxes have not changed significantly. This suggests that most of the sediment in the post-dam period has to originate from inside the alluvial plain of the river, as tributaries downstream of the dams are scarce and intermittent. Several observations are consistent with this hypothesis. We observed that, during the wet season, sediment concentrations rapidly increased below the dams and are not controlled by inputs from tributaries. Also, sediment concentrations were high at the beginning of the wet season, which can be attributed to channel adjustment to the higher discharges. The river sediment does not contain significant amounts of 137Cs or 210Pbxs, suggesting that sediments are not derived from topsoil erosion. Furthermore, we observed a counter clockwise hysteresis during individual events which can be explained by the fact that sediment mobilised within the river during a given event travels slower than the water. The highly dynamic behaviour of the river is further demonstrated by the rapid changes in river cross-section at Garissa and meander migration rates of several m y-1. In order to estimate a time frame for which changes in sediment inputs will be reflected in the sediment concentration at Garissa a single box model was developed. Results indicate that the effects of sediment blockage by the dams will only be visible after several hundreds to perhaps thousands of years. This clearly shows that autogenic processes are dominant in the lower Tana River and that, therefore, changes in sediment delivery cannot be detected in the sediment discharge record. More generally, understanding and interpreting the dynamics of such river systems requires that autogenic processes are correctly accounted for.

  18. Anthropogenic accumulation of metals and metalloids in carbonate-rich sediments: Insights from the ancient harbor setting of Tyre (Lebanon)

    NASA Astrophysics Data System (ADS)

    Elmaleh, A.; Galy, A.; Allard, T.; Dairon, R.; Day, J. A.; Michel, F.; Marriner, N.; Morhange, C.; Couffignal, F.

    2012-04-01

    The Antique and Byzantine sediments of the northern harbor of Tyre (Lebanon) store high amounts of metals and metalloids as the result of a millennial anthropogenic contamination as well as of efficient trapping and immobilization processes. Geochemical and mineralogical analyses reveal the contrasted patterns for the accumulation of trace metal(loid)s in the sedimentary sequence recovered by coring the inner part, now emerged, of the ancient harbor. Lead, Sn, Cu and Ag concentrations can be as high as 3000, 150, 1000, and 1.2 μg/g, respectively. Enrichment factors were calculated with respect to (1) Th and (2) the chemistry of the substratum and appear to be driven by anthropogenic inputs. Indeed, a drastic change in both excess concentrations and concentration ratios is observed through Roman and Byzantine times, pointing to major intensification of the trade and use of metals in Tyre, coherent with historical data. Good preservation of the archeological signal, despite (1) sediment disturbances that have caused age depth inversions, and (2) the large time lapse since the time of deposition of anthropogenic trace metal(loid)s is probably due to the reducing character of the sediments. Tyre's sedimentary sequence provides an interesting analog for modern carbonate-rich harbor environments, in which a millenary accumulation of trace metal(loid)s has been overall well preserved and suggests a restricted mobility of anthropogenic contamination for a period of time in excess of 1500 years.

  19. Partitioning of Metals Throughout a Winter Storm-Generated Fluid Mud Event, Atchafalaya Shelf, Louisiana

    NASA Astrophysics Data System (ADS)

    Clark, F. R.; McKee, B. A.; Duncan, D. D.

    2002-12-01

    Particulate and dissolved phases of a suite of metals and radionuclides were analyzed in fluid mud samples collected during a time series. This time series was taken during the passage of a winter storm on the Atchafalaya Shelf off the coast of Louisiana. The shelf receives an estimated 30% of the flow of the Mississippi River from its distributary, the Atchafalaya River. This input contributes a high sediment load to the shelf. Frequent winter storms provide shear stress to resuspend sediments and form fluid mud. Samples of fluid mud and overlying water were collected every two hours for 56 hours. Meteorological data as well as turbidity measurements by OBS were collected throughout the study. Bottom sediments were also collected before and after the time series. Partitioning effects were investigated on Be7, Th234, and Pb210 by gamma spectroscopy. These effects were also studied on several redox-sensitive metals, including Fe, Mn, Mo, Te, Re, U, Al, Ti, and V by ICP-MS analysis. Preliminary results indicate a rapid establishment of reducing conditions in fluid mud immediately overlying the seabed. These conditions persist until the suspended sediments in the fluid mud settle, and the fluid mud dissipates. The recurrence of storm front passages and their subsequent fluid mud formation cause repeated cycling from oxic to suboxic conditions in these coastal bottom waters. This redox cycling could potentially alter the fates of redox-sensitive metals, especially those associated with metal oxide carrier phases.

  20. Platinum-group elements (PGE) and Rhenium in Marine Sediments across the Cretaceous-Tertiary Boundary: Constraints on Re-PGE Transport in the Marine Environment

    NASA Technical Reports Server (NTRS)

    Lee, Cin-Ty Aeolus; Wasserburg, Gerald J.; Kyte, Frank T.

    2003-01-01

    The nature of Re-platinum-group element (PGE; Pt, Pd, Ir, Os, Ru) transport in the marine environment was investigated by means of marine sediments at and across the Cretaceous-Tertiary boundary (KTB) at two hemipelagic sites in Europe and two pelagic sites in the North and South Pacific. A traverse across the KTB in the South Pacific pelagic clay core found elevated levels of Re, Pt, Ir, Os, and Ru, each of which is approximately symmetrically distributed over a distance of approx. 1.8 m across the KTB. The Re-PGE abundance patterns are fractionated from chondritic relative abundances: Ru, Pt, Pd, and Re contents are slightly subchondritic relative to Ir, and Os is depleted by approx. 95% relative to chondritic Ir proportions. A similar depletion in Os (approx. 90%) was found in a sample of the pelagic KTB in the North Pacific, but it is enriched in Ru, Pt, Pd, and Re relative to Ir. The two hemipelagic KTB clays have near-chondritic abundance patterns. The approx. 1.8-m-wide Re-PGE peak in the pelagic South Pacific section cannot be reconciled with the fallout of a single impactor, indicating that postdepositional redistribution has occurred. The elemental profiles appear to fit diffusion profiles, although bioturbation could have also played a role. If diffusion had occurred over approx. 65 Ma, the effective diffusivities are approx. 10(exp -13)sq cm/s, much smaller than that of soluble cations in pore waters (approx. 10(exp -5) sq cm/s). The coupling of Re and the PGEs during redistribution indicates that postdepositional processes did not significantly fractionate their relative abundances. If redistribution was caused by diffusion, then the effective diffusivities are the same. Fractionation of Os from Ir during the KTB interval must therefore have occurred during aqueous transport in the marine environment. Distinctly subchondritic Os/Ir ratios throughout the Cenozoic in the South Pacific core further suggest that fractionation of Os from Ir in the marine environment is a general process throughout geologic time because most of the inputs of Os and Ir into the ocean have OsAr ratios greater than or = 1. Mass balance calculations show that Os and Re burial fluxes in pelagic sediments account for only a small fraction of the riverine Os (less than 10%) and Re (less than 0.1%) inputs into the oceans. In contrast, burial of Ir in pelagic sediments is similar to the riverine Ir input, indicating that pelagic sediments are a much larger repository for Ir than for Os and Re. If all of the missing Os and Re is assumed to reside in anoxic sediments in oceanic margins, the calculated burial fluxes in anoxic sediments are similar to observed burial fluxes. However, putting all of the missing Os and Re into estuarine sediments would require high concentrations to balance the riverine input and would also fail to explain the depletion of Os at pelagic KTB sites, where at most approx. 25% of the K-T impactor's Os could have passed through estuaries. If Os is preferentially sequestered in anoxic marine environments, it follows that the OsAr ratio of pelagic sediments should be sensitive to changes in the rates of anoxic sediment deposition. There is thus a clear fractionation of Os and Re from Ir in precipitation out of sea water in pelagic sections. Accordingly, it is inferred here that Re and Os are removed from sea water in anoxic marine depositional regimes.

  1. Regional Sediment Management Experiment Using the Visible/Infrared Imager/Radiometer Suite and the Landsat Data Continuity Mission Sensor

    NASA Technical Reports Server (NTRS)

    Estep, Leland; Spruce, Joseph P.

    2007-01-01

    The central aim of this RPC (Rapid Prototyping Capability) experiment is to demonstrate the use of VIIRS (Visible/Infrared Imager/ Radiometer Suite and LDCM (Landsat Data Continuity Mission) sensors as key input to the RSM (Regional Sediment Management) GIS (geographic information system) DSS (Decision Support System). The project affects the Coastal Management National Application.

  2. Stable carbon isotope ratios of intact GDGTs indicate heterogeneous sources to marine sediments

    NASA Astrophysics Data System (ADS)

    Pearson, Ann; Hurley, Sarah J.; Walter, Sunita R. Shah; Kusch, Stephanie; Lichtin, Samantha; Zhang, Yi Ge

    2016-05-01

    Thaumarchaeota, the major sources of marine glycerol dibiphytanyl glycerol tetraether lipids (GDGTs), are believed to fix the majority of their carbon directly from dissolved inorganic carbon (DIC). The δ13C values of GDGTs (δ13CGDGT) may be powerful tools for reconstructing variations in the ocean carbon cycle, including paleoproductivity and water mass circulation, if they can be related to values of δ13CDIC. To date, isotope measurements primarily are made on the C40 biphytane skeletons of GDGTs, rather than on complete tetraether structures. This approach erases information revealed by the isotopic heterogeneity of GDGTs within a sample and may impart an isotopic fractionation associated with the ether cleavage. To circumvent these issues, we present δ13C values for GDGTs from twelve recent sediments representing ten continental margin locations. Samples are purified by orthogonal dimensions of HPLC, followed by measurement of δ13C values by Spooling Wire Microcombustion (SWiM)-isotope ratio mass spectrometry (IRMS) with 1σ precision and accuracy of ±0.25‰. Using this approach, we confirm that GDGTs, generally around -19‰, are isotopically ;heavy; compared to other marine lipids. However, measured δ13CGDGT values are inconsistent with predicted values based on the 13C content of DIC in the overlying water column and the previously-published biosynthetic isotope fractionation for a pure culture of an autotrophic marine thaumarchaeon. In some sediments, the isotopic composition of individual GDGTs differs, indicating multiple source inputs. The data appear to confirm that crenarchaeol primarily is a biomarker for Thaumarchaeota, but its δ13C values still cannot be explained solely by autotrophic carbon fixation. Overall the complexity of the results suggests that both organic carbon assimilation (ca. 25% of total carbon) and multiple source(s) of exogenous GDGTs (contributing generally <30% of input to sediments) are necessary to explain the observed δ13CGDGT values. The results suggest caution when interpreting the total inputs of GDGTs to sedimentary records. Biogenic or open-slope sediments, rather than clastic basinal or shallow shelf sediments, are preferred locations for generating minimally-biased GDGT proxy records.

  3. Detrital zircon study along the Tsangpo River, SE Tibet

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Chung, S.; Liu, D.; O'Reilly, S. Y.; Chu, M.; Ji, J.; Song, B.; Pearson, N. J.

    2004-12-01

    The interactions among tectonic uplift, river erosion and alluvial deposition are fundamental processes that shape the landscape of the Himalayan-Tibetan orogen since its creation from early Cenozoic time. To better understand these processes around the eastern Himalayan Syntaxis, we conducted a study by systematic sampling riverbank sediments along the Tsangpo River, SE Tibet. Detrital zircons separated from the sediments were subjected to U-Pb dating by the SHRIMP II at the Beijing SHRIMP Center and then in-situ measurements of Hf isotope ratios using LA-MC-ICPMS at GEMOC. These results, together with U-Pb ages and Hf isotope data that we recently obtained for the Transhimalayan plutonic and surrounding basement rocks, allow a more quantitative examination of the provenance or protosource areas for the river sediments. Consequently, the percentage inputs from these source areas can be estimated. Our study indicates that, before the Tsangpo River flows into the Namche Barwa Syntaxis of the eastern Himalayas where the River forms a 180° Big Bend gorge and crosscuts the Himalayan sequences, the Gangdese batholith that crops out just north of the River appear to be an overwhelming source accounting for ˜50 % of the bank sediments. The Tethyan Himalayan sequences south of the River are the second important source, with an input of ˜25 %. The proportion of sediment supply changes after the River enters the Big Bend gorge and turns to south: ˜25 % of detrital zircons are derived from the Greater Himalayas so that the input from the Tethyan Himalayas decreases (< 10 %) despite those from the Gangdese batholith remains high ( ˜40 %). Comparing with the sediment budget of the Brahmaputra River in the downstream based on literature Sr, Nd and Os isotope information, which suggests dominant ( ˜90-60 %) but subordinate ( ˜10-40 %) contributions by the (Greater and Lesser) Himalayan and Tibetan (including Tethyan Himalayan) rocks, respectively, the change is interpreted to be a result of focused erosion along the Tsangpo-Brahmaputra river system that behaves as one of the most active mountain rivers on Earth.

  4. NEW TOOLS FOR STREAM MORPHO-DYNAMIC MODELING (Invited)

    NASA Astrophysics Data System (ADS)

    Tonina, D.; McKean, J. A.; Maturana, O. R.; Luce, C.; Buffington, J. M.

    2009-12-01

    Morphological evolution of streambeds and sediment transport in streams has been typically studied in long reaches using one-dimensional models, due partly to the lack of accurate and easy-to-acquire river bathymetry. The Experimental Advanced Airborne Research Lidar (EAARL) allows simultaneous surveying in both aquatic and terrestrial domains quickly and remotely. However, its usefulness to define boundary conditions for morpho-dynamic models has not yet been tested. We first evaluated EAARL accuracy and then used the data to model fine sediment transport in gravel bed rivers. A random vertical error, modeled as a Normal distribution with zero mean and 10 cm standard deviation, was introduced to bathymetric point cloud data in an EAARL survey. Comparison of water elevations and velocity and shear stress distributions among simulations with and without these random bathymetric errors showed little effect on model predictions. This result allowed us to use EAARL data to model the effects of chronic and acute loads of fine-grained sediment on riverine ecosystems, river morphology, and bed evolution. The simulations were done with the Multidimensional Surface Water Model System (MD-SWMS, USGS). We added a new sand conservation model and the two-class sediment transport equation of Wilcock and Kenworthy [2002, WRR] to MD-SWMS. Simulations show patterns of fine sediment transport and deposition along meandering and straight stream reaches, and the impact of sudden inputs of fine sediment on salmonid spawning sites. Initial results illustrate the sensitivity of sand transport to flow characteristics. At a base flow of 1 m3/sec, sand moves only a few tens-of-meters from the point source during a 4-month model period. Over the same time interval a constant bankfull flow of 6 m3/sec removes all of the sand from the source area; the sand migrates in distinct waves through the 0.5 km-long model reach and we predict all salmon spawning sites in the reach would be contaminated with sand. Chronic inputs, which may come from human activities, seem to have a more persistent impact on streambed habitat quality than pulsed inputs, which may stem from wild fires and other natural disturbances.

  5. LONG-TERM RECOVERY OF PCB-CONTAMINATED SURFACE SEDIMENTS AT THE SANGAMO-WESTON/TWELVEMILE CREEK/LAKE HARTWELL SUPERFUND SITE

    EPA Science Inventory

    Natural recovery of contaminated sediments relies on burial of contaminated sediments with increasingly clean sediments over time (i.e., natural capping). Natural capping reduces the risk of resuspension of contaminated surface sediments, and it reduces the potential for contamin...

  6. An integrated methodology to forecast the efficiency of nourishment strategies in eroding deltas.

    PubMed

    Bergillos, Rafael J; López-Ruiz, Alejandro; Principal-Gómez, Daniel; Ortega-Sánchez, Miguel

    2018-02-01

    Many deltas across the globe are retreating, and nearby beaches are undergoing strong erosion as a result. Among soft and prompt solutions, nourishments are the most heavily used. This paper presents an integrated methodology to forecast the efficiency of nourishment strategies by means of wave climate simulations, wave propagations with downscaling techniques, computation of longshore sediment transport rates and application of the one-line model. It was applied to an eroding deltaic beach (Guadalfeo, southern Spain), where different scenarios as a function of the nourished coastline morphology, input volume and grain size were tested. For that, the evolution of six scenarios of coastline geometry over a two-year period (lifetime of nourishment projects at the study site) was modelled and the uncertainty of the predictions was also quantified through Monte Carlo techniques. For the most efficient coastline shape in terms of gained dry beach area, eight sub-scenarios with different nourished volumes were defined and modelled. The results indicate that an input volume around 460,000m 3 is the best strategy since nourished morphologies with higher volumes are more exposed to the prevailing storm directions, inducing less efficient responses. After setting the optimum coastline morphology and input sediment volume, eleven different nourished grain sizes were modelled; the most efficient coastline responses were obtained for sediment sizes greater than 0.01m. The availability of these sizes in the sediment accumulated upstream of a dam in the Guadalfeo River basin allows for the conclusion that this alternative would not only mitigate coastal erosion problems but also sedimentation issues in the reservoir. The methodology proposed in this work is extensible to other coastal areas across the world and can be helpful to support the decision-making process of artificial nourishment projects and other environmental management strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Geochemical and Sedimentary Record of Urbanization and Industrialization of the Galveston Bay Watershed

    NASA Astrophysics Data System (ADS)

    Al Mukaimi, M. E.; Dellapenna, T.; Williams, J. R.

    2016-02-01

    Galveston Bay (GB) is the second largest estuary in the Gulf of Mexico, with the watershed containing one of the largest concentrations of petroleum and chemical industries globally, particularly within the lower 15 km of the San Jacinto River/Houston Ship Channel (SJR/HSC). Throughout the last century, extensive groundwater extraction to support these industries and an expanding population has resulted in significantly enhanced land subsidence (0.6-3.0 cm yr-1). In order to examine the impacts of these anthropogenic alterations to the system, 22 vibracores were collected throughout the bay and analyzed for 210Pb and 137Cs radioisotope geochronology, X-radiography, grain size, X-Ray Fluorescence, Hg concentration, lignin phenol concentrations, and stable isotopes (δ13C and δ15N). The sedimentation rates from these cores were used to determine historical input of trace metals and organic matter sources. Results indicate sedimentation rates are relatively higher (1.4-1.9 cm yr-1) in areas with elevated Relative Sea Level Rise (RSLR). However, in general, sedimentation rates are lower (as much as 50%) than RSLR, indicating that sediment accumulation has not kept pace with land subsidence. Hg core profiles show significant input of Hg beginning around 1900, with peak concentrations in the 1960-70's, and decrease thereafter. Surficial Hg concentrations were found to be significantly higher proximal to the SJR/HSC, and decrease seaward. Preliminary results of stable isotopes and lignin phenols show there is a significant terrestrial input of organic matter, and the provenance has shifted from being marine to terrestrial dominated. Due to the industrial and residential importance of the GB watershed, these results not only increase our knowledge of the fate and transport of organic biomarkers, Hg, and other particle bound contaminants under varying sedimentation regimes, but aid in local environmental management strategies to minimize impact to public health.

