Sample records for reduce surface water

  1. Effects of electrolyzed oxidizing water on reducing Listeria monocytogenes contamination on seafood processing surfaces.

    PubMed

    Liu, Chengchu; Duan, Jingyun; Su, Yi-Cheng

    2006-02-15

    The effects of electrolyzed oxidizing (EO) water on reducing Listeria monocytogenes contamination on seafood processing surfaces were studied. Chips (5 x 5 cm(2)) of stainless steel sheet (SS), ceramic tile (CT), and floor tile (FT) with and without crabmeat residue on the surface were inoculated with L. monocytogenes and soaked in tap or EO water for 5 min. Viable cells of L. monocytogenes were detected on all chip surfaces with or without crabmeat residue after being held at room temperature for 1 h. Soaking contaminated chips in tap water resulted in small-degree reductions of the organism (0.40-0.66 log cfu/chip on clean surfaces and 0.78-1.33 log cfu/chip on dirty surfaces). Treatments of EO water significantly (p<0.05) reduced L. monocytogenes on clean surfaces (3.73 log on SS, 4.24 log on CT, and 5.12 log on FT). Presence of crabmeat residue on chip surfaces reduced the effectiveness of EO water on inactivating Listeria cells. However, treatments of EO water also resulted in significant reductions of L. monocytogenes on dirty surfaces (2.33 log on SS and CT and 1.52 log on FT) when compared with tap water treatments. The antimicrobial activity of EO water was positively correlated with its chlorine content. High oxidation-reduction potential (ORP) of EO water also contributed significantly to its antimicrobial activity against L. monocytogenes. EO water was more effective than chlorine water on inactivating L. monocytogenes on surfaces and could be used as a chlorine alternative for sanitation purpose. Application of EO water following a thorough cleaning process could greatly reduce L. monocytogenes contamination in seafood processing environments.

  2. Using surface water application to reduce 1,3-dichloropropene emission from soil fumigation.

    PubMed

    Gao, Suduan; Trout, Thomas J

    2006-01-01

    High emissions from soil fumigants increase the risk of detrimental impact on workers, bystanders, and the environment, and jeopardize future availability of fumigants. Efficient and cost-effective approaches to minimize emissions are needed. This study evaluated the potential of surface water application (or water seal) to reduce 1,3-dichloropropene (1,3-D) emissions from soil (Hanford sandy loam) columns. Treatments included dry soil (control), initial water application (8 mm of water just before fumigant application), initial plus a second water application (2.6 mm) at 12 h, initial plus two water applications (2.6 mm each time) at 12 and 24 h, standard high density polyethylene (HDPE) tarp, initial water application plus HDPE tarp, and virtually impermeable film (VIF) tarp. Emissions from the soil surface and distribution of 1,3-D in the soil-gas phase were monitored for 2 wk. Each water application abruptly reduced 1,3-D emission flux, which rebounded over a few hours. Peak emission rates were substantially reduced, but total emission reduction was small. Total fumigant emission was 51% of applied for the control, 46% for initial water application only, and 41% for the three intermittent water applications with the remaining water treatment intermediate. The HDPE tarp alone resulted in 45% emission, while initial water application plus HDPE tarp resulted in 38% emission. The most effective soil surface treatment was VIF tarp (10% emission). Surface water application can be as effective, and less expensive than, standard HDPE tarp. Frequent water application is required to substantially reduce emissions.

  3. Environmental Assessment On-Base Snowmobile Trail at Grand Forks AFB, North Dakota

    DTIC Science & Technology

    2004-04-01

    Water: Surface water quality could be degraded, both in the short-term, and over the long-term due to reduced storm water quality caused by a potential...Surface water quality could be degraded, both in the short-term, and over the long-term due to reduced storm water quality caused by a potential increase

  4. Acetone and Water on TiO₂(110): H/D Exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Michael A.

    2005-04-12

    Isotopic H/D exchange between coadsorbed acetone and water on the TiO?(110) surface was examined using temperature programmed desorption (TPD) as a function of coverage and two surface pretreatments (oxidation and reduction). Coadsorbed acetone and water interact repulsively on reduced TiO?(110) based on results from the companion paper to this study, with water exerting a greater influence in destabilizing acetone and acetone having only a nominal influence on water. Despite the repulsive interaction between these coadsorbates, about 0.02 ML of a 1 ML d6-acetone on the reduced surface exhibits H/D exchange with coadsorbed water, with the exchange occurring exclusively in themore » high temperature region of the d?-acetone TPD spectrum at {approx}340 K. The effect was confirmed with combinations of d?-acetone and D?O. The extent of exchange decreased on the reduced surface with water coverages above {approx}0.3 ML due to the ability of water to displace coadsorbed acetone from first layer sites to the multilayer. In contrast, the extent of exchange increased by a factor of 3 when the surface was pre-oxidized prior to coadsorption. In this case, there was no evidence for the negative influence of high water coverages on the extent of H/D exchange. Comparison of the TPD spectra from the exchange products (either d?- or d?-acetone depending on the coadsorption pairing) suggests that, in addition to the 340 K exchange process seen on the reduced surface, a second exchange process was observed on the oxidized surface at {approx}390 K. In both cases (oxidized and reduced), desorption of the H/D exchange products appeared to be reaction limited and to involve the influence of OH/OD groups (or water formed during recombinative desorption of OH/OD groups) instead of molecularly adsorbed water. The 340 K exchange process is assigned to reaction at step sites and the 390 K exchange process is attributed to the influence of oxygen adatoms deposited during surface oxidation. The H/D exchange mechanism likely involves an enolate or propenol surface intermediate formed transiently during the desorption of oxygen-stabilized acetone molecules.« less

  5. Effect of a surface tension gradient on the slip flow along a superhydrophobic air-water interface

    NASA Astrophysics Data System (ADS)

    Song, Dong; Song, Baowei; Hu, Haibao; Du, Xiaosong; Du, Peng; Choi, Chang-Hwan; Rothstein, Jonathan P.

    2018-03-01

    Superhydrophobic surfaces have been shown to produce significant drag reduction in both laminar and turbulent flows by introducing an apparent slip velocity along an air-water interface trapped within the surface roughness. In the experiments presented within this study, we demonstrate the existence of a surface tension gradient associated with the resultant Marangoni flow along an air-water interface that causes the slip velocity and slip length to be significantly reduced. In this study, the slip velocity along a millimeter-sized air-water interface was investigated experimentally. This large-scale air-water interface facilitated a detailed investigation of the interfacial velocity profiles as the flow rate, interfacial curvature, and interface geometry were varied. For the air-water interfaces supported above continuous grooves (concentric rings within a torsional shear flow) where no surface tension gradient exists, a slip velocity as high as 30% of the bulk velocity was observed. However, for the air-water interfaces supported above discontinuous grooves (rectangular channels in a Poiseuille flow), the presence of a surface tension gradient reduced the slip velocity and in some cases resulted in an interfacial velocity that was opposite to the main flow direction. The curvature of the air-water interface in the spanwise direction was found to dictate the details of the interfacial flow profile with reverse flow in the center of the interface for concave surfaces and along the outside of the interface for convex surfaces. The deflection of the air-water interface was also found to greatly affect the magnitude of the slip. Numerical simulations imposed with a relatively small surface tension gradient along the air-water interface were able to predict both the reduced slip velocity and back flow along the air-water interface.

  6. Engineered Multifunctional Surfaces for Fluid Handling

    NASA Technical Reports Server (NTRS)

    Thomas, Chris; Ma, Yonghui; Weislogel, Mark

    2012-01-01

    Designs incorporating variations in capillary geometry and hydrophilic and/or antibacterial surface properties have been developed that are capable of passive gas/liquid separation and passive water flow. These designs can incorporate capillary grooves and/or surfaces arranged to create linear and circumferential capillary geometry at the micro and macro scale, radial fin configurations, micro holes and patterns, and combinations of the above. The antibacterial property of this design inhibits the growth of bacteria or the development of biofilm. The hydrophilic property reduces the water contact angle with a treated substrate such that water spreads into a thin layer atop the treated surface. These antibacterial and hydrophilic properties applied to a thermally conductive surface, combined with capillary geometry, create a novel heat exchanger capable of condensing water from a humid, two-phase water and gas flow onto the treated heat exchanger surfaces, and passively separating the condensed water from the gas flow in a reduced gravity application. The overall process to generate the antibacterial and hydrophilic properties includes multiple steps to generate the two different surface properties, and can be divided into two major steps. Step 1 uses a magnetron-based sputtering technique to implant the silver atoms into the base material. A layer of silver is built up on top of the base material. Completion of this step provides the antibacterial property. Step 2 uses a cold-plasma technique to generate the hydrophilic surface property on top of the silver layer generated in Step 1. Completion of this step provides the hydrophilic property in addition to the antibacterial property. Thermally conductive materials are fabricated and then treated to create the antibacterial and hydrophilic surface properties. The individual parts are assembled to create a condensing heat exchanger with antibacterial and hydrophilic surface properties and capillary geometry, which is capable of passive phase separation in a reduced gravity application. The plasma processes for creating antibacterial and hydrophilic surface properties are suitable for applications where water is present on an exposed surface for an extended time, such that bacteria or biofilms could form, and where there is a need to manage the water on the surface. The processes are also suitable for applications where only the hydrophilic property is needed. In particular, the processes are applicable to condensing heat exchangers (CHXs), which benefit from the antibacterial properties as well as the hydrophilic properties. Water condensing onto the control surfaces of the CHX will provide the moist conditions necessary for the growth of bacteria and the formation of biofilms. The antibacterial properties of the base layer (silver) will mitigate and prevent the growth of bacteria and formation of biofilms that would otherwise reduce the CHX performance. In addition, the hydrophilic properties reduce the water contact angle and prevent water droplets from bridging between control surfaces. Overall, the hydrophilic properties reduce the pressure drop across the CHX.

  7. Arsenic transport between surface and groundwater in a moderately reducing zone: Geochemical approach

    NASA Astrophysics Data System (ADS)

    Khaska, Mahmoud; Le Gal La Salle, Corinne; Verdoux, Patrick

    2015-04-01

    Arsenic contamination represents a major risk to human health as one of the most prominent environmental causes of cancer mortality. Mining activities, particularly those involving arsenic rich ores have an impact on the environment and on human health that may persist for many decades after mine closure. The relationships between As released from alluvial aquifer in the vicinity of the sulfide-rich mine dumps was demonstrated with geochemical and isotopic tracers (major and traces elements, 87Sr/86Sr, 18O, 2H). Strontium isotopes were used to trace the transport of As downstream from a As rich tailing dam. Increasing As and Fe concentrations in surface water are explained by As release associated with alluvial groundwater discharge to the stream. This process occurs in a moderately reduced section of the stream downgradient from the sulfide-rich tailing dam. High As, total Fe and low Eh in groundwater confirm the discharge of alluvial groundwater and explain its impact on surface water. Transport of As between surface and groundwater can be described as follows: 1- Subsurface moderately reducing conditions prevail in groundwater downgradient from the tailing dams. This suggests a flux of reduced water from sulfide-rich tailing dams which is characterized by its high As and Fe content resulting from the reduction of Fe-sulfides. 2- Upon mixing with surface water, oxidizing conditions prevails and precipitate as Fe hydroxide on the stream bed. As and Sr subsequently adsorbed on the Fe -oxyhydroxide surface. This process contributes to the immobilization of As in surface water. Remaining dissolved As in surface water can be re-introduced in alluvial groundwater downstream of the reducing zone.

  8. Urban evaporation rates for water-permeable pavements.

    PubMed

    Starke, P; Göbel, P; Coldewey, W G

    2010-01-01

    In urban areas the natural water balance is disturbed. Infiltration and evaporation are reduced, resulting in a high surface runoff and a typical city climate, which can lead to floods and damages. Water-permeable pavements have a high infiltration rate that reduces surface runoff by increasing the groundwater recharge. The high water retention capacity of the street body of up to 51 l/m(2) and its connection via pores to the surface lead to higher evaporation rates than impermeable surfaces. A comparison of these two kinds of pavements shows a 16% increase in evaporation levels of water-permeable pavements. Furthermore, the evaporation from impermeable pavements is linked directly to rain events due to fast-drying surfaces. Water-permeable pavements show a more evenly distributed evaporation after a rain event. Cooling effects by evaporative heat loss can improve the city climate even several days after rain events. On a large scale use, uncomfortable weather like sultriness or dry heat can be prevented and the urban water balance can be attenuated towards the natural.

  9. Application of slightly acidic electrolyzed water for decontamination of stainless steel surfaces in animal transport vehicles.

    PubMed

    Ni, Li; Zheng, Weichao; Zhang, Qiang; Cao, Wei; Li, Baoming

    2016-10-01

    The effectiveness of slightly acidic electrolyzed water (SAEW) in reducing Escherichia coli, Salmonella typhimurim, Staphylococcus aureus or bacterial mixtures on stainless steel surfaces was evaluated and compared its efficacy with composite phenol solution for reducing total aerobic bacteria in animal transport vehicles. Stainless steel surfaces were inoculated with these strains individually or in a mixture, and sprayed with SAEW, composite phenol, or alkaline electrolyzed water for 0.5, 1, 1.5 and 2min. The bactericidal activity of SAEW increased with increasing available chlorine concentration and spraying duration. The SAEW solution of 50mgl -1 of available chlorine concentration showed significantly higher effectiveness than composite phenol in reducing the pathogens on stainless steel surfaces (P<0.05). Complete inactivation of pathogens on stainless steel surfaces were observed after treatment with alkaline electrolyzed water followed by SAEW at 50mgl -1 of available chlorine concentration for 2min or alkaline electrolyzed water treatment followed by SAEW treatment at 90mgl -1 of available chlorine concentration for 0.5min. The efficacy of SAEW in reducing total aerobic bacteria in animal transport vehicles was also determined. Vehicles in the disinfection booth were sprayed with the same SAEW, alkaline electrolyzed water and composite phenol solutions using the automatic disinfection system. Samples from vehicle surfaces were collected with sterile cotton swabs before and after each treatment. No significant differences in bactericidal efficiency were observed between SAEW and composite phenol for reducing total aerobic bacteria in the vehicles (P>0.05). SAEW was also found to be more effective when used in conjunction with alkaline electrolyzed water. Results suggest that the bactericidal efficiency of SAEW was higher than or equivalent to that of composite phenol and SAEW may be used as effective alternative for reducing microbial contamination of animal transport vehicles. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. IMPROVING THE QUALITY, AVAILABILITY AND SUSTAINABILITY OF DRINKING WATER SUPPLIES THROUGH ANTIFOULING AND ANTISCALING DESALINATION MEMBRANES

    EPA Science Inventory

    Surface modification with the selected polymers is expected to reduce the fouling and scaling propensity of desalination membranes by strongly binding water at the membrane surface. Foulants will interact with this bound water layer and not with the membrane surface itself....

  11. Investigating the Effects of Environmental Solutes on the Reaction Environment in Ice and at Ice Surfaces

    NASA Astrophysics Data System (ADS)

    Malley, Philip Patrick Anthony

    The reaction environments present in water, ice, and at ice surfaces are physically distinct from one another and studies have shown that photolytic reactions can take place at different rates in the different media. Kinetics of reactions in frozen media are measured in snow and ice prepared from deionized water. This reduces experimental artifacts, but is not relevant to snow in the environment, which contains solutes. We have monitored the effect of nonchromophoric (will not absorb sunlight) organic matter on the photolytic fate of the polycyclic aromatic hydrocarbons (PAHs) phenanthrene, pyrene, and anthracene in ice and at ice surfaces. Nonchromophoric organic matter reduced photolysis rates to below our detection limit in bulk ice, and reduced rates at ice surfaces to a lesser extent due to the PAHs partially partitioning to the organics present. In addition, we have monitored the effect of chromophoric (will absorb sunlight) dissolved organic matter (cDOM) on the fate of anthracene in water, ice, and ice surfaces. cDOM reduced rates in all three media. Suppression in liquid water was due to physical interactions between anthracene and the cDOM, rather than to competitive photon absorbance. More suppression was observed in ice cubes and ice granules than in liquid water due to a freeze concentrating effect. Sodium Chloride (NaCl) is another ubiquitous environmental solute that can influence reaction kinetics in water, ice, and at ice surfaces. Using Raman microscopy, we have mapped the surface of ice of frozen NaCl solutions at 0.02M and 0.6M, as well as the surface of frozen samples of Sargasso Sea Water. At temperatures above and below the eutectic temperature (-21.1°C). Above the eutectic, regions of ice and liquid water were observed in all samples. Liquid regions generally took the form of channels. Channel widths and fractional liquid surface coverage increased with NaCl concentration and temperature. Volume maps of the three samples at temperatures above the eutectic point, showed that liquid channels were distributed throughout the ice sample. Liquid fractions were similar at ice surfaces and in the bulk at depths of at least 80 microm.

  12. Water evaporation from substrate tooth surface during dentin treatments.

    PubMed

    Kusunoki, Mizuho; Itoh, Kazuo; Gokan, Yuka; Nagai, Yoshitaka; Tani, Chihiro; Hisamitsu, Hisashi

    2011-01-01

    The purpose of this study was to evaluate changes in the quantity of water evaporation from tooth surfaces. The amount of water evaporation was measured using Multi probe adapter MPA5 and Tewameter TM300 (Courage+Khazaka Electric GmbH, Köln, Germany) after acid etching and GM priming of enamel; and after EDTA conditioning and GM priming of dentin. The results indicated that the amount of water evaporation from the enamel surface was significantly less than that from the dentin. Acid etching did not affect the water evaporation from enamel, though GM priming significantly decreased the evaporation (83.48 ± 15.14% of that before priming). The evaporation from dentin was significantly increased by EDTA conditioning (131.38 ± 42.08% of that before conditioning) and significantly reduced by GM priming (80.26 ± 7.43% of that before priming). It was concluded that dentin priming reduced water evaporation from the dentin surface.

  13. Oceanographic, Air-sea Interaction, and Environmental Aspects of Artificial Upwelling Produced by Wave-Inertia Pumps for Potential Hurricane Intensity Mitigation

    NASA Astrophysics Data System (ADS)

    Soloviev, A.; Dean, C.

    2017-12-01

    The artificial upwelling system consisting of the wave-inertia pumps driven by surface waves can produce flow of cold deep water to the surface. One of the recently proposed potential applications of the artificial upwelling system is the hurricane intensity mitigation. Even relatively small reduction of intensity may provide significant benefits. The ocean heat content (OHC) is the "fuel" for hurricanes. The OHC can be reduced by mixing of the surface layer with the cold water produced by wave-inertia pumps. Implementation of this system for hurricane mitigation has several oceanographic and air-sea interaction aspects. The cold water brought to the surface from a deeper layer has higher density than the surface water and, therefore, tends to sink back down. The mixing of the cold water produced by artificial upwelling depends on environmental conditions such as stratification, regional ocean circulation, and vertical shear. Another aspect is that as the sea surface temperature drops below the air temperature, the stable stratification develops in the atmospheric boundary layer. The stable atmospheric stratification suppresses sensible and latent heat air-sea fluxes and reduces the net longwave irradiance from the sea surface. As a result, the artificial upwelling may start increasing the OHC (though still reducing the sea surface temperature). In this work, the fate of the cold water in the stratified environment with vertical shear has been studied using computational fluid dynamics (CFD) tools. A 3D large eddy simulation model is initialized with observational temperature, salinity, and current velocity data from a sample location in the Straits of Florida. A periodic boundary condition is set along the direction of the current, which allows us to simulate infinite fetch. The model results indicate that the cold water brought to the sea surface by a wave-inertia pump forms a convective jet. This jet plunges into the upper ocean mixed layer and penetrates the thermocline. On the way down, the jet partially mixes with the surrounding water reducing the temperature of the upper ocean. The OHC thus can either reduce or increase, depending on the wave-inertia pump parameters. Based on the model results, we discuss feasibility of the implementation of the artificial upwelling system for hurricane intensity mitigation.

  14. A water-budget approach to restoring a sedge fen affected by diking and ditching

    USGS Publications Warehouse

    Wilcox, Douglas A.; Sweat, Michael J.; Carlson, Martha L.; Kowalski, Kurt P.

    2006-01-01

    A vast, ground-water-supported sedge fen in the Upper Peninsula of Michigan, USA was ditched in the early 1900s in a failed attempt to promote agriculture. Dikes were later constructed to impound seasonal sheet surface flows for waterfowl management. The US Fish and Wildlife Service, which now manages the wetland as part of Seney National Wildlife Refuge, sought to redirect water flows from impounded C-3 Pool to reduce erosion in downstream Walsh Ditch, reduce ground-water losses into the ditch, and restore sheet flows of surface water to the peatland. A water budget was developed for C-3 Pool, which serves as the central receiving and distribution body for water in the affected wetland. Surface-water inflows and outflows were measured in associated ditches and natural creeks, ground-water flows were estimated using a network of wells and piezometers, and precipitation and evaporation/evapotranspiration components were estimated using local meteorological data. Water budgets for the 1999 springtime peak flow period and the 1999 water year were used to estimate required releases of water from C-3 Pool via outlets other than Walsh Ditch and to guide other restoration activities. Refuge managers subsequently used these results to guide restoration efforts, including construction of earthen dams in Walsh Ditch upslope from the pool to stop surface flow, installation of new water-control structures to redirect surface water to sheet flow and natural creek channels, planning seasonal releases from C-3 Pool to avoid erosion in natural channels, stopping flow in downslope Walsh Ditch to reduce erosion, and using constructed earthen dams and natural beaver dams to flood the ditch channel below C-3 Pool. Interactions between ground water and surface water are critical for maintaining ecosystem processes in many wetlands, and management actions directed at restoring either ground- or surface-water flow patterns often affect both of these components of the water budget. This approach could thus prove useful in guiding restoration efforts in many hydrologically altered and managed wetlands worldwide.

  15. Biochar-amended filter socks reduce herbicide losses via tile line surface inlets

    USDA-ARS?s Scientific Manuscript database

    Standing water in depressions and behind terraces in fields with subsurface drainage systems can result in reduced crop yields. This concern can be partially alleviated by installing surface inlets that reduce the duration of ponding. Unfortunately, these inlets provide an open conduit for surface w...

  16. Efficacy of chlorinated and ozonated water in reducing Salmonella typhimurium attached to tomato surfaces.

    PubMed

    Chaidez, Cristobal; Lopez, Javier; Vidales, Juan; Campo, Nohelia Castro-Del

    2007-08-01

    The purpose of this study was to compare chlorinated and ozonated water in reducing Salmonella typhimurium inoculated onto fresh ripe tomatoes. Surface-inoculated tomatoes were immersed/sprayed with chlorinated (200 mg l(-1)) and ozonated water (1 and 2 mg l(-1)) under 2 and 100 nefelometric turbidity units (NTU). Contact times were 120 and 30 s for immersing and spraying applications, respectively. Immersing in chlorinated water and low turbidity resulted in the most effective application with 3.61 log(10) bacterial reduction, while 1 and 2 mg l(-1) of ozone reduced 2.32 and 2.53 log(10), respectively. High turbidity and chlorine reduced the bacterial counts by 3.39 log(10), while 1 and 2 mg l(-1) of ozonated water and low turbidity reduced the bacteria by 1.48 and 1.92 log(10), respectively. Spraying chlorinated water reduced bacteria by 3 log(10), and ozonated water at 1 and 2 mg l(-1) reduced counts by 1.84 and 2.40 log(10), respectively. No statistical differences were found between chlorine and ozone (2 mg l(-1)) during spraying applications (p < 0.05). The use of ozonated water both in immersing and spraying applications is suggested when water turbidity remains low.

  17. Generic E. coli levels in surface and nontraditional irrigation water in the mid Atlantic in relation to FSMA water quality standards: A CONSERVE study

    USDA-ARS?s Scientific Manuscript database

    Introduction: The use of surface (pond and river) and nontraditional (reclaimed wastewater, produce wash water) irrigation water (SNIW) could reduce stress on ground water resources. However, it is essential to understand how these irrigation sources may influence the microbiological safety of fresh...

  18. Climate Responses to Changes in Land-surface Properties due to Wildfires

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Hao, X.; Qu, J. J.

    2015-12-01

    Wildfires can feedback the atmosphere by impacting atmospheric radiation transfer and cloud microphysics through emitting smoke particles and the land-air heat and water fluxes through modifying land-surface properties. While the impacts through smoke particles have been extensively investigated recently, very few studies have been conducted to examine the impacts through land-surface property change. This study is to fill this gap by examining the climate responses to the changes in land-surface properties induced by several large wildfires in the United States. Satellite remote sensing tools including MODIS and Landsat are used to quantitatively evaluate the land-surface changes characterized by reduced vegetation coverage and increased albedo over long post-fire periods. Variations in air and soil temperature and moisture of the burned areas are also monitored. Climate modeling is conducted to simulate climate responses and understand the related physical processes and interactions. The preliminary results indicate noticeable changes in water and heat transfers from the ground to the atmosphere through several mechanisms. Larger albedo reduces solar radiation absorbed on the ground, leading to less energy for latent and sensible heat fluxes. With smaller vegetation coverage, water transfer from the soil to the atmosphere through transpiration is reduced. Meanwhile, the Bowen ratio becomes larger after burning and therefore more solar energy absorbed on the ground is converted into sensible heat instead of being used as latent energy for water phase change. In addition, reduced vegetation coverage reduces roughness and increases wind speed, which modify dynamic resistances to water and heat movements. As a result of the changes in the land-air heat and water fluxes, clouds and precipitation as well as other atmospheric processes are affected by wildfires.

  19. Simulation of groundwater and surface-water interaction and effects of pumping in a complex glacial-sediment aquifer, east central Massachusetts

    USGS Publications Warehouse

    Eggleston, Jack R.; Carlson, Carl S.; Fairchild, Gillian M.; Zarriello, Phillip J.

    2012-01-01

    The effects of groundwater pumping on surface-water features were evaluated by use of a numerical groundwater model developed for a complex glacial-sediment aquifer in northeastern Framingham, Massachusetts, and parts of surrounding towns. The aquifer is composed of sand, gravel, silt, and clay glacial-fill sediments up to 270 feet thick over an irregular fractured bedrock surface. Surface-water bodies, including Cochituate Brook, the Sudbury River, Lake Cochituate, Dudley Pond, and adjoining wetlands, are in hydraulic connection with the aquifer and can be affected by groundwater withdrawals. Groundwater and surface-water interaction was simulated with MODFLOW-NWT under current conditions and a variety of hypothetical pumping conditions. Simulations of hypothetical pumping at reactivated water supply wells indicate that captured groundwater would decrease baseflow to the Sudbury River and induce recharge from Lake Cochituate. Under constant (steady-state) pumping, induced groundwater recharge from Lake Cochituate was equal to about 32 percent of the simulated pumping rate, and flow downstream in the Sudbury River decreased at the same rate as pumping. However, surface water responded quickly to pumping stresses. When pumping was simulated for 1 month and then stopped, streamflow depletions decreased by about 80 percent within 2 months and by about 90 percent within about 4 months. The fast surface water response to groundwater pumping offers the potential to substantially reduce streamflow depletions during periods of low flow, which are of greatest concern to the ecological integrity of the river. Results indicate that streamflow depletion during September, typically the month of lowest flow, can be reduced by 29 percent by lowering the maximum pumping rates to near zero during September. Lowering pumping rates for 3 months (July through September) reduces streamflow depletion during September by 79 percent as compared to constant pumping. These results demonstrate that a seasonal or streamflow-based groundwater pumping schedule can reduce the effects of pumping during periods of low flow.

  20. Surface-water quality assessment of the Clover Creek basin, Pierce County, Washington, 1991-1992

    USGS Publications Warehouse

    McCarthy, K.A.

    1996-01-01

    Increasing urbanization in the 67-square-mile Clover Creek Basin has generated interest in the effects of land-use changes on local water quality. To investigate these effects, water-quality and streamflow data were collected from 19 surface-water sites in the basin over a 16-month period from January 1991 through April 1992. These data were used to understand the effects of surficial geology, land-use practices, and wastewater disposal practices on surface-water quality within the basin. The basin was divided into four drainage subbasins with dissimilar hydrogeologic, land-use, and water-quality characteristics. In the Upper Clover Creek subbasin, the high permeability of surficial geologic materials promotes infiltration of precipitation to ground water and thus attenuates the response of streams to rainfall. Significant interaction occurs between surface and ground water in this subbasin, and nitrate concentrations and specific conductance values, similar to those found historically in local ground water, indicate that sources such as subsurface waste-disposal systems and fertilizers are affecting surface- water quality in this area. In the Spanaway subbasin, the presence of Spanaway and Tule Lakes affects water quality, primarily because of the reduced velocity and long residence time of water in the lakes. Reduced water velocity and long residence times (1) cause settling of suspended materials, thereby reducing concentrations of suspended sediment and constituents that are bound to the sediment; (2) promote biological activity, which tends to trap nutrients in the lakes; and (3) allow dispersion to attenuate peaks in discharge and water-quality constituent concentrations. In the North Fork subbasin, the low permeability of surficial geologic materials and areas of intensive land development inhibit infiltration of precipitation and thus promote surface runoff to streams. Surface pathways provide little attenuation of storm runoff and result in rapid increases in stream discharge in response to rainfall. Substantial increases in concentrations of constituents associated with surface wash off, for example, suspended sediment, ammonia, phosphorus, and fecal coliform, also were observed in this subbasin during rainfall. In the Lower Clover Creek subbasin, which is the most downstream subbasin, stream-discharge and water-quality characteristics show the integrated effects of the entire basin. The data show that further characterization of local ground water and discharge from stormwater outfalls entering Clover Creek and its tributaries would be necessary to successfully apply a numerical water-quality model to the basin.

  1. Low Drag Porous Ship with Superhydrophobic and Superoleophilic Surface for Oil Spills Cleanup.

    PubMed

    Wang, Gang; Zeng, Zhixiang; Wang, He; Zhang, Lin; Sun, Xiaodong; He, Yi; Li, Longyang; Wu, Xuedong; Ren, Tianhui; Xue, Qunji

    2015-12-02

    To efficiently remove and recycle oil spills, we construct aligned ZnO nanorod arrays on the surface of the porous stainless steel wire mesh to fabricate a porous unmanned ship (PUS) with properties of superhydrophobicity, superoleophilicity, and low drag by imitating the structure of nonwetting leg of water strider. The superhydrophobicity of the PUS is stable, which can support 16.5 cm water column with pore size of 100 μm. Water droplet can rebound without adhesion. In the process of oil/water separation, when the PUS contacts with oil, the oil is quickly pulled toward and penetrates into the PUS automatically. The superhydrophobicity and low water adhesion force of the PUS surface endow the PUS with high oil recovery capacity (above 94%) and drag-reducing property (31% at flowing velocity of 0.38m/s). In addition, the PUS has good corrosion resistance and reusability. We further investigate the wetting behavior of water and oil, oil recovery capacity, drag-reducing property, and corrosion resistance of the PUS after oil absorbed. The PUS surface changes significantly from superhydrophobic to hydrophobic after absorbing oil. However, the oil absorbed PUS possesses better drag-reducing property and corrosion resistance due to the changes of the motion state of the water droplets.

  2. Study of Wastewater Treatment by OH Radicals Using DC and Pulsed Corona Discharge over Water

    NASA Astrophysics Data System (ADS)

    Tochikubo, Fumiyoshi; Furuta, Yasutomo; Uchida, Satoshi; Watanabe, Tsuneo

    2006-04-01

    Water treatment by OH radicals is studied using dc and pulsed corona discharge over water at atmospheric pressure and reduced pressure. In particular, we pay attention to the influence of discharge configuration on the efficiency of wastewater treatment. Experiment is carried out in N2 to clarify the contribution of OH radicals. Needle-cylinder electrodes are designed expecting the efficient generation of OH radicals close to the water surface. N,N-dimethyl- p-nitrosoaniline (RNO) solution is used as a persistent test pollutant. The results strongly suggest that OH radical production close to the water surface is a key factor for efficient wastewater treatment. The use of pulsed discharge at reduced pressure is effective in improving RNO reduction efficiency because of the rapid diffusion of OH radicals to the water surface.

  3. Surface water storage capacity of twenty tree species in Davis, California

    Treesearch

    Qingfu Xiao; E. Gregory McPherson

    2016-01-01

    Urban forestry is an important green infrastructure strategy because healthy trees can intercept rainfall, reducing stormwater runoff and pollutant loading. Surface saturation storage capacity, defined as the thin film of water that must wet tree surfaces before flow begins, is the most important variable influencing rainfall interception processes. Surface storage...

  4. Army Net Zero Installation Initiative and Cost Benefit Analysis Activity

    DTIC Science & Technology

    2011-10-31

    freshwater resources and returns water back to the same watershed so not to deplete the groundwater and surface water resources of that... freshwater resources & returns water back to the same watershed so not to deplete the groundwater & surface water resources of that region in quantity...Goals: Reduce freshwater demand through water efficiency & conservation Access/develop alternate water sources to offset freshwater demand Develop

  5. Experimental study on soluble chemical transfer to surface runoff from soil.

    PubMed

    Tong, Juxiu; Yang, Jinzhong; Hu, Bill X; Sun, Huaiwei

    2016-10-01

    Prevention of chemical transfer from soil to surface runoff, under condition of irrigation and subsurface drainage, would improve surface water quality. In this paper, a series of laboratory experiments were conducted to assess the effects of various soil and hydraulic factors on chemical transfer from soil to surface runoff. The factors include maximum depth of ponding water on soil surface, initial volumetric water content of soil, depth of soil with low porosity, type or texture of soil and condition of drainage. In the experiments, two soils, sand and loam, mixed with different quantities of soluble KCl were filled in the sandboxes and prepared under different initial saturated conditions. Simulated rainfall induced surface runoff are operated in the soils, and various ponding water depths on soil surface are simulated. Flow rates and KCl concentration of surface runoff are measured during the experiments. The following conclusions are made from the study results: (1) KCl concentration in surface runoff water would decrease with the increase of the maximum depth of ponding water on soil surface; (2) KCl concentration in surface runoff water would increase with the increase of initial volumetric water content in the soil; (3) smaller depth of soil with less porosity or deeper depth of soil with larger porosity leads to less KCl transfer to surface runoff; (4) the soil with finer texture, such as loam, could keep more fertilizer in soil, which will result in more KCl concentration in surface runoff; and (5) good subsurface drainage condition will increase the infiltration and drainage rates during rainfall event and will decrease KCl concentration in surface runoff. Therefore, it is necessary to reuse drained fertile water effectively during rainfall, without polluting groundwater. These study results should be considered in agriculture management to reduce soluble chemical transfer from soil to surface runoff for reducing non-point sources pollution.

  6. Adhesion force interactions between cyclopentane hydrate and physically and chemically modified surfaces.

    PubMed

    Aman, Zachary M; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2014-12-07

    Interfacial interactions between liquid-solid and solid-solid phases/surfaces are of fundamental importance to the formation of hydrate deposits in oil and gas pipelines. This work establishes the effect of five categories of physical and chemical modification to steel on clathrate hydrate adhesive force: oleamide, graphite, citric acid ester, nonanedithiol, and Rain-X anti-wetting agent. Hydrate adhesive forces were measured using a micromechanical force apparatus, under both dry and water-wet surface conditions. The results show that the graphite coating reduced hydrate-steel adhesion force by 79%, due to an increase in the water wetting angle from 42 ± 8° to 154 ± 7°. Two chemical surface coatings (nonanedithiol and the citric acid ester) induced rapid hydrate growth in the hydrate particles; nonanedithiol increased hydrate adhesive force by 49% from the baseline, while the citric acid ester coating reduced hydrate adhesion force by 98%. This result suggests that crystal growth may enable a strong adhesive pathway between hydrate and other crystalline structures, however this effect may be negated in cases where water-hydrocarbon interfacial tension is minimised. When a liquid water droplet was placed on the modified steel surfaces, the graphite and citric acid ester became less effective at reducing adhesive force. In pipelines containing a free water phase wetting the steel surface, chemical or physical surface modifications alone may be insufficient to eliminate hydrate deposition risk. In further tests, the citric acid ester reduced hydrate cohesive forces by 50%, suggesting mild activity as a hybrid anti-agglomerant suppressing both hydrate deposition and particle agglomeration. These results demonstrate a new capability to develop polyfunctional surfactants, which simultaneously limit the capability for hydrate particles to aggregate and deposit on the pipeline wall.

  7. Subsurface application of poultry litter and its influence on nutrient losses in runoff water from permanent pastures.

    PubMed

    Watts, D B; Way, T R; Torbert, H A

    2011-01-01

    Environmental pressure to reduce nutrient losses from agricultural fields has increased in recent years. To abate this nutrient loss to the environment, better management practices and new technologies need to be developed. Thus, research was conducted to evaluate if subsurface banding poultry litter (PL) would reduce nitrogen (N) and phosphorus (P) loss in surface water runoff using a four-row prototype implement. Rainfall simulations were conducted to create a 40-min runoff event in an established bermudagrass (Cynodon dactylon L.) pasture on soil types common to the Coastal Plain and Piedmont regions. The Coastal Plain soil type was a Marvyn loamy sand (fine-loamy, kaolinitic, thermic Typic Kanhapludults) and the Piedmont soil type was a Hard Labor loamy sand (fine, kaolinitic, thermic Oxyaquic Kanhapludults). Treatments consisted of surface- and subsurface-applied PL at a rate of 9 Mg ha(-1), surface broadcast-applied commercial fertilizer (CF; urea and triple superphosphate blend) at the equivalent N (330 kg N ha(-1)) and P (315 kg N ha(-1)) content of PL, and a nonfertilized control. The greatest loss for inorganic N, total N, dissolved reactive P (DRP), and total P occurred with the surface broadcast treatments, with CF contributing to the greatest loss. Nutrient losses from the subsurface banded treatment reduced N and P in surface water runoff to levels of the control. Subsurface banding of PL reduced concentrations of inorganic N 91%, total N 90%, DRP 86%, and total P 86% in runoff water compared with surface broadcasted PL. These results show that subsurface band-applied PL can greatly reduce the impact of N and P loss to the environment compared with conventional surface-applied PL and CF practices.

  8. Design of a unit to produce hot distilled water for the same power consumption as a water heater

    NASA Technical Reports Server (NTRS)

    Bambenek, R. A.; Nuccio, P. P.

    1973-01-01

    Unit recovers 97% of water contained in pretreated waste water. Some factors are: cleansing agent prevents fouling of heat transfer surface by highly concentrated waste; absence of dynamic seals reduces required purge gas flow rate; and recycle loop maintains constant flushing process to carry cleansing agent across evaporation surface.

  9. Various nanoparticle morphologies and surface properties of waterborne polyurethane controlled by water

    PubMed Central

    Zhou, Xing; Fang, Changqing; Lei, Wanqing; Du, Jie; Huang, Tingyi; Li, Yan; Cheng, Youliang

    2016-01-01

    Water plays important roles in organic reactions such as polyurethane synthesis, and the aqueous solution environment affects polymer morphology and other properties. This paper focuses on the morphology and surface properties of waterborne polyurethane resulting from the organic reaction in water involving different forms (solid and liquid), temperatures and aqueous solutions. We provide evidence from TEM observations that the appearance of polyurethane nanoparticles in aqueous solutions presents diverse forms, including imperfect spheres, perfect spheres, perfect and homogenous spheres and tubes. Based on the results on FTIR, GPC, AFM and XRD experiments, we suggest that the shape of the nanoparticles may be decided by the crimp degree (i.e., the degree of polyurethane chains intertangling in the water environment) and order degree, which are determined by the molecular weight (Mn) and hydrogen bonds. Meanwhile, solid water and high-temperature water can both reduce hard segments that gather on the polyurethane film surface to reduce hydrophilic groups and produce a soft surface. Our findings show that water may play key roles in aqueous polymer formation and bring order to molecular chains. PMID:27687001

  10. Plastic shrinkage of mortars with shrinkage reducing admixture and lightweight aggregates studied by neutron tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyrzykowski, Mateusz, E-mail: mateusz.wyrzykowski@empa.ch; Lodz University of Technology, Department of Building Physics and Building Materials, Lodz; Trtik, Pavel

    2015-07-15

    Water transport in fresh, highly permeable concrete and rapid water evaporation from the concrete surface during the first few hours after placement are the key parameters influencing plastic shrinkage cracking. In this work, neutron tomography was used to determine both the water loss from the concrete surface due to evaporation and the redistribution of fluid that occurs in fresh mortars exposed to external drying. In addition to the reference mortar with a water to cement ratio (w/c) of 0.30, a mortar with the addition of pre-wetted lightweight aggregates (LWA) and a mortar with a shrinkage reducing admixture (SRA) were tested.more » The addition of SRA reduced the evaporation rate from the mortar at the initial stages of drying and reduced the total water loss. The pre-wetted LWA released a large part of the absorbed water as a consequence of capillary pressure developing in the fresh mortar due to evaporation.« less

  11. Preliminary Evaluation of Convective Heat Transfer in a Water Shield for a Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Pearson J. Boise; Reid, Robert S.

    2007-01-01

    As part of the Vision for Space Exploration, the end of the next decade will bring man back to the surface of the moon. A crucial issue for the establishment of human presence on the moon will be the availability of compact power sources. This presence could require greater than 10's of kWt's in follow on years. Nuclear reactors are well suited to meet the needs for power generation on the lunar or Martian surface. Radiation shielding is a key component of any surface power reactor system. Several competing concepts exist for lightweight, safe, robust shielding systems such as a water shield, lithium hydride (LiH), and boron carbide. Water offers several potential advantages, including reduced cost, reduced technical risk, and reduced mass. Water has not typically been considered for space reactor applications because of the need for gravity to fix the location of any vapor that could form radiation streaming paths. The water shield concept relies on the predictions of passive circulation of the shield water by natural convection to adequately cool the shield. This prediction needs to be experimentally evaluated, especially for shields with complex geometries. NASA Marshall Space Flight Center has developed the experience and facilities necessary to do this evaluation in its Early Flight Fission - Test Facility (EFF-TF).

  12. Effect of water on hydrogen permeability

    NASA Technical Reports Server (NTRS)

    Hulligan, David; Tomazic, William A.

    1987-01-01

    Doping of hydrogen with CO and CO2 was developed to reduce hydrogen permeation in Stirling engines by forming a low permeability oxide coating on the inner surface of the heater head tubes. Although doping worked well, under certain circumstances the protective oxide could be chemically reduced by the hydrogen in the engine. Some oxygen is required in the hydrogen to prevent reduction. Eventually, all the oxygen in the hydrogen gas - whatever its source - shows up as water. This is the result of hydrogen reducing the CO, CO2, or the protective inner surface oxides. This water can condense in the engine system under the right conditions. If the concentration of water vapor is reduced to a low enough level, the hydrogen can chemically reduce the oxide coating, resulting in an increase in permeability. This work was done to define the minimum water content required to avoid this reduction in the oxide coating. The results of this testing show that a minimum of approximately 750 ppm water is required to prevent an increase in permeability of CG-27, a high temperature metal alloy selected for Stirling engine heater tubes.

  13. Protecting health from metal exposures in drinking water.

    PubMed

    Armour, Margaret-Ann

    2016-03-01

    Drinking water is essential to us as human beings. According to the World Health Organization "The quality of drinking-water is a powerful environmental determinant of health" (http://www.who.int/water_sanitation_health/dwq/en/), but clean drinking water is a precious commodity not always readily available. Surface and ground water are the major sources of drinking water. Both can be contaminated, surface water with bacteria while ground water frequently contains salts of metals that occur naturally or are introduced by human activity. This paper will briefly review the metallic salts found in drinking water in areas around the world, as well as list some of the methods used to reduce or remove them. It will then discuss our research on reducing the risk of pollution of drinking water by removal of metal ions from wastewater.

  14. A GPU-based mipmapping method for water surface visualization

    NASA Astrophysics Data System (ADS)

    Li, Hua; Quan, Wei; Xu, Chao; Wu, Yan

    2018-03-01

    Visualization of water surface is a hot topic in computer graphics. In this paper, we presented a fast method to generate wide range of water surface with good image quality both near and far from the viewpoint. This method utilized uniform mesh and Fractal Perlin noise to model water surface. Mipmapping technology was enforced to the surface textures, which adjust the resolution with respect to the distance from the viewpoint and reduce the computing cost. Lighting effect was computed based on shadow mapping technology, Snell's law and Fresnel term. The render pipeline utilizes a CPU-GPU shared memory structure, which improves the rendering efficiency. Experiment results show that our approach visualizes water surface with good image quality at real-time frame rates performance.

  15. Natural water purification and water management by artificial groundwater recharge

    PubMed Central

    Balke, Klaus-Dieter; Zhu, Yan

    2008-01-01

    Worldwide, several regions suffer from water scarcity and contamination. The infiltration and subsurface storage of rain and river water can reduce water stress. Artificial groundwater recharge, possibly combined with bank filtration, plant purification and/or the use of subsurface dams and artificial aquifers, is especially advantageous in areas where layers of gravel and sand exist below the earth’s surface. Artificial infiltration of surface water into the uppermost aquifer has qualitative and quantitative advantages. The contamination of infiltrated river water will be reduced by natural attenuation. Clay minerals, iron hydroxide and humic matter as well as microorganisms located in the subsurface have high decontamination capacities. By this, a final water treatment, if necessary, becomes much easier and cheaper. The quantitative effect concerns the seasonally changing river discharge that influences the possibility of water extraction for drinking water purposes. Such changes can be equalised by seasonally adapted infiltration/extraction of water in/out of the aquifer according to the river discharge and the water need. This method enables a continuous water supply over the whole year. Generally, artificially recharged groundwater is better protected against pollution than surface water, and the delimitation of water protection zones makes it even more save. PMID:18357624

  16. Natural water purification and water management by artificial groundwater recharge.

    PubMed

    Balke, Klaus-Dieter; Zhu, Yan

    2008-03-01

    Worldwide, several regions suffer from water scarcity and contamination. The infiltration and subsurface storage of rain and river water can reduce water stress. Artificial groundwater recharge, possibly combined with bank filtration, plant purification and/or the use of subsurface dams and artificial aquifers, is especially advantageous in areas where layers of gravel and sand exist below the earth's surface. Artificial infiltration of surface water into the uppermost aquifer has qualitative and quantitative advantages. The contamination of infiltrated river water will be reduced by natural attenuation. Clay minerals, iron hydroxide and humic matter as well as microorganisms located in the subsurface have high decontamination capacities. By this, a final water treatment, if necessary, becomes much easier and cheaper. The quantitative effect concerns the seasonally changing river discharge that influences the possibility of water extraction for drinking water purposes. Such changes can be equalised by seasonally adapted infiltration/extraction of water in/out of the aquifer according to the river discharge and the water need. This method enables a continuous water supply over the whole year. Generally, artificially recharged groundwater is better protected against pollution than surface water, and the delimitation of water protection zones makes it even more save.

  17. Superhydrophobic Blood-Repellent Surfaces.

    PubMed

    Jokinen, Ville; Kankuri, Esko; Hoshian, Sasha; Franssila, Sami; Ras, Robin H A

    2018-06-01

    Superhydrophobic surfaces repel water and, in some cases, other liquids as well. The repellency is caused by topographical features at the nano-/microscale and low surface energy. Blood is a challenging liquid to repel due to its high propensity for activation of intrinsic hemostatic mechanisms, induction of coagulation, and platelet activation upon contact with foreign surfaces. Imbalanced activation of coagulation drives thrombogenesis or formation of blood clots that can occlude the blood flow either on-site or further downstream as emboli, exposing tissues to ischemia and infarction. Blood-repellent superhydrophobic surfaces aim toward reducing the thrombogenicity of surfaces of blood-contacting devices and implants. Several mechanisms that lead to blood repellency are proposed, focusing mainly on platelet antiadhesion. Structured surfaces can: (i) reduce the effective area exposed to platelets, (ii) reduce the adhesion area available to individual platelets, (iii) cause hydrodynamic effects that reduce platelet adhesion, and (iv) reduce or alter protein adsorption in a way that is not conducive to thrombus formation. These mechanisms benefit from the superhydrophobic Cassie state, in which a thin layer of air is trapped between the solid surface and the liquid. The connections between water- and blood repellency are discussed and several recent examples of blood-repellent superhydrophobic surfaces are highlighted. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Environmental Assessment: Construct Mass/Mobility Parking Lot at Grand Forks AFB, North Dakota

    DTIC Science & Technology

    2004-02-13

    Water: Surface water quality could be degraded, both in the short-term, during actual construction, and over the long-term due to reduced storm water quality caused...term, during actual construction, and over the long-term due to reduced storm water quality caused by the increase of exposed soil. The short-term

  19. Titanium Dioxide-Based Antibacterial Surfaces for Water Treatment

    EPA Science Inventory

    The field of water disinfection is gaining much interest since waterborne diseases caused by pathogenic microorganisms directly endanger human health. Antibacterial surfaces offer a new, ecofriendly technique to reduce the harmful disinfection byproducts that form in medical and ...

  20. Influence of water on the surface of graphene

    NASA Astrophysics Data System (ADS)

    Kaya, Yunus; Kalkan, Yalçin; Veenhof, Rob

    2018-02-01

    We have studied how water modifies the surface of graphene and in particular how the surface conductivity of graphene is affected. According to the literature, two types of interactions should be distinguished: physical, where a water molecule remains intact and is located at some distance from the mesh, and chemical, where a water molecule is imbricated in the graphene bond structure. We have developed theoretical models for both types of interactions using the density functional theory (DFT) with the B3LYP hybrid functional combined with the 6-31G(d) basis set. Our calculations show that the surface conductivity of graphene is reduced in the presence of water.

  1. Dynamics of ice nucleation on water repellent surfaces.

    PubMed

    Alizadeh, Azar; Yamada, Masako; Li, Ri; Shang, Wen; Otta, Shourya; Zhong, Sheng; Ge, Liehui; Dhinojwala, Ali; Conway, Ken R; Bahadur, Vaibhav; Vinciquerra, A Joseph; Stephens, Brian; Blohm, Margaret L

    2012-02-14

    Prevention of ice accretion and adhesion on surfaces is relevant to many applications, leading to improved operation safety, increased energy efficiency, and cost reduction. Development of passive nonicing coatings is highly desirable, since current antiicing strategies are energy and cost intensive. Superhydrophobicity has been proposed as a lead passive nonicing strategy, yet the exact mechanism of delayed icing on these surfaces is not clearly understood. In this work, we present an in-depth analysis of ice formation dynamics upon water droplet impact on surfaces with different wettabilities. We experimentally demonstrate that ice nucleation under low-humidity conditions can be delayed through control of surface chemistry and texture. Combining infrared (IR) thermometry and high-speed photography, we observe that the reduction of water-surface contact area on superhydrophobic surfaces plays a dual role in delaying nucleation: first by reducing heat transfer and second by reducing the probability of heterogeneous nucleation at the water-substrate interface. This work also includes an analysis (based on classical nucleation theory) to estimate various homogeneous and heterogeneous nucleation rates in icing situations. The key finding is that ice nucleation delay on superhydrophobic surfaces is more prominent at moderate degrees of supercooling, while closer to the homogeneous nucleation temperature, bulk and air-water interface nucleation effects become equally important. The study presented here offers a comprehensive perspective on the efficacy of textured surfaces for nonicing applications.

  2. Foulant characteristics comparison in recycling cooling water system makeup by municipal reclaimed water and surface water in power plant.

    PubMed

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water.

  3. The Anti-Biofouling Properties of Superhydrophobic Surfaces are Short-Lived.

    PubMed

    Hwang, Gi Byoung; Page, Kristopher; Patir, Adnan; Nair, Sean P; Allan, Elaine; Parkin, Ivan P

    2018-06-12

    Superhydrophobic surfaces are present in nature on the leaves of many plant species. Water rolls on these surfaces, and the rolling motion picks up particles including bacteria and viruses. Man-made superhydrophobic surfaces have been made in an effort to reduce biofouling. We show here that the anti-biofouling property of a superhydrophobic surface is due to an entrapped air-bubble layer that reduces contact between the bacteria and the surface. Further, we showed that prolonged immersion of superhydrophobic surfaces in water led to loss of the bubble-layer and subsequent bacterial adhesion that unexpectedly exceeded that of the control materials. This behavior was not restricted to one particular type of material but was evident on different types of superhydrophobic surfaces. This work is important in that it suggests that superhydrophobic surfaces may actually encourage bacterial adhesion during longer term exposure.

  4. Instruments to reduce the leaching of heavy metals from building materials in the Netherlands.

    PubMed

    van Breemen, A J H; Vermij, P H M

    2007-01-01

    In the Netherlands the leaching of heavy metals from metal building and constructing materials results in serious contamination problems in the water system. The most common sources of these heavy metals in construction materials are copper waterworks and roofs, zinc roofs, gutters and rain pipes, zinced steel, stainless steel, and lead sealing material. In urban waters the surface water and sediment standards are often exceeded. Although building and construction materials are certainly not the only source of heavy metals, they are an important part of the problem. This article focuses on six instruments that are in use in the Netherlands to try to reduce impact on the surface waters. In addition to this, national as well as international, a reconsideration of the risks and surface water standards for several heavy metals is considered. A balanced use of instruments can be considered as the application of a best practice.

  5. The microscale cooling effects of water sensitive urban design and irrigation in a suburban environment

    NASA Astrophysics Data System (ADS)

    Broadbent, Ashley M.; Coutts, Andrew M.; Tapper, Nigel J.; Demuzere, Matthias; Beringer, Jason

    2017-09-01

    Prolonged drought has threatened traditional potable urban water supplies in Australian cities, reducing capability to adapt to climate change and mitigate against extreme. Integrated urban water management (IUWM) approaches, such as water sensitive urban design (WSUD), reduce the reliance on centralised potable water supply systems and provide a means for retaining water in the urban environment through stormwater harvesting and reuse. This study examines the potential for WSUD to provide cooling benefits and reduce human exposure and heat stress and thermal discomfort. A high-resolution observational field campaign, measuring surface level microclimate variables and remotely sensed land surface characteristics, was conducted in a mixed residential suburb containing WSUD in Adelaide, South Australia. Clear evidence was found that WSUD features and irrigation can reduce surface temperature (T s) and air temperature (T a) and improve human thermal comfort (HTC) in urban environments. The average 3 pm T a near water bodies was found to be up to 1.8 °C cooler than the domain maximum. Cooling was broadly observed in the area 50 m downwind of lakes and wetlands. Design and placement of water bodies were found to affect their cooling effectiveness. HTC was improved by proximity to WSUD features, but shading and ventilation were also effective at improving thermal comfort. This study demonstrates that WSUD can be used to cool urban microclimates, while simultaneously achieving other environmental benefits, such as improved stream ecology and flood mitigation.

  6. Underwater drag-reducing effect of superhydrophobic submarine model.

    PubMed

    Zhang, Songsong; Ouyang, Xiao; Li, Jie; Gao, Shan; Han, Shihui; Liu, Lianhe; Wei, Hao

    2015-01-01

    To address the debates on whether superhydrophobic coatings can reduce fluid drag for underwater motions, we have achieved an underwater drag-reducing effect of large superhydrophobic submarine models with a feature size of 3.5 cm × 3.7 cm × 33.0 cm through sailing experiments of submarine models, modified with and without superhydrophobic surface under similar power supply and experimental conditions. The drag reduction rate reached as high as 15%. The fabrication of superhydrophobic coatings on a large area of submarine model surfaces was realized by immobilizing hydrophobic copper particles onto a precross-linked polydimethylsiloxane (PDMS) surface. The pre-cross-linking time was optimized at 20 min to obtain good superhydrophobicity for the underwater drag reduction effect by investigating the effect of pre-cross-linking on surface wettability and water adhesive property. We do believe that superhydrophobic coatings may provide a promising application in the field of drag-reducing of vehicle motions on or under the water surface.

  7. Surface forces between hydrophilic silica surfaces in a moisture-sensitive oleophilic diacrylate monomer liquid

    NASA Astrophysics Data System (ADS)

    Ito, Shunya; Kasuya, Motohiro; Kurihara, Kazue; Nakagawa, Masaru

    2018-02-01

    We measured the surface forces generated between fused silica surfaces in a low-viscosity oleophilic diacrylate monomer for reliably repeated ultraviolet (UV) nanoimprinting, and studied the influence of water in monomer liquids on the forces. Fused silica surfaces, with a static contact angle of 52.6 ± 1.7° for water, owing to the low degree of hydroxylation, hardly showed reproducible surface forces with repeated scan cycles, comprising approach and separation, even in an identical liquid monomer medium with both of low and high water content. The monomer liquid with a high water content of approximately 420 ppm showed a greater tendency to increase the surface forces at longer surface-surface distances compared with the monomer liquid with a low water content of approximately 60 ppm. On the other hand, silica surfaces with a water contact angle of < 5° after exposure to vacuum UV (VUV) light under a reduced air pressure showed reproducible profiles of surfaces forces using the monomer with a low water concentration of approximately 60 ppm for repeated surface forces scan cycles even in separately prepared silica surfaces, whilst they showed less reproducible profiles in the liquids with high water content of 430 ppm. These results suggested that water possibly adsorbed on the hydrophilic and hydrophobic silica surfaces in the monomer liquid of the high water concentration influenced the repeatability of the surface forces profiles.

  8. Critical Dipole Length for the Wetting Transition Due to Collective Water-dipoles Interactions

    PubMed Central

    Wang, Chunlei; Zhou, Bo; Tu, Yusong; Duan, Manyi; Xiu, Peng; Li, Jingye; Fang, Haiping

    2012-01-01

    The wetting behavior of water on the solid surfaces is fundamental to various physical, chemical and biological processes. Conventionally, the surface with charges or charge dipoles is hydrophilic, whereas the non-polar surface is hydrophobic though some exceptions were recently reported. Using molecular dynamics simulations, we show that there is a critical length of the charge dipoles on the solid surface. The solid surface still exhibited hydrophobic behavior when the dipole length was less than the critical value, indicating that the water molecules on the solid surface seemed not “feel” attractive interactions from the charge dipoles on the solid surface. Those unexpected observations result from the collective interactions between the water molecules and charge dipoles on the solid surface, where the steric exclusion effect between water molecules greatly reduces the water-dipole interactions. Remarkably, the steric exclusion effect is also important for surfaces with charge dipole lengths greater than this critical length. PMID:22496954

  9. Suppression of ENSO in a coupled model without water vapor feedback

    NASA Astrophysics Data System (ADS)

    Hall, A.; Manabe, S.

    We examine 800-year time series of internally generated variability in both a coupled ocean-atmosphere model where water vapor anomalies are not allowed to interact with longwave radiation and one where they are. The ENSO-like phenomenon in the experiment without water vapor feedback is drastically suppressed both in amplitude and geographic extent relative to the experiment with water vapor feedback. Surprisingly, the reduced amplitude of ENSO-related sea surface temperature anomalies in the model without water vapor feedback cannot be attributed to greater longwave damping of sea surface temperature. (Differences between the two experiments in radiative feedback due to clouds counterbalance almost perfectly the differences in radiative feedback due to water vapor.) Rather, the interaction between water vapor anomalies and longwave radiation affects the ENSO-like phenomenon through its influence on the vertical structure of radiative heating: Because of the changes in water vapor associated with it, a given warm equatorial Pacific sea surface temperature anomaly is associated with a radiative heating profile that is much more gravitationally unstable when water vapor feedback is present. The warm sea surface temperature anomaly therefore results in more convection in the experiment with water vapor feedback. The increased convection, in turn, is related to a larger westerly wind-stress anomaly, which creates a larger decrease in upwelling of cold water, thereby enhancing the magnitude of the original warm sea surface temperature anomaly. In this manner, the interaction between water vapor anomalies and longwave radiation magnifies the air-sea interactions at the heart of the ENSO phenomenon; without this interaction, the coupling between sea surface temperature and wind stress is effectively reduced, resulting in smaller amplitude ENSO episodes with a more limited geographical extent.

  10. Foulant Characteristics Comparison in Recycling Cooling Water System Makeup by Municipal Reclaimed Water and Surface Water in Power Plant

    PubMed Central

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water. PMID:25893132

  11. Investigation of surface water behavior during glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Turnock, Stephen R.

    1990-01-01

    A series of experimental investigations that focused on isolating the primary factors that control the behavior of unfrozen surface water during glaze ice accretion were conducted. Detailed microvideo observations were made of glaze ice accretions on 2.54 cm diam cylinders in a closed-loop refrigerated wind tunnel. Distinct zones of surface water behavior were observed; a smooth wet zone in the stagnation region with a uniform water film, a rough zone where surface tension effects caused coalescence of surface water into stationary beads, and a zone where surface water ran back as rivulets. The location of the transition from the smooth to the rough zone was found to migrate towards the stagnation point with time. Comparative tests were conducted to study the effect of the substrate thermal and roughness properties on ice accretion. The importance of surface water behavior was evaluated by the addition of a surface tension reducing agent to the icing tunnel water supply, which significantly altered the accreted glaze ice shape. Measurements were made to determine the contact angle behavior of water droplets on ice. A simple multizone modification to current glaze ice accretion models was proposed to include the observed surface roughness behavior.

  12. Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada.

    PubMed

    Boyd, Glen R; Reemtsma, Helge; Grimm, Deborah A; Mitra, Siddhartha

    2003-07-20

    A newly developed analytical method was used to measure concentrations of nine pharmaceuticals and personal care products (PPCPs) in samples from two surface water bodies, a sewage treatment plant effluent and various stages of a drinking water treatment plant in Louisiana, USA, and from one surface water body, a drinking water treatment plant and a pilot plant in Ontario, Canada. The analytical method provides for simultaneous extraction and quantification of the following broad range of PPCPs and endocrine-disrupting chemicals: naproxen; ibuprofen; estrone; 17beta-estradiol; bisphenol A; clorophene; triclosan; fluoxetine; and clofibric acid. Naproxen was detected in Louisiana sewage treatment plant effluent at 81-106 ng/l and Louisiana and Ontario surface waters at 22-107 ng/l. Triclosan was detected in Louisiana sewage treatment plant effluent at 10-21 ng/l. Of the three surface waters sampled, clofibric acid was detected in Detroit River water at 103 ng/l, but not in Mississippi River or Lake Pontchartrain waters. None of the other target analytes were detected above their method detection limits. Based on results at various stages of treatment, conventional drinking-water treatment processes (coagulation, flocculation and sedimentation) plus continuous addition of powdered activated carbon at a dosage of 2 mg/l did not remove naproxen from Mississippi River waters. However, chlorination, ozonation and dual media filtration processes reduced the concentration of naproxen below detection in Mississippi River and Detroit River waters and reduced clofibric acid in Detroit River waters. Results of this study demonstrate that existing water treatment technologies can effectively remove certain PPCPs. In addition, our study demonstrates the importance of obtaining data on removal mechanisms and byproducts associated with PPCPs and other endocrine-disrupting chemicals in drinking water and sewage treatment processes.

  13. A deformable surface model for real-time water drop animation.

    PubMed

    Zhang, Yizhong; Wang, Huamin; Wang, Shuai; Tong, Yiying; Zhou, Kun

    2012-08-01

    A water drop behaves differently from a large water body because of its strong viscosity and surface tension under the small scale. Surface tension causes the motion of a water drop to be largely determined by its boundary surface. Meanwhile, viscosity makes the interior of a water drop less relevant to its motion, as the smooth velocity field can be well approximated by an interpolation of the velocity on the boundary. Consequently, we propose a fast deformable surface model to realistically animate water drops and their flowing behaviors on solid surfaces. Our system efficiently simulates water drop motions in a Lagrangian fashion, by reducing 3D fluid dynamics over the whole liquid volume to a deformable surface model. In each time step, the model uses an implicit mean curvature flow operator to produce surface tension effects, a contact angle operator to change droplet shapes on solid surfaces, and a set of mesh connectivity updates to handle topological changes and improve mesh quality over time. Our numerical experiments demonstrate a variety of physically plausible water drop phenomena at a real-time rate, including capillary waves when water drops collide, pinch-off of water jets, and droplets flowing over solid materials. The whole system performs orders-of-magnitude faster than existing simulation approaches that generate comparable water drop effects.

  14. Anti-icing properties of superhydrophobic ZnO/PDMS composite coating

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Wang, Fajun; Li, Wen; Ou, Junfei; Li, Changquan; Amirfazli, Alidad

    2016-01-01

    We present the excellent anti-icing performance for a superhydrophobic coating surface based on ZnO/polydimethylsiloxane (ZnO/PDMS) composite. The superhydrophobic ZnO/PDMS coating surface was prepared by a facile solution mixing, drop coating, room-temperature curing and surface abrading procedure. The superhydrophobic ZnO/PDMS composite coating possesses a water contact angle of 159.5° and a water sliding angle of 8.3° at room temperature (5 °C). The anti-icing properties of the superhydrophobic coating were investigated by continuously dropping cold-water droplets (about 0 °C) onto the pre-cooled surface using a home-made apparatus. The sample was placed at different tilting angle (0° and 10°) and pre-cooled to various temperatures (-5, -10 and -15 °C) prior to measure. The pure Al surface was also studied for comparison. It was found that icing accretion on the surface could be reduced apparently because the water droplets merged together and slid away from the superhydrophobic surface at all of the measuring temperatures when the surface is horizontally placed. In addition, water droplet slid away completely from the superhydrophobic surface at -5 and -10 °C when the surface is tilted at 10°, which demonstrates its excellent anti-icing properties at these temperatures. When the temperature decreased to -15 °C, though ice accretion on the tilted superhydrophobic coating surface could not be avoided absolutely, the amount of ice formed on the surface is very small, which indicated that the coating surface with superhydrophobicity could significantly reduce ice accumulation on the surface at very low temperature (-15 °C). Importantly, the sample is also stable against repeated icing/deicing cycles. More meaningfully, once the superhydrophobic surface is damaged, it can be repaired easily and rapidly.

  15. Inventory of File nam.t00z.awip2000.tm00.grib2

    Science.gov Websites

    analysis Pressure Reduced to MSL [Pa] 002 1 hybrid level RIME analysis Rime Factor [non-dim] 003 surface Temperature [K] 014 surface WEASD analysis Water Equivalent of Accumulated Snow Depth [kg/m^2] 015 2 m above ^2] 021 surface WEASD 0-0 day acc f Water Equivalent of Accumulated Snow Depth [kg/m^2] 022 surface

  16. Inventory of File nam.t00z.awip2006.tm00.grib2

    Science.gov Websites

    Pressure Reduced to MSL [Pa] 002 1 hybrid level RIME 6 hour fcst Rime Factor [non-dim] 003 surface VIS 6 ] 013 surface TMP 6 hour fcst Temperature [K] 014 surface WEASD 6 hour fcst Water Equivalent of ACPCP 0-6 hour acc Convective Precipitation [kg/m^2] 021 surface WEASD 0-6 hour acc Water Equivalent of

  17. Study on Control of NH4 +-N in Surface Water by Photocatalytic

    NASA Astrophysics Data System (ADS)

    Zuo, Xiaoran; He, Honghua; Yang, Yue; Yan, Chao; Zhou, Ying

    2018-01-01

    NH4 +-N has become the main pollution factor affecting the surface water quality in China. Based on the theory of photolysis, the feasibility of photolysis removing NH4 +-N in surface water is studied. The effects of pH, CaO2 content and photolysis time on removal rate of NH4 +-N are studied. The actual study is based on Laboratory studies results. Experimental results show: When the pH<7, photolysis can increase the NH4 +-N content. And when pH>8, the photolysis can greatly reduce the NH4 +-N content in water. CaO2 can greatly remove NH4 +-N. The removal rate of NH4 +-N increased with the increase of photocatalytic time. When irradiated with UV light for 108 hours or the sun is irradiated for about 40 days, NH4 +-N content can be reduced from 4mg/L to 0.5mg/L under the optimum experimental conditions. Adjusting the pH of surface water is the most important condition for controlling NH4 +-N content.

  18. Ions, metabolites, and cells: Water as a reporter of surface conditions during bacterial growth.

    PubMed

    Jarisz, Tasha A; Lane, Sarah; Gozdzialski, Lea; Hore, Dennis K

    2018-06-14

    Surface-specific nonlinear vibrational spectroscopy, combined with bulk solution measurements and imaging, is used to study the surface conditions during the growth of E. coli. As a result of the silica high surface charge density, the water structure at the silica-aqueous interface is known to be especially sensitive to pH and ionic strength, and surface concentration profiles develop that can be appreciably different from the bulk solution conditions. We illustrate that, in the presence of growing cells, a unique surface micro-environment is established as a result of metabolites accumulating on the silica surface. Even in the subsequent absence of the cells, this surface layer works to reduce the interfacial ionic strength as revealed by the enhanced signal from surface water molecules. In the presence of growing cells, an additional boost in surface water signal is attributed to a local pH that is higher than that of the bulk solution.

  19. Ions, metabolites, and cells: Water as a reporter of surface conditions during bacterial growth

    NASA Astrophysics Data System (ADS)

    Jarisz, Tasha A.; Lane, Sarah; Gozdzialski, Lea; Hore, Dennis K.

    2018-06-01

    Surface-specific nonlinear vibrational spectroscopy, combined with bulk solution measurements and imaging, is used to study the surface conditions during the growth of E. coli. As a result of the silica high surface charge density, the water structure at the silica-aqueous interface is known to be especially sensitive to pH and ionic strength, and surface concentration profiles develop that can be appreciably different from the bulk solution conditions. We illustrate that, in the presence of growing cells, a unique surface micro-environment is established as a result of metabolites accumulating on the silica surface. Even in the subsequent absence of the cells, this surface layer works to reduce the interfacial ionic strength as revealed by the enhanced signal from surface water molecules. In the presence of growing cells, an additional boost in surface water signal is attributed to a local pH that is higher than that of the bulk solution.

  20. Robust superhydrophobic surface by nature-inspired polyphenol chemistry for effective oil-water separation

    NASA Astrophysics Data System (ADS)

    Bu, Yiming; Huang, Jingjing; Zhang, Shiyu; Wang, Yinghua; Gu, Shaojin; Cao, Genyang; Yang, Hongjun; Ye, Dezhan; Zhou, Yingshan; Xu, Weilin

    2018-05-01

    With the ever-increasing oil spillages, oil-water separation has attracted widespread concern in recent years. In this work, a nature-inspired polyphenol method has been developed to fabricate the durable superhydrophobic surfaces for the oil-water separation. Inspiring from the adhesion of polyphenol and reducing capacity of free catechol/pyrogallol groups in polyphenol, firstly, the simple immersion of commercial materials (melamine sponge, PET, and nonwoven cotton fabrics) in tannic acid (TA) solution allows to form a multifunctional coating on the surface of sponge or fabrics, which was used as reducing reagent to generate Ag nanoparticles (NPs). Then, decoration of 1H, 1H, 2H, 2H-perfluorodecanethiol (PFDT) molecules produced superhydrophobic surfaces. The surface topological structure, chemical composition, and superhydrophobic property of the as-prepared surface are characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS), and water contact angle (WCA) measurements. The WCAs of as-prepared sponge and fabrics were higher than 150°. The stability, absorption capacity, and recyclability of as-prepared sponge and fabrics were investigated. The as-prepared sponge demonstrates high oil/water selectivity and high absorption capacity (66-150 g/g) for a broad variety of oils and organic solvents, and was chemically resistant, robust against abrasion, and long-term durability in harsh environments. Most important of all, it can continuously separate various kinds of oils or organic pollutants from the surface of water. This study presents a facile strategy to fabricate superhydrophobic materials for continuous oil-water separation, displaying great potential in large-scale practical application.

  1. Environmental Assessment: Extend Parking Lot Building 807 at Grand Forks AFB, North Dakota

    DTIC Science & Technology

    2003-07-17

    Surface water quality could be degraded, both in the short-term, during actual construction, and over the long-term due to reduced storm water quality caused...over the long-term due to reduced storm water quality caused by the increase of paved area. The short-term effects come from possible erosion

  2. Mechanisms of surface runoff genesis on a subsurface drained soil affected by surface crusting: A field investigation

    NASA Astrophysics Data System (ADS)

    Augeard, Bénédicte; Kao, Cyril; Chaumont, Cédric; Vauclin, Michel

    Artificial drainage has been subject to widespread criticism because of its impact on water quality and because there is suspicion that it may have detrimental effects on flood genesis. The present work aims at a better understanding of the mechanisms controlling infiltration and surface runoff genesis, particularly in soils with artificial drainage and affected by surface crusting. A field experiment was conducted during one drainage season (November 2003-March 2004) in the Brie region (80 km east of Paris, France) on a subsurface drained silty soil. Water table elevation and surface runoff were monitored above the drain and at midpoint between drains. Soil water pressure head was measured at various depths and locations between the midpoint and the drain. Soil surface characteristics (microtopography and degree of structural and sedimentary crust development) were recorded regularly on the experimental site and on other plots of various drainage intensities. The results show that the first surface runoff events were induced by high water table. However, runoff was higher at midpoint between the drains because water table reached the soil surface at that point, thus considerably reducing infiltration capacity compared to that above the drain. Comparing different plots, the area with older drainage installation (1948) yielded the most surface runoff. Wider drain spacing, smaller drain depth and possible plugging may have led to a greater area of saturated soil between drains. During the winter period, the impact of raindrops induced the formation of a structural crust on the soil surface. Furthermore, the development of the sedimentary crust, which was favored by water actually flowing on the soil surface during the high water table periods could be correlated with surface runoff volume. The formation of this crust had a significant impact on runoff occurrence at the end of the winter. Therefore, poorly drained fields presented more favorable conditions for both Horton type runoff and saturation excess runoff. Drainage effectively reduces surface runoff occurrences not only by lowering the water table in winter but also by limiting soil surface sealing.

  3. TBA biodegradation in surface-water sediments under aerobic and anaerobic conditions.

    PubMed

    Bradley, Paul M; Landmeyer, James E; Chapelle, Francis H

    2002-10-01

    The potential for [U-14C] TBA biodegradation was examined in laboratory microcosms under a range of terminal electron accepting conditions. TBA mineralization to CO2 was substantial in surface-water sediments under oxic, denitrifying, or Mn(IV)-reducing conditions and statistically significant but low under SO4-reducing conditions. Thus, anaerobic TBA biodegradation may be a significant natural attenuation mechanism for TBA in the environment, and stimulation of in situ TBA bioremediation by addition of suitable terminal electron acceptors may be feasible. No degradation of [U-14C] TBA was observed under methanogenic or Fe(III)-reducing conditions.

  4. TBA biodegradation in surface-water sediments under aerobic and anaerobic conditions

    USGS Publications Warehouse

    Bradley, P.M.; Landmeyer, J.E.; Chapelle, F.H.

    2002-01-01

    The potential for [U-14C] TBA biodegradation was examined in laboratory microcosms under a range of terminal electron accepting conditions. TBA mineralization to CO2 was substantial in surface-water sediments under oxic, denitrifying, or Mn(IV)-reducing conditions and statistically significant but low under SO4-reducing conditions. Thus, anaerobic TBA biodegradation may be a significant natural attenuation mechanism for TBA in the environment, and stimulation of in situ TBA bioremediation by addition of suitable terminal electron acceptors may be feasible. No degradation of [U-14C] TBA was observed under methanogenic or Fe(III)-reducing conditions.

  5. Experimental Evaluation of a Water Shield for a Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Pearson, J. Boise; Reid, Robert S.

    2006-01-01

    As part of the Vision for Space Exploration the end of the next decade will bring man back to the surface of the moon. One of the most critical issues for the establishment of human presence on the moon will be the availability of compact power sources. The establishment of man on the moon will require power from greater than 10's of kWt's in follow on years. Nuclear reactors are extremely we11 suited to meet the needs for power generation on the lunar or Martian surface. reactor system. Several competing concepts exist for lightweight, safe, robust shielding systems such as a water shield, lithium hydride (LiH), Boron Carbide, and others. Water offers several potential advantages, including reduced cost, reduced technical risk, and reduced mass. Water has not typically been considered for space reactor applications because of the need for gravity to remove the potential for radiation streaming paths. The water shield concept relies on predictions of passive circulation of the shield water by natural convection to adequately cool the shield. This prediction needs to be experimentally evaluated, especially for shields with complex geometries. MSFC has developed the experience and fac necessary to do this evaluation in the Early Flight Fission - Test Facility (EFF-TF).

  6. Evaluation of riverbank infiltration as a process for removing particles and DBP precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.; Smith, J.; Dooley, L.

    1996-11-01

    Recent outbreaks of waterborne disease attributed to Cryptosporidium in drinking water have raised serious concerns over the effectiveness of conventional water treatment processes to produce safe drinking water supplies. Past studies have shown Cryptosporidium and Giardia to be prevalent in surface water supplies, particularly in urban-impacted surface waters such as the Ohio River which Louisville Water Company (LWC) treatment facilities utilize as their source water. Such indications of the widespread occurrence of these pathogens in source waters underscore the need for the water supply industry to evaluate alternative technologies to conventional water treatment to reduce the risk of waterborne diseasemore » occurrence. Public health concerns, shared by the water utility industry, drinking water regulators, and public water supply consumers alike, prompted the US Environmental Protection Agency (USEPA) to propose regulatory action aimed at balancing the risks of microbial disease occurrence and the health risks associated with exposure to potentially harmful compounds formed during drinking water disinfection. In pursuit of this objective, USEPA proposed the Enhanced Surface Water Treatment Rule (ESWTR) to improve public water supply treatment performance for microbial removal and proposed the Disinfectant/Disinfection Byproduct (D/DBP) Rule to reduce DBP exposure levels. As a consequence of these rules, many water utilities will be tasked with the challenge of developing treatment capabilities which improve microbial removal performance while minimizing the production of DBPs.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aytug, Tolga; Simpson, John T.; Lupini, Andrew R.

    Inspired by highly non-wetting natural biological surfaces (e.g., lotus leaves and water strider legs), artificial superhydrophobic surfaces that exhibit water droplet contact angles exceeding 150o have previously been constructed by utilizing various synthesis strategies.[ , , ] Such bio-inspired, water-repellent surfaces offer significant potential for numerous uses ranging from marine applications (e.g., anti-biofouling, anti-corrosion), anti-condensation (e.g., anti-icing, anti-fogging), membranes for selective separation (e.g., oil-water, gas-liquid), microfluidic systems, surfaces requiring reduced maintenance and cleaning, to applications involving glasses and optical materials.[ ] In addition to superhydrophobic attributes, for integration into device systems that have extended operational limits and overall improved performance,more » surfaces that also possess multifunctional characteristics are desired, where the functionality should match to the application-specific requirements.« less

  8. Optical methods in modeling nicotine effect on the surface water of cell membranes

    NASA Astrophysics Data System (ADS)

    Alexandrova, Tatyana V.; Rogacheva, Svetlana M.; Kuznetsov, Pavel E.; Gubina, Tamara I.

    2005-06-01

    Fluorescence and spectrophotometric methods have been used for investigation of nicotine action on the state and mobility of the surface water. The surfaces of membranes and proteins were simulated with the help of liposomes and ultradispersive diamonds consequently. Nicotine was shown to reduce the stability of liposomes and to change the aggregative ability of ultradispersive diamonds. The wave-like curves for the nicotine concentration dependences of the pointed features were observed. Such shape of responses was suggested to be due to the changing in structure and dynamics of water hydrogen bonds net near the surface of the model systems induced by nicotine molecules. The surface water phase was supposed to be one of signal elements ofthe ligand receptor recognition process.

  9. Dispersion of Louisiana crude oil in salt water environment by Corexit 9500A in the presence of natural coastal materials

    NASA Astrophysics Data System (ADS)

    Tansel, Berrin; Lee, Mengshan; Berbakov, Jillian; Tansel, Derya Z.; Koklonis, Urpiana

    2014-04-01

    Effectiveness of Corexit 9500A for dispersing Louisiana crude oil was evaluated in salt water solutions containing natural materials in relation to salinity and dispersant-to-oil ratio (DOR). Experimental results showed that both salinity and DOR had significant effects on dispersion of Louisiana crude oil in the presence of different natural materials. The natural materials added to the salt water solutions included sea sand (South Beach, Miami, Florida), red mangrove leaves (Rhizophora mangle), seaweed (Sargassum natans), and sea grass (Halodule wrightii). Dispersant effectiveness (amount of oil dispersed into the water) was reduced significantly with increasing salinity with the minimum effectiveness observed in the salinity range between 30 and 50 ppt in all aqueous samples containing natural materials. When significant amounts of floating oil were present, the partially submerged natural materials enhanced the transfer of oil into the water column, which improved the dispersion effectiveness. However, dispersant effectiveness was significantly reduced when the amount of floating oil was relatively small and could not be released back to the water column. Surface tension may not be an adequate parameter for monitoring the effectiveness of dispersants in salt water environment. When distilled water was used (i.e., zero salinity), surface tension was significantly reduced with increasing dispersant concentration. However, there was no clear trend in the surface tension of the salt water solutions (17-51 ppt) containing crude oil and natural materials with increasing dispersant concentration.

