Sample records for reduce ventilator-induced vascular

  1. Parecoxib reduced ventilation induced lung injury in acute respiratory distress syndrome.

    PubMed

    Meng, Fan-You; Gao, Wei; Ju, Ying-Nan

    2017-03-29

    Cyclooxygenase-2 (COX-2) contributes to ventilation induced lung injury (VILI) and acute respiratory distress syndrome (ARDS). The objective of present study was to observe the therapeutic effect of parecoxib on VILI in ARDS. In this parallel controlled study performed at Harbin Medical University, China between January 2016 and March 2016, 24 rats were randomly allocated into sham group (S), volume ventilation group/ARDS (VA), parecoxib/volume ventilation group/ARDS (PVA). Rats in the S group only received anesthesia; rats in the VA and PVA group received intravenous injection of endotoxin to induce ARDS, and then received ventilation. Rats in the VA and PVA groups were treated with intravenous injection of saline or parecoxib. The ratio of arterial oxygen pressure to fractional inspired oxygen (PaO 2 /FiO 2 ), the wet to dry weight ratio of lung tissue, inflammatory factors in serum and bronchoalveolar lavage fluid (BALF), and histopathologic analyses of lung tissue were examined. In addition, survival was calculated at 24 h after VILI. Compared to the VA group, in the PVA group, PaO 2 /FiO 2 was significantly increased; lung tissue wet to dry weight ratio; macrophage and neutrophil counts, total protein and neutrophil elastase levels in BALF; tumor necrosis factor-α, interleukin-1β, and prostaglandin E 2 levels in BALF and serum; and myeloperoxidase (MPO) activity, malondialdehyde levels, and Bax and COX-2 protein levels in lung tissue were significantly decreased, while Bcl-2 protein levels were significantly increased. Lung histopathogical changes and apoptosis were reduced by parecpxib in the PVA group. Survival was increased in the PVA group. Parecoxib improves gas exchange and epithelial permeability, decreases edema, reduces local and systemic inflammation, ameliorates lung injury and apoptosis, and increases survival in a rat model of VILI.

  2. Protective ventilation of preterm lambs exposed to acute chorioamnionitis does not reduce ventilation-induced lung or brain injury.

    PubMed

    Barton, Samantha K; Moss, Timothy J M; Hooper, Stuart B; Crossley, Kelly J; Gill, Andrew W; Kluckow, Martin; Zahra, Valerie; Wong, Flora Y; Pichler, Gerhard; Galinsky, Robert; Miller, Suzanne L; Tolcos, Mary; Polglase, Graeme R

    2014-01-01

    The onset of mechanical ventilation is a critical time for the initiation of cerebral white matter (WM) injury in preterm neonates, particularly if they are inadvertently exposed to high tidal volumes (VT) in the delivery room. Protective ventilation strategies at birth reduce ventilation-induced lung and brain inflammation and injury, however its efficacy in a compromised newborn is not known. Chorioamnionitis is a common antecedent of preterm birth, and increases the risk and severity of WM injury. We investigated the effects of high VT ventilation, after chorioamnionitis, on preterm lung and WM inflammation and injury, and whether a protective ventilation strategy could mitigate the response. Pregnant ewes (n = 18) received intra-amniotic lipopolysaccharide (LPS) 2 days before delivery, instrumentation and ventilation at 127±1 days gestation. Lambs were either immediately euthanased and used as unventilated controls (LPSUVC; n = 6), or were ventilated using an injurious high VT strategy (LPSINJ; n = 5) or a protective ventilation strategy (LPSPROT; n = 7) for a total of 90 min. Mean arterial pressure, heart rate and cerebral haemodynamics and oxygenation were measured continuously. Lungs and brains underwent molecular and histological assessment of inflammation and injury. LPSINJ lambs had poorer oxygenation than LPSPROT lambs. Ventilation requirements and cardiopulmonary and systemic haemodynamics were not different between ventilation strategies. Compared to unventilated lambs, LPSINJ and LPSPROT lambs had increases in pro-inflammatory cytokine expression within the lungs and brain, and increased astrogliosis (p<0.02) and cell death (p<0.05) in the WM, which were equivalent in magnitude between groups. Ventilation after acute chorioamnionitis, irrespective of strategy used, increases haemodynamic instability and lung and cerebral inflammation and injury. Mechanical ventilation is a potential contributor to WM injury in infants exposed to

  3. Partial liquid ventilation reduces fluid filtration of isolated rabbit lungs with acute hydrochloric acid-induced edema.

    PubMed

    Loer, S A; Tarnow, J

    2001-06-01

    Hydrochloric acid aspiration increases pulmonary microvascular permeability. The authors tested the hypothesis that partial liquid ventilation has a beneficial effect on filtration coefficients in acute acid-induced lung injury. Isolated blood-perfused rabbit lungs were assigned randomly to one of four groups. Group 1 (n = 6) served as a control group without edema. In group 2 (n = 6), group 3 (n = 6), and group 4 (n = 6), pulmonary edema was induced by intratracheal instillation of hydrochloric acid (0.1 N, 2 ml/kg body weight). Filtration coefficients were determined 30 min after this injury (by measuring loss of perfusate after increase of left atrial pressure). Group 2 lungs were gas ventilated, and group 3 lungs received partial liquid ventilation (15 ml perfluorocarbon/kg body weight). In group 4 lungs, the authors studied the immediate effects of bronchial perfluorocarbon instillation on ongoing filtration. Intratracheal instillation of hydrochloric acid markedly increased filtration coefficients when compared with non-injured control lungs (2.3 +/- 0.7 vs. 0.31 +/- 0.08 ml.min(-1). mmHg(-1).100 g(-1) wet lung weight, P < 0.01). Partial liquid ventilation reduced filtration coefficients of the injured lungs (to 0.9 +/- 0.3 ml.min(-1).mmHg(-1).100 g(-1) wet lung weight, P = 0.022). Neither pulmonary artery nor capillary pressures (determined by simultaneous occlusion of inflow and outflow of the pulmonary circulation) were changed by hydrochloric acid instillation or by partial liquid ventilation. During ongoing filtration, bronchial perfluorocarbon instillation (5 ml/kg body weight) immediately reduced the amount of filtered fluid by approximately 50% (P = 0.027). In the acute phase after acid injury, partial liquid ventilation reduced pathologic fluid filtration. This effect started immediately after bronchial perfluorocarbon instillation and was not associated with changes in mean pulmonary artery, capillary, or airway pressures. The authors suggest that

  4. Halothane reduces the early lipopolysaccharide-induced lung inflammation in mechanically ventilated rats.

    PubMed

    Giraud, O; Seince, P F; Rolland, C; Leçon-Malas, V; Desmonts, J M; Aubier, M; Dehoux, M

    2000-12-01

    Several studies suggest that anesthetics modulate the immune response. The aim of this study was to investigate the effect of halothane and thiopental on the lung inflammatory response. Rats submitted or not to intratracheal (IT) instillation of lipopolysaccharides (LPS) were anesthetized with either halothane (0. 5, 1, or 1.5%) or thiopental (60 mg. kg(-1)) and mechanically ventilated for 4 h. Control rats were treated or not by LPS without anesthesia. Lung inflammation was assessed by total and differential cell counts in bronchoalveolar lavage fluids (BALF) and by cytokine measurements (tumor necrosis factor-alpha [TNF-alpha], interleukin-6 [IL-6], macrophage inflammatory protein-2 [MIP-2], and monocyte chemoattractant protein-1 [MCP-1]) in BALF and lung homogenates. In the absence of LPS treatment, neither halothane nor thiopental modified the moderate inflammatory response induced by tracheotomy or mechanical ventilation. Cell recruitment and cytokine concentrations were increased in all groups receiving IT LPS. However, in halothane-anesthetized rats (halothane > or = 1%), but not in thiopental-anesthetized rats, the LPS-induced lung inflammation was altered in a dose-dependent manner. Indeed, when using 1% halothane, polymorphonuclear leukocyte (PMN) recruitment was decreased by 55% (p < 0.001) and TNF-alpha, IL-6, and MIP-2 concentrations in BALF and lung homogenates were decreased by more than 60% (p < 0.001) whereas total protein and MCP-1 concentrations remained unchanged. The decrease of MIP-2 (observed at the protein and messenger RNA [mRNA] level) was strongly correlated to the decrease of PMN recruitment (r = 0.73, p < 0.05). This halothane-reduced lung inflammatory response was transient and was reversed 20 h after the end of the anesthesia. Our study shows that halothane > or = 1%, delivered during 4 h by mechanical ventilation, but not mechanical ventilation per se, alters the early LPS-induced lung inflammation in the rat, suggesting a specific

  5. Continuous Negative Abdominal Pressure Reduces Ventilator-induced Lung Injury in a Porcine Model.

    PubMed

    Yoshida, Takeshi; Engelberts, Doreen; Otulakowski, Gail; Katira, Bhushan; Post, Martin; Ferguson, Niall D; Brochard, Laurent; Amato, Marcelo B P; Kavanagh, Brian P

    2018-04-27

    In supine patients with acute respiratory distress syndrome, the lung typically partitions into regions of dorsal atelectasis and ventral aeration ("baby lung"). Positive airway pressure is often used to recruit atelectasis, but often overinflates ventral (already aerated) regions. A novel approach to selective recruitment of dorsal atelectasis is by "continuous negative abdominal pressure." A randomized laboratory study was performed in anesthetized pigs. Lung injury was induced by surfactant lavage followed by 1 h of injurious mechanical ventilation. Randomization (five pigs in each group) was to positive end-expiratory pressure (PEEP) alone or PEEP with continuous negative abdominal pressure (-5 cm H2O via a plexiglass chamber enclosing hindlimbs, pelvis, and abdomen), followed by 4 h of injurious ventilation (high tidal volume, 20 ml/kg; low expiratory transpulmonary pressure, -3 cm H2O). The level of PEEP at the start was ≈7 (vs. ≈3) cm H2O in the PEEP (vs. PEEP plus continuous negative abdominal pressure) groups. Esophageal pressure, hemodynamics, and electrical impedance tomography were recorded, and injury determined by lung wet/dry weight ratio and interleukin-6 expression. All animals survived, but cardiac output was decreased in the PEEP group. Addition of continuous negative abdominal pressure to PEEP resulted in greater oxygenation (PaO2/fractional inspired oxygen 316 ± 134 vs. 80 ± 24 mmHg at 4 h, P = 0.005), compliance (14.2 ± 3.0 vs. 10.3 ± 2.2 ml/cm H2O, P = 0.049), and homogeneity of ventilation, with less pulmonary edema (≈10% less) and interleukin-6 expression (≈30% less). Continuous negative abdominal pressure added to PEEP reduces ventilator-induced lung injury in a pig model compared with PEEP alone, despite targeting identical expiratory transpulmonary pressure.

  6. Protective ventilation in experimental acute respiratory distress syndrome after ventilator-induced lung injury: a randomized controlled trial.

    PubMed

    Uttman, L; Bitzén, U; De Robertis, E; Enoksson, J; Johansson, L; Jonson, B

    2012-10-01

    Low tidal volume (V(T)), PEEP, and low plateau pressure (P(PLAT)) are lung protective during acute respiratory distress syndrome (ARDS). This study tested the hypothesis that the aspiration of dead space (ASPIDS) together with computer simulation can help maintain gas exchange at these settings, thus promoting protection of the lungs. ARDS was induced in pigs using surfactant perturbation plus an injurious ventilation strategy. One group then underwent 24 h protective ventilation, while control groups were ventilated using a conventional ventilation strategy at either high or low pressure. Pressure-volume curves (P(el)/V), blood gases, and haemodynamics were studied at 0, 4, 8, 16, and 24 h after the induction of ARDS and lung histology was evaluated. The P(el)/V curves showed improvements in the protective strategy group and deterioration in both control groups. In the protective group, when respiratory rate (RR) was ≈ 60 bpm, better oxygenation and reduced shunt were found. Histological damage was significantly more severe in the high-pressure group. There were no differences in venous oxygen saturation and pulmonary vascular resistance between the groups. The protective ventilation strategy of adequate pH or PaCO2 with minimal V(T), and high/safe P(PLAT) resulting in high PEEP was based on the avoidance of known lung-damaging phenomena. The approach is based upon the optimization of V(T), RR, PEEP, I/E, and dead space. This study does not lend itself to conclusions about the independent role of each of these features. However, dead space reduction is fundamental for achieving minimal V(T) at high RR. Classical physiology is applicable at high RR. Computer simulation optimizes ventilation and limiting of dead space using ASPIDS. Inspiratory P(el)/V curves recorded from PEEP or, even better, expiratory P(el)/V curves allow monitoring in ARDS.

  7. Histochemical alterations in one lung ventilation.

    PubMed

    Yin, Kingsley; Gribbin, Elizabeth; Emanuel, Steven; Orndorff, Rebecca; Walker, Jean; Weese, James; Fallahnejad, Manucher

    2007-01-01

    One lung ventilation is a commonly performed surgical procedure. Although there have been several reports showing that one-lung ventilation can cause pathophysiological alterations such as pulmonary hypoxic vasoconstriction and intrapulmonary shunting, there have been virtually no reports on the effects of one-lung ventilation on lung histology. Yorkshire pigs (11-17 kg) were anesthetized, a tracheotomy performed and a tracheal tube inserted. The chest was opened and one lung ventilation (OLV), was induced by clamping of the right main bronchus. OLV was continued for 60 min before the clamp was removed and two lung ventilation (TLV) started. TLV was continued for 30 to 60 min. Blood and lung biopsies were taken immediately before OLV, 30 min and 60 min of OLV and after restoration of TLV. Histological analyses revealed that the non-ventilated lung was totally collapsed during OLV. On reventilation, there was clear evidence of vascular congestion and alveolar wall thickening at 30 min after TLV. At 60 min of TLV, there was still vascular congestion. Serum nitrite levels (as an index of nitric oxide production) showed steady decline over the course of the experimental period, reaching a significantly low level on reventilation (compared with baseline levels before OLV). Lung MPO activity (marker of neutrophil sequestration) and serum TNFalpha levels were not raised during the entire experimental period. These results suggest that there was lung vascular injury after OLV, which was associated with reduced levels of nitric oxide production and not associated with an inflammatory response.

  8. Mechanical Ventilation as a Therapeutic Tool to Reduce ARDS Incidence.

    PubMed

    Nieman, Gary F; Gatto, Louis A; Bates, Jason H T; Habashi, Nader M

    2015-12-01

    Trauma, hemorrhagic shock, or sepsis can incite systemic inflammatory response syndrome, which can result in early acute lung injury (EALI). As EALI advances, improperly set mechanical ventilation (MV) can amplify early injury into a secondary ventilator-induced lung injury that invariably develops into overt ARDS. Once established, ARDS is refractory to most therapeutic strategies, which have not been able to lower ARDS mortality below the current unacceptably high 40%. Low tidal volume ventilation is one of the few treatments shown to have a moderate positive impact on ARDS survival, presumably by reducing ventilator-induced lung injury. Thus, there is a compelling case to be made that the focus of ARDS management should switch from treatment once this syndrome has become established to the application of preventative measures while patients are still in the EALI stage. Indeed, studies have shown that ARDS incidence is markedly reduced when conventional MV is applied preemptively using a combination of low tidal volume and positive end-expiratory pressure in both patients in the ICU and in surgical patients at high risk for developing ARDS. Furthermore, there is evidence from animal models and high-risk trauma patients that superior prevention of ARDS can be achieved using preemptive airway pressure release ventilation with a very brief duration of pressure release. Preventing rather than treating ARDS may be the way forward in dealing with this recalcitrant condition and would represent a paradigm shift in the way that MV is currently practiced.

  9. Intravenous superoxide dismutase as a protective agent to prevent impairment of lung function induced by high tidal volume ventilation.

    PubMed

    Wu, Nan-Chun; Liao, Fan-Ting; Cheng, Hao-Min; Sung, Shih-Hsien; Yang, Yu-Chun; Wang, Jiun-Jr

    2017-07-26

    obstructive lung disorder, together with increased pulmonary oxidative stress, decreased anti-oxidative activity and increased lung inflammation (P < 0.05). HTV ventilation also decreased SP-A and SP-D expression and suppressed serum NO level during the time course of ventilation. Cu/Zn SOD administered intravenously during HTV ventilation effectively reversed associated pulmonary oxidative stress and lung inflammation (P < 0.05); moreover, it preserved SP-A and SP-D expressions in the lung and increased serum nitric oxide (NO) level, enhancing vascular NO bioavailability. HTV ventilation can induce combined restrictive and obstructive lung disorders. Intravenous administration of Cu/Zn SOD during HTV ventilation can prevent lung function impairment and lung injury via reducing pulmonary oxidative stress and lung inflammation, preserving pulmonary surfactant expression, and enhancing vascular NO bioavailability.

  10. High tidal volume ventilation induces NOS2 and impairs cAMP- dependent air space fluid clearance.

    PubMed

    Frank, James A; Pittet, Jean-Francois; Lee, Hyon; Godzich, Micaela; Matthay, Michael A

    2003-05-01

    Tidal volume reduction during mechanical ventilation reduces mortality in patients with acute lung injury and the acute respiratory distress syndrome. To determine the mechanisms underlying the protective effect of low tidal volume ventilation, we studied the time course and reversibility of ventilator-induced changes in permeability and distal air space edema fluid clearance in a rat model of ventilator-induced lung injury. Anesthetized rats were ventilated with a high tidal volume (30 ml/kg) or with a high tidal volume followed by ventilation with a low tidal volume of 6 ml/kg. Endothelial and epithelial protein permeability were significantly increased after high tidal volume ventilation but returned to baseline levels when tidal volume was reduced. The basal distal air space fluid clearance (AFC) rate decreased by 43% (P < 0.05) after 1 h of high tidal volume but returned to the preventilation rate 2 h after tidal volume was reduced. Not all of the effects of high tidal volume ventilation were reversible. The cAMP-dependent AFC rate after 1 h of 30 ml/kg ventilation was significantly reduced and was not restored when tidal volume was reduced. High tidal volume ventilation also increased lung inducible nitric oxide synthase (NOS2) expression and air space total nitrite at 3 h. Inhibition of NOS2 activity preserved cAMP-dependent AFC. Because air space edema fluid inactivates surfactant and reduces ventilated lung volume, the reduction of cAMP-dependent AFC by reactive nitrogen species may be an important mechanism of clinical ventilator-associated lung injury.

  11. Novel vascular endothelial growth factor blocker improves cellular viability and reduces hypobaric hypoxia-induced vascular leakage and oedema in rat brain.

    PubMed

    Saraswat, Deepika; Nehra, Sarita; Chaudhary, Kamal; CVS, Siva Prasad

    2015-05-01

    Vascular endothelial growth factor (VEGF) is an important cerebral angiogenic and permeability factor under hypoxia. There is a need to find effective molecules that may ameliorate hypoxia-induced cerebral oedema. In silico identification of novel candidate molecules that block VEGF-A site were identified and validated with a Ramachandran plot. The active site residues of VEGF-A were detected by Pocketfinder, CASTp, and DogSiteScorer. Based on in silico data, three VEGF-A blocker (VAB) candidate molecules (VAB1, VAB2, and VAB3) were checked for improvement in cellular viability and regulation of VEGF levels in N2a cells under hypoxia (0.5% O2 ). Additionally, the best candidate molecule's efficacy was assessed in male Sprague-Dawley rats for its ameliorative effect on cerebral oedema and vascular leakage under hypobaric hypoxia 7260 m. All experimental results were compared with the commercially available VEGF blocker sunitinib. Vascular endothelial growth factor-A blocker 1 was found most effective in increasing cellular viability and maintaining normal VEGF levels under hypoxia (0.5% oxygen) in N2a cells. Vascular endothelial growth factor-A blocker 1 effectively restored VEGF levels, decreased cerebral oedema, and reduced vascular leakage under hypobaric hypoxia when compared to sunitinib-treated rats. Vascular endothelial growth factor-A blocker 1 may be a promising candidate molecule for ameliorating hypobaric hypoxia-induced vasogenic oedema by regulating VEGF levels. © 2015 Wiley Publishing Asia Pty Ltd.

  12. Hypercapnic acidosis attenuates ventilation-induced lung injury by a nuclear factor-κB-dependent mechanism.

    PubMed

    Contreras, Maya; Ansari, Bilal; Curley, Gerard; Higgins, Brendan D; Hassett, Patrick; O'Toole, Daniel; Laffey, John G

    2012-09-01

    Hypercapnic acidosis protects against ventilation-induced lung injury. We wished to determine whether the beneficial effects of hypercapnic acidosis in reducing stretch-induced injury were mediated via inhibition of nuclear factor-κB, a key transcriptional regulator in inflammation, injury, and repair. Prospective randomized animal study. University research laboratory. Adult male Sprague-Dawley rats. In separate experimental series, the potential for hypercapnic acidosis to attenuate moderate and severe ventilation-induced lung injury was determined. In each series, following induction of anesthesia and tracheostomy, Sprague-Dawley rats were randomized to (normocapnia; FICO2 0.00) or (hypercapnic acidosis; FICO2 0.05), subjected to high stretch ventilation, and the severity of lung injury and indices of activation of the nuclear factor-κB pathway were assessed. Subsequent in vitro experiments examined the potential for hypercapnic acidosis to reduce pulmonary epithelial inflammation and injury induced by cyclic mechanical stretch. The role of the nuclear factor-κB pathway in hypercapnic acidosis-mediated protection from stretch injury was then determined. Hypercapnic acidosis attenuated moderate and severe ventilation-induced lung injury, as evidenced by improved oxygenation, compliance, and reduced histologic injury compared to normocapnic conditions. Hypercapnic acidosis reduced indices of inflammation such as interleukin-6 and bronchoalveolar lavage neutrophil infiltration. Hypercapnic acidosis reduced the decrement of the nuclear factor-κB inhibitor IκBα and reduced the generation of cytokine-induced neutrophil chemoattractant-1. Hypercapnic acidosis reduced cyclic mechanical stretch-induced nuclear factor-κB activation, reduced interleukin-8 production, and decreased epithelial injury and cell death compared to normocapnia. Hypercapnic acidosis attenuated ventilation-induced lung injury independent of injury severity and decreased mechanical stretch-induced

  13. Effects of positive end-expiratory pressure and recruitment maneuvers in a ventilator-induced injury mouse model

    PubMed Central

    Franzi, Lisa M.; Linderholm, Angela L.; Last, Jerold A.; Adams, Jason Y.; Harper, Richart W.

    2017-01-01

    Background Positive-pressure mechanical ventilation is an essential therapeutic intervention, yet it causes the clinical syndrome known as ventilator-induced lung injury. Various lung protective mechanical ventilation strategies have attempted to reduce or prevent ventilator-induced lung injury but few modalities have proven effective. A model that isolates the contribution of mechanical ventilation on the development of acute lung injury is needed to better understand biologic mechanisms that lead to ventilator-induced lung injury. Objectives To evaluate the effects of positive end-expiratory pressure and recruitment maneuvers in reducing lung injury in a ventilator-induced lung injury murine model in short- and longer-term ventilation. Methods 5–12 week-old female BALB/c mice (n = 85) were anesthetized, placed on mechanical ventilation for either 2 hrs or 4 hrs with either low tidal volume (8 ml/kg) or high tidal volume (15 ml/kg) with or without positive end-expiratory pressure and recruitment maneuvers. Results Alteration of the alveolar-capillary barrier was noted at 2 hrs of high tidal volume ventilation. Standardized histology scores, influx of bronchoalveolar lavage albumin, proinflammatory cytokines, and absolute neutrophils were significantly higher in the high-tidal volume ventilation group at 4 hours of ventilation. Application of positive end-expiratory pressure resulted in significantly decreased standardized histology scores and bronchoalveolar absolute neutrophil counts at low- and high-tidal volume ventilation, respectively. Recruitment maneuvers were essential to maintain pulmonary compliance at both 2 and 4 hrs of ventilation. Conclusions Signs of ventilator-induced lung injury are evident soon after high tidal volume ventilation (as early as 2 hours) and lung injury worsens with longer-term ventilation (4 hrs). Application of positive end-expiratory pressure and recruitment maneuvers are protective against worsening VILI across all time points

  14. Budesonide ameliorates lung injury induced by large volume ventilation.

    PubMed

    Ju, Ying-Nan; Yu, Kai-Jiang; Wang, Guo-Nian

    2016-06-04

    Ventilation-induced lung injury (VILI) is a health problem for patients with acute respiratory dysfunction syndrome. The aim of this study was to investigate the effectiveness of budesonide in treating VILI. Twenty-four rats were randomized to three groups: a ventilation group, ventilation/budesonide group, and sham group were ventilated with 30 ml/kg tidal volume or only anesthesia for 4 hor saline or budesonide airway instillation immediately after ventilation. The PaO2/FiO2and wet-to-dry weight ratios, protein concentration, neutrophil count, and neutrophil elastase levels in bronchoalveolar lavage fluid (BALF) and the levels of inflammation-related factors were examined. Histological evaluation of and apoptosis measurement inthe lung were conducted. Compared with that in the ventilation group, the PaO2/FiO2 ratio was significantly increased by treatment with budesonide. The lung wet-to-dry weight ratio, total protein, neutrophil elastase level, and neutrophilcount in BALF were decreased in the budesonide group. The BALF and plasma tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, intercellular adhesion molecule (ICAM)-1, and macrophage inflammatory protein (MIP)-2 levels were decreased, whereas the IL-10 level was increased in the budesonide group. The phosphorylated nuclear factor (NF)-kBlevels in lung tissue were inhibited by budesonide. The histological changes in the lung and apoptosis were reduced by budesonide treatment. Bax, caspase-3, and cleaved caspase-3 were down-regulated, and Bcl-2 was up-regulated by budesonide. Budesonide ameliorated lung injury induced by large volume ventilation, likely by improving epithelial permeability, decreasing edema, inhibiting local and systemic inflammation, and reducing apoptosis in VILI.

  15. Downregulated Smad4 Affects Extracellular Matrix Remodeling in Ventilator-induced Lung Injury.

    PubMed

    Huang, Xiaofang; Zhou, Wei; Ding, Shifang

    2016-09-01

    To explore the effect of Smad4 on the extracellular matrix remodeling in ventilator-induced lung injury (VILI). We randomized 24 C57BL/6 mice to 4 groups for treatment (n=6/group): control, ventilation, non-targeted (scramble) lentivirus transfection plus ventilation, and Smad4 small interfering RNA (siRNA) lentivirus transfection plus ventilation. Lentivirus was delivered by intranasal instillation. Four weeks later, the 3 ventilated groups underwent high tidal volume (VT 40mL/kg) ventilation to induce lung injury. After 72 hours, lungs were collected from the anesthetized live mice. Histological changes in lungs were evaluated by hematoxylin and eosin and Masson's staining. The expression of α-smooth muscle actin (α-SMA) was determined by immunohistochemistry, and the mRNA and protein levels of Smad4, α-SMA, and collagen I and III were detected by quantitative real-time PCR and western blotting analysis. Smad4 siRNAs significantly knocked down Smad4 expression (P<.05), which was increased with ventilation, thereby alleviating inflammatory cell infiltration. It also inhibited accumulation of α-SMA-positive myofibroblasts and pulmonary fibrosis, as seen by reduced collagen I and III expression (P<.05), induced by ventilation. Scramble siRNA treatment had no effect (P>.05). Smad4 gene silencing may be a therapeutic target for treating ventilator-induced lung injury and pulmonary fibrosis. © 2016 by the Association of Clinical Scientists, Inc.

  16. Airway Humidification Reduces the Inflammatory Response During Mechanical Ventilation.

    PubMed

    Jiang, Min; Song, Jun-Jie; Guo, Xiao-Li; Tang, Yong-Lin; Li, Hai-Bo

    2015-12-01

    Currently, no clinical or animal studies have been performed to establish the relationship between airway humidification and mechanical ventilation-induced lung inflammatory responses. Therefore, an animal model was established to better define this relationship. Rabbits (n = 40) were randomly divided into 6 groups: control animals, sacrificed immediately after anesthesia (n = 2); dry gas group animals, subjected to mechanical ventilation for 8 h without humidification (n = 6); and experimental animals, subjected to mechanical ventilation for 8 h under humidification at 30, 35, 40, and 45°C, respectively (n = 8). Inflammatory cytokines in the bronchi alveolar lavage fluid (BALF) were measured. The integrity of the airway cilia and the tracheal epithelium was examined by scanning and transmission electron microscopy, respectively. Peripheral blood white blood cell counts and the wet to dry ratio and lung pathology were determined. Dry gas group animals showed increased tumor necrosis factor alpha levels in BALF compared with control animals (P < .05). The tumor necrosis factor alpha and interleukin-8 levels in the BALF reached baseline levels when the humidification temperature was increased to 40°C. Scanning and transmission electron microscopy analysis revealed that cilia integrity was maintained in the 40°C groups. Peripheral white blood cell counts were not different among those groups. Compared with control animals, the wet to dry ratio was significantly elevated in the dry gas group (P < .05). Moreover, humidification at 40°C resulted in reduced pathologic injury compared with the other groups based on the histologic score. Pathology and reduced inflammation observed in animals treated at 40°C was similar to that observed in the control animals, suggesting that appropriate humidification reduced inflammatory responses elicited as a consequence of mechanical ventilation, in addition to reducing damage to the cilia and reducing water loss in the airway

  17. Effects of vascular flow and PEEP in a multiple hit model of lung injury in isolated perfused rabbit lungs.

    PubMed

    Piacentini, Enrique; López-Aguilar, Josefina; García-Martín, Carolina; Villagrá, Ana; Saenz-Valiente, Alicia; Murias, Gastón; Fernández-Segoviano, Pilar; Hotchkiss, John R; Blanch, Lluis

    2008-07-01

    High vascular flow aggravates lung damage in animal models of ventilator-induced lung injury. Positive end-expiratory pressure (PEEP) can attenuate ventilator-induced lung injury, but its continued effectiveness in the setting of antecedent lung injury is unclear. The objective of the present study was to evaluate whether the application of PEEP diminishes lung injury induced by concurrent high vascular flow and high alveolar pressures in normal lungs and in a preinjury lung model. Two series of experiments were performed. Fifteen sets of isolated rabbit lungs were randomized into three groups (n = 5): low vascular flow/low PEEP; high vascular flow/low PEEP, and high vascular flow/high PEEP. Subsequently, the same protocol was applied in an additional 15 sets of isolated rabbit lungs in which oleic acid was added to the vascular perfusate to produce mild to moderate lung injury. All lungs were ventilated with peak airway pressure of 30 cm H2O for 30 minutes. Outcome measures included frequency of gross structural failure, pulmonary hemorrhage, edema formation, changes in static compliance, pulmonary vascular resistance, and pulmonary ultrafiltration coefficient. In the context of high vascular flow, application of a moderate level of PEEP reduced pulmonary rupture, edema formation, and lung hemorrhage. The protective effects of PEEP were not observed in lungs concurrently injured with oleic acid. Under these experimental conditions, PEEP attenuates lung injury in the setting of high vascular flow. The protective effect of PEEP is lost in a two-hit model of lung injury.

  18. Intermedin Stabilized Endothelial Barrier Function and Attenuated Ventilator-induced Lung Injury in Mice

    PubMed Central

    Müller-Redetzky, Holger Christian; Kummer, Wolfgang; Pfeil, Uwe; Hellwig, Katharina; Will, Daniel; Paddenberg, Renate; Tabeling, Christoph; Hippenstiel, Stefan; Suttorp, Norbert; Witzenrath, Martin

    2012-01-01

    Background Even protective ventilation may aggravate or induce lung failure, particularly in preinjured lungs. Thus, new adjuvant pharmacologic strategies are needed to minimize ventilator-induced lung injury (VILI). Intermedin/Adrenomedullin-2 (IMD) stabilized pulmonary endothelial barrier function in vitro. We hypothesized that IMD may attenuate VILI-associated lung permeability in vivo. Methodology/Principal Findings Human pulmonary microvascular endothelial cell (HPMVEC) monolayers were incubated with IMD, and transcellular electrical resistance was measured to quantify endothelial barrier function. Expression and localization of endogenous pulmonary IMD, and its receptor complexes composed of calcitonin receptor-like receptor (CRLR) and receptor activity-modifying proteins (RAMPs) 1–3 were analyzed by qRT-PCR and immunofluorescence in non ventilated mouse lungs and in lungs ventilated for 6 h. In untreated and IMD treated mice, lung permeability, pulmonary leukocyte recruitment and cytokine levels were assessed after mechanical ventilation. Further, the impact of IMD on pulmonary vasoconstriction was investigated in precision cut lung slices (PCLS) and in isolated perfused and ventilated mouse lungs. IMD stabilized endothelial barrier function in HPMVECs. Mechanical ventilation reduced the expression of RAMP3, but not of IMD, CRLR, and RAMP1 and 2. Mechanical ventilation induced lung hyperpermeability, which was ameliorated by IMD treatment. Oxygenation was not improved by IMD, which may be attributed to impaired hypoxic vasoconstriction due to IMD treatment. IMD had minor impact on pulmonary leukocyte recruitment and did not reduce cytokine levels in VILI. Conclusions/Significance IMD may possibly provide a new approach to attenuate VILI. PMID:22563471

  19. Pathophysiological consequences of VEGF-induced vascular permeability

    NASA Astrophysics Data System (ADS)

    Weis, Sara M.; Cheresh, David A.

    2005-09-01

    Although vascular endothelial growth factor (VEGF) induces angiogenesis, it also disrupts vascular barrier function in diseased tissues. Accordingly, VEGF expression in cancer and ischaemic disease has unexpected pathophysiological consequences. By uncoupling endothelial cell-cell junctions VEGF causes vascular permeability and oedema, resulting in extensive injury to ischaemic tissues after stroke or myocardial infarction. In cancer, VEGF-mediated disruption of the vascular barrier may potentiate tumour cell extravasation, leading to widespread metastatic disease. Therefore, by blocking the vascular permeability promoting effects of VEGF it may be feasible to reduce tissue injury after ischaemic disease and minimize the invasive properties of circulating tumour cells.

  20. History of Mechanical Ventilation. From Vesalius to Ventilator-induced Lung Injury.

    PubMed

    Slutsky, Arthur S

    2015-05-15

    Mechanical ventilation is a life-saving therapy that catalyzed the development of modern intensive care units. The origins of modern mechanical ventilation can be traced back about five centuries to the seminal work of Andreas Vesalius. This article is a short history of mechanical ventilation, tracing its origins over the centuries to the present day. One of the great advances in ventilatory support over the past few decades has been the development of lung-protective ventilatory strategies, based on our understanding of the iatrogenic consequences of mechanical ventilation such as ventilator-induced lung injury. These strategies have markedly improved clinical outcomes in patients with respiratory failure.

  1. Single Sustained Inflation followed by Ventilation Leads to Rapid Cardiorespiratory Recovery but Causes Cerebral Vascular Leakage in Asphyxiated Near-Term Lambs

    PubMed Central

    Sobotka, Kristina S.; Hooper, Stuart B.; Crossley, Kelly J.; Ong, Tracey; Schmölzer, Georg M.; Barton, Samantha K.; McDougall, Annie R. A.; Miller, Suzie L.; Tolcos, Mary; Klingenberg, Claus; Polglase, Graeme R.

    2016-01-01

    Background A sustained inflation (SI) rapidly restores cardiac function in asphyxic, bradycardic newborns but its effects on cerebral haemodynamics and brain injury are unknown. We determined the effect of different SI strategies on carotid blood flow (CaBF) and cerebral vascular integrity in asphyxiated near-term lambs. Methods Lambs were instrumented and delivered at 139 ± 2 d gestation and asphyxia was induced by delaying ventilation onset. Lambs were randomised to receive 5 consecutive 3 s SI (multiple SI; n = 6), a single 30 s SI (single SI; n = 6) or conventional ventilation (no SI; n = 6). Ventilation continued for 30 min in all lambs while CaBF and respiratory function parameters were recorded. Brains were assessed for gross histopathology and vascular leakage. Results CaBF increased more rapidly and to a greater extent during a single SI (p = 0.01), which then decreased below both other groups by 10 min, due to a higher cerebral oxygen delivery (p = 0.01). Blood brain barrier disruption was increased in single SI lambs as indicated by increased numbers of blood vessel profiles with plasma protein extravasation (p = 0.001) in the cerebral cortex. There were no differences in CaBF or cerebral oxygen delivery between the multiple SI and no SI lambs. Conclusions Ventilation with an initial single 30 s SI improves circulatory recovery, but is associated with greater disruption of blood brain barrier function, which may exacerbate brain injury suffered by asphyxiated newborns. This injury may occur as a direct result of the initial SI or to the higher tidal volumes delivered during subsequent ventilation. PMID:26765258

  2. Negative pressure ventilation and positive pressure ventilation promote comparable levels of ventilator-induced diaphragmatic dysfunction in rats.

    PubMed

    Bruells, Christian S; Smuder, Ashley J; Reiss, Lucy K; Hudson, Matthew B; Nelson, William Bradley; Wiggs, Michael P; Sollanek, Kurt J; Rossaint, Rolf; Uhlig, Stefan; Powers, Scott K

    2013-09-01

    Mechanical ventilation is a life-saving intervention for patients with respiratory failure. Unfortunately, a major complication associated with prolonged mechanical ventilation is ventilator-induced diaphragmatic atrophy and contractile dysfunction, termed ventilator-induced diaphragmatic dysfunction (VIDD). Emerging evidence suggests that positive pressure ventilation (PPV) promotes lung damage (ventilator-induced lung injury [VILI]), resulting in the release of signaling molecules that foster atrophic signaling in the diaphragm and the resultant VIDD. Although a recent report suggests that negative pressure ventilation (NPV) results in less VILI than PPV, it is unknown whether NPV can protect against VIDD. Therefore, the authors tested the hypothesis that compared with PPV, NPV will result in a lower level of VIDD. Adult rats were randomly assigned to one of three experimental groups (n = 8 each): (1) acutely anesthetized control (CON), (2) 12 h of PPV, and (3) 12 h of NPV. Dependent measures included indices of VILI, diaphragmatic muscle fiber cross-sectional area, diaphragm contractile properties, and the activity of key proteases in the diaphragm. Our results reveal that no differences existed in the degree of VILI between PPV and NPV animals as evidenced by VILI histological scores (CON = 0.082 ± 0.001; PPV = 0.22 ± 0.04; NPV = 0.25 ± 0.02; mean ± SEM). Both PPV and NPV resulted in VIDD. Importantly, no differences existed between PPV and NPV animals in diaphragmatic fiber cross-sectional area, contractile properties, and the activation of proteases. These results demonstrate that NPV and PPV result in similar levels of VILI and that NPV and PPV promote comparable levels of VIDD in rats.

  3. AT1 receptor blocker losartan protects against mechanical ventilation-induced diaphragmatic dysfunction

    PubMed Central

    Kwon, Oh Sung; Smuder, Ashley J.; Wiggs, Michael P.; Hall, Stephanie E.; Sollanek, Kurt J.; Morton, Aaron B.; Talbert, Erin E.; Toklu, Hale Z.; Tumer, Nihal

    2015-01-01

    Mechanical ventilation is a life-saving intervention for patients in respiratory failure. Unfortunately, prolonged ventilator support results in diaphragmatic atrophy and contractile dysfunction leading to diaphragm weakness, which is predicted to contribute to problems in weaning patients from the ventilator. While it is established that ventilator-induced oxidative stress is required for the development of ventilator-induced diaphragm weakness, the signaling pathway(s) that trigger oxidant production remain unknown. However, recent evidence reveals that increased plasma levels of angiotensin II (ANG II) result in oxidative stress and atrophy in limb skeletal muscles. Using a well-established animal model of mechanical ventilation, we tested the hypothesis that increased circulating levels of ANG II are required for both ventilator-induced diaphragmatic oxidative stress and diaphragm weakness. Cause and effect was determined by administering an angiotensin-converting enzyme inhibitor (enalapril) to prevent ventilator-induced increases in plasma ANG II levels, and the ANG II type 1 receptor antagonist (losartan) was provided to prevent the activation of ANG II type 1 receptors. Enalapril prevented the increase in plasma ANG II levels but did not protect against ventilator-induced diaphragmatic oxidative stress or diaphragm weakness. In contrast, losartan attenuated both ventilator-induced oxidative stress and diaphragm weakness. These findings indicate that circulating ANG II is not essential for the development of ventilator-induced diaphragm weakness but that activation of ANG II type 1 receptors appears to be a requirement for ventilator-induced diaphragm weakness. Importantly, these experiments provide the first evidence that the Food and Drug Administration-approved drug losartan may have clinical benefits to protect against ventilator-induced diaphragm weakness in humans. PMID:26359481

  4. Effect of Perflubron-induced lung growth on pulmonary vascular remodeling in congenital diaphragmatic hernia.

    PubMed

    Shah, Mansi; Phillips, Michael R; Bryner, Benjamin; Hirschl, Ronald B; Mychaliska, George B; McLean, Sean E

    2016-06-01

    Congenital diaphragmatic hernia (CDH) involves lung hypoplasia and pulmonary hypertension (PH). Post-natal Perflubron ventilation induces lung growth. This phenomenon is called Perflubon-induced lung growth (PILG). However, it does not appear to ameliorate PH in CDH. We aim to determine the effect of PILG on pulmonary vascular remodeling in neonates with CDH and PH requiring extracorporeal membrane oxygenation (ECMO). Lung tissue from four patients was obtained, three treated with PILG + ECMO, and one maintained on conventional ventilation + ECMO (control). The distribution of collagen was assessed with Masson's trichrome stain. Immunohistochemistry was done to assess cell proliferation and immunofluorescence to assess vascular morphology. Comparing PILG vs. control, there was an increase in vessel wall diameter (6.85 μm, 10.28 μm, and 10.35 μm vs. 4.34 μm), increase in collagen thickness in two PILG patients (35.66 μm, 14.23 μm, and 38.46 μm vs. 22.16 μm), and decrease in lumen diameter despite similar total area (48.99 μm, 41.74 μm, and 36.32 μm vs. 51.56 μm) for each PILG patient vs. the control patient, respectively. PILG does not appear to improve pulmonary vascular remodeling that occurs with PH. The findings are descriptive and will require larger samples to validate the significance of the findings. Overall, further studies will be required to identify the mechanistic causes of PH in CDH to create effective treatments.

  5. Investigation of induced recirculation during planned ventilation system maintenance

    PubMed Central

    Pritchard, C.J.; Scott, D.F.; Noll, J.D.; Voss, B.; Leonis, D.

    2015-01-01

    The Office of Mine Safety and Health Research (OMSHR) investigated ways to increase mine airflow to underground metal/nonmetal (M/NM) mine working areas to improve miners’ health and safety. One of those areas is controlled recirculation. Because the quantity of mine air often cannot be increased, reusing part of the ventilating air can be an effective alternative, if implemented properly, until the capacity of the present system is improved. The additional airflow can be used to provide effective dilution of contaminants and higher flow velocities in the underground mine environment. Most applications of controlled recirculation involve taking a portion of the return air and passing it back into the intake to increase the air volume delivered to the desired work areas. OMSHR investigated a Nevada gold mine where shaft rehabilitation was in progress and one of the two main fans was shut down to allow reduced air velocity for safe shaft work. Underground booster fan operating pressures were kept constant to maintain airflow to work areas, inducing controlled recirculation in one work zone. Investigation into system behavior and the effects of recirculation on the working area during times of reduced primary ventilation system airflow would provide additional information on implementation of controlled recirculation into the system and how these events affect M/NM ventilation systems. The National Institute for Occupational Safety and Health monitored the ventilation district when both main fans were operating and another scenario with one of the units turned off for maintenance. Airflow and contaminants were measured to determine the exposure effects of induced recirculation on miner health. Surveys showed that 19% controlled recirculation created no change in the overall district airflow distribution and a small reduction in district fresh air intake. Total dust levels increased only modestly and respirable dust levels were also low. Diesel particulate matter

  6. Atrial Natriuretic Peptide Reduces Vascular Leakage and Choroidal Neovascularization

    PubMed Central

    Lara-Castillo, Nuria; Zandi, Souska; Nakao, Shintaro; Ito, Yasuhiro; Noda, Kousuke; She, Haicheng; Ahmed, Muna; Frimmel, Sonja; Ablonczy, Zsolt; Hafezi-Moghadam, Ali

    2009-01-01

    Atrial natriuretic peptide (ANP) is a hormone with diuretic, natriuretic, and vasodilatory properties. ANP blocks vascular endothelial growth factor (VEGF) production and signaling in vitro; however, its role in vascular leakage and angiogenesis is unknown. In vitro, retinal barrier permeability (transepithelial electrical resistance (TEER)) was measured in cultured retinal endothelial (HuREC) and retinal epithelial (ARPE-19) cells with VEGF (10 ng/ml), ANP (1 pM to 1 μmol/L), and/or isatin, an ANP receptor antagonist. In vivo, blood-retinal barrier (BRB) leakage was studied using the Evans Blue dye technique in rats treated with intravitreal injections of ANP, VEGF, or vehicle. Choroidal neovascularization was generated by laser injury, and 7 days later, lesion size and leakage was quantitated. ANP significantly reversed VEGF-induced BRB TEER reduction in both HuREC and ARPE-19 cells, modeling the inner and the outer BRB, respectively. Isatin, a specific ANP receptor antagonist, reversed ANP’s effect. ANP reduced the response of ARPE-19 cells to VEGF apically but not basolaterally, suggesting polarized expression of the ANP receptors in these cells. ANP’s TEER response was concentration but not time dependent. In vivo, ANP significantly reduced VEGF-induced BRB leakage and the size of laser-induced choroidal neovascularization lesions. In sum, ANP is an effective inhibitor of VEGF-induced vascular leakage and angiogenesis in vivo. These results may lead to new treatments for ocular diseases where VEGF plays a central role, such as age-related macular degeneration or diabetic retinopathy. PMID:19910509

  7. Inhibition of HMGCoA reductase by simvastatin protects mice from injurious mechanical ventilation.

    PubMed

    Manitsopoulos, Nikolaos; Orfanos, Stylianos E; Kotanidou, Anastasia; Nikitopoulou, Ioanna; Siempos, Ilias; Magkou, Christina; Dimopoulou, Ioanna; Zakynthinos, Spyros G; Armaganidis, Apostolos; Maniatis, Nikolaos A

    2015-02-14

    induced by HVt but were significantly attenuated by simvastatin. Microvascular protein permeability increase 20-fold by injurious ventilation but only 4-fold with simvastatin. There was a 3-fold increase in plasma Tumor Necrosis Factor-α, a 7-fold increase in plasma Interleukin-6 and a 20-fold increase in lavage fluid Matrix-Metalloprotease-9 by HVt but simvastatin reduced these levels to control. Lung tissue vascular endothelial cadherin expression was significantly reduced by injurious ventilation but remained preserved by simvastatin. High-dose simvastatin prevents experimental hyperinflation lung injury by angioprotective and anti-inflammatory effects.

  8. Reducing the ingress of urban noise through natural ventilation openings.

    PubMed

    Oldham, D J; de Salis, M H; Sharples, S

    2004-01-01

    For buildings in busy urban areas affected by high levels of road traffic noise the potential to use natural ventilation can be limited by excessive noise entering through ventilation openings. This paper is concerned with techniques to reduce noise ingress into naturally ventilated buildings while minimizing airflow path resistance. A combined experimental and theoretical approach to the interaction of airflow and sound transmission through ventilators for natural ventilation applications is described. A key element of the investigation has been the development of testing facilities capable of measuring the airflow and sound transmission losses for a range of ventilation noise control strategies. It is demonstrated that a combination of sound reduction mechanisms -- one covering low frequency sound and another covering high frequency sound -- is required to attenuate effectively noise from typical urban sources. A method is proposed for quantifying the acoustic performance of different strategies to enable comparisons and informed decisions to be made leading to the possibility of a design methodology for optimizing the ventilation and acoustic performance of different strategies. The need for employing techniques for combating low frequency sound in tandem with techniques for reducing high frequency sound in reducing the ingress of noise from urban sources such as road traffic to acceptable levels is demonstrated. A technique is proposed for enabling the acoustic and airflow performance of apertures for natural ventilation systems to be designed simultaneously.

  9. Infiltration as Ventilation: Weather-Induced Dilution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, Max H.; Turner, William J.N.; Walker, Iain S.

    The purpose of outdoor air ventilation is to dilute or remove indoor contaminants to which occupants are exposed. It can be provided by mechanical or natural means. In most homes, especially older homes, weather-driven infiltration provides the dominant fraction of the total ventilation. As we seek to provide good indoor air quality at minimum energy cost, it is important to neither over-ventilate nor under-ventilate. Thus, it becomes critically important to evaluate correctly the contribution infiltration makes to the total outdoor air ventilation rate. Because weather-driven infiltration is dependent on building air leakage and weather-induced pressure differences, a given amount ofmore » air leakage will provide different amounts of infiltration. Varying rates of infiltration will provide different levels of contaminant dilution and hence effective ventilation. This paper derives these interactions and then calculates the impact of weather-driven infiltration for different climates. A new “N-factor” is introduced to provide a convenient method for calculating the ventilation contribution of infiltration for over 1,000 locations across North America. The results of this work could be used in indoor air quality standards (specifically ASHRAE 62.2) to account for the contribution of weather-driven infiltration towards the dilution of indoor pollutants.« less

  10. Therapeutic effect of apatinib-loaded nanoparticles on diabetes-induced retinal vascular leakage.

    PubMed

    Jeong, Ji Hoon; Nguyen, Hong Khanh; Lee, Jung Eun; Suh, Wonhee

    2016-01-01

    Apatinib, a novel and selective inhibitor of vascular endothelial growth factor (VEGF) receptor 2, has been demonstrated recently to exhibit anticancer efficacy by inhibiting the VEGF signaling pathway. Given the importance of VEGF in retinal vascular leakage, the present study was designed to investigate whether apatinib-loaded polymeric nanoparticles inhibit VEGF-mediated retinal vascular hyperpermeability and block diabetes-induced retinal vascular leakage. For the delivery of water-insoluble apatinib, the drug was encapsulated in nanoparticles composed of human serum albumin (HSA)-conjugated polyethylene glycol (PEG). In vitro paracellular permeability and transendothelial electric resistance assays showed that apatinib-loaded HSA-PEG (Apa-HSA-PEG) nanoparticles significantly inhibited VEGF-induced endothelial hyperpermeability in human retinal microvascular endothelial cells. In addition, they substantially reduced the VEGF-induced junctional loss and internalization of vascular endothelial-cadherin, a major component of endothelial junction complexes. In vivo intravitreal injection of Apa-HSA-PEG nanoparticles in mice blocked VEGF-induced retinal vascular leakage. These in vitro and in vivo data indicated that Apa-HSA-PEG nanoparticles efficiently blocked VEGF-induced breakdown of the blood-retinal barrier. In vivo experiments with streptozotocin-induced diabetic mice showed that an intravitreal injection of Apa-HSA-PEG nanoparticles substantially inhibited diabetes-induced retinal vascular leakage. These results demonstrated, for the first time, that apatinib-loaded nanoparticles may be a promising therapeutic agent for the prevention and treatment of diabetes-induced retinal vascular disorders.

  11. Therapeutic effect of apatinib-loaded nanoparticles on diabetes-induced retinal vascular leakage

    PubMed Central

    Jeong, Ji Hoon; Nguyen, Hong Khanh; Lee, Jung Eun; Suh, Wonhee

    2016-01-01

    Apatinib, a novel and selective inhibitor of vascular endothelial growth factor (VEGF) receptor 2, has been demonstrated recently to exhibit anticancer efficacy by inhibiting the VEGF signaling pathway. Given the importance of VEGF in retinal vascular leakage, the present study was designed to investigate whether apatinib-loaded polymeric nanoparticles inhibit VEGF-mediated retinal vascular hyperpermeability and block diabetes-induced retinal vascular leakage. For the delivery of water-insoluble apatinib, the drug was encapsulated in nanoparticles composed of human serum albumin (HSA)-conjugated polyethylene glycol (PEG). In vitro paracellular permeability and transendothelial electric resistance assays showed that apatinib-loaded HSA-PEG (Apa-HSA-PEG) nanoparticles significantly inhibited VEGF-induced endothelial hyperpermeability in human retinal microvascular endothelial cells. In addition, they substantially reduced the VEGF-induced junctional loss and internalization of vascular endothelial-cadherin, a major component of endothelial junction complexes. In vivo intravitreal injection of Apa-HSA-PEG nanoparticles in mice blocked VEGF-induced retinal vascular leakage. These in vitro and in vivo data indicated that Apa-HSA-PEG nanoparticles efficiently blocked VEGF-induced breakdown of the blood–retinal barrier. In vivo experiments with streptozotocin-induced diabetic mice showed that an intravitreal injection of Apa-HSA-PEG nanoparticles substantially inhibited diabetes-induced retinal vascular leakage. These results demonstrated, for the first time, that apatinib-loaded nanoparticles may be a promising therapeutic agent for the prevention and treatment of diabetes-induced retinal vascular disorders. PMID:27462154

  12. Inhibition of forkhead boxO-specific transcription prevents mechanical ventilation-induced diaphragm dysfunction.

    PubMed

    Smuder, Ashley J; Sollanek, Kurt J; Min, Kisuk; Nelson, W Bradley; Powers, Scott K

    2015-05-01

    Mechanical ventilation is a lifesaving measure for patients with respiratory failure. However, prolonged mechanical ventilation results in diaphragm weakness, which contributes to problems in weaning from the ventilator. Therefore, identifying the signaling pathways responsible for mechanical ventilation-induced diaphragm weakness is essential to developing effective countermeasures to combat this important problem. In this regard, the forkhead boxO family of transcription factors is activated in the diaphragm during mechanical ventilation, and forkhead boxO-specific transcription can lead to enhanced proteolysis and muscle protein breakdown. Currently, the role that forkhead boxO activation plays in the development of mechanical ventilation-induced diaphragm weakness remains unknown. This study tested the hypothesis that mechanical ventilation-induced increases in forkhead boxO signaling contribute to ventilator-induced diaphragm weakness. University research laboratory. Young adult female Sprague-Dawley rats. Cause and effect was determined by inhibiting the activation of forkhead boxO in the rat diaphragm through the use of a dominant-negative forkhead boxO adeno-associated virus vector delivered directly to the diaphragm. Our results demonstrate that prolonged (12 hr) mechanical ventilation results in a significant decrease in both diaphragm muscle fiber size and diaphragm-specific force production. However, mechanically ventilated animals treated with dominant-negative forkhead boxO showed a significant attenuation of both diaphragm atrophy and contractile dysfunction. In addition, inhibiting forkhead boxO transcription attenuated the mechanical ventilation-induced activation of the ubiquitin-proteasome system, the autophagy/lysosomal system, and caspase-3. Forkhead boxO is necessary for the activation of key proteolytic systems essential for mechanical ventilation-induced diaphragm atrophy and contractile dysfunction. Collectively, these results suggest that

  13. Limiting ventilator-induced lung injury through individual electronic medical record surveillance.

    PubMed

    Herasevich, Vitaly; Tsapenko, Mykola; Kojicic, Marija; Ahmed, Adil; Kashyap, Rachul; Venkata, Chakradhar; Shahjehan, Khurram; Thakur, Sweta J; Pickering, Brian W; Zhang, Jiajie; Hubmayr, Rolf D; Gajic, Ognjen

    2011-01-01

    To improve the safety of ventilator care and decrease the risk of ventilator-induced lung injury, we designed and tested an electronic algorithm that incorporates patient characteristics and ventilator settings, allowing near-real-time notification of bedside providers about potentially injurious ventilator settings. Electronic medical records of consecutive patients who received invasive ventilation were screened in three Mayo Clinic Rochester intensive care units. The computer system alerted bedside providers via the text paging notification about potentially injurious ventilator settings. Alert criteria included a Pao2/Fio2 ratio of <300 mm Hg, free text search for the words "edema" or "bilateral + infiltrates" on the chest radiograph report, a tidal volume of >8 mL/kg predicted body weight (based on patient gender and height), a plateau pressure of >30 cm H2O, and a peak airway pressure of >35 cm H2O. Respiratory therapists answered a brief online satisfaction survey. Ventilator-induced lung injury risk was compared before and after the introduction of ventilator-induced lung injury alert. The prevalence of acute lung injury was 42% (n = 490) among 1,159 patients receiving >24 hrs of invasive ventilation. The system sent 111 alerts for 80 patients, with a positive predictive value of 59%. The exposure to potentially injurious ventilation decreased after the intervention from 40.6 ± 74.6 hrs to 26.9 ± 77.3 hrs (p = .004). Electronic medical record surveillance of mechanically ventilated patients accurately detects potentially injurious ventilator settings and is able to influence bedside practice at moderate costs. Its implementation is associated with decreased patient exposure to potentially injurious mechanical ventilation settings.

  14. Increasing the inspiratory time and I:E ratio during mechanical ventilation aggravates ventilator-induced lung injury in mice.

    PubMed

    Müller-Redetzky, Holger C; Felten, Matthias; Hellwig, Katharina; Wienhold, Sandra-Maria; Naujoks, Jan; Opitz, Bastian; Kershaw, Olivia; Gruber, Achim D; Suttorp, Norbert; Witzenrath, Martin

    2015-01-28

    Lung-protective ventilation reduced acute respiratory distress syndrome (ARDS) mortality. To minimize ventilator-induced lung injury (VILI), tidal volume is limited, high plateau pressures are avoided, and positive end-expiratory pressure (PEEP) is applied. However, the impact of specific ventilatory patterns on VILI is not well defined. Increasing inspiratory time and thereby the inspiratory/expiratory ratio (I:E ratio) may improve oxygenation, but may also be harmful as the absolute stress and strain over time increase. We thus hypothesized that increasing inspiratory time and I:E ratio aggravates VILI. VILI was induced in mice by high tidal-volume ventilation (HVT 34 ml/kg). Low tidal-volume ventilation (LVT 9 ml/kg) was used in control groups. PEEP was set to 2 cm H2O, FiO2 was 0.5 in all groups. HVT and LVT mice were ventilated with either I:E of 1:2 (LVT 1:2, HVT 1:2) or 1:1 (LVT 1:1, HVT 1:1) for 4 hours or until an alternative end point, defined as mean arterial blood pressure below 40 mm Hg. Dynamic hyperinflation due to the increased I:E ratio was excluded in a separate group of animals. Survival, lung compliance, oxygenation, pulmonary permeability, markers of pulmonary and systemic inflammation (leukocyte differentiation in lung and blood, analyses of pulmonary interleukin-6, interleukin-1β, keratinocyte-derived chemokine, monocyte chemoattractant protein-1), and histopathologic pulmonary changes were analyzed. LVT 1:2 or LVT 1:1 did not result in VILI, and all individuals survived the ventilation period. HVT 1:2 decreased lung compliance, increased pulmonary neutrophils and cytokine expression, and evoked marked histologic signs of lung injury. All animals survived. HVT 1:1 caused further significant worsening of oxygenation, compliance and increased pulmonary proinflammatory cytokine expression, and pulmonary and blood neutrophils. In the HVT 1:1 group, significant mortality during mechanical ventilation was observed. According to the "baby lung

  15. Implementation of a real-time compliance dashboard to help reduce SICU ventilator-associated pneumonia with the ventilator bundle.

    PubMed

    Zaydfudim, Victor; Dossett, Lesly A; Starmer, John M; Arbogast, Patrick G; Feurer, Irene D; Ray, Wayne A; May, Addison K; Pinson, C Wright

    2009-07-01

    Ventilator-associated pneumonia (VAP) causes significant morbidity and mortality in critically ill surgical patients. Recent studies suggest that the success of preventive measures is dependent on compliance with ventilator bundle parameters. Implementation of an electronic dashboard will improve compliance with the bundle parameters and reduce rates of VAP in our surgical intensive care unit (SICU). Time series analysis of VAP rates between January 2005 and July 2008, with dashboard implementation in July 2007. Multidisciplinary SICU at a tertiary-care referral center with a stable case mix during the study period. Patients admitted to the SICU between January 2005 and July 2008. Infection control data were used to establish rates of VAP and total ventilator days. For the time series analysis, VAP rates were calculated as quarterly VAP events per 1000 ventilator days. Ventilator bundle compliance was analyzed after dashboard implementation. Differences between expected and observed VAP rates based on time series analysis were used to estimate the effect of intervention. Average compliance with the ventilator bundle improved from 39% in August 2007 to 89% in July 2008 (P < .001). Rates of VAP decreased from a mean (SD) of 15.2 (7.0) to 9.3 (4.9) events per 1000 ventilator days after introduction of the dashboard (P = .01). Quarterly VAP rates were significantly reduced in the November 2007 through January 2008 and February through April 2008 periods (P < .05). For the August through October 2007 and May through July 2008 quarters, the observed rate reduction was not statistically significant. Implementation of an electronic dashboard improved compliance with ventilator bundle measures and is associated with reduced rates of VAP in our SICU.

  16. Mercury induces proliferation and reduces cell size in vascular smooth muscle cells through MAPK, oxidative stress and cyclooxygenase-2 pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguado, Andrea; Galán, María; Zhenyukh, Olha

    2013-04-15

    Mercury exposure is known to increase cardiovascular risk but the underlying cellular mechanisms remain undetermined. We analyzed whether chronic exposure to HgCl{sub 2} affects vascular structure and the functional properties of vascular smooth muscle cells (VSMC) through oxidative stress/cyclooxygenase-2 dependent pathways. Mesenteric resistance arteries and aortas from Wistar rats treated with HgCl{sub 2} (first dose 4.6 mg kg{sup −1}, subsequent doses 0.07 mg kg{sup −1} day{sup −1}, 30 days) and cultured aortic VSMC stimulated with HgCl{sub 2} (0.05–5 μg/ml) were used. Treatment of rats with HgCl{sub 2} decreased wall thickness of the resistance and conductance vasculature, increased the number ofmore » SMC within the media and decreased SMC nucleus size. In VSMCs, exposure to HgCl{sub 2}: 1) induced a proliferative response and a reduction in cell size; 2) increased superoxide anion production, NADPH oxidase activity, gene and/or protein levels of the NADPH oxidase subunit NOX-1, the EC- and Mn-superoxide dismutases and cyclooxygenase-2 (COX-2); 3) induced activation of ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized the proliferative response and the altered cell size induced by HgCl{sub 2}. Blockade of ERK1/2 and p38 signaling pathways abolished the HgCl{sub 2}-induced Nox1 and COX-2 expression and normalized the alterations induced by mercury in cell proliferation and size. In conclusion, long exposure of VSMC to low doses of mercury activates MAPK signaling pathways that result in activation of inflammatory proteins such as NADPH oxidase and COX-2 that in turn induce proliferation of VSMC and changes in cell size. These findings offer further evidence that mercury might be considered an environmental risk factor for cardiovascular disease. - Highlights: ► Chronic HgCl{sub 2} exposure induces vascular remodeling. ► HgCl{sub 2} induces proliferation and decreased cell size in vascular smooth muscle cells. ► HgCl{sub 2

  17. Modulation of VEGF-induced retinal vascular permeability by peroxisome proliferator-activated receptor-β/δ.

    PubMed

    Suarez, Sandra; McCollum, Gary W; Bretz, Colin A; Yang, Rong; Capozzi, Megan E; Penn, John S

    2014-11-18

    Vascular endothelial growth factor (VEGF)-induced retinal vascular permeability contributes to diabetic macular edema (DME), a serious vision-threatening condition. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) antagonist/reverse agonist, GSK0660, inhibits VEGF-induced human retinal microvascular endothelial cell (HRMEC) proliferation, tubulogenesis, and oxygen-induced retinal vasculopathy in newborn rats. These VEGF-induced HRMEC behaviors and VEGF-induced disruption of endothelial cell junctional complexes may well share molecular signaling events. Thus, we sought to examine the role of PPARβ/δ in VEGF-induced retinal hyperpermeability. Transendothelial electrical resistance (TEER) measurements were performed on HRMEC monolayers to assess permeability. Claudin-1/Claudin-5 localization in HRMEC monolayers was determined by immunocytochemistry. Extracellular signal-regulated protein kinases 1 and 2 (Erk 1/2) phosphorylation, VEGF receptor 1 (VEGFR1) and R2 were assayed by Western blot analysis. Expression of VEGFR1 and R2 was measured by quantitative RT-PCR. Last, retinal vascular permeability was assayed in vivo by Evans blue extravasation. Human retinal microvascular endothelial cell monolayers treated with VEGF for 24 hours showed decreased TEER values that were completely reversed by the highest concentration of GSK0660 (10 μM) and PPARβ/δ-directed siRNA (20 μM). In HRMEC treated with VEGF, GSK0660 stabilized tight-junctions as evidenced by Claudin-1 staining, reduced phosphorylation of Erk1/2, and reduced VEGFR1/2 expression. Peroxisome proliferator-activated receptor β/δ siRNA had a similar effect on VEGFR expression and Claudin-1, supporting the specificity of GSK0660 in our experiments. Last, GSK0660 significantly inhibited VEGF-induced retinal vascular permeability and reduced retinal VEGFR1and R2 levels in C57BL/6 mice. These data suggest a protective effect for PPARβ/δ antagonism against VEGF-induced vascular permeability

  18. Modulation of VEGF-Induced Retinal Vascular Permeability by Peroxisome Proliferator-Activated Receptor-β/δ

    PubMed Central

    Suarez, Sandra; McCollum, Gary W.; Bretz, Colin A.; Yang, Rong; Capozzi, Megan E.; Penn, John S.

    2014-01-01

    Purpose. Vascular endothelial growth factor (VEGF)-induced retinal vascular permeability contributes to diabetic macular edema (DME), a serious vision-threatening condition. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) antagonist/reverse agonist, GSK0660, inhibits VEGF-induced human retinal microvascular endothelial cell (HRMEC) proliferation, tubulogenesis, and oxygen-induced retinal vasculopathy in newborn rats. These VEGF-induced HRMEC behaviors and VEGF-induced disruption of endothelial cell junctional complexes may well share molecular signaling events. Thus, we sought to examine the role of PPARβ/δ in VEGF-induced retinal hyperpermeability. Methods. Transendothelial electrical resistance (TEER) measurements were performed on HRMEC monolayers to assess permeability. Claudin-1/Claudin-5 localization in HRMEC monolayers was determined by immunocytochemistry. Extracellular signal-regulated protein kinases 1 and 2 (Erk 1/2) phosphorylation, VEGF receptor 1 (VEGFR1) and R2 were assayed by Western blot analysis. Expression of VEGFR1 and R2 was measured by quantitative RT-PCR. Last, retinal vascular permeability was assayed in vivo by Evans blue extravasation. Results. Human retinal microvascular endothelial cell monolayers treated with VEGF for 24 hours showed decreased TEER values that were completely reversed by the highest concentration of GSK0660 (10 μM) and PPARβ/δ-directed siRNA (20 μM). In HRMEC treated with VEGF, GSK0660 stabilized tight-junctions as evidenced by Claudin-1 staining, reduced phosphorylation of Erk1/2, and reduced VEGFR1/2 expression. Peroxisome proliferator-activated receptor β/δ siRNA had a similar effect on VEGFR expression and Claudin-1, supporting the specificity of GSK0660 in our experiments. Last, GSK0660 significantly inhibited VEGF-induced retinal vascular permeability and reduced retinal VEGFR1and R2 levels in C57BL/6 mice. Conclusions. These data suggest a protective effect for PPARβ/δ antagonism against

  19. Recruitment Maneuver Does not Increase the Risk of Ventilator Induced Lung Injury

    PubMed Central

    Akıncı, İbrahim Özkan; Atalan, Korkut; Tuğrul, Simru; Özcan, Perihan Ergin; Yılmazbayhan, Dilek; Kıran, Bayram; Basel, Ahmet; Telci, Lutfi; Çakar, Nahit

    2013-01-01

    Background: Mechanical ventilation (MV) may induce lung injury. Aims: To assess and evaluate the role of different mechanical ventilation strategies on ventilator-induced lung injury (VILI) in comparison to a strategy which includes recruitment manoeuvre (RM). Study design: Randomized animal experiment. Methods: Thirty male Sprague-Dawley rats were anaesthetised, tracheostomised and divided into 5 groups randomly according to driving pressures; these were mechanically ventilated with following peak alveolar opening (Pao) and positive end-expiratory pressures (PEEP) for 1 hour: Group 15-0: 15 cmH2O Pao and 0 cmH2O PEEP; Group 30-10: 30 cmH2O Pao and 10 cmH2O PEEP; Group 30-5: 30 cmH2O Pao and 5 cmH2O PEEP; Group 30-5&RM: 30 cmH2O Pao and 5 cmH2O PEEP with additional 45 cmH2O CPAP for 30 seconds in every 15 minutes; Group 45-0: 45 cmH2O Pao and 0 cmH2O PEEP Before rats were sacrificed, blood samples were obtained for the evaluation of cytokine and chemokine levels; then, the lungs were subsequently processed for morphologic evaluation. Results: Oxygenation results were similar in all groups; however, the groups were lined as follows according to the increasing severity of morphometric evaluation parameters: Group 15-0: (0±0.009) < Group 30-10: (0±0.14) < Group 30-5&RM: (1±0.12) < Group 30-5: (1±0.16) < Group 45-0: (2±0.16). Besides, inflammatory responses were the lowest in 30-5&RM group compared to all other groups. TNF-α, IL-1β, IL-6, MCP-1 levels were significantly different between group 30-5&RM and group 15-0 vs. group 45-0 in each group. Conclusion: RM with low PEEP reduces the risk of ventilator-induced lung injury with a lower release of systemic inflammatory mediators in response to mechanical ventilation. PMID:25207105

  20. Grape seed proanthocyanidin extract alleviates ouabain-induced vascular remodeling through regulation of endothelial function.

    PubMed

    Liu, Xiangju; Qiu, Jie; Zhao, Shaohua; You, Beian; Ji, Xiang; Wang, Yan; Cui, Xiaopei; Wang, Qian; Gao, Haiqing

    2012-11-01

    Recent studies indicate that chronic ouabain treatment leads to hypertension and hypertensive vascular remodeling. Grape seed proanthocyanidin extract (GSPE) has been reported to be effective in treating arteriosclerosis, while little is known about its effect on systolic blood pressure and vascular remodeling. In this study, the effects of GSPE on systolic blood pressure and vascular remodeling were analyzed by treating ouabain-induced hypertensive rats with GSPE (250 mg/kg·d). The expression of nitric oxide (NO) and endothelin-1 (ET-1) in thoracic aorta was examined by ELISA; the mRNA and protein levels of TGF-β1 were detected using real-time PCR and western blotting, respectively. The results showed that the systolic blood pressure was significantly decreased following treatment with GSPE, with blocked vascular remodeling. The ET-1 content was reduced while NO production was increased in the GSPE group, which showed improved vascular endothelial function. Moreover, GSPE also reduced TGF-β1 expression in the thoracic aorta, which is a determinant in vascular remodeling. In conclusion, GSPE antagonized ouabain-induced hypertension and vascular remodeling and is recommended as a potential anti-hypertensive agent for patients with hypertensive vascular diseases.

  1. Exogenous surfactant preserves lung function and reduces alveolar Evans blue dye influx in a rat model of ventilation-induced lung injury.

    PubMed

    Verbrugge, S J; Vazquez de Anda, G; Gommers, D; Neggers, S J; Sorm, V; Böhm, S H; Lachmann, B

    1998-08-01

    was reduced in the groups that received 200 and 400 mg/kg exogenous surfactant. Exogenous surfactant preceding high peak inspiratory lung volumes prevents impairment of oxygenation, lung mechanics, and minimal surface tension of bronchoalveolar lavage fluid and reduces alveolar influx of Evans blue dye. These data indicate that surfactant has a beneficial effect on ventilation-induced lung injury.

  2. Anaesthesia ventilators.

    PubMed

    Jain, Rajnish K; Swaminathan, Srinivasan

    2013-09-01

    Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bellows ventilators, ascending bellows design is safer than descending bellows. Piston ventilators have the advantage of delivering accurate tidal volume. They work with electricity as their driving force and do not require a driving gas. To enable improved patient safety, several modifications were done in circle system with the different types of anaesthesia ventilators. Fresh gas decoupling is a modification done in piston ventilators and in descending bellows ventilator to reduce th incidence of ventilator induced volutrauma. In addition to the conventional volume control mode, modern anaesthesia ventilators also provide newer modes of ventilation such as synchronised intermittent mandatory ventilation, pressure-control ventilation and pressure-support ventilation (PSV). PSV mode is particularly useful for patients maintained on spontaneous respiration with laryngeal mask airway. Along with the innumerable benefits provided by these machines, there are various inherent hazards associated with the use of the ventilators in the operating room. To use these workstations safely, it is important for every Anaesthesiologist to have a basic understanding of the mechanics of these ventilators and breathing circuits.

  3. Far-infrared protects vascular endothelial cells from advanced glycation end products-induced injury via PLZF-mediated autophagy in diabetic mice

    PubMed Central

    Chen, Cheng-Hsien; Chen, Tso-Hsiao; Wu, Mei-Yi; Chou, Tz-Chong; Chen, Jia-Rung; Wei, Meng-Jun; Lee, San-Liang; Hong, Li-Yu; Zheng, Cai-Mei; Chiu, I-Jen; Lin, Yuh-Feng; Hsu, Ching-Min; Hsu, Yung-Ho

    2017-01-01

    The accumulation of advanced glycation end products (AGEs) in diabetic patients induces vascular endothelial injury. Promyelocytic leukemia zinc finger protein (PLZF) is a transcription factor that can be activated by low-temperature far-infrared (FIR) irradiation to exert beneficial effects on the vascular endothelium. In the present study, we investigated the influence of FIR-induced PLZF activation on AGE-induced endothelial injury both in vitro and in vivo. FIR irradiation inhibited AGE-induced apoptosis in human umbilical vein endothelial cells (HUVECs). PLZF activation increased the expression of phosphatidylinositol-3 kinases (PI3K), which are important kinases in the autophagic signaling pathway. FIR-induced PLZF activation led to autophagy in HUVEC, which was mediated through the upregulation of PI3K. Immunofluorescence staining showed that AGEs were engulfed by HUVECs and localized to lysosomes. FIR-induced autophagy promoted AGEs degradation in HUVECs. In nicotinamide/streptozotocin-induced diabetic mice, FIR therapy reduced serum AGEs and AGEs deposition at the vascular endothelium. FIR therapy also reduced diabetes-induced inflammatory markers in the vascular endothelium and improved vascular endothelial function. These protective effects of FIR therapy were not found in PLZF-knockout mice. Our data suggest that FIR-induced PLZF activation in vascular endothelial cells protects the vascular endothelium in diabetic mice from AGE-induced injury. PMID:28071754

  4. Effects on Pulmonary Vascular Mechanics of Two Different Lung-Protective Ventilation Strategies in an Experimental Model of Acute Respiratory Distress Syndrome.

    PubMed

    Santos, Arnoldo; Gomez-Peñalver, Eva; Monge-Garcia, M Ignacio; Retamal, Jaime; Borges, João Batista; Tusman, Gerardo; Hedenstierna, Goran; Larsson, Anders; Suarez-Sipmann, Fernando

    2017-11-01

    To compare the effects of two lung-protective ventilation strategies on pulmonary vascular mechanics in early acute respiratory distress syndrome. Experimental study. University animal research laboratory. Twelve pigs (30.8 ± 2.5 kg). Acute respiratory distress syndrome was induced by repeated lung lavages and injurious mechanical ventilation. Thereafter, animals were randomized to 4 hours ventilation according to the Acute Respiratory Distress Syndrome Network protocol or to an open lung approach strategy. Pressure and flow sensors placed at the pulmonary artery trunk allowed continuous assessment of pulmonary artery resistance, effective elastance, compliance, and reflected pressure waves. Respiratory mechanics and gas exchange data were collected. Acute respiratory distress syndrome led to pulmonary vascular mechanics deterioration. Four hours after randomization, pulmonary vascular mechanics was similar in Acute Respiratory Distress Syndrome Network and open lung approach: resistance (578 ± 252 vs 626 ± 153 dyn.s/cm; p = 0.714), effective elastance, (0.63 ± 0.22 vs 0.58 ± 0.17 mm Hg/mL; p = 0.710), compliance (1.19 ± 0.8 vs 1.50 ± 0.27 mL/mm Hg; p = 0.437), and reflection index (0.36 ± 0.04 vs 0.34 ± 0.09; p = 0.680). Open lung approach as compared to Acute Respiratory Distress Syndrome Network was associated with improved dynamic respiratory compliance (17.3 ± 2.6 vs 10.5 ± 1.3 mL/cm H2O; p < 0.001), driving pressure (9.6 ± 1.3 vs 19.3 ± 2.7 cm H2O; p < 0.001), and venous admixture (0.05 ± 0.01 vs 0.22 ± 0.03, p < 0.001) and lower mean pulmonary artery pressure (26 ± 3 vs 34 ± 7 mm Hg; p = 0.045) despite of using a higher positive end-expiratory pressure (17.4 ± 0.7 vs 9.5 ± 2.4 cm H2O; p < 0.001). Cardiac index, however, was lower in open lung approach (1.42 ± 0.16 vs 2.27 ± 0.48 L/min; p = 0.005). In this experimental model, Acute

  5. Physiology in Medicine: Understanding dynamic alveolar physiology to minimize ventilator-induced lung injury.

    PubMed

    Nieman, Gary F; Satalin, Josh; Kollisch-Singule, Michaela; Andrews, Penny; Aiash, Hani; Habashi, Nader M; Gatto, Louis A

    2017-06-01

    Acute respiratory distress syndrome (ARDS) remains a serious clinical problem with the main treatment being supportive in the form of mechanical ventilation. However, mechanical ventilation can be a double-edged sword: if set improperly, it can exacerbate the tissue damage caused by ARDS; this is known as ventilator-induced lung injury (VILI). To minimize VILI, we must understand the pathophysiologic mechanisms of tissue damage at the alveolar level. In this Physiology in Medicine paper, the dynamic physiology of alveolar inflation and deflation during mechanical ventilation will be reviewed. In addition, the pathophysiologic mechanisms of VILI will be reviewed, and this knowledge will be used to suggest an optimal mechanical breath profile (MB P : all airway pressures, volumes, flows, rates, and the duration that they are applied at both inspiration and expiration) necessary to minimize VILI. Our review suggests that the current protective ventilation strategy, known as the "open lung strategy," would be the optimal lung-protective approach. However, the viscoelastic behavior of dynamic alveolar inflation and deflation has not yet been incorporated into protective mechanical ventilation strategies. Using our knowledge of dynamic alveolar mechanics (i.e., the dynamic change in alveolar and alveolar duct size and shape during tidal ventilation) to modify the MB P so as to minimize VILI will reduce the morbidity and mortality associated with ARDS. Copyright © 2017 the American Physiological Society.

  6. Agmatine induces gastric protection against ischemic injury by reducing vascular permeability in rats

    PubMed Central

    Masri, Abeer A Al; Eter, Eman El

    2012-01-01

    AIM: To investigate the effect of administration of agmatine (AGM) on gastric protection against ischemia reperfusion (I/R) injury. METHODS: Three groups of rats (6/group); sham, gastric I/R injury, and gastric I/R + AGM (100 mg/kg, i.p. given 15 min prior to gastric ischemia) were recruited. Gastric injury was conducted by ligating celiac artery for 30 min and reperfusion for another 30 min. Gastric tissues were histologically studied and immunostained with angiopoietin 1 (Ang-1) and Ang-2. Vascular endothelial growth factor (VEGF) and monocyte chemoattractant protein-1 (MCP-1) were measured in gastric tissue homogenate. To assess whether AKt/phosphatidyl inositol-3-kinase (PI3K) mediated the effect of AGM, an additional group was pretreated with Wortmannin (WM) (inhibitor of Akt/PI3K, 15 μg/kg, i.p.), prior to ischemic injury and AGM treatment, and examined histologically and immunostained. Another set of experiments was run to study vascular permeability of the stomach using Evan’s blue dye. RESULTS: AGM markedly reduced Evan’s blue dye extravasation (3.58 ± 0.975 μg/stomach vs 1.175 ± 0.374 μg/stomach, P < 0.05), VEGF (36.87 ± 2.71 pg/100 mg protein vs 48.4 ± 6.53 pg/100 mg protein, P < 0.05) and MCP-1 tissue level (29.5 ± 7 pg/100 mg protein vs 41.17 ± 10.4 pg/100 mg protein, P < 0.01). It preserved gastric histology and reduced congestion. Ang-1 and Ang-2 immunostaining were reduced in stomach sections of AGM-treated animals. The administration of WM abolished the protective effects of AGM and extensive hemorrhage and ulcerations were seen. CONCLUSION: AGM protects the stomach against I/R injury by reducing vascular permeability and inflammation. This protection is possibly mediated by Akt/PI3K. PMID:22611311

  7. Effects of fisetin on hyperhomocysteinemia-induced experimental endothelial dysfunction and vascular dementia.

    PubMed

    Hemanth Kumar, Boyina; Arun Reddy, Ravula; Mahesh Kumar, Jerald; Dinesh Kumar, B; Diwan, Prakash V

    2017-01-01

    This study was designed to investigate the effects of fisetin (FST) on hyperhomocysteinemia (HHcy)-induced experimental endothelial dysfunction (ED) and vascular dementia (VaD) in rats. Wistar rats were randomly divided into 8 groups: control, vehicle control, l-methionine, FST (5, 10, and 25 mg/kg, p.o.), FST-per se (25 mg/kg, p.o.), and donepezil (0.1 mg/kg, p.o.). l-Methionine administration (1.7 g/kg, p.o.) for 32 days induced HHcy. ED and VaD induced by HHcy were determined by vascular reactivity measurements, behavioral analysis using Morris water maze and Y-maze, along with a biochemical and histological evaluation of thoracic aorta and brain tissues. Administration of l-methionine developed behavioral deficits; triggered brain lipid peroxidation (LPO); compromised brain acetylcholinesterase activity (AChE); and reduced the levels of brain superoxide dismutase (SOD), brain catalase (CAT), brain reduced glutathione (GSH), and serum nitrite; and increased serum homocysteine and cholesterol levels. These effects were accompanied by decreased vascular NO bioavailability, marked intimal thickening of the aorta, and multiple necrotic foci in brain cortex. HHcy-induced alterations in the activities of SOD, CAT, GSH, AChE, LPO, behavioral deficits, ED, and histological aberrations were significantly attenuated by treatment with fisetin in a dose-dependent manner. Collectively, our results indicate that fisetin exerts endothelial and neuroprotective effects against HHcy-induced ED and VaD.

  8. Atorvastatin restores arsenic-induced vascular dysfunction in rats: Modulation of nitric oxide signaling and inflammatory mediators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesavan, Manickam; Sarath, Thengumpallil Sasindran; Kannan, Kandasamy

    We evaluated whether atorvastatin, an extensively prescribed statin for reducing the risks of cardiovascular diseases, can reduce the risk of arsenic-induced vascular dysfunction and inflammation in rats and whether the modulation could be linked to improvement in vascular NO signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91{sup st} day, blood was collected for measuring serum C-reactive protein. Thoracic aorta was isolated for assessing reactivity to phenylephrine, sodium nitroprusside and acetylcholine; evaluating eNOSmore » and iNOS mRNA expression and measuring NO production, while abdominal aorta was used for ELISA of cytokines, chemokine and vascular cell adhesion molecules. Histopathology was done in aortic arches. Arsenic did not alter phenylephrine-elicited contraction. Atorvastatin inhibited E{sub max} of phenylephrine, but it augmented the contractile response in aortic rings from arsenic-exposed animals. Sodium nitroprusside-induced relaxation was not altered with any treatment. However, arsenic reduced acetylcholine-induced relaxation and affected aortic eNOS at the levels of mRNA expression, protein concentration, phosphorylation and NO production. Further, it increased aortic iNOS mRNA expression, iNOS-derived NO synthesis, production of pro-inflammatory mediators (IL-1β, IL-6, MCP-1, VCAM, sICAM) and serum C-reactive protein and aortic vasculopathic lesions. Atorvastatin attenuated these arsenic-mediated functional, biochemical and structural alterations. Results show that atorvastatin has the potential to ameliorate arsenic-induced vascular dysfunction and inflammation by restoring endothelial function with improvement in NO signaling and attenuating production of pro-inflammatory mediators and cell adhesion molecules. - Highlights: • We evaluated if atorvastatin reduce

  9. Effects of Gingko biloba extract (EGb 761) on vascular smooth muscle cell calcification induced by β-glycerophosphate.

    PubMed

    Li, En-Gang; Tian, Jun; Xu, Zhong-Hua

    2016-01-01

    To investigate the effects of Gingko biloba extract (EGb 761) on calcification induced by β-glycerophosphate in rat aortic vascular smooth muscle cells. Rat aortic vascular smooth muscle cells were cultured with various concentrations of EGb 761 and β-glycerophosphate for 7 days. Calcium content in the cells, alkaline phosphatase activity, cell protein content, NF-κB activation, and reactive oxygen species production were assayed, respectively. The calcium depositions of vascular smooth muscle cells of the β-glycerophosphate group were significantly higher than those of the control group (p < 0.01), and were inhibited by EGb 761 in a concentration-dependent manner (p < 0.05). Data showed β-glycerophosphate induced the enhanced expression of alkaline phosphatase, up-regulated the NF-κB activity and increased reactive oxygen species production of vascular smooth muscle cells while these decreased when administrated with EGb 761(p < 0.05). EGb 761 significantly reduced deposition of calcium induced by β-glycerophosphate in rat aortic vascular smooth muscle cells. It not only reduced the deposition of calcium, but also inhibited osteogenic transdifferentiation, which may be associated with decreasing expression of alkaline phosphatase, down-regulating the NF-κB activity, and reducing reactive oxygen species production of vascular smooth muscle cells, and may have the potential to serve as a role for vascular calcification in clinical situations.

  10. Treatment with polyamine oxidase inhibitor reduces microglial activation and limits vascular injury in ischemic retinopathy

    PubMed Central

    Patel, C.; Xu, Z.; Shosha, E.; Xing, J.; Lucas, R.; Caldwell, R.W.; Caldwell, R.B.; Narayanan, S.P.

    2016-01-01

    Retinal vascular injury is a major cause of vision impairment in ischemic retinopathies. Insults such as hyperoxia, oxidative stress and inflammation contribute to this pathology. Previously, we showed that hyperoxia-induced retinal neurodegeneration is associated with increased polyamine oxidation. Here, we are studying the involvement of polyamine oxidases in hyperoxia-induced injury and death of retinal vascular endothelial cells. Newborn C57BL6/J mice were exposed to hyperoxia (70% O2) from postnatal day (P) 7 to 12 and were treated with the polyamine oxidase inhibitor MDL 72527 or vehicle starting at P6. Mice were sacrificed after different durations of hyperoxia and their retinas were analyzed to determine the effects on vascular injury, microglial cell activation, and inflammatory cytokine profiling. The results of this analysis showed that MDL 72527 treatment significantly reduced hyperoxia-induced retinal vascular injury and enhanced vascular sprouting as compared with the vehicle controls. These protective effects were correlated with significant decreases in microglial activation as well as levels of inflammatory cytokines and chemokines. In order to model the effects of polyamine oxidation in causing microglial activation in vitro, studies were performed using rat brain microvascular endothelial cells treated with conditioned-medium from rat retinal microglia stimulated with hydrogen peroxide. Conditioned-medium from activated microglial cultures induced cell stress signals and cell death in microvascular endothelial cells. These studies demonstrate the involvement of polyamine oxidases in hyperoxia-induced retinal vascular injury and retinal inflammation in ischemic retinopathy, through mechanisms involving cross-talk between endothelial cells and resident retinal microglia. PMID:27239699

  11. Effects of nifedipine and captopril on vascular capacitance of ganglion-blocked anesthetized dogs.

    PubMed

    Ogilvie, R I; Zborowska-Sluis, D

    1990-03-01

    The hemodynamic effects of nifedipine and captopril at doses producing similar reductions in arterial pressure were studied in pentobarbital-anesthetized ventilated dogs after splenectomy during ganglion blockade with hexamethonium. Mean circulatory filling pressure (Pmcf) was determined during transient circulatory arrest induced by acetylcholine at baseline circulating blood volumes and after increases of 5 and 10 mL/kg. Central blood volumes (pulmonary artery to aortic root) were determined from transit times, and separately determined cardiac outputs (right atrium to pulmonary artery) were estimated by thermodilution. Nifedipine (n = 5) increased Pmcf at all circulating blood volumes and reduced total vascular capacitance without a change in total vascular compliance. Central blood volume, right atrial pressure, and cardiac output were increased with induced increases in circulating blood volume. In contrast, captopril (n = 5) did not alter total vascular capacitance, central blood volume, right atrial pressure, or cardiac output at baseline or with increased circulating volume. Thus, at doses producing similar reductions in arterial pressure, nifedipine but not captopril increased venous return and cardiac output in ganglion-blocked dogs.