  8. Sensitivity of sediment contamination in the Elbe Estuary to climate change

    NASA Astrophysics Data System (ADS)

    Kleisinger, Carmen; Haase, Holger; Hentschke, Uwe; Schubert, Birgit

    2015-04-01

    As a result of the projected climate-induced changes of temperature and precipitation (IPCC, 2007), an increase of the frequency and intensity of extreme events such as floods, storm surges or of extended periods of low river discharge is to be expected. An increase of flood events would result in an additional input of contaminated sediments from the inland. Contaminated particles will be transported along the rivers to the estuaries and consequently, a deterioration of the quality of estuarine particulate matter may occur. In addition, a sea level rise is predicted to occur along with global warming. In case of sea level rise or more frequent low river discharge situations, the upstream transport of slightly contaminated sediments of marine origin may be intensified, and cause decreasing concentrations of contaminants in particulate matter. The contamination of particulate matter plays an important role for the ecological quality of water bodies and has accordingly to be taken into account in the sediment management of navigable waters. This study focuses on the assessment of potential climate-induced and other man-made changes of particle-bound contaminant concentrations in the estuary of the river Elbe and the resulting challenges for sediment management in this navigable waterway. The estimation of climate-induced changes of contaminant concentrations in estuarine particulate matter was based on results of projections on the fluvial particulate matter input into the Elbe estuary in the near (2021-2050) and far future (2071-2100) and on assumed extreme changes of such inputs. A mixing model using the concentrations of selected contaminants as indicators for marine and fluvial particulate matter was applied. Distinct changes of contaminant concentrations were found only for the far future and with the assumed extreme particulate matter inputs in the inner Elbe estuary. The worst-case scenario indicated that concentrations of some organochlorine contaminants in the far future exceed the national assessment criteria for the handling of dredged material within coastal waterways more distinct than today. Therefore, adaptations of practices for the management of dredged material to higher particulate matter contaminations should be considered there in the medium or long-term perspective. On the one hand, e.g. the practices of depositing dredged- material within the water system might be adapted (BfG 2014). On the other hand, the implementation of remediation measures like those planned under the Water Framework Directive could mitigate the climate-induced increase of contaminants. However, before the planning of adaption measures begins, the respectively prevailing contamination status should be verified, as climate-induced changes of contaminant concentrations might be superimposed by direct anthropogenic activities, e.g. remediation measures to reduce contamination or construction works in waterways. Literature: BfG - Bundesanstalt für Gewässerkunde (2014) Sedimentmanagement Tideelbe - Strategien und Potenziale - Systemstudie II. Ökologische Auswirkungen der Unterbringung von Feinmaterial. Band 1, Endbericht. Im Auftrag des Wasser- und Schifffahrtsamtes Hamburg. Bundesanstalt für Gewässerkunde, Koblenz, BfG-Bericht 1763 IPCC (2007) Climate Change 2007 The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.

  9. Groundwater control on the suspended sediment load in the Na Borges River, Mallorca, Spain

    NASA Astrophysics Data System (ADS)

    Estrany, Joan; Garcia, Celso; Batalla, Ramon J.

    2009-05-01

    Groundwater dominance has important effects on the hydrological and geomorphological characteristics of river systems. Low suspended sediment concentrations and high water clarity are expected because significant inputs of sediment-free spring water dilute the suspended sediment generated by storms. However, in many Mediterranean rivers, groundwater dominance is characterised by seasonal alternations of influent and effluent discharge involving significant variability on the sediment transport regimes. Such areas are often subject to soil and water conservation practices over the centuries that have reduced the sediment contribution from agricultural fields and favour subsurface flow to rivers. Moreover, urbanisation during the twentieth century has changed the catchment hydrology and altered basic river processes due to its 'flashy' regime. In this context, we monitored suspended sediment fluxes during a two-year period in the Na Borges River, a lowland agricultural catchment (319 km 2) on the island of Mallorca (Balearic Islands). The suspended sediment concentration (SSC) was lower when the base flow index (i.e., relative proportion of baseflow compared to stormflow, BFI) was higher. Therefore, strong seasonal contrasts explain the high SSC coefficient of variation, which is clearly related to dilution effects associated with different groundwater and surface water seasonal interactions. A lack of correlation in the Q-SSC rating curves shows that factors other than discharge control sediment transport. As a result, at the event scale, multiple regressions illustrate that groundwater and surface water interactions are involved in the sedimentary response of flood events. In the winter, the stability of baseflow driven by groundwater contributions and agricultural and urban spills causes hydraulic variables (i.e., maximum discharge) to exert the most important control on events, whereas in the summer, it is necessary to accumulate important volumes of rainfall, creating a minimum of wet conditions in the catchment to activate hydrological pathways and deliver sediment to the drainage network. The BFI is also related to sediment delivery processes, as the loads are higher with lower BFI, corroborating the fact that most sediment movement is caused by stormflow and its related factors. Overall, suspended sediment yields were very low (i.e., < 1 t km - 2 yr - 1 ) at all measuring sites. Such values are the consequence of the limited sediment delivery attributable to soil conservation practices, low surface runoff coefficients and specific geomorphic features of groundwater-dominated rivers, such as low drainage density, low gradient, steep valley walls and flat valley floors.

  10. Sedimentary properties of shallow marine cores collected in June and September 2006, Hanalei Bay, Kaua‘i, Hawai‘i

    USGS Publications Warehouse

    Draut, Amy E.; Bothner, Michael H.; Reynolds, Richard L.; Buchan, Olivia C.; Cochran, Susan A.; Casso, Michael A.; Baldwin, Sandra M.; Goldstein, Harland L.; Xiao, Jiang; Field, Michael E.; Logan, Joshua B.

    2007-01-01

    Sedimentary facies, short-lived isotopes 7Be, 137Cs, and 210Pb, and magnetic properties of sediment cores in Hanalei Bay, Kaua‘i, Hawai‘i, were used to assess sediment sources and patterns of deposition associated with seasonal flooding of the Hanalei River. Sediment cores were collected from the seafloor in June and September of 2006 to supplement similar data collected during the summer of 2005. The youngest and thickest terrigenous sediment was observed on the east side of the bay: near the Hanalei River mouth and in a bathymetric depression, known locally as the Black Hole, that acts as a temporary sediment sink. Deposits from floods that occurred between February and April 2006 left flood deposits in the eastern bay that, by June of 2006, were on the order of 10 cm thick. A flood occurred on August 7, 2006, that was smaller than floods that occurred the previous winter but was a substantial discharge event for the summer season. Deposits from the winter 2006 floods continued to dominate the sedimentary record in the eastern bay through early fall, even after the addition of newer sediment during the August 7 flood; this is consistent with the much higher sediment input of the winter floods compared with the August 7 flood. Broad variations in magnetic grain size and relative magnetite-hematite abundance in several sediment cores indicate many sources of upland terrigenous sediment. As a group, recent flood deposits show much less variation in these properties compared with older deposits, implying either that the 2006 winter–spring flood sediment originated from one or more distinct upland settings, or that substantial mixing of sediment from multiple sources occurred during transport. Sediment is most readily remobilized and advected out of the bay during winter, when oceanic conditions are energetic. In summer, wave and current measurements made concurrently with this study showed weak currents and little wave energy, indicating that sediment delivered during summer floods most likely remains in the bay until winter storms can remove it. Increased turbidity and sedimentation on corals resulting from floods of the Hanalei River could affect the sustainability of coral reefs and their many associated species. This possibility is of particular concern during summer months when wave energy is low and sediment is not readily remobilized and transported out of the bay. The timing (seasonality) and magnitude of sediment input to the coastal ocean relative to seasonal variations in wave and current energy could have significant ecological consequences for coral-reef communities in the Hawaiian Islands.

  11. Trends in chlorinated hydrocarbon levels in Hudson River basin sediments.

    PubMed Central

    Bopp, R F; Chillrud, S N; Shuster, E L; Simpson, H J; Estabrooks, F D

    1998-01-01

    Analysis of sections from dated sediment cores were used to establish geographic distributions and temporal trends of chlorinated hydrocarbon contaminant levels in sediments from natural waters of the Hudson River basin. Radiometric dating was based primarily on the depth distribution of 137(Cs) in the cores and on the occurrence of detectable levels of 7(Be) in surface sediment samples. Eighteen sampling sites included several along the main stem of the Hudson, its major tributaries, and components of the New York/New Jersey (NY/NJ) harbor complex. Drinking-water reservoirs were sampled to place upper limits on atmospheric inputs. Core sections were analyzed for polychlorinated biphenyls (PCBs), 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT)-derived compounds, chlordane, and dioxins. Sediment concentrations of most contaminants at most sites have decreased significantly since the mid-1960s. The data provide a basinwide perspective on major point-source inputs of PCBs to the upper Hudson River and of 2,3,7,8-tetrachlorodibenzo-p-dioxin and DDT to the lower Passaic River. Evidence was found for significant but poorly characterized sources of PCBs and chlordane to the western NY/NJ harbor, and of highly chlorinated dioxins to the upstream sites on the main stem of the Hudson. The results indicate that analysis of dated sediment samples is a most effective and efficient monitoring tool for the study of large-scale geographic and temporal trends in levels of particle-associated contaminants. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:9703496

  12. Lake Biel Holocene sediment record before and after the Aare river deviation (1878 AD)

    NASA Astrophysics Data System (ADS)

    Jeannet, Alice; Corella, Juan Pablo; Kremer, Katrina; Girardclos, Stéphanie

    2014-05-01

    Lake sediments are excellent archives of environmental and climate changes as well as human impact on lake- and river-systems. Lake Biel is a medium-sized peri-alpine lake in Switzerland, with a maximum depth of 74 m, and lies at an altitude of 429 m a.s.l. Lake Biel, which formed during the Pleistocene by glacial erosion, is part of the Aare river system. Our study focuses on the south-west part of the lake basin where the lake sedimentation was originally (i.e. naturally) mainly controlled by autochthonous sedimentation. This area is currently under a strong influence of water and sediment input from this river catchment since the Aare river deviation through the Hagneck canal in 1878. A 10.05 m long composite sediment sequence, cored from a 52 m water depth in September 2011, was built from two long cores retrieved with the ETH Zurich/Eawag Uwitec system. A radiocarbon age model indicates that the retrieved sedimentary sequence spans the last 7500 years. The upper sediments were correlated to previous short core radionuclide stratigraphy for the 1.5 m upper part (Thevenon et al., 2013). Magnetic susceptibility and density were measured by Geotek MultiSensor Core Logger at 0.5 cm resolution. Granulometry was measured with a CILAS grain sizer every 10 cm, and X-ray fluorescence (XRF) was carried out using an Avaatech core scanner at 1-cm resolution. This technique provides semi-quantitative information of the sediment elemental composition and shows how runoff and river input (Ti, Al, Si) or redox conditions (Fe/Mn) vary through time. Lake Biel sediment record suggests marked environmental changes with runoff decrease linked to climate and vegetation change during Atlantic chronobiozone, as well as a complex climate-human impact during the 'La Tène' and Roman cultural times. The most prominent recorded feature is the 10-times increase of sediment rate that occurred after the Aare river deviation through the Hagneck canal into Lake Biel in 1878. This artificial new river input is also linked to a massive and sudden Ti increase, and inversely abrupt Ca decrease in XRF data. This record reveals the significant alteration in the sediment dynamics, and the lake oxygenation changes that the lake experienced when it shifted from a relatively closed basin to a river and delta-influenced basin. Thank you to Flavio S. Anselmetti, Christine Guido and Frédéric Arlaud for help coring on the field and Stefanie Wirth for help at Limnogeology Laboratory. This study, undertaken as a Master thesis, was financed by the Swiss National Foundation projects 121666 and 146889. Reference Thevenon F. et al. 2013. Human impact on the transport of terrigenous and anthropogenic elements to peri-alpine lakes (Switzerland) over the last decades. Aquatic Sciences 75: 413-424.

  13. Cadmium partition in river sediments from an area affected by mining activities.

    PubMed

    Vasile, Georgiana D; Vlădescu, Luminiţa

    2010-08-01

    In this paper, the cadmium distribution in Certej River sediments in an area seriously affected by intense mining activities has been studied. The main objective of this study was the evaluation of partition of this metal into different operational defined fractions by sequential extractions. Community Bureau of Reference (BCR) sequential extraction was used to isolate different fractions. The sediment quality was assessed both upstream and downstream the pollution input points, along the Certej River, in order to reveal a possible accumulation of cadmium in sediments and the seasonal changes in cadmium concentrations in BCR sediment phases. Our results reveal that most of the cadmium content is divided between both the soluble and iron and manganese hydrated oxide fractions. Based on total cadmium concentrations in sediments, the enrichment factors were estimated using aluminum as normalizing element and the regression curve Cd/Al corresponding to the geochemical background of the studied area.

  14. The impact of human activities on sediments of San Francisco Bay, California: an overview

    USGS Publications Warehouse

    van Geen, Alexander; Luoma, Samuel N.

    1999-01-01

    This note introduces a set of eight papers devoted to a detailed study of two sediment cores from San Francisco Bay with an overview of the region and a chronology of human activities. Data used in this study to constrain the range of sediment ages at different depths include , and  concentrations in the sediment and the  age of shell fragments. In order of first detectable appearance in the record, the indicators of contamination that were analyzed include PAHs>Hg>Ag, Cu, Pb, Zn>DDT, PCB>foraminiferal Cd/Ca. This study also documents a large memory effect for estuarine contamination caused by sediment mixing and resuspension. Once an estuary such as San Francisco Bay has been contaminated, decades must pass before contaminant levels in surface sediment will return to background levels, even if external contaminant inputs have been entirely eliminated.

  15. Uncertainty in tsunami sediment transport modeling

    USGS Publications Warehouse

    Jaffe, Bruce E.; Goto, Kazuhisa; Sugawara, Daisuke; Gelfenbaum, Guy R.; La Selle, SeanPaul M.

    2016-01-01

    Erosion and deposition from tsunamis record information about tsunami hydrodynamics and size that can be interpreted to improve tsunami hazard assessment. We explore sources and methods for quantifying uncertainty in tsunami sediment transport modeling. Uncertainty varies with tsunami, study site, available input data, sediment grain size, and model. Although uncertainty has the potential to be large, published case studies indicate that both forward and inverse tsunami sediment transport models perform well enough to be useful for deciphering tsunami characteristics, including size, from deposits. New techniques for quantifying uncertainty, such as Ensemble Kalman Filtering inversion, and more rigorous reporting of uncertainties will advance the science of tsunami sediment transport modeling. Uncertainty may be decreased with additional laboratory studies that increase our understanding of the semi-empirical parameters and physics of tsunami sediment transport, standardized benchmark tests to assess model performance, and development of hybrid modeling approaches to exploit the strengths of forward and inverse models.

  16. Evolution of Holocene tidal systems along the Dutch coast: effects of rivers, coastal boundary conditions, eco-engineering species, inherited relief and human interference

    NASA Astrophysics Data System (ADS)

    Haas, T. D.; Pierik, H. J.; van der Spek, A.; Cohen, K.; van Maanen, B.; Kleinhans, M. G.

    2016-12-01

    Estuaries and tidal basins are partly enclosed coastal bodies of water with a free connection to the open sea at their tidal inlet and with no to marginal riverine input (tidal basins) or substantial riverine input (estuaries). Their tidal inlets can only remain open over Holocene timescales when (1) the formation of accommodation space exceeds infilling or (2) the inlet system is in dynamic equilibrium (sediment input equals output). Physical and numerical modelling suggest that estuaries and tidal basins develop toward a dynamic equilibrium under constant boundary conditions and remain open over long timescales, whereas many natural estuaries and tidal basins have filled up and were closed off or became deltas during the Holocene. This raises the question if and how tidal inlets can remain open over long timescales? And what is the effect of river inflow and sediment supply thereon? Here we compare the Holocene evolution of tidal systems along the Dutch coast to empirically identify the most important factors that control their long-term evolution. Along the coast of the Netherlands estuaries and tidal basins were formed during the middle Holocene driven by rapid relative sea-level rise and during the late Holocene driven by natural and human-induced subsidence in coastal plain peatlands. During the Holocene tidal inlets connected to rivers (estuaries) were able to persist and attain dynamic equilibrium while tidal basins without or with a very marginal riverine inflow were unstable and closed off under abundant sediment supply. There are many examples of long-lived tidal inlets that rapidly closed off after upstream river avulsion leading to a decrease and finally loss of riverine input. Long-term net import of sediment from the sea into Dutch tidal basins is favoured by strong, flood-dominated, tidal asymmetry along the Dutch coast, the shallow sand-rich floor of the North Sea and the abundance of mud in the coastal area supplied by the Rhine and Meuse rivers. While sandy tidal basins may obtain dynamic equilibrium and remain open over long timescales, we hypothesize that an abundance of mud and eco-engineering species often culminates in continuous basin filling with fine sediment and the growth of intertidal and supratidal areas, eventually resulting in closure of the basin.

  17. Trace Element Geochemistry as a Tool for the Reconstruction of Upwelling Patterns at 12oS off Peru since the Last Glacial Maximum (LGM)

    NASA Astrophysics Data System (ADS)

    Boening, P.; Brumsack, H.; Wolf, A.

    2002-05-01

    Laminated sediments (core 106KL), recovered during R/V Sonne cruise 147 from the Peruvian upper slope mud lens at 12oS, were analyzed for bulk parameters (TOC, TIC, TS) and opal as well as major and trace element composition by XRF and ICP-MS in 5 cm intervals. The composition of the terrigenous-detrital sediment fraction is comparable to average shale. The sediments exhibit slight increases in biogenic silica (diatoms) and carbonate contents (foraminifera) in varying layers. The experimentally determined opal contents correlate well with Si/Al ratios. High TOC and P contents are due to enhanced primary productivity, high sedimentation rates and corresponding organic matter preservation under a strong OMZ. We distinguish between three different groups of elements: 1.) trace elements involved in bio-cycling (e.g. Cd, Ag, Ni, Cu) are highly enriched in the sediments due to their association with plankton, high sedimentation rates (preventing remobilization from the sediments) and fixation as sulfides. 2.) redox-sensitive elements (e.g. Re, Mo) are significantly enriched probably due to reduction and precipitation under suboxic/anoxic conditions. Diffusion of these elements from the water column into sub/anoxic sediments seems to be the controlling factor, besides sulfide precipitation. An average Re/Mo ratio of 1.3 indicates anoxic sedimentary conditions. Most trace elements correlate well with the TOC content presumably documenting productivity events. 3.) Al, Zr and Y are well correlated, presumably representing sporadic high-energy fluvial input from the continent or enhanced current velocities. The three element groups were used to reconstruct the upwelling patterns off Lima since the LGM: TOC content and Al-normalized trace element patterns from the bio/redox-sensitive fractions represent the signal from the water column, whereas Al, Y and Zr reflect the terrigenous input. During the LGM (about 17 ky BP) the site was hardly affected by upwelling as the upwelling cell was located more basinward. As the sea level rose during the Late Glacial (17-10 ky BP) the upwelling cell shifted towards the coast. The Early Holocene (10-5 ky BP) is not documented likely because strong currents (presumably the Peru counter current) eroded the slope. In the Late Holocene the upwelling cell was established at the site. However, a higher terrrigenous proportion and lower input from the water column suggest a basinward shifting of the upwelling cell during the Second Neoglacial (2000-2700 BP). Stronger Element/Al and TOC variabilities indicate the influence of El Nino during the Late Holocene.