  10. Aerobic methane production in surface waters of the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Finke, N.; Crespo-Medina, M.; Schweers, J.; Joye, S. B.

    2011-12-01

    Near surface water of the global oceans often show elevated methane concentrations compared to the water column below with concentrations in supersaturation in regard to the atmosphere (Lamontagne et al. 1973), resulting in a source of this potent greenhouse gas to the atmosphere. The mechanisms leading to methane supersaturation in surface waters remains unclear. Incubations with Trichodesmium-containing Pacific surface water suggested methylphosphonate as potential methane precursor under phosphate limiting conditions (Karl et al. 2008), whereas in phosphate rich Arctic surface waters, DMSP addition stimulated methane production (Damm et al. 2010). Surface waters of the Gulf of Mexico typically exhibit a methane maximum that is conincident with the deep chlorophyll maximum, below the depths where Trichodesmium is abundant. Addition of methylphosphonate, dimethylsulfoniopropionate (DMSP) or methane thiol (MeSH), the proposed methane precursor in DMSP conversion to methane, to oxic sea water did not affect methane production within the chlorophyll maximum at most stations, whereas methyl phosphonate addition stimulated methane production in the surface water and proposed deep Trichodesmium horizon. Pre-filtration of the water through a 10 μm sieve, which eliminated Trichodesmium, or through a 1.2 μm filter, which eliminated additional cyanobacteria such as Synechococcus, did not reduce methane production. Under dark oxic and dark anoxic conditions, however, methane production was reduced 5 and 7-20 fold, respectively, indicating that anerobic methane production in anoxic microniches is not responsible for the methane production. The reduction of methane production under dark conditions suggests that methane production is, in some yet unrecognized way, linked to phototrophic metabolism. Cyanobacteria are likely not responsible for the observed aerobic methane production in the surface waters of the Gulf of Mexico and while methylphosphonate is a potential precursor in the surface waters, the precursor and methanism of methane production within the coincident deep chlorophyll/methane maximum remains unknown. Lamontagne R, Swinnert J, Linnenbo V, Smith WD (1973) Methane concentrations in various marine environments. Journal of Geophysical Research 78, 5317-5324 Karl DM et al. (2008) Aerobic production of methane in the sea. Nature Geosciences 1, 473-478 Damm E et al. (2010) Methane production in aerobic oligotrophic surface water in the central Arctic Ocean. Biogeosciences 7, 1099-1108

  11. DRY DEPOSITION OF REDUCED AND REACTIVE NITROGEN: A SURROGATE SURFACES APPROACH. (R826647)

    EPA Science Inventory

    Nitrogen dry deposition causes pH modification of ecosystems, promotes
    eutrophication in some water bodies, interferes with the nutrient geochemical
    cycle on land, and has a deteriorating effect on buildings. In this study, a
    water surface sampler (WSS) and knife-l...

  12. Hydrophilic directional slippery rough surfaces for water harvesting

    PubMed Central

    Sun, Nan; Nielsen, Steven O.; Wang, Jing

    2018-01-01

    Multifunctional surfaces that are favorable for both droplet nucleation and removal are highly desirable for water harvesting applications but are rare. Inspired by the unique functions of pitcher plants and rice leaves, we present a hydrophilic directional slippery rough surface (SRS) that is capable of rapidly nucleating and removing water droplets. Our surfaces consist of nanotextured directional microgrooves in which the nanotextures alone are infused with hydrophilic liquid lubricant. We have shown through molecular dynamics simulations that the physical origin of the efficient droplet nucleation is attributed to the hydrophilic surface functional groups, whereas the rapid droplet removal is due to the significantly reduced droplet pinning of the directional surface structures and slippery interface. We have further demonstrated that the SRS, owing to its large surface area, hydrophilic slippery interface, and directional liquid repellency, outperforms conventional liquid-repellent surfaces in water harvesting applications. PMID:29670942

  13. Monitoring of Water and Contaminant Migration at the Groundwater-Surface Water Interface (ER200422)

    DTIC Science & Technology

    2008-01-01

    discharge to surface water associated with groundwater leachate from coastal landfills, and (3) assessment of remedy effectiveness for treatment of...reduce contaminant concentrations to levels where natural attenuation (NA) and the phytoremediation plantation can effectively control the... phytoremediation plantation was established in March 2002. The in situ chemical oxidation (ISCO) system, which operated from March 2003 to October 2003, was

  14. Mitigation of nutrient losses via surface runoff from rice cropping systems with alternate wetting and drying irrigation and site-specific nutrient management practices.

    PubMed

    Liang, X Q; Chen, Y X; Nie, Z Y; Ye, Y S; Liu, J; Tian, G M; Wang, G H; Tuong, T P

    2013-10-01

    Resource-conserving irrigation and fertilizer management practices have been developed for rice systems which may help address water quality concerns by reducing N and P losses via surface runoff. Field experiments under three treatments, i.e., farmers' conventional practice (FCP), alternate wetting and drying (AWD), and AWD integrated with site-specific nutrient management (AWD + SSNM) were carried out during two rice seasons at two sites in the southwest Yangtze River delta region. Across site years, results indicated that under AWD irrigation (i.e., AWD and AWD + SSNM), water inputs were reduced by 13.4~27.5 % and surface runoff was reduced by 30.2~36.7 % compared to FCP. When AWD was implemented alone, total N and P loss masses via surface runoff were reduced by 23.3~30.4 % and 26.9~31.7 %, respectively, compared to FCP. However, nutrient concentrations of surface runoff did not decrease under AWD alone. Under AWD + SSNM, total N and P loss masses via surface runoff were reduced to a greater extent than AWD alone (39.4~47.6 % and 46.1~48.3 % compared to FCP, respectively), while fertilizer inputs and N surpluses significantly decreased and rice grain yields increased relative to FCP. Therefore, by more closely matching nutrient supply with crop demand and reducing both surface runoff and nutrient concentrations of surface runoff, our results demonstrate that integration of AWD and SSNM practices can mitigate N and P losses via surface runoff from rice fields while maintaining high yields.

  15. Bacterial growth on a superhydrophobic surface containing silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Heinonen, S.; Nikkanen, J.-P.; Laakso, J.; Raulio, M.; Priha, O.; Levänen, E.

    2013-12-01

    The antibacterial effect of silver can be exploited in the food and beverage industry and medicinal applications to reduce biofouling of surfaces. Very small amount of silver ions are enough to destructively affect the metabolism of bacteria. Moreover, superhydrophobic properties could reduce bacterial adhesion to the surface. In this study we fabricated superhydrophobic surfaces that contained nanosized silver particles. The superhydrophobic surfaces were manufactured onto stainless steel as combination of ceramic nanotopography and hydrophobication by fluorosilane. Silver nanoparticles were precipitated onto the surface by a chemical method. The dissolution of silver from the surface was tested in an aqueous environment under pH values of 1, 3, 5, 7, 9, 11 and 13. The pH value was adjusted with nitric acid and ammonia. It was found that dissolution rate of silver increased as the pH of the solution altered from the pH of de-ionized water to lower and higher pH values but dissolution occurred also in de-ionized water. The antimicrobial potential of this coating was investigated using bacterial strains isolated from the brewery equipment surfaces. The results showed that the number of bacteria adhering onto steel surface was significantly reduced (88%) on the superhydrophobic silver containing coating.

  16. Reduction of microbial contamination on the surfaces of layer houses using slightly acidic electrolyzed water.

    PubMed

    Ni, L; Cao, W; Zheng, W C; Zhang, Q; Li, B M

    2015-11-01

    The objective of this study was to evaluate the effectiveness of slightly acidic electrolyzed water (SAEW) in reducing pathogens on pure cultures and on cotton fabric surfaces in the presence of organic matter and estimate its efficacy in comparison with povidone iodine solution for reducing pathogenic microorganisms on internal surfaces of layer houses. Pure cultures of E.coli, S.enteritidis, and S.aureus and cotton fabric surfaces inoculated with these strains were treated with SAEW in the presence of bovine serum albumin (BSA). In the absence of BSA, complete inactivation of all strains in pure cultures and on cotton fabric surfaces was observed after 2.5 and 5 min treatment with SAEW at 40 mg/L of available chlorine concentration (ACC), respectively. The bactericidal efficiency of SAEW increased with increasing ACC, but decreased with increasing BSA concentration. Then, the surfaces of the layer houses were sprayed with SAEW at 60, 80, and 100 mg/L of ACC and povidone iodine using the automated disinfection system at a rate of 110 mL/m(2), respectively. Samples from the floor, wall, feed trough, and egg conveyor belt surfaces were collected with sterile cotton swabs before and after spraying disinfection. Compared to tap water, SAEW and povidone iodine significantly reduced microbial populations on each surface of the layer houses. SAEW with 80 or 100 mg/L of ACC showed significantly higher efficacy than povidone iodine for total aerobic bacteria, staphylococci, coliforms, or yeasts and moulds on the floor and feed trough surfaces (P < 0.05). SAEW was more effective than povidone iodine at reducing total aerobic bacteria, coliforms, and yeasts and moulds on the wall surface. Additionally, SAEW had similar bactericidal activity with povidone iodine on the surface of the egg conveyor belt. Results suggest that SAEW exerts a higher or equivalent bactericidal efficiency for the surfaces compared to povidone iodine, and it may be used as an effective alternative for reducing microbial contamination on surfaces in layer houses. © 2015 Poultry Science Association Inc.

  17. Potential health implications of water resources depletion and sewage discharges in the Republic of Macedonia.

    PubMed

    Hristovski, Kiril D; Pacemska-Atanasova, Tatjana; Olson, Larry W; Markovski, Jasmina; Mitev, Trajce

    2016-08-01

    Potential health implications of deficient sanitation infrastructure and reduced surface water flows due to climate change are examined in the case study of the Republic of Macedonia. Changes in surface water flows and wastewater discharges over the period 1955-2013 were analyzed to assess potential future surface water contamination trends. Simple model predictions indicated a decline in surface water hydrology over the last half century, which caused the surface waters in Macedonia to be frequently dominated by >50% of untreated sewage discharges. The surface water quality deterioration is further supported by an increasing trend in modeled biochemical oxygen demand trends, which correspond well with the scarce and intermittent water quality data that are available. Facilitated by the climate change trends, the increasing number of severe weather events is already triggering flooding of the sewage-dominated rivers into urban and non-urban areas. If efforts to develop a comprehensive sewage collection and treatment infrastructure are not implemented, such events have the potential to increase public health risks and cause epidemics, as in the 2015 case of a tularemia outbreak.

  18. Water Vapor Adsorption on Biomass Based Carbons under Post-Combustion CO2 Capture Conditions: Effect of Post-Treatment

    PubMed Central

    Querejeta, Nausika; Plaza, Marta G.; Rubiera, Fernando; Pevida, Covadonga

    2016-01-01

    The effect of post-treatment upon the H2O adsorption performance of biomass-based carbons was studied under post-combustion CO2 capture conditions. Oxygen surface functionalities were partially replaced through heat treatment, acid washing, and wet impregnation with amines. The surface chemistry of the final carbon is strongly affected by the type of post-treatment: acid treatment introduces a greater amount of oxygen whereas it is substantially reduced after thermal treatment. The porous texture of the carbons is also influenced by post-treatment: the wider pore volume is somewhat reduced, while narrow microporosity remains unaltered only after acid treatment. Despite heat treatment leading to a reduction in the number of oxygen surface groups, water vapor adsorption was enhanced in the higher pressure range. On the other hand acid treatment and wet impregnation with amines reduce the total water vapor uptake thus being more suitable for post-combustion CO2 capture applications. PMID:28773488

  19. Compatibility Study of Silver Biocide in Drinking Water with Candidate Metals for Crew Exploration Vehicle Potable Water System

    NASA Technical Reports Server (NTRS)

    Adam, Niklas M.

    2009-01-01

    The stability of silver biocide, used to keep drinking water on the CEV potable water sterile, is unknown as the system design is still in progress. Silver biocide in water can deplete rapidly when exposed to various metal surfaces. Additionally, silver depletion rates may be affected by the surface-area-to-volume (SA/V) ratios in the water system. Therefore, to facilitate the CEV water system design, it would be advantageous to know the biocide depletion rates in water exposed to the surfaces of these candidate metals at various SA/V ratios. Certain surface treatments can be employed to reduce the depletion rates of silver compared to the base metal. The purpose of this work is to determine the compatibility of specific spaceflight-certified metals that could used in the design of the CEV potable water system with silver biocide as well as understand the effect of surface are to volume ratios of metals used in the construction of the potable water system on the silver concentration.

  20. Mycobacteria in water used for personal hygiene in heavy industry and collieries: a potential risk for employees.

    PubMed

    Ulmann, Vit; Kracalikova, Anna; Dziedzinska, Radka

    2015-03-04

    Environmental mycobacteria (EM) constitute a health risk, particularly for immunocompromised people. Workers in heavy industry and in collieries represent an at-risk group of people as their immunity is often weakened by long-term employment in dusty environments, frequent smoking and an increased occurrence of pulmonary diseases. This study was concerned with the presence of EM in non-drinking water used for the hygiene of employees in six large industrial companies and collieries. Over a period of ten years, 1096 samples of surface water treated for hygiene purposes (treated surface water) and treated surface water diluted with mining water were examined. EM were detected in 63.4 and 41.5% samples of treated surface water and treated surface water diluted with mining water, respectively. Mycobacterium gordonae, M. avium-intracellulare and M. kansasii were the most frequently detected species. Adoption of suitable precautions should be enforced to reduce the incidence of mycobacteria in shower water and to decrease the infectious pressure on employees belonging to an at-risk group of people.

  1. Combining Natural Attenuation Capacity and use of Targeted Technological Mitigation Measures for Reducing Diffuse Nutrient Emissions to Surface Waters: The Danish Way

    NASA Astrophysics Data System (ADS)

    Kronvang, B.; Højberg, A. L.; Hoffmann, C. C.; Windolf, J.; Blicher-Mathiesen, G.

    2015-12-01

    Excess nitrogen (N) and phosphorus (P) emissions to surface waters are a high priority environmental problem worldwide for protection of water resources in times of population growth and climate change. As clean water is a scarce resource the struggle for reducing nutrient emissions are an ongoing issue for many countries and regions. Since the mid1980s a wide range of national regulatory general measures have been implemented to reduce land based nitrogen (N) and phosphorus (P) loadings of the Danish aquatic environment. These measures have addressed both point source emissions and emissions from diffuse sources especially from agricultural production. Following nearly 4 decades of combating nutrient pollution our surface waters such as lakes and estuaries are only slowly responding on the 50% reduction in N and 56% reduction in P. Therefore, the implementation of the EU Water Framework Directive in Danish surface waters still call for further reductions of N and P loadings. Therefore, a new era of targeted implemented measures was the outcome of a Commission on Nature and Agriculture established by the Danish Government in 2013. Their White Book points to the need of increased growth and better environment through more targeted and efficient regulation using advanced technological mitigation methods that are implemented intelligently according to the local natural attenuation capacity for nutrients in the landscape. As a follow up a national consensus model for N was established chaining existing leaching, 3D groundwater and surface water models that enable a calculation of the N dynamics and attenuation capacity within a scale of 15 km2. Moreover, several research projects have been conducted to investigate the effect of a suite of targeted mitigation measures such as restored natural wetlands, constructed wetlands, controlled drainage, buffer strips and constructed buffer strips. The results of these studies will be shared in this presentation.

  2. Environmental response nanosilica for reducing the pressure of water injection in ultra-low permeability reservoirs

    NASA Astrophysics Data System (ADS)

    Liu, Peisong; Niu, Liyong; Li, Xiaohong; Zhang, Zhijun

    2017-12-01

    The super-hydrophobic silica nanoparticles are applied to alter the wettability of rock surface from water-wet to oil-wet. The aim of this is to reduce injection pressure so as to enhance water injection efficiency in low permeability reservoirs. Therefore, a new type of environmentally responsive nanosilica (denote as ERS) is modified with organic compound containing hydrophobic groups and "pinning" groups by covalent bond and then covered with a layer of hydrophilic organic compound by chemical adsorption to achieve excellent water dispersibility. Resultant ERS is homogeneously dispersed in water with a size of about 4-8 nm like a micro-emulsion system and can be easily injected into the macro or nano channels of ultra-low permeability reservoirs. The hydrophobic nanosilica core can be released from the aqueous delivery system owing to its strong dependence on the environmental variation from normal condition to injection wells (such as pH and salinity). Then the exposed silica nanoparticles form a thin layer on the surface of narrow pore throat, leading to the wettability from water-wet to oil-wet. More importantly, the two rock cores with different permeability were surface treated with ERS dispersion with a concentration of 2 g/L, exhibit great reduce of water injection pressure by 57.4 and 39.6%, respectively, which shows great potential for exploitation of crude oil from ultra-low permeability reservoirs during water flooding. [Figure not available: see fulltext.

  3. Drainage water management

    USDA-ARS?s Scientific Manuscript database

    This article introduces a series of papers that report results of field studies to determine the effectiveness of drainage water management (DWM) on conserving drainage water and reducing losses of nitrogen (N) to surface waters. The series is focused on the performance of the DWM (also called contr...

  4. Wick for metal vapor laser

    DOEpatents

    Duncan, David B.

    1992-01-01

    An improved wick for a metal vapor laser is made of a refractory metal cylinder, preferably molybdenum or tungsten for a copper laser, which provides the wicking surface. Alternately, the inside surface of the ceramic laser tube can be metalized to form the wicking surface. Capillary action is enhanced by using wire screen, porous foam metal, or grooved surfaces. Graphite or carbon, in the form of chunks, strips, fibers or particles, is placed on the inside surface of the wick to reduce water, reduce metal oxides and form metal carbides.

  5. Efficacy of electrolysed oxidizing water in inactivating Vibrio parahaemolyticus on kitchen cutting boards and food contact surfaces.

    PubMed

    Chiu, T-H; Duan, J; Liu, C; Su, Y-C

    2006-12-01

    To determine the efficacy of electrolysed oxidizing (EO) water in inactivating Vibrio parahaemolyticus on kitchen cutting boards and food contact surfaces. Cutting boards (bamboo, wood and plastic) and food contact surfaces (stainless steel and glazed ceramic tile) were inoculated with V. parahaemolyticus. Viable cells of V. parahaemolyticus were detected on all cutting boards and food contact surfaces after 10 and 30 min, respectively, at room temperatures. Soaking inoculated food contact surfaces and cutting boards in distilled water for 1 and 3 min, respectively, resulted in various reductions of V. parahaemolyticus, but failed to remove the organism completely from surfaces. However, the treatment of EO water [pH 2.7, chlorine 40 ppm, oxidation-reduction potential 1151 mV] for 30, 45, and 60 s, completely inactivated V. parahaemolyticus on stainless steel, ceramic tile, and plastic cutting boards, respectively. EO water could be used as a disinfecting agent for inactivating V. parahaemolyticus on plastic and wood cutting boards and food contact surfaces. Rinsing the food contact surfaces with EO water or soaking cutting boards in EO water for up to 5 min could be a simple strategy to reduce cross-contamination of V. parahaemolyticus during food preparation.

  6. Water organization between oppositely charged surfaces: Implications for protein sliding along DNA a)

    NASA Astrophysics Data System (ADS)

    Marcovitz, Amir; Naftaly, Aviv; Levy, Yaakov

    2015-02-01

    Water molecules are abundant in protein-DNA interfaces, especially in their nonspecific complexes. In this study, we investigated the organization and energetics of the interfacial water by simplifying the geometries of the proteins and the DNA to represent them as two equally and oppositely charged planar surfaces immersed in water. We found that the potential of mean force for bringing the two parallel surfaces into close proximity comprises energetic barriers whose properties strongly depend on the charge density of the surfaces. We demonstrated how the organization of the water molecules into discretized layers and the corresponding energetic barriers to dehydration can be modulated by the charge density on the surfaces, salt, and the structure of the surfaces. The 1-2 layers of ordered water are tightly bound to the charged surfaces representing the nonspecific protein-DNA complex. This suggests that water might mediate one-dimensional diffusion of proteins along DNA (sliding) by screening attractive electrostatic interactions between the positively charged molecular surface on the protein and the negatively charged DNA backbone and, in doing so, reduce intermolecular friction in a manner that smoothens the energetic landscape for sliding, and facilitates the 1D diffusion of the protein.

  7. Natural Sunlight Shapes Crude Oil-Degrading Bacterial Communities in Northern Gulf of Mexico Surface Waters

    PubMed Central

    Bacosa, Hernando P.; Liu, Zhanfei; Erdner, Deana L.

    2015-01-01

    Following the Deepwater Horizon (DWH) spill in 2010, an enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico. Surface waters are characterized by intense sunlight and high temperature during summer. While the oil-degrading bacterial communities in the deep-sea plume have been widely investigated, the effect of natural sunlight on those in oil polluted surface waters remains unexplored to date. In this study, we incubated surface water from the DWH site with amendments of crude oil, Corexit dispersant, or both for 36 days under natural sunlight in the northern Gulf of Mexico. The bacterial community was analyzed over time for total abundance, density of alkane and polycyclic aromatic hydrocarbon degraders, and community composition via pyrosequencing. Our results showed that, for treatments with oil and/or Corexit, sunlight significantly reduced bacterial diversity and evenness and was a key driver of shifts in bacterial community structure. In samples containing oil or dispersant, sunlight greatly reduced abundance of the Cyanobacterium Synechococcus but increased the relative abundances of Alteromonas, Marinobacter, Labrenzia, Sandarakinotalea, Bartonella, and Halomonas. Dark samples with oil were represented by members of Thalassobius, Winogradskyella, Alcanivorax, Formosa, Pseudomonas, Eubacterium, Erythrobacter, Natronocella, and Coxiella. Both oil and Corexit inhibited the Candidatus Pelagibacter with or without sunlight exposure. For the first time, we demonstrated the effects of light in structuring microbial communities in water with oil and/or Corexit. Overall, our findings improve understanding of oil pollution in surface water, and provide unequivocal evidence that sunlight is a key factor in determining bacterial community composition and dynamics in oil polluted marine waters. PMID:26648916

  8. Natural Sunlight Shapes Crude Oil-Degrading Bacterial Communities in Northern Gulf of Mexico Surface Waters.

    PubMed

    Bacosa, Hernando P; Liu, Zhanfei; Erdner, Deana L

    2015-01-01

    Following the Deepwater Horizon (DWH) spill in 2010, an enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico. Surface waters are characterized by intense sunlight and high temperature during summer. While the oil-degrading bacterial communities in the deep-sea plume have been widely investigated, the effect of natural sunlight on those in oil polluted surface waters remains unexplored to date. In this study, we incubated surface water from the DWH site with amendments of crude oil, Corexit dispersant, or both for 36 days under natural sunlight in the northern Gulf of Mexico. The bacterial community was analyzed over time for total abundance, density of alkane and polycyclic aromatic hydrocarbon degraders, and community composition via pyrosequencing. Our results showed that, for treatments with oil and/or Corexit, sunlight significantly reduced bacterial diversity and evenness and was a key driver of shifts in bacterial community structure. In samples containing oil or dispersant, sunlight greatly reduced abundance of the Cyanobacterium Synechococcus but increased the relative abundances of Alteromonas, Marinobacter, Labrenzia, Sandarakinotalea, Bartonella, and Halomonas. Dark samples with oil were represented by members of Thalassobius, Winogradskyella, Alcanivorax, Formosa, Pseudomonas, Eubacterium, Erythrobacter, Natronocella, and Coxiella. Both oil and Corexit inhibited the Candidatus Pelagibacter with or without sunlight exposure. For the first time, we demonstrated the effects of light in structuring microbial communities in water with oil and/or Corexit. Overall, our findings improve understanding of oil pollution in surface water, and provide unequivocal evidence that sunlight is a key factor in determining bacterial community composition and dynamics in oil polluted marine waters.

  9. Trends in Surface Water Chemistry in Acidified Areas in Europe and North America from 1990 to 2008

    EPA Science Inventory

    Acidification of lakes and rivers is still an environmental concern despite reduced emissions of acidifying compounds. We analyzed trends in surface water chemistry of 173 acid-sensitive sites from 12 regions in Europe and North America. In 11 of 12 regions, non-marine sulphate (...

  10. Effect of the greenhouse gases (CO2, H2O, SO2) on Martian paleoclimate

    NASA Technical Reports Server (NTRS)

    Postawko, S. E.; Kuhn, W. R.

    1986-01-01

    There is general agreement that certain surface features on Mars are indicative of the presence of liquid water at various times in the geologic past. In particular, the valley networks are difficult to explain by a mechanism other than the flow of liquid water. It has been suggested in several studies that a thick CO2 atmosphere on Mars early in its history could have provided a greenhouse warming that would have allowed the flow of water either on the surface or just below the surface. However, this effect was examined with a detailed radiation model, and it was found that if reduced solar luminosity early in the history of the solar system is taken into account, even three bars of CO2 will not provide sufficient greeenhouse warming. The addition of water vapor and sulflur dioxide (both plausible gases that may have been emitted by Martian volcanoes) to the atmosphere also fail to warm the surface above 273 K for reduced solar luminosity conditions. The increase in temperature may be large enough, however, for the formation of these features by brines.

  11. Bioswales reduce contaminants associated with toxicity in urban storm water.

    PubMed

    Anderson, Brian S; Phillips, Bryn M; Voorhees, Jennifer P; Siegler, Katie; Tjeerdema, Ronald

    2016-12-01

    Contamination and toxicity associated with urban storm water runoff are a growing concern because of the potential impacts on receiving systems. California water regulators are mandating implementation of green infrastructure as part of new urban development projects to treat storm water and increase infiltration. Parking lot bioswales are low impact development practices that promote filtering of runoff through plants and soil. Studies have demonstrated that bioswales reduce concentrations of suspended sediments, metals, and hydrocarbons. There have been no published studies evaluating how well these structures treat current-use pesticides, and studies have largely ignored whether bioswales reduce toxicity in surface water. Three storms were monitored at 3 commercial and residential sites, and reductions of contaminants and associated toxicity were quantified. Toxicity testing showed that the majority of untreated storm water samples were toxic to amphipods (Hyalella azteca) and midges (Chironomus dilutus), and toxicity was reduced by the bioswales. No samples were toxic to daphnids (Ceriodaphnia dubia) or fish (Pimephales promelas). Contaminants were significantly reduced by the bioswales, including suspended solids (81% reduction), metals (81% reduction), hydrocarbons (82% reduction), and pyrethroid pesticides (74% reduction). The single exception was the phenypyrazole pesticide fipronil, which showed inconsistent treatment. The results demonstrate these systems effectively treat contaminated storm water associated with surface water toxicity but suggest that modifications of their construction may be required to treat some contaminant classes. Environ Toxicol Chem 2016;35:3124-3134. © 2016 SETAC. © 2016 SETAC.

  12. Effects of Lily Pads on Evaporation

    NASA Astrophysics Data System (ADS)

    Cooley, Keith R.; Idso, Sherwood B.

    1980-06-01

    Measurements of evaporation from open water and water partially covered by lily pads have indicated that for the portion of the surface area covered by lily pads, evaporation is reduced to about 84% of that occurring from open water.

  13. Water induced sediment levitation enhances downslope transport on Mars.

    PubMed

    Raack, Jan; Conway, Susan J; Herny, Clémence; Balme, Matthew R; Carpy, Sabrina; Patel, Manish R

    2017-10-27

    On Mars, locally warm surface temperatures (~293 K) occur, leading to the possibility of (transient) liquid water on the surface. However, water exposed to the martian atmosphere will boil, and the sediment transport capacity of such unstable water is not well understood. Here, we present laboratory studies of a newly recognized transport mechanism: "levitation" of saturated sediment bodies on a cushion of vapor released by boiling. Sediment transport where this mechanism is active is about nine times greater than without this effect, reducing the amount of water required to transport comparable sediment volumes by nearly an order of magnitude. Our calculations show that the effect of levitation could persist up to ~48 times longer under reduced martian gravity. Sediment levitation must therefore be considered when evaluating the formation of recent and present-day martian mass wasting features, as much less water may be required to form such features than previously thought.

  14. Assessing metaldehyde concentrations in surface water catchments and implications for drinking water abstraction

    NASA Astrophysics Data System (ADS)

    Asfaw, Alemayehu; Shucksmith, James; Smith, Andrea; Cherry, Katherine

    2015-04-01

    Metaldehyde is an active ingredient in agricultural pesticides such as slug pellets, which are heavily applied to UK farmland during the autumn application season. There is current concern that existing drinking water treatment processes may be inadequate in reducing potentially high levels of metaldehyde in surface waters to below the UK drinking water quality regulation limit of 0.1 µg/l. In addition, current water quality monitoring methods can miss short term fluctuations in metaldehyde concentration caused by rainfall driven runoff, hampering prediction of the potential risk of exposure. Datasets describing levels, fate and transport of metaldehyde in river catchments are currently very scarce. This work presents results from an ongoing study to quantify the presence of metaldehyde in surface waters within a UK catchment used for drinking water abstraction. High resolution water quality data from auto-samplers installed in rivers are coupled with radar rainfall, catchment characteristics and land use data to i) understand which hydro-meteorological characteristics of the catchment trigger the peak migration of metaldehyde to surface waters; ii) assess the relationship between measured metaldehyde levels and catchment characteristics such as land use, topographic index, proximity to water bodies and runoff generation area; iii) describe the current risks to drinking water supply and discuss mitigation options based on modelling and real-time control of water abstraction. Identifying the correlation between catchment attributes and metaldehyde generation will help in the development of effective catchment management strategies, which can help to significantly reduce the amount of metaldehyde finding its way into river water. Furthermore, the effectiveness of current water quality monitoring strategy in accurately quantifying the generation of metaldehyde from the catchment and its ability to benefit the development of effective catchment management practices has also been investigated.

  15. Expression of Arabidopsis SHN1 in Indian Mulberry (Morus indica L.) Increases Leaf Surface Wax Content and Reduces Post-harvest Water Loss

    PubMed Central

    Sajeevan, R. S.; Nataraja, Karaba N.; Shivashankara, K. S.; Pallavi, N.; Gurumurthy, D. S.; Shivanna, M. B.

    2017-01-01

    Mulberry (Morus species) leaf is the sole food for monophagous silkworms, Bombyx mori L. Abiotic stresses such as drought, salinity, and high temperature, significantly decrease mulberry productivity and post-harvest water loss from leaves influence silkworm growth and cocoon yield. Leaf surface properties regulate direct water loss through the cuticular layer. Leaf surface waxes, contribute for cuticular resistance and protect mesophyll cells from desiccation. In this study we attempted to overexpress AtSHN1, a transcription factor associated with epicuticular wax biosynthesis to increase leaf surface wax load in mulberry. Agrobacterium mediated in vitro transformation was carried out using hypocotyl and cotyledonary explants of Indian mulberry (cv. M5). Mulberry transgenic plants expressing AtSHN1 displayed dark green shiny appearance with increased leaf surface wax content. Scanning electron microscopy (SEM) and gas chromatograph–mass spectrometry (GC-MS) analysis showed change in pattern of surface wax deposition and significant change in wax composition in AtSHN1 overexpressors. Increased wax content altered leaf surface properties as there was significant difference in water droplet contact angle and diameter between transgenic and wild type plants. The transgenic plants showed significant improvement in leaf moisture retention capacity even 5 h after harvest and there was slow degradation of total buffer soluble protein in detached leaves compared to wild type. Silkworm bioassay did not indicate any undesirable effects on larval growth and cocoon yield. This study demonstrated that expression of AtSHN1, can increase surface wax load and reduce the post-harvest water loss in mulberry. PMID:28421085

  16. 78 FR 34431 - Effluent Limitations Guidelines and Standards for the Steam Electric Power Generating Point...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-07

    ...EPA is proposing a regulation that would strengthen the controls on discharges from certain steam electric power plants by revising technology-based effluent limitations guidelines and standards for the steam electric power generating point source category. Steam electric power plants alone contribute 50-60 percent of all toxic pollutants discharged to surface waters by all industrial categories currently regulated in the United States under the Clean Water Act. Furthermore, power plant discharges to surface waters are expected to increase as pollutants are increasingly captured by air pollution controls and transferred to wastewater discharges. This proposal, if implemented, would reduce the amount of toxic metals and other pollutants discharged to surface waters from power plants. EPA is considering several regulatory options in this rulemaking and has identified four preferred alternatives for regulation of discharges from existing sources. These four preferred alternatives differ with respect to the scope of requirements that would be applicable to existing discharges of pollutants found in two wastestreams generated at power plants. EPA estimates that the preferred options for this proposed rule would annually reduce pollutant discharges by 0.47 billion to 2.62 billion pounds, reduce water use by 50 billion to 103 billion gallons, cost $185 million to $954 million, and would be economically achievable.

  17. Thermal Energy Exchange Model and Water Loss of a Barrel Cactus, Ferocactus acanthodes1

    PubMed Central

    Lewis, Donald A.; Nobel, Park S.

    1977-01-01

    The influences of various diurnal stomatal opening patterns, spines, and ribs on the stem surface temperature and water economy of a CAM succulent, the barrel cactus Ferocactus acanthodes, were examined using an energy budget model. To incorporate energy exchanges by shortwave and longwave irradiation, latent heat, conduction, and convection as well as the heat storage in the massive stem, the plant was subdivided into over 100 internal and external regions in the model. This enabled the average surface temperature to be predicted within 1 C of the measured temperature for both winter and summer days. Reducing the stem water vapor conductance from the values observed in the field to zero caused the average daily stem surface temperature to increase only 0.7 C for a winter day and 0.3 C for a summer day. Thus, latent heat loss does not substantially reduce stem temperature. Although the surface temperatures averaged 18 C warmer for the summer day than for the winter day for a plant 41 cm tall, the temperature dependence of stomatal opening caused the simulated nighttime water loss rates to be about the same for the 2 days. Spines moderated the amplitude of the diurnal temperature changes of the stem surface, since the daily variation was 17 C for the winter day and 25 C for the summer day with spines compared with 23 C and 41 C, respectively, in their simulated absence. Ribs reduced the daytime temperature rise by providing 54% more area for convective heat loss than for a smooth circumscribing surface. In a simulation where both spines and ribs were eliminated, the daytime average surface temperature rose by 5 C. PMID:16660148

  18. Why the water bridge does not collapse

    NASA Astrophysics Data System (ADS)

    Aerov, Artem A.

    2011-09-01

    In 2007 an interesting phenomenon was discovered [J. Phys. DJPAPBE0022-372710.1088/0022-3727/40/19/052 40, 6112 (2007)]: a horizontal thread of water, the so-called water bridge, hangs in a horizontal electrostatic field. A different explanation of the water bridge stability is proposed herein: the force supporting it is the surface tension of water, while the role of the electric field is to not allow the water bridge to reduce its surface energy by breaking into separate drops. It is proven that electrostatic field is not the origin of the tension holding the bridge.

  19. Study of factors governing oil-water separation process using TiO₂ films prepared by spray deposition of nanoparticle dispersions.

    PubMed

    Gondal, Mohammed A; Sadullah, Muhammad S; Dastageer, Mohamed A; McKinley, Gareth H; Panchanathan, Divya; Varanasi, Kripa K

    2014-08-27

    Surfaces which possess extraordinary water attraction or repellency depend on surface energy, surface chemistry, and nano- and microscale surface roughness. Synergistic superhydrophilic-underwater superoleophobic surfaces were fabricated by spray deposition of nanostructured TiO2 on stainless steel mesh substrates. The coated meshes were then used to study gravity driven oil-water separation, where only the water from the oil-water mixture is allowed to permeate through the mesh. Oil-water separation efficiencies of up to 99% could be achieved through the coated mesh of pore sizes 50 and 100 μm, compared to no separation at all, that was observed in the case of uncoated meshes of the same material and pore sizes. An adsorbed water on the TiO2 coated surface, formation of a water-film between the wires that form the mesh and the underwater superoleophobicity of the structured surface are the key factors that contribute to the enhanced efficiency observed in oil-water separation. The nature of the oil-water separation process using this coated mesh (in which the mesh allows water to pass through the porous structure but resists wetting by the oil phase) minimizes the fouling of mesh so that the need for frequent replacement of the separating medium is reduced. The fabrication approach presented here can be applied for coating large surface areas and to develop a large-scale oil-water separation facility for oil-field applications and petroleum industries.

  20. Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands

    NASA Astrophysics Data System (ADS)

    Hendriks, Rob F. A.; van den Akker, Jan J. A.

    2017-04-01

    Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands In the Netherlands, about 8% of the area is covered by peat soils. Most of these soils are in use for dairy farming and, consequently, are drained. Drainage causes decomposition of peat by oxidation and accordingly leads to surface subsidence and greenhouse gas emission. Submerged drains that enhance submerged infiltration of water from ditches during the dry and warm summer half year were, and are still, studied in The Netherlands as a promising tool for reducing peat decomposition by raising groundwater levels. For this purpose, several pilot field studies in the Western part of the Dutch peat area were conducted. Besides the effectiveness of submerged drains in reducing peat decomposition and subsidence by raising groundwater tables, some other relevant or expected effects of these drains were studied. Most important of these are water management and loading of surface water with nutrients nitrogen, phosphorus and sulphate. Because most of these parameters are not easy to assess and all of them are strongly depending on the meteorological conditions during the field studies some of these studies were modelled. The SWAP model was used for evaluating the hydrological results on groundwater table and water discharge and recharge. Effects of submerged drains were assessed by comparing the results of fields with and without drains. An empirical relation between deepest groundwater table and subsidence was used to convert effects on groundwater table to effects on subsidence. With the SWAP-ANIMO model nutrient loading of surface water was modelled on the basis of field results on nutrient concentrations . Calibrated models were used to assess effects in the present situation, as thirty-year averages, under extreme weather conditions and for two extreme climate scenarios of the Royal Netherlands Meteorological Institute. In this study the model results of one of the pilot studies are presented. The case study 'de Krimpenerwaard' is situated in the peat area in the "Green Heart" between the major cities of Amsterdam, The Hague, Rotterdam and Utrecht. Model results show a halving of soil subsidence, a strong increase of water recharge but a lower increase of water discharge, and generally small to moderate effects on nutrient loading , all depending (strongly) on meteorological conditions.

  1. Noncontact methods for measuring water-surface elevations and velocities in rivers: Implications for depth and discharge extraction

    USGS Publications Warehouse

    Nelson, Jonathan M.; Kinzel, Paul J.; McDonald, Richard R.; Schmeeckle, Mark

    2016-01-01

    Recently developed optical and videographic methods for measuring water-surface properties in a noninvasive manner hold great promise for extracting river hydraulic and bathymetric information. This paper describes such a technique, concentrating on the method of infrared videog- raphy for measuring surface velocities and both acoustic (laboratory-based) and laser-scanning (field-based) techniques for measuring water-surface elevations. In ideal laboratory situations with simple flows, appropriate spatial and temporal averaging results in accurate water-surface elevations and water-surface velocities. In test cases, this accuracy is sufficient to allow direct inversion of the governing equations of motion to produce estimates of depth and discharge. Unlike other optical techniques for determining local depth that rely on transmissivity of the water column (bathymetric lidar, multi/hyperspectral correlation), this method uses only water-surface information, so even deep and/or turbid flows can be investigated. However, significant errors arise in areas of nonhydrostatic spatial accelerations, such as those associated with flow over bedforms or other relatively steep obstacles. Using laboratory measurements for test cases, the cause of these errors is examined and both a simple semi-empirical method and computational results are presented that can potentially reduce bathymetric inversion errors.

  2. Estimating surface temperature in forced convection nucleate boiling - A simplified method

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Papell, S. S.

    1977-01-01

    A simplified expression to estimate surface temperatures in forced convection boiling was developed using a liquid nitrogen data base. Using the principal of corresponding states and the Kutateladze relation for maximum pool boiling heat flux, the expression was normalized for use with other fluids. The expression was applied also to neon and water. For the neon data base, the agreement was acceptable with the exclusion of one set suspected to be in the transition boiling regime. For the water data base at reduced pressure greater than 0.05 the agreement is generally good. At lower reduced pressures, the water data scatter and the calculated temperature becomes a function of flow rate.

  3. Grass mulching effect on infiltration, surface runoff and soil loss of three agricultural soils in Nigeria.

    PubMed

    Adekalu, K O; Olorunfemi, I A; Osunbitan, J A

    2007-03-01

    Mulching the soil surface with a layer of plant residue is an effective method of conserving water and soil because it reduces surface runoff, increases infiltration of water into the soil and retard soil erosion. The effectiveness of using elephant grass (Pennisetum purpureum) as mulching material was evaluated in the laboratory using a rainfall simulator set at rainfall intensities typical of the tropics. Six soil samples, two from each of the three major soil series representing the main agricultural soils in South Western Nigeria were collected, placed on three different slopes, and mulched with different rates of the grass. The surface runoff, soil loss, and apparent cumulative infiltration were then measured under each condition. The results with elephant grass compared favorably with results from previous experiments using rice straw. Runoff and soil loss decreased with the amount of mulch used and increased with slope. Surface runoff, infiltration and soil loss had high correlations (R = 0.90, 0.89, and 0.86, respectively) with slope and mulch cover using surface response analysis. The mean surface runoff was correlated negatively with sand content, while mean soil loss was correlated positively with colloidal content (clay and organic matter) of the soil. Infiltration was increased and soil loss was reduced greatly with the highest cover. Mulching the soils with elephant grass residue may benefit late cropping (second cropping) by increasing stored soil water for use during dry weather and help to reduce erosion on sloping land.

  4. A review of diazinon use, contamination in surface waters, and regulatory actions in California across water years 1992-2014.

    PubMed

    Wang, Dan; Singhasemanon, Nan; Goh, Kean S

    2017-07-01

    Diazinon is an organophosphorus insecticide that has been widely used in the USA and in California resulting in contamination of surface waters. Several federal and state regulations have been implemented with the aim of reducing its impact to human health and the environment, e.g., the cancellation of residential use products by the USEPA and dormant spray regulations by the California Department of Pesticide Regulation. This study reviewed the change in diazinon use and surface water contamination in accordance with the regulatory actions implemented in California over water years 1992-2014. We observed that use amounts began declining when agencies announced the intention to regulate certain use patterns and continued to decline after the implementation of those programs and regulations. The reduction in use amounts led to a downward trend in concentration data and exceedance frequencies in surface waters. Moreover, we concluded that diazinon concentrations in California's surface waters in recent years (i.e., water years 2012-2014) posed a de minimis risk to aquatic organisms.

  5. Effectiveness of oat and rye cover crops in reducing nitrate losses in drainage water

    USDA-ARS?s Scientific Manuscript database

    A significant portion of the NO3 from agricultural fields that contaminates surface waters in the Midwest Corn Belt is transported to streams or rivers by subsurface drainage systems or “tiles”. Previous research has shown that N fertilizer management alone is not sufficient for reducing NO3 concent...

  6. Nitrate loss in subsurface drainage and corn yield as affected by timing of sidedress nitrogen

    USDA-ARS?s Scientific Manuscript database

    Using chlorophyll meters, crop sensors, or aerial photography to fine-tune sidedress N application rates have been proposed for optimizing and perhaps reducing overall N fertilizer use on corn (Zea mays L.) and thereby improving water quality by reducing NO3 losses to surface and ground waters. Howe...

  7. Changes In Tree Species In Riparian Zones Of Urban Streams May Have Effects On Restoration And Storm Water Control Efforts

    EPA Science Inventory

    A riparian zone is the land and vegetation within and directly adjacent to surface water ecosystems, such as lakes and streams. The vegetation in riparian zones provides ecosystem services (such as reducing flooding and bank erosion and reducing levels of pollutants in streams) ...

  8. Comparative Risk Assessment of spill response options for a deepwater oil well blowout: Part 1. Oil spill modeling.

    PubMed

    French-McCay, Deborah; Crowley, Deborah; Rowe, Jill J; Bock, Michael; Robinson, Hilary; Wenning, Richard; Walker, Ann Hayward; Joeckel, John; Nedwed, Tim J; Parkerton, Thomas F

    2018-06-01

    Oil spill model simulations of a deepwater blowout in the Gulf of Mexico De Soto Canyon, assuming no intervention and various response options (i.e., subsea dispersant injection SSDI, in addition to mechanical recovery, in-situ burning, and surface dispersant application) were compared. Predicted oil fate, amount and area of surfaced oil, and exposure concentrations in the water column above potential effects thresholds were used as inputs to a Comparative Risk Assessment to identify response strategies that minimize long-term impacts. SSDI reduced human and wildlife exposure to volatile organic compounds; dispersed oil into a large water volume at depth; enhanced biodegradation; and reduced surface water, nearshore and shoreline exposure to floating oil and entrained/dissolved oil in the upper water column. Tradeoffs included increased oil exposures at depth. However, since organisms are less abundant below 200 m, results indicate that overall exposure of valued ecosystem components was minimized by use of SSDI. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Corrosive microenvironments at lead solder surfaces arising from galvanic corrosion with copper pipe.

    PubMed

    Nguyen, Caroline K; Stone, Kendall R; Dudi, Abhijeet; Edwards, Marc A

    2010-09-15

    As stagnant water contacts copper pipe and lead solder (simulated soldered joints), a corrosion cell is formed between the metals in solder (Pb, Sn) and the copper. If the resulting galvanic current exceeds about 2 μA/cm(2), a highly corrosive microenvironment can form at the solder surface, with pH < 2.5 and chloride concentrations at least 11 times higher than bulk water levels. Waters with relatively high chloride tend to sustain high galvanic currents, preventing passivation of the solder surface, and contributing to lead contamination of potable water supplies. The total mass of lead corroded was consistent with predictions based on the galvanic current, and lead leaching to water was correlated with galvanic current. If the concentration of sulfate in the water increased relative to chloride, galvanic currents and associated lead contamination could be greatly reduced, and solder surfaces were readily passivated.

  10. 75 FR 8393 - Central Utah Project Completion Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... to reduce loss of water during the late irrigation season period of water shortage, and perforated... be taken in order to more efficiently utilize existing ground-water supplies in conjunction with existing surface water supplies. The Bonneville Unit of the Central Utah Project was authorized to develop...

  11. Estimating costs and potentials of different methods to reduce the Swedish phosphorus load from agriculture to surface water.

    PubMed

    Malmaeus, J M; Karlsson, O M

    2010-01-01

    This paper reviews 17 measures to reduce phosphorus leakage from Swedish agriculture to surface waters. Our aim is to evaluate the possible contribution from agriculture to achieve environmental goals including the Baltic Sea Action Plan. Using a regional approach integrating the variability in field specific characteristics, typical costs and national potential for the included measures may be estimated without identifying, e.g., suitable individual fields for implementation. The result may be helpful to select suitable measures but may also influence the design of environmental targets before they are determined. We find that the cheapest measures are reduced phosphorus content in animal food and fertilizer application supervision in pig farms, both measures with annual potentials of around 50t each, and costs of euro7 to euro11 kg(-1)yr(-1). The total potential of the listed measures is an annual phosphorus reduction to surface waters of 242t. If the most expensive measures are excluded (>euro1000 kg(-1)yr(-1)) and including retention in lakes the phosphorus transport to the sea could be reduced by 165 t yr(-1). This amount can be compared with the Swedish commitment in the Baltic Sea Action Plan (BSAP) to reduce input to the Baltic Proper by 290 t yr(-1).

  12. Reduction of spatial distribution of risk factors for transportation of contaminants released by coal mining activities.

    PubMed

    Karan, Shivesh Kishore; Samadder, Sukha Ranjan

    2016-09-15

    It is reported that water-energy nexus composes two of the biggest development and human health challenges. In the present study we presented a Risk Potential Index (RPI) model which encapsulates Source, Vector (Transport), and Target risks for forecasting surface water contamination. The main aim of the model is to identify critical surface water risk zones for an open cast mining environment, taking Jharia Coalfield, India as the study area. The model also helps in feasible sampling design. Based on spatial analysis various risk zones were successfully delineated. Monthly RPI distribution revealed that the risk of surface water contamination was highest during the monsoon months. Surface water samples were analysed to validate the model. A GIS based alternative management option was proposed to reduce surface water contamination risk and observed 96% and 86% decrease in the spatial distribution of very high risk areas for the months June and July respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Riparian shrub buffers reduce surface water pollutant loads

    Treesearch

    W. A. Geyer; C. Barden; K. Mankin; D. Devlin

    2003-01-01

    Surface water resources in Kansas often contain concentrations of pesticides, nutrients, and sediments that are of concern to local citizens. The United States Geological Survey reported in 1999 that 97 percent of streams and 82 percent of lakes in Kansas would not fully support all uses as designated by state statutes (U.S. Geological Survey 1999). Bacteria and...

  14. Atrazine sorption by biochar, tire chips, and steel slag as media for blind inlets: A kinetic and isotherm sorption approach

    USDA-ARS?s Scientific Manuscript database

    Surface inlets are installed in subsurface drainage systems to reduce ponding duration and surface runoff, but can contribute to water quality concerns by allowing water to directly enter buried drains. Blind inlets, consist of perforated pipes covered with gravel and are separated from an overlying...

  15. Effect of inlet modelling on surface drainage in coupled urban flood simulation

    NASA Astrophysics Data System (ADS)

    Jang, Jiun-Huei; Chang, Tien-Hao; Chen, Wei-Bo

    2018-07-01

    For a highly developed urban area with complete drainage systems, flood simulation is necessary for describing the flow dynamics from rainfall, to surface runoff, and to sewer flow. In this study, a coupled flood model based on diffusion wave equations was proposed to simulate one-dimensional sewer flow and two-dimensional overland flow simultaneously. The overland flow model provides details on the rainfall-runoff process to estimate the excess runoff that enters the sewer system through street inlets for sewer flow routing. Three types of inlet modelling are considered in this study, including the manhole-based approach that ignores the street inlets by draining surface water directly into manholes, the inlet-manhole approach that drains surface water into manholes that are each connected to multiple inlets, and the inlet-node approach that drains surface water into sewer nodes that are connected to individual inlets. The simulation results were compared with a high-intensity rainstorm event that occurred in 2015 in Taipei City. In the verification of the maximum flood extent, the two approaches that considered street inlets performed considerably better than that without street inlets. When considering the aforementioned models in terms of temporal flood variation, using manholes as receivers leads to an overall inefficient draining of the surface water either by the manhole-based approach or by the inlet-manhole approach. Using the inlet-node approach is more reasonable than using the inlet-manhole approach because the inlet-node approach greatly reduces the fluctuation of the sewer water level. The inlet-node approach is more efficient in draining surface water by reducing flood volume by 13% compared with the inlet-manhole approach and by 41% compared with the manhole-based approach. The results show that inlet modeling has a strong influence on drainage efficiency in coupled flood simulation.

  16. Application of SWMM in Water Resources Management: A Community Scale Study

    NASA Astrophysics Data System (ADS)

    Li, Yuan-Hua; Tung, Ching-Pin

    2015-04-01

    Under the impacts of climate change, water resource management faces a serious challenge. Due to extremely events, the water supply system is hard to maintain stable water supply. In order to decrease the pressure of centralized water supply system, the water demand management should be strengthened. The storm water management model (SWMM) is widely used to simulate surface runoff, and it has been improved to have the ability of continuous simulation. In this study, storm water management model (SWMM) is applied to simulate surface runoff and integrated into the framework of water resource management for a rural community scale. In a rural community, the surface runoff may be collected and treated by wetlands for later uses. The reclaimed water from wetlands may become a new water resource for non-contact domestic water uses, or be reused to meet irrigating water demand. Thus, the water demand from the centralized system can be reduced, and the water supply system may have lower risk under the climate change. On the other hand, SWMM can simulate the measures of low impact development (LID), such as bio-retention cell, green roof, rain barrel etc. The decentralized measures, LID, may not only reduce the runoff and delay the peak flow, and but also provide the service of water supply. In this study, LID is applied to water resource management of a rural community, and combined with the centralized water supply system. The results show the application of SWMM to water resources management in a community scale study. Besides, the effectiveness of LID on water supply is also evaluated.

  17. Simulated effects of development on regional ground-water/surface-water interactions in the northern Coastal Plain of New Jersey

    NASA Astrophysics Data System (ADS)

    Pucci, Amleto A.; Pope, Daryll A.

    1995-05-01

    Stream flow in the Coastal Plain of New Jersey is primarily controlled by ground-water discharge. Ground-water flow in a 400 square mile area (1035 km 2) of the Potomac-Raritan-Magothy aquifer system (PRMA) in the northern Coastal Plain of New Jersey was simulated to examine development effects on water resources. Simulations showed that historical development caused significant capture of regional ground-water discharge to streams and wetlands. The Cretaceous PRMA primarily is composed of fine to coarse sand, clays and silts which form the Upper and Middle aquifers and their confining units. The aquifer outcrops are the principal areas of recharge and discharge for the regional flow system and have many traversing streams and surface-water bodies. A quasi-three-dimensional numerical model that incorporated ground-water/surface-water interactions and boundary flows from a larger regional model was used to represent the PRMA. To evaluate the influence of ground-water development on interactions in different areas, hydrogeologically similar and contiguous model stream cells were aggregated as 'stream zones'. The model representation of surface-water and ground-water interaction was limited in the areas of confining unit outcrops and because of this, simulated ground-water discharge could not be directly compared with base flow. Significant differences in simulated ground-water and surface-water interactions between the predevelopment and developed system, include; (1) redistribution of recharge and discharge areas; (2) reduced ground-water discharge to streams. In predevelopment, the primary discharge for the Upper and Middle aquifers is to low-lying streams and wetlands; in the developed system, the primary discharge is to ground-water withdrawals. Development reduces simulated ground-water discharge to streams in the Upper Aquifer from 61.4 to 10% of the Upper Aquifer hydrologic budget (28.9%, if impounded stream flow is included). Ground-water discharge to streams in the Middle Aquifer decreases from 80.0 to 22% of the Middle Aquifer hydrologic budget. The utility of assessing ground-water/surface-water interaction in a regional hydrogeologic system by simulation responses to development is demonstrated and which can compensate for lack of long-term stream-gaging data in determining management decisions.

  18. Impacts of Aerosols on Seasonal Precipitation and Snowpack in California Based on Convection-Permitting WRF-Chem Simulations

    NASA Astrophysics Data System (ADS)

    Gu, Y.; Wu, L.; Jiang, J. H.; Su, H.; Yu, N.; Zhao, C.; Qian, Y.; Zhao, B.; Liou, K. N.; Choi, Y. S.

    2017-12-01

    A version of the WRF-Chem model with fully coupled aerosol-meteorology-snowpack is employed to investigate the impacts of various aerosol sources on precipitation and snowpack in California. In particular, the impacts of locally emitted anthropogenic and dust aerosols, and aerosols transported from outside of California are studied. We differentiate three pathways of aerosol effects including aerosol-radiation interaction (ARI), aerosol-snow interaction (ASI), and aerosol-cloud interaction (ACI). The convection-permitting model simulations show that precipitation, snow water equivalent (SWE), and surface air temperature averaged over the whole domain (34-42°N, 117-124°W, not including ocean points) are reduced when aerosols are included, therefore reducing the high model biases of these variables when aerosol effects are not considered. Aerosols affect California water resources through the warming of mountain tops and anomalously low precipitation, however, different aerosol sources play different roles in changing surface temperature, precipitation and snowpack in California by means of various weights of the three pathways. ARI by all aerosols mainly cools the surface, leading to slightly increased SWE over the mountains. Locally emitted dust aerosols warm the surface of mountain tops through ASI, in which the reduced snow albedo associated with dirty snow leads to more surface absorption of solar radiation and reduced SWE. Transported and local anthropogenic aerosols play a dominant role in increasing cloud water amount but reducing precipitation through ACI, leading to reduced SWE and runoff over the Sierra Nevada, as well as the warming of mountain tops associated with decreased SWE and hence lower surface albedo. The average changes in surface temperature from October to June are about -0.19 K and 0.22 K for the whole domain and over mountain tops, respectively. Overall, the averaged reduction during October to June is about 7% for precipitation, 3% for SWE, and 7% for surface runoff for the whole domain, while the corresponding numbers are 12%, 10%, and 10% for mountain tops. The reduction in SWE is more significant in a dry year, with 9% for the whole domain and 16% for mountain tops.

  19. Molecular dynamics simulation study of the structure of poly(ethylene oxide) brushes on nonpolar surfaces in aqueous solution.

    PubMed

    Bedrov, Dmitry; Smith, Grant D

    2006-07-04

    The structure of poly(ethylene oxide) (PEO, M(w) = 526) brushes of various grafting density (sigma) on nonpolar graphite and hydrophobic (oily) surfaces in aqueous solution has been studied using atomistic molecular dynamics simulations. Additionally, the influence of PEO-surface interactions on the brush structure was investigated by systematically reducing the strength of the (dispersion) attraction between PEO and the surfaces. PEO chains were found to adsorb strongly to the graphite surface due primarily to the relative strength of dispersion interactions between PEO and the atomically dense graphite compared to those between water and graphite. For the oily surface, PEO-surface and water-surface dispersion interactions are much weaker, greatly reducing the energetic driving force for PEO adsorption. This reduction is mediated to some extent by a hydrophobic driving force for PEO adsorption on the oily surface. Reduction in the strength of PEO-surface attraction results in reduced adsorption of PEO for both surfaces, with the effect being much greater for the graphite surface where the strong PEO-surface dispersion interactions dominate. At high grafting density (sigma approximately 1/R(g)(2)), the PEO density profiles exhibited classical brush behavior and were largely independent of the strength of the PEO-surface interaction. With decreasing grafting density (sigma < 1/R(g)(2)), coverage of the surface by PEO requires an increasingly large fraction of PEO segments resulting in a strong dependence of the PEO density profile on the nature of the PEO-surface interaction.

  20. Groundwater-surfacewater relationships in the Bonaparte Creek basin, Okanogan County, Washington, 1979-1980

    USGS Publications Warehouse

    Packard, F.A.; Sumioka, S.S.; Whiteman, K.J.

    1983-01-01

    Ground water-surface-water relationships were studied in five morphological segments in the Bonaparte Creek basin, Washington during 1979 and 1980. In one segment, kettle lakes were found to be closely associated with the ground-water system. In the other four segments, a close relationship was found between streamflow and ground water. It was concluded that additional ground-water development would adversely affect lake levels and streamflow, thereby reducing surface-water resources already closed to further appropriation. The ground-water divide between the Bonaparte and Sanpoil basins was 6 miles southeast of where it was estimated to be. (USGS)

  1. Estimating restorable wetland water storage at landscape scales

    EPA Science Inventory

    Globally, hydrologic modifications such as ditching and subsurface drainage have significantly reduced wetland water storage capacity (i.e., the volume of surface water a wetland can retain) and consequent wetland functions. While wetland area has been well documented across many...

  2. Long-term phosphorus immobilization by a drinking water treatment residual.

    PubMed

    Agyin-Birikorang, Sampson; O'Connor, George A; Jacobs, Lee W; Makris, Konstantinos C; Brinton, Scott R

    2007-01-01

    Excessive soluble P in runoff is a common cause of eutrophication in fresh waters. Evidence indicates that drinking water treatment residuals (WTRs) can reduce soluble P concentrations in P-impacted soils in the short term (days to weeks). The long-term (years) stability of WTR-immobilized P has been inferred, but validating field data are scarce. This research was undertaken at two Michigan field sites with a history of heavy manure applications to study the longevity of alum-based WTR (Al-WTR) effects on P solubility over time (7.5 yr). At both sites, amendment with Al-WTR reduced water-soluble P (WSP) concentration by >or=60% as compared to the control plots, and the Al-WTR-immobilized P (WTR-P) remained stable 7.5 yr after Al-WTR application. Rainfall simulation techniques were utilized to investigate P losses in runoff and leachate from surface soils of the field sites at 7.5 yr after Al-WTR application. At both sites, amendment with Al-WTR reduced dissolved P and bioavailable P (BAP) by >50% as compared to the control plots, showing that WTR-immobilized P remained nonlabile even 7.5 yr after Al-WTR amendment. Thus, WTR-immobilized P would not be expected to dissolve into runoff and leachate to contaminate surface waters or groundwater. Even if WTR-P is lost via erosion to surface waters, the bioavailability of the immobilized P should be minimal and should have negligible effects on water quality. However, if the WTR particles are destroyed by extreme conditions, P loss to water could pose a eutrophication risk.

  3. Water sources and controls on water-loss rates of epigeous ectomycorrhizal fungal sporocarps during summer drought

    Treesearch

    Erik A. Lilleskov; Thomas D. Bruns; Todd E. Dawson; Francisco J. Camacho

    2009-01-01

    Access to deeper soil water and water-conserving traits should reduce water stress for ectomycorrhizal fungi, permitting function during drought. Here, we explored whether epigeous fruiting of ectomycorrhizal fungi during drought was facilitated by access to deep soil water, how much water was lost from sporocarps, and how sporocarp surface to volume ratios affected...

  4. Hydrodynamic skin-friction reduction

    NASA Technical Reports Server (NTRS)

    Reed, Jason C. (Inventor); Bushnell, Dennis M. (Inventor); Weinstein, Leonard M. (Inventor)

    1989-01-01

    A process for reducing skin friction, inhibiting the effects of liquid turbulence, and decreasing heat transfer in a system involving flow of a liquid along a surface of a body includes applying a substantially integral sheet of a gas, e.g., air, immediately adjacent to the surface of the body; a marine vehicle, which has a longitudinally grooved surface in proximity with the liquid and with a surface material having high contact angle between the liquid and said wall to reduce interaction of the liquid; water, with the surface of the body; and the hull of the marine vehicle.

  5. Swath-altimetry measurements of the main stem Amazon River: measurement errors and hydraulic implications

    NASA Astrophysics Data System (ADS)

    Wilson, M. D.; Durand, M.; Jung, H. C.; Alsdorf, D.

    2015-04-01

    The Surface Water and Ocean Topography (SWOT) mission, scheduled for launch in 2020, will provide a step-change improvement in the measurement of terrestrial surface-water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water-surface elevations. In this paper, we aimed to (i) characterise and illustrate in two dimensions the errors which may be found in SWOT swath measurements of terrestrial surface water, (ii) simulate the spatio-temporal sampling scheme of SWOT for the Amazon, and (iii) assess the impact of each of these on estimates of water-surface slope and river discharge which may be obtained from SWOT imagery. We based our analysis on a virtual mission for a ~260 km reach of the central Amazon (Solimões) River, using a hydraulic model to provide water-surface elevations according to SWOT spatio-temporal sampling to which errors were added based on a two-dimensional height error spectrum derived from the SWOT design requirements. We thereby obtained water-surface elevation measurements for the Amazon main stem as may be observed by SWOT. Using these measurements, we derived estimates of river slope and discharge and compared them to those obtained directly from the hydraulic model. We found that cross-channel and along-reach averaging of SWOT measurements using reach lengths greater than 4 km for the Solimões and 7.5 km for Purus reduced the effect of systematic height errors, enabling discharge to be reproduced accurately from the water height, assuming known bathymetry and friction. Using cross-sectional averaging and 20 km reach lengths, results show Nash-Sutcliffe model efficiency values of 0.99 for the Solimões and 0.88 for the Purus, with 2.6 and 19.1 % average overall error in discharge, respectively. We extend the results to other rivers worldwide and infer that SWOT-derived discharge estimates may be more accurate for rivers with larger channel widths (permitting a greater level of cross-sectional averaging and the use of shorter reach lengths) and higher water-surface slopes (reducing the proportional impact of slope errors on discharge calculation).

  6. Alternative technologies for water quality management

    Treesearch

    Mandla A. Tshabalala

    2002-01-01

    Cranberry growers are concerned about the quality of water discharged from cranberry bogs into receiving surface waters. These water discharges may contain traces of pesticides arising from herbicide, insecticide or fungicide applications. They may also contain excess phosphorus from fertilizer application. Some cranberry farms have holding ponds to reduce the amount...

  7. Giardia duodenalis: Number and Fluorescence Reduction Caused by the Advanced Oxidation Process (H2O2/UV)

    PubMed Central

    Guimarães, José Roberto; Franco, Regina Maura Bueno; Guadagnini, Regiane Aparecida; dos Santos, Luciana Urbano

    2014-01-01

    This study evaluated the effect of peroxidation assisted by ultraviolet radiation (H2O2/UV), which is an advanced oxidation process (AOP), on Giardia duodenalis cysts. The cysts were inoculated in synthetic and surface water using a concentration of 12 g H2O2 L−1 and a UV dose (λ = 254 nm) of 5,480 mJcm−2. The aqueous solutions were concentrated using membrane filtration, and the organisms were observed using a direct immunofluorescence assay (IFA). The AOP was effective in reducing the number of G. duodenalis cysts in synthetic and surface water and was most effective in reducing the fluorescence of the cyst walls that were present in the surface water. The AOP showed a higher deleterious potential for G. duodenalis cysts than either peroxidation (H2O2) or photolysis (UV) processes alone. PMID:27379301

  8. Effect of irrigation techniques and strategies on water footprint of growing crops

    NASA Astrophysics Data System (ADS)

    Chukalla, A. D.; Krol, M. S.; Hoekstra, A. Y. Y.

    2014-12-01

    Reducing the water footprint (WF) of growing crops, the largest water user and a significant contributor to the WF of many consumer products, plays a significant role in integrated and sustainable water management. The water footprint for growing crop is accounted by relating the crop yield with the corresponding consumptive water use (CWU), which both can be adjusted by measures that affect the crop growth and root-zone soil water balance. This study explored the scope for reducing the water footprint of irrigated crops by experimenting set of field level technical and managerial measures: (i) irrigation technologies (Furrow, sprinkler, drip and sub-surface drip), (ii) irrigation strategies (full and a range of sustained and controlled deficit) and (iii) field management options (zero, organic and synthetic mulching). Ranges of cases were also considered: (a) Arid and semi-arid environment (b) Loam and Sandy-loam soil types and (c) for Potato, Wheat and Maize crops; under (c) wet, normal and dry years. AquaCrop, the water driven crop growth and soil water balance model, offered the opportunity to systematically experiment these measures on water consumption and yield. Further, the green and blue water footprints of growing crop corresponding to each measure were computed by separating the root zone fluxes of the AquaCrop output into the green and blue soil water stocks and their corresponding fluxes. Results showed that in arid environment reduction in irrigation supply, CWU and WF up to 300 mm, 80 mm and 75 m3/tonne respectively can be achieved for Maize by a combination of organic mulching and drip technology with controlled deficit irrigation strategies (10-20-30-40% deficit with reference to the full irrigation requirement). These reductions come with a yield drop of 0.54 tonne/ha. In the same environment under the absence of mulching practice, the sub-surface drip perform better in reducing CWU and WF of irrigated crops followed by drip and furrow irrigation technique. This rank though changes in non-moisture limiting condition (wet year) drip performing better in reducing the WF of growing crops than sub-surface drip. It was observed that with all range of irrigation techniques, strategies and field management practices there is more room in reducing the WF of growing crops in loam than sandy-loam soil.

  9. Using Automatic Control Approach In Detention Storages For Storm Water Management In An Urban Watershed

    NASA Astrophysics Data System (ADS)

    Goyal, A.; Yadav, H.; Tyagi, H.; Gosain, A. K.; Khosa, R.

    2017-12-01

    Increased imperviousness due to rapid urbanization have changed the urban hydrological cycle. As watersheds are urbanized, infiltration and groundwater recharge have decreased, surface runoff hydrograph shows higher peak indicating large volumes of surface runoff in lesser time durations. The ultimate panacea is to reduce the peak of hydrograph or increase the retention time of surface flow. SWMM is widely used hydrologic and hydraulic software which helps to simulate the urban storm water management with the provision to apply different techniques to prevent flooding. A model was setup to simulate the surface runoff and channel flow in a small urban catchment. It provides the temporal and spatial information of flooding in a catchment. Incorporating the detention storages in the drainage network helps achieve reduced flooding. Detention storages provided with predefined algorithms were for controlling the pluvial flooding in urban watersheds. The algorithm based on control theory, automated the functioning of detention storages ensuring that the storages become active on occurrence of flood in the storm water drains and shuts down when flooding is over. Detention storages can be implemented either at source or at several downstream control points. The proposed piece of work helps to mitigate the wastage of rainfall water, achieve desirable groundwater and attain a controlled urban storm water management system.

  10. Modeling nitrate removal in a denitrification bed

    USDA-ARS?s Scientific Manuscript database

    Denitrification beds are being promoted to reduce nitrate concentrations in agricultural drainage water to alleviate the adverse environmental effects associated with nitrate pollution in surface water. In this system, water flows through a trench filled with a carbon media where nitrate is transfor...

  11. Watershed Scale Analysis of Groundwater Surface Water Interactions and Its Application to Conjunctive Management under Climatic and Anthropogenic Stresses over the US Sunbelt

    NASA Astrophysics Data System (ADS)

    Seo, Seung Beom

    Although water is one of the most essential natural resources, human activities have been exerting pressure on water resources. In order to reduce these stresses on water resources, two key issues threatening water resources sustainability - interaction between surface water and groundwater resources and groundwater withdrawal impacts of streamflow depletion - were investigated in this study. First, a systematic decomposition procedure was proposed for quantifying the errors arising from various sources in the model chain in projecting the changes in hydrologic attributes using near-term climate change projections. Apart from the unexplained changes by GCMs, the process of customizing GCM projections to watershed scale through a model chain - spatial downscaling, temporal disaggregation and hydrologic model - also introduces errors, thereby limiting the ability to explain the observed changes in hydrologic variability. Towards this, we first propose metrics for quantifying the errors arising from different steps in the model chain in explaining the observed changes in hydrologic variables (streamflow, groundwater). The proposed metrics are then evaluated using a detailed retrospective analyses in projecting the changes in streamflow and groundwater attributes in four target basins that span across a diverse hydroclimatic regimes over the US Sunbelt. Our analyses focused on quantifying the dominant sources of errors in projecting the changes in eight hydrologic variables - mean and variability of seasonal streamflow, mean and variability of 3-day peak seasonal streamflow, mean and variability of 7-day low seasonal streamflow and mean and standard deviation of groundwater depth - over four target basins using an Penn state Integrated Hydrologic Model (PIHM) between the period 1956-1980 and 1981-2005. Retrospective analyses show that small/humid (large/arid) basins show increased (reduced) uncertainty in projecting the changes in hydrologic attributes. Further, changes in error due to GCMs primarily account for the unexplained changes in mean and variability of seasonal streamflow. On the other hand, the changes in error due to temporal disaggregation and hydrologic model account for the inability to explain the observed changes in mean and variability of seasonal extremes. Thus, the proposed metrics provide insights on how the error in explaining the observed changes being propagated through the model under different hydroclimatic regimes. To understand interaction between surface water and groundwater resources, transient pumping impacts on streamflow and groundwater level were analyzed by imposing shortterm pumping scenarios under historic drought conditions. Since surface water and groundwater systems are fully coupled and integrated systems, increased groundwater withdrawal during drought may reduce baseflow into the stream and prolong both systems' recovery from drought. Towards this, we proposed an uncertainty framework to understand the resiliency of groundwater and surface water systems using a fully-coupled hydrologic model under transient pumping. Using this framework, we quantified the restoration time of surface water and groundwater systems and also estimated the changes in the state variables after pumping. Groundwater pumping impacts over the watershed were also analyzed under different pumping volumes and different potential climate scenarios. Our analyses show that groundwater restoration time is more sensitive to changes in pumping volumes as opposed to changes in climate. After the cessation of pumping, streamflow recovers quickly in comparison to groundwater. Pumping impacts on other state variables are also discussed. Given that surface water and groundwater are inter-connected, optimal management of the both resources should be considered to improve the watershed resiliency under drought. Subsequently, conjunctive use of surface water and groundwater has been considered as an effective approach to mitigate water shortage problems that are primarily caused by a drought. It is found that appropriate use of groundwater withdrawal was able to reduce water scarcity in surface water resources in drought condition. Besides, recovery time constraint was embedded in the management model so that trade-off between minimizing water scarcity and maximizing sustainability on groundwater was successfully addressed.

  12. Influence of surface crusting on infiltration of a loess plateau soil

    USDA-ARS?s Scientific Manuscript database

    Surface sealing and crusting are common widespread processes that occur in many cultivated soils worldwide, especially in arid and semiarid regions. Soil crusting negatively affects water infiltration, increases surface runoff, reduces seedling emergence, restricts air exchange between the soil and ...

  13. The effect of aluminium nanocoating and water pH value on the wettability behavior of an aluminium surface

    NASA Astrophysics Data System (ADS)

    Ali, Naser; Teixeira, Joao A.; Addali, Abdulmajid; Al-Zubi, Feras; Shaban, Ehab; Behbehani, Ismail

    2018-06-01

    Experimental investigation was performed to highlight the influence of ionic bounding and surface roughness effects on the surface wettability. Nanocoating technique via e-beam physical vapor deposition process was used to fabricate aluminium (Al) film of 50, 100, and 150 nm on the surface of an Al substrate. Microstructures of the samples before and after deposition were observed using an atomic force microscopy. A goniometer device was later on used to examine the influence of surface topography on deionised water of pH 4, 7 and 9 droplets at a temperature ranging from 10 °C to 60 °C through their contact angles with the substrate surface, for both coated and uncoated samples. It was found that, although the coated layer has reduced the mean surface roughness of the sample from 10.7 nm to 4.23 nm, by filling part of the microstructure gaps with Al nanoparticles, the wettability is believed to be effected by the ionic bounds between the surface and the free anions in the fluid. As the deionised water of pH 4, and 9 gave an increase in the average contact angles with the increase of the coated layer thickness. On the other hand, the deionised water of pH 7 has showed a negative relation with the film thickness, where the contact angle reduced as the thickness of the coated layer was increased. The results from the aforementioned approach had showed that nanocoating can endorse the hydrophobicity (unwitting) nature of the surface when associated with free ions hosted by the liquid.

  14. Groundwater and surface-water utilisation using a bank infiltration technique in Malaysia

    NASA Astrophysics Data System (ADS)

    Shamsuddin, Mohd Khairul Nizar; Sulaiman, Wan Nor Azmin; Suratman, Saim; Zakaria, Mohamad Pauzi; Samuding, Kamarudin

    2014-05-01

    Bank infiltration (BI) is one of the solutions to providing raw water for public supply in tropical countries. This study in Malaysia explores the use of BI to supplement a polluted surface-water resource with groundwater. Three major factors were investigated: (1) contribution of surface water through BI to the resulting abstraction, (2) input of local groundwater, and (3) water-quality characteristics of the resulting water supply. A geophysical method was employed to define the subsurface geology and hydrogeology, and isotope techniques were performed to identify the source of groundwater recharge and the interaction between surface water and groundwater. The physicochemical and microbiological parameters of the local surface-water bodies and groundwater were analyzed before and during water abstraction. Extracted water revealed a 5-98 % decrease in turbidity, as well as reductions in HCO3 -, Cl-, SO4 2-, NO3 -, Ca2+, Al3+ and As concentrations compared with those of Langat River water. In addition, amounts of E. coli, total coliform and Giardia were significantly reduced (99.9 %). However, water samples from test wells during pumping showed high concentrations of Fe2+ and Mn2+. Pumping test results indicate that the two wells used in the study were able to sustain yields.

  15. Hydrophilic, bactericidal nanoheater-enabled reverse osmosis membranes to improve fouling resistance.

    PubMed

    Ray, Jessica R; Tadepalli, Sirimuvva; Nergiz, Saide Z; Liu, Keng-Ku; You, Le; Tang, Yinjie; Singamaneni, Srikanth; Jun, Young-Shin

    2015-06-03

    Polyamide (PA) semipermeable membranes typically used for reverse osmosis water treatment processes are prone to fouling, which reduces the amount and quality of water produced. By synergistically coupling the photothermal and bactericidal properties of graphene oxide (GO) nanosheets, gold nanostars (AuNS), and hydrophilic polyethylene glycol (PEG) on PA reverse osmosis membrane surfaces, we have dramatically improved fouling resistance of these membranes. Batch fouling experiments from three classes of fouling are presented: mineral scaling (CaCO3 and CaSO4), organic fouling (humic acid), and biofouling (Escherichia coli). Systematic analyses and a variety of complementary techniques were used to elucidate fouling resistance mechanisms from each layer of modification on the membrane surface. Both mineral scaling and organic fouling were significantly reduced in PA-GO-AuNS-PEG membranes compared to other membranes. The PA-GO-AuNS-PEG membrane was also effective in killing all near-surface bacteria compared to PA membranes. In the PA-GO-AuNS-PEG membrane, the GO nanosheets act as templates for in situ AuNS growth, which then facilitated localized heating upon irradiation by an 808 nm laser inactivating bacteria on the membrane surface. Furthermore, AuNS in the membrane assisted PEG in preventing mineral scaling on the membrane surface. In flow-through flux and foulant rejection tests, PA-GO-AuNS-PEG membranes performed better than PA membranes in the presence of CaSO4 and humic acid model foulants. Therefore, the newly suggested membrane surface modifications will not only reduce fouling from RO feeds, but can improve overall membrane performance. Our innovative membrane design reported in this study can significantly extend the lifetime and water treatment efficacy of reverse osmosis membranes to alleviate escalating global water shortage from rising energy demands.

  16. The hydration structure at yttria-stabilized cubic zirconia (110)-water interface with sub-Ångström resolution

    DOE PAGES

    Hou, Binyang; Kim, Seunghyun; Kim, Taeho; ...

    2016-06-15

    The interfacial hydration structure of yttria-stabilized cubic zirconia (110) surface in contact with water was determined with ~0.5 Å resolution by high-resolution X-ray reflectivity measurement. The terminal layer shows a reduced electron density compared to the following substrate lattice layers, which indicates there are additional defects generated by metal depletion as well as intrinsic oxygen vacancies, both of which are apparently filled by water species. Above this top surface layer, two additional adsorbed layers are observed forming a characteristic interfacial hydration structure. The first adsorbed layer shows abnormally high density as pure water and likely includes metal species, whereas themore » second layer consists of pure water. The observed interfacial hydration structure seems responsible for local equilibration of the defective surface in water and eventually regulating the long-term degradation processes. As a result, the multitude of water interactions with the zirconia surface results in the complex but highly ordered interfacial structure constituting the reaction front.« less

  17. Observation of ice nucleation in acoustically levitated water drops

    NASA Astrophysics Data System (ADS)

    Lü, Y. J.; Xie, W. J.; Wei, B.

    2005-10-01

    The supercooling and nucleation of acoustically levitated water drops were investigated at two different sound pressure levels (SPL). These water drops were supercooled by 13to16K at the low SPL of 160.6dB, whereas their supercoolings varied from 5to11K at the high SPL of 164.4dB. The maximum supercooling obtained in the experiments is 32K. Statistical analyses based on the classical nucleation theory reveal that the occurrence of ice nucleation in water drops is mainly confined to the surface region under acoustic levitation conditions and the enlargement of drop surface area caused by the acoustic radiation pressure reduces water supercoolability remarkably. A comparison of the nucleation rates at the two SPLs indicates that the sound pressure can strengthen the surface-dominated nucleation of water drops. The acoustic stream around levitated water drops and the cavitation effect associated with ultrasonic field are the main factors that induce surface-dominated nucleation.

  18. Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge

    NASA Astrophysics Data System (ADS)

    Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng

    2018-04-01

    Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm2, the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.

  19. Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge.

    PubMed

    Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng

    2018-04-19

    Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm 2 , the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.

  20. Rye cover crop increases earthworm populations and reduces losses of broadcast, fall-applied, fertilizers in surface runoff

    USDA-ARS?s Scientific Manuscript database

    Corn (Zea mays L.) silage and soybean [Glycine max (L.) Merr.] rotations in the US Upper Midwest leave minimal amounts of surface residues, which can contribute to soil degradation and a reduction in water quality. Planting cover crops after harvest can reduce these concerns, but their effectiveness...

  1. Light Meets Water in Nonlocal Media: Surface Tension Analogue in Optics

    NASA Astrophysics Data System (ADS)

    Horikis, Theodoros P.; Frantzeskakis, Dimitrios J.