  12. Mathematics of Ventilator-induced Lung Injury.

    PubMed

    Rahaman, Ubaidur

    2017-08-01

    Ventilator-induced lung injury (VILI) results from mechanical disruption of blood-gas barrier and consequent edema and releases of inflammatory mediators. A transpulmonary pressure (P L ) of 17 cmH 2 O increases baby lung volume to its anatomical limit, predisposing to VILI. Viscoelastic property of lung makes pulmonary mechanics time dependent so that stress (P L ) increases with respiratory rate. Alveolar inhomogeneity in acute respiratory distress syndrome acts as a stress riser, multiplying global stress at regional level experienced by baby lung. Limitation of stress (P L ) rather than strain (tidal volume [V T ]) is the safe strategy of mechanical ventilation to prevent VILI. Driving pressure is the noninvasive surrogate of lung strain, but its relations to P L is dependent on the chest wall compliance. Determinants of lung stress (V T , driving pressure, positive end-expiratory pressure, and inspiratory flow) can be quantified in terms of mechanical power, and a safe threshold can be determined, which can be used in decision-making between safe mechanical ventilation and extracorporeal lung support.

  13. Comparison between conventional protective mechanical ventilation and high-frequency oscillatory ventilation associated with the prone position.

    PubMed

    Fioretto, José Roberto; Klefens, Susiane Oliveira; Pires, Rafaelle Fernandes; Kurokawa, Cilmery Suemi; Carpi, Mario Ferreira; Bonatto, Rossano César; Moraes, Marcos Aurélio; Ronchi, Carlos Fernando

    2017-01-01

    To compare the effects of high-frequency oscillatory ventilation and conventional protective mechanical ventilation associated with the prone position on oxygenation, histology and pulmonary oxidative damage in an experimental model of acute lung injury. Forty-five rabbits with tracheostomy and vascular access were underwent mechanical ventilation. Acute lung injury was induced by tracheal infusion of warm saline. Three experimental groups were formed: healthy animals + conventional protective mechanical ventilation, supine position (Control Group; n = 15); animals with acute lung injury + conventional protective mechanical ventilation, prone position (CMVG; n = 15); and animals with acute lung injury + high-frequency oscillatory ventilation, prone position (HFOG; n = 15). Ten minutes after the beginning of the specific ventilation of each group, arterial gasometry was collected, with this timepoint being called time zero, after which the animal was placed in prone position and remained in this position for 4 hours. Oxidative stress was evaluated by the total antioxidant performance assay. Pulmonary tissue injury was determined by histopathological score. The level of significance was 5%. Both groups with acute lung injury showed worsening of oxygenation after induction of injury compared with the Control Group. After 4 hours, there was a significant improvement in oxygenation in the HFOG group compared with CMVG. Analysis of total antioxidant performance in plasma showed greater protection in HFOG. HFOG had a lower histopathological lesion score in lung tissue than CMVG. High-frequency oscillatory ventilation, associated with prone position, improves oxygenation and attenuates oxidative damage and histopathological lung injury compared with conventional protective mechanical ventilation.

  14. Comparison between conventional protective mechanical ventilation and high-frequency oscillatory ventilation associated with the prone position

    PubMed Central

    Fioretto, José Roberto; Klefens, Susiane Oliveira; Pires, Rafaelle Fernandes; Kurokawa, Cilmery Suemi; Carpi, Mario Ferreira; Bonatto, Rossano César; Moraes, Marcos Aurélio; Ronchi, Carlos Fernando

    2017-01-01

    Objective To compare the effects of high-frequency oscillatory ventilation and conventional protective mechanical ventilation associated with the prone position on oxygenation, histology and pulmonary oxidative damage in an experimental model of acute lung injury. Methods Forty-five rabbits with tracheostomy and vascular access were underwent mechanical ventilation. Acute lung injury was induced by tracheal infusion of warm saline. Three experimental groups were formed: healthy animals + conventional protective mechanical ventilation, supine position (Control Group; n = 15); animals with acute lung injury + conventional protective mechanical ventilation, prone position (CMVG; n = 15); and animals with acute lung injury + high-frequency oscillatory ventilation, prone position (HFOG; n = 15). Ten minutes after the beginning of the specific ventilation of each group, arterial gasometry was collected, with this timepoint being called time zero, after which the animal was placed in prone position and remained in this position for 4 hours. Oxidative stress was evaluated by the total antioxidant performance assay. Pulmonary tissue injury was determined by histopathological score. The level of significance was 5%. Results Both groups with acute lung injury showed worsening of oxygenation after induction of injury compared with the Control Group. After 4 hours, there was a significant improvement in oxygenation in the HFOG group compared with CMVG. Analysis of total antioxidant performance in plasma showed greater protection in HFOG. HFOG had a lower histopathological lesion score in lung tissue than CMVG. Conclusion High-frequency oscillatory ventilation, associated with prone position, improves oxygenation and attenuates oxidative damage and histopathological lung injury compared with conventional protective mechanical ventilation. PMID:29236845

  15. Inhibition of STAT3 phosphorylation by sulforaphane reduces adhesion molecule expression in vascular endothelial cell.

    PubMed

    Cho, Young S; Kim, Chan H; Ha, Tae S; Ahn, Hee Y

    2015-11-18

    Intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) play key roles in the initiation of vascular inflammation. In this study, we explored whether sulforaphane, a dietary phytochemical, can inhibit the expression of ICAM-1 and VCAM-1 in human umbilical vein endothelial cells (HUVEC) stimulated with lipopolysaccharide (LPS), and the mechanisms involved. Sulforaphane prevented the LPS-mediated increase in ICAM-1 and VCAM-1 expression, (P < 0.01) in HUVEC. Sulforaphane also prevented the LPS-mediated increase in the phosphorylation of signal transducer and activator of transcription 3 (STAT3) (P < 0.01). Stattic, a STAT3 inhibitor, reduced the LPS-induced expression of ICAM-1 and VCAM-1, and STAT3 phosphorylation (P < 0.01). STAT3 small interfering RNA treatment reduced the LPS-induced expression of ICAM-1, VCAM-1, and STAT3 (P < 0.01). Sulforaphane reduced LPS-mediated THP-1 monocyte adhesion to HUVEC (P < 0.01). In C57BL/6 mice, injection of LPS increased aortic ICAM-1 and VCAM-1 expression, and this effect was prevented by sulforaphane. These data provide insight into the mechanism through which sulforaphane partly reduces the expression of ICAM-1 and VCAM-1 on the vascular wall by inhibiting STAT3 phosphorylation.

  16. Overexpression of Mitofusin 2 inhibited oxidized low-density lipoprotein induced vascular smooth muscle cell proliferation and reduced atherosclerotic lesion formation in rabbit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo Yanhong; Chen Kuanghueih; Gao Wei

    2007-11-16

    Our previous studies have implies that Mitofusin 2 (Mfn2), which was progressively reduced in arteries from ApoE{sup -/-} mice during the development of atherosclerosis, may take part in pathogenesis of atherosclerosis. In this study, we found that overexpression of Mfn2 inhibited oxidized low-density lipoprotein or serum induced vascular smooth muscle cell proliferation by down-regulation of Akt and ERK phosphorylation. Then we investigated the in vivo role of Mfn2 on the development of atherosclerosis in rabbits using adenovirus expressing Mitofusin 2 gene (AdMfn2). By morphometric analysis we found overexpression of Mfn2 inhibited atherosclerotic lesion formation and intima/media ratio by 66.7% andmore » 74.6%, respectively, compared with control group. These results suggest that local Mfn2 treatment suppresses the development of atherosclerosis in vivo in part by attenuating the smooth muscle cell proliferation induced by lipid deposition and vascular injury.« less

  17. Vascular endothelial growth factor and amyotrophic lateral sclerosis: the interplay with exercise and noninvasive ventilation.

    PubMed

    Carilho, Rita; de Carvalho, Mamede; Swash, Michael; Pinto, Susana; Pinto, Anabela; Costa, Júlia

    2014-04-01

    We evaluated plasma vascular endothelial growth factor (VEGF) levels in patients with amyotrophic lateral sclerosis (ALS) with reference to the effects of respiratory failure, noninvasive ventilation (NIV), and exercise. We studied plasma VEGF levels in 83 ALS patients, 20 healthy controls, and 10 patients with other disorders. There were 4 groups of ALS patients: G1, 27 patients without respiratory problems; G2, 14 patients stabilized on nocturnal NIV; G3, 30 patients presenting with respiratory failure; G4, 12 patients on an aerobic exercise protocol. VEGF plasma levels did not differ significantly between ALS patients and controls, or between ALS groups. In G3, the mean VEGF levels increased 75% during NIV. In G4, the mean VEGF level increased by 300% during the exercise program. VEGF levels did not change during the course of the disease. VEGF levels in ALS depend on changes in ventilation and exercise but are probably not affected by the disease process itself. Copyright © 2013 Wiley Periodicals, Inc.

  18. VEGFR tyrosine kinase inhibitor II (VRI) induced vascular insufficiency in zebrafish as a model for studying vascular toxicity and vascular preservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shang; Dang, Yuan Ye; Oi Lam Che, Ginny

    In ischemic disorders such as chronic wounds and myocardial ischemia, there is inadequate tissue perfusion due to vascular insufficiency. Besides, it has been observed that prolonged use of anti-angiogenic agents in cancer therapy produces cardiovascular toxicity caused by impaired vessel integrity and regeneration. In the present study, we used VEGFR tyrosine kinase inhibitor II (VRI) to chemically induce vascular insufficiency in zebrafish in vivo and human umbilical vein endothelial cells (HUVEC) in vitro to further study the mechanisms of vascular morphogenesis in these pathological conditions. We also explored the possibility of treating vascular insufficiency by enhancing vascular regeneration and repairmore » with pharmacological intervention. We observed that pretreatment of VRI induced blood vessel loss in developing zebrafish by inhibiting angiogenesis and increasing endothelial cell apoptosis, accompanied by down-regulation of kdr, kdrl and flt-1 genes expression. The VRI-induced blood vessel loss in zebrafish could be restored by post-treatment of calycosin, a cardiovascular protective isoflavone. Similarly, VRI induced cytotoxicity and apoptosis in HUVEC which could be rescued by calycosin post-treatment. Further investigation of the underlying mechanisms showed that the PI3K/AKT/Bad cell survival pathway was a main contributor of the vascular regenerative effect of calycosin. These findings indicated that the cardiovascular toxicity in anti-angiogenic therapy was mainly caused by insufficient endothelial cell survival, suggesting its essential role in vascular integrity, repair and regeneration. In addition, we showed that VRI-induced blood vessel loss in zebrafish represented a simple and effective in vivo model for studying vascular insufficiency and evaluating cancer drug vascular toxicities. - Highlights: • In vivo VRI model • Rescue effects of calycosin • Calycosin EC survival pathways.« less

  19. Conservative fluid management prevents age-associated ventilator induced mortality.

    PubMed

    Herbert, Joseph A; Valentine, Michael S; Saravanan, Nivi; Schneck, Matthew B; Pidaparti, Ramana; Fowler, Alpha A; Reynolds, Angela M; Heise, Rebecca L

    2016-08-01

    Approximately 800 thousand patients require mechanical ventilation in the United States annually with an in-hospital mortality rate of over 30%. The majority of patients requiring mechanical ventilation are over the age of 65 and advanced age is known to increase the severity of ventilator-induced lung injury (VILI) and in-hospital mortality rates. However, the mechanisms which predispose aging ventilator patients to increased mortality rates are not fully understood. Ventilation with conservative fluid management decreases mortality rates in acute respiratory distress patients, but to date there has been no investigation of the effect of conservative fluid management on VILI and ventilator associated mortality rates. We hypothesized that age-associated increases in susceptibility and incidence of pulmonary edema strongly promote age-related increases in ventilator associated mortality. 2month old and 20month old male C57BL6 mice were mechanically ventilated with either high tidal volume (HVT) or low tidal volume (LVT) for up to 4h with either liberal or conservative fluid support. During ventilation, lung compliance, total lung capacity, and hysteresis curves were quantified. Following ventilation, bronchoalveolar lavage fluid was analyzed for total protein content and inflammatory cell infiltration. Wet to dry ratios were used to directly measure edema in excised lungs. Lung histology was performed to quantify alveolar barrier damage/destruction. Age matched non-ventilated mice were used as controls. At 4h, both advanced age and HVT ventilation significantly increased markers of inflammation and injury, degraded pulmonary mechanics, and decreased survival rates. Conservative fluid support significantly diminished pulmonary edema and improved pulmonary mechanics by 1h in advanced age HVT subjects. In 4h ventilations, conservative fluid support significantly diminished pulmonary edema, improved lung mechanics, and resulted in significantly lower mortality rates in

  20. Conservative Fluid Management Prevents Age-Associated Ventilator Induced Mortality

    PubMed Central

    Herbert, Joseph A.; Valentine, Michael S.; Saravanan, Nivi; Schneck, Matthew B.; Pidaparti, Ramana; Fowler, Alpha A.; Reynolds, Angela M.; Heise, Rebecca L.

    2017-01-01

    Background Approximately 800 thousand patients require mechanical ventilation in the United States annually with an in-hospital mortality rate of over 30%. The majority of patients requiring mechanical ventilation are over the age of 65 and advanced age is known to increase the severity of ventilator-induced lung injury (VILI) and in-hosptial mortality rates. However, the mechanisms which predispose aging ventilator patients to increased mortality rates are not fully understood. Ventilation with conservative fluid management decreases mortality rates in acute respiratory distress patients, but to date there has been no investigation of the effect of conservative fluid management on VILI and ventilator associated mortality rates. We hypothesized that age-associated increases in susceptibility and incidence of pulmonary edema strongly promote age-related increases in ventilator associated mortality. Methods 2 month old and 20 month old male C57BL6 mice were mechanically ventilated with either high tidal volume (HVT) or low tidal volume (LVT) for up to 4 hours with either liberal or conservative fluid support. During ventilation, lung compliance, total lung capacity, and hysteresis curves were quantified. Following ventilation, bronchoalveolar lavage fluid was analyzed for total protein content and inflammatory cell infiltration. Wet to dry ratios were used to directly measure edema in excised lungs. Lung histology was performed to quantify alveolar barrier damage/destruction. Age matched non-ventilated mice were used as controls. Results At 4hrs, both advanced age and HVT ventilation significantly increased markers of inflammation and injury, degraded pulmonary mechanics, and decreased survival rates. Conservative fluid support significantly diminished pulmonary edema and improved pulmonary mechanics by 1hr in advanced age HVT subjects. In 4hr ventilations, conservative fluid support significantly diminished pulmonary edema, improved lung mechanics, and resulted in

  1. Comparison of the effects of moderate and severe hypercapnic acidosis on ventilation-induced lung injury.

    PubMed

    Yang, Wanchao; Yue, Ziyong; Cui, Xiaoguang; Guo, Yueping; Zhang, Lili; Zhou, Huacheng; Li, Wenzhi

    2015-04-30

    We have proved that hypercapnic acidosis (a PaCO2 of 80-100 mmHg) protects against ventilator-induced lung injury in rats. However, there remains uncertainty regarding the appropriate target PaCO2 or if greater CO2 "doses" (PaCO2 > 100 mmHg) demonstrate this effect. We wished to determine whether severe acute hypercapnic acidosis can reduce stretch-induced injury, as well as the role of nuclear factor-κB (NF-κB) in the effects of acute hypercapnic acidosis. Fifty-four rats were ventilated for 4 hours with a pressure-controlled ventilation mode set at a peak inspiratory pressure (PIP) of 30 cmH2O. A gas mixture of carbon dioxide with oxygen (FiCO2 = 4-5%, FiCO2 = 11-12% or FiCO2 = 16-17%; FiO2 = 0.7; balance N2) was immediately administered to maintain the target PaCO2 in the NC (a PaCO2 of 35-45 mmHg), MHA (a PaCO2 of 80-100 mmHg) and SHA (a PaCO2 of 130-150 mmHg) groups. Nine normal or non-ventilated rats served as controls. The hemodynamics, gas exchange and inflammatory parameters were measured. The role of NF-κB pathway in hypercapnic acidosis-mediated protection from high-pressure stretch injury was then determined. In the NC group, high-pressure ventilation resulted in a decrease in PaO2/FiO2 from 415.6 (37.1) mmHg to 179.1 (23.5) mmHg (p < 0.001), but improved by MHA (379.9 ± 34.5 mmHg) and SHA (298.6 ± 35.3 mmHg). The lung injury score in the SHA group (7.8 ± 1.6) was lower than the NC group (11.8 ± 2.3, P < 0.05) but was higher than the MHA group (4.4 ± 1.3, P < 0.05). Compared with the NC group, after 4 h of high pressure ventilation, the MHA and SHA groups had decreases in MPO activity of 67% and 33%, respectively, and also declined the levels of TNF-α (58% versus 72%) and MIP-2 (76% versus 60%) in the BALF. Additionally, both hypercapnic acidosis groups reduced stretch-induced NF-κB activation (p < 0.05) and significantly decreased lung ICAM-1 expression (p < 0.05). Moderate

  2. Role of Growth Arrest and DNA Damage–inducible α in Akt Phosphorylation and Ubiquitination after Mechanical Stress-induced Vascular Injury

    PubMed Central

    Mitra, Sumegha; Sammani, Saad; Wang, Ting; Boone, David L.; Meyer, Nuala J.; Dudek, Steven M.; Moreno-Vinasco, Liliana; Garcia, Joe G. N.

    2011-01-01

    Rationale: The stress-induced growth arrest and DNA damage–inducible α (GADD45a) gene is up-regulated by mechanical stress with GADD45a knockout (GADD45a−/−) mice demonstrating both increased susceptibility to ventilator-induced lung injury (VILI) and reduced levels of the cell survival and vascular permeability signaling effector (Akt). However, the functional role of GADD45a in the pathogenesis of VILI is unknown. Objectives: We sought to define the role of GADD45a in the regulation of Akt activation induced by mechanical stress. Methods: VILI-challenged GADD45a−/− mice were administered a constitutively active Akt1 vector and injury was assessed by bronchoalveolar lavage cell counts and protein levels. Human pulmonary artery endothelial cells (EC) were exposed to 18% cyclic stretch (CS) under conditions of GADD45a silencing and used for immunoprecipitation, Western blotting or immunofluoresence. EC were also transfected with mutant ubiquitin vectors to characterize site-specific Akt ubiquitination. DNA methylation was measured using methyl-specific polymerase chain reaction assay. Measurements and Main Results: Studies exploring the linkage of GADD45a with mechanical stress and Akt regulation revealed VILI-challenged GADD45a−/− mice to have significantly reduced lung injury on overexpression of Akt1 transgene. Increased mechanical stress with 18% CS in EC induced Akt phosphorylation via E3 ligase tumor necrosis factor receptor–associated factor 6 (TRAF6)–mediated Akt K63 ubiquitination resulting in Akt trafficking and activation at the membrane. GADD45a is essential to this process because GADD45a-silenced endothelial cells and GADD45a−/− mice exhibited increased Akt K48 ubiquitination leading to proteasomal degradation. These events involve loss of ubiquitin carboxyl terminal hydrolase 1 (UCHL1), a deubiquitinating enzyme that normally removes K48 polyubiquitin chains bound to Akt thus promoting Akt K63 ubiquitination. Loss of GADD45a

  3. Vascular capacitance and cardiac output in pacing-induced canine models of acute and chronic heart failure.

    PubMed

    Ogilvie, R I; Zborowska-Sluis, D

    1995-11-01

    The relationship between stressed and total blood volume, total vascular capacitance, central blood volume, cardiac output (CO), and pulmonary capillary wedge pressure (Ppcw) was investigated in pacing-induced acute and chronic heart failure. Acute heart failure was induced in anesthetized splenectomized dogs by a volume load (20 mL/kg over 10 min) during rapid right ventricular pacing at 250 beats/min (RRVP) for 60 min. Chronic heart failure was induced by continuous RRVP for 2-6 weeks (average 24 +/- 2 days). Total vascular compliance and capacitance were calculated from the mean circulatory filling pressure (Pmcf) during transient circulatory arrest after acetylcholine at three different circulating volumes. Stressed blood volume was calculated as a product of compliance and Pmcf, with the total blood volume measured by a dye dilution. Central blood volume (CBV) and CO were measured by thermodilution. Central (heart and lung) vascular capacitance was estimated from the plot of Ppcw against CBV. Acute volume loading without RRVP increased capacitance and CO, whereas after volume loading with RRVP, capacitance and CO were unaltered from baseline. Chronic RRVP reduced capacitance and CO. All interventions, volume +/- RRVP or chronic RRVP, increased stressed and central blood volumes and Ppcw. Acute or chronic RRVP reduced central vascular capacitance. Cardiac output was increased when stressed and unstressed blood volumes increased proportionately as during volume loading alone. When CO was reduced and Ppcw increased, as during chronic RRVP or acute RRVP plus a volume load, stressed blood volume was increased and unstressed blood volume was decreased. Thus, interventions that reduced CO and increased Ppcw also increased stressed and reduced unstressed blood volume and total vascular capacitance.

  4. N-acetylcysteine attenuates TNF-alpha-induced human vascular endothelial cell apoptosis and restores eNOS expression.

    PubMed

    Xia, Zhengyuan; Liu, Min; Wu, Yong; Sharma, Vijay; Luo, Tao; Ouyang, Jingping; McNeill, John H

    2006-11-21

    The circulatory inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) is increased in pathological conditions, such as diabetes, which initiate or exacerbate vascular endothelial injury. Both nitric oxide (NO) and reactive oxygen species may play a dual role (i.e., inhibiting or promoting) in TNF-alpha-induced endothelial cell apoptosis. We investigated the effects of the antioxidant N-acetylcysteine on TNF-alpha-induced apoptosis in human vascular endothelial cell (cell line ECV304) apoptosis, NO production and lipid peroxidation. Cultured vascular endothelial cell (ECV304) were either not treated (control), or treated with TNF-alpha (40 ng/ml) alone or TNF-alpha in the presence of N-acetylcysteine at 30 mmol/l or 1 mmol/l, respectively, for 24 h. Cell viability was measured by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay. Cell apoptosis was assessed by flow cytometry. TNF-alpha-induced endothelial cell apoptosis was associated with increased inducible NO synthase but reduced endothelial NO synthase (eNOS) protein expression. NO production and the levels of the lipid peroxidation product malondialdehyde were concomitantly increased. Treatment with NAC at 30 mmol/l restored eNOS expression and further increased NO production as compared to TNF-alpha alone, resulting in improved cell viability and reduced apoptosis. This was accompanied by increased superoxide dismutase activity, increased glutathione peroxidase production and reduced malondialdehyde levels. N-acetylcysteine at 1 mmol/l, however, did not have significant effects on TNF-alpha-induced endothelial cell apoptosis and cell viability despite it slightly enhanced glutathione peroxidase production. N-acetylcysteine attenuation of TNF-alpha-induced human vascular endothelial cell apoptosis is associated with the restoration of eNOS expression.

  5. Hydrogen peroxide prevents vascular calcification induced ROS production by regulating Nrf-2 pathway.

    PubMed

    Zhang, Wensong; Li, Yi; Ding, Hanlu; Du, Yaqin; Wang, Li

    2016-08-01

    Although vascular calcification in end-stage renal disease (ESRD) represents a ubiquitous human health problem, effective therapies with limited side effects are still lacking, and the precise mechanisms are not fully understood. The Nrf-2/ARE pathway is a pivotal to regulate anti-oxidative responses in vascular calcification upon ESRD. Although Nrf-2 plays a crucial role in atherosclerosis, pulmonary fibrosis, and brain ischemia, the effect of Nrf-2 and oxidative stress on vascular calcification in ESRD patients is still unclear. The aim of this research was to study the protective role of hydrogen peroxide in vascular calcification and the mechanism of Nrf-2 and oxidative stress on vascular calcification. Here we used the rat vascular smooth muscle cell model of β-glycerophosphate-induced calcification resembling vascular calcification in ESRD to investigate the therapeutic effect of 0.01 mM hydrogen peroxide on vascular calcification and further explores the possible underlying mechanisms. Our current report shows the in vitro role of 0.01 mM hydrogen peroxide in protecting against intracellular ROS accumulation upon vascular calcification. Both hydrogen peroxide and sulforaphane pretreatment reduced ROS production, increased the expression of Nrf-2, and decreased the expression of Runx2 following calcification. Our study demonstrates that 0.01 mM hydrogen peroxide can effectively protect rat aortic vascular smooth muscle cells against oxidative stress by preventing vascular calcification induced ROS production through Nrf-2 pathway. These data might define an antioxidant role of hydrogen peroxide in vascular calcification upon ESRD.

  6. NLRP3 Inflammasome Mediates Aldosterone-Induced Vascular Damage.

    PubMed

    Bruder-Nascimento, Thiago; Ferreira, Nathanne S; Zanotto, Camila Z; Ramalho, Fernanda; Pequeno, Isabela O; Olivon, Vania C; Neves, Karla B; Alves-Lopes, Rheure; Campos, Eduardo; Silva, Carlos Alberto A; Fazan, Rubens; Carlos, Daniela; Mestriner, Fabiola L; Prado, Douglas; Pereira, Felipe V; Braga, Tarcio; Luiz, Joao Paulo M; Cau, Stefany B; Elias, Paula C; Moreira, Ayrton C; Câmara, Niels O; Zamboni, Dario S; Alves-Filho, Jose Carlos; Tostes, Rita C

    2016-12-06

    Inflammation is a key feature of aldosterone-induced vascular damage and dysfunction, but molecular mechanisms by which aldosterone triggers inflammation remain unclear. The NLRP3 inflammasome is a pivotal immune sensor that recognizes endogenous danger signals triggering sterile inflammation. We analyzed vascular function and inflammatory profile of wild-type (WT), NLRP3 knockout (NLRP3 -/- ), caspase-1 knockout (Casp-1 -/- ), and interleukin-1 receptor knockout (IL-1R -/- ) mice treated with vehicle or aldosterone (600 µg·kg -1 ·d -1 for 14 days through osmotic mini-pump) while receiving 1% saline to drink. Here, we show that NLRP3 inflammasome plays a central role in aldosterone-induced vascular dysfunction. Long-term infusion of aldosterone in mice resulted in elevation of plasma interleukin-1β levels and vascular abnormalities. Mice lacking the IL-1R or the inflammasome components NLRP3 and caspase-1 were protected from aldosterone-induced vascular damage. In vitro, aldosterone stimulated NLRP3-dependent interleukin-1β secretion by bone marrow-derived macrophages by activating nuclear factor-κB signaling and reactive oxygen species generation. Moreover, chimeric mice reconstituted with NLRP3-deficient hematopoietic cells showed that NLRP3 in immune cells mediates aldosterone-induced vascular damage. In addition, aldosterone increased the expression of NLRP3, active caspase-1, and mature interleukin-1β in human peripheral blood mononuclear cells. Hypertensive patients with hyperaldosteronism or normal levels of aldosterone exhibited increased activity of NLRP3 inflammasome, suggesting that the effect of hyperaldosteronism on the inflammasome may be mediated through high blood pressure. Together, these data demonstrate that NLRP3 inflammasome, through activation of IL-1R, is critically involved in the deleterious vascular effects of aldosterone, placing NLRP3 as a potential target for therapeutic interventions in conditions with high aldosterone levels.

  7. A ventilation strategy during general anaesthesia to reduce postoperative atelectasis.

    PubMed

    Edmark, Lennart; Auner, Udo; Hallén, Jan; Lassinantti-Olowsson, Lena; Hedenstierna, Göran; Enlund, Mats

    2014-08-01

    Atelectasis is common during and after general anaesthesia. We hypothesized that a ventilation strategy, without recruitment manoeuvres, using a combination of continuous positive airway pressure (CPAP) or positive end-expiratory pressure (PEEP) and a reduced end-expiratory oxygen fraction (FETO2) before ending mask ventilation with CPAP after extubation would reduce the area of postoperative atelectasis. Thirty patients were randomized into three groups. During induction and emergence, inspiratory oxygen fractions (FIO2) were 1.0 in the control group and 1.0 or 0.8 in the intervention groups. No CPAP/PEEP was used in the control group, whereas CPAP/PEEP of 6 cmH2O was used in the intervention groups. After extubation, FIO2 was set to 0.30 in the intervention groups and CPAP was applied, aiming at FETO2 < 0.30. Atelectasis was studied by computed tomography 25 min postoperatively. The median area of atelectasis was 5.2 cm(2) (range 1.6-12.2 cm(2)) and 8.5 cm(2) (3-23.1 cm(2)) in the groups given FIO2 1.0 with or without CPAP/PEEP, respectively. After correction for body mass index the difference between medians (2.9 cm(2)) was statistically significant (confidence interval 0.2-7.6 cm(2), p = 0.04). In the group given FIO2 0.8, in which seven patients were ex- or current smokers, the median area of atelectasis was 8.2 cm(2) (1.8-14.7 cm(2)). Compared with conventional ventilation, after correction for obesity, this ventilation strategy reduced the area of postoperative atelectasis in one of the intervention groups but not in the other group, which included a higher proportion of smokers.

  8. A ventilation strategy during general anaesthesia to reduce postoperative atelectasis

    PubMed Central

    Auner, Udo; Hallén, Jan; Lassinantti-Olowsson, Lena; Hedenstierna, Göran; Enlund, Mats

    2014-01-01

    Background Atelectasis is common during and after general anaesthesia. We hypothesized that a ventilation strategy, without recruitment manoeuvres, using a combination of continuous positive airway pressure (CPAP) or positive end-expiratory pressure (PEEP) and a reduced end-expiratory oxygen fraction (FETO2) before ending mask ventilation with CPAP after extubation would reduce the area of postoperative atelectasis. Methods Thirty patients were randomized into three groups. During induction and emergence, inspiratory oxygen fractions (FIO2) were 1.0 in the control group and 1.0 or 0.8 in the intervention groups. No CPAP/PEEP was used in the control group, whereas CPAP/PEEP of 6 cmH2O was used in the intervention groups. After extubation, FIO2 was set to 0.30 in the intervention groups and CPAP was applied, aiming at FETO2 < 0.30. Atelectasis was studied by computed tomography 25 min postoperatively. Results The median area of atelectasis was 5.2 cm2 (range 1.6–12.2 cm2) and 8.5 cm2 (3–23.1 cm2) in the groups given FIO2 1.0 with or without CPAP/PEEP, respectively. After correction for body mass index the difference between medians (2.9 cm2) was statistically significant (confidence interval 0.2–7.6 cm2, p = 0.04). In the group given FIO2 0.8, in which seven patients were ex- or current smokers, the median area of atelectasis was 8.2 cm2 (1.8–14.7 cm2). Conclusion Compared with conventional ventilation, after correction for obesity, this ventilation strategy reduced the area of postoperative atelectasis in one of the intervention groups but not in the other group, which included a higher proportion of smokers. PMID:24758245

  9. Attenuation of Lipopolysaccharide-Induced Lung Vascular Stiffening by Lipoxin Reduces Lung Inflammation

    PubMed Central

    Meng, Fanyong; Mambetsariev, Isa; Tian, Yufeng; Beckham, Yvonne; Meliton, Angelo; Leff, Alan; Gardel, Margaret L.; Allen, Michael J.; Birukov, Konstantin G.

    2015-01-01

    Reversible changes in lung microstructure accompany lung inflammation, although alterations in tissue micromechanics and their impact on inflammation remain unknown. This study investigated changes in extracellular matrix (ECM) remodeling and tissue stiffness in a model of LPS-induced inflammation and examined the role of lipoxin analog 15-epi-lipoxin A4 (eLXA4) in the reduction of stiffness-dependent exacerbation of the inflammatory process. Atomic force microscopy measurements of live lung slices were used to directly measure local tissue stiffness changes induced by intratracheal injection of LPS. Effects of LPS on ECM properties and inflammatory response were evaluated in an animal model of LPS-induced lung injury, live lung tissue slices, and pulmonary endothelial cell (EC) culture. In vivo, LPS increased perivascular stiffness in lung slices monitored by atomic force microscopy and stimulated expression of ECM proteins fibronectin, collagen I, and ECM crosslinker enzyme, lysyl oxidase. Increased stiffness and ECM remodeling escalated LPS-induced VCAM1 and ICAM1 expression and IL-8 production by lung ECs. Stiffness-dependent exacerbation of inflammatory signaling was confirmed in pulmonary ECs grown on substrates with high and low stiffness. eLXA4 inhibited LPS-increased stiffness in lung cross sections, attenuated stiffness-dependent enhancement of EC inflammatory activation, and restored lung compliance in vivo. This study shows that increased local vascular stiffness exacerbates lung inflammation. Attenuation of local stiffening of lung vasculature represents a novel mechanism of lipoxin antiinflammatory action. PMID:24992633

  10. γ-Oryzanol reduces adhesion molecule expression in vascular endothelial cells via suppression of nuclear factor-κB activation.

    PubMed

    Sakai, Satoshi; Murata, Takahisa; Tsubosaka, Yoshiki; Ushio, Hideki; Hori, Masatoshi; Ozaki, Hiroshi

    2012-04-04

    γ-Oryzanol (γ-ORZ) is a mixture of phytosteryl ferulates purified from rice bran oil. In this study, we examined whether γ-ORZ represents a suppressive effect on the lipopolysaccharide (LPS)-induced adhesion molecule expression on vascular endothelium. Treatment with LPS elevated the mRNA expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin in bovine aortic endothelial cells (BAECs). Pretreatment with γ-ORZ dose-dependently decreased the LPS-mediated expression of these genes. Western blotting also revealed that pretreatment with γ-ORZ dose-dependently inhibited LPS-induced VCAM-1 expression in human umbilical vein endothelial cells. Consistently, pretreatment with γ-ORZ dose-dependently reduced LPS-induced U937 monocyte adhesion to BAECs. In immunofluorescence, LPS caused nuclear factor-κB (NF-κB) nuclear translocation in 40% of BAECs, which indicates NF-κB activation. Pretreatment with γ-ORZ, as well as its components (cycloartenyl ferulate, ferulic acid, or cycloartenol), dose-dependently inhibited LPS-mediated NF-κB activation. Collectively, our results suggested that γ-ORZ reduced LPS-mediated adhesion molecule expression through NF-κB inhibition in vascular endothelium.

  11. Mechanical ventilation interacts with endotoxemia to induce extrapulmonary organ dysfunction

    PubMed Central

    O'Mahony, D Shane; Liles, W Conrad; Altemeier, William A; Dhanireddy, Shireesha; Frevert, Charles W; Liggitt, Denny; Martin, Thomas R; Matute-Bello, Gustavo

    2006-01-01

    Introduction Multiple organ dysfunction syndrome (MODS) is a common complication of sepsis in mechanically ventilated patients with acute respiratory distress syndrome, but the links between mechanical ventilation and MODS are unclear. Our goal was to determine whether a minimally injurious mechanical ventilation strategy synergizes with low-dose endotoxemia to induce the activation of pro-inflammatory pathways in the lungs and in the systemic circulation, resulting in distal organ dysfunction and/or injury. Methods We administered intraperitoneal Escherichia coli lipopolysaccharide (LPS; 1 μg/g) to C57BL/6 mice, and 14 hours later subjected the mice to 6 hours of mechanical ventilation with tidal volumes of 10 ml/kg (LPS + MV). Comparison groups received ventilation but no LPS (MV), LPS but no ventilation (LPS), or neither LPS nor ventilation (phosphate-buffered saline; PBS). Results Myeloperoxidase activity and the concentrations of the chemokines macrophage inflammatory protein-2 (MIP-2) and KC were significantly increased in the lungs of mice in the LPS + MV group, in comparison with mice in the PBS group. Interestingly, permeability changes across the alveolar epithelium and histological changes suggestive of lung injury were minimal in mice in the LPS + MV group. However, despite the minimal lung injury, the combination of mechanical ventilation and LPS resulted in chemical and histological evidence of liver and kidney injury, and this was associated with increases in the plasma concentrations of KC, MIP-2, IL-6, and TNF-α. Conclusion Non-injurious mechanical ventilation strategies interact with endotoxemia in mice to enhance pro-inflammatory mechanisms in the lungs and promote extra-pulmonary end-organ injury, even in the absence of demonstrable acute lung injury. PMID:16995930

  12. The effectiveness of handheld ventilated sanders in reducing inhalable dust concentrations.

    PubMed

    Carlton, Gary N; Patel, Kalpesh B; Johnson, David L; Hall, Thomas A

    2003-01-01

    Ventilated sanders are commonly used during aircraft surface abrasion but there is limited data on their effectiveness in reducing worker exposures. This study compared two handheld ventilated sander brands, DCM and Dynabrade, in a laboratory glovebox. Both sanders collect particulates by drawing air through holes in the sanding pads; the dust subsequently passes into a vacuum collection system. Aluminum panels coated with aircraft epoxy primer and polyurethane paint were abraded and inhalable dust concentrations were measured inside the glovebox with IOM samplers. The results indicate that both sanders effectively control inhalable dust, with the DCM sander reducing mass concentrations by 93 percent, and the Dynabrade by 98 percent, when the ventilation system is used. The Dynabrade unit, however, was more aggressive and produced over four times as much dust per unit time as the DCM unit. In spite of this, the Dynabrade sander adequately collected this additional dust. Varying abrasive grit size did not significantly affect dust generation, although the differences between the grit sizes used (180 and 240 grit) were not great and may have influenced the results.

  13. The bone morphogenic protein inhibitor, noggin, reduces glycemia and vascular inflammation in db/db mice

    PubMed Central

    Koga, Mitsuhisa; Engberding, Niels; Dikalova, Anna E.; Chang, Kyung Hwa; Seidel-Rogol, Bonnie; Long, James S.; Lassègue, Bernard; Jo, Hanjoong

    2013-01-01

    Vascular diseases frequently accompany diabetes mellitus. Based on the current understanding of atherosclerosis as an inflammatory disorder of the vascular wall, it has been speculated that diabetes may accelerate atherosclerosis by inducing a proinflammatory milieu in the vasculature. ANG II and bone morphogenic proteins (BMPs) have been implicated in vascular inflammation. We evaluated the effect of angiotensin receptor blockade by valsartan and BMP inhibition by noggin on markers of vascular inflammation in a mouse model of diabetes. Noggin had no effect on blood pressure but decreased serum glucose levels, whereas valsartan significantly decreased blood pressure, but not serum glucose. Both inhibitors reduced reactive oxygen species production in the aorta. Additionally, noggin and valsartan diminish gene transcription and protein expression of various inflammatory molecules in the vascular wall. These observations indicate that although both inhibitors block superoxide production and have similar effects on inflammatory gene expression, glycemia and blood pressure may represent a secondary target differentially affected by noggin and valsartan. Our data clearly identify the BMP pathway as a potentially potent therapeutic target in diabetic inflammatory vascular disease. PMID:23812391

  14. Chlorhexidine and tooth-brushing as prevention strategies in reducing ventilator-associated pneumonia rates.

    PubMed

    Roberts, Nesta; Moule, Pam

    2011-01-01

    Ventilator-associated pneumonia (VAP) is a common complication of mechanical ventilation after endotracheal intubation. The role of chlorhexidine and tooth-brushing has been considered as a clinical intervention to reduce infection rates, however, evidence to inform this needs appraising. This paper presents a critical review on the effect of chlorhexidine gluconate (CHX) and tooth-brushing in decreasing rates of VAP in mechanically ventilated adult patients cared for in intensive care settings. A literature search was conducted using a number of bibliographic databases (n = 6). A number of parameters were used to exclude irrelevant papers. A total n = 17 papers were located and accessed, which were directly related to the field. Eight studies that met the criteria and addressed the study aims were reviewed. CHX was successful in reducing the rate of VAP and using a combination of CHX and colistine resulted in better oropharyngeal decontamination which reduced and delayed VAP. Chlorhexidine was also effective in reducing dental plaque in patients cared for in intensive care and had the potential to reduce nosocomial infections. Results of studies investigating the use of tooth-brushing in reducing VAP incidence proved inconsistent, although all recommend tooth-brushing as important in maintaining good oral hygiene. The use of chlorhexidine has been proven to be of some value in reducing VAP, although may be more effective when used with a solution which targets gram-negative bacteria. Tooth-brushing is recommended in providing a higher standard of oral care to mechanically ventilated patients and reducing VAP when used with chlorhexidine. However, limitations in study design and inconsistency in results suggest that further research is required into the effects of tooth-brushing. © 2011 The Authors. Nursing in Critical Care © 2011 British Association of Critical Care Nurses.

  15. Low-Dose Dextromethorphan, a NADPH Oxidase Inhibitor, Reduces Blood Pressure and Enhances Vascular Protection in Experimental Hypertension

    PubMed Central

    Wu, Tao-Cheng; Chao, Chih-Yu; Lin, Shing-Jong; Chen, Jaw-Wen

    2012-01-01

    Background Vascular oxidative stress may be increased with age and aggravate endothelial dysfunction and vascular injury in hypertension. This study aimed to investigate the effects of dextromethorphan (DM), a NADPH oxidase inhibitor, either alone or in combination treatment, on blood pressure (BP) and vascular protection in aged spontaneous hypertensive rats (SHRs). Methodology/Principal Findings Eighteen-week-old WKY rats and SHRs were housed for 2 weeks. SHRs were randomly assigned to one of the 12 groups: untreated; DM monotherapy with 1, 5 or 25 mg/kg/day; amlodipine (AM, a calcium channel blocker) monotherapy with 1 or 5 mg/kg/day; and combination therapy of DM 1, 5 or 25 mg/kg/day with AM 1 or 5 mg/kg/day individually for 4 weeks. The in vitro effects of DM were also examined. In SHRs, AM monotherapy dose-dependently reduced arterial systolic BP. DM in various doses significantly and similarly reduced arterial systolic BP. Combination of DM with AM gave additive effects on BP reduction. DM, either alone or in combination with AM, improved aortic endothelial function indicated by ex vivo acetylcholine-induced relaxation. The combination of low-dose DM with AM gave most significant inhibition on aortic wall thickness in SHRs. Plasma total antioxidant status was significantly increased by all the therapies except for the combination of high-dose DM with high-dose AM. Serum nitrite and nitrate level was significantly reduced by AM but not by DM or the combination of DM with AM. Furthermore, in vitro treatment with DM reduced angiotensin II-induced reactive oxygen species and NADPH oxidase activation in human aortic endothelial cells. Conclusions/Significance Treatment of DM reduced BP and enhanced vascular protection probably by inhibiting vascular NADPH oxidase in aged hypertensive animals with or without AM treatment. It provides the potential rationale to a novel combination treatment with low-dose DM and AM in clinical hypertension. PMID:23049937

  16. The effects of exogenous surfactant administration on ventilation-induced inflammation in mouse models of lung injury.

    PubMed

    Puntorieri, Valeria; Hiansen, Josh Qua; McCaig, Lynda A; Yao, Li-Juan; Veldhuizen, Ruud A W; Lewis, James F

    2013-11-20

    Mechanical ventilation (MV) is an essential supportive therapy for acute lung injury (ALI); however it can also contribute to systemic inflammation. Since pulmonary surfactant has anti-inflammatory properties, the aim of the study was to investigate the effect of exogenous surfactant administration on ventilation-induced systemic inflammation. Mice were randomized to receive an intra-tracheal instillation of a natural exogenous surfactant preparation (bLES, 50 mg/kg) or no treatment as a control. MV was then performed using the isolated and perfused mouse lung (IPML) set up. This model allowed for lung perfusion during MV. In experiment 1, mice were exposed to mechanical ventilation only (tidal volume =20 mL/kg, 2 hours). In experiment 2, hydrochloric acid or air was instilled intra-tracheally four hours before applying exogenous surfactant and ventilation (tidal volume =5 mL/kg, 2 hours). For both experiments, exogenous surfactant administration led to increased total and functional surfactant in the treated groups compared to the controls. Exogenous surfactant administration in mice exposed to MV only did not affect peak inspiratory pressure (PIP), lung IL-6 levels and the development of perfusate inflammation compared to non-treated controls. Acid injured mice exposed to conventional MV showed elevated PIP, lung IL-6 and protein levels and greater perfusate inflammation compared to air instilled controls. Instillation of exogenous surfactant did not influence the development of lung injury. Moreover, exogenous surfactant was not effective in reducing the concentration of inflammatory cytokines in the perfusate. The data indicates that exogenous surfactant did not mitigate ventilation-induced systemic inflammation in our models. Future studies will focus on altering surfactant composition to improve its immuno-modulating activity.

  17. Activating transcription factor 4 regulates stearate-induced vascular calcification.

    PubMed

    Masuda, Masashi; Ting, Tabitha C; Levi, Moshe; Saunders, Sommer J; Miyazaki-Anzai, Shinobu; Miyazaki, Makoto

    2012-08-01

    Previously, we reported that stearate, a saturated fatty acid, promotes osteoblastic differentiation and mineralization of vascular smooth muscle cells (VSMC). In this study, we examined the molecular mechanisms by which stearate promotes vascular calcification. ATF4 is a pivotal transcription factor in osteoblastogenesis and endoplasmic reticulum (ER) stress. Increased stearate by either supplementation of exogenous stearic acid or inhibition of stearoyl-CoA desaturase (SCD) by CAY10566 induced ATF4 mRNA, phosphorylated ATF4 protein, and total ATF4 protein. Induction occurred through activation of the PERK-eIF2α pathway, along with increased osteoblastic differentiation and mineralization of VSMCs. Either stearate or the SCD inhibitor but not oleate or other fatty acid treatments also increased ER stress as determined by the expression of p-eIF2α, CHOP, and the spliced form of XBP-1, which were directly correlated with ER stearate levels. ATF4 knockdown by lentiviral ATF4 shRNA blocked osteoblastic differentiation and mineralization induced by stearate and SCD inhibition. Conversely, treatment of VSMCs with an adenovirus containing ATF4 induced vascular calcification. Our results demonstrated that activation of ATF4 mediates vascular calcification induced by stearate.

  18. Activating transcription factor 4 regulates stearate-induced vascular calcification

    PubMed Central

    Masuda, Masashi; Ting, Tabitha C.; Levi, Moshe; Saunders, Sommer J.; Miyazaki-Anzai, Shinobu; Miyazaki, Makoto

    2012-01-01

    Previously, we reported that stearate, a saturated fatty acid, promotes osteoblastic differentiation and mineralization of vascular smooth muscle cells (VSMC). In this study, we examined the molecular mechanisms by which stearate promotes vascular calcification. ATF4 is a pivotal transcription factor in osteoblastogenesis and endoplasmic reticulum (ER) stress. Increased stearate by either supplementation of exogenous stearic acid or inhibition of stearoyl-CoA desaturase (SCD) by CAY10566 induced ATF4 mRNA, phosphorylated ATF4 protein, and total ATF4 protein. Induction occurred through activation of the PERK-eIF2α pathway, along with increased osteoblastic differentiation and mineralization of VSMCs. Either stearate or the SCD inhibitor but not oleate or other fatty acid treatments also increased ER stress as determined by the expression of p-eIF2α, CHOP, and the spliced form of XBP-1, which were directly correlated with ER stearate levels. ATF4 knockdown by lentiviral ATF4 shRNA blocked osteoblastic differentiation and mineralization induced by stearate and SCD inhibition. Conversely, treatment of VSMCs with an adenovirus containing ATF4 induced vascular calcification. Our results demonstrated that activation of ATF4 mediates vascular calcification induced by stearate. PMID:22628618

  19. RNA interference-mediated survivin gene knockdown induces growth arrest and reduced migration of vascular smooth muscle cells.

    PubMed

    Nabzdyk, Christoph S; Lancero, Hope; Nguyen, Khanh P; Salek, Sherveen; Conte, Michael S

    2011-11-01

    Survivin (SVV) is a multifunctional protein that has been implicated in the development of neointimal hyperplasia. Nuclear SVV is essential for mitosis, whereas in mitochondria SVV has a cytoprotective function. Here, we investigated the effects of RNA interference (RNAi)-mediated SVV knockdown on cell cycle kinetics, apoptosis, migration, and gene expression in primary cultured vascular smooth muscle cells (VSMCs) from the human saphenous vein. Primary Human VSMCs were obtained from saphenous veins and cultured under standard conditions. SVV knockdown was achieved by either small interfering RNA or lentiviral transduction of short hairpin RNA, reducing SVV gene expression by quantitative PCR (>75%, P < 0.01) without a loss of cell viability. Subcellular fractionation revealed that RNAi treatment effectively targeted the nuclear SVV pool, whereas the larger mitochondrial pool was much less sensitive to transient knockdown. Both p53 and p27 protein levels were notably increased. SVV RNAi treatment significantly blocked VSMC proliferation in response to serum and PDGF-AB, arresting VSMC growth. Cell cycle analysis revealed an increased G(2)/M fraction consistent with a mitotic defect; 4',6-diamidino-2-phenylindole staining confirmed an increased frequency of polyploid and abnormal nuclei. In a transwell assay, SVV knockdown reduced migration to PDGF-AB, and actin-phalloidin staining revealed disorganized actin filaments and polygonal cell shape. However, apoptosis (DNA content and annexin V flow cytometry) was not directly induced by SVV RNAi, and sensitivity to apoptotic agonists (e.g., staurosporine and cytokines) was unchanged. In conclusion, RNAi-mediated SVV knockdown in VSMCs leads to profound cell cycle arrest at G(2)/M and impaired chemotaxis without cytotoxicity. The regulation of mitosis and apoptosis in VSMC involves differentially regulated subcellular pools of SVV. Thus, treatment of VSMC with RNAi targeting SVV might limit the response to vascular

  20. RNA interference-mediated survivin gene knockdown induces growth arrest and reduced migration of vascular smooth muscle cells

    PubMed Central

    Nabzdyk, Christoph S.; Lancero, Hope; Nguyen, Khanh P.; Salek, Sherveen

    2011-01-01

    Survivin (SVV) is a multifunctional protein that has been implicated in the development of neointimal hyperplasia. Nuclear SVV is essential for mitosis, whereas in mitochondria SVV has a cytoprotective function. Here, we investigated the effects of RNA interference (RNAi)-mediated SVV knockdown on cell cycle kinetics, apoptosis, migration, and gene expression in primary cultured vascular smooth muscle cells (VSMCs) from the human saphenous vein. Primary Human VSMCs were obtained from saphenous veins and cultured under standard conditions. SVV knockdown was achieved by either small interfering RNA or lentiviral transduction of short hairpin RNA, reducing SVV gene expression by quantitative PCR (>75%, P < 0.01) without a loss of cell viability. Subcellular fractionation revealed that RNAi treatment effectively targeted the nuclear SVV pool, whereas the larger mitochondrial pool was much less sensitive to transient knockdown. Both p53 and p27 protein levels were notably increased. SVV RNAi treatment significantly blocked VSMC proliferation in response to serum and PDGF-AB, arresting VSMC growth. Cell cycle analysis revealed an increased G2/M fraction consistent with a mitotic defect; 4′,6-diamidino-2-phenylindole staining confirmed an increased frequency of polyploid and abnormal nuclei. In a transwell assay, SVV knockdown reduced migration to PDGF-AB, and actin-phalloidin staining revealed disorganized actin filaments and polygonal cell shape. However, apoptosis (DNA content and annexin V flow cytometry) was not directly induced by SVV RNAi, and sensitivity to apoptotic agonists (e.g., staurosporine and cytokines) was unchanged. In conclusion, RNAi-mediated SVV knockdown in VSMCs leads to profound cell cycle arrest at G2/M and impaired chemotaxis without cytotoxicity. The regulation of mitosis and apoptosis in VSMC involves differentially regulated subcellular pools of SVV. Thus, treatment of VSMC with RNAi targeting SVV might limit the response to vascular injury

  1. Sulforaphane reduces vascular inflammation in mice and prevents TNF-α-induced monocyte adhesion to primary endothelial cells through interfering with the NF-κB pathway.

    PubMed

    Nallasamy, Palanisamy; Si, Hongwei; Babu, Pon Velayutham Anandh; Pan, Dengke; Fu, Yu; Brooke, Elizabeth A S; Shah, Halley; Zhen, Wei; Zhu, Hong; Liu, Dongmin; Li, Yunbo; Jia, Zhenquan

    2014-08-01

    Sulforaphane, a naturally occurring isothiocyanate present in cruciferous vegetables, has received wide attention for its potential to improve vascular function in vitro. However, its effect in vivo and the molecular mechanism of sulforaphane at physiological concentrations remain unclear. Here, we report that a sulforaphane concentration as low as 0.5 μM significantly inhibited tumor necrosis factor-α (TNF-α)-induced adhesion of monocytes to human umbilical vein endothelial cells, a key event in the pathogenesis of atherosclerosis both in static and under flow conditions. Such physiological concentrations of sulforaphane also significantly suppressed TNF-α-induced production of monocyte chemotactic protein-1 and adhesion molecules including soluble vascular adhesion molecule-1 and soluble E-selectin, key mediators in the regulation of enhanced endothelial cell-monocyte interaction. Furthermore, sulforaphane inhibited TNF-α-induced nuclear factor (NF)-κB transcriptional activity, Inhibitor of NF-κB alpha (IκBα) degradation and subsequent NF-κB p65 nuclear translocation in endothelial cells, suggesting that sulforaphane can inhibit inflammation by suppressing NF-κB signaling. In an animal study, sulforaphane (300 ppm) in a mouse diet significantly abolished TNF-α-increased ex vivo monocyte adhesion and circulating adhesion molecules and chemokines in C57BL/6 mice. Histology showed that sulforaphane treatment significantly prevented the eruption of endothelial lining in the intima layer of the aorta and preserved elastin fibers' delicate organization, as shown by Verhoeff-van Gieson staining. Immunohistochemistry studies showed that sulforaphane treatment also reduced vascular adhesion molecule-1 and monocyte-derived F4/80-positive macrophages in the aorta of TNF-α-treated mice. In conclusion, sulforaphane at physiological concentrations protects against TNF-α-induced vascular endothelial inflammation, in both in vitro and in vivo models. This anti

  2. Additive effect of red blood cell rigidity and adherence to endothelial cells in inducing vascular resistance.

    PubMed

    Kaul, D K; Koshkaryev, A; Artmann, G; Barshtein, G; Yedgar, S

    2008-10-01

    To explore the contribution of red blood cell (RBC) deformability and interaction with endothelial cells (ECs) to circulatory disorders, these RBC properties were modified by treatment with hydrogen peroxide (H(2)O(2)), and their effects on vascular resistance were monitored following their infusion into rat mesocecum vasculature. Treatment with 0.5 mM H(2)O(2) increased RBC/EC adherence without significant alteration of RBC deformability. At 5.0 mM H(2)O(2), RBC deformability was considerably reduced, inducing a threefold increase in the number of undeformable cells, whereas RBC/EC adherence was not further affected by the increased H(2)O(2) concentration. This enabled the selective manipulation of RBC adherence and deformability and the testing of their differential effect on vascular resistance. Perfusion of RBCs with enhanced adherence and unchanged deformability (treatment with 0.5 mM H(2)O(2)) increased vascular resistance by about 35% compared with untreated control RBCs. Perfusion of 5.0 mM H(2)O(2)-treated RBCs, with reduced deformability (without additional increase of adherence), further increased vascular resistance by about 60% compared with untreated control RBCs. These results demonstrate the specific effects of elevated adherence and reduced deformability of oxidized RBCs on vascular resistance. These effects can be additive, depending on the oxidation conditions. The oxidation-induced changes applied in this study are moderate compared with those observed in RBCs in pathological states. Yet, they caused a considerable increase in vascular resistance, thus demonstrating the potency of RBC/EC adherence and RBC deformability in determining resistance to blood flow in vivo.

  3. A magnesium based phosphate binder reduces vascular calcification without affecting bone in chronic renal failure rats.

    PubMed

    Neven, Ellen; De Schutter, Tineke M; Dams, Geert; Gundlach, Kristina; Steppan, Sonja; Büchel, Janine; Passlick-Deetjen, Jutta; D'Haese, Patrick C; Behets, Geert J

    2014-01-01

    The alternative phosphate binder calcium acetate/magnesium carbonate (CaMg) effectively reduces hyperphosphatemia, the most important inducer of vascular calcification, in chronic renal failure (CRF). In this study, the effect of low dose CaMg on vascular calcification and possible effects of CaMg on bone turnover, a persistent clinical controversy, were evaluated in chronic renal failure rats. Adenine-induced CRF rats were treated daily with 185 mg/kg CaMg or vehicle for 5 weeks. The aortic calcium content and area% calcification were measured to evaluate the effect of CaMg. To study the effect of CaMg on bone remodeling, rats underwent 5/6th nephrectomy combined with either a normal phosphorus diet or a high phosphorus diet to differentiate between possible bone effects resulting from either CaMg-induced phosphate deficiency or a direct effect of Mg. Vehicle or CaMg was administered at doses of 185 and 375 mg/kg/day for 8 weeks. Bone histomorphometry was performed. Aortic calcium content was significantly reduced by 185 mg/kg/day CaMg. CaMg ameliorated features of hyperparathyroid bone disease. In CRF rats on a normal phosphorus diet, the highest CaMg dose caused an increase in osteoid area due to phosphate depletion. The high phosphorus diet combined with the highest CaMg dose prevented the phosphate depletion and thus the rise in osteoid area. CaMg had no effect on osteoblast/osteoclast or dynamic bone parameters, and did not alter bone Mg levels. CaMg at doses that reduce vascular calcification did not show any harmful effect on bone turnover.

  4. Application of a Novel Murine Ear Vein Model to Evaluate the Effects of a Vascular Radioprotectant on Radiation-Induced Vascular Permeability and Leukocyte Adhesion.

    PubMed

    Ashcraft, Kathleen A; Choudhury, Kingshuk Roy; Birer, Sam R; Hendargo, Hansford C; Patel, Pranalee; Eichenbaum, Gary; Dewhirst, Mark W

    2018-04-19

    Vascular injury after radiation exposure contributes to multiple types of tissue injury through a cascade of events. Some of the earliest consequences of radiation damage include increased vascular permeability and promotion of inflammation, which is partially manifested by increased leukocyte-endothelial (L/E) interactions. We describe herein a novel intravital imaging method to evaluate L/E interactions, as a function of shear stress, and vascular permeability at multiple time points after local irradiation to the ear. This model permitted analysis of quiescent vasculature that was not perturbed by any surgical manipulation prior to imaging. To evaluate the effects of radiation on vascular integrity, fluorescent dextran was injected intravenously and its extravasation in the extravascular space surrounding the ear vasculature was measured at days 3 and 7 after 6 Gy irradiation. The vascular permeability rate increased approximately twofold at both days 3 and 7 postirradiation ( P < 0.05). Leukocyte rolling, which is indicative of L/E interactions, was significantly increased in mice at 24 h postirradiation compared to that of nonirradiated mice. To assess our model, as a means for assessing vascular radioprotectants, we treated additional cohorts of mice with a thrombopoietin mimetic, TPOm (RWJ-800088). In addition to stimulating platelet formation, thrombopoietin can protect vasculature after several forms of injury. Thus, we hypothesized that TPOm would reduce vascular permeability and L/E adhesion after localized irradiation to the ear vasculature of mice. If TPOm reduced these consequences of radiation, it would validate the utility of our intravital imaging method. TPOm reduced radiation-induced vascular leakage to control levels at day 7. Furthermore, L/E cell interactions were also reduced in irradiated mice treated with TPOm, compared with mice receiving irradiation alone, particularly at high shear stress ( P = 0.03, Kruskal-Wallis). We conclude that the

  5. Tributyltin chloride increases phenylephrine-induced contraction and vascular stiffness in mesenteric resistance arteries from female rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ribeiro Júnior, Rogério Faustino, E-mail: rogeriofaustinoribeiro@hotmail.com; Marques, Vinicius Bermond; Nunes, Dieli Oliveira

    Tributyltin chloride (TBT) is an organotin compound that reduces estrogen levels in female rats. We aimed to investigate the effects of TBT exposure on vascular tonus and vascular remodelling in the resistance arteries of female rats. Rats were treated daily with TBT (500 ng/kg) for 15 days. TBT did not change arterial blood pressure but did modify some morpho-physiological parameters of third-order mesenteric resistance arteries in the following ways: (1) decreased lumen and external diameters; (2) increased wall/lm ratio and wall thickness; (3) decreased distensibility and increased stiffness; (4) increased collagen deposition; and (5) increased pulse wave velocity. TBT exposuremore » increased the phenylephrine-induced contractile response in mesenteric resistance arteries. However, vasodilatation responses induced by acetylcholine and sodium nitroprusside were not modified by TBT. It is suggested that TBT exposure reduces vascular nitric oxide (NO) production, because:(1) L-NAME incubation did not cause a leftward shift in the concentration–response curve for phenylephrine; (2) both eNOS protein expression; (3) in situ NO production were reduced. Incubation with L-NAME; and (4) SOD shifted the phenylephrine response curve to the left in TBT rats. Tiron, catalase, ML-171 and VAS2870 decreased vascular reactivity to phenylephrine only in TBT rats. Moreover, increased superoxide anion production was observed in the mesenteric resistance arteries of TBT rats accompanied by an increase in gp91phox, catalase, AT{sub 1} receptor and total ERK1/2 protein expression. In conclusion, these findings show that TBT induced alterations are most likely due to a reduction of NO production combined with increased O{sub 2}{sup −} production derived from NADPH oxidase and ERK1/2 activation. These findings offer further evidence that TBT is an environmental risk factor for cardiovascular disease. - Highlights: • Tributyltin chloride reduces estrogen levels in female rats.

  6. Baicalein attenuates vinorelbine-induced vascular endothelial cell injury and chemotherapeutic phlebitis in rabbits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Gang-Feng

    Chemotherapy is one of the major strategies for cancer treatment. Several antineoplastic drugs including vinorelbine (VRB) are commonly intravenously infused and liable to cause serious phlebitis. The therapeutic drugs for preventing this complication are limited. In this study, the mechanism of baicalein (BCN) was investigated on VRB-induced phlebitis in vivo and vascular endothelial cell injury in vitro. Treatment with BCN obviously attenuated vascular endothelial cell loss, edema, inflammatory cell infiltration and blood clots, and reduced the serum levels of TNF-α, IL-1β, IL-6 and ICAM-1 in the rabbit model of phlebitis induced by intravenous injection of VRB compared with vehicle. Furthermore » tests in vitro demonstrated that BCN lessened VRB-induced endothelial cell apoptosis, decreased intracellular ROS levels, suppressed phosphorylation of p38 and eventually inhibited activation of NF-κB signaling pathway. And these effects could be reversed by p38 agonist P79350. These results suggested that BCN exerted the protective effects against VRB-induced endothelial disruption in the rabbit model of phlebitis via inhibition of intracellular ROS generation and inactivation of p38/NF-κB pathway, leading to the decreased production of pro-inflammatory cytokines. Thus, BCN could be used as a potential agent for the treatment of phlebitis. - Highlights: • Baicalein attenuated vinorelbine-induced vascular endothelial cell apoptosis. • Baicalein inhibited vinorelbine-induced oxidative stress in HUVECs. • Baicalein inhibited activation of p38/NF-κB signaling. • Baicalein attenuated vinorelbine-induced phlebitis and inflammation in rabbits.« less

  7. Angiotensin type 1 receptor mediates chronic ethanol consumption-induced hypertension and vascular oxidative stress.

    PubMed

    Passaglia, Patrícia; Ceron, Carla S; Mecawi, André S; Antunes-Rodrigues, José; Coelho, Eduardo B; Tirapelli, Carlos R

    2015-11-01

    We hypothesized that chronic ethanol intake enhances vascular oxidative stress and induces hypertension through renin-angiotensin system (RAS) activation. Male Wistar rats were treated with ethanol (20% v/v). The increase in blood pressure induced by ethanol was prevented by losartan (10mg/kg/day; p.o. gavage), a selective AT1 receptor antagonist. Chronic ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels and serum aldosterone levels. No differences on plasma osmolality and sodium or potassium levels were detected after treatment with ethanol. Ethanol consumption did not alter ACE activity, as well as the levels of ANG I and ANG II in the rat aorta or mesenteric arterial bed (MAB). Ethanol induced systemic and vascular oxidative stress (aorta and MAB) and these effects were prevented by losartan. The decrease on plasma and vascular nitrate/nitrite (NOx) levels induced by ethanol was prevented by losartan. Ethanol intake did not alter protein expression of ACE, AT1 or AT2 receptors in both aorta and MAB. Aortas from ethanol-treated rats displayed decreased ERK1/2 phosphorylation and increased protein expression of SAPK/JNK. These responses were prevented by losartan. MAB from ethanol-treated rats displayed reduced phosphorylation of p38MAPK and ERK1/2 and losartan did not prevent these responses. Our study provides novel evidence that chronic ethanol intake increases blood pressure, induces vascular oxidative stress and decreases nitric oxide (NO) bioavailability through AT1-dependent mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Effects of intratracheal mesenchymal stromal cell therapy during recovery and resolution after ventilator-induced lung injury.

    PubMed

    Curley, Gerard F; Ansari, Bilal; Hayes, Mairead; Devaney, James; Masterson, Claire; Ryan, Aideen; Barry, Frank; O'Brien, Timothy; Toole, Daniel O'; Laffey, John G

    2013-04-01

    Mesenchymal stromal cells (MSCs) have been demonstrated to attenuate acute lung injury when delivered by intravenous or intratracheal routes. The authors aimed to determine the efficacy of and mechanism of action of intratracheal MSC therapy and to compare their efficacy in enhancing lung repair after ventilation-induced lung injury with intravenous MSC therapy. : After induction of anesthesia, rats were orotracheally intubated and subjected to ventilation-induced lung injury (respiratory rate 18(-1) min, P insp 35 cm H2O,) to produce severe lung injury. After recovery, animals were randomized to receive: (1) no therapy, n = 4; (2) intratracheal vehicle (phosphate-buffered saline, 300 µl, n = 8); (3) intratracheal fibroblasts (4 × 10 cells, n = 8); (4) intratracheal MSCs (4 × 10(6) cells, n = 8); (5) intratracheal conditioned medium (300 µl, n = 8); or (6) intravenous MSCs (4 × 10(6) cells, n = 4). The extent of recovery after acute lung injury and the inflammatory response was assessed after 48 h. Intratracheal MSC therapy enhanced repair after ventilation-induced lung injury, improving arterial oxygenation (mean ± SD, 146 ± 3.9 vs. 110.8 ± 21.5 mmHg), restoring lung compliance (1.04 ± 0.11 vs. 0.83 ± 0.06 ml · cm H2O(-1)), reducing total lung water, and decreasing lung inflammation and histologic injury compared with control. Intratracheal MSC therapy attenuated alveolar tumor necrosis factor-α (130 ± 43 vs. 488 ± 211 pg · ml(-1)) and interleukin-6 concentrations (138 ± 18 vs. 260 ± 82 pg · ml(-1)). The efficacy of intratracheal MSCs was comparable with intravenous MSC therapy. Intratracheal MSCs seemed to act via a paracine mechanism, with conditioned MSC medium also enhancing lung repair after injury. Intratracheal MSC therapy enhanced recovery after ventilation-induced lung injury via a paracrine mechanism, and was as effective as intravenous MSC therapy.

  9. Imatinib attenuates inflammation and vascular leak in a clinically relevant two-hit model of acute lung injury.

    PubMed

    Rizzo, Alicia N; Sammani, Saad; Esquinca, Adilene E; Jacobson, Jeffrey R; Garcia, Joe G N; Letsiou, Eleftheria; Dudek, Steven M

    2015-12-01

    Acute lung injury/acute respiratory distress syndrome (ALI/ARDS), an illness characterized by life-threatening vascular leak, is a significant cause of morbidity and mortality in critically ill patients. Recent preclinical studies and clinical observations have suggested a potential role for the chemotherapeutic agent imatinib in restoring vascular integrity. Our prior work demonstrates differential effects of imatinib in mouse models of ALI, namely attenuation of LPS-induced lung injury but exacerbation of ventilator-induced lung injury (VILI). Because of the critical role of mechanical ventilation in the care of patients with ARDS, in the present study we pursued an assessment of the effectiveness of imatinib in a "two-hit" model of ALI caused by combined LPS and VILI. Imatinib significantly decreased bronchoalveolar lavage protein, total cells, neutrophils, and TNF-α levels in mice exposed to LPS plus VILI, indicating that it attenuates ALI in this clinically relevant model. In subsequent experiments focusing on its protective role in LPS-induced lung injury, imatinib attenuated ALI when given 4 h after LPS, suggesting potential therapeutic effectiveness when given after the onset of injury. Mechanistic studies in mouse lung tissue and human lung endothelial cells revealed that imatinib inhibits LPS-induced NF-κB expression and activation. Overall, these results further characterize the therapeutic potential of imatinib against inflammatory vascular leak. Copyright © 2015 the American Physiological Society.

  10. Ventilation-induced release of phosphatidylcholine from neonatal-rat lungs in vitro.

    PubMed Central

    Nijjar, M S

    1984-01-01

    Factors regulating the release of phosphatidylcholine (PC) from neonatal-rat lungs were investigated. The results show that the release of prelabelled PC from the newborn-rat lung was augmented by air ventilation at the onset of breathing. This response was mimicked in lungs of pups delivered 1 day before term and allowed to breathe for different time intervals. Anoxia further augmented the ventilation-enhanced PC release from the newborn-rat lungs. The ventilation-induced release of PC was not abolished by the prior treatment of pups in utero or mothers in vivo with phenoxybenzamine, propranolol or atropine, suggesting the lack of receptor stimulation in the ventilation-enhanced PC release at birth. The results also show that ventilation stimulated [methyl-14C]choline incorporation into lung PC, presumably to replenish the depleted surfactant stores. The ratio of adenylate cyclase/cyclic AMP phosphodiesterase activities, which reflects cyclic AMP levels in the developing rat lungs, did not change during the 120 min of air ventilation when the release of PC was much enhanced, implying that cyclic AMP may not be involved. This confirms our conclusion that stimulation of beta-adrenergic receptor was not involved in the air-ventilation-enhanced release of PC. Since the cell number or size did not change during 120 min of ventilation when the alveolar-cell surface was maximally distended, it is suggested that distension of alveolar wall by air ventilation at the onset of breathing may bring the lamellar bodies containing surfactant close to the luminal surface of alveolar type II cells, thereby enhancing their fusion and extrusion by exocytosis. PMID:6477485

  11. Reduced contribution of endothelin to the regulation of systemic and pulmonary vascular tone in severe familial hypercholesterolaemia

    PubMed Central

    Bender, Shawn B; de Beer, Vincent J; Tharp, Darla L; van Deel, Elza D; Bowles, Douglas K; Duncker, Dirk J; Laughlin, M Harold; Merkus, Daphne

    2014-01-01

    Vascular dysfunction has been associated with familial hypercholesterolaemia (FH), a severe form of hyperlipidaemia. We recently demonstrated that swine with FH exhibit reduced exercise-induced systemic, but not pulmonary, vasodilatation involving reduced nitric oxide (NO) bioavailability. Since NO normally limits endothelin (ET) action, we examined the hypothesis that reduced systemic vasodilatation during exercise in FH swine results from increased ET-mediated vasoconstriction. Systemic and pulmonary vascular responses to exercise were examined in chronically instrumented normal and FH swine in the absence and presence of the ETA/B receptor antagonist tezosentan. Intrinsic reactivity to ET was further assessed in skeletal muscle arterioles. FH swine exhibited ∼9-fold elevation in total plasma cholesterol versus normal swine. Similar to our recent findings, systemic, not pulmonary, vasodilatation during exercise was reduced in FH swine. Blockade of ET receptors caused marked systemic vasodilatation at rest and during exercise in normal swine that was significantly reduced in FH swine. The reduced role of ET in FH swine in vivo was not the result of decreased arteriolar ET responsiveness, as responsiveness was increased in isolated arterioles. Smooth muscle ET receptor protein content was unaltered by FH. However, circulating plasma ET levels were reduced in FH swine. ET receptor antagonism caused pulmonary vasodilatation at rest and during exercise in normal, but not FH, swine. Therefore, contrary to our hypothesis, FH swine exhibit a generalised reduction in the role of ET in regulating vascular tone in vivo probably resulting from reduced ET production. This may represent a unique vascular consequence of severe familial hypercholesterolaemia. PMID:24421352

  12. [Lung protective ventilation - pathophysiology and diagnostics].

    PubMed

    Uhlig, Stefan; Frerichs, Inéz

    2008-06-01

    Mechanical ventilation may lead to lung injury depending on the ventilatory settings (e.g. pressure amplitudes, endexpiratory pressures, frequency) and the length of mechanical ventilation. Particularly in the inhomogeneously injured lungs of ARDS patients, alveolar overextension results in volutrauma, cyclic opening and closure of alveolar units in atelectrauma. Particularly important appears to be the fact that these processes may also cause biotrauma, i.e. the ventilator-induced hyperactivation of inflammatory responses in the lung. These side effects are reduced, but not eliminated with the currently recommended ventilation strategy with a tidal volume of 6 ml/kg idealized body weight. It is our hope that in the future optimization of ventilator settings will be facilated by bedside monitoring of novel indices of respiratory mechanics such as the stress index or the Slice technique, and by innovative real-time imaging technologies such as electrical impedance tomography.

  13. Linking lung function to structural damage of alveolar epithelium in ventilator-induced lung injury.

    PubMed

    Hamlington, Katharine L; Smith, Bradford J; Dunn, Celia M; Charlebois, Chantel M; Roy, Gregory S; Bates, Jason H T

    2018-05-06

    Understanding how the mechanisms of ventilator-induced lung injury (VILI), namely atelectrauma and volutrauma, contribute to the failure of the blood-gas barrier and subsequent intrusion of edematous fluid into the airspace is essential for the design of mechanical ventilation strategies that minimize VILI. We ventilated mice with different combinations of tidal volume and positive end-expiratory pressure (PEEP) and linked degradation in lung function measurements to injury of the alveolar epithelium observed via scanning electron microscopy. Ventilating with both high inspiratory plateau pressure and zero PEEP was necessary to cause derangements in lung function as well as visually apparent physical damage to the alveolar epithelium of initially healthy mice. In particular, the epithelial injury was tightly associated with indicators of alveolar collapse. These results support the hypothesis that mechanical damage to the epithelium during VILI is at least partially attributed to atelectrauma-induced damage of alveolar type I epithelial cells. Copyright © 2018. Published by Elsevier B.V.

  14. Effectiveness of a personalized ventilation system in reducing personal exposure against directly released simulated cough droplets.

    PubMed

    Pantelic, J; Tham, K W; Licina, D

    2015-12-01

    The inhalation intake fraction was used as an indicator to compare effects of desktop personalized ventilation and mixing ventilation on personal exposure to directly released simulated cough droplets. A cough machine was used to simulate cough release from the front, back, and side of a thermal manikin at distances between 1 and 4 m. Cough droplet concentration was measured with an aerosol spectrometer in the breathing zone of a thermal manikin. Particle image velocimetry was used to characterize the velocity field in the breathing zone. Desktop personalized ventilation substantially reduced the inhalation intake fraction compared to mixing ventilation for all investigated distances and orientations of the cough release. The results point out that the orientation between the cough source and the breathing zone of the exposed occupant is an important factor that substantially influences exposure. Exposure to cough droplets was reduced with increasing distance between cough source and exposed occupant. The results from this study show that an advanced air distribution system such as personalized ventilation reduces exposure to cough-released droplets better than commonly applied overhead mixing ventilation. This work can inform HVAC engineers about different aspects of air distribution systems’ performance and can serve as an aid in making critical design decisions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Long Noncoding RNA-GAS5: A Novel Regulator of Hypertension-Induced Vascular Remodeling.

    PubMed

    Wang, Yang-Ning-Zhi; Shan, Kun; Yao, Mu-Di; Yao, Jin; Wang, Jia-Jian; Li, Xiang; Liu, Ban; Zhang, Yang-Yang; Ji, Yong; Jiang, Qin; Yan, Biao

    2016-09-01

    Vascular remodeling is an important pathological feature of hypertension, leading to increased vascular resistance and reduced compliance. Endothelial cell (EC) and vascular smooth muscle cell (VSMC) dysfunction is involved in vascular remodeling. Long noncoding RNAs are potential regulators of EC and VSMC function. Herein, we determined whether long noncoding RNA-growth arrest-specific 5 (GAS5) is involved in hypertension-related vascular remodeling. We revealed that GAS5 knockdown aggravated hypertension-induced microvascular dysfunction as shown by increased retinal neovascularization and capillary leakage. GAS5 regulated the remodeling of arteries, including caudal arteries, carotid arteries, renal arteries, and thoracic arteries. GAS5 was mainly expressed in ECs and VSMCs, and its expression was significantly downregulated in hypertension. GAS5 knockdown affected endothelial activation, endothelial proliferation, VSMC phenotypic conversion, and EC-VSMC communication in vivo and in vitro. Mechanistically, GAS5 regulated EC and VSMC function through β-catenin signaling. This study identified GAS5 as a critical regulator in hypertension and demonstrated the potential of gene therapy and drug development for treating hypertension. © 2016 American Heart Association, Inc.

  16. The use of a modified technique to reduce radioactive air contamination in aerosol lung ventilation imaging.

    PubMed

    Avison, M; Hart, G

    2001-06-01

    The aim of this study was to reduce airborne contamination resulting from the use of aerosols in lung ventilation scintigraphy. Lung ventilation imaging is frequently performed with 99mTc-diethylenetriaminepentaacetate aerosol (DTPA), derived from a commercial nebuliser. Airborne contamination is a significant problem with this procedure; it results in exposure of staff to radiation and can reduce gamma camera performance when the ventilation is performed in the camera room. We examined the level of airborne contamination resulting from the standard technique with one of the most popular nebuliser kits and tested a modification which significantly reduced airborne contamination. Air contamination was measured while ventilating 122 patients. The modified technique reduced air contamination by a mean value of 64% (p = 0.028) compared with the standard control technique. Additionally, differences in contamination were examined when a mask or mouthpiece was used as well as differences between operators. A simplified method of monitoring air contamination is presented using a commonly available surface contamination monitor. The index so derived was proportional to air contamination (r = 0.88). The problems and regulations associated with airborne contamination are discussed.

  17. Saturated phosphatidic acids mediate saturated fatty acid-induced vascular calcification and lipotoxicity.

    PubMed

    Masuda, Masashi; Miyazaki-Anzai, Shinobu; Keenan, Audrey L; Okamura, Kayo; Kendrick, Jessica; Chonchol, Michel; Offermanns, Stefan; Ntambi, James M; Kuro-O, Makoto; Miyazaki, Makoto

    2015-10-26

    Recent evidence indicates that saturated fatty acid-induced (SFA-induced) lipotoxicity contributes to the pathogenesis of cardiovascular and metabolic diseases; however, the molecular mechanisms that underlie SFA-induced lipotoxicity remain unclear. Here, we have shown that repression of stearoyl-CoA desaturase (SCD) enzymes, which regulate the intracellular balance of SFAs and unsaturated FAs, and the subsequent accumulation of SFAs in vascular smooth muscle cells (VSMCs), are characteristic events in the development of vascular calcification. We evaluated whether SMC-specific inhibition of SCD and the resulting SFA accumulation plays a causative role in the pathogenesis of vascular calcification and generated mice with SMC-specific deletion of both Scd1 and Scd2. Mice lacking both SCD1 and SCD2 in SMCs displayed severe vascular calcification with increased ER stress. Moreover, we employed shRNA library screening and radiolabeling approaches, as well as in vitro and in vivo lipidomic analysis, and determined that fully saturated phosphatidic acids such as 1,2-distearoyl-PA (18:0/18:0-PA) mediate SFA-induced lipotoxicity and vascular calcification. Together, these results identify a key lipogenic pathway in SMCs that mediates vascular calcification.

  18. Statins suppress apolipoprotein CIII-induced vascular endothelial cell activation and monocyte adhesion.

    PubMed

    Zheng, Chunyu; Azcutia, Veronica; Aikawa, Elena; Figueiredo, Jose-Luiz; Croce, Kevin; Sonoki, Hiroyuki; Sacks, Frank M; Luscinskas, Francis W; Aikawa, Masanori

    2013-02-01

    Activation of vascular endothelial cells (ECs) contributes importantly to inflammation and atherogenesis. We previously reported that apolipoprotein CIII (apoCIII), found abundantly on circulating triglyceride-rich lipoproteins, enhances adhesion of human monocytes to ECs in vitro. Statins may exert lipid-independent anti-inflammatory effects. The present study examined whether statins suppress apoCIII-induced EC activation in vitro and in vivo. Physiologically relevant concentrations of purified human apoCIII enhanced attachment of the monocyte-like cell line THP-1 to human saphenous vein ECs (HSVECs) or human coronary artery ECs (HCAECs) under both static and laminar shear stress conditions. This process mainly depends on vascular cell adhesion molecule-1 (VCAM-1), as a blocking VCAM-1 antibody abolished apoCIII-induced monocyte adhesion. ApoCIII significantly increased VCAM-1 expression in HSVECs and HCAECs. Pre-treatment with statins suppressed apoCIII-induced VCAM-1 expression and monocyte adhesion, with two lipophilic statins (pitavastatin and atorvastatin) exhibiting inhibitory effects at lower concentration than those of hydrophilic pravastatin. Nuclear factor κB (NF-κB) mediated apoCIII-induced VCAM-1 expression, as demonstrated via loss-of-function experiments, and pitavastatin treatment suppressed NF-κB activation. Furthermore, in the aorta of hypercholesterolaemic Ldlr(-/-) mice, pitavastatin administration in vivo suppressed VCAM-1 mRNA and protein, induced by apoCIII bolus injection. Similarly, in a subcutaneous dorsal air pouch mouse model of leucocyte recruitment, apoCIII injection induced F4/80+ monocyte and macrophage accumulation, whereas pitavastatin administration reduced this effect. These findings further establish the direct role of apoCIII in atherogenesis and suggest that anti-inflammatory effects of statins could improve vascular disease in the population with elevated plasma apoCIII.

  19. Ebselen by modulating oxidative stress improves hypoxia-induced macroglial Müller cell and vascular injury in the retina.

    PubMed

    Tan, Sih Min; Deliyanti, Devy; Figgett, William A; Talia, Dean M; de Haan, Judy B; Wilkinson-Berka, Jennifer L

    2015-07-01

    Oxidative stress is an important contributor to glial and vascular cell damage in ischemic retinopathies. We hypothesized that ebselen via its ability to reduce reactive oxygen species (ROS) and augment nuclear factor-like 2 (Nrf2) anti-oxidants would attenuate hypoxia-induced damage to macroglial Müller cells and also lessen retinal vasculopathy. Primary cultures of rat Müller cells were exposed to normoxia (21% O2), hypoxia (0.5% O2) and ebselen (2.5 μM) for up to 72 h. Oxygen-induced retinopathy (OIR) was induced in C57BL/6J mice while control mice were housed in room air. Mice received vehicle (saline, 5% dimethyl sulfoxide) or ebselen (10 mg/kg) each day between postnatal days 6-18. In cultured Müller cells, flow cytometry for dihydroethidium revealed that ebselen reduced the hypoxia-induced increase in ROS levels, whilst increasing the expression of Nrf2-regulated anti-oxidant genes, heme oxygenase 1, glutathione peroxidase-1, NAD(P)H dehydrogenase quinone oxidoreductase 1 and glutamate-cysteine ligase. Moreover, in Müller cells, ebselen reduced the hypoxia-induced increase in protein levels of pro-angiogenic and pro-inflammatory factors including vascular endothelial growth factor, interleukin-6, monocyte chemoattractant-protein 1 and intercellular adhesion molecule-1, and the mRNA levels of glial fibrillary acidic protein (GFAP), a marker of Müller cell injury. Ebselen improved OIR by attenuating capillary vaso-obliteration and neovascularization and a concomitant reduction in Müller cell gliosis and GFAP. We conclude that ebselen protects against hypoxia-induced injury of retinal Müller cells and the microvasculature, which is linked to its ability to reduce oxidative stress, vascular damaging factors and inflammation. Agents such as ebselen may be potential treatments for retinopathies that feature oxidative stress-mediated damage to glia and the microvasculature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Early application of airway pressure release ventilation may reduce the duration of mechanical ventilation in acute respiratory distress syndrome.

    PubMed

    Zhou, Yongfang; Jin, Xiaodong; Lv, Yinxia; Wang, Peng; Yang, Yunqing; Liang, Guopeng; Wang, Bo; Kang, Yan

    2017-11-01

    Experimental animal models of acute respiratory distress syndrome (ARDS) have shown that the updated airway pressure release ventilation (APRV) methodologies may significantly improve oxygenation, maximize lung recruitment, and attenuate lung injury, without circulatory depression. This led us to hypothesize that early application of APRV in patients with ARDS would allow pulmonary function to recover faster and would reduce the duration of mechanical ventilation as compared with low tidal volume lung protective ventilation (LTV). A total of 138 patients with ARDS who received mechanical ventilation for <48 h between May 2015 to October 2016 while in the critical care medicine unit (ICU) of the West China Hospital of Sichuan University were enrolled in the study. Patients were randomly assigned to receive APRV (n = 71) or LTV (n = 67). The settings for APRV were: high airway pressure (P high ) set at the last plateau airway pressure (P plat ), not to exceed 30 cmH 2 O) and low airway pressure ( P low ) set at 5 cmH 2 O; the release phase (T low ) setting adjusted to terminate the peak expiratory flow rate to ≥ 50%; release frequency of 10-14 cycles/min. The settings for LTV were: target tidal volume of 6 mL/kg of predicted body weight; P plat not exceeding 30 cmH 2 O; positive end-expiratory pressure (PEEP) guided by the PEEP-FiO 2 table according to the ARDSnet protocol. The primary outcome was the number of days without mechanical ventilation from enrollment to day 28. The secondary endpoints included oxygenation, P plat , respiratory system compliance, and patient outcomes. Compared with the LTV group, patients in the APRV group had a higher median number of ventilator-free days {19 [interquartile range (IQR) 8-22] vs. 2 (IQR 0-15); P < 0.001}. This finding was independent of the coexisting differences in chronic disease. The APRV group had a shorter stay in the ICU (P = 0.003). The ICU mortality rate was 19.7% in the APRV group versus 34.3% in the

  1. Mesenchymal Stem Cell Attenuates Neutrophil-predominant Inflammation and Acute Lung Injury in an In Vivo Rat Model of Ventilator-induced Lung Injury

    PubMed Central

    Lai, Tian-Shun; Wang, Zhi-Hong; Cai, Shao-Xi

    2015-01-01

    Background: Subsequent neutrophil (polymorphonuclear neutrophil [PMN])-predominant inflammatory response is a predominant feature of ventilator-induced lung injury (VILI), and mesenchymal stem cell (MSC) can improve mice survival model of endotoxin-induced acute lung injury, reduce lung impairs, and enhance the repair of VILI. However, whether MSC could attenuate PMN-predominant inflammatory in the VILI is still unknown. This study aimed to test whether MSC intervention could attenuate the PMN-predominate inflammatory in the mechanical VILI. Methods: Sprague-Dawley rats were ventilated for 2 hours with large tidal volume (20 mL/kg). MSCs were given before or after ventilation. The inflammatory chemokines and gas exchange were observed and compared dynamically until 4 hours after ventilation, and pulmonary pathological change and activation of PMN were observed and compared 4 hours after ventilation. Results: Mechanical ventilation (MV) caused significant lung injury reflected by increasing in PMN pulmonary sequestration, inflammatory chemokines (tumor necrosis factor-alpha, interleukin-6 and macrophage inflammatory protein 2) in the bronchoalveolar lavage fluid, and injury score of the lung tissue. These changes were accompanied with excessive PMN activation which reflected by increases in PMN elastase activity, production of radical oxygen series. MSC intervention especially pretreatment attenuated subsequent lung injury, systemic inflammation response and PMN pulmonary sequestration and excessive PMN activation initiated by injurious ventilation. Conclusions: MV causes profound lung injury and PMN-predominate inflammatory responses. The protection effect of MSC in the VILI rat model is related to the suppression of the PMN activation. PMID:25635432

  2. Tributyltin chloride increases phenylephrine-induced contraction and vascular stiffness in mesenteric resistance arteries from female rats.