  18. Manganese carbonates in the Upper Jurassic Georgiev Formation of the Western Siberian marine basin

    NASA Astrophysics Data System (ADS)

    Eder, Vika G.; Föllmi, Karl B.; Zanin, Yuri N.; Zamirailova, Albina G.

    2018-01-01

    Manganese (Mn) carbonate rocks are a common lithological constituent of the Upper Oxfordian to Lower Tithonian (Volgian) Georgiev Formation of the Western Siberian marine basin (WSMB). The Mn carbonates in the Georgiev Formation are present in the form of massive sediments, stromatolites, and oncolites, and are associated with glauconite and partly also phosphate-rich clay- and siltstones. Unlike most Mn carbonates, they are not directly associated with organic-rich sediments, but occur below an organic-rich succession (Bazhenov Formation). The Mn carbonate occurrences can be traced from the western central area of the WSMB to its center along a distance of at least 750 km. The thickness of the Mn carbonates and their Mn contents becomes reduced in an eastward direction, related to increased detrital input. The geochemical and mineralogical heterogeneity within the Mn carbonates indicates that they were deposited stepwise in a diagenetic regime characterized by steep gradients in Mn, Ca, and Mg. A first step consisted in the replacement of initial sediments within the microbialites during an early diagenetic stage, followed by a second step where massive sediments were transformed into Mn carbonate. During both steps, the decomposition of organic matter was an important source of the newly formed carbonate. During a further step, voids were cemented by Mn carbonates, which are rich in pyrite. This last generation may only have formed once the organic-rich sediments of the overlying Bazhenov Formation were deposited. Accumulation of the Mn carbonates in the Upper Jurassic WSMB was controlled by the proximity of Mn-enriched parent rocks, likely in the Ural, which were subjected to intense geochemical weathering during the Late Jurassic.

  19. Tracking Soil Organic Carbon Transport to Continental Margin Sediments Using Soil-Specific Hopanoid Biomarkers: a Case Study From the Congo Fan (ODP Site 1075)

    NASA Astrophysics Data System (ADS)

    Cooke, M. P.; Talbot, H. M.; Eniola, O.; Zabel, M.; Wagner, T.

    2007-12-01

    The transport and subsequent deposition of terrestrially derived organic matter into the ocean is an important but poorly constrained aspect of the modern global carbon cycle. In regions associated with large river systems it is likely that the terrestrial input of organic carbon is much more complex than commonly considered and very difficult to trace based on established geochemical proxies. It is therefore important to develop proxies that target the movement and fate of this terrestrial organic material. The identification of bacteriohopanepolyol (BHP) biomarkers unique to soil derived organic carbon (SOC) has enabled the transport of SOC into aquatic sediments to be traced. The extreme recalcitrance of BHPs enables these source specific compounds to be used on recent and ancient sediments to identify periods of high and low SOC input into sediments. BHPs are bacterial membrane compounds with a high degree of structural variability. They are analogous to steroids in eukaryotes and have been identified in over half of all bacteria studied for their presence. BHPs have a wide range of over 40 functional groups on the side chain, with up to 6 functional groups in each structure, and with methylation and unsaturation over 100 total structures have been identified1. During the BHP analysis of a wide range of soils from around the world we consistently measure high levels adenosylhopane, known to originate from purple non-sulphur, nitrogen fixing and ammonia oxidising bacteria and 2-methyl adenosyl hopane (m/z 802)2, from nitrogen fixing bacteria. Only 3 lacustrine sediments with large SOC supply from their catchments areas have been found to contain these markers in a survey of over 40 different non-marine settings. Recent studies on Late Quaternary sediments from the Congo deep sea fan (OPD site 1075, approximately 2 km water depth) provide a strong case to expect markers for SOC3. An initial analysis of the core samples confirms the presence of soil specific BHP markers in each sample analyzed down to 89 m depth in addition to the presence of common sediment associated BHPs. Concentrations of soil markers are high in the upper sediment section down to about 49 m supporting the case for these molecular markers as novel proxies for SOC supply and burial. Distinct peaks of adenosyl and 2 methyl adenosyl hopane at about 200, 300 and 550 kyrs tentatively imply that the rate of terrestrial organic matter discharge from tropical Africa significantly increased at these times, possibly associated with periods of reduced soil stability in the Congo catchment. Analysis of the surface sediments from 4 other cores in close proximity to ODP site 1075 clearly shows that the percentage contribution of soil marker BHPs decreases with increasing distance from the river mouth, indicating that the river is the source of these BHPs. References 1. Rohmer, M. 1993. Pure and Applied Chemistry 65, 1293-1298. 2. Talbot, H.M., Rohmer, M., Farrimond, P., 2007. Rapid Communications in Mass Spectrometry (In press). 3. Holtvoeth, J., Wagner, T., Kolonic, S., 2005. Geochimica et Cosmochimica Acta, 69, 2031-2041.

  20. A high-resolution record of Holocene millennial-scale oscillations of surface water, foraminiferal paleoecology and sediment redox chemistry in the SE Brazilian margin

    NASA Astrophysics Data System (ADS)

    Dias, B. B.; Barbosa, C. F.; Albuquerque, A. L.; Piotrowski, A. M.

    2014-12-01

    Holocene millennial-scale oscillations and Bond Events (Bond et al. 1997) are well reported in the North Atlantic as consequence of fresh water input and weaking of the Atlantic Meridional Overturning Circulation (AMOC). It has been hypothesized that the effect of weaking of AMOC would lead to warming in the South Atlantic due to "heat piracy", causing surface waters to warm and a reorganization of surface circulation. There are few reconstructions of AMOC strength in the South Atlantic, and none with a high resolution Holocene record of changes of productivity and the biological pump. We reconstruct past changes in the surface water mass hydrography, productivity, and sediment redox changes in high-resolution in the core KCF10-01B, located 128 mbsl water depth off Cabo Frio, Brazil, a location where upwelling is strongly linked to surface ocean hydrography. We use Benthic Foraminiferal Accumulation Rate (BFAR) to reconstruct productivity, which reveals a 1.3kyr cyclicity during the mid- and late-Holocene. The geochemistry of trace and rare earth elements on foraminiferal Fe-Mn oxide coatings show changes in redox-sensitive elements indicating that during periods of high productivity there were more reducing conditions in sediment porewaters, producing a Ce anomaly and reduction and re-precipitation of Mn oxides. Bond events 1-7 were identified by a productivity increase along with reducing sediment conditions which was likely caused by Brazil Current displacement offshore allowing upwelling of the nutritive bottom water South Atlantic Central Waters (SACW) to the euphotic zone and a stronger local biological pump. In a global context, correlation with other records show that this occurred during weakened AMOC and southward displacement of the ITCZ. We conclude that Bond climatic events and millennial-scale variability of AMOC caused sea surface hydrographic changes off the Brazilian Margin leading to biological and geochemical changes recorded in coastal records. The 8.2kyr climatic event is reported here for the first time in South American coastal sediment records as high productivity conditions and a rapid change in porewater redox chemistry.

  1. An evaluation of petrogenic hydrocarbons in northern Gulf of Alaska continental shelf sediments - The role of coastal oil seep inputs

    USGS Publications Warehouse

    Short, J.W.; Kolak, J.J.; Payne, J.R.; Van Kooten, G. K.

    2007-01-01

    We compared hydrocarbons in water, suspended particulate matter (SPM), and riparian sediment collected from coastal watersheds along the Yakataga foreland with corresponding hydrocarbons in Gulf of Alaska benthic sediments. This comparison allows an evaluation of hydrocarbon contributions to marine sediments from natural oil seeps, coal and organic matter (e.g., kerogen) associated with eroding siliciclastic rocks. The samples from oil seeps show extensive loss of low-molecular weight n-alkanes (

  2. Recycling Revisited: Where did all the Subducted Sediments go?

    NASA Astrophysics Data System (ADS)

    Hofmann, A. W.; Chauvel, C.; Lewin, E.; Kelemen, P. B.; Hacker, B. R.

    2016-12-01

    Several lines of reasoning have revived the idea [1] that subduction has recycled continent-derived sediments into the mantle on a massive scale. For example, well-known peaks in zircon ages have been reinterpreted as reflecting variable rates of crust destruction via erosion and sediment subduction [2]. In addition, assessment of the trace element budgets of subducted sediments and arc volcanics, as well as geological and geophysical studies of accretionary wedges have led to estimates that about one mass of present-day continental crust has been returned to the mantle [3]. If these ideas are correct, then recycled sedimentary components should be present in MORB and OIB sources. As previously established, Nb/U and 87Sr/86Sr are negatively correlated in all EM2-type OIBs, clearly indicating continental/sedimentary input. However, the MORB source reservoir, being depleted in incompatible elements, is particularly susceptible to "pollution" by subducted sediments. Chauvel et al. [4] modeled the Hf-Nd isotopic array of MORBs+OIBs and concluded that it requires the addition of up to 6 % subducted sediment. We revisit this issue and show that global MORBs show no decrease in Nb/U with increasing 87Sr/86Sr, ruling out extensive addition of recycled sediment into global MORB sources. Instead, the Hf-Nd array can be obtained by recycled alkali basalts derived from subducted seamounts and ocean islands, rather than sediments. Moreover, mantle plumes with clearly identifiable sediment input contribute less than 20% of the total plume flux. We conclude that most of the subducted sediment flux is not returned to the convecting mantle. Instead, its most plausible fate is to be underplated beneath existing continental crust via "relamination" [5]. These results imply that continental recycling is subordinate and the growth of the continental crust has been largely irreversible. [1] Armstrong, 1968, Rev. Geophys. 6, 175. [2] Hawkesworth et al., 2009, Science 323, 49. [3] Porter & White, 2009, Geochem. Geophys. Geosyst., 10, Q12016. Scholl & von Huene, 2007, GSA Memoir 200. [4] Chauvel et al., 2008, Nature Geosci. 1, 64. [5] Hacker et al., 2011, EPSL 307, 501. Kelemen & Behn, 2016 Nature Geosci. 9, 197.

  3. Characterization and distribution of polycyclic aromatic hydrocarbon contaminations in surface sediment and water from Gao-ping River, Taiwan.

    PubMed

    Doong, Ruey-An; Lin, Yu-Tin

    2004-04-01

    The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) in water and sediment samples collected from 12 locations in Gao-ping River, Taiwan were analyzed. Molecular ratios and principal component analysis (PCA) were used to characterize the possible pollution sources. Concentrations of total 16 PAHs (SigmaPAHs) in water samples ranged from below method detection limits (

  4. Influence of catchment vegetation on mercury accumulation in lake sediments from a long-term perspective.

    PubMed

    Rydberg, Johan; Rösch, Manfred; Heinz, Emanuel; Biester, Harald

    2015-12-15

    Organic matter (OM) cycling has a large impact on the cycling of mercury (Hg) in the environment. Hence, it is important to have a thorough understanding on how changes in, e.g., catchment vegetation - through its effect on OM cycling - affect the behavior of Hg. To test whether shifts in vegetation had an effect on Hg-transport to lakes we investigated a sediment record from Herrenwieser See (Southern Germany). This lake has a well-defined Holocene vegetation history: at ~8700years BP Corylus avellana (hazel) was replaced by Quercus robur (oak), which was replaced by Abies alba (fir) and Fagus sylvatica (beech) ~5700years BP). We were particularly interested in testing if coniferous vegetation leads to a larger export of Hg to aquatic systems than deciduous vegetation. When hazel was replaced by oak, reduced soil erosion and increased transport of DOM-bound mercury from the catchment resulted in increases in both Hg-concentrations and accumulation rates (61ngg(-1) and 5.5ngcm(-2)yr.(-)(1) to 118ngg(-1) and 8.5ngcm(-2)yr.(-)(1)). However, even if Hg-concentrations increased also in association with the introduction of fir and beech (173ngg(-1)), as a result of higher Hg:C, there was no increase in Hg-accumulation rates (7.6ngcm(-2)yr.(-)(1)), because of a decreased input of OM. At around 2500years BP Hg-accumulation rates and Hg-concentration indicated an additional input of Hg to the sediment (316ngg(-1) and 10.3ngcm(-2)yr.(-)(1)), which might be due to increased human activities in the area, e.g., forest burning or mining. Our results contrast those of several paired-catchment studies that suggest a higher release of Hg from coniferous than deciduous forest, and there is a need for studies with a long-term perspective to increase our understanding of the effects of slow and gradual processes on mercury cycling. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Spatial variability of coastal wetland resilience to sea-level rise using Bayesian inference

    NASA Astrophysics Data System (ADS)

    Hardy, T.; Wu, W.

    2017-12-01

    The coastal wetlands in the Northern Gulf of Mexico (NGOM) account for 40% of coastal wetland area in the United States and provide various ecosystem services to the region and broader areas. Increasing rates of relative sea-level rise (RSLR), and reduced sediment input have increased coastal wetland loss in the NGOM, accounting for 80% of coastal wetland loss in the nation. Traditional models for predicting the impact of RSLR on coastal wetlands in the NGOM have focused on coastal erosion driven by geophysical variables only, and/or at small spatial extents. Here we developed a model in Bayesian inference to make probabilistic prediction of wetland loss in the entire NGOM as a function of vegetation productivity and geophysical attributes. We also studied how restoration efforts help maintain the area of coastal wetlands. Vegetation productivity contributes organic matter to wetland sedimentation and was approximated using the remotely sensed normalized difference moisture index (NDMI). The geophysical variables include RSLR, tidal range, river discharge, coastal slope, and wave height. We found a significantly positive relation between wetland loss and RSLR, which varied significantly at different river discharge regimes. There also existed a significantly negative relation between wetland loss and NDMI, indicating that in-situ vegetation productivity contributed to wetland resilience to RSLR. This relation did not vary significantly between river discharge regimes. The spatial relation revealed three areas of high RSLR but relatively low wetland loss; these areas were associated with wetland restoration projects in coastal Louisiana. Two projects were breakwater projects, where hard materials were placed off-shore to reduce wave action and promote sedimentation. And one project was a vegetation planting project used to promote sedimentation and wetland stabilization. We further developed an interactive web tool that allows stakeholders to develop similar wetland restoration and management plans tailored specifically to the biologic and geophysical conditions at their target sites.

  6. Long-term trends in nutrient budgets of the western Dutch Wadden Sea (1976-2012)

    NASA Astrophysics Data System (ADS)

    Jung, A. S.; Brinkman, A. G.; Folmer, E. O.; Herman, P. M. J.; van der Veer, H. W.; Philippart, C. J. M.

    2017-09-01

    Long-term field observations of nitrogen [N] and phosphorus [P] concentrations were used to construct nutrient budgets for the western Dutch Wadden Sea between 1976 and 2012. Nutrients come into the western Dutch Wadden Sea via river runoff, through exchange with the coastal zone of the North Sea, neighbouring tidal basins and through atmospheric deposition (for N). The highest concentrations in phosphorus and nitrogen were observed in the mid-1980s. Improved phosphorus removal at waste water treatment plants, management of fertilization in agriculture and removal of phosphates from detergents led to reduced riverine nutrient inputs and, consequently, reduced nutrient concentrations in the Wadden Sea. The budgets suggest that the period of the initial net import of phosphorus and nitrogen switched to a net export in 1981 for nitrogen and in 1992 for phosphorus. Such different behaviour in nutrient budgets during the rise and fall of external nutrient concentrations may be the result of different sediment-water exchange dynamics for P and N. It is hypothesized that during the period of increasing eutrophication (1976-1981) P, and to a lesser degree N, were stored in sediments as organic and inorganic nutrients. In the following period (1981-1992) external nutrient concentrations (especially in the North Sea) decreased, but P concentrations in the Wadden Sea remained high due to prolonged sediment release, whilst denitrification removed substantial amounts of N. From 1992 onwards, P and N budgets were closed by net loss, most probably because P stores were then depleted and denitrification continued. Under the present conditions (lower rates of sediment import and depleted P stores), nutrient concentrations in this area are expected to be more strongly influenced by wind-driven exchange with the North Sea and precipitation-driven discharge from Lake IJssel. This implies that the consequences of climate change will be more important, than during the 1970s and 1980s.

  7. Reconstruction of Plio-Pleistocene paleoceanographic conditions in the western Arctic Ocean based on a Northwind Ridge sediment record.

    NASA Astrophysics Data System (ADS)

    Dipre, G.; Polyak, L.; Ortiz, J. D.; Oti, E.; Kuznetsov, A.

    2017-12-01

    The rapid loss of sea ice in the Arctic Ocean is expected to result in major climatic and hydrographic changes, some of which are already being observed. To better understand these changes, it is necessary to investigate paleoclimatic conditions during times when the Arctic had similarly reduced sea-ice cover. The Pliocene to early Pleistocene period ( 1-5 Ma) may represent the best analog, as the modern Arctic geography had developed with the opening of the Bering Strait (ca. 5-6 Ma), but major Northern Hemisphere glaciations other than Greenland had not fully begun. Here we present an investigation of sediment core HLY0503-03JPC from top of the Northwind Ridge, western Arctic Ocean. This sedimentary record contains uniquely preserved calcareous microfossils through the early Pleistocene according to strontium isotope ages. Based on extrapolation of these ages, the record extends to at least the late Pliocene. We evaluate paleo-sea ice conditions using benthic foraminifera assemblages, similar to a prior study of a nearby core (Polyak et al., 2013), along with physical (sediment optical properties, density, grain size) and chemical (XRF, δ18O, δ13C) proxies to reconstruct paleo-circulation and sediment transport processes. Based on these proxies, the record exhibits a distinct tripartite stratigraphic division. The top unit, recovering the middle to late Quaternary, shows sedimentary impacts of major glaciations and mostly perennial sea ice conditions. The second unit, dated to the early Pleistocene, indicates reduced glacial inputs, mostly seasonal sea ice, and potentially intensified current conditions. Finally, preliminary results for the oldest unit, presumably representing the late Pliocene, suggest a more acidic ocean characterized by low, if any, sea ice presence and increased current activity. As similar conditions (acidification, storminess) are starting to be observed in the changing modern environment, this third unit may provide especially valuable insight for understanding the projected changes for the western Arctic Ocean.

  8. Complex interactions between autotrophs in shallow marine and freshwater ecosystems: implications for community responses to nutrient stress.