    2017-06-01

    Shallow water wave phenomena find their analogue in optics through a nonlocal nonlinear Schrödinger (NLS) model in 2 +1 dimensions. We identify an analogue of surface tension in optics, namely, a single parameter depending on the degree of nonlocality, which changes the sign of dispersion, much like surface tension does in the shallow water wave problem. Using multiscale expansions, we reduce the NLS model to a Kadomtsev-Petviashvili (KP) equation, which is of the KPII (KPI) type, for strong (weak) nonlocality. We demonstrate the emergence of robust optical antidark solitons forming Y -, X -, and H -shaped wave patterns, which are approximated by colliding KPII line solitons, similar to those observed in shallow waters.

  2. Light Meets Water in Nonlocal Media: Surface Tension Analogue in Optics.

    PubMed

    Horikis, Theodoros P; Frantzeskakis, Dimitrios J

    2017-06-16

    Shallow water wave phenomena find their analogue in optics through a nonlocal nonlinear Schrödinger (NLS) model in 2+1 dimensions. We identify an analogue of surface tension in optics, namely, a single parameter depending on the degree of nonlocality, which changes the sign of dispersion, much like surface tension does in the shallow water wave problem. Using multiscale expansions, we reduce the NLS model to a Kadomtsev-Petviashvili (KP) equation, which is of the KPII (KPI) type, for strong (weak) nonlocality. We demonstrate the emergence of robust optical antidark solitons forming Y-, X-, and H-shaped wave patterns, which are approximated by colliding KPII line solitons, similar to those observed in shallow waters.

  3. A microphysical parameterization of aqSOA and sulfate formation in clouds

    NASA Astrophysics Data System (ADS)

    McVay, Renee; Ervens, Barbara

    2017-07-01

    Sulfate and secondary organic aerosol (cloud aqSOA) can be chemically formed in cloud water. Model implementation of these processes represents a computational burden due to the large number of microphysical and chemical parameters. Chemical mechanisms have been condensed by reducing the number of chemical parameters. Here an alternative is presented to reduce the number of microphysical parameters (number of cloud droplet size classes). In-cloud mass formation is surface and volume dependent due to surface-limited oxidant uptake and/or size-dependent pH. Box and parcel model simulations show that using the effective cloud droplet diameter (proportional to total volume-to-surface ratio) reproduces sulfate and aqSOA formation rates within ≤30% as compared to full droplet distributions; other single diameters lead to much greater deviations. This single-class approach reduces computing time significantly and can be included in models when total liquid water content and effective diameter are available.

  4. Photochemical influences on the air-water exchange of mercury

    NASA Astrophysics Data System (ADS)

    Vette, Alan Frederic

    The formation of dissolved gaseous mercury (DGM) in natural waters is an important component in the biogeochemical cycle of mercury (Hg). The predominate form of DGM in natural waters, gaseous elemental Hg (Hg0), may be transferred from the water to the atmosphere. Gas exchange may reduce the amount of Hg available for methyl-Hg formation, the most toxic form of Hg that bioaccumulates in the food chain. Determining the mechanisms and rates of DGM formation is essential in understanding the fate and cycling of Hg in aquatic ecosystems. Field and laboratory experiments were conducted to evaluate the effect of light on DGM formation in surface waters containing different levels of dissolved organic carbon (DOC). Water samples collected from the Tahqwamenon River and Whitefish Bay on Lake Superior were amended with divalent Hg (Hg2+) and irradiated under a variety of reaction conditions to determine rates of DGM formation. The water samples were also analyzed for various Hg species (total, filtered, easily reducible and dissolved gaseous Hg), DOC and light attenuation. Additional field studies were conducted on Lake Michigan to measure gaseous Hg in air and water. These data were used to develop a mechanistic model to estimate air-water exchange of gaseous Hg. This research found that photochemical formation of DGM was affected by penetration of UV A radiation (320-400 nm). Formation of DGM was enhanced at higher DOC concentrations, indicating DOC photosensitized the reduction of Hg2+ to Hg0. Wavelength studies determined that formation of DGM was significantly reduced in the absence of UV A. Field studies showed DGM concentrations were highest near the water surface and peaked at mid-day, indicating a photo-induced source of DGM. The conversion of reducible Hg2+ to Hg0 was suppressed in high DOC waters where UV A penetration was limited. The mechanistic model predicted similar DGM concentrations to the observed values and demonstrated that deposition and emission fluxes of gaseous Hg were similar in Lake Michigan. In addition, deposition and emission fluxes of gaseous Hg were similar to Hg loadings by precipitation. The formation and emission of DGM from surface waters represents a significant contribution to the Hg cycle in aquatic ecosystems.

  5. Phosphorus loss to runoff water twenty-four hours after application of liquid swine manure or fertilizer.

    PubMed

    Tabbara, Hadi

    2003-01-01

    Phosphorus (P) added to soil from fertilizer or manure application could pose a threat to water quality due to its role in eutrophication of fresh water resources. Incorporating such amendments into the soil is an established best management practice (BMP) for reducing soluble P losses in runoff water, but could also lead to higher erosion. The objective of this study was to test whether incorporation of manure or fertilizer 24 h before an intense rain could also reduce sediment-bound and total phosphorus (TP) losses in runoff. A rainfall simulation study was conducted on field plots (sandy loam with 6-7% slope, little surface residue, recently cultivated) that received two application rates of liquid swine manure or liquid ammonium polyphosphate fertilizer, using either surface-broadcast or incorporated methods of application. Incorporation increased the total suspended solids (TSS) concentrations in runoff but mass losses were not affected. Incorporation also reduced flow-weighted concentrations and losses of dissolved reactive phosphorus (DRP) and TP by as much as 30 to 60% depending on source (fertilizer vs. manure) and application rate. Phosphorus is moved below the mixing zone of interaction on incorporation, and thus the effect of the amount and availability of P in this zone is more important than cultivation on subsequent P losses in runoff. Incorporating manure or fertilizer in areas of intense erosive rain, recent extensive tillage, and with little or no surface residue is therefore a best management practice that should be adhered to in order to minimize contamination of surface water. Results also show comparatively lower P losses from manure than fertilizer.

  6. Oxidation of ammonia and methane in an alkaline, saline lake

    USGS Publications Warehouse

    Joye, S.B.; Connell, T.L.; Miller, L.G.; Oremland, R.S.; Jellison, R.S.

    1999-01-01

    The oxidation of ammonia (NH3) and methane (CH4) was investigated in an alkaline saline lake, Mono Lake, California (U.S.A.). Ammonia oxidation was examined in April and July 1995 by comparing dark 14CO2 fixation rates in the presence or absence of methyl fluoride (MeF), an inhibitor of NH3 oxidation. Ammonia oxidizer-mediated dark 14CO2 fixation rates were similar in surface (5-7 m) and oxycline (11-15 m) waters, ranging between 70-340 and 89-186 nM d-1, respectively, or 1-7% of primary production by phytoplankton. Ammonia oxidation rates ranged between 580-2,830 nM d-1 in surface waters and 732-1,548 nM d-1 in oxycline waters. Methane oxidation was examined using a 14CH4 tracer technique in July 1994, April 1995, and July 1995. Methane oxidation rates were consistently higher in July, and rates in oxycline and anaerobic bottom waters (0.5-37 and 7-48 nM d-1, respectively) were 10-fold higher than those in aerobic surface waters (0.04-3.8 nM d-1). The majority of CH4 oxidation, in terms of integrated activity, occurred within anoxic bottom waters. Water column oxidation reduced the potential lake-atmosphere CH4 flux by a factor of two to three. Measured oxidation rates and water column concentrations were used to estimate the biological turnover times of NH3 and CH4. The NH3 pool turns over rapidly, on time scales of 0.8 d in surface waters and 10 d within the oxycline, while CH4 is cycled on 103-d time scales in surface waters and 102-d time scales within oxycline and bottom waters. Our data suggest an important role for NH3 oxidation in alkaline, saline lakes since the process converts volatile NH3 to soluble NO2-, thereby reducing loss via lake-atmosphere exchange and maintaining nitrogen in a form that is readily available to phytoplankton.

  7. Comparison of water wash, trimming, and combined hot water and lactic acid treatments for reducing bacteria of fecal origin on beef carcasses.

    PubMed

    Castillo, A; Lucia, L M; Goodson, K J; Savell, J W; Acuff, G R

    1998-07-01

    Cleaning treatments, such as high-pressure water wash at 35 degrees C or trim, alone and combined with sanitizing treatments, such as hot water (95 degrees C at the source), warm (55 degrees C) 2% lactic acid spray, and combinations of these two sanitizing methods, were compared for their effectiveness in reducing inoculated numbers (5.0 to 6.0 log CFU/cm2) of Salmonella typhimurium, Escherichia coli O157:H7, aerobic plate counts, Enterobacteriaceae, total coliforms, thermotolerant coliforms, and generic E. coli on hot beef carcass surface areas in a model carcass spray cabinet. Log reductions in numbers of all tested organisms by water wash or trim alone were significantly smaller than the log reductions obtained by the different combined treatments. Regardless of the cleaning treatment (water wash or trim) or surface area, the range for mean log reductions by hot water was from 4.0 to > 4.8 log CFU/cm2, by lactic acid spray was from 4.6 to > 4.9 log CFU/cm2, by hot water followed by lactic acid spray was from 4.5 to > 4.9 log CFU/cm2, and by lactic acid spray followed by hot water was from 4.4 to > 4.6 log CFU/cm2, for S. typhimurium and E. coli O157:H7. Identical reductions were obtained for thermotolerant coliforms and generic E. coli. No differences in bacterial reductions were observed for different carcass surface regions. Water wash and trim treatments caused spreading of the contamination to other areas of the carcass surface while providing an overall reduction in fecal or pathogenic contamination on carcass surface areas. This relocated contamination after either water wash or trim was most effectively reduced by following with hot water and then lactic acid spray. This combined treatment yielded 0% positive samples for S. typhimurium, E. coli O157:H7, thermotolerant coliforms, and generic E. coli on areas outside the inoculated areas, whereas percent positive samples after applying other combined treatments ranged from 22 to 44% for S. typhimurium, 0 to 44% for E. coli O157:H7, and 11 to 33% for both thermotolerant coliforms and generic E. coli. From data collected in this study, it is possible to choose an effective, inexpensive treatment to reduce bacterial contamination on beef carcasses. In addition, the similar reduction rates of total coliforms, thermotolerant coliforms, or generic E. coli may be useful in identifying an indicator to verify the effectiveness of the selected treatment as a critical control point in a Hazard Analysis and Critical Control Point program.

  8. Selenium stable isotope ratios in California agricultural drainage water management systems

    USGS Publications Warehouse

    Herbel, M.J.; Johnson, T.M.; Tanji, K.K.; Gao, S.; Bullen, T.D.

    2002-01-01

    Selenium stable isotope ratios are known to shift in predictable ways during various microbial, chemical, and biological processes, and can be used to better understand Se cycling in contaminated environments. In this study we used Se stable isotopes to discern the mechanisms controlling the transformation of oxidized, aqueous forms of Se to reduced, insoluble forms in sediments of Se-affected environments. We measured 80Se/76Se in surface waters, shallow ground waters, evaporites, digested plants and sediments, and sequential extracts from several sites where agricultural drainage water is processed in the San Joaquin Valley of California. Selenium isotope analyses of samples obtained from the Tulare Lake Drainage District flow-through wetland reveal small isotopic contrasts (mean difference 0.7%o) between surface water and reduced Se species in the underlying sediments. Selenium in aquatic macrophytes was very similar isotopically to the NaOH and Na2SO3 sediment extracts designed to recover soluble organic Se and Se(O), respectively. For the integrated on-farm drainage management sites, evaporite salts were slightly (approximately 0.6%o) enriched in the heavier isotope relative to the inferred parent waters, whereas surface soils were slightly (approximately 1.4%o) depleted. Bacterial or chemical reduction of Se(VI) or Se(IV) may be occurring at these sites, but the small isotopic contrasts suggest that other, less isotopically fractionating mechanisms are responsible for accumulation of reduced forms in the sediments. These findings provide evidence that Se assimilation by plants and algae followed by deposition and mineralization is the dominant transformation pathway responsible for accumulation of reduced forms of Se in the wetland sediments.

  9. THE ACCUMULATION AND RELEASE OF CONTAMINANTS FROM DISTRIBUTION SYSTEM SOLIDS

    EPA Science Inventory

    The recently promulgated Arsenic Rule will require that many new drinking water systems treat their water to remove arsenic. Iron based treatment technologies including iron removal and iron coagulation are effective at reducing arsenic in water because iron surfaces have a stron...

  10. Effect of acetic acid on physical properties of pregelatinized wheat and corn starch gels.

    PubMed

    Majzoobi, Mahsa; Kaveh, Zahra; Farahnaky, Asgar

    2016-04-01

    Pregelatinized starches are physically modified starches with ability to absorb water and increase viscosity at ambient temperature. The main purpose of this study was to determine how different concentrations of acetic acid (0, 500, 1000, 10,000 mg/kg) can affect functional properties of pregelatinized wheat and corn starches (PGWS and PGCS, respectively) produced by a twin drum drier. With increasing acetic acid following changes occurred for both samples; cold water solubility (at 25 °C) increased, water absorption and apparent cold water viscosity (at 25 °C) reduced, the smooth surface of the starch particles converted to an uneven surface as confirmed by scanning electron microscopy, cohesiveness, consistency and turbidity of the starch gels reduced while their syneresis increased. It was found that in presence of acetic acid, PGWS resulted in higher water absorption and apparent cold water viscosity and produced more cohesive and turbid gels with less syneresis compared to PGCS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Use of Linear Prediction Uncertainty Analysis to Guide Conditioning of Models Simulating Surface-Water/Groundwater Interactions

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; White, J.; Doherty, J.

    2011-12-01

    Linear prediction uncertainty analysis in a Bayesian framework was applied to guide the conditioning of an integrated surface water/groundwater model that will be used to predict the effects of groundwater withdrawals on surface-water and groundwater flows. Linear prediction uncertainty analysis is an effective approach for identifying (1) raw and processed data most effective for model conditioning prior to inversion, (2) specific observations and periods of time critically sensitive to specific predictions, and (3) additional observation data that would reduce model uncertainty relative to specific predictions. We present results for a two-dimensional groundwater model of a 2,186 km2 area of the Biscayne aquifer in south Florida implicitly coupled to a surface-water routing model of the actively managed canal system. The model domain includes 5 municipal well fields withdrawing more than 1 Mm3/day and 17 operable surface-water control structures that control freshwater releases from the Everglades and freshwater discharges to Biscayne Bay. More than 10 years of daily observation data from 35 groundwater wells and 24 surface water gages are available to condition model parameters. A dense parameterization was used to fully characterize the contribution of the inversion null space to predictive uncertainty and included bias-correction parameters. This approach allows better resolution of the boundary between the inversion null space and solution space. Bias-correction parameters (e.g., rainfall, potential evapotranspiration, and structure flow multipliers) absorb information that is present in structural noise that may otherwise contaminate the estimation of more physically-based model parameters. This allows greater precision in predictions that are entirely solution-space dependent, and reduces the propensity for bias in predictions that are not. Results show that application of this analysis is an effective means of identifying those surface-water and groundwater data, both raw and processed, that minimize predictive uncertainty, while simultaneously identifying the maximum solution-space dimensionality of the inverse problem supported by the data.

  12. Adaptable bioinspired special wetting surface for multifunctional oil/water separation

    NASA Astrophysics Data System (ADS)

    Kavalenka, Maryna N.; Vüllers, Felix; Kumberg, Jana; Zeiger, Claudia; Trouillet, Vanessa; Stein, Sebastian; Ava, Tanzila T.; Li, Chunyan; Worgull, Matthias; Hölscher, Hendrik

    2017-01-01

    Inspired by the multifunctionality of biological surfaces necessary for the survival of an organism in its specific environment, we developed an artificial special wetting nanofur surface which can be adapted to perform different functionalities necessary to efficiently separate oil and water for cleaning accidental oil spills or separating industrial oily wastewater. Initial superhydrophobic nanofur surface is fabricated using a hot pulling method, in which nano- and microhairs are drawn out of the polymer surface during separation from a heated sandblasted steel plate. By using a set of simple modification techniques, which include microperforation, plasma treatment and subsequent control of storage environment, we achieved selective separation of either water or oil, variable oil absorption and continuous gravity driven separation of oil/water mixtures by filtration. Furthermore, these functions can be performed using special wetting nanofur made from various thermoplastics, including biodegradable and recyclable polymers. Additionally, nanofur can be reused after washing it with organic solvents, thus, further helping to reduce the environmental impacts of oil/water separation processes.

  13. Adaptable bioinspired special wetting surface for multifunctional oil/water separation

    PubMed Central

    Kavalenka, Maryna N.; Vüllers, Felix; Kumberg, Jana; Zeiger, Claudia; Trouillet, Vanessa; Stein, Sebastian; Ava, Tanzila T.; Li, Chunyan; Worgull, Matthias; Hölscher, Hendrik

    2017-01-01

    Inspired by the multifunctionality of biological surfaces necessary for the survival of an organism in its specific environment, we developed an artificial special wetting nanofur surface which can be adapted to perform different functionalities necessary to efficiently separate oil and water for cleaning accidental oil spills or separating industrial oily wastewater. Initial superhydrophobic nanofur surface is fabricated using a hot pulling method, in which nano- and microhairs are drawn out of the polymer surface during separation from a heated sandblasted steel plate. By using a set of simple modification techniques, which include microperforation, plasma treatment and subsequent control of storage environment, we achieved selective separation of either water or oil, variable oil absorption and continuous gravity driven separation of oil/water mixtures by filtration. Furthermore, these functions can be performed using special wetting nanofur made from various thermoplastics, including biodegradable and recyclable polymers. Additionally, nanofur can be reused after washing it with organic solvents, thus, further helping to reduce the environmental impacts of oil/water separation processes. PMID:28051163

  14. Soluble calcium amendments: reducing pathogen losses

    USDA-ARS?s Scientific Manuscript database

    Flue gas desulfurization (FGD) gypsum is a byproduct of coal-fired power plants. Its application to agricultural fields may increase water infiltration, reduce soil erosion, and decrease nutrient losses from applications of animal manures. It may also reduce fecal bacterial contamination of surface ...

  15. An energy balance model exploration of the impacts of interactions between surface albedo, cloud cover and water vapor on polar amplification

    NASA Astrophysics Data System (ADS)

    Södergren, A. Helena; McDonald, Adrian J.; Bodeker, Gregory E.

    2017-11-01

    We examine the effects of non-linear interactions between surface albedo, water vapor and cloud cover (referred to as climate variables) on amplified warming of the polar regions, using a new energy balance model. Our simulations show that the sum of the contributions to surface temperature changes due to any variable considered in isolation is smaller than the temperature changes from coupled feedback simulations. This non-linearity is strongest when all three climate variables are allowed to interact. Surface albedo appears to be the strongest driver of this non-linear behavior, followed by water vapor and clouds. This is because increases in longwave radiation absorbed by the surface, related to increases in water vapor and clouds, and increases in surface absorbed shortwave radiation caused by a decrease in surface albedo, amplify each other. Furthermore, our results corroborate previous findings that while increases in cloud cover and water vapor, along with the greenhouse effect itself, warm the polar regions, water vapor also significantly warms equatorial regions, which reduces polar amplification. Changes in surface albedo drive large changes in absorption of incoming shortwave radiation, thereby enhancing surface warming. Unlike high latitudes, surface albedo change at low latitudes are more constrained. Interactions between surface albedo, water vapor and clouds drive larger increases in temperatures in the polar regions compared to low latitudes. This is in spite of the fact that, due to a forcing, cloud cover increases at high latitudes and decreases in low latitudes, and that water vapor significantly enhances warming at low latitudes.

  16. Effects of materials surface preparation for use in spacecraft potable water storage tanks

    NASA Astrophysics Data System (ADS)

    Wallace, William T.; Wallace, Sarah L.; Loh, Leslie J.; Kuo, C. K. Mike; Hudson, Edgar K.; Marlar, Tyler J.; Gazda, Daniel B.

    2017-12-01

    Maintaining a safe supply of potable water is of utmost importance when preparing for long-duration spaceflight missions, with the minimization of microbial growth being one major aspect. While biocides, such as ionic silver, historically have been used for microbial control in spaceflight, their effectiveness is sometimes limited due to surface reactions with the materials of the storage containers that reduce their concentrations below the effective range. For the Multi-Purpose Crew Vehicle, the primary wetted materials of the water storage system are stainless steel and a titanium alloy, and ionic silver has been chosen to serve as the biocide. As an attempt to understand what processes might reduce the known losses of silver, different treatment processes were attempted and samples of the wetted materials were tested, individually and together, to determine the relative loss of biocide under representative surface area-to-volume ratios. The results of testing presented here showed that the materials could be treated by a nitric acid rinse or a high-concentration silver spike to reduce the loss of silver and bacterial growth. It was also found that the minimum biocidal concentration could be maintained for over 28 days. These results have pointed to approaches that could be used to successfully maintain silver in spacecraft water systems for long-duration missions.

  17. Steel Slag and Shredded Tires as Media for Blind Inlets to Improve Water Quality

    NASA Astrophysics Data System (ADS)

    Gonzalez, J. M.; Smith, D. R.; Livingston, S.

    2015-12-01

    Off-site transport of contaminants through surface runoff affects water quality. Blind inlets are proven conservation practices for reducing surface runoff, and consequently reducing nutrient loadings from small agricultural closed depressions to water bodies. Gravel is the most widely used blind inlet media to reduce flow, but not to sorb contaminants from the water. Readily available byproducts, such as steel slag and shredded tires, could be used as alternative media in blind inlets to sorb nutrients and pesticides from surface runoff. Sorption isotherms were performed to investigate the sorption capabilities of steel slag and shredded tires for phosphate and atrazine in electrolyte background solutions containing either 10 mM CaCl2 or KCl. Results of this research demonstrated that phosphate and atrazine were irreversibly sorbed by the steel slag and shredded tires. The steel slag increased the pH solution increased about 4 pH units after the sorption step; while the pH of the solution with shredded tires remained the same. Desorption of the phosphate and atrazine was low from the steel slag and shredded tires, respectively. Thus, the above results suggest that the steel slag and shredded tires can potentially be used as media to sorb phosphate and atrazine, respectively.

  18. Maintenance of Coastal Surface Blooms by Surface Temperature Stratification and Wind Drift

    PubMed Central

    Ruiz-de la Torre, Mary Carmen; Maske, Helmut; Ochoa, José; Almeda-Jauregui, César O.

    2013-01-01

    Algae blooms are an increasingly recurrent phenomenon of potentially socio-economic impact in coastal waters globally and in the coastal upwelling region off northern Baja California, Mexico. In coastal upwelling areas the diurnal wind pattern is directed towards the coast during the day. We regularly found positive Near Surface Temperature Stratification (NSTS), the resulting density stratification is expected to reduce the frictional coupling of the surface layer from deeper waters and allow for its more efficient wind transport. We propose that the net transport of the top layer of approximately 2.7 kilometers per day towards the coast helps maintain surface blooms of slow growing dinoflagellate such as Lingulodinium polyedrum. We measured: near surface stratification with a free-rising CTD profiler, trajectories of drifter buoys with attached thermographs, wind speed and direction, velocity profiles via an Acoustic Doppler Current Profiler, Chlorophyll and cell concentration from water samples and vertical migration using sediment traps. The ADCP and drifter data agree and show noticeable current shear within the first meters of the surface where temperature stratification and high cell densities of L. polyedrum were found during the day. Drifters with 1m depth drogue moved towards the shore, whereas drifters at 3 and 5 m depth showed trajectories parallel or away from shore. A small part of the surface population migrated down to the sea floor during night thus reducing horizontal dispersion. The persistent transport of the surface bloom population towards shore should help maintain the bloom in favorable environmental conditions with high nutrients, but also increasing the potential socioeconomic impact of the blooms. The coast wise transport is not limited to blooms but includes all dissolved and particulate constituents in surface waters. PMID:23593127

  19. Maintenance of coastal surface blooms by surface temperature stratification and wind drift.

    PubMed

    Ruiz-de la Torre, Mary Carmen; Maske, Helmut; Ochoa, José; Almeda-Jauregui, César O

    2013-01-01

    Algae blooms are an increasingly recurrent phenomenon of potentially socio-economic impact in coastal waters globally and in the coastal upwelling region off northern Baja California, Mexico. In coastal upwelling areas the diurnal wind pattern is directed towards the coast during the day. We regularly found positive Near Surface Temperature Stratification (NSTS), the resulting density stratification is expected to reduce the frictional coupling of the surface layer from deeper waters and allow for its more efficient wind transport. We propose that the net transport of the top layer of approximately 2.7 kilometers per day towards the coast helps maintain surface blooms of slow growing dinoflagellate such as Lingulodinium polyedrum. We measured: near surface stratification with a free-rising CTD profiler, trajectories of drifter buoys with attached thermographs, wind speed and direction, velocity profiles via an Acoustic Doppler Current Profiler, Chlorophyll and cell concentration from water samples and vertical migration using sediment traps. The ADCP and drifter data agree and show noticeable current shear within the first meters of the surface where temperature stratification and high cell densities of L. polyedrum were found during the day. Drifters with 1m depth drogue moved towards the shore, whereas drifters at 3 and 5 m depth showed trajectories parallel or away from shore. A small part of the surface population migrated down to the sea floor during night thus reducing horizontal dispersion. The persistent transport of the surface bloom population towards shore should help maintain the bloom in favorable environmental conditions with high nutrients, but also increasing the potential socioeconomic impact of the blooms. The coast wise transport is not limited to blooms but includes all dissolved and particulate constituents in surface waters.

  20. Unexpected Attraction of Polarotactic Water-Leaving Insects to Matt Black Car Surfaces: Mattness of Paintwork Cannot Eliminate the Polarized Light Pollution of Black Cars

    PubMed Central

    Blaho, Miklos; Herczeg, Tamas; Kriska, Gyorgy; Egri, Adam; Szaz, Denes; Farkas, Alexandra; Tarjanyi, Nikolett; Czinke, Laszlo; Barta, Andras; Horvath, Gabor

    2014-01-01

    The horizontally polarizing surface parts of shiny black cars (the reflection-polarization characteristics of which are similar to those of water surfaces) attract water-leaving polarotactic insects. Thus, shiny black cars are typical sources of polarized light pollution endangering water-leaving insects. A new fashion fad is to make car-bodies matt black or grey. Since rough (matt) surfaces depolarize the reflected light, one of the ways of reducing polarized light pollution is to make matt the concerned surface. Consequently, matt black/grey cars may not induce polarized light pollution, which would be an advantageous feature for environmental protection. To test this idea, we performed field experiments with horizontal shiny and matt black car-body surfaces laid on the ground. Using imaging polarimetry, in multiple-choice field experiments we investigated the attractiveness of these test surfaces to various water-leaving polarotactic insects and obtained the following results: (i) The attractiveness of black car-bodies to polarotactic insects depends in complex manner on the surface roughness (shiny, matt) and species (mayflies, dolichopodids, tabanids). (ii) Non-expectedly, the matt dark grey car finish is much more attractive to mayflies (being endangered and protected in many countries) than matt black finish. (iii) The polarized light pollution of shiny black cars usually cannot be reduced with the use of matt painting. On the basis of these, our two novel findings are that (a) matt car-paints are highly polarization reflecting, and (b) these matt paints are not suitable to repel polarotactic insects. Hence, the recent technology used to make matt the car-bodies cannot eliminate or even can enhance the attractiveness of black/grey cars to water-leaving insects. Thus, changing shiny black car painting to matt one is a disadvantageous fashion fad concerning the reduction of polarized light pollution of black vehicles. PMID:25076137

  1. Unexpected attraction of polarotactic water-leaving insects to matt black car surfaces: mattness of paintwork cannot eliminate the polarized light pollution of black cars.

    PubMed

    Blaho, Miklos; Herczeg, Tamas; Kriska, Gyorgy; Egri, Adam; Szaz, Denes; Farkas, Alexandra; Tarjanyi, Nikolett; Czinke, Laszlo; Barta, Andras; Horvath, Gabor

    2014-01-01

    The horizontally polarizing surface parts of shiny black cars (the reflection-polarization characteristics of which are similar to those of water surfaces) attract water-leaving polarotactic insects. Thus, shiny black cars are typical sources of polarized light pollution endangering water-leaving insects. A new fashion fad is to make car-bodies matt black or grey. Since rough (matt) surfaces depolarize the reflected light, one of the ways of reducing polarized light pollution is to make matt the concerned surface. Consequently, matt black/grey cars may not induce polarized light pollution, which would be an advantageous feature for environmental protection. To test this idea, we performed field experiments with horizontal shiny and matt black car-body surfaces laid on the ground. Using imaging polarimetry, in multiple-choice field experiments we investigated the attractiveness of these test surfaces to various water-leaving polarotactic insects and obtained the following results: (i) The attractiveness of black car-bodies to polarotactic insects depends in complex manner on the surface roughness (shiny, matt) and species (mayflies, dolichopodids, tabanids). (ii) Non-expectedly, the matt dark grey car finish is much more attractive to mayflies (being endangered and protected in many countries) than matt black finish. (iii) The polarized light pollution of shiny black cars usually cannot be reduced with the use of matt painting. On the basis of these, our two novel findings are that (a) matt car-paints are highly polarization reflecting, and (b) these matt paints are not suitable to repel polarotactic insects. Hence, the recent technology used to make matt the car-bodies cannot eliminate or even can enhance the attractiveness of black/grey cars to water-leaving insects. Thus, changing shiny black car painting to matt one is a disadvantageous fashion fad concerning the reduction of polarized light pollution of black vehicles.

  2. The impacts of surface polarity on the solubility of nanoparticle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jianzhuo; Su, Jiguo, E-mail: jiguosu@ysu.edu.cn; Ou, Xinwen

    In order to study the dependence of water solubility and hydration behavior of nanoparticles on their surface polarity, we designed polar nanoparticles with varying surface polarity by assigning atomic partial charge to the surface of C60. The water solubility of the nanoparticle is enhanced by several orders of magnitude after the introduction of surface polarity. Nevertheless, when the atomic partial charge grows beyond a certain value (q{sub M}), the solubility continuously decreases to the level of nonpolar nanoparticle. It should be noted that such q{sub M} is comparable with atomic partial charge of a variety of functional groups. The hydrationmore » behaviors of nanoparticles were then studied to investigate the non-monotonic dependence of solubility on the surface polarity. The interaction between the polar nanoparticle and the hydration water is stronger than the nonpolar counterpart, which should facilitate the dissolution of the nanoparticles. On the other hand, the surface polarity also reduces the interaction of hydration water with the other water molecules and enhances the interaction between the nanoparticles which may hinder their dispersion. Besides, the introduction of surface polarity disturbs and even rearranges the hydration structure of nonpolar nanoparticle. Interestingly, the polar nanoparticle with less ordered hydration structure tends to have higher water solubility.« less

  3. Adhesion of and to soil in runoff as influenced by polyacrylamide.

    PubMed

    Bech, Tina B; Sbodio, Adrian; Jacobsen, Carsten S; Suslow, Trevor

    2014-11-01

    Polyacrylamide (PAM) is used in agriculture to reduce soil erosion and has been reported to reduce turbidity, nutrients, and pollutants in surface runoff water. The objective of this work was to determine the effect of PAM on the concentration of enteric bacteria in surface runoff by comparing four enteric bacteria representing phenotypically different motility and hydrophobicity from three soils. Results demonstrated that bacterial surface runoff was differentially influenced by the PAM treatment. Polyacrylamide treatment increased surface runoff for adhered and planktonic cells from a clay soil; significantly decreased surface runoff of adhered bacteria, while no difference was observed for planktonic bacteria from the sandy loam; and significantly decreased the surface runoff of planktonic cells, while no difference was observed for adhered bacteria from the clay loam. Comparing strains from a final water sample collected after 48 h showed a greater loss of while serovar Poona was almost not detected. Thus, (i) the PAM efficiency in reducing the concentration of enteric bacteria in surface runoff was influenced by soil type and (ii) variation in the loss of enteric bacteria highlights the importance of strain-specific properties that may not be captured with general fecal indicator bacteria. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Monitoring the Vadose Zone Moisture Regime Below a Surface Barrier

    NASA Astrophysics Data System (ADS)

    Zhang, Z. F.; Strickland, C. E.; Field, J. G.

    2009-12-01

    A 6000 m2 interim surface barrier has been constructed over a portion of the T Tank Farm in the Depart of Energy’s Hanford site. The purpose of using a surface barrier was to reduce or eliminate the infiltration of meteoric precipitation into the contaminated soil zone due to past leaks from Tank T-106 and hence to reduce the rate of movement of the plume. As part of the demonstration effort, vadose zone moisture is being monitored to assess the effectiveness of the barrier on the reduction of soil moisture flow. A vadose zone monitoring system was installed to measure soil water conditions at four horizontal locations (i.e., instrument Nests A, B, C, and D) outside, near the edge of, and beneath the barrier. Each instrument nest consists of a capacitance probe with multiple sensors, multiple heat-dissipation units, and a neutron probe access tube used to measure soil-water content and soil-water pressure. Nest A serves as a control by providing subsurface conditions outside the influence of the surface barrier. Nest B provides subsurface measurements to assess barrier edge effects. Nests C and D are used to assess the impact of the surface barrier on soil-moisture conditions beneath it. Monitoring began in September 2006 and continues to the present. To date, the monitoring system has provided high-quality data. Results show that the soil beneath the barrier has been draining from the shallower depth. The lack of climate-caused seasonal variation of soil water condition beneath the barrier indicates that the surface barrier has minimized water exchange between the soil and the atmosphere.

  5. Synthesis of superhydrophobic alumina membrane: Effects of sol-gel coating, steam impingement and water treatment

    NASA Astrophysics Data System (ADS)

    Ahmad, N. A.; Leo, C. P.; Ahmad, A. L.

    2013-11-01

    Ceramic membranes possess natural hydrophilicity thus tending to absorb water droplets. The absorption of water molecules on membrane surface reduces their application in filtration, membrane distillation, osmotic evaporation and membrane gas absorption. Fluoroalkylsilane (FAS) grafting allows the conversion of hydrophilic ceramic membranes into superhydrophobic thin layer, but it usually introduces a great increment of mass transfer resistance. In this study, superhydrophobic alumina membranes were synthesized by dip coating alumina support into sol-gel and grafted with the fluoroalkylsilane (FAS) named (heptadecafluoro-1,1,2,2-tetra hydrodecyl) triethoxysilane. Steam impingement and water treatment acted as additional steps to generate surface roughness on sol-gel and most importantly to reduce mass transfer resistance. Superhydrophobic alumina membrane with high water contact angle (158.4°) and low resistance (139.5 ± 24.9 G m-1) was successfully formed when the alumina membrane was dip coated into sol-gel for 7 s, treated with steam impingement for 1 min and immersed in hot water at 100 °C. However, the mass transfer resistance was greatly induced to 535.6 ± 23.5 G m-1 when the dip coating time was increased to 60 s. Long dip coating time contributes more on the blockage of porous structure rather than creates a thin film on the top of membrane surface. Reducing the pore size and porosity significantly due to increase of coating molecules deposited on the membrane. Steam impingement for 1 min promoted the formation of cones and valleys on the sol-gel, but the macro-roughness was destroyed when the steam impingement duration was extended to more than 3 min. The immersions of membranes into hot water at temperatures higher than 60 °C encouraged the formation of boehmite which enhances the formation of additional roughness and enlarges pore size greatly. Thus, this work showed that the formation of superhydrophobic alumina membrane with low resistance is influenced by three factors; sol-gel dip coating time, steam impingement time and temperature of water treatment. The optimum dip coating time could promote appropriate thickness of the sol-gel layer on the membrane support. The highest surface roughness and porosity could be created when the sol-gel layer was further treated with optimum steam impingement duration and immersed in hot water at 100 °C. The presence of appropriate sol-gel thickness can reduce the penetration of FAS during the grafting and reduce the membrane resistance.

  6. Chemical films and monolayers on the water surface and their interactions with ultraviolet radiation: a pilot investigation

    NASA Astrophysics Data System (ADS)

    Schouten, Peter; Lemckert, Charles; Turnbull, David; Parisi, Alfio; Downs, Nathan; Underhill, Ian; Turner, Geoff

    2011-06-01

    Over the past 50 years numerous types of chemical films and monolayers have been deployed on top of a wide variety of water reserves in an endeavour to reduce evaporation. To date very little knowledge has been assimilated on how these chemical films and monolayers, once applied to a water surface, influence the underwater UV light field and, in turn, the delicate ecosystems that exist in aquatic environments. This manuscript presents underwater UV exposure profiles weighted to the DNA damage action spectrum measured under an octadecanol/hexadecanol/lime chemical film mixture, a silicone-based chemical film and an octadecanol monolayer applied to the water surface. UV transmission and absorption properties were also evaluated for each of these chemical films and monolayers. From this it was found that when chemical films/monolayers are applied to surface water they can reduce the penetration of biologically effective UV into the water column by up to 85% at a depth as small as 1 cm. This could have a positive influence on the aquatic ecosystem, as harmful UV radiation may be prevented from reaching and consequently damaging a variety of life forms or it could have a negative effect by potentially stopping aquatic organisms from adapting to solar ultraviolet radiation over extended application intervals. Additionally, there is currently no readily applicable system or technique available to readily detect or visualize chemical films and monolayers on the water surface. To overcome this problem a new method of monolayer and chemical film visualization, using a UV camera system, is detailed and tested and its applicability for usage in both laboratory-based trials and real-world operations is evaluated.

  7. Non-linear hydraulic properties of woodchips necessary to design denitrification beds

    USDA-ARS?s Scientific Manuscript database

    Denitrification beds are being used to reduce the transport of water-soluble nitrate via subsurface drainage systems to surface water. Only recently has the non-linearity of water flow through woodchips been ascertained. To successfully design and model denitrification beds for optimum nitrate remov...

  8. Simulated Water-Management Alternatives Using the Modular Modeling System for the Methow River Basin, Washington

    USGS Publications Warehouse

    Konrad, Christopher P.

    2004-01-01

    A precipitation-runoff model for the Methow River Basin was used to simulate six alternatives: (1) baseline of current flow, (2) line irrigation canals to limit seepage losses, (3) increase surface-water diversions through unlined canals for aquifer recharge, (4) convert from surface-water to ground-water resources to supply water for irrigation, and (5) reduce tree density in forested headwater catchments, and (6) natural flow. Daily streamflow from October 1, 1959, to September 30, 2001 (water years 1960?2001) was simulated. Lining irrigation canals (alternative 2) increased flows in the Chewuch, Twisp, and the Methow (upstream and at Twisp) Rivers during September because of lower diversion rates, but not in the Methow River near Pateros. Increasing diversions for aquifer recharge (alternative 3) increased streamflow from September into January, but reduced streamflow earlier in the summer. Conversion of surface-water diversions to ground-water wells (alternative 4) resulted in the largest increase in September streamflow of any alternative, but also marginally lower January flows (at most -8 percent in the 90-percent exceedence value). Forest-cover reduction (alternative 5) produced large increases in streamflow during high-flow periods in May and June and earlier onset of high flows and small increases in January streamflows. September streamflows were largely unaffected by alternative 5. Natural streamflow (alternative 6) was higher in September and lower in January than the baseline alternative.

  9. Hydrodynamic skin-friction reduction

    NASA Technical Reports Server (NTRS)

    Reed, Jason C. (Inventor); Bushnell, Dennis M. (Inventor); Weinstein, Leonard M. (Inventor)

    1991-01-01

    A process for reducing skin friction, inhibiting the effects of liquid turbulence, and decreasing heat transfer in a system involving flow of a liquid along a surface of a body includes applying a substantially integral sheet of a gas, e.g., air, immediately adjacent to the surface of the body, e.g., a marine vehicle, which has a longitudinally grooved surface in proximity with the liquid and with a surface material having high contact angle between the liquid and said wall to reduce interaction of the liquid, e.g., water, with the surface of the body, e.g., the hull of the marine vehicle.

  10. Surface storage of rainfall in tree crowns: not all trees are equal

    Treesearch

    E. Gregory McPherson; Q. Xiao; Natalie van Doorn; P. Peper; E. Teach

    2017-01-01

    Urban forests can be an effective strategy for managing stormwater. The soil that supports tree growth acts like a reservoir that reduces runoff. The tree crown intercepts rainfall on leaves and stems and its evaporation reduces water reaching the ground below. Until now surface storage capacities have been studied only for forest trees. Based on forest research, green...

  11. Advanced shield development for a fission surface power system for the lunar surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. E. Craft; I. J. Silver; C. M. Clark

    A nuclear reactor power system such as the affordable fission surface power system enables a potential outpostonthemoon.Aradiation shieldmustbe included in the reactor system to reduce the otherwise excessive dose to the astronauts and other vital system components. The radiation shield is typically the most massive component of a space reactor system, and thus must be optimized to reduce mass asmuchas possible while still providing the required protection.Various shield options for an on-lander reactor system are examined for outpost distances of 400m and 1 kmfromthe reactor. Also investigated is the resulting mass savings from the use of a high performance cermetmore » fuel. A thermal analysis is performed to determine the thermal behaviours of radiation shields using borated water. For an outpost located 1000m from the core, a tetramethylammonium borohydride shield is the lightest (5148.4 kg), followed by a trilayer shield (boron carbide–tungsten–borated water; 5832.3 kg), and finally a borated water shield (6020.7 kg). In all of the final design cases, the temperature of the borated water remains below 400 K.« less

  12. A review of heterogeneous photocatalysis for water and surface disinfection.

    PubMed

    Byrne, John Anthony; Dunlop, Patrick Stuart Morris; Hamilton, Jeremy William John; Fernández-Ibáñez, Pilar; Polo-López, Inmaculada; Sharma, Preetam Kumar; Vennard, Ashlene Sarah Margaret

    2015-03-30

    Photo-excitation of certain semiconductors can lead to the production of reactive oxygen species that can inactivate microorganisms. The mechanisms involved are reviewed, along with two important applications. The first is the use of photocatalysis to enhance the solar disinfection of water. It is estimated that 750 million people do not have accessed to an improved source for drinking and many more rely on sources that are not safe. If one can utilize photocatalysis to enhance the solar disinfection of water and provide an inexpensive, simple method of water disinfection, then it could help reduce the risk of waterborne disease. The second application is the use of photocatalytic coatings to combat healthcare associated infections. Two challenges are considered, i.e., the use of photocatalytic coatings to give "self-disinfecting" surfaces to reduce the risk of transmission of infection via environmental surfaces, and the use of photocatalytic coatings for the decontamination and disinfection of medical devices. In the final section, the development of novel photocatalytic materials for use in disinfection applications is reviewed, taking account of materials, developed for other photocatalytic applications, but which may be transferable for disinfection purposes.

  13. Effects of farmhouse hotel and paper mill effluents on bacterial community structures in sediment and surface water of Nanxi River, China.

    PubMed

    Lu, Xiao-Ming; Lu, Peng-Zhen

    2014-11-01

    The pyrosequencing technique was used to evaluate bacterial community structures in sediment and surface water samples taken from Nanxi River receiving effluents from a paper mill and a farmhouse hotel, respectively. For each sample, 4,610 effective bacterial sequences were selected and used to do the analysis of diversity and abundance, respectively. Bacterial phylotype richness in the sediment sample without effluent input was higher than the other samples, and the surface water sample with addition of effluent from the paper mill contained the least richness. Effluents from both the paper mill and farmhouse hotel have a potential to reduce the bacterial diversity and abundance in the sediment and surface water, especially it is more significant in the sediment. The effect of the paper mill effluent on the sediment and surface water bacterial communities was more serious than that of the farmhouse hotel effluent. Characterization of microbial community structures in the sediment and surface water from two tributaries of the downstream river indicated that various effluents from the paper mill and farmhouse hotel have the similar potential to decrease the natural variability in riverine microbial ecosystems.

  14. Factors controlling stream water nitrate and phosphor loads during precipitation events

    NASA Astrophysics Data System (ADS)

    Rozemeijer, J. C.; van der Velde, Y.; van Geer, F. G.; de Rooij, G. H.; Broers, H. P.; Bierkens, M. F. P.

    2009-04-01

    Pollution of surface waters in densely populated areas with intensive land use is a serious threat to their ecological, industrial and recreational utilization. European and national manure policies and several regional and local pilot projects aim at reducing pollution loads to surface waters. For the evaluation of measures, water authorities and environmental research institutes are putting a lot of effort into monitoring surface water quality. Fro regional surface water quality monitoring, the measurement locations are usually situated in the downstream part of the catchment to represent a larger area. The monitoring frequency is usually low (e.g. monthly), due to the high costs for sampling and analysis. As a consequence, human induced trends in nutrient loads and concentrations in these monitoring data are often concealed by the large variability of surface water quality caused by meteorological variations. Because natural surface water quality variability is poorly understood, large uncertainties occur in the estimates of (trends in) nutrient loads or average concentrations. This study aims at uncertainty reduction in the estimates of mean concentrations and loads of N and P from regional monitoring data. For this purpose, we related continuous N and P records of stream water to variations in precipitation, discharge, groundwater level and tube drain discharge. A specially designed multi scale experimental setup was installed in an agricultural lowland catchment in The Netherlands. At the catchment outlet, continuous measurements of water quality and discharge were performed from July 2007-January 2009. At an experimental field within the catchment continuous measurements of precipitation, groundwater levels and tube drain discharges were collected. 20 significant rainfall events with a variety of antecedent conditions, durations and intensities were selected for analysis. Singular and multiple regression analysis was used to identify relations between the continuous N and P records and characteristics of the dynamics of discharge, precipitation, groundwater level and tube drain discharge. From this study, we conclude that generally available and easy to measure explanatory data (such as continuous records of discharge, precipitation and groundwater level) can reduce uncertainty in estimations of N and P loads and mean concentrations. However, for capturing the observed short load pulses of P, continuous or discharge proportional sampling is needed.

  15. Coastal surface water suitability analysis for irrigation in Bangladesh

    NASA Astrophysics Data System (ADS)

    Mahtab, Mohammad Hossain; Zahid, Anwar

    2018-03-01

    Water with adequate quality and quantity is very important for irrigation to ensure the crop yields. Salinity is common problem in the coastal waters in Bangladesh. The intensity of salinity in the coastal zone in Bangladesh is not same. It fluctuates over the year. Sodium is another hazard which may hamper permeability and ultimately affects the fertility. It can reduce the crop yields. Although surface water is available in the coastal zone of Bangladesh, but its quality for irrigation needs to be monitored over the year. This paper will investigate the overall quality of coastal surface waters. Thirty-three water samples from different rivers were collected both in wet period (October-December) and in dry period (February-April). Different physical and chemical parameters are considered for investigation of the adequacy of water with respect to international irrigation water quality standards and Bangladesh standards. A comparison between the dry and wet period coastal surface water quality in Bangladesh will also be drawn here. The analysis shows that coastal surface water in Bangladesh is overall suitable for irrigation during wet period, while it needs treatment (which will increase the irrigation cost) for using for irrigation during dry period. Adaptation to this situation can improve the scenario. An integrated plan should be taken to increase the water storing capacity in the coastal area to harvest water during wet period.

  16. Surfactant Facilitated Spreading of Aqueous Drops on Hydrophobic Surfaces

    NASA Technical Reports Server (NTRS)

    Kumar, Nitin; Couzis, Alex; Maldarelli, Charles; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    Microgravity technologies often require aqueous phases to spread over nonwetting hydrophobic solid/surfaces. At a hydrophobic surface, the air/hydrophobic solid tension is low, and the solid/aqueous tension is high. A large contact angle forms as the aqueous/air tension acts together with the solid/air tension to balance the large solid/aqueous tension. The aqueous phase, instead of spreading, is held in a meniscus by the large angle. Surfactants facilitate the wetting of water on hydrophobic surfaces by adsorbing on the water/air and hydrophobic solid/water interfaces and lowering the surface tensions of these interfaces. The tension reductions decrease the contact angle, which increases the equilibrium wetted area. Hydrocarbon surfactants (i.e. amphiphiles with a hydrophobic chain of methylene groups attached to a large polar group to give aqueous solubility) do not reduce significantly the contact angles of the very hydrophobic surfaces such as parafilm or polyethylene. Trisiloxane surfactants (amphiphiles with a hydrophobe consisting of methyl groups linked to a trisiloxane backbone in the form of a disk ((CH3)3-Si-O-Si-O-Si(CH3)3)) and an extended ethoxylate (-(OCH2CH2)n-) polar group in the form of a chain with seven or eight units) can significantly reduce the contact angle of water on a very hydrophobic surface and cause rapid and complete (or nearly complete) spreading (lermed superspreading). The overall goal of the research described in this proposal is to establish and verify a theory for how trisiloxanes cause superspreading, and then use this knowledge as a guide to developing more general hydrocarbon based surfactant systems which superspread and can be used in microgravity. We propose that the trisiloxane surfactants superspread when the siloxane adsorbs, the hydrophobic disk parts of the molecule adsorb onto the surface removing the surface water. Since the cross sectional area of the disk is larger than that of the extended ethoxylate chain, the disks can form a space filling mat on the surface which removes a significant amount of the surface water. The water adjacent to the hydrophobic solid surface is of high energy due to incomplete hydrogen bonding; its removal significantly lowers the tension and reduces the contact angle. Hydrocarbon surfactants cannot remove as much surface water because their large polar groups prevent the chains from cohering lengthwise. In our report last year we presented a poster describing the preparation of model very hydrophobic surfaces which are homogeneous and atomically smooth using self assembled monolayers of octadecyl trichlorosilane (OTS). In this poster we will use these surfaces as test substrates in developing hydrocarbon based surfactant systems which superspread. We studied a binary hydrocarbon surfactant systems consisting of a very soluble large polar group polyethylene oxide surfactant (C12E6 (CH3(CH2)11(OCH2CH2)6OH) and a long chain alcohol dodecanol. By mixing the alcohol with this soluble surfactant we have found that the contact angle of the mixed system on our test hydrophobic surfaces is very low. We hypothesize that the alcohol fills in the gaps between adjacent adsorbed chains of the large polar group surfactant. This filling in removes the surface water and effects the decrease in contact angle. We confirm this hypothesis by demonstrating that at the air/water interface the mixed layer forms condensed phases while the soluble large polar group surfactant by itself does not. We present drop impact experiments which demonstrate that the dodecanol/C12E6 mixture is effective in causing impacting drops to spread on the very hydrophobic model OTS surfaces.

  17. Effect of water table dynamics on land surface hydrologic memory

    NASA Astrophysics Data System (ADS)

    Lo, Min-Hui; Famiglietti, James S.

    2010-11-01

    The representation of groundwater dynamics in land surface models has received considerable attention in recent years. Most studies have found that soil moisture increases after adding a groundwater component because of the additional supply of water to the root zone. However, the effect of groundwater on land surface hydrologic memory (persistence) has not been explored thoroughly. In this study we investigate the effect of water table dynamics on National Center for Atmospheric Research Community Land Model hydrologic simulations in terms of land surface hydrologic memory. Unlike soil water or evapotranspiration, results show that land surface hydrologic memory does not always increase after adding a groundwater component. In regions where the water table level is intermediate, land surface hydrologic memory can even decrease, which occurs when soil moisture and capillary rise from groundwater are not in phase with each other. Further, we explore the hypothesis that in addition to atmospheric forcing, groundwater variations may also play an important role in affecting land surface hydrologic memory. Analyses show that feedbacks of groundwater on land surface hydrologic memory can be positive, negative, or neutral, depending on water table dynamics. In regions where the water table is shallow, the damping process of soil moisture variations by groundwater is not significant, and soil moisture variations are mostly controlled by random noise from atmospheric forcing. In contrast, in regions where the water table is very deep, capillary fluxes from groundwater are small, having limited potential to affect soil moisture variations. Therefore, a positive feedback of groundwater to land surface hydrologic memory is observed in a transition zone between deep and shallow water tables, where capillary fluxes act as a buffer by reducing high-frequency soil moisture variations resulting in longer land surface hydrologic memory.

  18. Reduction of zinc emissions from buildings; the policy of Amsterdam.

    PubMed

    Gouman, E

    2004-01-01

    In Amsterdam zinc coming from the roofs and gutters of the buildings accounts for about 50% of the zinc emissions into the surface water (i.e. canals and rivers). This causes water and sediment pollution. Dumping strongly polluted sediment costs ten times more then dumping less polluted mud. Therefore the City of Amsterdam has developed a policy for reducing the zinc emissions from buildings based on the current environmental legislation and the current national targets for surface water quality. Zinc roofs on new and renovated buildings are not permitted. Run off water from zinc roofs of existing buildings is allowed to contain a maximum of 200 microg/l zinc. For the zinc gutters of houses, Amsterdam will promote measures to reduce zinc emissions. To investigate the feasibility of measures, research has been carried out on the zinc emissions of gutters and the effect of covering gutters with an impermeable foil. This research shows clearly that covering zinc gutters with EPDM foil reduces the zinc emissions by 90% from 8.5 to 0.88 gram per square metre per year including the atmospheric deposition.

  19. Building Towards a Conceptual Model for Phosphorus Transport in Lowland Catchments

    NASA Astrophysics Data System (ADS)

    van der Grift, B.; Griffioen, J.; Oste, L.

    2016-12-01

    The release of P to surface water following P leaching from heavily fertilized agricultural fields to groundwater and the extent of P retention at the redox interphase are of major importance for surface water quality. We studied the role of biogeochemical and hydrological processes during exfiltration of groundwater and their impact on phosphorus transport in lowland catchments in the Netherlands. Our study showed that the mobility and ecological impact of P in surface waters in lowland catchments or polders like in the Netherlands is strongly controlled by the exfiltration of anoxic groundwater containing ferrous iron. Chemical precipitates derived from groundwater-associated Fe(II) seeping into the overlying surface water contribute to immobilization of dissolved phosphate and, therefore, reduces its bioavailability. Aeration experiments with Fe(II) and phosphate-containing synthetic solutions and natural groundwater showed that Fe(II) oxidation in presence of phosphate leads initially to formation of Fe(III) hydroxyphosphates precipitates until phosphate is near-depleted from solution. A field campaign on P specation in surface waters draining agricultural land showed, additionally, that the total-P concentration is strongly dominated by iron-bound. Between 75 and 95% of the total-P concentration in the water samples was iron-bound particulate P. After the turnover of dissolved P to iron-bound particulate P, the P transport in catchments or polders is controlled by sedimentation and erosion of suspended sediments in the water body. Shear flow-induced surface erosion of sediment beds upon natural discharge events or generated by pumping stations is thus an important mechanism for P transport in catchments or polders. The flow velocities in headwaters like drainage ditches are generally low and not high enough to cause a bed shear stress that exceed the critical shear stress. Transport of particulate P that originates from groundwater and (agricultural) drains discharge is strongly retained but particulate P can be remobilized due to biogeochemical processes in the sediment layer at other moments. This makes it difficult to link agricultural practice to P concentrations in the surface water and this should be accounted for when judging measures to reduce P loads from agriculture.

  20. Warming Early Mars by Impact Degassing of Reduced Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.; Zahnle, K.; Barlow, N. G.

    2018-01-01

    Reducing greenhouse gases are once again the latest trend in finding solutions to the early Mars climate dilemma. In its current form collision induced absorptions (CIA) involving H2 and/or CH4 provide enough extra greenhouse power in a predominately CO2 atmosphere to raise global mean surface temperatures to the melting point of water provided the atmosphere is thick enough and the reduced gases are abundant enough. Surface pressures must be at least 500 mb and H2 and/or CH4 concentrations must be at or above the several percent level for CIA to be effective. Atmospheres with 1-2 bars of CO2 and 2- 10% H2 can sustain surface environments favorable for liquid water. Smaller concentrations of H2 are sufficient if CH4 is also present. If thick CO2 atmospheres with percent level concentrations of reduced gases are the solution to the faint young Sun paradox for Mars, then plausible mechanisms must be found to generate and sustain the gases. Possible sources of reducing gases include volcanic outgassing, serpentinization, and impact delivery; sinks include photolyis, oxidation, and escape to space. The viability of the reduced greenhouse hypothesis depends, therefore, on the strength of these sources and sinks. In this paper we focus on impact delivered reduced gases.

  1. Biochar-based constructed wetlands to treat reverse osmosis rejected concentrates in chronic kidney disease endemic areas in Sri Lanka.

    PubMed

    Athapattu, B C L; Thalgaspitiya, T W L R; Yasaratne, U L S; Vithanage, Meththika

    2017-12-01

    The objectives were to investigate the potential remedial measures for reverse osmosis (RO) rejected water through constructed wetlands (CWs) with low-cost materials in the media established in chronic kidney disease of unknown etiology (CKDu) prevalent area in Sri Lanka. A pilot-scale surface and subsurface water CWs were established at the Medawachchiya community-based RO water supply unit. Locally available soil, calicut tile and biochar were used in proportions of 81, 16.5 and 2.5% (w/w), respectively, as filter materials in the subsurface. Vetiver grass and Scirpus grossus were selected for subsurface wetland while water lettuce and water hyacinth were chosen for free water surface CWs. Results showed that the CKDu sensitive parameters; total dissolved solids, hardness, total alkalinity and fluoride were reduced considerably (20-85%) and most met desirable levels of stipulated ambient standards. Biochar seemed to play a major role in removing fluoride from the system which may be due to the existing and adsorbed K + , Ca +2 , Mg +2 , etc. on the biochar surface via chemisorption. The least reduction was observed for alkalinity. This study indicated potential purification of aforesaid ions in water which are considerably present in RO rejection. Therefore, the invented bio-geo constructed wetland can be considered as a sustainable, economical and effective option for reducing high concentrations of CKDu sensitive parameters in RO rejected water before discharging into the inland waters.

  2. Can We Control Contaminant Transport In Hydrologic Networks? Application Of Control Theory Concepts To Watershed Management

    NASA Astrophysics Data System (ADS)

    Yeghiazarian, L.; Riasi, M. S.

    2016-12-01

    Although controlling the level of contamination everywhere in the surface water network may not be feasible, it is vital to maintain safe water quality levels in specific areas, e.g. recreational waters. The question then is "what is the most efficient way to fully/partially control water quality in surface water networks?". This can be posed as a control problem where the goal is to efficiently drive the system to a desired state by manipulating few input variables. Such problems reduce to (1) finding the best control locations in the network to influence the state of the system; and (2) choosing the time-variant inputs at the control locations to achieve the desired state of the system with minimum effort. We demonstrate that the optimal solution to control the level of contamination in the network can be found through application of control theory concepts to transport in dendritic surface water networks.

  3. Degradability studies of PLA nanocomposites under controlled water sorption and soil burial conditions

    NASA Astrophysics Data System (ADS)

    Norazlina, H.; Hadi, A. A.; Qurni, A. U.; Amri, M.; Mashelmie, S.; Kamal, Y.

    2018-04-01

    Polymer blended nanocomposites based on polylactic acid (PLA) were prepared via a simple melting process and investigated for its biodegradation behaviour. The treated CNTs were surface modified by using acid treatment and characterisations of composites were done by using Fourier Transform Infra-Red (FTIR) and UV-Vis. FTIR spectra and UV-Vis peak confirmed the surface modification of CNTs. The water uptake and weight loss behaviour based on CNTs and m-CNTs loading at different temperatures (25° and 45°C) were studied. It was found that the water absorption and weight loss of nanocomposites increased by the incorporation of CNTs and m-CNTs. Moisture induced degradation of composite samples was significant at elevated temperature. The addition of treated CNTs successfully reduced the water uptake and weight loss of nanocomposites due to less hydrolytic effect of water on nanocomposites. In soil burial test, the weight loss increases with addition of nanofiller. The loading of m-CNT reduced the ability of nanocomposites degradation.

  4. Arsenic control during aquifer storage recovery cycle tests in the Floridan Aquifer.

    PubMed

    Mirecki, June E; Bennett, Michael W; López-Baláez, Marie C

    2013-01-01

    Implementation of aquifer storage recovery (ASR) for water resource management in Florida is impeded by arsenic mobilization. Arsenic, released by pyrite oxidation during the recharge phase, sometimes results in groundwater concentrations that exceed the 10 µg/L criterion defined in the Safe Drinking Water Act. ASR was proposed as a major storage component for the Comprehensive Everglades Restoration Plan (CERP), in which excess surface water is stored during the wet season, and then distributed during the dry season for ecosystem restoration. To evaluate ASR system performance for CERP goals, three cycle tests were conducted, with extensive water-quality monitoring in the Upper Floridan Aquifer (UFA) at the Kissimmee River ASR (KRASR) pilot system. During each cycle test, redox evolution from sub-oxic to sulfate-reducing conditions occurs in the UFA storage zone, as indicated by decreasing Fe(2+) /H2 S mass ratios. Arsenic, released by pyrite oxidation during recharge, is sequestered during storage and recovery by co-precipitation with iron sulfide. Mineral saturation indices indicate that amorphous iron oxide (a sorption surface for arsenic) is stable only during oxic and sub-oxic conditions of the recharge phase, but iron sulfide (which co-precipitates arsenic) is stable during the sulfate-reducing conditions of the storage and recovery phases. Resultant arsenic concentrations in recovered water are below the 10 µg/L regulatory criterion during cycle tests 2 and 3. The arsenic sequestration process is appropriate for other ASR systems that recharge treated surface water into a sulfate-reducing aquifer. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  5. Nutrient loss with runoff from fairway turf: an evaluation of core cultivation practices and their environmental impact.

    PubMed

    Rice, Pamela J; Horgan, Brian P

    2011-11-01

    The presence of excess nutrients in surface waters can result in undesirable environmental and economic consequences, including nuisance algal blooms and eutrophication. Fertilizer use in highly managed turf systems has raised questions concerning the contribution of nutrients to surrounding surface waters. Experiments were designed to quantify phosphorus and nitrogen transport with runoff from turf plots maintained as a golf course fairway to identify which cultural practice, solid tine (ST) or hollow tine (HT) core cultivation, maximized phosphorus and nitrogen retention at the site of fertilizer application. Simulated precipitation and collection of resulting runoff were completed 26 ± 13 h following granular fertilizer application (18-3-18: N-P₂O₅-K₂O) and 63 d and 2 d following core cultivation. Runoff volumes were reduced in fairway turf plots aerated with HT relative to ST (63 d: 10%, 2 d: 55% reduction). Analysis of the runoff revealed a reduction in soluble phosphorus, ammonium nitrogen, and nitrate nitrogen losses with runoff from plots managed with HT; a 5 to 27% reduction after 63 d; and a 39 to 77% reduction at 2 d. Golf course runoff-to-surface water scenarios were used to calculate estimated environmental concentrations (EECs) of nitrogen and phosphorus in surface water receiving runoff from turf managed with ST or HT core cultivation. Surface water concentrations of phosphorus remained above the U.S. Environmental Protection Agency's water quality criteria to limit eutrophication, with the exception of concentrations associated with HT core cultivation at 2 d. Regardless of management practice (ST or HT) and time between core cultivation and runoff (63 d or 2 d), all EECs of nitrogen were below levels associated with increased algal growth. Understanding nutrient transport with runoff and identifying strategies that reduce off-site transport will increase their effectiveness at intended sites of application and minimize undesirable effects to surrounding surface water resources. Copyright © 2011 SETAC.

  6. Influence of the Institutional Structure of Surface Water Rights on Agricultural Production in the Central Valley

    NASA Astrophysics Data System (ADS)

    Nelson, K.; Burchfield, E. K.

    2017-12-01

    California's Central Valley region is one of the most productive agricultural systems on the planet. The high levels of agricultural production in this region require large amounts of fresh water for irrigation. However, the long-term availability of water required to sustain such levels of agricultural production has been questioned following the latest drought in California. In this study, we use Bayesian multilevel spatiotemporal modeling techniques to examine the influence of the institutional structure of surface water rights in the Central Valley on agricultural production during the recent drought. The R-INLA package is employed to account for spatial processes that have the potential to influence the effects of water right structures on crop productivity as well as on extent of cultivation. Model results suggest that seniority in surface water access significantly improves crop productivity on cultivated lands, but does not directly affect the ability to maintain cultivated extent. In addition, results suggest that areas with more junior surface water rights tend to reduce extent of cultivation, but maintain crop productivity, as cumulative drought stress increases.

  7. Reducing dissolved inorganic nitrogen in surface runoff water from sugarcane production systems.

    PubMed

    Webster, A J; Bartley, R; Armour, J D; Brodie, J E; Thorburn, P J

    2012-01-01

    Nitrogen (N) lost from farms, especially as the highly bioavailable dissolved inorganic form, may be damaging Australia's Great Barrier Reef (GBR). As sugarcane is the dominant cropping system in GBR catchments, its N management practises are coming under increasing scrutiny. This study measured dissolved inorganic N lost in surface runoff water and sugarcane productivity over 3 years. The experiment compared the conventional fertiliser N application rate to sugarcane (average 180kg N/ha/year) and a rate based on replacing N exported in the previous crop (average 94kg N/ha/year). Dissolved inorganic N losses in surface water were 72%, 48% and 66% lower in the three monitored years in the reduced N fertiliser treatment. There was no significant difference in sugarcane yield between the two fertiliser N treatments, nor any treatment difference in soil mineral N - both of these results are indicators of the sustainability of the lower fertiliser N applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. ROLE OF LAND USE AND BMPS IN REDUCING THE EFFECT OF EXTREME MAGNITUDE EVENTS ON SEDIMENT AND POLLUTANT TRANSPORT IN THE SE US COASTAL PLAIN AND MISSISSIPPI ALLUVIAL VALLEY

    EPA Science Inventory

    Suspended sediment is a major non-point source pollutant of surface waters. Best management practices (BMPs) and current landuse decisions may not be sufficient to protect water quality in a changing climate, as a result of a loss of efficiency at reducing suspended sedimen...

  9. Preparation of enhanced hydrophobic poly(L-lactide-co-ɛ-caprolactone) films surface and its blood compatibility

    NASA Astrophysics Data System (ADS)

    Kim, Seung Il; Lim, Jin Ik; Jung, Youngmee; Mun, Cho Hay; Kim, Ji Heung; Kim, Soo Hyun

    2013-07-01

    Hydrophobicity-enhanced poly(L-lactide-co-ɛ-caprolactone) (PLCL) (50:50) films were cast by using the solvent-nonsolvent casting method. PLCL (50:50) was synthesized by the well-known random copolymerization process and confirmed by 1H NMR analysis. The molecular weight of the synthesized PLCL was measured by gel permeation chromatography (GPC). Number-average (Mn), weight-average (Mw) molecular weights and polydispersity (Mw/Mn) were 7 × 104, 1.2 × 105, and 1.7, respectively. PLCL films were cast in vacuum condition with various nonsolvents and nonsolvent ratios. Tetrahydrofuran (THF) was used as the solvent and three different alcohols were used as the nonsolvent: methanol, ethanol, and isopropyl alcohol (IPA). Surface hydrophobicity was confirmed by water contact angle. The water contact angle was increased from 81° ± 2° to 107° ± 2°. Water contact angle was influenced by surface porosity and topography. The prepared film surfaces were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The change of crystalline property was characterized by X-ray diffraction (XRD). Platelet adhesion tests on the modified PLCL film surfaces were evaluated by platelet-rich plasma (PRP). The modified film surface exhibited enhanced hydrophobicity and reduced platelet adhesion ratio depending on the surface topography. One of the candidate products proposed as a potential blood compatible material showed a markedly reduced platelet adhesion property.

  10. Brushless Cleaning of Solar Panels and Windows

    NASA Technical Reports Server (NTRS)

    Schneider, H. W.

    1982-01-01

    Machine proposed for cleaning solar panels and reflectors uses multiple vortexes of air, solvent, and water to remove dust and dirt. Uses no brushes that might abrade solar surfaces and thereby reduce efficiency. Machine can be readily automated and can be used on curved surfaces such as aparbolic reflectors as well as on flat ones. Cleaning fluids are recycled, so that large quantities of water and solvent are not needed.

  11. Photocatalytic inactivation of E. coli in surface water using immobilised nanoparticle TiO2 films.

    PubMed

    Alrousan, Dheaya M A; Dunlop, Patrick S M; McMurray, Trudy A; Byrne, J Anthony

    2009-01-01

    Photocatalysis is a promising method for the disinfection of potable water in developing countries where solar irradiation can be employed, thus reducing the cost of treatment. In addition to microbial contamination, water normally contains suspended solids, dissolved inorganic ions and organic compounds (mainly humic substances) which may affect the efficacy of solar photocatalysis. In this work the photocatalytic and photolytic inactivation rates of Escherichia coli using immobilised nanoparticle TiO2 films were found to be significantly lower in surface water samples in comparison to distilled water. The presence of nitrate and sulphate anions spiked into distilled water resulted in a decrease in the rate of photocatalytic disinfection. The presence of humic acid, at the concentration found in the surface water, was found to have a more pronounced affect, significantly decreasing the rate of disinfection. Adjusting the initial pH of the water did not markedly affect the photocatalytic disinfection rate, within the narrow range studied.

  12. Clouds Versus Carbon: Predicting Vegetation Roughness by Maximizing Productivity

    NASA Technical Reports Server (NTRS)

    Olsen, Lola M.

    2004-01-01

    Surface roughness is one of the dominant vegetation properties that affects land surface exchange of energy, water, carbon, and momentum with the overlying atmosphere. We hypothesize that the canopy structure of terrestrial vegetation adapts optimally to climate by maximizing productivity, leading to an optimum surface roughness. An optimum should exist because increasing values of surface roughness cause increased surface exchange, leading to increased supply of carbon dioxide for photosynthesis. At the same time, increased roughness enhances evapotranspiration and cloud cover, thereby reducing the supply of photosynthetically active radiation. We demonstrate the optimum through sensitivity simulations using a coupled dynamic vegetation-climate model for present day conditions, in which we vary the value of surface roughness for vegetated surfaces. We find that the maximum in productivity occurs at a roughness length of 2 meters, a value commonly used to describe the roughness of today's forested surfaces. The sensitivity simulations also illustrate the strong climatic impacts of vegetation roughness on the energy and water balances over land: with increasing vegetation roughness, solar radiation is reduced by up to 20 W/sq m in the global land mean, causing shifts in the energy partitioning and leading to general cooling of the surface by 1.5 K. We conclude that the roughness of vegetated surfaces can be understood as a reflection of optimum adaptation, and it is associated with substantial changes in the surface energy and water balances over land. The role of the cloud feedback in shaping the optimum underlines the importance of an integrated perspective that views vegetation and its adaptive nature as an integrated component of the Earth system.

  13. Effect of surface charge density on the affinity of oxide nanoparticles for the vapor-water interface.

    PubMed

    Brown, Matthew A; Duyckaerts, Nicolas; Redondo, Amaia Beloqui; Jordan, Inga; Nolting, Frithjof; Kleibert, Armin; Ammann, Markus; Wörner, Hans Jakob; van Bokhoven, Jeroen A; Abbas, Zareen

    2013-04-23

    Using in-situ X-ray photoelectron spectroscopy at the vapor-water interface, the affinity of nanometer-sized silica colloids to adsorb at the interface is shown to depend on colloid surface charge density. In aqueous suspensions at pH 10 corrected Debye-Hückel theory for surface complexation calculations predict that smaller silica colloids have increased negative surface charge density that originates from enhanced screening of deprotonated silanol groups (≡Si-O(-)) by counterions in the condensed ion layer. The increased negative surface charge density results in an electrostatic repulsion from the vapor-water interface that is seen to a lesser extent for larger particles that have a reduced charge density in the XPS measurements. We compare the results and interpretation of the in-situ XPS and corrected Debye-Hückel theory for surface complexation calculations with traditional surface tension measurements. Our results show that controlling the surface charge density of colloid particles can regulate their adsorption to the interface between two dielectrics.

  14. Diminished Metal Accumulation in Riverine Fishes Exposed to Acid Mine Drainage over Five Decades

    PubMed Central

    Jeffree, Ross A.; Markich, Scott J.; Twining, John R.

    2014-01-01

    Bony bream (Nematalosa erebi) and black catfish (Neosilurus ater) were sampled from the fresh surface waters of the Finniss River in tropical northern Australia, along a metal pollution gradient draining the Rum Jungle copper/uranium mine, a contaminant source for over five decades. Paradoxically, populations of both fish species exposed to the highest concentrations of mine-related metals (cobalt, copper, lead, manganese, nickel, uranium and zinc) in surface water and sediment had the lowest tissue (bone, liver and muscle) concentrations of these metals. The degree of reduction in tissue concentrations of exposed populations was also specific to each metal and inversely related to its degree of environmental increase above background. Several explanations for diminished metal bioaccumulation in fishes from the contaminated region were evaluated. Geochemical speciation modeling of metal bioavailability in surface water showed no differences between the contaminated region and the control sites. Also, the macro-nutrient (calcium, magnesium and sodium) water concentrations, that may competitively inhibit metal uptake, were not elevated with trace metal contamination. Reduced exposure to contaminants due to avoidance behavior was unlikely due to the absence of refugial water bodies with the requisite metal concentrations lower than the control sites and very reduced connectivity at time of sampling. The most plausible interpretation of these results is that populations of both fish species have modified kinetics within their metal bioaccumulation physiology, via adaptation or tolerance responses, to reduce their body burdens of metals. This hypothesis is consistent with (i) reduced tissue concentrations of calcium, magnesium and sodium (macro-nutrients), in exposed populations of both species, (ii) experimental findings for other fish species from the Finniss River and other contaminated regions, and (iii) the number of generations exposed to likely selection pressure over 50 years. PMID:24663964

  15. First-principles quantum mechanical investigations: Catalytic reactions of furfural on Pd(111) and at the water/Pd(111) interface

    NASA Astrophysics Data System (ADS)

    Xue, Wenhua

    Bio-oils have drawn more and more attention from scientists as a promising new clean, cheap energy source. One of the most interesting relevant issues is the effect of catalysts on the catalytic reactions that are used for producing bio-oils. Furfural, as a very important intermediate during these reactions, has attracted significant studies. However, the effect of catalysts, including particularly the liquid/solid interface formed by a metal catalyst and liquid water, in the catalytic reactions involving furfural still remains elusive. In this research, we performed ab initio molecular dynamics simulations and first-principles density-functional theory calculations to investigate the atomic-scale mechanisms of catalytic hydrogenation of furfural on the palladium surface and at the liquid/state interface formed by the palladium surface and liquid water. We studied all the possible mechanisms that lead to formation of furfuryl alcohol (FOL), formation of tetrahydrofurfural (THFAL), and formation of tetrahydrofurfurfuryl alcohol (THFOL). We found that liquid water plays a significant role in the hydrogenation reactions. During the reaction in the presence of water and the palladium catalyst, in particular, water directly participates in the hydrogenation of the aldehyde group of furfural and facilitates the formation of FOL by reducing the activation energy. Our calculations show that water provides hydrogen for the hydrogenation of the aldehyde group, and at the same time, a pre-existing hydrogen atom, which is resulted from dissociation of molecular hydrogen (experimentally, molecular hydrogen is always supplied for hydrogenation) on the palladium surface, is bonded to water, making the water molecule intact in structure. In the absence of water, on the other hand, formation of FOL and THFAL on the palladium surface involves almost the same energy barriers, suggesting a comparable selectivity. Overall, as water reduces the activation energy for the formation of FOL while increases the energy barrier slightly for hydrogenation of the furan ring, water changes the reaction selectivity and promotes the formation of furfuryl alcohol.

  16. The role of Southern Ocean mixing and upwelling in glacial-interglacial atmospheric CO2 change

    NASA Astrophysics Data System (ADS)

    Watson, Andrew J.; Naveira Garabato, Alberto C.

    2006-02-01

    Decreased ventilation of the Southern Ocean in glacial time is implicated in most explanations of lower glacial atmospheric CO2. Today, the deep (>2000 m) ocean south of the Polar Front is rapidly ventilated from below, with the interaction of deep currents with topography driving high mixing rates well up into the water column. We show from a buoyancy budget that mixing rates are high in all the deep waters of the Southern Ocean. Between the surface and ~2000 m depth, water is upwelled by a residual meridional overturning that is directly linked to buoyancy fluxes through the ocean surface. Combined with the rapid deep mixing, this upwelling serves to return deep water to the surface on a short time scale. We propose two new mechanisms by which, in glacial time, the deep Southern Ocean may have been more isolated from the surface. Firstly, the deep ocean appears to have been more stratified because of denser bottom water resulting from intense sea ice formation near Antarctica. The greater stratification would have slowed the deep mixing. Secondly, subzero atmospheric temperatures may have meant that the present-day buoyancy flux from the atmosphere to the ocean surface was reduced or reversed. This in turn would have reduced or eliminated the upwelling (contrary to a common assumption, upwelling is not solely a function of the wind stress but is coupled to the air-sea buoyancy flux too). The observed very close link between Antarctic temperatures and atmospheric CO2 could then be explained as a natural consequence of the connection between the air-sea buoyancy flux and upwelling in the Southern Ocean, if slower ventilation of the Southern Ocean led to lower atmospheric CO2. Here we use a box model, similar to those of previous authors, to show that weaker mixing and reduced upwelling in the Southern Ocean can explain the low glacial atmospheric CO2 in such a formulation.

  17. Infiltration of pesticides in surface water into nearby drinking water supply wells

    NASA Astrophysics Data System (ADS)

    Malaguerra, F.; Albrechtsen, H.; Binning, P. J.

    2010-12-01

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using data of a tracer experiment in a riparian zone. Three compounds were considered: an older pesticide MCPP (Mecoprop) which is mobile and persistent, glyphosate (Roundup), a new biodegradable and strongly sorbed pesticide, and its degradation product AMPA. Global sensitivity analysis using the method of Morris was employed to identify the dominant model parameters. Results showed that the presence of an aquitard and its characteristics (degree of fracturing and thickness), pollutant properties and well depth are the crucial factors affecting the risk of drinking water well contamination from surface water. Global sensitivity analysis results were compared with rank correlation statistics between pesticide concentrations and geological parameters derived from a comprehensive database of Danish drinking water wells. Aquitard thickness and well depth are the most critical parameters in both the model and observed data.

  18. Site Competition During Coadsorption of Acetone with Methanol and Water on TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Mingmin; Henderson, Michael A.

    2011-08-02

    The competitive interaction between acetone and two solvent molecules (methanol and water) for surface sites on rutile TiO2(110) was studied using temperature programmed desorption (TPD). On a vacuum reduced TiO2(110) surface, which possessed ~5% oxygen vacancy sites, excess methanol displaced preadsorbed acetone molecules to weakly bound and physisorbed desorption states below 200 K, whereas acetone was stabilized to 250 K against displacement by methanol on an oxidized surface through formation of an acetone-diolate species. These behaviors of acetone differ from the competitive interactions between acetone and water in that acetone is less susceptible to displacement by water. Examination of acetone+methanolmore » and acetone+water multilayer combinations shows that acetone is more compatible in water-ice films than in methanol-ice films, presumably because water has greater potential as a hydrogen-bond donor than does methanol. Acetone molecules displaced from the TiO2(110) surface by water are more likely to be retained in the near-surface region, having a greater opportunity to revisit the surface, than when methanol is used as a coadsorbate. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less

  19. Presidential Green Chemistry Challenge: 2016 Greener Reaction Conditions Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2016 award winner, Dow Agrosciences LLC, developed Instinct®, a technology that reduces fertilizer nitrate leaching to ground and surface waters and atmospheric nitrous oxide emissions. More corn and reduces CO2.

  20. Two-year water degradation of self-etching adhesives bonded to bur ground enamel.

    PubMed

    Abdalla, Ali I; Feilzer, Albert J

    2009-01-01

    To evaluate the effect of water storage on the microshear bond strength to ground enamel of three "all-in-one" self-etch adhesives: Futurabond DC, Clearfil S Tri Bond and Hybrid bond; a self-etching primer; Clearfil SE Bond and an etch-and-rinse adhesive system, Admira Bond. Sixty human molars were used. The root of each tooth was removed and the crown was sectioned into two halves. The convex enamel surfaces were reduced by polishing on silicon paper to prepare a flat surface that was roughened with a parallel-sided diamond bur with abundant water for five seconds. The bonding systems were applied on this surface. Prior to adhesive curing, a hollow cylinder (2.0 mm in height/0.75 mm in internal diameter) was placed on the treated surfaces and cured. A resin composite was then inserted into the tube and cured. For each adhesive, two procedures were carried out: A--the specimens were kept in water for 24 hours, then the tube was removed and the microshear bond strength was determined in a universal testing machine at a crosshead speed of 0.5 mm/minute; B--the specimens were stored in water for two-years before microshear testing. The fractured surface of the bonded specimens after each test procedure was examined by SEM. For the 24-hour control, there was no significant difference in bond strength between the tested adhesives. After two years of water storage, the bond strength of Admira Bond, Clearfil SE Bond and Futurabond DC decreased, but the reduction was not significantly different from that of 24 hours. For Clearfil S Tri Bond and Hybrid Bond, the bond strengths were significantly reduced compared to their 24-hour results.