    PubMed

    Ribeiro Júnior, Rogério Faustino; Marques, Vinicius Bermond; Nunes, Dieli Oliveira; Ronconi, Karoline de Sousa; de Araújo, Julia F P; Rodrigues, Paula Lopes; Padilha, Alessandra Simão; Vassallo, Dalton Valentim; Graceli, Jones B; Stefanon, Ivanita

    2016-03-15

    Tributyltin chloride (TBT) is an organotin compound that reduces estrogen levels in female rats. We aimed to investigate the effects of TBT exposure on vascular tonus and vascular remodelling in the resistance arteries of female rats. Rats were treated daily with TBT (500 ng/kg) for 15 days. TBT did not change arterial blood pressure but did modify some morpho-physiological parameters of third-order mesenteric resistance arteries in the following ways: (1) decreased lumen and external diameters; (2) increased wall/lm ratio and wall thickness; (3) decreased distensibility and increased stiffness; (4) increased collagen deposition; and (5) increased pulse wave velocity. TBT exposure increased the phenylephrine-induced contractile response in mesenteric resistance arteries. However, vasodilatation responses induced by acetylcholine and sodium nitroprusside were not modified by TBT. It is suggested that TBT exposure reduces vascular nitric oxide (NO) production, because:(1) L-NAME incubation did not cause a leftward shift in the concentration-response curve for phenylephrine; (2) both eNOS protein expression; (3) in situ NO production were reduced. Incubation with L-NAME; and (4) SOD shifted the phenylephrine response curve to the left in TBT rats. Tiron, catalase, ML-171 and VAS2870 decreased vascular reactivity to phenylephrine only in TBT rats. Moreover, increased superoxide anion production was observed in the mesenteric resistance arteries of TBT rats accompanied by an increase in gp91phox, catalase, AT1 receptor and total ERK1/2 protein expression. In conclusion, these findings show that TBT induced alterations are most likely due to a reduction of NO production combined with increased O2(-) production derived from NADPH oxidase and ERK1/2 activation. These findings offer further evidence that TBT is an environmental risk factor for cardiovascular disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Noninvasive ventilation reduces energy expenditure in amyotrophic lateral sclerosis.

    PubMed

    Georges, Marjolaine; Morélot-Panzini, Capucine; Similowski, Thomas; Gonzalez-Bermejo, Jesus

    2014-02-07

    Amyotrophic lateral sclerosis (ALS) leads to chronic respiratory failure. Diaphragmatic dysfunction, a major driver of dyspnea and mortality, is associated with a shift of the burden of ventilation to extradiaphragmatic inspiratory muscles, including neck muscles. Besides, energy expenditure is often abnormally high in ALS, and this is associated with a negative prognostic value. We hypothesized that noninvasive ventilation (NIV) would relieve inspiratory neck muscles and reduce resting energy expenditure (REE). Using indirect calorimetry, we measured REE during spontaneous breathing (REESB) and NIV (REENIV) in 16 ALS patients with diaphragmatic dysfunction, during the first 3 months of NIV. Measured values were compared with predicted REE (REEpred)(Harris-Benedict equation). NIV abolished inspiratory neck muscle activity. Even though our patients were not hypermetabolic, on the contrary, with a REESB that was lower than REEpred (average 11%), NIV did reduce energy expenditure. Indeed, median REENIV, in this population with a mean body mass index of 21.4 kg.m-2, was 1149 kcal/24 h [interquartile 970-1309], lower than REESB (1197 kcal/24 h, 1054-1402; mean difference 7%; p = 0.03, Wilcoxon). REESB and REENIV were correlated with forced vital capacity and maximal inspiratory pressure. NIV can reduce energy expenditure in ALS patients probably by alleviating the ventilatory burden imposed on inspiratory neck muscles to compensate diaphragm weakness. It remains to be elucidated whether or not, in which population, and to what extent, NIV can be beneficial in ALS through the corresponding reduction in energy expenditure.

  4. Clinical challenges in mechanical ventilation.

    PubMed

    Goligher, Ewan C; Ferguson, Niall D; Brochard, Laurent J

    2016-04-30

    Mechanical ventilation supports gas exchange and alleviates the work of breathing when the respiratory muscles are overwhelmed by an acute pulmonary or systemic insult. Although mechanical ventilation is not generally considered a treatment for acute respiratory failure per se, ventilator management warrants close attention because inappropriate ventilation can result in injury to the lungs or respiratory muscles and worsen morbidity and mortality. Key clinical challenges include averting intubation in patients with respiratory failure with non-invasive techniques for respiratory support; delivering lung-protective ventilation to prevent ventilator-induced lung injury; maintaining adequate gas exchange in severely hypoxaemic patients; avoiding the development of ventilator-induced diaphragm dysfunction; and diagnosing and treating the many pathophysiological mechanisms that impair liberation from mechanical ventilation. Personalisation of mechanical ventilation based on individual physiological characteristics and responses to therapy can further improve outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Spontaneous Breathing Trials and Conservative Sedation Practices Reduce Mechanical Ventilation Duration in Subjects With ARDS.

    PubMed

    Kallet, Richard H; Zhuo, Hanjing; Yip, Vivian; Gomez, Antonio; Lipnick, Michael S

    2018-01-01

    Spontaneous breathing trials (SBTs) and daily sedation interruptions (DSIs) reduce both the duration of mechanical ventilation and ICU length of stay (LOS). The impact of these practices in patients with ARDS has not previously been reported. We examined whether implementation of SBT/DSI protocols reduce duration of mechanical ventilation and ICU LOS in a retrospective group of subjects with ARDS at a large, urban, level-1 trauma center. All ARDS survivors from 2002 to 2016 ( N = 1,053) were partitioned into 2 groups: 397 in the pre-SBT/DSI group (June 2002-December 2007) and 656 in the post-SBT/DSI group (January 2009-April 2016). Patients from 2008, during the protocol implementation period, were excluded. An additional SBT protocol database (2008-2010) was used to assess the efficacy of SBT in transitioning subjects with ARDS to unassisted breathing. Comparisons were assessed by either unpaired t tests or Mann-Whitney tests. Multiple comparisons were made using either one-way analysis of variance or Kruskal-Wallis and Dunn's tests. Linear regression modeling was used to determine variables independently associated with mechanical ventilation duration and ICU LOS; differences were considered statistically significant when P < .05. Compared to the pre-protocol group, subjects with ARDS managed with SBT/DSI protocols experienced pronounced reductions both in median (IQR) mechanical ventilation duration (14 [6-29] vs 9 [4-17] d, respectively, P < .001) and median ICU LOS (18 [8-33] vs 13 [7-22] d, respectively P < .001). In the final model, only treatment in the SBT/DSI period and higher baseline respiratory system compliance were independently associated with reduced mechanical ventilation duration and ICU LOS. Among subjects with ARDS in the SBT performance database, most achieved unassisted breathing with a median of 2 SBTs. Evidenced-based protocols governing weaning and sedation practices were associated with both reduced mechanical ventilation duration and ICU

  6. Hypertonic Saline Reduces Vascular Leakage in a Mouse Model of Severe Dengue

    PubMed Central

    Tan, Kar Wai; Angeli, Veronique; Moochhala, Shabbir; Ooi, Eng Eong; Alonso, Sylvie

    2013-01-01

    Dengue (DEN) is a mosquito-borne viral disease and represents a serious public health threat and an economical burden throughout the tropics. Dengue clinical manifestations range from mild acute febrile illness to severe DEN hemorrhagic fever/DEN shock syndrome (DHF/DSS). Currently, resuscitation with large volumes of isotonic fluid remains the gold standard of care for DEN patients who develop vascular leakage and shock. Here, we investigated the ability of small volume of hypertonic saline (HTS) suspensions to control vascular permeability in a mouse model of severe DEN associated with vascular leakage. Several HTS treatment regimens were considered and our results indicated that a single bolus of 7.5% NaCl at 4 mL per kg of body weight administered at the onset of detectable vascular leakage rapidly and significantly reduced vascular leak for several days after injection. This transient reduction of vascular leakage correlated with reduced intestine and liver damage with restoration of the hepatic functions, and resulted in delayed death of the infected animals. Mechanistically, we showed that HTS did not directly impact on the viral titers but resulted in lower immune cells counts and decreased systemic levels of soluble mediators involved in vascular permeability. In addition, we demonstrated that neutrophils do not play a critical role in DEN-associated vascular leakage and that the therapeutic effect of HTS is not mediated by its impact on the neutrophil counts. Together our data indicate that HTS treatment can transiently but rapidly reduce dengue-associated vascular leakage, and support the findings of a recent clinical trial which evaluated the efficacy of a hypertonic suspension to impact on vascular permeability in DSS children. PMID:23637867

  7. Ventilator-induced lung injury: the role of gene activation.

    PubMed

    Ngiam, Nicola; Kavanagh, Brian P

    2012-02-01

    Ventilator-induced lung injury (VILI) is a ubiquitous iatrogenic clinical problem in critical care. Aside from avoiding large tidal volumes, little progress has been made in identifying effective clinical strategies to minimize this injury. With recent rapid development in bioinformatics and high-throughput molecular technology, the genetic basis of lung injury has been intensively investigated. This review will describe recent insights and potential therapies developed in the field. Much progress has been made in delineating the possible genes and gene products involved in VILI through various mechanisms such as early induced genes, capillary leak, apoptosis, fibrin deposition, inflammatory cytokines, oxidative stress, disrupted angiogenesis, and neutrophil infiltration. Some studies have translated bench findings to the bedside in an attempt to identify clinically important genetic susceptibility, which could aid in the identification of at-risk individuals who might benefit from careful titration of mechanical ventilation. Genetic insights also provide candidate pharmaceutical approaches that may ameliorate VILI in the future. Much relevant information exists for investigators and clinicians interested in VILI. Future research will interlink evolving data to provide a more integrated picture of the molecular mechanisms involved in VILI enabling translation of the most promising candidate therapies.

  8. Staff education aimed at reducing ventilator-associated pneumonia.

    PubMed

    Yilmaz, Gurdal; Aydin, Hava; Aydin, Mustafa; Saylan, Sedat; Ulusoy, Hulya; Koksal, Iftihar

    2016-12-01

    Mechanical ventilation is a life-saving invasive procedure performed in intensive care units (ICUs) where critical patients are given advanced support. The purpose of this study was to assess the effect of personnel training on the incidence of ventilator-associated pneumonia (VAP). The study, performed prospectively in the ICU, was planned in two periods. In both periods, patient characteristics were recorded on patient data forms. In the second period, ICU physicians and assistant health personnel were given regular theoretical and practical training. Twenty-two cases of VAP developed in the pre-training period, an incidence of 31.2. Nineteen cases of VAP developed in the post-training period, an incidence of 21.0 (P<0.001). Training reduced development of VAP by 31.7 %. Crude VAP mortality was 69 % in the first period and 26 % in the second (P<0.001). Statistically significant risk factors for VAP in both periods were prolonged hospitalization, increased number of days on mechanical ventilation, and enteral nutrition; risk factors determined in the first period were re-intubation, central venous catheter use and heart failure and, in the second period, erythrocyte transfusion >5 units (P<0.05). Prior to training, compliance with hand washing (before and after procedure), appropriate aseptic endotracheal aspiration and adequate oral hygiene in particular were very low. An improvement was observed after training (P<0.001). The training of personnel who will apply infection control procedures for the prevention of healthcare-associated infections is highly important. Hand hygiene and other infection control measures must be emphasized in training programmes, and standard procedures in patient interventions must be revised.

  9. Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension

    PubMed Central

    Roque, Fernanda R; Briones, Ana M; García-Redondo, Ana B; Galán, María; Martínez-Revelles, Sonia; Avendaño, Maria S; Cachofeiro, Victoria; Fernandes, Tiago; Vassallo, Dalton V; Oliveira, Edilamar M; Salaices, Mercedes

    2013-01-01

    Background and Purpose Regular physical activity is an effective non-pharmacological therapy for prevention and control of hypertension. We investigated the effects of aerobic exercise training in vascular remodelling and in the mechanical and functional alterations of coronary and small mesenteric arteries from spontaneously hypertensive rats (SHR). Experimental Approach Normotensive Wistar Kyoto (WKY), SHR and SHR trained on a treadmill for 12 weeks were used to evaluate vascular structural, mechanical and functional properties. Key Results Exercise did not affect lumen diameter, wall thickness and wall/lumen ratio but reduced vascular stiffness of coronary and mesenteric arteries from SHR. Exercise also reduced collagen deposition and normalized altered internal elastic lamina organization and expression of MMP-9 in mesenteric arteries from SHR. Exercise did not affect contractile responses of coronary arteries but improved the endothelium-dependent relaxation in SHR. In mesenteric arteries, training normalized the increased contractile responses induced by U46619 and by high concentrations of acetylcholine. In vessels from SHR, exercise normalized the effects of the NADPH oxidase inhibitor apocynin and the NOS inhibitor l-NAME in vasodilator or vasoconstrictor responses, normalized the increased O2− production and the reduced Cu/Zn superoxide dismutase expression and increased NO production. Conclusions and Implications Exercise training of SHR improves endothelial function and vascular stiffness in coronary and small mesenteric arteries. This might be related to the concomitant decrease of oxidative stress and increase of NO bioavailability. Such effects demonstrate the beneficial effects of exercise on the vascular system and could contribute to a reduction in blood pressure. PMID:22994554

  10. Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension.

    PubMed

    Roque, Fernanda R; Briones, Ana M; García-Redondo, Ana B; Galán, María; Martínez-Revelles, Sonia; Avendaño, Maria S; Cachofeiro, Victoria; Fernandes, Tiago; Vassallo, Dalton V; Oliveira, Edilamar M; Salaices, Mercedes

    2013-02-01

    Regular physical activity is an effective non-pharmacological therapy for prevention and control of hypertension. We investigated the effects of aerobic exercise training in vascular remodelling and in the mechanical and functional alterations of coronary and small mesenteric arteries from spontaneously hypertensive rats (SHR). Normotensive Wistar Kyoto (WKY), SHR and SHR trained on a treadmill for 12 weeks were used to evaluate vascular structural, mechanical and functional properties. Exercise did not affect lumen diameter, wall thickness and wall/lumen ratio but reduced vascular stiffness of coronary and mesenteric arteries from SHR. Exercise also reduced collagen deposition and normalized altered internal elastic lamina organization and expression of MMP-9 in mesenteric arteries from SHR. Exercise did not affect contractile responses of coronary arteries but improved the endothelium-dependent relaxation in SHR. In mesenteric arteries, training normalized the increased contractile responses induced by U46619 and by high concentrations of acetylcholine. In vessels from SHR, exercise normalized the effects of the NADPH oxidase inhibitor apocynin and the NOS inhibitor l-NAME in vasodilator or vasoconstrictor responses, normalized the increased O(2) (-) production and the reduced Cu/Zn superoxide dismutase expression and increased NO production. Exercise training of SHR improves endothelial function and vascular stiffness in coronary and small mesenteric arteries. This might be related to the concomitant decrease of oxidative stress and increase of NO bioavailability. Such effects demonstrate the beneficial effects of exercise on the vascular system and could contribute to a reduction in blood pressure. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  11. Mechanism of high glucose induced angiotensin II production in rat vascular smooth muscle cells.

    PubMed

    Lavrentyev, Eduard N; Estes, Anne M; Malik, Kafait U

    2007-08-31

    Angiotensin II (Ang II), a circulating hormone that can be synthesized locally in the vasculature, has been implicated in diabetes-associated vascular complications. This study was conducted to determine whether high glucose (HG) (approximately 23.1 mmol/L), a diabetic-like condition, stimulates Ang II generation and the underlying mechanism of its production in rat vascular smooth muscle cells. The contribution of various enzymes involved in Ang II generation was investigated by silencing their expression with small interfering RNA in cells exposed to normal glucose (approximately 4.1 mmol/L) and HG. Angiotensin I (Ang I) was generated from angiotensinogen by cathepsin D in the presence of normal glucose or HG. Although HG did not affect the rate of angiotensinogen conversion, it decreased expression of angiotensin-converting enzyme (ACE), downregulated ACE-dependent Ang II generation, and upregulated rat vascular chymase-dependent Ang II generation. The ACE inhibitor captopril reduced Ang II levels in the media by 90% in the presence of normal glucose and 19% in HG, whereas rat vascular chymase silencing reduced Ang II production in cells exposed to HG but not normal glucose. The glucose transporter inhibitor cytochalasin B, the aldose reductase inhibitor alrestatin, and the advanced glycation end product formation inhibitor aminoguanidine attenuated HG-induced Ang II generation. HG caused a transient increase in extracellular signal-regulated kinase (ERK)1/2 phosphorylation, and ERK1/2 inhibitors reduced Ang II accumulation by HG. These data suggest that polyol pathway metabolites and AGE can stimulate rat vascular chymase activity via ERK1/2 activation and increase Ang II production. In addition, decreased Ang II degradation, which, in part, could be attributable to a decrease in angiotensin-converting enzyme 2 expression observed in HG, contributes to increased accumulation of Ang II in vascular smooth muscle cells by HG.

  12. Oxidative stress is not associated with vascular dysfunction in a model of alloxan-induced diabetic rats.

    PubMed

    Capellini, Verena Kise; Baldo, Caroline Floreoto; Celotto, Andréa Carla; Batalhão, Marcelo Eduardo; Cárnio, Evelin Capellari; Rodrigues, Alfredo José; Evora, Paulo Roberto Barbosa

    2010-08-01

    To verify if an experimental model of alloxan-diabetic rats promotes oxidative stress, reduces nitric oxide bioavailability and causes vascular dysfunction, and to evaluate the effect of N-acetylcysteine (NAC) on these parameters. Alloxan-diabetic rats were treated or not with NAC for four weeks. Plasmatic levels of malondialdehyde (MDA) and nitrite/nitrate (NOx), the endothelial and inducible nitric oxide synthase (eNOS and iNOS) immunostaining and the vascular reactivity of aorta were compared among diabetic (D), treated diabetic (TD) and control (C) rats. MDA levels increased in D and TD. NOx levels did not differ among groups. Endothelial eNOS immunostaining reduced and adventitial iNOS increased in D and TD. The responsiveness of rings to acetylcholine, sodium nitroprusside, and phenylephrine did not differ among groups. NAC had no effect on the evaluated parameters and this experimental model did not promote vascular dysfunction despite the development of oxidative stress.

  13. Endothelium-Independent Effect of Fisetin on the Agonist-Induced Regulation of Vascular Contractility

    PubMed Central

    Je, Hyun Dong; Sohn, Uy Dong; La, Hyen-Oh

    2016-01-01

    Fisetin, a natural flavonoid found in a variety of vegetables and fruits, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of fisetin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Fisetin significantly relaxed fluoride-, thromboxane A2- or phorbol ester-induced vascular contraction suggesting as a possible anti-hypertensive on the agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, fisetin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels suggesting the mechanism involving the inhibition of Rho-kinase activity and the subsequent phosphorylation of MYPT1 and MEK activity and the subsequent phosphorylation of ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of fisetin on agonist-induced vascular contraction regardless of endothelial function. PMID:26759702

  14. Effects of nitroglycerin and nitroprusside on vascular capacitance of anesthetized ganglion-blocked dogs.

    PubMed

    Ogilvie, R I; Zborowska-Sluis, D

    1991-10-01

    To determine whether changes in vascular capacitance induced by nitroglycerin (NTG) and nitroprusside were due to changes in compliance or unstressed vascular volume, doses producing similar reductions in arterial pressure (Psa) were studied on separate days in six dogs anesthetized and ventilated with pentobarbital after splenectomy during ganglion blockade with hexamethonium. Mean circulatory filling pressure (Pmcf) was determined during transient circulatory arrest induced by acetylcholine at baseline blood volumes and after increases of 5 and 10 ml/kg. Central blood volumes (CBVs, pulmonary artery to aortic root) were determined from transit times, and separately measured cardiac output (CO) was estimated by thermodilution (right atrium to pulmonary artery). NTG and nitroprusside produced similar reductions in Psa and Pmcf without significantly altering right atrial pressure (Pra), pressure gradient for venous return, or CO. Total vascular compliance was not altered, but total vascular capacitance was increased on an average of 4.0 +/- 1.4 ml/kg after NTG and 3.0 +/- 1.3 ml/kg after nitroprusside by increases in unstressed volume. Both drugs caused a variable reduction in CBV, averaging 2 ml/kg. Thus, both drugs produced a large increase in peripheral venous capacitance by increasing unstressed vascular volume without altering total vascular compliance.

  15. Tristetraprolin Inhibits Ras-dependent Tumor Vascularization by Inducing Vascular Endothelial Growth Factor mRNA Degradation

    PubMed Central

    Essafi-Benkhadir, Khadija; Onesto, Cercina; Stebe, Emmanuelle; Moroni, Christoph

    2007-01-01

    Vascular endothelial growth factor (VEGF) is one of the most important regulators of physiological and pathological angiogenesis. Constitutive activation of the extracellular signal-regulated kinase (ERK) pathway and overexpression of VEGF are common denominators of tumors from different origins. We have established a new link between these two fundamental observations converging on VEGF mRNA stability. In this complex phenomenon, tristetraprolin (TTP), an adenylate and uridylate-rich element-associated protein that binds to VEGF mRNA 3′-untranslated region, plays a key role by inducing VEGF mRNA degradation, thus maintaining basal VEGF mRNA amounts in normal cells. ERKs activation results in the accumulation of TTP mRNA. However, ERKs reduce the VEGF mRNA-destabilizing effect of TTP, leading to an increase in VEGF expression that favors the angiogenic switch. Moreover, TTP decreases RasVal12-dependent VEGF expression and development of vascularized tumors in nude mice. As a consequence, TTP might represent a novel antiangiogenic and antitumor agent acting through its destabilizing activity on VEGF mRNA. Determination of TTP and ERKs status would provide useful information for the evaluation of the angiogenic potential in human tumors. PMID:17855506

  16. MiR-29-mediated elastin down-regulation contributes to inorganic phosphorus-induced osteoblastic differentiation in vascular smooth muscle cells.

    PubMed

    Sudo, Ryo; Sato, Fumiaki; Azechi, Takuya; Wachi, Hiroshi

    2015-12-01

    Vascular calcification increases the risk of cardiovascular mortality. We previously reported that expression of elastin decreases with progression of inorganic phosphorus (Pi)-induced vascular smooth muscle cell (VSMC) calcification. However, the regulatory mechanisms of elastin mRNA expression during vascular calcification remain unclear. MicroRNA-29 family members (miR-29a, b and c) are reported to mediate elastin mRNA expression. Therefore, we aimed to determine the effect of miR-29 on elastin expression and Pi-induced vascular calcification. Calcification of human VSMCs was induced by Pi and evaluated measuring calcium deposition. Pi stimulation promoted Ca deposition and suppressed elastin expression in VSMCs. Knockdown of elastin expression by shRNA also promoted Pi-induced VSMC calcification. Elastin pre-mRNA measurements indicated that Pi stimulation suppressed elastin expression without changing transcriptional activity. Conversely, Pi stimulation increased miR-29a and miR-29b expression. Inhibition of miR-29 recovered elastin expression and suppressed calcification in Pi-treated VSMCs. Furthermore, over-expression of miR-29b promoted Pi-induced VSMC calcification. RT-qPCR analysis showed knockdown of elastin expression in VSMCs induced expression of osteoblast-related genes, similar to Pi stimulation, and recovery of elastin expression by miR-29 inhibition reduced their expression. Our study shows that miR-29-mediated suppression of elastin expression in VSMCs plays a pivotal role in osteoblastic differentiation leading to vascular calcification. © 2015 The Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  17. Endothelial Cell Autonomous Role of Akt1: Regulation of Vascular Tone and Ischemia-Induced Arteriogenesis.

    PubMed

    Lee, Monica Y; Gamez-Mendez, Ana; Zhang, Jiasheng; Zhuang, Zhenwu; Vinyard, David J; Kraehling, Jan; Velazquez, Heino; Brudvig, Gary W; Kyriakides, Themis R; Simons, Michael; Sessa, William C

    2018-04-01

    The importance of PI3K/Akt signaling in the vasculature has been demonstrated in several models, as global loss of Akt1 results in impaired postnatal ischemia- and VEGF-induced angiogenesis. The ubiquitous expression of Akt1, however, raises the possibility of cell-type-dependent Akt1-driven actions, thereby necessitating tissue-specific characterization. Herein, we used an inducible, endothelial-specific Akt1-deleted adult mouse model (Akt1iECKO) to characterize the endothelial cell autonomous functions of Akt1 in the vascular system. Endothelial-targeted ablation of Akt1 reduces eNOS (endothelial nitric oxide synthase) phosphorylation and promotes both increased vascular contractility in isolated vessels and elevated diastolic blood pressures throughout the diurnal cycle in vivo. Furthermore, Akt1iECKO mice subject to the hindlimb ischemia model display impaired blood flow and decreased arteriogenesis. Endothelial Akt1 signaling is necessary for ischemic resolution post-injury and likely reflects the consequence of NO insufficiency critical for vascular repair. © 2018 American Heart Association, Inc.

  18. PPARδ regulation of miR-15a in ischemia-induced cerebral vascular endothelial injury

    PubMed Central

    Yin, K.J.; Deng, Z.; Hamblin, M.; Xiang, Y.; Huang, H.R.; Zhang, J.; Jiang, X. D.; Wang, Y.; Chen, Y. E.

    2010-01-01

    Cerebral endothelial cell (CEC) degeneration significantly contributes to blood-brain barrier (BBB) breakdown and neuronal loss after cerebral ischemia. Recently, emerging data suggest that peroxisome proliferator-activated receptor δ (PPARδ) activation has a potential neuroprotective role in ischemic stroke. Here we report for the first time that PPARδ is significantly reduced in oxygen-glucose deprivation (OGD)-induced mouse CEC death. Interestingly, PPARδ overexpression can suppress OGD-induced caspase-3 activity, Golgi fragmentation, and CEC death through an increase of bcl-2 protein levels without change of bcl-2 mRNA levels. To explore the molecular mechanisms, we have identified that upregulation of PPARδ can alleviate ODG-activated microRNA-15a (miR-15a) expression in CECs. Moreover, we have demonstrated that bcl-2 is a translationally-repressed target of miR-15a. Intriguingly, gain- or loss-of-miR-15a function can significantly reduce or increase OGD-induced CEC death, respectively. Furthermore, we have identified that miR-15a is a transcriptional target of PPARδ. Consistent with the in vitro findings, we found that intracerebroventricular infusion of a specific PPARδ agonist, GW 501516, significantly reduced ischemia-induced miR-15a expression, increased bcl-2 protein levels, and attenuated caspase-3 activity and subsequent DNA fragmentation in isolated cerebral microvessels, leading to decreased BBB disruption and reduced cerebral infarction in mice after transient focal cerebral ischemia. Taken together, these results suggest that PPARδ plays a vascular-protective role in ischemia-like insults via transcriptional repression of miR-15a, resulting in subsequent release of its posttranscriptional inhibition of bcl-2. Thus, regulation of PPARδ-mediated miR-15a inhibition of bcl-2 could provide a novel therapeutic strategy for the treatment of stroke-related vascular dysfunction. PMID:20445066

  19. l-Homocysteine-induced cathepsin V mediates the vascular endothelial inflammation in hyperhomocysteinaemia.

    PubMed

    Leng, Yi-Ping; Ma, Ye-Shuo; Li, Xiao-Gang; Chen, Rui-Fang; Zeng, Ping-Yu; Li, Xiao-Hui; Qiu, Cheng-Feng; Li, Ya-Pei; Zhang, Zhen; Chen, Alex F

    2018-04-01

    Vascular inflammation, including the expression of inflammatory cytokines in endothelial cells, plays a critical role in hyperhomocysteinaemia-associated vascular diseases. Cathepsin V, specifically expressed in humans, is involved in vascular diseases through its elastolytic and collagenolytic activities. The aim of this study was to determine the effects of cathepsin V on l-homocysteine-induced vascular inflammation. A high methionine diet-induced hyperhomocysteinaemic mouse model was used to assess cathepsin V expression and vascular inflammation. Cultures of HUVECs were challenged with l-homocysteine and the cathepsin L/V inhibitor SID to assess the pro-inflammatory effects of cathepsin V. Transfection and antisense techniques were utilized to investigate the effects of cathepsin V on the dual-specificity protein phosphatases (DUSPs) and MAPK pathways. Cathepsin L (human cathepsin V homologous) was increased in the thoracic aorta endothelial cells of hyperhomocysteinaemic mice; l-homocysteine promoted cathepsin V expression in HUVECs. SID suppressed the activity of cathepsin V and reversed the up-regulation of inflammatory cytokines (IL-6, IL-8 and TNF-α), adhesion and chemotaxis of leukocytes and vascular inflammation induced by l-homocysteine in vivo and in vitro. Increased cathepsin V promoted the degradation of DUSP6 and DUSP7, phosphorylation and subsequent nuclear translocation of ERK1/2, phosphorylation of STAT1 and expression of IL-6, IL-8 and TNF-α. This study has identified a novel mechanism, which shows that l-homocysteine-induced upregulation of cathepsin V mediates vascular endothelial inflammation under high homocysteine condition partly via ERK 1/2 /STAT1 pathway. This mechanism could represent a potential therapeutic target in hyperaemia-associated vascular diseases. This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http

  20. Gastrin-releasing peptide induces monocyte adhesion to vascular endothelium by upregulating endothelial adhesion molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Mi-Kyoung; Park, Hyun-Joo; Department of Dental Pharmacology, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 626-870

    Gastrin-releasing peptide (GRP) is a neuropeptide that plays roles in various pathophysiological conditions including inflammatory diseases in peripheral tissues; however, little is known about whether GRP can directly regulate endothelial inflammatory processes. In this study, we showed that GRP promotes the adhesion of leukocytes to human umbilical vein endothelial cells (HUVECs) and the aortic endothelium. GRP increased the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) by activating nuclear factor-κB (NF-κB) in endothelial cells. In addition, GRP activated extracellular signal-regulated kinase 1/2 (ERK1/2), p38MAPK, and AKT, and the inhibition of these signaling pathways significantly reduced GRP-inducedmore » monocyte adhesion to the endothelium. Overall, our results suggested that GRP may cause endothelial dysfunction, which could be of particular relevance in the development of vascular inflammatory disorders. - Highlights: • GRP induces adhesion of monocytes to vascular endothelium. • GRP increases the expression of endothelial adhesion molecules through the activation of NF-κB. • ERK1/2, p38MAPK, and Akt pathways are involved in the GRP-induced leukocyte adhesiveness to endothelium.« less

  1. Vascular Smooth Muscle-Specific EP4 Receptor Deletion in Mice Exacerbates Angiotensin II-Induced Renal Injury.

    PubMed

    Thibodeau, Jean-Francois; Holterman, Chet E; He, Ying; Carter, Anthony; Cron, Gregory O; Boisvert, Naomi C; Abd-Elrahman, Khaled S; Hsu, Karolynn J; Ferguson, Stephen S G; Kennedy, Christopher R J

    2016-10-20

    Cyclooxygenase inhibition by non-steroidal anti-inflammatory drugs is contraindicated in hypertension, as it may reduce glomerular filtration rate (GFR) and renal blood flow. However, the identity of the specific eicosanoid and receptor underlying these effects is not known. We hypothesized that vascular smooth muscle prostaglandin E2 (PGE2) E-prostanoid 4 (EP4) receptor deletion predisposes to renal injury via unchecked vasoconstrictive actions of angiotensin II (AngII) in a hypertension model. Mice with inducible vascular smooth muscle cell (VSMC)-specific EP4 receptor deletion were generated and subjected to AngII-induced hypertension. EP4 deletion was verified by PCR of aorta and renal vessels, as well as functionally by loss of PGE2-mediated mesenteric artery relaxation. Both AngII-treated groups became similarly hypertensive, whereas albuminuria, foot process effacement, and renal hypertrophy were exacerbated in AngII-treated EP4 VSMC-/- but not in EP4 VSMC+/+ mice and were associated with glomerular scarring, tubulointerstitial injury, and reduced GFR. AngII-treated EP4 VSMC-/- mice exhibited capillary damage and reduced renal perfusion as measured by fluorescent bead microangiography and magnetic resonance imaging, respectively. NADPH oxidase 2 (Nox2) expression was significantly elevated in AngII-treated EP4 -/- mice. EP4-receptor silencing in primary VSMCs abolished PGE2 inhibition of AngII-induced Nox2 mRNA and superoxide production. These data suggest that vascular EP4 receptors buffer the actions of AngII on renal hemodynamics and oxidative injury. EP4 agonists may, therefore, protect against hypertension-associated kidney damage. Antioxid. Redox Signal. 25, 642-656.

  2. High Levels of S100A8/A9 Proteins Aggravate Ventilator-Induced Lung Injury via TLR4 Signaling

    PubMed Central

    Aslami, Hamid; Jongsma, Geartsje; van den Berg, Elske; Vlaar, Alexander P. J.; Roelofs, Joris J. T. H.; Juffermans, Nicole P.; Schultz, Marcus J.; van der Poll, Tom; Roth, Johannes; Wieland, Catharina W.

    2013-01-01

    Background Bacterial products add to mechanical ventilation in enhancing lung injury. The role of endogenous triggers of innate immunity herein is less well understood. S100A8/A9 proteins are released by phagocytes during inflammation. The present study investigates the role of S100A8/A9 proteins in ventilator-induced lung injury. Methods Pulmonary S100A8/A9 levels were measured in samples obtained from patients with and without lung injury. Furthermore, wild-type and S100A9 knock-out mice, naive and with lipopolysaccharide-induced injured lungs, were randomized to 5 hours of spontaneously breathing or mechanical ventilation with low or high tidal volume (VT). In addition, healthy spontaneously breathing and high VT ventilated mice received S100A8/A9, S100A8 or vehicle intratracheal. Furthermore, the role of Toll-like receptor 4 herein was investigated. Results S100A8/A9 protein levels were elevated in patients and mice with lung injury. S100A8/A9 levels synergistically increased upon the lipopolysaccharide/high VT MV double hit. Markers of alveolar barrier dysfunction, cytokine and chemokine levels, and histology scores were attenuated in S100A9 knockout mice undergoing the double-hit. Exogenous S100A8/A9 and S100A8 induced neutrophil influx in spontaneously breathing mice. In ventilated mice, these proteins clearly amplified inflammation: neutrophil influx, cytokine, and chemokine levels were increased compared to ventilated vehicle-treated mice. In contrast, administration of S100A8/A9 to ventilated Toll-like receptor 4 mutant mice did not augment inflammation. Conclusion S100A8/A9 proteins increase during lung injury and contribute to inflammation induced by HVT MV combined with lipopolysaccharide. In the absence of lipopolysaccharide, high levels of extracellular S100A8/A9 still amplify ventilator-induced lung injury via Toll-like receptor 4. PMID:23874727

  3. Baicalein attenuates vinorelbine-induced vascular endothelial cell injury and chemotherapeutic phlebitis in rabbits.

    PubMed

    Ge, Gang-Feng; Shi, Wei-Wen; Yu, Chen-Huan; Jin, Xiao-Yin; Zhang, Huan-Huan; Zhang, Wen-You; Wang, Lu-Chen; Yu, Bing

    2017-03-01

    Chemotherapy is one of the major strategies for cancer treatment. Several antineoplastic drugs including vinorelbine (VRB) are commonly intravenously infused and liable to cause serious phlebitis. The therapeutic drugs for preventing this complication are limited. In this study, the mechanism of baicalein (BCN) was investigated on VRB-induced phlebitis in vivo and vascular endothelial cell injury in vitro. Treatment with BCN obviously attenuated vascular endothelial cell loss, edema, inflammatory cell infiltration and blood clots, and reduced the serum levels of TNF-α, IL-1β, IL-6 and ICAM-1 in the rabbit model of phlebitis induced by intravenous injection of VRB compared with vehicle. Further tests in vitro demonstrated that BCN lessened VRB-induced endothelial cell apoptosis, decreased intracellular ROS levels, suppressed phosphorylation of p38 and eventually inhibited activation of NF-κB signaling pathway. And these effects could be reversed by p38 agonist P79350. These results suggested that BCN exerted the protective effects against VRB-induced endothelial disruption in the rabbit model of phlebitis via inhibition of intracellular ROS generation and inactivation of p38/NF-κB pathway, leading to the decreased production of pro-inflammatory cytokines. Thus, BCN could be used as a potential agent for the treatment of phlebitis. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Neuroprotective Effects of Agomelatine and Vinpocetine Against Chronic Cerebral Hypoperfusion Induced Vascular Dementia.

    PubMed

    Gupta, Surbhi; Singh, Prabhat; Sharma, Brij Mohan; Sharma, Bhupesh

    2015-01-01

    Chronic cerebral hypoperfusion (CCH) has been considered as a critical cause for the development of cognitive decline and dementia of vascular origin. Melatonin receptors have been reported to be beneficial in improving memory deterioration. Phosphodiesterase-1 (PDE1) enzyme offers protection against cognitive impairments and cerebrovascular disorders. Aim of this study is to explore the role of agomelatine (a dual MT1 and MT2 melatonin receptor agonist) and vinpocetine (selective PDE1 inhibitor) in CCH induced vascular dementia (VaD). Two vessel occlusion (2VO) or bilateral common carotid arteries ligation method was performed to initiate a phase of chronic hypoperfusion in mice. 2VO animals have shown significant cognitive deficits (Morris water maze), cholinergic dysfunction (increased acetyl cholinesterase -AChE) activity alongwith increased brain oxidative stress (decreased brain catalase, glutathione, as well as superoxide dismutase with an increase in malondialdehyde levels), and significant increase in brain infarct size (2,3,5- triphenylterazolium chloride-TTC staining). Treatment of agomelatine and vinpocetine reduced CCH induced learning and memory deficits and limited cholinergic dysfunction, oxidative stress, and tissue damage, suggesting that agomelatine and vinpocetine may provide benefits in CCH induced VaD.

  5. Cyanidin-3-glucoside attenuates angiotensin II-induced oxidative stress and inflammation in vascular endothelial cells.

    PubMed

    Sivasinprasasn, Sivanan; Pantan, Rungusa; Thummayot, Sarinthorn; Tocharus, Jiraporn; Suksamrarn, Apichart; Tocharus, Chainarong

    2016-10-28

    Angiotensin II (Ang II) causes oxidative stress and vascular inflammation, leading to vascular endothelial cell dysfunction, and is associated with the development of inflammatory cardiovascular diseases such as atherosclerosis. Therefore, interventions of oxidative stress and inflammation may contribute to the reduction of cardiovascular diseases. Cyanidin-3-glucoside (C3G) plays a role in the prevention of oxidative damage in several diseases. Here, we investigated the effect of C3G on Ang II-induced oxidative stress and vascular inflammation in human endothelial cells (EA.hy926). C3G dose-dependently suppressed the free radicals and inhibited the nuclear factor-kappa B (NF-κB) signaling pathway by protecting the degradation of inhibitor of kappa B-alpha (IκB-α), inhibiting the expression and translocation of NF-κB into the nucleus through the down-regulation of NF-κB p65 and reducing the expression of inducible nitric oxide synthase (iNOS). Pretreatment with C3G not only prohibited the NF-κB signaling pathway but also promoted the activity of the nuclear erythroid-related factor 2 (Nrf2) signaling pathway through the upregulation of endogenous antioxidant enzymes. Particularly, we observed that C3G significantly enhanced the production of superoxide dismutase (SOD) and induced the expression of heme oxygenase (HO-1). Our findings confirm that C3G can protect against vascular endothelial cell inflammation induced by AngII. C3G may represent a promising dietary supplement for the prevention of inflammation, thereby decreasing the risk for the development of atherosclerosis. Copyright © 2016. Published by Elsevier Ireland Ltd.

  6. The Inhibitory Effect of Shikonin on the Agonist-Induced Regulation of Vascular Contractility

    PubMed Central

    Je, Hyun Dong; Kim, Hyeong-Dong; La, Hyen-Oh

    2015-01-01

    Shikonin, a natural flavonoid found in the roots of Lithospermum erythrorhizon, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of shikonin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Shikonin significantly relaxed fluoride-, thromboxane A2- or phorbol ester-induced vascular contraction suggesting as a possible anti-hypertensive on the agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, shikonin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels suggesting the mechanism involving the inhibition of Rho-kinase activity and the subsequent phosphorylation of MYPT1 and the inhibition of MEK activity and the subsequent phosphorylation of ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of shikonin on agonist-induced vascular contraction regardless of endothelial function. PMID:25995821

  7. Drinking citrus fruit juice inhibits vascular remodeling in cuff-induced vascular injury mouse model.

    PubMed

    Ohnishi, Arika; Asayama, Rie; Mogi, Masaki; Nakaoka, Hirotomo; Kan-No, Harumi; Tsukuda, Kana; Chisaka, Toshiyuki; Wang, Xiao-Li; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Iwanami, Jun; Horiuchi, Masatsugu

    2015-01-01

    Citrus fruits are thought to have inhibitory effects on oxidative stress, thereby attenuating the onset and progression of cancer and cardiovascular disease; however, there are few reports assessing their effect on vascular remodeling. Here, we investigated the effect of drinking the juice of two different citrus fruits on vascular neointima formation using a cuff-induced vascular injury mouse model. Male C57BL6 mice were divided into five groups as follows: 1) Control (water) (C), 2) 10% Citrus unshiu (CU) juice (CU10), 3) 40% CU juice (CU40), 4) 10% Citrus iyo (CI) juice (CI10), and 5) 40% CI juice (CI40). After drinking them for 2 weeks from 8 weeks of age, cuff injury was induced by polyethylene cuff placement around the femoral artery. Neointima formation was significantly attenuated in CU40, CI10 and CI40 compared with C; however, no remarkable preventive effect was observed in CU10. The increases in levels of various inflammatory markers including cytokines such as monocyte chemotactic protein-1, interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α in response to vascular injury did not differ significantly between C, CU10 and CI10. The increases in cell proliferation and superoxide anion production were markedly attenuated in CI10, but not in CU10 compared with C. The increase in phosphorylated ERK expression was markedly attenuated both in CU10 and CI10 without significant difference between CU10 and CI10. Accumulation of immune cells did not differ between CU10 and CI10. These results indicate that drinking citrus fruit juice attenuates vascular remodeling partly via a reduction of oxidative stress. Interestingly, the preventive efficacy on neointima formation was stronger in CI than in CU at least in part due to more prominent inhibitory effects on oxidative stress by CI.

  8. Drinking Citrus Fruit Juice Inhibits Vascular Remodeling in Cuff-Induced Vascular Injury Mouse Model

    PubMed Central

    Ohnishi, Arika; Asayama, Rie; Mogi, Masaki; Nakaoka, Hirotomo; Kan-no, Harumi; Tsukuda, Kana; Chisaka, Toshiyuki; Wang, Xiao-Li; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Iwanami, Jun; Horiuchi, Masatsugu

    2015-01-01

    Citrus fruits are thought to have inhibitory effects on oxidative stress, thereby attenuating the onset and progression of cancer and cardiovascular disease; however, there are few reports assessing their effect on vascular remodeling. Here, we investigated the effect of drinking the juice of two different citrus fruits on vascular neointima formation using a cuff-induced vascular injury mouse model. Male C57BL6 mice were divided into five groups as follows: 1) Control (water) (C), 2) 10% Citrus unshiu (CU) juice (CU10), 3) 40% CU juice (CU40), 4) 10% Citrus iyo (CI) juice (CI10), and 5) 40% CI juice (CI40). After drinking them for 2 weeks from 8 weeks of age, cuff injury was induced by polyethylene cuff placement around the femoral artery. Neointima formation was significantly attenuated in CU40, CI10 and CI40 compared with C; however, no remarkable preventive effect was observed in CU10. The increases in levels of various inflammatory markers including cytokines such as monocyte chemotactic protein-1, interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α in response to vascular injury did not differ significantly between C, CU10 and CI10. The increases in cell proliferation and superoxide anion production were markedly attenuated in CI10, but not in CU10 compared with C. The increase in phosphorylated ERK expression was markedly attenuated both in CU10 and CI10 without significant difference between CU10 and CI10. Accumulation of immune cells did not differ between CU10 and CI10. These results indicate that drinking citrus fruit juice attenuates vascular remodeling partly via a reduction of oxidative stress. Interestingly, the preventive efficacy on neointima formation was stronger in CI than in CU at least in part due to more prominent inhibitory effects on oxidative stress by CI. PMID:25692290

  9. Hypercapnia attenuates ventilator-induced lung injury via a disintegrin and metalloprotease-17

    PubMed Central

    Otulakowski, Gail; Engelberts, Doreen; Gusarova, Galina A; Bhattacharya, Jahar; Post, Martin; Kavanagh, Brian P

    2014-01-01

    Hypercapnic acidosis, common in mechanically ventilated patients, has been reported to exert both beneficial and harmful effects in models of lung injury. Understanding its effects at the molecular level may provide insight into mechanisms of injury and protection. The aim of this study was to establish the effects of hypercapnic acidosis on mitogen-activated protein kinase (MAPK) activation, and determine the relevant signalling pathways. p44/42 MAPK activation in a murine model of ventilator-induced lung injury (VILI) correlated with injury and was reduced in hypercapnia. When cultured rat alveolar epithelial cells were subjected to cyclic stretch, activation of p44/42 MAPK was dependent on epidermal growth factor receptor (EGFR) activity and on shedding of EGFR ligands; exposure to 12% CO2 without additional buffering blocked ligand shedding, as well as EGFR and p44/42 MAPK activation. The EGFR ligands are known substrates of the matrix metalloprotease ADAM17, suggesting stretch activates and hypercapnic acidosis blocks stretch-mediated activation of ADAM17. This was corroborated in the isolated perfused mouse lung, where elevated CO2 also inhibited stretch-activated shedding of the ADAM17 substrate TNFR1 from airway epithelial cells. Finally, in vivo confirmation was obtained in a two-hit murine model of VILI where pharmacological inhibition of ADAM17 reduced both injury and p44/42 MAPK activation. Thus, ADAM17 is an important proximal mediator of VILI; its inhibition is one mechanism of hypercapnic protection and may be a target for clinical therapy. PMID:25085885

  10. [Losartan regulates oxidative stress via caveolin-1 and NOX4 in mice with ventilator- induced lung injury].

    PubMed

    Ling, Xuguang; Lou, Anni; Li, Yang; Yang, Renqiang; Ning, Zuowei; Li, Xu

    2015-12-01

    To investigate the effect of losartan in regulating oxidative stress and the underlying mechanism in mice with ventilator-induced lung injury. Thirty-six male C57 mice were randomly divided into control group, losartan treatment group, mechanical ventilation model group, and ventilation plus losartan treatment group. After the corresponding treatments, the lung injuries in each group were examined and the expressions of caveolin-1 and NOX4 in the lung tissues were detected. The mean Smith score of lung injury was significantly higher in mechanical ventilation model group (3.3) than in the control group (0.4), and losartan treatment group (0.3); the mean score was significantly lowered in ventilation plus losartan treatment group (2.3) compared with that in the model group (P<0.05). The expressions of caveolin-1 and NOX4 were significantly higher in the model group than in the control and losartan treatment groups (P<0.05) but was obviously lowered after losartan treatment (P<0.05). Co-expression of caveolin-1 and NOX4 in the lungs was observed in the model group, and was significantly decreased after losartan treatment. Losartan can alleviate ventilator-induced lung injury in mice and inhibit the expression of caveolin-1 and NOX4 and their interaction in the lungs.

  11. Protective effects of ghrelin in ventilator-induced lung injury in rats.

    PubMed

    Li, Guang; Liu, Jiao; Xia, Wen-Fang; Zhou, Chen-Liang; Lv, Li-Qiong

    2017-11-01

    Ghrelin has exhibited potent anti-inflammatory effects on various inflammatory diseases. The aim of this study was to investigate the potential effects of ghrelin on a model of ventilator-induced lung injury (VILI) established in rats. Male Sprague-Dawley rats were randomly divided into three groups: low volume ventilation (LV, Vt=8ml/kg) group, a VILI group (Vt=30ml/kg), and a VILI group pretreated with ghrelin (GH+VILI). For the LV group, for the VILI and GH+VILI groups, the same parameters were applied except the tidal volume was increased to 40ml/kg. After 4h of MV, blood gas, lung elastance, and levels of inflammatory mediators, including tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, and (MIP)-2 and total protein in bronchoalveolar lavage fluid (BALF) were analyzed. Myeloperoxidase (MPO), (TLR)-4, and NF-κB, were detected in lung tissues. Water content (wet-to-dry ratio) and lung morphology were also evaluated. The VILI group had a higher acute lung injury (ALI) score, wet weight to dry ratio, MPO activity, and concentrations of inflammatory mediators (TNF-α, IL-6, IL-1β, and MIP-2) in BALF, as well as higher levels of TLR4 and NF-κB expression than the LV group (P<0.05). All histopathologic ALI, the inflammatory profile, and pulmonary dynamics have been improved by ghrelin pretreatment (P<0.05). Ghrelin pretreatment also decreased TLR4 expression and NF-κB activity compared with the VILI group (P<0.05). Ghrelin pretreatment attenuated VILI in rats by reducing MV-induced pulmonary inflammation and might represent a novel therapeutic candidate for protection against VILI. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Combining novel technologies with improved logistics to reduce hemodialysis vascular access dysfunction.

    PubMed

    Roy-Chaudhury, P; Lee, T; Duncan, H; El-Khatib, M

    2009-01-01

    Hemodialysis (HD) vascular access dysfunction is currently a huge clinical problem for which there are no effective therapies. There are, however, a number of promising technologies that are currently at the experimental or clinical trial stage. We believe that the application of these novel technologies in combination with better clinical protocols for vascular access care could significantly reduce the current problems associated with HD vascular access.

  13. Vascular conductance is reduced after menthol or cold application.

    PubMed

    Olive, Jennifer L; Hollis, Brandon; Mattson, Elizabeth; Topp, Robert

    2010-09-01

    To compare the effects of commercially sold menthol (3.5%) ointment and cold application on blood flow in the forearm. : Prospective counterbalanced design. University research laboratory. Twelve (6 men and 6 women) college-aged students. Each participant had blood flow measured in the brachial artery for 5 minutes before and 10 minutes after menthol ointment or cold application to the forearm. Blood velocity, arterial diameter size, and blood pressure were recorded during testing procedures. Vascular conductance was calculated based on these measures and used to describe limb blood flow. We observed a significant reduction (35%; P = 0.004) in vascular conductance within 60 seconds of menthol and cold application to the forearm. Vascular conductance remained significantly reduced for 10 minutes by approximately 19% after both menthol and cold application [F(2.313, 43.594) = 10.328, P < 0.0001]. There was no significant difference between conditions [F(1, 19) = 0.000, P = 0.945]. The application of a 3.5% menthol ointment significantly reduces conductance in the brachial artery within 60 seconds of application, and this effect is maintained for at least 10 minutes after application. The overall decline in conductance is similar between menthol ointment and cold application.

  14. Reducing the risk of ventilator-acquired pneumonia through head of bed elevation.

    PubMed

    Keeley, Libby

    2007-01-01

    It has been suggested that placing critically ill ventilated patients in a semirecumbent position minimizes the likelihood of nosocomial pneumonia. This pilot study explores whether the incidence of ventilator-acquired pneumonia (VAP) can be reduced by elevating the head of the bed to 45 degrees. The design is quantitative in nature, using a randomized controlled trial. The method involves adult ventilated patients being randomly assigned to one of two positions, i.e. 45 degrees raised head of bed (treatment group) or 25 degrees raised head of bed (control group). Data collection relied upon the diagnosis of clinically suspected and microbiologically confirmed pneumonia defined by the Consensus Conference on VAP. Thirty patients were included in the study--17 in the treatment group and 13 in the control group. Results showed that 29% (five) in the treatment group and 54% (seven) in the control group contracted VAP (P < 0.176). There was a trend towards a reduction in VAP in the patients nursed at 45 degrees. However, because of the sample size this difference did not reach statistical significance.

  15. Susceptibility to ventilator induced lung injury is increased in senescent rats

    PubMed Central

    2013-01-01

    Introduction The principal mechanisms of ventilator induced lung injury (VILI) have been investigated in numerous animal studies. However, prospective data on the effect of old age on VILI are limited. Under the hypothesis that susceptibility to VILI is increased in old age, we investigated the pulmonary and extrapulmonary effects of mechanical ventilation with high tidal volume (VT) in old compared to young adult animals. Interventions Old (19.1 ± 3.0 months) and young adult (4.4 ± 1.3 months) male Wistar rats were anesthetized and mechanically ventilated (positive end-expiratory pressure 5 cmH2O, fraction of inspired oxygen 0.4, respiratory rate 40/minute) with a tidal volume (VT) of either 8, 16 or 24 ml/kg for four hours. Respiratory and hemodynamic variables, including cardiac output, and markers of systemic inflammation were recorded throughout the ventilation period. Lung histology and wet-to-dry weight ratio, injury markers in lung lavage and respiratory system pressure-volume curves were assessed post mortem. Basic pulmonary characteristics were assessed in non-ventilated animals. Results Compared to young adult animals, high VT (24 ml/kg body weight) caused more lung injury in old animals as indicated by decreased oxygenation (arterial oxygen tension (PaO2): 208 ± 3 vs. 131 ± 20 mmHg; P <0.05), increased lung wet-to-dry-weight ratio (5.61 ± 0.29 vs. 7.52 ± 0.27; P <0.05), lung lavage protein (206 ± 52 mg/l vs. 1,432 ± 101; P <0.05) and cytokine (IL-6: 856 ± 448 vs. 3,283 ± 943 pg/ml; P <0.05) concentration. In addition, old animals ventilated with high VT had more systemic inflammation than young animals (IL-1β: 149 ± 44 vs. 272 ± 36 pg/ml; P <0.05 - young vs. old, respectively). Conclusions Ventilation with unphysiologically large tidal volumes is associated with more lung injury in old compared to young rats. Aggravated pulmonary and systemic inflammation is a key finding in old animals developing VILI. PMID:23710684

  16. Transferrin Receptor 1 in Chronic Hypoxia-Induced Pulmonary Vascular Remodeling.

    PubMed

    Naito, Yoshiro; Hosokawa, Manami; Sawada, Hisashi; Oboshi, Makiko; Hirotani, Shinichi; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Morisawa, Daisuke; Eguchi, Akiyo; Nishimura, Koichi; Soyama, Yuko; Fujii, Kenichi; Mano, Toshiaki; Ishihara, Masaharu; Tsujino, Takeshi; Masuyama, Tohru

    2016-06-01

    Iron is associated with the pathophysiology of several cardiovascular diseases, including pulmonary hypertension (PH). In addition, disrupted pulmonary iron homeostasis has been reported in several chronic lung diseases. Transferrin receptor 1 (TfR1) plays a key role in cellular iron transport. However, the role of TfR1 in the pathophysiology of PH has not been well characterized. In this study, we investigate the role of TfR1 in the development of hypoxia-induced pulmonary vascular remodeling. PH was induced by exposing wild-type (WT) mice and TfR1 hetero knockout mice to hypoxia for 4 weeks and evaluated via assessment of pulmonary vascular remodeling, right ventricular (RV) systolic pressure, and RV hypertrophy. In addition, we assessed the functional role of TfR1 in pulmonary artery smooth muscle cells in vitro. The morphology of pulmonary arteries did not differ between WT mice and TfR1 hetero knockout mice under normoxic conditions. In contrast, TfR1 hetero knockout mice exposed to 4 weeks hypoxia showed attenuated pulmonary vascular remodeling, RV systolic pressure, and RV hypertrophy compared with WT mice. In addition, the depletion of TfR1 by RNA interference attenuated human pulmonary artery smooth muscle cells proliferation induced by platelet-derived growth factor-BB (PDGF-BB) in vitro. These results suggest that TfR1 plays an important role in the development of hypoxia-induced pulmonary vascular remodeling. © American Journal of Hypertension, Ltd 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Vascular targeting of LIGHT normalizes blood vessels in primary brain cancer and induces intratumoural high endothelial venules.

    PubMed

    He, Bo; Jabouille, Arnaud; Steri, Veronica; Johansson-Percival, Anna; Michael, Iacovos P; Kotamraju, Venkata Ramana; Junckerstorff, Reimar; Nowak, Anna K; Hamzah, Juliana; Lee, Gabriel; Bergers, Gabriele; Ganss, Ruth

    2018-06-01

    High-grade brain cancer such as glioblastoma (GBM) remains an incurable disease. A common feature of GBM is the angiogenic vasculature, which can be targeted with selected peptides for payload delivery. We assessed the ability of micelle-tagged, vascular homing peptides RGR, CGKRK and NGR to specifically bind to blood vessels in syngeneic orthotopic GBM models. By using the peptide CGKRK to deliver the tumour necrosis factor (TNF) superfamily member LIGHT (also known as TNF superfamily member 14; TNFSF14) to angiogenic tumour vessels, we have generated a reagent that normalizes the brain cancer vasculature by inducing pericyte contractility and re-establishing endothelial barrier integrity. LIGHT-mediated vascular remodelling also activates endothelia and induces intratumoural high endothelial venules (HEVs), which are specialized blood vessels for lymphocyte infiltration. Combining CGKRK-LIGHT with anti-vascular endothelial growth factor and checkpoint blockade amplified HEV frequency and T-cell accumulation in GBM, which is often sparsely infiltrated by immune effector cells, and reduced tumour burden. Furthermore, CGKRK and RGR peptides strongly bound to blood vessels in freshly resected human GBM, demonstrating shared peptide-binding activities in mouse and human primary brain tumour vessels. Thus, peptide-mediated LIGHT targeting is a highly translatable approach in primary brain cancer to reduce vascular leakiness and enhance immunotherapy. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  18. Inducible nitric oxide synthase and vascular injury.

    PubMed

    Kibbe, M; Billiar, T; Tzeng, E

    1999-08-15

    The role nitric oxide (NO) plays in the cardiovascular system is complex and diverse. Even more controversial is the role that the inducible NO synthase enzyme (iNOS) serves in mediating different aspects of cardiovascular pathophysiology. Following arterial injury, NO has been shown to serve many vasoprotective roles, including inhibition of platelet aggregation and adherence to the site of injury, inhibition of leukocyte adherence, inhibition of vascular smooth muscle cell (VSMC) proliferation and migration, and stimulation of endothelial cell (EC) growth. These properties function together to preserve a normal vascular environment following injury. In this review, we discuss what is known about the involvement of iNOS in the vascular injury response. Additionally, we discuss the beneficial role of iNOS gene transfer to the vasculature in preventing the development of neointimal thickening. Lastly, the pathophysiology of transplant vasculopathy is discussed as well as the role of iNOS in this setting.

  19. 64Cu-ATSM internal radiotherapy to treat tumors with bevacizumab-induced vascular decrease and hypoxia in human colon carcinoma xenografts.

    PubMed

    Yoshii, Yukie; Yoshimoto, Mitsuyoshi; Matsumoto, Hiroki; Furukawa, Takako; Zhang, Ming-Rong; Inubushi, Masayuki; Tsuji, Atsushi B; Fujibayashi, Yasuhisa; Higashi, Tatsuya; Saga, Tsuneo

    2017-10-24

    Bevacizumab, an anti-vascular endothelial growth factor (VEGF) antibody, is an antiangiogenic agent clinically used for various cancers. However, repeated use of this agent leads to tumor-decreased vascularity and hypoxia with activation of an HIF-1 signaling pathway, which results in drug delivery deficiency and induction of malignant behaviors in tumors. Here, we developed a novel strategy to treat tumors with bevacizumab-induced vascular decrease and hypoxia using 64 Cu-diacetyl-bis ( N 4 -methylthiosemicarbazone) ( 64 Cu-ATSM), a potential theranostic agent, which possesses high tissue permeability and can target over-reduced conditions under hypoxia in tumors, with a human colon carcinoma HT-29 tumor-bearing mouse model. The long-term treatment with bevacizumab caused decreased blood vessel density and activation of an HIF-1 signaling pathway; increased uptake of 64 Cu-ATSM was also observed despite limited blood vessel density in HT-29 tumors. In vivo high-resolution SPECT/PET/CT imaging confirmed reduced vascularity and increased proportion of 64 Cu-ATSM uptake areas within the bevacizumab-treated tumors. 64 Cu-ATSM therapy was effective to inhibit tumor growth and prolong survival of the bevacizumab-treated tumor-bearing mice without major adverse effects. In conclusion, 64 Cu-ATSM therapy effectively enhanced anti-tumor effects in tumors with bevacizumab-induced vascular decrease and hypoxia. 64 Cu-ATSM therapy could represent a novel approach as an add-on to antiangiogenic therapy.

  20. Lack of phosphoinositide 3-kinase-gamma attenuates ventilator-induced lung injury.

    PubMed

    Lionetti, Vincenzo; Lisi, Alberto; Patrucco, Enrico; De Giuli, Paolo; Milazzo, Maria Giovanna; Ceci, Simone; Wymann, Matthias; Lena, Annalisa; Gremigni, Vittorio; Fanelli, Vito; Hirsch, Emilio; Ranieri, V Marco

    2006-01-01

    G protein-coupled receptors may up-regulate the inflammatory response elicited by ventilator-induced lung injury but also regulate cell survival via protein kinase B (Akt) and extracellular signal regulated kinases 1/2 (ERK1/2). The G protein-sensitive phosphoinositide-3-kinase gamma (PI3Kgamma) regulates several cellular functions including inflammation and cell survival. We explored the role of PI3Kgamma on ventilator-induced lung injury. Prospective, randomized, experimental study. University animal research laboratory. Wild-type (PI3Kgamma), knock-out (PI3Kgamma ), and kinase-dead (PI3Kgamma) mice. Three ventilatory strategies (no stretch, low stretch, high stretch) were studied in an isolated, nonperfused model of acute lung injury (lung lavage) in PI3Kgamma, PI3Kgamma, and PI3Kgamma mice. Reduction in lung compliance, hyaline membrane formation, and epithelial detachment with high stretch were more pronounced in PI3Kgamma than in PI3Kgamma and PI3Kgamma (p < .01). Inflammatory cytokines and IkBalpha phosphorylation with high stretch did not differ among PI3Kgamma, PI3Kgamma, and PI3Kgamma. Apoptotic index (terminal deoxynucleotidyl transferase-mediated biotin-dUTP nick-end labeling) and caspase-3 (immunohistochemistry) with high stretch were larger (p < .01) in PI3Kgamma and PI3Kgamma than in PI3Kgamma. Electron microscopy showed that high stretch caused apoptotic changes in alveolar cells of PI3Kgamma mice whereas PI3Kgamma mice showed necrosis. Phosphorylation of Akt and ERK1/2 with high stretch was more pronounced in PI3Kgamma than in PI3Kgamma and PI3Kgamma (p < .01). Silencing PI3Kgamma seems to attenuate functional and morphological consequences of ventilator-induced lung injury independently of inhibitory effects on cytokines release but through the enhancement of pulmonary apoptosis.

  1. Inhibition of leptin-induced vascular extracellular matrix remodelling by adiponectin.

    PubMed

    Zhang, Zhi; Wang, Fang; Wang, Bing-Jian; Chu, Guang; Cao, Qunan; Sun, Bao-Gui; Dai, Qiu-Yan

    2014-10-01

    Vascular extracellular matrix (ECM) remodelling, which is the result of disruption in the balance of ECM synthesis and degradation, induces vessel fibrosis and thereby leads to hypertension. Leptin is known to promote tissue fibrosis, while adiponectin has recently been demonstrated to be anti-fibrogenic in tissue fibrosis. In this study, we aimed to evaluate the leptin-antagonist function of adiponectin and to further elucidate the mechanisms through which adiponectin dampens leptin signalling in vascular smooth muscle cells, thus preventing excess ECM production, in our already established 3D co-culture vessel models. Our 3D co-culture vessel model, which mimics true blood vessels, is composed of vascular endothelial cells, vascular smooth muscle cells and collagen type I. We validated the profibrogenic effects of leptin and analysed matrix metalloproteinase 2 (MMP2), MMP9, tissue inhibitor of metalloproteinase 1 (TIMP1) and collagen types II/IV secretion in 3D vessel models. The protective/inhibitory effects of adiponectin were re-analysed by inhibiting adiponectin receptor 1 (AdipoR) and AdipoR2 expression in endothelial cells using RNAi technology. In the 3D vessel models, adiponectin blocked the leptin-stimulated secretion of collagen types II/IV and TIMP1 while significantly increasing MMP2/9 activity. In endothelial cells, adiponectin induced phosphorylation of AMPK, thereby suppressing leptin-mediated STAT3 phosphorylation through induction of SOCS3 in smooth muscle cells. Our findings indicate that adiponectin disrupted the leptin-induced vascular ECM remodelling via AdipoR1 and enhanced AMPK signalling in endothelial cells, which, in turn, promoted SOCS3 up-regulation in smooth muscle cells to repress leptin-stimulated phosphorylation of STAT3. © 2014 The authors.

  2. Inhibition of leptin-induced vascular extracellular matrix remodelling by adiponectin

    PubMed Central

    Zhang, Zhi; Wang, Fang; Wang, Bing-jian; Chu, Guang; Cao, Qunan; Sun, Bao-Gui; Dai, Qiu-Yan

    2014-01-01

    Vascular extracellular matrix (ECM) remodelling, which is the result of disruption in the balance of ECM synthesis and degradation, induces vessel fibrosis and thereby leads to hypertension. Leptin is known to promote tissue fibrosis, while adiponectin has recently been demonstrated to be anti-fibrogenic in tissue fibrosis. In this study, we aimed to evaluate the leptin-antagonist function of adiponectin and to further elucidate the mechanisms through which adiponectin dampens leptin signalling in vascular smooth muscle cells, thus preventing excess ECM production, in our already established 3D co-culture vessel models. Our 3D co-culture vessel model, which mimics true blood vessels, is composed of vascular endothelial cells, vascular smooth muscle cells and collagen type I. We validated the profibrogenic effects of leptin and analysed matrix metalloproteinase 2 (MMP2), MMP9, tissue inhibitor of metalloproteinase 1 (TIMP1) and collagen types II/IV secretion in 3D vessel models. The protective/inhibitory effects of adiponectin were re-analysed by inhibiting adiponectin receptor 1 (AdipoR) and AdipoR2 expression in endothelial cells using RNAi technology. In the 3D vessel models, adiponectin blocked the leptin-stimulated secretion of collagen types II/IV and TIMP1 while significantly increasing MMP2/9 activity. In endothelial cells, adiponectin induced phosphorylation of AMPK, thereby suppressing leptin-mediated STAT3 phosphorylation through induction of SOCS3 in smooth muscle cells. Our findings indicate that adiponectin disrupted the leptin-induced vascular ECM remodelling via AdipoR1 and enhanced AMPK signalling in endothelial cells, which, in turn, promoted SOCS3 up-regulation in smooth muscle cells to repress leptin-stimulated phosphorylation of STAT3. PMID:24982243

  3. Postmortem and ex vivo carbon monoxide ventilation reduces injury in rat lungs transplanted from non-heart-beating donors.

    PubMed

    Dong, Boming; Stewart, Paul W; Egan, Thomas M

    2013-08-01

    We sought to determine whether ventilation of lungs after death in non-heart-beating donors with carbon monoxide during warm ischemia and ex vivo lung perfusion and after transplant would reduce ischemia-reperfusion injury and improve lung function. One hour after death, Sprague-Dawley rats were ventilated for another hour with 60% oxygen (control group) or 500 ppm carbon monoxide in 60% oxygen (CO-vent group; n=6/group). Then, lungs were flushed with 20 mL cold Perfadex, stored cold for 1 hour, then warmed to 37 °C in an ex vivo lung perfusion circuit perfused with Steen solution. At 37 °C, lungs were ventilated for 15 minutes with alveolar gas with or without 500 ppm carbon monoxide, then perfusion-cooled to 20 °C, flushed with cold Perfadex and stored cold for 2 hours. The left lung was transplanted using a modified cuff technique. Recipients were ventilated with 60% oxygen with or without carbon monoxide. One hour after transplant, we measured blood gases from the left pulmonary vein and aorta, and wet-to-dry ratio of both lungs. The RNA and protein extracted from graft lungs underwent real-time polymerase chain reaction and Western blotting, and measurement of cyclic guanosine monophosphate by enzyme-linked immunosorbent assay. Carbon monoxide ventilation begun 1 hour after death reduced wet/dry ratio after ex vivo lung perfusion. After transplantation, the carbon monoxide-ventilation group had better oxygenation; higher levels of tissue cyclic guanosine monophosphate, heme oxidase-1 expression, and p38 phosphorylation; reduced c-Jun N-terminal kinase phosphorylation; and reduced expression of interleukin-6 and interleukin-1β messenger RNA. Administration of carbon monoxide to the deceased donor and non-heart-beating donor lungs reduces ischemia-reperfusion injury in rat lungs transplanted from non-heart-beating donors. Therapy to the deceased donor via the airway may improve post-transplant lung function. Copyright © 2013 The American Association for

  4. Endothelial Estrogen Receptor-α Does Not Protect Against Vascular Stiffness Induced by Western Diet in Female Mice.

    PubMed

    Manrique, Camila; Lastra, Guido; Ramirez-Perez, Francisco I; Haertling, Dominic; DeMarco, Vincent G; Aroor, Annayya R; Jia, Guanghong; Chen, Dongqing; Barron, Brady J; Garro, Mona; Padilla, Jaume; Martinez-Lemus, Luis A; Sowers, James R

    2016-04-01

    Consumption of a diet high in fat and refined carbohydrates (Western diet [WD]) is associated with obesity and insulin resistance, both major risk factors for cardiovascular disease (CVD). In women, obesity and insulin resistance abrogate the protection against CVD likely afforded by estrogen signaling through estrogen receptor (ER)α. Indeed, WD in females results in increased vascular stiffness, which is independently associated with CVD. We tested the hypothesis that loss of ERα signaling in the endothelium exacerbates WD-induced vascular stiffening in female mice. We used a novel model of endothelial cell (EC)-specific ERα knockout (EC-ERαKO), obtained after sequential crossing of the ERα double floxed mice and VE-Cadherin Cre-recombinase mice. Ten-week-old females, EC-ERαKO and aged-matched genopairs were fed either a regular chow diet (control diet) or WD for 8 weeks. Vascular stiffness was measured in vivo by pulse wave velocity and ex vivo in aortic explants by atomic force microscopy. In addition, vascular reactivity was assessed in isolated aortic rings. Initial characterization of the model fed a control diet did not reveal changes in whole-body insulin sensitivity, aortic vasoreactivity, or vascular stiffness in the EC-ERαKO mice. Interestingly, ablation of ERα in ECs reduced WD-induced vascular stiffness and improved endothelial-dependent dilation. In the setting of a WD, endothelial ERα signaling contributes to vascular stiffening in females. The precise mechanisms underlying the detrimental effects of endothelial ERα in the setting of a WD remain to be elucidated.

  5. Imaging Retinal Vascular Changes in the Mouse Model of Oxygen-Induced Retinopathy

    PubMed Central

    Furtado, João M.; Davies, Michael H.; Choi, Dongseok; Lauer, Andreas K.; Appukuttan, Binoy; Bailey, Steven T.; Rahman, Hassan T.; Payne, John F.; Stempel, Andrew J.; Mohs, Kathleen; Powers, Michael R.; Yeh, Steven; Smith, Justine R.

    2012-01-01

    Purpose Oxygen-induced retinopathy in the mouse is the standard experimental model of retinopathy of prematurity. Assessment of the pathology involves in vitro analysis of retinal vaso-obliteration and retinal neovascularization. The authors studied the clinical features of oxygen-induced retinopathy in vivo using topical endoscopy fundus imaging (TEFI), in comparison to standard investigations, and evaluated a system for grading these features. Methods Postnatal day (P)7 mice were exposed to 75% oxygen for five days to induce retinopathy or maintained in room air as controls. Retinal vascular competence was graded against standard photographs by three masked graders. Retinal photographs were obtained at predetermined ages using TEFI. Postmortem, retinal vaso-obliteration was measured in whole mounts with labeled vasculature, and retinal neovascularization was quantified in hematoxylin- and eosin-stained ocular cross sections. Results Fundus photography by TEFI was possible from P15, when retinal vascular incompetence, including dilatation and tortuosity, was significant in mice with oxygen-induced retinopathy in comparison to controls. Vascular incompetence peaked in severity at P17 and persisted through P25. Comparison with in vitro analyses indicated that vascular changes were most severe after retinal avascularity had begun to decrease in area, and coincident with the maximum of retinal neovascularization. A weighted Fleiss-Cohen kappa indicated good intra- and interobserver agreement for a 5-point grading system. Conclusions Topical endoscopy fundus imaging demonstrates retinal vascular incompetence in mice with oxygen-induced retinopathy. The technique complements standard postmortem analysis for following the course of the model. Translational Relevance Topical endoscopy fundus imaging has application in the evaluation of novel biologic drugs for retinopathy of prematurity. PMID:24049705

  6. Vascular and antioxidant effects of an aqueous Mentha cordifolia extract in experimental N(G)-nitro-L-arginine methyl ester-induced hypertension.

    PubMed

    Pakdeechote, Poungrat; Prachaney, Parichat; Berkban, Warinee; Kukongviriyapan, Upa; Kukongviriyapan, Veerapol; Khrisanapant, Wilaiwan; Phirawatthakul, Yada

    2014-01-01

    The effect of an aqueous Mentha cordifolia (MC) extract on the haemodynamic status, vascular remodeling, function, and oxidative status in NG-nitro-L-arginine methyl ester (L-NAME)-induced hypertension was investigated. Male Sprague-Dawley rats were given L-NAME [50 mg/(kg body weight (BW) d)] in their drinking water for 5 weeks and were treated by intragastric administration with the MC extract [200 mg/(kgBWd)] for 2 consecutive weeks. Quercetin [25 mg/(kg BW d)] was used as a positive control. The effects of the MC extract on the haemodynamic status, thoracic aortic wall thickness, and oxidative stress markers were determined, and the vasorelaxant activity of the MC extract was tested in isolated mesenteric vascular beds in rats. Significant increases in the mean arterial pressure (MAP), heart rate (HR), hind limb vascular resistance (HVR), wall thickness, and cross-sectional area of the thoracic aorta, as well as oxidative stress markers were found in the L-NAME-treated group compared to the control (P < 0.05). MAP, HVR, wall thickness, cross-sectional area of the thoracic aorta, plasma malondialdehyde (MDA), and vascular superoxide anion production were significantly reduced in L-NAME hypersensitive rats treated with the MC extract or quercetin. Furthermore, the MC extract induced vasorelaxation in the pre-constricted mesenteric vascular bed with intact and denuded endothelium of normotensive and hypertensive rats. Our results suggest that the MC extract exhibits an antihypertensive effect via its antioxidant capacity, vasodilator property, and reduced vascular remodeling.

  7. Sulforaphane reduces vascular inflammation in mice and prevents TNF-α-induced monocyte adhesion to primary endothelial cells through interfering with the NF-κB pathway

    PubMed Central

    Nallasamy, Palanisamy; Si, Hongwei; Babu, Pon Velayutham Anandh; Pan, Dengke; Fu, Yu; Brooke, Elizabeth A.S.; Shah, Halley; Zhen, Wei; Zhu, Hong; Liu, Dongmin; Li, Yunbo; Jia, Zhenquan

    2014-01-01

    Sulforaphane, a naturally-occurring isothiocyanate present in cruciferous vegetables, has received wide attention for its potential to improve vascular function in vitro. However, its effect in vivo and the molecular mechanism of sulforaphane at physiological concentrations remain unclear. Here, we report that a sulforaphane concentration as low as 0.5 μM significantly inhibited TNF-α-induced adhesion of monocytes to human umbilical vein endothelial cells (HUVECs), a key event in the pathogenesis of atherosclerosis both in static and under flow conditions. Such physiological concentrations of sulforaphane also significantly suppressed TNF-α-induced production of monocyte chemotactic protein-1 (MCP-1), adhesion molecule sVCAM-1 and sE-Selectin, key mediators in the regulation of enhanced endothelial cell-monocyte interaction. Furthermore, sulforaphane inhibited TNF-α-induced NF-κB transcriptional activity, IκBα degradation and subsequent NF-κB p65 nuclear translocation in endothelial cells, suggesting that sulforaphane can inhibit inflammation by suppressing NF-κB signaling. In an animal study, sulforaphane (300 ppm) in a mouse diet significantly abolished TNF-α-increased ex vivo monocyte adhesion and circulating adhesion molecules and chemokines in C57BL/6 mice. Histology showed that sulforaphane treatment significantly prevented the eruption of endothelial lining in the intima layer of the aorta and preserved elastin fibers’ delicate organization as shown by Verhoeff-van Gieson staining. Immunohistochemistry studies showed that sulforaphane treatment also reduced VCAM-1 and monocytes-derived F4/80-positive macrophages in the aorta of TNF-α-treated mice. In conclusion, sulforaphane at physiological concentrations protects against TNF-α-induced vascular endothelial inflammation, in both in vitro and in vivo models. This anti-inflammatory effect of sulforaphane may be, at least in part, associated with interfering with the NF-κB pathway. PMID:24880493

  8. Mechanical ventilation induces myokine expression and catabolism in peripheral skeletal muscle in pigs

    USDA-ARS?s Scientific Manuscript database

    Endotoxin (LPS)-induced sepsis increases circulating cytokines which have been associated with skeletal muscle catabolism. During critical illness, it has been postulated that muscle wasting associated with mechanical ventilation (MV) occurs due to inactivity. We hypothesize that MV and sepsis promo...

  9. C5a induces caspase-dependent apoptosis in brain vascular endothelial cells in experimental lupus.

    PubMed

    Mahajan, Supriya D; Tutino, Vincent M; Redae, Yonas; Meng, Hui; Siddiqui, Adnan; Woodruff, Trent M; Jarvis, James N; Hennon, Teresa; Schwartz, Stanley; Quigg, Richard J; Alexander, Jessy J

    2016-08-01

    Blood-brain barrier (BBB) dysfunction complicates central nervous system lupus, an important aspect of systemic lupus erythematosus. To gain insight into the underlying mechanism, vascular corrosion casts of brain were generated from the lupus mouse model, MRL/lpr mice and the MRL/MpJ congenic controls. Scanning electron microscopy of the casts showed loss of vascular endothelial cells in lupus mice compared with controls. Immunostaining revealed a significant increase in caspase 3 expression in the brain vascular endothelial cells, which suggests that apoptosis could be an important mechanism causing cell loss, and thereby loss of BBB integrity. Complement activation occurs in lupus resulting in increased generation of circulating C5a, which caused the endothelial layer to become 'leaky'. In this study, we show that C5a and lupus serum induced apoptosis in cultured human brain microvascular endothelial cells (HBMVECs), whereas selective C5a receptor 1 (C5aR1) antagonist reduced apoptosis in these cells, demonstrating C5a/C5aR1-dependence. Gene expression of initiator caspases, caspase 1 and caspase 8, and pro-apoptotic proteins death-associated protein kinase 1, Fas-associated protein (FADD), cell death-inducing DNA fragmentation factor 45 000 MW subunit A-like effector B (CIDEB) and BCL2-associated X protein were increased in HBMVECs treated with lupus serum or C5a, indicating that both the intrinsic and extrinsic apoptotic pathways could be critical mediators of brain endothelial cell apoptosis in this setting. Overall, our findings suggest that C5a/C5aR1 signalling induces apoptosis through activation of FADD, caspase 8/3 and CIDEB in brain endothelial cells in lupus. Further elucidation of the underlying apoptotic mechanisms mediating the reduced endothelial cell number is important in establishing the potential therapeutic effectiveness of C5aR1 inhibition that could prevent and/or reduce BBB alterations and preserve the physiological function of BBB in

  10. Adverse Heart-Lung Interactions in Ventilator-induced Lung Injury.

    PubMed

    Katira, Bhushan H; Giesinger, Regan E; Engelberts, Doreen; Zabini, Diana; Kornecki, Alik; Otulakowski, Gail; Yoshida, Takeshi; Kuebler, Wolfgang M; McNamara, Patrick J; Connelly, Kim A; Kavanagh, Brian P

    2017-12-01

    In the original 1974 in vivo study of ventilator-induced lung injury, Webb and Tierney reported that high Vt with zero positive end-expiratory pressure caused overwhelming lung injury, subsequently shown by others to be due to lung shear stress. To reproduce the lung injury and edema examined in the Webb and Tierney study and to investigate the underlying mechanism thereof. Sprague-Dawley rats weighing approximately 400 g received mechanical ventilation for 60 minutes according to the protocol of Webb and Tierney (airway pressures of 14/0, 30/0, 45/10, 45/0 cm H 2 O). Additional series of experiments (20 min in duration to ensure all animals survived) were studied to assess permeability (n = 4 per group), echocardiography (n = 4 per group), and right and left ventricular pressure (n = 5 and n = 4 per group, respectively). The original Webb and Tierney results were replicated in terms of lung/body weight ratio (45/0 > 45/10 ≈ 30/0 ≈ 14/0; P < 0.05) and histology. In 45/0, pulmonary edema was overt and rapid, with survival less than 30 minutes. In 45/0 (but not 45/10), there was an increase in microvascular permeability, cyclical abolition of preload, and progressive dilation of the right ventricle. Although left ventricular end-diastolic pressure decreased in 45/10, it increased in 45/0. In a classic model of ventilator-induced lung injury, high peak pressure (and zero positive end-expiratory pressure) causes respiratory swings (obliteration during inspiration) in right ventricular filling and pulmonary perfusion, ultimately resulting in right ventricular failure and dilation. Pulmonary edema was due to increased permeability, which was augmented by a modest (approximately 40%) increase in hydrostatic pressure. The lung injury and acute cor pulmonale is likely due to pulmonary microvascular injury, the mechanism of which is uncertain, but which may be due to cyclic interruption and exaggeration of pulmonary blood flow.

  11. A study of the protective effect and mechanism of ketamine on acute lung injury induced by mechanical ventilation.

    PubMed

    Wang, W-F; Liu, S; Xu, B

    2017-03-01

    To investigate the protective effects and mechanism of ketamine on acute lung injury induced by mechanical ventilation. 63 patients with acute lung injury caused by mechanical ventilation in our hospital between June 2014 and May 2015 were chosen and divided into three groups: group A, B, and C. Group A (20 cases) received conventional treatment. Group B (21 cases) was treated with propofol and group C (22 cases) with ketamine. The ventilator application time, the success rate of weaning, the mortality rate, inflammation index (IL-1, Caspase-1, and NF-κB), pulmonary function index and oxygen saturation were compared. The ventilator application time and the mortality rate of group B and group C were significantly (p < 0.05) lower than those of group A. The success rate of weaning of groups B and C was higher (p < 0.05) than that of group A. There was no difference between groups B and C. After intervention, the levels of PaO2 and SpO2 in the three groups increased, while the level of PaCO2decreased with better improvement in group B and group C than in group A (p < 0.05), groups B and C being similar (p > 0.05). After the intervention, the levels of FEV1, FEV1/FVC, FVC and PEER in the three groups increased, but more remarkably in group B and group C (p < 0.05), in which there was no difference. After the intervention, the levels of IL-1β, Caspase-1, and NF-κB in the three groups decreased with the levels of group C obviously lower (p < 0.05) than those of groups B and A, the highest. Both ketamine and propofol can improve the blood gas and pulmonary function index of patients with acute lung injury caused by mechanical ventilation. They shorten the application time of ventilator, improve the success rate of weaning and reduce the mortality rate which is probably related to the reduction of the degree of inflammatory reaction. Ketamine is more effective in reducing inflammatory factors including IL-1β, Caspase-1, and NF-κB than propofol.

  12. Information entropy-based fitting of the disease trajectory of brain ischemia-induced vascular cognitive impairment.

    PubMed

    Liu, Lin; Huo, Ju; Zhao, Ying; Tian, Yu

    2012-03-25

    The present study investigated the disease trajectory of vascular cognitive impairment using the entropy of information in a neural network mathematical simulation based on the free radical and excitatory amino acids theories. Glutamate, malondialdehyde, and inducible nitric oxide synthase content was significantly elevated, but acetylcholine, catalase, superoxide dismutase, glutathione peroxidase and constitutive nitric oxide synthase content was significantly decreased in our vascular cognitive impairment model. The fitting curves for each factor were obtained using Matlab software. Nineteen, 30 and 49 days post ischemia were the main output time frames of the influence of these seven factors. Our results demonstrated that vascular cognitive impairment involves multiple factors. These factors include excitatory amino acid toxicity and nitric oxide toxicity. These toxicities disrupt the dynamic equilibrium of the production and removal of oxygen free radicals after cerebral ischemia, reducing the ability to clear oxygen free radicals and worsening brain injury.

  13. Disruption of TGF-β signaling in smooth muscle cell prevents flow-induced vascular remodeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Fu; Chambon, Pierre; Tellides, George

    Highlights: • TGF-β signaling in SMC contributes to the flow-induced vascular remodeling. • Disruption of TGF-β signaling in SMC can prevent this process. • Targeting SM-specific Tgfbr2 could be a novel therapeutic strategy for vascular remodeling. - Abstract: Transforming growth factor-β (TGF-β) signaling has been prominently implicated in the pathogenesis of vascular remodeling, especially the initiation and progression of flow-induced vascular remodeling. Smooth muscle cells (SMCs) are the principal resident cells in arterial wall and are critical for arterial remodeling. However, the role of TGF-β signaling in SMC for flow-induced vascular remodeling remains unknown. Therefore, the goal of our studymore » was to determine the effect of TGF-β pathway in SMC for vascular remodeling, by using a genetical smooth muscle-specific (SM-specific) TGF-β type II receptor (Tgfbr2) deletion mice model. Mice deficient in the expression of Tgfbr2 (MyhCre.Tgfbr2{sup f/f}) and their corresponding wild-type background mice (MyhCre.Tgfbr2{sup WT/WT}) underwent partial ligation of left common carotid artery for 1, 2, or 4 weeks. Then the carotid arteries were harvested and indicated that the disruption of Tgfbr2 in SMC provided prominent inhibition of vascular remodeling. And the thickening of carotid media, proliferation of SMC, infiltration of macrophage, and expression of matrix metalloproteinase (MMP) were all significantly attenuated in Tgfbr2 disruption mice. Our study demonstrated, for the first time, that the TGF-β signaling in SMC plays an essential role in flow-induced vascular remodeling and disruption can prevent this process.« less

  14. Study of the therapeutic benefit of cationic copolymer administration to vascular endothelium under mechanical stress

    PubMed Central

    Giantsos-Adams, Kristina; Lopez-Quintero, Veronica; Kopeckova, Pavla; Kopecek, Jindrich; Tarbell, John M.; Dull, Randal

    2015-01-01

    Pulmonary edema and the associated increases in vascular permeability continue to represent a significant clinical problem in the intensive care setting, with no current treatment modality other than supportive care and mechanical ventilation. Therapeutic compound(s) capable of attenuating changes in vascular barrier function would represent a significant advance in critical care medicine. We have previously reported the development of HPMA-based copolymers, targeted to endothelial glycocalyx that are able to enhance barrier function. In this work, we report the refinement of copolymer design and extend our physiological studies todemonstrate that the polymers: 1) reduce both shear stress and pressure-mediated increase in hydraulic conductivity, 2) reduce nitric oxide production in response to elevated hydrostatic pressure and, 3) reduce the capillary filtration coefficient (Kfc) in an isolated perfused mouse lung model. These copolymers represent an important tool for use in mechanotransduction research and a novel strategy for developing clinically useful copolymers for the treatment of vascular permeability. PMID:20932573

  15. 64Cu-ATSM internal radiotherapy to treat tumors with bevacizumab-induced vascular decrease and hypoxia in human colon carcinoma xenografts

    PubMed Central

    Yoshii, Yukie; Yoshimoto, Mitsuyoshi; Matsumoto, Hiroki; Furukawa, Takako; Zhang, Ming-Rong; Inubushi, Masayuki; Tsuji, Atsushi B.; Fujibayashi, Yasuhisa; Higashi, Tatsuya; Saga, Tsuneo

    2017-01-01

    Bevacizumab, an anti-vascular endothelial growth factor (VEGF) antibody, is an antiangiogenic agent clinically used for various cancers. However, repeated use of this agent leads to tumor-decreased vascularity and hypoxia with activation of an HIF-1 signaling pathway, which results in drug delivery deficiency and induction of malignant behaviors in tumors. Here, we developed a novel strategy to treat tumors with bevacizumab-induced vascular decrease and hypoxia using 64Cu-diacetyl-bis (N4-methylthiosemicarbazone) (64Cu-ATSM), a potential theranostic agent, which possesses high tissue permeability and can target over-reduced conditions under hypoxia in tumors, with a human colon carcinoma HT-29 tumor-bearing mouse model. The long-term treatment with bevacizumab caused decreased blood vessel density and activation of an HIF-1 signaling pathway; increased uptake of 64Cu-ATSM was also observed despite limited blood vessel density in HT-29 tumors. In vivo high-resolution SPECT/PET/CT imaging confirmed reduced vascularity and increased proportion of 64Cu-ATSM uptake areas within the bevacizumab-treated tumors. 64Cu-ATSM therapy was effective to inhibit tumor growth and prolong survival of the bevacizumab-treated tumor-bearing mice without major adverse effects. In conclusion, 64Cu-ATSM therapy effectively enhanced anti-tumor effects in tumors with bevacizumab-induced vascular decrease and hypoxia. 64Cu-ATSM therapy could represent a novel approach as an add-on to antiangiogenic therapy. PMID:29179478

  16. Microparticle Shedding by Erythrocytes, Monocytes and Vascular Smooth Muscular Cells Is Reduced by Aspirin in Diabetic Patients.