    PubMed

    Havens, K E; Hauxwell, J; Tyler, A C; Thomas, S; McGlathery, K J; Cebrian, J; Valiela, I; Steinman, A D; Hwang, S J

    2001-01-01

    The relative biomass of autotrophs (vascular plants, macroalgae, microphytobenthos, phytoplankton) in shallow aquatic ecosystems is thought to be controlled by nutrient inputs and underwater irradiance. Widely accepted conceptual models indicate that this is the case both in marine and freshwater systems. In this paper we examine four case studies and test whether these models generally apply. We also identify other complex interactions among the autotrophs that may influence ecosystem response to cultural eutrophication. The marine case studies focus on macroalgae and its interactions with sediments and vascular plants. The freshwater case studies focus on interactions between phytoplankton, epiphyton, and benthic microalgae. In Waquoit Bay, MA (estuary), controlled experiments documented that blooms of macroalgae were responsible for the loss of eelgrass beds at nutrient-enriched locations. Macroalgae covered eelgrass and reduced irradiance to the extent that the plants could not maintain net growth. In Hog Island Bay, VA (estuary), a dense lawn of macroalgae covered the bottom sediments. There was reduced sediment-water nitrogen exchange when the algae were actively growing and high nitrogen release during algal senescence. In Lakes Brobo (West Africa) and Okeechobee (FL), there were dramatic seasonal changes in the biomass and phosphorus content of planktonic versus attached algae, and these changes were coupled with changes in water level and abiotic turbidity. Deeper water and/or greater turbidity favored dominance by phytoplankton. In Lake Brobo there also was evidence that phytoplankton growth was stimulated following a die-off of vascular plants. The case studies from Waquoit Bay and Lake Okeechobee support conceptual models of succession from vascular plants to benthic algae to phytoplankton along gradients of increasing nutrients and decreasing under-water irradiance. The case studies from Hog Island Bay and Lake Brobo illustrate additional effects (modified sediment-water nutrient fluxes, allelopathy or nutrient release during plant senescence) that could play a role in ecosystem response to nutrient stress.

  9. Modelling reactive transport in a phosphogypsum dump, Venezia, Italia

    NASA Astrophysics Data System (ADS)

    Calcara, Massimo; Borgia, Andrea; Cattaneo, Laura; Bartolo, Sergio; Clemente, Gianni; Glauco Amoroso, Carlo; Lo Re, Fabio; Tozzato, Elena

    2013-04-01

    We develop a reactive-transport porous media flow model for a phosphogypsum dump located on the intertidal deposits of the Venetian Lagoon: 1. we construct a complex conceptual and geologic model from field data using the GMS™ graphical user interface; 2. the geological model is mapped onto a rectangular MODFLOW grid; 3. using the TMT2 FORTRAN90 code we translate this grid into the MESH, INCON and GENER input files for the TOUGH2 series of codes; 4. we run TOUGH-REACT to model flow and reactive transport in the dump and the sediments below it. The model includes 3 different dump materials (phosphogypsum, bituminous and hazardous wastes) with the pores saturated by specific fluids. The sediments below the dump are formed by an intertidal sequence of calcareous sands and silts, in addition to clays and organic deposits, all of which are initially saturated with lagoon salty waters. The recharge rain-water dilutes the dump fluids. In turn, the percolates from the dump react with the underlying sediments and the sea water that saturates them. Simulation results have been compared with chemical sampled analyses. In fact, in spite of the simplicity of our model we are able to show how the pH becomes neutral at a short distance below the dump, a fact observed during aquifer monitoring. The spatial and temporal evolution of dissolution and precipitation reactions occur in our model much alike reality. Mobility of some elements, such as divalent iron, are reduced by specific and concurrent conditions of pH from near-neutrality to moderately high values and positive redox potential; opposite conditions favour mobility of potentially toxic metals such as Cr, As Cd and Pb. Vertical movement are predominant. Trend should be therefore heavily influenced by pH and Eh values. If conditions are favourable to mobility, concentration of these substances in the bottom strata could be high. However, simulation suggest that the sediments tend to reduce the transport potential of contaminants.

  10. Variations in fluid transport and seismogenic properties in the Lesser Antilles subduction zone: constraints from joint active-source and local earthquake tomography

    NASA Astrophysics Data System (ADS)

    Paulatto, M.; Laigle, M.; Charvis, P.; Galve, A.

    2015-12-01

    The degree of coupling and the seismogenic properties of the plate interface at subduction zones are affected by the abundance of slab fluids and subducted sediments. High fluid input can cause high pore-fluid pressures in the subduction channel and decrease coupling leading to aseismic behaviour. Constraining fluid input and transfer is therefore important for understanding plate coupling and large earthquake hazard, particularly in places where geodetic and seismological constraints are scarce. We use P-wave traveltimes from several active source seismic experiments and P- and S-wave traveltimes from shallow and intermediate depth (< 150 km) local earthquakes recorded on a vast amphibious array of OBSs and land stations to recover the Vp and Vp/Vs structure of the central Lesser Antilles subduction zone. Our model extends between Martinique and Antigua from the prism to the arc and from the surface to a depth of 160 km. We find low Vp and high Vp/Vs ratio (> 1.80) on the top of the slab, at depths of up to 100 km. We interpret this high Vp/Vs ratio anomaly as evidence of elevated fluid content either as free fluids or as bound fluids in hydrated minerals (e.g. serpentinite). The strength and depth extent of the anomaly varies strongly from south to north along the subduction zone and correlates with variations in forearc morphology and with sediment input constrained by multi-channel seismic reflection profiles. The anomaly is stronger and extends to greater depth in the south, offshore Martinique, where sediment input is elevated due to the vicinity of the Orinoco delta. The gently dipping forearc slope observed in this region may be the result of weak coupling of the plate interface. A high Vp/Vs ratio is also observed in the forearc likely indicating a fractured and water-saturated overriding plate. On the other hand the anomaly is weaker and shallower offshore Guadeloupe, where sediment input is low due to subduction of the Barracuda ridge. Here a strong plate coupling is likely responsible for uplifting the inner forearc and formation of the Karukera spur. We infer that variations in plate coupling modulated by slab fluid transport and release are a major factor in determining the distribution of seismic slip in the Lesser Antilles subduction zone.

  11. Climate Variability Impacts on Watershed Nutrient Delivery and Reservoir Production

    NASA Astrophysics Data System (ADS)

    White, J. D.; Prochnow, S. J.; Zygo, L. M.; Byars, B. W.

    2005-05-01

    Reservoirs in agricultural dominated watersheds tend to exhibit pulse-system behavior especially if located in climates dominated by summer convective precipitation inputs. Concentration and bulk mass of nutrient and sediment inputs into reservoir systems vary in terms of timing and magnitude of delivery from watershed sources to reservoirs under these climate conditions. Reservoir management often focuses on long-term average inputs without considering short and long-term impacts of variation in loading. In this study we modeled a watershed-reservoir system to assess how climate variability affects reservoir primary production through shifts in external loading and internal recycling of limiting nutrients. The Bosque watershed encompasses 423,824 ha in central Texas which delivers water to Lake Waco, a 2900 ha reservoir that is the primary water source for the city of Waco and surrounding areas. Utilizing the Soil Water Assessment Tool for the watershed and river simulations and the CE-Qual-2e model for the reservoir, hydrologic and nutrient dynamics were simulated for a 10 year period encompassing two ENSO cycles. The models were calibrated based on point measurement of water quality attributes for a two year time period. Results indicated that watershed delivery of nutrients was affected by the presence and density of small flood-control structure in the watershed. However, considerable nitrogen and phosphorus loadings were derived from soils in the upper watershed which have had long-term waste-application from concentrated animal feeding operations. During El Niño years, nutrient and sediment loads increased by 3 times above non-El Niño years. The simulated response within the reservoir to these nutrient and sediment loads had both direct and indirect. Productivity evaluated from chlorophyll a and algal biomass increased under El Niño conditions, however species composition shifts were found with an increase in cyanobacteria dominance. In non-El Niño years, species composition was more evenly distributed. At the longer time scale, El Niño events with accompanying increase in nutrient loads were followed by years in which productivity declined below levels predicted solely by nutrient ratios. This was due to subtle shifts in organic matter decomposition where productive years are followed by increases in refractory material which sequesters nutrients and reduces internal loading.

  12. Mercury in Long Island Sound sediments

    USGS Publications Warehouse

    Varekamp, J.C.; Buchholtz ten Brink, Marilyn R.; Mecray, E.I.; Kreulen, B.

    2000-01-01

    Mercury (Hg) concentrations were measured in 394 surface and core samples from Long Island Sound (LIS). The surface sediment Hg concentration data show a wide spread, ranging from 600 ppb Hg in westernmost LIS. Part of the observed range is related to variations in the bottom sedimentary environments, with higher Hg concentrations in the muddy depositional areas of central and western LIS. A strong residual trend of higher Hg values to the west remains when the data are normalized to grain size. Relationships between a tracer for sewage effluents (C. perfringens) and Hg concentrations indicate that between 0-50 % of the Hg is derived from sewage sources for most samples from the western and central basins. A higher percentage of sewage-derived Hg is found in samples from the westernmost section of LIS and in some local spots near urban centers. The remainder of the Hg is carried into the Sound with contaminated sediments from the watersheds and a small fraction enters the Sound as in situ atmospheric deposition. The Hg-depth profiles of several cores have well-defined contamination profiles that extend to pre-industrial background values. These data indicate that the Hg levels in the Sound have increased by a factor of 5-6 over the last few centuries, but Hg levels in LIS sediments have declined in modern times by up to 30 %. The concentrations of C. perfringens increased exponentially in the top core sections which had declining Hg concentrations, suggesting a recent decline in Hg fluxes that are unrelated to sewage effluents. The observed spatial and historical trends show Hg fluxes to LIS from sewage effluents, contaminated sediment input from the Connecticut River, point source inputs of strongly contaminated sediment from the Housatonic River, variations in the abundance of Hg carrier phases such as TOC and Fe, and focusing of sediment-bound Hg in association with westward sediment transport within the Sound.

  13. Identification of sulfur sources and isotopic equilibria in submarine hot-springs using multiple sulfur isotopes

    NASA Astrophysics Data System (ADS)

    McDermott, Jill M.; Ono, Shuhei; Tivey, Margaret K.; Seewald, Jeffrey S.; Shanks, Wayne C.; Solow, Andrew R.

    2015-07-01

    Multiple sulfur isotopes were measured in metal sulfide deposits, elemental sulfur, and aqueous hydrogen sulfide to constrain sulfur sources and the isotopic systematics of precipitation in seafloor hydrothermal vents. Areas studied include the Eastern Manus Basin and Lau Basin back-arc spreading centers and the unsedimented basalt-hosted Southern East Pacific Rise (SEPR) and sediment-hosted Guaymas Basin mid-ocean ridge spreading centers. Chalcopyrite and dissolved hydrogen sulfide (H2S) δ34S values range from -5.5‰ to +5.6‰ in Manus Basin samples, +2.4‰ to +6.1‰ in Lau Basin samples, and +3.7‰ to +5.7‰ in SEPR samples. Values of δ34S for cubic cubanite and H2S range from -1.4‰ to +4.7‰ in Guaymas Basin samples. Multiple sulfur isotope systematics in fluid-mineral pairs from the SEPR and Lau Basin show that crustal host rock and thermochemical reduction of seawater-derived dissolved sulfate (SO4) are the primary sources of sulfur in mid-ocean ridge and some back-arc systems. At PACMANUS and SuSu Knolls hydrothermal systems in the Eastern Manus Basin, a significant contribution of sulfur is derived from disproportionation of magmatic sulfur dioxide (SO2), while the remaining sulfur is derived from crustal host rocks and SO4 reduction. At the sedimented Guaymas Basin hydrothermal system, sulfur sources include crustal host rock, reduced seawater SO4, and biogenic sulfide. Vent fluid flow through fresher, less-mature sediment supplies an increased quantity of reactant organic compounds that may reduce 34S-enriched SO4, while fluid interaction with more highly-altered sediments results in H2S characterized by a small, but isotopically-significant input of 34S-depleted biogenic sulfides. Near-zero Δ33S values in all samples implicate the abiotic processes of SO4 reduction and leaching of host rock as the major contributors to sulfur content at a high temperature unsedimented mid-ocean ridge and at a back-arc system. Δ33S values indicate that SO2 disproportionation is an additional process that contributes sulfur to a different back-arc system and to acid spring-type hydrothermal fluid circulation. At the sedimented Guaymus Basin, near-zero Δ33S values are also observed, despite negative δ34S values that indicate inputs of biogenic pyrite for some samples. In contrast with previous studies reporting isotope disequilibrium between H2S and chalcopyrite, the δ34S values of chalcopyrite sampled from the inner 1-2 mm of a chimney wall are within ±1‰ of δ34S values for H2S in the paired vent fluid, suggesting equilibrium fluid-mineral sulfur isotope exchange at 300-400 °C. Isotopic equilibrium between hydrothermal fluid H2S and precipitating chalcopyrite implies that sulfur isotopes in the chalcopyrite lining across a chimney wall may accurately record past hydrothermal activity.

  14. Seafloor Geosciences Division. Missions, Technical Specialties, Accomplishments and Activities, Calendar Year 1984.

    DTIC Science & Technology

    1985-07-01

    description of the sediment elastic properties for use in acoustic bottom interaction models . The compressional and shear wave velocity probe development was...SURVEYS POWER SOURCE INPUT TO MODELS : SIGNAL GENERATOR ACOUSTIC SIGNAL CONDITIONER GEOACOUSTIC TEMPERATURE MONITOR MINE BURIAL AID CONVERTOR ASW ARRAYS...F., J. Lipkin, and R. H. Bennett. Response of Marine Sediment to rapid Changes in Hydrostati TPessure Part I: Poroelastic Model Analysis. Geotechni

  15. Distribution and sources of carbon, nitrogen, phosphorus and biogenic silica in the sediments of Chilika lagoon

    NASA Astrophysics Data System (ADS)

    Nazneen, Sadaf; Raju, N. Janardhana

    2017-02-01

    The present study investigated the spatial and vertical distribution of organic carbon (OC), total nitrogen (TN), total phosphorus (TP) and biogenic silica (BSi) in the sedimentary environments of Asia's largest brackish water lagoon. Surface and core sediments were collected from various locations of the Chilika lagoon and were analysed for grain-size distribution and major elements in order to understand their distribution and sources. Sand is the dominant fraction followed by silt + clay. Primary production within the lagoon, terrestrial input from river discharge and anthropogenic activities in the vicinity of the lagoon control the distribution of OC, TN, TP and BSi in the surface as well as in the core sediments. Low C/N ratios in the surface sediments (3.49-3.41) and cores (4-11.86) suggest that phytoplankton and macroalgae may be major contributors of organic matter (OM) in the lagoon. BSi is mainly associated with the mud fraction. Core C5 from Balugaon region shows the highest concentration of OC ranging from 0.58-2.34%, especially in the upper 30 cm, due to direct discharge of large amounts of untreated sewage into the lagoon. The study highlights that Chilika is a dynamic ecosystem with a large contribution of OM by autochthonous sources with some input from anthropogenic sources as well.

  16. Sources and characteristics of terrestrial carbon in Holocene-scale sediments of the East Siberian Sea

    NASA Astrophysics Data System (ADS)

    Keskitalo, Kirsi; Tesi, Tommaso; Bröder, Lisa; Andersson, August; Pearce, Christof; Sköld, Martin; Semiletov, Igor P.; Dudarev, Oleg V.; Gustafsson, Örjan

    2017-09-01

    Thawing of permafrost carbon (PF-C) due to climate warming can remobilise considerable amounts of terrestrial carbon from its long-term storage to the marine environment. PF-C can be then be buried in sediments or remineralised to CO2 with implications for the carbon-climate feedback. Studying historical sediment records during past natural climate changes can help us to understand the response of permafrost to current climate warming. In this study, two sediment cores collected from the East Siberian Sea were used to study terrestrial organic carbon sources, composition and degradation during the past ˜ 9500 cal yrs BP. CuO-derived lignin and cutin products (i.e., compounds solely biosynthesised in terrestrial plants) combined with δ13C suggest that there was a higher input of terrestrial organic carbon to the East Siberian Sea between ˜ 9500 and 8200 cal yrs BP than in all later periods. This high input was likely caused by marine transgression and permafrost destabilisation in the early Holocene climatic optimum. Based on source apportionment modelling using dual-carbon isotope (Δ14C, δ13C) data, coastal erosion releasing old Pleistocene permafrost carbon was identified as a significant source of organic matter translocated to the East Siberian Sea during the Holocene.

  17. Study of soil aggregate breakdown dynamics under low dispersive ultrasonic energies with sedimentation and X-ray attenuation**

    PubMed Central

    Schomakers, Jasmin; Zehetner, Franz; Mentler, Axel; Ottner, Franz; Mayer, Herwig

    2016-01-01

    It has been increasingly recognized that soil organic matter stabilization is strongly controlled by physical binding within soil aggregates. It is therefore essential to measure soil aggregate stability reliably over a wide range of disruptive energies and different aggregate sizes. To this end, we tested high-accuracy ultrasonic dispersion in combination with subsequent sedimentation and X-ray attenuation. Three arable topsoils (notillage) from Central Europe were subjected to ultrasound at four different specific energy levels: 0.5, 6.7, 100 and 500 J cm−3, and the resulting suspensions were analyzed for aggregate size distribution by wet sieving (2 000-63 μm) and sedimentation/X-ray attenuation (63-2 μm). The combination of wet sieving and sedimentation technique allowed for a continuous analysis, at high resolution, of soil aggregate breakdown dynamics after defined energy inputs. Our results show that aggregate size distribution strongly varied with sonication energy input and soil type. The strongest effects were observed in the range of low specific energies (< 10 J cm−3), which previous studies have largely neglected. This shows that low ultrasonic energies are required to capture the full range of aggregate stability and release of soil organic matter upon aggregate breakdown. PMID:27099408

  18. Study of soil aggregate breakdown dynamics under low dispersive ultrasonic energies with sedimentation and X-ray attenuation

    NASA Astrophysics Data System (ADS)

    Schomakers, Jasmin; Zehetner, Franz; Mentler, Axel; Ottner, Franz; Mayer, Herwig

    2015-10-01

    It has been increasingly recognized that soil organic matter stabilization is strongly controlled by physical binding within soil aggregates. It is therefore essential to measure soil aggregate stability reliably over a wide range of disruptive energies and different aggregate sizes. To this end, we tested highaccuracy ultrasonic dispersion in combination with subsequent sedimentation and X-ray attenuation. Three arable topsoils (notillage) from Central Europe were subjected to ultrasound at four different specific energy levels: 0.5, 6.7, 100 and 500 J cm-3, and the resulting suspensions were analyzed for aggregate size distribution by wet sieving (2 000-63 μm) and sedimentation/X-ray attenuation (63-2 μm). The combination of wet sieving and sedimentation technique allowed for a continuous analysis, at high resolution, of soil aggregate breakdown dynamics after defined energy inputs. Our results show that aggregate size distribution strongly varied with sonication energy input and soil type. The strongest effects were observed in the range of low specific energies (< 10 J cm-3), which previous studies have largely neglected. This shows that low ultrasonic energies are required to capture the full range of aggregate stability and release of soil organic matter upon aggregate breakdown.

  19. Determining Sediment Sources in the Anacostia River Watershed

    NASA Astrophysics Data System (ADS)

    Devereux, O. H.; Needelman, B. A.; Prestegaard, K. L.; Gellis, A. C.; Ritchie, J. C.