  1. Modeling Phosphorous Losses from Seasonal Manure Application Schemes

    NASA Astrophysics Data System (ADS)

    Menzies, E.; Walter, M. T.

    2015-12-01

    Excess nutrient loading, especially nitrogen and phosphorus, to surface waters is a common and significant problem throughout the United States. While pollution remediation efforts are continuously improving, the most effective treatment remains to limit the source. Appropriate timing of fertilizer application to reduce nutrient losses is currently a hotly debated topic in the Northeastern United States; winter spreading of manure is under special scrutiny. We plan to evaluate the loss of phosphorous to surface waters from agricultural systems under varying seasonal fertilization schemes in an effort to determine the impacts of fertilizers applied throughout the year. The Cayuga Lake basin, located in the Finger Lakes region of New York State, is a watershed dominated by agriculture where a wide array of land management strategies can be found. The evaluation will be conducted on the Fall Creek Watershed, a large sub basin in the Cayuga Lake Watershed. The Fall Creek Watershed covers approximately 33,000 ha in central New York State with approximately 50% of this land being used for agriculture. We plan to use the Soil and Water Assessment Tool (SWAT) to model a number of seasonal fertilization regimes such as summer only spreading and year round spreading (including winter applications), as well as others. We will use the model to quantify the phosphorous load to surface waters from these different fertilization schemes and determine the impacts of manure applied at different times throughout the year. More detailed knowledge about how seasonal fertilization schemes impact phosphorous losses will provide more information to stakeholders concerning the impacts of agriculture on surface water quality. Our results will help farmers and extensionists make more informed decisions about appropriate timing of manure application for reduced phosphorous losses and surface water degradation as well as aid law makers in improving policy surrounding manure application.

  2. Coagulation effectiveness of graphene oxide for the removal of turbidity from raw surface water.

    PubMed

    Aboubaraka, Abdelmeguid E; Aboelfetoh, Eman F; Ebeid, El-Zeiny M

    2017-08-01

    This study presents the performance of graphene oxide (GO) as a coagulant in turbidity removal from naturally and artificially turbid raw surface water. GO is considered an excellent alternative to alum, the more common coagulant used in water treatment processes, to reduce the environmental release of aluminum. Effects of GO dosage, pH, and temperature on its coagulation ability were studied to determine the ideal turbidity removal conditions. The turbidity removal was ≥95% for all levels of turbid raw surface water (20, 100, and 200 NTU) at optimum conditions. The role of alkalinity in inducing turbidity removal by GO coagulation was much more pronounced upon using raw surface water samples compared with that using artificially turbid deionized water samples. Moreover, GO demonstrated high-performance removal of biological contaminants such as algae, heterotrophic bacteria, and fecal coliform bacteria by 99.0%, 98.8% and 96.0%, respectively, at a dosage of 40 mg/L. Concerning the possible environmental release of GO into the treated water following filtration process, there was no residual GO in a wide range of pH values. The outcomes of the study highlight the excellent coagulation performance of GO for the removal of turbidity and biological contaminants from raw surface water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A Preliminary Evaluation of the Potential Utility of the Surface Condition Analyzer (SCAN) System for Monitoring Runway Water Depth as Relating to Runway Traction.

    DTIC Science & Technology

    1980-01-01

    one year with the savings realized in reduced wear on arresting gear. 2.2 Evaluation of the Potential Utility of the SCAN System for Monitoring Runway...without loss of accuracy due to build-up of rubber and other contaminants on the sensor surface? 2. Can water depth be measured representatively on a...Hargett, E.R., 1974: Skid- Resistance Evaluation of Seven Antihydroplaning Surfaces, Air Force Weapons Laboratory, Kirtland AP. NM4 87117, 39 pp

  4. Phosphorus losses from an irrigated watershed in the Northwestern U.S.: Case study of the Upper Snake Rock Watershed

    USDA-ARS?s Scientific Manuscript database

    Watersheds utilizing surface water for irrigation often return a portion of the water to a water body. This irrigation return flow often includes sediment and nutrients that reduce the quality of the receiving water body. Research in the 82,000 ha Upper Snake Rock (USR) watershed from 2005 to 2008 s...

  5. Groundwater recharge in suburban areas of Hanoi, Vietnam: effect of decreasing surface-water bodies and land-use change

    NASA Astrophysics Data System (ADS)

    Kuroda, Keisuke; Hayashi, Takeshi; Do, An Thuan; Canh, Vu Duc; Nga, Tran Thi Viet; Funabiki, Ayako; Takizawa, Satoshi

    2017-05-01

    Over-exploited groundwater is expected to remain the predominant source of domestic water in suburban areas of Hanoi, Vietnam. In order to evaluate the effect on groundwater recharge, of decreasing surface-water bodies and land-use change caused by urbanization, the relevant groundwater systems and recharge pathways must be characterized in detail. To this end, water levels and water quality were monitored for 3 years regarding groundwater and adjacent surface-water bodies, at two typical suburban sites in Hanoi. Stable isotope (δ18O, δD of water) analysis and hydrochemical analysis showed that the water from both aquifers and aquitards, including the groundwater obtained from both the monitoring wells and the neighboring household tubewells, was largely derived from evaporation-affected surface-water bodies (e.g., ponds, irrigated farmlands) rather than from rivers. The water-level monitoring results suggested distinct local-scale flow systems for both a Holocene unconfined aquifer (HUA) and Pleistocene confined aquifer (PCA). That is, in the case of the HUA, lateral recharge through the aquifer from neighboring ponds and/or irrigated farmlands appeared to be dominant, rather than recharge by vertical rainwater infiltration. In the case of the PCA, recharge by the above-lying HUA, through areas where the aquitard separating the two aquifers was relatively thin or nonexistent, was suggested. As the decrease in the local surface-water bodies will likely reduce the groundwater recharge, maintaining and enhancing this recharge (through preservation of the surface-water bodies) is considered as essential for the sustainable use of groundwater in the area.

  6. Comparison of the adsorbed conformation of barley lipid transfer protein at the decane-water and vacuum-water interface: a molecular dynamics simulation.

    PubMed

    Euston, S R; Hughes, P; Naser, Md A; Westacott, R E

    2008-05-01

    Molecular dynamics simulation is used to model the adsorption of the barley lipid transfer protein (LTP) at the decane-water and vacuum-water interfaces. Adsorption at both surfaces is driven by displacement of water molecules from the interfacial region. LTP adsorbed at the decane surface exhibits significant changes in its tertiary structure, and penetrates a considerable distance into the decane phase. At the vacuum-water interface LTP shows small conformational changes away from its native structure and does not penetrate into the vacuum space. Modification of the conformational stability of LTP by reduction of its four disulphide bonds leads to an increase in conformational entropy of the molecules, which reduces the driving force for adsorption. Evidence for changes in the secondary structure are also observed for native LTP at the decane-water interface and reduced LTP at the vacuum-water interface. In particular, intermittent formation of short (six-residue) regions of beta-sheet is found in these two systems. Formation of interfacial beta-sheet in adsorbed proteins has been observed experimentally, notably in the globular milk protein beta-lactoglobulin and lysozyme.

  7. Effects of Water Quality and Orthophosphate on Surface Characteristics of Cu Corrosion in Drinking Water using Atomic Force Microscopy

    EPA Science Inventory

    Since the passage of the Lead and Copper Rule (LCR) in 1991, researchers have examined the effects of water chemistry on the solubility of copper to establish best approaches for reducing copper levels. Despite recent developments, important gaps still exist regarding copper cor...

  8. Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface

    PubMed Central

    Saranadhi, Dhananjai; Chen, Dayong; Kleingartner, Justin A.; Srinivasan, Siddarth; Cohen, Robert E.; McKinley, Gareth H.

    2016-01-01

    Skin friction drag contributes a major portion of the total drag for small and large water vehicles at high Reynolds number (Re). One emerging approach to reducing drag is to use superhydrophobic surfaces to promote slip boundary conditions. However, the air layer or “plastron” trapped on submerged superhydrophobic surfaces often diminishes quickly under hydrostatic pressure and/or turbulent pressure fluctuations. We use active heating on a superhydrophobic surface to establish a stable vapor layer or “Leidenfrost” state at a relatively low superheat temperature. The continuous film of water vapor lubricates the interface, and the resulting slip boundary condition leads to skin friction drag reduction on the inner rotor of a custom Taylor-Couette apparatus. We find that skin friction can be reduced by 80 to 90% relative to an unheated superhydrophobic surface for Re in the range 26,100 ≤ Re ≤ 52,000. We derive a boundary layer and slip theory to describe the hydrodynamics in the system and show that the plastron thickness is h = 44 ± 11 μm, in agreement with expectations for a Leidenfrost surface. PMID:27757417

  9. Rates of Water Loss and Uptake in Recalcitrant Fruits of Quercus Species Are Determined by Pericarp Anatomy

    PubMed Central

    Xia, Ke; Daws, Matthew I.; Stuppy, Wolfgang; Zhou, Zhe-Kun; Pritchard, Hugh W.

    2012-01-01

    Desiccation-sensitive recalcitrant seeds and fruits are killed by the loss of even moderate quantities of water. Consequently, minimizing the rate of water loss may be an important ecological factor and evolutionary driver by reducing the risk of mortality during post-dispersal dry-spells. For recalcitrant fruits of a range of Quercus species, prolonged drying times have been observed previously. However, the underlying mechanism(s) for this variation is unknown. Using nine Quercus species we investigated the major route(s) of water flow into and out of the fruits and analysed the relative importance of the different pericarp components and their anatomy on water uptake/loss. During imbibition (rehydration), the surface area of the cupule scar and the frequency and area of the vascular bundles contained therein were significantly correlated with the rates of water uptake across the scar. The vascular bundles serving the apex of the fruit were a minor contributor to overall water. Further, the rate of water uptake across the remainder of the pericarp surface was significantly correlated with the thickness of the vascularised inner layer in the pericarp. Fruits of Q. franchetii and Q. schottkyana dried most slowly and had a comparatively small scar surface area with few vascular bundles per unit area. These species inhabit drier regions than the other species studied, suggesting these anatomical features may have ecological value by reducing the risk of desiccation stress. However, this remains to be tested in the field. PMID:23071795

  10. Lubricant-impregnated surfaces for drag reduction in viscous laminar flow

    NASA Astrophysics Data System (ADS)

    Solomon, Brian; Khalil, Karim; Varanasi, Kripa; MIT Team

    2013-11-01

    For the first time, we explore the potential of lubricant impregnated surfaces (LIS) in reducing drag. LIS, inspired by the surface of the Nepenthes pitcher plant, have been introduced as a novel way of functionalizing a surface. LIS are characterized by extremely low contact angle hysteresis and have been show to effectively repel various liquids including water, oils, ketchup and blood. Motivated by the slippery nature of such surfaces, we explore the potential of LIS to reduce drag in internal flows. We observe a reduction in drag for LIS surfaces in a viscous laminar drag flow and model the impact of relevant system parameters (lubricant viscosity, working fluid viscosity, solid fraction, depth of texture, etc.).

  11. CONTAMINATION OF URBAN SURFACE WATER BY VEHICLE EMISSIONS

    DOT National Transportation Integrated Search

    2017-10-01

    Combined sewer overflows (CSOs) are a water management issue for Onondaga County and the city of Syracuse, NY. To reduce them, the County is investing in green infrastructure (GI). GI technologies such as green roofs, rain gardens, and bioswales are ...

  12. Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.

    2010-01-01

    Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.

  13. LANDSCAPE INDICATORS OF SURFACE WATER CONDITIONS

    EPA Science Inventory

    This task comprises three inter-related projects: 1) impervious surface mapping and evaluation of its impact ; 2) detection of BMPs and estimation of their ability to reduce nutrient input into streams, and; 3) detection of isolated wetlands. Each substask addresses critical is...

  14. Carbon and nitrogen biogeochemistry of a Prairie Pothole Wetland, Stutsman County, North Dakota, USA

    USGS Publications Warehouse

    Holloway, JoAnn M.; Goldhaber, Martin B.; Mills, Christopher T.

    2011-01-01

    The concentration and form of dissolved organic C (DOC) and N species (NH4+ and NO3-) were investigated as part of a larger hydrogeochemical study of the Cottonwood Lake Study Area within the Prairie Potholes region. Groundwater, pore water and surface wetland water data were used to help characterize the relationships between surface and groundwater with respect to nutrient dynamics. Photosynthesis and subsequent decomposition of vegetation in these hydrologically dynamic wetlands generates a large amount of dissolved C and N, although the subsurface till, derived in part from organic matter rich Pierre Shale, is a likely secondary source of nutrients in deeper groundwater. While surface water DOC concentrations ranged from 2.2 to 4.6 mM, groundwater values were 0.15 mM to 3.7 mM. Greater specific UV absorbance (SUVA254) in the wetland water column and in soil pore waters relative to groundwater indicate more reactive DOC in the surface to near-surface waters. Circumneutral wetlands had greater SUVA254, possibly because of variations in vegetation communities. The dominant inorganic nitrogen species was NH4+ in both wetland water and most ground water samples. The exceptions were 3 wells with NO3- ranging from 38 to 115 μM. Shallow groundwater wells (Well 28 and Well 13S) with greater connection to wetland surface water had greater NH4+ concentrations (1.1 mM and 120 μM) than other well samples (3–90 μM). Pore water nutrient chemistry was more similar to surface water than ground water. Nitrogen results suggest reducing conditions in both groundwater and surface water, possibly due to the microbial uptake of O2 by decaying vegetation in the wetland water column, labile organic C available in shallow groundwater, or the oxidation of pyrite associated with the subsurface.

  15. Vertical Distribution of Water at Phoenix

    NASA Technical Reports Server (NTRS)

    Tamppari, L. K.; Lemmon, M. T.

    2011-01-01

    Phoenix results, combined with coordinated observations from the Mars Reconnaissance Orbiter of the Phoenix lander site, indicate that the water vapor is nonuniform (i.e., not well mixed) up to a calculated cloud condensation level. It is important to understand the mixing profile of water vapor because (a) the assumption of a well-mixed atmosphere up to a cloud condensation level is common in retrievals of column water abundances which are in turn used to understand the seasonal and interannual behavior of water, (b) there is a long history of observations and modeling that conclude both that water vapor is and is not well-mixed, and some studies indicate that the water vapor vertical mixing profile may, in fact, change with season and location, (c) the water vapor in the lowest part of the atmosphere is the reservoir that can exchange with the regolith and higher amounts may have an impact on the surface chemistry, and (d) greater water vapor abundances close to the surface may enhance surface exchange thereby reducing regional transport, which in turn has implications to the net transport of water vapor over seasonal and annual timescales.

  16. Insights into structural and dynamical features of water at halloysite interfaces probed by DFT and classical molecular dynamics simulations.

    PubMed

    Presti, Davide; Pedone, Alfonso; Mancini, Giordano; Duce, Celia; Tiné, Maria Rosaria; Barone, Vincenzo

    2016-01-21

    Density functional theory calculations and classical molecular dynamics simulations have been used to investigate the structure and dynamics of water molecules on kaolinite surfaces and confined in the interlayer of a halloysite model of nanometric dimension. The first technique allowed us to accurately describe the structure of the tetrahedral-octahedral slab of kaolinite in vacuum and in interaction with water molecules and to assess the performance of two widely employed empirical force fields to model water/clay interfaces. Classical molecular dynamics simulations were used to study the hydrogen bond network structure and dynamics of water adsorbed on kaolinite surfaces and confined in the halloysite interlayer. The results are in nice agreement with the few experimental data available in the literature, showing a pronounced ordering and reduced mobility of water molecules at the hydrophilic octahedral surfaces of kaolinite and confined in the halloysite interlayer, with respect to water interacting with the hydrophobic tetrahedral surfaces and in the bulk. Finally, this investigation provides new atomistic insights into the structural and dynamical properties of water-clay interfaces, which are of fundamental importance for both natural processes and industrial applications.

  17. Water balance model for mean annual hydrogen and oxygen isotope distributions in surface waters of the contiguous United States

    NASA Astrophysics Data System (ADS)

    Bowen, Gabriel J.; Kennedy, Casey D.; Liu, Zhongfang; Stalker, Jeremy

    2011-12-01

    The stable H and O isotope composition of river and stream water records information on runoff sources and land-atmosphere water fluxes within the catchment and is a potentially powerful tool for network-based monitoring of ecohydrological systems. Process-based hydrological models, however, have thus far shown limited power to replicate observed large-scale variation in U.S. surface water isotope ratios. Here we develop a geographic information system-based model to predict long-term annual average surface water isotope ratios across the contiguous United States. We use elevation-explicit, gridded precipitation isotope maps as model input and data from a U.S. Geological Survey monitoring program for validation. We find that models incorporating monthly variation in precipitation-evapotranspiration (P-E) amounts account for the majority (>89%) of isotopic variation and have reduced regional bias relative to models that do not consider intra-annual P-E effects on catchment water balance. Residuals from the water balance model exhibit strong spatial patterning and correlations that suggest model residuals isolate additional hydrological signal. We use interpolated model residuals to generate optimized prediction maps for U.S. surface water δ2H and δ18O values. We show that the modeled surface water values represent a relatively accurate and unbiased proxy for drinking water isotope ratios across the United States, making these data products useful in ecological and criminal forensics applications that require estimates of the local environmental water isotope variation across large geographic regions.

  18. Review of Anti-Icing/Ice Release Systems

    DTIC Science & Technology

    2014-01-29

    be superhydrophobic and tend to be fragile, Figure 3. Note if the water completely wets the surface then the adhesion energy can be much higher due...to the increase in surface area. γSV γLV γSL θ 3 Figure 3: Water drops on a superhydrophobic coating [11]. Freezing of a drop... Superhydrophobic coatings. • Other: Phase change materials that change shape/volume may reduce the adhesive strength of the ice-coating bond. 4

  19. Water Uptake Behavior and Young Modulus Prediction of Composites Based on Treated Sisal Fibers and Poly(Lactic Acid)

    PubMed Central

    Orue, Ander; Eceiza, Arantxa; Peña-Rodriguez, Cristina; Arbelaiz, Aitor

    2016-01-01

    The main aim of this work was to study the effect of sisal fiber surface treatments on water uptake behavior of composites based on untreated and treated fibers. For this purpose, sisal fibers were treated with different chemical treatments. All surface treatments delayed the water absorption of fibers only for a short time of period. No significant differences were observed in water uptake profiles of composites based on fibers with different surface treatments. After water uptake period, tensile strength and Young modulus values of sisal fiber/poly(lactic acid) (PLA) composites were decreased. On the other hand, composites based on NaOH + silane treated fibers showed the lowest diffusion coefficient values, suggesting that this treatment seemed to be the most effective treatment to reduce water diffusion rate into the composites. Finally, Young modulus values of composites, before water uptake period, were predicted using different micromechanical models and were compared with experimental data. PMID:28773524

  20. Immersion Condensation on Oil-Infused Heterogeneous Surfaces for Enhanced Heat Transfer

    PubMed Central

    Xiao, Rong; Miljkovic, Nenad; Enright, Ryan; Wang, Evelyn N.

    2013-01-01

    Enhancing condensation heat transfer is important for broad applications from power generation to water harvesting systems. Significant efforts have focused on easy removal of the condensate, yet the other desired properties of low contact angles and high nucleation densities for high heat transfer performance have been typically neglected. In this work, we demonstrate immersion condensation on oil-infused micro and nanostructured surfaces with heterogeneous coatings, where water droplets nucleate immersed within the oil. The combination of surface energy heterogeneity, reduced oil-water interfacial energy, and surface structuring enabled drastically increased nucleation densities while maintaining easy condensate removal and low contact angles. Accordingly, on oil-infused heterogeneous nanostructured copper oxide surfaces, we demonstrated approximately 100% increase in heat transfer coefficient compared to state-of-the-art dropwise condensation surfaces in the presence of non-condensable gases. This work offers a distinct approach utilizing surface chemistry and structuring together with liquid-infusion for enhanced condensation heat transfer. PMID:23759735

  1. Time-Dependent Liquid Transport on a Biomimetic Topological Surface.

    PubMed

    Yu, Cunlong; Li, Chuxin; Gao, Can; Dong, Zhichao; Wu, Lei; Jiang, Lei

    2018-05-02

    Liquid drops impacting on a solid surface is a familiar phenomenon. On rainy days, it is quite important for leaves to drain off impacting raindrops. Water can bounce off or flow down a water-repellent leaf easily, but with difficulty on a hydrophilic leaf. Here, we show an interesting phenomenon in which impacting drops on the hydrophilic pitcher rim of Nepenthes alata can spread outward to prohibit water filling the pitcher tank. We mimic the peristome surface through a designed 3D printing and replicating way and report a time-dependently switchable liquid transport based on biomimetic topological structures, where surface curvature can work synergistically with the surface microtextures to manipulate the switchable spreading performance. Motived by this strange behavior, we construct a large-scaled peristome-mimetic surface in a 3D profile, demonstrating the ability to reduce the need to mop or to squeegee drops that form during the drop impacting process on pipes or other curved surfaces in food processing, moisture transfer, heat management, etc.

  2. Surface adhesive forces: a metric describing the drag-reducing effects of superhydrophobic coatings.

    PubMed

    Cheng, Mengjiao; Song, Mengmeng; Dong, Hongyu; Shi, Feng

    2015-04-08

    Nanomaterials with superhydrophobic properties are promising as drag-reducing coatings. However, debates regarding whether superhydrophobic surfaces are favorable for drag reduction require further clarification. A quantified water adhesive force measurement is proposed as a metric and its effectiveness demonstrated using three typical superhydrophobic coatings on model ships with in situ sailing tests. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Review: mechanisms for boron deficiency-mediated changes in plant water relations.

    PubMed

    Wimmer, Monika A; Eichert, Thomas

    2013-04-01

    Boron (B) is an essential microelement for plants and is constantly needed throughout the plant life due to its function as a structural element of the plant cell wall. B deficiency is a wide-spread problem in agricultural areas world-wide, and management of B nutrition is challenged by sudden occurrences of B deficiency or inconsistent effects of foliar B application. The effects of insufficient B supply on different structures relevant for the plant water status have been heavily researched, but the resulting conclusions are contradictory and no clear picture has so far emerged that fully explains the inconsistencies. B deficiency can affect water uptake by inhibition of root and shoot growth and by upregulation of water channels. Structural damage to xylem vessels can limit water transport to arial plant parts, while water loss can be altered by impaired barrier functions of leaf surfaces and reduced photosynthesis. In consequence of all these effects, transpiration is reduced in B-deficient plants under well-watered conditions. Under drought conditions, the responsiveness of stomata is impaired. Possible consequences of damaged vasculature for plant B nutrition include the reduced effectiveness of foliar B fertilization, especially in species with high B phloem mobility. Changes in leaf surface properties can further reduce B uptake after foliar application. In species with low B phloem mobility, weakened xylem vessels may not be able to supply sufficient B to arial parts under conditions of increased B demand, such as during bud development of trees. Since structural damage to vessels is hardly reversible, these effects could be permanent, even if B deficiency was only transient. Another consequence of reduced water status is the higher susceptibility of B-deficient plants to other abiotic stresses, which also impair water relations, especially drought. Since damage to vasculature can occur before visible symptoms of B deficiency appear in shoots, the importance to develop reliable diagnostic tools for detection of sub-acute B deficiency is highlighted. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Synergies and Tradeoffs Among Environmental Impacts Under Conservation Planning of Shale Gas Surface Infrastructure

    NASA Astrophysics Data System (ADS)

    Milt, Austin W.; Gagnolet, Tamara; Armsworth, Paul R.

    2016-01-01

    Hydraulic fracturing and related ground water issues are growing features in public discourse. Few have given much attention to surface impacts from shale gas development, which result from building necessary surface infrastructure. One way to reduce future impacts from gas surface development without radically changing industry practice is by formulating simple, conservation-oriented planning guidelines. We explore how four such guidelines affect the locations of well pads, access roads, and gathering pipelines on state lands in Pennsylvania. Our four guidelines aim to (1) reduce impacts on water, reduce impacts from (2) gathering pipelines and (3) access roads, and (4) reduce impacts on forests. We assessed whether the use of such guidelines accompanies tradeoffs among impacts, and if any guidelines perform better than others at avoiding impacts. We find that impacts are mostly synergistic, such that avoiding one impact will result in avoiding others. However, we found that avoiding forest fragmentation may result in increased impacts on other environmental features. We also found that single simple planning guidelines can be effective in targeted situations, but no one guideline was universally optimal in avoiding all impacts. As such, we suggest that when multiple environmental features are important in an area, more comprehensive planning strategies and tools should be used.

  5. Synergies and Tradeoffs Among Environmental Impacts Under Conservation Planning of Shale Gas Surface Infrastructure.

    PubMed

    Milt, Austin W; Gagnolet, Tamara; Armsworth, Paul R

    2016-01-01

    Hydraulic fracturing and related ground water issues are growing features in public discourse. Few have given much attention to surface impacts from shale gas development, which result from building necessary surface infrastructure. One way to reduce future impacts from gas surface development without radically changing industry practice is by formulating simple, conservation-oriented planning guidelines. We explore how four such guidelines affect the locations of well pads, access roads, and gathering pipelines on state lands in Pennsylvania. Our four guidelines aim to (1) reduce impacts on water, reduce impacts from (2) gathering pipelines and (3) access roads, and (4) reduce impacts on forests. We assessed whether the use of such guidelines accompanies tradeoffs among impacts, and if any guidelines perform better than others at avoiding impacts. We find that impacts are mostly synergistic, such that avoiding one impact will result in avoiding others. However, we found that avoiding forest fragmentation may result in increased impacts on other environmental features. We also found that single simple planning guidelines can be effective in targeted situations, but no one guideline was universally optimal in avoiding all impacts. As such, we suggest that when multiple environmental features are important in an area, more comprehensive planning strategies and tools should be used.

  6. Relationship between pyrite Stability and arsenic mobility during aquifer storage and recovery in southwest central Florida.

    PubMed

    Jones, Gregg W; Pichler, Thomas

    2007-02-01

    Elevated arsenic concentrations are common in water recovered from aquifer storage and recovery (ASR) systems in west-central Florida that store surface water. Investigations of the Suwannee Limestone of the Upper Floridan aquifer, the storage zone for ASR systems, have shown that arsenic is highest in pyrite in zones of high moldic porosity. Geochemical modeling was employed to examine pyrite stability in limestone during simulated injections of surface water into wells open only to the Suwannee Limestone with known mineralogy and water chemistry. The goal was to determine if aquifer redox conditions could be altered to the degree of pyrite instability. Increasing amounts of injection water were added to native storage-zone water, and resulting reaction paths were plotted on pyrite stability diagrams. Native storage-zone water plotted within the pyrite stability field, indicating that conditions were sufficiently reducing to allow for pyrite stability. Thus, arsenic is immobilized in pyrite, and its groundwater concentration should be low. This was corroborated by analysis of water samples, none of which had arsenic concentrations above 0.036 microg/L. During simulation, however, as injection/native storage-zone water ratios increased, conditions became less reducing and pyrite became unstable. The result would be release of arsenic from limestone into storage-zone water.

  7. Developing Automatic Water Table Control System for Reducing Greenhouse Gas Emissions from Paddy Fields

    NASA Astrophysics Data System (ADS)

    Arif, C.; Fauzan, M. I.; Satyanto, K. S.; Budi, I. S.; Masaru, M.

    2018-05-01

    Water table in rice fields play important role to mitigate greenhouse gas (GHG) emissions from paddy fields. Continuous flooding by maintenance water table 2-5 cm above soil surface is not effective and release more GHG emissions. System of Rice Intensification (SRI) as alternative rice farming apply intermittent irrigation by maintaining lower water table is proven can reduce GHG emissions reducing productivity significantly. The objectives of this study were to develop automatic water table control system for SRI application and then evaluate the performances. The control system was developed based on fuzzy logic algorithms using the mini PC of Raspberry Pi. Based on laboratory and field tests, the developed system was working well as indicated by lower MAPE (mean absolute percentage error) values. MAPE values for simulation and field tests were 16.88% and 15.80%, respectively. This system can save irrigation water up to 42.54% without reducing productivity significantly when compared to manual irrigation systems.

  8. Catalytic destruction of groundwater contaminants in reactive extraction wells

    DOEpatents

    McNab, Jr., Walt W.; Reinhard, Martin

    2002-01-01

    A system for remediating groundwater contaminated with halogenated solvents, certain metals and other inorganic species based on catalytic reduction reactions within reactive well bores. The groundwater treatment uses dissolved hydrogen as a reducing agent in the presence of a metal catalyst, such a palladium, to reduce halogenated solvents (as well as other substituted organic compounds) to harmless species (e.g., ethane or methane) and immobilize certain metals to low valence states. The reactive wells function by removing water from a contaminated water-bearing zone, treating contaminants with a well bore using catalytic reduction, and then reinjecting the treated effluent into an adjacent water-bearing zone. This system offers the advantages of a compact design with a minimal surface footprint (surface facilities) and the destruction of a broad suite of contaminants without generating secondary waste streams.

  9. Hydroeconomic optimization of integrated water management and transfers under stochastic surface water supply

    NASA Astrophysics Data System (ADS)

    Zhu, Tingju; Marques, Guilherme Fernandes; Lund, Jay R.

    2015-05-01

    Efficient reallocation and conjunctive operation of existing water supplies is gaining importance as demands grow, competitions among users intensify, and new supplies become more costly. This paper analyzes the roles and benefits of conjunctive use of surface water and groundwater and market-based water transfers in an integrated regional water system where agricultural and urban water users coordinate supply and demand management based on supply reliability and economic values of water. Agricultural users optimize land and water use for annual and perennial crops to maximize farm income, while urban users choose short-term and long-term water conservation actions to maintain reliability and minimize costs. The temporal order of these decisions is represented in a two-stage optimization that maximizes the net expected benefits of crop production, urban conservation and water management including conjunctive use and water transfers. Long-term decisions are in the first stage and short-term decisions are in a second stage based on probabilities of water availability events. Analytical and numerical analyses are made. Results show that conjunctive use and water transfers can substantially stabilize farmer's income and reduce system costs by reducing expensive urban water conservation or construction. Water transfers can equalize marginal values of water across users, while conjunctive use minimizes water marginal value differences in time. Model results are useful for exploring the integration of different water demands and supplies through water transfers, conjunctive use, and conservation, providing valuable insights for improving system management.

  10. Ice-like water supports hydration forces and eases sliding friction

    PubMed Central

    Dhopatkar, Nishad; Defante, Adrian P.; Dhinojwala, Ali

    2016-01-01

    The nature of interfacial water is critical in several natural processes, including the aggregation of lipids into the bilayer, protein folding, lubrication of synovial joints, and underwater gecko adhesion. The nanometer-thin water layer trapped between two surfaces has been identified to have properties that are very different from those of bulk water, but the molecular cause of such discrepancy is often undetermined. Using surface-sensitive sum frequency generation (SFG) spectroscopy, we discover a strongly coordinated water layer confined between two charged surfaces, formed by the adsorption of a cationic surfactant on the hydrophobic surfaces. By varying the adsorbed surfactant coverage and hence the surface charge density, we observe a progressively evolving water structure that minimizes the sliding friction only beyond the surfactant concentration needed for monolayer formation. At complete surfactant coverage, the strongly coordinated confined water results in hydration forces, sustains confinement and sliding pressures, and reduces dynamic friction. Observing SFG signals requires breakdown in centrosymmetry, and the SFG signal from two oppositely oriented surfactant monolayers cancels out due to symmetry. Surprisingly, we observe the SFG signal for the water confined between the two charged surfactant monolayers, suggesting that this interfacial water layer is noncentrosymmetric. The structure of molecules under confinement and its macroscopic manifestation on adhesion and friction have significance in many complicated interfacial processes prevalent in biology, chemistry, and engineering. PMID:27574706

  11. Descriptive Characteristics of Surface Water Quality in Hong Kong by a Self-Organising Map

    PubMed Central

    An, Yan; Zou, Zhihong; Li, Ranran

    2016-01-01

    In this study, principal component analysis (PCA) and a self-organising map (SOM) were used to analyse a complex dataset obtained from the river water monitoring stations in the Tolo Harbor and Channel Water Control Zone (Hong Kong), covering the period of 2009–2011. PCA was initially applied to identify the principal components (PCs) among the nonlinear and complex surface water quality parameters. SOM followed PCA, and was implemented to analyze the complex relationships and behaviors of the parameters. The results reveal that PCA reduced the multidimensional parameters to four significant PCs which are combinations of the original ones. The positive and inverse relationships of the parameters were shown explicitly by pattern analysis in the component planes. It was found that PCA and SOM are efficient tools to capture and analyze the behavior of multivariable, complex, and nonlinear related surface water quality data. PMID:26761018

  12. Descriptive Characteristics of Surface Water Quality in Hong Kong by a Self-Organising Map.

    PubMed

    An, Yan; Zou, Zhihong; Li, Ranran

    2016-01-08

    In this study, principal component analysis (PCA) and a self-organising map (SOM) were used to analyse a complex dataset obtained from the river water monitoring stations in the Tolo Harbor and Channel Water Control Zone (Hong Kong), covering the period of 2009-2011. PCA was initially applied to identify the principal components (PCs) among the nonlinear and complex surface water quality parameters. SOM followed PCA, and was implemented to analyze the complex relationships and behaviors of the parameters. The results reveal that PCA reduced the multidimensional parameters to four significant PCs which are combinations of the original ones. The positive and inverse relationships of the parameters were shown explicitly by pattern analysis in the component planes. It was found that PCA and SOM are efficient tools to capture and analyze the behavior of multivariable, complex, and nonlinear related surface water quality data.

  13. Untangling the effects of urban development on subsurface storage in Baltimore

    NASA Astrophysics Data System (ADS)

    Bhaskar, Aditi S.; Welty, Claire; Maxwell, Reed M.; Miller, Andrew J.

    2015-02-01

    The impact of urban development on surface flow has been studied extensively over the last half century, but effects on groundwater systems are still poorly understood. Previous studies of the influence of urban development on subsurface storage have not revealed any consistent pattern, with results showing increases, decreases, and negligible change in groundwater levels. In this paper, we investigated the effects of four key features that impact subsurface storage in urban landscapes. These include reduced vegetative cover, impervious surface cover, infiltration and inflow (I&I) of groundwater and storm water into wastewater pipes, and other anthropogenic recharge and discharge fluxes including water supply pipe leakage and well and reservoir withdrawals. We applied the integrated groundwater-surface water-land surface model ParFlow.CLM to the Baltimore metropolitan area. We compared the base case (all four features) to simulations in which an individual urban feature was removed. For the Baltimore region, the effect of infiltration of groundwater into wastewater pipes had the greatest effect on subsurface storage (I&I decreased subsurface storage 11.1% relative to precipitation minus evapotranspiration after 1 year), followed by the impact of water supply pipe leakage and lawn irrigation (combined anthropogenic discharges and recharges led to a 7.4% decrease) and reduced vegetation (1.9% increase). Impervious surface cover led to a small increase in subsurface storage (0.56% increase) associated with decreased groundwater discharge as base flow. The change in subsurface storage due to infiltration of groundwater into wastewater pipes was largest despite the smaller spatial extent of surface flux modifications, compared to other features.

  14. Contemporary and restorable wetland water storage: A landscape perspective

    USDA-ARS?s Scientific Manuscript database

    Surface water storage in wetlands drives ecosystem function from local to landscape scales. In many regions, hydrologic modifications have significantly reduced wetland storage capacity and subsequently diminished wetland functions. While the loss of wetland area has been well documented across many...

  15. Analysis of alternative modifications for reducing backwater flooding at the Honey Creek coal strip-mine reclamation site in Henry County, Missouri. Water Resources Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, T.W.

    Studies to determine the hydrologic conditions in mined and reclaimed mine areas, as well as areas of proposed mining, have become necessary with the enactment of the Surface Mining Control and Reclamation Act of 1977. Honey Creek in Henry County, Missouri, has been re-routed to flow through a series of former strip mining pits which lie within the Honey Creek coal strip mine reclamation site. During intense or long duration rainfalls within the Honey Creek basin, surface runoff has caused flooding on agricultural land near the upstream boundary of the reclamation site. The calculated existing design discharge (3,050 cubic feetmore » per second) water-surface profile is compared to the expected water-surface profiles from three assumed alternative channel modifcations within the Honey Creek study area. The alternative channel modifications used in these analyses include (1) improvement of channel bottom slope, (2) relocation of spoil material, and (3) improved by-pass channel flow conditions. The alternative 1, 2, and 3 design discharge increase will reduce the agricultural field current (1990) frequency of backwater flooding from a 3-year to a 6.5-year event.« less

  16. Undoped and Ni-doped CoO x surface modification of porous BiVO 4 photoelectrodes for water oxidation

    DOE PAGES

    Liu, Ya; Guo, Youhong; Schelhas, Laura T.; ...

    2016-09-29

    Surface modification of photoanodes with oxygen evolution reaction (OER) catalysts is an effective approach to enhance water oxidation kinetics, to reduce external bias, and to improve the energy harvesting efficiency of photoelectrochemical (PEC) water oxidation. Here, the surface of porous BiVO 4 photoanodes was modified by the deposition of undoped and Ni-doped CoO x via nitrogen flow assisted electrostatic spray pyrolysis. This newly developed atmospheric pressure deposition technique allows for surface coverage throughout the porous structure with thickness and composition control. PEC testing of modified BiVO 4 photoanodes shows that after deposition of an undoped CoO x surface layer, themore » onset potential shifts negatively by ca. 420 mV and the photocurrent density reaches 2.01 mA cm –2 at 1.23 vs V RHE under AM 1.5G illumination. Modification with Ni-doped CoO x produces even more effective OER catalysis and yields a photocurrent density of 2.62 mA cm –2 at 1.23 V RHE under AM 1.5G illumination. Furthermore, the valence band X-ray photoelectron spectroscopy and synchrotron-based X-ray absorption spectroscopy results show the Ni doping reduces the Fermi level of the CoO x layer; the increased surface band bending produced by this effect is partially responsible for the superior PEC performance.« less

  17. Does Personalized Water and Hand Quality Information Affect Attitudes, Behavior, and Health in Dar es Salaam, Tanzania?

    NASA Astrophysics Data System (ADS)

    Davis, J.; Pickering, A.; Horak, H.; Boehm, A.

    2008-12-01

    Tanzania (TZ) has one of the highest rates of child mortality due to enteric disease in the world. NGOs and local agencies have introduced numerous technologies (e.g., chlorine tablets, borewells) to increase the quantity and quality of water in Dar es Salaam, the capital of Tanzania, in hopes of reducing morbidity and mortality of waterborne disease. The objective of the present study is to determine if providing personalized information about water quality and hand surface quality, as determined by concentrations of enterococci and E. coli, results in improved health and water quality in households. A cohort study was completed in June-September 2008 in 3 communities ranging from urban to per-urban in Dar es Salaam, Tanzania to achieve our objective. The study consisted of 4 cohorts that were visited 4 times over the 3 month study. One cohort received no information about water and hand quality until the end of the summer, while the other groups received either just information on hand surface quality, just information on water quality, and information on both hand surface and water quality after the first (baseline) household visit. We report concentrations of enterococci and E. coli in water sources (surface waters and bore wells), water stored in households, and environmental waters were children and adults swim and bathe. In addition, we report concentrations of enterococci and E. coli on hands of caregivers and children in households. Preliminary results of surveys on health and perceptions of water quality and illness from the households are provided. Ongoing work will integrate the microbiological and sociological data sets to determine if personalized information interventions resulted in changes in health, water quality in the household, or perceptions of water quality, quantity and relation to human health. Future work will analyze DNA samples from hands and water for human-specific Bacteroides bacteria which are only present in human feces. Our study has the potential to provide empirical evidence to promote large scale monitoring and education campaigns in Africa to improve health and reduce the burden of waterborne disease.

  18. Quantitative Campylobacter spp., antibiotic resistance genes, and veterinary antibiotics in surface and ground water following manure application: Influence of tile drainage control.

    PubMed

    Frey, Steven K; Topp, Edward; Khan, Izhar U H; Ball, Bonnie R; Edwards, Mark; Gottschall, Natalie; Sunohara, Mark; Lapen, David R

    2015-11-01

    This work investigated chlortetracycline, tylosin, and tetracycline (plus transformation products), and DNA-based quantitative Campylobacter spp. and Campylobacter tetracycline antibiotic resistant genes (tet(O)) in tile drainage, groundwater, and soil before and following a liquid swine manure (LSM) application on clay loam plots under controlled (CD) and free (FD) tile drainage. Chlortetracycline/tetracycline was strongly bound to manure solids while tylosin dominated in the liquid portion of manure. The chlortetracycline transformation product isochlortetracycline was the most persistent analyte in water. Rhodamine WT (RWT) tracer was mixed with manure and monitored in tile and groundwater. RWT and veterinary antibiotic (VA) concentrations were strongly correlated in water which supported the use of RWT as a surrogate tracer. While CD reduced tile discharge and eliminated application-induced VA movement (via tile) to surface water, total VA mass loading to surface water was not affected by CD. At both CD and FD test plots, the biggest 'flush' of VA mass and highest VA concentrations occurred in response to precipitation received 2d after application, which strongly influenced the flow abatement capacity of CD on account of highly elevated water levels in field initiating overflow drainage for CD systems (when water level <0.3m below surface). VA concentrations in tile and groundwater became very low within 10d following application. Both Campylobacter spp. and Campylobacter tet(O) genes were present in groundwater and soil prior to application, and increased thereafter. Unlike the VA compounds, Campylobacter spp. and Campylobacter tet(O) gene loadings in tile drainage were reduced by CD, in relation to FD. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  19. Optimization of hot water treatment for removing microbial colonies on fresh blueberry surface.

    PubMed

    Kim, Tae Jo; Corbitt, Melody P; Silva, Juan L; Wang, Dja Shin; Jung, Yean-Sung; Spencer, Barbara

    2011-08-01

    Blueberries for the frozen market are washed but this process sometimes is not effective or further contaminates the berries. This study was designed to optimize conditions for hot water treatment (temperature, time, and antimicrobial concentration) to remove biofilm and decrease microbial load on blueberries. Scanning electron microscopy (SEM) image showed a well-developed microbial biofilm on blueberries dipped in room temperature water. The biofilm consisted of yeast and bacterial cells attached to the berry surface in the form of microcolonies, which produced exopolymer substances between or upon the cells. Berry exposure to 75 and 90 °C showed little to no microorganisms on the blueberry surface; however, the sensory quality (wax/bloom) of berries at those temperatures was unacceptable. Response surface plots showed that increasing temperature was a significant factor on reduction of aerobic plate counts (APCs) and yeast/mold counts (YMCs) while adding Boxyl® did not have significant effect on APC. Overlaid contour plots showed that treatments of 65 to 70 °C for 10 to 15 s showed maximum reductions of 1.5 and 2.0 log CFU/g on APCs and YMCs, respectively; with acceptable level of bloom/wax score on fresh blueberries. This study showed that SEM, response surface, and overlaid contour plots proved successful in arriving at optima to reduce microbial counts while maintaining bloom/wax on the surface of the blueberries. Since chemical sanitizing treatments such as chlorine showed ineffectiveness to reduce microorganisms loaded on berry surface (Beuchat and others 2001, Sapers 2001), hot water treatment on fresh blueberries could maximize microbial reduction with acceptable quality of fresh blueberries. © 2011 Institute of Food Technologists®

  20. Natural attenuation of chlorinated volatile organic compounds in ground water at Operable Unit 1, Naval Undersea Warfare Center, Division Keyport, Washington

    USGS Publications Warehouse

    Dinicola, Richard S.; Cox, S.E.; Landmeyer, J.E.; Bradley, P.M.

    2002-01-01

    The U.S. Geological Survey (USGS) evaluated the natural attenuation of chlorinated volatile organic compounds (CVOCs) in ground water beneath the former landfill at Operable Unit 1 (OU 1), Naval Undersea Warfare Center, Division Keyport, Washington. The predominant contaminants in ground water are trichloroethene (TCE) and its degradation byproducts cis-1,2-dichloroethene (cisDCE) and vinyl chloride (VC). The Navy planted two hybrid poplar plantations on the landfill in spring of 1999 to remove and control the migration of CVOCs in shallow ground water. Previous studies provided evidence that microbial degradation processes also reduce CVOC concentrations in ground water at OU 1, so monitored natural attenuation is a potential alternative remedy if phytoremediation is ineffective. This report describes the current (2000) understanding of natural attenuation of CVOCs in ground water at OU 1 and the impacts that phytoremediation activities to date have had on attenuation processes. The evaluation is based on ground-water and surface-water chemistry data and hydrogeologic data collected at the site by the USGS and Navy contractors between 1991 and 2000. Previously unpublished data collected by the USGS during 1996-2000 are presented. Natural attenuation of CVOCs in shallow ground water at OU 1 is substantial. For 1999-2000 conditions, approximately 70 percent of the mass of dissolved chlorinated ethenes that was available to migrate from the landfill was completely degraded in shallow ground water before it could migrate to the intermediate aquifer or discharge to surface water. Attenuation of CVOC concentrations appears also to be substantial in the intermediate aquifer, but biodegradation appears to be less significant; those conclusions are less certain because of the paucity of data downgradient of the landfill beneath the tide flats. Attenuation of CVOC concentrations is also substantial in surface water as it flows through the adjacent marsh and out to the tide flats. Attenuation processes other than dilution reduce the CVOC flux in marsh surface water by about 40 percent by the time the water discharges to the tide flats. Despite the importance of natural attenuation processes at reducing both the contaminant concentrations and the contaminant mass at OU 1, natural attenuation alone was not effective enough in the year 2000 to meet current numerical remediation goals for the site. That was in part due to the relatively short distance between the landfill and the adjacent marsh, and in part due to the extremely high CVOC concentrations directly beneath the landfill. Phytoremediation activities had some apparent effect on contaminant concentrations in ground water and surface water, but ground-water redox conditions to date (2000) were not affected by the February 1999 asphalt removal for tree planting. The poplar trees in the phytoremediation plantations were not yet mature in 2000, so the lack of discernible changes to date is understandable. Concentration changes of some redox-sensitive compounds suggest that increased recharge following asphalt removal diluted ambient landfill ground water. CVOC concentrations increased in some downgradient wells in both the northern and southern plantations after asphalt removal, whereas CVOC concentrations decreased in some upgradient wells in the southern plantation. A clear increase in CVOC concentrations in marsh surface water followed asphalt removal, apparently from increased contaminant discharge in ground water beneath the southern plantation. The results of the natural attenuation evaluation suggest than minor modifications to the current sampling plan may be beneficial to understanding the future impacts of phytoremediation and natural attenuation on the fate and distribution of CVOCs at OU 1.

  1. Mitigation of Hexavalent Chromium in Storm Water Resulting from Demolition of Large Concrete Structure at the East Tennessee Technology Park - 12286

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britto, Ronnie; Brown, Bridget; Hale, Timothy B.

    American Recovery and Reinvestment Act (ARRA) funding was provided to supplement the environmental management program at several DOE sites, including the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. Demolition of the ETTP K-33 Building, the largest building to be demolished to date in Oak Ridge, was awarded to LSRS in FY-2010 under the ARRA program. The K-33 building was an 82 foot tall 2-story structure covering approximately 32 acres. Once this massive building was brought down to the ground, the debris was segregated and consolidated into piles of concrete rubble and steel across the remaining pad. The processmore » of demolishing the building, tracking across concrete debris with heavy equipment, and stockpiling the concrete rubble caused it to become pulverized. During and after storm events, hexavalent chromium leached from the residual cement present in the large quantities of concrete. Storm water control measures were present to preclude migration of contaminants off-site, but these control measures were not designed to control hexavalent chromium dissolved in storm water from reaching nearby receiving water. The following was implemented to mitigate hexavalent chromium in storm water: - Steel wool was distributed around K-33 site catch basins and in water pools as an initial step in addressing hexavalent chromium. - Since the piles of concrete were too massive and unsafe to tarp, they were placed into windrows in an effort to reduce total surface area. - A Hach colorimetric field meter was acquired by the K-33 project to provide realtime results of hexavalent chromium in site surface water. - Three hexavalent chromium treatment systems were installed at three separate catch basins that receive integrated storm water flow from the K-33 site. Sodium bisulfite is being used as a reducing agent for the immobilization of hexavalent chromium while also assisting in lowering pH. Concentrations initially were 310 - 474 ppb of hexavalent chromium in surface water at the out-falls that discharge to nearby receiving water. After implementation of the actions described above, concentrations of hexavalent chromium have been effectively reduced to less than 25 ppb at the out-falls. The LSRS team completed demolition of K-33 five months ahead of schedule, and debris removal was completed three months ahead of schedule. A total of 164,000 tons of steel and concrete from the building demolition, accounting for 13,000 shipments, were disposed to the EMWMF. Because of the high toxicity of hexavalent chromium at low concentrations, hexavalent chromium had to be controlled at ppb levels. Hexavalent chromium contaminant concentrations were successfully reduced by over 90% in surface water discharged from the K-33 demolition site into nearby receiving water. Initial efforts of wind-rowing debris piles and obtaining real-time hexavalent chromium measurements to focus initiatives coupled with placement of steel wool in pools or catch basins had some effectiveness. More significant reductions were obtained as the debris piles were removed/disposed in EMWMF, and treatment of surface water with sodium bisulfite in integrated manholes occurred. (authors)« less

  2. Reduced transport potential of a palladium-doped zero valent iron nanoparticle in a water saturated loamy sand.

    PubMed

    Basnet, Mohan; Di Tommaso, Caroline; Ghoshal, Subhasis; Tufenkji, Nathalie

    2015-01-01

    Direct in situ injection of palladium-doped nanosized zero valent iron (Pd-NZVI) particles can contribute to remediation of various environmental contaminants. A major challenge encountered is rapid aggregation of Pd-NZVI and hence very limited mobility. To reduce aggregation and concurrently improve particle mobility, the surface of bare Pd-NZVI can be modified with stabilizing surface modifiers. Selected surface-modified Pd-NZVI has shown dramatically improved stability and transport. However, little is known regarding the effects of aquifer grain geochemical heterogeneity on the transport and deposition behavior of surface-modified Pd-NZVI. Herein, the mobility of surface stabilized Pd-NZVI in two granular matrices representative of model ground water environments (quartz sand and loamy sand) was assessed over a wide range of environmentally relevant ionic strengths (IS). Carboxymethyl cellulose (CMC), soybean flour and rhamnolipid biosurfactant were used as Pd-NZVI surface modifiers. Our results show that, both in quartz sand and loamy sand, an increase in solution IS results in reduced Pd-NZVI transport. Moreover, at a given water chemistry, Pd-NZVI transport is notably attenuated in loamy sand implying that geochemical heterogeneity associated with loamy sand is a key factor influencing Pd-NZVI transport potential. Experiments conducted at a higher Pd-NZVI particle concentration, to be more representative of field conditions, show that rhamnolipid and CMC are effective stabilizing agents even when 1 g/L Pd-NZVI is injected into quartz sand. Overall, this study emphasizes the extent to which variation in groundwater chemistry, coupled with changes in aquifer geochemistry, could dramatically alter the transport potential of Pd-NZVI in the subsurface environment.

  3. A Computational Study of Vocal Fold Dehydration During Phonation.

    PubMed

    Wu, Liang; Zhang, Zhaoyan

    2017-12-01

    While vocal fold dehydration is often considered an important factor contributing to vocal fatigue, it still remains unclear whether vocal fold vibration alone is able to induce severe dehydration that has a noticeable effect on phonation and perceived vocal effort. A three-dimensional model was developed to investigate vocal fold systemic dehydration and surface dehydration during phonation. Based on the linear poroelastic theory, the model considered water resupply from blood vessels through the lateral boundary, water movement within the vocal folds, water exchange between the vocal folds and the surface liquid layer through the epithelium, and surface fluid accumulation and discharge to the glottal airway. Parametric studies were conducted to investigate water loss within the vocal folds and from the surface after a 5-min sustained phonation under different permeability and vibration conditions. The results showed that the dehydration generally increased with increasing vibration amplitude, increasing epithelial permeability, and reduced water resupply. With adequate water resupply, a large-amplitude vibration can induce an overall systemic dehydration as high as 3%. The distribution of water loss within the vocal folds was non-uniform, and a local dehydration higher than 5% was observed even under conditions of a low overall systemic dehydration (<1%). Such high level of water loss may severely affect tissue properties, muscular functions, and phonations characteristics. In contrast, water loss of the surface liquid layer was generally an order of magnitude higher than water loss inside the vocal folds, indicating that the surface dehydration level is likely not a good indicator of the systemic dehydration.

  4. Fate of Cryptosporidium parvum oocysts within soil, water, and plant environment.

    PubMed

    McLaughlin, Stephen J; Kalita, Prasanta K; Kuhlenschmidt, Mark S

    2013-12-15

    Vegetative Filter Strips (VFS) have long been used to control the movement of agricultural nutrients and prevent them from reaching receiving waters. Earlier studies have shown that VFS also dramatically reduce both the kinetics and extent of Cryptosporidium parvum (C. parvum) oocysts overland transport. In this study, we investigated possible mechanisms responsible for the ability of VFS to reduce oocyst overland transport. Measurement of the kinetics of C. parvum adhesion to individual sand, silt, and clay soil particles revealed that oocysts associate over time, albeit relatively slow, with clay but not silt or sand particles. Measurement of oocyst overland transport kinetics, soil infiltration depth, distance of travel, and adhesion to vegetation on bare and vegetated soil surfaces indicate that oocysts move more slowly, and penetrate the soil profile to a greater extent on a vegetated surface than on a bare soil surface. Furthermore, we demonstrate a small fraction of the oocysts become attached to vegetation at the soil-vegetation interface on VFS. These results suggest VFS function to reduce oocyst overland transport by primarily decreasing oocyst surface flow enough to allow penetration within the soil profile followed by subsequent adhesion to or entrapment within clay particle aggregates, and to a lesser extent, adhesion to the surface vegetation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Radiolarians decreased silicification as an evolutionary response to reduced Cenozoic ocean silica availability.

    PubMed

    Lazarus, David B; Kotrc, Benjamin; Wulf, Gerwin; Schmidt, Daniela N

    2009-06-09

    It has been hypothesized that increased water column stratification has been an abiotic "universal driver" affecting average cell size in Cenozoic marine plankton. Gradually decreasing Cenozoic radiolarian shell weight, by contrast, suggests that competition for dissolved silica, a shared nutrient, resulted in biologic coevolution between radiolaria and marine diatoms, which expanded dramatically in the Cenozoic. We present data on the 2 components of shell weight change--size and silicification--of Cenozoic radiolarians. In low latitudes, increasing Cenozoic export of silica to deep waters by diatoms and decreasing nutrient upwelling from increased water column stratification have created modern silica-poor surface waters. Here, radiolarian silicification decreases significantly (r = 0.91, P < 0.001), from approximately 0.18 (shell volume fraction) in the basal Cenozoic to modern values of approximately 0.06. A third of the total change occurred rapidly at 35 Ma, in correlation to major increases in water column stratification and abundance of diatoms. In high southern latitudes, Southern Ocean circulation, present since the late Eocene, maintains significant surface water silica availability. Here, radiolarian silicification decreased insignificantly (r = 0.58, P = 0.1), from approximately 0.13 at 35 Ma to 0.11 today. Trends in shell size in both time series are statistically insignificant and are not correlated with each other. We conclude that there is no universal driver changing cell size in Cenozoic marine plankton. Furthermore, biologic and physical factors have, in concert, by reducing silica availability in surface waters, forced macroevolutionary changes in Cenozoic low-latitude radiolarians.

  6. Decreasing Phosphorus Loss in Tile-Drained Landscapes Using Flue Gas Desulfurization Gypsum.

    PubMed

    King, K W; Williams, M R; Dick, W A; LaBarge, G A

    2016-09-01

    Elevated phosphorus (P) loading from agricultural nonpoint-source pollution continues to impair inland waterbodies throughout the world. The application of flue gas desulfurization (FGD) gypsum to agricultural fields has been suggested to decrease P loading because of its high calcium content and P sorbing potential. A before-after control-impact paired field experiment was used to examine the water quality effects of successive FGD gypsum applications (2.24 Mg ha; 1 ton acre each) to an Ohio field with high soil test P levels (>480 ppm Mehlich-3 P). Analysis of covariance was used to compare event discharge, dissolved reactive P (DRP), and total P (TP) concentrations and loadings in surface runoff and tile discharge between the baseline period (86 precipitation events) and Treatment Period 1 (42 precipitation events) and Treatment Period 2 (84 precipitation events). Results showed that, after the first application of FGD gypsum, event mean DRP and TP concentrations in treatment field tile water were significantly reduced by 21 and 10%, respectively, and DRP concentrations in surface runoff were significantly reduced by 14%; however, no significant reductions were noted in DRP or TP loading. After the second application, DRP and TP loads were significantly reduced in surface runoff (DRP, 41%; TP 40%), tile discharge (DRP, 35%; TP, 15%), and combined (surface + tile) discharge (DRP, 36%; TP, 38%). These findings indicate that surface application of FGD gypsum can be used as a tool to address elevated P concentrations and loadings in drainage waters. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Aqueous heterogeneity at the air/water interface revealed by 2D-HD-SFG spectroscopy.

    PubMed

    Hsieh, Cho-Shuen; Okuno, Masanari; Hunger, Johannes; Backus, Ellen H G; Nagata, Yuki; Bonn, Mischa

    2014-07-28

    Water molecules interact strongly with each other through hydrogen bonds. This efficient intermolecular coupling causes strong delocalization of molecular vibrations in bulk water. We study intermolecular coupling at the air/water interface and find intermolecular coupling 1) to be significantly reduced and 2) to vary strongly for different water molecules at the interface--whereas in bulk water the coupling is homogeneous. For strongly hydrogen-bonded OH groups, coupling is roughly half of that of bulk water, due to the lower density in the near-surface region. For weakly hydrogen-bonded OH groups that absorb around 3500 cm(-1), which are assigned to the outermost, yet hydrogen-bonded OH groups pointing towards the liquid, coupling is further reduced by an additional factor of 2. Remarkably, despite the reduced structural constraints imposed by the interfacial hydrogen-bond environment, the structural relaxation is slow and the intermolecular coupling of these water molecules is weak. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A new approach on anti-vortex devices at water intakes including a submerged water jet

    NASA Astrophysics Data System (ADS)

    Tahershamsi, Ahmad; Rahimzadeh, Hassan; Monshizadeh, Morteza; Sarkardeh, Hamed

    2018-04-01

    A new approach on anti-vortex methods as hydraulic-based anti-vortex was investigated experimentally in the present study. In the investigated method, a submerged water jet is used as the anti-vortex mechanism. The added jet acts as a source of external momentum. This leads to change the intake-induced hydrodynamic pattern in the near-field of the intake structure, which can prevent formation of undesirable intake vortices. The experiments were carried out on a horizontal pipe intake. By performing 570 test cases in two different categories, including the inclined jet with respect to the axis of the intake, and the inclined jet with respect to the water surface, the effects of the jet inclination angle on the anti-vortex performance were investigated. It was found that the inclined jet with respect to the water surface is the best alternative to consider as the water jet injection pattern. Results showed that using the inclined jet with respect to the water surface can simply reduce the amounts of the expected water jet momentum more than 50% compared to that of the similar condition of the horizontal injection pattern. Moreover, it was concluded that the intake critical submergence can easily be minimized using the inclined jet with respect to the water surface.

  9. Quantifying the impacts of land surface schemes and dynamic vegetation on the model dependency of projected changes in surface energy and water budgets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Miao; Wang, Guiling; Chen, Haishan

    Assessing and quantifying the uncertainties in projected future changes of energy and water budgets over land surface are important steps toward improving our confidence in climate change projections. In our study, the contribution of land surface models to the inter-GCM variation of projected future changes in land surface energy and water fluxes are assessed based on output from 19 global climate models (GCMs) and offline Community Land Model version 4 (CLM4) simulations driven by meteorological forcing from the 19 GCMs. Similar offline simulations using CLM4 with its dynamic vegetation submodel are also conducted to investigate how dynamic vegetation feedback, amore » process that is being added to more earth system models, may amplify or moderate the intermodel variations of projected future changes. Projected changes are quantified as the difference between the 2081–2100 period from the Representative Concentration Pathway 8.5 (RCP8.5) future experiment and the 1981–2000 period from the historical simulation. Under RCP8.5, projected changes in surface water and heat fluxes show a high degree of model dependency across the globe. Although precipitation is very likely to increase in the high latitudes of the Northern Hemisphere, a high degree of model-related uncertainty exists for evapotranspiration, soil water content, and surface runoff, suggesting discrepancy among land surface models (LSMs) in simulating the surface hydrological processes and snow-related processes. Large model-related uncertainties for the surface water budget also exist in the Tropics including southeastern South America and Central Africa. Moreover, these uncertainties would be reduced in the hypothetical scenario of a single near-perfect land surface model being used across all GCMs, suggesting the potential to reduce uncertainties through the use of more consistent approaches toward land surface model development. Under such a scenario, the most significant reduction is likely to be seen in the Northern Hemisphere high latitudes. Including representation of vegetation dynamics is expected to further amplify the model-related uncertainties in projected future changes in surface water and heat fluxes as well as soil moisture content. This is especially the case in the high latitudes of the Northern Hemisphere (e.g., northwestern North America and central North Asia) where the projected vegetation changes are uncertain and in the Tropics (e.g., the Amazon and Congo Basins) where dense vegetation exists. Finally, findings from this study highlight the importance of improving land surface model parameterizations related to soil and snow processes, as well as the importance of improving the accuracy of dynamic vegetation models.« less

  10. Quantifying the impacts of land surface schemes and dynamic vegetation on the model dependency of projected changes in surface energy and water budgets

    DOE PAGES

    Yu, Miao; Wang, Guiling; Chen, Haishan

    2016-03-01

    Assessing and quantifying the uncertainties in projected future changes of energy and water budgets over land surface are important steps toward improving our confidence in climate change projections. In our study, the contribution of land surface models to the inter-GCM variation of projected future changes in land surface energy and water fluxes are assessed based on output from 19 global climate models (GCMs) and offline Community Land Model version 4 (CLM4) simulations driven by meteorological forcing from the 19 GCMs. Similar offline simulations using CLM4 with its dynamic vegetation submodel are also conducted to investigate how dynamic vegetation feedback, amore » process that is being added to more earth system models, may amplify or moderate the intermodel variations of projected future changes. Projected changes are quantified as the difference between the 2081–2100 period from the Representative Concentration Pathway 8.5 (RCP8.5) future experiment and the 1981–2000 period from the historical simulation. Under RCP8.5, projected changes in surface water and heat fluxes show a high degree of model dependency across the globe. Although precipitation is very likely to increase in the high latitudes of the Northern Hemisphere, a high degree of model-related uncertainty exists for evapotranspiration, soil water content, and surface runoff, suggesting discrepancy among land surface models (LSMs) in simulating the surface hydrological processes and snow-related processes. Large model-related uncertainties for the surface water budget also exist in the Tropics including southeastern South America and Central Africa. Moreover, these uncertainties would be reduced in the hypothetical scenario of a single near-perfect land surface model being used across all GCMs, suggesting the potential to reduce uncertainties through the use of more consistent approaches toward land surface model development. Under such a scenario, the most significant reduction is likely to be seen in the Northern Hemisphere high latitudes. Including representation of vegetation dynamics is expected to further amplify the model-related uncertainties in projected future changes in surface water and heat fluxes as well as soil moisture content. This is especially the case in the high latitudes of the Northern Hemisphere (e.g., northwestern North America and central North Asia) where the projected vegetation changes are uncertain and in the Tropics (e.g., the Amazon and Congo Basins) where dense vegetation exists. Finally, findings from this study highlight the importance of improving land surface model parameterizations related to soil and snow processes, as well as the importance of improving the accuracy of dynamic vegetation models.« less

  11. Vegetation effects on soil water erosion rates and nutrient losses at Santa Catarina highlands, south Brazil

    NASA Astrophysics Data System (ADS)

    Bertol, I.; Barbosa, F. T.; Vidal Vázquez, E.; Paz Ferreiro, J.

    2009-04-01

    Water erosion involves three main processes: detachment, transport and deposition of soil particles. The main factors affecting water erosion are rainfall, soil, topography, soil management and land cover and use. Soil erosion potential is increased if the soil has no or very little vegetative cover of plants and/or crop residues, whereas plant and residue cover substantially decrease rates of soil erosion. Plant and residue cover protects the soil from raindrop impact and splash, tends to slow down the movement of surface runoff and allows excess surface water to infiltrate. Moreover, plant and residue cover improve soil physical, chemical and biological properties. Soils with improved structure have a greater resistance to erosion. By contrast, accelerated soil erosion is accentuated by deforestation, biomass burning, plowing and disking, cultivation of open-row crops, etc. The erosion-reducing effectiveness of plant and/or residue covers depends on the type, extent and quantity of cover. Vegetation and residue combinations that completely cover the soil are the most efficient in controlling soil. Partially incorporated residues and residual roots are also important, as these provide channels that allow surface water to move into the soil. The effectiveness of any crop, management system or protective cover also depends on how much protection is available at various periods during the year, relative to the amount of erosive rainfall that falls during these periods. Most of the erosion on annual row crop land can be reduced by leaving a residue cover greater after harvest and over the winter months, or by inter-seeding a forage crop. Soil erosion potential is also affected by tillage operations and tillage system. Conservation tillage reduces water erosion in relation to conventional tillage by increasing soil cover and soil surface roughness. Here, we review the effect of vegetation on soil erosion in the Santa Catarina highlands, south of Brazil, under subtropical climatic conditions. The area cropped under no tillage in Brazil has increased rapidly since 1990, especially in the southern region. This practice was first introduced in the 1970s as a strategy to control soil erosion and continuous declines in land productivity under conventional tillage systems. No tillage almost entirely keeps the previous crop residue on the surface. In the last 15 years soil and water losses by water erosion have been quantified for different soil tillage systems, diverse crop rotations and successive crop stages under simulated and natural rain conditions. Plot experiments showed that soil losses under no tillage systems with a vegetative cover were 98% lower when compared with conventionally tilled bare soil. Moreover water losses were 60% lower for these conditions. Conventional tillage (plowing + harrowing) in the presence of vegetative cover reduced soil losses and water losses by 80% and 50%, respectively, taken the uncultivated bare soil as a reference. The review includes the effect of vegetative cover on nutrient losses at the studied sites in the Santa Catarina highlands.

  12. Trawling bats exploit an echo-acoustic ground effect

    PubMed Central

    Zsebok, Sandor; Kroll, Ferdinand; Heinrich, Melina; Genzel, Daria; Siemers, Björn M.; Wiegrebe, Lutz

    2013-01-01

    A water surface acts not only as an optic mirror but also as an acoustic mirror. Echolocation calls emitted by bats at low heights above water are reflected away from the bat, and hence the background clutter is reduced. Moreover, targets on the surface create an enhanced echo. Here, we formally quantified the effect of the surface and target height on both target detection and -discrimination in a combined laboratory and field approach with Myotis daubentonii. In a two-alternative, forced-choice paradigm, the bats had to detect a mealworm and discriminate it from an inedible dummy (20 mm PVC disc). Psychophysical performance was measured as a function of height above either smooth surfaces (water or PVC) or above a clutter surface (artificial grass). At low heights above the clutter surface (10, 20, or 35 cm), the bats' detection performance was worse than above a smooth surface. At a height of 50 cm, the surface structure had no influence on target detection. Above the clutter surface, also target discrimination was significantly impaired with decreasing target height. A detailed analysis of the bats' echolocation calls during target approach shows that above the clutter surface, the bats produce calls with significantly higher peak frequency. Flight-path reconstruction revealed that the bats attacked an target from below over water but from above over a clutter surface. These results are consistent with the hypothesis that trawling bats exploit an echo-acoustic ground effect, in terms of a spatio-temporal integration of direct reflections with indirect reflections from the water surface, to optimize prey detection and -discrimination not only for prey on the water but also for some range above. PMID:23576990

  13. The Effect of Reduced Water Availability in the Great Ruaha River on the Vulnerable Common Hippopotamus in the Ruaha National Park, Tanzania.

    PubMed

    Stommel, Claudia; Hofer, Heribert; East, Marion L

    2016-01-01

    In semi-arid environments, 'permanent' rivers are essential sources of surface water for wildlife during 'dry' seasons when rainfall is limited or absent, particularly for species whose resilience to water scarcity is low. The hippopotamus (Hippopotamus amphibius) requires submersion in water to aid thermoregulation and prevent skin damage by solar radiation; the largest threat to its viability are human alterations of aquatic habitats. In the Ruaha National Park (NP), Tanzania, the Great Ruaha River (GRR) is the main source of surface water for wildlife during the dry season. Recent, large-scale water extraction from the GRR by people upstream of Ruaha NP is thought to be responsible for a profound decrease in dry season water-flow and the absence of surface water along large sections of the river inside the NP. We investigated the impact of decreased water flow on daytime hippo distribution using regular censuses at monitoring locations, transects and camera trap records along a 104km section of the GRR within the Ruaha NP during two dry seasons. The minimum number of hippos per monitoring location increased with the expanse of surface water as the dry seasons progressed, and was not affected by water quality. Hippo distribution significantly changed throughout the dry season, leading to the accumulation of large numbers in very few locations. If surface water loss from the GRR continues to increase in future years, this will have serious implications for the hippo population and other water dependent species in Ruaha NP.

  14. Tillage impact on herbicide loss by surface runoff and lateral subsurface flow

    USDA-ARS?s Scientific Manuscript database

    There is worldwide interest in conservation tillage practices because they can reduce surface runoff, agrichemical, and sediment loss from farm fields. Since these practices typically increase infiltration, their use may increase subsurface transport of water-soluble contaminants. Thus, to assess lo...

  15. Effects of drought on birds and riparian vegetation in the Colorado River Delta, Mexico

    USGS Publications Warehouse

    Hinojosa-Huerta, Osvel; Nagler, Pamela L.; Carrillo-Guererro, Yamilett K.; Glenn, Edward P.

    2013-01-01

    The riparian corridor in the delta of the Colorado River in Mexico supports internationally important bird habitat. The vegetation is maintained by surface flows from the U.S. and Mexico and by a high, non-saline aquifer into which the dominant phreatophytic shrubs and trees are rooted. We studied the effects of a regional drought on riparian vegetation and avian abundance and diversity from 2002 to 2007, during which time surface flows were markedly reduced compared to the period from 1995 to 2002. Reduced surface flows led to a reduction in native tree cover but an increase in shrub cover, mostly due to an increase in Tamarix spp., an introduced halophytic shrub, and a reduction in Populus fremontii and Salix gooddingii trees. However, overall vegetation cover was unchanged at about 70%. Overall bird density and diversity were also unchanged, but riparian-obligate species tended to decrease in abundance, and generalist species increased. Although reduction in surface flows reduced habitat value and negatively impacted riparian-obligate bird species, portions of the riparian zone exhibited resilience. Surface flows are required to reduce soil salt levels and germinate new cohorts of native trees, but the main source of water supporting this ecosystem is the aquifer, derived from underflows from irrigated fields in the U.S. and Mexico. The long-term prospects for delta riparian habitats are uncertain due to expected reduced flows of river water from climate change, and land use practices that will reduce underflows to the riparian aquifer and increase salinity levels. Active restoration programs would be needed if these habitats are to be preserved for the future.

  16. The Surface Water and Ocean Topography Satellite Mission - An Assessment of Swath Altimetry Measurements of River Hydrodynamics

    NASA Technical Reports Server (NTRS)

    Wilson, Matthew D.; Durand, Michael; Alsdorf, Douglas; Chul-Jung, Hahn; Andreadis, Konstantinos M.; Lee, Hyongki

    2012-01-01

    The Surface Water and Ocean Topography (SWOT) satellite mission, scheduled for launch in 2020 with development commencing in 2015, will provide a step-change improvement in the measurement of terrestrial surface water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water surface elevations, which will allow for the estimation of river and floodplain flows via the water surface slope. In this paper, we characterize the measurements which may be obtained from SWOT and illustrate how they may be used to derive estimates of river discharge. In particular, we show (i) the spatia-temporal sampling scheme of SWOT, (ii) the errors which maybe expected in swath altimetry measurements of the terrestrial surface water, and (iii) the impacts such errors may have on estimates of water surface slope and river discharge, We illustrate this through a "virtual mission" study for a approximately 300 km reach of the central Amazon river, using a hydraulic model to provide water surface elevations according to the SWOT spatia-temporal sampling scheme (orbit with 78 degree inclination, 22 day repeat and 140 km swath width) to which errors were added based on a two-dimension height error spectrum derived from the SWOT design requirements. Water surface elevation measurements for the Amazon mainstem as may be observed by SWOT were thereby obtained. Using these measurements, estimates of river slope and discharge were derived and compared to those which may be obtained without error, and those obtained directly from the hydraulic model. It was found that discharge can be reproduced highly accurately from the water height, without knowledge of the detailed channel bathymetry using a modified Manning's equation, if friction, depth, width and slope are known. Increasing reach length was found to be an effective method to reduce systematic height error in SWOT measurements.

  17. Enhanced solar evaporation of water from porous media, through capillary mediated forces and surface treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canbazoglu, F. M.; Fan, B.; Kargar, A.

    2016-08-15

    The relative influence of the capillary, Marangoni, and hydrophobic forces in mediating the evaporation of water from carbon foam based porous media, in response to incident solar radiation, are investigated. It is indicated that inducing hydrophilic interactions on the surface, through nitric acid treatment of the foams, has a similar effect to reduced pore diameter and the ensuing capillary forces. The efficiency of water evaporation may be parameterized through the Capillary number (Ca), with a lower Ca being preferred. The proposed study is of much relevance to efficient solar energy utilization.

  18. Geothermal pump down-hole energy regeneration system

    DOEpatents

    Matthews, Hugh B.

    1982-01-01

    Geothermal deep well energy extraction apparatus is provided of the general kind in which solute-bearing hot water is pumped to the earth's surface from a subterranean location by utilizing thermal energy extracted from the hot water for operating a turbine motor for driving an electrical power generator at the earth 3 s surface, the solute bearing water being returned into the earth by a reinjection well. Efficiency of operation of the total system is increased by an arrangement of coaxial conduits for greatly reducing the flow of heat from the rising brine into the rising exhaust of the down-well turbine motor.

  19. Effects of water washing and torrefaction pretreatments on rice husk pyrolysis by microwave heating.

    PubMed

    Zhang, Shuping; Dong, Qing; Zhang, Li; Xiong, Yuanquan; Liu, Xinzhi; Zhu, Shuguang

    2015-10-01

    The influences of water washing, torrefaction and combined water washing-torrefaction pretreatments on microwave pyrolysis of rice husk samples were investigated. The results indicated that the process of combined water washing-torrefaction pretreatment could effectively remove a large portion of inorganics and improve the fuel characteristics to a certain extent. The gas products were rich in combustible compositions and the syngas quality was improved by pretreatment process. The liquid products contained less moisture content, acids and furans, while more concentrated phenols and sugars from microwave pyrolysis of rice husk after pretreatments, especially after the combined water washing-torrefaction pretreatment. Biochar, produced in high yield, has the alkaline pH (pH 8.2-10.0) and high surface area (S(BET) 157.81-267.84 m(2)/g), they have the potential to be used as soil amendments. It is noteworthy that water washing increased the pore surface area of biochar, but torrefaction reduced the pore surface area. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Structure of a Water Monolayer on the Anatase TiO2(101) Surface

    NASA Astrophysics Data System (ADS)

    Patrick, Christopher E.; Giustino, Feliciano

    2014-07-01

    Titanium dioxide (TiO2) plays a central role in the study of artificial photosynthesis, owing to its ability to perform photocatalytic water splitting. Despite over four decades of intense research efforts in this area, there is still some debate over the nature of the first water monolayer on the technologically relevant anatase TiO2(101) surface. In this work, we use first-principles calculations to reverse engineer the experimental high-resolution x-ray photoelectron spectra measured for this surface by Walle et al. [J. Phys. Chem. C 115, 9545 (2011)] and find evidence supporting the existence of a mix of dissociated and molecular water in the first monolayer. Using both semilocal and hybrid functional calculations, we revise the current understanding of the adsorption energetics by showing that the energetic cost of water dissociation is reduced via the formation of a hydrogen-bonded hydroxyl-water complex. We also show that such a complex can provide an explanation of an unusual superstructure observed in high-resolution scanning tunneling microscopy experiments.

  1. Removal of surface-reflected light for the measurement of remote-sensing reflectance from an above-surface platform.

    PubMed

    Lee, Zhongping; Ahn, Yu-Hwan; Mobley, Curtis; Arnone, Robert

    2010-12-06

    Using hyperspectral measurements made in the field, we show that the effective sea-surface reflectance ρ (defined as the ratio of the surface-reflected radiance at the specular direction corresponding to the downwelling sky radiance from one direction) varies not only for different measurement scans, but also can differ by a factor of 8 between 400 nm and 800 nm for the same scan. This means that the derived water-leaving radiance (or remote-sensing reflectance) can be highly inaccurate if a spectrally constant ρ value is applied (although errors can be reduced by carefully filtering measured raw data). To remove surface-reflected light in field measurements of remote sensing reflectance, a spectral optimization approach was applied, with results compared with those from remote-sensing models and from direct measurements. The agreement from different determinations suggests that reasonable results for remote sensing reflectance of clear blue water to turbid brown water are obtainable from above-surface measurements, even under conditions of high waves.

  2. Adhesion and friction between glass and rubber in the dry state and in water: role of contact hydrophobicity.

    PubMed

    Kawasaki, S; Tada, T; Persson, B N J

    2018-06-27

    We study the contact mechanics between 3 different tire tread compounds and a smooth glass surface in water. We study both adhesion and sliding friction at low-sliding speeds. For 2 of the compounds the rubber-glass contact in water is hydrophobic and we observe adhesion, and slip-stick sliding friction dynamics. For one compound the contact is hydrophilic, resulting in vanishing adhesion, and steady-state (or smooth) sliding dynamics. We also show the importance of dynamical scrape, both on the macroscopic level and at the asperity level, which reduces the water film thickness between the solids during slip. The experiments show that the fluid is removed much faster from the rubber-glass asperity contact regions for a hydrophobic contact than for a hydrophilic contact. We also study friction on sandblasted glass in water. In this case all the compounds behave similarly and we conclude that no dewetting occur in the asperity contact regions. We propose that this is due to the increased surface roughness which reduces the rubber-glass binding energy.

  3. Effects of Atmospheric Water and Surface Wind on Passive Microwave Retrievals of Sea Ice Concentration: a Simulation Study

    NASA Astrophysics Data System (ADS)

    Shin, D.; Chiu, L. S.; Clemente-Colon, P.

    2006-05-01

    The atmospheric effects on the retrieval of sea ice concentration from passive microwave sensors are examined using simulated data typical for the Arctic summer. The simulation includes atmospheric contributions of cloud liquid water, water vapor and surface wind on the microwave signatures. A plane parallel radiative transfer model is used to compute brightness temperatures at SSM/I frequencies over surfaces that contain open water, first-year (FY) ice and multi-year (MY) ice and their combinations. Synthetic retrievals in this study use the NASA Team (NT) algorithm for the estimation of sea ice concentrations. This study shows that if the satellite sensor's field of view is filled with only FY ice the retrieval is not much affected by the atmospheric conditions due to the high contrast between emission signals from FY ice surface and the signals from the atmosphere. Pure MY ice concentration is generally underestimated due to the low MY ice surface emissivity that results in the enhancement of emission signals from the atmospheric parameters. Simulation results in marginal ice areas also show that the atmospheric effects from cloud liquid water, water vapor and surface wind tend to degrade the accuracy at low sea ice concentration. FY ice concentration is overestimated and MY ice concentration is underestimated in the presence of atmospheric water and surface wind at low ice concentration. This compensating effect reduces the retrieval uncertainties of total (FY and MY) ice concentration. Over marginal ice zones, our results suggest that strong surface wind is more important than atmospheric water in contributing to the retrieval errors of total ice concentrations in the normal ranges of these variables.

  4. The design of superhydrophobic stainless steel surfaces by controlling nanostructures: A key parameter to reduce the implantation of pathogenic bacteria.