    PubMed

    Chiva-Blanch, Gemma; Suades, Rosa; Padró, Teresa; Vilahur, Gemma; Peña, Esther; Ybarra, Juan; Pou, Jose M; Badimon, Lina

    2016-07-01

    Diabetes mellitus is associated with an enhanced risk for cardiovascular disease and its prevalence is increasing. Diabetes induces metabolic stress on blood and vascular cells, promoting platelet activation and vascular dysfunction. The level of vascular cell activation can be measured by the number and phenotype of microparticles found in the circulation. The aim of this study was to investigate the effect of a platelet-inhibitory dose of aspirin on the number and type of microparticles shed to the circulation. Forty-three diabetic patients were enrolled in the study and received a daily dose of 100mg of aspirin for 10 days to cover the average platelet life-span in the circulation. Before and after the intervention period, circulating microparticles were characterized and quantified by flow cytometry. Type 1 diabetic patients had about twice the number of tissue factor-positive circulating microparticles (derived both from platelets and monocytes) and endothelial-derived E-selectin positive microparticles than type 2 diabetic patients. Aspirin therapy significantly inhibited platelets since cyclooxygenase 1 derived thromboxane generation levels were reduced by 99%. Microparticles derived from erythrocytes, activated monocytes, and smooth muscle cells were significantly reduced after 10 days of aspirin administration. These results indicate that: a) vascular and blood cells in type 1 diabetic patients are exposed to more sustained stress shown by their specific microparticle origin and levels; b) aspirin therapy inhibits vascular wall cell activation and microparticle shedding, and c) the effects of aspirin are similar in type 1 and 2 diabetes. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  17. Selective head cooling during neonatal seizures prevents postictal cerebral vascular dysfunction without reducing epileptiform activity

    PubMed Central

    Harsono, Mimily; Pourcyrous, Massroor; Jolly, Elliott J.; de Jongh Curry, Amy; Fedinec, Alexander L.; Liu, Jianxiong; Basuroy, Shyamali; Zhuang, Daming; Leffler, Charles W.

    2016-01-01

    Epileptic seizures in neonates cause cerebrovascular injury and impairment of cerebral blood flow (CBF) regulation. In the bicuculline model of seizures in newborn pigs, we tested the hypothesis that selective head cooling prevents deleterious effects of seizures on cerebral vascular functions. Preventive or therapeutic ictal head cooling was achieved by placing two head ice packs during the preictal and/or ictal states, respectively, for the ∼2-h period of seizures. Head cooling lowered the brain and core temperatures to 25.6 ± 0.3 and 33.5 ± 0.1°C, respectively. Head cooling had no anticonvulsant effects, as it did not affect the bicuculline-evoked electroencephalogram parameters, including amplitude, duration, spectral power, and spike frequency distribution. Acute and long-term cerebral vascular effects of seizures in the normothermic and head-cooled groups were tested during the immediate (2–4 h) and delayed (48 h) postictal periods. Seizure-induced cerebral vascular injury during the immediate postictal period was detected as terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive staining of cerebral arterioles and a surge of brain-derived circulating endothelial cells in peripheral blood in the normothermic group, but not in the head-cooled groups. During the delayed postictal period, endothelium-dependent cerebral vasodilator responses were greatly reduced in the normothermic group, indicating impaired CBF regulation. Preventive or therapeutic ictal head cooling mitigated the endothelial injury and greatly reduced loss of postictal cerebral vasodilator functions. Overall, head cooling during seizures is a clinically relevant approach to protecting the neonatal brain by preventing cerebrovascular injury and the loss of the endothelium-dependent control of CBF without reducing epileptiform activity. PMID:27591217

  18. Methods to reduce the CO(2) concentration of educational buildings utilizing internal ventilation by transferred air.

    PubMed

    Kalema, T; Viot, M

    2014-02-01

    The aim of this study is to develop internal ventilation by transferred air to achieve a good indoor climate with low energy consumption in educational buildings with constant air volume (CAV) ventilation. Both measurements of CO2 concentration and a multi-room calculation model are presented. The study analyzes how to use more efficiently the available spaces and the capacity of CAV ventilation systems in existing buildings and the impact this has on the indoor air quality and the energy consumption of the ventilation. The temperature differences can be used to create natural ventilation airflows between neighboring spaces. The behavior of temperature-driven airflows between rooms was studied and included in the calculation model. The effect of openings between neighboring spaces, such as doors or large apertures in the walls, on the CO2 concentration was studied in different classrooms. The air temperatures and CO2 concentrations were measured using a wireless, internet-based measurement system. The multi-room calculation model predicted the CO2 concentration in the rooms, which was then compared with the measured ones. Using transferred air between occupied and unoccupied spaces can noticeably reduce the total mechanical ventilation rates needed to keep a low CO2 concentration. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Hepatic overexpression of the prodomain of furin lessens progression of atherosclerosis and reduces vascular remodeling in response to injury.

    PubMed

    Lei, Xia; Basu, Debapriya; Li, Zhiqiang; Zhang, Maoxiang; Rudic, R Dan; Jiang, Xian-Cheng; Jin, Weijun

    2014-09-01

    Atherosclerosis is a complex disease, involving elevated LDL-c, lipid accumulation in the blood vessel wall, foam cell formation and vascular dysfunction. Lowering plasma LDL-c is the cornerstone of current management of cardiovascular disease. However, new approaches which reduce plasma LDL-c and lessen the pathological vascular remodeling occurring in the disease should also have therapeutic value. Previously, we found that overexpression of profurin, the 83-amino acid prodomain of the proprotein convertase furin, lowered plasma HDL levels in wild-type mice. The question that remained was whether it had effects on apolipoprotein B (ApoB)-containing lipoproteins. Adenovirus mediated overexpression of hepatic profurin in Ldlr(-/-)mice and wild-type mice were used to evaluate effects of profurin on ApoB-containing lipoproteins, atherosclerosis and vascular remodeling. Hepatic profurin overexpression resulted in a significant reduction in atherosclerotic lesion development in Ldlr(-/-)mice and a robust reduction in plasma LDL-c. Metabolic studies revealed lower secretion of ApoB and triglycerides in VLDL particles. Mechanistic studies showed that in the presence of profurin, hepatic ApoB, mainly ApoB100, was degraded by proteasomes. There was no effect on ApoB mRNA expression. Importantly, short-term hepatic profurin overexpression did not result in hepatic lipid accumulation. Blood vessel wall thickening caused by either wire-induced femoral artery injury or common carotid artery ligation was reduced. Profurin expression inhibited proliferation and migration in vascular smooth muscle cells in vitro. These results indicate that a profurin-based therapy has the potential to treat atherosclerosis by improving metabolic lipid profiles and reducing both atherosclerotic lesion development and pathological vascular remodeling. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Curcumin and folic acid abrogated methotrexate induced vascular endothelial dysfunction.

    PubMed

    Sankrityayan, Himanshu; Majumdar, Anuradha S

    2016-01-01

    Methotrexate, an antifolate drug widely used in rheumatoid arthritis, psoriasis, and cancer, is known to cause vascular endothelial dysfunction by causing hyperhomocysteinemia, direct injury to endothelium or by increasing the oxidative stress (raising levels of 7,8-dihydrobiopterin). Curcumin is a naturally occurring polyphenol with strong antioxidant and anti-inflammatory action and therapeutic spectra similar to that of methotrexate. This study was performed to evaluate the effects of curcumin on methotrexate induced vascular endothelial dysfunction and also compare its effect with that produced by folic acid (0.072 μg·g(-1)·day(-1), p.o., 2 weeks) per se and in combination. Male Wistar rats were exposed to methotrexate (0.35 mg·kg(-1)·day(-1), i.p.) for 2 weeks to induce endothelial dysfunction. Methotrexate exposure led to shedding of endothelium, decreased vascular reactivity, increased oxidative stress, decreased serum nitrite levels, and increase in aortic collagen deposition. Curcumin (200 mg·kg(-1)·day(-1) and 400 mg·kg(-1)·day(-1), p.o.) for 4 weeks prevented the increase in oxidative stress, decrease in serum nitrite, aortic collagen deposition, and also vascular reactivity. The effects were comparable with those produced by folic acid therapy. The study shows that curcumin, when concomitantly administered with methotrexate, abrogated its vascular side effects by preventing an increase in oxidative stress and abating any reduction in physiological nitric oxide levels.

  1. Intraoperative mechanical ventilation for the pediatric patient.

    PubMed

    Kneyber, Martin C J

    2015-09-01

    Invasive mechanical ventilation is required when children undergo general anesthesia for any procedure. It is remarkable that one of the most practiced interventions such as pediatric mechanical ventilation is hardly supported by any scientific evidence but rather based on personal experience and data from adults, especially as ventilation itself is increasingly recognized as a harmful intervention that causes ventilator-induced lung injury. The use of low tidal volume and higher levels of positive end-expiratory pressure became an integral part of lung-protective ventilation following the outcomes of clinical trials in critically ill adults. This approach has been readily adopted in pediatric ventilation. However, a clear association between tidal volume and mortality has not been ascertained in pediatrics. In fact, experimental studies have suggested that young children might be less susceptible to ventilator-induced lung injury. As such, no recommendations on optimal lung-protective ventilation strategy in children with or without lung injury can be made. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Calcium/calmodulin‐dependent kinase 2 mediates Epac‐induced spontaneous transient outward currents in rat vascular smooth muscle

    PubMed Central

    Humphries, Edward S. A.; Kamishima, Tomoko; Quayle, John M.

    2017-01-01

    Key points The Ca2+ and redox‐sensing enzyme Ca2+/calmodulin‐dependent kinase 2 (CaMKII) is a crucial and well‐established signalling molecule in the heart and brain.In vascular smooth muscle, which controls blood flow by contracting and relaxing in response to complex Ca2+ signals and oxidative stress, surprisingly little is known about the role of CaMKII.The vasodilator‐induced second messenger cAMP can relax vascular smooth muscle via its effector, exchange protein directly activated by cAMP (Epac), by activating spontaneous transient outward currents (STOCs) that hyperpolarize the cell membrane and reduce voltage‐dependent Ca2+ influx. How Epac activates STOCs is unknown.In the present study, we map the pathway by which Epac increases STOC activity in contractile vascular smooth muscle and show that a critical step is the activation of CaMKII.To our knowledge, this is the first report of CaMKII activation triggering cellular activity known to induce vasorelaxation. Abstract Activation of the major cAMP effector, exchange protein directly activated by cAMP (Epac), induces vascular smooth muscle relaxation by increasing the activity of ryanodine (RyR)‐sensitive release channels on the peripheral sarcoplasmic reticulum. Resultant Ca2+ sparks activate plasma membrane Ca2+‐activated K+ (BKCa) channels, evoking spontaneous transient outward currents (STOCs) that hyperpolarize the cell and reduce voltage‐dependent Ca2+ entry. In the present study, we investigate the mechanism by which Epac increases STOC activity. We show that the selective Epac activator 8‐(4‐chloro‐phenylthio)‐2′‐O‐methyladenosine‐3′, 5‐cyclic monophosphate‐AM (8‐pCPT‐AM) induces autophosphorylation (activation) of calcium/calmodulin‐dependent kinase 2 (CaMKII) and also that inhibition of CaMKII abolishes 8‐pCPT‐AM‐induced increases in STOC activity. Epac‐induced CaMKII activation is probably initiated by inositol 1,4,5‐trisphosphate (IP3)

  3. Effects of hyperthermia on ventilation and metabolism during hypoxia in conscious mice.

    PubMed

    Iwase, Michiko; Izumizaki, Masahiko; Kanamaru, Mitsuko; Homma, Ikuo

    2004-02-01

    Hyperthermia and hypoxia influence ventilation and metabolism; however, their synergistic effects remain unanswered. We hypothesized that an enhancement of ventilation induced by hyperthermia is competitive with hypoxic hypometabolism. We then examined the relationship of body temperature, hypoxia, and respiration in conscious mice, measuring minute ventilation (VE), aerobic metabolism, and arterial blood gases. All parameters were measured at two different body temperatures (BTs), approximately 37 degrees C (normothermia) and 39 degrees C (hyperthermia), under both normoxia (room air inhalation) and hypoxia (7% O2 inhalation). Under normoxia, VE and O2 consumption (VO2) were lower at hyperthermia than at normothermia, and the VE-VO2 ratio remained constant. PaCO2 values were normal at both BTs under normoxia. Hypoxic gas inhalation increased VE, which reached a peak in 2 min, then decreased at both BTs. VE remained at a higher level during hyperthermia than during normothermia throughout the 10 min experiment. VO2 decreased during hypoxia at both BTs. Hypoxia increased the VE-VO2 ratio because of relatively high VE with respect to the decreased VO2, which means hyperventilation. At hypoxia under hyperthermia, serious hyperventilation occurred with a further increase in VE. The augmented ventilation may be due to the thermal stimulus and a lowered thermoregulatory set point for hypoxia. Thus hyperthermia reduces ventilation and metabolism to maintain normocapnia; as a result, thermogenesis is reduced under normoxia. Hyperthermia augments hyperventilation induced by hypoxia, leading to severe hypoxic hypocapnia. Thermal stimuli may impair the adjustment of ventilation and metabolism when O2 is limited.

  4. Role of poly-(ADP-ribose) synthetase in lipopolysaccharide-induced vascular failure and acute lung injury in pigs.

    PubMed

    Albertini, M; Clement, M G; Lafortuna, C L; Caniatti, M; Magder, S; Abdulmalek, K; Hussain, S N

    2000-06-01

    To assess the contribution of poly (adenosine 5'-diphosphate ribose) synthetase (PARS) to the development of bacterial lipopolysaccharide (LPS)-induced acute lung injury and vascular failure in pigs. Four groups of anesthetized, paralyzed, and mechanically ventilated domestic white pigs. Group 1 served as control, whereas Escherichia coli LPS (20 microg/kg/h) was continuously infused in group 2. Group 3 received 20 mg/kg injection of 3-aminobenzamide (a selective inhibitor of PARS activity) 15 minutes before LPS infusion. Only 3-aminobenzamide and not LPS was injected in group 4. All animals were examined for 180 minutes. Systemic and pulmonary hemodynamics and lung mechanics were measured during the experimental period. Lung wet/dry ratio, bronchoalveolar lavage (BAL) protein levels and cell counts and lung nitrotyrosine (footprint of peroxynitrite) immunostaining were also measured in a few animals. LPS infusion evoked a progressive decline in systemic arterial pressure, a small increase in cardiac output, and biphasic elevation of pulmonary arterial pressure. Lung compliance declined progressively, whereas lung and total respiratory resistance rose significantly after LPS infusion. Prominent nitrotyrosine immunostaining was detected around small airways and pulmonary endothelium of LPS-infused animals. No significant changes in lung wet/dry ratio and BAL protein levels and cell counts were produced by LPS infusion. Pretreatment with 3-aminobenzamide did not alter the systemic and pulmonary hemodynamic responses to LPS infusion but eliminated the rise in pulmonary and total respiratory resistance. We concluded that PARS activation plays an important role in the changes of lung mechanics associated with LPS-induced acute lung injury but had no role in vascular failure.

  5. Mechanical ventilation and sepsis induce skeletal muscle catabolism in neonatal pigs

    USDA-ARS?s Scientific Manuscript database

    Reduced rates of skeletal muscle accretion are a prominent feature of the metabolic response to sepsis in infants and children. Septic neonates often require medical support with mechanical ventilation (MV). The combined effects of MV and sepsis in muscle have not been examined in neonates, in whom ...

  6. Budesonide Attenuates Ventilator-induced Lung Injury in a Rat Model of Inflammatory Acute Respiratory Distress Syndrome.

    PubMed

    Gao, Wei; Ju, Ying-Nan

    2016-05-01

    Patients with acute respiratory distress syndrome (ARDS) are particularly susceptible to ventilator-induced lung injury (VILI). This study investigated the effect of budesonide on VILI in a rat model of inflammatory ARDS. Forty eight rats were randomized into three groups (n = 16 each): sham group (S), endotoxin/ventilation group (LV), endotoxin/ventilation/budesonide group (LVB). Rats in the S group received anesthesia only. Rats in the LV and LVB groups received endotoxin to simulate ARDS and were mechanically ventilated for 4 h (tidal volume 30 mL/kg). Rats in the LVB group received budesonide 1 mg, and rats in the LV group received saline in airway. PaO2/FiO2, lung wet-to-dry weight ratios, inflammatory factors in serum and bronchoalveolar lavage fluid (BALF), histopathologic analysis of lung tissue, and survival were examined. PaO2/FiO2 was significantly increased in rats in the LVB group compared to the LV group. Total cell count, macrophages, and neutrophils in BALF, and levels of intercellular adhesion molecule (ICAM)-1, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-8 in BALF and serum were significantly decreased in rats in the LVB group compared to the LV group, whereas levels of IL-10 in BALF and serum were significantly increased. Histopathological changes of lung injury and apoptosis were reduced, and survival was increased in rats in the LVB group compared to the LV group. Budesonide ameliorated VILI in a rat model of inflammatory ARDS. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.

  7. Simvastatin attenuates neutrophil recruitment in one-lung ventilation model in rats.

    PubMed

    Leite, Camila Ferreira; Marangoni, Fábio André; Camargo, Enilton Aparecido; Braga, Angélica de Fátima de Assunção; Toro, Ivan Felizardo Contrera; Antunes, Edson; Landucci, Elen Cristina Tiezem; Mussi, Ricardo Kalaf

    2013-04-01

    To investigate the anti-inflammatory effects of simvastatin in rats undergoing one-lung ventilation (OLV) followed by lung re-expansion. Male Wistar rats (n=30) were submitted to 1-h OLV followed by 1-h lung re-expansion. Treated group received simvastatin (40 mg/kg for 21 days) previous to OLV protocol. Control group received no treatment or surgical/ventilation interventions. Measurements of pulmonary myeloperoxidase (MPO) activity, pulmonary protein extravasation, and serum levels of cytokines and C-reactive protein (CRP) were performed. OLV significantly increased the MPO activity in the collapsed and continuously ventilated lungs (31% and 52% increase, respectively) compared with control (p<0.05). Treatment with simvastatin significantly reduced the MPO activity in the continuously ventilated lung but had no effect on lung edema after OLV. The serum IL-6 and CRP levels were markedly higher in OLV group, but simvastatin treatment failed to affect the production of these inflammatory markers. Serum levels of IL-1β, TNF-α and IL-10 remained below the detection limit in all groups. In an experimental one-lung ventilation model pre-operative treatment with simvastatin reduces remote neutrophil infiltration in the continuously ventilated lung. Our findings suggest that simvastatin may be of therapeutic value in OLV-induced pulmonary inflammation deserving clinical investigations.

  8. Inhibition of Vascular c-Jun N-Terminal Kinase 2 Improves Obesity-Induced Endothelial Dysfunction After Roux-en-Y Gastric Bypass.

    PubMed

    Doytcheva, Petia; Bächler, Thomas; Tarasco, Erika; Marzolla, Vincenzo; Engeli, Michael; Pellegrini, Giovanni; Stivala, Simona; Rohrer, Lucia; Tona, Francesco; Camici, Giovanni G; Vanhoutte, Paul M; Matter, Christian M; Lutz, Thomas A; Lüscher, Thomas F; Osto, Elena

    2017-11-14

    Roux-en-Y gastric bypass (RYGB) reduces obesity-associated comorbidities and cardiovascular mortality. RYGB improves endothelial dysfunction, reducing c-Jun N-terminal kinase (JNK) vascular phosphorylation. JNK activation links obesity with insulin resistance and endothelial dysfunction. Herein, we examined whether JNK1 or JNK2 mediates obesity-induced endothelial dysfunction and if pharmacological JNK inhibition can mimic RYGB vascular benefits. After 7 weeks of a high-fat high-cholesterol diet, obese rats underwent RYGB or sham surgery; sham-operated ad libitum-fed rats received, for 8 days, either the control peptide D-TAT or the JNK peptide inhibitor D-JNKi-1 (20 mg/kg per day subcutaneous). JNK peptide inhibitor D-JNKi-1 treatment improved endothelial vasorelaxation in response to insulin and glucagon-like peptide-1, as observed after RYGB. Obesity increased aortic phosphorylation of JNK2, but not of JNK1. RYGB and JNK peptide inhibitor D-JNKi-1 treatment blunted aortic JNK2 phosphorylation via activation of glucagon-like peptide-1-mediated signaling. The inhibitory phosphorylation of insulin receptor substrate-1 was reduced, whereas the protein kinase B/endothelial NO synthase pathway was increased and oxidative stress was decreased, resulting in improved vascular NO bioavailability. Decreased aortic JNK2 phosphorylation after RYGB rapidly improves obesity-induced endothelial dysfunction. Pharmacological JNK inhibition mimics the endothelial protective effects of RYGB. These findings highlight the therapeutic potential of novel strategies targeting vascular JNK2 against the severe cardiovascular disease associated with obesity. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  9. Pulmonary vascular responses during acute and sustained respiratory alkalosis or acidosis in intact newborn piglets.

    PubMed

    Gordon, J B; Rehorst-Paea, L A; Hoffman, G M; Nelin, L D

    1999-12-01

    Acute alkalosis-induced pulmonary vasodilation and acidosis-induced pulmonary vasoconstriction have been well described, but responses were generally measured within 5-30 min of changing pH. In contrast, several in vitro studies have found that relatively brief periods of sustained alkalosis can enhance, and sustained acidosis can decrease, vascular reactivity. In this study of intact newborn piglets, effects of acute (20 min) and sustained (60-80 min) alkalosis or acidosis on baseline (35% O2) and hypoxic (12% O2) pulmonary vascular resistance (PVR) were compared with control piglets exposed only to eucapnia. Acute alkalosis decreased hypoxic PVR, but sustained alkalosis failed to attenuate either baseline PVR or the subsequent hypoxic response. Acute acidosis did not significantly increase hypoxic PVR, but sustained acidosis markedly increased both baseline PVR and the subsequent hypoxic response. Baseline PVR was similar in all piglets after resumption of eucapnic ventilation, but the final hypoxic response was greater in piglets previously exposed to alkalosis than in controls. Thus, hypoxic pulmonary vasoconstriction was not attenuated during sustained alkalosis, but was accentuated during sustained acidosis and after the resumption of eucapnia in alkalosis-treated piglets. Although extrapolation of data from normal piglets to infants and children with pulmonary hypertension must be done with caution, this study suggests that sustained alkalosis may be of limited efficacy in treating acute hypoxia-induced pulmonary hypertension and the risks of pulmonary hypertension must be considered when using ventilator strategies resulting in permissive hypercapnic acidosis.

  10. Effect of agmatine on experimental vascular endothelial dysfunction.

    PubMed

    Nader, M A; Gamiel, N M; El-Kashef, H; Zaghloul, M S

    2016-05-01

    This study was designed to investigate the effect of agmatine sulfate (AG, CAS2482-00-0) in nicotine (NIC)-induced vascular endothelial dysfunction (VED) in rabbits. NIC was administered to produce VED in rabbits with or without AG for 6 weeks. Serum lipid profile, serum thiobarbituric acid reactive substances, reduced glutathione, superoxide dismutase generation, serum nitrite/nitrate, serum vascular cellular adhesion molecule-1 (VCAM-1), and aortic nuclear factor κB (NF-κB) levels were analyzed.Treatment with AG markedly improves lipid profile and prevented NIC-induced VED and oxidative stress. The mechanism of AG in improving NIC-induced VED may be due to the significant reduction in serum VCAM-1 levels and aortic NF-κB. Thus, it may be concluded that AG reduces the oxidative stress, nitric oxide production, VCAM-1 levels, and aortic NF-κB expression, thereby consequently improving the integrity of vascular endothelium. © The Author(s) 2015.

  11. Serotonin neurones have anti-convulsant effects and reduce seizure-induced mortality

    PubMed Central

    Buchanan, Gordon F; Murray, Nicholas M; Hajek, Michael A; Richerson, George B

    2014-01-01

    Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in patients with refractory epilepsy. Defects in central control of breathing are important contributors to the pathophysiology of SUDEP, and serotonin (5-HT) system dysfunction may be involved. Here we examined the effect of 5-HT neurone elimination or 5-HT reduction on seizure risk and seizure-induced mortality. Adult Lmx1bf/f/p mice, which lack >99% of 5-HT neurones in the CNS, and littermate controls (Lmx1bf/f) were subjected to acute seizure induction by maximal electroshock (MES) or pilocarpine, variably including electroencephalography, electrocardiography, plethysmography, mechanical ventilation or pharmacological therapy. Lmx1bf/f/p mice had a lower seizure threshold and increased seizure-induced mortality. Breathing ceased during most seizures without recovery, whereas cardiac activity persisted for up to 9 min before terminal arrest. The mortality rate of mice of both genotypes was reduced by mechanical ventilation during the seizure or 5-HT2A receptor agonist pretreatment. The selective serotonin reuptake inhibitor citalopram reduced mortality of Lmx1bf/f but not of Lmx1bf/f/p mice. In C57BL/6N mice, reduction of 5-HT synthesis with para-chlorophenylalanine increased MES-induced seizure severity but not mortality. We conclude that 5-HT neurones raise seizure threshold and decrease seizure-related mortality. Death ensued from respiratory failure, followed by terminal asystole. Given that SUDEP often occurs in association with generalised seizures, some mechanisms causing death in our model might be shared with those leading to SUDEP. This model may help determine the relationship between seizures, 5-HT system dysfunction, breathing and death, which may lead to novel ways to prevent SUDEP. PMID:25107926

  12. Application of mid-frequency ventilation in an animal model of lung injury: a pilot study.

    PubMed

    Mireles-Cabodevila, Eduardo; Chatburn, Robert L; Thurman, Tracy L; Zabala, Luis M; Holt, Shirley J; Swearingen, Christopher J; Heulitt, Mark J

    2014-11-01

    Mid-frequency ventilation (MFV) is a mode of pressure control ventilation based on an optimal targeting scheme that maximizes alveolar ventilation and minimizes tidal volume (VT). This study was designed to compare the effects of conventional mechanical ventilation using a lung-protective strategy with MFV in a porcine model of lung injury. Our hypothesis was that MFV can maximize ventilation at higher frequencies without adverse consequences. We compared ventilation and hemodynamic outcomes between conventional ventilation and MFV. This was a prospective study of 6 live Yorkshire pigs (10 ± 0.5 kg). The animals were subjected to lung injury induced by saline lavage and injurious conventional mechanical ventilation. Baseline conventional pressure control continuous mandatory ventilation was applied with V(T) = 6 mL/kg and PEEP determined using a decremental PEEP trial. A manual decision support algorithm was used to implement MFV using the same conventional ventilator. We measured P(aCO2), P(aO2), end-tidal carbon dioxide, cardiac output, arterial and venous blood oxygen saturation, pulmonary and systemic vascular pressures, and lactic acid. The MFV algorithm produced the same minute ventilation as conventional ventilation but with lower V(T) (-1 ± 0.7 mL/kg) and higher frequency (32.1 ± 6.8 vs 55.7 ± 15.8 breaths/min, P < .002). There were no differences between conventional ventilation and MFV for mean airway pressures (16.1 ± 1.3 vs 16.4 ± 2 cm H2O, P = .75) even when auto-PEEP was higher (0.6 ± 0.9 vs 2.4 ± 1.1 cm H2O, P = .02). There were no significant differences in any hemodynamic measurements, although heart rate was higher during MFV. In this pilot study, we demonstrate that MFV allows the use of higher breathing frequencies and lower V(T) than conventional ventilation to maximize alveolar ventilation. We describe the ventilatory or hemodynamic effects of MFV. We also demonstrate that the application of a decision support algorithm to manage MFV

  13. Chronic psychological stress induces vascular inflammation in rabbits.

    PubMed

    Lu, Xiao Ting; Liu, Yun Fang; Zhao, Li; Li, Wen Jing; Yang, Rui Xue; Yan, Fang Fang; Zhao, Yu Xia; Jiang, Fan

    2013-01-01

    Psychological stress is associated with a systemic inflammatory response. It is unclear, however, whether psychological stress contributes to vascular inflammation. Here, we examined the effects of unpredictable chronic mild stress (UCMS) on vascular inflammation in rabbits. One hundred rabbits were randomly divided into control and stress groups. UCMS was induced by a set of defined adverse conditions applied in a shuffled order for 4, 8, 12, or 16 weeks, and rabbits were killed 24 h after the end of the UCMS protocol. Expression of different inflammatory molecules was analyzed by real-time polymerase chain reaction, immunohistochemistry, or enzyme-linked immunosorbent assay. UCMS resulted in depression-like behaviors, decreased body weight gain, and hypertension with no significant effects on serum lipids. Aortic mRNA and protein expression for tumor necrosis factor-α (TNF-α), C-reactive protein (CRP), monocyte chemoattractant protein-1 (MCP-1), macrophage migration inhibitory factor, and expression of intercellular adhesion molecule-1 (ICAM-1) protein were increased. UCMS increased circulating concentrations of corticosterone, TNF-α, and CRP throughout. Moreover, stress downregulated the expression of endothelial nitric oxide synthase. At 16 weeks of UCMS, macrophage infiltration and lipid accumulation in the subendothelial space were detected in the aorta. In cultured murine vascular smooth muscle cells, treatment with serum from stressed rabbits significantly increased phosphorylation of p38 and c-Jun N-terminal kinase (JNK), and upregulated expression of MCP-1 and ICAM-1 mRNAs, in which the effect was blunted by a TNF-α neutralizing antibody or p38 and JNK inhibitors. Our results indicate that chronic psychological stress induces vascular inflammation via TNF-α and p38/JNK pathways, which may contribute to the development of atherosclerosis.

  14. Insulin sensitizers prevent fine particulate matter-induced vascular insulin resistance and changes in endothelial progenitor cell homeostasis

    PubMed Central

    McCracken, James P.; Bhatnagar, Aruni; Conklin, Daniel J.

    2016-01-01

    Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1+/Sca-1+ cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution. Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/particulate-matter-induced-vascular-insulin-resistance/. PMID:27016579

  15. Inactivity-induced respiratory plasticity: Protecting the drive to breathe in disorders that reduce respiratory neural activity☆

    PubMed Central

    Strey, K.A.; Baertsch, N.A.; Baker-Herman, T.L.

    2013-01-01

    Multiple forms of plasticity are activated following reduced respiratory neural activity. For example, in ventilated rats, a central neural apnea elicits a rebound increase in phrenic and hypoglossal burst amplitude upon resumption of respiratory neural activity, forms of plasticity called inactivity-induced phrenic and hypoglossal motor facilitation (iPMF and iHMF), respectively. Here, we provide a conceptual framework for plasticity following reduced respiratory neural activity to guide future investigations. We review mechanisms giving rise to iPMF and iHMF, present new data suggesting that inactivity-induced plasticity is observed in inspiratory intercostals (iIMF) and point out gaps in our knowledge. We then survey conditions relevant to human health characterized by reduced respiratory neural activity and discuss evidence that inactivity-induced plasticity is elicited during these conditions. Understanding the physiological impact and circumstances in which inactivity-induced respiratory plasticity is elicited may yield novel insights into the treatment of disorders characterized by reductions in respiratory neural activity. PMID:23816599

  16. The mechanism of vascular leakage induced by leukotriene E4. Endothelial contraction.

    PubMed Central

    Joris, I.; Majno, G.; Corey, E. J.; Lewis, R. A.

    1987-01-01

    This study identifies the microvascular target of leukotriene E4 (LTE4) by vascular labeling with carbon black and establishes the mechanism of its action at the cellular level by electron microscopy. LTE4 and its tripeptide precursor, leukotriene C4 (LTC4) were injected subcutaneously in guinea pigs. With LTE4, venular labeling was intense at 1000 and 100 ng and slight at 10 ng, with extinction at 1 ng. LTC4 induced a ring of labeled venules around a blank central area, suggestive of vasospasm. The nonpeptidyl leukotriene LTB4 induced no labeling. Histamine (1000 ng) induced an area of vascular labeling about equal to that by 1000 ng LTE4, but the labeling of individual venules was more intense. By electron microscopy, LTE4 was found to induce gaps in the endothelium of the venules; the endothelial cells adjacent to the gaps bulged into the lumen and showed wrinkled nuclei, consistent with cellular contraction. This ultrastructural evidence suggests that LTE4 increases vascular permeability by contraction of endothelial cells selectively, in the postcapillary venules, as was previously demonstrated for other inflammatory mediators, including histamine, serotonin, and bradykinin. Images Figure 2 Figure 3 Figure 4 PMID:3028143

  17. Fast detection of vascular plaque in optical coherence tomography images using a reduced feature set

    NASA Astrophysics Data System (ADS)

    Prakash, Ammu; Ocana Macias, Mariano; Hewko, Mark; Sowa, Michael; Sherif, Sherif

    2018-03-01

    Optical coherence tomography (OCT) images are capable of detecting vascular plaque by using the full set of 26 Haralick textural features and a standard K-means clustering algorithm. However, the use of the full set of 26 textural features is computationally expensive and may not be feasible for real time implementation. In this work, we identified a reduced set of 3 textural feature which characterizes vascular plaque and used a generalized Fuzzy C-means clustering algorithm. Our work involves three steps: 1) the reduction of a full set 26 textural feature to a reduced set of 3 textural features by using genetic algorithm (GA) optimization method 2) the implementation of an unsupervised generalized clustering algorithm (Fuzzy C-means) on the reduced feature space, and 3) the validation of our results using histology and actual photographic images of vascular plaque. Our results show an excellent match with histology and actual photographic images of vascular tissue. Therefore, our results could provide an efficient pre-clinical tool for the detection of vascular plaque in real time OCT imaging.

  18. Vaccination with vascular progenitor cells derived from induced pluripotent stem cells elicits antitumor immunity targeting vascular and tumor cells.

    PubMed

    Koido, Shigeo; Ito, Masaki; Sagawa, Yukiko; Okamoto, Masato; Hayashi, Kazumi; Nagasaki, Eijiro; Kan, Shin; Komita, Hideo; Kamata, Yuko; Homma, Sadamu

    2014-05-01

    Vaccination of BALB/c mice with dendritic cells (DCs) loaded with the lysate of induced vascular progenitor (iVP) cells derived from murine-induced pluripotent stem (iPS) cells significantly suppressed the tumor of CMS-4 fibrosarcomas and prolonged the survival of CMS-4-inoculated mice. This prophylactic antitumor activity was more potent than that of immunization with DCs loaded with iPS cells or CMS-4 tumor cells. Tumors developed slowly in mice vaccinated with DCs loaded with iVP cells (DC/iVP) and exhibited a limited vascular bed. Immunohistochemistry and a tomato-lectin perfusion study demonstrated that the tumors that developed in the iVP-immunized mice showed a marked decrease in tumor vasculature. Immunization with DC/iVP induced a potent suppressive effect on vascular-rich CMS-4 tumors, a weaker effect on BNL tumors with moderate vasculature, and nearly no effect on C26 tumors with poor vasculature. Treatment of DC/iVP-immunized mice with a monoclonal antibody against CD4 or CD8, but not anti-asialo GM1, inhibited the antitumor activity. CD8(+) T cells from DC/iVP-vaccinated mice showed significant cytotoxic activity against murine endothelial cells and CMS-4 cells, whereas CD8(+) T cells from DC/iPS-vaccinated mice did not. DNA microarray analysis showed that the products of 29 vasculature-associated genes shared between genes upregulated by differentiation from iPS cells into iVP cells and genes shared by iVP cells and isolated Flk-1(+) vascular cells in CMS-4 tumor tissue might be possible targets in the immune response. These results suggest that iVP cells from iPS cells could be used as a cancer vaccine targeting tumor vascular cells and tumor cells.

  19. Role of non-invasive ventilation (NIV) in the perioperative period.

    PubMed

    Jaber, Samir; Michelet, Pierre; Chanques, Gerald

    2010-06-01

    Anaesthesia, postoperative pain and surgery (more so if the site of the surgery approaches the diaphragm) will induce respiratory modifications: hypoxaemia, pulmonary volume decrease and atelectasis associated to a restrictive syndrome and a diaphragm dysfunction. These modifications of the respiratory function occur early after surgery and may induce acute respiratory failure (ARF). Maintenance of adequate oxygenation in the postoperative period is of major importance, especially when pulmonary complications such as ARF occur. Non-invasive ventilation (NIV) refers to techniques allowing respiratory support without the need of endotracheal intubation. Two types of NIV are commonly used: noninvasive continuous positive airway pressure (CPAP) and noninvasive positive pressure ventilation (NPPV) which delivers two levels of positive pressure (pressure support ventilation + positive end-expiratory pressure). NIV may be an important tool to prevent (prophylactic treatment) or to treat ARF avoiding intubation (curative treatment). The aims of NIV are: (1) to partially compensate for the affected respiratory function by reducing the work of breathing, (2) to improve alveolar recruitment with better gas exchange (oxygenation and ventilation) and (3) to reduce left ventricular after load increasing cardiac output and improving haemodynamics. Evidence suggests that NIV, as a prophylactic or curative treatment, has been proven to be an effective strategy to reduce intubation rates, nosocomial infections, intensive care unit and hospital lengths of stay, morbidity and mortality in postoperative patients. However, before initiating NIV, any surgical complication must be treated. The aims of this article are (1) to describe the rationale behind the application of NIV, (2) to report indications (including induction of anaesthesia) and contraindications and (3) to offer some algorithms for safe usage of NIV in high-risk surgery patients.

  20. Roscovitine attenuates intimal hyperplasia via inhibiting NF-κB and STAT3 activation induced by TNF-α in vascular smooth muscle cells.

    PubMed

    He, Ming; Wang, Chao; Sun, Jia-Huan; Liu, Yu; Wang, Hong; Zhao, Jing-Shan; Li, Yun-Feng; Chang, Hong; Hou, Jian-Ming; Song, Jun-Na; Li, Ai-Ying; Ji, En-Sheng

    2017-08-01

    Roscovitine is a selective CDK inhibitor originally designed as anti-cancer agent, which has also been shown to inhibit proliferation in vascular smooth muscle cells (VSMCs). However, its effect on vascular remodeling and its mechanism of action remain unknown. In our study, we created a new intimal hyperplasia model in male Sprague-Dawley rats by trypsin digestion method, which cause to vascular injury as well as the model of rat carotid balloon angioplasty. Roscovitine administration led to a significant reduction in neointimal formation and VSMCs proliferation after injury in rats. Western blot analysis revealed that, in response to vascular injury, TNF-α stimulation induced p65 and STAT3 phosphorylation and promoted translocation of these molecules into the nucleus. p65 can physically associate with STAT3 and bind to TNF-α-regulated target promoters, such as MCP-1 and ICAM-1, to initiate gene transcription. Roscovitine can interrupt activation of NF-κB and reduce expression of TNF-α-induced proinflammatory gene, thus inhibiting intimal hyperplasia. These findings provide a novel mechanism to explain the roscovitine-mediated inhibition of intimal hyperplasia induced by proinflammatory pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Pulmonary vascular dysfunction in ARDS

    PubMed Central

    2014-01-01

    Acute respiratory distress syndrome (ARDS) is characterised by diffuse alveolar damage and is frequently complicated by pulmonary hypertension (PH). Multiple factors may contribute to the development of PH in this setting. In this review, we report the results of a systematic search of the available peer-reviewed literature for papers that measured indices of pulmonary haemodynamics in patients with ARDS and reported on mortality in the period 1977 to 2010. There were marked differences between studies, with some reporting strong associations between elevated pulmonary arterial pressure or elevated pulmonary vascular resistance and mortality, whereas others found no such association. In order to discuss the potential reasons for these discrepancies, we review the physiological concepts underlying the measurement of pulmonary haemodynamics and highlight key differences between the concepts of resistance in the pulmonary and systemic circulations. We consider the factors that influence pulmonary arterial pressure, both in normal lungs and in the presence of ARDS, including the important effects of mechanical ventilation. Pulmonary arterial pressure, pulmonary vascular resistance and transpulmonary gradient (TPG) depend not alone on the intrinsic properties of the pulmonary vascular bed but are also strongly influenced by cardiac output, airway pressures and lung volumes. The great variability in management strategies within and between studies means that no unified analysis of these papers was possible. Uniquely, Bull et al. (Am J Respir Crit Care Med 182:1123–1128, 2010) have recently reported that elevated pulmonary vascular resistance (PVR) and TPG were independently associated with increased mortality in ARDS, in a large trial with protocol-defined management strategies and using lung-protective ventilation. We then considered the existing literature to determine whether the relationship between PVR/TPG and outcome might be causal. Although we could identify

  2. Vinpocetine Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells

    PubMed Central

    Chen, Xiu-Juan; Wang, Na; Yi, Peng-Fei; Song, Min; Zhang, Bo; Wang, Yu-Zhong; Liang, Qiu-Hua

    2016-01-01

    Vascular calcification is an active process of osteoblastic differentiation of vascular smooth muscle cells; however, its definite mechanism remains unknown. Vinpocetine, a derivative of the alkaloid vincamine, has been demonstrated to inhibit the high glucose-induced proliferation of vascular smooth muscle cells; however, it remains unknown whether vinpocetine can affect the osteoblastic differentiation of vascular smooth muscle cells. We hereby investigated the effect of vinpocetine on vascular calcification using a beta-glycerophosphate-induced cell model. Our results showed that vinpocetine significantly reduced the osteoblast-like phenotypes of vascular smooth muscle cells including ALP activity, osteocalcin, collagen type I, Runx2 and BMP-2 expression as well as the formation of mineralized nodule. Vinpocetine, binding to translocation protein, induced phosphorylation of extracellular signal-related kinase and Akt and thus inhibited the translocation of nuclear factor-kappa B into the nucleus. Silencing of translocator protein significantly attenuated the inhibitory effect of vinpocetine on osteoblastic differentiation of vascular smooth muscle cells. Taken together, vinpocetine may be a promising candidate for the clinical therapy of vascular calcification. PMID:27589055

  3. Vinpocetine Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells.

    PubMed

    Ma, Yun-Yun; Sun, Lin; Chen, Xiu-Juan; Wang, Na; Yi, Peng-Fei; Song, Min; Zhang, Bo; Wang, Yu-Zhong; Liang, Qiu-Hua

    2016-01-01

    Vascular calcification is an active process of osteoblastic differentiation of vascular smooth muscle cells; however, its definite mechanism remains unknown. Vinpocetine, a derivative of the alkaloid vincamine, has been demonstrated to inhibit the high glucose-induced proliferation of vascular smooth muscle cells; however, it remains unknown whether vinpocetine can affect the osteoblastic differentiation of vascular smooth muscle cells. We hereby investigated the effect of vinpocetine on vascular calcification using a beta-glycerophosphate-induced cell model. Our results showed that vinpocetine significantly reduced the osteoblast-like phenotypes of vascular smooth muscle cells including ALP activity, osteocalcin, collagen type I, Runx2 and BMP-2 expression as well as the formation of mineralized nodule. Vinpocetine, binding to translocation protein, induced phosphorylation of extracellular signal-related kinase and Akt and thus inhibited the translocation of nuclear factor-kappa B into the nucleus. Silencing of translocator protein significantly attenuated the inhibitory effect of vinpocetine on osteoblastic differentiation of vascular smooth muscle cells. Taken together, vinpocetine may be a promising candidate for the clinical therapy of vascular calcification.

  4. The effects of adaptive servo ventilation on cerebral vascular reactivity in patients with congestive heart failure and sleep-disordered breathing.

    PubMed

    Morrell, Mary J; Meadows, Guy E; Hastings, Peter; Vazir, Ali; Kostikas, Konstantinos; Simonds, Anita K; Corfield, Douglas R

    2007-05-01

    Hypercapnic cerebral vascular reactivity (HCVR) is reduced in patients with congestive heart failure (CHF) and sleep-disordered breathing (SDB); this may be associated with an increased risk of stroke. We tested the hypothesis that reversal of SDB in CHF patients using adaptive servo ventilation (ASV) would increase morning HCVR. Interventional, cross-over clinical study. Research sleep laboratory. Ten CHF patients with SDB, predominantly obstructive sleep apnea. The HCVR was measured from the change in middle cerebral artery velocity, using pulsed Doppler ultrasound. HCVR was determined during the evening (before) and morning (after) 1 night of sleep on ASV and 1 night of spontaneous sleep (control). Compared with the control situation, ASV decreased the apnea-hypopnea index (group mean +/- SEM, control: 48 +/- 12, ASV: 4 +/- 1 events per hour). HCVR was 23% lower in the morning, compared with the evening, on the control night (evening: 1.3 +/- 0.2, morning: 1.0 +/- 0.2 cm/sec per mm Hg, P < 0.05) and 27% lower following the ASV night (evening: 1.5 +/- 0.2, morning: 1.1 +/- 0.2 cm/sec per mm Hg, P < 0.05). The effect of ASV on the evening-to-morning reduction in HCVR was not significant, compared with the control night (0.02 cm/sec per mm Hg, 95% confidence interval: -0.28, 0.32 P = 0.89). In CHF patients with SDB, HCVR was reduced in the morning compared with the evening. However, removal of SDB for 1 night did not reverse the reduced HCVR. The relatively low morning HCVR could be linked with an increased risk of stroke.

  5. Mitogen-activated protein kinase phosphatase-1 modulates regional effects of injurious mechanical ventilation in rodent lungs.

    PubMed

    Park, Moo Suk; He, Qianbin; Edwards, Michael G; Sergew, Amen; Riches, David W H; Albert, Richard K; Douglas, Ivor S

    2012-07-01

    Mechanical ventilation induces heterogeneous lung injury by mitogen-activated protein kinase (MAPK) and nuclear factor-κB. Mechanisms regulating regional injury and protective effects of prone positioning are unclear. To determine the key regulators of the lung regional protective effects of prone positioning in rodent lungs exposed to injurious ventilation. Adult rats were ventilated with high (18 ml/kg, positive end-expiratory pressure [PEEP] 0) or low Vt (6 ml/kg; PEEP 3 cm H(2)O; 3 h) in supine or prone position. Dorsal-caudal lung mRNA was analyzed by microarray and MAPK phosphatases (MKP)-1 quantitative polymerase chain reaction. MKP-1(-/-) or wild-type mice were ventilated with very high (24 ml/kg; PEEP 0) or low Vt (6-7 ml/kg; PEEP 3 cm H(2)O). The MKP-1 regulator PG490-88 (MRx-108; 0.75 mg/kg) or phosphate-buffered saline was administered preventilation. Injury was assessed by lung mechanics, bronchioalveolar lavage cell counts, protein content, and lung injury scoring. Immunoblotting for MKP-1, and IκBα and cytokine ELISAs were performed on lung lysates. Prone positioning was protective against injurious ventilation in rats. Expression profiling demonstrated MKP-1 20-fold higher in rats ventilated prone rather than supine and regional reduction in p38 and c-jun N-terminal kinase activation. MKP-1(-/-) mice experienced amplified injury. PG490-88 improved static lung compliance and injury scores, reduced bronchioalveolar lavage cell counts and cytokine levels, and induced MKP-1 and IκBα. Injurious ventilation induces MAPK in an MKP-1-dependent fashion. Prone positioning is protective and induces MKP-1. PG490-88 induced MKP-1 and was protective against high Vt in a nuclear factor-κB-dependent manner. MKP-1 is a potential target for modulating regional effects of injurious ventilation.

  6. Magnolol reduced TNF-α-induced vascular cell adhesion molecule-1 expression in endothelial cells via JNK/p38 and NF-κB signaling pathways.

    PubMed

    Liang, Chan-Jung; Lee, Chiang-Wen; Sung, Hsin-Ching; Chen, Yung-Hsiang; Wang, Shu-Huei; Wu, Pei-Jhen; Chiang, Yao-Chang; Tsai, Jaw-Shiun; Wu, Chau-Chung; Li, Chi-Yuan; Chen, Yuh-Lien

    2014-01-01

    Expression of cell adhesion molecules by the endothelium and the attachment of leukocytes to these cells play major roles in inflammation and cardiovascular disorders. Magnolol, a major active component of Magnolia officinalis, has antioxidative and anti-inflammatory properties. In the present study, the effects of magnolol on the expression of vascular cell adhesion molecule-1 (VCAM-1) in human aortic endothelial cells (HAECs) and the related mechanisms were investigated. TNF-α induced VCAM-1 protein expression and mRNA stability were significantly decreased in HAECs pre-treated with magnolol. Magnolol significantly reduced the phosphorylation of ERK, JNK, and p38 in TNF-α-treated HAECs. The decrease in VCAM-1 expression in response to TNF-α treatment was affected by JNK and p38 inhibitors, not by an ERK inhibitor. Magnolol also attenuates NF-κB activation and the translocation of HuR (an RNA binding protein) in TNF-α-stimulated HAECs. The VCAM-1 expression was weaker in the aortas of TNF-α-treated apo-E deficient mice with magnolol treatment. These data demonstrate that magnolol inhibits TNF-α-induced JNK/p38 phosphorylation, HuR translocation, NF-κB activation, and thereby suppresses VCAM-1 expression resulting in reduced leukocyte adhesion. Taken together, these results suggest that magnolol has an anti-inflammatory property and may play an important role in the prevention of atherosclerosis and inflammatory responses.

  7. Aerosol delivery with two ventilation modes during mechanical ventilation: a randomized study.

    PubMed

    Dugernier, Jonathan; Reychler, Gregory; Wittebole, Xavier; Roeseler, Jean; Depoortere, Virginie; Sottiaux, Thierry; Michotte, Jean-Bernard; Vanbever, Rita; Dugernier, Thierry; Goffette, Pierre; Docquier, Marie-Agnes; Raftopoulos, Christian; Hantson, Philippe; Jamar, François; Laterre, Pierre-François

    2016-12-01

    Volume-controlled ventilation has been suggested to optimize lung deposition during nebulization although promoting spontaneous ventilation is targeted to avoid ventilator-induced diaphragmatic dysfunction. Comparing topographic aerosol lung deposition during volume-controlled ventilation and spontaneous ventilation in pressure support has never been performed. The aim of this study was to compare lung deposition of a radiolabeled aerosol generated with a vibrating-mesh nebulizer during invasive mechanical ventilation, with two modes: pressure support ventilation and volume-controlled ventilation. Seventeen postoperative neurosurgery patients without pulmonary disease were randomly ventilated in pressure support or volume-controlled ventilation. Diethylenetriaminepentaacetic acid labeled with technetium-99m (2 mCi/3 mL) was administrated using a vibrating-mesh nebulizer (Aerogen Solo(®), provided by Aerogen Ltd, Galway, Ireland) connected to the endotracheal tube. Pulmonary and extrapulmonary particles deposition was analyzed using planar scintigraphy. Lung deposition was 10.5 ± 3.0 and 15.1 ± 5.0 % of the nominal dose during pressure support and volume-controlled ventilation, respectively (p < 0.05). Higher endotracheal tube and tracheal deposition was observed during pressure support ventilation (27.4 ± 6.6 vs. 20.7 ± 6.0 %, p < 0.05). A similar penetration index was observed for the right (p = 0.210) and the left lung (p = 0.211) with both ventilation modes. A high intersubject variability of lung deposition was observed with both modes regarding lung doses, aerosol penetration and distribution between the right and the left lung. In the specific conditions of the study, volume-controlled ventilation was associated with higher lung deposition of nebulized particles as compared to pressure support ventilation. The clinical benefit of this effect warrants further studies. Clinical trial registration NCT01879488.

  8. Comparison of gravimetric and a double-indicator dilution technique for assessment of extra-vascular lung water in endotoxaemia.

    PubMed

    Rossi, P; Oldner, A; Wanecek, M; Leksell, L G; Rudehill, A; Konrad, D; Weitzberg, E

    2003-03-01

    To compare a molecular double-indicator dilution technique with the gravimetrical reference method for measurement of extra-vascular lung water in porcine endotoxin shock. Open comparative experimental study. Animal research laboratory. In fourteen anaesthetised, mechanically ventilated landrace pigs, central and pulmonary haemodynamics as well as pulmonary gas exchange were measured. Extra-vascular lung water was quantitated gravimetrically as well as with a molecular double indicator dilution technique. Eight of these animals were subjected to endotoxaemia, the rest serving as sham controls. No difference in extra-vascular lung water was observed between the two methods in sham animals. Furthermore, extra-vascular lung water assessed with the molecular double-indicator dilution technique at the initiation of endotoxin infusion did not differ significantly from the corresponding values for sham animals. Endotoxaemia induced a hypodynamic shock with concurrent pulmonary hypertension and a pronounced deterioration in gas exchange. No increase in extra-vascular lung water was detected with the molecular double-indicator dilution technique in response to endotoxin, whereas this parameter was significantly higher when assessed with the gravimetric method. The molecular double-indicator dilution technique showed similar results as the gravimetrical method for assessment of extra-vascular lung water in non-endotoxaemic conditions. However, during endotoxin-induced lung injury the molecular double indicator dilution technique failed to detect the significant increase in extra-vascular lung water as measured by the gravimetric method. These data suggest that the molecular double indicator dilution technique may be of limited value during sepsis-induced lung injury.

  9. Intermedin Enlarges the Vascular Lumen by Inducing the Quiescent Endothelial Cell Proliferation.

    PubMed

    Wang, Li-Jun; Xiao, Fei; Kong, Ling-Miao; Wang, De-Nian; Li, Hong-Yu; Wei, Yong-Gang; Tan, Chun; Zhao, Huan; Zhang, Ting; Cao, Gui-Qun; Zhang, Kang; Wei, Yu-Quan; Yang, Han-Shuo; Zhang, Wei

    2018-02-01

    Intermedin plays an important role in vascular remodeling and significantly improves blood perfusion, but the precise mechanism remains unclear. Herein, we aimed to define whether vascular lumen enlargement is responsible for the intermedin-increased blood perfusion and explore the underlying cellular and molecular mechanisms. To study the role of intermedin, we generated the IMD-KO ( Adm2 -/- ) mice using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) system. Intermedin significantly promoted vascular lumen enlargement in vitro (fibrin beads assay) and in vivo (murine retinas), which contributed to the improved blood perfusion in both physiological (retinal) and pathological (tumor) angiogenic models. We designed experiments to calculate the endothelial cell (EC) size and found that the lumen enlargement is because of EC proliferation but not because of a change in cell shape. ECs that construct vessel walls are considered quiescent cells because they are in a state of contact inhibition and show reduced responsiveness to VEGF (vascular endothelial growth factor). Using immunoprecipitation, Western blot assay, and fluorescent microscopy, we found that intermedin induced the formation of a signaling complex containing CRLR (calcitonin receptor-like receptor)/β-arr1 (β-arrestin1)/Src in ECs and promoted it internalizing into cytoplasm in a clathrin-dependent manner to activate downstream ERK1/2 (extracellular signal-regulated kinase 1/2). Importantly, this effect was not abrogated by cell-cell contacts of ECs. Through this mechanism, intermedin could reactivate the quiescent ECs to proliferate, resulting in continuous lumen expanding and a more effective blood perfusion. Our findings suggest a novel mechanism that may explain how quiescent ECs overcome the contact inhibition and regain the ability to proliferate for continuous vascular lumen enlargement. © 2017 American

  10. Impact of Room Ventilation Rates on Mouse Cage Ventilation and Microenvironment.

    PubMed

    Reeb, Carolyn K.; Jones, Robert B.; Bearg, David W.; Bedigian, Hendrick; Paigen, Beverly

    1997-01-01

    To assess the impact of room ventilation on animal cage microenvironment, intracage ventilation rate, temperature, humidity, and concentrations of carbon dioxide and ammonia were monitored in nonpressurized, bonnet-topped mouse cages. Cages on the top, middle, and bottom rows of a mouse rack were monitored at room ventilation rates of 0, 5, 10, and 20 air changes/h (ACH). Ventilation inside the animal cage increased somewhat from 12.8 to 18.9 ACH as room ventilation rate in- creased from 0 to 20 ACH, but the differences were not statistically significant, and most of the increase occurred in cages in the top row nearest to the fresh air supply. Cages containing mice had ventilation rate between 10 and 15 ACH even when room ventilation was reduced to 0 ACH; this ventilation is a result of the thermal heat load of the mice. After 6 days of soiled bedding, intracage ammonia concentration was c 3 ppm at all room ventilation rates and was not affected by increasing room ventilation. Temperature inside cages did not change with increasing ventilation. Humidity inside cages significantly decreased with increasing ventilation, from 55% relative humidity at 5 ACH to 36% relative humidity at 20 ACH. Carbon dioxide concentration decreased from 2,500 ppm to 1,900 ppm when ventilation rate increased from 5 ACH to 10 ACH, but no further significant decrease was observed at 20 ACH. In conclusion, increasing the room ventilation rate higher than 5 ACH did not result in significant improvements in the cage microenvironment.

  11. Protective ventilation reduces Pseudomonas aeruginosa growth in lung tissue in a porcine pneumonia model.

    PubMed

    Sperber, Jesper; Nyberg, Axel; Lipcsey, Miklos; Melhus, Åsa; Larsson, Anders; Sjölin, Jan; Castegren, Markus

    2017-08-31

    Mechanical ventilation with positive end expiratory pressure and low tidal volume, i.e. protective ventilation, is recommended in patients with acute respiratory distress syndrome. However, the effect of protective ventilation on bacterial growth during early pneumonia in non-injured lungs is not extensively studied. The main objectives were to compare two different ventilator settings on Pseudomonas aeruginosa growth in lung tissue and the development of lung injury. A porcine model of severe pneumonia was used. The protective group (n = 10) had an end expiratory pressure of 10 cm H 2 O and a tidal volume of 6 ml x kg -1 . The control group (n = 10) had an end expiratory pressure of 5 cm H 2 O and a tidal volume of 10 ml x kg -1 . 10 11 colony forming units of Pseudomonas aeruginosa were inoculated intra-tracheally at baseline, after which the experiment continued for 6 h. Two animals from each group received only saline, and served as sham animals. Lung tissue samples from each animal were used for bacterial cultures and wet-to-dry weight ratio measurements. The protective group displayed lower numbers of Pseudomonas aeruginosa (p < 0.05) in the lung tissue, and a lower wet-to-dry ratio (p < 0.01) than the control group. The control group deteriorated in arterial oxygen tension/inspired oxygen fraction, whereas the protective group was unchanged (p < 0.01). In early phase pneumonia, protective ventilation with lower tidal volume and higher end expiratory pressure has the potential to reduce the pulmonary bacterial burden and the development of lung injury.

  12. Restricted Ventilation Associated with Reduced Neurodevelopmental Impairment in Preterm Infants.

    PubMed

    Vliegenthart, Roseanne J S; Onland, Wes; van Wassenaer-Leemhuis, Aleid G; De Jaegere, Anne P M; Aarnoudse-Moens, Cornelieke S H; van Kaam, Anton H

    2017-01-01

    Restrictive use of invasive mechanical ventilation (IMV) in preterm infants reduces the risk of bronchopulmonary dysplasia (BPD). Our objective was to determine its effect on neurodevelopmental impairment (NDI) at 24 months' corrected age (CA). This retrospective single-center cohort study included all patients with a gestational age <30 weeks born in 2004/2005 (epoch 1) and 2010/2011 (epoch 2). In epoch 2, we introduced a policy of restriction on IMV and liberalized the use of respiratory stimulants in the delivery room and neonatal intensive care. Data on patient characteristics, respiratory management, short-term outcomes, mortality, BPD, and NDI at 24 months' CA were collected. Four hundred and four preterm infants were included. Compared to those in epoch 1, infants in epoch 2 were less likely to be intubated and the duration of IMV was shorter. Other noninvasive adjuvant therapies such as caffeine, doxapram, and nasal ventilation were more often used during epoch 2. There was a trend to less BPD in epoch 2 compared to epoch 1 (17 vs. 23%, adjusted OR = 0.75, 95% CI: 0.48, 1.16). Mortality did not change over time. The combined outcome death or NDI at 24 months' CA was significantly lower in epoch 2 compared to epoch 1 (24.7 vs. 33.9%, adjusted OR = 0.71, 95% CI: 0.53, 0.97). Restricted use of IMV is feasible in preterm infants and might be associated with a reduced risk of the combined outcome death or NDI at 24 months' CA. Larger studies are needed to confirm these findings. © 2017 The Author(s) Published by S. Karger AG, Basel.

  13. Protein-bounded uremic toxin p-cresylsulfate induces vascular permeability alternations.

    PubMed

    Tang, Wei-Hua; Wang, Chao-Ping; Yu, Teng-Hung; Tai, Pei-Yang; Liang, Shih-Shin; Hung, Wei-Chin; Wu, Cheng-Ching; Huang, Sung-Hao; Lee, Yau-Jiunn; Chen, Shih-Chieh

    2018-06-01

    The goal of the present studies is to investigate that the impact of p-cresylsulfate (PCS) on the endothelial barrier integrity via in situ exposure and systemic exposure. Vascular permeability changes induced by local injection of PCS were evaluated by the techniques of both Evans blue (EB) and India ink tracer. Rats were intravenously injected with EB or India ink followed by intradermal injections of various doses of PCS (0, 0.4, 2, 10 and 50 µmol/site) on rat back skins. At different time points, skin EB was extracted and quantified. The administration of India ink was used to demonstrate leaky microvessels. Skin PCS levels were also determined by liquid chromatography-mass spectrometry. We also investigated whether the increased endothelial leakage occurred in the aortic endothelium in rats treated with 5/6 nephrectomy and intraperitoneal injection of PCS 50 mg/kg/day for 4 weeks. The aortic endothelial integrity was evaluated by increased immunoglobulin G (IgG) leakage. High doses of PCS, but not lower doses, significantly induced vascular leakage as compared to saline injection and EB leakage exhibited in time-dependent manner. A time-correlated increase in leaky microvessels was detected in the tissues examined. The injected PCS declined with time and displayed an inverse relationship with vascular leakage. Chronic kidney disease (CKD) rats administered with PCS, compared to control rats, had significantly higher serum levels of PCS and apparent IgG deposition in the aortic intima. Increased endothelial leakage induced by PCS in skin microvessels and the aorta of CKD rats suggests that the PCS-induced endothelial barrier dysfunction.

  14. Protective effect of crocin against apoptosis induced by subchronic exposure of the rat vascular system to diazinon.

    PubMed

    Razavi, Bibi Marjan; Hosseinzadeh, Hossein; Abnous, Khalil; Khoei, Alireza; Imenshahidi, Mohsen

    2016-07-01

    Research has suggested that natural antioxidant, crocin, an active ingredient of saffron, may protect against diazinon (DZN)-induced toxicity. Although increased production of lipid peroxidation by DZN in rat aorta has been shown previously, the effects of DZN on oxidative stress-induced apoptosis in vascular system have not been evaluated. In this study, the effect of crocin on DZN-induced apoptosis in rat vascular system was investigated. The rats were divided into 7 groups: corn oil (control), DZN (15 mg/kg/day, gavage), crocin (12.5, 25, and 50 mg/kg/day, intraperitoneally (i.p.)) + DZN, vitamin E (200 IU/kg, i.p., 3 days a week) + DZN, and crocin (50 mg/kg/day, i.p.). The treatments were continued for 4 weeks. Levels of apoptotic (Bax, caspase 3, and caspase 9) and antiapoptotic proteins (Bcl2) were analyzed by Western blotting. Transcript levels of Bax and Bcl2 genes were determined using quantitative real-time polymerase chain reaction. Results showed DZN-induced apoptosis by activation of caspase 9 and caspase 3 and by increasing the Bax/Bcl2 ratio (both protein and messenger RNA levels). Crocin and vitamin E inhibited apoptosis induced by DZN. In summary, subchronic exposure to DZN induced caspase-mediated apoptosis, and crocin reduced the toxic effects of DZN by inhibiting apoptosis in aortic tissue. © The Author(s) 2014.

  15. Protective Effects of N-Acetyl Cysteine against Diesel Exhaust Particles-Induced Intracellular ROS Generates Pro-Inflammatory Cytokines to Mediate the Vascular Permeability of Capillary-Like Endothelial Tubes

    PubMed Central

    Tseng, Chia-Yi; Chang, Jing-Fen; Wang, Jhih-Syuan; Chang, Yu-Jung; Gordon, Marion K.; Chao, Ming-Wei

    2015-01-01

    Exposure to diesel exhaust particles (DEP) is associated with pulmonary and cardiovascular diseases. Previous studies using in vitro endothelial tubes as a simplified model of capillaries have found that DEP-induced ROS increase vascular permeability with rearrangement or internalization of adherens junctional VE-cadherin away from the plasma membrane. This allows DEPs to penetrate into the cell and capillary lumen. In addition, pro-inflammatory cytokines are up-regulated and mediate vascular permeability in response to DEP. However, the mechanisms through which these DEP-induced pro-inflammatory cytokines increase vascular permeability remain unknown. Hence, we examined the ability of DEP to induce permeability of human umbilical vein endothelial cell tube cells to investigate these mechanisms. Furthermore, supplementation with NAC reduces ROS production following exposure to DEP. HUVEC tube cells contributed to a pro-inflammatory response to DEP-induced intracellular ROS generation. Endothelial oxidative stress induced the release of TNF-α and IL-6 from tube cells, subsequently stimulating the secretion of VEGF-A independent of HO-1. Our data suggests that DEP-induced intracellular ROS and release of the pro-inflammatory cytokines TNF- α and IL-6, which would contribute to VEGF-A secretion and disrupt cell-cell borders and increase vasculature permeability. Addition of NAC suppresses DEP-induced ROS efficiently and reduces subsequent damages by increasing endogenous glutathione. PMID:26148005

  16. Variable ventilation improves pulmonary function and reduces lung damage without increasing bacterial translocation in a rat model of experimental pneumonia.

    PubMed

    de Magalhães, Raquel F; Samary, Cynthia S; Santos, Raquel S; de Oliveira, Milena V; Rocha, Nazareth N; Santos, Cintia L; Kitoko, Jamil; Silva, Carlos A M; Hildebrandt, Caroline L; Goncalves-de-Albuquerque, Cassiano F; Silva, Adriana R; Faria-Neto, Hugo C; Martins, Vanessa; Capelozzi, Vera L; Huhle, Robert; Morales, Marcelo M; Olsen, Priscilla; Pelosi, Paolo; de Abreu, Marcelo Gama; Rocco, Patricia R M; Silva, Pedro L

    2016-11-25

    Variable ventilation has been shown to improve pulmonary function and reduce lung damage in different models of acute respiratory distress syndrome. Nevertheless, variable ventilation has not been tested during pneumonia. Theoretically, periodic increases in tidal volume (V T ) and airway pressures might worsen the impairment of alveolar barrier function usually seen in pneumonia and could increase bacterial translocation into the bloodstream. We investigated the impact of variable ventilation on lung function and histologic damage, as well as markers of lung inflammation, epithelial and endothelial cell damage, and alveolar stress, and bacterial translocation in experimental pneumonia. Thirty-two Wistar rats were randomly assigned to receive intratracheal of Pseudomonas aeruginosa (PA) or saline (SAL) (n = 16/group). After 24-h, animals were anesthetized and ventilated for 2 h with either conventional volume-controlled (VCV) or variable volume-controlled ventilation (VV), with mean V T  = 6 mL/kg, PEEP = 5cmH 2 O, and FiO 2  = 0.4. During VV, tidal volume varied randomly with a coefficient of variation of 30% and a Gaussian distribution. Additional animals assigned to receive either PA or SAL (n = 8/group) were not ventilated (NV) to serve as controls. In both SAL and PA, VV improved oxygenation and lung elastance compared to VCV. In SAL, VV decreased interleukin (IL)-6 expression compared to VCV (median [interquartile range]: 1.3 [0.3-2.3] vs. 5.3 [3.6-7.0]; p = 0.02) and increased surfactant protein-D expression compared to NV (2.5 [1.9-3.5] vs. 1.2 [0.8-1.2]; p = 0.0005). In PA, compared to VCV, VV reduced perivascular edema (2.5 [2.0-3.75] vs. 6.0 [4.5-6.0]; p < 0.0001), septum neutrophils (2.0 [1.0-4.0] vs. 5.0 [3.3-6.0]; p = 0.0008), necrotizing vasculitis (3.0 [2.0-5.5] vs. 6.0 [6.0-6.0]; p = 0.0003), and ultrastructural lung damage scores (16 [14-17] vs. 24 [14-27], p < 0.0001). Blood colony-forming-unit (CFU

  17. Characteristics of rain penetration through a gravity ventilator used for natural ventilation.

    PubMed

    Kim, Taehyeung; Lee, Dong Ho; Ahn, Kwangseog; Ha, Hyunchul; Park, Heechang; Piao, Cheng Xu; Li, Xiaoyu; Seo, Jeoungyoon

    2008-01-01

    Gravity ventilators rely simply on air buoyancy to extract air and are widely used to exhaust air contaminants and heat from workplaces using minimal energy. They are designed to maximize the exhaust flow rate, but the rain penetration sometimes causes malfunctioning. In this study, the characteristics of rain penetration through a ventilator were examined as a preliminary study to develop a ventilator with the maximum exhaust capacity while minimizing rain penetration. A model ventilator was built and exposed to artificial rain and wind. The paths, intensities and amounts of penetration through the ventilator were observed and measured in qualitative and quantitative fashions. In the first phase, the pathways and intensities of rain penetration were visually observed. In the second phase, the amounts of rain penetration were quantitatively measured under the different configurations of ventilator components that were installed based on the information obtained in the first-phase experiment. The effects of wind speed, grill direction, rain drainage width, outer wall height, neck height and leaning angle of the outer wall from the vertical position were analyzed. Wind speed significantly affected rain penetration. Under the low crosswind conditions, the rain penetration intensities were under the limit of detection. Under the high crosswind conditions, grill direction and neck height were the most significant factors in reducing rain penetration. The installation of rain drainage was also important in reducing rain penetration. The experimental results suggest that, with proper configurations of its components, a gravity ventilator can be used for natural ventilation without significant rain penetration problems.

  18. A combination of low-dose bevacizumab and imatinib enhances vascular normalisation without inducing extracellular matrix deposition.

    PubMed

    Schiffmann, L M; Brunold, M; Liwschitz, M; Goede, V; Loges, S; Wroblewski, M; Quaas, A; Alakus, H; Stippel, D; Bruns, C J; Hallek, M; Kashkar, H; Hacker, U T; Coutelle, O

    2017-02-28

    Vascular endothelial growth factor (VEGF)-targeting drugs normalise the tumour vasculature and improve access for chemotherapy. However, excessive VEGF inhibition fails to improve clinical outcome, and successive treatment cycles lead to incremental extracellular matrix (ECM) deposition, which limits perfusion and drug delivery. We show here, that low-dose VEGF inhibition augmented with PDGF-R inhibition leads to superior vascular normalisation without incremental ECM deposition thus maintaining access for therapy. Collagen IV expression was analysed in response to VEGF inhibition in liver metastasis of colorectal cancer (CRC) patients, in syngeneic (Panc02) and xenograft tumours of human colorectal cancer cells (LS174T). The xenograft tumours were treated with low (0.5 mg kg -1 body weight) or high (5 mg kg -1 body weight) doses of the anti-VEGF antibody bevacizumab with or without the tyrosine kinase inhibitor imatinib. Changes in tumour growth, and vascular parameters, including microvessel density, pericyte coverage, leakiness, hypoxia, perfusion, fraction of vessels with an open lumen, and type IV collagen deposition were compared. ECM deposition was increased after standard VEGF inhibition in patients and tumour models. In contrast, treatment with low-dose bevacizumab and imatinib produced similar growth inhibition without inducing detrimental collagen IV deposition, leading to superior vascular normalisation, reduced leakiness, improved oxygenation, more open vessels that permit perfusion and access for therapy. Low-dose bevacizumab augmented by imatinib selects a mature, highly normalised and well perfused tumour vasculature without inducing incremental ECM deposition that normally limits the effectiveness of VEGF targeting drugs.

  19. Mechanical ventilation drives pneumococcal pneumonia into lung injury and sepsis in mice: protection by adrenomedullin.

    PubMed

    Müller-Redetzky, Holger C; Will, Daniel; Hellwig, Katharina; Kummer, Wolfgang; Tschernig, Thomas; Pfeil, Uwe; Paddenberg, Renate; Menger, Michael D; Kershaw, Olivia; Gruber, Achim D; Weissmann, Norbert; Hippenstiel, Stefan; Suttorp, Norbert; Witzenrath, Martin

    2014-04-14

    Ventilator-induced lung injury (VILI) contributes to morbidity and mortality in acute respiratory distress syndrome (ARDS). Particularly pre-injured lungs are susceptible to VILI despite protective ventilation. In a previous study, the endogenous peptide adrenomedullin (AM) protected murine lungs from VILI. We hypothesized that mechanical ventilation (MV) contributes to lung injury and sepsis in pneumonia, and that AM may reduce lung injury and multiple organ failure in ventilated mice with pneumococcal pneumonia. We analyzed in mice the impact of MV in established pneumonia on lung injury, inflammation, bacterial burden, hemodynamics and extrapulmonary organ injury, and assessed the therapeutic potential of AM by starting treatment at intubation. In pneumococcal pneumonia, MV increased lung permeability, and worsened lung mechanics and oxygenation failure. MV dramatically increased lung and blood cytokines but not lung leukocyte counts in pneumonia. MV induced systemic leukocytopenia and liver, gut and kidney injury in mice with pneumonia. Lung and blood bacterial burden was not affected by MV pneumonia and MV increased lung AM expression, whereas receptor activity modifying protein (RAMP) 1-3 expression was increased in pneumonia and reduced by MV. Infusion of AM protected against MV-induced lung injury (66% reduction of pulmonary permeability p < 0.01; prevention of pulmonary restriction) and against VILI-induced liver and gut injury in pneumonia (91% reduction of AST levels p < 0.05, 96% reduction of alanine aminotransaminase (ALT) levels p < 0.05, abrogation of histopathological changes and parenchymal apoptosis in liver and gut). MV paved the way for the progression of pneumonia towards ARDS and sepsis by aggravating lung injury and systemic hyperinflammation leading to liver, kidney and gut injury. AM may be a promising therapeutic option to protect against development of lung injury, sepsis and extrapulmonary organ injury in mechanically

  20. The effect of low level laser therapy on ventilator-induced lung injury in mice (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Szabari, Margit V.; Miller, Alyssa J.; Hariri, Lida P.; Hamblin, Michael R.; Musch, Guido; Stroh, Helene; Suter, Melissa J.

    2016-03-01

    Although mechanical ventilation (MV) is necessary to support gas exchange in critically ill patients, it can contribute to the development of lung injury and multiple organ dysfunction. It is known that high tidal volume (Vt) MV can cause ventilator-induced lung injury (VILI) in healthy lungs and increase the mortality of patients with Acute Respiratory Distress Syndrome. Low level laser therapy (LLLT) has demonstrated to have anti-inflammatory effects. We investigated whether LLLT could alleviate inflammation from injurious MV in mice. Adult mice were assigned to 2 groups: VILI+LLLT group (3 h of injurious MV: Vt=25-30 ml/kg, respiratory rate (RR)=50/min, positive end-expiratory pressure (PEEP)=0 cmH20, followed by 3 h of protective MV: Vt=9 ml/kg, RR=140/min, PEEP=2 cmH20) and VILI+no LLLT group. LLLT was applied during the first 30 min of the MV (810 nm LED system, 5 J/cm2, 1 cm above the chest). Respiratory impedance was measured in vivo with forced oscillation technique and lung mechanics were calculated by fitting the constant phase model. At the end of the MV, bronchoalveolar lavage (BAL) was performed and inflammatory cells counted. Lungs were removed en-bloc and fixed for histological evaluation. We hypothesize that LLLT can reduce lung injury and inflammation from VILI. This therapy could be translated into clinical practice, where it can potentially improve outcomes in patients requiring mechanical ventilation in the operating room or in the intensive care units.

  1. The protective effect of dopamine on ventilator-induced lung injury via the inhibition of NLRP3 inflammasome.

    PubMed

    Yang, Xiaomei; Sun, Xiaotong; Chen, Hongli; Xi, Guangmin; Hou, Yonghao; Wu, Jianbo; Liu, Dejie; Wang, Huanliang; Hou, Yuedong; Yu, Jingui

    2017-04-01

    Dopamine (DA), a neurotransmitter, was previously shown to have anti-inflammatory effects. However, its role in ventilator-induced lung injury (VILI) has not been explicitly demonstrated. This study aimed to investigate the therapeutic efficacy and molecular mechanisms of dopamine in VILI. Rats were treated with dopamine during mechanical ventilation. Afterwards, the influence of dopamine on histological changes, pulmonary edema, the lung wet/dry (W/D) ratio, myeloperoxidase (MPO) activity, polymorphonuclear(PMN)counts, inflammatory cytokine levels, and NLRP3 inflammasome protein expression were examined. Our results showed that dopamine significantly attenuated lung tissue injury, the lung W/D ratio, MPO activity and neutrophil infiltration. Moreover, it inhibited inflammatory cytokine levels in the Bronchoalveolar lavage fluid (BAL). In addition, dopamine significantly inhibited ventilation-induced NLRP3 activation. Our experimental findings demonstrate that dopamine exerted protective effects in VILI by alleviating the inflammatory response through inhibition of NLRP3 signaling pathways. The present study indicated that dopamine could be a potential effective therapeutic strategy for the treatment of VILI. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Insulin sensitizers prevent fine particulate matter-induced vascular insulin resistance and changes in endothelial progenitor cell homeostasis.

    PubMed

    Haberzettl, Petra; McCracken, James P; Bhatnagar, Aruni; Conklin, Daniel J

    2016-06-01

    Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1(+)/Sca-1(+) cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution. Copyright © 2016 the American Physiological Society.

  3. Mild hypothermia increases pulmonary anti-inflammatory response during protective mechanical ventilation in a piglet model of acute lung injury.

    PubMed

    Cruces, Pablo; Erranz, Benjamín; Donoso, Alejandro; Carvajal, Cristóbal; Salomón, Tatiana; Torres, María Fernanda; Díaz, Franco

    2013-11-01

    The effects of mild hypothermia (HT) on acute lung injury (ALI) are unknown in species with metabolic rate similar to that of humans, receiving protective mechanical ventilation (MV). We hypothesized that mild hypothermia would attenuate pulmonary and systemic inflammatory responses in piglets with ALI managed with a protective MV. Acute lung injury (ALI) was induced with surfactant deactivation in 38 piglets. The animals were then ventilated with low tidal volume, moderate positive end-expiratory pressure (PEEP), and permissive hypercapnia throughout the experiment. Subjects were randomized to HT (33.5°C) or normothermia (37°C) groups over 4 h. Plasma and tissue cytokines, tissue apoptosis, lung mechanics, pulmonary vascular permeability, hemodynamic, and coagulation were evaluated. Lung interleukin-10 concentrations were higher in subjects that underwent HT after ALI induction than in those that maintained normothermia. No difference was found in other systemic and tissue cytokines. HT did not induce lung or kidney tissue apoptosis or influence lung mechanics or markers of pulmonary vascular permeability. Heart rate, cardiac output, oxygen uptake, and delivery were significantly lower in subjects that underwent HT, but no difference in arterial lactate, central venous oxygen saturation, and coagulation test was observed. Mild hypothermia induced a local anti-inflammatory response in the lungs, without affecting lung function or coagulation, in this piglet model of ALI. The HT group had lower cardiac output without signs of global dysoxia, suggesting an adaptation to the decrease in oxygen uptake and delivery. Studies are needed to determine the therapeutic role of HT in ALI. © 2013 John Wiley & Sons Ltd.

  4. Three-Dimensional Vascular Network Assembly From Diabetic Patient-Derived Induced Pluripotent Stem Cells.

    PubMed

    Chan, Xin Yi; Black, Rebecca; Dickerman, Kayla; Federico, Joseph; Lévesque, Mathieu; Mumm, Jeff; Gerecht, Sharon

    2015-12-01

    In diabetics, hyperglycemia results in deficient endothelial progenitors and cells, leading to cardiovascular complications. We aim to engineer 3-dimensional (3D) vascular networks in synthetic hydrogels from type 1 diabetes mellitus (T1D) patient-derived human-induced pluripotent stem cells (hiPSCs), to serve as a transformative autologous vascular therapy for diabetic patients. We validated and optimized an adherent, feeder-free differentiation procedure to derive early vascular cells (EVCs) with high portions of vascular endothelial cadherin-positive cells from hiPSCs. We demonstrate similar differentiation efficiency from hiPSCs derived from healthy donor and patients with T1D. T1D-hiPSC-derived vascular endothelial cadherin-positive cells can mature to functional endothelial cells-expressing mature markers: von Willebrand factor and endothelial nitric oxide synthase are capable of lectin binding and acetylated low-density lipoprotein uptake, form cords in Matrigel and respond to tumor necrosis factor-α. When embedded in engineered hyaluronic acid hydrogels, T1D-EVCs undergo morphogenesis and assemble into 3D networks. When encapsulated in a novel hypoxia-inducible hydrogel, T1D-EVCs respond to low oxygen and form 3D networks. As xenografts, T1D-EVCs incorporate into developing zebrafish vasculature. Using our robust protocol, we can direct efficient differentiation of T1D-hiPSC to EVCs. Early endothelial cells derived from T1D-hiPSC are functional when mature. T1D-EVCs self-assembled into 3D networks when embedded in hyaluronic acid and hypoxia-inducible hydrogels. The capability of T1D-EVCs to assemble into 3D networks in engineered matrices and to respond to a hypoxic microenvironment is a significant advancement for autologous vascular therapy in diabetic patients and has broad importance for tissue engineering. © 2015 American Heart Association, Inc.

  5. Mechanical ventilation and sepsis impair protein metabolism in the diaphragm of neonatal pigs

    USDA-ARS?s Scientific Manuscript database

    Mechanical ventilation (MV) impairs diaphragmatic function and diminishes the ability to wean from ventilatory support in adult humans. In normal neonatal pigs, animals that are highly anabolic, endotoxin (LPS) infusion induces sepsis, reduces peripheral skeletal muscle protein synthesis rates, but ...

  6. Down-regulation of vascular PPAR-γ contributes to endothelial dysfunction in high-fat diet-induced obese mice exposed to chronic intermittent hypoxia.

    PubMed

    Zhang, Yanan; Zhang, Chunlian; Li, Haiou; Hou, Jingdong

    2017-10-14

    Obstructive sleep apnea (OSA), characterized by chronic intermittent hypoxia (CIH), is associated with endothelial dysfunction. The prevalence of OSA is linked to an epidemic of obesity. CIH has recently been reported to cause endothelial dysfunction in diet-induced obese animals by exaggerating oxidative stress and inflammation, but the underlying mechanism remains unclear. PPAR-γ, a ligand-inducible transcription factor that exerts anti-oxidant and anti-inflammatory effects, is down-regulated in the peripheral tissues in diet-induce obesity. We tested the hypothesis that down-regulation of vascular PPAR-γ in diet-induced obesity enhances inflammation and oxidative stress in response to CIH, resulting in endothelial dysfunction. Male C57BL/6 mice were fed either a high-fat diet (HFD) or a low-fat diet (LFD) and simultaneously exposed to CIH or intermittent air for 6 weeks. An additional HFD group received a combination of CIH and PPAR-γ agonist pioglitazone for 6 weeks. Endothelial-dependent vasodilation was impaired only in HFD group exposed to CIH, compared with other groups, but was restored by concomitant pioglitazone treatment. Molecular studies revealed that vascular PPAR-γ expression and activity were reduced in HFD groups, compared with LFD groups, but were reversed by pioglitazone treatment. In addition, CIH elevated vascular expression of NADPH oxidase 4 and dihydroethidium fluorescence, and increased expression of proinflammatory cytokines TNF-α and IL-1β in both LFD and HFD groups, but these increases was significantly greater in HFD group, along with decreased vascular eNOS activity. Pioglitazone treatment of HFD group prevented CIH-induced changes in above molecular markers. The results suggest that HFD-induced obesity down-regulates vascular PPAR-γ, which results in exaggerated oxidative stress and inflammation in response to CIH, contributing to endothelial dysfunction. This finding may provide new insights into the mechanisms by which OSA

  7. Panax ginseng extract attenuates neuronal injury and cognitive deficits in rats with vascular dementia induced by chronic cerebral hypoperfusion.

    PubMed

    Zhu, Jun-De; Wang, Jun-Jie; Zhang, Xian-Hu; Yu, Yan; Kang, Zhao-Sheng

    2018-04-01

    Panax ginseng is a slow-growing perennial plant. Panax ginseng extract has numerous biological activities, including antitumor, anti-inflammatory and antistress activities. Panax ginseng extract also has a cognition-enhancing effect in rats with alcohol-induced memory impairment. In this study, we partially occluded the bilateral carotid arteries in the rat to induce chronic cerebral hypoperfusion, a well-known model of vascular dementia. The rats were then intragastrically administered 50 or 100 mg/kg Panax ginseng extract. Morris water maze and balance beam tests were used to evaluate memory deficits and motor function, respectively. Protein quantity was used to evaluate cholinergic neurons. Immunofluorescence staining was used to assess the number of glial fibrillary acidic protein-positive cells. Western blot assay was used to evaluate protein levels of vascular endothelial growth factor, basic fibroblast growth factor, Bcl-2 and Bax. Treatment with Panax ginseng extract for 8 weeks significantly improved behavioral function and increased neuronal density and VEGF and bFGF protein expression in the hippocampal CA3 area. Furthermore, Panax ginseng extract reduced the number of glial fibrillary acidic protein-immunoreactive cells, and it decreased apoptosis by upregulating Bcl-2 and downregulating Bax protein expression. The effect of Panax ginseng extract was dose-dependent and similar to that of nimodipine, a commonly used drug for the treatment of vascular dementia. These findings suggest that Panax ginseng extract is neuroprotective against vascular dementia induced by chronic cerebral hypoperfusion, and therefore might have therapeutic potential for preventing and treating the disease.

  8. Cobalt chloride attenuates hypobaric hypoxia induced vascular leakage in rat brain: Molecular mechanisms of action of cobalt chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalpana, S.; Dhananjay, S.; Anju, B.

    2008-09-15

    This study reports the efficacy of cobalt preconditioning in preventing hypobaric hypoxia induced vascular leakage (an indicator of cerebral edema) using male Sprague-Dawley rats as model system. Exposure of animals to hypobaric hypoxia led to a significant increase in vascular leakage, reactive oxygen species (ROS), nitric oxide (NO), and vascular endothelial growth factor (VEGF) levels. There was a marked increase in Nuclear Factor {kappa}B (NF{kappa}B) DNA binding activity and levels of pro-inflammatory cytokines such as Monocyte chemoattractant protein (MCP-1), Interferon-{gamma} (IFN-{gamma}), Interleukin-1 (IL-1), and Tumor Necrosis Factor-{alpha} (TNF-{alpha}) and cell adhesion molecules such as Vascular Cell Adhesion Molecule-1 (VCAM-1), andmore » P-selectin. Chemical preconditioning by cobalt for 7 days (12.5 mg Co/kg b.w., oral) significantly attenuated cerebral vascular leakage and the expression of inflammatory mediators induced by hypoxia. Administration of NF{kappa}B inhibitor, curcumin (50 mg/kg b.w.; i.p.) appreciably inhibited hypoxia induced vascular leakage indicating the involvement of NF{kappa}B in causing vascular leakage. Interestingly, cobalt when administered at 12.5 mg Co/kg b.w. (i.p.), 1 h before hypoxia could not prevent the vascular leakage indicating that cobalt per se did not have an effect on NF{kappa}B. The lower levels of NF{kappa}B observed in the brains of cobalt administered animals might be due to higher levels of antioxidant and anti-inflammatory proteins (hemeoxygenase-1 and metallothionein). To conclude cobalt preconditioning inhibited hypobaric hypoxia induced cerebral vascular leakage by lowering NF{kappa}B DNA binding activity and its regulated pro-inflammatory mediators. This is contemplated to be mediated by cobalt induced reduction in ROS/NO and increase in HO-1 and MT.« less

  9. Differentiation and Application of Induced Pluripotent Stem Cell-Derived Vascular Smooth Muscle Cells.

    PubMed

    Maguire, Eithne Margaret; Xiao, Qingzhong; Xu, Qingbo

    2017-11-01

    Vascular smooth muscle cells (VSMCs) play a role in the development of vascular disease, for example, neointimal formation, arterial aneurysm, and Marfan syndrome caused by genetic mutations in VSMCs, but little is known about the mechanisms of the disease process. Advances in induced pluripotent stem cell technology have now made it possible to derive VSMCs from several different somatic cells using a selection of protocols. As such, researchers have set out to delineate key signaling processes involved in triggering VSMC gene expression to grasp the extent of gene regulatory networks involved in phenotype commitment. This technology has also paved the way for investigations into diseases affecting VSMC behavior and function, which may be treatable once an identifiable culprit molecule or gene has been repaired. Moreover, induced pluripotent stem cell-derived VSMCs are also being considered for their use in tissue-engineered blood vessels as they may prove more beneficial than using autologous vessels. Finally, while several issues remains to be clarified before induced pluripotent stem cell-derived VSMCs can become used in regenerative medicine, they do offer both clinicians and researchers hope for both treating and understanding vascular disease. In this review, we aim to update the recent progress on VSMC generation from stem cells and the underlying molecular mechanisms of VSMC differentiation. We will also explore how the use of induced pluripotent stem cell-derived VSMCs has changed the game for regenerative medicine by offering new therapeutic avenues to clinicians, as well as providing researchers with a new platform for modeling of vascular disease. © 2017 American Heart Association, Inc.