    2005-12-01

    Suspended sediment is a water-quality problem in the Chesapeake Bay. This project is designed to identify sediment sources in an urban watershed, the Northeast Branch of the Anacostia River (in Washington, D.C. and Maryland - drainage area = 188.5 km2), which delivers sediment directly to the Bay. This watershed spans two physiographic regions - the Piedmont and Coastal Plain. Bank sediment and suspended-sediment deposits were characterized using the following techniques: radionuclide (Cs-137) analysis by gamma ray spectrometry, trace-element analysis by ICP-MS, clay mineralogy by XRD, and particle-size analysis by use of a laser particle-size analyzer. Sampling of bank and suspended sediment was designed to: a) characterize tributary inputs from both Piedmont and Coastal Plain sources, and b) differentiate tributary inputs from bank erosion along the main stem of the Northeast Branch. Thirteen sample sites were chosen that represent tributary source areas of each physiographic region and the main stem where mixing occurs. Surface samples of the banks were compared to overbank deposits from a ten year storm (a proxy for the suspended sediments). Fingerprint components are selected from these data. Cesium-137 concentrations were analyzed for bank and overbank deposits for each physiographic region. No clear differences were seen between the two physiographic regions. Significant differences were observed between upland tributaries and the main stem of the Anacostia River. The average activity of Cs-137 for the tributaries was 5.4 bq/kg and the average for the main stem was 1.1 bq/kg. This suggests that there is significant erosion and storage of sediment in the tributaries. The low activity from Cs-137 in the main stem suggests a lack of storage of sediment along the main stem of the river. For the trace-element data, we focused on elements that showed significant variation among the sites. For the bank sediment, these elements include: Sr, V, Y, Ce, and Nd. For the overbank deposits, Zr, V, Ba, Ce, and Cu showed significant variability. In both physiographic regions, Pb is primarily found in bank deposits, while Cu is found in higher concentrations in overbank deposits. The Cs-137 data clearly showed the erosion and storage of sediment patterns in the watershed. The trace-element data indicate that stream banks may be differentiated from overbank deposits.

  20. From source to sink: Rare-earth elements trace the legacy of sulfuric dredge spoils on estuarine sediments.

    PubMed

    Xu, Nian; Morgan, Bree; Rate, Andrew W

    2018-05-17

    Land disposal of dredged sulfide-rich coastal sediments generates secondary coastal acid sulfate soils (CASS), as previously reduced sulfide minerals oxidise to produce acidic drainage rich in Fe, SO 4 2- and rare-earth elements (REEs). Few studies investigate both the source and the sink of REEs in the context of interpreting their mobilisation and potential use in tracing anthropogenic activity. Here we investigate REE signatures in estuarine sediments (and overlying surface waters) that have received acute, long-term (>15 years) acidic drainage from legacy sulfuric dredge spoils. It was found that the dredge spoil continues to act as a source of acidity (pH 3.5-5.5), Fe and REEs during development of CASS, and contains negligible acid volatile sulfide (AVS, a proxy for FeS) and relatively low concentrations of ΣREE (mean 44.5 mg/kg, range 4.1-362 mg/kg). In the receiving sediments, high AVS concentrations (mean 92.2 μmol/g, range 0.38-278 μmol/g) reflect elevated FeS content, likely due to high inputs of Fe and SO 4 2- from the acidic drainage, and correspond with a high concentration of total S (mean 852 μmol/g, range 105-2209 μmol/g) and an accumulation of ΣREE (mean 670 mg/kg, range 19.9-1819 mg/kg). Importantly, where drain sediments that were previously enriched in highly reactive sulfidic minerals and trace elements and have become exposed to the atmosphere (e.g. Site 3) and partially oxidised, they provide a further source of acidification, remobilising the REEs to the downstream sediments. Interestingly, we also found a clear positive correlation between phosphorous and REEs both in the dredge spoil and sediment, suggesting phosphate minerals may act as a sink for REEs in CASS influenced drain sediments. This is further supported by strong positive gadolinium anomalies (1.1-1.6) and high calculated anthropogenic Gd values (12-38%), which may reflect the influence of phosphate fertiliser on this eutrophic system. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Evaluation of the dynamic mobilization of vanadium in tributary sediments of the Three Gorges Reservoir after water impoundment

    NASA Astrophysics Data System (ADS)

    Gao, Bo; Gao, Li; Zhou, Yang; Xu, Dongyu; Zhao, Xingjuan

    2017-08-01

    The Three Gorges Reservoir (TGR) is the largest water resource protection zone in China, and environmental safety is crucial to its operation. For both aqueous and sediment phases, diffusive gradients in thin films (DGT), total vanadium (V) concentration (CTotal-V), and community Bureau of Reference (BCR) sequential extraction data were used to measure the pollution characteristics, horizontal and vertical distributions of DGT-labile V, and the dynamic mobilization of V in a typical tributary (the Meixi River) of the TGR. The results showed that CTotal-V in the surface sediments were obviously higher than the background values in sediment and soil, indicating a potential anthropogenic input of V in this area. A positive relationship was found between total organic carbon (TOC) and CTotal-V in the sediments, indicating that the pollution characteristics of V were associated with TOC. In addition, horizontal and vertical distributions of the fluxes of DGT-labile V (FDGT-V) varied among the four DGT probes. In the same DGT probe, the horizontal distributions (0-6 mm, 6-12 mm and 12-18 mm) of FDGT-V were similar in the overlying water; however, the values showed a poor coincidence with those recorded in the sediment. The vertical distribution of FDGT-V in the same DGT probe showed similar tendencies. In fact, CDGT-V is significantly negatively correlated with CDGT-Fe, demonstrating that V had an inversely diffusive tendency with Fe. Moreover, diffusion fluxes of V at the sediment-water interface illustrated that the release characteristics of V varied among the sampling sites. In addition, the BCR fraction of V in the surface sediments of the four sampling sites showed that V mainly existed in the residual fraction (88.04-88.57%). The concentrations of DGT-labile V (CDGT-V) were considerably lower than the non-residual fractions (the sum of exchangeable, reducible, and oxidizable fractions) measured by BCR sequential extraction. Correlation analysis showed that CDGT-V had no correlation with non-residual V fractions, indicating that it is doubtful whether BCR extraction alone can be used to predict the bioavailability of V in this study.

  2. Sediment chronology in San Francisco Bay, California, defined by 210Pb, 234Th, 137Cs, and 239,340Pu

    USGS Publications Warehouse

    Fuller, C.C.; van Geen, Alexander; Baskaran, M.; Anima, R.

    1999-01-01

    Sediment chronologies based on radioisotope depth profiles were developed at two sites in the San Francisco Bay estuary to provide a framework for interpreting historical trends in organic compound and metal contaminant inputs. At Richardson Bay near the estuary mouth, sediments are highly mixed by biological and/or physical processes. Excess  penetration ranged from 2 to more than 10 cm at eight coring sites, yielding surface sediment mixing coefficients ranging from 12 to 170 cm2/year. At the site chosen for contaminant analyses, excess  activity was essentially constant over the upper 25 cm of the core with an exponential decrease below to the supported activity between 70 and 90 cm. Both  and  penetrated to 57-cm depth and have broad subsurface maxima between 33 and 41 cm. The best fit of the excess  profile to a steady state sediment accumulation and mixing model yielded an accumulation rate of 0.825 g/cm2/year (0.89 cm/year at sediment surface), surface mixing coefficient of 71 cm2/year, and 33-cm mixed zone with a half-Gaussian depth dependence parameter of 9 cm. Simulations of  and  profiles using these parameters successfully predicted the maximum depth of penetration and the depth of maximum  and  activity. Profiles of successive 1-year hypothetical contaminant pulses were generated using this parameter set to determine the age distribution of sediments at any depth horizon. Because of mixing, sediment particles with a wide range of deposition dates occur at each depth. A sediment chronology was derived from this age distribution to assign the minimum age of deposition and a date of maximum deposition to a depth horizon. The minimum age of sediments in a given horizon is used to estimate the date of first appearance of a contaminant from its maximum depth of penetration. The date of maximum deposition is used to estimate the peak year of input for a contaminant from the depth interval with the highest concentration of that contaminant. Because of the extensive mixing, sediment-bound constituents are rapidly diluted with older material after deposition. In addition, contaminants persist in the mixed zone for many years after deposition. More than 75 years are required to bury 90% of a deposited contaminant below the mixed zone. Reconstructing contaminant inputs is limited to changes occurring on a 20-year time scale. In contrast, mixing is much lower relative to accumulation at a site in San Pablo Bay. Instead, periods of rapid deposition and/or erosion occurred as indicated by frequent sand-silt laminae in the X-radiograph. , , and excess  activity all penetrated to about 120 cm. The distinct maxima in the fallout radionuclides at 105–110 cm yielded overall linear sedimentation rates of 3.9 to 4.1 cm/year, which are comparable to a rate of 4.5±1.5 cm/year derived from the excess  profile.

  3. Long-term reductions in anthropogenic nutrients link to improvements in Chesapeake Bay habitat

    USGS Publications Warehouse

    Ruhl, H.; Rybicki, N.B.

    2010-01-01

    Great effort continues to focus on ecosystem restoration and reduction of nutrient inputs thought to be responsible, in part, for declines in estuary habitats worldwide. The ability of environmental policy to address restoration is limited, in part, by uncertainty in the relationships between costly restoration and benefits. Here, we present results from an 18-y field investigation (1990-2007) of submerged aquatic vegetation (SAV) community dynamics and water quality in the Potomac River, a major tributary of the Chesapeake Bay. River and anthropogenic discharges lower water clarity by introducing nutrients that stimulate phytoplankton and epiphyte growth as well as suspended sediments. Efforts to restore the Chesapeake Bay are often viewed as failing. Overall nutrient reduction and SAV restoration goals have not been met. In the Potomac River, however, reduced in situ nutrients, wastewater-treatment effluent nitrogen, and total suspended solids were significantly correlated to increased SAV abundance and diversity. Species composition and relative abundance also correlated with nutrient and water-quality conditions, indicating declining fitness of exotic species relative to native species during restoration. Our results suggest that environmental policies that reduce anthropogenic nutrient inputs do result in improved habitat quality, with increased diversity and native species abundances. The results also help elucidate why SAV cover has improved only in some areas of the Chesapeake Bay.

  4. Quantification of fossil organic matter in contaminated sediments from an industrial watershed: validation of the quantitative multimolecular approach by radiocarbon analysis.

    PubMed

    Jeanneau, Laurent; Faure, Pierre

    2010-09-01

    The quantitative multimolecular approach (QMA) based on an exhaustive identification and quantification of molecules from the extractable organic matter (EOM) has been recently developed in order to investigate organic contamination in sediments by a more complete method than the restrictive quantification of target contaminants. Such an approach allows (i) the comparison between natural and anthropogenic inputs, (ii) between modern and fossil organic matter and (iii) the differentiation between several anthropogenic sources. However QMA is based on the quantification of molecules recovered by organic solvent and then analyzed by gas chromatography-mass spectrometry, which represent a small fraction of sedimentary organic matter (SOM). In order to extend the conclusions of QMA to SOM, radiocarbon analyses have been performed on organic extracts and decarbonated sediments. This analysis allows (i) the differentiation between modern biomass (contemporary (14)C) and fossil organic matter ((14)C-free) and (ii) the calculation of the modern carbon percentage (PMC). At the confluence between Fensch and Moselle Rivers, a catchment highly contaminated by both industrial activities and urbanization, PMC values in decarbonated sediments are well correlated with the percentage of natural molecular markers determined by QMA. It highlights that, for this type of contamination by fossil organic matter inputs, the conclusions of QMA can be scaled up to SOM. QMA is an efficient environmental diagnostic tool that leads to a more realistic quantification of fossil organic matter in sediments. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Terrestrial organic matter in surface sediments of the Baltic Sea, Northwest Europe, as determined by CuO oxidation

    NASA Astrophysics Data System (ADS)

    Miltner, Anja; Emeis, Kay-Christian

    2001-04-01

    We studied the distribution and composition of terrestrial organic matter in sediments of the Baltic Sea (Northwest Europe). To this end, surface sediments from all basins of the Baltic Sea were analyzed for their lignin oxidation product yields and compositions after CuO oxidation. Lignin oxidation product yields depend on the concentration of organic carbon and range from 0.4 to 10.2 mg g -1 total organic carbon (TOC). On the basis of an average of 13 mg g -1 TOC in two river sediments, we estimate that the upper limit of terrestrial organic matter in Baltic Sea sediments is 30% of TOC. The contribution of terrestrial organic matter differed between the individual basins, depending on the distance from runoff discharge areas and on the area occupied by each submarine catchment. Lignin composition showed a relative decrease of angiosperm tissue from the Southwest to the Northeast, reflecting the shift from temperate to boreal vegetation type. The Gotland and the Bornholm Seas, which have no significant river input, were characterized by high relative contributions of nonwoody, strongly altered material. The source may either be a mixture of pollen and peat being eroded from geologically older strata at the seafloor or laterally advected material from the other basins. However, the pronounced compositional differences between the basins indicated that interbasin transport of terrestrial organic matter is less important than direct river input, although river signals can only be traced at a few places in the Baltic Sea.

  6. Source apportionment of Pb pollution in saltmarsh sediments from southwest England

    NASA Astrophysics Data System (ADS)

    Iurian, Andra-Rada; Millward, Geoffrey; Taylor, Alex; Marshall, William; Rodríguez, Javier; Gil Ibarguchi, José Ignacio; Blake, William H.

    2017-04-01

    The local availability of metal resources played a crucial role in Britain's development during the industrial revolution, but centuries of mining within Cornwall and Devon (UK) have left a legacy of contamination in river basin and estuary sediments. Improved knowledge of historical heavy metal sources, emissions and pathways will result in a better understanding of the contemporary pollution conditions and a better protection of the environment from legacy contaminants. Our study aims to trace historical sources of Pb pollution in the area of east Cornwall and west Devon, UK, using a multi proxy approach for contaminants stored in saltmarsh sediment columns from 3 systems characterized by different contamination patterns. Source apportionment investigations included the determination of Pb concentration and Pb isotopic composition (204Pb, 206Pb, 207Pb, and 208Pb) for selected down-core sediment samples, and for local ore and parent rock materials. General trends in pollutant loading (e.g. Pb) could be identified, with maximum inputs occurring in the middle of the 19th century and decreasing towards the present day, while an increase in the catchment disturbance was apparent for the last decades. The isotopic ratios of Pb further indicate that sediments with higher Pb content have a less radiogenic signature, these particular inputs being derived from Pb mining and smelting sources in the catchment area. Acknowledgements: Andra-Rada Iurian acknowledges the support of a Marie Curie Fellowship (H2020-MSCA-IF-2014, Grant Agreement number: 658863) within the Horizon 2020.

  7. Estimating suspended sediment load with multivariate adaptive regression spline, teaching-learning based optimization, and artificial bee colony models.

    PubMed

    Yilmaz, Banu; Aras, Egemen; Nacar, Sinan; Kankal, Murat

    2018-05-23

    The functional life of a dam is often determined by the rate of sediment delivery to its reservoir. Therefore, an accurate estimate of the sediment load in rivers with dams is essential for designing and predicting a dam's useful lifespan. The most credible method is direct measurements of sediment input, but this can be very costly and it cannot always be implemented at all gauging stations. In this study, we tested various regression models to estimate suspended sediment load (SSL) at two gauging stations on the Çoruh River in Turkey, including artificial bee colony (ABC), teaching-learning-based optimization algorithm (TLBO), and multivariate adaptive regression splines (MARS). These models were also compared with one another and with classical regression analyses (CRA). Streamflow values and previously collected data of SSL were used as model inputs with predicted SSL data as output. Two different training and testing dataset configurations were used to reinforce the model accuracy. For the MARS method, the root mean square error value was found to range between 35% and 39% for the test two gauging stations, which was lower than errors for other models. Error values were even lower (7% to 15%) using another dataset. Our results indicate that simultaneous measurements of streamflow with SSL provide the most effective parameter for obtaining accurate predictive models and that MARS is the most accurate model for predicting SSL. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Distribution and Potential Toxicity of Trace Metals in the Surface Sediments of Sundarban Mangrove Ecosystem, Bangladesh

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Ramanathan, A.; Mathukumalli, B. K. P.; Datta, D. K.

    2014-12-01

    The distribution, enrichment and ecotoxocity potential of Bangladesh part of Sundarban mangrove was investigated for eight trace metals (As, Cd, Cr, Cu, Fe, Mn, Pb and Zn) using sediment quality assessment indices. The average concentration of trace metals in the sediments exceeded the crustal abundance suggesting sources other than natural in origin. Additionally, the trace metals profile may be a reflection of socio-economic development in the vicinity of Sundarban which further attributes trace metals abundance to the anthropogenic inputs. Geoaccumulation index suggests moderately polluted sediment quality w.r.t. Ni and As and background concentrations for Al, Fe, Mn, Cu, Zn, Pb, Co, As and Cd. Contamination factor analysis suggested low contamination by Zn, Cr, Co and Cd, moderate by Fe, Mn, Cu and Pb while Ni and As show considerable and high contamination, respectively. Enrichment factors for Ni, Pb and As suggests high contamination from either biota or anthropogenic inputs besides natural enrichment. As per the three sediment quality guidelines, Fe, Mn, Cu, Ni, Co and As would be more of a concern with respect to ecotoxicological risk in the Sundarban mangroves. The correlation between various physiochemical variables and trace metals suggested significant role of fine grained particles (clay) in trace metal distribution whereas owing to low organic carbon content in the region the organic complexation may not be playing significant role in trace metal distribution in the Sundarban mangroves.

  9. Inorganic and organic geochemical fingerprinting of sediment sources and ocean circulation on a complex continental margin (São Paulo Bight, Brazil)

    NASA Astrophysics Data System (ADS)

    Michaelovitch de Mahiques, Michel; Jörg Hanebuth, Till Jens; Hanae Nagai, Renata; Caruso Bícego, Marcia; Lopes Figueira, Rubens Cesar; Mello Sousa, Silvia Helena; Burone, Leticia; Franco-Fraguas, Paula; Taniguchi, Satie; Barbosa Salaroli, Alexandre; Pereira Dias, Gilberto; Menezes Prates, Denise; Fernandes Freitas, Maria Eugenia

    2017-03-01

    In this study, we use inorganic (metal) and organic (bulk and molecular) markers in sediment samples of the south-eastern Brazilian margin to investigate the response of geochemical fingerprints to the complex hydrodynamic processes present in the area. Results indicate the potential of export of terrigenous siliciclastic and organic constituents to the upper slope, even in an area with limited fluvial supply.

    Metal contents and especially the ln(Ti / Al) and ln(Fe / K) ratios make it possible to recognise the extension of shelf sediments toward the upper slope. Potassium, here expressed as ln(K / Sc) and ln(K / Al) ratios used as proxies of illite-kaolinite variations, proved to be an important parameter, especially because it allowed us to decipher the imprint of the northward flow of the Intermediate Western Boundary Current (IWBC) in comparison to the southward flows of the Brazil Current (BC) and Deep Western Boundary Current (DWBC). Using organic matter analyses, we were able to evaluate the extent of terrestrial contributions to the outer shelf and slope, even without the presence of significant fluvial input. In addition, molecular markers signify a slight increase in the input of C4-derived plants to the slope sediments, transported from distant areas by the main alongshore boundary currents, indicating that the terrestrial fraction of the organic matter deposited on the slope has a distinct origin when compared to shelf sediments.