    PubMed

    Bruzaud, Jérôme; Tarrade, Jeanne; Celia, Elena; Darmanin, Thierry; Taffin de Givenchy, Elisabeth; Guittard, Frédéric; Herry, Jean-Marie; Guilbaud, Morgan; Bellon-Fontaine, Marie-Noëlle

    2017-04-01

    Reducing bacterial adhesion on substrates is fundamental for various industries. In this work, new superhydrophobic surfaces are created by electrodeposition of hydrophobic polymers (PEDOT-F 4 or PEDOT-H 8 ) on stainless steel with controlled topographical features, especially at a nano-scale. Results show that anti-bioadhesive and anti-biofilm properties require the control of the surface topographical features, and should be associated with a low adhesion of water onto the surface (Cassie-Baxter state) with limited crevice features at the scale of bacterial cells (nano-scale structures). Copyright © 2016. Published by Elsevier B.V.

  5. Dual permeability modeling of tile drain management influences on hydrologic and nutrient transport characteristics in macroporous soil

    NASA Astrophysics Data System (ADS)

    Frey, Steven K.; Hwang, Hyoun-Tae; Park, Young-Jin; Hussain, Syed I.; Gottschall, Natalie; Edwards, Mark; Lapen, David R.

    2016-04-01

    Tile drainage management is considered a beneficial management practice (BMP) for reducing nutrient loads in surface water. In this study, 2-dimensional dual permeability models were developed to simulate flow and transport following liquid swine manure and rhodamine WT (strongly sorbing) tracer application on macroporous clay loam soils under controlled (CD) and free drainage (FD) tile management. Dominant flow and transport characteristics were successfully replicated, including higher and more continuous tile discharge and lower peak rhodamine WT concentrations in FD tile effluent; in relation to CD, where discharge was intermittent, peak rhodamine concentrations higher, and mass exchange from macropores into the soil matrix greater. Explicit representation of preferential flow was essential, as macropores transmitted >98% of surface infiltration, tile flow, and tile solute loads for both FD and CD. Incorporating an active 3rd type lower boundary condition that facilitated groundwater interaction was imperative for simulating CD, as the higher (relative to FD) water table enhanced water and soluble nutrient movement from the soil profile into deeper groundwater. Scenario analysis revealed that in conditions where slight upwards hydraulic gradients exist beneath tiles, groundwater upwelling can influence the concentration of surface derived solutes in tile effluent under FD conditions; whereas the higher and flatter CD water table can restrict groundwater upwelling. Results show that while CD can reduce tile discharge, it can also lead to an increase in surface-application derived nutrient concentrations in tile effluent and hence surface water receptors, and it can promote NO3 loading into groundwater. This study demonstrates dual permeability modeling as a tool for increasing the conceptual understanding of tile drainage BMPs.

  6. Prediction of optimal safe ground water yield and land subsidence in the Los Banos-Kettleman City area, California, using a calibrated numerical simulation model

    NASA Astrophysics Data System (ADS)

    Larson, K. J.; Başaǧaoǧlu, H.; Mariño, M. A.

    2001-02-01

    Land subsidence caused by the excessive use of ground water resources has traditionally caused serious and costly damage to the Los Banos-Kettleman City area of California's San Joaquin Valley. Although the arrival of surface water from the Central Valley Project has reduced subsidence in recent decades, the growing instability of surface water supplies has refocused attention on the future of land subsidence in the region. This paper uses integrated numerical ground water and land subsidence models to simulate land subsidence caused by ground water overdraft. The simulation model is calibrated using observed data from 1972 to 1998, and the responsiveness of the model to variations in subsidence parameters are analyzed through a sensitivity analysis. A probable future drought scenario is used to evaluate the effect on land subsidence of three management alternatives over the next thirty years. The model reveals that maintaining present practices virtually eliminates unrecoverable land subsidence, but may not be a sustainable alternative because of a growing urban population to the south and concern over the ecological implications of water exportation from the north. The two other proposed management alternatives reduce the dependency on surface water by increasing ground water withdrawal. Land subsidence is confined to tolerable levels in the more moderate of these proposals, while the more aggressive produces significant long-term subsidence. Finally, an optimization model is formulated to determine maximum ground water withdrawal from nine pumping sub-basins without causing irrecoverable subsidence during the forecast period. The optimization model reveals that withdrawal can be increased in certain areas on the eastern side of the study area without causing significant inelastic subsidence.

  7. Reduction of DOM fractions and their trihalomethane formation potential in surface river water by in-line coagulation with ceramic membrane filtration.

    PubMed

    Rakruam, Pharkphum; Wattanachira, Suraphong

    2014-03-01

    This research was aimed at investigating the reduction of DOM fractions and their trihalomethane formation potential (THMFP) by in-line coagulation with 0.1 μm ceramic membrane filtration. The combination of ceramic membrane filtration with a coagulation process is an alternative technology which can be applied to enhance conventional coagulation processes in the field of water treatment and drinking water production. The Ping River water (high turbidity water) was selected as the raw surface water because it is currently the main raw water source for water supply production in the urban and rural areas of Chiang Mai Province. From the investigation, the results showed that the highest percent reductions of DOC, UV-254, and THMFP (47.6%, 71.0%, and 67.4%, respectively) were achieved from in-line coagulation with ceramic membrane filtration at polyaluminum chloride dosage 40 mg/L. Resin adsorption techniques were employed to characterize the DOM in raw surface water and filtered water. The results showed that the use of a ceramic membrane with in-line coagulation was able to most efficiently reduce the hydrophobic fraction (HPOA) (68.5%), which was then followed by the hydrophilic fraction (HPIA) (49.3%). The greater mass DOC reduction of these two fractions provided the highest THMFP reductions (55.1% and 37.2%, respectively). Furthermore, the in-line coagulation with ceramic membrane filtration was able to reduce the hydrophobic (HPOB) fraction which is characterized by high reactivity toward THM formation. The percent reduction of mass DOC and THMFP of HPOB by in-line coagulation with ceramic membrane filtration was 45.9% and 48.0%, respectively. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  8. Effects of straw mulching on soil evaporation during the soil thawing period in a cold region in northeastern China

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Yan, Peiru; Li, Tianxiao; Cui, Song; Peng, Li

    2018-04-01

    To study the effect of straw mulching on soil water evaporation, it is necessary to measure soil water evaporation under different conditions of straw mulching during the soil thawing period. A field experiment was conducted in winter, and soil evaporation was measured using a microlysimeter on bare land (LD) and 4500 (GF4500), 9000 (GF9000) and 13500 kg/hm2 (GF13500) straw mulch. The influence of different quantities of straw mulch on soil water evaporation during the thawing period was analyzed using the Mallat algorithm, statistical analysis and information cost function. The results showed that straw mulching could delay the thawing of the surface soil by 3-6 d, decrease the speed at which the surface soil thaws by 0.40-0.80 cm/d, delay the peak soil liquid water content, increase the soil liquid water content, reduce the cumulative evaporation by 2.70-7.40 mm in the thawing period, increase the range of soil evaporation by 0.04-0.10 mm in the early stage of the thawing period, and reduce the range of soil evaporation by 0.25-0.90 mm in the late stage of the thawing period. Straw mulching could reduce the range of and variation in soil evaporation and can reduce the effect of random factors on soil evaporation. When the amount of straw mulch exceeded 9000 kg/hm2, the effect of increasing the amount of straw mulch on daily soil water evaporation was small.

  9. Effect of Water Stress on Cotton Leaves 1

    PubMed Central

    Berlin, Jerry; Quisenberry, J. E.; Bailey, Franklin; Woodworth, Margaret; McMichael, B. L.

    1982-01-01

    Palisade cells from fully expanded leaves from irrigated and nonirrigated, field grown cotton (Gossypium hirsutum L. cv. Paymaster 266) were subjected to a microscopic examination to evaluate the effect of water stress on subcellular structures. The water potential difference between the two treatments was 13 bars at the time of sampling. The dimensions of the palisade cells and their density per unit leaf area were determined by light microscopy. Palisade cells from stressed plants had the same diameter, but were taller than their counterparts in irrigated plants. The density of the palisade cells was the same in both treatments as was the fractional volume of the intercellular space. It was concluded that the reduced leaf area observed in the stressed plants resulted primarily from a mitotic sensitivity to water stress. Further, expansion of palisade cells was not inhibited by the stress imposed in this study. Morphometric analysis of electron micrographs was used to evaluate the subcellular structure of palisade cells from nonstressed and stressed plants. The fractional volumes of cell walls, total cytoplasm, chloroplasts, starch granules, intrachloroplast bodies, mitochondria, peroxisomes, and central vacuoles were determined. The surface densities of grana and stroma lamellae, outer chloroplast membranes, mitochondrial cristae, endoplasmic reticulum and Golgi cisternae were also measured. The number of chloroplasts, mitochondria, and peroxisomes were determined. These data were expressed as actual volumes, areas, and numbers per palisade cell for each treatment. Palisade cells from stressed plants had thinner cell walls, larger central vacuoles and approximately the same amount of cytoplasm compared to cells from nonstressed plants. Within the cytoplasm, stressed plants had more but smaller chloroplasts with increased grana and stroma lamellae surfaces, larger mithchondria with reduced cristae surfaces, smaller peroxisomes and reduced membrane surfaces of endoplasmic reticulum and Golgi cisternae. Images Fig. 1 PMID:16662453

  10. Effect of water stress on cotton leaves : I. An electron microscopic stereological study of the palisade cells.

    PubMed

    Berlin, J; Quisenberry, J E; Bailey, F; Woodworth, M; McMichael, B L

    1982-07-01

    Palisade cells from fully expanded leaves from irrigated and nonirrigated, field grown cotton (Gossypium hirsutum L. cv. Paymaster 266) were subjected to a microscopic examination to evaluate the effect of water stress on subcellular structures. The water potential difference between the two treatments was 13 bars at the time of sampling. The dimensions of the palisade cells and their density per unit leaf area were determined by light microscopy. Palisade cells from stressed plants had the same diameter, but were taller than their counterparts in irrigated plants. The density of the palisade cells was the same in both treatments as was the fractional volume of the intercellular space. It was concluded that the reduced leaf area observed in the stressed plants resulted primarily from a mitotic sensitivity to water stress. Further, expansion of palisade cells was not inhibited by the stress imposed in this study.Morphometric analysis of electron micrographs was used to evaluate the subcellular structure of palisade cells from nonstressed and stressed plants. The fractional volumes of cell walls, total cytoplasm, chloroplasts, starch granules, intrachloroplast bodies, mitochondria, peroxisomes, and central vacuoles were determined. The surface densities of grana and stroma lamellae, outer chloroplast membranes, mitochondrial cristae, endoplasmic reticulum and Golgi cisternae were also measured. The number of chloroplasts, mitochondria, and peroxisomes were determined. These data were expressed as actual volumes, areas, and numbers per palisade cell for each treatment. Palisade cells from stressed plants had thinner cell walls, larger central vacuoles and approximately the same amount of cytoplasm compared to cells from nonstressed plants. Within the cytoplasm, stressed plants had more but smaller chloroplasts with increased grana and stroma lamellae surfaces, larger mithchondria with reduced cristae surfaces, smaller peroxisomes and reduced membrane surfaces of endoplasmic reticulum and Golgi cisternae.

  11. Iron clad wetlands: Soil iron-sulfur buffering determines coastal wetland response to salt water incursion

    NASA Astrophysics Data System (ADS)

    Schoepfer, Valerie A.; Bernhardt, Emily S.; Burgin, Amy J.

    2014-12-01

    Coastal freshwater wetland chemistry is rapidly changing due to increased frequency of salt water incursion, a consequence of global change. Seasonal salt water incursion introduces sulfate, which microbially reduces to sulfide. Sulfide binds with reduced iron, producing iron sulfide (FeS), recognizable in wetland soils by its characteristic black color. The objective of this study is to document iron and sulfate reduction rates, as well as product formation (acid volatile sulfide (AVS) and chromium reducible sulfide (CRS)) in a coastal freshwater wetland undergoing seasonal salt water incursion. Understanding iron and sulfur cycling, as well as their reduction products, allows us to calculate the degree of sulfidization (DOS), from which we can estimate how long soil iron will buffer against chemical effects of sea level rise. We show that soil chloride, a direct indicator of the degree of incursion, best predicted iron and sulfate reduction rates. Correlations between soil chloride and iron or sulfur reduction rates were strongest in the surface layer (0-3 cm), indicative of surface water incursion, rather than groundwater intrusion at our site. The interaction between soil moisture and extractable chloride was significantly related to increased AVS, whereas increased soil chloride was a stronger predictor of CRS. The current DOS in this coastal plains wetland is very low, resulting from high soil iron content and relatively small degree of salt water incursion. However, with time and continuous salt water exposure, iron will bind with incoming sulfur, creating FeS complexes, and DOS will increase.

  12. Coating Reduces Ice Adhesion

    NASA Technical Reports Server (NTRS)

    Smith, Trent; Prince, Michael; DwWeese, Charles; Curtis, Leslie

    2008-01-01

    The Shuttle Ice Liberation Coating (SILC) has been developed to reduce the adhesion of ice to surfaces on the space shuttle. SILC, when coated on a surface (foam, metal, epoxy primer, polymer surfaces), will reduce the adhesion of ice by as much as 90 percent as compared to the corresponding uncoated surface. This innovation is a durable coating that can withstand several cycles of ice growth and removal without loss of anti-adhesion properties. SILC is made of a binder composed of varying weight percents of siloxane(s), ethyl alcohol, ethyl sulfate, isopropyl alcohol, and of fine-particle polytetrafluoroethylene (PTFE). The combination of these components produces a coating with significantly improved weathering characteristics over the siloxane system alone. In some cases, the coating will delay ice formation and can reduce the amount of ice formed. SILC is not an ice prevention coating, but the very high water contact angle (greater than 140 ) causes water to readily run off the surface. This coating was designed for use at temperatures near -170 F (-112 C). Ice adhesion tests performed at temperatures from -170 to 20 F (-112 to -7 C) show that SILC is a very effective ice release coating. SILC can be left as applied (opaque) or buffed off until the surface appears clear. Energy dispersive spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS) data show that the coating is still present after buffing to transparency. This means SILC can be used to prevent ice adhesion even when coating windows or other objects, or items that require transmission of optical light. Car windshields are kept cleaner and SILC effectively mitigates rain and snow under driving conditions.

  13. Bulk water freezing dynamics on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Chavan, S.; Carpenter, J.; Nallapaneni, M.; Chen, J. Y.; Miljkovic, N.

    2017-01-01

    In this study, we elucidate the mechanisms governing the heat-transfer mediated, non-thermodynamic limited, freezing delay on non-wetting surfaces for a variety of characteristic length scales, Lc (volume/surface area, 3 mm < Lc < 6 mm) using carefully designed freezing experiments in a temperature-controlled, zero-humidity environment on thin water slabs. To probe the effect of surface wettability, we investigated the total time for room temperature water to completely freeze into ice on superhydrophilic ( θaapp→ 0°), hydrophilic (0° < θa < 90°), hydrophobic (90° < θa < 125°), and superhydrophobic ( θaapp→ 180°) surfaces. Our results show that at macroscopic length scales, heat conduction through the bulk water/ice layer dominates the freezing process when compared to heat conduction through the functional coatings or nanoscale gaps at the superhydrophobic substrate-water/ice interface. In order to verify our findings, and to determine when the surface structure thermal resistance approaches the water/ice resistance, we fabricated and tested the additional substrates coated with commercial superhydrophobic spray coatings, showing a monotonic increase in freezing time with coating thickness. The added thermal resistance of thicker coatings was much larger than that of the nanoscale superhydrophobic features, which reduced the droplet heat transfer and increased the total freezing time. Transient finite element method heat transfer simulations of the water slab freezing process were performed to calculate the overall heat transfer coefficient at the substrate-water/ice interface during freezing, and shown to be in the range of 1-2.5 kW/m2K for these experiments. The results shown here suggest that in order to exploit the heat-transfer mediated freezing delay, thicker superhydrophobic coatings must be deposited on the surface, where the coating resistance is comparable to the bulk water/ice conduction resistance.

  14. Water-gas-shift over metal-free nanocrystalline ceria: An experimental and theoretical study

    DOE PAGES

    Guild, Curtis J.; Vovchok, Dimitriy; Kriz, David A.; ...

    2017-01-23

    A tandem experimental and theoretical investigation of a mesoporous ceria catalyst reveals the properties of the metal oxide are conducive for activity typically ascribed to metals, suggesting reduced Ce 3+ and oxygen vacancies are responsible for the inherent bi-functionality of CO oxidation and dissociation of water required for facilitating the production of H 2. The degree of reduction of the ceria, specifically the (1 0 0) face, is found to significantly influence the binding of reagents, suggesting reduced surfaces harbor the necessary reactive sites. The metal-free catalysis of the reaction is significant for catalyst design considerations, and the suite ofmore » in situ analyses provides a comprehensive study of the dynamic nature of the high surface area catalyst system. Finally, this study postulates feasible improvements in catalytic activity may redirect the purpose of the water-gas shift reaction from CO purification to primary hydrogen production.« less

  15. Water-gas-shift over metal-free nanocrystalline ceria: An experimental and theoretical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guild, Curtis J.; Vovchok, Dimitriy; Kriz, David A.

    A tandem experimental and theoretical investigation of a mesoporous ceria catalyst reveals the properties of the metal oxide are conducive for activity typically ascribed to metals, suggesting reduced Ce 3+ and oxygen vacancies are responsible for the inherent bi-functionality of CO oxidation and dissociation of water required for facilitating the production of H 2. The degree of reduction of the ceria, specifically the (1 0 0) face, is found to significantly influence the binding of reagents, suggesting reduced surfaces harbor the necessary reactive sites. The metal-free catalysis of the reaction is significant for catalyst design considerations, and the suite ofmore » in situ analyses provides a comprehensive study of the dynamic nature of the high surface area catalyst system. Finally, this study postulates feasible improvements in catalytic activity may redirect the purpose of the water-gas shift reaction from CO purification to primary hydrogen production.« less

  16. Photocatalytic generation of hydrogen from water

    NASA Technical Reports Server (NTRS)

    Bottoms, W. R.; Miles, R. B.

    1976-01-01

    A concept designed to overcome the problems encountered when using photodissociation for the generation of hydrogen is discussed. The problems limiting the efficiency of photodissociation of water are the separation of the photolysis products and the high energy photons necessary for the reaction. It is shown that the dissociation energy of a large number of molecules is catalytically reduced when these molecules are in intimate contact with the surface of certain metals. It is proposed to develop a surface which will take advantage of this catalytic shift in dissociation energies to reduce the photon energy required to produce hydrogen. This same catalytic surface can be used to separate the reaction products if it is made so that one of the dissociations products is soluble in the metal and others are not. This condition is met by many metal systems such as platinum group metals which have been used commercially to separate hydrogen from other gases and liquids.

  17. The Influence of a Sandy Substrate, Seagrass, or Highly Turbid Water on Albedo and Surface Heat Flux

    NASA Astrophysics Data System (ADS)

    Fogarty, M. C.; Fewings, M. R.; Paget, A. C.; Dierssen, H. M.

    2018-01-01

    Sea-surface albedo is a combination of surface-reflected and water-leaving irradiance, but water-leaving irradiance typically contributes less than 15% of the total albedo in open-ocean conditions. In coastal systems, however, the bottom substrate or suspended particulate matter can increase the amount of backscattered light, thereby increasing albedo and decreasing net shortwave surface heat flux. Here a sensitivity analysis using observations and models predicts the effect of light scattering on albedo and the net shortwave heat flux for three test cases: a bright sand bottom, a seagrass canopy, and turbid water. After scaling to the full solar shortwave spectrum, daytime average albedo for the test cases is up to 0.20 and exceeds the value of 0.05 predicted using a commonly applied parameterization. Daytime net shortwave heat flux into the water is significantly reduced, particularly for waters with bright sediments, dense horizontal seagrass canopies < 0.25 m from the sea surface, or highly turbid waters with suspended particulate matter concentration ≥ 50 g m-3. Observations of a more vertical seagrass canopy within 0.2 and 1 m of the surface indicate the increase in albedo compared to the common parameterization is negligible. Therefore, we suggest that the commonly applied albedo lookup table can be used in coastal heat flux estimates in water as shallow as 1 m unless the bottom substrate is highly reflective or the water is highly turbid. Our model results provide guidance to researchers who need to determine albedo in highly reflective or highly turbid conditions but have no direct observations.

  18. Recovery of condensate water quality in power generator's surface condenser

    NASA Astrophysics Data System (ADS)

    Kurniawan, Lilik Adib

    2017-03-01

    In PT Badak NGL Plant, steam turbines are used to drive major power generators, compressors, and pumps. Steam exiting the turbines is condensed in surface condensers to be returned to boilers. Therefore, surface condenser performance and quality of condensate water are very important. One of the recent problem was caused by the leak of a surface condenser of Steam Turbine Power Generator. Thesteam turbine was overhauled, leaving the surface condenser idle and exposed to air for more than 1.5 years. Sea water ingress due to tube leaks worsens the corrosionof the condenser shell. The combination of mineral scale and corrosion product resulting high conductivity condensate at outlet condenser when we restarted up, beyond the acceptable limit. After assessing several options, chemical cleaning was the best way to overcome the problem according to condenser configuration. An 8 hour circulation of 5%wt citric acid had succeed reducing water conductivity from 50 μmhos/cm to below 5 μmhos/cm. The condensate water, then meets the required quality, i.e. pH 8.3 - 9.0; conductivity ≤ 5 μmhos/cm, therefore the power generator can be operated normally without any concern until now.

  19. Surface engineered nanoparticles for improved surface enhanced Raman scattering applications and method for preparing same

    DOEpatents

    Simmons, Blake A [San Francisco, CA; Talin, Albert Alec [Livermore, CA

    2009-11-27

    A method for producing metal nanoparticles that when associated with an analyte material will generate an amplified SERS spectrum when the analyte material is illuminated by a light source and a spectrum is recorded. The method for preparing the metal nanoparticles comprises the steps of (i) forming a water-in-oil microemulsion comprising a bulk oil phase, a dilute water phase, and one or more surfactants, wherein the water phase comprises a transition metal ion; (ii) adding an aqueous solution comprising a mild reducing agent to the water-in-oil microemulsion; (iii) stirring the water-in-oil microemulsion and aqueous solution to initiate a reduction reaction resulting in the formation of a fine precipitate dispersed in the water-in-oil microemulsion; and (iv) separating the precipitate from the water-in-oil microemulsion.

  20. Understanding and managing the effects of groundwater pumping on streamflow

    USGS Publications Warehouse

    Leake, Stanley A.; Barlow, Paul M.

    2013-01-01

    Groundwater is a critical resource in the United States because it provides drinking water, irrigates crops, supports industry, and is a source of water for rivers, streams, lakes, and springs. Wells that pump water out of aquifers can reduce the amount of groundwater that flows into rivers and streams, which can have detrimental impacts on aquatic ecosystems and the availability of surface water. Estimation of rates, locations, and timing of streamflow depletion due to groundwater pumping is needed for water-resource managers and users throughout the United States, but the complexity of groundwater and surface-water systems and their interactions presents a major challenge. The understanding of streamflow depletion and evaluation of water-management practices have improved during recent years through the use of computer models that simulate aquifer conditions and the effects of pumping groundwater on streams.

  1. Reduced toxicity of diuron to the freshwater green alga Pseudokirchneriella subcapitata in the presence of black carbon.

    PubMed

    Knauer, Katja; Sobek, Anna; Bucheli, Thomas D

    2007-06-15

    Black carbon (BC) is known to act as supersorbent for many organic contaminants. Its presence in surface waters at a level of a few mg/L, which may occur, e.g., after storm events in urban areas, might result in a reduced bioavailability of many contaminants and thus greatly impact their potential toxicity. Photosynthesis-inhibiting phenyl urea derivatives, such as diuron, are widely used as herbicides and diuron is regularly measured in European freshwater systems. In this study, the toxicity of diuron to the freshwater green alga Pseudokirchneriella subcapitata was investigated in the presence of BC in its native and combusted form. As a toxicity endpoint, the in vivo chlorophyll fluorescence was determined and used to indicate the bioavailability of diuron. Fifty milligrams native BC/L reduced effects of 5mugdiuron/L on photosynthesis by 10+/-2%, whereas photosynthesis was completely restored in the presence of the same concentration of combusted BC, suggesting a significantly enhanced adsorption of diuron to the BC fraction compared to the organic carbon fraction. Assuming an environmentally realistic concentration of approximately 1.5mg of combusted BC/L, diuron toxicity would be reduced by approximately 20% in surface waters due to the presence of BC. Higher BC concentrations after storm events might reduce the toxicity even further. A calculation of the Freundlich sorption coefficient K(F,BC,tox) via the toxicity endpoint, resulted in a log K(F,BC,tox) of the combusted BC of 5.7, which is comparable to values obtained by classical sorption experiments. This study contributes to a refined risk assessment of micropollutants in surface waters taking into account the presence of potentially relevant sorbents and, consequently, reduced bioavailability.

  2. Paleoceanographic Changes during the Past 95000 Years from the Indian Sector of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Manoj, M. C.; Meloth, T.; Mohan, R.

    2012-12-01

    High-resolution planktic/benthic foraminiferal stable isotope and mean sortable silt records in a sediment core (SK200/22a) from the sub-Antarctic regime of the Indian sector of Southern Ocean depict the variations in surface and deep water hydrography during the past 95,000 years. The δ18O records of shallow- and deep-dwelling planktonic foraminiferal species (Neogloboquadrina pachyderma, Globigerina bulloides and Globorotalia inflata), primarily reflects the changes in upper water column characteristics. The δ18O records revealed the presence of the Antarctic Cold Reversal and the timing of the variability in major surface warming events appears in phase with the Antarctic temperature variations at the millennial time scale. Comparison between the proxies of sea surface conditions like planktonic δ18O and productivity proxies like carbonate and biogenic opal content in the core indicate that millennial scale sea surface warming fluctuated with productivity. The marine isotopic stage (MIS) 1 and MIS2 are characterized by near constant variations in mean sortable silt values, negating any significant changes in the deep water flow during these periods. The MIS 3 - MIS 5 periods were characterized by a general increase in mean sortable silt value, suggesting a strengthening of bottom-current activity that triggered winnowing at these periods. This is supported by the low δ13C records of epibenthic Cibicidoides wuellerstorfi during the glacials and some parts of MIS3 and MIS 5, confirming older nutrient-rich and poorly ventilated southern sourced deep waters at these periods. The termination I is marked by decrease in flow speed and an increase in the C. wuellerstorfi δ13C values. Comparison of mean sortable silt and C. wuellerstorfi δ13C record with the Antarctic ice core records reveal that pulses of reduced bottom water flow of Circumpolar Deep Water/North Atlantic Deep Water are synchronous with the Antarctic warming events. The decreased flow speed during the Antarctic warm events may be due to the lower production rate of southern-sourced water or reduced density, leading to reduced geostrophic flow. During the cold phases of the Antarctic climate, enhanced southern westerly wind transport caused increased sea-ice export leading to increase in density of southern-sourced water.

  3. Sulfate-Reducing Bioreactors For The Treatment Of Acid Mine Drainage

    EPA Science Inventory

    Mine influenced water (MIW) affects a large portion of mountainous surface water bodies in the western United States as well as elsewhere. In this study, the purpose of this applied research is to compare different substrates used in biochemical reactors (BCRs) field test cells ...

  4. Assessment of irrigation reservoir levee impairment in Arkansas, USA

    USDA-ARS?s Scientific Manuscript database

    The use of surface water resources in the state of Arkansas increased over the years following 2000 because of groundwater depletion. In order to reduce dependence on groundwater, irrigation reservoirs and tailwater recovery systems are used to capture and store water for irrigation. Irrigation re...

  5. A comparison of precision mobile drip irrigation, LESA and LEPA

    USDA-ARS?s Scientific Manuscript database

    Precision mobile drip irrigation (PMDI) is a surface drip irrigation system fitted onto moving sprinkler systems that applies water through the driplines as they are dragged across the field. This application method can conserve water by limiting runoff, and reducing evaporative losses since the wat...

  6. The comparative limnology of Lakes Nyos and Monoun, Cameroon

    USGS Publications Warehouse

    Kling, George; Evans, William C; Tanyileke, Gregory

    2015-01-01

    Lakes Nyos and Monoun are known for the dangerous accumulation of CO2 dissolved in stagnant bottom water, but the shallow waters that conceal this hazard are dilute and undergo seasonal changes similar to other deep crater lakes in the tropics. Here we discuss these changes with reference to climatic and water-column data collected at both lakes during the years following the gas release disasters in the mid-1980s. The small annual range in mean daily air temperatures leads to an equally small annual range of surface water temperatures (ΔT ~6–7 °C), reducing deep convective mixing of the water column. Weak mixing aids the establishment of meromixis, a requisite condition for the gradual buildup of CO2 in bottom waters and perhaps the unusual condition that most explains the rarity of such lakes. Within the mixolimnion, a seasonal thermocline forms each spring and shallow diel thermoclines may be sufficiently strong to isolate surface water and allow primary production to reduce PCO2 below 300 μatm, inducing a net influx of CO2 from the atmosphere. Surface water O2 and pH typically reach maxima at this time, with occasional O2 oversaturation. Mixing to the chemocline occurs in both lakes during the winter dry season, primarily due to low humidity and cool night time air temperature. An additional period of variable mixing, occasionally reaching the chemocline in Lake Monoun, occurs during the summer monsoon season in response to increased frequency of major storms. The mixolimnion encompassed the upper ~40–50 m of Lake Nyos and upper ~15–20 m of Lake Monoun prior to the installation of degassing pipes in 2001 and 2003, respectively. Degassing caused chemoclines to deepen rapidly. Piping of anoxic, high-TDS bottom water to the lake surface has had a complex effect on the mixolimnion. Algal growth stimulated by increased nutrients (N and P) initially stimulated photosynthesis and raised surface water O2 in Lake Nyos, but O2 removal through oxidation of iron was also enhanced and appeared to dominate at Lake Monoun. Depth-integrated O2 contents decreased in both lakes as did water transparency. No dangerous instabilities in water-column structure were detected over the course of degassing. While Nyos-type lakes are extremely rare, other crater lakes can pose dangers from gas releases and monitoring is warranted.

  7. Droplet impact on superhydrophobic surfaces fully decorated with cylindrical macrotextures.

    PubMed

    Abolghasemibizaki, Mehran; Mohammadi, Reza

    2018-01-01

    Impacting on a superhydrophobic surface, water droplet spreads to a pancake shape and then retracts and bounces off. Although the collision time is mostly in the order of couple of 10ms for millimetric droplets, researchers have shown recently that decorating the superhydrophobic surface with a single macrotexture or intersecting ridge reduces this contact time if the droplet hits the texture or the intersection exactly in the center. Hence, covering the surface with ridges should address this hitting point restriction. Using an extruder-type 3D printer, we fabricated a superhydrophobic surface fully decorated with cylindrical ridges. The dynamic of water droplet impact on this surface at different impact velocities has been studied for varied droplet volumes and ridge sizes. Our data show that regardless of the location of the contact point, when the kinetic energy of the drop is sufficient to completely wet the ridges, the contact time reduces ∼13% as the consequence of ∼20% faster retraction. For higher impact velocity, the contact becomes shorter since the flattened drop splashes from the periphery. Moreover, the simplified, time-efficient and inexpensive method of fabricating the surfaces presented in this paper can be implemented in fabricating many versatile superhydrophobic surfaces with complex geometries. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Reduction of skylight reflection effects in the above-water measurement of diffuse marine reflectance: comment.

    PubMed

    Krotkov, N A; Vasilkov, A P

    2000-03-20

    Use of a vertical polarizer has been suggested to reduce the effects of surface reflection in the above-water measurements of marine reflectance. We suggest using a similar technique for airborne or spaceborne sensors when atmospheric scattering adds its own polarization signature to the upwelling radiance. Our own theoretical sensitivity study supports the recommendation of Fougnie et al. [Appl. Opt. 38, 3844 (1999)] (40-50 degrees vertical angle and azimuth angle near 135 degrees, polarizer parallel to the viewing plane) for above-water measurements. However, the optimal viewing directions (and the optimal orientation of the polarizer) change with altitude above the sea surface, solar angle, and atmospheric vertical optical structure. A polarization efficiency function is introduced, which shows the maximal possible polarization discrimination of the background radiation for an arbitrary altitude above the sea surface, viewing direction, and solar angle. Our comment is meant to encourage broader application of airborne and spaceborne polarization sensors in remote sensing of water and sea surface properties.

  9. Phyt'Eaux Cités: application and validation of a programme to reduce surface water contamination with urban pesticides.

    PubMed

    Botta, Fabrizio; Fauchon, Nils; Blanchoud, Hélène; Chevreuil, Marc; Guery, Bénédicte

    2012-01-01

    This paper presents first results of Phyt'Eaux Cités, a program put in place by the local water supply agency, the SEDIF (Syndicat des Eaux d'Ile-de-France), in collaboration with 73 local authorities, private societies and institutional offices (365 km(2)). The challenges included: measurement of the previous surface water contamination, control of urban pesticide applications, prevention of pesticide hazard on users and finally a overall reduction of surface water contamination. An inquiry on urban total pesticide amount was coupled with a surface water bi-weekly monitoring to establish the impact of more than 200 molecules upon the Orge River. For 2007, at least 4400 kg and 92 type of pesticides (essentially herbicides) were quantified for all urban users in the Phyt'Eaux Cités perimeter. At the outlet of the Orge River (bi-weekly sampling in 2007), 11 molecules were always detected above 0.1 μg L(-1). They displayed the mainly urban origin of pesticide surface water contamination. Amitrole, AMPA (Aminomethyl Phosphonic Acid), demethyldiuron, diuron, glyphosate and atrazine were quantified with a 100% of frequency in 2007 and 2008 at the Orge River outlet. During the year, peaks of contamination were also registered for MCCP, 2,4 MCPA, 2,4 D, triclopyr, dichlorprop, diflufènican, active substances used in large amount in the urban area. However, some other urban molecules, such as isoxaben or flazasulfuron, were detected with low frequency. During late spring and summer, contamination patterns and load were dominated by glyphosate, amitrole and diuron, essentially applied by cities and urban users. Both isoproturon and chlortoluron were quantified during autumn and winter months according to upstream agricultural practices. In conclusion, 3 years after the beginning of this programme, the cities reduced the use of 68% of the total pesticide amount. An improvement on surface water quality was found from 2008 and during 2009 for all pesticides. In particular, glyphosate showed a decrease of the load above 60% in 2008, partly related to the Phyt'Eaux Cités action. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. A high-resolution record of Holocene millennial-scale oscillations of surface water, foraminiferal paleoecology and sediment redox chemistry in the SE Brazilian margin

    NASA Astrophysics Data System (ADS)

    Dias, B. B.; Barbosa, C. F.; Albuquerque, A. L.; Piotrowski, A. M.

    2014-12-01

    Holocene millennial-scale oscillations and Bond Events (Bond et al. 1997) are well reported in the North Atlantic as consequence of fresh water input and weaking of the Atlantic Meridional Overturning Circulation (AMOC). It has been hypothesized that the effect of weaking of AMOC would lead to warming in the South Atlantic due to "heat piracy", causing surface waters to warm and a reorganization of surface circulation. There are few reconstructions of AMOC strength in the South Atlantic, and none with a high resolution Holocene record of changes of productivity and the biological pump. We reconstruct past changes in the surface water mass hydrography, productivity, and sediment redox changes in high-resolution in the core KCF10-01B, located 128 mbsl water depth off Cabo Frio, Brazil, a location where upwelling is strongly linked to surface ocean hydrography. We use Benthic Foraminiferal Accumulation Rate (BFAR) to reconstruct productivity, which reveals a 1.3kyr cyclicity during the mid- and late-Holocene. The geochemistry of trace and rare earth elements on foraminiferal Fe-Mn oxide coatings show changes in redox-sensitive elements indicating that during periods of high productivity there were more reducing conditions in sediment porewaters, producing a Ce anomaly and reduction and re-precipitation of Mn oxides. Bond events 1-7 were identified by a productivity increase along with reducing sediment conditions which was likely caused by Brazil Current displacement offshore allowing upwelling of the nutritive bottom water South Atlantic Central Waters (SACW) to the euphotic zone and a stronger local biological pump. In a global context, correlation with other records show that this occurred during weakened AMOC and southward displacement of the ITCZ. We conclude that Bond climatic events and millennial-scale variability of AMOC caused sea surface hydrographic changes off the Brazilian Margin leading to biological and geochemical changes recorded in coastal records. The 8.2kyr climatic event is reported here for the first time in South American coastal sediment records as high productivity conditions and a rapid change in porewater redox chemistry.

  11. Co-adsorption of water and oxygen on GaN: Effects of charge transfer and formation of electron depletion layer.

    PubMed

    Wang, Qi; Puntambekar, Ajinkya; Chakrapani, Vidhya

    2017-09-14

    Species from ambient atmosphere such as water and oxygen are known to affect electronic and optical properties of GaN, but the underlying mechanism is not clearly known. In this work, we show through careful measurement of electrical resistivity and photoluminescence intensity under various adsorbates that the presence of oxygen or water vapor alone is not sufficient to induce electron transfer to these species. Rather, the presence of both water and oxygen is necessary to induce electron transfer from GaN that leads to the formation of an electron depletion region on the surface. Exposure to acidic gases decreases n-type conductivity due to increased electron transfer from GaN, while basic gases increase n-type conductivity and PL intensity due to reduced charge transfer from GaN. These changes in the electrical and optical properties, as explained using a new electrochemical framework based on the phenomenon of surface transfer doping, suggest that gases interact with the semiconductor surface through electrochemical reactions occurring in an adsorbed water layer present on the surface.

  12. Changes in Land Surface Water Dynamics since the 1990s and Relation to Population Pressure

    NASA Technical Reports Server (NTRS)

    Prigent, C.; Papa, F.; Aires, F.; Jimenez, C.; Rossow, W. B.; Matthews, E.

    2012-01-01

    We developed a remote sensing approach based on multi-satellite observations, which provides an unprecedented estimate of monthly distribution and area of land-surface open water over the whole globe. Results for 1993 to 2007 exhibit a large seasonal and inter-annual variability of the inundation extent with an overall decline in global average maximum inundated area of 6% during the fifteen-year period, primarily in tropical and subtropical South America and South Asia. The largest declines of open water are found where large increases in population have occurred over the last two decades, suggesting a global scale effect of human activities on continental surface freshwater: denser population can impact local hydrology by reducing freshwater extent, by draining marshes and wetlands, and by increasing water withdrawals. Citation: Prigent, C., F. Papa, F. Aires, C. Jimenez, W. B. Rossow, and E. Matthews (2012), Changes in land surface water dynamics since the 1990s and relation to population pressure, in section 4, insisting on the potential applications of the wetland dataset.

  13. Road impacts on the Baca National Wildlife Refuge, Colorado, with emphasis on effects to surface- and shallow ground-water hydrology - A literature review

    USGS Publications Warehouse

    Andersen, Douglas C.

    2007-01-01

    A review of published research on unpaved road effects on surface-water and shallow ground-water hydrology was undertaken to assist the Baca National Wildlife Refuge, Colorado, in understanding factors potentially influencing refuge ecology. Few studies were found that addressed hydrological effects of roads on a comparable area of shallow slope in a semiarid region. No study dealt with road effects on surface- and ground-water supplies to ephemeral wetlands, which on the refuge are sustained by seasonal snowmelt in neighboring mountains. Road surfaces increase runoff, reduce infiltration, and serve as a sediment source. Roadbeds can interfere with normal surface- and ground-water flows and thereby influence the quantity, timing, and duration of water movement both across landscapes and through the soil. Hydrologic effects can be localized near the road as well as widespread and distant. The number, arrangement, and effectiveness of road-drainage structures (culverts and other devices) largely determine the level of hydrologic alteration produced by a road. Undesirable changes to natural hydrologic patterns can be minimized by considering potential impacts during road design, construction, and maintenance. Road removal as a means to restore desirable hydrologic conditions to landscapes adversely affected by roads has yet to be rigorously evaluated.

  14. iss031e148455

    NASA Image and Video Library

    2012-06-21

    ISS031-E-148455 (21 June 2012) --- Toshka Lakes in southern Egypt are featured in this image photographed by an Expedition 31 crew member on the International Space Station. The Toshka Lakes (center) were formed in the Sahara Desert of Egypt by water from the River Nile conveyed from Lake Nasser by a canal to the Toshka Depression. Flooding of the Toshka Depression had created the four main lakes with a maximum surface area in 2002 of approximately 1,450 square kilometers ? around 25.26 billion cubic meters of water. By 2006 the stored water was reduced by 50 per cent and by 2012 shows open water only in the lowest parts of the main western and eastern basins?representing a reduction in surface area to 307 square kilometers?nearly 80 per cent smaller than the 2002 surface area. Standing water is almost completely absent from the central basin. From space, astronauts documented the first lake?the easternmost one?in 1998. The lakes progressively grew in depressions to the west, the westernmost filling between 2000 and 2001. This image shows lines of center-point agricultural fields near the east-basin lake nearest Lake Nasser. Sunglint on the western lake makes the water surface appear both light and dark, depending on which parts of the surface were ruffled by the wind at the moment the image was taken.

  15. The achievement of good chemical status: an impossible mission for local water managers?

    NASA Astrophysics Data System (ADS)

    La Jeunesse, Isabelle; Jadas-Hécart, Alain; Landry, David

    2017-04-01

    The European Water Framework Directive (2000) required to achieve good ecological and chemical status in surface waters of the EU Member States in 2015. For pesticides, this means ensuring that concentrations in rivers do not exceed 0.1 μg/L per molecule and 0.5 µg/L for the sum of the concentrations of the different molecules found. At national scale, EcoPhyto plan (2008) aimed to reduce pesticide use by 50% within 10. This plan has been revised and postponed to 2025 as observed pesticide use is varying between years and concentrations in river did not decrease as expected. Although vineyards cover a small percentage of agricultural land surfaces, they contribute to 20% of national pesticide use. The presence of pesticides in rivers surrounding wine territories is therefore a current environmental concern. Thus, the recovery of the water quality requires local action programs to reduce pesticide contamination in rivers. The Layon catchment comprises 13% of vineyard. It is therefore subject to an action program led by the local water committee: the SAGE Layon-Aubance-Louet. Its goal is to ensure pesticide concentrations are reduced to 1 µg/L in 2018 and 0.5 µg/L in 2027. In this context, one of the actions of the SAGE, with the assistance of the University of Angers, addresses the study of peaks in pesticide concentrations during runoff events in a small catchment covered by vineyards. Between 2009 and 2016, one of the two farmers has converted to organic farming with consequent decreases in pesticides input to the case study which thus complied with the EcoPhyto objectives. Results demonstrate first a peak intensity of pesticides in runoff waters in relation with the date of application with a decrease of concentrations during time after the treatment and second a relation between peaks of SPM and pesticides. Transfer of pesticides in this catchment is strongly linked to runoff. Thus, even if the increase of grass surface within vineyard improves the soil stability and decreases erosion sensitivity, it is not sufficient to stop all transfer of pesticides. Following the results of this study, neither the objectives of national policies to reduce by half the pesticide use nor the local objectives to decrease partially the un-weeded surface of vineyards would permit to achieve good chemical status, as confirmed by the current state of the water quality of the Layon river monitored by local water managers. Thus, in the continuation of all its efforts, it is up to local water managers to find new local solutions to comply with the Water Framework Directive.

  16. Integrating Water Supply Constraints into Irrigated Agricultural Simulations of California

    NASA Technical Reports Server (NTRS)

    Winter, Jonathan M.; Young, Charles A.; Mehta, Vishal K.; Ruane, Alex C.; Azarderakhsh, Marzieh; Davitt, Aaron; McDonald, Kyle; Haden, Van R.; Rosenzweig, Cynthia E.

    2017-01-01

    Simulations of irrigated croplands generally lack key interactions between water demand from plants and water supply from irrigation systems. We coupled the Water Evaluation and Planning system (WEAP) and Decision Support System for Agrotechnology Transfer (DSSAT) to link regional water supplies and management with field-level water demand and crop growth. WEAP-DSSAT was deployed and evaluated over Yolo County in California for corn, rice, and wheat. WEAP-DSSAT is able to reproduce the results of DSSAT under well-watered conditions and reasonably simulate observed mean yields, but has difficulty capturing yield interannual variability. Constraining irrigation supply to surface water alone reduces yields for all three crops during the 1987-1992 drought. Corn yields are reduced proportionally with water allocation, rice yield reductions are more binary based on sufficient water for flooding, and wheat yields are least sensitive to irrigation constraints as winter wheat is grown during the wet season.

  17. Role of humidity in reducing the friction of graphene layers on textured surfaces

    NASA Astrophysics Data System (ADS)

    Li, Zheng-yang; Yang, Wen-jing; Wu, Yan-ping; Wu, Song-bo; Cai, Zhen-bing

    2017-05-01

    A multiple-layer graphene was prepared on steel surface to reduce friction and wear. A graphene-containing ethanol solution was dripped on the steel surface, and several layers of graphene flakes were deposited on the surface after ethanol evaporated. Tribological performance of graphene-contained surface (GCS) was induced by reciprocating ball against plate contact in different RH (0% (dry nitrogen), 30%, 60%, and 90%). Morphology and wear scar were analyzed by OM, 2D profile, SEM, Raman spectroscopy, and XPS. Results show that GCS can substantially reduce the wear and coefficient of friction (COF) in 60% relative humidity (RH). Low COF occurs due to graphene layer providing a small shear stress on the friction interface. Meanwhile, conditions of high RH and textured surface could make the low COF persist for a longer time. High moisture content can stabilize and protect the graphene C-network from damage due to water dissociative chemisorption with carbon dangling bonds, and the textured surface was attributed to release graphene layer stored in the dimple.

  18. A method of determining surface runoff by

    Treesearch

    Donald E. Whelan; Lemuel E. Miller; John B. Cavallero

    1952-01-01

    To determine the effects of watershed management on flood runoff, one must make a reliable estimate of how much the surface runoff can be reduced by a land-use program. Since surface runoff is the difference between precipitation and the amount of water that soaks into the soil, such an estimate must be based on the infiltration capacity of the soil.

  19. Amplification of the electroosmotic velocity by induced charges at fluidic interfaces

    NASA Astrophysics Data System (ADS)

    Steffes, Clarissa; Baier, Tobias; Hardt, Steffen

    2010-11-01

    The performance of microfluidic devices like electroosmotic pumps is strongly limited by drag forces at the channel walls. In order to replace the standard no-slip condition at the wall with a more favorable slip condition, superhydrophobic surfaces are employed. In the Cassie-Baxter state, air is entrapped in the surface cavities, so that a significant fraction of water-air interfaces at which slip does occur is provided. However, such surfaces do not enhance electroosmotic flow. Since no net charge accumulates at the water-air interfaces, the driving force is reduced, and no flow enhancement is obtained. We consider electrodes incorporated in the superhydrophobic structure to induce charges at these interfaces, thereby increasing the driving force. A theoretical model is set up, yielding an understanding of the influence of the surface morphology on the flow, which serves as a basis for ongoing experimental work. While a considerable enhancement of the electroosmotic velocity is already expected for standard superhydrophobic surfaces, greater amplifications of one order of magnitude may be achieved by substituting the air in the surface cavities by oil, reducing the risk for electric breakdown or transition to the unfavorable Wenzel state.

  20. Surfactant Facilitated Spreading of Aqueous Drops on Hydrophobic Surfaces

    NASA Technical Reports Server (NTRS)

    Kumar, Nitin; Couzis, Alex; Maldareili, Charles; Singh, Bhim (Technical Monitor)

    2001-01-01

    Microgravity technologies often require aqueous phases to spread over nonwetting hydrophobic solid surfaces. Surfactants facilitate the wetting of water on hydrophobic surfaces by adsorbing on the water/air and hydrophobic solid/water interfaces and lowering the surface tensions of these interfaces. The tension reductions decrease the contact angle, which increases the equilibrium wetted area. Hydrocarbon surfactants; (i.e., amphiphiles with a hydrophobic moiety consisting of an extended chain of (aliphatic) methylene -CH2- groups attached to a large polar group to give aqueous solubility) are capable of reducing the contact angles on surfaces which are not very hydrophobic, but do not reduce significantly the contact angles of the very hydrophobic surfaces such as parafilm, polyethylene or self assembled monolayers. Trisiloxane surfactants (amphiphiles with a hydrophobe consisting of methyl groups linked to a trisiloxane backbone in the form of a disk ((CH3)3-Si-O-Si-O-Si(CH3)3) and an extended ethoxylate (-(OCH2CH2)a-) polar group in the form of a chain with four or eight units) can significantly reduce the contact angle of water on a very hydrophobic surface and cause rapid and complete (or nearly complete) spreading (termed superspreading). The overall goal of the research described in this proposal is to establish and verify a theory for how trisiloxanes cause superspreading, and then use this knowledge as a guide to developing more general hydrocarbon based surfactant systems which superspread. We propose that the trisiloxane surfactants superspread because their structure allows them to strongly lower the high hydrophobic solid/aqueous tension when they adsorb to the solid surface. When the siloxane adsorbs, the hydrophobic disk parts of the molecule adsorb onto the surface removing the surface water. Since the cross-sectional area of the disk is larger than that of the extended ethoxylate chain, the disks can form a space-filling mat on the surface which removes a significant amount of the surface water. In this presentation, we report the results of measurements of the molecular packing and rates of kinetic exchange of the trisiloxane surfactants at the air/water interface in order to confirm our picture of trisiloxane packing, and provide additional insight into the superspreading process. We used the pendant bubble technique as a Langmuir trough to measure the trisiloxane equation of state which relates the tension to the surface concentration. From these measurements we obtain accurate values for the maximum packing density. We find that trisiloxanes with 4 and 8 ethoxylate groups have the same maximum packing concentration, indicating that the maximum packing is controlled by the cross section of the head group. For trisiloxanes with larger than eight ethoxylates, the maximum packing increases with ethoxylate number, indicating that the disposition of the ethoxylate chain (i.e., its effective size) is controlling. This supports our picture of superspreading: The superspreading ability of trisiloxanes decreases considerably for trisiloxanes with larger than eight ethoxylates; the packing measurements indicate that for the higher ethoxylate number trisiloxanes, the compact nonpolar head groups are pushed apart by the ethoxylate chain. They leave spaces of surface water on adsorption and do not lower the solid tension as much as their lower chain analogues. Finally the report measurements of the dynamic tension reduction accompanying the adsorption of trisiloxanes onto an initially clean interface using the pendant bubble technique, and we obtain from these relaxations, the equation of state and a mass transfer model, the rate constants for kinetic exchange. We find that the rate constants for desorption of trisiloxanes are generally much slower than for analogous aliphatic polyethoxylate surfactants with identical ethoxylate chain lengths. When an aqueous drop of a superspreader solution is placed on a hydrophobic surface and begins to spread, the lower desorption rates allows the tension at the drop center to remain reduced relative to the tension of the expanding periphery, thus strengthening Marangoni forces which can assist the spreading. Marangoni forces can be especially significant in the case of superspreaders because their maximum equilibrium reduction in tension is several dynes/cm lower than for aliphatic surfactants.

  1. Using computational modeling of river flow with remotely sensed data to infer channel bathymetry

    USGS Publications Warehouse

    Nelson, Jonathan M.; McDonald, Richard R.; Kinzel, Paul J.; Shimizu, Y.

    2012-01-01

    As part of an ongoing investigation into the use of computational river flow and morphodynamic models for the purpose of correcting and extending remotely sensed river datasets, a simple method for inferring channel bathymetry is developed and discussed. The method is based on an inversion of the equations expressing conservation of mass and momentum to develop equations that can be solved for depth given known values of vertically-averaged velocity and water-surface elevation. The ultimate goal of this work is to combine imperfect remotely sensed data on river planform, water-surface elevation and water-surface velocity in order to estimate depth and other physical parameters of river channels. In this paper, the technique is examined using synthetic data sets that are developed directly from the application of forward two-and three-dimensional flow models. These data sets are constrained to satisfy conservation of mass and momentum, unlike typical remotely sensed field data sets. This provides a better understanding of the process and also allows assessment of how simple inaccuracies in remotely sensed estimates might propagate into depth estimates. The technique is applied to three simple cases: First, depth is extracted from a synthetic dataset of vertically averaged velocity and water-surface elevation; second, depth is extracted from the same data set but with a normally-distributed random error added to the water-surface elevation; third, depth is extracted from a synthetic data set for the same river reach using computed water-surface velocities (in place of depth-integrated values) and water-surface elevations. In each case, the extracted depths are compared to the actual measured depths used to construct the synthetic data sets (with two- and three-dimensional flow models). Errors in water-surface elevation and velocity that are very small degrade depth estimates and cannot be recovered. Errors in depth estimates associated with assuming water-surface velocities equal to depth-integrated velocities are substantial, but can be reduced with simple corrections.

  2. Narrow grass hedges reduce tylosin and associated antimicrobial resistance genes in agricultural runoff

    USDA-ARS?s Scientific Manuscript database

    Agricultural runoff from areas receiving livestock manure can potentially contaminate surface water with antimicrobials and antimicrobial resistance genes (ARGs). The objective of this study was to investigate the effectiveness of narrow grass hedges (NGHs) on reducing the transport of antimicrobial...

  3. Multisample conversion of water to hydrogen by zinc for stable isotope determination

    USGS Publications Warehouse

    Kendall, C.; Coplen, T.B.

    1985-01-01

    Two techniques for the conversion of water to hydrogen for stable isotope ratio determination have been developed that are especially suited for automated multisample analysis. Both procedures involve reaction of zinc shot with a water sample at 450 ??C. in one method designed for water samples in bottles, the water is put in capillaries and is reduced by zinc in reaction vessels; overall savings in sample preparation labor of 75% have been realized over the standard uranium reduction technique. The second technique is for waters evolved under vacuum and is a sealed-tube method employing 9 mm o.d. quartz tubing. Problems inherent with zinc reduction include surface inhomogeneity of the zinc and exchange of hydrogen both with the zinc and with the glass walls of the vessels. For best results, water/zinc and water/glass surface area ratios of vessels should be kept as large as possible.

  4. Analog-model studies of ground-water hydrology in the Houston District, Texas

    USGS Publications Warehouse

    Jorgensen, Donald G.

    1974-01-01

    The major water-bearing units in the Houston district are the Chicot and the Evangeline aquifers. The Chicot aquifer overlies the Evangeline aquifer, which is underlain by the Burkeville confining layer. Both aquifers consist of unconsolidated and discontinuous layers of sand and clay that dip toward the Gulf of Mexico. Heavy pumping of fresh water has caused large declines in the altitudes of the potentiometric surfaces in both aquifers and has created large cones of depression around Houston. The declines have caused compaction of clay layers, which has resulted in land surface subsidence and the movement of saline ground water toward the centers of the cones of depression. An electric analog model was used to study the hydrologic system and to simulate the declines in the altitudes of the potentiometric surfaces for several alternative plans of ground-water development. The results indicate that the largest part. of the pumped water comes from storage in the water-table part of the Chicot aquifer. Vertical leakage from the aquifers and water derived from the compaction of clay layers in the aquifers are also large sources of the water being pumped. The response of the system, as observed on the model, indicates that development of additional ground-water supplies from the water-table part of the Chicot aquifer north of Houston would result in a minimum decline of the altitudes of the potentiometric surfaces. Total withdrawals of about 1,000 million gallons (5.8 million cubic meters) per day may be possible without seriously, increasing subsidence or salt-water encroachment. Analyses of the recovery of water levels indicate that both land-surface subsidence and salt-water encroachment could be reduced by artificially recharging the artesian part of the aquifer.

  5. Xeromorphic traits help to maintain photosynthesis in the perhumid climate of a Taiwanese cloud forest.

    PubMed

    Pariyar, Shyam; Chang, Shih-Chieh; Zinsmeister, Daniel; Zhou, Haiyang; Grantz, David A; Hunsche, Mauricio; Burkhardt, Juergen

    2017-07-01

    Previous flux measurements in the perhumid cloud forest of northeastern Taiwan have shown efficient photosynthesis of the endemic tree species Chamaecyparis obtusa var. formosana even under foggy conditions in which leaf surface moisture would be expected. We hypothesized this to be the result of 'xeromorphic' traits of the Chamaecyparis leaves (hydrophobicity, stomatal crypts, stomatal clustering), which could prevent coverage of stomata by precipitation, fog, and condensation, thereby maintaining CO 2 uptake. Here we studied the amount, distribution, and composition of moisture accumulated on Chamaecyparis leaf surfaces in situ in the cloud forest. We studied the effect of surface tension on gas penetration to stomata using optical O 2 microelectrodes in the laboratory. We captured the dynamics of condensation to the leaf surfaces with an environmental scanning electron microscope (ESEM). In spite of substantial surface hydrophobicity, the mean water film thickness on branchlets under foggy conditions was 80 µm (upper surface) and 40 µm (lower surface). This amount of water could cover stomata and prevent CO 2 uptake. This is avoided by the clustered arrangement of stomata within narrow clefts and the presence of Florin rings. These features keep stomatal pores free from water due to surface tension and provide efficient separation of plant and atmosphere in this perhumid environment. Air pollutants, particularly hygroscopic aerosol, may disturb this functionality by enhancing condensation and reducing the surface tension of leaf surface water.

  6. Electric field measurements in nanosecond pulse discharges in air over liquid water surface

    NASA Astrophysics Data System (ADS)

    Simeni Simeni, Marien; Baratte, Edmond; Zhang, Cheng; Frederickson, Kraig; Adamovich, Igor V.

    2018-01-01

    Electric field in nanosecond pulse discharges in ambient air is measured by picosecond four-wave mixing, with absolute calibration by a known electrostatic field. The measurements are done in two geometries, (a) the discharge between two parallel cylinder electrodes placed inside quartz tubes, and (b) the discharge between a razor edge electrode and distilled water surface. In the first case, breakdown field exceeds DC breakdown threshold by approximately a factor of four, 140 ± 10 kV cm-1. In the second case, electric field is measured for both positive and negative pulse polarities, with pulse durations of ˜10 ns and ˜100 ns, respectively. In the short duration, positive polarity pulse, breakdown occurs at 85 kV cm-1, after which the electric field decreases over several ns due to charge separation in the plasma, with no field reversal detected when the applied voltage is reduced. In a long duration, negative polarity pulse, breakdown occurs at a lower electric field, 30 kV cm-1, after which the field decays over several tens of ns and reverses direction when the applied voltage is reduced at the end of the pulse. For both pulse polarities, electric field after the pulse decays on a microsecond time scale, due to residual surface charge neutralization by transport of opposite polarity charges from the plasma. Measurements 1 mm away from the discharge center plane, ˜100 μm from the water surface, show that during the voltage rise, horizontal field component (Ex ) lags in time behind the vertical component (Ey ). After breakdown, Ey is reduced to near zero and reverses direction. Further away from the water surface (≈0.9 mm), Ex is much higher compared to Ey during the entire voltage pulse. The results provide insight into air plasma kinetics and charge transport processes near plasma-liquid interface, over a wide range of time scales.

  7. Effects of crude oil and swimming behavior and survival in the rice rat

    USGS Publications Warehouse

    Wolfe, J.L.; Esher, R.J.

    1981-01-01

    Oil slicks in laboratory test chambers inhibited swimming behavior of rice rats, and reduced survival at low temperature. Predisposition to enter the water and swim was greatly reduced at both high (200 ml/m2 water surface) and low (20 ml/m2) concentrations of oil. Survival was significantly affected only at high concentrations. The results may be of value in predicting the impact of oil spills on the mammal community of coastal marshes.

  8. connecting the dots between Greenland ice sheet surface melting and ice flow dynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Box, J. E.; Colgan, W. T.; Fettweis, X.; Phillips, T. P.; Stober, M.

    2013-12-01

    This presentation is of a 'unified theory' in glaciology that first identifies surface albedo as a key factor explaining total ice sheet mass balance and then surveys a mechanistic self-reinforcing interaction between melt water and ice flow dynamics. The theory is applied in a near-real time total Greenland mass balance retrieval based on surface albedo, a powerful integrator of the competing effects of accumulation and ablation. New snowfall reduces sunlight absorption and increases meltwater retention. Melting amplifies absorbed sunlight through thermal metamorphism and bare ice expansion in space and time. By ';following the melt'; we reveal mechanisms linking existing science into a unified theory. Increasing meltwater softens the ice sheet in three ways: 1.) sensible heating given the water temperature exceeds that of the ice sheet interior; 2.) Some infiltrating water refreezes, transferring latent heat to the ice; 3.) Friction from water turbulence heats the ice. It has been shown that for a point on the ice sheet, basal lubrication increases ice flow speed to a time when an efficient sub-glacial drainage network develops that reduces this effect. Yet, with an increasing melt duration the point where the ice sheet glides on a wet bed increases inland to a larger area. This effect draws down the ice surface elevation, contributing to the ';elevation feedback'. In a perpetual warming scenario, the elevation feedback ultimately leads to ice sheet loss reversible only through much slower ice sheet growth in an ice age environment. As the inland ice sheet accelerates, the horizontal extension pulls cracks and crevasses open, trapping more sunlight, amplifying the effect of melt accelerated ice. As the bare ice area increases, the direct sun-exposed crevassed and infiltration area increases further allowing the ice warming process to occur more broadly. Considering hydrofracture [a.k.a. hydrofracking]; surface meltwater fills cracks, attacking the ice integrity. Because water is 'heavier' than ice, water-filled cracks have unlimited capacity to hydraulically ';jack' open fractures, penetrating, fracturing and disaggregating a solid ice body. This process promotes iceberg calving at more than 150, 1km wide marine terminating Greenland glacier fronts. Resulting from a rising trend of surface melting and sea water temperature, meltwater ejection at the underwater front of marine glaciers drives a an increasing turbulent heat exchange between the glacier front and relatively warm sea water melting it faster. Underwater melting promotes an undercutting of the glacier front leading to ice berg calving. Calving through hydrofracture or marine undercutting provide a direct and immediate ice flow speed response mechanism for surface meltwater production. Ice flow speed reacts because calving reduces flow resistance. The above physical processes interact. Cooling shuts these processes down. Negative feedbacks dampen the warming impulse. Live 21 June, 2013 is a new Danish Web site1 that exploits total mass balance rate of decline as a function of albedo to predict GRACE mass rate of change with 80% explained variance. While surface mass balance explains the mass rate of change slightly higher, surface albedo is an observable quantity as is gravity change.

  9. Monitoring groundwater-surface water interaction using time-series and time-frequency analysis of transient three-dimensional electrical resistivity changes

    USGS Publications Warehouse

    Johnson, Timothy C.; Slater, Lee D.; Ntarlagiannis, Dimitris; Day-Lewis, Frederick D.; Elwaseif, Mehrez

    2012-01-01

    Time-lapse resistivity imaging is increasingly used to monitor hydrologic processes. Compared to conventional hydrologic measurements, surface time-lapse resistivity provides superior spatial coverage in two or three dimensions, potentially high-resolution information in time, and information in the absence of wells. However, interpretation of time-lapse electrical tomograms is complicated by the ever-increasing size and complexity of long-term, three-dimensional (3-D) time series conductivity data sets. Here we use 3-D surface time-lapse electrical imaging to monitor subsurface electrical conductivity variations associated with stage-driven groundwater-surface water interactions along a stretch of the Columbia River adjacent to the Hanford 300 near Richland, Washington, USA. We reduce the resulting 3-D conductivity time series using both time-series and time-frequency analyses to isolate a paleochannel causing enhanced groundwater-surface water interactions. Correlation analysis on the time-lapse imaging results concisely represents enhanced groundwater-surface water interactions within the paleochannel, and provides information concerning groundwater flow velocities. Time-frequency analysis using the Stockwell (S) transform provides additional information by identifying the stage periodicities driving groundwater-surface water interactions due to upstream dam operations, and identifying segments in time-frequency space when these interactions are most active. These results provide new insight into the distribution and timing of river water intrusion into the Hanford 300 Area, which has a governing influence on the behavior of a uranium plume left over from historical nuclear fuel processing operations.

  10. Acetaldehyde Adsorption and Reaction onCeO2(100) Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullins, David R; Albrecht, Peter M

    2013-01-01

    This study reports and compares the adsorption and dissociation of acetaldehyde on oxidized and reduced CeOX(100) thin films. Acetaldehyde reacts and decomposes on fully oxidized CeO2(100) whereas it desorbs molecularly at low temperature on CeO2(111). The primary products are CO, CO2 and water along with trace amounts of crotonaldehyde and acetylene. The acetaldehyde adsorbs as the 2-acetaldehyde species, dioxyethylene. Decomposition proceeds by dehydrogenation through acetate and enolate intermediates. The reaction pathway is similar on the reduced CeO2-X(100) surface however the inability to react with surface O on the reduced surface results in H2 rather than H2O desorption and C ismore » left on the surface rather than producing CO and CO2. C-O bond cleavage in the enolate intermediate followed by reaction with surface H results in ethylene desorption.« less

  11. Interfacial spreading effects on one-dimensional organic liquid imbibition in water-wetted porous media

    NASA Astrophysics Data System (ADS)

    McBride, J. F.; Simmons, C. S.; Cary, J. W.

    1992-10-01

    The spreading coefficient, Csp, determines whether an organic immiscible liquid, OIL, will form a lens ( Csp < 0) or will spread spontaneously ( Csp > 0) on a water surface. An OIL that forms a lens does not perfectly wet the water surface and therefore has a contact angle greater than 0°. The one-dimensional rate at which an OIL spreads spontaneously on a water surface is proportional to the square root of Csp. Of the OIL's that pose a contaminant threat to the subsurface, the majority has a non-zero Csp. To test the influence of such interfacial spreading phenomena on OIL infiltration in a pristine vadose zone, upward OIL and water imbibition infiltration experiments were performed in glass-bead columns, moistened with water, by using OIL's with different Csp. An analytical model for saturated liquid front rise was used to inversely estimate the effective capillary pressure head at the front and the average liquid conductivity. A nonspreading OIL ( Csp ≪ 0) exhibited a reduced capillary pressure head in the water-wetted glass beads. A spontaneously spreading OIL ( Csp ≫0) manifested an enhanced capillary pressure head. Reduced capillary pressure head was associated with an increase in average conductivity, and enhanced capillary pressure head was associated with a decrease in average conductivity when compared to the average water conductivity during water imbibition. The employed experimental method and mathematical analysis of dynamic flow, subject to interfacial spreading phenomena, are practical for quantifying parameters for use in sharp-front OIL infiltration models, but more research is needed to determine how to incorporate the spreading coefficient in numerical multiphase flow models.

  12. The future of irrigation on the U.S. Great Plains

    USDA-ARS?s Scientific Manuscript database

    In the Great Plains, soil and water conservation is being achieved in both dryland and irrigated agricultural systems, and increasingly in combinations of these systems. Limiting tillage has increased the retention of crop residues on the surface and has reduced the evaporative loss of water, making...

  13. 43 CFR 23.8 - Approval of mining plan.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Two copies of a suitable map, or aerial photograph showing the topography, the area covered by the... all runoff water and drainage from workings so as to reduce soil erosion and sedimentation and to... fire, soil erosion, pollution of surface and ground water, damage to fish and wildlife, and hazards to...

  14. 43 CFR 23.8 - Approval of mining plan.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Two copies of a suitable map, or aerial photograph showing the topography, the area covered by the... all runoff water and drainage from workings so as to reduce soil erosion and sedimentation and to... fire, soil erosion, pollution of surface and ground water, damage to fish and wildlife, and hazards to...

  15. 43 CFR 23.8 - Approval of mining plan.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Two copies of a suitable map, or aerial photograph showing the topography, the area covered by the... all runoff water and drainage from workings so as to reduce soil erosion and sedimentation and to... fire, soil erosion, pollution of surface and ground water, damage to fish and wildlife, and hazards to...

  16. Land application of spent gypsum from ditch filters: phosphorus source or sink?

    USDA-ARS?s Scientific Manuscript database

    Agricultural drainage ditches can provide a direct connection between fields and surface waters, and some have been shown to deliver high loads of phosphorus (P) to sensitive water bodies. A potential way to reduce nutrient loads in drainage ditches is to install filter structures containing P sorbi...

  17. Diminished Mercury Emission From Water Surfaces by Duckweed (Lemna minor)

    NASA Astrophysics Data System (ADS)

    Wollenberg, J. L.; Peters, S. C.

    2007-12-01

    Aquatic plants of the family Lemnaceae (generally referred to as duckweeds) are a widely distributed type of floating vegetation in freshwater systems. Under suitable conditions, duckweeds form a dense vegetative mat on the water surface, which reduces light penetration into the water column and decreases the amount of exposed water surface. These two factors would be expected to reduce mercury emission by limiting a) direct photoreduction of Hg(II), b) indirect reduction via coupled DOC photooxidation-Hg(II) reduction, and c) gas diffusion across the water-air interface. Conversely, previous studies have demonstrated transpiration of Hg(0) by plants, so it is therefore possible that the floating vegetative mat would enhance emission via transpiration of mercury vapor. The purpose of this experiment was to determine whether duckweed limits mercury flux to the atmosphere by shading and the formation of a physical barrier to diffusion, or whether it enhances emission from aquatic systems via transpiration of Hg(0). Deionized water was amended with mercury to achieve a final concentration of approximately 35 ng/L and allowed to equilibrate prior to the experiment. Experiments were conducted in rectangular polystyrene flux chambers with measured UV-B transmittance greater than 60% (spectral cutoff approximately 290 nm). Light was able to penetrate the flux chamber from the sides as well as the top throughout the experiment, limiting the effect of shading by duckweed on the water surface. Flux chambers contained 8L of water with varying percent duckweed cover, and perforated plastic sheeting was used as an abiotic control. Exposures were conducted outside on days with little to no cloud cover. Real time mercury flux was measured using atomic absorption (Mercury Instruments UT-3000). Total solar and ultraviolet radiation, as well as a suite of meteorological parameters, were also measured. Results indicate that duckweed diminishes mercury emission from the water surface as compared to open water controls. Decreases in emission rate varied linearly with percent duckweed cover, with lower fluxes occurring at higher percent cover. Mercury flux in the duckweed treatments as compared to open water treatments decreased from 17% in the lowest percent cover treatment to 67% in the highest percent cover treatment. The observed decrease in mercury emission suggests that duckweed limits emission via the formation of a physical barrier to diffusion.

  18. Identification and management of microbial contaminations in a surface drinking water source.

    PubMed

    Aström, J; Pettersson, T J R; Stenström, T A

    2007-01-01

    Microbial contamination of surface waters constitutes a health risk for drinking water consumers which may be lowered by closing the raw water intake. We have evaluated microbial discharge events reported in the river Göta älv, which is used for raw water supply to the city of Göteborg. Elevated levels of faecal indicator bacteria were observed during periods of closed raw water intake. High bacteria levels were, however, also occasionally detected during periods of open intake, probably as a result of microbial discharge far upstream in the river which may be difficult to predict and manage by closing the intake. Accumulated upstream precipitations, resulting in surface runoff and wastewater contaminations in the catchment, correlated positively with the levels of total coliforms, E. coli, intestinal enterococci and sulfite-reducing clostridia. Levels of faecal indicator organisms were negatively correlated to the water temperature due to enhanced survival at lower temperatures. Wastewater discharges from a municipality located just upstream of the water intake resulted in elevated E. coli concentrations downstream at the raw water intake for Göteborg. To improve the prediction of microbial contaminations within the river Göta älv, monitoring data on turbidity and upstream precipitation are of particular importance.

  19. Diminished mercury emission from waters with duckweed cover

    NASA Astrophysics Data System (ADS)

    Wollenberg, Jennifer L.; Peters, Stephen C.

    2009-06-01

    Duckweeds (Lemnaceae) are a widely distributed type of floating vegetation in freshwater systems. Under suitable conditions, duckweeds form a dense vegetative mat on the water surface, which reduces light penetration into the water column and limits gas exchange at the water-air interface by decreasing the area of open water surface. Experiments were conducted to determine whether duckweed decreases mercury emission by limiting gas diffusion across the water-air interface and attenuating light, or, conversely, enhances emission via transpiration of mercury vapor. Microcosm flux chamber experiments indicate that duckweed decreases mercury emission from the water surface compared to open water controls. Fluxes under duckweed were 17-67% lower than in controls, with lower fluxes occurring at higher percent cover. The decrease in mercury emission suggests that duckweed may limit emission through one of several mechanisms, including limited gas transport across the air-water interface, decreased photoreactions due to light attenuation, and plant-mercury interactions. The results of this experiment were applied to a model lake system to illustrate the magnitude of potential effects on mercury cycling. The mercury retained in the lake as a result of hindered emission may increase bioaccumulation potential in lakes with duckweed cover.

  20. STABILIZING CLOUD FEEDBACK DRAMATICALLY EXPANDS THE HABITABLE ZONE OF TIDALLY LOCKED PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Jun; Abbot, Dorian S.; Cowan, Nicolas B., E-mail: abbot@uchicago.edu

    2013-07-10

    The habitable zone (HZ) is the circumstellar region where a planet can sustain surface liquid water. Searching for terrestrial planets in the HZ of nearby stars is the stated goal of ongoing and planned extrasolar planet surveys. Previous estimates of the inner edge of the HZ were based on one-dimensional radiative-convective models. The most serious limitation of these models is the inability to predict cloud behavior. Here we use global climate models with sophisticated cloud schemes to show that due to a stabilizing cloud feedback, tidally locked planets can be habitable at twice the stellar flux found by previous studies.more » This dramatically expands the HZ and roughly doubles the frequency of habitable planets orbiting red dwarf stars. At high stellar flux, strong convection produces thick water clouds near the substellar location that greatly increase the planetary albedo and reduce surface temperatures. Higher insolation produces stronger substellar convection and therefore higher albedo, making this phenomenon a stabilizing climate feedback. Substellar clouds also effectively block outgoing radiation from the surface, reducing or even completely reversing the thermal emission contrast between dayside and nightside. The presence of substellar water clouds and the resulting clement surface conditions will therefore be detectable with the James Webb Space Telescope.« less

  1. Influence of static pressure on dynamic characteristics of laser-induced cavitation and hard-tissue ablation under liquid environment

    NASA Astrophysics Data System (ADS)

    Chen, Chuanguo; Li, Xuwei; Zhang, Xianzeng; Zhan, Zhenlin; Xie, Shusen

    2014-11-01

    Several studies have demonstrated that laser-induced hard tissue ablation effects can be enhanced by applying an additional water-layer on tissue surface. However, the related mechanism has not yet been presented clearly. In this paper, the influence of static pressure on dynamic characteristics of cavitation induced by pulse laser in liquid and its effect on bovine shank bone ablation were investigated. The laser source is fiber-guided free-running Ho:YAG laser with wavelength of 2080 nm, pulse duration of 350 μs and energy of 1600 mJ. The tissue samples were immerged in pure water at different depths of 11, 16, 21, 26 and 31 mm. The working distance between the fiber tip and tissue surface was fixed at 1 mm for all studies. The dynamic interaction between laser, water and tissue were recorded by high-speed camera, and the morphological changes of bone tissue were assessed by stereomicroscope and OCT. The results showed that many times expansion and collapse of bubble were observed, more than four pulsation periods were accurately achieved with the most energy deposited in the first period and the bubble became more and more irregular in shape. The longitudinal length (7.49--6.74 mm) and transverse width (6.69--6.08 mm) of bubble were slowly decreased while volume (0.0586--0.0124 mm3) of ablation craters were drastically reduced, with static pressure increasing. The results also presented that the water-layer on hard-tissue surface can not only reduce thermal injury but also improve lubricity of craters, although the water-layer reduced ablation efficiency.

  2. Efficacy of home washing methods in controlling surface microbial contamination on fresh produce.

    PubMed

    Kilonzo-Nthenge, Agnes; Chen, Fur-Chi; Godwin, Sandria L

    2006-02-01

    Much effort has been focused on sanitation of fresh produce at the commercial level; however, few options are available to the consumer. The purpose of this study was to determine the efficacy of different cleaning methods in reducing bacterial contamination on fresh produce in a home setting. Lettuce, broccoli, apples, and tomatoes were inoculated with Listeria innocua and then subjected to combinations of the following cleaning procedures: (i) soak for 2 min in tap water, Veggie Wash solution, 5% vinegar solution, or 13% lemon solution and (ii) rinse under running tap water, rinse and rub under running tap water, brush under running tap water, or wipe with wet/dry paper towel. Presoaking in water before rinsing significantly reduced bacteria in apples, tomatoes, and lettuce, but not in broccoli. Wiping apples and tomatoes with wet or dry paper towel showed lower bacterial reductions compared with soaking and rinsing procedures. Blossom ends of apples were more contaminated than the surface after soaking and rinsing; similar results were observed between flower section and stem of broccoli. Reductions of L. innocua in both tomatoes and apples (2.01 to 2.89 log CFU/g) were more than in lettuce and broccoli (1.41 to 1.88 log CFU/g) when subjected to same washing procedures. Reductions of surface contamination of lettuce after soaking in lemon or vinegar solutions were not significantly different (P > 0.05) from lettuce soaking in cold tap water. Therefore, educators and extension workers might consider it appropriate to instruct consumers to rub or brush fresh produce under cold running tap water before consumption.

  3. Radiolarians decreased silicification as an evolutionary response to reduced Cenozoic ocean silica availability

    PubMed Central

    Lazarus, David B.; Kotrc, Benjamin; Wulf, Gerwin; Schmidt, Daniela N.

    2009-01-01

    It has been hypothesized that increased water column stratification has been an abiotic “universal driver” affecting average cell size in Cenozoic marine plankton. Gradually decreasing Cenozoic radiolarian shell weight, by contrast, suggests that competition for dissolved silica, a shared nutrient, resulted in biologic coevolution between radiolaria and marine diatoms, which expanded dramatically in the Cenozoic. We present data on the 2 components of shell weight change—size and silicification—of Cenozoic radiolarians. In low latitudes, increasing Cenozoic export of silica to deep waters by diatoms and decreasing nutrient upwelling from increased water column stratification have created modern silica-poor surface waters. Here, radiolarian silicification decreases significantly (r = 0.91, P < 0.001), from ≈0.18 (shell volume fraction) in the basal Cenozoic to modern values of ≈0.06. A third of the total change occurred rapidly at 35 Ma, in correlation to major increases in water column stratification and abundance of diatoms. In high southern latitudes, Southern Ocean circulation, present since the late Eocene, maintains significant surface water silica availability. Here, radiolarian silicification decreased insignificantly (r = 0.58, P = 0.1), from ≈0.13 at 35 Ma to 0.11 today. Trends in shell size in both time series are statistically insignificant and are not correlated with each other. We conclude that there is no universal driver changing cell size in Cenozoic marine plankton. Furthermore, biologic and physical factors have, in concert, by reducing silica availability in surface waters, forced macroevolutionary changes in Cenozoic low-latitude radiolarians. PMID:19458255

  4. An economic assessment of local farm multi-purpose surface water retention systems in a Canadian Prairie setting

    NASA Astrophysics Data System (ADS)

    Berry, Pamela; Yassin, Fuad; Belcher, Kenneth; Lindenschmidt, Karl-Erich

    2017-12-01

    There is a need to explore more sustainable approaches to water management on the Canadian Prairies. Retention pond installation schemes designed to capture surface water may be a viable option that would reduce water stress during drought periods by providing water for irrigation. The retention systems would serve to capture excess spring runoff and extreme rainfall events, reducing flood potential downstream. Additionally, retention ponds may be used for biomass production and nutrient retention. The purpose of this research was to investigate the economic viability of adopting local farm surface water retention systems as a strategic water management strategy. A retention pond was analyzed using a dynamic simulation model to predict its storage capacity, installation and upkeep cost, and economic advantage to farmers when used for irrigation. While irrigation application increased crop revenue, the cost of irrigation and reservoir infrastructure and installation costs were too high for the farmer to experience a positive net revenue. Farmers who harvest cattails from retention systems for biomass and available carbon offset credits can gain 642.70/hectare of harvestable cattail/year. Cattail harvest also removes phosphorus and nitrogen, providing a monetized impact of 7014/hectare of harvestable cattail/year. The removal of phosphorus, nitrogen, carbon, and avoided flooding damages of the retention basin itself provide an additional 17,730-18,470/hectare of retention system/year. The recommended use of retention systems is for avoided flood damages, nutrient retention, and biomass production. The revenue gained from these functions can support farmers wanting to invest in irrigation while providing economic and environmental benefits to the region.