  10. E-Cigarette Aerosol Exposure Induces Reactive Oxygen Species, DNA Damage, and Cell Death in Vascular Endothelial Cells.

    PubMed

    Anderson, Chastain; Majeste, Andrew; Hanus, Jakub; Wang, Shusheng

    2016-12-01

    Cigarette smoking remains one of the leading causes of preventable death worldwide. Vascular cell death and dysfunction is a central or exacerbating component in the majority of cigarette smoking related pathologies. The recent development of the electronic nicotine delivery systems known as e-cigarettes provides an alternative to conventional cigarette smoking; however, the potential vascular health risks of e-cigarette use remain unclear. This study evaluates the effects of e-cigarette aerosol extract (EAE) and conventional cigarette smoke extract (CSE) on human umbilical vein endothelial cells (HUVECs). A laboratory apparatus was designed to produce extracts from e-cigarettes and conventional cigarettes according to established protocols for cigarette smoking. EAE or conventional CSE was applied to human vascular endothelial cells for 4-72 h, dependent on the assay. Treated cells were assayed for reactive oxygen species, DNA damage, cell viability, and markers of programmed cell death pathways. Additionally, the anti-oxidants α-tocopherol and n-acetyl-l-cysteine were used to attempt to rescue e-cigarette induced cell death. Our results indicate that e-cigarette aerosol is capable of inducing reactive oxygen species, causing DNA damage, and significantly reducing cell viability in a concentration dependent fashion. Immunofluorescent and flow cytometry analysis indicate that both the apoptosis and programmed necrosis pathways are triggered by e-cigarette aerosol treatment. Additionally, anti-oxidant treatment provides a partial rescue of the induced cell death, indicating that reactive oxygen species play a causal role in e-cigarette induced cytotoxicity. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Successful management of drug-induced hypercapnic acidosis with naloxone and noninvasive positive pressure ventilation.

    PubMed

    Agrafiotis, Michalis; Tryfon, Stavros; Siopi, Demetra; Chassapidou, Georgia; Galanou, Artemis; Tsara, Venetia

    2015-02-01

    A 74-year-old man was referred to our hospital due to deteriorating level of consciousness and desaturation. His Glasgow Coma Scale was 6, and his pupils were constricted but responded to light. Chest radiograph was negative for significant findings. Arterial blood gas evaluation on supplemental oxygen revealed severe acute on chronic respiratory acidosis: pH 7.15; PCO2, 133 mm Hg; PO2,64 mm Hg; and HCO3, 31 mmol/L. He regained full consciousness (Glasgow Coma Scale, 15) after receiving a 0.4 mg dose of naloxone, but because of persistent severe respiratory acidosis (pH 7.21; PCO2, 105 mm Hg), he was immediately commenced on noninvasive positive pressure ventilation (NIV) displaying a remarkable improvement in arterial blood gas values within the next few hours. However, in the days that followed, he remained dependent on NIV, and he was finally discharged on a home mechanical ventilation prescription. In cases of drug-induced respiratory depression, NIV should be regarded as an acceptable treatment, as it can provide ventilatory support without the increased risks associated with invasive mechanical ventilation.

  12. Occupational exposure to nitrous oxide - the role of scavenging and ventilation systems in reducing the exposure level in operating rooms.

    PubMed

    Krajewski, Wojciech; Kucharska, Malgorzata; Wesolowski, Wiktor; Stetkiewicz, Jan; Wronska-Nofer, Teresa

    2007-03-01

    The aim of this study was to assess the level of occupational exposure to nitrous oxide (N(2)O) in operating rooms (ORs), as related to different ventilation and scavenging systems used to remove waste anaesthetic gases from the work environment. The monitoring of N(2)O in the air covered 35 ORs in 10 hospitals equipped with different systems for ventilation and anaesthetic scavenging. The examined systems included: natural ventilation with supplementary fresh air provided by a pressure ventilation system (up to 6 air changes/h); pressure and exhaust ventilation systems equipped with ventilation units supplying fresh air to and discharging contaminated air outside the working area (more than 10 air changes/h); complete air-conditioning system with laminar air flow (more than 15 air changes/h). The measurements were carried out during surgical procedures (general anaesthesia induced intravenously and maintained with inhaled N(2)O and sevofluran delivered through cuffed endotracheal tubes) with connected or disconnected air scavenging. Air was collected from the breathing zone of operating personnel continuously through the whole time of anaesthesia to Tedlar((R)) bags, and N(2)O concentrations in air samples were analyzed by adsorption gas chromatography/mass spectrometry. N(2)O levels in excess of the occupational exposure limit (OEL) value of 180mg/m(3) were registered in all ORs equipped with ventilation systems alone. The OEL value was exceeded several times in rooms with natural ventilation plus supplementary pressure ventilations and twice or less in those with pressure/exhaust ventilation systems or air conditioning. N(2)O levels below or within the OEL value were observed in rooms where the system of air conditioning or pressure/exhaust ventilation was combined with scavenging systems. Systems combining natural/pressure ventilation with scavenging were inadequate to maintain N(2)O concentration below the OEL value. Air conditioning and an efficient pressure

  13. Diethyl citrate and sodium citrate reduce the cytotoxic effects of nanosized hydroxyapatite crystals on mouse vascular smooth muscle cells

    PubMed Central

    Zhang, Chong-Yu; Sun, Xin-Yuan; Ouyang, Jian-Ming; Gui, Bao-Song

    2017-01-01

    Objective This study aimed to investigate the damage mechanism of nanosized hydroxyapatite (nano-HAp) on mouse aortic smooth muscle cells (MOVASs) and the injury-inhibiting effects of diethyl citrate (Et2Cit) and sodium citrate (Na3Cit) to develop new drugs that can simultaneously induce anticoagulation and inhibit vascular calcification. Methods The change in cell viability was evaluated using a cell proliferation assay kit, and the amount of lactate dehydrogenase (LDH) released was measured using an LDH kit. Intracellular reactive oxygen species (ROS) and mitochondrial damage were detected by DCFH-DA staining and JC-1 staining. Cell apoptosis and necrosis were detected by Annexin V staining. Intracellular calcium concentration and lysosomal integrity were measured using Fluo-4/AM and acridine orange, respectively. Results Nano-HAp decreased cell viability and damaged the cell membrane, resulting in the release of a large amount of LDH. Nano-HAp entered the cells and damaged the mitochondria, and then induced cell apoptosis by producing a large amount of ROS. In addition, nano-HAp increased the intracellular Ca2+ concentration, leading to lysosomal rupture and cell necrosis. On addition of the anticoagulant Et2Cit or Na3Cit, cell viability and mitochondrial membrane potential increased, whereas the amount of LDH released, ROS, and apoptosis rate decreased. Et2 Cit and Na3Cit could also chelate with Ca+ to inhibit the intracellular Ca2+ elevations induced by nano-HAp, prevent lysosomal rupture, and reduce cell necrosis. High concentrations of Et2Cit and Na3Cit exhibited strong inhibitory effects. The inhibitory capacity of Na3Cit was stronger than that of Et2Cit at similar concentrations. Conclusion Both Et2Cit and Na3Cit significantly reduced the cytotoxicity of nano-HAp on MOVASs and inhibited the apoptosis and necrosis induced by nano-HAp crystals. The chelating function of citrate resulted in both anticoagulation and binding to HAp. Et2Cit and Na3Cit may play a

  14. miR-34a is a common link in both HIV- and antiretroviral therapy-induced vascular aging.

    PubMed

    Zhan, Jiaxin; Qin, Shanshan; Lu, Lili; Hu, Xiamin; Zhou, Jun; Sun, Yeying; Yang, Jian; Liu, Ying; Wang, Zunzhe; Tan, Ning; Chen, Jiyan; Zhang, Chunxiang

    2016-11-26

    Both HIV and antiretroviral therapy could induce vascular aging with unclear mechanisms. In this study, via microarray analysis, we identified, for the first time, that miR-34a expression was significantly increased in both HIV-infected, and antiretroviral agents-treated vessels and vascular endothelial cells (ECs) from these vessels. In cultured ECs, miR-34a expression was significantly increased by HIV-Tat protein and by the antiretroviral agents, lopinavir/ritonavir. Both HIV-Tat protein and antiretroviral agents could induce EC senescence, which was inhibited by miR-34a inhibition. In contrast, EC senescence was exacerbated by miR-34a overexpression. In addition, the vascular ECs isolated from miR-34a knockout mice were resistant to HIV and antiretroviral agents-mediated senescence. In vivo, miR-34a expression in mouse vascular walls and their ECs was increased by antiretroviral therapy and by HIV-1 Tat transgenic approach. miR-34a inhibition could effectively inhibit both HIV-Tat protein and antiretroviral therapy-induced vascular aging in mice. The increased miR-34a was induced via p53, whereas Sirt1 was a downstream target gene of miR-34a in both HIV-Tat protein and antiretroviral agents-treated ECs and vessels. The study has demonstrated that miR-34a is a common link in both HIV and antiretroviral therapy-mediated vascular aging.

  15. Multiple roles of connexins in atherosclerosis- and restenosis-induced vascular remodelling.

    PubMed

    Morel, Sandrine

    2014-01-01

    Endothelial dysfunction is the initial step in atherosclerotic plaque development in large- and medium-sized arteries. This progressive disease, which starts during childhood, is characterized by the accumulation of lipids, macrophages, neutrophils, T lymphocytes and smooth muscle cells in the intima of the vessels. Erosion and rupture of the atherosclerotic plaque may induce myocardial infarction and cerebrovascular accidents, which are responsible for a large percentage of sudden deaths. The most common treatment for atherosclerosis is angioplasty and stent implantation, but these surgical interventions favour a vascular reaction called restenosis and the associated de-endothelialization increases the risk of thrombosis. This review provides an overview of the role of connexins, a large family of transmembrane proteins, in vascular remodelling associated with atherosclerosis and restenosis. The connexins expressed in the vascular wall are Cx37, Cx40, Cx43 and Cx45; their expressions vary with vascular territory and species. Connexins form hemichannels or gap junction channels, allowing the exchange of ions and small metabolites between the cytosol and extracellular space or between neighbouring cells, respectively. Connexins have important roles in vascular physiology; they support radial and longitudinal cell-to-cell communication in the vascular wall, and significant changes in their expression patterns have been described during atherosclerosis and restenosis.

  16. Glutathione regulation of redox-sensitive signals in tumor necrosis factor-{alpha}-induced vascular endothelial dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsou, T.-C.; Yeh, S.C.; Tsai, F.-Y.

    2007-06-01

    We investigated the regulatory role of glutathione in tumor necrosis factor-alpha (TNF-{alpha})-induced vascular endothelial dysfunction as evaluated by using vascular endothelial adhesion molecule expression and monocyte-endothelial monolayer binding. Since TNF-{alpha} induces various biological effects on vascular cells, TNF-{alpha} dosage could be a determinant factor directing vascular cells into different biological fates. Based on the adhesion molecule expression patterns responding to different TNF-{alpha} concentrations, we adopted the lower TNF-{alpha} (0.2 ng/ml) to rule out the possible involvement of other TNF-{alpha}-induced biological effects. Inhibition of glutathione synthesis by L-buthionine-(S,R)-sulfoximine (BSO) resulted in down-regulations of the TNF-{alpha}-induced adhesion molecule expression and monocyte-endothelial monolayermore » binding. BSO attenuated the TNF-{alpha}-induced nuclear factor-kappaB (NF-{kappa}B) activation, however, with no detectable effect on AP-1 and its related mitogen-activated protein kinases (MAPKs). Deletion of an AP-1 binding site in intercellular adhesion molecule-1 (ICAM-1) promoter totally abolished its constitutive promoter activity and its responsiveness to TNF-{alpha}. Inhibition of ERK, JNK, or NF-{kappa}B attenuates TNF-{alpha}-induced ICAM-1 promoter activation and monocyte-endothelial monolayer binding. Our study indicates that TNF-{alpha} induces adhesion molecule expression and monocyte-endothelial monolayer binding mainly via activation of NF-{kappa}B in a glutathione-sensitive manner. We also demonstrated that intracellular glutathione does not modulate the activation of MAPKs and/or their downstream AP-1 induced by lower TNF-{alpha}. Although AP-1 activation by the lower TNF-{alpha} was not detected in our systems, we could not rule out the possible involvement of transiently activated MAPKs/AP-1 in the regulation of TNF-{alpha}-induced adhesion molecule expression.« less

  17. TU-G-BRA-03: Predicting Radiation Therapy Induced Ventilation Changes Using 4DCT Jacobian Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, T; Du, K; Bayouth, J

    2015-06-15

    Purpose: Longitudinal changes in lung ventilation following radiation therapy can be mapped using four-dimensional computed tomography(4DCT) and image registration. This study aimed to predict ventilation changes caused by radiation therapy(RT) as a function of pre-RT ventilation and delivered dose. Methods: 4DCT images were acquired before and 3 months after radiation therapy for 13 subjects. Jacobian ventilation maps were calculated from the 4DCT images, warped to a common coordinate system, and a Jacobian ratio map was computed voxel-by-voxel as the ratio of post-RT to pre-RT Jacobian calculations. A leave-one-out method was used to build a response model for each subject: post-RTmore » to pre-RT Jacobian ratio data and dose distributions of 12 subjects were applied to the subject’s pre-RT Jacobian map to predict the post-RT Jacobian. The predicted Jacobian map was compared to the actual post-RT Jacobian map to evaluate efficacy. Within this cohort, 8 subjects had repeat pre-RT scans that were compared as a reference for no ventilation change. Maps were compared using gamma pass rate criteria of 2mm distance-to-agreement and 6% ventilation difference. Gamma pass rates were compared using paired t-tests to determine significant differences. Further analysis masked non-radiation induced changes by excluding voxels below specified dose thresholds. Results: Visual inspection demonstrates the predicted post-RT ventilation map is similar to the actual map in magnitude and distribution. Quantitatively, the percentage of voxels in agreement when excluding voxels receiving below specified doses are: 74%/20Gy, 73%/10Gy, 73%/5Gy, and 71%/0Gy. By comparison, repeat scans produced 73% of voxels within the 6%/2mm criteria. The agreement of the actual post-RT maps with the predicted maps was significantly better than agreement with pre-RT maps (p<0.02). Conclusion: This work validates that significant changes to ventilation post-RT can be predicted. The differences between

  18. Crucial Role of the Aryl Hydrocarbon Receptor (AhR) in Indoxyl Sulfate-Induced Vascular Inflammation.

    PubMed

    Ito, Shunsuke; Osaka, Mizuko; Edamatsu, Takeo; Itoh, Yoshiharu; Yoshida, Masayuki

    2016-08-01

    The aryl hydrocarbon receptor (AhR), a ligand-inducible transcription factor mediating toxic effects of dioxins and uremic toxins, has recently emerged as a pathophysiological regulator of immune-inflammatory conditions. Indoxyl sulfate, a uremic toxin, is associated with cardiovascular disease in patients with chronic kidney disease and has been shown to be a ligand for AhR. The aim of this study was to investigate the potential role of AhR in indoxyl sulfate-induced leukocyte-endothelial interactions. Endothelial cell-specific AhR knockout (eAhR KO) mice were produced by crossing AhR floxed mice with Tie2 Cre mice. Indoxyl sulfate was administered for 2 weeks, followed by injection of TNF-α. Leukocyte recruitment to the femoral artery was assessed by intravital microscopy. Vascular endothelial cells were transfected with siRNA specific to AhR (siAhR) and treated with indoxyl sulfate, followed by stimulation with TNF-α. Indoxyl sulfate dramatically enhanced TNF-α-induced leukocyte recruitment to the vascular wall in control animals but not in eAhR KO mice. In endothelial cells, siAhR significantly reduced indoxyl sulfate-enhanced leukocyte adhesion as well as E-selectin expression, whereas the activation of JNK and nuclear factor-κB was not affected. A luciferase assay revealed that the region between -153 and -146 bps in the E-selectin promoter was responsible for indoxyl sulfate activity via AhR. Mutational analysis of this region revealed that activator protein-1 (AP-1) is responsible for indoxyl sulfate-triggered E-selectin expression via AhR. AhR mediates indoxyl sulfate-enhanced leukocyte-endothelial interactions through AP-1 transcriptional activity, which may constitute a new mechanism of vascular inflammation in patients with renal disease.

  19. Epithelial and endothelial damage induced by mechanical ventilation modes.

    PubMed

    Suki, Béla; Hubmayr, Rolf

    2014-02-01

    The adult respiratory distress syndrome (ARDS) is a common cause of respiratory failure with substantial impact on public health. Patients with ARDS generally require mechanical ventilation, which risks further lung damage. Recent improvements in ARDS outcomes have been attributed to reductions in deforming stress associated with lung protective mechanical ventilation modes and settings. The following review details the mechanics of the lung parenchyma at different spatial scales and the response of its resident cells to deforming stress in order to provide the biologic underpinnings of lung protective care. Although lung injury is typically viewed through the lens of altered barrier properties and mechanical ventilation-associated immune responses, in this review, we call attention to the importance of heterogeneity and the physical failure of the load bearing cell and tissue elements in the pathogenesis of ARDS. Specifically, we introduce a simple elastic network model to better understand the deformations of lung regions, intra-acinar alveoli and cells within a single alveolus, and consider the role of regional distension and interfacial stress-related injury for various ventilation modes. Heterogeneity of stiffness and intercellular and intracellular stress failure are fundamental components of ARDS and their development also depends on the ventilation mode.

  20. Glycolipids from spinach suppress LPS-induced vascular inflammation through eNOS and NK-κB signaling.

    PubMed

    Ishii, Masakazu; Nakahara, Tatsuo; Araho, Daisuke; Murakami, Juri; Nishimura, Masahiro

    2017-07-01

    Glycolipids are the major constituent of the thylakoid membrane of higher plants and have a variety of biological and pharmacological activities. However, anti-inflammatory effects of glycolipids on vascular endothelial cells have not been elucidated. Here, we investigated the effect of glycolipids extracted from spinach on lipopolysaccharides (LPS)-induced endothelial inflammation and evaluated the underlying molecular mechanisms. Treatment with glycolipids from spinach had no cytotoxic effects on cultured human umbilical vein endothelial cells (HUVECs) and significantly blocked the expression of LPS-induced interleukin (IL)-6, monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), and intracellular adhesion molecule-1 (ICAM-1) in them. Glycolipids treatment also effectively suppressed monocyte adhesion to HUVECs. Treatment with glycolipids inhibited LPS-induced NF-κB phosphorylation and nuclear translocation. In addition, glycolipids treatment significantly promoted endothelial nitric oxide synthase (eNOS) activation and nitric oxide (NO) production in HUVECs. Furthermore, glycolipids treatment blocked LPS-induced inducible NOS (iNOS) expression in HUVECs. Pretreatment with a NOS inhibitor attenuated glycolipids-induced suppression of NF-κB activation and adhesion molecule expression, and abolished the glycolipids-mediated suppression of monocyte adhesion to HUVECs. These results indicate that glycolipids suppress LPS-induced vascular inflammation through attenuation of the NF-κB pathway by increasing NO production in endothelial cells. These findings suggest that glycolipids from spinach may have a potential therapeutic use for inflammatory vascular diseases. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. [Activity induced by androsterone and hemisuccinate of androsterone on perfusion pressure and vascular resistance].

    PubMed

    Figueroa, Lauro; Díaz, Francisco; Camacho, Abelardo; Díaz, Eliseo; Marvin, Rolando

    2009-12-01

    Few data exist with respect to the effects of androsterone and their derivatives at cardiovascular level. In addition, the molecular mechanisms and cellular site of action of these androgens are still unclear. An evaluation was conducted on the effects induced by androsterone and hemisuccinate of androsterone on perfusion pressure and vascular resistance. The effects of both androsterone and hemisuccinate of androsterone on the perfusion pressure and vascular resistance in isolated rat hearts (Langendorff model) were evaluated. The results showed that: (1) the hemisuccinate of androsterone [10(-9) M] increases the perfusion pressure and vascular resistance in comparison with the androsterone [10(-9) M]; (2) the effect of androsterone-derivative [10(-9) M-10(-5) M] on perfusion pressure not was inhibited by indometacin [10(-6) M]; (3) nifedipine [10(-6) M] blocks the effects exerted by hemisuccinate of androsterone [10(-9) M-10(-5) M] on perfusion pressure; and (4) the effect of androsterone-derivative [10(-9) M-10(-5) M] on perfusion pressure in presence of flutamide [10(-6) M] was inhibited. The effects induced by androsterone and hemisuccinate of androsterone on the perfusion pressure and resistance vascular probably involve the interaction of steroid-receptor androgenic and, indirectly, activation of the calcium channel to induce variations in the perfusion pressure.

  2. Role of epidermal growth factor receptor and endoplasmic reticulum stress in vascular remodeling induced by angiotensin II.

    PubMed

    Takayanagi, Takehiko; Kawai, Tatsuo; Forrester, Steven J; Obama, Takashi; Tsuji, Toshiyuki; Fukuda, Yamato; Elliott, Katherine J; Tilley, Douglas G; Davisson, Robin L; Park, Joon-Young; Eguchi, Satoru

    2015-06-01

    The mechanisms by which angiotensin II (AngII) elevates blood pressure and enhances end-organ damage seem to be distinct. However, the signal transduction cascade by which AngII specifically mediates vascular remodeling such as medial hypertrophy and perivascular fibrosis remains incomplete. We have previously shown that AngII-induced epidermal growth factor receptor (EGFR) transactivation is mediated by disintegrin and metalloproteinase domain 17 (ADAM17), and that this signaling is required for vascular smooth muscle cell hypertrophy but not for contractile signaling in response to AngII. Recent studies have implicated endoplasmic reticulum (ER) stress in hypertension. Interestingly, EGFR is capable of inducing ER stress. The aim of this study was to test the hypothesis that activation of EGFR and ER stress are critical components required for vascular remodeling but not hypertension induced by AngII. Mice were infused with AngII for 2 weeks with or without treatment of EGFR inhibitor, erlotinib, or ER chaperone, 4-phenylbutyrate. AngII infusion induced vascular medial hypertrophy in the heart, kidney and aorta, and perivascular fibrosis in heart and kidney, cardiac hypertrophy, and hypertension. Treatment with erlotinib as well as 4-phenylbutyrate attenuated vascular remodeling and cardiac hypertrophy but not hypertension. In addition, AngII infusion enhanced ADAM17 expression, EGFR activation, and ER/oxidative stress in the vasculature, which were diminished in both erlotinib-treated and 4-phenylbutyrate-treated mice. ADAM17 induction and EGFR activation by AngII in vascular cells were also prevented by inhibition of EGFR or ER stress. In conclusion, AngII induces vascular remodeling by EGFR activation and ER stress via a signaling mechanism involving ADAM17 induction independent of hypertension. © 2015 American Heart Association, Inc.

  3. Ventilation and ventilators.

    PubMed

    Hayes, B

    1982-01-01

    The history of ventilation is reviewed briefly and recent developments in techniques of ventilation are discussed. Operating features of ventilators have changed in the past few years, partly as the result of clinical progress; yet, technology appears to have outstripped the clinician's ability to harness it most effectively. Clinical discipline and training of medical staff in the use of ventilators could be improved. The future is promising if clinician and designer can work together closely. Ergonomics of ventilators and their controls and the provision of alarms need special attention. Microprocessors are likely to feature prominently in the next generation of designs.

  4. Lung heparan sulfates modulate Kfc during increased vascular pressure: evidence for glycocalyx-mediated mechanotransduction

    PubMed Central

    Cluff, Mark; Kingston, Joseph; Hill, Denzil; Chen, Haiyan; Hoehne, Soeren; Malleske, Daniel T.; Kaur, Rajwinederjit

    2012-01-01

    Lung endothelial cells respond to changes in vascular pressure through mechanotransduction pathways that alter barrier function via non-Starling mechanism(s). Components of the endothelial glycocalyx have been shown to participate in mechanotransduction in vitro and in systemic vessels, but the glycocalyx's role in mechanosensing and pulmonary barrier function has not been characterized. Mechanotransduction pathways may represent novel targets for therapeutic intervention during states of elevated pulmonary pressure such as acute heart failure, fluid overload, and mechanical ventilation. Our objective was to assess the effects of increasing vascular pressure on whole lung filtration coefficient (Kfc) and characterize the role of endothelial heparan sulfates in mediating mechanotransduction and associated increases in Kfc. Isolated perfused rat lung preparation was used to measure Kfc in response to changes in vascular pressure in combination with superimposed changes in airway pressure. The roles of heparan sulfates, nitric oxide, and reactive oxygen species were investigated. Increases in capillary pressure altered Kfc in a nonlinear relationship, suggesting non-Starling mechanism(s). nitro-l-arginine methyl ester and heparanase III attenuated the effects of increased capillary pressure on Kfc, demonstrating active mechanotransduction leading to barrier dysfunction. The nitric oxide (NO) donor S-nitrosoglutathione exacerbated pressure-mediated increase in Kfc. Ventilation strategies altered lung NO concentration and the Kfc response to increases in vascular pressure. This is the first study to demonstrate a role for the glycocalyx in whole lung mechanotransduction and has important implications in understanding the regulation of vascular permeability in the context of vascular pressure, fluid status, and ventilation strategies. PMID:22160307

  5. Activation of PPARδ counteracts angiotensin II-induced ROS generation by inhibiting rac1 translocation in vascular smooth muscle cells.

    PubMed

    Lee, Hanna; Ham, Sun Ah; Kim, Min Young; Kim, Jae-Hwan; Paek, Kyung Shin; Kang, Eun Sil; Kim, Hyo Jung; Hwang, Jung Seok; Yoo, Taesik; Park, Chankyu; Kim, Jin-Hoi; Lim, Dae-Seog; Han, Chang Woo; Seo, Han Geuk

    2012-07-01

    Angiotensin II (Ang II)-mediated modification of the redox milieu of vascular smooth muscle cells (VSMCs) has been implicated in several pathophysiological processes, including cell proliferation, migration and differentiation. In this study, we demonstrate that the peroxisome proliferator-activated receptor (PPAR) δ counteracts Ang II-induced production of reactive oxygen species (ROS) in VSMCs. Activation of PPARδ by GW501516, a specific ligand for PPARδ, significantly reduced Ang II-induced ROS generation in VSMCs. This effect was, however, reversed in the presence of small interfering (si)RNA against PPARδ. The marked increase in ROS levels induced by Ang II was also eliminated by the inhibition of phosphatidylinositol 3-kinase (PI3K) but not of protein kinase C, suggesting the involvement of the PI3K/Akt signalling pathway in this process. Accordingly, ablation of Akt with siRNA further enhanced the inhibitory effects of GW501516 in Ang II-induced superoxide production. Ligand-activated PPARδ also blocked Ang II-induced translocation of Rac1 to the cell membrane, inhibiting the activation of NADPH oxidases and consequently ROS generation. These results indicate that ligand-activated PPARδ plays an important role in the cellular response to oxidative stress by decreasing ROS generated by Ang II in vascular cells.

  6. Inhibition of the ubiquitin-proteasome pathway does not protect against ventilator-induced accelerated proteolysis or atrophy in the diaphragm.

    PubMed

    Smuder, Ashley J; Nelson, W Bradley; Hudson, Matthew B; Kavazis, Andreas N; Powers, Scott K

    2014-07-01

    Mechanical ventilation (MV) is a life-saving intervention in patients with acute respiratory failure. However, prolonged MV results in ventilator-induced diaphragm dysfunction (VIDD), a condition characterized by both diaphragm fiber atrophy and contractile dysfunction. Previous work has shown that calpain, caspase-3, and the ubiquitin-proteasome pathway (UPP) are all activated in the diaphragm during prolonged MV. However, although it is established that both calpain and caspase-3 are important contributors to VIDD, the role that the UPP plays in the development of VIDD remains unknown. These experiments tested the hypothesis that inhibition of the UPP will protect the diaphragm against VIDD. The authors tested this prediction in an established animal model of MV using a highly specific UPP inhibitor, epoxomicin, to prevent MV-induced activation of the proteasome in the diaphragm (n = 8 per group). The results of this study reveal that inhibition of the UPP did not prevent ventilator-induced diaphragm muscle fiber atrophy and contractile dysfunction during 12 h of MV. Also, inhibition of the UPP does not affect MV-induced increases in calpain and caspase-3 activity in the diaphragm. Finally, administration of the proteasome inhibitor did not protect against the MV-induced increases in the expression of the E3 ligases, muscle ring finger-1 (MuRF1), and atrogin-1/MaFbx. Collectively, these results indicate that proteasome activation does not play a required role in VIDD development during the first 12 h of MV.

  7. STATs MEDIATE FIBROBLAST GROWTH FACTOR INDUCED VASCULAR ENDOTHELIAL MORPHOGENESIS

    PubMed Central

    Yang, Xinhai; Qiao, Dianhua; Meyer, Kristy; Friedl, Andreas

    2009-01-01

    The fibroblast growth factors (FGFs) play diverse roles in development, wound healing and angiogenesis. The intracellular signal transduction pathways which mediate these pleiotropic activities remain incompletely understood. We show here that the proangiogenic factors FGF2 and FGF8b can activate signal transducers and activators of transcription (STATs) in mouse microvascular endothelial cells. Both FGF2 and FGF8b activate STAT5 and to a lesser extent STAT1, but not STAT3. The FGF2-dependent activation of endothelial STAT5 was confirmed in vivo with the matrigel plug angiogenesis assay. In tissue samples of human gliomas, a tumor type where FGF-induced angiogenesis is important, STAT5 is detected in tumor vessel endothelial cell nuclei, consistent with STAT5 activation. By forced expression of constitutively active or dominant-negative mutant STAT5A in mouse brain endothelial cells, we further show that STAT5 activation is both necessary and sufficient for FGF-induced cell migration, invasion and tube formation, which are key events in vascular endothelial morphogenesis and angiogenesis. In contrast, STAT5 is not required for brain endothelial cell mitogenesis. The cytoplasmic tyrosine kinases Src and Janus kinase 2 (Jak2) both appear to be involved in the activation of STAT5, as their inhibition reduces FGF2 and FGF8b induced STAT5 phosphorylation and endothelial cell tube formation. Constitutively active STAT5A partially restores tube formation in the presence of Src or Jak2 inhibitors. These observations demonstrate that FGFs utilize distinct signaling pathways to induce angiogenic phenotypes. Together, our findings implicate the FGF-Jak2/Src-STAT5 cascade as a critical angiogenic FGF signaling pathway. PMID:19176400

  8. Acute refractory hypoxemia after chest trauma reversed by high-frequency oscillatory ventilation: a case report

    PubMed Central

    2013-01-01

    Introduction Polytrauma often results in significant hypoxemia secondary to direct lung contusion or indirectly through atelectasis, systemic inflammatory response, large volume fluid resuscitation and blood product transfusion. In addition to causing hypoxemia, atelectasis and acute lung injury can lead to right ventricular failure through an acute increase in pulmonary vascular resistance. Mechanical ventilation is often applied, accompanied with recruitment maneuvers and positive end-expiratory pressure in order to recruit alveoli and reverse atelectasis, while preventing excessive alveolar damage. This strategy should lead to the reversal of the hypoxemic condition and the detrimental heart–lung interaction that may occur. However, as described in this case report, hemodynamic instability and intractable alveolar atelectasis sometimes do not respond to conventional ventilation strategies. Case presentation We describe the case of a 21-year-old Caucasian man with severe chest trauma requiring surgical interventions, who developed refractory hypoxemia and overt right ventricular failure. After multiple failed attempts of recruitment using conventional ventilation, the patient was ventilated with high-frequency oscillatory ventilation. This mode of ventilation allowed the reversal of the hemodynamic effects of severe hypoxemia and of the acute cor pulmonale. We use this case report to describe the physiological advantages of high-frequency oscillatory ventilation in patients with chest trauma, and formulate the arguments to explain the positive effect observed in our patient. Conclusions High-frequency oscillatory ventilation can be used in the context of a blunt chest trauma accompanied by severe hypoxemia due to atelectasis. The positive effect is due to its capacity to recruit the collapsed alveoli and, as a result, the relief of increased pulmonary vascular resistance and subsequently the reversal of acute cor pulmonale. This approach may represent an

  9. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats.

    PubMed

    Chang, Xue-Ying; Cui, Lei; Wang, Xing-Zhi; Zhang, Lei; Zhu, Dan; Zhou, Xiao-Rong; Hao, Li-Rong

    2017-01-01

    This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta ( P < 0.05) and attenuated calcification and calcium accumulation in the medial layer of vasculature in histopathology. Western blot analysis showed that iNOS/p38MAPK pathway was normalized by the quercetin supplementation. Quercetin exerted a protective effect on vascular calcification in adenine-induced chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway.

  10. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats

    PubMed Central

    Chang, Xue-ying; Cui, Lei; Wang, Xing-zhi; Zhang, Lei; Zhu, Dan

    2017-01-01

    Background This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. Methods 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. Results Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta (P < 0.05) and attenuated calcification and calcium accumulation in the medial layer of vasculature in histopathology. Western blot analysis showed that iNOS/p38MAPK pathway was normalized by the quercetin supplementation. Conclusions Quercetin exerted a protective effect on vascular calcification in adenine-induced chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway. PMID:28691026

  11. TLR4 activation of TRPC6-dependent calcium signaling mediates endotoxin-induced lung vascular permeability and inflammation

    PubMed Central

    Tauseef, Mohammad; Knezevic, Nebojsa; Chava, Koteswara R.; Smith, Monica; Sukriti, Sukriti; Gianaris, Nicholas; Obukhov, Alexander G.; Vogel, Stephen M.; Schraufnagel, Dean E.; Dietrich, Alexander; Birnbaumer, Lutz; Malik, Asrar B.

    2012-01-01

    Lung vascular endothelial barrier disruption and the accompanying inflammation are primary pathogenic features of acute lung injury (ALI); however, the basis for the development of both remains unclear. Studies have shown that activation of transient receptor potential canonical (TRPC) channels induces Ca2+ entry, which is essential for increased endothelial permeability. Here, we addressed the role of Toll-like receptor 4 (TLR4) intersection with TRPC6-dependent Ca2+ signaling in endothelial cells (ECs) in mediating lung vascular leakage and inflammation. We find that the endotoxin (lipopolysaccharide; LPS) induces Ca2+ entry in ECs in a TLR4-dependent manner. Moreover, deletion of TRPC6 renders mice resistant to endotoxin-induced barrier dysfunction and inflammation, and protects against sepsis-induced lethality. TRPC6 induces Ca2+ entry in ECs, which is secondary to the generation of diacylglycerol (DAG) induced by LPS. Ca2+ entry mediated by TRPC6, in turn, activates the nonmuscle myosin light chain kinase (MYLK), which not only increases lung vascular permeability but also serves as a scaffold to promote the interaction of myeloid differentiation factor 88 and IL-1R–associated kinase 4, which are required for NF-κB activation and lung inflammation. Our findings suggest that TRPC6-dependent Ca2+ entry into ECs, secondary to TLR4-induced DAG generation, participates in mediating both lung vascular barrier disruption and inflammation induced by endotoxin. PMID:23045603

  12. The regulation of vascular endothelial growth factor-induced microvascular permeability requires Rac and reactive oxygen species.

    PubMed

    Monaghan-Benson, Elizabeth; Burridge, Keith

    2009-09-18

    Vascular permeability is a complex process involving the coordinated regulation of multiple signaling pathways in the endothelial cell. It has long been documented that vascular endothelial growth factor (VEGF) greatly enhances microvascular permeability; however, the molecular mechanisms controlling VEGF-induced permeability remain unknown. Treatment of microvascular endothelial cells with VEGF led to an increase in reactive oxygen species (ROS) production. ROS are required for VEGF-induced permeability as treatment with the free radical scavenger, N-acetylcysteine, inhibited this effect. Additionally, treatment with VEGF caused ROS-dependent tyrosine phosphorylation of both vascular-endothelial (VE)-cadherin and beta-catenin. Rac1 was required for the VEGF-induced increase in permeability and adherens junction protein phosphorylation. Knockdown of Rac1 inhibited VEGF-induced ROS production consistent with Rac lying upstream of ROS in this pathway. Collectively, these data suggest that VEGF leads to a Rac-mediated generation of ROS, which, in turn, elevates the tyrosine phosphorylation of VE-cadherin and beta-catenin, ultimately regulating adherens junction integrity.

  13. Mechanical breath profile of airway pressure release ventilation: the effect on alveolar recruitment and microstrain in acute lung injury.

    PubMed

    Kollisch-Singule, Michaela; Emr, Bryanna; Smith, Bradford; Roy, Shreyas; Jain, Sumeet; Satalin, Joshua; Snyder, Kathy; Andrews, Penny; Habashi, Nader; Bates, Jason; Marx, William; Nieman, Gary; Gatto, Louis A

    2014-11-01

    Improper mechanical ventilation settings can exacerbate acute lung injury by causing a secondary ventilator-induced lung injury. It is therefore important to establish the mechanism by which the ventilator induces lung injury to develop protective ventilation strategies. It has been postulated that the mechanism of ventilator-induced lung injury is the result of heterogeneous, elevated strain on the pulmonary parenchyma. Acute lung injury has been associated with increases in whole-lung macrostrain, which is correlated with increased pathology. However, the effect of mechanical ventilation on alveolar microstrain remains unknown. To examine whether the mechanical breath profile of airway pressure release ventilation (APRV), consisting of a prolonged pressure-time profile and brief expiratory release phase, reduces microstrain. In a randomized, nonblinded laboratory animal study, rats were randomized into a controlled mandatory ventilation group (n = 3) and an APRV group (n = 3). Lung injury was induced by polysorbate lavage. A thoracotomy was performed and an in vivo microscope was placed on the lungs to measure alveolar mechanics. In the controlled mandatory ventilation group, multiple levels of positive end-expiratory pressure (PEEP; 5, 10, 16, 20, and 24 cm H2O) were tested. In the APRV group, decreasing durations of expiratory release (time at low pressure [T(low)]) were tested. The T(low) was set to achieve ratios of termination of peak expiratory flow rate (T-PEFR) to peak expiratory flow rate (PEFR) of 10%, 25%, 50%, and 75% (the smaller this ratio is [ie, 10%], the more time the lung is exposed to low pressure during the release phase, which decreases end-expiratory lung volume and potentiates derecruitment). Alveolar perimeters were measured at peak inspiration and end expiration using digital image analysis, and strain was calculated by normalizing the change in alveolar perimeter length to the original length. Macrostrain was measured by volume

  14. Heat stress protects against mechanical ventilation-induced diaphragmatic atrophy.

    PubMed

    Ichinoseki-Sekine, Noriko; Yoshihara, Toshinori; Kakigi, Ryo; Sugiura, Takao; Powers, Scott K; Naito, Hisashi

    2014-09-01

    Mechanical ventilation (MV) is a life-saving intervention in patients who are incapable of maintaining adequate pulmonary gas exchange due to respiratory failure or other disorders. However, prolonged MV is associated with the development of respiratory muscle weakness. We hypothesized that a single exposure to whole body heat stress would increase diaphragm expression of heat shock protein 72 (HSP72) and that this treatment would protect against MV-induced diaphragmatic atrophy. Adult male Wistar rats (n = 38) were randomly assigned to one of four groups: an acutely anesthetized control group (CON) with no MV; 12-h controlled MV group (CMV); 1-h whole body heat stress (HS); or 1-h whole body heat stress 24 h prior to 12-h controlled MV (HSMV). Compared with CON animals, diaphragmatic HSP72 expression increased significantly in the HS and HSMV groups (P < 0.05). Prolonged MV resulted in significant atrophy of type I, type IIa, and type IIx fibers in the costal diaphragm (P < 0.05). Whole body heat stress attenuated this effect. In contrast, heat stress did not protect against MV-induced diaphragm contractile dysfunction. The mechanisms responsible for this heat stress-induced protection remain unclear but may be linked to increased expression of HSP72 in the diaphragm. Copyright © 2014 the American Physiological Society.

  15. Using a Ventilation Controller to Optimize Residential Passive Ventilation For Energy and Indoor Air Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, William; Walker, Iain

    One way to reduce the energy impact of providing residential ventilation is to use passive and hybrid systems. However, these passive and hybrid (sometimes called mixed-mode) systems must still meet chronic and acute health standards for ventilation. This study uses a computer simulation approach to examine the energy and indoor air quality (IAQ) implications of passive and hybrid ventilation systems, in 16 California climate zones. Both uncontrolled and flow controlled passive stacks are assessed. A new hybrid ventilation system is outlined that uses an intelligent ventilation controller to minimise energy use, while ensuring chronic and acute IAQ standards are met.more » ASHRAE Standard 62.2-2010 – the United States standard for residential ventilation - is used as the chronic standard, and exposure limits for PM 2.5, formaldehyde and NO 2 are used as the acute standards.The results show that controlled passive ventilation and hybrid ventilation can be used in homes to provide equivalent IAQ to continuous mechanical ventilation, for less use of energy.« less

  16. Berberine via suppression of transient receptor potential vanilloid 4 channel improves vascular stiffness in mice

    PubMed Central

    Wang, Jie; Guo, Tao; Peng, Qi-Sheng; Yue, Shou-Wei; Wang, Shuang-Xi

    2015-01-01

    Berberine, as an alkaloid found in many Chinese herbs, improves vascular functions in patients with cardiovascular diseases. We determined the effects of berberine in hypertension and vascular ageing, and elucidated the underlying mechanisms. In isolated aortas, berberine dose-dependently elicited aortic relaxation. In cultured cells, berberine induced the relaxation of vascular smooth muscle cells (VSMCs). Overexpression of transient receptor potential vanilloid 4 (TRPV4) channel by genetic approaches abolished the berberine-induced reduction in intracellular Ca2+ concentration in VSMCs and attenuated berberine-elicited vessel dilation in mice aortas. In deoxycorticosterone acetate (DOCA)-induced hypertensive model, treatment of mice with berberine or RN-1734, a pharmacological inhibitor of TRPV4, significantly decreased systemic blood pressure (BP) in control mice or mice infected with an adenovirus vector. However, berberine-induced effects of lowering BP were reversed by overexpressing TRPV4 in mice by infecting with adenovirus. Furthermore, long-term administration of berberine decreased mean BP and pulse BP, increased artery response to vasodilator and reduced vascular collagen content in aged mice deficient in apolipoprotein E (Apoe-KO), but not in Apoe-KO old mice with lentivirus-mediated overexpression of TRPV4 channel. In conclusion, berberine induces direct vasorelaxation to lower BP and reduces vascular stiffness in aged mice through suppression of TRPV4. PMID:26177349

  17. Reduction of vascular leakage by imatinib is associated with preserved microcirculatory perfusion and reduced renal injury markers in a rat model of cardiopulmonary bypass.

    PubMed

    Koning, N J; de Lange, F; van Meurs, M; Jongman, R M; Ahmed, Y; Schwarte, L A; van Nieuw Amerongen, G P; Vonk, A B A; Niessen, H W; Baufreton, C; Boer, C

    2018-06-01

    Cardiopulmonary bypass during cardiac surgery leads to impaired microcirculatory perfusion. We hypothesized that vascular leakage is an important contributor to microcirculatory dysfunction. Imatinib, a tyrosine kinase inhibitor, has been shown to reduce vascular leakage in septic mice. We investigated whether prevention of vascular leakage using imatinib preserves microcirculatory perfusion and reduces organ injury markers in a rat model of cardiopulmonary bypass. Male Wistar rats underwent cardiopulmonary bypass after treatment with imatinib or vehicle (n=8 per group). Cremaster muscle microcirculatory perfusion and quadriceps microvascular oxygen saturation were measured using intravital microscopy and reflectance spectroscopy. Evans Blue extravasation was determined in separate experiments. Organ injury markers were determined in plasma, intestine, kidney, and lungs. The onset of cardiopulmonary bypass decreased the number of perfused microvessels by 40% in the control group [9.4 (8.6-10.6) to 5.7 (4.8-6.2) per microscope field; P<0.001 vs baseline], whereas this reduction was not seen in the imatinib group. In the control group, the number of perfused capillaries remained low throughout the experiment, whilst perfusion remained normal after imatinib administration. Microvascular oxygen saturation was less impaired after imatinib treatment compared with controls. Imatinib reduced vascular leakage and decreased fluid resuscitation compared with control [3 (3-6) vs 12 ml (7-16); P=0.024]. Plasma neutrophil-gelatinase-associated-lipocalin concentrations were reduced by imatinib. Prevention of endothelial barrier dysfunction using imatinib preserved microcirculatory perfusion and oxygenation during and after cardiopulmonary bypass. Moreover, imatinib-induced protection of endothelial barrier integrity reduced fluid-resuscitation requirements and attenuated renal and pulmonary injury markers. Copyright © 2017 British Journal of Anaesthesia. Published by Elsevier

  18. Accelerated Fractional Ventilation Imaging with Hyperpolarized Gas MRI

    PubMed Central

    Emami, Kiarash; Xu, Yinan; Hamedani, Hooman; Profka, Harrilla; Kadlecek, Stephen; Xin, Yi; Ishii, Masaru; Rizi, Rahim R.

    2013-01-01

    PURPOSE To investigate the utility of accelerated imaging to enhance multi-breath fractional ventilation (r) measurement accuracy using HP gas MRI. Undersampling shortens the breath-hold time, thereby reducing the O2-induced signal decay and allows subjects to maintain a more physiologically relevant breathing pattern. Additionally it may improve r estimation accuracy by reducing RF destruction of HP gas. METHODS Image acceleration was achieved by using an 8-channel phased array coil. Undersampled image acquisition was simulated in a series of ventilation images and images were reconstructed for various matrix sizes (48–128) using GRAPPA. Parallel accelerated r imaging was also performed on five mechanically ventilated pigs. RESULTS Optimal acceleration factor was fairly invariable (2.0–2.2×) over the range of simulated resolutions. Estimation accuracy progressively improved with higher resolutions (39–51% error reduction). In vivo r values were not significantly different between the two methods: 0.27±0.09, 0.35±0.06, 0.40±0.04 (standard) versus 0.23±0.05, 0.34±0.03, 0.37±0.02 (accelerated); for anterior, medial and posterior slices, respectively, whereas the corresponding vertical r gradients were significant (P < 0.001): 0.021±0.007 (standard) versus 0.019±0.005 (accelerated) [cm−1]. CONCLUSION Quadruple phased array coil simulations resulted in an optimal acceleration factor of ~2× independent of imaging resolution. Results advocate undersampled image acceleration to improve accuracy of fractional ventilation measurement with HP gas MRI. PMID:23400938

  19. The ventilation problem in schools: literature review

    DOE PAGES

    Fisk, W. J.

    2017-07-06

    Based on a review of literature published in refereed archival journals, ventilation rates in classrooms often fall far short of the minimum ventilation rates specified in standards. We report that there is compelling evidence, from both cross-sectional and intervention studies, of an association of increased student performance with increased ventilation rates. There is evidence that reduced respiratory health effects and reduced student absence are associated with increased ventilation rates. Increasing ventilation rates in schools imposes energy costs and can increase heating, ventilating, and air-conditioning system capital costs. The net annual costs, ranging from a few dollars to about 10 dollarsmore » per person, are less than 0.1% of typical public spending on elementary and secondary education in the United States. Finally, such expenditures seem like a small price to pay given the evidence of health and performance benefits.« less

  20. The ventilation problem in schools: literature review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisk, W. J.

    Based on a review of literature published in refereed archival journals, ventilation rates in classrooms often fall far short of the minimum ventilation rates specified in standards. We report that there is compelling evidence, from both cross-sectional and intervention studies, of an association of increased student performance with increased ventilation rates. There is evidence that reduced respiratory health effects and reduced student absence are associated with increased ventilation rates. Increasing ventilation rates in schools imposes energy costs and can increase heating, ventilating, and air-conditioning system capital costs. The net annual costs, ranging from a few dollars to about 10 dollarsmore » per person, are less than 0.1% of typical public spending on elementary and secondary education in the United States. Finally, such expenditures seem like a small price to pay given the evidence of health and performance benefits.« less

  1. A microengineered model of RBC transfusion-induced pulmonary vascular injury.

    PubMed

    Seo, Jeongyun; Conegliano, David; Farrell, Megan; Cho, Minseon; Ding, Xueting; Seykora, Thomas; Qing, Danielle; Mangalmurti, Nilam S; Huh, Dongeun

    2017-06-13

    Red blood cell (RBC) transfusion poses significant risks to critically ill patients by increasing their susceptibility to acute respiratory distress syndrome. While the underlying mechanisms of this life-threatening syndrome remain elusive, studies suggest that RBC-induced microvascular injury in the distal lung plays a central role in the development of lung injury following blood transfusion. Here we present a novel microengineering strategy to model and investigate this key disease process. Specifically, we created a microdevice for culturing primary human lung endothelial cells under physiological flow conditions to recapitulate the morphology and hemodynamic environment of the pulmonary microvascular endothelium in vivo. Perfusion of the microengineered vessel with human RBCs resulted in abnormal cytoskeletal rearrangement and release of intracellular molecules associated with regulated necrotic cell death, replicating the characteristics of acute endothelial injury in transfused lungs in vivo. Our data also revealed the significant effect of hemodynamic shear stress on RBC-induced microvascular injury. Furthermore, we integrated the microfluidic endothelium with a computer-controlled mechanical stretching system to show that breathing-induced physiological deformation of the pulmonary microvasculature may exacerbate vascular injury during RBC transfusion. Our biomimetic microsystem provides an enabling platform to mechanistically study transfusion-associated pulmonary vascular complications in susceptible patient populations.

  2. Aldosterone-Induced Vascular Remodeling and Endothelial Dysfunction Require Functional Angiotensin Type 1a Receptors.

    PubMed

    Briet, Marie; Barhoumi, Tlili; Mian, Muhammad Oneeb Rehman; Coelho, Suellen C; Ouerd, Sofiane; Rautureau, Yohann; Coffman, Thomas M; Paradis, Pierre; Schiffrin, Ernesto L

    2016-05-01

    We investigated the role of angiotensin type 1a receptors (AGTR1a) in vascular injury induced by aldosterone activation of mineralocorticoid receptors in Agtr1a(-/-) and wild-type (WT) mice infused with aldosterone for 14 days while receiving 1% NaCl in drinking water. Aldosterone increased systolic blood pressure (BP) by ≈30 mm Hg in WT mice and ≈50 mm Hg in Agtr1a(-/-) mice. Aldosterone induced aortic and small artery remodeling, impaired endothelium-dependent relaxation in WT mice, and enhanced fibronectin and collagen deposition and vascular inflammation. None of these vascular effects were observed in Agtr1a(-/-) mice. Aldosterone effects were prevented by the AGTR1 antagonist losartan in WT mice. In contrast to aldosterone, norepinephrine caused similar BP increase and mesenteric artery remodeling in WT and Agtr1a(-/-) mice. Agtr1a(-/-) mice infused with aldosterone did not increase sodium excretion in response to a sodium chloride challenge, suggesting that sodium retention could contribute to the exaggerated BP rise induced by aldosterone. Agtr1a(-/-) mice had decreased mesenteric artery expression of the calcium-activated potassium channel Kcnmb1, which may enhance myogenic tone and together with sodium retention, exacerbate BP responses to aldosterone/salt in Agtr1a(-/-) mice. We conclude that although aldosterone activation of mineralocorticoid receptors raises BP more in Agtr1a(-/-) mice, AGTR1a is required for mineralocorticoid receptor stimulation to induce vascular remodeling and inflammation and endothelial dysfunction. © 2016 American Heart Association, Inc.

  3. ALDOSTERONE-INDUCED VASCULAR REMODELING AND ENDOTHELIAL DYSFUNCTION REQUIRE FUNCTIONAL ANGIOTENSIN TYPE 1a RECEPTORS

    PubMed Central

    Coelho, Suellen C.; Ouerd, Sofiane; Rautureau, Yohann; Coffman, Thomas M.; Paradis, Pierre; Schiffrin, Ernesto L.

    2016-01-01

    We investigated the role of angiotensin type 1a receptors (AGTR1a) in vascular injury induced by aldosterone activation of mineralocorticoid receptors (MR) in Agtr1a−/− and wild-type mice infused with aldosterone for 14 days while receiving 1% NaCl in drinking water. Aldosterone increased systolic blood pressure by ~30 mmHg in wild-type mice, and ~50 mmHg in Agtr1a−/− mice. Aldosterone induced aortic and small artery remodeling and impaired endothelium-dependent relaxation in wild-type mice, and enhanced fibronectin and collagen deposition, and vascular inflammation. None of these vascular effects were observed in Agtr1a−/− mice. Aldosterone effects were prevented by the AGTR1 antagonist losartan in wild-type mice. In contrast to aldosterone, norepinephrine caused similar BP increase and mesenteric artery remodeling in wild-type and Agtr1a−/− mice. Agtr1a−/− mice infused with aldosterone did not increase sodium excretion in response to a sodium chloride challenge, suggesting sodium retention that could contribute to the exaggerated blood pressure rise induced by aldosterone. Agtr1a−/− mice had decreased mesenteric artery expression of the calcium-activated potassium channel Kcnmb1, which may enhance myogenic tone and together with sodium retention exacerbate BP responses to aldosterone/salt in Agtr1a−/− mice. We conclude that although aldosterone activation of MR raises BP more in Agtr1a−/− mice, AGTR1a is required for MR stimulation to induce vascular remodeling and inflammation, and endothelial dysfunction. PMID:27045029

  4. Mechanical ventilation in abdominal surgery.

    PubMed

    Futier, E; Godet, T; Millot, A; Constantin, J-M; Jaber, S

    2014-01-01

    One of the key challenges in perioperative care is to reduce postoperative morbidity and mortality. Patients who develop postoperative morbidity but survive to leave hospital have often reduced functional independence and long-term survival. Mechanical ventilation provides a specific example that may help us to shift thinking from treatment to prevention of postoperative complications. Mechanical ventilation in patients undergoing surgery has long been considered only as a modality to ensure gas exchange while allowing maintenance of anesthesia with delivery of inhaled anesthetics. Evidence is accumulating, however, suggesting an association between intraoperative mechanical ventilation strategy and postoperative pulmonary function and clinical outcome in patients undergoing abdominal surgery. Non-protective ventilator settings, especially high tidal volume (VT) (>10-12mL/kg) and the use of very low level of positive end-expiratory pressure (PEEP) (PEEP<5cmH2O) or no PEEP, may cause alveolar overdistension and repetitive tidal recruitment leading to ventilator-associated lung injury in patients with healthy lungs. Stimulated by previous findings in patients with acute respiratory distress syndrome, the use of lower tidal volume ventilation is becoming increasingly more common in the operating room. However, lowering tidal volume, though important, is only part of the overall multifaceted approach of lung protective mechanical ventilation. In this review, we aimed at providing the most recent and relevant clinical evidence regarding the use of mechanical ventilation in patients undergoing abdominal surgery. Copyright © 2014 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier SAS. All rights reserved.

  5. Potential candidate genomic biomarkers of drug induced vascular injury in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalmas, Deidre A., E-mail: Deidre.A.Dalmas@gsk.com; Scicchitano, Marshall S., E-mail: Marshall.S.Scicchitano@gsk.com; Mullins, David, E-mail: David.R.Mullins@gsk.com

    2011-12-15

    Drug-induced vascular injury is frequently observed in rats but the relevance and translation to humans present a hurdle for drug development. Numerous structurally diverse pharmacologic agents have been shown to induce mesenteric arterial medial necrosis in rats, but no consistent biomarkers have been identified. To address this need, a novel strategy was developed in rats to identify genes associated with the development of drug-induced mesenteric arterial medial necrosis. Separate groups (n = 6/group) of male rats were given 28 different toxicants (30 different treatments) for 1 or 4 days with each toxicant given at 3 different doses (low, mid andmore » high) plus corresponding vehicle (912 total rats). Mesentery was collected, frozen and endothelial and vascular smooth muscle cells were microdissected from each artery. RNA was isolated, amplified and Affymetrix GeneChip Registered-Sign analysis was performed on selectively enriched samples and a novel panel of genes representing those which showed a dose responsive pattern for all treatments in which mesenteric arterial medial necrosis was histologically observed, was developed and verified in individual endothelial cell- and vascular smooth muscle cell-enriched samples. Data were confirmed in samples containing mesentery using quantitative real-time RT-PCR (TaqMan Trade-Mark-Sign ) gene expression profiling. In addition, the performance of the panel was also confirmed using similarly collected samples obtained from a timecourse study in rats given a well established vascular toxicant (Fenoldopam). Although further validation is still required, a novel gene panel has been developed that represents a strategic opportunity that can potentially be used to help predict the occurrence of drug-induced mesenteric arterial medial necrosis in rats at an early stage in drug development. -- Highlights: Black-Right-Pointing-Pointer A gene panel was developed to help predict rat drug-induced mesenteric MAN. Black

  6. Angiotensin II modulates interleukin-1{beta}-induced inflammatory gene expression in vascular smooth muscle cells via interfering with ERK-NF-{kappa}B crosstalk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Shanqin; Zhi, Hui; Hou, Xiuyun

    2011-07-08

    Highlights: {yields} We examine how angiotensin II modulates ERK-NF-{kappa}B crosstalk and gene expression. {yields} Angiotensin II suppresses IL-1{beta}-induced prolonged ERK and NF-{kappa}B activation. {yields} ERK-RSK1 signaling is required for IL-1{beta}-induced prolonged NF-{kappa}B activation. {yields} Angiotensin II modulates NF-{kappa}B responsive genes via regulating ERK-NF-{kappa}B crosstalk. {yields} ERK-NF-{kappa}B crosstalk is a novel mechanism regulating inflammatory gene expression. -- Abstract: Angiotensin II is implicated in cardiovascular diseases, which is associated with a role in increasing vascular inflammation. The present study investigated how angiotensin II modulates vascular inflammatory signaling and expression of inducible nitric oxide synthase (iNOS) and vascular cell adhesion molecule (VCAM)-1. Inmore » cultured rat aortic vascular smooth muscle cells (VSMCs), angiotensin II suppressed interleukin-1{beta}-induced prolonged phosphorylation of extracellular signal-regulated kinase (ERK) and ribosomal S6 kinase (RSK)-1, and nuclear translocation of nuclear factor (NF)-{kappa}B, leading to decreased iNOS but enhanced VCAM-1 expression, associated with an up-regulation of mitogen-activated protein kinase phosphatase-1 expression. Knock-down of RSK1 selectively down regulated interleukin-1{beta}-induced iNOS expression without influencing VCAM-1 expression. In vivo experiments showed that interleukin-1{beta}, iNOS, and VCAM-1 expression were detectable in the aortic arches of both wild-type and apolipoprotein E-deficient (ApoE{sup -/-}) mice. VCAM-1 and iNOS expression were higher in ApoE{sup -/-} than in wild type mouse aortic arches. Angiotensin II infusion (3.2 mg/kg/day, for 6 days, via subcutaneous osmotic pump) in ApoE{sup -/-} mice enhanced endothelial and adventitial VCAM-1 and iNOS expression, but reduced medial smooth muscle iNOS expression associated with reduced phosphorylation of ERK and RSK-1. These results indicate that

  7. Calcium-independent phospholipase A2 participates in KCl-induced calcium sensitization of vascular smooth muscle.

    PubMed

    Ratz, Paul H; Miner, Amy S; Barbour, Suzanne E

    2009-07-01

    In vascular smooth muscle, KCl not only elevates intracellular free Ca(2+) ([Ca(2+)](i)), myosin light chain kinase activity and tension (T), but also can inhibit myosin light chain phosphatase activity by activation of rhoA kinase (ROCK), resulting in Ca(2+) sensitization (increased T/[Ca(2+)](i) ratio). Precisely how KCl causes ROCK-dependent Ca(2+) sensitization remains to be determined. Using Fura-2-loaded isometric rings of rabbit artery, we found that the Ca(2+)-independent phospholipase A(2) (iPLA(2)) inhibitor, bromoenol lactone (BEL), reduced the KCl-induced tonic but not early phasic phase of T and potentiated [Ca(2+)](i), reducing Ca(2+) sensitization. The PKC inhibitor, GF-109203X (> or =3 microM) and the pseudo-substrate inhibitor of PKCzeta produced a response similar to BEL. BEL reduced basal and KCl-stimulated myosin phosphatase phosphorylation. Whereas BEL and H-1152 produced strong inhibition of KCl-induced tonic T (approximately 50%), H-1152 did not induce additional inhibition of tissues already inhibited by BEL, suggesting that iPLA(2) links KCl stimulation with ROCK activation. The cPLA(2) inhibitor, pyrrolidine-1, inhibited KCl-induced tonic increases in [Ca(2+)](i) but not T, whereas the inhibitor of 20-HETE production, HET0016, acted like the ROCK inhibitor H-1152 by causing Ca(2+) desensitization. These data support a model in which iPLA(2) activity regulates Ca(2+) sensitivity.

  8. Mechanical Ventilation and Bronchopulmonary Dysplasia.

    PubMed

    Keszler, Martin; Sant'Anna, Guilherme

    2015-12-01

    Mechanical ventilation is an important potentially modifiable risk factor for the development of bronchopulmonary dysplasia. Effective use of noninvasive respiratory support reduces the risk of lung injury. Lung volume recruitment and avoidance of excessive tidal volume are key elements of lung-protective ventilation strategies. Avoidance of oxidative stress, less invasive methods of surfactant administration, and high-frequency ventilation are also important factors in lung injury prevention. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Statin therapy exacerbates alcohol-induced constriction of cerebral arteries via modulation of ethanol-induced BK channel inhibition in vascular smooth muscle.

    PubMed

    Simakova, Maria N; Bisen, Shivantika; Dopico, Alex M; Bukiya, Anna N

    2017-12-01

    Statins constitute the most commonly prescribed drugs to decrease cholesterol (CLR). CLR is an important modulator of alcohol-induced cerebral artery constriction (AICAC). Using rats on a high CLR diet (2% CLR) we set to determine whether atorvastatin administration (10mg/kg daily for 18-23weeks) modified AICAC. Middle cerebral arteries were pressurized in vitro at 60mmHg and AICAC was evoked by 50mM ethanol, that is within the range of blood alcohol detected in humans following moderate-to-heavy drinking. AICAC was evident in high CLR+atorvastatin group but not in high CLR diet+placebo. Statin exacerbation of AICAC persisted in de-endothelialized arteries, and was blunted by CLR enrichment in vitro. Fluorescence imaging of filipin-stained arteries showed that atorvastatin decreased vascular smooth muscle (VSM) CLR when compared to placebo, this difference being reduced by CLR enrichment in vitro. Voltage- and calcium-gated potassium channels of large conductance (BK) are known VSM targets of ethanol, with their beta1 subunit being necessary for ethanol-induced channel inhibition and resulting AICAC. Ethanol-induced BK inhibition in excised membrane patches from freshly isolated myocytes was exacerbated in the high CLR diet+atorvastatin group when compared to high CLR diet+placebo. Unexpectedly, atorvastatin decreased the amount and function of BK beta1 subunit as documented by immunofluorescence imaging and functional patch-clamp studies. Atorvastatin exacerbation of ethanol-induced BK inhibition disappeared upon artery CLR enrichment in vitro. Our study demonstrates for the first time statin's ability to exacerbate the vascular effect of a widely consumed drug of abuse, this exacerbation being driven by statin modulation of ethanol-induced BK channel inhibition in the VSM via CLR-mediated mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. High fat diet-induced metabolically obese and normal weight rabbit model shows early vascular dysfunction: mechanisms involved.

    PubMed

    Alarcon, Gabriela; Roco, Julieta; Medina, Mirta; Medina, Analia; Peral, Maria; Jerez, Susana

    2018-01-30

    Obesity contributes significantly to the development and evolution of cardiovascular disease (CVD) which is believed to be mediated by oxidative stress, inflammation and endothelial dysfunction. However, the vascular health of metabolically obese and normal weight (MONW) individuals is not completely comprehended. The purpose of our study was to evaluate vascular function on the basis of a high fat diet (HFD)-MONW rabbit model. Twenty four male rabbits were randomly assigned to receive either a regular diet (CD, n = 12) or a high-fat diet (18% extra fat on the regular diet, HFD, n = 12) for 6 weeks. Body weight, TBARS and gluthathione serum levels were similar between the groups; fasting glucose, triglycerides, C reactive protein (CRP), visceral adipose tissue (VAT), triglyceride-glucose index (TyG index) were higher in the HFD group. Compared to CD, the HFD rabbits had glucose intolerance and lower HDL-cholesterol and plasma nitrites levels. Thoracic aortic rings from HFD rabbits exhibited: (a) a reduced acetylcholine-induced vasorelaxation; (b) a greater contractile response to norepinephrine and KCl; (c) an improved angiotensin II-sensibility. The HFD-effect on acetylcholine-response was reversed by the cyclooxygenase-2 (COX-2) inhibitor (NS398) and the cyclooxygenase-1 inhibitor (SC560), and the HFD-effect on angiotensin II was reversed by NS398 and the TP receptor blocker (SQ29538). Immunohistochemistry and western blot studies showed COX-2 expression only in arteries from HFD rabbits. Our study shows a positive pro-inflammatory status of HFD-induced MONW characterized by raised COX-2 expression, increase of the CRP levels, reduction of NO release and oxidative stress-controlled conditions in an early stage of metabolic alterations characteristic of metabolic syndrome. Endothelial dysfunction and increased vascular reactivity in MONW individuals may be biomarkers of early vascular injury. Therefore, the metabolic changes induced by HFD even in normal

  11. Circuit compliance compensation in lung protective ventilation.

    PubMed

    Masselli, Grazia Maria Pia; Silvestri, Sergio; Sciuto, Salvatore Andrea; Cappa, Paolo

    2006-01-01

    Lung protective ventilation utilizes low tidal volumes to ventilate patients with severe lung pathologies. The compensation of breathing circuit effects, i.e. those induced by compressible volume of the circuit, results particularly critical in the calculation of the actual tidal volume delivered to patient's respiratory system which in turns is responsible of the level of permissive hypercapnia. The present work analyzes the applicability of the equation for circuit compressible volume compensation in the case of pressure and volume controlled lung protective ventilation. Experimental tests conducted in-vitro show that the actual tidal volume can be reliably estimated if the compliance of the breathing circuit is measured with the same parameters and ventilation technique that will be utilized in lung protective ventilation. Differences between volume and pressure controlled ventilation are also quantitatively assessed showing that pressure controlled ventilation allows a more reliable compensation of breathing circuit compressible volume.

  12. Moderately high frequency ventilation with a conventional ventilator allows reduction of tidal volume without increasing mean airway pressure.

    PubMed

    Cordioli, Ricardo Luiz; Park, Marcelo; Costa, Eduardo Leite Vieira; Gomes, Susimeire; Brochard, Laurent; Amato, Marcelo Britto Passos; Azevedo, Luciano Cesar Pontes

    2014-12-01

    The aim of this study was to explore if positive-pressure ventilation delivered by a conventional ICU ventilator at a moderately high frequency (HFPPV) allows a safe reduction of tidal volume (V T) below 6 mL/kg in a porcine model of severe acute respiratory distress syndrome (ARDS) and at a lower mean airway pressure than high-frequency oscillatory ventilation (HFOV). This is a prospective study. In eight pigs (median weight 34 [29,36] kg), ARDS was induced by pulmonary lavage and injurious ventilation. The animals were ventilated with a randomized sequence of respiratory rates: 30, 60, 90, 120, 150, followed by HFOV at 5 Hz. At each step, V T was adjusted to allow partial pressure of arterial carbon dioxide (PaCO2) to stabilize between 57 and 63 mmHg. Data are shown as median [P25th,P75th]. After lung injury, the PaO2/FiO2 (P/F) ratio was 92 [63,118] mmHg, pulmonary shunt 26 [17,31]%, and static compliance 11 [8,14] mL/cmH2O. Positive end-expiratory pressure (PEEP) was 14 [10,17] cmH2O. At 30 breaths/min, V T was higher than 6 (7.5 [6.8,10.2]) mL/kg, but at all higher frequencies, V T could be reduced and PaCO2 maintained, leading to reductions in plateau pressures and driving pressures. For frequencies of 60 to 150/min, V T progressively fell from 5.2 [5.1,5.9] to 3.8 [3.7,4.2] mL/kg (p < 0.001). There were no detrimental effects in terms of lung mechanics, auto-PEEP generation, hemodynamics, or gas exchange. Mean airway pressure was maintained constant and was increased only during HFOV. During protective mechanical ventilation, HFPPV delivered by a conventional ventilator in a severe ARDS swine model safely allows further tidal volume reductions. This strategy also allowed decreasing airway pressures while maintaining stable PaCO2 levels.

  13. Gingerol Inhibits Serum-Induced Vascular Smooth Muscle Cell Proliferation and Injury-Induced Neointimal Hyperplasia by Suppressing p38 MAPK Activation.

    PubMed

    Jain, Manish; Singh, Ankita; Singh, Vishal; Maurya, Preeti; Barthwal, Manoj Kumar

    2016-03-01

    Gingerol inhibits growth of cancerous cells; however, its role in vascular smooth muscle cell (VSMC) proliferation is not known. The present study investigated the effect of gingerol on VSMC proliferation in cell culture and during neointima formation after balloon injury. Rat VSMCs or carotid arteries were harvested at 15 minutes, 30 minutes, 1, 6, 12, and 24 hours of fetal bovine serum (FBS; 10%) stimulation or balloon injury, respectively. Gingerol prevented FBS (10%)-induced proliferation of VSMCs in a dose-dependent manner (50 μmol/L-400 μmol/L). The FBS-induced proliferating cell nuclear antigen (PCNA) upregulation and p27(Kip1) downregulation were also attenuated in gingerol (200 μmol/L) pretreated cells. Fetal bovine serum-induced p38 mitogen-activated protein kinase (MAPK) activation, PCNA upregulation, and p27(Kip1) downregulation were abrogated in gingerol (200 μmol/L) and p38 MAPK inhibitor (SB203580, 10 μmol/L) pretreated cells. Balloon injury induced time-dependent p38 MAPK activation in the carotid artery. Pretreatment with gingerol (200 μmol/L) significantly attenuated injury-induced p38 MAPK activation, PCNA upregulation, and p27(Kip1) downregulation. After 14 days of balloon injury, intimal thickening, neointimal proliferation, and endothelial dysfunction were significantly prevented in gingerol pretreated arteries. In isolated organ bath studies, gingerol (30 nmol/L-300 μmol/L) inhibited phenylephrine-induced contractions and induced dose-dependent relaxation of rat thoracic aortic rings in a partially endothelium-dependent manner. Gingerol prevented FBS-induced VSMC proliferation and balloon injury-induced neointima formation by regulating p38 MAPK. Vasodilator effect of gingerol observed in the thoracic aorta was partially endothelium dependent. Gingerol is thus proposed as an attractive agent for modulating VSMC proliferation, vascular reactivity, and progression of vascular proliferative diseases. © The Author(s) 2015.

  14. Retinal vascular rescue of oxygen-induced retinopathy in mice by norrin.

    PubMed

    Tokunaga, Clayton C; Chen, Yi-Hao; Dailey, Wendelin; Cheng, Mei; Drenser, Kimberly A

    2013-01-09

    Wnt-signaling has been implicated in retinal development. The aim of this study was to investigate the possibility of improving retinal vasculature in an animal model of retinopathy by activating Wnt-signaling. C57BL/6J mice were evaluated using a model of oxygen-induced retinopathy (OIR). Test animals were divided in three groups and treated at postnatal day (P) 14 with intravitreal injections of Wnt-signaling modulators (respectively, norrin, Dickkopf-related protein 1 [DKK1], and norrin + DKK1) in one eye. A fourth group of animals were treated with injection of PBS in one eye as well and used as a control group. Areas of avascular retina and neovascular tufts in injected (treated) eyes and noninjected fellow eyes were determined in each of the four groups at P17 (3 days after intravitreal injection) and the difference related to these characteristics was obtained among them. To evaluate the effect of norrin on progression of retinopathy, a fifth litter (eight animals) was also treated with norrin and these retinas were evaluated at different time points. Modulation of Wnt-signaling consistently shows a statistically significant decrease in the avascular area of the retinas. Treatment with norrin (Wnt-signaling activator) or DKK1 (canonical signaling inhibitor) results in a statistically significant reduction of retinal avascular area compared with control eyes. Neovascular tufts were also reduced in treated eyes, albeit to a lesser extent. Modulation of Wnt-signaling improves retinal vascularization and accelerates vascular recovery after induction of retinopathy in the OIR mouse. Activation of Wnt-signaling (norrin) and inhibition of Wnt-canonical signaling (DKK1) result in similar improvement, indicating that norrin promotes improved vascularization, at least in part, by way of noncanonical Wnt-signaling.

  15. Reversible and irreversible vascular bioeffects induced by ultrasound and microbubbles in chorioallantoic membrane model

    NASA Astrophysics Data System (ADS)

    Tarapacki, Christine; Kuebler, Wolfgang M.; Tabuchi, Arata; Karshafian, Raffi

    2017-03-01

    Background: The application of ultrasound and microbubbles at therapeutic conditions has been shown to improve delivery of molecules, cause vasoconstriction, modulate blood flow and induce a vascular shut down in in vivo cancerous tissues. The underlying mechanism has been associated with the interaction of ultrasonically-induced microbubble oscillation and cavitation with the blood vessel wall. In this study, the effect of ultrasound and microbubbles on blood flow and vascular architecture was studied using a fertilized chicken egg CAM (chorioallantoic membrane) model. Methods: CAM at day 12 of incubation (Hamburger-Hamilton stage 38-40) were exposed to ultrasound at varying acoustic pressures (160, 240 and 320 kPa peak negative pressure) in the presence of Definity microbubbles and 70 kDa FITC dextran fluorescent molecules. A volume of 50 µL Definity microbubbles were injected into a large anterior vein of the CAM prior to ultrasound exposure. The ultrasound treatment sequence consisted of 5 s exposure at 500 kHz frequency, 8 cycles and 1 kHz pulse repetition frequency with 5 s off for a total exposure of 2 minutes. Fluorescent videos and images of the CAM vasculature were acquired using intravital microscopy prior, during and following the ultrasound exposure. Perfusion was quantified by measuring the length of capillaries in a region of interest using Adobe Illustrator. Results and Discussion: The vascular bioeffects induced by USMB increased with acoustic peak negative pressure. At 160 kPa, no visible differences were observed compared to the control. At 240 kPa, a transient decrease in perfusion with subsequent recovery within 15 minutes was observed, whereas at 320 kPa, the fluorescent images showed an irreversible vascular damage. The study indicates that a potential mechanism for the transient decrease in perfusion may be related to blood coagulation. The results suggest that ultrasound and microbubbles can induce reversible and irreversible vascular

  16. Impact of Cyanidin-3-Glucoside on Glycated LDL-Induced NADPH Oxidase Activation, Mitochondrial Dysfunction and Cell Viability in Cultured Vascular Endothelial Cells

    PubMed Central

    Xie, Xueping; Zhao, Ruozhi; Shen, Garry X.

    2012-01-01

    Elevated levels of glycated low density lipoprotein (glyLDL) are frequently detected in diabetic patients. Previous studies demonstrated that glyLDL increased the production of reactive oxygen species (ROS), activated NADPH oxidase (NOX) and suppressed mitochondrial electron transport chain (mETC) enzyme activities in vascular endothelial cells (EC). The present study examined the effects of cyanidin-3-glucoside (C3G), a type of anthocyanin abundant in dark-skinned berries, on glyLDL-induced ROS production, NOX activation and mETC enzyme activity in porcine aortic EC (PAEC). Co-treatment of C3G prevented glyLDL-induced upregulation of NOX4 and intracellular superoxide production in EC. C3G normalized glyLDL-induced inhibition on the enzyme activities of mETC Complex I and III, as well as the abundances of NADH dehydrogenase 1 in Complex I and cytochrome b in Complex III in EC. Blocking antibody for the receptor of advanced glycation end products (RAGE) prevented glyLDL-induced changes in NOX and mETC enzymes. Combination of C3G and RAGE antibody did not significantly enhance glyLDL-induced inhibition of NOX or mETC enzymes. C3G reduced glyLDL-induced RAGE expression with the presence of RAGE antibody. C3G prevented prolonged incubation with the glyLDL-induced decrease in cell viability and the imbalance between key regulators for cell viability (cleaved caspase 3 and B cell Lyphoma-2) in EC. The findings suggest that RAGE plays an important role in glyLDL-induced oxidative stress in vascular EC. C3G may prevent glyLDL-induced NOX activation, the impairment of mETC enzymes and cell viability in cultured vascular EC. PMID:23443099

  17. Impact of cyanidin-3-glucoside on glycated LDL-induced NADPH oxidase activation, mitochondrial dysfunction and cell viability in cultured vascular endothelial cells.

    PubMed

    Xie, Xueping; Zhao, Ruozhi; Shen, Garry X

    2012-11-27

    Elevated levels of glycated low density lipoprotein (glyLDL) are frequently detected in diabetic patients. Previous studies demonstrated that glyLDL increased the production of reactive oxygen species (ROS), activated NADPH oxidase (NOX) and suppressed mitochondrial electron transport chain (mETC) enzyme activities in vascular endothelial cells (EC). The present study examined the effects of cyanidin-3-glucoside (C3G), a type of anthocyanin abundant in dark-skinned berries, on glyLDL-induced ROS production, NOX activation and mETC enzyme activity in porcine aortic EC (PAEC). Co-treatment of C3G prevented glyLDL-induced upregulation of NOX4 and intracellular superoxide production in EC. C3G normalized glyLDL-induced inhibition on the enzyme activities of mETC Complex I and III, as well as the abundances of NADH dehydrogenase 1 in Complex I and cytochrome b in Complex III in EC. Blocking antibody for the receptor of advanced glycation end products (RAGE) prevented glyLDL-induced changes in NOX and mETC enzymes. Combination of C3G and RAGE antibody did not significantly enhance glyLDL-induced inhibition of NOX or mETC enzymes. C3G reduced glyLDL-induced RAGE expression with the presence of RAGE antibody. C3G prevented prolonged incubation with the glyLDL-induced decrease in cell viability and the imbalance between key regulators for cell viability (cleaved caspase 3 and B cell Lyphoma-2) in EC. The findings suggest that RAGE plays an important role in glyLDL-induced oxidative stress in vascular EC. C3G may prevent glyLDL-induced NOX activation, the impairment of mETC enzymes and cell viability in cultured vascular EC.

  18. Extra corporeal membrane oxygenation to facilitate lung protective ventilation and prevent ventilator-induced lung injury in severe Pneumocystis pneumonia with pneumomediastinum: a case report and short literature review.

    PubMed

    Ali, Husain Shabbir; Hassan, Ibrahim Fawzy; George, Saibu

    2016-04-14

    Pulmonary infections caused by Pneumocystis jirovecii in immunocompromised host can be associated with cysts, pneumatoceles and air leaks that can progress to pneumomediastinum and pneumothoraxes. In such cases, it can be challenging to maintain adequate gas exchange by conventional mechanical ventilation and at the same time prevent further ventilator-induced lung injury. We report a young HIV positive male with poorly compliant lungs and pneumomediastinum secondary to severe Pneumocystis infection, rescued with veno-venous extra corporeal membrane oxygenation (V-V ECMO). A 26 year old male with no significant past medical history was admitted with fever, cough and shortness of breath. He initially required non-invasive ventilation for respiratory failure. However, his respiratory function progressively deteriorated due to increasing pulmonary infiltrates and development of pneumomediastinum, eventually requiring endotracheal intubation and invasive ventilation. Despite attempts at optimizing gas exchange by ventilatory maneuvers, patients' pulmonary parameters worsened necessitating rescue ECMO therapy. The introduction of V-V ECMO facilitated the use of ultra-protective lung ventilation and prevented progression of pneumomediastinum, maintaining optimal gas exchange. It allowed time for the antibiotics to show effect and pulmonary parenchyma to heal. Further diagnostic workup revealed Pneumocystis jirovecii as the causative organism for pneumonia and serology confirmed Human Immunodeficiency Virus infection. Patient was successfully treated with appropriate antimicrobials and de-cannulated after six days of ECMO support. ECMO was an effective salvage therapy in HIV positive patient with an otherwise fatal respiratory failure due to Pneumocystis pneumonia and air leak syndrome.

  19. Iron is associated with the development of hypoxia-induced pulmonary vascular remodeling in mice.

    PubMed

    Naito, Yoshiro; Hosokawa, Manami; Sawada, Hisashi; Oboshi, Makiko; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Eguchi, Akiyo; Nishimura, Koichi; Soyama, Yuko; Hirotani, Shinichi; Mano, Toshiaki; Ishihara, Masaharu; Masuyama, Tohru

    2016-12-01

    Several recent observations provide the association of iron deficiency with pulmonary hypertension (PH) in human and animal studies. However, it remains completely unknown whether PH leads to iron deficiency or iron deficiency enhances the development of PH. In addition, it is obscure whether iron is associated with the development of pulmonary vascular remodeling in PH. In this study, we investigate the impacts of dietary iron restriction on the development of hypoxia-induced pulmonary vascular remodeling in mice. Eight- to ten-week-old male C57BL/6J mice were exposed to chronic hypoxia for 4 weeks. Mice exposed to hypoxia were randomly divided into two groups and were given a normal diet or an iron-restricted diet. Mice maintained in room air served as normoxic controls. Chronic hypoxia induced pulmonary vascular remodeling, while iron restriction led a modest attenuation of this change. In addition, chronic hypoxia exhibited increased RV systolic pressure, which was attenuated by iron restriction. Moreover, the increase in RV cardiomyocyte cross-sectional area and RV interstitial fibrosis was observed in mice exposed to chronic hypoxia. In contrast, iron restriction suppressed these changes. Consistent with these changes, RV weight to left ventricular + interventricular septum weight ratio was increased in mice exposed to chronic hypoxia, while this increment was inhibited by iron restriction. Taken together, these results suggest that iron is associated with the development of hypoxia-induced pulmonary vascular remodeling in mice.

  20. Combinatorial Therapy with Acetylation and Methylation Modifiers Attenuates Lung Vascular Hyperpermeability in Endotoxemia-Induced Mouse Inflammatory Lung Injury

    PubMed Central

    Thangavel, Jayakumar; Malik, Asrar B.; Elias, Harold K.; Rajasingh, Sheeja; Simpson, Andrew D.; Sundivakkam, Premanand K.; Vogel, Stephen M.; Xuan, Yu-Ting; Dawn, Buddhadeb; Rajasingh, Johnson

    2015-01-01

    Impairment of tissue fluid homeostasis and migration of inflammatory cells across the vascular endothelial barrier are crucial factors in the pathogenesis of acute lung injury (ALI). The goal for treatment of ALI is to target pathways that lead to profound dysregulation of the lung endothelial barrier. Although studies have shown that chemical epigenetic modifiers can limit lung inflammation in experimental ALI models, studies to date have not examined efficacy of a combination of DNA methyl transferase inhibitor 5-Aza 2-deoxycytidine and histone deacetylase inhibitor trichostatin A (herein referred to as Aza+TSA) after endotoxemia-induced mouse lung injury. We tested the hypothesis that treatment with Aza+TSA after lipopolysaccharide induction of ALI through epigenetic modification of lung endothelial cells prevents inflammatory lung injury. Combinatorial treatment with Aza+TSA mitigated the increased endothelial permeability response after lipopolysaccharide challenge. In addition, we observed reduced lung inflammation and lung injury. Aza+TSA also significantly reduced mortality in the ALI model. The protection was ascribed to inhibition of the eNOS-Cav1-MLC2 signaling pathway and enhanced acetylation of histone markers on the vascular endothelial-cadherin promoter. In summary, these data show for the first time the efficacy of combinatorial Aza+TSA therapy in preventing ALI in lipopolysaccharide-induced endotoxemia and raise the possibility of an essential role of DNA methyl transferase and histone deacetylase in the mechanism of ALI. PMID:24929240

  1. Vascular lysyl oxidase over-expression alters extracellular matrix structure and induces oxidative stress.

    PubMed

    Varona, Saray; García-Redondo, Ana B; Martínez-González, Jose; Salaices, Mercedes; Briones, Ana M; Rodríguez, Cristina

    Lysyl oxidase (LOX) participates in the assembly of collagen and elastin fibres. The impact of vascular LOX over-expression on extracellular matrix (ECM) structure and its contribution to oxidative stress has been analysed. Studies were conducted on mice over-expressing LOX (Tg), specifically in smooth muscle cells (VSMC). Gene expression was assessed by real-time PCR analysis. Sirius Red staining, H 2 O 2 production and NADPH oxidase activity were analysed in different vascular beds. The size and number of fenestra of the internal elastic lamina were determined by confocal microscopy. LOX activity was up-regulated in VSMC of transgenic mice compared with cells from control animals. At the same time, transgenic cells deposited more organised elastin fibres and their supernatants induced a stronger collagen assembly in in vitro assays. Vascular collagen cross-linking was also higher in Tg mice, which showed a decrease in the size of fenestrae and an enhanced expression of Fibulin-5. Interestingly, higher H 2 O 2 production and NADPH oxidase activity was detected in the vascular wall from transgenic mice. The H 2 O 2 scavenger catalase attenuated the stronger deposition of mature elastin fibres induced by LOX transgenesis. LOX over-expression in VSMC was associated with a change in the structure of collagen and elastin fibres. LOX could constitute a novel source of oxidative stress that might participate in elastin changes and contribute to vascular remodelling. Copyright © 2017 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Intra-operative protective mechanical ventilation in lung transplantation: a randomised, controlled trial.

    PubMed

    Verbeek, G L; Myles, P S; Westall, G P; Lin, E; Hastings, S L; Marasco, S F; Jaffar, J; Meehan, A C

    2017-08-01

    Primary graft dysfunction occurs in up to 25% of patients after lung transplantation. Contributing factors include ventilator-induced lung injury, cardiopulmonary bypass, ischaemia-reperfusion injury and excessive fluid administration. We evaluated the feasibility, safety and efficacy of an open-lung protective ventilation strategy aimed at reducing ventilator-induced lung injury. We enrolled adult patients scheduled to undergo bilateral sequential lung transplantation, and randomly assigned them to either a control group (volume-controlled ventilation with 5 cmH 2 O, positive end-expiratory pressure, low tidal volumes (two-lung ventilation 6 ml.kg -1 , one-lung ventilation 4 ml.kg -1 )) or an alveolar recruitment group (regular step-wise positive end-expiratory pressure-based alveolar recruitment manoeuvres, pressure-controlled ventilation set at 16 cmH 2 O with 10 cmH 2 O positive end-expiratory pressure). Ventilation strategies were commenced from reperfusion of the first lung allograft and continued for the duration of surgery. Regular PaO 2 /F I O 2 ratios were calculated and venous blood samples collected for inflammatory marker evaluation during the procedure and for the first 24 h of intensive care stay. The primary end-point was the PaO 2 /F I O 2 ratio at 24 h after first lung reperfusion. Thirty adult patients were studied. The primary outcome was not different between groups (mean (SD) PaO 2 /F I O 2 ratio control group 340 (111) vs. alveolar recruitment group 404 (153); adjusted p = 0.26). Patients in the control group had poorer mean (SD) PaO 2 /F I O 2 ratios at the end of the surgical procedure and a longer median (IQR [range]) time to tracheal extubation compared with the alveolar recruitment group (308 (144) vs. 402 (154) (p = 0.03) and 18 (10-27 [5-468]) h vs. 15 (11-36 [5-115]) h (p = 0.01), respectively). An open-lung protective ventilation strategy during surgery for lung transplantation is feasible, safe and achieves favourable

  3. Endothelin B receptor blockade attenuates pulmonary vasodilation in oxygen-ventilated fetal lambs.

    PubMed

    Ivy, D Dunbar; Lee, Dong-Seok; Rairigh, Robyn L; Parker, Thomas A; Abman, Steven H

    2004-01-01

    Endothelin-1 (ET-1) contributes to the regulation of pulmonary vascular tone in the normal ovine fetus and in models of perinatal pulmonary hypertension. In the fetal lamb lung, the effects of ET-1 depend on the balance of at least two endothelin receptor subtypes: ETA and ETB. ETA receptors are located on smooth muscle cells and mediate vasoconstriction and smooth muscle proliferation. Stimulation of endothelial ETB receptors causes vasodilation through release of nitric oxide and also functions to remove ET-1 from the circulation. However, whether activation of ETB receptors contributes to the fall in pulmonary vascular tone at birth is unknown. To determine the role of acute ETB receptor blockade in pulmonary vasodilation in response to birth-related stimuli, we studied the hemodynamic effects of selective ETB receptor blockade with BQ-788 during mechanical ventilation with low (<10%) and high FiO2 (100%) in near-term fetal sheep. Intrapulmonary infusion of BQ-788 did not change left pulmonary artery (LPA) blood flow and pulmonary vascular resistance (PVR) at baseline. In comparison with controls, BQ-788 treatment attenuated the rise in LPA flow with low and high FiO2 ventilation (p <0.001 vs. control for each FiO2 concentration). PVR progressively decreased during mechanical ventilation with low and high FiO2 in both groups, but PVR remained higher after BQ-788 treatment throughout the study period (p <0.001). We conclude that selective ETB receptor blockade attenuates pulmonary vasodilation at birth. We speculate that ETB receptor stimulation contributes to pulmonary vasodilation at birth in the ovine fetus.