  10. Mercury in litterfall and sediment using elemental and isotopic composition of carbon and nitrogen in the mangrove of Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Fragoso, Cynara Pedrosa; Bernini, Elaine; Araújo, Beatriz Ferreira; Almeida, Marcelo Gomes de; Rezende, Carlos Eduardo de

    2018-03-01

    Mercury and elemental and isotopic compositions of carbon and nitrogen were determined in litterfall and sediments from the mangrove of the Paraíba do Sul River, Rio de Janeiro, Brazil. Total mercury (THg) and monomethylmercury (MMHg) concentrations in sediment ranged from 33 to 123 ng g-1 and 0.20-1.38 ng g-1, respectively. The δ13C in sediment varied from -29.4 to -26.5‰ and from 2.4 to 5.8‰ in δ15N. The THg concentration in litterfall and its annual input to the mangrove was 21 ± 2 ng g-1 and 16 ± 4 μg m-2 for the species Laguncularia racemosa, 18 ± 1 ng g-1 and 17 ± 3 μg m-2 for Rhizophora mangle, and 53 ± 4 ng g-1 and 33 ± 4 μg m-2 for Avicennia germinans, respectively. The isotopic composition of leaf litter ranged from -28.6 to -26.9‰ for δ13C and 4.5-7.2‰ for δ15N. Both the highest annual Hg input via litterfall and highest sediment Hg concentration were observed in areas dominated by A. germinans. These results suggest that the rate of litterfall of plant species and the atmospheric deposition have played an important role in the Hg biogeochemical cycle in the mangrove ecosystem.

  11. Stepwise morphological evolution of the active Yellow River (Huanghe) delta lobe (1976-2013): Dominant roles of riverine discharge and sediment grain size

    NASA Astrophysics Data System (ADS)

    Wu, Xiao; Bi, Naishuang; Xu, Jingping; Nittrouer, Jeffrey A.; Yang, Zuosheng; Saito, Yoshiki; Wang, Houjie

    2017-09-01

    The presently active Yellow River (Huanghe) delta lobe has been formed since 1976 when the river was artificially diverted. The process and driving forces of morphological evolution of the present delta lobe still remain unclear. Here we examined the stepwise morphological evolution of the active Yellow River delta lobe including both the subaerial and the subaqueous components, and illustrated the critical roles of riverine discharge and sediment grain size in dominating the deltaic evolution. The critical sediment loads for maintaining the delta stability were also calculated from water discharge and sediment load measured at station Lijin, the last gauging station approximately 100 km upstream from the river mouth. The results indicated that the development of active delta lobe including both subaerial and subaqueous components has experienced four sequential stages. During the first stage (1976-1981) after the channel migration, the unchannelized river flow enhanced deposition within the channel and floodplain between Lijin station and the river mouth. Therefore, the critical sediment supply calculated by the river inputs obtained from station Lijin was the highest. However, the actual sediment load at this stage (0.84 Gt/yr) was more than twice of the critical sediment load ( 0.35 Gt/yr) for sustaining the active subaerial area, which favored a rapid seaward progradation of the Yellow River subaerial delta. During the second stage (1981-1996), the engineering-facilitated channelized river flow and the increase in median grain size of suspended sediment delivered to the sea resulted in the critical sediment load for keeping the delta stability deceasing to 0.29 Gt/yr. The active delta lobe still gradually prograded seaward at an accretion rate of 11.9 km2/yr at this stage as the annual sediment load at Lijin station was 0.55 Gt/yr. From 1996 to 2002, the critical sediment load further decreased to 0.15 Gt/yr with the sediment grain size increased to 22.5 μm; however, the delta suffered net erosion because of the insufficient sediment supply (0.11 Gt/yr). In the most recent stage (2002 - 2013), the intensive scouring of the lower river channel induced by the dam regulation provided relatively coarser sediment, which effectively reduced the critical sediment load to 0.06 Gt/yr, much lower than the corresponding sediment load at Lijin station ( 0.16 Gt/yr). Consequently, the subaerial Yellow River delta transitioned to a slight accretion phase. Overall, the evolution of the active Yellow River delta is highly correlated to riverine water and sediment discharge. The sediment supply for keeping the subaerial delta stability is inconstant and varying with the river channel morphology and sediment grain size. We conclude that the human-impacted riverine sediment discharge and grain-size composition play dominant roles in the stepwise morphological evolution of the active delta lobe.

  12. Natural uranium and thorium isotopes in sediment cores off Malaysian ports

    NASA Astrophysics Data System (ADS)

    Yusoff, Abdul Hafidz; Sabuti, Asnor Azrin; Mohamed, Che Abd Rahim

    2015-06-01

    Sediment cores collected from three Malaysian marine ports, namely, Kota Kinabalu, Labuan and Klang were analyzed to determine the radioactivities of 234U, 238U, 230Th, 232Th and total organic carbon (TOC) content. The objectives of this study were to determine the factors that control the activity of uranium isotopes and identify the possible origin of uranium and thorium in these areas. The activities of 234U and 238U show high positive correlation with TOC at the middle of sediment core from Kota Kinabalu port. This result suggests that activity of uranium at Kota Kinabalu port was influenced by organic carbon. The 234U/238U value at the upper layer of Kota Kinabalu port was ≥1.14 while the ratio value at Labuan and Klang port was ≤ 1.14. These results suggest a reduction process occurred at Kota Kinabalu port where mobile U(VI) was converted to immobile U(IV) by organic carbon. Therefore, it can be concluded that the major input of uranium at Kota Kinabalu port is by sorptive uptake of authigenic uranium from the water column whereas the major inputs of uranium to Labuan and Klang port are of detrital origin. The ratio of 230Th/232Th was used to estimate the origin of thorium. Low ratio value (lt; 1.5) at Labuan and Klang ports support the suggestion that thorium from both areas were come from detrital input while the high ratio (> 1.5) of 230Th/232Th at Kota Kinabalu port suggest the anthropogenic input of 230Th to this area. The source of 230Th is probably from phosphate fertilizers used in the oil-palm cultivation in Kota Kinabalu that is adjacent to the Kota Kinabalu port.

  13. Sterols of a contemporary lacustrine sediment. [in English postglacial lake

    NASA Technical Reports Server (NTRS)

    Gaskell, S. J.; Eglinton, G.

    1976-01-01

    Results are reported for detailed sterol analyses of several depths (corresponding to between zero and about 150 yr in age) in a contemporary lacustrine sediment from a freshwater lake of postglacial origin in England. Delta 5-, delta 22-, and delta 5,22-sterols are identified along with 5 alpha- and 5 beta-stanols as well as a C26 stanol with a C7 side chain. Solvent extraction yields carbon number distributions for the 5 alpha- and 5 beta-stanol sediment constituents that parallel the corresponding delta 5-sterol distributions. The amounts of 5 alpha-stanols are found to exceed those of 5 beta-stanols in the sediment, and variations in the ratio of 5 alpha- to 5 beta-stanol between sediment samples from similar depths are shown to suggest an inhomogeneity of the sediment. It is found that the sterol composition of sediment cores varies markedly with depth, reflecting both the effects of a sterol hydrogenation process and a changing input to the sediment. It is concluded that C29 sterols, of probable higher-plant origin, predominate at lower sediment depths while C27 sterols, possibly derived from autochthonous sources, are more abundant in the surface sediment.

  14. Climatically sensitive transfer of iron to maritime Antarctic ecosystems by surface runoff

    NASA Astrophysics Data System (ADS)

    Hodson, Andy; Nowak, Aga; Sabacka, Marie; Jungblut, Anne; Navarro, Francisco; Pearce, David; Ávila-Jiménez, María Luisa; Convey, Peter; Vieira, Gonçalo

    2017-02-01

    Iron supplied by glacial weathering results in pronounced hotspots of biological production in an otherwise iron-limited Southern Ocean Ecosystem. However, glacial iron inputs are thought to be dominated by icebergs. Here we show that surface runoff from three island groups of the maritime Antarctic exports more filterable (<0.45 μm) iron (6-81 kg km-2 a-1) than icebergs (0.0-1.2 kg km-2 a-1). Glacier-fed streams also export more acid-soluble iron (27.0-18,500 kg km-2 a-1) associated with suspended sediment than icebergs (0-241 kg km-2 a-1). Significant fluxes of filterable and sediment-derived iron (1-10 Gg a-1 and 100-1,000 Gg a-1, respectively) are therefore likely to be delivered by runoff from the Antarctic continent. Although estuarine removal processes will greatly reduce their availability to coastal ecosystems, our results clearly indicate that riverine iron fluxes need to be accounted for as the volume of Antarctic melt increases in response to 21st century climate change.

  15. A review on the patterns of river material fluxes, coastal plume dispersal, shelf sediment facies, and anthropogenic impacts of the Tropical Land-Sea Interface, Sergipe/Alagoas, Northeast Brazil

    NASA Astrophysics Data System (ADS)

    Knoppers, B.; Medeiros, P. R. P.; de Souza, W. F. L.; Oliveira, E. N.; Fontes, L. C. da S.; do Carmo, M. S.; Carvalho, I. S.; Silva, M. C.; Brandini, N.; Carneiro, M. E.

    2012-04-01

    This study couples published and unpublished information on the alterations of continental material fluxes, plume dispersal patterns and coastal erosion induced by natural and human impacts to the distribution of sediment facies and sedimentation rates of the continental shelf of the States of Sergipe and Alagoas, northeastern Brazil (Lats. 8o56,2' and 11o20,0' S, Longs. 35o07,7' and 37o14,2' W). Historical data on river flow and material fluxes of 7 rivers, including the São Francisco river (L = 2850 km, AB = 634000 km2), were obtained from own measurements and from the national data bank of ANA (National Agency of Waters, www.ana.gov.br) with the softwares HIDRO 1.2 and SisCAH 1.0. Historical data on the distribution of sediments and their elemental composition of the shelf from the AKAROA (1965) campaign with 190 sampling stations (scale 1:1.000.000; Kempf, 1972, Summerhayes et al. 1975 & 1976, Coutinho, 1976) were revisited and new digital maps constructed with ArcGIS 9.3. Comparisons are made from new maps from recent campaigns (scale 1:250.000) performed by the consortium GEORIOEMAR/ UFS/ CENPES/ PETROBRÁS (2010). Statistical analyses with all parameters revealed that the shelf harbors 4 major regional sedimentary domains (i.e. A to D), reflecting the interaction between continental inputs and the impact of the oligotrophic South Equatorial Current (SEC) upon the shelf. The domains are: A- The Alagoas shelf. Set north of the São Francisco river with low fluvial input, dominance of SEC, recent organogenetic carbonate sediments with the calcareous algae Lithothamnium sp. and Halimeda sp. B- The São Francisco river alluvial fan and canyon. The river harbors a cascade of dams and after 1995, river flow declined by 40 % and was modulated to a constant flow of 2060 m3s-1, 95 % of the suspended matter load was retained within the reservoirs and nutrients (N,P) were impoverished by 90 % . The estuarine waters are now transparent and oligotrophic and the coastal plume lost its original turbidity and unimodal seasonal pattern of pulsation upon the shelf as indicated by In Situ sampling and Satellite imagery series (LANDSAT TM 2-5 and MODIS). The coastal plume is largely fed with suspended matter from resupension processes and coastal erosion. C- The Japaratuba river fan. The inner-mid shelf harbors relict muddy and sandy siliclastic sediments and the shelf margin biodetritic carbonates. Riverine inputs have become insignificant. D- The southern shelf of Sergipe. The muddy, sandy and carbonate Merl sediments are heterogeneously distributed,and the coast is affected by diffuse small riverine inputs and wash out by the SEC. Sedimentation rates (210Pbex chronology with the CRS model) of Domains B and C ranged between 0.7 and 0.1 cm year-1, being similar to those of the eastern Brazilian shelf.

  16. Petroleum pollution in surface sediments of Daya Bay, South China, revealed by chemical fingerprinting of aliphatic and alicyclic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Gao, Xuelu; Chen, Shaoyong

    2008-10-01

    Nine surface sediments collected from Daya Bay have been Soxhlet-extracted with 2:1 (v/v) dichloromethane-methanol. The non-aromatic hydrocarbon (NAH) fraction of solvent extractable organic matter (EOM) and some bulk geochemical parameters have been analyzed to determine petroleum pollution of the bay. The NAH content varies from 32 to 276 μg g -1 (average 104 μg g -1) dry sediment and accounts for 5.8-64.1% (average 41.6%) of the EOM. n-Alkanes with carbon number ranging from 15 to 35 are identified to be derived from both biogenic and petrogenic sources in varying proportions. The contribution of marine authigenic input to the sedimentary n-alkanes is lower than the allochthonous input based on the average n-C 31/ n-C 19 alkane ratio. 25.6-46.5% of the n-alkanes, with a mean of 35.6%, are contributed by vascular plant wax. Results of unresolved complex mixture, isoprenoid hydrocarbons, hopanes and steranes also suggest possible petroleum contamination. There is strong evidence of a common petroleum contamination source in the bay.

  17. Sources and contamination rate of port sediments: evidences from dimensional, mineralogical, and chemical investigations

    NASA Astrophysics Data System (ADS)

    Lucchetti, Gabriella; Cutroneo, Laura; Carbone, Cristina; Consani, Sirio; Vagge, Greta; Canepa, Giuseppe; Capello, Marco

    2017-04-01

    Ports are complex environments due to their complicated geometry (quays, channels, and piers), the presence of human activities (vessel traffic, yards, industries, and discharges), and natural factors (stream and torrent inputs, sea action, and currents). Due to the many activities that take place in a port, sediments and waters are often contaminated by different kinds of chemicals, such as hydrocarbons, dioxins, pesticides, nutrients, and metals. The contamination rate of a port basin is site specific and depends on the sources of contamination in the nearby urban system as well as the port system itself, such as city discharges and sewers, river intake, vessel traffic, factories (Taylor and Owens, 2009). Moreover, two important sources and vehicles of contaminants are: a) anthropogenic road deposited sediments derived from the runoff of the port and city area, and natural road deposited sediments derived from rivers and torrents, and b) airborne particulate matter and sediments (Taylor and Owens, 2009). The Port of Genoa is situated at the apex of the Ligurian Sea in the north western Mediterranean Sea and is characterised by the presence of several commercial activities that have contributed, over the years, and still contribute today, to the contaminant accumulation in both the water column and the bottom sediments. This port basin includes the mouth of several streams and the mouth of the Bisagno and the Polcevera Torrents, along the banks of which can be found several small towns, quarries, factories, and the suburbs of the city of Genoa, a ferry terminal, different container terminals, marinas, dry docks, the coal power plant of Genoa, and different wastewater treatment plant discharges. Starting from these considerations, we have examined the marine environment of a port from the point of view of the water mass circulation, hydrological characteristics, distribution of the sediment grain size, mineralogical characteristics, and metal concentrations of the bottom sediments. Our results show that, in the case of the Port of Genoa (north western Italy), both the impact of the human activities (such as coal power plant, oil depots, yards, dredging of the bottom sediments, etc.) and the natural processes (such as currents, fresh water and sediment inputs from the torrents), together with the morphology of the basin, are important factors in sediment, water and metal distributions and give rise to a complex environment. Taylor, K.G., Owens, P.N., 2009. Sediments in urban river basins: a review of sediment contaminant dynamics in an environmental system conditioned by human activities. Journal of Soils and Sediments 9: 281-303.

  18. Low temperature hydrothermal maturation of organic matter in sediments from the Atlantis II Deep, Red Sea

    NASA Technical Reports Server (NTRS)

    Simoneit, Bernd R. T.; Grimalt, Joan O.; Hayes, J. M.; Hartman, Hyman

    1987-01-01

    Hydrocarbons and bulk organic matter of two sediment cores within the Atlantis II Deep are analyzed, and microbial inputs and minor terrestrial sources are found to represent the major sedimentary organic material. Results show that extensive acid-catalyzed reactions are occurring in the sediments, and the Atlantis II Deep is found to exhibit a lower degree of thermal maturation than other hydrothermal or intrusive systems. The lack of carbon number preference noted among the n-alkanes suggests that the organic matter of these sediments has undergone some degree of catagenesis, though yields of hydrocarbons are much lower than those found in other hydrothermal areas, probably due to the effect of lower temperature and poor source-rock characteristics.

  19. Nutrient, trace-element, and ecological history of Musky Bay, Lac Courte Oreilles, Wisconsin, as inferred from sediment cores

    USGS Publications Warehouse

    Fitzpatrick, Faith A.; Garrison, Paul J.; Fitzgerald, Sharon A.; Elder, John F.

    2003-01-01

    Sediment cores were collected from Musky Bay, Lac Courte Oreilles, and from surrounding areas in 1999 and 2001 to determine whether the water quality of Musky Bay has declined during the last 100 years or more as a result of human activity, specifically cottage development and cranberry farming. Selected cores were analyzed for sedimentation rates, nutrients, minor and trace elements, biogenic silica, diatom assemblages, and pollen over the past several decades. Two cranberry bogs constructed along Musky Bay in 1939 and the early 1950s were substantially expanded between 1950?62 and between 1980?98. Cottage development on Musky Bay has occurred at a steady rate since about 1930, although currently housing density on Musky Bay is one-third to one-half the housing density surrounding three other Lac Courte Oreilles bays. Sedimentation rates were reconstructed for a core from Musky Bay by use of three lead radioisotope models and the cesium-137 profile. The historical average mass and linear sedimentation rates for Musky Bay are 0.023 grams per square centimeter per year and 0.84 centimeters per year, respectively, for the period of about 1936?90. There is also limited evidence that sedimentation rates may have increased after the mid-1990s. Historical changes in input of organic carbon, nitrogen, phosphorus, and sulfur to Musky Bay could not be directly identified from concentration profiles of these elements because of the potential for postdepositional migration and recycling. Minor- and trace-element profiles from the Musky Bay core possibly reflect historical changes in the input of clastic material over time, as well as potential changes in atmospheric deposition inputs. The input of clastic material to the bay increased slightly after European settlement and possibly in the 1930s through 1950s. Concentrations of copper in the Musky Bay core increased steadily through the early to mid-1900s until about 1980 and appear to reflect inputs from atmospheric deposition. Aluminum- normalized concentrations of calcium, copper, nickel, and zinc increased in the Musky Bay core in the mid-1990s. However, concentrations of these elements in surficial sediment from Musky Bay were similar to concentrations in other Lac Courte Oreilles bays, nearby lakes, and soils and were below probable effects concentrations for aquatic life. Biogenic-silica, diatom-community, and pollen profiles indicate that Musky Bay has become more eutrophic since about 1940 with the onset of cottage development and cranberry farming. The water quality of the bay has especially degraded during the last 25 years with increased growth of aquatic plants and the onset of a floating algal mat during the last decade. Biogenic silica data indicate that diatom production has consistently increased since the 1930s. Diatom assemblage profiles indicate a shift from low-nutrient species to higher-nutrient species during the 1940s and that aquatic plants reached their present density and/or composition during the 1970s. The diatom Fragilaria capucina (indicative of algal mat) greatly increased during the mid-1990s. Pollen data indicate that milfoil, which often becomes more common with elevated nutrients, became more widespread after 1920. The pollen data also indicate that wild rice was present in the eastern end of Musky Bay during the late 1800s and the early 1900s but disappeared after about 1920, probably because of water-level changes more so than eutrophication.