  5. Greywater-induced soil hydrophobicity.

    PubMed

    Maimon, Adi; Gross, Amit; Arye, Gilboa

    2017-10-01

    Greywater (GW) reuse for irrigation is a common method of reducing domestic consumption of fresh water. Most of the scientific research and legislation efforts have focused on GW's health risks, while less attention has been given to its environmental outcomes. One of the environmental risks of GW irrigation is its possible effect on soil hydraulic properties. This research examined the ability of GW to induce soil hydrophobicity, as well as its degree and persistence. Fresh water (control) and three model GW solutions representing raw, treated and highly treated GW were used to wet fine-grained sand. Every treatment was subjected to five cycles of wetting, incubation (at 5 °C or 30 °C) and drying (60 °C). After each cycle, capillary rise was measured and the contact angle (CA) was calculated. Samples were also tested by the Wilhelmy plate method to retrieve advancing and receding CA and reservoir surface tension. Water repellence of the sand, as implied from the CA, increased with increasing GW concentration and was highest in the sand coated with the model raw GW and incubated at 5 °C. However, none of the treatments resulted in what is considered to be "water-repellent soil". Furthermore, when raw GW-coated sand was immersed in water, its surface tension was significantly reduced relative to the other treatments, implying a release of surface-active compounds from the sand into the water. It was postulated that untreated GW may induce sub-critical water repellence in sand. However, this effect is sensitive to biodegradation and washing processes and is therefore temporary. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effects of immobilization mask material on surface dose

    PubMed Central

    Hadley, Scott W.; Kelly, Robin; Lam, Kwok

    2005-01-01

    This work investigates the increase in surface dose caused by thermoplastic masks used for patient positioning and immobilization. A thermoplastic mask is custom fit by stretching a heated mask over the patient at the time of treatment simulation. This mask is then used at treatment to increase the reproducibility of the patient position. The skin sparing effect of mega‐voltage X‐ray beams can be reduced when the patient's skin surface is under the mask material. The sheet of thermoplastic mask has holes to reduce this effect and is available from one manufacturer with two different sizes of holes, one larger than the other. This work investigates the increase in surface dose caused by the mask material and quantifies the difference between the two samples of masks available. The change in the dose buildup was measured using an Attix parallel plate chamber by measuring tissue maximum ratios (TMRs) using solid water. Measurements were made with and without the mask material on the surface of the solid water for 6‐MV and 15‐MV X‐ray beams. The effective thickness of equivalent water was estimated from the TMR curves, and the increase in surface dose was estimated. The buildup effect was measured to be equivalent to 2.2 mm to 0.6 mm for masks that have been stretched by different amounts. The surface dose was estimated to change from 16% and 12% for 6 MV and 15 MV, respectively, to 27% to 61% for 6 MV and 18% to 40% for 15 MV with the mask samples. PACS number: 87.53.Dq PMID:15770192

  7. Dynamics of confined reactive water in smectite clay-zeolite composites.

    PubMed

    Pitman, Michael C; van Duin, Adri C T

    2012-02-15

    The dynamics of water confined to mesoporous regions in minerals such as swelling clays and zeolites is fundamental to a wide range of resource management issues impacting many processes on a global scale, including radioactive waste containment, desalination, and enhanced oil recovery. Large-scale atomic models of freely diffusing multilayer smectite particles at low hydration confined in a silicalite cage are used to investigate water dynamics in the composite environment with the ReaxFF reactive force field over a temperature range of 300-647 K. The reactive capability of the force field enabled a range of relevant surface chemistry to emerge, including acid/base equilibria in the interlayer calcium hydrates and silanol formation on the edges of the clay and inner surface of the zeolite housing. After annealing, the resulting clay models exhibit both mono- and bilayer hydration structures. Clay surface hydration redistributed markedly and yielded to silicalite water loading. We find that the absolute rates and temperature dependence of water dynamics compare well to neutron scattering data and pulse field gradient measures from relevant samples of Ca-montmorillonite and silicalite, respectively. Within an atomistic, reactive context, our results distinguish water dynamics in the interlayer Ca(OH)(2)·nH(2)O environment from water flowing over the clay surface, and from water diffusing within silicalite. We find that the diffusion of water when complexed to Ca hydrates is considerably slower than freely diffusing water over the clay surface, and the reduced mobility is well described by a difference in the Arrhenius pre-exponential factor rather than a change in activation energy.

  8. Geology and water resources of Winnebago County, Wisconsin

    USGS Publications Warehouse

    Olcott, Perry C.

    1966-01-01

    Sources or water in Winnebago County include surface water from the Fox and Wolf Rivers and their associated lakes, and ground water from sandstone, dolomite, and sand and gravel deposits. Surface water is hard and generally requires treatment, but is then suitable for municipal and most industrial uses. Pollution is only a local problem in the lakes and rivers, but algae are present in most of the lakes. Ground water in Winnebago County is hard to very hard, and dissolved iron is a problem in a large area of the county. A saline-water zone borders the eastern edge of the county and underlies the areas of concentrated pumpage at Neenah-Menasha and Oshkosh. A thick, southeastward-dipping sandstone aquifer, yielding as much as 1,000 gallons per minute to municipal and industrial wells, underlies Winnebago County. A dolomite aquifer in the eastern and southern part of the county yields as much as 50 gallons per minute to wells. Sand and gravel layers and lenses in preglacial bedrock channels, in northwestern Winnebago County and in the upper Fox River valley, yield as much as 50 gallons per minute to wells. Present water problems in the county include algae and local pollution in the Lake Winnebago Pool, iron in water from the sandstone aquifer, and saline ground Water in the eastern part of the county. Potential problems include rapid decline of water levels because of interference between closely spaced wells, migration of saline ground water toward areas of pumping, surface-water pollution from inadequate sewage and industrial-waste process plants, and ground-water pollution in dolomite formations. Development of the water resources of the county should follow a comprehensive plan which takes into consideration all aspects of water use. Dispersal of wells, especially extending toward the west from the heavily pumped Neenah-Menasha and Oshkosh areas, is recommended to reduce water-level declines and to avoid saline water. Supplemental use of ground water is recmmended for municipal expansion of water facilities and to reduce the algae treatment problem of water from the Lake Winnebago Pool.

  9. Storm water management in an urban catchment: effects of source control and real-time management of sewer systems on receiving water quality.

    PubMed

    Frehmann, T; Nafo, I; Niemann, A; Geiger, W F

    2002-01-01

    For the examination of the effects of different storm water management strategies in an urban catchment area on receiving water quality, an integrated simulation of the sewer system, wastewater treatment plant and receiving water is carried out. In the sewer system real-time control measures are implemented. As examples of source control measures the reduction of wastewater and the reduction of the amount of impervious surfaces producing storm water discharges are examined. The surface runoff calculation and the simulation of the sewer system and the WWTP are based on a MATLAB/SIMULINK simulation environment. The impact of the measures on the receiving water is simulated using AQUASIM. It can be shown that the examined storm water management measures, especially the source control measures, can reduce the combined sewer overflow volume and the pollutant discharge load considerably. All examined measures also have positive effects on the receiving water quality. Moreover, the reduction of impervious surfaces avoids combined sewer overflow activities, and in consequence prevents pollutants from discharging into the receiving water after small rainfall events. However, the receiving water quality improvement may not be seen as important enough to avoid acute receiving water effects in general.

  10. Relating landscape characteristics to non-point source pollution in mine waste-located watersheds using geospatial techniques.

    PubMed

    Xiao, Huaguo; Ji, Wei

    2007-01-01

    Landscape characteristics of a watershed are important variables that influence surface water quality. Understanding the relationship between these variables and surface water quality is critical in predicting pollution potential and developing watershed management practices to eliminate or reduce pollution risk. To understand the impacts of landscape characteristics on water quality in mine waste-located watersheds, we conducted a case study in the Tri-State Mining District which is located in the conjunction of three states (Missouri, Kansas and Oklahoma). Severe heavy metal pollution exists in that area resulting from historical mining activities. We characterized land use/land cover over the last three decades by classifying historical multi-temporal Landsat imagery. Landscape metrics such as proportion, edge density and contagion were calculated based on the classified imagery. In-stream water quality data over three decades were collected, including lead, zinc, iron, cadmium, aluminum and conductivity which were used as key water quality indicators. Statistical analyses were performed to quantify the relationship between landscape metrics and surface water quality. Results showed that landscape characteristics in mine waste-located watersheds could account for as much as 77% of the variation of water quality indicators. A single landscape metric alone, such as proportion of mine waste area, could be used to predict surface water quality; but its predicting power is limited, usually accounting for less than 60% of the variance of water quality indicators.

  11. Management of hydro-biogeochemical connectivity of geographically isolated wetlands to reduce the risk of eutrophication of Lake Winnipeg

    NASA Astrophysics Data System (ADS)

    Creed, Irena F.; Ameli, Ali

    2017-04-01

    Lake Winnipeg - a transboundary water resource that is the 10th largest freshwater lake in the world - was recently listed as the most threatened lake in the world due to eutrophication. Its watershed has experienced amongst the highest geographically isolated wetland (GIW) drainage rates in the world, leading to increased nutrient loads to remaining wetlands and downstream streams and lakes. GIWs are surrounded by uplands - and thus collect and store water from the surrounding landscape during snowmelt or storm events, and filter nutrients before slowly returning water to the water cycle. When drained, GIWs become connected to downstream flows and nutrients move unimpeded from and through them to downstream waters. Therefore, effective GIW management strategies can reduce nutrient loads to regional surface water bodies in the Lake Winnipeg watershed. But, how do we prioritize wetland protection and restoration efforts? We know that hydrologic connections to GIWs vary in length and timing, and hypothesize that long and slow hydrologic connections to a GIW have higher potential for P retention, while short and fast hydrologic connections to a GIW have lower potential for P retention along the flow path, leading to higher P concentrations within the GIW. We test these hypotheses in a watershed that drains into the North Saskatchewan River and ultimately to Lake Winnipeg. Using a novel model that quantifies the continuum of time and length variations of subsurface-surface hydrological connections to each GIW, we explore the relationship between length and time and time of hydrologic connection to a GIW and nutrients in the GIW. We found that GIWs are not always "isolated" islands - rather, they are connected to other surface waters in diverse ways. GIWs with no modeled surface or subsurface hydrological connections had the lowest nutrient concentrations and algal biomass. Recharge GIWs have lower concentrations of nutrients than discharge wetlands. Discharge GIWs with longer (slower) connections removed more nutrients along flow path to the wetland than discharge GIWs with shorter (faster) connections. Based on our findings, GIWs with long and slow hydrological connections have the highest potential for retaining phosphorus and therefore reducing eutrophication of downstream waters, and therefore should be prioritized in wetland protection and restoration strategies.

  12. Molecular Dynamics Simulations of Adhesion at Epoxy Interfaces

    NASA Technical Reports Server (NTRS)

    Frankland, Sarah-Jane V.; Clancy, Thomas C.; Hinkley, J. A.; Gates. T. S.

    2008-01-01

    The effect of moisture on adhesives used in aerospace applications can be modeled with chemically specific techniques such as molecular dynamics simulation. In the present study, the surface energy and work of adhesion are calculated for epoxy surfaces and interfaces, respectively, by using molecular dynamics simulation. Modifications are made to current theory to calculate the work of adhesion at the epoxy-epoxy interface with and without water. Quantitative agreement with experimental values is obtained for the surface energy and work of adhesion at the interface without water. The work of adhesion agrees qualitatively with the experimental values for the interface with water: the magnitude is reduced 15% with respect to the value for the interface without water. A variation of 26% in the magnitude is observed depending on the water configuration at a concentration of 1.6 wt%. The methods and modifications to the method that are employed to obtain these values are expected to be applicable for other epoxy adhesives to determine the effects of moisture uptake on their work of adhesion.

  13. Effect of polyethyleneimine modified graphene on the mechanical and water vapor barrier properties of methyl cellulose composite films.

    PubMed

    Liu, Hongyu; Liu, Cuiyun; Peng, Shuge; Pan, Bingli; Lu, Chang

    2018-02-15

    A series of novel methyl cellulose (MC) composite films were prepared using polyethyleneimine reduced graphene oxide (PEI-RGO) as an effective filler for water vapor barrier application. The as-prepared PEI-RGO/MC composites were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, tensile test and scanning electron microscopy. The experimental and theoretical results exhibited that PEI-RGO was uniformly dispersed in the MC matrix without aggregation and formed an aligned dispersion. The addition of PEI-RGO resulted in an enhanced surface hydrophobicity and a tortuous diffusion pathway for water molecules. Water vapor permeability of PEI-RGO/MC with loading of 3.0% of surface modified graphene was as low as 5.98×10 -11 gmm -2 s -1 Pa -1 . The synergistic effects of enhanced surface hydrophobicity and tortuous diffusion pathway were accounted for the improved water vapor barrier performance of the PEI-RGO/MC composite films. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Use of hot water for beef carcass decontamination.

    PubMed

    Castillo, A; Lucia, L M; Goodson, K J; Savell, J W; Acuff, G R

    1998-01-01

    Hot water treatment of beef carcass surfaces for reduction of Escherichia coli O157:H7, Salmonella typhimurium, and various indicator organisms was studied using a model carcass spray cabinet. Paired hot carcass surface regions with different external fat characteristics (inside round, outside round, brisket, flank, and clod) were removed from carcasses immediately after the slaughter and dressing process. All cuts were inoculated with bovine feces containing 10(6)/g each of rifampicin-resistant E. coli O157:H7 and S. typhimurium, or with uninoculated bovine feces. Surfaces then were exposed to a carcass water wash or a water wash followed by hot water spray (95 degrees C). Counts of rifampicin-resistant Salmonella and E. coli or aerobic plate count (APC) and coliform counts were conducted before and after each treatment. All treatments significantly reduced levels of pathogens from the initial inoculation level of 5.0 log(10) CFU/cm2. Treatments including hot water sprays provided mean reductions of initial counts for E. coli O157:H7 and S. typhimurium of 3.7 and 3.8 log, APC reductions of 2.9 log, and coliform and thermotolerant coliform count reductions of 3.3 log. The efficacy of hot water treatments was affected by the carcass surface region, but not by delaying the treatment (30 min) after contaminating the surface. Verification of efficacy of hot water interventions used as critical control points in a hazard analysis critical control point (HACCP) system may be possible using coliform counts.

  15. Nitrate-nitrogen reduction by established tree and pasture buffer strips associated with a cattle feedlot effluent disposal area near Armidale, NSW Australia.

    PubMed

    Wang, Liangmin; Duggin, John A; Nie, Daoping

    2012-05-30

    Vegetated buffer strips have been recognized as an important element in overall agro-ecosystem management to reduce the delivery of non-point source pollutants from agricultural land to inland water systems. A buffer strip experiment consisting of two tree species (Eucalyptus camaldulensis and Casuarina cunninghamiana) with two planting densities and a pasture treatment was conducted to determine the effectiveness of NO(3)-N removal from a cattle feedlot effluent disposal area at Tullimba near Armidale, NSW Australia. Different management methods were applied for the buffers where grass and weeds were mowed 2-3 times during the second and third years and were not managed during the rest experimental years for the tree buffer, while grass was harvested 1-3 times per year for the pasture buffer. The differences between tree species and planting density significantly affected tree growth, but the growth difference did not significantly affect their capacities to reduce NO(3)-N in soil surface runoff and groundwater. On average for all the tree and pasture treatments, the buffer strips reduced NO(3)-N concentration by 8.5%, 14.7% and 14.4% for the surface runoff, shallow and deep groundwater respectively. The tree and pasture buffer strips were not significantly different in NO(3)-N reduction for both shallow and deep groundwater while the pasture buffer strips reduced significantly more NO(3)-N concentration in surface runoff than the tree buffer strips. Both buffer strips reduced more than 50% of surface runoff volume indicating that both the tree and pasture buffer strips were efficient at removing water and nutrients, mostly through a significant reduction in soil surface runoff volume. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. The importance of waterborne disease outbreak surveillance in the United States.

    PubMed

    Craun, Gunther Franz

    2012-01-01

    Analyses of the causes of disease outbreaks associated with contaminated drinking water in the United States have helped inform prevention efforts at the national, state, and local levels. This article describes the changing nature of disease outbreaks in public water systems during 1971-2008 and discusses the importance of a collaborative waterborne outbreak surveillance system established in 1971. Increasing reports of outbreaks throughout the early 1980s emphasized that microbial contaminants remained a health-risk challenge for suppliers of drinking water. Outbreak investigations identified the responsible etiologic agents and deficiencies in the treatment and distribution of drinking water, especially the high risk associated with unfiltered surface water systems. Surveillance information was important in establishing an effective research program that guided government regulations and industry actions to improve drinking water quality. Recent surveillance statistics suggest that prevention efforts based on these research findings have been effective in reducing outbreak risks especially for surface water systems.

  17. Understanding the role of monolayers in retarding evaporation from water storage bodies

    NASA Astrophysics Data System (ADS)

    Fellows, Christopher M.; Coop, Paul A.; Lamb, David W.; Bradbury, Ronald C.; Schiretz, Helmut F.; Woolley, Andrew J.

    2015-03-01

    Retardation of evaporation by monomolecular films by a 'barrier model' does not explain the effect of air velocity on relative evaporation rates in the presence and absence of such films. An alternative mechanism for retardation of evaporation attributes reduced evaporation to a reduction of surface roughness, which in turn increases the effective vapour pressure of water above the surface. Evaporation suppression effectiveness under field conditions should be predictable from measurements of the surface dilational modulus of monolayers and research directed to optimising this mechanism should be more fruitful than research aimed at optimising a monolayer to provide an impermeable barrier.

  18. Drivers and Effects of Groundwater-Surface Water Interaction in the Karstic Lower Flint River Basin, Southwestern Georgia, USA

    NASA Astrophysics Data System (ADS)

    Rugel, K.; Golladay, S. W.; Jackson, C. R.; Rasmussen, T. C.; Dowd, J. F.; Mcdowell, R. J.

    2017-12-01

    Groundwater provides the majority of global water resources for domestic and agricultural usage while contributing vital surface water baseflows which support healthy aquatic ecosystems. Understanding the extent and magnitude of hydrologic connectivity between groundwater and surface water components in karst watersheds is essential to the prudent management of these hydraulically-interactive systems. We examined groundwater and surface water connectivity between the Upper Floridan Aquifer (UFA) and streams in the Lower Flint River Basin (LFRB) in southwestern Georgia where development of agricultural irrigation intensified over the past 30 years. An analysis of USGS streamflow data for the pre- and post-irrigation period showed summer baseflows in some Lower Flint River tributaries were reduced by an order of magnitude in the post-irrigation period, reiterating the strong hydraulic connection between these streams and the underlying aquifer. Large and fine-scale monitoring of calcium, nitrate, specific conductance and stable isotopes (δ18O and δD) on 50 km of Ichawaynochaway Creek, a major tributary of the Lower Flint, detected discrete groundwater-surface water flow paths which accounted for 42% of total groundwater contributions in the 50 km study reach. This presentation will highlight a new analysis using the metadata EPA Reach File (1) and comparing stream reach and instream bedrock joint azimuths with stream geochemical results from previous field study. Our findings suggested that reaches with NNW bearing may be more likely to display enhanced groundwater-surface water connectivity. Our results show that local heterogeneity can significantly affect water budgets and quality within these watersheds, making the use of geomorphological stream attributes a valuable tool to water resource management for the prediction and protection of vulnerable regions of hydrologic connectivity in karst catchments.

  19. Investigate the complex process in particle-fluid based surface generation technology using reactive molecular dynamics method

    NASA Astrophysics Data System (ADS)

    Han, Xuesong; Li, Haiyan; Zhao, Fu

    2017-07-01

    Particle-fluid based surface generation process has already become one of the most important materials processing technology for many advanced materials such as optical crystal, ceramics and so on. Most of the particle-fluid based surface generation technology involves two key process: chemical reaction which is responsible for surface softening; physical behavior which is responsible for materials removal/deformation. Presently, researchers cannot give a reasonable explanation about the complex process in the particle-fluid based surface generation technology because of the small temporal-spatial scale and the concurrent influence of physical-chemical process. Molecular dynamics (MD) method has already been proved to be a promising approach for constructing effective model of atomic scale phenomenon and can serve as a predicting simulation tool in analyzing the complex surface generation mechanism and is employed in this research to study the essence of surface generation. The deformation and piles of water molecule is induced with the feeding of abrasive particle which justifies the property mutation of water at nanometer scale. There are little silica molecule aggregation or materials removal because the water-layer greatly reduce the strength of mechanical interaction between particle and materials surface and minimize the stress concentration. Furthermore, chemical effect is also observed at the interface: stable chemical bond is generated between water and silica which lead to the formation of silconl and the reaction rate changes with the amount of water molecules in the local environment. Novel ring structure is observed in the silica surface and it is justified to be favored of chemical reaction with water molecule. The siloxane bond formation process quickly strengthened across the interface with the feeding of abrasive particle because of the compressive stress resulted by the impacting behavior.

  20. Trends in Streamflow Characteristics in Hawaii, 1913-2002

    USGS Publications Warehouse

    Oki, Delwyn S.

    2004-01-01

    The surface-water resources of Hawaii have significant cultural, aesthetic, ecologic, and economic importance. In Hawaii, surface-water resources are developed for both offstream uses (for example, drinking water, agriculture, and industrial uses) and instream uses (for example, maintenance of habitat and ecosystems, recreational activities, aesthetic values, maintenance of water quality, conveyance of irrigation and domestic water supplies, and protection of traditional and customary Hawaiian rights). Possible long-term trends in streamflow characteristics have important implications for water users, water suppliers, resource managers, and citizens in the State. Proper management of Hawaii's streams requires an understanding of long-term trends in streamflow characteristics and their potential implications. Effects of long-term downward trends in low flows in streams include potential loss of habitat for native stream fauna and reduced water availability for offstream and instream water uses. Effects of long-term upward trends in high flows in streams include construction of bridges and water-conveyance structures that are potentially unsafe if they are not designed with proper consideration of trends in high flows.

  1. Effects of protein conformational motions in the native form and non-uniform distribution of electrostatic interaction sites on interfacial water

    NASA Astrophysics Data System (ADS)

    Pal, Somedatta; Bandyopadhyay, Sanjoy

    2013-07-01

    Protein-water interactions and their influence on surrounding water is a long-standing problem. Despite its importance, the origin of differential water behavior at the protein surface is still elusive. We have performed molecular simulations of the protein barstar in aqueous medium. Efforts have been made to explore how the conformational motions of the protein segments in the native form and the heterogeneous electrostatic interactions with the polar and charged groups of the protein affect the interfacial water properties. The calculations reveal that reduced dimension of the hydration layer on freezing the protein's degrees of freedom does not modify the heterogeneous water distributions around the protein. However, turning off the protein-water electrostatic contribution leads to non-preferential near-uniform water arrangements at the surface. It is further shown that with protein-water electrostatic interactions turned on, the local structuring of water molecules around the segments are correlated with their degree of exposure to the solvent.

  2. Projected impact of climate change and chemical emissions on the water quality of the European rivers Rhine and Meuse: A drinking water perspective.

    PubMed

    Sjerps, Rosa M A; Ter Laak, Thomas L; Zwolsman, Gertjan J J G

    2017-12-01

    Low river discharges of the rivers Rhine and Meuse are expected to occur more often and more prolonged in a changing climate. During these dry periods the dilution of point sources such as sewage effluents is reduced leading to a decline in chemical water quality. This study projects chemical water quality of the rivers Rhine and Meuse in the year 2050, based on projections of chemical emissions and two climate scenarios: moderate and fast climate change. It focuses on specific compounds known to be relevant to drinking water production, i.e. four pharmaceuticals, a herbicide and its metabolite and an artificial sweetener. Hydrological variability, climate change, and increased emission show a significant influence on the water quality in the Rhine and Meuse. The combined effect of changing future emissions of these compounds and reduced dilution due to climate change has leaded to increasing (peak) concentrations in the river water by a factor of two to four. Current water treatment efficiencies in the Netherlands are not sufficient to reduce these projected concentrations in drinking water produced from surface water below precautionary water target values. If future emissions are not sufficiently reduced or treatment efficiencies are not improved, these compounds will increasingly be found in drinking water, albeit at levels which pose no threat to human health. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Possible roles of manganese redox chemistry in the sulfur cycle

    NASA Technical Reports Server (NTRS)

    Nealson, K. H.

    1985-01-01

    Sulfate reducing bacteria (SRB) are very potent MnO2 reducers by virtue of their sulfide production: H2S reacts rapidly with MnO2 to yield Mn(2), elemental sulfur, and water. In manganese rich zones, Mn cycles rapidly if sulfate is present to drive the reduction and the MnO2 precipitates and sinks into anaerobic zones. The production of sulfide (by organisms requiring organic carbon compounds) to reduce manganese oxides might act to couple the carbon and sulfur cycles in water bodies in which the two cycles are physically separated. Iron has been proposed for this provision of reducing power by (Jorgensen, 1983), but since MnS is soluble and FeS is very insoluble in water, it is equally likely that manganese rather than iron provides the electrons to the more oxidized surface layers.

  4. Competing effects of groundwater withdrawals and climate change on water availability in semi-arid India

    NASA Astrophysics Data System (ADS)

    Sishodia, R. P.; Shukla, S.

    2017-12-01

    India, a global leader in groundwater use (250 km3/yr), is experiencing groundwater depletion. There has been a 130-fold increase in number of irrigation wells since 1960. Anticipated future increase in groundwater demand is likely to exacerbate the water availability in the semi-arid regions of India. Depending on the direction of change, future climate change may either worsen or enhance the water availability. This study uses an integrated hydrologic modeling approach (MIKE SHE MIKE 11) to compare and combine the effects of future (2040-2069) increased groundwater withdrawals and climate change on surface and groundwater flows and availability for an agricultural watershed in semi-arid south India. Modeling results showed that increased groundwater withdrawals in the future resulted in reduced surface flows (25%) and increased frequency and duration (90 days/yr) of well drying. In contrast, projected future increase in rainfall (7-43%) under the changed climate showed increased groundwater recharge (15-67%) and surface flows (9-155%). Modeling results suggest that the positive effects of climate change may enhance the water availability in this semi-arid region of India. However, in combination with increased withdrawals, climate change was shown to increase the well drying and reduce the water availability especially during dry years. A combination of management options such as flood to drip conversion, energy subsidy reductions and water storage can support increased groundwater irrigated area in the future while mitigating the well drying. A cost-benefit analysis showed that dispersed water storage and flood to drip conversion can be highly cost-effective in this semi-arid region. The study results suggest that the government and management policies need to be focused towards an integrated management of demand and supply to create a sustainable food-water-energy nexus in the region.

  5. A method for physically based model analysis of conjunctive use in response to potential climate changes

    USGS Publications Warehouse

    Hanson, R.T.; Flint, L.E.; Flint, A.L.; Dettinger, M.D.; Faunt, C.C.; Cayan, D.; Schmid, W.

    2012-01-01

    Potential climate change effects on aspects of conjunctive management of water resources can be evaluated by linking climate models with fully integrated groundwater-surface water models. The objective of this study is to develop a modeling system that links global climate models with regional hydrologic models, using the California Central Valley as a case study. The new method is a supply and demand modeling framework that can be used to simulate and analyze potential climate change and conjunctive use. Supply-constrained and demand-driven linkages in the water system in the Central Valley are represented with the linked climate models, precipitation-runoff models, agricultural and native vegetation water use, and hydrologic flow models to demonstrate the feasibility of this method. Simulated precipitation and temperature were used from the GFDL-A2 climate change scenario through the 21st century to drive a regional water balance mountain hydrologic watershed model (MHWM) for the surrounding watersheds in combination with a regional integrated hydrologic model of the Central Valley (CVHM). Application of this method demonstrates the potential transition from predominantly surface water to groundwater supply for agriculture with secondary effects that may limit this transition of conjunctive use. The particular scenario considered includes intermittent climatic droughts in the first half of the 21st century followed by severe persistent droughts in the second half of the 21st century. These climatic droughts do not yield a valley-wide operational drought but do cause reduced surface water deliveries and increased groundwater abstractions that may cause additional land subsidence, reduced water for riparian habitat, or changes in flows at the Sacramento-San Joaquin River Delta. The method developed here can be used to explore conjunctive use adaptation options and hydrologic risk assessments in regional hydrologic systems throughout the world.

  6. Projected impacts of 21st century climate change on diapause in Calanus finmarchicus.

    PubMed

    Wilson, Robert J; Banas, Neil S; Heath, Michael R; Speirs, Douglas C

    2016-10-01

    Diapause plays a key role in the life cycle of high latitude zooplankton. During diapause, animals avoid starving in winter by living in deep waters where metabolism is lower and met by lipid reserves. Global warming is therefore expected to shorten the maximum potential diapause duration by increasing metabolic rates and by reducing body size and lipid reserves. This will alter the phenology of zooplankton, impact higher trophic levels and disrupt biological carbon pumps. Here, we project the impacts of climate change on the key North Atlantic copepod Calanus finmarchicus under IPCC RCP 8.5. Potential diapause duration is modelled in relation to body size and overwintering temperature. The projections show pronounced geographic variations. Potential diapause duration reduces by more than 30% in the Western Atlantic, whereas in the key overwintering centre of the Norwegian Sea it changes only marginally. Surface temperature rises, which reduce body size and lipid reserves, will have a similar impact to deep-water changes on diapause in many regions. Because deep-water warming lags that at the surface, animals in the Labrador Sea could offset warming impacts by diapausing in deeper waters. However, the ability to control diapause depth may be limited. © 2016 John Wiley & Sons Ltd.

  7. Modeling the interaction Between Ethylene Diamine and Water Films on the Surface of a Carbon Nanotube

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard L.; Walther, Jens H.; Zimmerli, Urs; Koumoutsakos, Petros

    2004-01-01

    It has been observed that a carbon nanotube (CNT) AFM tip coated with ethylene diamine (EDA) penetrates the liquid water-air interface more easily than an uncoated nanotube tip. The EDA coating remains intact through repeated cycles of dipping and removal. In order to understand the physical basis for this observation, we use ab initio quantum chemistry calculations to study the EDA-CNT-water interaction and to parameterize a force field describing this system. Molecular dynamics (MD) simulations are carried out for EDA-water mixtures and an EDA-coated carbon nanotube immmed in water. These simulations are similar to our earlier MD study that characterized the CNT-water interface. The attractive CNT-EDA and CNT-water interactions arise primarily from van der Waals forces, and the EDA-EDA, EDA-water and water-water interactions are mainly due to hydrogen bond formation. The binding energ of single EDA molecule to the nanotube is nearly three times larger than the corresponding value found for water (4.3 versus 1.5 kcal mol, respectively). The EDA molecules readily stick to and diffuse along the CNT surface. As a resulf mixing of the EDA and water films does not occur on the timescale of the MD simulations. The EDA film reduces the hydrophobicity of the nanotube surface and acts like a prototypical surfactant in stabilizing the suspension of carbon nanotubes in water. For this presentation, we use the MD simulations to determine how the presence of the carbon nanotube surface perturbs the properties of EDA-water mixtures.

  8. Interlayer Water Regulates the Bio-nano Interface of a β-sheet Protein stacking on Graphene

    PubMed Central

    Lv, Wenping; Xu, Guiju; Zhang, Hongyan; Li, Xin; Liu, Shengju; Niu, Huan; Xu, Dongsheng; Wu, Ren'an

    2015-01-01

    Using molecular dynamics simulations, we investigated an integrated bio-nano interface consisting of a β-sheet protein stacked onto graphene. We found that the stacking assembly of the model protein on graphene could be controlled by water molecules. The interlayer water filled within interstices of the bio-nano interface could suppress the molecular vibration of surface groups on protein, and could impair the CH···π interaction driving the attraction of the protein and graphene. The intermolecular coupling of interlayer water would be relaxed by the relative motion of protein upon graphene due to the interaction between water and protein surface. This effect reduced the hindrance of the interlayer water against the assembly of protein on graphene, resulting an appropriate adsorption status of protein on graphene with a deep free energy trap. Thereby, the confinement and the relative sliding between protein and graphene, the coupling of protein and water, and the interaction between graphene and water all have involved in the modulation of behaviors of water molecules within the bio-nano interface, governing the hindrance of interlayer water against the protein assembly on hydrophobic graphene. These results provide a deep insight into the fundamental mechanism of protein adsorption onto graphene surface in water. PMID:25557857

  9. Interlayer water regulates the bio-nano interface of a β-sheet protein stacking on graphene.

    PubMed

    Lv, Wenping; Xu, Guiju; Zhang, Hongyan; Li, Xin; Liu, Shengju; Niu, Huan; Xu, Dongsheng; Wu, Ren'an

    2015-01-05

    Using molecular dynamics simulations, we investigated an integrated bio-nano interface consisting of a β-sheet protein stacked onto graphene. We found that the stacking assembly of the model protein on graphene could be controlled by water molecules. The interlayer water filled within interstices of the bio-nano interface could suppress the molecular vibration of surface groups on protein, and could impair the CH···π interaction driving the attraction of the protein and graphene. The intermolecular coupling of interlayer water would be relaxed by the relative motion of protein upon graphene due to the interaction between water and protein surface. This effect reduced the hindrance of the interlayer water against the assembly of protein on graphene, resulting an appropriate adsorption status of protein on graphene with a deep free energy trap. Thereby, the confinement and the relative sliding between protein and graphene, the coupling of protein and water, and the interaction between graphene and water all have involved in the modulation of behaviors of water molecules within the bio-nano interface, governing the hindrance of interlayer water against the protein assembly on hydrophobic graphene. These results provide a deep insight into the fundamental mechanism of protein adsorption onto graphene surface in water.

  10. Interlayer Water Regulates the Bio-nano Interface of a β-sheet Protein stacking on Graphene

    NASA Astrophysics Data System (ADS)

    Lv, Wenping; Xu, Guiju; Zhang, Hongyan; Li, Xin; Liu, Shengju; Niu, Huan; Xu, Dongsheng; Wu, Ren'an

    2015-01-01

    Using molecular dynamics simulations, we investigated an integrated bio-nano interface consisting of a β-sheet protein stacked onto graphene. We found that the stacking assembly of the model protein on graphene could be controlled by water molecules. The interlayer water filled within interstices of the bio-nano interface could suppress the molecular vibration of surface groups on protein, and could impair the CH...π interaction driving the attraction of the protein and graphene. The intermolecular coupling of interlayer water would be relaxed by the relative motion of protein upon graphene due to the interaction between water and protein surface. This effect reduced the hindrance of the interlayer water against the assembly of protein on graphene, resulting an appropriate adsorption status of protein on graphene with a deep free energy trap. Thereby, the confinement and the relative sliding between protein and graphene, the coupling of protein and water, and the interaction between graphene and water all have involved in the modulation of behaviors of water molecules within the bio-nano interface, governing the hindrance of interlayer water against the protein assembly on hydrophobic graphene. These results provide a deep insight into the fundamental mechanism of protein adsorption onto graphene surface in water.

  11. Effect of metal ion intercalation on the structure of MXene and water dynamics on its internal surfaces

    DOE PAGES

    Osti, Naresh C.; Naguib, Michael; Ostadhossein, Alireza; ...

    2016-03-24

    MXenes are a recently discovered class of 2D materials with an excellent potential for energy storage applications. Because MXene surfaces are hydrophilic and attractive interaction forces between the layers are relatively weak, water molecules can spontaneously intercalate at ambient humidity and significantly influence the key properties of this 2D material. Using complementary X-ray and neutron scattering techniques, we demonstrate that intercalation with potassium cations significantly improves structural homogeneity and water stability in MXenes. Furthermore, in agreement with molecular dynamics simulations, intercalated potassium ions reduce the water self-diffusion coefficient by 2 orders of magnitude, suggesting greater stability of hydrated MXene againstmore » changing environmental conditions.« less

  12. Atmospheric pressure plasma jet's characterization and surface wettability driven by neon transformer

    NASA Astrophysics Data System (ADS)

    Elfa, R. R.; Nafarizal, N.; Ahmad, M. K.; Sahdan, M. Z.; Soon, C. F.

    2017-03-01

    Atmospheric pressure plasma driven by Neon transformer power supply argon is presented in this paper. Atmospheric pressure plasma system has attracted researcher interest over low pressure plasma as it provides a flexibility process, cost-efficient, portable device and vacuum-free device. Besides, another golden key of this system is the wide promising application in the field of work cover from industrial and engineering to medical. However, there are still numbers of fundamental investigation that are necessary such as device configuration, gas configuration and its effect. Dielectric barrier discharge which is also known as atmospheric pressure plasma discharge is created when there is gas ionization process occur which enhance the movement of atom and electron and provide energetic particles. These energetic particles can provide modification and cleaning property to the sample surface due to the bombardment of the high reactive ion and radicals to the sample surface. In order to develop atmospheric pressure plasma discharge, a high voltage and high frequency power supply is needed. In this work, we used a neon transformer power supply as the power supply. The flow of the Ar is feed into 10 mm cylinder quartz tube with different treatment time in order to investigate the effect of the plasma discharge. The analysis of each treatment time is presented by optical emission spectroscopy (OES) and water contact angle (WCA) measurement. The increase of gas treatment time shows increases intensity of reactive Ar and reduces the angle of water droplets in water contact angle. Treatment time of 20 s microslide glass surface shows that the plasma needle discharges have modified the sample surface from hydrophilic surface to superhydrophilic surface. Thus, this leads to another interesting application in reducing sample surface adhesion to optimize productivity in the industry of paintings, semiconductor and more.

  13. Sioux City Riverbank Filtration Study

    NASA Astrophysics Data System (ADS)

    Mach, R.; Condon, J.; Johnson, J.

    2003-04-01

    The City of Sioux City (City) obtains a large percentage of their drinking water supply from both a horizontal collector well system and vertical wells located adjacent to the Missouri River. These wells are set in either the Missouri Alluvium or the Dakota Sandstone aquifer. Several of the collector well laterals extend out beneath the Missouri River, with the laterals being over twenty feet below the river channel bottom. Due to concerns regarding ground water under direct surface water influence, the Iowa Department of Natural Resources (IDNR) required the City to expand their water treatment process to deal with potential surface water contaminant issues. With the extensive cost of these plant upgrades, the City and Olsson Associates (OA) approached the IDNR requesting approval for assessing the degree of natural riverbank filtration for water treatment. If this natural process could be ascertained, the level of treatment from the plant could be reduced. The objective of this study was to quantify the degree of surface water (i.e. Missouri River) filtration due to the underlying Missouri River sediments. Several series of microscopic particulate analysis where conducted, along with tracking of turbidity, temperature, bacteria and a full scale particle count study. Six particle sizes from six sampling points were assessed over a nine-month period that spanned summer, fall and spring weather periods. The project was set up in two phases and utilized industry accepted statistical analyses to identify particle data trends. The first phase consisted of twice daily sample collection from the Missouri River and the collector well system for a one-month period. Statistical analysis of the data indicated reducing the sampling frequency and sampling locations would yield justifiable data while significantly reducing sampling and analysis costs. The IDNR approved this modification, and phase II included sampling and analysis under this reduced plant for an eight-month period. Final statistical analyses of the nine months of data indicate up to a four-log particle reduction occurs through river bank filtration. Consequently, Missouri River sediments within the City's well field are very effective in water filtration. This information was submitted to the IDNR for review and approval. Subsequently, the IDNR approved 4.0 log removal for Giardia and 3.5 log removal for Cryptosporidium through the riverbank and treatment plant. The City and IDNR have agreed on subrogate parameters for monitoring purposes.

  14. Searching for Reduced Carbon on the Surface of Mars: The SAM Combustion Experiment

    NASA Astrophysics Data System (ADS)

    Stern, J. C.; Malespin, C. A.; Mahaffy, P. R.; Webster, C. R.; Eigenbrode, J. L.; Archer, P. D.; Brunner, A. E.; Freissinet, C.; Franz, H. B.; Glavin, D. P.; Graham, H. V.; McAdam, A. C.; Ming, D. W.; Navarro-Gonzalez, R.; Niles, P. B.; Steele, A.; Sutter, B.; Trainer, M. G.; MSL Science Team

    2014-07-01

    The SAM Combustion Experiment combusts reduced materials in solid samples for oxidized species quantification and C and H isotopic analysis of CO2 and H2O, with the goal of understanding the inventory of organic carbon and history of water on Mars.

  15. Evaluation of core cultivation practices to reduce ecological risk of pesticides in runoff from turf

    USDA-ARS?s Scientific Manuscript database

    Pesticides associated with the turfgrass industry have been detected in storm runoff and surface waters of urban watersheds; raising concern of their potential environmental effects and a desire to reduce their transport to non-target locations. Runoff studies were conducted to compare the effective...

  16. Plant Growth and Phosphorus Uptake of Three Riparian Grass Species

    USDA-ARS?s Scientific Manuscript database

    Riparian buffers can significantly reduce sediment-bound phosphorus (P) entering surface water, but control of dissolved P inputs is more challenging. Because plant roots remove P from soil solution, it follows that plant uptake will reduce dissolved P losses. We evaluated P uptake of smooth bromegr...

  17. Evaluation of Core Cultivation Practices to Reduce Ecological Risk of Pesticides in Runoff from Agrostis palustris

    USDA-ARS?s Scientific Manuscript database

    Pesticides associated with the turfgrass industry have been detected in storm runoff and surface waters of urban watersheds; invoking concern of their potential environmental effects and a desire to reduce their transport to non-target locations. Quantities of chlorpyrifos, dicamba, dimethylamine s...

  18. Biofilms Reduce Solar Disinfection of Cryptosporidium parvum Oocysts

    PubMed Central

    Hargreaves, B. R.; Jellison, K. L.

    2012-01-01

    Solar radiation reduces Cryptosporidium infectivity. Biofilms grown from stream microbial assemblages inoculated with oocysts were exposed to solar radiation. The infectivity of oocysts attached at the biofilm surface and oocysts suspended in water was about half that of oocysts attached at the base of a 32-μm biofilm. PMID:22467508

  19. Active Serpentinization and the Potential for a Diverse Subsurface Biosphere

    NASA Astrophysics Data System (ADS)

    Canovas, P. A.; Shock, E.

    2013-12-01

    The ubiquitous nature of serpentinization and the unique fluids it generates have major consequences for habitat generation, abiotic organic synthesis, and biosynthesis. The production of hydrogen from the anaerobic hydrolysis of ultramafic minerals sets the redox state of serpentinizing fluids to be thermodynamically favorable for these processes. Consequently, a host of specialized microbial populations and metabolisms can be sustained. Active low-temperature serpentinizing systems, such as the Samail ophiolite in Oman, offer an ideal opportunity to investigate biogeochemical processes during the alteration of ultramafic minerals. At the Samail ophiolite in particular, serpentinization may provide the potential for an active subsurface microbial community shielded from potentially unfavorable surface conditions. Support for this assertion comes from geochemical data including Mg, Ca, CH4 (aq), and H2 (aq) abundances indicating that methane is a product of serpentinization. To further investigate viable metabolic strategies, affinity calculations were performed on both the surface waters and the hyperalkaline springs, which may be considered as messengers of processes occurring in the subsurface. Almost all sites yield positive affinities (i.e., are thermodynamically favorable) for a diverse suite of serpentinization metabolisms including methanogenesis, anammox, and carbon monoxide, nitrate, and sulfate reduction with hydrogen, as well as anaerobic methanotrophy coupled to nitrate, nitrite, and sulfate reduction. Reaction path modeling was performed to ascertain the extent to which serpentinization and mixing of surface waters with hyperalkaline spring waters in the subsurface can generate suitable habitats. The serpentinization model simulates the reaction of pristine Oman harzburgite with surface water to quantify the redox state and generation of hyperalkaline spring water. Preliminary results show that water-rock ratios as high as 100 could effectively reduce the system and create a thermodynamic drive sufficient to convert all of the dissolved inorganic carbon into methane. This indicates that the system is poised to create the reducing conditions necessary to support a subsurface biosphere very early in the serpentinizing process, and that the subsurface biosphere could extend upwards to very near the surface. The mixing model simulates the percolation of surface water into the active serpentinization zone. During the mixing process, methane is calculated to be more stable than carbonate species until approximately 100g of surface water have been added to 1 kg of the serpentinizing fluid. These results suggest that unreacted surface water flowing directly into the serpentinizing zone can create the disequilibria necessary for methanogenesis, and possibly other metabolisms, to proceed while still maintaining the low redox state of the system. As long as the recharge to the hyperalkaline reservoir does not exceed ten percent of the reservoir, methanogenesis and other serpentinization metabolisms can thrive off the disequilibria generated through mixing.

  20. Surface-water, ground-water, and sediment geochemistry of epizonal and shear-hosted mineral deposits in the Tintina Gold Province--arsenic and antimony distribution and mobility: Chapter G in Recent U.S. Geological Survey studies in the Tintina Gold Province, Alaska, United States, and Yukon, Canada--results of a 5-year project

    USGS Publications Warehouse

    Mueller, Seth H.; Goldfarb, Richard J.; Verplanck, Philip L.; Trainor, Thomas P.; Sanzolone, Richard F.; Adams, Monique; Gough, Larry P.; Day, Warren C.

    2007-01-01

    Epigenetic mineral deposits in the Tintina Gold Province are generally characterized by high concentrations of arsenic and antimony in their mineral assemblage. A total of 347 samples (ground water, surface water, and stream sediment) were collected to investigate the distribution and mobility of arsenic and antimony in the environment near known mineral deposits. Samples were collected from east to west at Keno Hill and Brewery Creek, Yukon, Canada; and Cleary Hill, True North, Scrafford Mine, Fairbanks, Ryan Lode, Stampede Creek, Slate Creek, and Donlin Creek, all in Alaska. Surface- and ground-water samples are all slightly acidic to near-neutral in pH (5-8), have a wide range in specific conductance (surface water 17-2,980 microsiemens per centimeter and ground water 170-2,940 microsiemens per centimeter), and show elevated dissolved arsenic and antimony concentrations (arsenic in surface water is less than 1 to 380 micrograms per liter and in ground water is less than 1 micrograms per liter to 1.5 milligrams per liter; antimony in surface water is less than 2 to 660 micrograms per liter and in ground water is less than 2 to 60 micrograms per liter). Stream sediments downstream from these deposits have high concentrations of arsenic and antimony (arsenic median is 1,670 parts per million, maximum is 10,000 parts per million; antimony median is 192 parts per million, maximum is 7,200 parts per million). The mobility of arsenic and antimony is controlled by the local redox environment, with arsenic being less mobile in oxidized surface waters relative to antimony, and arsenic more mobile in reduced ground water. These factors suggest that both antimony and arsenic may be useful pathfinder elements in water and sediment for targeting similar style deposits elsewhere in the Tintina Gold Province.

  1. Cyclic fluctuations of water level as a basis for determining aquifer transmissibility

    USGS Publications Warehouse

    Ferris, John G.

    1952-01-01

    In coastal areas, wells near bodies of tidal water frequently exhibit sinusoidal fluctuations of water level, in response to periodic changes of tidewater stage.  Inland, the regulation of a surface reservoir often produces correlative changes of ground-water stage in wells adjacent either to the reservoir or to its attendant stream.  As the stage of the surface water rises, the head upon the subaqueous outcrop of the aquifer increases and thereby either increases the rate of inflow to the aquifer or reduces the rate of outflow therefrom.  The increase in recharge or reduction in discharge results in a general recovery of water level in the aquifer. On the subsequent falling stage this pattern is reversed.  When the stage of the surface body fluctuates as a simple harmonic motion a train of sinusoidal waves is propagated shoreward through the sub-outcrop of the aquifer.  With increasing distance from the sub-outcrop, the amplitude of the transmitted wave decreases and the time lag of a given maximum or minimum increases.

  2. The Heartland Region P-Index Conservation Innovation Grant: protecting water quality through improved phosphorus management

    USDA-ARS?s Scientific Manuscript database

    Reducing phosphorus loss from agricultural land is important for improvement and protection of surface water quality. Agricultural models can be used to determine management impacts on P loss and therefore serve as a guide for recommending best management practices. However, the models must be comp...

  3. Reducing production of taste and odor by deep-living cyanobacteria in drinking water reservoirs by regulation of water level.

    PubMed

    Su, Ming; Jia, Dongmin; Yu, Jianwei; Vogt, Rolf D; Wang, Jingshi; An, Wei; Yang, Min

    2017-01-01

    Abatement and control of algae, producing toxins and creating taste & odor (T&O) in drinking water sources, is a major challenge for water supply. In this study we proposed a strategy based on water level regulation for the control of odor-producing cyanobacteria in source water. Miyun Reservoir, the main surface water source for Beijing, has been suffering from 2-methylisoborneol (2-MIB) induced T&O problems caused by deep-living Planktothrix sp. since 2002. The biomass of deep-living Planktothrix in Miyun Reservoir was found to be mainly governed by the water depth above its sediment habitat. An algorithm for water level regulation aiming to minimize the risk for T&O in different types of reservoirs is proposed. The study demonstrates that risk for T&O can be minimized by increasing the water level in Miyun Reservoir. The high-risk area can be reduced by about 2.91% (0.61% to 5.76%) of surface area for each meter increase in the water level, when the water level is lower than 145m. More specifically, the water level needs to be raised to higher than 147.7ma.s.l. from 131.0m in order to obtain an acceptable risk level (ARL) of 10%. This management strategy to abate T&O problems is simpler and cheaper to implement compared to traditional physical, chemical and biological techniques. Moreover, it has no apparent negative impact on water quality and aquatic organisms. Copyright © 2016. Published by Elsevier B.V.

  4. The dynamic response of Kennicott Glacier, Alaska, USA, to the Hidden Creek Lake outburst flood

    USGS Publications Warehouse

    Anderson, R. Scott; Walder, J.S.; Anderson, S.P.; Trabant, D.C.; Fountain, A.G.

    2005-01-01

    Glacier sliding is commonly linked with elevated water pressure at the glacier bed. Ice surface motion during a 3 week period encompassing an outburst of ice-dammed Hidden Creek Lake (HCL) at Kennicott Glacier, Alaska, USA, showed enhanced sliding during the flood. Two stakes, 1.2 km from HCL, revealed increased speed in two episodes, both associated with uplift of the ice surface relative to the trajectory of bed-parallel motion. Uplift of the surface began 12 days before the flood, initially stabilizing at a value of 0.25 m. Two days after lake drainage began, further uplift (reaching 0.4 m) occurred while surface speed peaked at 1.2 m d-1. Maximum surface uplift coincided with peak discharge from HCL, high water level in a down-glacier ice-marginal basin, and low solute concentrations in the Kennicott River. Each of these records is consistent with high subglacial water pressure. We interpret the ice surface motion as arising from sliding up backs of bumps on the bed, which enlarges cavities and produces bed separation. The outburst increased water pressure over a broad region, promoting sliding, inhibiting cavity closure, and blocking drainage of solute-rich water from the distributed system. Pressure drop upon termination of the outburst drained water from and depressurized the distributed system, reducing sliding speeds. Expanded cavities then collapsed with a 1 day time-scale set by the local ice thickness.

  5. Perception of drought by surface and groundwater farmers: a perspective from Júcar river basin, Spain

    NASA Astrophysics Data System (ADS)

    Urquijo, Julia; De Stefano, Lucia

    2015-04-01

    Irrigation farmers play a key role in water management at all levels and their role becomes even more relevant during droughts, when water systems are under increased pressure. The analysis of farmers' drought perception and of their strategies to reduce vulnerability can contribute to better understand their behavior and concerns, and to better inform decision-making regarding drought management at different scales. This study focuses on the analysis of perception of and response to drought of surface and groundwater irrigation farmers in two areas of the Jucar River Basin (Spain). The results show that the dependence on surface water or groundwater for irrigation highly influences farmers' perception of drought. For surface water farmers, non-climatic factors (e.g. level of reservoirs or impacts on production) are used to describe drought situations more often that precipitation shortfalls, while groundwater irrigators barely feel affected by rainfall variability. Local strategies are highly adapted to local conditions and usually require collective agreements to coordinate individual actions and make them effective. The vulnerability factors differ depending on the source of water used to support irrigation, e.g. being water quality and the cost of water reasons of concern for groundwater farmers while irrigators using surface water are concerned with temporal water shortages and the economic viability of their agricultural activity. The analysis of how farmers relate to and face drought appears also to catch the main water management issues in the River Basin. The results of the study highlight that local knowledge can inform policy makers on the way farmers cope with drought and it can also support decision-making in enhancing drought and water resource management.

  6. Method for excluding salt and other soluble materials from produced water

    DOEpatents

    Phelps, Tommy J [Knoxville, TN; Tsouris, Costas [Oak Ridge, TN; Palumbo, Anthony V [Oak Ridge, TN; Riestenberg, David E [Knoxville, TN; McCallum, Scott D [Knoxville, TN

    2009-08-04

    A method for reducing the salinity, as well as the hydrocarbon concentration of produced water to levels sufficient to meet surface water discharge standards. Pressure vessel and coflow injection technology developed at the Oak Ridge National Laboratory is used to mix produced water and a gas hydrate forming fluid to form a solid or semi-solid gas hydrate mixture. Salts and solids are excluded from the water that becomes a part of the hydrate cage. A three-step process of dissociation of the hydrate results in purified water suitable for irrigation.

  7. Vocal Fold Epithelial Response to Luminal Osmotic Perturbation

    ERIC Educational Resources Information Center

    Sivasankar, Mahalakshmi; Fisher, Kimberly V.

    2007-01-01

    Purpose: Dry-air challenges increase the osmolarity of fluid lining the luminal surface of the proximal airway. The homeostasis of surface fluid is thought to be essential for voice production and laryngeal defense. Therefore, the authors hypothesized that viable vocal fold epithelium would generate a water flux to reduce an osmotic challenge (150…

  8. Dynamic Leidenfrost temperature on micro-textured surfaces: Acoustic wave absorption into thin vapor layer

    NASA Astrophysics Data System (ADS)

    Jerng, Dong Wook; Kim, Dong Eok

    2018-01-01

    The dynamic Leidenfrost phenomenon is governed by three types of pressure potentials induced via vapor hydrodynamics, liquid dynamic pressure, and the water hammer effect resulting from the generation of acoustic waves at the liquid-vapor interface. The prediction of the Leidenfrost temperature for a dynamic droplet needs quantitative evaluation and definition for each of the pressure fields. In particular, the textures on a heated surface can significantly affect the vapor hydrodynamics and the water hammer pressure. We present a quantitative model for evaluating the water hammer pressure on micro-textured surfaces taking into account the absorption of acoustic waves into the thin vapor layer. The model demonstrates that the strength of the acoustic flow into the liquid droplet, which directly contributes to the water hammer pressure, depends on the magnitude of the acoustic resistance (impedance) in the droplet and the vapor region. In consequence, the micro-textures of the surface and the increased spacing between them reduce the water hammer coefficient ( kh ) defined as the ratio of the acoustic flow into the droplet to total generated flow. Aided by numerical calculations that solve the laminar Navier-Stokes equation for the vapor flow, we also predict the dynamic Leidenfrost temperature on a micro-textured surface with reliable accuracy consistent with the experimental data.

  9. The effect of multiple stressors on salt marsh end-of-season biomass

    USGS Publications Warehouse

    Visser, J.M.; Sasser, C.E.; Cade, B.S.

    2006-01-01

    It is becoming more apparent that commonly used statistical methods (e.g., analysis of variance and regression) are not the best methods for estimating limiting relationships or stressor effects. A major challenge of estimating the effects associated with a measured subset of limiting factors is to account for the effects of unmeasured factors in an ecologically realistic matter. We used quantile regression to elucidate multiple stressor effects on end-of-season biomass data from two salt marsh sites in coastal Louisiana collected for 18 yr. Stressor effects evaluated based on available data were flooding, salinity, air temperature, cloud cover, precipitation deficit, grazing by muskrat, and surface water nitrogen and phosphorus. Precipitation deficit combined with surface water nitrogen provided the best two-parameter model to explain variation in the peak biomass with different slopes and intercepts for the two study sites. Precipitation deficit, cloud cover, and temperature were significantly correlated with each other. Surface water nitrogen was significantly correlated with surface water phosphorus and muskrat density. The site with the larger duration of flooding showed reduced peak biomass, when cloud cover and surface water nitrogen were optimal. Variation in the relatively low salinity occurring in our study area did not explain any of the variation in Spartina alterniflora biomass. ?? 2006 Estuarine Research Federation.

  10. The effect of multiple stressors on salt marsh end-of-season biomass

    USGS Publications Warehouse

    Visser, J.M.; Sasser, C.E.; Cade, B.S.

    2006-01-01

    It is becoming more apparent that commonly used statistical methods (e.g. analysis of variance and regression) are not the best methods for estimating limiting relationships or stressor effects. A major challenge of estimating the effects associated with a measured subset of limiting factors is to account for the effects of unmeasured factors in an ecologically realistic matter. We used quantile regression to elucidate multiple stressor effects on end-of-season biomass data from two salt marsh sites in coastal Louisiana collected for 18 yr. Stressor effects evaluated based on available data were flooding, salinity air temperature, cloud cover, precipitation deficit, grazing by muskrat, and surface water nitrogen and phosphorus. Precipitation deficit combined with surface water nitrogen provided the best two-parameter model to explain variation in the peak biomass with different slopes and intercepts for the two study sites. Precipitation deficit, cloud cover, and temperature were significantly correlated with each other. Surface water nitrogen was significantly correlated with surface water phosphorus and muskrat density. The site with the larger duration of flooding showed reduced peak biomass, when cloud cover and surface water nitrogen were optimal. Variation in the relatively low salinity occurring in our study area did not explain any of the variation in Spartina alterniflora biomass.

  11. Saline sewage treatment and source separation of urine for more sustainable urban water management.

    PubMed

    Ekama, G A; Wilsenach, J A; Chen, G H

    2011-01-01

    While energy consumption and its associated carbon emission should be minimized in wastewater treatment, it has a much lower priority than human and environmental health, which are both closely related to efficient water quality management. So conservation of surface water quality and quantity are more important for sustainable development than green house gas (GHG) emissions per se. In this paper, two urban water management strategies to conserve fresh water quality and quantity are considered: (1) source separation of urine for improved water quality and (2) saline (e.g. sea) water toilet flushing for reduced fresh water consumption in coastal and mining cities. The former holds promise for simpler and shorter sludge age activated sludge wastewater treatment plants (no nitrification and denitrification), nutrient (Mg, K, P) recovery and improved effluent quality (reduced endocrine disruptor and environmental oestrogen concentrations) and the latter for significantly reduced fresh water consumption, sludge production and oxygen demand (through using anaerobic bioprocesses) and hence energy consumption. Combining source separation of urine and saline water toilet flushing can reduce sewer crown corrosion and reduce effluent P concentrations. To realize the advantages of these two approaches will require significant urban water management changes in that both need dual (fresh and saline) water distribution and (yellow and grey/brown) wastewater collection systems. While considerable work is still required to evaluate these new approaches and quantify their advantages and disadvantages, it would appear that the investment for dual water distribution and wastewater collection systems may be worth making to unlock their benefits for more sustainable urban development.

  12. Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: observations of midwinter SHEBA conditions

    NASA Astrophysics Data System (ADS)

    Persson, P. Ola G.; Shupe, Matthew D.; Perovich, Don; Solomon, Amy

    2017-08-01

    Observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) project are used to describe a sequence of events linking midwinter long-range advection of atmospheric heat and moisture into the Arctic Basin, formation of supercooled liquid water clouds, enhancement of net surface energy fluxes through increased downwelling longwave radiation, and reduction in near-surface conductive heat flux loss due to a warming of the surface, thereby leading to a reduction in sea-ice bottom growth. The analyses provide details of two events during Jan. 1-12, 1998, one entering the Arctic through Fram Strait and the other from northeast Siberia; winter statistics extend the results. Both deep, precipitating frontal clouds and post-frontal stratocumulus clouds impact the surface radiation and energy budget. Cloud liquid water, occurring preferentially in stratocumulus clouds extending into the base of the inversion, provides the strongest impact on surface radiation and hence modulates the surface forcing, as found previously. The observations suggest a minimum water vapor threshold, likely case dependent, for producing liquid water clouds. Through responses to the radiative forcing and surface warming, this cloud liquid water also modulates the turbulent and conductive heat fluxes, and produces a thermal wave penetrating into the sea ice. About 20-33 % of the observed variations of bottom ice growth can be directly linked to variations in surface conductive heat flux, with retarded ice growth occurring several days after these moisture plumes reduce the surface conductive heat flux. This sequence of events modulate pack-ice wintertime environmental conditions and total ice growth, and has implications for the annual sea-ice evolution, especially for the current conditions of extensive thinner ice.

  13. Fish embryo tests with Danio rerio as a tool to evaluate surface water and sediment quality in rivers influenced by wastewater treatment plants using different treatment technologies.

    PubMed

    Thellmann, Paul; Köhler, Heinz-R; Rößler, Annette; Scheurer, Marco; Schwarz, Simon; Vogel, Hans-Joachim; Triebskorn, Rita

    2015-11-01

    In order to evaluate surface water and the sediment quality of rivers connected to wastewater treatment plants (WWTPs) with different treatment technologies, fish embryo tests (FET) with Danio rerio were conducted using native water and sediment samples collected upstream and downstream of four WWTPs in Southern Germany. Two of these WWTPs are connected to the Schussen River, a tributary of Lake Constance, and use a sand filter with final water purification by flocculation. The two others are located on the rivers Schmiecha and Eyach in the area of the Swabian Alb and were equipped with a powdered activated carbon stage 20 years ago, which was originally aimed at reducing the release of stains from the textile industry. Several endpoints of embryo toxicity including mortality, malformations, reduced hatching rate, and heart rate were investigated at defined time points of embryonic development. Higher embryotoxic potentials were found in water and sediments collected downstream of the WWTPs equipped with sand filtration than in the sample obtained downstream of both WWTPs upgraded with a powdered activated carbon stage.

  14. Ethylene Glycol Adsorption and Reaction over CeOX(111) Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullins, David R; Chen, Tsung-Liang

    2011-01-01

    This study reports the interaction of ethylene glycol with well-ordered CeO{sub x}(111) thin film surfaces. Ethylene glycol initially adsorbs on fully oxidized CeO{sub 2}(111) and reduced CeO{sub 2-x}(111) through the formation of one C-O-Ce bond and then forms a second alkoxy bond after annealing. On fully oxidized CeO{sub 2}(111) both recombination of ethylene glycol and water desorption occur at low temperature leaving stable -OCH{sub 2}CH{sub 2}O- (ethylenedioxy) intermediates and oxygen vacancies on the surface. This ethylenedioxy intermediate goes through C-C bond scission to produce formate species which then react to produce CO and CO{sub 2}. The formation of water resultsmore » in the reduction of the ceria. On a reduced CeO{sub 2-x}(111) surface the reaction selectivity shifts toward a dehydration process. The ethylenedioxy intermediate decomposes by breaking a C-O bond and converts into an enolate species. Similar to the reaction of acetaldehyde on reduced CeO{sub 2-x}(111), the enolate reacts to produce acetaldehyde, acetylene, and ethylene. The loss of O from ethylene glycol leads to a small amount of oxidation of the reduced ceria.« less

  15. Ethylene Glycol Adsorption and Reaction over CeOX(111) Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T Chen; D Mullins

    2011-12-31

    This study reports the interaction of ethylene glycol with well-ordered CeO{sub x}(111) thin film surfaces. Ethylene glycol initially adsorbs on fully oxidized CeO{sub 2}(111) and reduced CeO{sub 2-x}(111) through the formation of one C-O-Ce bond and then forms a second alkoxy bond after annealing. On fully oxidized CeO{sub 2}(111) both recombination of ethylene glycol and water desorption occur at low temperature leaving stable -OCH{sub 2}CH{sub 2}O- (ethylenedioxy) intermediates and oxygen vacancies on the surface. This ethylenedioxy intermediate goes through C-C bond scission to produce formate species which then react to produce CO and CO{sub 2}. The formation of water resultsmore » in the reduction of the ceria. On a reduced CeO{sub 2-x}(111) surface the reaction selectivity shifts toward a dehydration process. The ethylenedioxy intermediate decomposes by breaking a C-O bond and converts into an enolate species. Similar to the reaction of acetaldehyde on reduced CeO{sub 2-x}(111), the enolate reacts to produce acetaldehyde, acetylene, and ethylene. The loss of O from ethylene glycol leads to a small amount of oxidation of the reduced ceria.« less

  16. Reflex cardioventilatory responses to hypoxia in the flathead gray mullet (Mugil cephalus) and their behavioral modulation by perceived threat of predation and water turbidity.

    PubMed

    Shingles, A; McKenzie, D J; Claireaux, G; Domenici, P

    2005-01-01

    In hypoxia, gray mullet surface to ventilate well-oxygenated water in contact with air, an adaptive response known as aquatic surface respiration (ASR). Reflex control of ASR and its behavioral modulation by perceived threat of aerial predation and turbid water were studied on mullet in a partly sheltered aquarium with free surface access. Injections of sodium cyanide (NaCN) into either the bloodstream (internal) or ventilatory water stream (external) revealed that ASR, hypoxic bradycardia, and branchial hyperventilation were stimulated by chemoreceptors sensitive to both systemic and water O2 levels. Sight of a model avian predator elicited bradycardia and hypoventilation, a fear response that inhibited reflex hyperventilation following external NaCN. The time lag to initiation of ASR following NaCN increased, but response intensity (number of events, time at the surface) was unchanged. Mullet, however, modified their behavior to surface under shelter or near the aquarium edges. Turbid water abolished the fear response and effects of the predator on gill ventilation and timing of ASR following external NaCN, presumably because of reduced visibility. However, in turbidity, mullet consistently performed ASR under shelter or near the aquarium edges. These adaptive modulations of ASR behavior would allow mullet to retain advantages of the chemoreflex when threatened by avian predators or when unable to perceive potential threats in turbidity.

  17. Modeling urban storm rainfall runoff from diverse underlying surfaces and application for control design in Beijing.

    PubMed

    Ouyang, Wei; Guo, Bobo; Hao, Fanghua; Huang, Haobo; Li, Junqi; Gong, Yongwei

    2012-12-30

    Managing storm rainfall runoff is paramount in semi-arid regions with urban development. In Beijing, pollution prevention in urban storm runoff and storm water utilization has been identified as the primary strategy for urban water management. In this paper, we sampled runoff during storm rainfall events and analyzed the concentration of chemical oxygen demand (COD), total suspended solids (TSS) and total phosphorus (TP) in the runoff. Furthermore, the first flush effect of storm rainfall from diverse underlying surfaces was also analyzed. With the Storm Water Management Model (SWMM), the different impervious rates of underlying surfaces during the storm runoff process were expressed. The removal rates of three typical pollutants and their interactions with precipitation and underlying surfaces were identified. From these rates, the scenarios regarding the urban storm runoff pollution loading from different designs of underlying previous rates were assessed with the SWMM. First flush effect analysis showed that the first 20% of the storm runoff should be discarded, which can help in utilizing the storm water resource. The results of this study suggest that the SWMM can express in detail the storm water pollution patterns from diverse underlying surfaces in Beijing, which significantly affected water quality. The scenario analysis demonstrated that impervious rate adjustment has the potential to reduce runoff peak and decrease pollution loading. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Gravity Scaling of a Power Reactor Water Shield

    NASA Technical Reports Server (NTRS)

    Reid, Robert S.; Pearson, J. Boise

    2008-01-01

    Water based reactor shielding is being considered as an affordable option for use on initial lunar surface power systems. Heat dissipation in the shield from nuclear sources must be rejected by an auxiliary thermal hydraulic cooling system. The mechanism for transferring heat through the shield is natural convection between the core surface and an array of thermosyphon radiator elements. Natural convection in a 100 kWt lunar surface reactor shield design has been previously evaluated at lower power levels (Pearson, 2007). The current baseline assumes that 5.5 kW are dissipated in the water shield, the preponderance on the core surface, but with some volumetric heating in the naturally circulating water as well. This power is rejected by a radiator located above the shield with a surface temperature of 370 K. A similarity analysis on a water-based reactor shield is presented examining the effect of gravity on free convection between a radiation shield inner vessel and a radiation shield outer vessel boundaries. Two approaches established similarity: 1) direct scaling of Rayleigh number equates gravity-surface heat flux products, 2) temperature difference between the wall and thermal boundary layer held constant on Earth and the Moon. Nussult number for natural convection (laminar and turbulent) is assumed of form Nu = CRa(sup n). These combined results estimate similarity conditions under Earth and Lunar gravities. The influence of reduced gravity on the performance of thermosyphon heat pipes is also examined.

  19. Impacts of aerosols on seasonal precipitation and snowpack in California based on convection-permitting WRF-Chem simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Longtao; Gu, Yu; Jiang, Jonathan H.

    Here, a version of the WRF-Chem model with fully coupled aerosol–meteorology–snowpack is employed to investigate the impacts of various aerosol sources on precipitation and snowpack in California. In particular, the impacts of locally emitted anthropogenic and dust aerosols, and aerosols transported from outside California are studied. We differentiate three pathways of aerosol effects: aerosol–radiation interaction (ARI), aerosol–snow interaction (ASI), and aerosol–cloud interaction (ACI). The convection-permitting model simulations show that precipitation, snow water equivalent (SWE), and surface air temperature averaged over the whole domain (34–42° N, 117–124° W, not including ocean points) are reduced when aerosols are included, therefore reducing largemore » biases in these variables due to the absence of aerosol effects in the model. Aerosols affect California water resources through the warming of mountaintops and the reduction of precipitation; however, different aerosol sources play different roles in changing surface temperature, precipitation, and snowpack in California by means of various weights of the three pathways. ARI by all aerosols mainly cools the surface, leading to slightly increased SWE over the mountains. Locally emitted dust aerosols warm the surface of mountaintops through ASI, in which the reduced snow albedo associated with dusty snow leads to more surface absorption of solar radiation and reduced SWE. Transported aerosols and local anthropogenic aerosols play a dominant role in increasing nonprecipitating clouds but reducing precipitation through ACI, leading to reduced SWE and runoff on the Sierra Nevada, as well as the warming of mountaintops associated with decreased SWE and hence lower surface albedo. The average changes in surface temperature from October 2012 to June 2013 are about –0.19 and 0.22 K for the whole domain and over mountaintops, respectively. Overall, the averaged reduction during October to June is about 7 % for precipitation, 3 % for SWE, and 7 % for surface runoff for the whole domain, while the corresponding numbers are 12, 10, and 10 % for the mountaintops. The reduction in SWE is more significant in a dry year, with 9 % for the whole domain and 16 % for the mountaintops. The maximum reduction of ~20 % in precipitation occurs in May and is associated with the maximum aerosol loading, leading to the largest decrease in SWE and surface runoff over that period. It is also found that dust aerosols can cause early snowmelt on the mountaintops and reduced surface runoff after April.« less

  20. Impacts of aerosols on seasonal precipitation and snowpack in California based on convection-permitting WRF-Chem simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Longtao; Gu, Yu; Jiang, Jonathan H.

    A version of the WRF-Chem model with fully coupled aerosol–meteorology–snowpack is employed to investigate the impacts of various aerosol sources on precipitation and snowpack in California. In particular, the impacts of locally emitted anthropogenic and dust aerosols, and aerosols transported from outside California are studied. We differentiate three pathways of aerosol effects: aerosol–radiation interaction (ARI), aerosol–snow interaction (ASI), and aerosol–cloud interaction (ACI). The convection-permitting model simulations show that precipitation, snow water equivalent (SWE), and surface air temperature averaged over the whole domain (34–42° N, 117–124° W, not including ocean points) are reduced when aerosols are included, therefore reducing large biasesmore » in these variables due to the absence of aerosol effects in the model. Aerosols affect California water resources through the warming of mountaintops and the reduction of precipitation; however, different aerosol sources play different roles in changing surface temperature, precipitation, and snowpack in California by means of various weights of the three pathways. ARI by all aerosols mainly cools the surface, leading to slightly increased SWE over the mountains. Locally emitted dust aerosols warm the surface of mountaintops through ASI, in which the reduced snow albedo associated with dusty snow leads to more surface absorption of solar radiation and reduced SWE. Transported aerosols and local anthropogenic aerosols play a dominant role in increasing nonprecipitating clouds but reducing precipitation through ACI, leading to reduced SWE and runoff on the Sierra Nevada, as well as the warming of mountaintops associated with decreased SWE and hence lower surface albedo. The average changes in surface temperature from October 2012 to June 2013 are about -0.19 and 0.22 K for the whole domain and over mountaintops, respectively. Overall, the averaged reduction during October to June is about 7% for precipitation, 3% for SWE, and 7% for surface runoff for the whole domain, while the corresponding numbers are 12, 10, and 10% for the mountaintops. The reduction in SWE is more significant in a dry year, with 9% for the whole domain and 16% for the mountaintops. The maximum reduction of -20% in precipitation occurs in May and is associated with the maximum aerosol loading, leading to the largest decrease in SWE and surface runoff over that period. It is also found that dust aerosols can cause early snowmelt on the mountaintops and reduced surface runoff after April.« less

  1. Impacts of aerosols on seasonal precipitation and snowpack in California based on convection-permitting WRF-Chem simulations

    NASA Astrophysics Data System (ADS)

    Wu, Longtao; Gu, Yu; Jiang, Jonathan H.; Su, Hui; Yu, Nanpeng; Zhao, Chun; Qian, Yun; Zhao, Bin; Liou, Kuo-Nan; Choi, Yong-Sang

    2018-04-01

    A version of the WRF-Chem model with fully coupled aerosol-meteorology-snowpack is employed to investigate the impacts of various aerosol sources on precipitation and snowpack in California. In particular, the impacts of locally emitted anthropogenic and dust aerosols, and aerosols transported from outside California are studied. We differentiate three pathways of aerosol effects: aerosol-radiation interaction (ARI), aerosol-snow interaction (ASI), and aerosol-cloud interaction (ACI). The convection-permitting model simulations show that precipitation, snow water equivalent (SWE), and surface air temperature averaged over the whole domain (34-42° N, 117-124° W, not including ocean points) are reduced when aerosols are included, therefore reducing large biases in these variables due to the absence of aerosol effects in the model. Aerosols affect California water resources through the warming of mountaintops and the reduction of precipitation; however, different aerosol sources play different roles in changing surface temperature, precipitation, and snowpack in California by means of various weights of the three pathways. ARI by all aerosols mainly cools the surface, leading to slightly increased SWE over the mountains. Locally emitted dust aerosols warm the surface of mountaintops through ASI, in which the reduced snow albedo associated with dusty snow leads to more surface absorption of solar radiation and reduced SWE. Transported aerosols and local anthropogenic aerosols play a dominant role in increasing nonprecipitating clouds but reducing precipitation through ACI, leading to reduced SWE and runoff on the Sierra Nevada, as well as the warming of mountaintops associated with decreased SWE and hence lower surface albedo. The average changes in surface temperature from October 2012 to June 2013 are about -0.19 and 0.22 K for the whole domain and over mountaintops, respectively. Overall, the averaged reduction during October to June is about 7 % for precipitation, 3 % for SWE, and 7 % for surface runoff for the whole domain, while the corresponding numbers are 12, 10, and 10 % for the mountaintops. The reduction in SWE is more significant in a dry year, with 9 % for the whole domain and 16 % for the mountaintops. The maximum reduction of ˜ 20 % in precipitation occurs in May and is associated with the maximum aerosol loading, leading to the largest decrease in SWE and surface runoff over that period. It is also found that dust aerosols can cause early snowmelt on the mountaintops and reduced surface runoff after April.

  2. Impacts of aerosols on seasonal precipitation and snowpack in California based on convection-permitting WRF-Chem simulations

    DOE PAGES

    Wu, Longtao; Gu, Yu; Jiang, Jonathan H.; ...

    2018-04-23

    Here, a version of the WRF-Chem model with fully coupled aerosol–meteorology–snowpack is employed to investigate the impacts of various aerosol sources on precipitation and snowpack in California. In particular, the impacts of locally emitted anthropogenic and dust aerosols, and aerosols transported from outside California are studied. We differentiate three pathways of aerosol effects: aerosol–radiation interaction (ARI), aerosol–snow interaction (ASI), and aerosol–cloud interaction (ACI). The convection-permitting model simulations show that precipitation, snow water equivalent (SWE), and surface air temperature averaged over the whole domain (34–42° N, 117–124° W, not including ocean points) are reduced when aerosols are included, therefore reducing largemore » biases in these variables due to the absence of aerosol effects in the model. Aerosols affect California water resources through the warming of mountaintops and the reduction of precipitation; however, different aerosol sources play different roles in changing surface temperature, precipitation, and snowpack in California by means of various weights of the three pathways. ARI by all aerosols mainly cools the surface, leading to slightly increased SWE over the mountains. Locally emitted dust aerosols warm the surface of mountaintops through ASI, in which the reduced snow albedo associated with dusty snow leads to more surface absorption of solar radiation and reduced SWE. Transported aerosols and local anthropogenic aerosols play a dominant role in increasing nonprecipitating clouds but reducing precipitation through ACI, leading to reduced SWE and runoff on the Sierra Nevada, as well as the warming of mountaintops associated with decreased SWE and hence lower surface albedo. The average changes in surface temperature from October 2012 to June 2013 are about –0.19 and 0.22 K for the whole domain and over mountaintops, respectively. Overall, the averaged reduction during October to June is about 7 % for precipitation, 3 % for SWE, and 7 % for surface runoff for the whole domain, while the corresponding numbers are 12, 10, and 10 % for the mountaintops. The reduction in SWE is more significant in a dry year, with 9 % for the whole domain and 16 % for the mountaintops. The maximum reduction of ~20 % in precipitation occurs in May and is associated with the maximum aerosol loading, leading to the largest decrease in SWE and surface runoff over that period. It is also found that dust aerosols can cause early snowmelt on the mountaintops and reduced surface runoff after April.« less

  3. Immediate Repair Bond Strength of Fiber-reinforced Composite after Saliva or Water Contamination.

    PubMed

    Bijelic-Donova, Jasmina; Flett, Andrew; Lassila, Lippo V J; Vallittu, Pekka K

    2018-05-31

    This in vitro study aimed to evaluate the shear bond strength (SBS) of particulate filler composite (PFC) to saliva- or water-contaminated fiber-reinforced composite (FRC). One type of FRC substrate with semi-interpenetrating polymer matrix (semi-IPN) (everStick C&B) was used in this investigation. A microhybrid PFC (Filtek Z250) substrate served as control. Freshly cured PFC and FRC substrates were first subjected to different contamination and surface cleaning treatments, then the microhybrid PFC restorative material (Filtek Z250) was built up on the substrates in 2-mm increments and light cured. Uncontaminated and saliva- or water-contaminated substrate surfaces were either left untreated or were cleaned via phosphoric acid etching or water spray accompanied with or without adhesive composite application prior applying the adherent PFC material. SBS was evaluated after thermocycling the specimens (6000 cycles, 5°C and 55°C). Three-way ANOVA showed that both the surface contamination and the surface treatment signficantly affected the bond strength (p < 0.05). Saliva contamination reduced the SBS more than did the water contamination. SBS loss after saliva contamination was 73.7% and 31.3% for PFC and FRC, respectively. After water contamination, SBS loss was 17.2% and 13.3% for PFC and FRC, respectively. The type of surface treatment was significant for PFC (p < 0.05), but not for FRC (p = 0.572). Upon contamination of freshly cured PFC or semi-IPN FRC, surfaces should be re-prepared via phosphoric acid etching, water cleaning, drying, and application of adhesive composite in order to recover optimal bond strength.

  4. Environmental surveillance master sampling schedule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisping, L.E.

    This document contains the planned 1994 schedules for routine collection of samples for the Surface Environmental Surveillance Project (SESP), Drinking Water Project, and Ground-Water Surveillance Project. Samples are routinely collected for the SESP and analyzed to determine the quality of air, surface water, soil, sediment, wildlife, vegetation, foodstuffs, and farm products at Hanford Site and surrounding communities. The responsibility for monitoring the onsite drinking water falls outside the scope of the SESP. The Hanford Environmental Health Foundation is responsible for monitoring the nonradiological parameters as defined in the National Drinking Water Standards while PNL conducts the radiological monitoring of themore » onsite drinking water. PNL conducts the drinking water monitoring project concurrent with the SESP to promote efficiency and consistency, utilize the expertise developed over the years, and reduce costs associated with management, procedure development, data management, quality control and reporting. The ground-water sampling schedule identifies ground-water sampling events used by PNL for environmental surveillance of the Hanford Site.« less

  5. Effective use of integrated hydrological models in basin-scale water resources management: surrogate modeling approaches

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Wu, B.; Wu, X.