  4. Pulmonary vascular response to exercise in symptomatic heart failure with reduced ejection fraction and pulmonary hypertension.

    PubMed

    Verbrugge, Frederik H; Dupont, Matthias; Bertrand, Philippe B; Nijst, Petra; Grieten, Lars; Dens, Joseph; Verhaert, David; Janssens, Stefan; Tang, W H Wilson; Mullens, Wilfried

    2015-03-01

    To study pulmonary vascular response patterns to exercise in heart failure with reduced ejection fraction (HFrEF) and pulmonary hypertension (PH). In this prospective single-centre cohort study, consecutive symptomatic HFrEF patients (n = 40) with mean pulmonary arterial pressure (MPAP) ≥25 mmHg, pulmonary artery wedge pressure (PAWP) >15 mmHg, and cardiac index <2.5 L/min.m(2) , received protocol-driven titrated sodium nitroprusside (SNP) and diuretics to reach mean arterial blood pressure 65-75 mmHg and PAWP ≤15 mmHg. Patients performed symptom-limited supine bicycle testing under continued SNP administration. Afterwards, SNP was gradually withdrawn, renin-angiotensin system blockers uptitrated, and hydralazine added to maintain haemodynamic targets. Subsequently, bicycle testing was repeated. Patients presented with pulmonary vascular resistance (PVR) = 3.8 ± 1.4 Wood Units at rest, decreasing to 2.9 ± 0.9 Wood Units after decongestion, with PH was completely reversed (MPAP <25 mmHg) in 22%. From rest to maximal exercise, the cardiac index did not change significantly (P = 0.334 under SNP; P-value = 0.552 under oral therapy). A dynamic exercise-induced PVR increase >3.5 Wood Units was noted in 19 patients (48%) under oral therapy vs. five (13%) under SNP. Such exercise-induced PVR increase was associated with a 33% relative decrease in right ventricular stroke work index (P = 0.037). Even after thorough decongestion and under continuous afterload reduction, PH secondary to HFrEF is completely reversible in only a minority of patients. Others demonstrate an exercise-induced PVR increase, associated with impaired right ventricular stroke work, which might be ameliorated by nitric oxide donor support. © 2014 The Authors. European Journal of Heart Failure © 2014 European Society of Cardiology.

  5. Protective effects of hydrogen-rich medium on lipopolysaccharide-induced monocytic adhesion and vascular endothelial permeability through regulation of vascular endothelial cadherin.

    PubMed

    Yu, Y; Wang, W N; Han, H Z; Xie, K L; Wang, G L; Yu, Y H

    2015-06-11

    We observed the effect of hydrogen-rich medium on lipopolysaccharide (LPS)-induced human umbilical vein endothelial cells (HUVECs), hyaline leukocyte conglutination, and permeability of the endothelium. Endotheliocytes were inoculated on 6-well plates and randomly divided into 4 groups: control, H2, LPS, LPS+H2, H2, and LPS+H2 in saturated hydrogen-rich medium. We applied Wright's stain-ing to observe conglutination of hyaline leukocytes and HUVECs, flow cytometry to determine the content of vascular cell adhesion protein 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1), enzyme-linked immunosorbent assay to measure the E-selectin concentration in the cell liquor, the transendothelial electrical resistance (TEER) to test the permeability of endothelial cells, and Western blot and immunofluorescence to test the expression and distribution of vascular endothelial (VE)-cadherin. Compared with control cells, there was an increase in endothelium-hyaline leukocyte conglutination, a reduction in VCAM-1, ICAM-1, and E-selectin, and the TEER value increased obviously. Compared with LPS, there was an obvious reduction in the conglutination of LPS+H2 cells, a reduction in VCAM-1, ICAM-1, and E-selectin levels, and a reduction in the TEER-resistance value, while the expression of VE-cadherin increased. Fluorescence results showed that, compared with control cells, the VE-cadherin in LPS cells was in-complete at the cell joints. Compared with LPS cells, the VE-cadherin in LPS+H2 cells was even and complete at the cell joints. Liquid rich in hydrogen could reduce LPS-induced production of adhesion molecules and endothelium-hyaline leukocyte conglutination, and influence the expression and distribution of VE-cadherin to regulate the permeability of the endothelium.

  6. Induction of apoptosis by pyrrolidinedithiocarbamate and N-acetylcysteine in vascular smooth muscle cells.

    PubMed

    Tsai, J C; Jain, M; Hsieh, C M; Lee, W S; Yoshizumi, M; Patterson, C; Perrella, M A; Cooke, C; Wang, H; Haber, E; Schlegel, R; Lee, M E

    1996-02-16

    Pyrrolidinedithiocarbamate (PDTC) and N-acetylcysteine (NAC) have been used as antioxidants to prevent apoptosis in lymphocytes, neurons, and vascular endothelial cells. We report here that PDTC and NAC induce apoptosis in rat and human smooth muscle cells. In rat aortic smooth muscle cells, PDTC induced cell shrinkage, chromatin condensation, and DNA strand breaks consistent with apoptosis. In addition, overexpression of Bcl-2 suppressed vascular smooth muscle cell death caused by PDTC and NAC. The viability of rat aortic smooth muscle cells decreased within 3 h of treatment with PDTC and was reduced to 30% at 12 h. The effect of PDTC and NAC on smooth muscle cells was not species specific because PDTC and NAC both caused dose-dependent reductions in viability in rat and human aortic smooth muscle cells. In contrast, neither PDTC nor NAC reduced viability in human aortic endothelial cells. The use of antioxidants to induce apoptosis in vascular smooth muscle cells may help prevent their proliferation in arteriosclerotic lesions.

  7. Noninvasive Ventilation in Premature Neonates.

    PubMed

    Flanagan, Keri Ann

    2016-04-01

    The use of noninvasive ventilation is a constantly evolving treatment option for respiratory disease in the premature infant. The goals of these noninvasive ventilation techniques are to improve gas exchange in the premature infant's lungs and to minimize the need for intubation and invasive mechanical ventilation. The goals of this article are to consider various uses of nasal interfaces, discuss skin care and developmental positioning concerns faced by the bedside nurse, and discuss the medical management aimed to reduce morbidity and mortality. This article explores the nursing role, the advances in medical strategies for noninvasive ventilation, and the team approach to noninvasive ventilation use in this population. Search strategy included a literature review on medical databases, such as EBSCOhost, CINAHL, PubMed, and NeoReviews. Innovative products, nursing research on developmental positioning and skin care, and advanced medical management have led to better and safer outcomes for premature infants requiring noninvasive ventilation. The medical focus of avoiding long-term mechanical ventilation would not be possible without the technology to provide noninvasive ventilation to these premature infants and the watchful eye of the nurse in terms of careful positioning, preventing skin breakdown and facial scarring, and a proper seal to maximize ventilation accuracy. This article encourages nursing-based research to quantify some of the knowledge about skin care and positioning as well as research into most appropriate uses for noninvasive ventilation devices.

  8. Radiation-induced senescence-like phenotype in proliferating and plateau-phase vascular endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Igarashi, Kaori; Sakimoto, Ippei; Kataoka, Keiko

    The effects of ionizing radiation (IR) on tumor angiogenesis still remain largely unknown. In this study, we found that IR (8 Gy) induces a high-frequency (80-90%) senescence-like phenotype in vascular endothelial cells (ECs) undergoing exponential growth. This finding allowed us to characterize the IR-induced senescence-like (IRSL) phenotype by examining the gene expression profiles and in vitro angiogenic activities of these ECs. The expression levels of genes associated with cell cycle progression and DNA replication were remarkably reduced in the IRSL ECs. Additionally, the in vitro invasion and migration activities of these cells through Matrigel were significantly suppressed. We also foundmore » that confluent ECs exhibited a high-frequency IRSL phenotype when they were replated immediately after irradiation, whereas incubation in plateau-phase conditions reduced the induction of this phenotype and enhanced colony formation. The kinetics of DNA double-strand break repair, which showed a faster time course in confluent ECs than in growing ECs, may contribute to the protective mechanism associated with the IRSL phenotype. These results imply that the IRSL phenotype may be important for determining the angiogenic activity of ECs following irradiation. The present study should contribute to the understanding of the effects of IR on tumor angiogenesis.« less

  9. Patient-specific cardiovascular progenitor cells derived from integration-free induced pluripotent stem cells for vascular tissue regeneration.

    PubMed

    Hu, Jiang; Wang, Yongyu; Jiao, Jiao; Liu, Zhongning; Zhao, Chao; Zhou, Zhou; Zhang, Zhanpeng; Forde, Kaitlynn; Wang, Lunchang; Wang, Jiangang; Baylink, David J; Zhang, Xiao-Bing; Gao, Shaorong; Yang, Bo; Chen, Y Eugene; Ma, Peter X

    2015-12-01

    Tissue-engineered blood vessels (TEBVs) are promising in regenerating a live vascular replacement. However, the vascular cell source is limited, and it is crucial to develop a scaffold that accommodates new type of vascular progenitor cells and facilitates in vivo lineage specification of the cells into functional vascular smooth muscle cells (VSMCs) to regenerate vascular tissue. In the present study, integration-free human induced pluripotent stem cells (hiPSCs) were established from patient peripheral blood mononuclear cells through episomal vector nucleofection of reprogramming factors. The established hiPSCs were then induced into mesoderm-originated cardiovascular progenitor cells (CVPCs) with a highly efficient directed lineage specification method. The derived CVPCs were demonstrated to be able to differentiate into functional VSMCs. Subcutaneous implantation of CVPCs seeded on macroporous nanofibrous poly(l-lactide) scaffolds led to in vivo VSMC lineage specification and matrix deposition inside the scaffolds. In summary, we established integration-free patient-specific hiPSCs from peripheral blood mononuclear cells, derived CVPCs through directed lineage specification, and developed an advanced scaffold for these progenitor cells to further differentiate in vivo into VSMCs and regenerate vascular tissue in a subcutaneous implantation model. This study has established an efficient patient-specific approach towards in vivo regeneration of vascular tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Control of airborne infectious diseases in ventilated spaces

    PubMed Central

    Nielsen, Peter V.

    2009-01-01

    We protect ourselves from airborne cross-infection in the indoor environment by supplying fresh air to a room by natural or mechanical ventilation. The air is distributed in the room according to different principles: mixing ventilation, displacement ventilation, etc. A large amount of air is supplied to the room to ensure a dilution of airborne infection. Analyses of the flow in the room show that there are a number of parameters that play an important role in minimizing airborne cross-infection. The air flow rate to the room must be high, and the air distribution pattern can be designed to have high ventilation effectiveness. Furthermore, personalized ventilation may reduce the risk of cross-infection, and in some cases, it can also reduce the source of infection. Personalized ventilation can especially be used in hospital wards, aircraft cabins and, in general, where people are in fixed positions. PMID:19740921

  11. A substance P antagonist inhibits vagally induced increase in vascular permeability and bronchial smooth muscle contraction in the guinea pig

    PubMed Central

    Lundberg, J. M.; Saria, A.; Brodin, E.; Rosell, S.; Folkers, K.

    1983-01-01

    Electrical stimulation of the cervical vagus nerve in anesthetized guinea pigs induced a rapid increase in respiratory insufflation pressure, suggesting increased airway resistance. After intravenous administration of a substance P (SP) antagonist, [D-Arg1,D-Pro2,D-Trp7,9,Leu11]SP, the insufflation pressure response to vagal stimulation was reduced by 78% while the cardiovascular effects were unchanged. Histamine receptor-blocking agents were used to inhibit the effects of histamine release induced by the SP-antagonist. [D-Arg1,D-Pro2,D-Trp7,9,Leu11]SP also reduced the increase in insufflation pressure caused by intravenous SP or capsaicin. The long-lasting noncholinergic contraction of the main and hilus bronchi induced by field stimulation in vitro, as well as the contractile effects of SP and capsaicin, were also blocked by the SP antagonist. The cholinergic contractions and the noncholinergic tracheal relaxation on field stimulation in vitro were, however, not blocked by the antagonist. Vagal stimulation in vivo also increased vascular permeability in the respiratory tract and esophagus, causing a subepithelial edema as indicated by Evans blue extravasation. Previous treatment with [D-Arg1,D-Pro2,D-Trp7,9,Leu11]SP inhibited the permeability increase induced by both vagus nerve stimulation and exogenous SP. SP release from vagal sensory nerves was indirectly shown by reduction in the bronchial levels of SP after nerve stimulation in vivo. The data suggest that a major portion of the vagally or capsaicin-induced increase in smooth muscle tone is caused by SP release from sensory neurons. In addition, activation of vagal SP-containing sensory nerves induces local edema. Tracheobronchial afferent SP-containing C fibers may thus exert local control of smooth muscle tone and vascular permeability in normal and pathophysiological conditions. Images PMID:6189120

  12. Temperature of gas delivered from ventilators.

    PubMed

    Chikata, Yusuke; Onodera, Mutsuo; Imanaka, Hideaki; Nishimura, Masaji

    2013-01-01

    Although heated humidifiers (HHs) are the most efficient humidifying device for mechanical ventilation, some HHs do not provide sufficient humidification when the inlet temperature to the water chamber is high. Because portable and home-care ventilators use turbines, blowers, pistons, or compressors to inhale in ambient air, they may have higher gas temperature than ventilators with piping systems. We carried out a bench study to investigate the temperature of gas delivered from portable and home-care ventilators, including the effects of distance from ventilator outlet, fraction of inspiratory oxygen (FIO2), and minute volume (MV). We evaluated five ventilators equipped with turbine, blower, piston, or compressor system. Ambient air temperature was adjusted to 24°C ± 0.5°C, and ventilation was set at FIO2 0.21, 0.6, and 1.0, at MV 5 and 10 L/min. We analyzed gas temperature at 0, 40, 80, and 120 cm from ventilator outlet and altered ventilator settings. While temperature varied according to ventilators, the outlet gas temperature of ventilators became stable after, at the most, 5 h. Gas temperature was 34.3°C ± 3.9°C at the ventilator outlet, 29.5°C ± 2.2°C after 40 cm, 25.4°C ± 1.2°C after 80 cm and 25.1°C ± 1.2°C after 120 cm (P < 0.01). FIO2 and MV did not affect gas temperature. Gas delivered from portable and home-care ventilator was not too hot to induce heated humidifier malfunctioning. Gas soon declined when passing through the limb.

  13. ILK mediates LPS-induced vascular adhesion receptor expression and subsequent leucocyte trans-endothelial migration.

    PubMed

    Hortelano, Sonsoles; López-Fontal, Raquel; Través, Paqui G; Villa, Natividad; Grashoff, Carsten; Boscá, Lisardo; Luque, Alfonso

    2010-05-01

    The inflammatory response to injurious agents is tightly regulated to avoid adverse consequences of inappropriate leucocyte accumulation or failed resolution. Lipopolysaccharide (LPS)-activated endothelium recruits leucocytes to the inflamed tissue through controlled expression of membrane-associated adhesion molecules. LPS responses in macrophages are known to be regulated by integrin-linked kinase (ILK); in this study, we investigated the role of ILK in the regulation of the LPS-elicited inflammatory response in endothelium. This study was performed on immortalized mouse endothelial cells (EC) isolated from lung and coronary vasculature. Cells were thoroughly characterized and the role of ILK in the regulation of the LPS response was investigated by suppressing ILK expression using siRNA and shRNA technologies. Phenotypic and functional analyses confirmed that the immortalized cells behaved as true EC. LPS induced the expression of the inflammatory genes E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). ILK knockdown impaired LPS-mediated endothelial activation by preventing the induction of ICAM-1 and VCAM-1. Blockade of the LPS-induced response inhibited the inflammatory-related processes of firm adhesion and trans-endothelial migration of leucocytes. ILK is involved in the expression of cell adhesion molecules by EC activated with the inflammatory stimulus LPS. This reduced expression modulates leucocyte adhesion to the endothelium and the extravasation process. This finding suggests ILK as a potential anti-inflammatory target for the development of vascular-specific treatments for inflammation-related diseases.

  14. Summary of human responses to ventilation.

    PubMed

    Seppänen, O A; Fisk, W J

    2004-01-01

    It is known that ventilation is necessary to remove indoor-generated pollutants from indoor air or dilute their concentration to acceptable levels. But as the limit values of all pollutants are not known the exact determination of required ventilation rates based on pollutant concentrations is seldom possible. The selection of ventilation rates has to be based also on epidemiological research, laboratory and field experiments and experience. The existing literature indicates that ventilation has a significant impact on several important human outcomes including: (1) communicable respiratory illnesses; (2) sick building syndrome symptoms; (3) task performance and productivity, and (4) perceived air quality (PAQ) among occupants or sensory panels (5) respiratory allergies and asthma. In many studies, prevalence of sick building syndrome symptoms has also been associated with characteristics of HVAC-systems. Often the prevalence of SBS symptoms is higher in air-conditioned buildings than in naturally ventilated buildings. The evidence suggests that better hygiene, commissioning, operation and maintenance of air handling systems may be particularly important for reducing the negative effects of HVAC systems. Ventilation may also have harmful effects on indoor air quality and climate if not properly designed, installed, maintained and operated. Ventilation may bring indoors harmful substances or deteriorate indoor environment. Ventilation interacts also with the building envelope and may deteriorate the structures of the building. Ventilation changes the pressure differences across the structures of building and may cause or prevent infiltration of pollutants from structures or adjacent spaces. Ventilation is also in many cases used to control the thermal environment or humidity in buildings. The paper summarises the current knowledge on positive and negative effects of ventilation on health and other human responses. The focus is on office-type working environment and

  15. Gas exchange and intrapulmonary distribution of ventilation during continuous-flow ventilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vettermann, J.; Brusasco, V.; Rehder, K.

    1988-05-01

    In 12 anesthetized paralyzed dogs, pulmonary gas exchange and intrapulmonary inspired gas distribution were compared between continuous-flow ventilation (CFV) and conventional mechanical ventilation (CMV). Nine dogs were studied while they were lying supine, and three dogs were studied while they were lying prone. A single-lumen catheter for tracheal insufflation and a double-lumen catheter for bilateral endobronchial insufflation (inspired O2 fraction = 0.4; inspired minute ventilation = 1.7 +/- 0.3 (SD) 1.kg-1.min-1) were evaluated. Intrapulmonary gas distribution was assessed from regional 133Xe clearances. In dogs lying supine, CO2 elimination was more efficient with endobronchial insufflation than with tracheal insufflation, but themore » alveolar-arterial O2 partial pressure difference was larger during CFV than during CMV, regardless of the type of insufflation. By contrast, endobronchial insufflation maintained both arterial PCO2 and alveolar-arterial O2 partial pressure difference at significantly lower levels in dogs lying prone than in dogs lying supine. In dogs lying supine, the dependent lung was preferentially ventilated during CMV but not during CFV. In dogs lying prone, gas distribution was uniform with both modes of ventilation. The alveolar-arterial O2 partial pressure difference during CFV in dogs lying supine was negatively correlated with the reduced ventilation of the dependent lung, which suggests that increased ventilation-perfusion mismatching was responsible for the increase in alveolar-arterial O2 partial pressure difference. The more efficient oxygenation during CFV in dogs lying prone suggests a more efficient matching of ventilation to perfusion, presumably because the distribution of blood flow is also nearly uniform.« less

  16. Antibiotic therapy in ventilator-associated tracheobronchitis: a literature review.

    PubMed

    Alves, Abel Eduardo; Pereira, José Manuel

    2018-03-01

    The concept of ventilator-associated tracheobronchitis is controversial; its definition is not unanimously accepted and often overlaps with ventilator-associated pneumonia. Ventilator-associated tracheobronchitis has an incidence similar to that of ventilator-associated pneumonia, with a high prevalence of isolated multiresistant agents, resulting in an increase in the time of mechanical ventilation and hospitalization but without an impact on mortality. The performance of quantitative cultures may allow better diagnostic definition of tracheobronchitis associated with mechanical ventilation, possibly avoiding the overdiagnosis of this condition. One of the major difficulties in differentiating between ventilator-associated tracheobronchitis and ventilator-associated pneumonia is the exclusion of a pulmonary infiltrate by chest radiography; thoracic computed tomography, thoracic ultrasonography, or invasive specimen collection may also be required. The institution of systemic antibiotic therapy does not improve the clinical impact of ventilator-associated tracheobronchitis, particularly in reducing time of mechanical ventilation, hospitalization or mortality, despite the possible reduced progression to ventilator-associated pneumonia. However, there are doubts regarding the methodology used. Thus, considering the high prevalence of tracheobronchitis associated with mechanical ventilation, routine treatment of this condition would result in high antibiotic usage without clear benefits. However, we suggest the institution of antibiotic therapy in patients with tracheobronchitis associated with mechanical ventilation and septic shock and/or worsening of oxygenation, and other auxiliary diagnostic tests should be simultaneously performed to exclude ventilator-associated pneumonia. This review provides a better understanding of the differentiation between tracheobronchitis associated with mechanical ventilation and pneumonia associated with mechanical ventilation, which

  17. PDGF-BB induces vascular smooth muscle cell expression of high molecular weight FGF-2, which accumulates in the nucleus.

    PubMed

    Pintucci, Giuseppe; Yu, Pey-Jen; Saponara, Fiorella; Kadian-Dodov, Daniella L; Galloway, Aubrey C; Mignatti, Paolo

    2005-08-15

    Basic fibroblast growth factor (FGF-2) and platelet-derived growth factor (PDGF) are implicated in vascular remodeling secondary to injury. Both growth factors control vascular endothelial and smooth muscle cell proliferation, migration, and survival through overlapping intracellular signaling pathways. In vascular smooth muscle cells PDGF-BB induces FGF-2 expression. However, the effect of PDGF on the different forms of FGF-2 has not been elucidated. Here, we report that treatment of vascular aortic smooth muscle cells with PDGF-BB rapidly induces expression of 20.5 and 21 kDa, high molecular weight (HMW) FGF-2 that accumulates in the nucleus and nucleolus. Conversely, PDGF treatment has little or no effect on 18 kDa, low-molecular weight FGF-2 expression. PDGF-BB-induced upregulation of HMW FGF-2 expression is controlled by sustained activation of extracellular signal-regulated kinase (ERK)-1/2 and is abolished by actinomycin D. These data describe a novel interaction between PDGF-BB and FGF-2, and indicate that the nuclear forms of FGF-2 may mediate the effect of PDGF activity on vascular smooth muscle cells.

  18. Defibrotide modulates prostaglandin production in the rat mesenteric vascular bed.

    PubMed

    Peredo, H A

    2002-10-01

    Defibrotide 1 microM, a polydeoxyribonucleotide extracted from mammalian organs, reduced the contractile responses to noradrenaline (NA) in the rat isolated and perfused mesenteric vascular bed, in intact as well as in de-endothelialized preparations. Defibrotide was without effect on the acetylcholine-induced relaxations of U-46619-precontracted mesenteric vascular beds. Moreover, defibrotide increased 6-keto prostaglandin (PG) F(2alpha) (stable metabolite of prostacyclin) release sixfold in the presence, but not in the absence of the endothelium, with no modification on the release of other prostanoids. Defibrotide also inhibited the NA-induced increase in PGF(2alpha) release, in both intact and de-endothelialized mesenteric vascular beds. In conclusion, the present results show that defibrotide modulates PG production in the mesenteric bed and that the observed inhibition of the contractile responses should be due to the impairment of the NA-induced increase in PGF(2alpha) release.

  19. Effects of sevoflurane on ventilator induced lung injury in a healthy lung experimental model.

    PubMed

    Romero, A; Moreno, A; García, J; Sánchez, C; Santos, M; García, J

    2016-01-01

    Ventilator-induced lung injury (VILI) causes a systemic inflammatory response in tissues, with an increase in IL-1, IL-6 and TNF-α in blood and tissues. Cytoprotective effects of sevoflurane in different experimental models are well known, and this protective effect can also be observed in VILI. The objective of this study was to assess the effects of sevoflurane in VILI. A prospective, randomized, controlled study was designed. Twenty female rats were studied. The animals were mechanically ventilated, without sevoflurane in the control group and sevoflurane 3% in the treated group (SEV group). VILI was induced applying a maximal inspiratory pressure of 35 cmH2O for 20 min without any positive end-expiratory pressure for 20 min (INJURY time). The animals were then ventilated 30 min with a maximal inspiratory pressure of 12 cmH2O and 3 cmH2O positive end-expiratory pressure (time 30 min POST-INJURY), at which time the animals were euthanized and pathological and biomarkers studies were performed. Heart rate, invasive blood pressure, pH, PaO2, and PaCO2 were recorded. The lung wet-to-dry weight ratio was used as an index of lung edema. No differences were found in the blood gas analysis parameters or heart rate between the 2 groups. Blood pressure was statistically higher in the control group, but still within the normal clinical range. The percentage of pulmonary edema and concentrations of TNF-α and IL-6 in lung tissue in the SEV group were lower than in the control group. Sevoflurane attenuates VILI in a previous healthy lung in an experimental subclinical model in rats. Copyright © 2015 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Characterization of vascular complications in experimental model of fructose-induced metabolic syndrome.

    PubMed

    El-Bassossy, Hany M; Dsokey, Nora; Fahmy, Ahmed

    2014-12-01

    Vascular dysfunction is an important complication associated with metabolic syndrome (MS). Here we fully characterized vascular complications in a rat model of fructose-induced MS. MS was induced by adding fructose (10%) to drinking water to male Wistar rats of 6 weeks age. Blood pressure (BP) and isolated aorta responses phenylephrine (PE), KCl, acetylcholine (ACh), and sodium nitroprusside (SNP) were recorded after 6, 9, and 12 weeks of fructose administration. In addition, serum levels of glucose, insulin, uric acid, tumor necrosis factor α (TNFα), lipids, advanced glycation end products (AGEs), and arginase activity were determined. Furthermore, aortic reactive oxygen species (ROS) generation, hemeoxygenase-1 expression, and collagen deposition were examined. Fructose administration resulted in a significant hyperinslinemia after 6 weeks which continued for 12 weeks. It was also associated with a significant increase in BP after 6 weeks which was stable for 12 weeks. Aorta isolated from MS animals showed exaggerated contractility to PE and KCl and impaired relaxation to ACh compared with control after 6 weeks which were clearer at 12 weeks of fructose administration. In addition, MS animals showed significant increases in serum levels of lipids, uric acid, AGEs, TNFα, and arginase enzyme activity after 12 weeks of fructose administration. Furthermore, aortae isolated from MS animals were characterized by increased ROS generation and collagen deposition. In conclusion, adding fructose (10%) to drinking water produces a model of MS with vascular complications after 12 weeks that are characterized by insulin resistance, hypertension, disturbed vascular reactivity and structure, hyperuricemia, dyslipidemia, and low-grade inflammation.

  1. Repetitive muscle compression reduces vascular mechano-sensitivity and the hyperemic response to muscle contraction.

    PubMed

    Messere, A; Turturici, M; Millo, G; Roatta, S

    2017-06-01

    Animal studies have shown that the rapid hyperemic response to external muscle compression undergoes inactivation upon repetitive stimulation, but this phenomenon has never been observed in humans. The aim of the present study was to determine whether 1) the vascular mechano-sensitivity underlying muscle compression-induced hyperemia is inactivated in an inter-stimulus interval (ISI)-dependent fashion upon repetitive stimulation, as suggested by animal studies, and 2) whether such inactivation also attenuates contraction-induced hyperemia. Brachial artery blood flow was measured by echo Doppler sonography in 13 healthy adults in response to 1) single and repetitive cuff muscle compression (CMC) of the forearm (20 CMCs, 1 s ISI); 2) a sequence of CMC delivered at decreasing ISI from 120 to 2 s; and 3) electrically-stimulated contraction of the forearm muscles before and after repetitive CMC. The peak amplitude of hyperemia in response to CMC normalized to baseline decreased from 2.2 ± 0.6 to 1.4 ± 0.4 after repetitive CMC and, in general, was decreased at ISI < 240 s. The peak amplitude of contraction-induced hyperemia was attenuated after as compared to before repeated CMC (1.7 ± 0.4 and 2.6 ± 0.6, respectively). Mechano-sensitivity of the vascular network can be conditioned by previous mechanical stimulation, and such preconditioning may substantially decrease contraction-induced hyperemia.

  2. Adult rats are more sensitive to the vascular effects induced by hyperhomocysteinemia than young rats.

    PubMed

    de Andrade, Claudia Roberta; de Campos, Glenda Andréa Déstro; Tirapelli, Carlos Renato; Laurindo, Francisco R M; Haddad, Renato; Eberlin, Marcos N; de Oliveira, Ana Maria

    2010-01-01

    We aimed to investigate the vascular effects of hyperhomocysteinemia (HHcy) on carotid arteries from young and adult rats. With this purpose young and adult rats received a solution of DL-homocysteine-thiolactone (1 g/kg body weight/day) in the drinking water for 7, 14 and 28 days. Increase on plasma homocysteine occurred in young and adult rats treated with DL-homocysteine-thiolactone in all periods. Vascular reactivity experiments using standard muscle bath procedures showed that HHcy enhanced the contractile response of endothelium-intact, carotid rings to phenylephrine in both young and adult rats. However, in young rats, the increased phenylephrine-induced contraction was observed after hyperhomocysteinemia for 14 and 28 days, whereas in adult rats this response was already apparent after 7 day treatment. HHcy impaired acetylcholine-induced relaxation in arteries from adult but not young rats. The contraction induced by phenylephrine in carotid arteries in the presence of Y-27632 was reversed to control values in arteries from young but not adult rats with hyperhomocysteinemia. HHcy did not alter the contraction induced by CaCl(2) in carotid arteries from young rats, but enhanced CaCl(2)-induced contraction in the arteries from adult rats. HHcy increased the basal levels of superoxide anion in arteries from both groups. Finally, HHcy decreased the basal levels of nitrite in arteries from adult but not young rats. The major new finding of the present work is that arteries from young rats are more resistant to vascular changes evoked by HHcy than arteries from adult rats. Also, we verified that the enhanced vascular response to phenylephrine observed in carotid arteries of DL-homocysteine thiolactone-treated rats is mediated by different mechanisms in young and adult rats. Copyright 2010. Published by Elsevier Inc.

  3. Obesity-induced adipokine imbalance impairs mouse pulmonary vascular endothelial function and primes the lung for injury.

    PubMed

    Shah, Dilip; Romero, Freddy; Duong, Michelle; Wang, Nadan; Paudyal, Bishnuhari; Suratt, Benjamin T; Kallen, Caleb B; Sun, Jianxin; Zhu, Ying; Walsh, Kenneth; Summer, Ross

    2015-06-12

    Obesity is a risk factor for the development of acute respiratory distress syndrome (ARDS) but mechanisms mediating this association are unknown. While obesity is known to impair systemic blood vessel function, and predisposes to systemic vascular diseases, its effects on the pulmonary circulation are largely unknown. We hypothesized that the chronic low grade inflammation of obesity impairs pulmonary vascular homeostasis and primes the lung for acute injury. The lung endothelium from obese mice expressed higher levels of leukocyte adhesion markers and lower levels of cell-cell junctional proteins when compared to lean mice. We tested whether systemic factors are responsible for these alterations in the pulmonary endothelium; treatment of primary lung endothelial cells with obese serum enhanced the expression of adhesion proteins and reduced the expression of endothelial junctional proteins when compared to lean serum. Alterations in pulmonary endothelial cells observed in obese mice were associated with enhanced susceptibility to LPS-induced lung injury. Restoring serum adiponectin levels reversed the effects of obesity on the lung endothelium and attenuated susceptibility to acute injury. Our work indicates that obesity impairs pulmonary vascular homeostasis and enhances susceptibility to acute injury and provides mechanistic insight into the increased prevalence of ARDS in obese humans.

  4. Obesity-induced adipokine imbalance impairs mouse pulmonary vascular endothelial function and primes the lung for injury

    PubMed Central

    Shah, Dilip; Romero, Freddy; Duong, Michelle; Wang, Nadan; Paudyal, Bishnuhari; Suratt, Benjamin T.; Kallen, Caleb B.; Sun, Jianxin; Zhu, Ying; Walsh, Kenneth; Summer, Ross

    2015-01-01

    Obesity is a risk factor for the development of acute respiratory distress syndrome (ARDS) but mechanisms mediating this association are unknown. While obesity is known to impair systemic blood vessel function, and predisposes to systemic vascular diseases, its effects on the pulmonary circulation are largely unknown. We hypothesized that the chronic low grade inflammation of obesity impairs pulmonary vascular homeostasis and primes the lung for acute injury. The lung endothelium from obese mice expressed higher levels of leukocyte adhesion markers and lower levels of cell-cell junctional proteins when compared to lean mice. We tested whether systemic factors are responsible for these alterations in the pulmonary endothelium; treatment of primary lung endothelial cells with obese serum enhanced the expression of adhesion proteins and reduced the expression of endothelial junctional proteins when compared to lean serum. Alterations in pulmonary endothelial cells observed in obese mice were associated with enhanced susceptibility to LPS-induced lung injury. Restoring serum adiponectin levels reversed the effects of obesity on the lung endothelium and attenuated susceptibility to acute injury. Our work indicates that obesity impairs pulmonary vascular homeostasis and enhances susceptibility to acute injury and provides mechanistic insight into the increased prevalence of ARDS in obese humans. PMID:26068229

  5. Changes in vascular reactivity induced by acute hyperthyroidism in isolated rat aortae.

    PubMed

    Honda, H; Iwata, T; Mochizuki, T; Kogo, H

    2000-06-01

    Hyperthyroidism was induced by subcutaneous injections of L-thyroxine (T(4)) (500 mg/kg/day) for 3 days in order to study whether adrenergic and muscarinic receptor-mediated vascular responses alter at an early stage of the disease. T(4) treatment was sufficient to induce a significant degree of thyroid weight loss, tachycardia, cardiac hypertrophy, and an elevation in serum T(4) levels. The tension of aortic ring preparations isolated from rats was measured isometrically to investigate the influence of acute hyperthyroidism. The contractions induced by norepinephrine (NE) were significantly suppressed in aortic rings from rats treated with T(4) compared with control rats. N(G)-nitro-L-arginine (L-NOARG), an inhibitor of nitric oxide synthase (NOS), significantly enhanced NE-induced contraction in aortic rings from both control and T(4)-treated rats, and the enhancement was greater in rats treated with T(4) than control rats. The relaxations induced by either acetylcholine (ACh) or sodium nitroprusside (SNP) were also significantly enhanced by T(4) treatment. L-NOARG abolished the relaxation induced by ACh in aortic rings from both control and T(4)-treated rats. L-NOARG shifted SNP-induced relaxation curves of aortic rings from those of control rats to the left, but not with rats treated with T(4). T(4) treatment showed no influence on the amount of endothelial NOS (eNOS) protein. These results suggest that vascular responses alter at an early stage of hyperthyroidism and that it may be due to a modification in the NO system which is independent from the amount of eNOS protein.

  6. Natural ventilation of buildings: opposing wind and buoyancy

    NASA Astrophysics Data System (ADS)

    Linden, Paul; Hunt, Gary

    1998-11-01

    The use of natural ventilation in buildings is an attractive way to reduce energy usage thereby reducing costs and CO2 emissions. Generally, it is necessary to remove excess heat from a building and the designer can use the buoyancy forces associated with the above ambient temperatures within the building to drive a flow - 'stack' ventilation. The most efficient mode is displacement ventilation where warm air accumulates near the top of the building and flows out through upper level vents and cooler air flows in at lower levels. Ventilation will also be driven between these lower and upper openings by the wind. We report on laboratory modeling and theory which investigates the effects of an opposing wind on stack ventilation driven by a constant source of heat within a space under displacement ventilation. We show that there is a critical wind speed, expressed in dimensionless terms as a critical Froude number, above which displacement ventilation is replaced by (less efficient) mixing ventilation with reversed flow. Below this critical speed, displacement ventilation, in which the interior has a two-layer stratification, is maintained. The criterion for the change in ventilation mode is derived from general considerations of mixing efficiencies in stratified flows. We conclude that even when wind effects might appear to be dominant, the inhibition of mixing by the stable stratification within the space ensures that stack ventilation can operate over a wide range of apparently adverse conditions.

  7. Ventilation via Cut Nasotracheal Tube During General Anesthesia

    PubMed Central

    Asahi, Yoshinao; Omichi, Shiro; Adachi, Seita; Kagamiuchi, Hajime; Kotani, Junichiro

    2013-01-01

    Many patients with disabilities need recurrent dental treatment under general anesthesia because of high caries prevalence and the nature of dental treatment. We evaluated the use of a nasal device as a possible substitute for flexible laryngeal mask airway to reduce the risk of unexpected failure accompanying intubation; we succeeded in ventilating the lungs with a cut nasotracheal tube (CNT) with its tip placed in the pharynx. We hypothesized that this technique would be useful during dental treatment under general anesthesia and investigated its usefulness as part of a minimally invasive technique. A prospective study was designed using general anesthesia in 37 dental patients with disabilities such as intellectual impairment, autism, and cerebral palsy. CNT ventilation was compared with mask ventilation with the patient in 3 positions: the neck in flexion, horizontal position, and in extension. The effect of mouth gags was also recorded during CNT ventilation. The percentages of cases with effective ventilation were similar for the 2 techniques in the neck extension and horizontal positions (89.2–97.3%). However, CNT ventilation was significantly more effective than mask ventilation in the neck flexion position (94.6 vs 45.9%; P < .0001). Mouth gags slightly reduced the rate of effective ventilation in the neck flexion position. Most dental treatments involving minor oral surgeries were performed using mouth gags during CNT ventilation. CNT ventilation was shown to be superior to mask ventilation and is useful during dental treatment under general anesthesia. PMID:23506278

  8. Liquid ventilation.

    PubMed

    Sarkar, Suman; Paswan, Anil; Prakas, S

    2014-01-01

    Human have lungs to breathe air and they have no gills to breath liquids like fish. When the surface tension at the air-liquid interface of the lung increases as in acute lung injury, scientists started to think about filling the lung with fluid instead of air to reduce the surface tension and facilitate ventilation. Liquid ventilation (LV) is a technique of mechanical ventilation in which the lungs are insufflated with an oxygenated perfluorochemical liquid rather than an oxygen-containing gas mixture. The use of perfluorochemicals, rather than nitrogen as the inert carrier of oxygen and carbon dioxide offers a number of advantages for the treatment of acute lung injury. In addition, there are non-respiratory applications with expanding potential including pulmonary drug delivery and radiographic imaging. It is well-known that respiratory diseases are one of the most common causes of morbidity and mortality in intensive care unit. During the past few years several new modalities of treatment have been introduced. One of them and probably the most fascinating, is of LV. Partial LV, on which much of the existing research has concentrated, requires partial filling of lungs with perfluorocarbons (PFC's) and ventilation with gas tidal volumes using conventional mechanical ventilators. Various physico-chemical properties of PFC's make them the ideal media. It results in a dramatic improvement in lung compliance and oxygenation and decline in mean airway pressure and oxygen requirements. No long-term side-effect reported.

  9. Acute effect of L-arginine on hemodynamics and vascular capacitance in the canine pacing model of heart failure.

    PubMed

    Ogilvie, R I; Zborowska-Sluis, D

    1995-09-01

    The effect of L-arginine, 250 mg/kg over 10 min, on hemodynamics and venous function was studied in nine splenectomized dogs under light pentobarbital anesthesia before and after 17 +/- 1 days of rapid right ventricular pacing (RRVP) at 250 beats/min. Chronic RRVP induced mild congestive heart failure with increased mean circulatory filling (Pmcf), right atrial (Pra) and pulmonary capillary wedge pressures (Ppcw), and reduced cardiac output (CO). During the development of heart failure, total vascular compliance assessed from Pmcf-blood volume relationships during circulatory arrest was unchanged, but total vascular capacitance was markedly reduced, with an increase in stressed and reduction in unstressed blood volumes. At baseline but not after RRVP, L-arginine increased CO and reduced pulmonary vascular resistance. There were no significant changes in Pra, Ppcw, or total peripheral resistance. L-Arginine failed to alter total vascular compliance and capacitance or central blood volume in the baseline or failure state. These results do not support the hypothesis that increased Pmcf and reduced total vascular capacitance in the early stages of pacing-induced heart failure are caused by reduced substrate availability for or an endogenous competitive antagonist of NO synthase in venous endothelial cells.

  10. Protective effect of dietary potassium against vascular injury in salt-sensitive hypertension.

    PubMed

    Kido, Makiko; Ando, Katsuyuki; Onozato, Maristela L; Tojo, Akihiro; Yoshikawa, Masahiro; Ogita, Teruhiko; Fujita, Toshiro

    2008-02-01

    Hypertensive cardiovascular damage is accelerated by salt loading but counteracted by dietary potassium supplementation. We suggested recently that antioxidant actions of potassium contribute to protection against salt-induced cardiac dysfunction. Therefore, we examined whether potassium supplementation ameliorated cuff-induced vascular injury in salt-sensitive hypertension via suppression of oxidative stress. Four-week-old Dahl salt-sensitive rats were fed a normal-salt (0.3% NaCl), high-salt (8% NaCl), or high-salt plus high-potassium (8% KCl) diet for 5 weeks, and some of the rats fed a high-salt diet were also given antioxidants. One week after the start of the treatments, a silicone cuff was implanted around the femoral artery. Examination revealed increased cuff-induced neointimal proliferation with adventitial macrophage infiltration in arteries from salt-loaded Dahl salt-sensitive rats compared with that in arteries from non-salt-loaded animals (intima/media ratio: 0.471+/-0.070 versus 0.302+/-0.037; P<0.05), associated with regional superoxide overproduction and reduced nicotinamide-adenine dinucleotide phosphate oxidase activation and mRNA overexpression. On the other hand, simultaneous potassium supplementation attenuated salt-induced neointimal hyperplasia (intima/media ratio: 0.205+/-0.012; P<0.001), adventitial macrophage infiltration, superoxide overproduction, and reduced nicotinamide-adenine dinucleotide phosphate oxidase activation and overexpression. Antioxidants, which decrease vascular oxidative stress, also reduced neointima formation induced by salt excess. In conclusion, high-potassium diets seems to have a protective effect against the development of vascular damage induced by salt loading mediated, at least in part, through suppression of the production of reactive oxygen species probably generated by reduced nicotinamide-adenine dinucleotide phosphate oxidase.

  11. Dietary potassium regulates vascular calcification and arterial stiffness.

    PubMed

    Sun, Yong; Byon, Chang Hyun; Yang, Youfeng; Bradley, Wayne E; Dell'Italia, Louis J; Sanders, Paul W; Agarwal, Anupam; Wu, Hui; Chen, Yabing

    2017-10-05

    Vascular calcification is a risk factor that predicts adverse cardiovascular complications of several diseases including atherosclerosis. Reduced dietary potassium intake has been linked to cardiovascular diseases such as hypertension and incidental stroke, although the underlying molecular mechanisms remain largely unknown. Using the ApoE-deficient mouse model, we demonstrated for the first time to our knowledge that reduced dietary potassium (0.3%) promoted atherosclerotic vascular calcification and increased aortic stiffness, compared with normal (0.7%) potassium-fed mice. In contrast, increased dietary potassium (2.1%) attenuated vascular calcification and aortic stiffness. Mechanistically, reduction in the potassium concentration to the lower limit of the physiological range increased intracellular calcium, which activated a cAMP response element-binding protein (CREB) signal that subsequently enhanced autophagy and promoted vascular smooth muscle cell (VSMC) calcification. Inhibition of calcium signals and knockdown of either CREB or ATG7, an autophagy regulator, attenuated VSMC calcification induced by low potassium. Consistently, elevated autophagy and CREB signaling were demonstrated in the calcified arteries from low potassium diet-fed mice as well as aortic arteries exposed to low potassium ex vivo. These studies established a potentially novel causative role of dietary potassium intake in regulating atherosclerotic vascular calcification and stiffness, and uncovered mechanisms that offer opportunities to develop therapeutic strategies to control vascular disease.

  12. Comparison of the effects of levocetirizine and losartan on diabetic nephropathy and vascular dysfunction in streptozotocin-induced diabetic rats.

    PubMed

    Anbar, Hanan S; Shehatou, George S G; Suddek, Ghada M; Gameil, Nariman M

    2016-06-05

    This work was designed to investigate the effects of levocetirizine, a histamine H1 receptor antagonist, on diabetes-induced nephropathy and vascular disorder, in comparison to an angiotensin II receptor antagonist, losartan. Diabetes was induced in male Sprague Dawley rats by a single intraperitoneal injection of streptozotocin (50mg/kg). Diabetic rats were divided into three groups; diabetic, diabetic-levocetirizine (0.5mg/kg/day) and diabetic-losartan (25mg/kg/day). Treatments were started two weeks following diabetes induction and continued for additional eight weeks. At the end of the experiment, urine was collected and serum was separated for biochemical measurements. Tissue homogenates of kidney and aorta were prepared for measuring oxidative stress, nitric oxide (NO), transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α (TNF-α). Moreover, histological analyses were conducted and aortic vascular reactivity was investigated. Levocetirizine improved renal function in diabetic rats (evidenced by mitigation of diabetes-induced changes in kidney to body weight ratio, serum albumin, urinary proteins and creatinine clearance). Moreover, levocetirizine attenuated the elevated renal levels of TNF-α and TGF-β1, ameliorated renal oxidative stress and restored NO bioavailability in diabetic kidney. These effects were comparable to or surpassed those produced by losartan. Moreover, levocetirizine, similar to losartan, reduced the enhanced responsiveness of diabetic aorta to phenylephrine. Histological evaluation of renal and aortic tissues further confirmed the beneficial effects of levocetirizine on diabetic nephropathy and revealed a greater attenuation of diabetes-induced vascular hypertrophy by levocetirizine than by losartan. In conclusion, levocetirizine may offer comparable renoprotective effect to, and possibly superior vasculoprotective effects than, losartan in streptozotocin-diabetic rats. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. [Ventilator associated pneumonia].

    PubMed

    Bellani, S; Nesci, M; Celotto, S; Lampati, L; Lucchini, A

    2003-04-01

    Ventilator associated pneumonia (VAP) is a nosocomial lower respiratory tract infection that ensues in critically ill patients undergoing mechanical ventilation. The reported incidence of VAP varies between 9% and 68% with a mortality ranging between 33% and 71%. Two key factors are implicated in the pathogenesis of VAP: bacterial colonization of the upper digestive-respiratory tract and aspiration of oral secretions into the trachea. Preventive measurements are advocated to reduce the incidence of VAP, such as selective decontamination of the digestive tract (SDD), supraglottic aspiration and positioning. Prompt recognition and treatment of established VAP has also been demostrated to affect outcome. Therefore, the knowledge of risk factors associated with the development of VAP and the implementation of strategies to prevent, diagnose and treat VAP are mainstems in the nursing of mechanically ventilated patients.

  14. Protective role of sulphoraphane against vascular complications in diabetes.

    PubMed

    Yamagishi, Sho-Ichi; Matsui, Takanori

    2016-10-01

    Context Diabetes is a global health challenge. Although large prospective clinical trials have shown that intensive control of blood glucose or blood pressure reduces the risk for development and progression of vascular complications in diabetes, a substantial number of diabetic patients still experience renal failure and cardiovascular events, which could account for disabilities and high mortality rate in these subjects. Objective Sulphoraphane is a naturally occurring isothiocyanate found in widely consumed cruciferous vegetables, such as broccoli, cabbage and Brussels sprouts, and an inducer of phase II antioxidant and detoxification enzymes with anticancer properties. We reviewed here the protective role of sulphoraphane against diabetic vascular complications. Methods In this review, literature searches were undertaken in Medline and in CrossRef. Non-English language articles were excluded. Keywords [sulphoraphane and (diabetes, diabetic nephropathy, diabetic retinopathy, diabetic neuropathy, diabetic complications, vascular, cardiomyocytes, heart or glycation)] have been used to select the articles. Results There is accumulating evidence that sulphoraphane exerts beneficial effects on vascular damage in both cell culture and diabetic animal models via antioxidative properties. Furthermore, we have recently found that sulphoraphane inhibits in vitro formation of advanced glycation end products (AGEs), suppresses the AGE-induced inflammatory reactions in rat aorta by reducing receptor for AGEs (RAGE) expression and decreases serum levels of AGEs in humans. Conclusion These findings suggest that blockade of oxidative stress and/or the AGE-RAGE axis by sulphoraphane may be a novel therapeutic strategy for preventing vascular complications in diabetes.

  15. Deficiency of endothelial CXCR4 reduces reendothelialization and enhances neointimal hyperplasia after vascular injury in atherosclerosis-prone mice.

    PubMed

    Noels, Heidi; Zhou, Baixue; Tilstam, Pathricia V; Theelen, Wendy; Li, Xiaofeng; Pawig, Lukas; Schmitz, Corinna; Akhtar, Shamima; Simsekyilmaz, Sakine; Shagdarsuren, Erdenechimeg; Schober, Andreas; Adams, Ralf H; Bernhagen, Jürgen; Liehn, Elisa A; Döring, Yvonne; Weber, Christian

    2014-06-01

    The Cxcl12/Cxcr4 chemokine ligand/receptor axis mediates the mobilization of smooth muscle cell progenitors, driving injury-induced neointimal hyperplasia. This study aimed to investigate the role of endothelial Cxcr4 in neointima formation. β-Galactosidase staining using bone marrow x kinase (Bmx)-CreER(T2) reporter mice and double immunofluorescence revealed an efficient and endothelial-specific deletion of Cxcr4 in Bmx-CreER(T2+) compared with Bmx-CreER(T2-) Cxcr4-floxed apolipoprotein E-deficient (Apoe(-/-)) mice (referred to as Cxcr4(EC-KO)ApoE(-/-) and Cxcr4(EC-WT) ApoE(-/-), respectively). Endothelial Cxcr4 deficiency significantly increased wire injury-induced neointima formation in carotid arteries from Cxcr4(EC-KO)ApoE(-/-) mice. The lesions displayed a higher number of macrophages, whereas the smooth muscle cell and collagen content were reduced. This was associated with a significant reduction in reendothelialization and endothelial cell proliferation in injured Cxcr4(EC-KO)ApoE(-/-) carotids compared with Cxcr4(EC-WT)ApoE(-/-) controls. Furthermore, stimulation of human aortic endothelial cells with chemokine (C-X-C motif) ligand 12 (CXCL12) significantly enhanced their wound-healing capacity in an in vitro scratch assay, an effect that could be reversed with the CXCR4 antagonist AMD3100. Also, flow cytometric analysis showed a reduced mobilization of Sca1(+)Flk1(+)Cd31(+) and of Lin(-)Sca1(+) progenitors in Cxcr4(EC-KO) ApoE(-/-) mice after vascular injury, although Cxcr4 surface expression was unaltered. No differences could be detected in plasma concentrations of Cxcl12, vascular endothelial growth factor, sphingosine 1-phosphate, or Flt3 (fms-related tyrosine kinase 3) ligand, all cytokines with an established role in progenitor cell mobilization. Nonetheless, double immunofluorescence revealed a significant reduction in local endothelial Cxcl12 staining in injured carotids from Cxcr4(EC-KO)ApoE(-/-) mice. Endothelial Cxcr4 is crucial for

  16. [Vascular aging, arterial hypertension and physical activity].

    PubMed

    Schmidt-Trucksäss, A; Weisser, B

    2011-11-01

    The present review delineates the significance of intima-media-thickness, arterial stiffness and endothelial function for vascular aging. There is profound evidence for an increase in intima-media-thickness and vascular stiffness not only during healthy aging but induced also by cardiovascular risk factors. There is a central role of arterial hypertension for this progression in both structural factors. In addition, both parameters are strongly associated with cardiovascular risk. Endothelial function measured as postischemic flow-mediated vasodilatation is a functional parameter which is decreased both in healthy aging and by cardiovascular risk factors. Physical activity modifies the influence of aging and risk factors on endothelial function. A positive influence of endurance exercise on vascular stiffness and endothelial function has been demonstrated in numerous studies. In long-term studies, regular physical activity has been shown to reduce the progression of intima-media-thickness. Thus, arterial hypertension accelerates vascular aging, while physical activity has a positive influence on a variety of vascular parameters associated with vascular aging. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Evaluating the effects of protective ventilation on organ-specific cytokine production in porcine experimental postoperative sepsis.

    PubMed

    Sperber, Jesper; Lipcsey, Miklós; Larsson, Anders; Larsson, Anders; Sjölin, Jan; Castegren, Markus

    2015-05-10

    Protective ventilation with lower tidal volume (VT) and higher positive end-expiratory pressure (PEEP) reduces the negative additive effects of mechanical ventilation during systemic inflammatory response syndrome. We hypothesised that protective ventilation during surgery would affect the organ-specific immune response in an experimental animal model of endotoxin-induced sepsis-like syndrome. 30 pigs were laparotomised for 2 hours (h), after which a continuous endotoxin infusion was started at 0.25 micrograms × kg(-1) × h(-1) for 5 h. Catheters were placed in the carotid artery, hepatic vein, portal vein and jugular bulb. Animals were randomised to two protective ventilation groups (n = 10 each): one group was ventilated with VT 6 mL × kg(-1) during the whole experiment while the other group was ventilated during the surgical phase with VT of 10 mL × kg(-1). In both groups PEEP was 5 cmH2O during surgery and increased to 10 cmH2O at the start of endotoxin infusion. A control group (n = 10) was ventilated with VT of 10 mL × kg(-1) and PEEP 5 cm H20 throughout the experiment. In four sample locations we a) simultaneously compared cytokine levels, b) studied the effect of protective ventilation initiated before and during endotoxemia and c) evaluated protective ventilation on organ-specific cytokine levels. TNF-alpha levels were highest in the hepatic vein, IL-6 levels highest in the artery and jugular bulb and IL-10 levels lowest in the artery. Protective ventilation initiated before and during endotoxemia did not differ in organ-specific cytokine levels. Protective ventilation led to lower levels of TNF-alpha in the hepatic vein compared with the control group, whereas no significant differences were seen in the artery, portal vein or jugular bulb. Variation between organs in cytokine output was observed during experimental sepsis. We see no implication from cytokine levels for initiating protective ventilation before endotoxemia. However, during endotoxemia

  18. Role of sex steroids in modulating tumor necrosis factor alpha induced changes in vascular function and blood pressure

    PubMed Central

    LaMarca, Babbette D.; Chandler, Derrick L.; Grubbs, Lee; Bain, Jennifer; McLemore, Gerald R.; Granger, Joey P.; Ryan, Michael J.

    2007-01-01

    Background We previously showed that infusion of TNF-α induces hypertension and vascular dysfunction in late pregnant but not virgin rats. In the present study we tested the hypothesis that levels of ovarian hormones to mimic pregnancy are required for TNF-α induced changes in vascular function and blood pressure in rats. Methods 21 day release pellets containing 17β-estradiol, progesterone, or both were implanted in ovariectomized (OVX) rats. Sham OVX rats were used as controls. 12 days after implantation, TNF-α or vehicle was infused via osmotic minipumps (days 12-17). On day 18, mean arterial pressure was measured and animals were sacrificed to assess vascular function. Results Average estrogen and progesterone levels across all groups were 106±6 pg/ml and 88±5 ng/ml. TNF-α was 41±7 pg/ml compared to OVX rats infused with vehicle (4±1 pg/ml). The results show that TNF-α did not cause elevated mean arterial pressure in OVX rats with increased estrogen, progesterone, both. Vascular responses to the endothelium dependent and independent agonists, acetylcholine and sodium nitroprusside, were also not changed. Phenylephrine induced contraction was moderately but significantly increased at the highest concentrations (10-4 M) only in TNF-α infused rats. Conclusion These data suggest that increased ovarian hormones to levels observed during pregnancy are not sufficient to promote TNF-α induced increases in blood pressure or vascular dysfunction. PMID:17954370

  19. Inhalation therapy in mechanical ventilation

    PubMed Central

    Maccari, Juçara Gasparetto; Teixeira, Cassiano; Gazzana, Marcelo Basso; Savi, Augusto; Dexheimer-Neto, Felippe Leopoldo; Knorst, Marli Maria

    2015-01-01

    Patients with obstructive lung disease often require ventilatory support via invasive or noninvasive mechanical ventilation, depending on the severity of the exacerbation. The use of inhaled bronchodilators can significantly reduce airway resistance, contributing to the improvement of respiratory mechanics and patient-ventilator synchrony. Although various studies have been published on this topic, little is known about the effectiveness of the bronchodilators routinely prescribed for patients on mechanical ventilation or about the deposition of those drugs throughout the lungs. The inhaled bronchodilators most commonly used in ICUs are beta adrenergic agonists and anticholinergics. Various factors might influence the effect of bronchodilators, including ventilation mode, position of the spacer in the circuit, tube size, formulation, drug dose, severity of the disease, and patient-ventilator synchrony. Knowledge of the pharmacological properties of bronchodilators and the appropriate techniques for their administration is fundamental to optimizing the treatment of these patients. PMID:26578139

  20. Low Tidal Volume Ventilation in Patients without Acute Respiratory Distress Syndrome: A Paradigm Shift in Mechanical Ventilation

    PubMed Central

    Lipes, Jed; Bojmehrani, Azadeh; Lellouche, Francois

    2012-01-01

    Protective ventilation with low tidal volume has been shown to reduce morbidity and mortality in patients suffering from acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Low tidal volume ventilation is associated with particular clinical challenges and is therefore often underutilized as a therapeutic option in clinical practice. Despite some potential difficulties, data have been published examining the application of protective ventilation in patients without lung injury. We will briefly review the physiologic rationale for low tidal volume ventilation and explore the current evidence for protective ventilation in patients without lung injury. In addition, we will explore some of the potential reasons for its underuse and provide strategies to overcome some of the associated clinical challenges. PMID:22536499

  1. Wind Extraction for Natural Ventilation

    NASA Astrophysics Data System (ADS)

    Fagundes, Tadeu; Yaghoobian, Neda; Kumar, Rajan; Ordonez, Juan

    2017-11-01

    Due to the depletion of energy resources and the environmental impact of pollution and unsustainable energy resources, energy consumption has become one of the main concerns in our rapidly growing world. Natural ventilation, a traditional method to remove anthropogenic and solar heat gains, proved to be a cost-effective, alternative method to mechanical ventilation. However, while natural ventilation is simple in theory, its detailed design can be a challenge, particularly for wind-driven ventilation, which its performance highly involves the buildings' form, surrounding topography, turbulent flow characteristics, and climate. One of the main challenges with wind-driven natural ventilation schemes is due to the turbulent and unpredictable nature of the wind around the building that impose complex pressure loads on the structure. In practice, these challenges have resulted in founding the natural ventilation mainly on buoyancy (rather than the wind), as the primary force. This study is the initial step for investigating the physical principals of wind extraction over building walls and investigating strategies to reduce the dependence of the wind extraction on the incoming flow characteristics and the target building form.

  2. Closed-loop mechanical ventilation for lung injury: a novel physiological-feedback mode following the principles of the open lung concept.

    PubMed

    Schwaiberger, David; Pickerodt, Philipp A; Pomprapa, Anake; Tjarks, Onno; Kork, Felix; Boemke, Willehad; Francis, Roland C E; Leonhardt, Steffen; Lachmann, Burkhard

    2018-06-01

    Adherence to low tidal volume (V T ) ventilation and selected positive end-expiratory pressures are low during mechanical ventilation for treatment of the acute respiratory distress syndrome. Using a pig model of severe lung injury, we tested the feasibility and physiological responses to a novel fully closed-loop mechanical ventilation algorithm based on the "open lung" concept. Lung injury was induced by surfactant washout in pigs (n = 8). Animals were ventilated following the principles of the "open lung approach" (OLA) using a fully closed-loop physiological feedback algorithm for mechanical ventilation. Standard gas exchange, respiratory- and hemodynamic parameters were measured. Electrical impedance tomography was used to quantify regional ventilation distribution during mechanical ventilation. Automatized mechanical ventilation provided strict adherence to low V T -ventilation for 6 h in severely lung injured pigs. Using the "open lung" approach, tidal volume delivery required low lung distending pressures, increased recruitment and ventilation of dorsal lung regions and improved arterial blood oxygenation. Physiological feedback closed-loop mechanical ventilation according to the principles of the open lung concept is feasible and provides low tidal volume ventilation without human intervention. Of importance, the "open lung approach"-ventilation improved gas exchange and reduced lung driving pressures by opening atelectasis and shifting of ventilation to dorsal lung regions.

  3. Purinergic signalling links mechanical breath profile and alveolar mechanics with the pro-inflammatory innate immune response causing ventilation-induced lung injury.

    PubMed

    Hasan, Djo; Blankman, Paul; Nieman, Gary F

    2017-09-01

    Severe pulmonary infection or vigorous cyclic deformation of the alveolar epithelial type I (AT I) cells by mechanical ventilation leads to massive extracellular ATP release. High levels of extracellular ATP saturate the ATP hydrolysis enzymes CD39 and CD73 resulting in persistent high ATP levels despite the conversion to adenosine. Above a certain level, extracellular ATP molecules act as danger-associated molecular patterns (DAMPs) and activate the pro-inflammatory response of the innate immunity through purinergic receptors on the surface of the immune cells. This results in lung tissue inflammation, capillary leakage, interstitial and alveolar oedema and lung injury reducing the production of surfactant by the damaged AT II cells and deactivating the surfactant function by the concomitant extravasated serum proteins through capillary leakage followed by a substantial increase in alveolar surface tension and alveolar collapse. The resulting inhomogeneous ventilation of the lungs is an important mechanism in the development of ventilation-induced lung injury. The high levels of extracellular ATP and the upregulation of ecto-enzymes and soluble enzymes that hydrolyse ATP to adenosine (CD39 and CD73) increase the extracellular adenosine levels that inhibit the innate and adaptive immune responses rendering the host susceptible to infection by invading microorganisms. Moreover, high levels of extracellular adenosine increase the expression, the production and the activation of pro-fibrotic proteins (such as TGF-β, α-SMA, etc.) followed by the establishment of lung fibrosis.

  4. Closed loop ventilation mode in Intensive Care Unit: a randomized controlled clinical trial comparing the numbers of manual ventilator setting changes.

    PubMed

    Arnal, Jean-Michel; Garnero, Aude; Novotni, Dominik; Corno, Gaëlle; Donati, Stéphane-Yannis; Demory, Didier; Quintana, Gabrielle; Ducros, Laurent; Laubscher, Thomas; Durand-Gasselin, Jacques

    2018-01-01

    There is an equipoise regarding closed-loop ventilation modes and the ability to reduce workload for providers. On one hand some settings are managed by the ventilator but on another hand the automatic mode introduces new settings for the user. This randomized controlled trial compared the number of manual ventilator setting changes between a full closed loop ventilation and oxygenation mode (INTELLiVENT-ASV®) and conventional ventilation modes (volume assist control and pressure support) in Intensive Care Unit (ICU) patients. The secondary endpoints were to compare the number of arterial blood gas analysis, the sedation dose and the user acceptance. Sixty subjects with an expected duration of mechanical ventilation of at least 48 hours were randomized to be ventilated using INTELLiVENT-ASV® or conventional modes with a protocolized weaning. All manual ventilator setting changes were recorded continuously from inclusion to successful extubation or death. Arterial blood gases were performed upon decision of the clinician in charge. User acceptance score was assessed for nurses and physicians once daily using a Likert Scale. The number of manual ventilator setting changes per 24 h-period per subject was lower in INTELLiVENT-ASV® as compared to conventional ventilation group (5 [4-7] versus 10 [7-17]) manuals settings per subject per day [P<0.001]). The number of arterial blood gas analysis and the sedation doses were not significantly different between the groups. Nurses and physicians reported that INTELLiVENT-ASV® was significantly easier to use as compared to conventional ventilation (P<0.001 for nurses and P<0.01 for physicians). For mechanically ventilated ICU patients, INTELLiVENT-ASV® significantly reduces the number of manual ventilator setting changes with the same number of arterial blood gas analysis and sedation dose, and is easier to use for the caregivers as compared to conventional ventilation modes.

  5. Vascular influences of calcium supplementation and vitamin D-induced hypercalcemia in NaCl-hypertensive rats.

    PubMed

    Kähönen, Mika; Näppi, Satu; Jolma, Pasi; Hutri-Kähönen, Nina; Tolvanen, Jari-Petteri; Saha, Heikki; Koivisto, Pasi; Krogerus, Leena; Kalliovalkama, Jarkko; Pörsti, Ilkka

    2003-09-01

    This 8-week study investigated the effects of increasing dietary Ca2+ content from 1.0% to 3.0% and hypercalcemia induced by oral 1alpha-OH vitamin D3 (1OH-D3, 1.2 microg/kg), on arterial tone in NaCl-hypertensive rats. The high-Ca2+ diet completely prevented the increase in blood pressure induced by the 6.0% NaCl chow, while plasma total Ca2+ and body weight were not different from controls. The 1OH-D3 treatment moderately elevated plasma total Ca2+ and attenuated the NaCl-induced rise in blood pressure, but also impaired weight gain. The tone of isolated mesenteric arterial rings was examined at the end of study. The endothelium-independent relaxations to nitroprusside, isoproterenol, and cromakalim were impaired in NaCl-hypertension. Experiments with NG-nitro-l-arginine methyl ester and tetraethylammonium in vitro suggested that both the nitric oxide- and hyperpolarization-mediated components of endothelium-dependent relaxation to acetylcholine were reduced in NaCl-hypertensive rats. All of the impaired relaxations in NaCl hypertension were normalized by concomitant Ca2+ supplementation. The 1OH-D3 treatment did not affect vascular relaxation, but it attenuated maximal contractile responses induced by norepinephrine and KCl by more than 50%. The reduced vasoconstrictor responses could not be explained by increased apoptosis in the vessel wall, but calcification may have played a role, since moderate signs of medial or adventitial calcification were observed in the aortic preparations after the 1OH-D3 treatment. In conclusion, a high-Ca2+ diet, which did not cause hypercalcemia, normalized blood pressure and endothelium-dependent and endothelium-independent vasorelaxation in NaCl-hypertensive rats. In contrast, chronic hypercalcemia induced by 1OH-D3 was associated with moderately lowered blood pressure, possibly because of reduced vasoconstrictor responses in arterial smooth muscle.

  6. Sodium thiosulfate protects brain in rat model of adenine induced vascular calcification.

    PubMed

    Subhash, N; Sriram, R; Kurian, Gino A

    2015-11-01

    Vascular bed calcification is a common feature of ends stage renal disease that may lead to a complication in cardiovascular and cerebrovascular beds, which is a promoting cause of myocardial infarction, stroke, dementia and aneurysms. Sodium thiosulfate (STS) due to its multiple properties such as antioxidant and calcium chelation has been reported to prevent vascular calcification in uremic rats, without mentioning its impact on cerebral function. Moreover, the previous studies have not explored the effect of STS on the mitochondrial dysfunction, one of the main pathophysiological features associated with the disease and the main site for STS metabolism. The present study addresses this limitation by using a rat model where 0.75% adenine was administered to induce vascular calcification and 400 mg/kg b wt. of STS was given as preventive and curative agent. The blood and urine chemistries along with histopathology of aorta confirms the renal protective effect of STS in two modes of administration. The brain oxidative stress assessment was made through TBARS level, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, found to be in the near normal level. STS administration not only reduced the mitochondrial oxidative stress (measured by TBARS, SOD, GPx and CAT) but also preserved the mitochondrial respiratory enzyme activities (NADH dehydrogenase, Succinate dehydrogenase and Malate dehydrogenase) and its physiology (measured by P/O ratio and RCR). In fact, the protective effect of STS was prominent, when it was administered as a curative agent, where low H2S and high thiosulfate level was observed along with low cystathionine β synthase activity, confirms thiosulfate mediated renal protection. In conclusion, STS when given after induction of calcification is protective to the brain by preserving its mitochondria, compared to the treatment given concomitantly. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Roselle supplementation prevents nicotine-induced vascular endothelial dysfunction and remodelling in rats.

    PubMed

    Si, Lislivia Yiang-Nee; Kamisah, Yusof; Ramalingam, Anand; Lim, Yi Cheng; Budin, Siti Balkis; Zainalabidin, Satirah

    2017-07-01

    Vascular endothelial dysfunction (VED) plays an important role in the initiation of cardiovascular diseases. Roselle, enriched with antioxidants, demonstrates high potential in alleviating hypertension. This study was undertaken to investigate the effects of roselle supplementation of VED and remodelling in a rodent model with prolonged nicotine administration. Male Sprague-Dawley rats (n = 6 per group) were administered with 0.6 mg/kg nicotine for 28 days to induce VED. The rats were given either aqueous roselle (100 mg/kg) or normal saline orally 30 min prior to nicotine injection daily. One additional group of rats served as control. Thoracic aorta was isolated from rats to measure vascular reactivity, vascular remodelling and oxidative stress. Roselle significantly lowered aortic sensitivity to phenylephrine-induced vasoconstriction (Endo-(+) C max = 234.5 ± 3.9%, Endo-(-) C max = 247.6 ± 5.2%) compared with untreated nicotine group (Endo-(+) C max = 264.5 ± 6.9%, Endo-(-) C max = 276.5 ± 6.8%). Roselle also improved aortic response to endothelium-dependent vasodilator, acetylcholine (Endo-(+) R max = 73.2 ± 2.1%, Endo-(-) R max = 26.2 ± 0.8%) compared to nicotine group (Endo-(+) R max = 57.8 ± 1.7%, Endo-(-) R max = 20.9 ± 0.8%). In addition, roselle prevented an increase in intimal media thickness and elastic lamellae proliferation to preserve vascular architecture. Moreover, we also observed a significantly lowered degree of oxidative stress in parallel with increased antioxidant enzymes in aortic tissues of the roselle-treated group. This study demonstrated that roselle prevents VED and remodelling, and as such it has high nutraceutical value as supplement to prevent cardiovascular diseases.

  8. Comparison of lung protective ventilation strategies in a rabbit model of acute lung injury.

    PubMed

    Rotta, A T; Gunnarsson, B; Fuhrman, B P; Hernan, L J; Steinhorn, D M

    2001-11-01

    To determine the impact of different protective and nonprotective mechanical ventilation strategies on the degree of pulmonary inflammation, oxidative damage, and hemodynamic stability in a saline lavage model of acute lung injury. A prospective, randomized, controlled, in vivo animal laboratory study. Animal research facility of a health sciences university. Forty-six New Zealand White rabbits. Mature rabbits were instrumented with a tracheostomy and vascular catheters. Lavage-injured rabbits were randomized to receive conventional ventilation with either a) low peak end-expiratory pressure (PEEP; tidal volume of 10 mL/kg, PEEP of 2 cm H2O); b) high PEEP (tidal volume of 10 mL/kg, PEEP of 10 cm H2O); c) low tidal volume with PEEP above Pflex (open lung strategy, tidal volume of 6 mL/kg, PEEP set 2 cm H2O > Pflex); or d) high-frequency oscillatory ventilation. Animals were ventilated for 4 hrs. Lung lavage fluid and tissue samples were obtained immediately after animals were killed. Lung lavage fluid was assayed for measurements of total protein, elastase activity, tumor necrosis factor-alpha, and malondialdehyde. Lung tissue homogenates were assayed for measurements of myeloperoxidase activity and malondialdehyde. The need for inotropic support was recorded. Animals that received a lung protective strategy (open lung or high-frequency oscillatory ventilation) exhibited more favorable oxygenation and lung mechanics compared with the low PEEP and high PEEP groups. Animals ventilated by a lung protective strategy also showed attenuation of inflammation (reduced tracheal fluid protein, tracheal fluid elastase, tracheal fluid tumor necrosis factor-alpha, and pulmonary leukostasis). Animals treated with high-frequency oscillatory ventilation had attenuated oxidative injury to the lung and greater hemodynamic stability compared with the other experimental groups. Both lung protective strategies were associated with improved oxygenation, attenuated inflammation, and

  9. Determinants of ventilation and pulmonary artery pressure during early acclimatization to hypoxia in humans

    PubMed Central

    Fatemian, Marzieh; Herigstad, Mari; Croft, Quentin P. P.; Formenti, Federico; Cardenas, Rosa; Wheeler, Carly; Smith, Thomas G.; Friedmannova, Maria; Dorrington, Keith L.

    2015-01-01

    Key points Lung ventilation and pulmonary artery pressure rise progressively in response to 8 h of hypoxia, changes described as ‘acclimatization to hypoxia’. Acclimatization responses differ markedly between humans for unknown reasons.We explored whether the magnitudes of the ventilatory and vascular responses were related, and whether the degree of acclimatization could be predicted by acute measurements of ventilatory and vascular sensitivities.In 80 healthy human volunteers measurements of acclimatization were made before, during, and after a sustained exposure to 8 h of isocapnic hypoxia.No correlation was found between measures of ventilatory and pulmonary vascular acclimatization.The ventilatory chemoreflex sensitivities to acute hypoxia and hypercapnia all increased in proportion to their pre‐acclimatization values following 8 h of hypoxia. The peripheral (rapid) chemoreflex sensitivity to CO2, measured before sustained hypoxia against a background of hyperoxia, was a modest predictor of ventilatory acclimatization to hypoxia. This finding has relevance to predicting human acclimatization to the hypoxia of altitude. Abstract Pulmonary ventilation and pulmonary arterial pressure both rise progressively during the first few hours of human acclimatization to hypoxia. These responses are highly variable between individuals, but the origin of this variability is unknown. Here, we sought to determine whether the variabilities between different measures of response to sustained hypoxia were related, which would suggest a common source of variability. Eighty volunteers individually underwent an 8‐h isocapnic exposure to hypoxia (end‐tidal P O2=55 Torr) in a purpose‐built chamber. Measurements of ventilation and pulmonary artery systolic pressure (PASP) assessed by Doppler echocardiography were made during the exposure. Before and after the exposure, measurements were made of the ventilatory sensitivities to acute isocapnic hypoxia (GpO2) and

  10. Multicentre randomised controlled trial to investigate the usefulness of continuous pneumatic regulation of tracheal cuff pressure for reducing ventilator-associated pneumonia in mechanically ventilated severe trauma patients: the AGATE study protocol

    PubMed Central

    Marjanovic, Nicolas; Frasca, Denis; Asehnoune, Karim; Paugam, Catherine; Lasocki, Sigismond; Ichai, Carole; Lefrant, Jean-Yves; Leone, Marc; Dahyot-Fizelier, Claire; Pottecher, Julien; Falcon, Dominique; Veber, Benoit; Constantin, Jean-Michel; Seguin, Sabrina; Guénézan, Jérémy; Mimoz, Olivier

    2017-01-01

    Introduction Severe trauma represents the leading cause of mortality worldwide. While 80% of deaths occur within the first 24 hours after trauma, 20% occur later and are mainly due to healthcare-associated infections, including ventilator-associated pneumonia (VAP). Preventing underinflation of the tracheal cuff is recommended to reduce microaspiration, which plays a major role in the pathogenesis of VAP. Automatic devices facilitate the regulation of tracheal cuff pressure, and their implementation has the potential to reduce VAP. The objective of this work is to determine whether continuous regulation of tracheal cuff pressure using a pneumatic device reduces the incidence of VAP compared with intermittent control in severe trauma patients. Methods and analysis This multicentre randomised controlled and open-label trial will include patients suffering from severe trauma who are admitted within the first 24 hours, who require invasive mechanical ventilation to longer than 48 hours. Their tracheal cuff pressure will be monitored either once every 8 hours (control group) or continuously using a pneumatic device (intervention group). The primary end point is the proportion of patients that develop VAP in the intensive care unit (ICU) at day 28. The secondary end points include the proportion of patients that develop VAP in the ICU, early (≤7 days) or late (>7 days) VAP, time until the first VAP diagnosis, the number of ventilator-free days and antibiotic-free days, the length of stay in the ICU, the proportion of patients with ventilator-associated events and that die during their ICU stay. Ethics and dissemination This protocol has been approved by the ethics committee of Poitiers University Hospital, and will be carried out according to the principles of the Declaration of Helsinki and the Good Clinical Practice guidelines. The results of this study will be disseminated through presentation at scientific conferences and publication in peer

  11. Multicentre randomised controlled trial to investigate the usefulness of continuous pneumatic regulation of tracheal cuff pressure for reducing ventilator-associated pneumonia in mechanically ventilated severe trauma patients: the AGATE study protocol.

    PubMed

    Marjanovic, Nicolas; Frasca, Denis; Asehnoune, Karim; Paugam, Catherine; Lasocki, Sigismond; Ichai, Carole; Lefrant, Jean-Yves; Leone, Marc; Dahyot-Fizelier, Claire; Pottecher, Julien; Falcon, Dominique; Veber, Benoit; Constantin, Jean-Michel; Seguin, Sabrina; Guénézan, Jérémy; Mimoz, Olivier

    2017-08-07

    Severe trauma represents the leading cause of mortality worldwide. While 80% of deaths occur within the first 24 hours after trauma, 20% occur later and are mainly due to healthcare-associated infections, including ventilator-associated pneumonia (VAP). Preventing underinflation of the tracheal cuff is recommended to reduce microaspiration, which plays a major role in the pathogenesis of VAP. Automatic devices facilitate the regulation of tracheal cuff pressure, and their implementation has the potential to reduce VAP. The objective of this work is to determine whether continuous regulation of tracheal cuff pressure using a pneumatic device reduces the incidence of VAP compared with intermittent control in severe trauma patients. This multicentre randomised controlled and open-label trial will include patients suffering from severe trauma who are admitted within the first 24 hours, who require invasive mechanical ventilation to longer than 48 hours. Their tracheal cuff pressure will be monitored either once every 8 hours (control group) or continuously using a pneumatic device (intervention group). The primary end point is the proportion of patients that develop VAP in the intensive care unit (ICU) at day 28. The secondary end points include the proportion of patients that develop VAP in the ICU, early (≤7 days) or late (>7 days) VAP, time until the first VAP diagnosis, the number of ventilator-free days and antibiotic-free days, the length of stay in the ICU, the proportion of patients with ventilator-associated events and that die during their ICU stay. This protocol has been approved by the ethics committee of Poitiers University Hospital, and will be carried out according to the principles of the Declaration of Helsinki and the Good Clinical Practice guidelines. The results of this study will be disseminated through presentation at scientific conferences and publication in peer-reviewed journals. Clinical Trials NCT02534974. © Article author(s) (or

  12. Zinc deficiency induces vascular pro-inflammatory parameters associated with NF-kappaB and PPAR signaling.

    PubMed

    Shen, Huiyun; Oesterling, Elizabeth; Stromberg, Arnold; Toborek, Michal; MacDonald, Ruth; Hennig, Bernhard

    2008-10-01

    Marginal intake of dietary zinc can be associated with increased risk of cardiovascular diseases. In the current study we hypothesized that vascular dysfunction and associated inflammatory events are activated during a zinc deficient state. We tested this hypothesis using both vascular endothelial cells and mice lacking the functional LDL-receptor gene. Zinc deficiency increased oxidative stress and NF-kappaB DNA binding activity, and induced COX-2 and E-selectin gene expression, as well as monocyte adhesion in cultured endothelial cells. The NF-kappaB inhibitor CAPE significantly reduced the zinc deficiency-induced COX-2 expression, suggesting regulation through NF-kappaB signaling. PPAR can inhibit NF-kappaB signaling, and our previous data have shown that PPAR transactivation activity requires adequate zinc. Zinc deficiency down-regulated PPARalpha expression in cultured endothelial cells. Furthermore, the PPARgamma agonist rosiglitazone was unable to inhibit the adhesion of monocytes to endothelial cells during zinc deficiency, an event which could be reversed by zinc supplementation. Our in vivo data support the importance of PPAR dysregulation during zinc deficiency. For example, rosiglitazone induced inflammatory genes (e.g., MCP-1) only during zinc deficiency, and adequate zinc was required for rosiglitazone to down-regulate pro-inflammatory markers such as iNOS. In addition, rosiglitazone increased IkappaBalpha protein expression only in zinc adequate mice. Finally, plasma data from LDL-R-deficient mice suggest an overall pro-inflammatory environment during zinc deficiency and support the concept that zinc is required for proper anti-inflammatory or protective functions of PPAR. These studies suggest that zinc nutrition can markedly modulate mechanisms of the pathology of inflammatory diseases such as atherosclerosis.

  13. Isoproterenol attenuates high vascular pressure-induced permeability increases in isolated rat lungs.

    PubMed

    Parker, J C; Ivey, C L

    1997-12-01

    To separate the contributions of cellular and basement membrane components of the alveolar capillary barrier to the increased microvascular permeability induced by high pulmonary venous pressures (Ppv), we subjected isolated rat lungs to increases in Ppv, which increased capillary filtration coefficient (Kfc) without significant hemorrhage (31 cmH2O) and with obvious extravasation of red blood cells (43 cmH2O). Isoproterenol (20 microM) was infused in one group (Iso) to identify a reversible cellular component of injury, and residual blood volumes were measured to assess extravasation of red blood cells through ruptured basement membranes. In untreated lungs (High Ppv group), Kfc increased 6.2 +/- 1.3 and 38.3 +/- 15.2 times baseline during the 31 and 43 cmH2O Ppv states. In Iso lungs, Kfc was 36.2% (P < 0.05) and 64.3% of that in the High Ppv group at these Ppv states. Residual blood volumes calculated from tissue hemoglobin contents were significantly increased by 53-66% in the high Ppv groups, compared with low vascular pressure controls, but there was no significant difference between High Ppv and Iso groups. Thus isoproterenol significantly attenuated vascular pressure-induced Kfc increases at moderate Ppv, possibly because of an endothelial effect, but it did not affect red cell extravasation at higher vascular pressures.

  14. 4-Chloro-DL-phenylalanine protects against monocrotaline‑induced pulmonary vascular remodeling and lung inflammation.

    PubMed

    Bai, Yang; Wang, Han-Ming; Liu, Ming; Wang, Yun; Lian, Guo-Chao; Zhang, Xin-Hua; Kang, Jian; Wang, Huai-Liang

    2014-02-01

    The present study was performed to investigate the effects of 4-chloro-DL-phenylalanine (PCPA), a tryptophan hydroxylase (Tph) inhibitor (TphI), on pulmonary vascular remodeling and lung inflammation in monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) in rats. Animal models of PAH were established using Sprague-Dawley (SD) rats by a single intraperitoneal injection of MCT (60 mg/kg). PCPA (50 or 100 mg/kg/day) was administered to the rats with PAH. On day 22, hemodynamic measurements and morphological observations of the lung tissues were performed. The levels of Tph-1 and serotonin transporter (SERT) in the lungs were analyzed by immunohistochemistry and western blot analysis. The expression of matrix metalloproteinase (MMP)-2 and MMP-9, tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 and inflammatory cytokines were assayed by western blot analysis. The activity of MMP-2 and MMP-9 was evaluated by gelatin zymography (GZ). MCT markedly promoted PAH, increased the right ventricular hypertrophy index, pulmonary vascular remodeling, lung inflammation and mortality, which was associated with the increased expression of Tph-1, SERT, MMP-2/-9, TIMP-1/-2 and inflammatory cytokines. PCPA markedly attenuated MCT-induced pulmonary vascular remodeling and lung inflammation, inhibited the expression of Tph-1 and SERT and suppressed the expression of MMP-2/-9, TIMP-1/-2, interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and intercellular adhesion molecule-1 (ICAM-1). These findings suggest that the amelioration of MCT-induced pulmonary vascular remodeling and lung inflammation by PCPA is associated with the downregulation of Tph-1, SERT, MMP/TIMP and inflammatory cytokine expression in rats.

  15. The impact of a ventilator bundle on preventing ventilator-associated pneumonia: a multicenter study.

    PubMed

    Eom, Joong Sik; Lee, Mi-Suk; Chun, Hee-Kyung; Choi, Hee Jung; Jung, Sun-Young; Kim, Yeon-Sook; Yoon, Seon Jin; Kwak, Yee Gyung; Oh, Gang-Bok; Jeon, Min-Hyok; Park, Sun-Young; Koo, Hyun-Sook; Ju, Young-Su; Lee, Jin Seo

    2014-01-01

    For prevention of ventilator-associated pneumonia (VAP), a bundle approach was applied to patients receiving mechanical ventilation in intensive care units. The incidence of VAP and the preventive efficacy of the VAP bundle were investigated. A quasi-experimental study was conducted in adult intensive care units of 6 university hospitals with similar VAP rates. We implemented the VAP bundle between March 2011 and June 2011, then compared the rate of VAP after implementation of the VAP bundle with the rate in the previous 8 months. Our ventilator bundle included head of bed elevation, peptic ulcer disease prophylaxis, deep venous thrombosis prophylaxis, and oral decontamination with chlorhexidine 0.12%. Continuous aspiration of subglottic secretions was an option. Implementation of the VAP bundle reduced the VAP rate from a mean of 4.08 cases per 1,000 ventilator-days to 1.16 cases per 1,000 ventilator-days. The incidence density ratio (rate) was 0.28 (95% confidence interval, 0.275-0.292). Implementing the appropriate VAP bundle significantly decreased the incidence of VAP in patients with mechanical ventilation. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  16. Activation of the NLRP3 inflammasome induces vascular dysfunction in obese OLETF rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Penghao; Xie, Qihai; Wei, Tong

    Objective: Obesity-induced vascular dysfunction is related to chronic low-grade systemic inflammation. Recent studies indicate that NLRP3, a multiprotein complex formed by NOD-like receptor (NLR) family members, is a key component mediating internal sterile inflammation, but the role in obesity-related vascular dysfunction is largely unknown. In the present study, we investigate whether NLRP3 activation is involved in vascular inflammation in obese Otsuka Long-Evans Tokushima Fatty rats (OLETF). Methods and results: Male OLETF with their control Long-Evans Tokushima Otsuka rats (LETO) were studied at 3 and 12 months of age. Aortic relaxation in response to acetylcholine decreased gradually with age in bothmore » strains, with early and persistent endothelium dysfunction in obese OLETF compared with age-matched LETO controls. These changes are associated with parallel changes of aortic endothelial nitric oxide synthase (eNOS) content, macrophage accumulation and intimal thickening. NLRP3 increased in OLETF rats compared to LETO. Consistent with inflammasome activation, the conversion of procaspase-1 to cleaved and activated forms as well as IL-1β markedly increased in OLETF rats. Additionally, we observed increased expression of dynamin-related protein-1 (Drp1) and decreased fusion-relative protein optic atropy-1(OPA1). Altered mitochondrial dynamics was associated with elevated oxidative stress level in OLETF aortas. Conclusions: These results demonstrate that obesity seems to accelerate endothelial dysfunction in OLETFs via the activation of NLRP3 and mitochondrial dysfunction. - Highlights: • NLRP3 is involved in obesity-induced vascular dysfunction. • Impaired mitochondrial dynamics may have been linked to mitochondrial defect and inflammasome activation. • Obesity seems to accelerate vascular dysfunction via NLRP3 activation and mitochondrial dysfunction.« less

  17. Dynamin-related protein inhibitor downregulates reactive oxygen species levels to indirectly suppress high glucose-induced hyperproliferation of vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maimaitijiang, Alimujiang; Zhuang, Xinyu; Jiang, Xiaofei

    Hyperproliferation of vascular smooth muscle cells is a pathogenic mechanism common in diabetic vascular complications and is a putatively important therapeutic target. This study investigated multiple levels of biology, including cellular and organellar changes, as well as perturbations in protein synthesis and morphology. Quantitative and qualitative analysis was utilized to assess the effect of mitochondrial dynamic changes and reactive oxygen species(ROS) levels on high-glucose-induced hyperproliferation of vascular smooth muscle cells. The data demonstrated that the mitochondrial fission inhibitor Mdivi-1 and downregulation of ROS levels both effectively inhibited the high-glucose-induced hyperproliferation of vascular smooth muscle cells. Downregulation of ROS levels playedmore » a more direct role and ROS levels were also regulated by mitochondrial dynamics. Increased ROS levels induced excessive mitochondrial fission through dynamin-related protein (Drp 1), while Mdivi-1 suppressed the sensitivity of Drp1 to ROS levels, thus inhibiting excessive mitochondrial fission under high-glucose conditions. This study is the first to propose that mitochondrial dynamic changes and ROS levels interact with each other and regulate high-glucose-induced hyperproliferation of vascular smooth muscle cells. This finding provides novel ideas in understanding the pathogenesis of diabetic vascular remodeling and intervention. - Highlights: • Mdivi-1 inhibits VSMC proliferation by lowering ROS level in high-glucose condition. • ROS may be able to induce mitochondrial fission through Drp1 regulation. • Mdivi-1 can suppress the sensitivity of Drp1 to ROS.« less

  18. Mechanical ventilation alone, and in the presence of sepsis, impair protein metabolism in the diaphragm of neonatal pigs

    USDA-ARS?s Scientific Manuscript database

    Mechanical ventilation (MV) impairs diaphragmatic function and diminishes the ability to wean from ventilatory support in adult humans. In normal neonatal pigs, animals that are highly anabolic, endotoxin (LPS) infusion induces sepsis, reduces peripheral skeletal muscle protein synthesis rates, but ...