  20. Uncertainty in BMP evaluation and optimization for watershed management

    NASA Astrophysics Data System (ADS)

    Chaubey, I.; Cibin, R.; Sudheer, K.; Her, Y.

    2012-12-01

    Use of computer simulation models have increased substantially to make watershed management decisions and to develop strategies for water quality improvements. These models are often used to evaluate potential benefits of various best management practices (BMPs) for reducing losses of pollutants from sources areas into receiving waterbodies. Similarly, use of simulation models in optimizing selection and placement of best management practices under single (maximization of crop production or minimization of pollutant transport) and multiple objective functions has increased recently. One of the limitations of the currently available assessment and optimization approaches is that the BMP strategies are considered deterministic. Uncertainties in input data (e.g. precipitation, streamflow, sediment, nutrient and pesticide losses measured, land use) and model parameters may result in considerable uncertainty in watershed response under various BMP options. We have developed and evaluated options to include uncertainty in BMP evaluation and optimization for watershed management. We have also applied these methods to evaluate uncertainty in ecosystem services from mixed land use watersheds. In this presentation, we will discuss methods to to quantify uncertainties in BMP assessment and optimization solutions due to uncertainties in model inputs and parameters. We have used a watershed model (Soil and Water Assessment Tool or SWAT) to simulate the hydrology and water quality in mixed land use watershed located in Midwest USA. The SWAT model was also used to represent various BMPs in the watershed needed to improve water quality. SWAT model parameters, land use change parameters, and climate change parameters were considered uncertain. It was observed that model parameters, land use and climate changes resulted in considerable uncertainties in BMP performance in reducing P, N, and sediment loads. In addition, climate change scenarios also affected uncertainties in SWAT simulated crop yields. Considerable uncertainties in the net cost and the water quality improvements resulted due to uncertainties in land use, climate change, and model parameter values.

  1. Benthic metabolism and nitrogen dynamics in an urbanised tidal creek: Domination of DNRA over denitrification as a nitrate reduction pathway

    NASA Astrophysics Data System (ADS)

    Dunn, Ryan J. K.; Robertson, David; Teasdale, Peter R.; Waltham, Nathan J.; Welsh, David T.

    2013-10-01

    Benthic oxygen and nutrient fluxes and nitrate reduction rates were determined seasonally under light and dark conditions at three sites in a micro-tidal creek within an urbanised catchment (Saltwater Creek, Australia). It was hypothesized that stormwater inputs of organic matter and inorganic nitrogen would stimulate rates of benthic metabolism and nutrient recycling and preferentially stimulate dissimilatory nitrate reduction to ammonium (DNRA) over denitrification as a pathway for nitrate reduction. Stormwaters greatly influenced water column dissolved inorganic nitrogen (DIN) and suspended solids concentrations with values following a large rainfall event being 5-20-fold greater than during the preceding dry period. Seasonally, maximum and minimum water column total dissolved nitrogen (TDN) and DIN concentrations occurred in the summer (wet) and winter (dry) seasons. Creek sediments were highly heterotrophic throughout the year, and strong sinks for oxygen, and large sources of dissolved organic and inorganic nitrogen during both light and dark incubations, although micro-phytobenthos (MPB) significantly decreased oxygen consumption and N-effluxes during light incubations due to photosynthetic oxygen production and photoassimilation of nutrients. Benthic denitrification rates ranged from 3.5 to 17.7 μmol N m2 h-1, denitrification efficiencies were low (<1-15%) and denitrification was a minor process compared to DNRA, which accounted for ˜75% of total nitrate reduction. Overall, due to the low denitrification efficiencies and high rates of N-regeneration, Saltwater Creek sediments would tend to increase rather than reduce dissolved nutrient loads to the downstream Gold Coast Broadwater and Moreton Bay systems. This may be especially true during wet periods when increased inputs of particulate organic nitrogen (PON) and suspended solids could respectively enhance rates of N-regeneration and decrease light availability to MPB, reducing their capacity to ameliorate N-effluxes through photoassimilation.

  2. Evaluating the Mn/Ca Ratio of Foraminiferal Calcite Determined by Flow-Through ICP-MS as a Proxy for Terrigenous Input, Upwelling, and Carbon Rain Rate

    NASA Astrophysics Data System (ADS)

    Klinkhammer, G. P.; Mix, A. C.; Benway, H. M.; Haley, B. A.

    2004-12-01

    The Mn/Ca ratio of the biogenic calcite preserved in deep-sea sediments has potential as a tracer of terrestrial input, upwelling, and carbon rain rate over geologic time scales. The basis for this potential lies in features of the Mn cycle in the oceans, which are well known. Manganese is a biogeochemically reactive element, but has a lower affinity for dissolved oxygen and organic matter than iron, making it more stable over short time scales, and less affected by speciation. Depth profiles of Mn in oligotrophic ocean waters show a sharp contrast between low concentrations in deep water (0.20 nM) and relatively high concentrations in the mixed layer (2-5 nM). Mn oxides are stable in high oxygen environments but reduced in the suboxic conditions found in the oxygen minimum zone (OMZ). This behavior makes the intermediate water to surface water concentration ratio of Mn sensitive to the intensity of the OMZ, an artifact of the carbon rain rate, and dust/river input. In sediments, suboxic dissolution is balanced by the formation of carbonate making Mn highly reactive during early diagenesis. These features of the Mn cycle in seawater make the Mn/Ca ratio of foraminifera an attractive paleoproxy, but only if the primary signature can be recovered after diagenetic alteration. Recently our laboratory developed a flow-through extraction system that gives us fresh insight into this problem by making it possible to separate mineral phases associated with the foraminiferal fraction by differences in their solubilities. This paper examines foraminiferal Mn/Ca ratios in core tops and down core records from the eastern equatorial Pacific determined with this new technique. We access the potential of flow-through Mn/Ca by comparing its record to those of Mg/Ca and stable isotopes.

  3. Geospatial risk assessment and trace element concentration in reef associated sediments, northern part of Gulf of Mannar biosphere reserve, Southeast Coast of India.

    PubMed

    Krishnakumar, S; Ramasamy, S; Simon Peter, T; Godson, Prince S; Chandrasekar, N; Magesh, N S

    2017-12-15

    Fifty two surface sediments were collected from the northern part of the Gulf of Mannar biosphere reserve to assess the geospatial risk of sediments. We found that distribution of organic matter and CaCO 3 distributions were locally controlled by the mangrove litters and fragmented coral debris. In addition, Fe and Mn concentrations in the marine sediments were probably supplied through the riverine input and natural processes. The Geo-accumulation of elements fall under the uncontaminated category except Pb. Lead show a wide range of contamination from uncontaminated-moderately contaminated to extremely contaminated category. The sediment toxicity level of the elements revealed that the majority of the sediments fall under moderately to highly polluted sediments (23.07-28.84%). The grades of potential ecological risk suggest that predominant sediments fall under low to moderate risk category (55.7-32.7%). The accumulation level of trace elements clearly suggests that the coral reef ecosystem is under low to moderate risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Pb’s high sedimentation inside the bay mouth of Jiaozhou Bay

    NASA Astrophysics Data System (ADS)

    Yang, Dongfang; Miao, Zhenqing; Huang, Xinmin; Wei, Linzhen; Feng, Ming

    2017-12-01

    Sedimentation is one of the key environmental behaviors of pollutants in the ocean. This paper analyzed the seasonal and temporal variations of Pb’s sedimentation process in Jiaozhou Bay in 1987. Results showed that Pb contents in bottom waters in Jiaozhou Bay in May, July and November 1987 were 1.87-2.60 μg L-1, 15.11-19.68 μg L-1 and 11.08-15.18 μg L-1, and the pollution levels of Pb in May, July and November 1987 were slight, heavy and heavy, respectively. In May 1987, there was low sedimentation process in waters in the outside of the bay mouth, yet were high sedimentation process in waters in the middle and inside of the bay mouth. In July and November 1987, there was low sedimentation process in waters in the outside of the bay mouth, yet were high sedimentation process in waters in the inside of the bay mouth. The seasonal-temporal variation of sedimentation processes of Pb were determined by the variations of sources input and the vertical water’s effect.

  5. Neodymium Isotope Variations in Late Quaternary Carbonate Lake Sediments, Owens Valley, Eastern California.

    NASA Astrophysics Data System (ADS)

    Minervini, J. M.; Stewart, B. W.

    2001-12-01

    Owens Lake is situated in a mostly-closed basin fed by water and sediments derived primarily from the eastern Sierra Nevada range. Chemical and sedimentological variations in USGS Owens Lake Core OL-92, which extends back 800 ka, have been shown to be sensitive tracers of Great Basin paleoclimate. Here we report preliminary neodymium (Nd) isotope data from core OL-92 to investigate sediment provenance, the chemical behavior of rare earth elements (REE) in non-marine systems, and possible climate-related shifts in weathering patterns of the eastern Sierra Nevada during the last glacial-interglacial transition. Neodymium isotopic analyses were carried out on the carbonate fraction of sediment samples ranging in age from 16.8 to 6.9 ka from Owens Lake core OL-92. Samples were treated with ammonium acetate to remove exchangeable cations from coexisting silicate material, and subsequently leached with 8% acetic acid to dissolve carbonate minerals. Based on the mass of sediment leached with acetic acid, the fraction of carbonate (relative to clastic silicate material) increases from 6.6 to 66.5% over the 10 ka period represented by these samples. This increase in carbonate reflects desiccation of the Owens Lake basin; as streamwater flow is reduced, the lake spends a greater proportion of its time saturated in carbonate minerals, and clastic input might also be reduced. Concentrations of Nd in Owens Lake carbonate range from 7 to 170 ppm, values that are 2-1000 times higher than marine planktonic foraminifera (e.g., Vance and Burton, 1999, EPSL 173, 365). In general, high concentrations of Nd in Owens Lake carbonate are associated with older sediment samples with lower carbonate fractions. The decrease in Nd concentration over this time period could be a result of extraction of Nd from lake waters by precipitation of carbonate as desiccation proceeded. Epsilon-Nd values of Owens Lake carbonate range from -5.3 to -6.5, and are consistent with eastern Sierra Nevada granitic bedrock values. A slight shift from higher to lower epsilon-Nd values occurs between about 14 and 9 ka, and could be due to variations in sediment source regions associated with the retreat of alpine glaciers along the eastern flank of the Sierra Nevada. With ongoing studies to assess the relationship between clastic and carbonate sources, neodymium isotope data can potentially provide detailed information about the relationship between chemical and mechanical weathering processes in a well-constrained continental setting.

  6. Organic matter diagenesis within the water column and surface sediments of the northern Sargasso Sea revealed by lipid biomarkers

    NASA Astrophysics Data System (ADS)

    Conte, M. H.; Pedrosa Pàmies, R.; Weber, J.

    2017-12-01

    The intensity of particle cycling processes within the mesopelagic and bathypelagic ocean controls the length scale of organic material (OM) remineralization and diagenetic transformations of OM composition through the water column and into the sediments. To elucidate the OM cycling in the oligotrophic North Atlantic gyre, we analyzed lipid biomarkers in the suspended particles (30-4400 m depth, 100 mab), the particle flux (500 m, 1500 m and 3200 m depth), and in the underlying surficial sediments (0-0.5 cm, 4500-4600 m depth) collected at the Oceanic Flux Program (OFP) time series site located 75km SE of Bermuda. Changes in lipid biomarker concentration and composition with depth highlight the rapid remineralization of OM within the upper mesopelagic layer and continuing diagenetic transformations of OM throughout the water column and within surficial sediments. Despite observed similarities in biomarker composition in suspended and sinking particles, results show there are also consistent differences in relative contributions of phytoplankton-, bacterial- and zooplankton-derived sources that are maintained throughout the water column. For example, sinking particles are more depleted in labile biomarkers (e.g. polyunsaturated fatty acids (PUFA)) and more enriched in bacteria-derived biomarkers (e.g. hopanoids and odd/branched fatty acids) and indicators of fecal-derived OM (e.g. saturated fatty acids, FA 18:1w9 and cholesterol) than in the suspended pool. Strong seasonality in deep (3200 m) fluxes of phytoplankton-derived biomarkers reflect the seasonal input of bloom-derived material to underlying sediments. The rapid diagenetic alteration of this bloom-derived input is evidenced by depletion of PUFAs and enrichment of microbial biomarkers (e.g. odd/branched fatty acids) in surficial sediments over a two month period.

  7. Sources and transport of sediment, nutrients, and oxygen-demanding substances in the Minnesota River basin, 1989-92

    USGS Publications Warehouse

    Payne, G.A.

    1994-01-01

    The Minnesota River, 10 major tributaries, and 21 springs were sampled to determine the sources and transport of sediment, nutrients, and oxygen- demanding substances. The study was part of a four-year assessment of non-point source pollution in the Minnesota River Basin. Runoff from tributary watersheds was identified as the primary source of suspended sediment and nutrients in the Minnesota River mainstem. Suspended-sediment, phosphorus, and nitrate concentrations were elevated in all major tributaries during runoff, but tributaries in the south-central and eastern part of the basin produce the highest annual loading to the mainstem because of higher annual precipitation and runoff in that part of the basin. Particle-size analyses showed that most of the suspended sediment in transport consisted of silt- and clay-size material. Phosphorus enrichment was indicated throughout the mainstem by total phosphorus concentrations that ranged from 0.04 to 0.48 mg/L with a median value of 0.22 mg/L, and an interquartile range of 0.15 to 0.29 mg/L. Nitrate concentrations periodically exceeded drinking water standards in tributaries draining the south-central and eastern part of the basin. Oxygen demand was most elevated during periods of summer low flow. Correlations between levels of biochemical oxygen demand and levels of algal productivity suggest that algal biomass comprises much of the oxygen-demanding material in the mainstem. Transport of sediment, nutrients, and organic carbon within the mainstem was found to be conservative, with nearly all tributary inputs being transported downstream. Uptake and utilization of nitrate and orthophosphorus was indicated during low flow, but at normal and high flow, inputs of these constituents greatly exceeded biological utilization.

  8. Riverine input of organic carbon and nitrogen in water-sediment system from the Yellow River estuary reach to the coastal zone of Bohai Sea, China

    NASA Astrophysics Data System (ADS)

    Wang, Chuanyuan; Lv, Yingchun; Li, Yuanwei

    2018-04-01

    The temporal-spatial distribution of the carbon and nitrogen contents and their isotopic compositions of suspended matter and sediments from the Yellow River estuary reach (YRER), the estuary to the offshore area were measured to identify the source of organic matter. The higher relative abundances of suspended and sedimentary carbon and nitrogen (POC, TOC, PN and TN) in the offshore marine area compared to those of the riverine and estuarine areas may be due to the cumulative and biological activity impact. The organic matter in surface sediments of YRER, the estuary and offshore area of Bohai Sea is basically the mixture of continental derived material and marine material. The values of δ13Csed fluctuate from values indicative of a land source (- 22.50‰ ± 0.31) to those indicative of a sea source (- 22.80‰ ± 0.38), which can be attributed to the fine particle size and decrease in terrigenous inputs to the offshore marine area. Contrary to the slight increase of POC and PN during the dry season, TOC and TN contents of the surface sediments during the flood season (October) were higher than those during the dry season (April). The seasonal differences in water discharge and suspended sediment discharge of the Yellow River Estuary may result in seasonal variability in TOC, POC, TN and PN concentrations in some degree. Overall, the surface sediments in the offshore area of Bohai Sea are dominated by marine derived organic carbon, which on average, accounts for 58-82% of TOC when a two end-member mixing model is applied to the isotopic data.

  9. Origins of sediment-associated contaminants to the Marais Vernier, the Seine Estuary, France

    USGS Publications Warehouse

    Van Metre, P.C.; Mesnage, V.; Laignel, B.; Motelay, A.; Deloffre, J.

    2008-01-01

    The Marais Vernier is the largest freshwater wetland in the Seine Estuary in northern France. It is in a heavily urbanized and industrialized region and could be affected by atmospheric deposition and by fluvial input of contaminants in water diverted from the Seine River. To evaluate contaminant histories in the wetland and the region, sediment cores were collected from two open-water ponds in the Marais Vernier: the Grand-Mare, which was connected to the Seine by a canal from 1950 to 1996, and the Petite Mare, which has a small rural watershed. Diversions from the Seine to the Grand-Mare increased sedimentation rates but mostly resulted in low contaminant concentrations and loading rates, indicating that the sediment from the Seine was predominantly brought upstream by tidal currents from the estuary and was not from the watershed. Atmospheric sources of metals dominate inputs to the Petite Mare; however, runoff of metals from vehicle-related sources in the watershed might contribute to the upward trends in concentrations of Cr, Cu, and Zn. Estimates of atmospheric deposition using the Petite Mare core are consistent with measured deposition in the region and are mixed (similar for Hg and Pb; larger for Cd, Cu, and Zn) compared with deposition estimated from sediment cores in the northeastern United States. A local source of PAHs in the watershed of the Petite Mare is indicated by higher concentrations, higher accumulation rates, and a different, more petrogenic, PAH assemblage than in the Grand-Mare. The study illustrates how diverse sources and transport pathways can affect wetlands in industrial regions and can be evaluated using sediment cores from the wetland ponds. ?? 2008 Springer Science+Business Media B.V.

  10. Distribution and risk assessment of trace metals in sediments from Yangtze River estuary and Hangzhou Bay, China.

    PubMed

    Li, Feipeng; Mao, Lingchen; Jia, Yubao; Gu, Zhujun; Shi, Weiling; Chen, Ling; Ye, Hua

    2018-01-01

    The Yangtze River estuary (YRE) and Hangzhou Bay (HZB) is of environmental significance because of the negative impact from industrial activities and rapid development of aquaculture on the south bank of HZB (SHZB) in recent years. This study investigated the distribution and risk assessments of trace metals (Cr, Cu, Zn, Hg, Pb, and Cd) accumulated in surface sediments by sampling in YRE, outer and south HZB. Copper and Zn concentration (avg. 35.4 and 98.7 mg kg -1 , respectively) in surface sediments were generally higher than the background suggesting a widespread of Cu and Zn in the coastal area of Yangtze River Delta. High concentrations of Cu (~ 42 mg kg -1 ), Zn (~ 111 mg kg -1 ), Cd (~ 0.27 mg kg -1 ), and Hg (~ 0.047 mg kg -1 ) were found in inner estuary of YRE and decreased offshore as a result of terrestrial input and dilution effect of total metal contents by "cleaner" sediments from the adjacent sea. In outer HZB, accumulation of terrestrial derived metal has taken place near the Zhoushan Islands. Increase in sediment metal concentration from the west (inner) to the east (outer) of SHZB gave rise to the input of fine-grained sediments contaminated with metals from outer bay. According the results from geoaccumulation index, nearly 75% of samples from YRE were moderately polluted (1.0 < I geo  < 2.0) by Cd. Cadmium and Hg contributed for 80~90% to the potential ecological risk index in the YRE and HZB, with ~ 72% sites in HZB under moderate risk (150 ≤ RI < 300) especially near Zhoushan Islands.