    2015-12-01

    Integrated hydrological models (IHMs) consider surface water and subsurface water as a unified system, and have been widely adopted in basin-scale water resources studies. However, due to IHMs' mathematical complexity and high computational cost, it is difficult to implement them in an iterative model evaluation process (e.g., Monte Carlo Simulation, simulation-optimization analysis, etc.), which diminishes their applicability for supporting decision-making in real-world situations. Our studies investigated how to effectively use complex IHMs to address real-world water issues via surrogate modeling. Three surrogate modeling approaches were considered, including 1) DYCORS (DYnamic COordinate search using Response Surface models), a well-established response surface-based optimization algorithm; 2) SOIM (Surrogate-based Optimization for Integrated surface water-groundwater Modeling), a response surface-based optimization algorithm that we developed specifically for IHMs; and 3) Probabilistic Collocation Method (PCM), a stochastic response surface approach. Our investigation was based on a modeling case study in the Heihe River Basin (HRB), China's second largest endorheic river basin. The GSFLOW (Coupled Ground-Water and Surface-Water Flow Model) model was employed. Two decision problems were discussed. One is to optimize, both in time and in space, the conjunctive use of surface water and groundwater for agricultural irrigation in the middle HRB region; and the other is to cost-effectively collect hydrological data based on a data-worth evaluation. Overall, our study results highlight the value of incorporating an IHM in making decisions of water resources management and hydrological data collection. An IHM like GSFLOW can provide great flexibility to formulating proper objective functions and constraints for various optimization problems. On the other hand, it has been demonstrated that surrogate modeling approaches can pave the path for such incorporation in real-world situations, since they can dramatically reduce the computational cost of using IHMs in an iterative model evaluation process. In addition, our studies generated insights into the human-nature water conflicts in the specific study area and suggested potential solutions to address them.

  6. Spatial variability analysis of combining the water quality and groundwater flow model to plan groundwater and surface water management in the Pingtung plain

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Fang; Chen, Jui-Sheng; Jang, Cheng-Shin

    2014-05-01

    As a result of rapid economic growth in the Pingtung Plain, the use of groundwater resources has changed dramatically. The groundwater is quite rich in the Pingtung plain and the most important water sources. During the several decades, a substantial amount of groundwater has been pumped for the drinking, irrigation and aquaculture water supplies. However, because the sustainable use concept of groundwater resources is lack, excessive pumping of groundwater causes the occurrence of serious land subsidence and sea water intrusion. Thus, the management and conservation of groundwater resources in the Pingtung plain are considerably critical. This study aims to assess the conjunct use effect of groundwater and surface water in the Pingtung plain on recharge by reducing the amount of groundwater extraction. The groundwater quality variability and groundwater flow models are combined to spatially analyze potential zones of groundwater used for multi-purpose in the Pingtung Plain. First, multivariate indicator kriging (MVIK) is used to analyze spatial variability of groundwater quality based on drinking, aquaculture and irrigation water quality standards, and probabilistically delineate suitable zones in the study area. Then, the groundwater flow model, Processing MODFLOW (PMWIN), is adopted to simulate groundwater flow. The groundwater flow model must be conducted by the calibration and verification processes, and the regional groundwater recovery is discussed when specified water rights are replaced by surface water in the Pingtung plain. Finally, the most suitable zones of reducing groundwater use are determined for multi-purpose according to combining groundwater quality and quantity. The study results can establish a sound and low-impact management plan of groundwater resources utilization for the multi-purpose groundwater use, and prevent decreasing ground water tables, and the occurrence of land subsidence and sea water intrusion in the Pingtung plain.

  7. Reconstruction of the Eocene Arctic Ocean Using Ichthyolith Isotope Analyses

    NASA Astrophysics Data System (ADS)

    Gleason, J. D.; Thomas, D. J.; Moore, T. C.; Waddell, L. M.; Blum, J. D.; Haley, B. A.

    2007-12-01

    Nd, Sr, O and C isotopic compositions of Eocene fish debris (teeth, bones, scales), and their reduced organic coatings, have been used to reconstruct water mass composition, water column structure, surface productivity and salinities of the Arctic Ocean Basin at Lomonosov Ridge between 55 and 44 Ma. Cleaned ichthyolith samples from IODP Expedition 302 (ACEX) record epsilon Nd values that range from -5.7 to -7.8, distinct from modern Arctic Intermediate Water (-10.5) and North Atlantic Deep Water. These Nd values may record some exchange with Pacific/Tethyan water masses, but inputs from local continental sources are more likely. Sr isotopic values are consistent with a brackish-to-fresh water surface layer (87Sr/86Sr = 0.7079-0.7087) that was poorly mixed with Eocene global seawater (0.7077-0.7078). Leaching experiments show reduced organic coatings to be more radiogenic (>0.7090) than cleaned ichthyolith phosphate. Ichthyolith Sr isotopic variations likely reflect changes in localized river input as a function of shifts in the Arctic hydrologic cycle, and 87Sr/86Sr values might be used as a proxy for surface water salinity. Model mixing calculations indicate salinities of 5 to 20 per mil, lower than estimates based on O isotopes from fish bone carbonate (16 to 26 per mil). Significant salinity drops (i.e., 55 Ma PETM and 48.5 Ma Azolla event) registered in oxygen isotopes do not show large excursions in the 87Sr/86Sr data. Carbon isotopes in fish debris record a spike in organic activity at 48.5 Ma (Azolla event), and otherwise high-productivity waters between 55 and 44 Ma. The combined Sr-Nd-O-C isotopic record is consistent with highly restricted basin-wide circulation in the Eocene, indicative of a highly stratified water column with anoxic bottom waters, a "fresh" water upper layer, and enhanced continental runoff during warm intervals until the first appearance of ice rafted debris at 45 Ma.

  8. Arsenic and antimony geochemistry of mine wastes, associated waters and sediments at the Giant Mine, Yellowknife, Northwest Territories, Canada

    USGS Publications Warehouse

    Fawcett, Skya E.; Jamieson, Heather E.; Nordstrom, D. Kirk; McCleskey, R. Blaine

    2015-01-01

    Elevated levels of arsenic (As) and antimony (Sb) in water and sediments are legacy residues found downstream from gold-mining activities at the Giant Mine in Yellowknife, Northwest Territories (NWT), Canada. To track the transport and fate of As and Sb, samples of mine-waste from the mill, and surface water, sediment, pore-water, and vegetation downstream of the mine were collected. Mine waste, pore-water, and sediment samples were analyzed for bulk chemistry, and aqueous and solid-state speciation. Sediment and vegetation chemistry were evaluated using scanning electron microscope imaging, synchrotron-based element mapping and electron microprobe analysis. The distributions of As and Sb in sediments were similar, yet their distributions in the corresponding pore-waters were mostly dissimilar, and the mobility of As was greater than that of Sb. Competition for sorption sites is the most likely cause of elevated Sb concentrations in relatively oxidized pore-water and surface water. The aqueous and solid-state speciation of As and Sb also differed. In pore-water, As(V) dominated in oxidizing environments and As(III) in reducing environments. In contrast, the Sb(V) species dominated in all but one pore-water sample, even under reducing conditions. Antimony(III) appears to preferentially precipitate or adsorb onto sulfides as evidenced by the prevalence of an Sb(III)-S secondary solid-phase and the lack of Sb(III)(aq) in the deeper zones. The As(V)–O solid phase became depleted with depth below the sediment–water interface, and the Sb(V)–O phase persisted under relatively reducing conditions. In the surficial zone at a site populated by Equisetum fluviatile (common horsetail), As and Sb were associated with organic material and appeared mobile in the root zone. In the zone below active plant growth, As and Sb were associated primarily with inorganic phases suggesting a release and reprecipitation of these elements upon plant death. The co-existence of reduced and oxidized As and Sb species, instability of some phases under changing redox conditions, and plant uptake and release pose challenges for remediation efforts at the mine.

  9. Factors Affecting Source-Water Quality after Disturbance of Forests by Wildfire

    NASA Astrophysics Data System (ADS)

    Murphy, S. F.; Martin, D. A.; McCleskey, R. B.; Writer, J. H.

    2015-12-01

    Forests yield high-quality water supplies to communities throughout the world, in part because forest cover reduces flooding and the consequent transport of suspended and dissolved constituents to surface water. Disturbance by wildfire reduces or eliminates forest cover, leaving watersheds susceptible to increased surface runoff during storms and reduced ability to retain contaminants. We assessed water-quality response to hydrologic events for three years after a wildfire in the Fourmile Creek Watershed, near Boulder, Colorado, and found that hydrologic and geochemical responses downstream of a burned area were primarily driven by small, brief convective storms that had relatively high, but not unusual, rainfall intensity. Total suspended sediment, dissolved organic carbon, nitrate, and manganese concentrations were 10-156 times higher downstream of a burned area compared to upstream, and water quality was sufficiently impaired to pose water-treatment concerns. The response in both concentration and yield of water-quality constituents differed depending on source availability and dominant watershed processes controlling the constituent. For example, while all constituent concentrations were highest during storm events, annual sediment yields downstream of the burned area were controlled by storm events and subsequent mobilization, whereas dissolved organic carbon yields were more dependent on spring runoff from upstream areas. The watershed response was affected by a legacy of historical disturbance: the watershed had been recovering from extensive disturbance by mining, railroad and road development, logging, and fires in the late 19th and early 20th centuries, and we observed extensive erosion of mine waste in response to these summer storms. Therefore, both storm characteristics and historical disturbance in a burned watershed must be considered when evaluating the role of wildfire on water quality.

  10. Iodine chemistry in the water column of the Chesapeake Bay: Evidence for organic iodine forms

    NASA Astrophysics Data System (ADS)

    Luther, George W.; Ferdelman, Timothy; Culberson, Charles H.; Kostka, Joel; Wu, Jingfeng

    1991-03-01

    During the summer of 1987, we collected and analysed Chesapeake Bay water samples for the inorganic iodine species: iodide (by cathodic-stripping squarewave voltammetry) and iodate (by differential pulse polarography); and total iodine (by hypochlorite oxidation of the seawater sample to iodate). The difference between the sum of the inorganic iodine species and the total iodine was significant for about one-third of the samples collected from the Bay. Thus, in these samples, a third (or more) 'new' form(s) of iodine was present. These samples were primarily from oxygen-saturated surface waters of high biological activity (primary productivity and bacterial processes). This 'new' form can make up as much as 70% of the total iodine. Waters containing low oxygen concentrations showed less of this 'new' form of iodine whereas anoxic and sulphidic bottom waters contained only iodide. This 'new' form of iodine is organic in nature and probably non-volatile. It may reside in the peptide and humic fractions. Only reduced iodine (iodide and organic iodine) was detected in waters from the northern section of the Bay, whereas only iodide and iodate were detected in the southern section of the Bay. In only two samples were iodide, iodate and the 'new' form of iodine found to coexist. Iodide and organic iodine are probably cycled in the surface waters of the northern section of the Bay via a combination of biogeochemical and photochemical processes which produce the reactive intermediates, molecular iodine and hypoiodous acid. These react quickly with reduced inorganic and organic compounds to maintain the reduced forms of iodine in the water column. Only total iodine is conservative throughout the estuary. The inorganic iodine forms can be used as geochemical tracers.

  11. Designing Energy-Efficient Heat Exchangers--- Creating Micro-Channels on the Aluminum Fin Surface

    NASA Astrophysics Data System (ADS)

    Ying, Jia; Sommers, Andrew; Eid, Khalid

    2010-03-01

    In this research, a method for patterning micro-channels on aluminum surfaces is described for the purpose of exploiting those features to affect the surface wettability. Minimizing water retention on aluminum is important in the design of energy-efficient heat exchangers because water retention can deteriorate the performance of such devices. It increases the air-side pressure drop and can decrease the sensible heat transfer coefficient thereby increasing energy consumption and contributing to higher pollution levels in the environment. Photolithography is used to create the micro-scale channels and a hydrophobic polymer is used to reduce the surface energy of the aluminum plates. Droplets are both injected on the surface using a micro-syringe and condensed on the surface using an environmentally-controlled chamber. A ram'e-hart goniometer is used to determine the advancing and receding contact angles of water droplets on these modified surfaces, and a tilt-table assembly is used to measure the critical inclination angle for sliding. Our results show that droplets placed on these patterned surfaces not only have significantly lower critical inclination angles for sliding but are easier to remove from the surface at low air flow rates. Efforts to model the onset of droplet movement on these surfaces using a simple force balance relationship are currently underway.

  12. Cyanide hazards to plants and animals from gold mining and related water issues.

    PubMed

    Eisler, Ronald; Wiemeyer, Stanley N

    2004-01-01

    Cyanide extraction of gold through milling of high-grade ores and heap leaching of low-grade ores requires cycling of millions of liters of alkaline water containing high concentrations of potentially toxic sodium cyanide (NaCN), free cyanide, and metal-cyanide complexes. Some milling operations result in tailings ponds of 150 ha and larger. Heap leach operations that spray or drip cyanide onto the flattened top of the ore heap require solution processing ponds of about 1 ha in surface area. Puddles of various sizes may occur on the top of heaps, where the highest concentrations of NaCN are found. Solution recovery channels are usually constructed at the base of leach heaps, some of which may be exposed. All these cyanide-containing water bodies are hazardous to wildlife, especially migratory waterfowl and bats, if not properly managed. Accidental spills of cyanide solutions into rivers and streams have produced massive kills of fish and other aquatic biota. Freshwater fish are the most cyanide-sensitive group of aquatic organisms tested, with high mortality documented at free cyanide concentrations >20 microg/L and adverse effects on swimming and reproduction at >5 microg/L. Exclusion from cyanide solutions or reductions of cyanide concentrations to nontoxic levels are the only certain methods of protecting terrestrial vertebrate wildlife from cyanide poisoning; a variety of exclusion/cyanide reduction techniques are presented and discussed. Additional research is recommended on (1) effects of low-level, long-term, cyanide intoxication in birds and mammals by oral and inhalation routes in the vicinity of high cyanide concentrations; (2) long-term effects of low concentrations of cyanide on aquatic biota; (3) adaptive resistance to cyanide; and (4) usefulness of various biochemical indicators of cyanide poisoning. To prevent flooding in mine open pits, and to enable earth moving on a large scale, it is often necessary to withdraw groundwater and use it for irrigation, discharge it to rapid infiltration basins, or, in some cases, discharge it to surface waters. Surface waters are diverted around surface mining operations. Adverse effects of groundwater drawdown include formation of sinkholes within 5 km of groundwater drawdown; reduced stream flows with reduced quantities of wate available for irrigation, stock watering, and domestic, mining and milling, and municipal uses; reduction or loss of vegetation cover for wildlife, with reduced carrying capacity for terrestrial wildlife; loss of aquatic habitat for native fishes and their prey; and disruption of Native American cultural traditions. Surface discharge of excess mine dewatering water and other waters to main waterways may contain excess quantities of arsenic, total dissolved solids, boron, copper, fluoride, and zinc. When mining operations cease, and the water pumps are dismantled, these large open pits may slowly fill with water, forming lakes. The water quality of pit lakes may present a variety of pressing environmental problems.

  13. Using Iron-Manganese Co-Oxide Filter Film to Remove Ammonium from Surface Water

    PubMed Central

    Zhang, Ruifeng; Huang, Tinglin; Wen, Gang; Chen, Yongpan; Cao, Xin; Zhang, Beibei

    2017-01-01

    An iron-manganese co-oxide filter film (MeOx) has been proven to be a good catalyst for the chemical catalytic oxidation of ammonium in groundwater. Compared with groundwater, surface water is generally used more widely and has characteristics that make ammonium removal more difficult. In this study, MeOx was used to remove ammonium from surface water. It indicated that the average ammonium removal efficiency of MeOx was greater than 90%, even though the water quality changed dramatically and the water temperature was reduced to about 6–8 °C. Then, through inactivating microorganisms, it showed that the removal capability of MeOx included both biological (accounted for about 41.05%) and chemical catalytic oxidation and chemical catalytic oxidation (accounted for about 58.95%). The investigation of the characterizations suggested that MeOx was formed by abiotic ways and the main elements on the surface of MeOx were distributed homogenously. The analysis of the catalytic oxidation process indicated that ammonia nitrogen may interact with MeOx as both ammonia molecules and ammonium ions and the active species of O2 were possibly •O and O2−. PMID:28753939

  14. Using Iron-Manganese Co-Oxide Filter Film to Remove Ammonium from Surface Water.

    PubMed

    Zhang, Ruifeng; Huang, Tinglin; Wen, Gang; Chen, Yongpan; Cao, Xin; Zhang, Beibei

    2017-07-19

    An iron-manganese co-oxide filter film (MeO x ) has been proven to be a good catalyst for the chemical catalytic oxidation of ammonium in groundwater. Compared with groundwater, surface water is generally used more widely and has characteristics that make ammonium removal more difficult. In this study, MeO x was used to remove ammonium from surface water. It indicated that the average ammonium removal efficiency of MeO x was greater than 90%, even though the water quality changed dramatically and the water temperature was reduced to about 6-8 °C. Then, through inactivating microorganisms, it showed that the removal capability of MeO x included both biological (accounted for about 41.05%) and chemical catalytic oxidation and chemical catalytic oxidation (accounted for about 58.95%). The investigation of the characterizations suggested that MeO x was formed by abiotic ways and the main elements on the surface of MeO x were distributed homogenously. The analysis of the catalytic oxidation process indicated that ammonia nitrogen may interact with MeO x as both ammonia molecules and ammonium ions and the active species of O₂ were possibly • O and O₂ - .

  15. Providing Data and Modeling to Help Manage Water Supplies

    USGS Publications Warehouse

    Nickles, James

    2008-01-01

    The Sonoma County Water Agency (SCWA) and other local water purveyors have partnered with the U.S. Geological Survey (USGS) to assess hydrologic conditions and to quan-tify the county-wide interconnections between surface water and ground water. Through this partnership, USGS scientists have completed assessments of the geohydrology and geochemistry of the Sonoma and Alexander Valley ground-water basins. Now, the USGS is constructing a detailed ground-water flow model of the Santa Rosa Plain. It will be used to help identify strategies for surface-water/ground-water management and help to ensure long-term viability of the water supply. The USGS is also working with the SCWA to help meet future demand in the face of possible new restrictions on its main source of water, the Russian River. SCWA draws water from the alluvial aquifer underlying and adjacent to the Russian River and may want to extend riverbank filtration facilities to new areas. USGS scientists are conducting research to charac-terize riverbank filtration processes and changes in water quality during reduced river flows.

  16. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water.

    PubMed

    Vang, Óluva K; Corfitzen, Charlotte B; Smith, Christian; Albrechtsen, Hans-Jørgen

    2014-11-01

    Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface water. To investigate the ability of the ATP assay in detecting different contamination types, the contaminant was diluted with non-chlorinated drinking water. Wastewater, diluted at 10(4) in drinking water, was detected with the ATP assay, as well as 10(2) to 10(3) times diluted surface water. To improve the performance of the ATP assay in detecting microbial ingress in drinking water, different approaches were investigated, i.e. quantifying microbial ATP or applying reagents of different sensitivities to reduce measurement variations; however, none of these approaches contributed significantly in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more sensitive than the ATP measurements, though with much longer response times. Continuous sampling combined with ATP measurements displays definite monitoring potential for microbial drinking water quality, since microbial ingress in drinking water can be detected in real-time with ATP measurements. The ability of the ATP assay to detect microbial ingress is influenced by both the ATP load from the contaminant itself and the ATP concentration in the specific drinking water. Consequently, a low ATP concentration of the specific drinking water facilitates a better detection of a potential contamination of the water supply with the ATP assay. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Anomalous water expulsion from carbon-based rods at high humidity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nune, Satish K.; Lao, David B.; Heldebrant, David J.

    Managing water is critical for industrial applications including CO2 capture, catalysis, bio-oil separations and energy storage. Various classes of materials have been designed for these applications, achieving specific water adsorption capacities at a given relative humidity (RH). Three water adsorption-desorption mechanisms are common to inorganic materials: (1) chemisorption, which may lead to the modification of the first coordination sphere; (2) simple adsorption, which is reversible in nature; or (3) capillary condensation, which is irreversible in nature. Regardless of sorption mechanism, all materials known today increase water adsorption capacity with increasing RH; none exhibit repeated adsorption of water at low humiditymore » and release at high humidity. We present here a material that breaks from this convention: a new class of nitrogen containing carbon rods along with nonstoichiometric FeXSY that adsorb water at low humidity, and spontaneously expel half of the adsorbed water when the RH exceeds a 50–80% threshold. Monolayers of water form on the surfaces of the carbon rods, with the amount of water adsorbed directly linked to the aspect ratio of the rods and the available surface area. This unprecedented water expulsion is a reversible physical process. Once a complete monolayer is formed, adjacent rods in the bundles begin to adhere together via formation of a bridging monolayer, reducing the surface area available for water to adhere to. We believe the unique surface chemistry of these carbon rods can be used on other functionalized materials. Such behaviour offers a paradigm shift in water purification and separation: water could be repeatedly adsorbed from a low humidity vapour stream and then expelled into a pure water vapour stream, or humidity-responsive membranes could change their water permeance or selectivity as a function of RH.« less

  18. First-principles study of Cs/Rb co-doped FAPbI3 stability and degradation in the presence of water and oxygen

    NASA Astrophysics Data System (ADS)

    Guo, Yao; Li, Chengbo; Xue, Yuanbin; Geng, Cuihuan; Tian, Dayong

    2018-02-01

    The poor stability of organometallic halide perovskite in humid environments is one of the biggest challenges for its commercialization in light harvesting and electroluminescent displays. Understanding the atomic detail of the perovskite/water (oxygen) interface is a critical way to explore the practicability of perovskite. In this work, we report a density functional study of water and oxygen adsorption on the Cs/Rb incorporated FAPbI3 (001) surface. The role played by water and oxygen molecules has been extensively studied in the initial degradation processes, where the strong interactions between adsorbates and perovskite surfaces are confirmed. Our results show that the dopant-terminated surface was relatively more stable than PbI2-termination one. The effects of doping on the optoelectronic properties were slight at low concentrations. The calculations showed that the molecule tend to adsorb on the I-top site of the Cs-terminated surface and the Pb-top site of the PbI2 (Cs)-terminated surface. The vdW contribution on the bonding between bare surface and molecule can be observed. The degradation-induced optical absorption decrease in the visible region could be found. Water and oxygen molecule destroy the perovskite surface structures and subsequently reduce its conversion efficiency. These findings contribute molecular-level insight into the initial stage of perovskite degradation, which should be helpful to inspire new interfacial modifications to improve the stability of corresponding perovskite materials under wet conditions.

  19. Roles of surface water areas for water and solute cycle in Hanoi city, Viet Nam

    NASA Astrophysics Data System (ADS)

    Hayashi, Takeshi; Kuroda, Keisuke; Do Thuan, An; Tran Thi Viet, Nga; Takizawa, Satoshi

    2013-04-01

    Hanoi city, the capital of Viet Nam, has developed beside the Red river. Recent rapid urbanization of this city has reduced a large number of natural water areas such as lakes, ponds and canals not only in the central area but the suburban area. Contrary, the urbanization has increased artificial water areas such as pond for fish cultivation and landscaping. On the other hand, the urbanization has induced the inflow of waste water from households and various kinds of factories to these water areas because of delay of sewerage system development. Inflow of the waste water has induced eutrophication and pollution of these water areas. Also, there is a possibility of groundwater pollution by infiltration of polluted surface water. However, the role of these water areas for water cycle and solute transport is not clarified. Therefore, this study focuses on the interaction between surface water areas and groundwater in Hanoi city to evaluate appropriate land development and groundwater resource management. We are carrying out three approaches: a) understanding of geochemical characteristics of surface water and groundwater, b) monitoring of water levels of pond and groundwater, c) sampling of soil and pond sediment. Correlation between d18O and dD of precipitation (after GNIP), the Red River (after GNIR) and the water samples of this study showed that the groundwater is composed of precipitation, the Red River and surface water that has evaporation process. Contribution of the surface water with evaporation process was widely found in the study area. As for groundwater monitoring, the Holocene aquifers at two sites were in unconfined condition in dry season and the groundwater levels in the aquifer continued to increase through rainy season. The results of isotopic analysis and groundwater level monitoring showed that the surface water areas are one of the major groundwater sources. On the other hand, concentrations of dissolved Arsenic (filtered by 0.45um) in the pore water of the pond sediments were much higher than the pond water and closed to that of groundwater. Also, other metal elements showed the same trend. This result suggested that Arsenic and other metal elements recharged to these ponds is probably adsorbed and removed by sediments (including organic matters). That is, pond sediment plays an important role for solute transport as a filter of Arsenic and metal elements. The results of this study strongly suggest that the natural and artificial surface water areas have important roles for water cycle and solute transport in Hanoi city. Although the number of the natural water areas is decreasing, dredging of artificial water areas increases the infiltration from the surface to aquifers. Therefore, qualitative and quantitative preservation of the surface water areas is important for conservation of groundwater environment and contribute to sustainable groundwater management in Hanoi city.

  20. Engineering report single-shell tank farms interim measures to limit infiltration through the vadose zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HAASS, C.C.

    1999-10-14

    Identifies, evaluates and recommends interim measures for reducing or eliminating water sources and preferential pathways within the vadose zone of the single-shell tank farms. Features studied: surface water infiltration and leaking water lines that provide recharge moisture, and wells that could provide pathways for contaminant migration. An extensive data base, maps, recommended mitigations, and rough order of magnitude costs are included.

  1. Tile Drainage Management Influences on Surface-Water and Groundwater Quality following Liquid Manure Application.

    PubMed

    Frey, Steven K; Topp, Ed; Ball, Bonnie R; Edwards, Mark; Gottschall, Natalie; Sunohara, Mark; Zoski, Erin; Lapen, David R

    2013-01-01

    This study investigated the potential for controlled tile drainage (CD) to reduce bacteria and nutrient loading to surface water and groundwater from fall-season liquid manure application (LMA) on four macroporous clay loam plots, of which two had CD and two had free-draining (FD) tiles. Rhodamine WT (RWT) was mixed into the manure and monitored in the tile water and groundwater following LMA. Tile water and groundwater quality were influenced by drainage management. Following LMA on the FD plots, RWT, nutrients, and bacteria moved rapidly via tiles to surface water; at the CD plots, tiles did not flow until the first post-LMA rainfall, so the immediate risk of LMA-induced contamination of surface water was abated. During the 36-d monitoring period, flow-weighted average specific conductance, redox potential, and turbidity, as well as total Kjeldahl N (TKN), total P (TP), NH-N, reactive P, and RWT concentrations, were higher in the CD tile effluent; however, because of lower tile discharge from the CD plots, there was no significant ( ≤ 0.05) difference in surface water nutrient and RWT loading between the CD and FD plots when all tiles were flowing. The TKN, TP, and RWT concentrations in groundwater also tended to be higher at the CD plots. Bacteria behaved differently than nutrients and RWT, with no significant difference in total coliform, , fecal coliform, fecal streptococcus, and concentrations between the CD and FD tile effluent; however, for all but , hourly loading was higher from the FD plots. Results indicate that CD has potential for mitigating bacteria movement to surface water. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Water-stable diblock polystyrene-block-poly(2-vinyl pyridine) and diblock polystyrene-block-poly(methyl methacrylate) cylindrical patterned surfaces inhibit settlement of zoospores of the green alga Ulva.

    PubMed

    Grozea, Claudia M; Gunari, Nikhil; Finlay, John A; Grozea, Daniel; Callow, Maureen E; Callow, James A; Lu, Zheng-Hong; Walker, Gilbert C

    2009-04-13

    Nanopatterned surfaces with hydrophobic and hydrophilic domains were produced using the diblock copolymer polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) and polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA). The PS-b-P2VP diblock copolymer, mixed with the cross-linker benzophenone and spin-coated onto silicon wafers, showed self-assembled cylindrical structures, which were retained after UV treatment for cross-linking. The thin films displayed cylindrical domains after immersion in water. This study shows that pattern retention in water is possible for a long period of time, at least for two weeks in pure water and three weeks in artificial seawater. The PS-b-PMMA diblock showed self-assembled cylindrical structures. PS-b-P2VP and PS-b-PMMA cylindrical patterned surfaces showed reduced settlement of zoospores of the green alga Ulva compared to unpatterned surfaces. The copolymers were investigated using atomic force microscopy and X-ray photoelectron spectroscopy.

  3. Late diagenetic indicators of buried oil and gas

    USGS Publications Warehouse

    Donovan, Terrence J.; Dalziel, Mary C.

    1977-01-01

    At least three hydrocarbon seepage mechanisms are interpreted to operate over oil and gas fields. These are: (1) effusion ofh ydrocarbons through inadequate caprocks and along faults and fractures, (2) low-molecular-weight hydrocarbons dissolved in water moving vertically through capping shales as a result of a hydrodynamic or chemical potential drive, and (3) diffusion of gases dissolved in water. Combinations of these mechanisms may also occur. Seeping hydrocarbons are oxidized near the earth's surface, and the resulting carbon dioxide reacts with water producing bicarbonate ions, which combine with calcium and magnesium dissolved in ground waters to yield isotopically distinctive pore-filling carbonate cements and surface rocks. The passage of hydrocarbons and associated compounds such as hydrogen sulfide through surface rocks causes a reducing environment and consequent reduction, mobilization, and loss of iron from iron-bearing minerals commonly resulting in a discoloration. Other metals such as manganese are also mobilized and redistributed. These changes in the physical and chemical properties of surface rocks correlate with the subsurface distribution of petroleum, and potentially can be detected from both airborne and spaceborne platforms.

  4. Influence of traditional agricultural practices on mobilization of arsenic from sediments to groundwater in Bengal delta.

    PubMed

    Farooq, S H; Chandrasekharam, D; Berner, Z; Norra, S; Stüben, D

    2010-11-01

    In the wake of the idea that surface derived dissolved organic carbon (DOC) plays an important role in the mobilization of arsenic (As) from sediments to groundwater and may provide a vital tool in understanding the mechanism of As contamination (mobilization/fixation) in Bengal delta; a study has been carried out. Agricultural fields that mainly cultivate rice (paddy fields) leave significantly large quantities of organic matter/organic carbon on the surface of Bengal delta which during monsoon starts decomposing and produces DOC. The DOC thus produced percolates down with rain water and mobilizes As from the sediments. Investigations on sediment samples collected from a paddy field clearly indicate that As coming on to the surface along with the irrigation water accumulates itself in the top few meters of sediment profile. The column experiments carried out on a 9 m deep sediment profile demonstrates that DOC has a strong potential to mobilize As from the paddy fields and the water recharging the aquifer through such agricultural fields contain As well above the WHO limit thus contaminating the shallow groundwater. Experiment also demonstrates that decay of organic matter induces reducing condition in the sediments. Progressively increasing reducing conditions not only prevent the adsorption of As on mineral surfaces but also cause mobilization of previously sorbed arsenic. There seems to be a cyclic pattern where As from deeper levels comes to the surface with irrigational water, accumulates itself in the sediments, and ultimately moves down to the shallow groundwater. The extensive and continual exploitation of intermediate/deep groundwater accelerates this cyclic process and helps in the movement of shallow contaminated groundwater to the deeper levels. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Hydromodification and Habitat Alteration: National Management Measures

    EPA Pesticide Factsheets

    This guidance document provides technical assistance to states, territories, tribes, and the public for managing hydromodification activities and reducing associated NPS pollution of surface and ground water. The document describes

  6. Hydrologic conditions in the Florida Panther National Wildlife Refuge, 2006-2007

    USGS Publications Warehouse

    Reese, Ronald S.

    2010-01-01

    Much of the surface water that flows into the Florida Panther National Wildlife Refuge (FPNWR) probably exits southward through Fakahatchee Strand as it did prior to development, because culverts and bridges constructed along I-75 allow overland flow to continue southward within the strand. During the dry season and periods of low water levels, however, much of the flow is diverted westward by the I-75 Canal into Merritt Canal at the southwestern corner of the FPNWR. Substantial drainage of groundwater from the FPNWR into the I-75 Canal is indicated by (1) greater surface-water outflows than inflows in the FPNWR, (2) flows that increase to the west along the I-75 Canal, and (3) correlation of rapid groundwater-level declines at sites close to the I-75 Canal with rapid declines in canal surface-water levels due to operation of a control structure in the Merritt Canal. This drainage of groundwater probably occurs through permeable limestone exposed in the I-75 Canal bank below a cap rock layer. Compared to predevelopment conditions, the time currently required to drain ponded water in some areas of the refuge should be less because of accelerated groundwater discharge into the I-75 Canal caused by the lowering of water levels in the canal during the peak of the wet season extending into the early dry season. This drainage probably reduces the duration of the hydroperiod in these wetlands from the wet season into the dry season, possibly reducing or limiting the extent or vitality of wildlife and plant community habitats.

  7. Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals.

    PubMed

    Wu, Qihang; Leung, Jonathan Y S; Geng, Xinhua; Chen, Shejun; Huang, Xuexia; Li, Haiyan; Huang, Zhuying; Zhu, Libin; Chen, Jiahao; Lu, Yayin

    2015-02-15

    Illegal e-waste recycling activity has caused heavy metal pollution in many developing countries, including China. In recent years, the Chinese government has strengthened enforcement to impede such activity; however, the heavy metals remaining in the abandoned e-waste recycling site can still pose ecological risk. The present study aimed to investigate the concentrations of heavy metals in soil and water in the vicinity of an abandoned e-waste recycling site in Longtang, South China. Results showed that the surface soil of the former burning and acid-leaching sites was still heavily contaminated with Cd (>0.39 mg kg(-1)) and Cu (>1981 mg kg(-1)), which exceeded their respective guideline levels. The concentration of heavy metals generally decreased with depth in both burning site and paddy field, which is related to the elevated pH and reduced TOM along the depth gradient. The pond water was seriously acidified and contaminated with heavy metals, while the well water was slightly contaminated since heavy metals were mostly retained in the surface soil. The use of pond water for irrigation resulted in considerable heavy metal contamination in the paddy soil. Compared with previous studies, the reduced heavy metal concentrations in the surface soil imply that heavy metals were transported to the other areas, such as pond. Therefore, immediate remediation of the contaminated soil and water is necessary to prevent dissemination of heavy metals and potential ecological disaster. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Improving the durability of a drag-reducing nanocoating by enhancing its mechanical stability.

    PubMed

    Cheng, Mengjiao; Zhang, Songsong; Dong, Hongyu; Han, Shihui; Wei, Hao; Shi, Feng

    2015-02-25

    The durability of superhydrophobic surface is a major problem to restrict industrial application of superhydrophobic materials from laboratory research, which can be attributed to a more general issue of mechanical stability for superhydrophobic coatings. Therefore, in order to handle this issue, we have fabricated a mechanically stable drag-reducing coating composed of elastic polydimethylsiloxane (PDMS) and hydrophobic copper particles on model ships, which can resist mechanical abrasion and has displayed a durable drag-reducing effect. In comparison with normal Au superhydrophobic coatings, the as-prepared PDMS/copper coatings showed durable drag reduction performance with a similar drag-reducing rate before (26%) and after (24%) mechanical abrasion. The mechanism for the enhanced mechanical stability and maintained drag reduction of the superhydrophobic surfaces was investigated through characterizations of surface morphology, surface wettability, and water adhesive force evaluation before and after abrasion. This is the first demonstration to realize the application of durable drag reduction by improving the mechanical stability of superhydrophobic coatings. We do believe that superhydrophobic surfaces with good resistance to mechanical abrasion or scratching may draw wide attention and gain significant applications with durable drag-reducing properties.

  9. Trimethylamine N-oxide stabilizes proteins via a distinct mechanism compared with betaine and glycine.

    PubMed

    Liao, Yi-Ting; Manson, Anthony C; DeLyser, Michael R; Noid, William G; Cremer, Paul S

    2017-03-07

    We report experimental and computational studies investigating the effects of three osmolytes, trimethylamine N -oxide (TMAO), betaine, and glycine, on the hydrophobic collapse of an elastin-like polypeptide (ELP). All three osmolytes stabilize collapsed conformations of the ELP and reduce the lower critical solution temperature (LSCT) linearly with osmolyte concentration. As expected from conventional preferential solvation arguments, betaine and glycine both increase the surface tension at the air-water interface. TMAO, however, reduces the surface tension. Atomically detailed molecular dynamics (MD) simulations suggest that TMAO also slightly accumulates at the polymer-water interface, whereas glycine and betaine are strongly depleted. To investigate alternative mechanisms for osmolyte effects, we performed FTIR experiments that characterized the impact of each cosolvent on the bulk water structure. These experiments showed that TMAO red-shifts the OH stretch of the IR spectrum via a mechanism that was very sensitive to the protonation state of the NO moiety. Glycine also caused a red shift in the OH stretch region, whereas betaine minimally impacted this region. Thus, the effects of osmolytes on the OH spectrum appear uncorrelated with their effects upon hydrophobic collapse. Similarly, MD simulations suggested that TMAO disrupts the water structure to the least extent, whereas glycine exerts the greatest influence on the water structure. These results suggest that TMAO stabilizes collapsed conformations via a mechanism that is distinct from glycine and betaine. In particular, we propose that TMAO stabilizes proteins by acting as a surfactant for the heterogeneous surfaces of folded proteins.

  10. Potential for Loss of Breeding Habitat for Imperiled Mountain Yellow-legged Frog ( Rana muscosa) in High Sierra Nevada Mountain Water Bodies due to Reduced Snowpack: Interaction of Climate Change and an Introduced Predator

    NASA Astrophysics Data System (ADS)

    Lacan, I.; Matthews, K. R.

    2005-12-01

    Year to year variation in snowpack (20-200% average) and summer rain create large fluctuations in the volume of water in ponds and small lakes of the higher elevation (> 3000 m) Sierra Nevada. These water bodies are critical habitat for the imperiled mountain yellow-legged frog, Rana muscosa, which has decreased in abundance by 90% during the past century, due in part to the loss of suitable habitat and introduction of a fish predator (trout, Oncorhynchus spp.). Climate change is predicted to reduce the amount of snowpack, potentially impacting amphibian habitats throughout the Sierra Nevada by further reducing the lake and pond water levels and resulting in drying of small lakes during the summer. Mountain yellow-legged frogs are closely tied to water during all life stages, and are unique in having a three- to four-year tadpole phase. Thus, tadpole survival and future recruitment of adult frogs requires adequate water in lakes and ponds throughout the year, but larger lakes are populated with fish that prey on frogs and tadpoles. Thus, most successful frog breeding occurs in warm, shallow, fishless ponds that undergo wide fluctuations in volume. These water bodies would be most susceptible to the potential climate change effects of reduced snowpack, possibly resulting in lower tadpole survival. This study explores the link between the changes in water availability -- including complete pond drying -- and the abundance and recruitment of mountain yellow-legged frog in Dusy Basin, Kings Canyon National Park, California, USA. We propose using the low-snowpack years (1999, 2002, 2004) as comparative case studies to predict future effects of climate change on aquatic habitat availability and amphibian abundance and survival. To quantify the year to year variation and changes in water volume available to amphibians, we initiated GPS lake mapping in 2002 to quantify water volumes, water surface area, and shoreline length. We tracked these changes by repeated mapping of water surface and volume (bathymetry) during the summer, and concurrently counting all the life stages (adults, subadults, tadpoles) of frogs. As a baseline in this analysis, we present 2002 data when pond volume declined 40-100% during summer in three breeding lakes. The lakes that completely dried up in 2002 were repopulated by adults in 2003 but showed no recruitment of metamorphosed frogs from previous year's tadpoles. The lakes that retained water -- even if they underwent a large reduction in water volume (-60%), surface area (-70%) and shoreline length (-70%) during the summer -- show consistent tadpole-to-subadult recruitment in the following year (2003). Similar results are obtained using frog counts from 1999-2000 and 2004-2005 and estimates of water volume in those years. Our results suggest that more frequent summer drying of small ponds -- as may be induced by climate change -- will severely reduce frog recruitment. When combined with the invasive fish that prevent frog breeding in larger lakes, such effect of climate change may cause loss of local frog populations, and push the entire species towards extinction.

  11. Impacts of Natural Surfactant Soybean Phospholipid on Wettability of High-rank Coal Reservoir

    NASA Astrophysics Data System (ADS)

    Lyu, S.; Xiao, Y.; Yuan, M.; Wang, S.

    2017-12-01

    It is significant to change the surface wettability of coal rock with the surfactant in coal mining and coalbed methane exploitation. Soybean phospholipid (SP) is a kind of natural zwitterionic surfactant which is non-toxic and degradable. In order to study the effects of soybean phospholipid on wettability of high-rank coal in Qinshui Basin, some experiments including surface tension test, contact angle measurement on the coal surface, coal fines imbibition, observation of dispersion effect and gas permeability test were carried out, and water locking mechanism of fracturing fluid in micro fractures of coal reservoir was analyzed. The results show that the surface of high-rank coal was negatively charged in solution and of weak hydrophilicity. The soybean phospholipid with the mass fraction of 0.1% reduced the surface tension of water by 69%, and increased the wettability of coal. Meanwhile, the soybean phospholipid helped coal fines to disperse by observation of the filter cake with the scanning electron microscope. The rising rate of soybean phospholipid solution in the pipe filled with coal fines was lower than that of anionic and cationic surfactant, higher than that of clean water and non-ionic surfactant. Composite surfactant made up of soybean phospholipid and OP-10 at the ratio of 1:3 having a low surface tension and large contact angle, reduced the capillary force effectively, which could be conducive to discharge of fracturing fluid from coal reservoir micro fracture and improve the migration channels of gas. Therefore it has a broad application prospect.

  12. Sea Surface Salinity Variability from Simulations and Observations: Preparing for Aquarius

    NASA Technical Reports Server (NTRS)

    Jacob, S. Daniel; LeVine, David M.

    2010-01-01

    Oceanic fresh water transport has been shown to play an important role in the global hydrological cycle. Sea surface salinity (SSS) is representative of the surface fresh water fluxes and the upcoming Aquarius mission scheduled to be launched in December 2010 will provide excellent spatial and temporal SSS coverage to better estimate the net exchange. In most ocean general circulation models, SSS is relaxed to climatology to prevent model drift. While SST remains a well observed variable, relaxing to SST reduces the range of SSS variability in the simulations (Fig.1). The main objective of the present study is to simulate surface tracers using a primitive equation ocean model for multiple forcing data sets to identify and establish a baseline SSS variability. The simulated variability scales are compared to those from near-surface argo salinity measurements.

  13. Millennial-scale changes of surface and bottom water conditions in the northwestern Pacific during the last deglaciation

    NASA Astrophysics Data System (ADS)

    Kim, Sunghan; Khim, Boo-Keun; Ikehara, Ken; Itaki, Takuya; Shibahara, Akihiko; Yamamoto, Masanobu

    2017-07-01

    Changes in water column conditions in the northwestern Pacific during the last 23 ka were reconstructed using geochemical and isotope proxies and redox elemental compositions along with published data (alkenone sea surface temperature (SST) and benthic foraminiferal fauna) at core GH02-1030. Surface water primary productivity in terms of biogenic opal and TOC contents, which mainly represented export production of diatom, was closely related to alkenone (spring-summer) SST and the development of spring-summer mixed layer depth. The different variation patterns of nitrate and silicic acid utilization, estimated by bulk δ15N and δ30Sidiatom values, respectively, are most likely due to the water column denitrification influence on bulk δ15N. Dysoxic bottom water conditions occurred during the Bølling-Allerød (BA) and the Pre-Boreal (PB), which was evident by laminated sediments, abundant dysoxic benthic foraminifers, and increased redox elemental compositions. Although surface water productivity increased during the BA and PB, dysoxic bottom water conditions were caused by a combination of enhanced surface water productivity and reduced ventilation of North Pacific Intermediate Water (NPIW) in response to meltwater input from the high latitude areas. Based on records of core GH02-1030 and other cores in the northwestern Pacific, the Okhotsk Sea, and the Bering Sea, which are all proximal to the modern NPIW source region, dissolved oxygen concentrations of bottom water were more depleted during the BA than PB. Such difference was attributed to more sluggish NPIW ventilation due to more meltwater input during the BA than the PB. The opening or closure of the Bering Strait is critical to the direction of meltwater transport to the northwestern Pacific.

  14. Reducing nitrate loss in tile drainage water with cover crops and water-table management systems.

    PubMed

    Drury, C F; Tan, C S; Welacky, T W; Reynolds, W D; Zhang, T Q; Oloya, T O; McLaughlin, N B; Gaynor, J D

    2014-03-01

    Nitrate lost from agricultural soils is an economic cost to producers, an environmental concern when it enters rivers and lakes, and a health risk when it enters wells and aquifers used for drinking water. Planting a winter wheat cover crop (CC) and/or use of controlled tile drainage-subirrigation (CDS) may reduce losses of nitrate (NO) relative to no cover crop (NCC) and/or traditional unrestricted tile drainage (UTD). A 6-yr (1999-2005) corn-soybean study was conducted to determine the effectiveness of CC+CDS, CC+UTD, NCC+CDS, and NCC+UTD treatments for reducing NO loss. Flow volume and NO concentration in surface runoff and tile drainage were measured continuously, and CC reduced the 5-yr flow-weighted mean (FWM) NO concentration in tile drainage water by 21 to 38% and cumulative NO loss by 14 to 16% relative to NCC. Controlled tile drainage-subirrigation reduced FWM NO concentration by 15 to 33% and cumulative NO loss by 38 to 39% relative to UTD. When CC and CDS were combined, 5-yr cumulative FWM NO concentrations and loss in tile drainage were decreased by 47% (from 9.45 to 4.99 mg N L and from 102 to 53.6 kg N ha) relative to NCC+UTD. The reductions in runoff and concomitant increases in tile drainage under CC occurred primarily because of increases in near-surface soil hydraulic conductivity. Cover crops increased corn grain yields by 4 to 7% in 2004 increased 3-yr average soybean yields by 8 to 15%, whereas CDS did not affect corn or soybean yields over the 6 yr. The combined use of a cover crop and water-table management system was highly effective for reducing NO loss from cool, humid agricultural soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Accumulation of iron and arsenic in the Chandina alluvium of the lower delta plain, Southeastern Bangladesh

    USGS Publications Warehouse

    Zahid, A.; Hassan, M.Q.; Breit, G.N.; Balke, K.-D.; Flegr, M.

    2009-01-01

    Accumulations of iron, manganese, and arsenic occur in the Chandina alluvium of southeastern Bangladesh within 2.5 m of the ground surface. These distinctive orange-brown horizons are subhorizontal and consistently occur within 1 m of the contact of the aerated (yellow-brown) and water-saturated (gray) sediment. Ferric oxyhydroxide precipitates that define the horizons form by oxidation of reduced iron in pore waters near the top of the saturated zone when exposed to air in the unsaturated sediment. Hydrous Fe-oxide has a high specific surface area and thus a high adsorption capacity that absorbs the bulk of arsenic also present in the reduced pore water, resulting in accumulations containing as much as 280 ppm arsenic. The steep redox gradient that characterizes the transition of saturated and unsaturated sediment also favors accumulation of manganese oxides in the oxidized sediment. Anomalous concentrations of phosphate and molybdenum also detected in the ferric oxyhydroxide-enriched sediment are attributed to sorption processes. ?? Springer Science+Business Media B.V. 2008.

  16. Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation

    NASA Astrophysics Data System (ADS)

    Cunha, Alexandre; Elie, Anne-Marie; Plawinski, Laurent; Serro, Ana Paula; Botelho do Rego, Ana Maria; Almeida, Amélia; Urdaci, Maria C.; Durrieu, Marie-Christine; Vilar, Rui

    2016-01-01

    The aim of the present work was to investigate the possibility of using femtosecond laser surface texturing as a method to reduce the colonization of Grade 2 Titanium alloy surfaces by Staphylococcus aureus and the subsequent formation of biofilm. The laser treatments were carried out with a Yb:KYW chirped-pulse-regenerative amplification laser system with a central wavelength of 1030 nm and a pulse duration of 500 fs. Two types of surface textures, consisting of laser-induced periodic surface structures (LIPSS) and nanopillars, were produced. The topography, chemical composition and phase constitution of these surfaces were investigated by atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy, and X-ray diffraction. Surface wettability was assessed by the sessile drop method using water and diiodomethane as testing liquids. The response of S. aureus put into contact with the laser treated surfaces in controlled conditions was investigated by epifluorescence microscopy and scanning electron microscopy 48 h after cell seeding. The results achieved show that the laser treatment reduces significantly the bacterial adhesion to the surface as well as biofilm formation as compared to a reference polished surfaces and suggest that femtosecond laser texturing is a simple and promising method for endowing dental and orthopedic titanium implants with antibacterial properties, reducing the risk of implant-associated infections without requiring immobilized antibacterial substances, nanoparticles or coatings.

  17. Developing ionic liquid forms of picloram with reduced negative effects on the aquatic environment.

    PubMed

    Tang, Gang; Wang, Baitao; Ding, Guanglong; Zhang, Wenbing; Liang, You; Fan, Chen; Dong, Hongqiang; Yang, Jiale; Kong, Dandan; Cao, Yongsong

    2018-03-01

    As a widely used herbicide, picloram has been frequently detected in the aquatic environment due to its high leaching potential and low adsorption by soil. To reduce aquatic environmental risk of this herbicide caused by leaching and runoff, five herbicidal ionic liquids (HILs) based on picloram were prepared by pairing isopropylamine, octylamine, octadecylamine, 1-methylimidazole, 4-methylmorpholine respectively. Their physicochemical properties including water solubility, octanol-water partition coefficient, surface activity, leaching, as well as soil adsorption were compared. The results showed that these properties could be adjusted by appropriate selection of counter cations. The HILs with long alkyl chains in cations had low water solubility and leaching characteristics, good surface tension and lipophilicity, as well as high soil adsorption. Compared with currently used picloram in the forms of potassium salts, HIL3 had more excellent herbicidal activity against broadleaf weeds and may offer a lower use dosage. The HILs based on picloram can reduce its negative effects on the aquatic environment and can be used as a desirable alternative to commercial herbicidal formulations of picloram in future. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effects of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) microparticles on morphological, mechanical, thermal, and barrier properties in thermoplastic potato starch films.

    PubMed

    Malmir, Sara; Montero, Belén; Rico, Maite; Barral, Luis; Bouza, Rebeca; Farrag, Yousof

    2018-08-15

    Biocomposites of potato starch/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) microparticles were prepared through the solvent casting method. Glycerol was used as a plasticizer. The effects of concentrations of PHBV microparticles as filler and glycerol on crystallinity behavior, surface morphology, dynamic mechanical properties, and thermal stability were studied. Humidity absorption and the water vapor transmission rate (WVTR) were investigated as well. Wide angle X-ray scattering (WAXS) patterns revealed that the plasticizing process occurred successfully. Scanning electron microscopy (SEM) micrographs exhibited good homogeneity of the surfaces for the biocomposites with a lower glycerol concentration. Dynamic mechanical analysis (DMA) results confirmed the reinforcing effect of PHBV microparticles inside the matrix. Thermogravimetric analysis (TGA) indicated that the presence of PHBV microparticles increased the thermal stability of the starch. Results of humidity absorption tests showed that the high hydrophilicity of the starch was reduced once the PHBV microparticles had been incorporated. Also, increasing PHBV microparticles reduced the water vapor transmission rate. However, samples with reduced glycerol content absorbed less humidity and showed a lower water vapor transmission rate. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Suspended sediments limit coral sperm availability.

    PubMed

    Ricardo, Gerard F; Jones, Ross J; Clode, Peta L; Humanes, Adriana; Negri, Andrew P

    2015-12-14

    Suspended sediment from dredging activities and natural resuspension events represent a risk to the reproductive processes of coral, and therefore the ongoing maintenance of reefal populations. To investigate the underlying mechanisms that could reduce the fertilisation success in turbid water, we conducted several experiments exposing gametes of the corals Acropora tenuis and A. millepora to two sediment types. Sperm limitation was identified in the presence of siliciclastic sediment (230 and ~700 mg L(-1)), with 2-37 fold more sperm required to achieve maximum fertilisation rates, when compared with sediment-free treatments. This effect was more pronounced at sub-optimum sperm concentrations. Considerable (>45%) decreases in sperm concentration at the water's surface was recorded in the presence of siliciclastic sediment and a >20% decrease for carbonate sediment. Electron microscopy then confirmed sediment entangled sperm and we propose entrapment and sinking is the primary mechanism reducing sperm available to the egg. Longer exposure to suspended sediments and gamete aging further decreased fertilisation success when compared with a shorter exposure. Collectively, these findings demonstrate that high concentrations of suspended sediments effectively remove sperm from the water's surface during coral spawning events, reducing the window for fertilisation with potential subsequent flow-on effects for recruitment.

  20. Molecular dynamics study of a nanotube-binding amphiphilic helical peptide at different water/hydrophobic interfaces.

    PubMed

    Chiu, Chi-Cheng; Dieckmann, Gregg R; Nielsen, Steven O

    2008-12-25

    Many potential applications of single-walled carbon nanotubes (SWNTs) require that they be isolated from one another. This may be accomplished through covalent or noncovalent SWNT functionalization. The noncovalent approach preserves the intrinsic electrical, optical, and mechanical properties of SWNTs and can be achieved by dispersing SWNTs in aqueous solution using surfactants, polymers, or biomacromolecules like DNA or polypeptides. The designed amphiphilic helical peptide nano-1, which contains hydrophobic valine and aromatic phenylalanine residues for interaction with SWNTs and glutamic acid and lysine residues for water solubility, has been shown to debundle and disperse SWNTs, although the details of the peptide-SWNT interactions await elucidation. Here we use fully atomistic molecular dynamics simulations to investigate the nano-1 peptide at three different water/hydrophobic interfaces: water/oil, water/graphite, and water/SWNT. The amphiphilic nature of the peptide is characterized by its secondary structure, peptide-water hydrogen bonding, and peptide-hydrophobic surface van der Waals energy. We show that nano-1 has reduced amphiphilic character at the water/oil interface because the peptide helix penetrates into the hydrophobic phase. The peptide alpha-helix cannot match its hydrophobic face to the rigid planar graphite surface without partially unfolding. In contrast, nano-1 can curve on the SWNT surface in an alpha-helical conformation to simultaneously maximize its hydrophobic contacts with the SWNT and its hydrogen bonds with water. The molecular insight into the peptide conformation at the various hydrophobic surfaces provides guidelines for future peptide design.

  1. Molecular dynamics studies of water deposition on hematite surfaces

    NASA Astrophysics Data System (ADS)

    Kvamme, Bjørn; Kuznetsova, Tatiana; Haynes, Martin

    2012-12-01

    The interest in carbon dioxide for enhanced oil recovery is increasing proportional to the decrease in naturally driven oil production and also due to the increasing demand for reduced emission of carbon dioxide to the atmosphere. Transport of carbon dioxide in offshore pipelines involves high pressure and low temperatures which may lead to the formation of hydrate between residual water dissolved in carbon dioxide. The critical question is whether the water at some condition of temperature and pressure will drop out as liquid droplets or as water adsorbed on the surfaces of the pipeline and then subsequently form hydrates heterogeneously. In this work we have used the 6-311G basis set with B3LYP to estimate the charge distribution of different sizes of hematite crystals. The obtained surface charge distribution were kept unchanged while the inner charge distribution where scaled so as to result in an overall neutral crystal. These rust particles were embedded in water and chemical potential for adsorbed water molecules were estimated through thermodynamic integration and compared to similar estimates for same size water cluster. Estimated values of water chemical potentials indicate that it is thermodynamically favorable for water to adsorb on hematite, and that evaluation of potential carbon dioxide hydrate formation conditions and kinetics should be based this sequence of processes.

  2. Using the electrochemical dimension to build water/Ru(0001) phase diagram

    NASA Astrophysics Data System (ADS)

    Lespes, Nicolas; Filhol, Jean-Sébastien

    2015-01-01

    The water monolayer/Ru(0001) electrochemical phase diagram as a function of surface potential and temperature is built using a DFT approach. The monolayer structure with temperature is extracted following the zero-charge line in good agreement with experiments. Below 140 K, a mix of oppositely charged hydroxyl/water and hydride/water domains is found stable; above 140 K, water molecules desorb from the hydride phase leading to a mixture of oppositely charged surface hydride and hydroxyl/water phases; above 280 K, all the residual adsorbed water desorbs. For undissociated water, a Chain structure is found stable and desorbs above 150 K. The observed nano-sized domains are suggested to be the balance between hydroxyl/hydride repulsion that tends to create two well separated domains and opposite charging that tends to favor a domain mix. An isotopic effect is computed to reduce by a factor of 160 the kinetic rate of D2O dissociation (compared to H2O) and is linked to the reduction of the ZPE in the transition state caused by a proton transport chain. Water monolayer/Ru(0001) has a specific reactivity and its organization is highly sensitive to the surface potential suggesting that under electrochemical conditions, the potential is not only tuning directly the chemical reactivity but also indirectly through the solvent structure.

  3. Evaluation of individual and combined management practices to reduce the off-site transport of pesticides from golf course turf

    USDA-ARS?s Scientific Manuscript database

    The detection of pesticides, associated with turfgrass management, in storm runoff and surface waters of urban watersheds has raised concerns regarding their source, potential environmental effects and a need for strategies to reduce their inputs. In previous research we discovered that hollow tine ...

  4. The effect of repeated sodium hypochlorite exposure on chlorine resistance development in Escherichia coli O157:H7

    USDA-ARS?s Scientific Manuscript database

    The emergence and spread of microorganisms with reduced susceptibility to antimicrobial agents is a major public health problem. Chlorine water has been widely used to reduce attached bacteria on the surface of food or for sanitizing the processing facilities. However, there are limited reports conc...

  5. Water quality in relation to vegetative buffers around sinkholes in karst terrain

    USGS Publications Warehouse

    Petersen, A.; Vondracek, B.

    2006-01-01

    There are approximately 8,340 mapped sinkholes in karst terrain of southeast Minnesota. Most sinkholes are adjacent to row crops that likely contribute pollutants to surface waters and aquifers. Vegetated buffers can improve water quality by reducing sediment, fertilizers, pesticides, and other potential contaminants from runoff, and may benefit water quality when placed around sinkholes. We evaluated sediment, nitrogen, phosphorus, and runoff for buffers from 2.5 to 30 m (8.3 to 98 ft) wide with a spreadsheet model. We found buffers 30 m (98 ft) wide may reduce pollution by 80 percent, although buffers 15 m (49 ft) wide may be most cost effective. Buffers could contribute to goals of reducing sediment, nitrogen, and phosphorus loads in Minnesota waters. Buffers 15 m (49 ft) wide around all sinkholes would retire approximately 436 ha (1,077 ac) of land from production and cost approximately $260,000 yr-1 based on Conservation Reserve Program payments, while requiring <14 percent of the budget of the program for groundwater protection in southeast Minnesota.

  6. Whole-stream response to nitrate loading in three streams draining agricultural landscapes

    USGS Publications Warehouse

    Duff, J.H.; Tesoriero, A.J.; Richardson, W.B.; Strauss, E.A.; Munn, M.D.

    2008-01-01

    Physical, chemical, hydrologic, and biologic factors affecting nitrate (NO3 −) removal were evaluated in three agricultural streams draining orchard/dairy and row crop settings. Using 3-d “snapshots” during biotically active periods, we estimated reach-level NO3 − sources, NO3 − mass balance, in-stream processing (nitrification, denitrification, and NO3 − uptake), and NO3 − retention potential associated with surface water transport and ground water discharge. Ground water contributed 5 to 11% to stream discharge along the study reaches and 8 to 42% of gross NO3 − input. Streambed processes potentially reduced 45 to 75% of ground water NO3 − before discharge to surface water. In all streams, transient storage was of little importance for surface water NO3 − retention. Estimated nitrification (1.6–4.4 mg N m−2 h−1) and unamended denitrification rates (2.0–16.3 mg N m−2 h−1) in sediment slurries were high relative to pristine streams. Denitrification of NO3 − was largely independent of nitrification because both stream and ground water were sources of NO3 − Unamended denitrification rates extrapolated to the reach-scale accounted for <5% of NO3 − exported from the reaches minimally reducing downstream loads. Nitrate retention as a percentage of gross NO3 − inputs was >30% in an organic-poor, autotrophic stream with the lowest denitrification potentials and highest benthic chlorophyll a, photosynthesis/respiration ratio, pH, dissolved oxygen, and diurnal NO3 − variation. Biotic processing potentially removed 75% of ground water NO3 − at this site, suggesting an important role for photosynthetic assimilation of ground water NO3 − relative to subsurface denitrification as water passed directly through benthic diatom beds.

  7. Surface Passivation of GaN Nanowires for Enhanced Photoelectrochemical Water-Splitting.

    PubMed

    Varadhan, Purushothaman; Fu, Hui-Chun; Priante, Davide; Retamal, Jose Ramon Duran; Zhao, Chao; Ebaid, Mohamed; Ng, Tien Khee; Ajia, Idirs; Mitra, Somak; Roqan, Iman S; Ooi, Boon S; He, Jr-Hau

    2017-03-08

    Hydrogen production via photoelectrochemical water-splitting is a key source of clean and sustainable energy. The use of one-dimensional nanostructures as photoelectrodes is desirable for photoelectrochemical water-splitting applications due to the ultralarge surface areas, lateral carrier extraction schemes, and superior light-harvesting capabilities. However, the unavoidable surface states of nanostructured materials create additional charge carrier trapping centers and energy barriers at the semiconductor-electrolyte interface, which severely reduce the solar-to-hydrogen conversion efficiency. In this work, we address the issue of surface states in GaN nanowire photoelectrodes by employing a simple and low-cost surface treatment method, which utilizes an organic thiol compound (i.e., 1,2-ethanedithiol). The surface-treated photocathode showed an enhanced photocurrent density of -31 mA/cm 2 at -0.2 V versus RHE with an incident photon-to-current conversion efficiency of 18.3%, whereas untreated nanowires yielded only 8.1% efficiency. Furthermore, the surface passivation provides enhanced photoelectrochemical stability as surface-treated nanowires retained ∼80% of their initial photocurrent value and produced 8000 μmol of gas molecules over 55 h at acidic conditions (pH ∼ 0), whereas the untreated nanowires demonstrated only <4 h of photoelectrochemical stability. These findings shed new light on the importance of surface passivation of nanostructured photoelectrodes for photoelectrochemical applications.

  8. Combined Effect of Reduced Band Number and Increased Bandwidth on Shallow Water Remote Sensing: The Case of WorldView 2

    DTIC Science & Technology

    2013-05-01

    shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number...functions ( BRDF ) were compared with measurements made just beneath the water’s surface. In Case I water, the set of simulations that varied the particle...scattering phase function depending on chlorophyll concentration agreed more closely with the data than other models . In Case II water, however, the

  9. Example of Qanats for the Sustainability of Groundwater Usage, Antalya-Turkey

    NASA Astrophysics Data System (ADS)

    Ciftci, Ismail; Leventeli, Yasemin

    2017-12-01

    The protection of the existing resources has become much more important than getting fresh water. The traditional methods, like well and pump, can reduce the groundwater level and dry up the reservoirs. On the other hand, there are some environmentally friendly methods like “qanat”. Qanat is a water management system which has been used to supply water in semi-arid and arid regions for a long time; for example, in Iran, Iraq, Morocco, Oman etc. The system consists of many vertical well connected by gently sloping tunnel with tapping into the groundwater table. The main idea is to reduce the evaporation and leakage, keep the natural balance of the groundwater without pumping. The main idea in this study is to find suitable places for qanats in terms of geology and hydrology and to create a model for new water projects in Antalya. A “pilot area” near to Elmalı, which is one of the districts of Antalya, is selected. The geological units in the area are permeable - highly permeable micritic limestone and impermeable - poor permeable claystone - siltstone. The surface waters in the area are generally seasonal. The physical and chemical properties of surface waters were determined. The water in the area was classified “as very good quality water for drinking” and “very good for irrigations”. Besides that, the study showed that “the geological model is very appropriate for “qanat” and to get water by gravitation without decreasing the groundwater table and damaging natural balance”.

  10. Alternative Options for Safe Drinking Water in Arsenic and Salinity Affected Bornal-Iliasabad Union of Kalia Upazila, Narail District, Bangladesh

    NASA Astrophysics Data System (ADS)

    Rahman, M. M.; Hasan, M. A.; Ahmed, K. M.; Nawrin, N.

    2016-12-01

    The study area, Bornal-Ilisabad union, Kalia, Narail is one of the most vulnerable areas of Bangladesh in terms of access to safe drinking water. Shallow groundwater of this area is highly arsenic contaminated (mostly >500 μg/L) and deep groundwater is saline (EC ranges 1 to 8 mS/cm). Local communities rely on rainwater for drinking and cooking purposes during the monsoon and rest of the year they use surface water from pond which are mostly polluted. In areas where surface water is not available people are compelled to use arsenic contaminated groundwater and thus exposing themselves to serious health hazard. Principal objective of the research is to evaluate the effectiveness of managed aquifer recharge (MAR) and subsurface arsenic removal (SAR) technology in mitigating groundwater salinity and arsenic, to provide alternative sources of safe water. Surface water (pond water) and rainwater collected from roof top are used as source water to be recharged into the target aquifer for the MAR system. Source water is filtered through a sand filtration unit to remove turbidity and microorganisms before recharging through infiltration wells. For SAR system, on the other hand, a certain volume (2000L) of groundwater is abstracted from the target aquifer and then aerated for about half an hour to saturate with oxygen. The oxygenated water is injected into the aquifer and kept there for 6-8 hours and then abstracted for use. The MAR system constructed in the study area is found very effective in reducing groundwater salinity. The electrical conductivity (EC) of the groundwater of MAR system has been reduced 72-81% from the initial EC value of 3.4 mS/cm. A significant improvement in groundwater arsenic and iron concentration is also observed. The system is yielding groundwater with arsenic within permissible limit of Bangladesh drinking water standard (50 μg/L) which was 100 μg/L before introduction of MAR system. The SAR system is also found effective in reducing groundwater arsenic below 50 μg/L form the initial concentration of 100 μg/L. The system is now capable of yielding about 1500L of low arsenic and low iron concentrated water per cycle injection of aerated water which is 70- 80% of the injected volume (2000L). Alternative technology MAR and SAR can be applied extensively in the study area for improving safe water access.

  11. Long-term effects of drinking-water treatment residuals on dissolved phosphorus export from vegetated buffer strips.

    PubMed

    Habibiandehkordi, Reza; Quinton, John N; Surridge, Ben W J

    2015-04-01

    The export of dissolved phosphorus (P) in surface runoff from agricultural land can lead to water quality degradation. Surface application of aluminium (Al)-based water treatment residuals (Al-WTRs) to vegetated buffer strip (VBS) soils can enhance P removal from surface runoff during single runoff events. However, the longer-term effects on P removal in VBSs following application of products such as Al-WTR remain uncertain. We used field experimental plots to examine the long-term effects of applying a freshly generated Al-WTR to VBSs on dissolved P export during multiple runoff events, occurring between 1 day and 42 weeks after the application of Al-WTR. Vegetated buffer strip plots amended with Al-WTR significantly reduced soluble reactive P and total dissolved P concentrations in surface runoff compared to both unamended VBS plots and control plots. However, the effectiveness of Al-WTR decreased over time, by approximately 70% after 42 weeks compared to a day following Al-WTR application. Reduced performance did not appear to be due to drying of Al-WTR in the field. Instead, the development of preferential flow paths as well as burying of Al-WTR with freshly deposited sediments may explain these observations. Better understanding of the processes controlling long-term P removal by Al-WTR is required for effective management of VBSs.

  12. Tunable Oleo-Furan Surfactants by Acylation of Renewable Furans

    DOE PAGES

    Park, Dae Sung; Joseph, Kristeen E.; Koehle, Maura; ...

    2016-10-19

    One important advance in fluid surface control was the amphiphilic surfactant composed of coupled molecular structures (i.e., hydrophilic and hydrophobic) to reduce surface tension between two distinct fluid phases. However, implementation of simple surfactants has been hindered by the broad range of applications in water containing alkaline earth metals (i.e., hard water). This disrupts surfactant function and requires extensive use of undesirable and expensive chelating additives. We show that sugar-derived furans can be linked with triglyceride-derived fatty acid chains via Friedel–Crafts acylation within single layer (SPP) zeolite catalysts. Finally, these alkylfuran surfactants independently suppress the effects of hard water whilemore » simultaneously permitting broad tunability of size, structure, and function, which can be optimized for superior capability for forming micelles and solubilizing in water.« less

  13. Tunable Oleo-Furan Surfactants by Acylation of Renewable Furans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Dae Sung; Joseph, Kristeen E.; Koehle, Maura

    2016-11-23

    An important advance in fluid surface control was the amphiphilic surfactant comprised of coupled molecular structures (i.e. hydrophilic and hydrophobic) to reduce surface tension between two distinct fluid phases. However, implementation of simple surfactants has been hindered by the broad range of applications in water containing alkaline earth metals (i.e. hard water), which disrupt surfactant function and require extensive use of undesirable and expensive chelating additives. Here we show that sugar-derived furans can be linked with triglyceride-derived fatty acid chains via Friedel-Crafts acylation within single layer (SPP) zeolite catalysts. These alkylfuran surfactants independently suppress the effects of hard water whilemore » simultaneously permitting broad tunability of size, structure, and function, which can be optimized for superior capability for forming micelles and solubilizing in water.« less

  14. Effectiveness of oat and rye cover crops in reducing nitrate losses in drainage water

    USDA-ARS?s Scientific Manuscript database

    Much of the NO3 in the riverine surface waters of the upper Mississippi River basin originates from artificially drained agricultural land used for corn (Zea mays L.) and soybean (Glycine max [L.] Merr.) production. Cover crops grown between maturity and planting of these crops are one approach to r...

  15. Guidelines for glycol dehydrator design; Part 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manning, W.P.; Wood, H.S.

    1993-01-01

    Better designs and instrumentation improve glycol dehydrator performance. This paper reports on these guidelines which emphasize efficient water removal from natural gas. Water, a common contaminant in natural gas, causes operational problems when it forms hydrates and deposits on solid surfaces. Result: plugged valves, meters, instruments and even pipelines. Simple rules resolve these problems and reduce downtime and maintenance costs.

  16. Evaluation Of The Physical Stability, Ground Water Seepage Control, And Faunal Changes Associated With An AquaBlok® Sediment Cap

    EPA Science Inventory

    Active sediment caps are being considered for addressing contaminated sediment areas in surface-water bodies. A demonstration of an active cap designed to reduce advective transport of contaminants using AquaBlok® (active cap material) was initiated in a small study a...

  17. 77 FR 48131 - Draft Finding of No Significant Impact and Programmatic Environmental Assessment for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... consumption of freshwater resources and returning water back to the same watershed so as not to deplete the groundwater and surface water resources of that region in quantity or quality; and (3) Reducing, reusing, and... and behavior as well as multiple possible projects and technologies to enhance resource efficiency...

  18. Sol-Gel deposition of inorganic alkoxides on wood surfaces to enhance their durability under exposure to sunlight and moisture

    Treesearch

    Mandla A. Tshabalala

    2005-01-01

    Wood specimens were coated with sol-gel deposits of aluminum isopropoxide, titanium isopropoxide, or zirconium propoxide in the presence of methytrimethoxysilane. Both zirconium propoxide and titanium isopropoxide sol-gel deposits reduced water sorption, whereas aluminum isopropoxide sol-gel deposit increased water sorption, compared with uncoated wood specimens. There...

  19. Altmetric: 165More detailArticle | OPENClimate change-induced increases in precipitation are reducing the potential for solar ultraviolet radiation to inactivate pathogens in surface waters

    EPA Science Inventory

    Climate change is accelerating the release of dissolved organic matter (DOM) to inland and coastal waters through increases in precipitation, thawing of permafrost, and changes in vegetation. Our modeling approach suggests that the selective absorption of ultraviolet radiation (U...

  20. Evidence of the no-slip boundary condition of water flow between hydrophilic surfaces using atomic force microscopy.

    PubMed

    Maali, Abdelhamid; Wang, Yuliang; Bhushan, Bharat

    2009-10-20

    In this study we present measurements of the hydrodynamic force exerted on a glass sphere glued to an atomic force microscopy (AFM) cantilever approaching a mica surface in water. A large sphere was used to reduce the impact of the cantilever beam on the measurement. An AFM cantilever with large stiffness was used to accurately determine the actual contact position between the sphere and the sample surface. The measured hydrodynamic force with different approach velocities is in good agreement with the Taylor force calculated in the lubrication theory with the no-slip boundary conditions, which verifies that there is no boundary slip on the glass and mica surfaces. Moreover, a detailed procedure of how to subtract the electrostatic double-layer force is presented.

  1. Evaluating the Impacts of Climate Change on the Operations and Future Development of the U.S. Electricity System

    NASA Astrophysics Data System (ADS)

    Newmark, R. L.; Cohen, S. M.; Averyt, K.; Macknick, J.; Meldrum, J.; Sullivan, P.

    2014-12-01

    Climate change has the potential to exacerbate reliability concerns for the power sector through changes in water availability and air temperatures. The power sector is responsible for 41% of U.S. freshwater withdrawals, primarily for power plant cooling needs, and any changes in the water available for the power sector, given increasing competition among water users, could affect decisions about new power plant builds and reliable operations for existing generators. Similarly, increases in air temperatures can reduce power plant efficiencies, which in turn increases fuel consumption as well as water withdrawal and consumption rates. This analysis describes an initial link between climate, water, and electricity systems using the National Renewable Energy Laboratory's (NREL) Regional Energy Deployment System (ReEDS) electricity system capacity expansion model. Average surface water runoff projections from Coupled Model Intercomparison Project 5 (CMIP5) data are applied to surface water available to generating capacity in ReEDS, and electric sector growth is compared with and without climate-influenced water availability for the 134 electricity balancing regions in the ReEDS model. In addition, air temperature changes are considered for their impacts on electricity load, transmission capacity, and power plant efficiencies and water use rates. Mean climate projections have only a small impact on national or regional capacity growth and water use because most regions have sufficient unappropriated or previously retired water access to offset climate impacts. Climate impacts are notable in southwestern states, which experience reduced water access purchases and a greater share of water acquired from wastewater and other higher-cost water resources. The electric sector climate impacts demonstrated herein establish a methodology to be later exercised with more extreme climate scenarios and a more rigorous representation of legal and physical water availability.

  2. Model studies of surface noise interference in ground-probing radar

    NASA Astrophysics Data System (ADS)

    Arcone, S. A.; Delaney, A. J.

    1985-11-01

    Ground-probing radar can be an effective tool for exploring the top 10 to 20 m of ground, especially in cold regions where the freezing of water decreases signal absorption. However, the large electrical variability of the surface, combined with the short wavelengths used, can often cause severe ground clutter that can mask a desired, deeper return. In this study a model facility was constructed consisting of a metallic reflector covered by sand. Troughs of saturated sand were emplaced at the surface to carry surface electrical properties and to act as a noise source to interfere with the bottom reflections. Antenna polarization and height, and signal stacking in both static (antennas stationary) and dynamic (antennas moving) modes were then investigated as methods for reducing the surface clutter. Polarization parallel to the profile direction (perpendicular to the troughs' axes) gave profiles superior to the perpendicular case because of the dimensional sensitivity of the antenna radiation. Dynamic stacking greatly improved the signal-to-noise ratio because noise sources were averaged as the antennas moved, while the desired reflector, buried at constant depth, was enhanced. Raising the antennas above the surface also reduced noise because the surface area over which reflections were integrated increased. All three noise reduction techniques could be effective in surveys for reflectors at nearly constant depth such as groundwater tables or ice/water interfaces.

  3. On-farm bioremediation of dimethazone and trifluralin residues in runoff water from an agricultural field.

    PubMed

    Antonious, George F

    2012-01-01

    Bioremediation is the use of living organisms, primarily microorganisms, to degrade environmental contaminants into less toxic forms. Nine biobeds (ground cavity filled with a mixture of composted organic matter, topsoil, and a surface grass) were established at Kentucky State University research farm (Franklin County, KY) to study the impact of this practice on reducing surface runoff water contamination by residues of dimethazone and trifluralin herbicides arising from an agricultural field. Biobed (biofilter) systems were installed at the bottom of the slope of specially designed runoff plots to examine herbicides retention and degradation before entering streams and rivers. In addition to biobed systems, three soil management practices: municipal sewage sludge (SS), SS mixed with yard waste compost (SS + YW), and no-mulch rototilled bare soil (NM used for comparison purposes) were used to monitor the impact of soil amendments on herbicide residues in soil following natural rainfall events. Organic amendments increased soil organic matter content and herbicide residues retained in soil following rainfall events. Biobeds installed in NM soil reduced dimethazone and trifluralin by 84 and 82%, respectively in runoff water that would have been transported down the land slope of agricultural fields and contaminated natural water resources. Biobeds installed in SS and SS+YW treatments reduced dimethazone by 65 and 46% and trifluralin by 52 and 79%, respectively. These findings indicated that biobeds are effective for treating dimethazone and trifluralin residues in runoff water.

  4. Surface Treatment And Protection Method For Cadium Zinc Telluride Crystals

    DOEpatents

    Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.

    2006-02-21

    A method for treatment of the surface of a CdZnTe (CZT) crystal that provides a native dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals. A two step process is disclosed, etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and after attachment of electrical contacts, passivating the CZT crystal surface with a solution of 10 w/o NH4F and 10 w/o H2O2 in water.

  5. Marangoni Effects on Near-Bubble Microscale Transport During Boiling of Binary Fluid Mixtures

    NASA Technical Reports Server (NTRS)

    V. Carey; Sun, C.; Carey, V. P.

    2000-01-01

    In earlier investigations, Marangoni effects were observed to be the dominant mechanism of boiling transport in 2-propanol/water mixtures under reduced gravity conditions. In this investigation we have examined the mechanisms of binary mixture boiling by exploring the transport near a single bubble generated in a binary mixture between a heated surface and cold surface. The temperature field created in the liquid around the bubble produces vaporization over the portion of its interface near the heated surface and condensation over portions of its interface near the cold surface. Experiments were conducted using different mixtures of water and 2-propanol under 1g conditions and under reduced gravity conditions aboard the KC135 aircraft. Since 2-propanol is more volatile than water, there is a lower concentration of 2-propanol near the hot surface and a higher concentration of 2-propanol near the cold plate relative to the bulk quantity. This difference in interface concentration gives rise to strong Marangoni effects that move liquid toward the hot plate in the near bubble region for 2-propanol and water mixtures. In the experiments in this study, the pressure of the test system was maintained at about 5 kPa to achieve the full spectrum of boiling behavior (nucleate boiling, critical heat flux and film boiling) at low temperature and heat flux levels. Heat transfer data and visual documentation of the bubble shape were extracted from the experimental results. In the 1-g experiments at moderate to high heat flux levels, the bubble was observed to grow into a mushroom shape with a larger top portion near the cold plate due to the buoyancy effect. The shape of the bubble was somewhat affected by the cold plate subcooling and the superheat of the heated surface. At low superheat levels for the heated surface, several active nucleation sites were observed, and the vapor stems from them merged to form a larger bubble. The generation rate of vapor is moderate in this regime and the bubble shape is cylindrical in appearance. In some instances, the bubble interface appeared to oscillate. At higher applied heat flux levels, the top of the bubble became larger, apparently to provide more condensing interface area adjacent to the cold plate. Increasing the applied heat flux ultimately led to dry-out of the heated surface, with conditions just prior to dryout corresponding to the maximum heat flux (CHF). A more stable bubble was observed when the system attained the minimum heat flux (for film boiling). In this regime, most of the surface under the bottom of the bubble was dry with nucleate boiling sometimes occuring around the contact perimeter of the bubble at heated surface. Different variations (e.g. gap between two plates, molar concentration of the liquid mixture) of the experiments were examined to determine parametric effects on the boiling process and to determine the best conditions for the KC135 reduced gravity tests. Variation of the gap was found to have a minor impact on the CHF. However, reducing the gap between the hot and cold surface was observed to significantly reduce the minimum heat flux for fixed molar concentration of 2-propanol. In the reduced gravity experiments aboard the KC135 aircraft, the bubble formed in the 6.4 mm gap was generally cylindrical or barrel shaped and it increased its extent laterally as the surface superheat increased. In reduced gravity experiments, dryout of the heated surface under the bubble was observed to occur at a lower superheated temperature than for 1g conditions. Observed features of the boiling process and heat transfer data under reduced gravity will be discussed in detail. The results of the reduced gravity experiments will also be compared to those obtained in comparable 1g experiments. In tandem with the experiments we are also developing a computational model of the transport in the liquid surrounding the bubble during the boiling process. The computational model uses a level set method to model motion of the interface. It will incorporate a macroscale treatment of the transport in the liquid gap between the surfaces and a microscale treatment of transport in the regions between the bubble interface and the solid surfaces. The features of the model will be described in detail. Future research directions suggested by the results to date will also be discussed.