  19. The role of high airway pressure and dynamic strain on ventilator-induced lung injury in a heterogeneous acute lung injury model.

    PubMed

    Jain, Sumeet V; Kollisch-Singule, Michaela; Satalin, Joshua; Searles, Quinn; Dombert, Luke; Abdel-Razek, Osama; Yepuri, Natesh; Leonard, Antony; Gruessner, Angelika; Andrews, Penny; Fazal, Fabeha; Meng, Qinghe; Wang, Guirong; Gatto, Louis A; Habashi, Nader M; Nieman, Gary F

    2017-12-01

    Acute respiratory distress syndrome causes a heterogeneous lung injury with normal and acutely injured lung tissue in the same lung. Improperly adjusted mechanical ventilation can exacerbate ARDS causing a secondary ventilator-induced lung injury (VILI). We hypothesized that a peak airway pressure of 40 cmH 2 O (static strain) alone would not cause additional injury in either the normal or acutely injured lung tissue unless combined with high tidal volume (dynamic strain). Pigs were anesthetized, and heterogeneous acute lung injury (ALI) was created by Tween instillation via a bronchoscope to both diaphragmatic lung lobes. Tissue in all other lobes was normal. Airway pressure release ventilation was used to precisely regulate time and pressure at both inspiration and expiration. Animals were separated into two groups: (1) over-distension + high dynamic strain (OD + H DS , n = 6) and (2) over-distension + low dynamic strain (OD + L DS , n = 6). OD was caused by setting the inspiratory pressure at 40 cmH 2 O and dynamic strain was modified by changing the expiratory duration, which varied the tidal volume. Animals were ventilated for 6 h recording hemodynamics, lung function, and inflammatory mediators followed by an extensive necropsy. In normal tissue (N T ), OD + L DS caused minimal histologic damage and a significant reduction in BALF total protein (p < 0.05) and MMP-9 activity (p < 0.05), as compared with OD + H DS . In acutely injured tissue (ALI T ), OD + L DS resulted in reduced histologic injury and pulmonary edema (p < 0.05), as compared with OD + H DS . Both N T and ALI T are resistant to VILI caused by OD alone, but when combined with a H DS , significant tissue injury develops.

  20. Attenuated flow‐induced dilatation of middle cerebral arteries is related to increased vascular oxidative stress in rats on a short‐term high salt diet

    PubMed Central

    Cosic, Anita; Jukic, Ivana; Stupin, Ana; Mihalj, Martina; Mihaljevic, Zrinka; Novak, Sanja; Vukovic, Rosemary

    2016-01-01

    Key points Recent studies have shown that high salt (HS) intake leads to endothelial dysfunction and impaired vascular reactivity in different vascular beds in both animal and human models, due to increased oxidative stress.The objective of this study was to assess vascular response to flow‐induced dilatation (FID) and to elucidate the role of vascular oxidative stress/antioxidative capacity in middle cerebral arteries (MCAs) of HS‐fed rats in vitro.The novelty of this study is in demonstrating impaired flow‐induced dilatation of MCAs and down‐regulation of vascular antioxidant genes with HS intake, leading to increased levels of oxidative stress in blood vessels and peripheral lymph organs, which together contribute to impaired FID.In addition, results show increased oxidative stress in leukocytes of peripheral lymph organs, suggesting the occurrence of inflammatory processes due to HS intake.Recirculation of leukocytes might additionally increase vascular oxidative stress in vivo. Abstract The aim of this study was to determine flow‐induced dilatation (FID) and the role of oxidative stress/antioxidative capacity in isolated, pressurized middle cerebral arteries (MCAs) of high salt (HS)‐fed rats. Healthy male Sprague‐Dawley rats (11 weeks old) were fed low salt (0.4% NaCl; LS group) or high salt (4% NaCl; HS group) diets for 1 week. Reactivity of MCAs in response to stepwise increases in pressure gradient (Δ10–Δ100 mmHg) was determined in the absence or presence of the superoxide dismutase (SOD) mimetic TEMPOL and/or the nitric oxide synthases (NOS) inhibitor N ω‐nitro‐l‐arginine methyl ester (l‐name). mRNA levels of antioxidative enzymes, NAPDH‐oxidase components, inducible (iNOS) and endothelial nitric oxide synthases (eNOS) were determined by quantitative real‐time PCR. Blood pressure (BP), antioxidant enzymes activity, oxidative stress in peripheral leukocytes, lipid peroxidation products and the antioxidant capacity of plasma

  1. Attenuated flow-induced dilatation of middle cerebral arteries is related to increased vascular oxidative stress in rats on a short-term high salt diet.

    PubMed

    Cosic, Anita; Jukic, Ivana; Stupin, Ana; Mihalj, Martina; Mihaljevic, Zrinka; Novak, Sanja; Vukovic, Rosemary; Drenjancevic, Ines

    2016-09-01

    Recent studies have shown that high salt (HS) intake leads to endothelial dysfunction and impaired vascular reactivity in different vascular beds in both animal and human models, due to increased oxidative stress. The objective of this study was to assess vascular response to flow-induced dilatation (FID) and to elucidate the role of vascular oxidative stress/antioxidative capacity in middle cerebral arteries (MCAs) of HS-fed rats in vitro. The novelty of this study is in demonstrating impaired flow-induced dilatation of MCAs and down-regulation of vascular antioxidant genes with HS intake, leading to increased levels of oxidative stress in blood vessels and peripheral lymph organs, which together contribute to impaired FID. In addition, results show increased oxidative stress in leukocytes of peripheral lymph organs, suggesting the occurrence of inflammatory processes due to HS intake. Recirculation of leukocytes might additionally increase vascular oxidative stress in vivo. The aim of this study was to determine flow-induced dilatation (FID) and the role of oxidative stress/antioxidative capacity in isolated, pressurized middle cerebral arteries (MCAs) of high salt (HS)-fed rats. Healthy male Sprague-Dawley rats (11 weeks old) were fed low salt (0.4% NaCl; LS group) or high salt (4% NaCl; HS group) diets for 1 week. Reactivity of MCAs in response to stepwise increases in pressure gradient (Δ10-Δ100 mmHg) was determined in the absence or presence of the superoxide dismutase (SOD) mimetic TEMPOL and/or the nitric oxide synthases (NOS) inhibitor N(ω) -nitro-l-arginine methyl ester (l-NAME). mRNA levels of antioxidative enzymes, NAPDH-oxidase components, inducible (iNOS) and endothelial nitric oxide synthases (eNOS) were determined by quantitative real-time PCR. Blood pressure (BP), antioxidant enzymes activity, oxidative stress in peripheral leukocytes, lipid peroxidation products and the antioxidant capacity of plasma were measured for both groups. FID was

  2. Inhibition of Hydrogen Sulfide-induced Angiogenesis and Inflammation in Vascular Endothelial Cells: Potential Mechanisms of Gastric Cancer Prevention by Korean Red Ginseng.

    PubMed

    Choi, Ki-Seok; Song, Heup; Kim, Eun-Hee; Choi, Jae Hyung; Hong, Hua; Han, Young-Min; Hahm, Ki Baik

    2012-04-01

    Previously, we reported that Helicobacter pylori-associated gastritis and gastric cancer are closely associated with increased levels of hydrogen sulfide (H2S) and that Korean red ginseng significantly reduced the severity of H. pylori-associated gastric diseases by attenuating H2S generation. Because the incubation of endothelial cells with H2S has been known to enhance their angiogenic activities, we hypothesized that the amelioration of H2S-induced gastric inflammation or angiogenesis in human umbilical vascular endothelial cells (HUVECs) might explain the preventive effect of Korean red ginseng on H. pylori-associated carcinogenesis. The expression of inflammatory mediators, angiogenic growth factors, and angiogenic activities in the absence or presence of Korean red ginseng extracts (KRGE) were evaluated in HUVECs stimulated with the H2S generator sodium hydrogen sulfide (NaHS). KRGE efficiently decreased the expression of cystathionine β-synthase and cystathionine γ-lyase, enzymes that are essential for H2S synthesis. Concomitantly, a significant decrease in the expression of inflammatory mediators, including cyclooxygenase-2 and inducible nitric oxide synthase, and several angiogenic factors, including interleukin (IL)-8, hypoxia inducible factor-1a, vascular endothelial growth factor, IL-6, and matrix metalloproteinases, was observed; all of these factors are normally induced after NaHS. An in vitro angiogenesis assay demonstrated that NaHS significantly increased tube formation in endothelial cells, whereas KRGE pretreatment significantly attenuated tube formation. NaHS activated p38 and Akt, increasing the expression of angiogenic factors and the proliferation of HUVECs, whereas KRGE effectively abrogated this H2S-activated angiogenesis and the increase in inflammatory mediators in vascular endothelial cells. In conclusion, KRGE was able to mitigate H2S-induced angiogenesis, implying that antagonistic action against H2S-induced angiogenesis may be the

  3. Fabrication, vascularization and osteogenic properties of a novel synthetic biomimetic induced membrane for the treatment of large bone defects

    PubMed Central

    Browne, Christopher; Bishop, Julius; Yang, Yunzhi

    2014-01-01

    The induced membrane has been widely used in the treatment of large bone defects but continues to be limited by a relatively lengthy healing process and a requisite two stage surgical procedure. Here we report the development and characterization of a synthetic biomimetic induced membrane (BIM) consisting of an inner highly pre-vascularized cell sheet and an outer osteogenic layer using cell sheet engineering. The pre-vascularized inner layer was formed by seeding human umbilical vein endothelial cells (HUVECs) on a cell sheet comprised of a layer of undifferentiated human bone marrow-derived mesenchymal stem cells (hMSCs). The outer osteogenic layer was formed by inducing osteogenic differentiation of hMSCs. In vitro results indicated the undifferentiated hMSCs cell sheet facilitated the alignment of HUVECs and significantly promoted the formation of vascular-like networks. Furthermore, seeded HUVECs rearranged the extracellular matrix produced by hMSCs sheet. After subcutaneously implantation, the composite constructs showed rapid vascularization and anastomosis with the host vascular system, forming functional blood vessels in vivo. Osteogenic potential of the BIM was evidenced by immunohistochemistry staining of osteocalcin, tartrate-resistant acid phosphatase (TRAP) staining, and alizarin red staining. In summary, the synthetic BIM showed rapid vascularization, significant anastomoses, and osteogenic potential in vivo. This synthetic BIM has the potential for treatment of large bone defects in the absence of infection. PMID:24747351

  4. Collagen-binding vascular endothelial growth factor attenuates CCl4-induced liver fibrosis in mice

    PubMed Central

    Wu, Kangkang; Huang, Rui; Wu, Hongyan; Liu, Yong; Yang, Chenchen; Cao, Shufeng; Hou, Xianglin; Chen, Bing; Dai, Jianwu; Wu, Chao

    2016-01-01

    Vascular endothelial growth factor (VEGF) serves an important role in promoting angiogenesis and tissue regeneration. However, the lack of an effective delivery system that can target this growth factor to the injured site reduces its therapeutic efficacy. Therefore, in the current study, collagen-binding VEGF was constructed by fusing a collagen-binding domain (CBD) to the N-terminal of native VEGF. The CBD-VEGF can specifically bind to collagen which is the major component of the extracellular matrix in fibrotic liver. The anti-fibrotic effects of this novel material were investigated by the carbon tetrachloride (CCl4)-induced liver fibrotic mouse model. Mice were injected with CCl4 intraperitoneally to induce liver fibrosis. CBD-VEGF was injected directly into the liver tissue of mice. The liver tissues were stained with hematoxylin and eosin for general observation or with Masson's trichrome staining for detection of collagen deposition. The hepatic stellate cell activation, blood vessel formation and hepatocyte proliferation were measured by immunohistochemical staining for α-smooth muscle actin, CD31 and Ki67 in the liver tissue. The fluorescent TUNEL assay was performed to evaluate the hepatocyte apoptosis. The present study identified that the CBD-VEGF injection could significantly promote vascularization of the liver tissue of fibrotic mice and attenuate liver fibrosis. Furthermore, hepatocyte apoptosis and hepatic stellate cell activation were attenuated by CBD-VEGF treatment. CBD-VEGF treatment could additionally promote hepatocyte regeneration in the liver tissue of fibrotic mice. Thus, it was suggested that CBD-VEGF may be used as a novel therapeutic intervention for liver fibrosis. PMID:27748931

  5. Studies on the vascular permeability induced by intrathecal substance P and bradykinin in the rat.

    PubMed

    Jacques, L; Couture, R

    1990-08-02

    The effects of substance P (SP), SP fragments, neurokinin A (NKA), neurokinin B (NKB) and selective agonists for neurokinin receptors were assessed on cutaneous vascular permeability after intrathecal (i.t.) administration in rats. Dose-dependent increases in plasma extravasation were observed with the following rank orders of potency ([p-Glu6]SP-(6-11) greater than SP greater than or equal to SP-(4-11) greater than [p-Glu5,MePhe8,Sar9]SP-(5-11) = [p-Glu5]SP-(5-11) greater than SP-(7-11) and SP greater than NKA greater than NKB). The N-terminal fragments SP-(1-4), SP-(1-7) and SP-(1-9) were inactive up to 65 nmol. The NK-1 receptor selective agonists [( beta-Ala4,Sar9,Met(O2)11]SP-(4-11) and [Pro9,Met(O2)11]SP) were more potent than the NK-2 ([Nle10]NKA-(4-10] and NK-3 ([beta-Asp4,MePhe7]NKB-(4-10) and [MePhe7]NKB) receptor-selective agonists. Plasma extravasation was also increased by i.t. bradykinin (BK, 8.1 nmol) while the fragment BK-(1-8), a potent B1-receptor-selective agonist, produced only a slight effect at 81 nmol. When BK was given after prior i.t. administration of 6.1 nmol of [Thi5.8,D-Phe7]BK, an antagonist of BK at the B2-receptor, the increase in vascular permeability was significantly attenuated. The analogue [Leu8]BK-(1-8) (10.3 nmol), an antagonist of BK at the B1-receptor, failed to modify the BK-induced plasma extravasation. Plasma extravasation induced by SP (6.5 nmol) and BK (8.1 nmol) was abolished in cervically vagotomized rats, and significantly reduced in both spinal rats and in capsaicin-treated animals. Conversely, bilateral adrenalectomy (48 h earlier) and intercollicular decerebration (30 min earlier) had no major effect on the response elicited either by SP or BK. The response to SP remained unaffected by methysergide and hexamethonium but was significantly reduced by methylnitrate atropine and diphenhydramine. Indomethacin significantly enhanced the plasma extravasation induced by SP. These results suggest that SP and BK may play a

  6. O-GlcNAc on NOTCH1 EGF repeats regulates ligand-induced Notch signaling and vascular development in mammals.

    PubMed

    Sawaguchi, Shogo; Varshney, Shweta; Ogawa, Mitsutaka; Sakaidani, Yuta; Yagi, Hirokazu; Takeshita, Kyosuke; Murohara, Toyoaki; Kato, Koichi; Sundaram, Subha; Stanley, Pamela; Okajima, Tetsuya

    2017-04-11

    The glycosyltransferase EOGT transfers O-GlcNAc to a consensus site in epidermal growth factor-like (EGF) repeats of a limited number of secreted and membrane proteins, including Notch receptors. In EOGT-deficient cells, the binding of DLL1 and DLL4, but not JAG1, canonical Notch ligands was reduced, and ligand-induced Notch signaling was impaired. Mutagenesis of O-GlcNAc sites on NOTCH1 also resulted in decreased binding of DLL4. EOGT functions were investigated in retinal angiogenesis that depends on Notch signaling. Global or endothelial cell-specific deletion of Eogt resulted in defective retinal angiogenesis, with a mild phenotype similar to that caused by reduced Notch signaling in retina. Combined deficiency of different Notch1 mutant alleles exacerbated the abnormalities in Eogt -/- retina, and Notch target gene expression was decreased in Eogt -/- endothelial cells. Thus, O-GlcNAc on EGF repeats of Notch receptors mediates ligand-induced Notch signaling required in endothelial cells for optimal vascular development.

  7. Notch1 stimulation induces a vascularization switch with pericyte-like cell differentiation of glioblastoma stem cells.

    PubMed

    Guichet, Pierre-Olivier; Guelfi, Sophie; Teigell, Marisa; Hoppe, Liesa; Bakalara, Norbert; Bauchet, Luc; Duffau, Hugues; Lamszus, Katrin; Rothhut, Bernard; Hugnot, Jean-Philippe

    2015-01-01

    Glioblastoma multiforms (GBMs) are highly vascularized brain tumors containing a subpopulation of multipotent cancer stem cells. These cells closely interact with endothelial cells in neurovascular niches. In this study, we have uncovered a close link between the Notch1 pathway and the tumoral vascularization process of GBM stem cells. We observed that although the Notch1 receptor was activated, the typical target proteins (HES5, HEY1, and HEY2) were not or barely expressed in two explored GBM stem cell cultures. Notch1 signaling activation by expression of the intracellular form (NICD) in these cells was found to reduce their growth rate and migration, which was accompanied by the sharp reduction in neural stem cell transcription factor expression (ASCL1, OLIG2, and SOX2), while HEY1/2, KLF9, and SNAI2 transcription factors were upregulated. Expression of OLIG2 and growth were restored after termination of Notch1 stimulation. Remarkably, NICD expression induced the expression of pericyte cell markers (NG2, PDGFRβ, and α-smooth muscle actin [αSMA]) in GBM stem cells. This was paralleled with the induction of several angiogenesis-related factors most notably cytokines (heparin binding epidermal growth factor [HB-EGF], IL8, and PLGF), matrix metalloproteinases (MMP9), and adhesion proteins (vascular cell adhesion molecule 1 [VCAM1], intercellular adhesion molecule 1 [ICAM1], and integrin alpha 9 [ITGA9]). In xenotransplantation experiments, contrasting with the infiltrative and poorly vascularized tumors obtained with control GBM stem cells, Notch1 stimulation resulted in poorly disseminating but highly vascularized grafts containing large vessels with lumen. Notch1-stimulated GBM cells expressed pericyte cell markers and closely associated with endothelial cells. These results reveal an important role for the Notch1 pathway in regulating GBM stem cell plasticity and angiogenic properties. © 2014 AlphaMed Press.

  8. New modes of assisted mechanical ventilation.

    PubMed

    Suarez-Sipmann, F

    2014-05-01

    Recent major advances in mechanical ventilation have resulted in new exciting modes of assisted ventilation. Compared to traditional ventilation modes such as assisted-controlled ventilation or pressure support ventilation, these new modes offer a number of physiological advantages derived from the improved patient control over the ventilator. By implementing advanced closed-loop control systems and using information on lung mechanics, respiratory muscle function and respiratory drive, these modes are specifically designed to improve patient-ventilator synchrony and reduce the work of breathing. Depending on their specific operational characteristics, these modes can assist spontaneous breathing efforts synchronically in time and magnitude, adapt to changing patient demands, implement automated weaning protocols, and introduce a more physiological variability in the breathing pattern. Clinicians have now the possibility to individualize and optimize ventilatory assistance during the complex transition from fully controlled to spontaneous assisted ventilation. The growing evidence of the physiological and clinical benefits of these new modes is favoring their progressive introduction into clinical practice. Future clinical trials should improve our understanding of these modes and help determine whether the claimed benefits result in better outcomes. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  9. [Phrenic nerve stimulation protects against mechanical ventilation-induced diaphragmatic dysfunction through myogenic regulatory factors].

    PubMed

    An, G H; Chen, M; Zhan, W F; Hu, B; Zhang, H X

    2018-02-12

    Objective: To explore the protective effect of electrical stimulation of phrenic nerve on diaphragmatic function during mechanical ventilation. Methods: Forty healthy adult SD rats were randomly divided into 5 groups: blank control group (BC), spontaneous breathing group (SB), electrical stimulation group (ES), mechanical ventilation group (MV), and electrical stimulation and mechanical ventilation group (MS). The rats in each group were treated for 18 h except for the BC group. After treatment, the diaphragm muscle tissue was obtained and the diaphragm contractility including peak-to-peak value(Vpp) and maximum rate of contraction(+ dT/dt max) were measured. Expression of MyoD and myogenin were detected. Results: Except for the ES and the MS groups, there was a significant difference for peak-to-peak value (Vpp) between each 2 groups ( P <0.05). Expression levels of MyoD in treatment groups were also significantly different ( P <0.05). Expressions of MS(Q-PCR 2(-ΔΔCt) value: 11.66±2.80) and MV(Q-PCR 2(-ΔΔCt) value: 40.89±24.71) in the treatment group were significantly different ( P <0.05). The expression of myogenin in the MS and the MV groups were significantly different from those of the BC group( P <0.05), however there was no significant difference between the MS(Q-PCR 2(-ΔΔCt) value: 2.58±2.75) and the MV group(Q-PCR 2(-ΔΔCt) value: 1.63±0.71). Conclusions: Electrical stimulation of the phrenic nerve can change the expression level of MyoD and myogenin to offset mechanical ventilation induced diaphragmatic function damage, and therefore plays a protective effect on the diaphragm.

  10. Autophagy in pulmonary macrophages mediates lung inflammatory injury via NLRP3 inflammasome activation during mechanical ventilation

    PubMed Central

    Zhang, Yang; Liu, Gongjian; Dull, Randal O.; Schwartz, David E.

    2014-01-01

    The inflammatory response is a primary mechanism in the pathogenesis of ventilator-induced lung injury. Autophagy is an essential, homeostatic process by which cells break down their own components. We explored the role of autophagy in the mechanisms of mechanical ventilation-induced lung inflammatory injury. Mice were subjected to low (7 ml/kg) or high (28 ml/kg) tidal volume ventilation for 2 h. Bone marrow-derived macrophages transfected with a scrambled or autophagy-related protein 5 small interfering RNA were administered to alveolar macrophage-depleted mice via a jugular venous cannula 30 min before the start of the ventilation protocol. In some experiments, mice were ventilated in the absence and presence of autophagy inhibitors 3-methyladenine (15 mg/kg ip) or trichostatin A (1 mg/kg ip). Mechanical ventilation with a high tidal volume caused rapid (within minutes) activation of autophagy in the lung. Conventional transmission electron microscopic examination of lung sections showed that mechanical ventilation-induced autophagy activation mainly occurred in lung macrophages. Autophagy activation in the lungs during mechanical ventilation was dramatically attenuated in alveolar macrophage-depleted mice. Selective silencing of autophagy-related protein 5 in lung macrophages abolished mechanical ventilation-induced nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome activation and lung inflammatory injury. Pharmacological inhibition of autophagy also significantly attenuated the inflammatory responses caused by lung hyperinflation. The activation of autophagy in macrophages mediates early lung inflammation during mechanical ventilation via NLRP3 inflammasome signaling. Inhibition of autophagy activation in lung macrophages may therefore provide a novel and promising strategy for the prevention and treatment of ventilator-induced lung injury. PMID:24838752

  11. Omnidirectional ventilated acoustic barrier

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-long; Zhu, Yi-fan; Liang, Bin; Yang, Jing; Yang, Jun; Cheng, Jian-chun

    2017-11-01

    As an important problem in acoustics, sound insulation finds applications in a great variety of situations. In the existing schemes, however, there has always been a trade-off between the thinness of sound-insulating devices and their ventilating capabilities, limiting their potentials in the control of low-frequency sound in high ventilation environments. Here, we design and experimentally implement an omnidirectional acoustic barrier with a planar profile, subwavelength thickness ( 0.18 λ ), yet high ventilation. The proposed mechanism is based on the interference between the resonant scattering of discrete states and the background scattering of continuous states which induces a Fano-like asymmetric transmission profile. Benefitting from the binary-structured design of the coiled unit and hollow pipe, it maximally simplifies the design and fabrication while ensuring the ventilation for all the non-resonant units with open tubes. The simulated and measured results agree well, showing the effectiveness of our proposed mechanism to block low frequency sound coming from various directions while allowing 63% of the air flow to pass. We anticipate our design to open routes to design sound insulators and to enable applications in traditionally unattainable cases such as those calling for noise reduction and cooling simultaneously.

  12. Microvascular dysfunction with increased vascular leakage response in mice systemically exposed to arsenic.

    PubMed

    Chen, Shih-Chieh; Huang, Shin-Yin; Lu, Chi-Yu; Hsu, Ya-Hung; Wang, Dean-Chuan

    2014-09-01

    The mechanisms underlying cardiovascular disease induced by arsenic exposure are not completely understood. The objectives of this study were to investigate whether arsenic-fed mice have an increased vascular leakage response to vasoactive agents and whether enhanced type-2 protein phosphatase (PP2A) activity is involved in mustard oil-induced leakage. ICR mice were fed water or sodium arsenite (20 mg/kg) for 4 or 8 weeks. The leakage response to vasoactive agents was quantified using the Evans blue (EB) technique or vascular labeling with carbon particles. Increased EB leakage and high density of carbon-labeled microvessels were detected in arsenic-fed mice treated with mustard oil. Histamine induced significantly higher vascular leakage in arsenic-fed mice than in water-fed mice. Pretreatment with the PP2A inhibitor okadaic acid or the neurokinin 1 receptor (NK1R) blocker RP67580 significantly reduced mustard oil-induced vascular leakage in arsenic-fed mice. The protein levels of PP2Ac and NK1R were similar in both groups. PP2A activity was significantly higher in the arsenic-fed mice compared with the control group. These findings indicate that microvessels generally respond to vasoactive agents, and that the increased PP2A activity is involved in mustard oil-induced vascular leakage in arsenic-fed mice. Arsenic may initiate endothelial dysfunction, resulting in vascular leakage in response to vasoactive agents.

  13. Dietary potassium regulates vascular calcification and arterial stiffness

    PubMed Central

    Sun, Yong; Byon, Chang Hyun; Yang, Youfeng; Bradley, Wayne E.; Dell’Italia, Louis J.; Agarwal, Anupam; Wu, Hui

    2017-01-01

    Vascular calcification is a risk factor that predicts adverse cardiovascular complications of several diseases including atherosclerosis. Reduced dietary potassium intake has been linked to cardiovascular diseases such as hypertension and incidental stroke, although the underlying molecular mechanisms remain largely unknown. Using the ApoE-deficient mouse model, we demonstrated for the first time to our knowledge that reduced dietary potassium (0.3%) promoted atherosclerotic vascular calcification and increased aortic stiffness, compared with normal (0.7%) potassium–fed mice. In contrast, increased dietary potassium (2.1%) attenuated vascular calcification and aortic stiffness. Mechanistically, reduction in the potassium concentration to the lower limit of the physiological range increased intracellular calcium, which activated a cAMP response element–binding protein (CREB) signal that subsequently enhanced autophagy and promoted vascular smooth muscle cell (VSMC) calcification. Inhibition of calcium signals and knockdown of either CREB or ATG7, an autophagy regulator, attenuated VSMC calcification induced by low potassium. Consistently, elevated autophagy and CREB signaling were demonstrated in the calcified arteries from low potassium diet–fed mice as well as aortic arteries exposed to low potassium ex vivo. These studies established a potentially novel causative role of dietary potassium intake in regulating atherosclerotic vascular calcification and stiffness, and uncovered mechanisms that offer opportunities to develop therapeutic strategies to control vascular disease. PMID:28978809

  14. Rationale and Description of Right Ventricle-Protective Ventilation in ARDS.

    PubMed

    Paternot, Alexis; Repessé, Xavier; Vieillard-Baron, Antoine

    2016-10-01

    Pulmonary vascular dysfunction is associated with ARDS and leads to increased right-ventricular afterload and eventually right-ventricular failure, also called acute cor pulmonale. Interest in acute cor pulmonale and its negative impact on outcome in patients with ARDS has grown in recent years. Right-ventricular function in these patients should be closely monitored, and this is helped by the widespread use of echocardiography in intensive care units. Because mechanical ventilation may worsen right-ventricular failure, the interaction between the lungs and the right ventricle appears to be a key factor in the ventilation strategy. In this review, a rationale for a right ventricle-protective ventilation approach is provided, and such a strategy is described, including the reduction of lung stress (ie, the limitation of plateau pressure and driving pressure), the reduction of PaCO2 , and the improvement of oxygenation. Prone positioning seems to be a crucial part of this strategy by protecting both the lungs and the right ventricle, resulting in increased survival of patients with ARDS. Further studies are required to validate the positive impact on prognosis of right ventricle-protective mechanical ventilation. Copyright © 2016 by Daedalus Enterprises.

  15. Partial Support Ventilation and Mitochondrial-Targeted Antioxidants Protect against Ventilator-Induced Decreases in Diaphragm Muscle Protein Synthesis.

    PubMed

    Hudson, Matthew B; Smuder, Ashley J; Nelson, W Bradley; Wiggs, Michael P; Shimkus, Kevin L; Fluckey, James D; Szeto, Hazel H; Powers, Scott K

    2015-01-01

    Mechanical ventilation (MV) is a life-saving intervention in patients in respiratory failure. Unfortunately, prolonged MV results in the rapid development of diaphragm atrophy and weakness. MV-induced diaphragmatic weakness is significant because inspiratory muscle dysfunction is a risk factor for problematic weaning from MV. Therefore, developing a clinical intervention to prevent MV-induced diaphragm atrophy is important. In this regard, MV-induced diaphragmatic atrophy occurs due to both increased proteolysis and decreased protein synthesis. While efforts to impede MV-induced increased proteolysis in the diaphragm are well-documented, only one study has investigated methods of preserving diaphragmatic protein synthesis during prolonged MV. Therefore, we evaluated the efficacy of two therapeutic interventions that, conceptually, have the potential to sustain protein synthesis in the rat diaphragm during prolonged MV. Specifically, these experiments were designed to: 1) determine if partial-support MV will protect against the decrease in diaphragmatic protein synthesis that occurs during prolonged full-support MV; and 2) establish if treatment with a mitochondrial-targeted antioxidant will maintain diaphragm protein synthesis during full-support MV. Compared to spontaneously breathing animals, full support MV resulted in a significant decline in diaphragmatic protein synthesis during 12 hours of MV. In contrast, diaphragm protein synthesis rates were maintained during partial support MV at levels comparable to spontaneous breathing animals. Further, treatment of animals with a mitochondrial-targeted antioxidant prevented oxidative stress during full support MV and maintained diaphragm protein synthesis at the level of spontaneous breathing animals. We conclude that treatment with mitochondrial-targeted antioxidants or the use of partial-support MV are potential strategies to preserve diaphragm protein synthesis during prolonged MV.

  16. Evaluation of ventilators for mouthpiece ventilation in neuromuscular disease.

    PubMed

    Khirani, Sonia; Ramirez, Adriana; Delord, Vincent; Leroux, Karl; Lofaso, Frédéric; Hautot, Solène; Toussaint, Michel; Orlikowski, David; Louis, Bruno; Fauroux, Brigitte

    2014-09-01

    Daytime mouthpiece ventilation is a useful adjunct to nocturnal noninvasive ventilation (NIV) in patients with neuromuscular disease. The aims of the study were to analyze the practice of mouthpiece ventilation and to evaluate the performance of ventilators for mouthpiece ventilation. Practice of mouthpiece ventilation was assessed by a questionnaire, and the performance of 6 home ventilators with mouthpiece ventilation was assessed in a bench test using 24 different conditions per ventilator: 3 mouthpieces, a child and an adult patient profile, and 4 ventilatory modes. Questionnaires were obtained from 30 subjects (mean age 33 ± 11 y) using NIV for 12 ± 7 y. Fifteen subjects used NIV for > 20 h/day, and 11 were totally ventilator-dependent. The subject-reported benefits of mouthpiece ventilation were a reduction in dyspnea (73%) and fatigue (93%) and an improvement in speech (43%) and eating (27%). The bench study showed that none of the ventilators, even those with mouthpiece ventilation software, were able to deliver mouthpiece ventilation without alarms and/or autotriggering in each condition. Alarms and/or ineffective triggering or autotriggering were observed in 135 of the 198 conditions. The occurrence of alarms was more common with a large mouthpiece without a filter compared to a small mouthpiece with a filter (P < .001), but it was not related to the patient profile, the ventilatory mode, or the type of ventilator. Subjects are satisfied with mouthpiece ventilation. Alarms are common with home ventilators, although less common in those with mouthpiece ventilation software. Improvements in home ventilators are needed to facilitate the expansion of mouthpiece ventilation. Copyright © 2014 by Daedalus Enterprises.

  17. Vinpocetine suppresses pathological vascular remodeling by inhibiting vascular smooth muscle cell proliferation and migration.

    PubMed

    Cai, Yujun; Knight, Walter E; Guo, Shujie; Li, Jian-Dong; Knight, Peter A; Yan, Chen

    2012-11-01

    Abnormal vascular smooth muscle cell (SMC) activation is associated with various vascular disorders such as atherosclerosis, in-stent restenosis, vein graft disease, and transplantation-associated vasculopathy. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. However, its role in pathological vascular remodeling remains unexplored. Herein, we show that systemic administration of vinpocetine significantly reduced neointimal formation in carotid arteries after ligation injury. Vinpocetine also markedly decreased spontaneous remodeling of human saphenous vein explants in ex vivo culture. In cultured SMCs, vinpocetine dose-dependently suppressed cell proliferation and caused G1-phase cell cycle arrest, which is associated with a decrease in cyclin D1 and an increase in p27Kip1 levels. In addition, vinpocetine dose-dependently inhibited platelet-derived growth factor (PDGF)-stimulated SMC migration as determined by the two-dimensional migration assays and three-dimensional aortic medial explant invasive assay. Moreover, vinpocetine significantly reduced PDGF-induced type I collagen and fibronectin expression. It is noteworthy that PDGF-stimulated phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), but not protein kinase B, was specifically inhibited by vinpocetine. Vinpocetine powerfully attenuated intracellular reactive oxidative species (ROS) production, which largely mediates the inhibitory effects of vinpocetine on ERK1/2 activation and SMC growth. Taken together, our results reveal a novel function of vinpocetine in attenuating neointimal hyperplasia and pathological vascular remodeling, at least partially through suppressing ROS production and ERK1/2 activation in SMCs. Given the safety profile of vinpocetine, this study provides insight into the therapeutic potential of vinpocetine in proliferative vascular disorders.

  18. Vinpocetine Suppresses Pathological Vascular Remodeling by Inhibiting Vascular Smooth Muscle Cell Proliferation and Migration

    PubMed Central

    Cai, Yujun; Knight, Walter E.; Guo, Shujie; Li, Jian-Dong; Knight, Peter A.

    2012-01-01

    Abnormal vascular smooth muscle cell (SMC) activation is associated with various vascular disorders such as atherosclerosis, in-stent restenosis, vein graft disease, and transplantation-associated vasculopathy. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. However, its role in pathological vascular remodeling remains unexplored. Herein, we show that systemic administration of vinpocetine significantly reduced neointimal formation in carotid arteries after ligation injury. Vinpocetine also markedly decreased spontaneous remodeling of human saphenous vein explants in ex vivo culture. In cultured SMCs, vinpocetine dose-dependently suppressed cell proliferation and caused G1-phase cell cycle arrest, which is associated with a decrease in cyclin D1 and an increase in p27Kip1 levels. In addition, vinpocetine dose-dependently inhibited platelet-derived growth factor (PDGF)-stimulated SMC migration as determined by the two-dimensional migration assays and three-dimensional aortic medial explant invasive assay. Moreover, vinpocetine significantly reduced PDGF-induced type I collagen and fibronectin expression. It is noteworthy that PDGF-stimulated phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), but not protein kinase B, was specifically inhibited by vinpocetine. Vinpocetine powerfully attenuated intracellular reactive oxidative species (ROS) production, which largely mediates the inhibitory effects of vinpocetine on ERK1/2 activation and SMC growth. Taken together, our results reveal a novel function of vinpocetine in attenuating neointimal hyperplasia and pathological vascular remodeling, at least partially through suppressing ROS production and ERK1/2 activation in SMCs. Given the safety profile of vinpocetine, this study provides insight into the therapeutic potential of vinpocetine in proliferative vascular disorders. PMID:22915768

  19. Clostridium sordellii lethal toxin kills mice by inducing a major increase in lung vascular permeability.

    PubMed

    Geny, Blandine; Khun, Huot; Fitting, Catherine; Zarantonelli, Leticia; Mazuet, Christelle; Cayet, Nadège; Szatanik, Marek; Prevost, Marie-Christine; Cavaillon, Jean-Marc; Huerre, Michel; Popoff, Michel R

    2007-03-01

    When intraperitoneally injected into Swiss mice, Clostridium sordellii lethal toxin reproduces the fatal toxic shock syndrome observed in humans and animals after natural infection. This animal model was used to study the mechanism of lethal toxin-induced death. Histopathological and biochemical analyses identified lung and heart as preferential organs targeted by lethal toxin. Massive extravasation of blood fluid in the thoracic cage, resulting from an increase in lung vascular permeability, generated profound modifications such as animal dehydration, increase in hematocrit, hypoxia, and finally, cardiorespiratory failure. Vascular permeability increase induced by lethal toxin resulted from modifications of lung endothelial cells as evidenced by electron microscopy. Immunohistochemical analysis demonstrated that VE-cadherin, a protein participating in intercellular adherens junctions, was redistributed from membrane to cytosol in lung endothelial cells. No major sign of lethal toxin-induced inflammation was observed that could participate in the toxic shock syndrome. The main effect of the lethal toxin is the glucosylation-dependent inactivation of small GTPases, in particular Rac, which is involved in actin polymerization occurring in vivo in lungs leading to E-cadherin junction destabilization. We conclude that the cells most susceptible to lethal toxin are lung vascular endothelial cells, the adherens junctions of which were altered after intoxication.

  20. Clostridium sordellii Lethal Toxin Kills Mice by Inducing a Major Increase in Lung Vascular Permeability

    PubMed Central

    Geny, Blandine; Khun, Huot; Fitting, Catherine; Zarantonelli, Leticia; Mazuet, Christelle; Cayet, Nadège; Szatanik, Marek; Prevost, Marie-Christine; Cavaillon, Jean-Marc; Huerre, Michel; Popoff, Michel R.

    2007-01-01

    When intraperitoneally injected into Swiss mice, Clostridium sordellii lethal toxin reproduces the fatal toxic shock syndrome observed in humans and animals after natural infection. This animal model was used to study the mechanism of lethal toxin-induced death. Histopathological and biochemical analyses identified lung and heart as preferential organs targeted by lethal toxin. Massive extravasation of blood fluid in the thoracic cage, resulting from an increase in lung vascular permeability, generated profound modifications such as animal dehydration, increase in hematocrit, hypoxia, and finally, cardiorespiratory failure. Vascular permeability increase induced by lethal toxin resulted from modifications of lung endothelial cells as evidenced by electron microscopy. Immunohistochemical analysis demonstrated that VE-cadherin, a protein participating in intercellular adherens junctions, was redistributed from membrane to cytosol in lung endothelial cells. No major sign of lethal toxin-induced inflammation was observed that could participate in the toxic shock syndrome. The main effect of the lethal toxin is the glucosylation-dependent inactivation of small GTPases, in particular Rac, which is involved in actin polymerization occurring in vivo in lungs leading to E-cadherin junction destabilization. We conclude that the cells most susceptible to lethal toxin are lung vascular endothelial cells, the adherens junctions of which were altered after intoxication. PMID:17322384

  1. H2S Regulates Hypobaric Hypoxia-Induced Early Glio-Vascular Dysfunction and Neuro-Pathophysiological Effects

    PubMed Central

    Kumar, Gaurav; Chhabra, Aastha; Mishra, Shalini; Kalam, Haroon; Kumar, Dhiraj; Meena, Ramniwas; Ahmad, Yasmin; Bhargava, Kalpana; Prasad, Dipti N.; Sharma, Manish

    2016-01-01

    Hypobaric Hypoxia (HH) is an established risk factor for various neuro-physiological perturbations including cognitive impairment. The origin and mechanistic basis of such responses however remain elusive. We here combined systems level analysis with classical neuro-physiological approaches, in a rat model system, to understand pathological responses of brain to HH. Unbiased ‘statistical co-expression networks’ generated utilizing temporal, differential transcriptome signatures of hippocampus—centrally involved in regulating cognition—implicated perturbation of Glio-Vascular homeostasis during early responses to HH, with concurrent modulation of vasomodulatory, hemostatic and proteolytic processes. Further, multiple lines of experimental evidence from ultra-structural, immuno-histological, substrate-zymography and barrier function studies unambiguously supported this proposition. Interestingly, we show a significant lowering of H2S levels in the brain, under chronic HH conditions. This phenomenon functionally impacted hypoxia-induced modulation of cerebral blood flow (hypoxic autoregulation) besides perturbing the strength of functional hyperemia responses. The augmentation of H2S levels, during HH conditions, remarkably preserved Glio-Vascular homeostasis and key neuro-physiological functions (cerebral blood flow, functional hyperemia and spatial memory) besides curtailing HH-induced neuronal apoptosis in hippocampus. Our data thus revealed causal role of H2S during HH-induced early Glio-Vascular dysfunction and consequent cognitive impairment. PMID:27211559

  2. Mechanical ventilation alone, and in the presence sepsis, induces peripheral skeletal muscle catabolism in neonatal pigs

    USDA-ARS?s Scientific Manuscript database

    Reduced rates of skeletal muscle accretion are a prominent feature of the metabolic response to sepsis in infants and children. Septic neonates often require medical support with mechanical ventilation (MV). The combined effects of MV and sepsis in muscle have not been examined in neonates, in whom ...

  3. Household ventilation may reduce effects of indoor air pollutants for prevention of lung cancer: a case-control study in a Chinese population.

    PubMed

    Jin, Zi-Yi; Wu, Ming; Han, Ren-Qiang; Zhang, Xiao-Feng; Wang, Xu-Shan; Liu, Ai-Ming; Zhou, Jin-Yi; Lu, Qing-Yi; Kim, Claire H; Mu, Lina; Zhang, Zuo-Feng; Zhao, Jin-Kou

    2014-01-01

    Although the International Agency for Research on Cancer (IARC) has classified various indoor air pollutants as carcinogenic to humans, few studies evaluated the role of household ventilation in reducing the impact of indoor air pollutants on lung cancer risk. To explore the association between household ventilation and lung cancer. A population-based case-control study was conducted in a Chinese population from 2003 to 2010. Epidemiologic and household ventilation data were collected using a standardized questionnaire. Unconditional logistic regression was employed to estimate adjusted odds ratios (ORadj) and their 95% confidence intervals (CI). Among 1,424 lung cancer cases and 4,543 healthy controls, inverse associations were observed for good ventilation in the kitchen (ORadj = 0.86, 95% CI: 0.75, 0.98), bedroom (ORadj = 0.90, 95% CI: 0.79, 1.03), and both kitchen and bedroom (ORadj = 0.87, 95% CI: 0.75, 1.00). Stratified analyses showed lung cancer inversely associated with good ventilation among active smokers (ORadj = 0.85, 95% CI: 0.72, 1.00), secondhand smokers at home (ORadj = 0.77, 95% CI: 0.63, 0.94), and those exposed to high-temperature cooking oil fumes (ORadj = 0.82, 95% CI: 0.68, 0.99). Additive interactions were found between household ventilation and secondhand smoke at home as well as number of household pollutant sources. A protective association was observed between good ventilation of households and lung cancer, most likely through the reduction of exposure to indoor air pollutants, indicating ventilation may serve as one of the preventive measures for lung cancer, in addition to tobacco cessation.

  4. Rhubarb Antagonizes Matrix Metalloproteinase-9-induced Vascular Endothelial Permeability

    PubMed Central

    Cui, Yun-Liang; Zhang, Sheng; Tian, Zhao-Tao; Lin, Zhao-Fen; Chen, De-Chang

    2016-01-01

    Background: Intact endothelial structure and function are critical for maintaining microcirculatory homeostasis. Dysfunction of the latter is an underlying cause of various organ pathologies. In a previous study, we showed that rhubarb, a traditional Chinese medicine, protected intestinal mucosal microvascular endothelial cells in rats with metastasizing septicemia. In this study, we investigated the effects and mechanisms of rhubarb on matrix metalloproteinase-9 (MMP9)-induced vascular endothelial (VE) permeability. Methods: Rhubarb monomers were extracted and purified by a series of chromatography approaches. The identity of these monomers was analyzed by hydrogen-1 nuclear magnetic resonance (NMR), carbon-13 NMR, and distortionless enhancement by polarization transfer magnetic resonance spectroscopy. We established a human umbilical vein endothelial cell (HUVEC) monolayer on a Transwell insert. We measured the HUVEC permeability, proliferation, and the secretion of VE-cadherin into culture medium using fluorescein isothiocyanate-dextran assay, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, and enzyme-linked immunosorbent assay, respectively, in response to treatment with MMP9 and/or rhubarb monomers. Results: A total of 21 rhubarb monomers were extracted and identified. MMP9 significantly increased the permeability of the HUVEC monolayer, which was significantly reduced by five individual rhubarb monomer (emodin, 3,8-dihydroxy-1-methyl-anthraquinone-2-carboxylic acid, 1-O-caffeoyl-2-(4-hydroxyl-O-cinnamoyl)-β-D-glucose, daucosterol linoleate, and rhein) or a combination of all five monomers (1 μmol/L for each monomer). Mechanistically, the five-monomer mixture at 1 μmol/L promoted HUVEC proliferation. In addition, MMP9 stimulated the secretion of VE-cadherin into the culture medium, which was significantly inhibited by the five-monomer mixture. Conclusions: The rhubarb mixture of emodin, 3,8-dihydroxy-1-methyl-anthraquinone-2

  5. Sustained Reduction of Ventilator-Associated Pneumonia Rates Using Real-Time Course Correction With a Ventilator Bundle Compliance Dashboard.

    PubMed

    Talbot, Thomas R; Carr, Devin; Parmley, C Lee; Martin, Barbara J; Gray, Barbara; Ambrose, Anna; Starmer, Jack

    2015-11-01

    The effectiveness of practice bundles on reducing ventilator-associated pneumonia (VAP) has been questioned. To implement a comprehensive program that included a real-time bundle compliance dashboard to improve compliance and reduce ventilator-associated complications. DESIGN Before-and-after quasi-experimental study with interrupted time-series analysis. SETTING Academic medical center. In 2007 a comprehensive institutional ventilator bundle program was developed. To assess bundle compliance and stimulate instant course correction of noncompliant parameters, a real-time computerized dashboard was developed. Program impact in 6 adult intensive care units (ICUs) was assessed. Bundle compliance was noted as an overall cumulative bundle adherence assessment, reflecting the percentage of time all elements were concurrently in compliance for all patients. The VAP rate in all ICUs combined decreased from 19.5 to 9.2 VAPs per 1,000 ventilator-days following program implementation (P<.001). Bundle compliance significantly increased (Z100 score of 23% in August 2007 to 83% in June 2011 [P<.001]). The implementation resulted in a significant monthly decrease in the overall ICU VAP rate of 3.28/1,000 ventilator-days (95% CI, 2.64-3.92/1,000 ventilator-days). Following the intervention, the VAP rate decreased significantly at a rate of 0.20/1,000 ventilator-days per month (95% CI, 0.14-0.30/1,000 ventilator-days per month). Among all adult ICUs combined, improved bundle compliance was moderately correlated with monthly VAP rate reductions (Pearson correlation coefficient, -0.32). A prevention program using a real-time bundle adherence dashboard was associated with significant sustained decreases in VAP rates and an increase in bundle compliance among adult ICU patients.

  6. Spontaneous Effort During Mechanical Ventilation: Maximal Injury With Less Positive End-Expiratory Pressure.

    PubMed

    Yoshida, Takeshi; Roldan, Rollin; Beraldo, Marcelo A; Torsani, Vinicius; Gomes, Susimeire; De Santis, Roberta R; Costa, Eduardo L V; Tucci, Mauro R; Lima, Raul G; Kavanagh, Brian P; Amato, Marcelo B P

    2016-08-01

    We recently described how spontaneous effort during mechanical ventilation can cause "pendelluft," that is, displacement of gas from nondependent (more recruited) lung to dependent (less recruited) lung during early inspiration. Such transfer depends on the coexistence of more recruited (source) liquid-like lung regions together with less recruited (target) solid-like lung regions. Pendelluft may improve gas exchange, but because of tidal recruitment, it may also contribute to injury. We hypothesize that higher positive end-expiratory pressure levels decrease the propensity to pendelluft and that with lower positive end-expiratory pressure levels, pendelluft is associated with improved gas exchange but increased tidal recruitment. Crossover design. University animal research laboratory. Anesthetized landrace pigs. Surfactant depletion was achieved by saline lavage in anesthetized pigs, and ventilator-induced lung injury was produced by ventilation with high tidal volume and low positive end-expiratory pressure. Ventilation was continued in each of four conditions: positive end-expiratory pressure (low or optimized positive end-expiratory pressure after recruitment) and spontaneous breathing (present or absent). Tidal recruitment was assessed using dynamic CT and regional ventilation/perfusion using electric impedance tomography. Esophageal pressure was measured using an esophageal balloon manometer. Among the four conditions, spontaneous breathing at low positive end-expiratory pressure not only caused the largest degree of pendelluft, which was associated with improved ventilation/perfusion matching and oxygenation, but also generated the greatest tidal recruitment. At low positive end-expiratory pressure, paralysis worsened oxygenation but reduced tidal recruitment. Optimized positive end-expiratory pressure decreased the magnitude of spontaneous efforts (measured by esophageal pressure) despite using less sedation, from -5.6 ± 1.3 to -2.0 ± 0.7 cm H2

  7. Protection from cigarette smoke-induced vascular injury by recombinant human relaxin-2 (serelaxin).

    PubMed

    Pini, Alessandro; Boccalini, Giulia; Baccari, Maria Caterina; Becatti, Matteo; Garella, Rachele; Fiorillo, Claudia; Calosi, Laura; Bani, Daniele; Nistri, Silvia

    2016-05-01

    Smoking is regarded as a major risk factor for the development of cardiovascular diseases (CVD). This study investigates whether serelaxin (RLX, recombinant human relaxin-2) endowed with promising therapeutic properties in CVD, can be credited of a protective effect against cigarette smoke (CS)-induced vascular damage and dysfunction. Guinea pigs exposed daily to CS for 8 weeks were treated with vehicle or RLX, delivered by osmotic pumps at daily doses of 1 or 10 μg. Controls were non-smoking animals. Other studies were performed on primary guinea pig aortic endothelial (GPAE) cells, challenged with CS extracts (CSE) in the absence and presence of 100 ng/ml (17 nmol/l) RLX. In aortic specimens from CS-exposed guinea pigs, both the contractile and the relaxant responses to phenylephrine and acetylcholine, respectively, were significantly reduced in amplitude and delayed, in keeping with the observed adverse remodelling of the aortic wall, endothelial injury and endothelial nitric oxide synthase (eNOS) down-regulation. RLX at both doses maintained the aortic contractile and relaxant responses to a control-like pattern and counteracted aortic wall remodelling and endothelial derangement. The experiments with GPAE cells showed that CSE significantly decreased cell viability and eNOS expression and promoted apoptosis by sparkling oxygen free radical-related cytotoxicity, while RLX counterbalanced the adverse effects of CSE. These findings demonstrate that RLX is capable of counteracting CS-mediated vascular damage and dysfunction by reducing oxidative stress, thus adding a tile to the growing mosaic of the beneficial effects of RLX in CVD. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  8. Resistance of essential fatty acid-deficient rats to endotoxin-induced increases in vascular permeability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, E.J.; Cook, J.A.; Spicer, K.M.

    Resistance to endotoxin in essential fatty acid-deficient (EFAD) rats is associated with reduced synthesis of certain arachidonic acid metabolites. It was hypothesized that EFAD rats would manifest decreased vascular permeability changes during endotoxemia as a consequence of reduced arachidonic acid metabolism. To test this hypothesis, changes in hematocrit (HCT) and mesenteric localization rate of technetium-labeled human serum albumin (99mTc-HSA) and red blood cells (99mTc-RBC) were assessed in EFAD and normal rats using gamma-camera imaging. Thirty minutes after Salmonella enteritidis endotoxin, EFAD rats exhibited less hemoconcentration as determined by % HCT than normal rats. Endotoxin caused a less severe change inmore » permeability index in the splanchnic region in EFAD rats than in normal rats (1.2 +/- 0.6 x 10(-3)min-1 vs. 4.9 +/- 1.7 x 10(-3)min-1 respectively, P less than 0.05). In contrast to 99mTc-HSA, mesenteric localization of 99mTc-RBC was not changed by endotoxin in control or EFAD rats. Supplementation with ethyl-arachidonic acid did not enhance susceptibility of EFAD rats to endotoxin-induced splanchnic permeability to 99mTc-HSA. Leukotrienes have been implicated as mediators of increased vascular permeability in endotoxin shock. Since LTC3 formation has been reported to be increased in EFA deficiency, we hypothesized that LTC3 may be less potent than LTC4. Thus the effect of LTC3 on mean arterial pressure and permeability was compared to LTC4 in normal rats. LTC3-induced increases in peak mean arterial pressure were less than LTC4 at 10 micrograms/kg (39 +/- 5 mm Hg vs. 58 +/- 4 mm Hg respectively, P less than 0.05) and at 20 micrograms/kg (56 +/- 4 mm Hg vs. 75 +/- 2 mm Hg respectively, P less than 0.05). LY171883 (30 mg/kg), an LTD4/E4 receptor antagonist, attenuated the pressor effect of LTC4, LTD4, and LTC3.« less

  9. Transgenic overexpression of uncoupling protein 2 attenuates salt-induced vascular dysfunction by inhibition of oxidative stress.

    PubMed

    Ma, Shuangtao; Wang, Qiang; Zhang, Yan; Yang, Dachun; Li, De; Tang, Bing; Yang, Yongjian

    2014-03-01

    Ablation of uncoupling protein 2 (UCP2) has been involved in the enhancement of salt sensitivity associated with increased superoxide level and decreased nitric oxide (NO) bioavailability. However, the role of overexpression of UCP2 in salt-induced vascular dysfunction remains elusive. UCP2 transgenic (TG) and wild-type (WT) mice were placed on either a normal-salt (NS, 0.5%) or a high-salt (HS, 8%) diet for 12 weeks. Blood pressure (BP) and hypotensive responses were measured, and the vascular tone, superoxide level, and NO bioavailability in aortas were measured in each group. The TG mice had increased expression and function of UCP2 in vascular smooth muscle cells. The acetylcholine (ACh)- and nitroglycerin (NTG)-induced hypotensive responses and aortic relaxations were significantly blunted in WT mice fed with an HS diet compared with an NS diet. These harmful effects were prevented in UCP2 TG mice. The impairments of ACh- and NTG-induced relaxation in aorta were inhibited by the endothelial NO synthase (eNOS) inhibitor L-NAME and mitochondrial antioxidant MitoQ, respectively. The HS intake led to a significant increase in superoxide production and a comparable decrease in NO bioavailability in aortas, and these effects were blunted in UCP2 TG mice. The expression of UCP2 was slightly increased in the HS group. However, the expression and phosphorylation of eNOS were not affected by an HS diet and overexpression of UCP2. These findings suggest that overexpression of UCP2 can ameliorate salt-induced vascular dysfunction. This beneficial effect of UCP2 is mediated by decreased superoxide and reserved NO bioavailability.

  10. Pulmonary hypertension and ventilation during exercise: Role of the pre-capillary component.

    PubMed

    Caravita, Sergio; Faini, Andrea; Deboeck, Gael; Bondue, Antoine; Naeije, Robert; Parati, Gianfranco; Vachiéry, Jean-Luc

    2017-07-01

    Excessive exercise-induced hyperventilation and high prevalence of exercise oscillatory breathing (EOB) are present in patients with post-capillary pulmonary hypertension (PH) complicating left heart disease (LHD). Patients with pre-capillary PH have even higher hyperventilation but no EOB. We sought to determine the impact of a pre-capillary component of PH on ventilatory response to exercise in patients with PH and left heart disease. We retrospectively compared patients with idiopathic or heritable pulmonary arterial hypertension (PAH, n = 29), isolated post-capillary PH (IpcPH, n = 29), and combined post- and pre-capillary PH (CpcPH, n = 12). Diastolic pressure gradient (DPG = diastolic pulmonary artery pressure - pulmonary wedge pressure) was used to distinguish IpcPH (DPG <7 mm Hg) from CpcPH (DPG ≥7 mm Hg). Pulmonary vascular resistance (PVR) was higher in PAH, intermediate in CpcPH, and low in IpcPH. All patients with CpcPH but 1 had PVR >3 Wood unit. Exercise-induced hyperventilation (high minute ventilation over carbon dioxide production, low end-tidal carbon dioxide) was marked in PAH, intermediate in CpcPH, and low in IpcPH (p < 0.001) and correlated with DPG and PVR. Prevalence of EOB decreased from IpcPH to CpcPH to PAH (p < 0.001). Patients with CpcPH may have worse hemodynamics than patients with IpcPH and distinct alterations of ventilatory control, consistent with more exercise-induced hyperventilation and less EOB. This might be explained at least in part by the presence and extent of pulmonary vascular disease. Copyright © 2017 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  11. Tributyltin contributes in reducing the vascular reactivity to phenylephrine in isolated aortic rings from female rats.

    PubMed

    Rodrigues, Samya Mere L; Ximenes, Carolina F; de Batista, Priscila R; Simões, Fabiana V; Coser, Pedro Henrique P; Sena, Gabriela C; Podratz, Priscila L; de Souza, Leticia N G; Vassallo, Dalton V; Graceli, Jones B; Stefanon, Ivanita

    2014-03-21

    Organotin compounds such as tributyltin (TBT) are used as antifouling paints by shipping companies. TBT inhibits the aromatase responsible for the transformation of testosterone into estrogen. Our hypothesis is that TBT modulates the vascular reactivity of female rats. Female Wistar rats were treated daily (Control; CONT) or TBT (100 ng/kg) for 15 days. Rings from thoracic aortas were incubated with phenylephrine (PHE, 10(-10)-10(-4) M) in the presence and absence of endothelium, and in the presence of N(G)-Nitro-L-Arginine Methyl Ester (L-NAME), tetraethylammonium (TEA) and apocynin. TBT decreased plasma levels of estrogen and the vascular response to PHE. In the TBT group, the vascular reactivity was increased in the absence of endothelium, L-NAME and TEA. The decrease in PHE reactivity during incubation with apocynin was more evident in the TBT group. The sensitivity to acetylcholine (ACh) and sodium nitroprusside (SNP) was reduced in the TBT group. TBT increased collagen, reduced α1-smooth muscle actin. Female rats treated with TBT for 15 days showed morphology alteration of the aorta and decreased their vascular reactivity, probably due to mechanisms dependent on nitric oxide (NO) bioavailability, K(+) channels and an increase in oxidative stress. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Tian; Wang, Chenlong; Chen, Xuewei

    Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50 mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing themore » coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy. - Highlights: • Dopamine induces tumor growth inhibition and vascular normalization in rat C6 glioma. • Dopamine switches macrophage phenotype from M2 to M1. • Dopamine-induced vascular normalization is mediated by macrophage polarization. • Dopamine is a promising agent targeting the microvasculature in

  13. Comparison between conventional and protective one-lung ventilation for ventilator-assisted thoracic surgery.

    PubMed

    Ahn, H J; Kim, J A; Yang, M; Shim, W S; Park, K J; Lee, J J

    2012-09-01

    Recent papers suggest protective ventilation (PV) as a primary ventilation strategy during one-lung ventilation (OLV) to reduce postoperative pulmonary morbidity. However, data regarding the advantage of the PV strategy in patients with normal preoperative pulmonary function are inconsistent, especially in the case of minimally invasive thoracic surgery. Therefore we compared conventional OLV (VT 10 ml/kg, FiO2 1.0, zero PEEP) to protective OLV (VT 6 ml/kg, FiO2 0.5, PEEP 5 cmH2O) in patients with normal preoperative pulmonary function tests undergoing video-assisted thoracic surgery. Oxygenation, respiratory mechanics, plasma interleukin-6 and malondialdehyde levels were measured at baseline, 15 and 60 minutes after OLV and 15 minutes after restoration of two-lung ventilation. PaO2 and PaO2/FiO2 were higher in conventional OLV than in protective OLV (P<0.001). Interleukin-6 and malondialdehyde increased over time in both groups (P<0.05); however, the magnitudes of increase were not different between the groups. Postoperatively there were no differences in the number of patients with PaO2/FiO2<300 mmHg or abnormalities on chest radiography. Protective ventilation did not provide advantages over conventional ventilation for video-assisted thoracic surgery in this group of patients with normal lung function.

  14. Rosuvastatin prevents angiotensin II-induced vascular changes by inhibition of NAD(P)H oxidase and COX-1

    PubMed Central

    Colucci, Rocchina; Fornai, Matteo; Duranti, Emiliano; Antonioli, Luca; Rugani, Ilaria; Aydinoglu, Fatma; Ippolito, Chiara; Segnani, Cristina; Bernardini, Nunzia; Taddei, Stefano; Blandizzi, Corrado; Virdis, Agostino

    2013-01-01

    Background and Purpose NAD(P)H oxidase and COX-1 participate in vascular damage induced by angiotensin II. We investigated the effect of rosuvastatin on endothelial dysfunction, vascular remodelling, changes in extracellular matrix components and mechanical properties of small mesenteric arteries from angiotensin II-infused rats. Experimental Approach Male rats received angiotensin II (120 ng·kg−1·min−1, subcutaneously) for 14 days with or without rosuvastatin (10 mg·kg−1·day−1, oral gavage) or vehicle. Vascular functions and morphological parameters were assessed by pressurized myography. Key Results In angiotensin II-infused rats, ACh-induced relaxation was attenuated compared with controls, less sensitive to L-NAME, enhanced by SC-560 (COX-1 inhibitor) or SQ-29548 (prostanoid TP receptor antagonist), and normalized by the antioxidant ascorbic acid or NAD(P)H oxidase inhibitors. After rosuvastatin, relaxations to ACh were normalized, fully sensitive to L-NAME, and no longer affected by SC-560, SQ-29548 or NAD(P)H oxidase inhibitors. Angiotensin II enhanced intravascular superoxide generation, eutrophic remodelling, collagen and fibronectin depositions, and decreased elastin content, resulting in increased vessel stiffness. All these changes were prevented by rosuvastatin. Angiotensin II increased phosphorylation of NAD(P)H oxidase subunit p47phox and its binding to subunit p67phox, effects inhibited by rosuvastatin. Rosuvastatin down-regulated vascular Nox4/NAD(P)H isoform and COX-1 expression, attenuated the vascular release of 6-keto-PGF1α, and enhanced copper/zinc-superoxide dismutase expression. Conclusion and Implications Rosuvastatin prevents angiotensin II-induced alterations in resistance arteries in terms of function, structure, mechanics and composition. These effects depend on restoration of NO availability, prevention of NAD(P)H oxidase-derived oxidant excess, reversal of COX-1 induction and its prostanoid production, and stimulation of

  15. GSK-3Beta-Dependent Activation of GEF-H1/ROCK Signaling Promotes LPS-Induced Lung Vascular Endothelial Barrier Dysfunction and Acute Lung Injury.

    PubMed

    Yi, Lei; Huang, Xiaoqin; Guo, Feng; Zhou, Zengding; Chang, Mengling; Huan, Jingning

    2017-01-01

    The bacterial endotoxin or lipopolysaccharide (LPS) leads to the extensive vascular endothelial cells (EC) injury under septic conditions. Guanine nucleotide exchange factor-H1 (GEF-H1)/ROCK signaling not only involved in LPS-induced overexpression of pro-inflammatory mediator in ECs but also implicated in LPS-induced endothelial hyper-permeability. However, the mechanisms behind LPS-induced GEF-H1/ROCK signaling activation in the progress of EC injury remain incompletely understood. GEF-H1 localized on microtubules (MT) and is suppressed in its MT-bound state. MT disassembly promotes GEF-H1 release from MT and stimulates downstream ROCK-specific GEF activity. Since glycogen synthase kinase (GSK-3beta) participates in regulating MT dynamics under pathologic conditions, we examined the pivotal roles for GSK-3beta in modulating LPS-induced activation of GEF-H1/ROCK, increase of vascular endothelial permeability and severity of acute lung injury (ALI). In this study, we found that LPS induced human pulmonary endothelial cell (HPMEC) monolayers disruption accompanied by increase in GSK-3beta activity, activation of GEF-H1/ROCK signaling and decrease in beta-catenin and ZO-1 expression. Inhibition of GSK-3beta reduced HPMEC monolayers hyper-permeability and GEF-H1/ROCK activity in response to LPS. GSK-3beta/GEF-H1/ROCK signaling is implicated in regulating the expression of beta-catenin and ZO-1. In vivo , GSK-3beta inhibition attenuated LPS-induced activation of GEF-H1/ROCK pathway, lung edema and subsequent ALI. These findings present a new mechanism of GSK-3beta-dependent exacerbation of lung micro-vascular hyper-permeability and escalation of ALI via activation of GEF-H1/ROCK signaling and disruption of intracellular junctional proteins under septic condition.

  16. Vitamin D Receptor Activation Reduces Angiotensin-II-Induced Dissecting Abdominal Aortic Aneurysm in Apolipoprotein E-Knockout Mice.

    PubMed

    Martorell, Sara; Hueso, Luisa; Gonzalez-Navarro, Herminia; Collado, Aida; Sanz, Maria-Jesus; Piqueras, Laura

    2016-08-01

    Abdominal aortic aneurysm (AAA) is a vascular disorder characterized by chronic inflammation of the aortic wall. Low concentrations of vitamin D3 are associated with AAA development; however, the potential direct effect of vitamin D3 on AAA remains unknown. This study evaluates the effect of oral treatment with the vitamin D3 receptor (VDR) ligand, calcitriol, on dissecting AAA induced by angiotensin-II (Ang-II) infusion in apoE(-/-) mice. Oral treatment with calcitriol reduced Ang-II-induced dissecting AAA formation in apoE(-/-) mice, which was unrelated to systolic blood pressure or plasma cholesterol concentrations. Immunohistochemistry and reverse-transcription polymerase chain reaction analysis demonstrated a significant increase in macrophage infiltration, neovessel formation, matrix metalloproteinase-2 and matrix metalloproteinase-9, chemokine (CCL2 [(C-C motif) ligand 2], CCL5 [(C-C motif) ligand 5], and CXCL1 [(C-X-C motif) ligand 1]) and vascular endothelial growth factor expression in suprarenal aortic walls of apoE(-/-) mice infused with Ang-II, and all were significantly reduced by cotreatment with calcitriol. Phosphorylation of extracellular signal-regulated kinases 1/2, p38 mitogen-activated protein kinase, and nuclear factor-κB was also decreased in the suprarenal aortas of apoE(-/-) mice cotreated with calcitriol. These effects were accompanied by a marked increase in VDR-retinoid X receptor (RXR) interaction in the aortas of calcitriol-treated mice. In vitro, VDR activation by calcitriol in human endothelial cells inhibited Ang-II-induced leukocyte-endothelial cell interactions, morphogenesis, and production of endothelial proinflammatory and angiogenic chemokines through VDR-RXR interactions, and knockdown of VDR or RXR abolished the inhibitory effects of calcitriol. VDR activation reduces dissecting AAA formation induced by Ang-II in apoE(-/-) mice and may constitute a novel therapeutic strategy to prevent AAA progression. © 2016 American

  17. [Ventilator bundle guided by context of JCI settings can effectively reduce the morbidity of ventilator-associated pneumonia].

    PubMed

    Zhao, Lili; Liu, Lili; Chen, Jing; Yang, Caili; Nie, Jianjian; Zhang, Minwei

    2017-07-01

    To observe the impact of improving the compliance of ventilator bundle on morbidity of ventilator-associated pneumonia (VAP) in intensive care unit (ICU) patients undergoing mechanical ventilation (MV) guided by context of Joint Commission International (JCI) settings, and to study the oral care efficacy of suction tube sponge brush. A prospective study was conducted. The patients who needed MV admitted to Department of Critical Care Medicine of the First Affiliated Hospital of Xiamen University from January 2013 to December 2016 were enrolled. In the context of JCI settings, necessary measurements were taken to enhance the compliance of ventilator bundle each year. In 2013, the preventive measures were set up and the education was strengthened. In 2014, the compliance of hand hygiene and bedside elevation was strengthened. In 2015, a control study was conducted to evaluate the effect between the traditional cotton dipped in chlorhexidine and the suction tube sponge brush rinsed with chlorhexidine on oral health impact parameters. The suction tube sponge brush rinsed with chlorhexidine oral care was introduced to improve compliance. In 2016, electronic bundle checklist for daily self-audits was conducted. The annually morbidity of VAP through the software of hospital and ICU was collected and calculated. The annual incidence of VAP was indicated by the VAP cases per 1 000 MV days. Based on the VAP incidence rate in 2013 as 1, the VAP incidence-rate ratio (IRR) of each year was calculated. During the study period, a total of 2 733 patients admitted to the ICU, including 1 403 patients undergoing MV. Ninety-four of the 1 403 patients with community-acquired pneumonia (CAP), aspiration pneumonia, back elevation ban, incomplete information, and withdrew from the study were excluded. 1 399 patients undergoing MV were enrolled in the final analysis, with total MV days of 11 012 days, and 94 patients occurred VAP. The annual incidence of VAP was progressively declined

  18. Prevention of ventilator-associated pneumonia.

    PubMed

    Oliveira, J; Zagalo, C; Cavaco-Silva, P

    2014-01-01

    Invasive mechanical ventilation (IMV) represents a risk factor for the development of ventilator-associated pneumonia (VAP), which develops at least 48h after admission in patients ventilated through tracheostomy or endotracheal intubation. VAP is the most frequent intensive-care-unit (ICU)-acquired infection among patients receiving IMV. It contributes to an increase in hospital mortality, duration of MV and ICU and length of hospital stay. Therefore, it worsens the condition of the critical patient and increases the total cost of hospitalization. The introduction of preventive measures has become imperative, to ensure control and to reduce the incidence of VAP. Preventive measures focus on modifiable risk factors, mediated by non-pharmacological and pharmacological evidence based strategies recommended by guidelines. These measures are intended to reduce the risk associated with endotracheal intubation and to prevent microaspiration of pathogens to the lower airways. Copyright © 2013 Sociedade Portuguesa de Pneumologia. Published by Elsevier España. All rights reserved.

  19. RECOVERY OF VASCULAR FUNCTION AFTER EXPOSURE TO A SINGLE BOUT OF SEGMENTAL VIBRATION

    PubMed Central

    Krajnak, Kristine; Waugh, Stacey; Miller, G. Roger; Johnson, Claud

    2015-01-01

    Work rotation schedules may be used to reduce the negative effects of vibration on vascular function. This study determined how long it takes vascular function to recover after a single exposure to vibration in rats (125 Hz, acceleration 5g). The responsiveness of rat-tail arteries to the vasoconstricting factor UK14304, an α2C-adrenoreceptor agonist, and the vasodilating factor acetylcholine (ACh) were measured ex vivo 1, 2, 7, or 9 d after exposure to a single bout of vibration. Vasoconstriction induced by UK14304 returned to control levels after 1 d of recovery. However, re-dilation induced by ACh did not return to baseline until after 9 d of recovery. Exposure to vibration exerted prolonged effects on peripheral vascular function, and altered vascular responses to a subsequent exposure. To optimize the positive results of work rotation schedules, it is suggested that studies assessing recovery of vascular function after exposure to a single bout of vibration be performed in humans. PMID:25072825

  20. 24 CFR 3285.505 - Crawlspace ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... of ventilation openings must not be less than one square foot (ft.2) for every 150 square feet (ft.2) of the home's floor area. The total area of ventilation openings may be reduced to one square foot (ft.2) for every 1,500 square feet (ft.2) of the home's floor area, where a uniform 6-mil polyethylene...

  1. 24 CFR 3285.505 - Crawlspace ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... of ventilation openings must not be less than one square foot (ft.2) for every 150 square feet (ft.2) of the home's floor area. The total area of ventilation openings may be reduced to one square foot (ft.2) for every 1,500 square feet (ft.2) of the home's floor area, where a uniform 6-mil polyethylene...

  2. 24 CFR 3285.505 - Crawlspace ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... of ventilation openings must not be less than one square foot (ft.2) for every 150 square feet (ft.2) of the home's floor area. The total area of ventilation openings may be reduced to one square foot (ft.2) for every 1,500 square feet (ft.2) of the home's floor area, where a uniform 6-mil polyethylene...

  3. 24 CFR 3285.505 - Crawlspace ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of ventilation openings must not be less than one square foot (ft.2) for every 150 square feet (ft.2) of the home's floor area. The total area of ventilation openings may be reduced to one square foot (ft.2) for every 1,500 square feet (ft.2) of the home's floor area, where a uniform 6-mil polyethylene...

  4. Mask leak increases and minute ventilation decreases when chest compressions are added to bag ventilation in a neonatal manikin model.

    PubMed

    Tracy, Mark B; Shah, Dharmesh; Hinder, Murray; Klimek, Jan; Marceau, James; Wright, Audrey

    2014-05-01

    To determine changes in respiratory mechanics when chest compressions are added to mask ventilation, as recommended by the International Liaison Committee on Resuscitation (ILCOR) guidelines for newborn infants. Using a Laerdal Advanced Life Support leak-free baby manikin and a 240-mL self-inflating bag, 58 neonatal staff members were randomly paired to provide mask ventilation, followed by mask ventilation with chest compressions with a 1:3 ratio, for two minutes each. A Florian respiratory function monitor was used to measure respiratory mechanics, including mask leak. The addition of chest compressions to mask ventilation led to a significant reduction in inflation rate, from 63.9 to 32.9 breaths per minute (p < 0.0001), mean airway pressure reduced from 7.6 to 4.9 cm H2 O (p < 0.001), minute ventilation reduced from 770 to 451 mL/kg/min (p < 0.0001), and there was a significant increase in paired mask leak of 6.8% (p < 0.0001). Adding chest compressions to mask ventilation, in accordance with the ILCOR guidelines, in a manikin model is associated with a significant reduction in delivered ventilation and increase in mask leak. If similar findings occur in human infants needing an escalation in resuscitation, there is a potential risk of either delay in recovery or inadequate response to resuscitation. ©2014 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  5. Suppressive activities and mechanisms of ugonin J on vascular smooth muscle cells and balloon angioplasty-induced neointimal hyperplasia.

    PubMed

    Pan, Chun-Hsu; Li, Pei-Chuan; Chien, Yi-Chung; Yeh, Wan-Ting; Liaw, Chih-Chuang; Sheu, Ming-Jyh; Wu, Chieh-Hsi

    2018-02-01

    Neointimal hyperplasia (or restenosis) is primarily attributed to excessive proliferation and migration of vascular smooth muscle cells (VSMCs). In this study, we investigated the inhibitory effects and mechanisms of ugonin J on VSMC proliferation and migration as well as neointimal formation. Cell viability and the cell-cycle distribution were, respectively, analyzed using an MTT assay and flow cytometry. Cell migration was examined using a wound-healing analysis and a transwell assay. Protein expressions and gelatinase activities were, respectively, measured using Western blot and gelatin zymography. Balloon angioplasty-induced neointimal formation was induced in a rat carotid artery model and then examined using immunohistochemical staining. Ugonin J induced cell-cycle arrest at the G 0 /G 1 phase and apoptosis to inhibit VSMC growth. Ugonin J also exhibited marked suppressive activity on VSMC migration. Ugonin J significantly reduced activations of focal adhesion kinase, phosphoinositide 3-kinase, v-akt murine thymoma viral oncogene homolog 1, and extracellular signal-regulated kinase 1/2 proteins. Moreover, ugonin J obviously reduced expressions and activity levels of matrix metalloproteinase-2 and matrix metalloproteinase-9. In vivo data indicated that ugonin J prevented balloon angioplasty-induced neointimal hyperplasia. Our study suggested that ugonin J has the potential for application in the prevention of balloon injury-induced neointimal formation. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Single passive leg movement-induced hyperemia: a simple vascular function assessment without a chronotropic response.

    PubMed

    Venturelli, Massimo; Layec, Gwenael; Trinity, Joel; Hart, Corey R; Broxterman, Ryan M; Richardson, Russell S

    2017-01-01

    Passive leg movement (PLM)-induced hyperemia is a novel approach to assess vascular function, with a potential clinical role. However, in some instances, the varying chronotropic response induced by PLM has been proposed to be a potentially confounding factor. Therefore, we simplified and modified the PLM model to require just a single PLM (sPLM), an approach that may evoke a peripheral hemodynamic response, allowing a vascular function assessment, but at the same time minimizing central responses. To both characterize and assess the utility of sPLM, in 12 healthy subjects, we measured heart rate (HR), stroke volume, cardiac output (CO), mean arterial pressure (MAP), leg blood flow (LBF), and calculated leg vascular conductance (LVC) during both standard PLM, consisting of passive knee flexion and extension performed at 1 Hz for 60 s, and sPLM, consisting of only a single passive knee flexion and extension over 1 s. During PLM, MAP transiently decreased (5 ± 1 mmHg), whereas both HR and CO increased from baseline (6.0 ± 1.1 beats/min, and 0.8 ± 0.01 l/min, respectively). Following sPLM, MAP fell similarly (5 ± 2 mmHg; P = 0.8), but neither HR nor CO responses were identifiable. The peak LBF and LVC response was similar for PLM (993 ± 189 ml/min; 11.9 ± 1.5 ml·min -1 ·mmHg -1 , respectively) and sPLM (878 ± 119 ml/min; 10.9 ± 1.6 ml·min -1 ·mmHg -1 , respectively). Thus sPLM represents a variant of the PLM approach to assess vascular function that is more easily performed and evokes a peripheral stimulus that induces a significant hyperemia, but does not generate a potentially confounding, chronotropic response, which may make sPLM more useful clinically. Using the single passive leg movement (PLM) technique, a variant of the vascular function assessment PLM, we have identified a novel peripheral vascular assessment method that is more easily performed than PLM, which, by not evoking potentially confounding central hemodynamic responses, may be more

  7. Transient-state mechanisms of wind-induced burrow ventilation.

    PubMed

    Turner, J Scott; Pinshow, Berry

    2015-01-15

    Burrows are common animal habitations, yet living in a burrow presents physiological challenges for its inhabitants because the burrow isolates them from sources and sinks for oxygen, carbon dioxide, water vapor and ammonia. Conventionally, the isolation is thought to be overcome by either diffusion gas exchange within the burrow or some means of capturing wind energy to power steady or quasi-steady bulk flows of air through it. Both are examples of what may be called 'DC' models, namely steady to quasi-steady flows powered by steady to quasi-steady winds. Natural winds, however, are neither steady nor quasi-steady, but are turbulent, with a considerable portion of the energy contained in so-called 'AC' (i.e. unsteady) components, where wind velocity varies chaotically and energy to power gas exchange is stored in some form. Existing DC models of burrow gas exchange do not account for this potentially significant source of energy for ventilation. We present evidence that at least two AC mechanisms operate to ventilate both single-opening burrows (of the Cape skink, Trachylepis capensis) and double-opening model burrows (of Sundevall's jird, Meriones crassus). We propose that consideration of the physiological ecology and evolution of the burrowing habit has been blinkered by the long neglect of AC ventilation. © 2015. Published by The Company of Biologists Ltd.

  8. Sinusoidal constriction and vascular hypertrophy in the diabetes-induced rabbit penis.

    PubMed

    Pereira, Vivian Alves; Abidu-Figueiredo, Marcelo; Pereira-Sampaio, Marco Aurelio; Chagas, Mauricio Alves; Costa, Waldemar Silva; Sampaio, Francisco J B

    2013-01-01

    To assess the morphological changes of penile vascular structures and the corpus cavernosum area in alloxan-induced diabetic rabbits. Twenty male rabbits (2 months old) were divided into two groups with 10 rabbits each, the control group (CG) and the diabetic group (DG). The animals from DG received an intravenous injection of alloxan (100mg/kg) to induce the diabetes. Ten weeks after the induction of diabetes, all animals were euthanized. Two fragments of the penile shaft were harvested and samples were processed and paraffin embedded. Sections (5 µm) were cut and stained for histological and immunohistochemical markers. Nuclear protrusion toward the lumen, and cytoplasmic vacuolization were observed in the tunica intima of the dorsal artery of the penis in DG. The thicknesses of the tunica media increased significantly in DG (p = 0.0350). It was also observed a significant increase in the area of the tunica media (p = 0.0179). There was no significant change in smooth muscle cell density in the tunica media of the dorsal artery of the penis (p = 0.0855). The collagen fiber pattern of the tunica adventitia of the dorsal artery of the penis was different between the control and diabetic groups. There was a significant decrease in the area occupied by the cavernous sinuses in DG (p = 0.0013). Alloxan-induced diabetes mellitus in rabbits promotes important changes in penile vascular structures, thereby decreasing blood supply and affecting penile hemodynamics, leading to erectile dysfunction.

  9. Effect of histidine on sorafenib-induced vascular damage: Analysis using novel medaka fish model.

    PubMed

    Shinagawa-Kobayashi, Yoko; Kamimura, Kenya; Goto, Ryo; Ogawa, Kohei; Inoue, Ryosuke; Yokoo, Takeshi; Sakai, Norihiro; Nagoya, Takuro; Sakamaki, Akira; Abe, Satoshi; Sugitani, Soichi; Yanagi, Masahiko; Fujisawa, Koichi; Nozawa, Yoshizu; Koyama, Naoto; Nishina, Hiroshi; Furutani-Seiki, Makoto; Sakaida, Isao; Terai, Shuji

    2018-02-05

    Sorafenib (SFN) is an anti-angiogenic chemotherapeutic that prolongs survival of patients with hepatocellular carcinoma (HCC); its side effects, including vascular damages such as hand-foot syndrome (HFS), are a major cause of therapy discontinuation. We previously reported that maintenance of peripheral blood flow by intake of dried bonito broth (DBB) significantly prevented HFS and prolonged the administration period. The amino acids contained in DBB probably contribute to its effects, but the mechanism has not been clarified. We hypothesized that histidine, the largest component among the amino acids contained in DBB, has effects on SFN-induced vascular damage, and evaluated this possibility using a novel medaka fish model. The fli::GFP transgenic medaka fish model has a fluorescently visible systemic vasculature. We fed the fish with SFN with and without histidine to compare blood flow and vascular structure among the differently fed models. The vascular cross-sectional area of each fish was measured to determine vascular diameter changes. Our results demonstrated that SFN-fed medaka developed a narrower vascular diameter. In addition, this narrowing was counteracted by addition of histidine to the medaka diet. We observed no positive effect of histidine on regeneration of cut vessels or on cell growth of endothelial cells and HCC cell lines. We proved the efficacy of the medaka model to assess vascular changes after administration of specific chemicals. And our results suggest that SFN causes vascular damage by narrowing peripheral vessel diameter, and that histidine effectively counteracts these changes to maintain blood flow. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Dependence of endotoxin-induced vascular hyporeactivity on extracellular L-arginine.

    PubMed

    Schott, C A; Gray, G A; Stoclet, J C

    1993-01-01

    1. The dependence on extracellular L-arginine of vascular hyporeactivity induced by bacterial lipopolysaccharide (LPS) was studied in vivo in rats infused with LPS and in vitro in endothelium-denuded rat thoracic aortic rings exposed to LPS. 2. Infusion of LPS during 50 min at a dose of 10 mg kg-1 h-1 produced a significant impairment of the pressor effect of noradrenaline, while in tissues collected 60 min after the start of LPS infusion, no significant alteration in either plasma arginine concentration or aortic arginine content was found compared to saline-infused controls (where plasma arginine was 78.5 +/- 7 microM and aortic arginine 394 +/- 124 nmol g-1 tissue). 3. Incubation of isolated, endothelium-denuded aortic rings with LPS (10 micrograms ml-1) in the absence of L-arginine for 4 h at 37 degrees C produced a 6 fold (P < 0.01) rightward shift in the noradrenaline concentration-effect curve compared to polymyxin B (1 micrograms ml-1, a LPS neutralizing agent) and reduced by 15% the maximum observed tension. 4. The presence of L-arginine (100 microM) during the incubation with LPS and throughout the following contraction experiments caused a 15 fold (P < 0.01) increase in the EC50 of noradrenaline and greater depression (45%) of the maximum observed tension compared to polymyxin B-treated controls. Responses in control, non LPS-treated rings were unaffected by the presence of L-arginine. 5. The addition of L-arginine to rings incubated with LPS in the absence of L-arginine and maximally precontracted with noradrenaline (10 microM) induced a dose-dependent relaxation. The EC50 of L-arginine was 8.0+/-0.3mu.6. The reactivity of LPS-treated rings to noradrenaline both in the absence and presence of L-arginine was restored to control levels by N0-nitro-L-arginine methyl ester (L-NAME, 300 mu), an inhibitor of NO production and by methylene blue (3 JAM), an inhibitor of guanylate cyclase.7. Incubation of isolated aortae in the absence of L-arginine did not

  11. Modulation of 11β-hydroxysteroid dehydrogenase as a strategy to reduce vascular inflammation.

    PubMed

    Hadoke, Patrick W F; Kipari, Tiina; Seckl, Jonathan R; Chapman, Karen E

    2013-05-01

    Atherosclerosis is a chronic inflammatory disease in which initial vascular damage leads to extensive macrophage and lymphocyte infiltration. Although acutely glucocorticoids suppress inflammation, chronic glucocorticoid excess worsens atherosclerosis, possibly by exacerbating systemic cardiovascular risk factors. However, glucocorticoid action within the lesion may reduce neointimal proliferation and inflammation. Glucocorticoid levels within cells do not necessarily reflect circulating levels due to pre-receptor metabolism by 11β-hydroxysteroid dehydrogenases (11β-HSDs). 11β-HSD2 converts active glucocorticoids into inert 11-keto forms. 11β-HSD1 catalyses the reverse reaction, regenerating active glucocorticoids. 11β-HSD2-deficiency/inhibition causes hypertension, whereas deficiency/inhibition of 11β-HSD1 generates a cardioprotective lipid profile and improves glycemic control. Importantly, 11β-HSD1-deficiency/inhibition is atheroprotective, whereas 11β-HSD2-deficiency accelerates atherosclerosis. These effects are largely independent of systemic risk factors, reflecting modulation of glucocorticoid action and inflammation within the vasculature. Here, we consider whether evidence linking the 11β-HSDs to vascular inflammation suggests these isozymes are potential therapeutic targets in vascular injury and atherosclerosis.

  12. Intraoperative mechanical ventilation strategies in patients undergoing one-lung ventilation: a meta-analysis.

    PubMed

    Liu, Zhen; Liu, Xiaowen; Huang, Yuguang; Zhao, Jing

    2016-01-01

    Postoperative pulmonary complications (PPCs), which are not uncommon in one-lung ventilation, are among the main causes of postoperative death after lung surgery. Intra-operative ventilation strategies can influence the incidence of PPCs. High tidal volume (V T) and increased airway pressure may lead to lung injury, while pressure-controlled ventilation and lung-protective strategies with low V T may have protective effects against lung injury. In this meta-analysis, we aim to investigate the effects of different ventilation strategies, including pressure-controlled ventilation (PCV), volume-controlled ventilation (VCV), protective ventilation (PV) and conventional ventilation (CV), on PPCs in patients undergoing one-lung ventilation. We hypothesize that both PV with low V T and PCV have protective effects against PPCs in one-lung ventilation. A systematic search (PubMed, EMBASE, the Cochrane Library, and Ovid MEDLINE; in May 2015) was performed for randomized trials comparing PCV with VCV or comparing PV with CV in one-lung ventilation. Methodological quality was evaluated using the Cochrane tool for risk. The primary outcome was the incidence of PPCs. The secondary outcomes included the length of hospital stay, intraoperative plateau airway pressure (Pplateau), oxygen index (PaO2/FiO2) and mean arterial pressure (MAP). In this meta-analysis, 11 studies (436 patients) comparing PCV with VCV and 11 studies (657 patients) comparing PV with CV were included. Compared to CV, PV decreased the incidence of PPCs (OR 0.29; 95 % CI 0.15-0.57; P < 0.01) and intraoperative Pplateau (MD -3.75; 95 % CI -5.74 to -1.76; P < 0.01) but had no significant influence on the length of hospital stay or MAP. Compared to VCV, PCV decreased intraoperative Pplateau (MD -1.46; 95 % CI -2.54 to -0.34; P = 0.01) but had no significant influence on PPCs, PaO2/FiO2 or MAP. PV with low V T was associated with the reduced incidence of PPCs compared to CV. However, PCV and VCV had similar

  13. Bioreactor-induced mesenchymal progenitor cell differentiation and elastic fiber assembly in engineered vascular tissues.