  11. Lead isotope ratios in six lake sediment cores from Japan Archipelago: Historical record of trans-boundary pollution sources.

    PubMed

    Hosono, Takahiro; Alvarez, Kelly; Kuwae, Michinobu

    2016-07-15

    Sediment cores from six lakes situated from north to south on the Japanese Archipelago were collected during 2009-2010 to investigate the hypothesis that deposition of lead (Pb) was coming from East Asia (including China, South Korea and eastern part of Russia). Accumulation rates and ages of the lake sediment were estimated by the (210)Pb constant rate of supply model and (137)Cs inputs to reconstruct the historical trends of Pb accumulation. Cores from four lakes located in the north and central Japan, showed clear evidence of Pb pollution with a change in the (206)Pb/(207)Pb and (208)Pb/(207)Pb ratios in the recent sediment as compared to the deeper sediment. Among the six studied lakes, significant inputs of anthropogenic lead emissions were observed at Lake Mikazuki (north Hokkaido in north Japan), Lake Chokai (north of Honshu), and Lake Mikuriga (central part of Honshu). Pb isotopic comparison of collected core sediment and previously reported data for wet precipitation and aerosols from different Asian regions indicate that, before 1900, Pb accumulated in these three lakes was not affected by trans-boundary sources. Lake Mikazuki started to receive Pb emissions from Russia in early 1900s, and during the last two decades, this lake has been affected by trans-boundary Pb pollution from northern China. Lake Chokai has received Pb pollutant from northern China since early 1900s until 2009, whereas for the Lake Mikuriga the major Pb contaminant was transported from southern China during the past 100years. The results of our study demonstrate that Japan Archipelago has received trans-boundary Pb emissions from different parts of East Asian region depending on location, and the major source region has changed historically. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A model to understand the confounding effects of natural sediments in toxicity tests with Chironomus riparius.

    PubMed

    Péry, Alexandre R; Sulmon, Vanessa; Mons, Raphaël; Flammarion, Patrick; Lagadic, Laurent; Garric, Jeanne

    2003-10-01

    Recently, we built a model to link feeding input with growth, emergence, and reproduction of the midge Chironomus riparius exposed to an artificial sandy sediment. This model is based on assumptions about both feeding behavior and use of energy. Here, we show how it can be used for toxicity tests with natural sediments to understand and model the influence of sediment characteristics. We measured growth, emergence, and reproduction of chironomids exposed in beakers to four unpolluted natural sediments and three feeding conditions (no feeding, 0.2 mg Tetramin/larva/d, and 1.4 mg Tetramin/larva/d) and compared the results with data obtained on our artificial sandy sediment. Sediment characteristics had lower influence on growth than feeding level, but their influence could not be neglected. First, we could distinguish between sandy sediments and other sediments. This difference resulted in a significant delay of about 18 h in the growth curves. Second, in case of food limitation, chironomids could use the organic materials in the sediment, provided that the C:N ratio of the sediment was less than 14. Our model proved to be able to incorporate those two phenomena. As for reproduction, we observed a better reproduction (measured in number of eggs per mass) for natural sediments than for artificial sediments. We showed that this difference could be due to the lipid content of the natural sediments.

  13. Anaerobic hydrocarbon degradation in petroleum-contaminated harbor sediments under sulfate-reducing and artificially imposed iron-reducing conditions

    USGS Publications Warehouse

    Coates, J.D.; Anderson, R.T.; Woodward, J.C.; Phillips, E.J.P.; Lovley, D.R.

    1996-01-01

    The potential use of iron(III) oxide to stimulate in-situ hydrocarbon degradation in anaerobic petroleum-contaminated harbor sediments was investigated. Previous studies have indicated that Fe(III)-reducing bacteria (FeRB) can oxidize some electron donors more effectively than sulfate- reducing bacteria (SRB). In contrast to previous results in freshwater sediments, the addition of Fe(III) to marine sediments from San Diego Bay, CA did not switch the terminal electron-accepting process (TEAP) from sulfate reduction to Fe-(III) reduction. Addition of Fe(III) also did not stimulate anaerobic hydrocarbon oxidation. Exposure of the sediment to air [to reoxidize Fe(II) to Fe(III)] followed by anaerobic incubation of the sediments, resulted in Fe-(III) reduction as the TEAP, but contaminant degradation was not stimulated and in some instances was inhibited. The difference in the ability of FeRB to compete with the SRB in the different sediment treatments was related to relative population sizes. Although the addition of Fe(III) did not stimulate hydrocarbon degradation, the results presented here as well as other recent studies demonstrate that there may be significant anaerobic hydrocarbon degradation under sulfate-reducing conditions in harbor sediments.

  14. Meiofauna in the Gollum Channels and the Whittard Canyon, Celtic Margin—How Local Environmental Conditions Shape Nematode Structure and Function

    PubMed Central

    Ingels, Jeroen; Tchesunov, Alexei V.; Vanreusel, Ann

    2011-01-01

    The Gollum Channels and Whittard Canyon (NE Atlantic) are two areas that receive high input of organic matter and phytodetritus from euphotic layers, but they are typified by different trophic and hydrodynamic conditions. Sediment biogeochemistry was analysed in conjunction with structure and diversity of the nematode community and differences were tested between study areas, water depths (700 m vs 1000 m), stations, and sediment layers. The Gollum Channels and Whittard Canyon harboured high meiofauna abundances (1054–1426 ind. 10 cm−2) and high nematode diversity (total of 181 genera). Next to enhanced meiofauna abundance and nematode biomass, there were signs of high levels of organic matter deposition leading to reduced sedimentary conditions, which in turn structured the nematode community. Striking in this respect was the presence of large numbers of ‘chemosynthetic’ Astomonema nematodes (Astomonema southwardorum, Order Monhysterida, Family Siphonolaimidae). This genus lacks a mouth, buccal cavity and pharynx and possesses a rudimentary gut containing internal, symbiotic prokaryotes which have been recognised as sulphur-oxidising bacteria. Dominance of Astomonema may indicate the presence of reduced environments in the study areas, which is partially confirmed by the local biogeochemical environment. The nematode communities were mostly affected by sediment layer differences and concomitant trophic conditions rather than other spatial gradients related to study area, water depth or station differences, pointing to small-scale heterogeneity as the main source of variation in nematode structure and function. Furthermore, the positive relation between nematode standing stocks, and quantity and quality of the organic matter was stronger when hydrodynamic disturbance was greater. Analogically, this study also suggests that structural diversity can be positively correlated with trophic conditions and that this relation is tighter when hydrodynamic disturbance is greater. PMID:21629829

  15. Stable lead isotopic analyses of historic and contemporary lead contamination of San Francisco Bay estuary

    USGS Publications Warehouse

    Ritson, P.I.; Bouse, R.M.; Flegal, A.R.; Luoma, S.N.

    1999-01-01

    Variations in stable lead isotopic composition (240Pb, 206Pb, 207Pb, 208Pb) in three sediment cores from the San Francisco Bay estuary document temporal changes in sources of lead during the past two centuries. Sediment, with lead from natural geologic sources, and relatively homogeneous lead isotopic compositions are overlain by sediments whose isotopic compositions indicate change in the sources of lead associated with anthropogenic modification of the estuary. The first perturbations of lead isotopic composition in the cores occur in the late 1800s concordant with the beginning of industrialization around the estuary. Large isotopic shifts, toward lower 206Pb/207Pb, occur after the turn of the century in both Richardson and San Pablo Bays. A similar relationship among lead isotopic compositions and lead concentrations in both Bays suggest contamination from the same source (a lead smelter). The uppermost sediments (post 1980) of all cores also have a relatively homogenous lead isotopic composition distinct from pre-anthropogenic and recent aerosol signatures. Lead isotopic compositions of leachates from fourteen surface sediments and five marsh samples from the estuary were also analyzed. These analyses suggest that the lead isotopic signature identified in the upper horizons of the cores is spatially homogeneous among recently deposited sediments throughout the estuary. Current aerosol lead isotopic compositions [Smith, D.R., Niemeyer, S., Flegal, A.R., 1992. Lead sources to California sea otters: industrial inputs circumvent natural lead biodepletion mechanisms. Environmental Research 57, 163-175] are distinct from the isotopic compositions of the surface sediments, suggesting that the major source of lead is cycling of historically contaminated sediments back through the water column. Both the upper core sediments and surface sediments apparently derive their lead predominantly from sources internal to the estuary. These results support the idea that geochemical cycling of lead between sediments and water accounts for persistently elevated lead concentrations in the water column despite 10-fold reduction of external source inputs to San Francisco Bay [Flegal, A.R., Rivera-Duarte, I., Ritson, P.I., Scelfo, G., Smith, G.J., Gordon, M., Sanudo-Wilhelmy, S.A., 1996. Metal contamination in San Francisco Waters: historic perturbations, contemporary concentrations, and future considerations in San Francisco Bay. In: Hollobaugh, J.T. (Ed.), The Ecosystem. AAAS, pp. 173-188].

  16. River discharge controlling a tidal delta: the interplay between monsoon input and tidal reworking in SW Bangladesh

    NASA Astrophysics Data System (ADS)

    Hale, R. P.; Goodbred, S. L., Jr.; Bain, R. L.; Wilson, C.; Best, J.; Reed, M. J.

    2015-12-01

    The Ganges-Brahmaputra-Meghna River system (GBM) is among the world's largest in terms of both annual water and sediment discharge. The subaerial delta (110,000 km2) is home to ~160 million people, in addition to the ecologically and economically critical Sundarbans National Forest (SNF). Recent sediment budgets suggest that ~15% of the 1 x 109 t yr-1 sediment load carried by the GBM is subsequently advected along shore and inland via tidal activity, to the otherwise-abandoned SW portion of the delta. A unit-scale estimate based on observed offshore suspended sediment concentrations (SSC) >1.0 g L-1 suggests that sufficient sediment is available in the system to maintain the elevation of the subaerial delta plain, even under current relative sea-level-rise rates. Recent work measuring sedimentation within SNF corroborates this finding, and understanding these sediment delivery dynamics will be critical for protecting the future of nearby regions that are heavily populated, but drastically altered by human activities. Cross-channel hydrodynamic surveys were conducted to estimate what fraction of the water (and sediment) is diverted from the major tidal channels toward the SNF interior. Measurements including profiles of velocity and SSC were collected on spring and neap tides during the dry and monsoon seasons, along transects bracketing major conduit channels into the SNF. During the dry season, we observe water flux at the southern end of the study area to be in approximate equilibrium regardless of tidal range, with SSC <0.3 g L-1 during neap tides, and <1.0 g L-1 during spring tides. North of the SNF conduit channels, we observe equilibrium water discharge and similarly low SSC during neap tides, but a modest ebb dominance and surface SSC >1.0 g L-1 during spring tides. This suggests the possibility of additional inputs of water and sediment from an adjacent tidal channel, as well as a potential source for the deposition observed on the Sundarbans platform during spring-tide flooding. Within channels in SNF, near-bed SSC increase by >5x from neap to spring tides, to a peak of ~1.0 g L-1. Sediment grab samples collected in a distributary channel show a moderate fining trend with distance from the major conduit, which has implications for the sedimentation rates observed on the tidal delta plain.

  17. Temporal and spatial distributions of contaminants in sediments of Santa Monica Bay, California

    USGS Publications Warehouse

    Bay, S.M.; Zeng, E.Y.; Lorenson, T.D.; Tran, K.; Alexander, Corrine

    2003-01-01

    Contaminant inputs from wastewater discharge, a major source of contamination to Santa Monica Bay (SMB), have declined drastically during the last three decades as a result of improved treatment processes and better source control. To assess the concomitant temporal changes in the SMB sediments, a study was initiated in June 1997, in which 25 box cores were collected using a stratified random sampling design. Five sediment strata corresponding to the time intervals of 1890-1920, 1932-1963, 1965-1979, 1979-1989, and 1989-1997 were identified using 210Pb dating techniques. Samples from each stratum were analyzed for metals, 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) and its metabolites (DDTs), polychlorinated biphenyls (PCBs), and total organic carbon (TOC). Samples from the 1965-1979, 1979-1989, and 1989-1997 strata were also analyzed for polycyclic aromatic hydrocarbons (PAHs) and linear alkylbenzenes (LABs). Sediment metal concentrations increased from 1890-1979 and were similar during the time intervals of 1965-1979, 1979-1989, and 1989-1997, although the mass emissions of trace metals from sewage inputs declined substantially during the same time period. Trace organic contamination in SMB was generally highest in sediments corresponding to deposition during the years of 1965-1979 or 1979-1989 and showed a decline in concentration in the 1989-1997 stratum. Temporal trends of contamination were greatest in sediments collected from areas near the Hyperion Treatment Plant (HTP) outfall system and on the slope of Redondo Canyon. The highest contaminant concentrations were present in sediments near the HTP 7-mile outfall in the 1965-1979 stratum. Elevated trace metal and organic concentrations were still present in the 1989-1997 stratum of most stations, suggesting that sediment contaminants have moved vertically in the sediment column since sludge discharges from the 7-mile outfall (a dominant source of contamination to the bay) ceased in 1987. The widespread distributions of DDTs and PCBs in SMB and highly confined distribution of LABs around the HTP outfall system were indicative of a dispersal mechanism remobilizing historically deposited contaminants to areas relatively remote from the point of discharge. ?? 2003 Elsevier Science Ltd. All rights reserved.

  18. Predicting lake responses to phosphorus loading with measurement-based characterization of P recycling in sediments

    NASA Astrophysics Data System (ADS)

    Katsev, S.; Li, J.

    2017-12-01

    Predicting the time scales on which lake ecosystems respond to changes in anthropogenic phosphorus loadings is critical for devising efficient management strategies and setting regulatory limits on loading. Internal loading of phosphorus from sediments, however, can significantly contribute to the lake P budget and may delay recovery from eutrophication. The efficiency of mineralization and recycling of settled P in bottom sediments, which is ultimately responsible for this loading, is often poorly known and is surprisingly poorly characterized in the societally important systems such as the Great Lakes. We show that a simple mass-balance model that uses only a minimum number of parameters, all of which are measurable, can successfully predict the time scales over which the total phosphorus (TP) content of lakes responds to changes in external loadings, in a range of situations. The model also predicts the eventual TP levels attained under stable loading conditions. We characterize the efficiency of P recycling in Lake Superior based on a detailed characterization of sediments at 13 locations that includes chemical extractions for P and Fe fractions and characterization of sediment-water exchange fluxes of P. Despite the low efficiency of P remobilization in these deeply oxygenated sediments (only 12% of deposited P is recycled), effluxes of dissolved phosphorus (2.5-7.0 μmol m-2 d-1) still contribute 37% to total P inputs into the water column. In this oligotrophic large lake, phosphate effluxes are regulated by organic sedimentation rather than sediment redox conditions. By adjusting the recycling efficiency to conditions in other Laurentian Great Lakes, we show that the model reproduces the historical data for total phosphorus levels. Analysis further suggests that, in the Lower Lakes, the rate of P sequestration from water column into sediments has undergone a significant change in recent decades, possibly in response to their invasion by quagga mussels. Importantly, even for lakes where P budgets are dominated by internal loading, mass balance arguments show that, over multi-year time scales, lakes should respond to changes in external P inputs faster than their hydrological residence times.

  19. Chemical evolution of the Salton Sea, California: nutrient and selenium dynamics

    USGS Publications Warehouse

    Schroeder, Roy A.; Orem, William H.; Kharaka, Yousif K.

    2002-01-01

    The Salton Sea is a 1000-km2 terminal lake located in the desert area of southeastern California. This saline (∼44 000 mg l−1 dissolved solids) lake started as fresh water in 1905–07 by accidental flooding of the Colorado River, and it is maintained by agricultural runoff of irrigation water diverted from the Colorado River. The Salton Sea and surrounding wetlands have recently acquired substantial ecological importance because of the death of large numbers of birds and fish, and the establishment of a program to restore the health of the Sea. In this report, we present new data on the salinity and concentration of selected chemicals in the Salton Sea water, porewater and sediments, emphasizing the constituents of concern: nutrients (N and P), Se and salinity. Chemical profiles from a Salton Sea core estimated to have a sedimentation rate of 2.3 mm yr−1 show increasing concentrations of OC, N, and P in younger sediment that are believed to reflect increasing eutrophication of the lake. Porewater profiles from two locations in the Sea show that diffusion from bottom sediment is only a minor source of nutrients to the overlying water as compared to irrigation water inputs. Although loss of N and Se by microbial-mediated volatilization is possible, comparison of selected element concentrations in river inputs and water and sediments from the Salton Sea indicates that most of the N (from fertilizer) and virtually all of the Se (delivered in irrigation water from the Colorado River) discharged to the Sea still reside within its bottom sediment. Laboratory simulation on mixtures of sediment and water from the Salton Sea suggest that sediment is a potential source of N and Se to the water column under aerobic conditions. Hence, it is important that any engineered changes made to the Salton Sea for remediation or for transfer of water out of the basin do not result in remobilization of nutrients and Se from the bottom sediment into the overlying water.

  20. The release of dissolved nutrients and metals from coastal sediments due to resuspension

    USGS Publications Warehouse

    Kalnejais, Linda H.; Martin, William R.; Bothner, Michael H.

    2010-01-01

    Coastal sediments in many regions are impacted by high levels of contaminants. Due to a combination of shallow water depths, waves, and currents, these sediments are subject to regular episodes of sediment resuspension. However, the influence of such disturbances on sediment chemistry and the release of solutes is poorly understood. The aim of this study is to quantify the release of dissolved metals (iron, manganese, silver, copper, and lead) and nutrients due to resuspension in Boston Harbor, Massachusetts, USA. Using a laboratory-based erosion chamber, a range of typical shear stresses was applied to fine-grained Harbor sediments and the solute concentration at each shear stress was measured. At low shear stress, below the erosion threshold, limited solutes were released. Beyond the erosion threshold, a release of all solutes, except lead, was observed and the concentrations increased with shear stress. The release was greater than could be accounted for by conservative mixing of porewaters into the overlying water, suggesting that sediment resuspension enhances the release of nutrients and metals to the dissolved phase. To address the long-term fate of resuspended particles, samples from the erosion chamber were maintained in suspension for 90. h. Over this time, 5-7% of the particulate copper and silver was released to the dissolved phase, while manganese was removed from solution. Thus resuspension releases solutes both during erosion events and over a longer timescale due to reactions of suspended particles in the water column. The magnitude of the annual solute release during erosion events was estimated by coupling the erosion chamber results with a record of bottom shear stresses simulated by a hydrodynamic model. The release of dissolved copper, lead, and phosphate due to resuspension is between 2% and 10% of the total (dissolved plus particulate phase) known inputs to Boston Harbor. Sediment resuspension is responsible for transferring a significant quantity of solid phase metals to the more bioavailable and mobile dissolved phase. The relative importance of sediment resuspension as a source of dissolved metals to Boston Harbor is expected to increase as continuing pollutant control decreases the inputs from other sources. ?? 2010 Elsevier B.V.

Top