  6. SU-F-T-424: Mitigation of Increased Surface Dose When Treating Through A Carbon Fiber Couch Top

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, E; Misgina, F

    Purpose: To study the effect of the Varian carbon fiber couch top on surface dose for patients being treated using single PA beams in the supine position and to identify simple methods for surface dose reduction. Methods: Measurements of surface dose were obtained in Solid Water phantoms using both a parallel plate ionization chamber (PTW Advanced Markus) and EBT2 Radiochromic films for both 6 and 10MV photons. All measurements were referenced to a depth considered a typical for PA Spine fields. Techniques used to reduce the surface dose included introducing an air standoff using Styrofoam sheets to suspend the phantommore » surface above the couch top and by adding a thin high Z scattering foil on the table surface. Surface doses were evaluated for typical field sizes, standoff heights, and various scattering materials. Comparisons were made to the surface dose obtainable when treating through a Varian Mylar covered tennis racket style couch top. Results: Dependence on typical spine field sizes was relatively minor. Dependence on air gap was much more significant. Surface doses decreased exponentially with increases in air standoff distance. Surface doses were reduced by approximately 50% for an air gap of 10cm and 40% for a 15cm air gap. Surface doses were reduced by an additional 15% by the addition of a 1mm Tin scattering foil. Conclusion: Using simple techniques, it is possible to reduce the surface dose when treating single PA fields through the Varian carbon fiber couch top. Surface doses can be reduced to levels observed when treating though transparent Mylar tops by adding about 15 cm of air gap. Further reductions are possible by adding thin scattering foils, such as Tin or Lead, on the couch surface. This is a low cost approach to reduce surface dose when using the Varian carbon fiber couch top.« less

  7. Nitrogen losses and greenhouse gas emissions under different N and water management in a subtropical double-season rice cropping system.

    PubMed

    Liang, Kaiming; Zhong, Xuhua; Huang, Nongrong; Lampayan, Rubenito M; Liu, Yanzhuo; Pan, Junfeng; Peng, Bilin; Hu, Xiangyu; Fu, Youqiang

    2017-12-31

    Nitrogen non-point pollution and greenhouse gas (GHG) emission are major challenges in rice production. This study examined options for both economic and environmental sustainability through optimizing water and N management. Field experiments were conducted to examine the crop yields, N use efficiency (NUE), greenhouse gas emissions, N losses under different N and water management. There were four treatments: zero N input with farmer's water management (N0), farmer's N and water management (FP), optimized N management with farmer's water management (OPT N ) and optimized N management with alternate wetting and drying irrigation (OPT N +AWD). Grain yields in OPT N and OPT N +AWD treatments increased by 13.0-17.3% compared with FP. Ammonia volatilization (AV) was the primary pathway for N loss for all treatments and accounted for over 50% of the total losses. N losses mainly occurred before mid-tillering. N losses through AV, leaching and surface runoff in OPT N were reduced by 18.9-51.6% compared with FP. OPT N +AWD further reduced N losses from surface runoff and leaching by 39.1% and 6.2% in early rice season, and by 46.7% and 23.5% in late rice season, respectively, compared with OPT N . The CH 4 emissions in OPT N +AWD were 20.4-45.4% lower than in OPT N and FP. Total global warming potential of CH 4 and N 2 O was the lowest in OPT N +AWD. On-farm comparison confirmed that N loss through runoff in OPT N +AWD was reduced by over 40% as compared with FP. OPT N and OPT N +AWD significantly increased grain yield by 6.7-13.9%. These results indicated that optimizing water and N management can be a simple and effective approach for enhancing yield with reduced environmental footprints. Copyright © 2017. Published by Elsevier B.V.

  8. Evaluation of nitrogen and phosphorus transport with runoff from fairway turf managed with hollow tine core cultivation and verticutting.

    PubMed

    Rice, Pamela J; Horgan, Brian P

    2013-07-01

    Enrichment of surface waters with excess nutrients is associated with increased algal blooms, euthrophication and hypoxic zones, as reported in the northern Gulf of Mexico. A source of nutrients to surface waters results from fertilizer runoff. Management strategies used to maintain turf on golf courses and recreational fields often include aerification and application of fertilizer. Although research exists on benefits of core cultivation and verticutting (VC) to reduce thatch and the transport of applied chemicals with runoff, there are no studies reporting the effect of coupling these management practices with the goal of further reduction of off-site transport of fertilizer with runoff. We hypothesized that the addition of VC to hollow tine core cultivation (HTCC) would enhance infiltration of precipitation, reduce runoff and nutrient transport with runoff and therefore influence concentrations of nutrients in surface waters receiving runoff from turf managed as a golf course fairway. Greater runoff and mass of soluble phosphorus and ammonium nitrogen transported with runoff were measured from plots managed with HTCC+VC than HTCC; however, the reverse was noted for nitrate nitrogen. Only a portion of the observed trends proved to be statistically significant. Our research showed no reduction or enhancement of risk associated with surface water concentrations of phosphorus or nitrogen, resulting from runoff from creeping bentgrass turf that was managed with HTCC+VC compared to HTCC. Data obtained in this research will be useful to grounds superintendents when selecting best management practices and to scientists seeking data relating runoff to land management for watershed-scale modeling. Published by Elsevier B.V.

  9. Vegetated Treatment Systems for Removing Contaminants Associated with Surface Water Toxicity in Agriculture and Urban Runoff.

    PubMed

    Anderson, Brian S; Phillips, Bryn M; Voorhees, Jennifer P; Cahn, Michael

    2017-05-15

    Urban stormwater and agriculture irrigation runoff contain a complex mixture of contaminants that are often toxic to adjacent receiving waters. Runoff may be treated with simple systems designed to promote sorption of contaminants to vegetation and soils and promote infiltration. Two example systems are described: a bioswale treatment system for urban stormwater treatment, and a vegetated drainage ditch for treating agriculture irrigation runoff. Both have similar attributes that reduce contaminant loading in runoff: vegetation that results in sorption of the contaminants to the soil and plant surfaces, and water infiltration. These systems may also include the integration of granulated activated carbon as a polishing step to remove residual contaminants. Implementation of these systems in agriculture and urban watersheds requires system monitoring to verify treatment efficacy. This includes chemical monitoring for specific contaminants responsible for toxicity. The current paper emphasizes monitoring of current use pesticides since these are responsible for surface water toxicity to aquatic invertebrates.

  10. Projections of Declining Surface-Water Availability for the Southwestern United States

    NASA Technical Reports Server (NTRS)

    Seager, Richard; Ting, Mingfang; Li, Cuihua; Naik, Naomi; Cook, Benjamin; Nakamura, Jennifer; Liu, Haibo

    2012-01-01

    Global warming driven by rising greenhouse-gas concentrations is expected to cause wet regions of the tropics and mid to high latitudes to get wetter and subtropical dry regions to get drier and expand polewards. Over southwest North America, models project a steady drop in precipitation minus evapotranspiration, P -- E, the net flux of water at the land surface, leading to, for example, a decline in Colorado River flow. This would cause widespread and important social and ecological consequences. Here, using new simulations from the Coupled Model Intercomparison Project Five, to be assessed in Intergovernmental Panel on Climate Change Assessment Report Five, we extend previous work by examining changes in P, E, runoff and soil moisture by season and for three different water resource regions. Focusing on the near future, 2021-2040, the new simulations project declines in surface-water availability across the southwest that translate into reduced soil moisture and runoff in California and Nevada, the Colorado River headwaters and Texas.

  11. Density functional theory study of acetaldehyde hydrodeoxygenation on MoO3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Donghai; Karim, Ayman M.; Wang, Yong

    2011-04-06

    Periodic spin-polarized density functional theory calculations were performed to investigate acetaldehyde (CH3CHO) hydrodeoxygenation on the reduced molybdenum trioxide (MoO3) surface. The perfect O-terminated α-MoO3(010) surface is reduced to generate an oxygen defect site in the presence of H2. H2 dissociatively adsorbs at the surface oxygen sites forming two surface hydroxyls, which can recombine into a water molecule weakly bound at the Mo site. A terminal oxygen (Ot) defect site thus forms after water desorption. CH3CHO adsorbs at the O-deficient Mo site via either the sole O-Mo bond or the O-Mo and the C-O double bonds. The possible reaction pathways ofmore » the adsorbed CH3CHO with these two configurations were thoroughly examined using the dimer searching method. Our results show that the ideal deoxygenation of CH3CHO leading to ethylene (C2H4) on the reduced MoO3(010) surface is feasible. The adsorbed CH3CHO first dehydrogenate into CH2CHO by reacting with a neighboring terminal Ot. The hydroxyl (OtH) then hydrogenates CH2CHO into CH2CH2O to complete the hydrogen transfer cycle with an activation barrier of 1.39 eV. The direct hydrogen transfer from CH3CHO to CH2CH2O is unlikely due to the high barrier of 2.00 eV. The produced CH2CH2O readily decomposes into C2H4 that directly releases to the gas phase, and regenerates the Ot atom on the Mo site. As a result, the reduced MoO3(010) surface is reoxidized to the perfect MoO3(010) surface after CH3CHO deoxygenation. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less

  12. A science plan for a comprehensive assessment of water supply in the region underlain by fractured rock in Maryland

    USGS Publications Warehouse

    Fleming, Brandon J.; Hammond, Patrick A.; Stranko, Scott A.; Duigon, Mark T.; Kasraei, Saeid

    2012-01-01

    The fractured rock region of Maryland, which includes land areas north and west of the Interstate 95 corridor, is the source of water supply for approximately 4.4 million Marylanders, or approximately 76 percent of the State's population. Whereas hundreds of thousands of residents rely on wells (both domestic and community), millions rely on surface-water sources. In this region, land use, geology, topography, water withdrawals, impoundments, and other factors affect water-flow characteristics. The unconfined groundwater systems are closely interconnected with rivers and streams, and are affected by seasonal and climatic variations. During droughts, groundwater levels drop, thereby decreasing well yields, and in some cases, wells have gone dry. Low ground-water levels contribute to reduced streamflows, which in turn, can lead to reduced habitat for aquatic life. Increased demand, over-allocation, population growth, and climate change can affect the future sustainability of water supplies in the region of Maryland underlain by fractured rock. In response to recommendations of the 2008 Advisory Committee on the Management and Protection of the State's Water Resources report, the Maryland Department of the Environment's Water Supply Program, the Maryland Geological Survey, the Maryland Department of Natural Resources, Monitoring and Non-Tidal Assessment (MANTA) Division, and the U.S. Geological Survey have developed a science plan for a comprehensive assessment that will provide new scientific information, new data analysis, and new tools for the State to better manage water resources in the fractured rock region of Maryland. The science plan lays out five goals for the comprehensive assessment: (1) develop tools for the improved management and investigation of groundwater and surface-water resources; (2) characterize factors affecting reliable yields of individual groundwater and surface-water supplies; (3) investigate impacts on nearby water withdrawal users caused by groundwater and surface-water withdrawals; (4) assess the role of streamflow and water withdrawals on the ecological integrity of streams; and (5) improve understanding of the distribution of water-quality conditions in fractured rock aquifers. To accomplish these goals, accurate data collection, review, and analysis are needed, including the study of "Research Watersheds" that can provide detailed information about the potential effects that climate change and water withdrawals may have on groundwater, streamflow, and aquatic life. The assessment planning started in 2009 and is being conducted with close interagency coordination. A Fractured Rock Aquifer Information System is currently (2012) undergoing initial development. Other major tasks that will be performed include the development of work plans for each science goal, the estimation of daily streamflow at ungaged streams, and the design and implementation of Research Watersheds. Finally, scenarios will be modeled to evaluate current water allocation permitting methodologies, investigate effects on nearby water withdrawal users caused by groundwater and surface-water withdrawals, and assess the potential impacts of climate change on water resources. Desktop and Web-based tools will be developed in order to meet the diverse research needs of the assessment. These tools, including the Fractured Rock Aquifer Information System will be continuously improved during the assessment to store relevant groundwater and surface-water data in spatially referenced databases, estimate streamflows, locate higher-yielding wells, estimate the impacts of withdrawals on nearby users, and assess the cumulative impacts of withdrawals on the aquatic resource. Tools will be developed to serve the needs of many audiences, including water resource managers, water suppliers, planners, policymakers, and other scientific investigators.

  13. Use of upscaled elevation and surface roughness data in two-dimensional surface water models

    USGS Publications Warehouse

    Hughes, J.D.; Decker, J.D.; Langevin, C.D.

    2011-01-01

    In this paper, we present an approach that uses a combination of cell-block- and cell-face-averaging of high-resolution cell elevation and roughness data to upscale hydraulic parameters and accurately simulate surface water flow in relatively low-resolution numerical models. The method developed allows channelized features that preferentially connect large-scale grid cells at cell interfaces to be represented in models where these features are significantly smaller than the selected grid size. The developed upscaling approach has been implemented in a two-dimensional finite difference model that solves a diffusive wave approximation of the depth-integrated shallow surface water equations using preconditioned Newton–Krylov methods. Computational results are presented to show the effectiveness of the mixed cell-block and cell-face averaging upscaling approach in maintaining model accuracy, reducing model run-times, and how decreased grid resolution affects errors. Application examples demonstrate that sub-grid roughness coefficient variations have a larger effect on simulated error than sub-grid elevation variations.

  14. The mechanism of the photochemical oxidation of water to oxygen with silver chloride colloids

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, K.; Thomas, J. K.

    1983-05-01

    Photoexcitation of silver chloride colloids in the presence of excess silver ions, leads to the decomposition of water. Hydroxyl radicals were found to be intermediates in the decomposition process. Irradiation leads to hydroxyl radicals, which recombine to give hydrogen peroxide, on the colloidal particle surface. Subsequent decomposition of H 2O 2 to give O 2 is catalyzed by silver ions. Addition of alcohols such as methanol and isopropanol reduce the oxygen yield, as they react with OH radicals and reduce the H 2O 2 yield.

  15. Glass melter off-gas system

    DOEpatents

    Jantzen, Carol M.

    1997-01-01

    Apparatus and method for melting glass in a glass melter in such a way as to reduce deposition of particulates in the off-gas duct. Deposit accumulation is reduced by achieving an off-gas velocity above approximately 15 meters/second and an off-gas temperature as close as possible to, but not higher than, the glass softening point. Because the deposits are largely water-soluble, those that do form on the interior surface of the duct can be readily removed by injecting water or steam directly into the off-gas duct from its entrance or exit.

  16. Evaluating climatic and non-climatic stresses for declining surface water quality in Bagmati River of Nepal.

    PubMed

    Panthi, Jeeban; Li, Fengting; Wang, Hongtao; Aryal, Suman; Dahal, Piyush; Ghimire, Sheila; Kabenge, Martin

    2017-06-01

    Both climatic and non-climatic factors affect surface water quality. Similar to its effect across various sectors and areas, climate change has potential to affect surface water quality directly and indirectly. On the one hand, the rise in temperature enhances the microbial activity and decomposition of organic matter in the river system and changes in rainfall alter discharge and water flow in the river ultimately affecting pollution dilution level. On the other hand, the disposal of organic waste and channelizing municipal sewage into the rivers seriously worsen water quality. This study attempts to relate hydro-climatology, water quality, and impact of climatic and non-climatic stresses in affecting river water quality in the upper Bagmati basin in Central Nepal. The results showed that the key water quality indicators such as dissolved oxygen and chemical oxygen demand are getting worse in recent years. No significant relationships were found between the key water quality indicators and changes in key climatic variables. However, the water quality indicators correlated with the increase in urban population and per capita waste production in the city. The findings of this study indicate that dealing with non-climatic stressors such as reducing direct disposal of sewerage and other wastes in the river rather than emphasizing on working with the effects from climate change would largely help to improve water quality in the river flowing from highly populated urban areas.

  17. Effect of salinity on heavy metal mobility and availability in intertidal sediments of the Scheldt estuary

    NASA Astrophysics Data System (ADS)

    Du Laing, G.; De Vos, R.; Vandecasteele, B.; Lesage, E.; Tack, F. M. G.; Verloo, M. G.

    2008-05-01

    The effect of the flood water salinity on the mobility of heavy metals was studied for intertidal sediments of the Scheldt estuary (Belgium). Soils and sediments of 4 sampling sites were flooded with water of different salinities (0.5, 2.5, and 5 g NaCl L -1). Metal concentrations were monitored in pore water and surface water. To study the potential effects of flood water salinity on metal bioavailability, duckweed ( Lemna minor) was grown in the surface water. The salinity was found to primarily enhance the mobility of Cd and its uptake by duckweed. Cadmium concentrations in pore water of soils and sediments and surrounding surface waters significantly exceeded sanitation thresholds and quality standards during flooding of initially oxidized sediments. Moreover, the effect was observed already at lower salinities of 0.5 g NaCl L -1. This implies that risks related to Cd uptake by organisms and Cd leaching to ground water are relevant when constructing flooding areas in the brackish zones of estuaries. These risks can be reduced by inducing sulphide precipitation because Cd is then immobilised as sulphide and its mobility becomes independent of flood water salinity. This could be achieved by permanently flooding the polluted sediments, because sulphates are sufficiently available in the river water of the brackish part of the estuary.

  18. Preview of Our Changing Planet. The U.S. Climate Change Science Program for Fiscal Year 2008

    DTIC Science & Technology

    2007-04-01

    reduce the uncertainty in predictions of the global and regional water cycle and surface climate. Sunlight not reflected back to space provides the...research elements include atmospheric composition, climate variability and change, the global water cycle , land-use and land-cover change, the global...entire planet, and researchers with the ability to better explain observed changes in the climate system. Global Water Cycle – Research associated with

  19. Molecular dynamics simulation of water at mineral surfaces: Structure, dynamics, energetics and hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Kalinichev, A. G.; Wang, J.; Kirkpatrick, R.

    2006-05-01

    Fundamental molecular-level understanding of the properties of aqueous mineral interfaces is of great importance for many geochemical and environmental systems. Interaction between water and mineral surfaces substantially affects the properties of both phases, including the reactivity and functionality of the substrate surface, and the structure, dynamics, and energetics of the near surface aqueous phase. Experimental studies of interfacial water structure and dynamics using surface-sensitive techniques such as sum-frequency vibrational spectroscopy or X-ray and neutron reflectivity are not always possible for many practically important substrates, and their results often require interpretation concerning the atomistic mechanisms responsible for the observed behavior. Molecular computer simulations can provide new insight into the underlying molecular- level relationships between the inorganic substrate structure and composition and the structure, ordering, and dynamics of interfacial water. We have performed a series of molecular dynamics (MD) computer simulations of aqueous interfaces with several silicates (quartz, muscovite, and talc) and hydroxides (brucite, portlandite, gibbsite, Ca/Al and Mg/Al double hydroxides) to quantify the effects of the substrate mineral structure and composition on the structural, transport, and thermodynamic properties of water on these mineral surfaces. Due to the prevalent effects of the development of well-interconnected H-bonding networks across the mineral- water interfaces, all the hydroxide surfaces (including a fully hydroxylated quartz surface) show very similar H2O density profiles perpendicular to the interface. However, the predominant orientations of the interfacial H2O molecules and their detailed 2-dimensional near-surface structure and dynamics parallel to the interface are quite different reflecting the differences in the substrate structural charge distribution and the density and orientations of the surface OH groups. The H2O density profiles and other structural and dynamic characteristics of water at the two siloxane surfaces are very different from each other and from the hydroxide surfaces, since the muscovite surface is negatively charged and hydrophilic, while the talc surface is electrostatically neutral and hydrophobic. In general, at hydrophilic neutral surfaces both donating and accepting H-bonds from the H2O molecules are contributing to the development of the interfacial H-bond network, whereas at hydrophilic but charged surfaces only accepting or donating H-bonds with H2O molecules are possible. At the hydrophobic talc surface H-bonds among H2O molecules dominate the interfacial H-bond network and the water-surface interactions are very weak. The first water layer at all substrates is well ordered parallel to the surface, reflecting substrate crystal structures and indicating the reduced translational and orientational mobility of interfacial H2O molecules. At longer time scale (~100ps) their dynamics can be decomposed into a slow, virtually frozen, regime due to the substrate- bound H2O and a faster regime of almost free water reflecting the dynamics far from the surface. At shorter times (>10ps) the two dynamical regimes are superimposed. The much higher ordering of interfacial water (compared to bulk liquid) can not be adequately described as simply "ice-like". To some extent, it rather resembles the behavior of supercooled water.

  20. Pressure impact of autoclave treatment on water sorption and pectin composition of flax cellulosic-fibres.

    PubMed

    Alix, S; Colasse, L; Morvan, C; Lebrun, L; Marais, S

    2014-02-15

    The tensile properties of flax fibres might permit them to be used in composites as reinforcement in organic resin, as long as their mechanical properties are reproducible and their water sorption are reduced. In this study, to minimise the variability of mechanical properties, several samples of flax fibres were blended as a non-woven fabric. In order to reduce the water absorption of this non-woven technical fibres, an autoclave treatment was performed which was expected to remove the pectins and then to reduce the water sorption on their negative charges. The impact of autoclave pressure (0.5, 1 and 2 bars) on water sorption was investigated by using a gravimetric static equilibrium method. The Park model based on the three sorption modes: Langmuir, Henry's law and clustering, was successfully used to simulate the experimental sorption data. The lowest pressure treatments impacted only the Langmuir contribution while the 2 bar autoclave-treatment positively impacted the water resistance in the core of fibres by reducing Henry's absorption rate. This was shown to be related to the chemical modifications at the surface and in the core of fibres. A schematic model is presented relating the water sorption and the pectic composition of the fabric. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Determination of the amount of gas adsorption on SiO2/Si(100) surfaces to realize precise mass measurement

    NASA Astrophysics Data System (ADS)

    Mizushima, S.

    2004-06-01

    The adsorption isotherms on SiO2/Si(100) surfaces were measured using a vacuum mass comparator. Samples with a surface area difference of 816.6 cm2 were used for the measurement, and a substitution weighing method was adopted to reduce the uncertainty due to the drift and non-linearity of the indication of the mass comparator. We measured adsorption isotherms of water vapour on the SiO2/Si(100) surfaces outgassed at a temperature of 500 °C and found that dissociative adsorption caused an irreversible increase of 0.028 µg cm-2 with an uncertainty of 0.004 µg cm-2 (k = 1). We also found that the physical adsorption of water molecules on hydroxylated surfaces had a monolayer capacity of 0.004 µg cm-2 with an uncertainty of 0.002 µg cm-2 (k = 1). In addition, the adsorption isotherms for ethanol vapour and n-octane vapour, which were different from water vapour in adsorption properties, were measured and analysed.

  2. The Role of Windbreaks in Reducing Water Resources Use in Irrigated Agriculture

    NASA Astrophysics Data System (ADS)

    Cochrane, T. A.; de Vries, T. T.

    2014-12-01

    Windbreaks are common features in flat agricultural landscapes around the world. The reduction in wind speed afforded by windbreaks is dictated by their porosity, location, height, and distance from the windbreak. The reduction in wind speeds not only reduces potential wind erosion; it also reduces crop evapotranspiration (ET) and provides shelter for livestock and crops. In the Canterbury plains of New Zealand there are over 300,000 km of windbreaks which were first implemented as a soil conservation strategy to reduce wind erosion of prime agricultural land. Agriculture in the region has since changed to irrigated pasture cultivation for dairy production and windbreaks are being cut down or reduced to heights of 2 m to allow for large scale centre-pivot irrigation schemes. Although soil erosion is no longer a major concern due to permanent pasture cover, irrigation water is sourced from limited supplies of ground and surface water and thus the effects of wind on irrigation losses due to spray drift and increased ET are of significant concern. The impact of reducing windbreaks needs to be understood in terms of water resources use. Experimental and theoretical work was conducted to quantify the reduction in wind speeds by windbreaks and in spray evaporation losses. A temporal and spatial model was also developed and validated to quantify the impact of single and multiple windbreaks on irrigation water losses. Initial modelling results show that for hot windy dry conditions in Canterbury, ET can increase by up to 1.4 mm/day when windbreaks are reduced to 2 m in height and on average wind days ET can increase by up to 0.5 mm/day. ET can be reduced by up to 30% in the windbreak leeward zone relative to ET in areas not protected by windbreaks. Wind speed, air temperature and relative humidity all had a considerable impact on spray evaporation losses, but the extent is determined by the droplet size. Estimated losses range from only 0.07% to 67% for 5 and 0.2 mm droplet sizes respectively. Preliminary measurements of typical irrigation spray nozzles with a range of drop sizes show losses of up to 30% under high wind conditions. Potential reduction in ground and surface water resources use for irrigation can be significant if windbreaks are maintained by using irrigation systems that can be adapted to work within windbreaks.

  3. Optimal dynamic water allocation: Irrigation extractions and environmental tradeoffs in the Murray River, Australia

    NASA Astrophysics Data System (ADS)

    Grafton, R. Quentin; Chu, Hoang Long; Stewardson, Michael; Kompas, Tom

    2011-12-01

    A key challenge in managing semiarid basins, such as in the Murray-Darling in Australia, is to balance the trade-offs between the net benefits of allocating water for irrigated agriculture, and other uses, versus the costs of reduced surface flows for the environment. Typically, water planners do not have the tools to optimally and dynamically allocate water among competing uses. We address this problem by developing a general stochastic, dynamic programming model with four state variables (the drought status, the current weather, weather correlation, and current storage) and two controls (environmental release and irrigation allocation) to optimally allocate water between extractions and in situ uses. The model is calibrated to Australia's Murray River that generates: (1) a robust qualitative result that "pulse" or artificial flood events are an optimal way to deliver environmental flows over and above conveyance of base flows; (2) from 2001 to 2009 a water reallocation that would have given less to irrigated agriculture and more to environmental flows would have generated between half a billion and over 3 billion U.S. dollars in overall economic benefits; and (3) water markets increase optimal environmental releases by reducing the losses associated with reduced water diversions.

  4. Bridge deck wearing surfaces.

    DOT National Transportation Integrated Search

    2010-11-01

    Several commercially available bridge deck overlay systems claim to be waterproof and reduce deterioration caused by chloride laden water from penetrating concrete bridge decks. An attempt was made to quantify the in-service waterproofing qualities o...

  5. Green Infrastructure

    EPA Science Inventory

    Large paved surfaces keep rain from infiltrating the soil and recharging groundwater supplies. Alternatively, Green infrastructure uses natural processes to reduce and treat stormwater in place by soaking up and storing water. These systems provide many environmental, social, an...

  6. Water liquid-vapor interface subjected to various electric fields: A molecular dynamics study.

    PubMed

    Nikzad, Mohammadreza; Azimian, Ahmad Reza; Rezaei, Majid; Nikzad, Safoora

    2017-11-28

    Investigation of the effects of E-fields on the liquid-vapor interface is essential for the study of floating water bridge and wetting phenomena. The present study employs the molecular dynamics method to investigate the effects of parallel and perpendicular E-fields on the water liquid-vapor interface. For this purpose, density distribution, number of hydrogen bonds, molecular orientation, and surface tension are examined to gain a better understanding of the interface structure. Results indicate enhancements in parallel E-field decrease the interface width and number of hydrogen bonds, while the opposite holds true in the case of perpendicular E-fields. Moreover, perpendicular fields disturb the water structure at the interface. Given that water molecules tend to be parallel to the interface plane, it is observed that perpendicular E-fields fail to realign water molecules in the field direction while the parallel ones easily do so. It is also shown that surface tension rises with increasing strength of parallel E-fields, while it reduces in the case of perpendicular E-fields. Enhancement of surface tension in the parallel field direction demonstrates how the floating water bridge forms between the beakers. Finally, it is found that application of external E-fields to the liquid-vapor interface does not lead to uniform changes in surface tension and that the liquid-vapor interfacial tension term in Young's equation should be calculated near the triple-line of the droplet. This is attributed to the multi-directional nature of the droplet surface, indicating that no constant value can be assigned to a droplet's surface tension in the presence of large electric fields.

  7. Energy, water and fish: biodiversity impacts of energy-sector water demand in the United States depend on efficiency and policy measures.

    PubMed

    McDonald, Robert I; Olden, Julian D; Opperman, Jeffrey J; Miller, William M; Fargione, Joseph; Revenga, Carmen; Higgins, Jonathan V; Powell, Jimmie

    2012-01-01

    Rising energy consumption in coming decades, combined with a changing energy mix, have the potential to increase the impact of energy sector water use on freshwater biodiversity. We forecast changes in future water use based on various energy scenarios and examine implications for freshwater ecosystems. Annual water withdrawn/manipulated would increase by 18-24%, going from 1,993,000-2,628,000 Mm(3) in 2010 to 2,359,000-3,271,000 Mm(3) in 2035 under the Reference Case of the Energy Information Administration (EIA). Water consumption would more rapidly increase by 26% due to increased biofuel production, going from 16,700-46,400 Mm(3) consumption in 2010 to 21,000-58,400 Mm(3) consumption in 2035. Regionally, water use in the Southwest and Southeast may increase, with anticipated decreases in water use in some areas of the Midwest and Northeast. Policies that promote energy efficiency or conservation in the electric sector would reduce water withdrawn/manipulated by 27-36 m(3)GJ(-1) (0.1-0.5 m(3)GJ(-1) consumption), while such policies in the liquid fuel sector would reduce withdrawal/manipulation by 0.4-0.7 m(3)GJ(-1) (0.2-0.3 m(3)GJ(-1) consumption). The greatest energy sector withdrawal/manipulation are for hydropower and thermoelectric cooling, although potential new EPA rules that would require recirculating cooling for thermoelectric plants would reduce withdrawal/manipulation by 441,000 Mm(3) (20,300 Mm(3) consumption). The greatest consumptive energy sector use is evaporation from hydroelectric reservoirs, followed by irrigation water for biofuel feedstocks and water used for electricity generation from coal. Historical water use by the energy sector is related to patterns of fish species endangerment, where water resource regions with a greater fraction of available surface water withdrawn by hydropower or consumed by the energy sector correlated with higher probabilities of imperilment. Since future increases in energy-sector surface water use will occur in areas of high fish endemism (e.g., Southeast), additional management and policy actions will be needed to minimize further species imperilment.

  8. The Impact of Post-Pretreatment Conditioning on Enzyme Accessibility and Water Interactions in Alkali Pretreated Rice Straw

    NASA Astrophysics Data System (ADS)

    Karuna, Nardrapee

    Rice straw, a high-abundance lignocellulosic residue from rice production has tremendous potential as a feedstock for biofuel production in California. In this study, the impact of post-alkali pretreatment conditioning schemes on enzyme saccharification efficiency was examined, particularly focusing on understanding resulting biomass compositional impacts on water interactions with the biomass and enzyme accessibility to the cellulose fraction. Rice straw was pretreated with sodium hydroxide and subsequently washed by two different conditions: 1) by extensive washing with distilled water to reduce the pH to the optimum for cellulases which is pH 5--6, and 2) immediate pH adjustment to pH 5--6 with hydrochloric acid before extensive washing with distilled water. The two post-pretreatment conditions gave significant differences in ash, acid-insoluble lignin, glucan and xylan compositions. Alkali pretreatment improved cellulase digestibility of rice straw, and water washing improved enzymatic digestibility more than neutralization. Hydrolysis reactions with a purified Trichoderma reesei Cel7A, a reducing-end specific cellulase, demonstrated that the differences in saccharification are likely due to differences in the accessibility of the cellulose fraction to the cellulolytic enzymes. Further analyses were conducted to study the mobility of the water associated with the rice straw samples by measuring T2 relaxation times of the water protons by 1H-Nuclear Magnetic Resonance (NMR) relaxometry. Results showed significant changes in water association with the rice straw due to the pretreatment and due to the two different post-pretreatment conditions. Pretreatment increased the amount of water at the surface of the rice straw samples as indicated by increased amplitude of the shortest T2 time peaks in the relaxation spectra. Moreover, the amount of water in the first T2 pool in the water washed sample was significantly greater than in the neutralized sample. These results suggest that the specific surface area of rice straw accessible to water protons was increased by the alkali pretreatment, likely due to solubilization of alkali-soluble components of the cell walls. Post-pretreatment processes resulted in differences in the specific surface area likely due to re-precipitation of alkali solubilized components during neutralization. The T2 relaxation times of the surface water pool in washed and raw rice straw were not significantly different, at 4.4 and 4.5 ms, respectively, but both T2 times were significantly shorter than that of the neutralized and then washed sample, at 5.5 ms. The expectation was that the T2 times of the surface water peaks would reflect differences in surface composition of the rice straw samples. Further analysis of surface composition is necessary to further interpret the shortest T2 times observed in the samples. The T2 spectra of the rice straw samples contained longer T2 time peaks that were interpreted as differences in porosity of the rice straw due to the treatments. Pretreatment caused physical changes to rice straw that impacted water organization (3 peaks to 4 peaks), but the amount of water in the peaks were greater in the washed rice straw than the neutralized rice straw suggesting that water-washed rice straw had more of the larger pores than the neutralized and then washed rice straw. One possible explanation is that the neutralization caused precipitation of alkali solubilized components that filled the volumes of the pores.

  9. Effects of Zero Tillage (No-Till) Conservation Agriculture on soil physical and biological properties and their contributions to sustainability

    NASA Astrophysics Data System (ADS)

    Landers, John N.; Rass, Gerard; de Freitas, Pedro L.; Basch, Gottlieb; González Sanchez, Emilio J.; Tabaglio, Vincenzo; Kassan, Amir; Derpsch, Rolf; Friedrich, Theodor; Giupponi, Luca

    2013-04-01

    Not cultivating soil, rotating crops over the years, and leaving crop residues on the surface in the practice of zero tillage/conservation agriculture (ZT/CA) reverses the historically accelerating degradation of soil organic matter (SOM) and soil structure, while increasing soil biological activity by a factor of 2 to 4. The results of this are many: (a) not cultivating reduces soil compaction, leaving old root holes to facilitate internal drainage, averts the pulverization of soil aggregates and formation of pans, reduces draft power for planting and gives shelter, winter food and nesting sites for fauna, (b) crop residues on the surface practically eliminate wind and water erosion, reduce soil moisture loss through the mulch effect, slow spring warm-up (possibly offset by a lower specific heat demand with less water retention in surface soil) and act as a reserve of organically-compounded nutrients (as they decompose to humus), (c) more SOM means higher available water and nutrient retention, higher biological activity year round (enhancing biological controls), higher levels of water-stable aggregates and a positive carbon sink in incremental SOM. The positive impacts for society are: (i) more and cheaper food, (ii) reduced flood and drought-induced famine risks, (iii) a positive carbon sink in SOM and possible reductions in NO2 emissions, (iv) cleaner water and greater aquifer recharge due to reduced runoff, (v) cleaner air through effective elimination of dust as a product of cultivation (vi) less water pollution and greater aquifer recharge from reduced rainfall runoff, (vii) farm diesel consumption halved, (viii) reduced demand for (tropical) de-forestation, by permitting crop expansion on steeper lands, (ix) increased wildlife populations (skylarks, plovers, partridge and peccaries) and (x) an improved conservation mindset in farmers. It is notable that, in spite of successful practitioners in all European countries, mainstream adoption is still to come: Europés ZT/CA area is 1.35 million hectares, while the world area is now some 125 million and growing at a rate of 7 million hectares per year. More scientific measurements of the benefits of this system are required, both to assist adoption and to trigger policy measures. In the EEC, CAP reform (greening) needs to consider making environmental services payments for these social benefits since a reduction in single farm payments is ineluctable and carbon footprint reduction is of the essence, in the face of constantly-rising fuel prices and the need to cut GHG emissions. Therefore, as the principal farm tool which offers an effective and immediate solution towards positive changes in soil quality, productivity and sustainability, ZT/CA adoption needs financial incentives, which have high economic and environmental returns to society.

  10. Efficacy of neutral electrolyzed water to inactivate Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, and Staphylococcus aureus on plastic and wooden kitchen cutting boards.

    PubMed

    Deza, M A; Araujo, M; Garrido, M J

    2007-01-01

    This study evaluated the efficacy of neutral electrolyzed water (NEW; 64.1 mg/liter of active chlorine) to reduce populations of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Listeria monocytogenes on plastic and wooden kitchen cutting boards. Its effectiveness was compared with that of a sodium hypochlorite solution (NaClO; 62.3 mg/liter of active chlorine). Inoculated portions of cutting boards were rinsed in either NEW or NaClO solutions, or deionized water (control). Plastic boards were rinsed for 1 min and wooden boards for 1 and 5 min. After each treatment, the surviving population of each strain was determined on the surface and in the soaking water. No significant difference (P > or = 0.05) was found between the final populations of each strain with regard to the treatment solutions (NEW or NaClO). However, a significant difference (P < or = 0.05) was revealed between surface materials after 1 min of washing. Whereas in plastic boards the initial bacterial populations were reduced by 5 log CFU/50 cm2, in wooden cutting boards they underwent a reduction of <3 log CFU/50 cm2. A 5-min exposure time yielded reductions of about 4 log CFU/50 cm2. The surviving populations of all bacteria in NEW and NaCIO washing solutions were <1 log CFU/ml after soaking both surfaces. This study revealed that NEW treatment is an effective method for reducing microbial contamination on plastic and wooden cutting boards. NEW efficacy was comparable to that of NaCIO, with the advantage of having a larger storage time.

  11. Phosphorus runoff from waste water treatment biosolids and poultry litter applied to agricultural soils.

    PubMed

    White, John W; Coale, Frank J; Sims, J Thomas; Shober, Amy L

    2010-01-01

    Differences in the properties of organic phosphorus (P) sources, particularly those that undergo treatment to reduce soluble P, can affect soil P solubility and P transport in surface runoff. This 2-yr field study investigated soil P solubility and runoff P losses from two agricultural soils in the Mid-Atlantic region after land application of biosolids derived from different waste water treatment processes and poultry litter. Phosphorus speciation in the biosolids and poultry litter differed due to treatment processes and significantly altered soil P solubility and dissolved reactive P (DRP) and bioavailable P (FeO-P) concentrations in surface runoff. Runoff total P (TP) concentrations were closely related to sediment transport. Initial runoff DRP and FeO-P concentrations varied among the different biosolids and poultry litter applied. Over time, as sediment transport declined and DRP concentrations became an increasingly important component of runoff FeO-P and TP, total runoff P was more strongly influenced by the type of biosolids applied. Throughout the study, application of lime-stabilized biosolids and poultry litter increased concentrations of soil-soluble P, readily desorbable P, and soil P saturation, resulting in increased DRP and FeO-P concentrations in runoff. Land application of biosolids generated from waste water treatment processes that used amendments to reduce P solubility (e.g., FeCl(3)) did not increase soil P saturation and reduced the potential for DRP and FeO-P transport in surface runoff. These results illustrate the importance of waste water treatment plant process and determination of specific P source coefficients to account for differential P availability among organic P sources.

  12. Inactivation of stressed Escherichia coli O157:H7 cells on the surfaces of rocket salad leaves by chlorine and peroxyacetic acid.

    PubMed

    Al-Nabulsi, Anas A; Osaili, Tareq M; Obaidat, Heba M; Shaker, Reyad R; Awaisheh, Saddam S; Holley, Richard A

    2014-01-01

    Because Escherichia coli O157:H7 has been frequently associated with many foodborne outbreaks caused by consumption of leafy greens (lettuce, spinach, and celery), this study investigated the ability of deionized water, chlorine, and peroxyacetic acid to detach or inactivate stressed and unstressed cells of E. coli O157:H7 contaminating the surfaces of rocket salad leaves. E. coli O157:H7 cells stressed by acid, cold, starvation, or NaCl exposure, as well as unstressed cells, were inoculated on the surfaces of rocket salad leaves at 4°C. The effectiveness of two sanitizers (200 ppm of chlorine and 80 ppm of peroxyacetic acid) and deionized water for decontaminating the leaves treated with stressed and unstressed E. coli O157:H7 were evaluated during storage at 10 or 25°C for 0.5, 1, 3, and 7 days. It was found that washing with 80 ppm of peroxyacetic acid was more effective and reduced unstressed and stressed cells of E. coli O157:H7 by about 1 log CFU per leaf on the leaves. There was no apparent difference in the ability of stressed and unstressed cells to survive surface disinfection with the tested agents. Treatments to reduce viable E. coli O157:H7 cells on rocket leaves stored at 25°C were more effective than when used on those stored at 10°C. Washing with peroxyacetic acid or chlorine solution did not ensure the safety of rocket leaves, but such treatments could reduce the likelihood of water-mediated transfer of E. coli O157:H7 during washing and subsequent processing.

  13. Gill remodelling during terrestrial acclimation reduces aquatic respiratory function of the amphibious fish Kryptolebias marmoratus.

    PubMed

    Turko, Andy J; Cooper, Chris A; Wright, Patricia A

    2012-11-15

    The skin-breathing amphibious fish Kryptolebias marmoratus experiences rapid environmental changes when moving between water- and air-breathing, but remodelling of respiratory morphology is slower (~1 week). We tested the hypotheses that (1) there is a trade-off in respiratory function of gills displaying aquatic versus terrestrial morphologies and (2) rapidly increased gill ventilation is a mechanism to compensate for reduced aquatic respiratory function. Gill surface area, which varied inversely to the height of the interlamellar cell mass, was increased by acclimating fish for 1 week to air or low ion water, or decreased by acclimating fish for 1 week to hypoxia (~20% dissolved oxygen saturation). Fish were subsequently challenged with acute hypoxia, and gill ventilation or oxygen uptake was measured. Fish with reduced gill surface area increased ventilation at higher dissolved oxygen levels, showed an increased critical partial pressure of oxygen and suffered impaired recovery compared with brackish water control fish. These results indicate that hyperventilation, a rapid compensatory mechanism, was only able to maintain oxygen uptake during moderate hypoxia in fish that had remodelled their gills for land. Thus, fish moving between aquatic and terrestrial habitats may benefit from cutaneously breathing oxygen-rich air, but upon return to water must compensate for a less efficient branchial morphology (mild hypoxia) or suffer impaired respiratory function (severe hypoxia).

  14. Wind reduction by aerosol particles

    NASA Astrophysics Data System (ADS)

    Jacobson, Mark Z.; Kaufman, Yoram J.

    2006-12-01

    Aerosol particles are known to affect radiation, temperatures, stability, clouds, and precipitation, but their effects on spatially-distributed wind speed have not been examined to date. Here, it is found that aerosol particles, directly and through their enhancement of clouds, may reduce near-surface wind speeds below them by up to 8% locally. This reduction may explain a portion of observed ``disappearing winds'' in China, and it decreases the energy available for wind-turbine electricity. In California, slower winds reduce emissions of wind-driven soil dust and sea spray. Slower winds and cooler surface temperatures also reduce moisture advection and evaporation. These factors, along with the second indirect aerosol effect, may reduce California precipitation by 2-5%, contributing to a strain on water supply.

  15. Development and Evaluation of EPA Method 1615 for Detection of Enterovirus and Norovirus in Water

    PubMed Central

    Brinkman, Nichole E.; Griffin, Shannon M.; McMinn, Brian R.; Rhodes, Eric R.; Varughese, Eunice A.; Grimm, Ann C.; Parshionikar, Sandhya U.; Wymer, Larry; Fout, G. Shay

    2013-01-01

    The U.S. EPA developed a sample concentration and preparation assay in conjunction with the total culturable virus assay for concentrating and measuring culturable viruses in source and drinking waters as part of the Information Collection Rule (ICR) promulgated in 1996. In an effort to improve upon this method, the U.S. EPA recently developed Method 1615: Measurement of Enterovirus and Norovirus Occurrence in Water by Culture and RT-qPCR. Method 1615 uses a culturable virus assay with reduced equipment and labor costs compared to the costs associated with the ICR virus method and introduces a new molecular assay for the detection of enteroviruses and noroviruses by reverse transcription-quantitative PCR. In this study, we describe the optimization of several new components of the molecular assay and examine virus recovery from ground, reagent-grade, and surface water samples seeded with poliovirus type 3 and murine norovirus. For the culturable virus and molecular assays, mean poliovirus recovery using the complete method was 58% and 20% in groundwater samples, 122% and 39% using low-titer spikes in reagent-grade water, 42% and 48% using high-titer spikes in reagent-grade water, and 11% and 10% in surface water with high turbidity, respectively. Murine norovirus recovery by the molecular assay was 30% in groundwater samples, less than 8% in both low- and high-titer spikes in reagent-grade water, and 6% in surface water with high turbidity. This study demonstrates the effectiveness of Method 1615 for use with groundwater samples and highlights the need for further research into its effectiveness with surface water. PMID:23087037

  16. Tracing sources of sulfur in the Florida everglades

    USGS Publications Warehouse

    Bates, A.L.; Orem, W.H.; Harvey, J.W.; Spiker, E. C.

    2002-01-01

    We examined concentrations and sulfur isotopic ratios (34S/32S, expressed as ??34S in parts per thousand [???] units) of sulfate in surface water, ground water, and rain water from sites throughout the northern Everglades to establish the sources of sulfur to the ecosystem. The geochemistry of sulfur is of particular interest in the Everglades because of its link, through processes mediated by sulfate -reducing bacteria, to the production of toxic methylmercury in this wetland ecosystem. Methylmercury, a neurotoxin that is bioaccumulated, has been found in high concentrations in freshwater fish from the Everglades, and poses a potential threat to fish-eating wildlife and to human health through fish consumption. Results show that surface water in large portions of the Everglades is heavily contaminated with sulfate, with the highest concentrations observed in canals and marsh areas receiving canal discharge. Spatial patterns in the range of concentrations and ??34S values of sulfate in surface water indicate that the major source of sulfate in sulfur-contaminated marshes is water from canals draining the Everglades Agricultural Area. Shallow ground water underlying the Everglades and rain water samples had much lower sulfate concentrations and ??34S values distinct from those found in surface water. The ??34S results implicate agricultural fertilizer as a major contributor to the sulfate contaminating the Everglades, but ground water under the Everglades Agricultural Area (EAA) may also be a contributing source. The contamination of the northern Everglades with sulfate from canal discharge may be a key factor in controlling the distribution and extent of methylmercury production in the Everglades.

  17. Study of dilution, height, and lateral spread of vertical dense jets in marine shallow water.

    PubMed

    Ahmad, Nadeem; Suzuki, Takayuki

    2016-01-01

    This study provides information for the design of sea outfalls to dispose of brine from desalination plants into shallow lagoons of the sea. The behavior of vertical dense jets was studied experimentally by discharging cold saline water vertically upward into a tank filled with hot freshwater under stagnant ambient conditions. The minimum return point dilution, μmin, was determined using thermocouples, and the maximum height, Z(m), and the lateral spread, R(sp), of the fountains were determined by observing shadowgraph pictures. The flow was turbulent and the densimetric Froude number Fr(0) varied from 9 to 18.8. Three mixing regimes were identified: deep, intermediate, and impinging mixing regimes. In the intermediate mixing regime, μ(min) and Z(m) were analyzed and compared with the results of deep water studies. The μ(min) and Z(m) values of fountains at an intermediate water depth were found to be higher than those of fountains at deep water depths. In the impinging regime, μ(min) decreases rapidly when a fountain starts to continuously impinge on the water surface, showing a noticeable disturbance in the water surface. Therefore, a good rule of thumb is to reduce the flow through multiport diffusers from desalination plants when the noticeable disturbance is observed from the top water surface.

  18. Complex use of waste in wastewater and circulating water treatment from oil in heat power stations

    NASA Astrophysics Data System (ADS)

    Nikolaeva, L. A.; Iskhakova, R. Ya.

    2017-06-01

    Sewage and circulating water from oil of thermal power plants (TPP) generated in fuel-oil shops during washing of electrical equipment and its running into the storm drainage system from the industrial site has been considered in the paper. It has been suggested to use the carbonate sludge of water treatment modified with hydrophobing emulsion as a sorption material for waste and circulating water treatment in thermal power plants. The carbonate sludge is waste accumulated in clarifiers at the stage of natural water pretreatment. General technical characteristics of the sludge, such as moisture, bulk density, total pore volume, ash, etc., have been determined. It has been found that the sludge without additional treatment is a hydrophilic material that has low adsorption capacity and wettability with nonpolar compounds. Therefore, the sludge is treated with organosilicon compounds to reduce the moisture capacity and increase its floatation. Several types of sorption materials based on the carbonate sludge subjected to surface and volume hydrophobization have been developed. During the volume treatment, the hydrophobing compound has been introduced into the material along with the plastifier. In case of the surface treatment, heat-treated granules have been soaked into hydrophobing emulsion. It has been shown that surface hydrophobization is most economically advantageous, because it reduces the consumption of water-repelling agent, wherein the total pore volume and sorption capacity during surface hydrophobization increase by 45 and 25% compared to that during volume hydrophobization. Based on the obtained results, the most effective sorption material has been chosen. To produce this material, it is necessary to sequentially carry out mixing of carbonate sludge with the binder, granulation, calcination, impregnation with a waterrepellent emulsion, and drying of the finished material. The suggested technology to produce the material and use it as a sorbent allows efficient wastewater treatment from oil as well as reduction of anthropogenic pressure on the environment and economic costs of the station for nature protection measures.

  19. Management of surface water and groundwater withdrawals to maintain environmental stream flows in Michigan

    USGS Publications Warehouse

    Reeves, Howard W.; Seelbach, Paul W.; Nicholas, James R.; Hamilton, David A.; Potter, Kenneth W.; Frevert, Donald K.

    2010-01-01

    In 2008, the State of Michigan enacted legislation requiring that new or increased high-capacity withdrawals (greater than 100,000 gallons per day) from either surface water or groundwater be reviewed to prevent Adverse Resource Impacts (ARI). Science- based guidance was sought in defining how groundwater or surface-water withdrawals affect streamflow and in quantifying the relation between reduced streamflow and changes in stream ecology. The implementation of the legislation led to a risk-based system based on a gradient of risk, ecological response curves, and estimation of groundwater-surface water interaction. All Michigan streams are included in the legislation, and, accordingly, all Michigan streams were classified into management types defined by size of watershed, stream-water temperature, and predicted fish assemblages. Different streamflow removal percentages define risk-based thresholds allowed for each type. These removal percentages were informed by ecological response curves of characteristic fish populations and finalized through a legislative workgroup process. The assessment process includes an on-line screening tool that may be used to evaluate new or increased withdrawals against the risk-based zones and allows withdrawals that are not likely to cause an ARI to proceed to water-use registration. The system is designed to consider cumulative impacts of high-capacity withdrawals and to promote user involvement in water resource management by the establishment of water-user committees as cumulative withdrawals indicate greater potential for ARI in the watershed.

  20. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    NASA Astrophysics Data System (ADS)

    Okoli, Chuka; Boutonnet, Magali; Järås, Sven; Rajarao-Kuttuva, Gunaratna

    2012-10-01

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  1. Estimating environmental conditions affecting protozoal pathogen removal in surface water wetland systems using a multi-scale, model-based approach.

    PubMed

    Daniels, Miles E; Hogan, Jennifer; Smith, Woutrina A; Oates, Stori C; Miller, Melissa A; Hardin, Dane; Shapiro, Karen; Los Huertos, Marc; Conrad, Patricia A; Dominik, Clare; Watson, Fred G R

    2014-09-15

    Cryptosporidium parvum, Giardia lamblia, and Toxoplasma gondii are waterborne protozoal pathogens distributed worldwide and empirical evidence suggests that wetlands reduce the concentrations of these pathogens under certain environmental conditions. The goal of this study was to evaluate how protozoal removal in surface water is affected by the water temperature, turbidity, salinity, and vegetation cover of wetlands in the Monterey Bay region of California. To examine how protozoal removal was affected by these environmental factors, we conducted observational experiments at three primary spatial scales: settling columns, recirculating wetland mesocosm tanks, and an experimental research wetland (Molera Wetland). Simultaneously, we developed a protozoal transport model for surface water to simulate the settling columns, the mesocosm tanks, and the Molera Wetland. With a high degree of uncertainty expected in the model predictions and field observations, we developed the model within a Bayesian statistical framework. We found protozoal removal increased when water flowed through vegetation, and with higher levels of turbidity, salinity, and temperature. Protozoal removal in surface water was maximized (~0.1 hour(-1)) when flowing through emergent vegetation at 2% cover, and with a vegetation contact time of ~30 minutes compared to the effects of temperature, salinity, and turbidity. Our studies revealed that an increase in vegetated wetland area, with water moving through vegetation, would likely improve regional water quality through the reduction of fecal protozoal pathogen loads. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Ecohydrology of the wetland-forestland interface: hydrophobicity in leaf litter and its potential effect on surface evaporation

    NASA Astrophysics Data System (ADS)

    Probert, Samantha; Kettridge, Nicholas; Devito, Kevin; Hurley, Alexander

    2017-04-01

    Riparian wetlands represent an important ecotone at the interface of peatlands and forests within the Western Boreal Plain of Canada. Water storage and negative feedbacks to evaporation in these systems is crucial for the conservation and redistribution of water during dry periods and providing ecosystem resilience to disturbance. Litter cover can alter the relative importance of the physical processes that drive soil evaporation. Negative feedbacks to drying are created as the hydrophysical properties of the litter and soil override atmospheric controls on evaporation in dry conditions, subsequently dampening the effects of external forcings on the wetland moisture balance. In this study, water repellency in leaf litter has been shown to significantly correlate with surface-atmosphere interactions, whereby severely hydrophobic leaf litter is linked to the highest surface resistances to evaporation, and therefore lowest instantaneous evaporation. Decreasing moisture is associated with increasing hydrophobicity, which may reduce the evaporative flux further as the dry hydrophobic litter creates a hydrological disconnect between soil moisture and the atmosphere. In contrast, hydrophilic litter layers exhibited higher litter moistures, which is associated with reduced resistances to evaporation and enhanced evaporative fluxes. Water repellency of the litter layer has a greater control on evaporation than the presence or absence of litter itself. Litter removal had no significant effect on instantaneous evaporation or surface resistance to evaporation except under the highest evaporation conditions, where litter layers produced higher resistance values than bare peat soils. However, litter removal modified the dominant physical controls on evaporation: moisture loss in plots with leaf litter was driven by leaf and soil hydrophysical properties. Contrastingly, bare peat soils following litter removal exhibited cooler, wetter surfaces and were more strongly correlated to atmospheric controls. The interaction between evaporation, hydrophobicity and moisture of the soil surface, or litter, presents a potentially significant negative feedback to drying across wetland-forestland interfaces.

  3. Fish Mercury and Surface Water Sulfate Relationships in the Everglades Protection Area

    NASA Astrophysics Data System (ADS)

    Gabriel, Mark C.; Howard, Nicole; Osborne, Todd Z.

    2014-03-01

    Few published studies present data on relationships between fish mercury and surface or pore water sulfate concentrations, particularly on an ecosystem-wide basis. Resource managers can use these relationships to identify the sulfate conditions that contain fish with health-concerning total mercury (THg) levels and to evaluate the role of sulfate in methyl-mercury (MeHg) production. In this study, we derived relationships between THg in three fish trophic levels (mosquitofish, sunfish, and age-1 largemouth bass) and surface water sulfate from 1998 to 2009 for multiple stations across the Everglades Protection Area (EPA). Results show the relationship between sulfate and fish THg in each fish type is nonlinear and largely skewed, similar to the relationship between MeHg production and sulfate concentration in peatland sediment pore water identified by other researchers. Peak fish THg levels occurred in ~1 to 12 mg/L sulfate conditions. There was significant variability in the fish THg data, and there were several instances of high-fish THg levels in high-sulfate conditions (>30 mg/L). Health-concerning fish THg levels were present in all surface water sulfate conditions; however, most of these levels occurred in 1-20 mg/L sulfate. The data in this study, including recent studies, show consistent and identifiable areas of high- and low-fish THg across the spectrum of surface water sulfate concentration, therefore, applying an ecosystem-wide sulfur strategy may be an effective management approach as it would significantly reduce MeHg risk in the EPA.

  4. Fish mercury and surface water sulfate relationships in the Everglades Protection Area.

    PubMed

    Gabriel, Mark C; Howard, Nicole; Osborne, Todd Z

    2014-03-01

    Few published studies present data on relationships between fish mercury and surface or pore water sulfate concentrations, particularly on an ecosystem-wide basis. Resource managers can use these relationships to identify the sulfate conditions that contain fish with health-concerning total mercury (THg) levels and to evaluate the role of sulfate in methyl-mercury (MeHg) production. In this study, we derived relationships between THg in three fish trophic levels (mosquitofish, sunfish, and age-1 largemouth bass) and surface water sulfate from 1998 to 2009 for multiple stations across the Everglades Protection Area (EPA). Results show the relationship between sulfate and fish THg in each fish type is nonlinear and largely skewed, similar to the relationship between MeHg production and sulfate concentration in peatland sediment pore water identified by other researchers. Peak fish THg levels occurred in ~1 to 12 mg/L sulfate conditions. There was significant variability in the fish THg data, and there were several instances of high-fish THg levels in high-sulfate conditions (>30 mg/L). Health-concerning fish THg levels were present in all surface water sulfate conditions; however, most of these levels occurred in 1-20 mg/L sulfate. The data in this study, including recent studies, show consistent and identifiable areas of high- and low-fish THg across the spectrum of surface water sulfate concentration, therefore, applying an ecosystem-wide sulfur strategy may be an effective management approach as it would significantly reduce MeHg risk in the EPA.

  5. Impact of coastal fog on the energy and water balance of a California agricultural system

    NASA Astrophysics Data System (ADS)

    Baguskas, S. A.; Oliphant, A. J.; Loik, M. E.

    2016-12-01

    In coastal California, the growing season of economically important crops overlaps with the occurrence of coastal fog, which buffers the summer dry season through shading effects and direct water inputs. The objective of our study was to develop relationships between coastal fog and the water and energy budgets of croplands in order to improve estimates of crop-scale evapotranspiration (ET) rates, which has potential to reduce groundwater use based on local cloud meteorology. Our study site was a coastal strawberry farm located in fog-belt of the Salinas Valley, California. We installed an eddy covariance tower to quantify surface energy budgets and actual ET at the field scale from July-September 2016. We also measured leaf and canopy-scale strawberry physiology on foggy and clear-sky days. Flow meters and soil moisture probes were installed in drip lines to quantify irrigation amount, timing, and soil wetting depth. We found that downward longwave radiation was higher on foggy compared to clear-sky days, indicating that emission of longwave radiation from the surface was absorbed by water droplets and vapor in the fog. Midday latent heat flux decreased by 125 W m-2 from a clear to foggy day, suggesting that water loss from the surface to the atmosphere decreases substantially during fog events. Likewise, we found a decrease in leaf and canopy-level transpiration on foggy compared to clear-sky days. While drawdown of CO2 at the field-scale decreased from -1.2 to -0.6 gC m-2 s-1 during fog events, canopy-level carbon and water vapor flux measurements show that water use efficiency (carbon gain per water loss) increased significantly on foggy days. Our results show that strawberry crops do not demand as much water during fog events, yet still maintain relatively high levels of carbon uptake. Therefore, the amount of irrigation could potentially be reduced during foggy periods without sacrificing yield.

  6. Improved recovery of Listeria monocytogenes from stainless steel and polytetrafluoroethylene surfaces using air/water ablation.

    PubMed

    Gião, M S; Blanc, S; Porta, S; Belenguer, J; Keevil, C W

    2015-07-01

    To develop a gentle ablation technique to recover Listeria monocytogenes biofilms from stainless steel (SS) and polytetrafluoroethylene (PTFE) surfaces by using compressed air and water injection. Biofilms were grown for 4, 24 and 48 h or 7 days and a compressed air and water flow at 2, 3 and 4 bars was applied for cell removal. Collected cells were quantified for total/dead by staining with SYTO 9/PI double staining and cultivable populations were determined by plating onto brain heart infusion (BHI) agar, while coupon surfaces also were stained with DAPI to quantify in situ the remaining cells. The recovery efficiency was compared to that of conventional swabbing. Results showed that the air/water ablation is able to collect up to 98·6% of cells from SS surfaces while swabbing only recovered 11·2% of biofilm. Moreover, air/water ablation recovered 99·9% of cells from PTFE surfaces. The high recovery rate achieved by this technique, along with the fact that cells were able to retain membrane integrity and cultivability, indicate that this device is suitable for the gentle recovery of viable L. monocytogenes biofilm cells. This work presents a highly efficient technique to remove, collect and quantify L. monocytogenes from surfaces commonly used in the food industry, which can thus serve as an important aid in verifying cleaning and sanitation as well as in reducing the likelihood of cross-contamination events. © 2015 The Society for Applied Microbiology.

  7. An at-grade stabilization structure impact on runoff and suspended sediment

    USGS Publications Warehouse

    Minks, Kyle R.; Lowery, Birl; Madison, Fred W.; Ruark, Matthew; Frame, Dennis R.; Stuntebeck, Todd D.; Komiskey, Matthew J.

    2012-01-01

    In recent years, agricultural runoff has received more attention as a major contributor to surface water pollution. This is especially true for the unglaciated area of Wisconsin, given this area's steep topography, which makes it highly susceptible to runoff and soil loss. We evaluated the ability of an at-grade stabilization structure (AGSS), designed as a conservation practice to reduce the amount of overland runoff and suspended sediment transported to the surface waters of an agricultural watershed. Eight years of storm and baseflow data collected by the US Geological Survey–Wisconsin Water Science Center on a farm in west central Wisconsin were analyzed for changes in precipitation, storm runoff volume, and suspended sediment concentration before and after installation of an AGSS. The agricultural research site was designed as a paired watershed study in which monitoring stations were installed on the perennial streams draining both control and treatment watersheds. Linear mixed effects model analyses were conducted to determine if any statistically significant changes occurred in the water quality parameters before and after the AGSS was installed. Results indicated no significant changes (p = 0.51) in average event precipitation and runoff volumes before and after installation of the AGSS in either the treatment (NW) or control (SW) watersheds. However, the AGSS did significantly reduce the average suspended sediment concentration in the event runoff water (p = 0.02) in the NW from 972 to 263 mg L–1. In addition, particle size analyses, using light diffraction techniques, were conducted on soil samples taken from within the AGSS and adjacent valley and ridge top to determine if suspended sediments were being retained within the structure. Statistical analysis revealed a significantly (p < 0.001) larger proportion of clay inside the AGSS (37%) than outside (30%). These results indicate that the AGSS was successful in reducing the amount of suspended sediment transported to nearby surface waters. The cost of an AGSS can range from US$3,500 to US$8,000, depending on size. Thus, these structures provide a cheap and effective means of improving water quality in highly erosive landscapes.

  8. AirSWOT Measurements of Water Surface Elevations and Hydraulic Gradients over the Yukon Flats, Alaska

    NASA Astrophysics Data System (ADS)

    Pitcher, L. H.; Pavelsky, T.; Smith, L. C.; Moller, D.; Altenau, E. H.; Lion, C.; Bertram, M.; Cooley, S. W.

    2017-12-01

    AirSWOT is an airborne, Ka-band synthetic aperture radar interferometer (InSAR) intended to quantify surface water fluxes by mapping water surface elevations (WSE). AirSWOT will also serve as a calibration/validation tool for the Surface Water and Ocean Topography (SWOT) satellite mission (scheduled for launch in 2021). The hydrology objectives for AirSWOT and SWOT are to measure WSE with accuracies sufficient to estimate hydrologic fluxes in lakes, wetlands and rivers. However, current understanding of the performance of these related though not identical instruments when applied to complex river-lake-wetland fluvial environments remains predominantly theoretical. We present AirSWOT data acquired 15-June-2015 over the Yukon Flats, Alaska, USA, together with in situ field surveys, to assess the accuracy of AirSWOT WSE measurements in lakes and rivers. We use these data to demonstrate that AirSWOT can be used to estimate large-scale hydraulic gradients across wetland complexes. Finally, we present key lessons learned from this AirSWOT analysis for consideration in future campaigns, including: maximizing swath overlap for spatial averaging to minimize uncertainty as well as orienting flight paths parallel to river flow directions to reduce along track aircraft drift for neighboring flight paths. We conclude that spatially dense AirSWOT measurements of river and lake WSEs can improve geospatial understanding of surface water hydrology and fluvial processes.

  9. Drinking water intake of grazing steers: the role of environmental factors controlling canopy wetness.

    PubMed

    Sun, L Z; Auerswald, K; Wenzel, R; Schnyder, H

    2014-01-01

    Cattle obtain water primarily from the moisture in their feed and from drinking water. On pasture, the moisture content of the diet is influenced by plant tissue water (internal water) and surface moisture (external water), which may include dew, guttation, and intercepted rain, that influence the drinking water requirement. This study investigated the relationship between daily drinking water intake (DWI, L/d) of steers on pasture (19 steers with mean initial BW of approximately 400 kg) and soil and weather factors that are known to affect plant water status (dry matter content) and surface moisture formation and persistence. Daily records of weather conditions and DWI were obtained during 2 grazing seasons with contrasting spring, summer, and autumn rainfall patterns. Plant available water in the soil (PAW, mm) was modeled from actual and potential evapotranspiration and the water-holding capacity of the soil. The DWI averaged over the herd varied among days from 0 to 29 L/d (grazing season mean 9.8 L/d). The DWI on both dry (<0.2 mm rainfall on the corresponding and previous days) and wet (>2 mm) days increased with increasing temperature (mean, maximum, and minimum), sunshine hours, and global radiation and decreasing relative humidity, and the slopes and coefficients of determination were generally greater for wet days. Wind reduced DWI on wet days but had no effect on dry days. The DWI was reduced by up to 4.4 L/d on wet days compared to dry days, but DWI did not correlate with rainfall amount. Increasing PAW decreased DWI by up to >10 L/d on both dry and wet days. These results are all consistent with environmental effects on the water status (dry matter content) of pasture vegetation and canopy surface moisture, the associated effects on grazing-related water intake, and the corresponding balancing changes of DWI. Using the observed relationships with environmental factors, we derived a new model predicting DWI for any soil moisture condition, for both wet and dry days, which included mean ambient temperature and relative humidity and explained virtually all variation of DWI that was not caused by the random scatter among individual animals.

  10. Control and characterization of textured, hydrophobic ionomer surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Xueyuan

    Polymer thin films are of increasing interest in many industrial and technological applications. Superhydrophobic, self-cleaning surfaces have attracted a lot of attention for their application in self-cleaning, anti-sticking coatings, stain resistance, or anti-contamination surfaces in diverse technologies, including medical, transportation, textiles, electronics and paints. This thesis focuses on the preparation of nanometer to micrometer-size particle textured surfaces which are desirable for super water repellency. Textured surfaces consisting of nanometer to micrometer-sized lightly sulfonated polystyrene ionomer (SPS) particles were prepared by rapid evaporation of the solvent from a dilute polymer solution cast onto silica. The effect of the solvent used to spin coat the film, the molecular weight of the ionomer, and the rate of solvent evaporation were investigated. The nano-particle or micron-particle textured ionomer surfaces were prepared by either spin coating or solution casting ionomer solutions at controlled evaporation rates. The surface morphologies were consistent with a spinodal decomposition mechanism where the surface first existed as a percolated-like structure and then ripened into droplets if molecular mobility was retained for sufficient time. The SPS particles or particle aggregates were robust and resisted deformation even after annealing at 120°C for one week. The water contact angles on as-prepared surfaces were relatively low, ~ 90° since the polar groups in ionomer reduce the surface hydrophobicity. After chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltrichlorosilane, the surface contact angles increased to ~ 109° on smooth surfaces and ~140° on the textured surfaces. Water droplets stuck to these surfaces even when tilted 90 degrees. Superhydrophobic surfaces were prepared by spraying coating ionomer solutions and Chemical Vapor Deposition (CVD) of 1H,1H,2H,2H-perfluorooctyltrichlorosilane onto textured surfaces. The surfaces after CVD of silane exhibited water contact angle of 152° and the water droplet stuck to the surfaces without falling even when tilted upside down. This kind of sticky superhydrophobic surface would have potential applications in no-loss transport of liquid, and cleaning robots.

  11. Documentation of a restart option for the U.S. Geological Survey coupled Groundwater and Surface-Water Flow (GSFLOW) model

    USGS Publications Warehouse

    Regan, R. Steve; Niswonger, Richard G.; Markstrom, Steven L.; Barlow, Paul M.

    2015-10-02

    The spin-up simulation should be run for a sufficient length of time necessary to establish antecedent conditions throughout a model domain. Each GSFLOW application can require different lengths of time to account for the hydrologic stresses to propagate through a coupled groundwater and surface-water system. Typically, groundwater hydrologic processes require many years to come into equilibrium with dynamic climate and other forcing (or stress) data, such as precipitation and well pumping, whereas runoff-dominated surface-water processes respond relatively quickly. Use of a spin-up simulation can substantially reduce execution-time requirements for applications where the time period of interest is small compared to the time for hydrologic memory; thus, use of the restart option can be an efficient strategy for forecast and calibration simulations that require multiple simulations starting from the same day.

  12. Measurements of the dielectric properties of sea water at 1.43 GHz

    NASA Technical Reports Server (NTRS)

    Ho, W. W.; Love, A. W.; Vanmelle, M. J.

    1974-01-01

    Salinity and temperature of water surfaces of estuaries and bay regions are determined to accuracies of 1 ppt salinity and 0.3 kelvin surface temperature. L-band and S-band radiometers are used in combination as brightness temperature detectors. The determination of the brightness temperature versus salinity, with the water surface temperature as a parameter for 1.4 GHz, is performed with a capillary tube inserted into a resonance cavity. Detailed analysis of the results indicates that the measured values are accurate to better than 0.2 percent in the electric property epsilon' and 0.4 percent in epsilon''. The calculated brightness temperature as a function of temperature and salinity is better than 0.2 kelvin. Thus it is possible to reduce the measured data obtained with the two-frequency radiometer system with 1 ppt accuracy to values in the salinity range 5 to 40 ppt.

  13. Optimization of Energy Consumption and Mass Transfer Parameters in a Surface Aeration Vessel.

    PubMed

    Mohammadpour, A; AkhavanBehabadi, M A; Ebrahimzadeh, M; Raisee, M; MajdiNasab, A R; Nosrati, M; Mousavi, S M

    2016-04-01

    This paper reports tests on a lab-scale surface aeration vessel was equipped with a Rushton turbine to examine its performance in terms of standard aeration efficiency (SAE), mixing time, and void fraction characteristics. These characteristics were investigated by tests using variations of rotor speed, impeller immersion depth, and water level. Results showed that variation of impeller immersion depth had a greater effect on the SAE compared to variation of water level. Moreover, the SAE increased with rotor speeds up to about 150 to 200 rpm and then decreased. In addition, void fraction improved by impeller immersion depth and rotor speed enhancement; however, mixing time and power number were reduced as rotor speed increased. According to the response surface methodology statistical optimizations, optimum values for rotor speed, impeller immersion depth, and water level were 168.90 rpm, 25 mm, and 30 cm, respectively, to achieve the maximum value of SAE.

  14. Exchange of Laptev Sea and Arctic Ocean halocline waters in response to atmospheric forcing

    NASA Astrophysics Data System (ADS)

    Bauch, D.; Dmitrenko, I. A.; Wegner, C.; HöLemann, J.; Kirillov, S. A.; Timokhov, L. A.; Kassens, H.

    2009-05-01

    Combined δ18O/salinity data reveal a distinctive water mass generated during winter sea ice formation which is found predominantly in the coastal polynya region of the southern Laptev Sea. Export of the brine-enriched bottom water shows interannual variability in correlation with atmospheric conditions. Summer anticyclonic circulation is favoring an offshore transport of river water at the surface as well as a pronounced signal of brine-enriched waters at about 50 m water depth at the shelf break. Summer cyclonic atmospheric circulation favors onshore or an eastward, alongshore water transport, and at the shelf break the river water fraction is reduced and the pronounced brine signal is missing, while on the middle Laptev Sea shelf, brine-enriched waters are found in high proportions. Residence times of bottom and subsurface waters on the shelf may thereby vary considerably: an export of shelf waters to the Arctic Ocean halocline might be shut down or strongly reduced during "onshore" cyclonic atmospheric circulation, while with "offshore" anticyclonic atmospheric circulation, brine waters are exported and residence times may be as short as 1 year only.

  15. The Influence of Electrolytes on the Mixed Micellization of Equimolar (Monomeric and Dimeric) Surfactants

    NASA Astrophysics Data System (ADS)

    Alam, Md. Sayem; Siddiq, A. Mohammed; Mandal, Asit Baran

    2018-01-01

    The influence of halide ions of (sodium salt) electrolytes on the mixed micellization of a cationic gemini (dimeric) surfactant, hexanediyl-1,6-bis(dimethylcetylammonium) bromide (16-6-16) and a cationic conventional (monomeric) surfactant, cetyltrimethylammonium bromide (CTAB) have been investigated. The critical micelle concentration (CMC) of the mixed (16-6-16+CTAB) surfactants was measured by the surface tension measurements. The surface properties: viz., the surfactant concentration required to reduce the surface tension by 20 mN/m ( C 20), the surface pressure at the CMC (ΠCMC), the maximum surface excess concentration at the air/water interface (Γmax), the minimum area per surfactant molecule at the air/water interface ( A min), etc. of the mixed micellar surfactant systems were evaluated. In the absence and presence of electrolytes, the thermodynamic parameters of the mixed micellar surfactant systems were also evaluated.

  16. A Runway Surface Monitor using Internet of Things

    NASA Astrophysics Data System (ADS)

    Troiano, Amedeo; Pasero, Eros

    2014-05-01

    The monitoring of runway surfaces, for the detection of ice formation or presence of water, is an important issue for reducing maintenance costs and improving traffic safety. An innovative sensor was developed to detect the presence of ice or water on its surface, and its repeatability, stability and reliability were assessed in different simulations and experiments, performed both in laboratory and in the field. Three sensors were embedded in the runway of the Turin-Caselle airport, in the north-west of Italy, to check the state of its surface. Each sensor was connected to a GPRS modem to send the collected data to a common database. The entire system was installed about three years ago, and up to now it shows correct work and automatic reactivation after malfunctions without any external help. The state of the runway surface is virtual represented in an internet website, using the Internet of Things features and opening new scenarios.

  17. Sorption of water by biochar: Closer look at micropores

    NASA Astrophysics Data System (ADS)

    Spokas, Kurt; Hall, Kathleen; Joseph, Stephan; Kammann, Claudia; Novak, Jeffrey; Gámiz, Beatriz; Cox, Lucia

    2017-04-01

    Typically, biochar has been assumed to increase total water content of the soil system and thereby positively influence plant-soil moisture hydraulics. In this work, we focused on water's interaction with micro-pores (<2 nm) and its influence on water availability. In other words, the main question was if the driving force of water's behavior was the physics or chemistry of biochar pores. The temporal scale of liquid water entry into biochar's pore network is very complex, with observed bubbling occurring days, weeks, and even months after a piece of biochar is immersed under water at ambient conditions. Elevated temperature biochar typically has a positive heat of immersion measured calorimetrically, whereas the calculated BET energy of sorption from a water sorption isotherm typically decrease with production temperatures. To further complicate matters, different pieces of biochar interact differently with water even though the entire batch was created in the same reactor at the same time and after liquid water exposure the physical structure of biochar is irreversibly altered, sometimes negligible other times catastrophically. Nevertheless, based on the estimations of diffusion coefficients in biochar from drying curve analyses, pore surface moieties do reduce the effective diffusivity of water vapor in biochar. Contrary to the rule of thumb in soil physics, where higher gas filled porosity correlates with higher soil moisture holding capacities, our results indicate that biochar's water sorption rate and capacity is actually reduced at ambient conditions by an increase in microporous volume. Thereby, biochar's hydrophobic behavior is partly due to the entrapment of gas within the air-filled porosity which prevents liquid water's entry, even though these biochars possess elevated gas phase sorption capacities (e.g., BET N2/CO2 surface areas).

  18. A strategy for emergency treatment of Schistosoma japonicum-infested water

    PubMed Central

    2011-01-01

    Background Schistosomiasis japonica, caused by contact with Schistosoma japonicum cercaria-infested water when washing, bathing or production, remains a major public-health concern in China. The purpose of the present study was to investigate the effect of a suspension concentrate of niclosamide (SCN) on killing cercaria of S. japonicum that float on the water surface, and its toxicity to fish, so as to establish an emergency-treatment intervention for rapidly killing cercaria and eliminating water infectivity. Results At 30 min after spraying 100 mg/L SCN, with niclosamide dosages of 0.01, 0.02, 0.03, 0.04 g/m2, the water infectivity reduced significantly and no infectivity was found at 60 min after spraying SCN. The surface of static water was sprayed with 100 mg/L SCN, the peak concentration was found at 0 min, and the solution diffused to site with a water depth of 10 cm after 10 min. 30 min later, SCN diffused to the whole water body, and distributed evenly. After spraying 100 mg/L SCN onto the surface of the water with a volume of(3.14 × 202×50)cm3, with niclosamide dosages of 0.02 g/m2, 96 h later, no death of zebra fish was observed. Conclusions By spraying 100 mg/L SCN, with a niclosamide dosage of 0.02 g/m2 onto the surface of S. japonicum-infested water, infectivity of the water can be eliminated after 30-60 min, and there is no evident toxicity to fish. This cercaria-killing method, as an emergency-treatment intervention for infested water, can be applied in those forecasting and early warning systems for schistosomiasis. PMID:22047607

  19. Enceladus and Europa: How Does Hydrothermal Activity Begin at the Surface?

    NASA Technical Reports Server (NTRS)

    Matson, D. L.; Castillo-Rogez, J. C.; Johnson, T. V.; Lunine, J. I.; Davies, A. G.

    2011-01-01

    The question of how the surface hydrothermal activity (e.g., eruptive plumes and heat flow) is initiated can be addressed within the frame-work of our "Perrier Ocean" model. This model delivers the necessary heat and chemicals to support the heat flow and plumes observed by Cassini in Enceladus' South Polar Region. The model employs closed-loop circulation of water from a sub-surface ocean. The ocean is the main reservoir of heat and chemicals, including dissolved gases. As ocean water moves up toward the surface, pressure is re-duced and gases exsolve forming bubbles. This bub-bly mixture is less dense than the icy crust and the buoyant ocean-water mixture rises toward the surface. Near the surface, heat and chemicals, including some volatiles, are delivered to the chambers in which plumes form and also to shallow reservoirs that keep the surface ice "warm". (Plume operations, per se, are as described by Schmidt et al. and Postberg et al. and are adopted by us.) After transferring heat, the water cools, bubbles contract and dissolve, and the mixture is now relatively dense. It descends through cracks in the crust and returns to the ocean. Once the closed-loop circulation has started it is self-sustaining. Loss of water via the erupting plumes is relatively negligible compared to the amount needed to maintain the heat flow.We note that the activity described herein for the the "Perrier-Ocean" model could, a priori, apply to all small icy bodies that sheltered an interior ocean at some point in their history.

  20. Fast Transport of Water Droplets over a Thermo-Switchable Surface Using Rewritable Wettability Gradient.

    PubMed

    Banuprasad, Theneyur Narayanaswamy; Vinay, Thamarasseril Vijayan; Subash, Cherumannil Karumuthil; Varghese, Soney; George, Sajan D; Varanakkottu, Subramanyan Namboodiri

    2017-08-23

    In spite of the reported temperature dependent tunability in wettability of poly(N-isopropylacrylamide) (PNIPAAm) surfaces for below and above lower critical solution temperature (32 °C), the transport of water droplets is inhibited by the large contact angle hysteresis. Herein, for the first time, we report on-demand, fast, and reconfigurable droplet manipulation over a PNIPAAm grafted structured polymer surface using temperature-induced wettability gradient. Our study reveals that the PNIPAAm grafted on intrinsically superhydrophobic surfaces exhibit hydrophilic nature with high contact angle hysteresis below 30 °C and superhydrophobic nature with ultralow contact angle hysteresis above 36 °C. The transition region between 30 and 36 °C is characterized by a large change in water contact angle (∼100°) with a concomitant change in contact angle hysteresis. By utilizing this "transport zone" wherein driving forces overcome the frictional forces, we demonstrate macroscopic transport of water drops with a maximum transport velocity of approximately 40 cm/s. The theoretical calculations on the force measurements concur with dominating behavior of driving forces across the transport zone. The tunability in transport velocity by varying the temperature gradient along the surface or the inclination angle of the surface (maximum angle of 15° with a reduced velocity 0.4 mm/s) is also elucidated. In addition, as a practical application, coalescence of water droplets is demonstrated by using the temperature controlled wettability gradient. The presented results are expected to provide new insights on the design and fabrication of smart multifunctional surfaces for applications such as biochemical analysis, self-cleaning, and microfluidics.

Top