    PubMed

    Lin, Shigang; Mequanint, Kibret

    2017-09-01

    In vitro maturation of engineered vascular tissues (EVT) requires the appropriate incorporation of smooth muscle cells (SMC) and extracellular matrix (ECM) components similar to native arteries. To this end, the aim of the current study was to fabricate 4mm inner diameter vascular tissues using mesenchymal progenitor cells seeded into tubular scaffolds. A dual-pump bioreactor operating either in perfusion or pulsatile perfusion mode was used to generate physiological-like stimuli to promote progenitor cell differentiation, extracellular elastin production, and tissue maturation. Our data demonstrated that pulsatile forces and perfusion of 3D tubular constructs from both the lumenal and ablumenal sides with culture media significantly improved tissue assembly, effectively inducing mesenchymal progenitor cell differentiation to SMCs with contemporaneous elastin production. With bioreactor cultivation, progenitor cells differentiated toward smooth muscle lineage characterized by the expression of smooth muscle (SM)-specific markers smooth muscle alpha actin (SM-α-actin) and smooth muscle myosin heavy chain (SM-MHC). More importantly, pulsatile perfusion bioreactor cultivation enhanced the synthesis of tropoelastin and its extracellular cross-linking into elastic fiber compared with static culture controls. Taken together, the current study demonstrated progenitor cell differentiation and vascular tissue assembly, and provides insights into elastin synthesis and assembly to fibers. Incorporation of elastin into engineered vascular tissues represents a critical design goal for both mechanical and biological functions. In the present study, we seeded porous tubular scaffolds with multipotent mesenchymal progenitor cells and cultured in dual-pump pulsatile perfusion bioreactor. Physiological-like stimuli generated by bioreactor not only induced mesenchymal progenitor cell differentiation to vascular smooth muscle lineage but also actively promoted elastin synthesis and

  14. Effects of exercise training on stress-induced vascular reactivity alterations: role of nitric oxide and prostanoids

    PubMed Central

    Bruder-Nascimento, Thiago; Silva, Samuel T.; Boer, Patrícia A.; Cordellini, Sandra

    2015-01-01

    Background: Physical exercise may modify biologic stress responses. Objective: To investigate the impact of exercise training on vascular alterations induced by acute stress, focusing on nitric oxide and cyclooxygenase pathways. Method: Wistar rats were separated into: sedentary, trained (60-min swimming, 5 days/week during 8 weeks, carrying a 5% body-weight load), stressed (2 h-immobilization), and trained/stressed. Response curves for noradrenaline, in the absence and presence of L-NAME or indomethacin, were obtained in intact and denuded aortas (n=7-10). Results: None of the procedures altered the denuded aorta reactivity. Intact aortas from stressed, trained, and trained/stressed rats showed similar reduction in noradrenaline maximal responses (sedentary 3.54±0.15, stressed 2.80±0.10*, trained 2.82±0.11*, trained/stressed 2.97± 0.21*, *P<0.05 relate to sedentary). Endothelium removal and L-NAME abolished this hyporeactivity in all experimental groups, except in trained/stressed rats that showed a partial aorta reactivity recovery in L-NAME presence (L-NAME: sedentary 5.23±0,26#, stressed 5.55±0.38#, trained 5.28±0.30#, trained/stressed 4.42±0.41, #P<0.05 related to trained/stressed). Indomethacin determined a decrease in sensitivity (EC50) in intact aortas of trained rats without abolishing the aortal hyporeactivity in trained, stressed, and trained/stressed rats. Conclusions: Exercise-induced vascular adaptive response involved an increase in endothelial vasodilator prostaglandins and nitric oxide. Stress-induced vascular adaptive response involved an increase in endothelial nitric oxide. Beside the involvement of the endothelial nitric oxide pathway, the vascular response of trained/stressed rats involved an additional mechanism yet to be elucidated. These findings advance on the understanding of the vascular processes after exercise and stress alone and in combination. PMID:26083604

  15. Adverse Outcome Pathways for Embryonic Vascular Disruption and Alternative Methods to Identify Chemical Vascular Disruptor

    EPA Science Inventory

    Chemically induced vascular toxicity during embryonic development can result in a wide range of adverse prenatal outcomes. We used information from genetic mouse models linked to phenotypic outcomes and a vascular toxicity knowledge base to construct an embryonic vascular disrupt...

  16. [Vascular effect of extract from mulberry leaves and underlying mechanism].

    PubMed

    Xia, Man-Li; Gao, Qin; Zhou, Xin-Mei; Qian, Ling-Bo; Shen, Zhong-Hua; Jiang, Hui-di; Xia, Qiang

    2007-01-01

    To investigate the vascular activity of extract from mulberry leaves (EML) on rat thoracic aorta and the underlying mechanism. Isolated thoracic rings of Sprague-Dawley rats were mounted on the organ bath and the tension of the vessel was recorded. (1) EML produced a concentration-dependent vasorelaxation of aorta preconstricted by high K(+) (60 mmol/L) or 10(-6) mol/L phenylephrine (PE) in endothelium-intact and endothelium-denuded arteries. (2) EML at EC(50) concentration reduced the calcium dose-response curve. (3) After incubation of aorta with verapamil, EML induced vasocontraction of aorta preconstricted by PE, which was abolished by ruthenium red. The vascular effect of EML is biphasic, the vasorelaxation is greater than the vasocontraction. The vasorelaxation induced by EML may be mediated by inhibition of voltage-and receptor-dependent calcium channels in vascular smooth muscle cells, while the vasocontraction is via activation of ryanodine receptor in endoplasmic reticulum.

  17. Effects of reduced oxygen availability on the vascular response and oxygen consumption of the activated human visual cortex.

    PubMed

    Rodrigues Barreto, Felipe; Mangia, Silvia; Garrido Salmon, Carlos Ernesto

    2017-07-01

    To identify the impact of reduced oxygen availability on the evoked vascular response upon visual stimulation in the healthy human brain by magnetic resonance imaging (MRI). Functional MRI techniques based on arterial spin labeling (ASL), blood oxygenation level-dependent (BOLD), and vascular space occupancy (VASO)-dependent contrasts were utilized to quantify the BOLD signal, cerebral blood flow (CBF), and volume (CBV) from nine subjects at 3T (7M/2F, 27.3 ± 3.6 years old) during normoxia and mild hypoxia. Changes in visual stimulus-induced oxygen consumption rates were also estimated with mathematical modeling. Significant reductions in the extension of activated areas during mild hypoxia were observed in all three imaging contrasts: by 42.7 ± 25.2% for BOLD (n = 9, P = 0.002), 33.1 ± 24.0% for ASL (n = 9, P = 0.01), and 31.9 ± 15.6% for VASO images (n = 7, P = 0.02). Activated areas during mild hypoxia showed responses with similar amplitude for CBF (58.4 ± 18.7% hypoxia vs. 61.7 ± 16.1% normoxia, P = 0.61) and CBV (33.5 ± 17.5% vs. 25.2 ± 13.0%, P = 0.27), but not for BOLD (2.5 ± 0.8% vs. 4.1 ± 0.6%, P = 0.009). The estimated stimulus-induced increases of oxygen consumption were smaller during mild hypoxia as compared to normoxia (3.1 ± 5.0% vs. 15.5 ± 15.1%, P = 0.04). Our results demonstrate an altered vascular and metabolic response during mild hypoxia upon visual stimulation. 2 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:142-149. © 2016 International Society for Magnetic Resonance in Medicine.

  18. Bench performance of ventilators during simulated paediatric ventilation.

    PubMed

    Park, M A J; Freebairn, R C; Gomersall, C D

    2013-05-01

    This study compares the accuracy and capabilities of various ventilators using a paediatric acute respiratory distress syndrome lung model. Various compliance settings and respiratory rate settings were used. The study was done in three parts: tidal volume and FiO2 accuracy; pressure control accuracy and positive end-expiratory pressure (PEEP) accuracy. The parameters set on the ventilator were compared with either or both of the measured parameters by the test lung and the ventilator. The results revealed that none of the ventilators could consistently deliver tidal volumes within 1 ml/kg of the set tidal volume, and the discrepancy between the delivered volume and the volume measured by the ventilator varied greatly. The target tidal volume was 8 ml/kg, but delivered tidal volumes ranged from 3.6-11.4 ml/kg and the volumes measured by the ventilator ranged from 4.1-20.6 ml/kg. All the ventilators maintained pressure within 20% of the set pressure, except one ventilator which delivered pressures of up to 27% higher than the set pressure. Two ventilators maintained PEEP within 10% of the prescribed PEEP. The majority of the readings were also within 10%. However, three ventilators delivered, at times, PEEPs over 20% higher. In conclusion, as lung compliance decreases, especially in paediatric patients, some ventilators perform better than others. This study highlights situations where ventilators may not be able to deliver, nor adequately measure, set tidal volumes, pressure, PEEP or FiO2.

  19. A Simple “Blood-Saving Bundle” Reduces Diagnostic Blood Loss and the Transfusion Rate in Mechanically Ventilated Patients

    PubMed Central

    Riessen, Reimer; Behmenburg, Melanie; Blumenstock, Gunnar; Guenon, Doris; Enkel, Sigrid; Schäfer, Richard; Haap, Michael

    2015-01-01

    Introduction Aim of this study was to reduce blood loss caused by diagnostic blood sampling and to minimize the development of anemia in a high-risk group of mechanically ventilated medical intensive care patients. We therefore implemented a “blood-saving bundle” (BSB) combining a closed-loop arterial blood sampling system, smaller sampling tubes, reduced frequency of blood drawings, and reduced sample numbers. Methods The study included all patients from our medical ICU who were ventilated for more than 72 hours. Exclusion criteria were: acute or chronic anemia on admission, bleeding episode(s) during the ICU stay, or end-of-life therapy. The BSB was introduced in 2009 with training and educational support. Patients treated in 2008, before the introduction of the BSB, served as a control group (n = 41, 617 observation days), and were compared with patients treated in 2010 after the introduction of the BSB (BSB group, n = 50, 559 observation days). Primary endpoints were blood loss per day, and development of anemia. Secondary endpoints were numbers of blood transfusions, number of days on mechanical ventilation, and length of the ICU stay. Results Mean blood loss per ICU day was decreased from 43.3 ml (95% CI: 41.2 to 45.3 ml) in the controls to 15.0 ml (14.3 to 15.7 ml) in the BSB group (P < 0.001). The introduction of a closed-loop arterial blood sampling system was the major contributor to this effect. Mean hemoglobin concentrations showed no significant differences in both groups during the ICU stay. Hemoglobin values <9 g/dl, however, were recorded in 21.2% of observation days in the controls versus 15.4% in the BSB group (P = 0.01). Units of transfused red blood cells per 100 observation days decreased from 7 to 2.3 (P < 0.001). The mean number of ventilation days was 7.1 days (6.1 to 8.3 days) in the controls and 7.5 days (6.6 to 8.5 days) in the BSB group (P = NS). In total, patients in the BSB group stayed in ICU for a mean of 9.9 days (8.6 to 11

  20. Intraoperative protective mechanical ventilation for prevention of postoperative pulmonary complications: a comprehensive review of the role of tidal volume, positive end-expiratory pressure, and lung recruitment maneuvers.

    PubMed

    Güldner, Andreas; Kiss, Thomas; Serpa Neto, Ary; Hemmes, Sabrine N T; Canet, Jaume; Spieth, Peter M; Rocco, Patricia R M; Schultz, Marcus J; Pelosi, Paolo; Gama de Abreu, Marcelo

    2015-09-01

    Postoperative pulmonary complications are associated with increased morbidity, length of hospital stay, and mortality after major surgery. Intraoperative lung-protective mechanical ventilation has the potential to reduce the incidence of postoperative pulmonary complications. This review discusses the relevant literature on definition and methods to predict the occurrence of postoperative pulmonary complication, the pathophysiology of ventilator-induced lung injury with emphasis on the noninjured lung, and protective ventilation strategies, including the respective roles of tidal volumes, positive end-expiratory pressure, and recruitment maneuvers. The authors propose an algorithm for protective intraoperative mechanical ventilation based on evidence from recent randomized controlled trials.

  1. [Anesthesia ventilators].

    PubMed

    Otteni, J C; Beydon, L; Cazalaà, J B; Feiss, P; Nivoche, Y

    1997-01-01

    To review anaesthesia ventilators in current use in France by categories of ventilators. References were obtained from computerized bibliographic search. (Medline), recent review articles, the library of the service and personal files. Anaesthesia ventilators can be allocated into three groups, depending on whether they readminister expired gases or not or allow both modalities. Contemporary ventilators provide either constant volume ventilation, or constant pressure ventilation, with or without a pressure plateau. Ventilators readministering expired gases after CO2 absorption, or closed circuit ventilators, are either of a double- or a single-circuit design. Double-circuit ventilators, or pneumatical bag or bellows squeezers, or bag-in-bottle or bellows-in-bottle (or box) ventilators, consist of a primary, or driving circuit (bottle or box) and a secondary or patient circuit (including a bag or a bellows or membrane chambers). Bellows-in-bottle ventilators have either standing bellows ascending at expiration, or hanging bellows, descending at expiration. Ascending bellows require a positive pressure of about 2 cmH2O throughout exhalation to allow the bellows to refill. The expired gas volume is a valuable indicator for leak and disconnection. Descending bellows generate a slight negative pressure during exhalation. In case of leak or disconnection they aspirate ambient air and cannot act therefore as an indicator for integrity of the circuit and the patient connection. Closed circuit ventilators with a single-circuit (patient circuit) include a insufflating device consisting either in a bellows or a cylinder with a piston, operated by a electric or pneumatic motor. As the hanging bellows of the double circuit ventilators, they generate a slight negative pressure during exhalation and aspirate ambient air in case of leak or disconnection. Ventilators not designed for the readministration of expired gases, or open circuit ventilators, are generally stand

  2. Isthmin is a novel vascular permeability inducer that functions through cell-surface GRP78-mediated Src activation.

    PubMed

    Venugopal, Shruthi; Chen, Mo; Liao, Wupeng; Er, Shi Yin; Wong, Wai-Shiu Fred; Ge, Ruowen

    2015-07-01

    Isthmin (ISM) is a recently identified 60 kDa secreted angiogenesis inhibitor. Two cell-surface receptors for ISM have been defined, the high-affinity glucose-regulated protein 78 kDa (GRP78) and the low-affinity αvβ5 integrin. As αvβ5 integrin plays an important role in pulmonary vascular permeability (VP) and ISM is highly expressed in mouse lung, we sought to clarify the role of ISM in VP. Recombinant ISM (rISM) dose-dependently enhances endothelial monolayer permeability in vitro and local dermal VP when administered intradermally in mice. Systemic rISM administration through intravenous injection leads to profound lung vascular hyperpermeability but not in other organs. Mechanistic investigations using molecular, biochemical approaches and specific chemical inhibitors revealed that ISM-GRP78 interaction triggers a direct interaction between GRP78 and Src, leading to Src activation and subsequent phosphorylation of adherens junction proteins and loss of junctional proteins from inter-endothelial junctions, resulting in enhanced VP. Dynamic studies of Src activation, VP and apoptosis revealed that ISM induces VP directly via Src activation while apoptosis contributes indirectly only after prolonged treatment. Furthermore, ISM is significantly up-regulated in lipopolysaccharide (LPS)-treated mouse lung. Blocking cell-surface GRP78 by systemic infusion of anti-GRP78 antibody significantly attenuates pulmonary vascular hyperpermeability in LPS-induced acute lung injury (ALI) in mice. ISM is a novel VP inducer that functions through cell-surface GRP78-mediated Src activation as well as induction of apoptosis. It induces a direct GRP78-Src interaction, leading to cytoplasmic Src activation. ISM contributes to pulmonary vascular hyperpermeability of LPS-induced ALI in mice. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  3. Thermoregulation and ventilation of termite mounds.

    PubMed

    Korb, Judith

    2003-05-01

    Some of the most sophisticated of all animal-built structures are the mounds of African termites of the subfamily Macrotermitinae, the fungus-growing termites. They have long been studied as fascinating textbook examples of thermoregulation or ventilation of animal buildings. However, little research has been designed to provide critical tests of these paradigms, derived from a very small number of original papers. Here I review results from recent studies on Macrotermes bellicosus that considered the interdependence of ambient temperature, thermoregulation, ventilation and mound architecture, and that question some of the fundamental paradigms of termite mounds. M. bellicosus achieves thermal homeostasis within the mound, but ambient temperature has an influence too. In colonies in comparably cool habitats, mound architecture is adapted to reduce the loss of metabolically produced heat to the environment. While this has no negative consequences in small colonies, it produces a trade-off with gas exchange in large colonies, resulting in suboptimally low nest temperatures and increased CO(2) concentrations. Along with the alteration in mound architecture, the gas exchange/ventilation mechanism also changes. While mounds in the thermally appropriate savannah have a very efficient circular ventilation during the day, the ventilation in the cooler forest is a less efficient upward movement of air, with gas exchange restricted by reduced surface exchange area. These results, together with other recent findings, question entrenched ideas such as the thermosiphon-ventilation mechanism or the assumption that mounds function to dissipate internally produced heat. Models trying to explain the proximate mechanisms of mound building, or building elements, are discussed.

  4. Thermoregulation and ventilation of termite mounds

    NASA Astrophysics Data System (ADS)

    Korb, Judith

    2003-05-01

    Some of the most sophisticated of all animal-built structures are the mounds of African termites of the subfamily Macrotermitinae, the fungus-growing termites. They have long been studied as fascinating textbook examples of thermoregulation or ventilation of animal buildings. However, little research has been designed to provide critical tests of these paradigms, derived from a very small number of original papers. Here I review results from recent studies on Macrotermes bellicosus that considered the interdependence of ambient temperature, thermoregulation, ventilation and mound architecture, and that question some of the fundamental paradigms of termite mounds. M. bellicosus achieves thermal homeostasis within the mound, but ambient temperature has an influence too. In colonies in comparably cool habitats, mound architecture is adapted to reduce the loss of metabolically produced heat to the environment. While this has no negative consequences in small colonies, it produces a trade-off with gas exchange in large colonies, resulting in suboptimally low nest temperatures and increased CO2 concentrations. Along with the alteration in mound architecture, the gas exchange/ventilation mechanism also changes. While mounds in the thermally appropriate savannah have a very efficient circular ventilation during the day, the ventilation in the cooler forest is a less efficient upward movement of air, with gas exchange restricted by reduced surface exchange area. These results, together with other recent findings, question entrenched ideas such as the thermosiphon-ventilation mechanism or the assumption that mounds function to dissipate internally produced heat. Models trying to explain the proximate mechanisms of mound building, or building elements, are discussed.

  5. Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis.

    PubMed

    Knight, Jason S; Luo, Wei; O'Dell, Alexander A; Yalavarthi, Srilakshmi; Zhao, Wenpu; Subramanian, Venkataraman; Guo, Chiao; Grenn, Robert C; Thompson, Paul R; Eitzman, Daniel T; Kaplan, Mariana J

    2014-03-14

    Neutrophil extracellular trap (NET) formation promotes vascular damage, thrombosis, and activation of interferon-α-producing plasmacytoid dendritic cells in diseased arteries. Peptidylarginine deiminase inhibition is a strategy that can decrease in vivo NET formation. To test whether peptidylarginine deiminase inhibition, a novel approach to targeting arterial disease, can reduce vascular damage and inhibit innate immune responses in murine models of atherosclerosis. Apolipoprotein-E (Apoe)(-/-) mice demonstrated enhanced NET formation, developed autoantibodies to NETs, and expressed high levels of interferon-α in diseased arteries. Apoe(-/-) mice were treated for 11 weeks with daily injections of Cl-amidine, a peptidylarginine deiminase inhibitor. Peptidylarginine deiminase inhibition blocked NET formation, reduced atherosclerotic lesion area, and delayed time to carotid artery thrombosis in a photochemical injury model. Decreases in atherosclerosis burden were accompanied by reduced recruitment of netting neutrophils and macrophages to arteries, as well as by reduced arterial interferon-α expression. Pharmacological interventions that block NET formation can reduce atherosclerosis burden and arterial thrombosis in murine systems. These results support a role for aberrant NET formation in the pathogenesis of atherosclerosis through modulation of innate immune responses.

  6. Variable tidal volumes improve lung protective ventilation strategies in experimental lung injury.

    PubMed

    Spieth, Peter M; Carvalho, Alysson R; Pelosi, Paolo; Hoehn, Catharina; Meissner, Christoph; Kasper, Michael; Hübler, Matthias; von Neindorff, Matthias; Dassow, Constanze; Barrenschee, Martina; Uhlig, Stefan; Koch, Thea; de Abreu, Marcelo Gama

    2009-04-15

    Noisy ventilation with variable Vt may improve respiratory function in acute lung injury. To determine the impact of noisy ventilation on respiratory function and its biological effects on lung parenchyma compared with conventional protective mechanical ventilation strategies. In a porcine surfactant depletion model of lung injury, we randomly combined noisy ventilation with the ARDS Network protocol or the open lung approach (n = 9 per group). Respiratory mechanics, gas exchange, and distribution of pulmonary blood flow were measured at intervals over a 6-hour period. Postmortem, lung tissue was analyzed to determine histological damage, mechanical stress, and inflammation. We found that, at comparable minute ventilation, noisy ventilation (1) improved arterial oxygenation and reduced mean inspiratory peak airway pressure and elastance of the respiratory system compared with the ARDS Network protocol and the open lung approach, (2) redistributed pulmonary blood flow to caudal zones compared with the ARDS Network protocol and to peripheral ones compared with the open lung approach, (3) reduced histological damage in comparison to both protective ventilation strategies, and (4) did not increase lung inflammation or mechanical stress. Noisy ventilation with variable Vt and fixed respiratory frequency improves respiratory function and reduces histological damage compared with standard protective ventilation strategies.

  7. Modes of mechanical ventilation for the operating room.

    PubMed

    Ball, Lorenzo; Dameri, Maddalena; Pelosi, Paolo

    2015-09-01

    Most patients undergoing surgical procedures need to be mechanically ventilated, because of the impact of several drugs administered at induction and during maintenance of general anaesthesia on respiratory function. Optimization of intraoperative mechanical ventilation can reduce the incidence of post-operative pulmonary complications and improve the patient's outcome. Preoxygenation at induction of general anaesthesia prolongs the time window for safe intubation, reducing the risk of hypoxia and overweighs the potential risk of reabsorption atelectasis. Non-invasive positive pressure ventilation delivered through different interfaces should be considered at the induction of anaesthesia morbidly obese patients. Anaesthesia ventilators are becoming increasingly sophisticated, integrating many functions that were once exclusive to intensive care. Modern anaesthesia machines provide high performances in delivering the desired volumes and pressures accurately and precisely, including assisted ventilation modes. Therefore, the physicians should be familiar with the potential and pitfalls of the most commonly used intraoperative ventilation modes: volume-controlled, pressure-controlled, dual-controlled and assisted ventilation. Although there is no clear evidence to support the advantage of any one of these ventilation modes over the others, protective mechanical ventilation with low tidal volume and low levels of positive end-expiratory pressure (PEEP) should be considered in patients undergoing surgery. The target tidal volume should be calculated based on the predicted or ideal body weight rather than on the actual body weight. To optimize ventilation monitoring, anaesthesia machines should include end-inspiratory and end-expiratory pause as well as flow-volume loop curves. The routine administration of high PEEP levels should be avoided, as this may lead to haemodynamic impairment and fluid overload. Higher PEEP might be considered during surgery longer than 3 h

  8. Ursolic acid suppresses leptin-induced cell proliferation in rat vascular smooth muscle cells.

    PubMed

    Yu, Ya-Mei; Tsai, Chiang-Chin; Tzeng, Yu-Wen; Chang, Weng-Cheng; Chiang, Su-Yin; Lee, Ming-Fen

    2017-07-01

    Accumulating lines of evidence indicate that high leptin levels are associated with adverse cardiovascular health in obese individuals. Proatherogenic effects of leptin include endothelial cell activation and vascular smooth muscle cell proliferation and migration. Ursolic acid (UA) has been reported to exhibit multiple biological effects including antioxidant and anti-inflammatory properties. In this study, we investigated the effect of UA on leptin-induced biological responses in rat vascular smooth muscle cells (VSMCs). A-10 VSMCs were treated with leptin in the presence or absence of UA. Intracellular reactive oxygen species (ROS) was probed by 2',7'-dichlorofluorescein diacetate. The expression of extracellular signal-regulated kinase (ERK)1/2, phospho-(ERK)1/2, nuclear factor-kappa B (NF-κB) p65 and p50, and matrix metalloproteinase-2 (MMP2) was determined by Western blotting. Immunocytochemistry and confocal laser scanning microscopy were also used for the detection of NF-κB. The secretion of MMP2 was detected by gelatin zymography. UA exhibited antioxidant activities in vitro. In rat VSMCs, UA effectively inhibited cell growth and the activity of MMP2 induced by leptin. These suppressive effects appeared by decreasing the activation of (ERK)1/2, the nuclear expression and translocation of NF-κB, and the production of ROS. UA appeared to inhibit leptin-induced atherosclerosis, which may prevent the development of obesity-induced cardiovascular diseases.

  9. [Formaldehyde-reducing efficiency of a newly developed dissection-table-connected local ventilation system in the gross anatomy laboratory room].

    PubMed

    Shinoda, Koh; Oba, Jun

    2010-03-01

    In compliance with health and safety management guidelines against harmful formaldehyde (FA) levels in the gross anatomy laboratory, we newly developed a dissection-table-connected local ventilation system in 2006. The system was composed of (1) a simple plenum-chambered dissection table with low-cost filters, (2) a transparent vinyl flexible duct for easy mounting and removal, which connects the table and the exhaust pipe laid above the ceiling, and (3) an intake creating a downward-flow of air, which was installed on the ceiling just above each table. The dissection table was also designed as a separate-component system, of which the upper plate and marginal suction inlets can be taken apart for cleaning after dissection, and equipped with opening/closing side-windows for picking up materials dropped during dissection and a container underneath the table to receive exudate from the cadaver through a waste-fluid pipe. The local ventilation system dramatically reduced FA levels to 0.01-0.03 ppm in the gross anatomy laboratory room, resulting in no discomforting FA smell and irritating sensation while preserving the student's view of room and line of flow as well as solving the problems of high maintenance cost, sanitation issues inside the table, and working-inconvenience during dissection practice. Switching ventilation methods or power-modes, the current local ventilation system was demonstrated to be more than ten times efficient in FA reduction compared to the whole-room ventilation system and suggested that 11 m3/min/table in exhaust volume should decrease FA levels in both A- and B-measurements to less than 0.1 ppm in 1000 m3 space containing thirty-one 3.5%-FA-fixed cadavers.

  10. The inhibition of inducible nitric oxide synthase and oxidative stress by agmatine attenuates vascular dysfunction in rat acute endotoxemic model.

    PubMed

    El-Awady, Mohammed S; Nader, Manar A; Sharawy, Maha H

    2017-10-01

    Vascular dysfunction leading to hypotension is a major complication in patients with septic shock. Inducible nitric oxide synthase (iNOS) together with oxidative stress play an important role in development of vascular dysfunction in sepsis. Searching for an endogenous, safe and yet effective remedy was the chief goal for this study. The current study investigated the effect of agmatine (AGM), an endogenous metabolite of l-arginine, on sepsis-induced vascular dysfunction induced by lipopolysaccharides (LPS) in rats. AGM pretreatment (10mg/kg, i.v.) 1h before LPS (5mg/kg, i.v.) prevented the LPS-induced mortality and elevations in serum creatine kinase-MB isoenzyme (CK-MB) activity, lactate dehydrogenase (LDH) activity, C-reactive protein (CRP) level and total nitrite/nitrate (NOx) level after 24h from LPS injection. The elevation in aortic lipid peroxidation illustrated by increased malondialdehyde (MDA) content and the decrease in aortic glutathione (GSH) and superoxide dismutase (SOD) were also ameliorated by AGM. Additionally, AGM prevented LPS-induced elevation in mRNA expression of iNOS, while endothelial NOS (eNOS) mRNA was not affected. Furthermore AGM prevented the impaired aortic contraction to KCl and phenylephrine (PE) and endothelium-dependent relaxation to acetylcholine (ACh) without affecting endothelium-independent relaxation to sodium nitroprusside (SNP). AGM may represent a potential endogenous therapeutic candidate for sepsis-induced vascular dysfunction through its inhibiting effect on iNOS expression and oxidative stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Influence of chest compression artefact on capnogram-based ventilation detection during out-of-hospital cardiopulmonary resuscitation.

    PubMed

    Leturiondo, Mikel; Ruiz de Gauna, Sofía; Ruiz, Jesus M; Julio Gutiérrez, J; Leturiondo, Luis A; González-Otero, Digna M; Russell, James K; Zive, Dana; Daya, Mohamud

    2018-03-01

    Capnography has been proposed as a method for monitoring the ventilation rate during cardiopulmonary resuscitation (CPR). A high incidence (above 70%) of capnograms distorted by chest compression induced oscillations has been previously reported in out-of-hospital (OOH) CPR. The aim of the study was to better characterize the chest compression artefact and to evaluate its influence on the performance of a capnogram-based ventilation detector during OOH CPR. Data from the MRx monitor-defibrillator were extracted from OOH cardiac arrest episodes. For each episode, presence of chest compression artefact was annotated in the capnogram. Concurrent compression depth and transthoracic impedance signals were used to identify chest compressions and to annotate ventilations, respectively. We designed a capnogram-based ventilation detection algorithm and tested its performance with clean and distorted episodes. Data were collected from 232 episodes comprising 52 654 ventilations, with a mean (±SD) of 227 (±118) per episode. Overall, 42% of the capnograms were distorted. Presence of chest compression artefact degraded algorithm performance in terms of ventilation detection, estimation of ventilation rate, and the ability to detect hyperventilation. Capnogram-based ventilation detection during CPR using our algorithm was compromised by the presence of chest compression artefact. In particular, artefact spanning from the plateau to the baseline strongly degraded ventilation detection, and caused a high number of false hyperventilation alarms. Further research is needed to reduce the impact of chest compression artefact on capnographic ventilation monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Lung-protective ventilation initiated in the emergency department (LOV-ED): a study protocol for a quasi-experimental, before-after trial aimed at reducing pulmonary complications.

    PubMed

    Fuller, Brian M; Ferguson, Ian; Mohr, Nicholas M; Stephens, Robert J; Briscoe, Cristopher C; Kolomiets, Angelina A; Hotchkiss, Richard S; Kollef, Marin H

    2016-04-11

    In critically ill patients, acute respiratory distress syndrome (ARDS) and ventilator-associated conditions (VACs) are associated with increased mortality, survivor morbidity and healthcare resource utilisation. Studies conclusively demonstrate that initial ventilator settings in patients with ARDS, and at risk for it, impact outcome. No studies have been conducted in the emergency department (ED) to determine if lung-protective ventilation in patients at risk for ARDS can reduce its incidence. Since the ED is the entry point to the intensive care unit for hundreds of thousands of mechanically ventilated patients annually in the USA, this represents a knowledge gap in this arena. A lung-protective ventilation strategy was instituted in our ED in 2014. It aims to address the parameters in need of quality improvement, as demonstrated by our previous research: (1) prevention of volutrauma; (2) appropriate positive end-expiratory pressure setting; (3) prevention of hyperoxia; and (4) aspiration precautions. The lung-protective ventilation initiated in the emergency department (LOV-ED) trial is a single-centre, quasi-experimental before-after study testing the hypothesis that lung-protective ventilation, initiated in the ED, is associated with reduced pulmonary complications. An intervention cohort of 513 mechanically ventilated adult ED patients will be compared with over 1000 preintervention control patients. The primary outcome is a composite outcome of pulmonary complications after admission (ARDS and VACs). Multivariable logistic regression with propensity score adjustment will test the hypothesis that ED lung-protective ventilation decreases the incidence of pulmonary complications. Approval of the study was obtained prior to data collection on the first patient. As the study is a before-after observational study, examining the effect of treatment changes over time, it is being conducted with waiver of informed consent. This work will be disseminated by

  13. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudd, Armin; Bergey, Daniel

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, themore » ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.« less

  14. Physiological and Therapeutic Vascular Remodeling Mediated by Hypoxia-Inducible Factor 1

    NASA Astrophysics Data System (ADS)

    Sarkar, Kakali; Semenza, Gregg L.

    Angiogenesis along with arteriogenesis and vasculogenesis is a fundamental process in ischemic repair in adult animals including humans. Hypoxia-inducible factor 1 (HIF-1) plays a central role in mediating adaptive responses to hypoxia/ischemia by expressing angiogenic cytokines/growth factors and their cognate receptors. Angiogenic growth factors are the homing signal for circulating angiogenic cells (CACs), which are mobilized to peripheral blood from bone marrow, recruited to target tissues, and promote vascularization. Impairment of HIF-1-mediated gene transcription contributes to the impaired vascular responses in peripheral vascular disease that are associated with aging and diabetes. Promoting neovascularization in ischemic tissues is a promising strategy for the treatment of peripheral vascular disease when surgical or catheter-based revascularization is not possible. Intramuscular injection of an adenovirus encoding a constitutively active form of HIF-1α (AdCA5), into the ischemic limb of diabetic mice increases the recovery of limb perfusion and function, rescues the diabetes-associated impairment of CACs, and increases vascularization. Administration of AdCA5 overcomes the effect of aging on recovery of blood flow in middle-aged mice following femoral artery ligation in a mouse model of age-dependent critical limb ischemia. Intramuscular injection of AdCA5 along with intravenous injection of bone-marrow-derived angiogenic cells cultured in the presence of prolyl-4-hydroxylase inhibitor dimethyloxalylglycine, increases blood flow and limb salvage in old mice following femoral artery ligation. HIF-1α gene therapy increases homing of bone-marrow-derived cells, whereas induction of HIF-1 in these cells increases their retention in the ischemic tissue by increasing their adhesion to endothelium leading to synergistic effects of combined therapy on improving blood flow.

  15. Antiangiogenic activity of vitexicarpine in experimentally induced hepatocellular carcinoma: Impact on vascular endothelial growth factor pathway.

    PubMed

    Hassoun, Shimaa M; Abdel-Rahman, Noha; Eladl, Entsar I; El-Shishtawy, Mamdouh M

    2017-06-01

    Angiogenesis plays important roles in progression of hepatocellular carcinoma. The antiangiogenic mechanisms of vitexicarpine are not fully defined. Therefore, we conducted the following study to evaluate the antiangiogenic mechanism and antitumor activity of vitexicarpine in vivo model of hepatocellular carcinoma through modulation of vascular endothelial growth factor signaling pathway. Hepatocellular carcinoma was induced in Sprague Dawley rats by thioacetamide. Hepatocellular carcinoma was assessed by measuring serum alpha-fetoprotein and investigating liver sections stained with hematoxylin/eosin. Hepatocellular carcinoma rats were injected with vitexicarpine (150 mg/kg) for 2 weeks. Hepatic vascular endothelial growth factor was measured by enzyme-linked immunosorbent assay. Protein and expression of hepatic phospho-Ser473-AKT (p-AKT) and phospho-Tyr419-Src (p-Src) were determined. The apoptotic pathway was evaluated by assessment of protein expression of caspase-3. Vitexicarpine increased rats' survival time and decreased serum alpha-fetoprotein as well as it ameliorated fibrosis and massive hepatic tissue breakdown. It attenuated hepatocellular carcinoma-induced protein and gene expression of vascular endothelial growth factor, p-AKT, p-Src, and caspase-3. In conclusion, this study suggests that vitexicarpine possesses both antiangiogenic and antitumor activities through inhibition of vascular endothelial growth factor, p-AKT/AKT, and p-Src with subsequent inhibition of apoptotic pathway.

  16. A randomised crossover comparison of mouth-to-face-shield ventilation and mouth-to-pocket-mask ventilation by surf lifeguards in a manikin.

    PubMed

    Adelborg, K; Bjørnshave, K; Mortensen, M B; Espeseth, E; Wolff, A; Løfgren, B

    2014-07-01

    Thirty surf lifeguards (mean (SD) age: 25.1 (4.8) years; 21 male, 9 female) were randomly assigned to perform 2 × 3 min of cardiopulmonary resuscitation on a manikin using mouth-to-face-shield ventilation (AMBU LifeKey) and mouth-to-pocket-mask ventilation (Laerdal Pocket Mask). Interruptions in chest compressions, effective ventilation (visible chest rise) ratio, tidal volume and inspiratory time were recorded. Interruptions in chest compressions per cycle were increased with mouth-to-face-shield ventilation (mean (SD) 8.6 (1.7) s) compared with mouth-to-pocket-mask ventilation (6.9 (1.2) s, p < 0.0001). The proportion of effective ventilations was less using mouth-to-face-shield ventilation (199/242 (82%)) compared with mouth-to-pocket-mask ventilation (239/240 (100%), p = 0.0002). Tidal volume was lower using mouth-to-face-shield ventilation (mean (SD) 0.36 (0.20) l) compared with mouth-to-pocket-mask ventilation (0.45 (0.20) l, p = 0.006). No differences in inspiratory times were observed between mouth-to-face-shield ventilation and mouth-to-pocket-mask ventilation. In conclusion, mouth-to-face-shield ventilation increases interruptions in chest compressions, reduces the proportion of effective ventilations and decreases delivered tidal volumes compared with mouth-to-pocket-mask ventilation. © 2014 The Association of Anaesthetists of Great Britain and Ireland.

  17. Vascular and renal function in experimental thyroid disorders.

    PubMed

    Vargas, Félix; Moreno, Juan Manuel; Rodríguez-Gómez, Isabel; Wangensteen, Rosemary; Osuna, Antonio; Alvarez-Guerra, Miriam; García-Estañ, Joaquín

    2006-02-01

    This review focuses on the effects of thyroid hormones in vascular and renal systems. Special emphasis is given to the mechanisms by which thyroid hormones affect the regulation of body fluids, vascular resistance and, ultimately, blood pressure. Vascular function is markedly affected by thyroid hormones that produce changes in vascular reactivity and endothelial function in hyper- and hypothyroidism. The hypothyroid state is accompanied by a marked decrease in sensitivity to vasoconstrictors, especially to sympathetic agonists, alteration that may play a role in the reduced blood pressure of hypothyroid rats, as well as in the preventive effects of hypothyroidism on experimental hypertension. Moreover, in hypothyroid rats, the endothelium-dependent and nitric oxide donors vasodilation is reduced. Conversely, the vessels from hyperthyroid rats showed an increased endothelium-dependent responsiveness that may be secondary to the shear-stress induced by the hyperdynamic circulation, and that may contribute to the reduced vascular resistance characteristic of this disease. Thyroid hormones also have important effects in the kidney, affecting renal growth, renal haemodynamics, and salt and water metabolism. In hyperthyroidism, there is a resetting of the pressure-natriuresis relationship related to hyperactivity of the renin-angiotensin system, which contributes to the arterial hypertension associated with this endocrine disease. Moreover, thyroid hormones affect the development and/or maintenance of various forms of arterial hypertension. This review also describes recent advances in our understanding of thyroid hormone action on nitric oxide and oxidative stress in the regulation of cardiovascular and renal function and in the long-term control of blood pressure.

  18. Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds.

    PubMed

    Wang, Jianglin; Yang, Mingying; Zhu, Ye; Wang, Lin; Tomsia, Antoni P; Mao, Chuanbin

    2014-08-06

    A virus-activated matrix is developed to overcome the challenge of forming vascularized bone tissue. It is generated by filling a 3D printed bioceramic scaffold with phage nanofibers displaying high-density RGD peptide. After it is seeded with mesenchymal stem cells (MSCs) and implanted into a bone defect, the phage nanofibers induce osteogenesis and angiogenesis by activating endothelialization and osteogenic differentiation of MSCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effect of Ventilation Strategies on Residential Ozone Levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Iain S.; Sherman, Max H.

    Elevated outdoor ozone levels are associated with adverse health effects. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone of outdoor origin would lower population exposures and might also lead to a reduction in ozone-associated adverse health effects. In most buildings, indoor ozone levels are diminished with respect to outdoor levels to an extent that depends on surface reactions and on the degree to which ozone penetrates the building envelope. Ozone enters buildings from outdoors together with the airflows that are driven by natural and mechanical means, including deliberate ventilation used to reducemore » concentrations of indoor-generated pollutants. When assessing the effect of deliberate ventilation on occupant health one should consider not only the positive effects on removing pollutants of indoor origin but also the possibility that enhanced ventilation might increase indoor levels of pollutants originating outdoors. This study considers how changes in residential ventilation that are designed to comply with ASHRAE Standard 62.2 might influence indoor levels of ozone. Simulation results show that the building envelope can contribute significantly to filtration of ozone. Consequently, the use of exhaust ventilation systems is predicted to produce lower indoor ozone concentrations than would occur with balanced ventilation systems operating at the same air-­exchange rate. We also investigated a strategy for reducing exposure to ozone that would deliberately reduce ventilation rates during times of high outdoor ozone concentration while still meeting daily average ventilation requirements.« less

  20. The addition of a mobile ultra-clean exponential laminar airflow screen to conventional operating room ventilation reduces bacterial contamination to operating box levels.

    PubMed

    Friberg, S; Ardnor, B; Lundholm, R; Friberg, B

    2003-10-01

    A mobile screen producing ultra-clean exponential laminar airflow (LAF) was investigated as an addition to conventional turbulent/mixing operating room (OR) ventilation (16 air changes/h). The evaluation was performed in a small OR (50 m(3)) during 60 standardized operations for groin hernia including mesh implantation. The additional ventilation was used in 50 of the operations. The LAF passed from the foot-end of the OR table over the instrument and surgical area. Strict hygiene OR procedures including tightly woven and non-woven OR clothing were used. Sedimentation rates were recorded at the level of the patients' chests (N=60) (i.e. the air had passed the surgical team) and in the periphery of the OR. In addition bacterial air contamination was studied above the patients' chests in all 10 operations without the additional LAF and in 12 with the LAF. The screen reduced the mean counts of sedimenting bacteria (cfu/m(2)/h) on the patients' chests from 775 without the screen to 355 (P=0.0003). The screen also reduced the mean air counts of bacteria (cfu/m(3)) above the patients' chests from 27 to 9 (P=0.0001). No significant differences in mean sedimentation rates (cfu/m(2)/h) existed in the periphery of the OR where 628 without and 574 with screen were recorded. During the follow-up period of six months no surgical site infections were detected. In conclusion when the mobile LAF screen was added to conventional OR ventilation the counts of aerobic airborne and sedimenting bacteria-carrying particles downstream of the surgical team were reduced to the levels achieved with complete ultra-clean LAF OR ventilation (operating box).

  1. MK2 inhibitor reduces alkali burn-induced inflammation in rat cornea

    PubMed Central

    Chen, Yanfeng; Yang, Wenzhao; Zhang, Xiaobo; Yang, Shu; Peng, Gao; Wu, Ting; Zhou, Yueping; Huang, Caihong; Reinach, Peter S.; Li, Wei; Liu, Zuguo

    2016-01-01

    MK2 activation by p38 MAPK selectively induces inflammation in various diseases. We determined if a MK2 inhibitor (MK2i), improves cornea wound healing by inhibiting inflammation caused by burning rat corneas with alkali. Our study, for the first time, demonstrated that MK2i inhibited alkali burn-induced MK2 activation as well as rises in inflammation based on: a) blunting rises in inflammatory index, inflammatory cell infiltration, ED1+ macrophage and PMN+ neutrophil infiltration; b) suppressing IL-6 and IL-1β gene expression along with those of macrophage inflammatory protein-1α (MIP-1α), intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1); c) reducing angiogenic gene expression levels and neovascularization (NV) whereas anti-angiogenic PEDF levels increased. In addition, this study found that MK2i did not affect human corneal epithelial cell (HCEC) proliferation and migration and had no detectable side effects on ocular surface integrity. Taken together, MK2i selectively inhibited alkali burn-induced corneal inflammation by blocking MK2 activation, these effects have clinical relevance in the treatment of inflammation related ocular surface diseases. PMID:27329698

  2. Matrix Metalloproteinase-2 Activity is Associated with Divergent Regulation of Calponin-1 in Conductance and Resistance Arteries in Hypertension-induced Early Vascular Dysfunction and Remodelling.

    PubMed

    Parente, Juliana M; Pereira, Camila A; Oliveira-Paula, Gustavo H; Tanus-Santos, José E; Tostes, Rita C; Castro, Michele M

    2017-10-01

    Matrix metalloproteinase (MMP)-2 participates in hypertension-induced maladaptive vascular remodelling by degrading extra- and intracellular proteins. The consequent extracellular matrix rearrangement and phenotype switch of vascular smooth muscle cells (VSMCs) lead to increased cellular migration and proliferation. As calponin-1 degradation by MMP-2 may lead to VSMC proliferation during hypertension, the hypothesis of this study is that increased MMP-2 activity contributes to early hypertension-induced maladaptive remodelling in conductance and resistance arteries via regulation of calponin-1. The main objective was to analyse whether MMP-2 exerts similar effects on the structure and function of the resistance and conductance arteries during early hypertension. Two-kidney, one-clip (2K-1C) hypertensive male rats and corresponding controls were treated with doxycycline (30 mg/kg/day) or water until reaching one week of hypertension. Systolic blood pressure was increased in 2K-1C rats, and doxycycline did not reduce it. Aortas and mesenteric arteries were analysed. MMP-2 activity and expression were increased in both arteries, and doxycycline reduced it. Significant hypertrophic remodelling and VSMC proliferation were observed in aortas but not in mesenteric arteries of 2K-1C rats. The contractility of mesenteric arteries to phenylephrine was increased in 2K-1C rats, and doxycycline prevented this alteration. The potency of phenylephrine to contract aortas of 2K-1C rats was increased, and doxycycline decreased it. Whereas calponin-1 expression was increased in 2K-1C mesenteric arteries, calponin-1 was reduced in aortas. Doxycycline treatment reverted changes in calponin-1 expression. MMP-2 contributes to hypertrophic remodelling in aortas by decreasing calponin-1 levels, which may result in VSMC proliferation. On the other hand, MMP-2-dependent increased calponin-1 in mesenteric arteries may contribute to vascular hypercontractility in 2K-1C rats. Divergent

  3. Downregulation of the glucocorticoid-induced leucine zipper (GILZ) promotes vascular inflammation.

    PubMed

    Hahn, Rebecca T; Hoppstädter, Jessica; Hirschfelder, Kerstin; Hachenthal, Nina; Diesel, Britta; Kessler, Sonja M; Huwer, Hanno; Kiemer, Alexandra K

    2014-06-01

    Glucocorticoid-induced leucine zipper (GILZ) represents an anti-inflammatory mediator, whose downregulation has been described in various inflammatory processes. Aim of our study was to decipher the regulation of GILZ in vascular inflammation. Degenerated aortocoronary saphenous vein bypass grafts (n = 15), which exhibited inflammatory cell activation as determined by enhanced monocyte chemoattractrant protein 1 (MCP-1, CCL2) and Toll-like receptor 2 (TLR2) expression, showed significantly diminished GILZ protein and mRNA levels compared to healthy veins (n = 23). GILZ was also downregulated in human umbilical vein endothelial cells (HUVEC) and macrophages upon treatment with the inflammatory cytokine TNF-α in a tristetraprolin (ZFP36, TTP)- and p38 MAPK-dependent manner. To assess the functional implications of decreased GILZ expression, we determined NF-κB activation after GILZ knockdown by siRNA and found that NF-κB activity and inflammatory gene expression were significantly enhanced. Importantly, ZFP36 is induced in TNF-α-activated HUVEC as well as in degenerated vein bypasses. When atheroprotective laminar shear stress was employed, GILZ levels in HUVEC increased on mRNA and protein level. Laminar flow also counteracted TNF-α-induced ZFP36 expression and GILZ downregulation. MAP kinase phosphatase 1 (MKP-1, DUSP1), a negative regulator of ZFP36 expression, was distinctly upregulated under laminar shear stress conditions and downregulated in degenerated vein bypasses. Our data show a diminished expression of the anti-inflammatory mediator GILZ in the inflamed vasculature and indicate that GILZ downregulation requires the mRNA binding protein ZFP36. We suggest that reduced GILZ levels play a role in cardiovascular disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Ultra Fine Particles from Diesel Engines Induce Vascular Oxidative Stress via JNK Activation

    PubMed Central

    Li, Rongsong; Ning, Zhi; Cui, Jeffery; Khalsa, Bhavraj; Ai, Lisong; Takabe, Wakako; Beebe, Tyler; Majumdar, Rohit; Sioutas, Constantinos; Hsiai, Tzung

    2011-01-01

    Exposure of particulate air pollution is linked to increased incidences of cardiovascular diseases. Ambient ultra fine particles (UFP) from diesel vehicle engines have been shown to be pro-atherogenic in apoE knockout mice and may constitute a major cardiovascular risk in humans. We posited that circulating nano-sized particles from traffic pollution sources induced vascular oxidative stress via JNK activation in endothelial cells. Diesel UFP were collected from a 1998 Kenworth truck. Intra-cellular superoxide assay revealed that these UFP dose-dependently induced superoxide (O2·-) production in human aortic endothelial cells (HAEC). Flow cytometry (FACS) showed that UFP increased MitoSOX Red intensity specific for mitochondrial superoxide. Protein carbonyl content is increased by UFP as an indication of vascular oxidative stress. UFP also up-regulated hemeoxygenase-1 (HO-1) and tissue factor (TF) mRNA expression, and pre-treatment with antioxidant, N-acetyl cysteine (NAC), significantly decreased their expression. Furthermore, UFP transiently activated JNK in HAEC. Treatment with JNK inhibitor SP600125 and silencing of both JNK1 and JNK2 with siRNA inhibited UFP stimulated O2·- production and mRNA expression of HO-1 and TF. Our findings suggest that JNK activation play an important role in UFP-induced oxidative stress and stress response gene expression. PMID:19154785

  5. NATURAL BASEMENT VENTILATION AS A RADON MITIGATION TECHNIQUE

    EPA Science Inventory

    The report documents a study of natural basement ventilation in two research houses during both the summer cooling season and the winter heating season. NOTE: Natural basement ventilation has always been recommended as a way to reduce radon levels in houses. However, its efficacy...

  6. Clinical review: Long-term noninvasive ventilation

    PubMed Central

    Robert, Dominique; Argaud, Laurent

    2007-01-01

    Noninvasive positive ventilation has undergone a remarkable evolution over the past decades and is assuming an important role in the management of both acute and chronic respiratory failure. Long-term ventilatory support should be considered a standard of care to treat selected patients following an intensive care unit (ICU) stay. In this setting, appropriate use of noninvasive ventilation can be expected to improve patient outcomes, reduce ICU admission, enhance patient comfort, and increase the efficiency of health care resource utilization. Current literature indicates that noninvasive ventilation improves and stabilizes the clinical course of many patients with chronic ventilatory failure. Noninvasive ventilation also permits long-term mechanical ventilation to be an acceptable option for patients who otherwise would not have been treated if tracheostomy were the only alternative. Nevertheless, these results appear to be better in patients with neuromuscular/-parietal disorders than in chronic obstructive pulmonary disease. This clinical review will address the use of noninvasive ventilation (not including continuous positive airway pressure) mainly in diseases responsible for chronic hypoventilation (that is, restrictive disorders, including neuromuscular disease and lung disease) and incidentally in others such as obstructive sleep apnea or problems of central drive. PMID:17419882

  7. Endothelin ETA Receptor Blockade, by Activating ETB Receptors, Increases Vascular Permeability and Induces Exaggerated Fluid Retention.

    PubMed

    Vercauteren, Magali; Trensz, Frederic; Pasquali, Anne; Cattaneo, Christophe; Strasser, Daniel S; Hess, Patrick; Iglarz, Marc; Clozel, Martine

    2017-05-01

    Endothelin (ET) receptor antagonists have been associated with fluid retention. It has been suggested that, of the two endothelin receptor subtypes, ET B receptors should not be blocked, because of their involvement in natriuresis and diuresis. Surprisingly, clinical data suggest that ET A -selective antagonists pose a greater risk of fluid overload than dual antagonists. The purpose of this study was to evaluate the contribution of each endothelin receptor to fluid retention and vascular permeability in rats. Sitaxentan and ambrisentan as ET A -selective antagonists and bosentan and macitentan as dual antagonists were used as representatives of each class, respectively. ET A -selective antagonism caused a dose-dependent hematocrit/hemoglobin decrease that was prevented by ET B -selective receptor antagonism. ET A -selective antagonism led to a significant blood pressure reduction, plasma volume expansion, and a greater increase in vascular permeability than dual antagonism. Isolated vessel experiments showed that ET A -selective antagonism increased vascular permeability via ET B receptor overstimulation. Acutely, ET A -selective but not dual antagonism activated sympathetic activity and increased plasma arginine vasopressin and aldosterone concentrations. The hematocrit/hemoglobin decrease induced by ET A -selective antagonism was reduced in Brattleboro rats and in Wistar rats treated with an arginine vasopressin receptor antagonist. Finally, the decrease in hematocrit/hemoglobin was larger in the venous than in the arterial side, suggesting fluid redistribution. In conclusion, by activating ET B receptors, endothelin receptor antagonists (particularly ET A -selective antagonists) favor edema formation by causing: 1) fluid retention resulting from arginine vasopressin and aldosterone activation secondary to vasodilation, and 2) increased vascular permeability. Plasma volume redistribution may explain the clinical observation of a hematocrit/hemoglobin decrease

  8. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudd, Armin; Bergey, Daniel

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the sourcemore » of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.« less

  9. Mitochondrial Cyclophilin D in Vascular Oxidative Stress and Hypertension.

    PubMed

    Itani, Hana A; Dikalova, Anna E; McMaster, William G; Nazarewicz, Rafal R; Bikineyeva, Alfiya T; Harrison, David G; Dikalov, Sergey I

    2016-06-01

    Vascular superoxide (O˙2 (-)) and inflammation contribute to hypertension. The mitochondria are an important source of O˙2 (-); however, the regulation of mitochondrial O˙2 (-) and the antihypertensive potential of targeting the mitochondria remain poorly defined. Angiotensin II and inflammatory cytokines, such as interleukin 17A and tumor necrosis factor-α (TNFα) significantly contribute to hypertension. We hypothesized that angiotensin II and cytokines co-operatively induce cyclophilin D (CypD)-dependent mitochondrial O˙2 (-) production in hypertension. We tested whether CypD inhibition attenuates endothelial oxidative stress and reduces hypertension. CypD depletion in CypD(-/-) mice prevents overproduction of mitochondrial O˙2 (-) in angiotensin II-infused mice, attenuates hypertension by 20 mm Hg, and improves vascular relaxation compared with wild-type C57Bl/6J mice. Treatment of hypertensive mice with the specific CypD inhibitor Sanglifehrin A reduces blood pressure by 28 mm Hg, inhibits production of mitochondrial O˙2 (-) by 40%, and improves vascular relaxation. Angiotensin II-induced hypertension was associated with CypD redox activation by S-glutathionylation, and expression of the mitochondria-targeted H2O2 scavenger, catalase, abolished CypD S-glutathionylation, prevented stimulation mitochondrial O˙2 (-), and attenuated hypertension. The functional role of cytokine-angiotensin II interplay was confirmed by co-operative stimulation of mitochondrial O˙2 (-) by 3-fold in cultured endothelial cells and impairment of aortic relaxation incubated with combination of angiotensin II, interleukin 17A, and tumor necrosis factor-α which was prevented by CypD depletion or expression of mitochondria-targeted SOD2 and catalase. These data support a novel role of CypD in hypertension and demonstrate that targeting CypD decreases mitochondrial O˙2 (-), improves vascular relaxation, and reduces hypertension. © 2016 American Heart Association, Inc.

  10. Nrf2/Keap1 system regulates vascular smooth muscle cell apoptosis for vascular homeostasis: role in neointimal formation after vascular injury

    PubMed Central

    Ashino, Takashi; Yamamoto, Masayuki; Numazawa, Satoshi

    2016-01-01

    Abnormal increases in vascular smooth muscle cells (VSMCs) in the intimal region after a vascular injury is a key event in developing neointimal hyperplasia. To maintain vascular function, proliferation and apoptosis of VSMCs is tightly controlled during vascular remodeling. NF-E2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) system, a key component of the oxidative stress response that acts in maintaining homeostasis, plays an important role in neointimal hyperplasia after a vascular injury; however, the role of Nrf2/Keap1 in VSMC apoptosis has not been clarified. Here we report that 14 days after arterial injury in mice, TUNEL-positive VSMCs are detected in both the neointimal and medial layers. These layers contain cells expressing high levels of Nrf2 but low Keap1 expression. In VSMCs, Keap1 depletion induces features of apoptosis, such as positive TUNEL staining and annexin V binding. These changes are associated with an increased expression of nuclear Nrf2. Simultaneous Nrf2 depletion inhibits Keap1 depletion-induced apoptosis. At 14 days after the vascular injury, Nrf2-deficient mice demonstrated fewer TUNEL-positive cells and increased neointimal formation in the neointimal and medial areas. The results suggest that the Nrf2/Keap1 system regulates VSMC apoptosis during neointimal formation, thereby inhibiting neointimal hyperplasia after a vascular injury. PMID:27198574

  11. Aldosterone induces a vascular inflammatory phenotype in the rat heart.

    PubMed

    Rocha, Ricardo; Rudolph, Amy E; Frierdich, Gregory E; Nachowiak, Denise A; Kekec, Beverly K; Blomme, Eric A G; McMahon, Ellen G; Delyani, John A

    2002-11-01

    Vascular inflammation was examined as a potential mechanism of aldosterone-mediated myocardial injury in uninephrectomized rats receiving 1% NaCl-0.3% KCl to drink for 1, 2, or 4 wk and 1) vehicle, 2) aldosterone infusion (0.75 microg/h), or 3) aldosterone infusion (0.75 microg/h) plus the selective aldosterone blocker eplerenone (100 mg. kg(-1). day(-1)). Aldosterone induced severe hypertension at 4 wk [systolic blood pressure (SBP), 210 +/- 3 mmHg vs. vehicle, 131 +/- 2 mmHg, P < 0.001], which was partially attenuated by eplerenone (SBP, 180 +/- 7 mmHg; P < 0.001 vs. aldosterone alone and vehicle). No significant increases in myocardial interstitial collagen fraction or hydroxyproline concentration were detected throughout the study. However, histopathological analysis of the heart revealed severe coronary inflammatory lesions, which were characterized by monocyte/macrophage infiltration and resulted in focal ischemic and necrotic changes. The histological evidence of coronary lesions was preceded by and associated with the elevation of cyclooxygenase-2 (up to approximately 4-fold), macrophage chemoattractant protein-1 (up to approximately 4-fold), and osteopontin (up to approximately 13-fold) mRNA expression. Eplerenone attenuated proinflammatory molecule expression in the rat heart and subsequent vascular and myocardial damage. Thus aldosterone and salt treatment in uninephrectomized rats led to severe hypertension and the development of a vascular inflammatory phenotype in the heart, which may represent one mechanism by which aldosterone contributes to myocardial disease.

  12. Fetal Growth Restriction Induces Heterogeneous Effects on Vascular Biomechanical and Functional Properties in Guinea Pigs (Cavia porcellus)

    PubMed Central

    Cañas, Daniel; Herrera, Emilio A.; García-Herrera, Claudio; Celentano, Diego; Krause, Bernardo J.

    2017-01-01

    Aim: Fetal growth restriction (FGR) is associated with a variety of cardiometabolic diseases in adulthood which could involve remodeling processes of the vascular walls that could start in the fetal period. However, there is no consensus whether this remodeling affects in a similar way the whole vascular system. We aimed to determine the effects of FGR on the vasoactive and biomechanical properties of umbilical and systemic vessels in fetal guinea pigs. Methods: FGR was induced by implanting ameroid occluders at mid-gestation in uterine arteries of pregnant guinea pigs, whilst the control group was exposed to simulated surgery. At the term of gestation, systemic arteries (aorta, carotid and femoral) and umbilical vessels were isolated to determine ex vivo contractile and biomechanical responses (stretch-stress until rupture) on a wire myograph, as well as opening angle and residual stresses. Histological characteristics in tissue samples were measured by van Gieson staining. Results: Aorta and femoral arteries from FGR showed an increased in biomechanical markers of stiffness (p < 0.01), contractile capacity (p < 0.05) and relative media thickness (p < 0.01), but a reduced internal diameter (p < 0.001), compared with controls. There were no differences in the biomechanical properties of carotid and umbilical from control and FGR fetuses, but FGR umbilical arteries had a decreased contractile response to KCl (p < 0.05) along with a reduced relative media thickness (p < 0.05). Conclusion: Altogether, these changes in functional, mechanical and morphological properties suggest that FGR is associated with a heterogeneous pro-constrictive vascular remodeling affecting mainly the lower body fetal arteries. These effects would be set during a pathologic pregnancy in order to sustain the fetal blood redistribution in the FGR and may persist up to adulthood increasing the risk of a cardiovascular disease. PMID:28344561

  13. Peptidylarginine Deiminase Inhibition Reduces Vascular Damage and Modulates Innate Immune Responses in Murine Models of Atherosclerosis

    PubMed Central

    Knight, Jason S.; Luo, Wei; O’Dell, Alexander A.; Yalavarthi, Srilakshmi; Zhao, Wenpu; Subramanian, Venkataraman; Guo, Chiao; Grenn, Robert C.; Thompson, Paul R.; Eitzman, Daniel T.; Kaplan, Mariana J.

    2014-01-01

    Rationale Neutrophil extracellular trap (NET) formation promotes vascular damage, thrombosis, and activation of interferon-α-producing plasmacytoid dendritic cells in diseased arteries. Peptidylarginine deiminase inhibition is a strategy that can decrease in vivo NET formation. Objective To test whether peptidylarginine deiminase inhibition, a novel approach to targeting arterial disease, can reduce vascular damage and inhibit innate immune responses in murine models of atherosclerosis. Methods and Results Apolipoprotein-E (Apoe)−/− mice demonstrated enhanced NET formation, developed autoantibodies to NETs, and expressed high levels of interferon-α in diseased arteries. Apoe−/− mice were treated for 11 weeks with daily injections of Cl-amidine, a peptidylarginine deiminase inhibitor. Peptidylarginine deiminase inhibition blocked NET formation, reduced atherosclerotic lesion area, and delayed time to carotid artery thrombosis in a photochemical injury model. Decreases in atherosclerosis burden were accompanied by reduced recruitment of netting neutrophils and macrophages to arteries, as well as by reduced arterial interferon-α expression. Conclusions Pharmacological interventions that block NET formation can reduce atherosclerosis burden and arterial thrombosis in murine systems. These results support a role for aberrant NET formation in the pathogenesis of atherosclerosis through modulation of innate immune responses. PMID:24425713

  14. An evaluation of the impact of the ventilator care bundle.

    PubMed

    Crunden, Eddie; Boyce, Carolyn; Woodman, Helen; Bray, Barbara

    2005-01-01

    A number of interventions have been shown to improve the outcomes of patients who are invasively ventilated in intensive care units (ICUs). However, significant problems still exist in implementing research findings into clinical practice. The aim of this study was to assess whether the systematic and methodical implementation of evidence-based interventions encapsulated in a care bundle influenced length of ventilation and ICU length of stay (LOS). A ventilator care bundle was introduced within a general ICU and evaluated 1 year later. The care bundle was composed of four protocols that consisted of prophylaxis against peptic ulceration, prophylaxis against deep vein thrombosis, daily cessation of sedation and elevation of the patient's head and chest to at least 30 degrees to the horizontal. Compliance with the bundle was assessed, as was ICU LOS, ICU mortality and ICU/high-dependency unit patient throughput. Mean ICU LOS was reduced from 13-75 [standard deviation (SD) 19.11] days to 8.36 (SD 10.21) days (p<0.05). Mean ventilator days were reduced from 10.8 (SD 15.58) days to 6.1 (SD 8.88) days. Unit patient throughput increased by 30.1% and the number of invasively ventilated patients increased by 39.5%. Care bundles encourage the consistent and systematic application of evidence-based protocols used in particular treatment regimes. Since the introduction of the ventilator care bundle, length of ventilation and ICU LOS have reduced significantly.

  15. Measures of total stress-induced blood pressure responses are associated with vascular damage.

    PubMed

    Nazzaro, Pietro; Seccia, Teresa; Vulpis, Vito; Schirosi, Gabriella; Serio, Gabriella; Battista, Loredana; Pirrelli, Anna

    2005-09-01

    The role of cardiovascular reactivity to study hypertension, and the assessment methods, are still controversial. We aimed to verify the association of hypertension and vascular damage with several measures of cardiovascular response. We studied 40 patients with normal-high (132 +/- 1/87 +/- 1 mm Hg) blood pressure (Group 1) and 80 untreated hypertensive subjects. Postischemic forearm vascular resistance (mFVR) served to differentiate hypertensive subjects (142 +/- 2/92 +/- 1 mm Hg v 143 +/- 2/94 +/- 2 mm Hg, P = NS) with a lower (Group 2) and higher (Group 3) hemodynamic index of vascular damage (4.8 +/- .05 v 6.3 +/- .09, P < .001). Reactivity was induced by Stroop (5') and cold pressor (90") tests. We measured muscular contraction and skin conductance as indices of emotional arousal, blood pressure, heart rate, forearm blood flow, and vascular resistance. Reactivity measures included: a) change from baseline, b) residualized score, c) cumulative change from baseline and residualized score, and d) total reactivity as area-under-the-curve (AUC), including changes occurring during baseline and recovery phases. The AUC of systolic blood pressure, diastolic blood pressure, and mFVR progressively increased in the groups (P < .001). Corrections of anthropometric and metabolic confounders were introduced in the Pearson equation between mFVR and reactivity measures. The AUC of SBP, DBP, and forearm blood flow and resistance demonstrated the highest (P < .001) correlation. On multiple regression analysis, AUC of SBP (beta = 0.634) and forearm blood flow (beta = -0.337) were predictive (P < .001) of vascular damage. Total blood pressure stress response, as AUC, including baseline and recovery phases, was significantly better associated with hypertension and vascular damage than the other reactivity measures studied.

  16. EphrinA1 Inhibits Vascular Endothelial Growth Factor-Induced Intracellular Signaling and Suppresses Retinal Neovascularization and Blood-Retinal Barrier Breakdown

    PubMed Central

    Ojima, Tomonari; Takagi, Hitoshi; Suzuma, Kiyoshi; Oh, Hideyasu; Suzuma, Izumi; Ohashi, Hirokazu; Watanabe, Daisuke; Suganami, Eri; Murakami, Tomoaki; Kurimoto, Masafumi; Honda, Yoshihito; Yoshimura, Nagahisa

    2006-01-01

    The Eph receptor/ephrin system is a recently discovered regulator of vascular development during embryogenesis. Activation of EphA2, one of the Eph receptors, reportedly suppresses cell proliferation and adhesion in a wide range of cell types, including vascular endothelial cells. Vascular endothelial growth factor (VEGF) plays a primary role in both pathological angiogenesis and abnormal vascular leakage in diabetic retinopathy. In the study described herein, we demonstrated that EphA2 stimulation by ephrinA1 in cultured bovine retinal endothelial cells inhibits VEGF-induced VEGFR2 receptor phosphorylation and its downstream signaling cascades, including PKC (protein kinase C)-ERK (extracellular signal-regulated kinase) 1/2 and Akt. This inhibition resulted in the reduction of VEGF-induced angiogenic cell activity, including migration, tube formation, and cellular proliferation. These inhibitory effects were further confirmed in animal models. Intraocular injection of ephrinA1 suppressed ischemic retinal neovascularization in a dose-dependent manner in a mouse model. At a dose of 125 ng/eye, the inhibition was 36.0 ± 14.9% (P < 0.001). EphrinA1 also inhibited VEGF-induced retinal vascular permeability in a rat model by 46.0 ± 10.0% (P < 0.05). These findings suggest a novel therapeutic potential for EphA2/ephrinA1 in the treatment of neovascularization and vasopermeability abnormalities in diabetic retinopathy. PMID:16400034

  17. Protective mechanical ventilation does not exacerbate lung function impairment or lung inflammation following influenza A infection.

    PubMed

    Zosky, Graeme R; Cannizzaro, Vincenzo; Hantos, Zoltan; Sly, Peter D

    2009-11-01

    The degree to which mechanical ventilation induces ventilator-associated lung injury is dependent on the initial acute lung injury (ALI). Viral-induced ALI is poorly studied, and this study aimed to determine whether ALI induced by a clinically relevant infection is exacerbated by protective mechanical ventilation. Adult female BALB/c mice were inoculated with 10(4.5) plaque-forming units of influenza A/Mem/1/71 in 50 microl of medium or medium alone. This study used a protective ventilation strategy, whereby mice were anesthetized, tracheostomized, and mechanically ventilated for 2 h. Lung mechanics were measured periodically throughout the ventilation period using a modification of the forced oscillation technique to obtain measures of airway resistance and coefficients of tissue damping and tissue elastance. Thoracic gas volume was measured and used to obtain specific airway resistance, tissue damping, and tissue elastance. At the end of the ventilation period, a bronchoalveolar lavage sample was collected to measure inflammatory cells, macrophage inflammatory protein-2, IL-6, TNF-alpha, and protein leak. Influenza infection caused significant increases in inflammatory cells, protein leak, and deterioration in lung mechanics that were not exacerbated by mechanical ventilation, in contrast to previous studies using bacterial and mouse-specific viral infection. This study highlighted the importance of type and severity of lung injury in determining outcome following mechanical ventilation.

  18. Magnesium reduces calcification in bovine vascular smooth muscle cells in a dose-dependent manner

    PubMed Central

    Peter, Mirjam E.; Sevinc Ok, Ebru; Celenk, Fatma Gul; Yilmaz, Mumtaz; Steppan, Sonja; Asci, Gulay; Ok, Ercan; Passlick-Deetjen, Jutta

    2012-01-01

    Background. Vascular calcification (VC), mainly due to elevated phosphate levels, is one major problem in patients suffering from chronic kidney disease. In clinical studies, an inverse relationship between serum magnesium and VC has been reported. However, there is only few information about the influence of magnesium on calcification on a cellular level available. Therefore, we investigated the effect of magnesium on calcification induced by β-glycerophosphate (BGP) in bovine vascular smooth muscle cells (BVSMCs). Methods. BVSMCs were incubated with calcification media for 14 days while simultaneously increasing the magnesium concentration. Calcium deposition, transdifferentiation of cells and apoptosis were measured applying quantification of calcium, von Kossa and Alizarin red staining, real-time reverse transcription–polymerase chain reaction and annexin V staining, respectively. Results. Calcium deposition in the cells dramatically increased with addition of BGP and could be mostly prevented by co-incubation with magnesium. Higher magnesium levels led to inhibition of BGP-induced alkaline phosphatase activity as well as to a decreased expression of genes associated with the process of transdifferentiation of BVSMCs into osteoblast-like cells. Furthermore, estimated calcium entry into the cells decreased with increasing magnesium concentrations in the media. In addition, higher magnesium concentrations prevented cell damage (apoptosis) induced by BGP as well as progression of already established calcification. Conclusions. Higher magnesium levels prevented BVSMC calcification, inhibited expression of osteogenic proteins, apoptosis and further progression of already established calcification. Thus, magnesium is influencing molecular processes associated with VC and may have the potential to play a role for VC also in clinical situations. PMID:21750166

  19. Lung-protective mechanical ventilation does not protect against acute kidney injury in patients without lung injury at onset of mechanical ventilation.

    PubMed

    Cortjens, Bart; Royakkers, Annick A N M; Determann, Rogier M; van Suijlen, Jeroen D E; Kamphuis, Stephan S; Foppen, Jannetje; de Boer, Anita; Wieland, Cathrien W; Spronk, Peter E; Schultz, Marcus J; Bouman, Catherine S C

    2012-06-01

    Preclinical and clinical studies suggest that mechanical ventilation contributes to the development of acute kidney injury (AKI), particularly in the setting of lung-injurious ventilator strategies. To determine whether ventilator settings in critically ill patients without acute lung injury (ALI) at onset of mechanical ventilation affect the development of AKI. Secondary analysis of a randomized controlled trial (N = 150), comparing conventional tidal volume (V(T), 10 mL/kg) with low tidal volume (V(T), 6 mL/kg) mechanical ventilation in critically ill patients without ALI at randomization. During the first 5 days of mechanical ventilation, the RIFLE class was determined daily, whereas neutrophil gelatinase-associated lipocalin and cystatin C levels were measured in plasma collected on days 0, 2, and 4. Eighty-six patients had no AKI at inclusion, and 18 patients (21%) subsequently developed AKI, but without significant difference between ventilation strategies. (Cumulative hazard, 0.26 vs 0.23; P = .88.) The courses of neutrophil gelatinase-associated lipocalin and cystatin C plasma levels did not differ significantly between randomization groups. In the present study in critically patients without ALI at onset of mechanical ventilation, lower tidal volume ventilation did not reduce the development or worsening of AKI compared with conventional tidal volume ventilation. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Reduced methylation of the thromboxane synthase gene is correlated with its increased vascular expression in preeclampsia.

    PubMed

    Mousa, Ahmad A; Strauss, Jerome F; Walsh, Scott W

    2012-06-01

    Preeclampsia is characterized by increased thromboxane and decreased prostacyclin levels, which predate symptoms, and can explain some of the clinical manifestations of preeclampsia, including hypertension and thrombosis. In this study, we examined DNA methylation of the promoter region of the thromboxane synthase gene (TBXAS1) and the expression of thromboxane synthase in systemic blood vessels of normal pregnant and preeclamptic women. Thromboxane synthase is responsible for the synthesis of thromboxane A(2), a potent vasoconstrictor and activator of platelets. We also examined the effect of experimentally induced DNA hypomethylation on the expression of thromboxane synthase in a neutrophil-like cell line (HL-60 cells) and in cultured vascular smooth muscle and endothelial cells. We found that DNA methylation of the TBXAS1 promoter was decreased and thromboxane synthase expression was increased in omental arteries of preeclamptic women as compared with normal pregnant women. Increased thromboxane synthase expression was observed in vascular smooth muscles cells, endothelial cells, and infiltrating neutrophils. Experimentally induced DNA hypomethylation only increased expression of thromboxane synthase in the neutrophil-like cell line, whereas tumor necrosis factor-α, a neutrophil product, increased its expression in cultured vascular smooth muscle cells. Our study suggests that epigenetic mechanisms and release of tumor necrosis factor-α by infiltrating neutrophils could contribute to the increased expression of thromboxane synthase in maternal systemic blood vessels, contributing to the hypertension and coagulation abnormalities associated with preeclampsia.

  1. Sulforaphane inhibits restenosis by suppressing inflammation and the proliferation of vascular smooth muscle cells.

    PubMed

    Kwon, Jin-Sook; Joung, Hosouk; Kim, Yong Sook; Shim, Young-Sun; Ahn, Youngkeun; Jeong, Myung Ho; Kee, Hae Jin

    2012-11-01

    Sulforaphane, a naturally occurring organosulfur compound in broccoli, has chemopreventive properties in cancer. However, the effects of sulforaphane in vascular diseases have not been examined. We therefore aimed to investigate the effects of sulforaphane on vascular smooth muscle cell (VSMC) proliferation and neointimal formation and the related mechanisms. The expression of vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) was examined in VSMCs. The nuclear translocation of nuclear factor-κB (NF-κB) and GATA6 expression was examined in VSMCs and in a carotid artery injury model by Western blot and immunohistochemistry. We also investigated whether local delivery of sulforaphane affected neointimal formation. Sulforaphane inhibited the mRNA and protein expression of VCAM-1 induced by tumor necrosis factor (TNF)-α in VSMCs. Treatment of VSMCs with sulforaphane blocked TNF-α-induced IκBα degradation and NF-κB p65 and GATA6 expression. Furthermore, NF-κB p65 and GATA6 expression were reduced in sulforaphane-treated carotid injury sections. Notably, binding of GATA6 to the VCAM-1 promoter was dramatically reduced by sulforaphane. The MTT, BrdU incorporation, and in vitro scratch assays revealed that the proliferation and migration of VSMCs were reduced by sulforaphane. Furthermore, local administration of sulforaphane significantly reduced neointima formation 14 days after vascular injury in rats. Our results indicate that sulforaphane inhibits neointima formation via targeting of adhesion molecules through the suppression of NF-κB/GATA6. Furthermore, sulforaphane regulates migration and proliferation in VSMCs. Sulforaphane may be a potential therapeutic agent for preventing restenosis after vascular injury. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Functional differences in bi-level pressure preset ventilators.

    PubMed

    Highcock, M P; Shneerson, J M; Smith, I E

    2001-02-01

    The performance of four bilevel positive pressure preset ventilators was compared. The ventilators tested were; BiPAP ST30 (Respironics); Nippy2 (B + D Electrical); Quantum PSV (Healthdyne); and Sullivan VPAP H ST (Resmed). A patient simulator was used to determine the sensitivity of the triggering mechanisms and the responses to a leak within the patient circuit, and to changes in patient effort. Significant differences (p <0.05) between the devices were seen in the trigger delay time and inspiratory trigger pressure. When a leak was introduced into the patient circuit, the fall in tidal volume (VT) was less than ten per cent for each ventilator. The addition of patient effort produced a number of changes in the ventilation delivered. Patient efforts of 0.25 s induced a variable fall in VT. An increase in VT was seen with some ventilators with patient efforts of 1 s but the effect was variable. Trigger failures and subsequent falls in minute volume were seen with the BiPAP and the Nippy2 at the highest respiratory frequency. Differences in the responses of the ventilators are demonstrated that may influence the selection of a ventilator, particularly in the treatment of breathless patients with ventilatory failure.

  3. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) enhances vascular and renal damage induced by hyperlipidemic diet in ApoE-knockout mice.

    PubMed

    Muñoz-García, Begoña; Moreno, Juan Antonio; López-Franco, Oscar; Sanz, Ana Belén; Martín-Ventura, José Luis; Blanco, Julia; Jakubowski, Aniela; Burkly, Linda C; Ortiz, Alberto; Egido, Jesús; Blanco-Colio, Luis Miguel

    2009-12-01

    Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a member of the tumor necrosis factor superfamily of cytokines. TWEAK binds and activates the Fn14 receptor, and may regulate apoptosis, inflammation, and angiogenesis, in different pathological conditions. We have evaluated the effect of exogenous TWEAK administration as well as the role of endogenous TWEAK on proinflammatory cytokine expression and vascular and renal injury severity in hyperlipidemic ApoE-knockout mice. ApoE(-/-) mice were fed with hyperlipidemic diet for 4 to 10 weeks, then randomized and treated with saline (controls), TWEAK (10 microg/kg/d), anti-TWEAK neutralizing mAb (1000 microg/kg/d), TWEAK plus anti-TWEAK antibody (10 microg TWEAK +1000 microg anti-TWEAK/kg/d), or nonspecific IgG (1000 microg/kg/d) daily for 9 days. In ApoE(-/-) mice, exogenous TWEAK administration in ApoE(-/-) mice induced activation of NF-kappaB, a key transcription factor implicated in the regulation of the inflammatory response, in vascular and renal lesions. Furthermore, TWEAK treatment increased chemokine expression (RANTES and MCP-1), as well as macrophage infiltration in atherosclerotic plaques and renal lesions. These effects were associated with exacerbation of vascular and renal damage. Conversely, treatment of ApoE(-/-) mice with an anti-TWEAK blocking mAb decreased NF-kappaB activation, proinflammatory cytokine expression, macrophage infiltration, and vascular and renal injury severity, indicating a pathological role for endogenous TWEAK. Finally, in murine vascular smooth muscle cells or tubular cells, either ox-LDL or TWEAK treatment increased expression and secretion of both RANTES and MCP-1. Furthermore, ox-LDL and TWEAK synergized for induction of MCP-1 and RANTES expression and secretion. Our results suggest that TWEAK exacerbates the inflammatory response associated with a high lipid-rich diet. TWEAK may be a novel therapeutic target to prevent vascular and renal damage associated with

  4. Adverse Outcome Pathway for Embryonic Vascular Disruption and Alternative Methods to Identify Chemical Vascular Disruptors During Development

    EPA Science Inventory

    Chemically induced vascular toxicity during embryonic development can result in a wide range of adverse prenatal outcomes. We used information from genetic mouse models linked to phenotypic outcomes and a vascular toxicity knowledge base to construct an embryonic vascular disrupt...

  5. Unexpected Role of the Copper Transporter ATP7A in PDGF-Induced Vascular Smooth Muscle Cell Migration

    PubMed Central

    Ashino, Takashi; Sudhahar, Varadarajan; Urao, Norifumi; Oshikawa, Jin; Chen, Gin-Fu; Wang, Huan; Huo, Yuqing; Finney, Lydia; Vogt, Stefan; McKinney, Ronald D.; Maryon, Edward B.; Kaplan, Jack H.; Ushio-Fukai, Masuko; Fukai, Tohru

    2010-01-01

    Rationale Copper, an essential nutrient, has been implicated in vascular remodeling and atherosclerosis with unknown mechanism. Bioavailability of intracellular copper is regulated not only by the copper importer CTR1, but also by the copper exporter ATP7A (Menke ATPase) whose function is achieved through copper-dependent translocation from trans-Golgi network (TGN). Platelet-derived growth factor (PDGF) promotes vascular smooth muscle cell (VSMC) migration, a key component of neointimal formation. Objective To determine the role of copper transporter ATP7A in PDGF-induced VSMC migration. Methods and Results Depletion of ATP7A inhibited VSMC migration in response to PDGF or wound scratch in a CTR1/copper-dependent manner. PDGF stimulation promoted ATP7A translocation from the TGN to lipid rafts which localized at the leading edge, where it colocalized with PDGF receptor and Rac1, in migrating VSMCs. Mechanistically, ATP7A siRNA or CTR siRNA prevented PDGF-induced Rac1 translocation to the leading edge, thereby inhibiting lamellipodia formation. In addition, ATP7A depletion prevented a PDGF-induced decrease in copper level and secretory copper enzyme precursor pro-lysyl oxidase (Pro-LOX) in lipid raft fraction as well as PDGF-induced increase in LOX activity. In vivo, ATP7A expression was markedly increased and copper accumulation was observed by synchrotron-based X-ray fluorescence microscopy at neointimal VSMCs in wire injury model. Conclusions These findings suggest that ATP7A plays an important role in copper-dependent PDGF-stimulated VSMC migration via recruiting Rac1 to lipid rafts at the leading edge as well as regulating LOX activity. This may contribute to neointimal formation after vascular injury. Our findings provide insight into ATP7A as a novel therapeutic target for vascular remodeling and atherosclerosis. PMID:20671235

  6. Unexpected role of the copper transporter ATP7A in PDGF-induced vascular smooth muscle cell migration.

    PubMed

    Ashino, Takashi; Sudhahar, Varadarajan; Urao, Norifumi; Oshikawa, Jin; Chen, Gin-Fu; Wang, Huan; Huo, Yuqing; Finney, Lydia; Vogt, Stefan; McKinney, Ronald D; Maryon, Edward B; Kaplan, Jack H; Ushio-Fukai, Masuko; Fukai, Tohru

    2010-09-17

    Copper, an essential nutrient, has been implicated in vascular remodeling and atherosclerosis with unknown mechanism. Bioavailability of intracellular copper is regulated not only by the copper importer CTR1 (copper transporter 1) but also by the copper exporter ATP7A (Menkes ATPase), whose function is achieved through copper-dependent translocation from trans-Golgi network (TGN). Platelet-derived growth factor (PDGF) promotes vascular smooth muscle cell (VSMC) migration, a key component of neointimal formation. To determine the role of copper transporter ATP7A in PDGF-induced VSMC migration. Depletion of ATP7A inhibited VSMC migration in response to PDGF or wound scratch in a CTR1/copper-dependent manner. PDGF stimulation promoted ATP7A translocation from the TGN to lipid rafts, which localized at the leading edge, where it colocalized with PDGF receptor and Rac1, in migrating VSMCs. Mechanistically, ATP7A small interfering RNA or CTR small interfering RNA prevented PDGF-induced Rac1 translocation to the leading edge, thereby inhibiting lamellipodia formation. In addition, ATP7A depletion prevented a PDGF-induced decrease in copper level and secretory copper enzyme precursor prolysyl oxidase (Pro-LOX) in lipid raft fraction, as well as PDGF-induced increase in LOX activity. In vivo, ATP7A expression was markedly increased and copper accumulation was observed by synchrotron-based x-ray fluorescence microscopy at neointimal VSMCs in wire injury model. These findings suggest that ATP7A plays an important role in copper-dependent PDGF-stimulated VSMC migration via recruiting Rac1 to lipid rafts at the leading edge, as well as regulating LOX activity. This may contribute to neointimal formation after vascular injury. Our findings provide insight into ATP7A as a novel therapeutic target for vascular remodeling and atherosclerosis.

  7. Fucoidan-induced osteogenic differentiation promotes angiogenesis by inducing vascular endothelial growth factor secretion and accelerates bone repair.

    PubMed

    Kim, Beom-Su; Yang, Sun-Sik; You, Hyung-Keun; Shin, Hong-In; Lee, Jun

    2018-03-01

    Osteogenesis and angiogenesis, including cell-cell communication between blood vessel cells and bone cells, are essential for bone repair. Fucoidan is a chemical compound that has a variety of biological activities. It stimulates osteoblast differentiation in human mesenchymal stem cells (MSCs), which in turn induces angiogenesis. However, the mechanism by which this communication between osteoblasts and endothelial cells is mediated remains unclear. Thus, the aim of this study was to clarify the relationship between fucoidan-induced osteoblastic differentiation in MSCs and angiogenesis in endothelial cells. First, the effect was confirmed of fucoidan on osteoblast differentiation in MSCs and obtained conditioned media from these cells (Fucoidan-MSC-CM). Next, the angiogenic activity of Fucoidan-MSC-CM was investigated and it was found that it stimulated angiogenesis, demonstrated by proliferation, tube formation, migration and sprout capillary formation in human umbilical vein endothelial cells. Messenger ribonucleic acid expression and protein secretion of vascular endothelial growth factor (VEGF) were dramatically increased during fucoidan-induced osteoblast differentiation and that its angiogenic activities were reduced by a VEGF/VEGF receptor-specific binding inhibitor. Furthermore, Fucoidan-MSC-CM increased the phosphorylation of mitogen-activated protein kinase and PI3K/AKT/eNOS signalling pathway, and that its angiogenic effects were markedly suppressed by SB203580 and AKT 1/2 inhibitor. Finally, an in vivo study was conducted and it was found that fucoidan accelerated new blood vessel formation and partially promoted bone formation in a rabbit model of a calvarial bone defect. This is the first study to investigate the angiogenic effect of fucoidan-induced osteoblastic differentiation through VEGF secretion, suggesting the therapeutic potential of fucoidan for enhancing bone repair. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Preconditioning Shields Against Vascular Events in Surgery (SAVES), a multicentre feasibility trial of preconditioning against adverse events in major vascular surgery: study protocol for a randomised control trial.

    PubMed

    Healy, Donagh; Clarke-Moloney, Mary; Gaughan, Brendan; O'Daly, Siobhan; Hausenloy, Derek; Sharif, Faisal; Newell, John; O'Donnell, Martin; Grace, Pierce; Forbes, John F; Cullen, Walter; Kavanagh, Eamon; Burke, Paul; Cross, Simon; Dowdall, Joseph; McMonagle, Morgan; Fulton, Greg; Manning, Brian J; Kheirelseid, Elrasheid A H; Leahy, Austin; Moneley, Daragh; Naughton, Peter; Boyle, Emily; McHugh, Seamus; Madhaven, Prakash; O'Neill, Sean; Martin, Zenia; Courtney, Donal; Tubassam, Muhammed; Sultan, Sherif; McCartan, Damian; Medani, Mekki; Walsh, Stewart

    2015-04-23

    Patients undergoing vascular surgery procedures constitute a 'high-risk' group. Fatal and disabling perioperative complications are common. Complications arise via multiple aetiological pathways. This mechanistic redundancy limits techniques to reduce complications that target individual mechanisms, for example, anti-platelet agents. Remote ischaemic preconditioning (RIPC) induces a protective phenotype in at-risk tissue, conferring protection against ischaemia-reperfusion injury regardless of the trigger. RIPC is induced by repeated periods of upper limb ischaemia-reperfusion produced using a blood pressure cuff. RIPC confers some protection against cardiac and renal injury during major vascular surgery in proof-of-concept trials. Similar trials suggest benefit during cardiac surgery. Several uncertainties remain in advance of a full-scale trial to evaluate clinical efficacy. We propose a feasibility trial to fully evaluate arm-induced RIPC's ability to confer protection in major vascular surgery, assess the incidence of a proposed composite primary efficacy endpoint and evaluate the intervention's acceptability to patients and staff. Four hundred major vascular surgery patients in five Irish vascular centres will be randomised (stratified for centre and procedure) to undergo RIPC or not immediately before surgery. RIPC will be induced using a blood pressure cuff with four cycles of 5 minutes of ischaemia followed by 5 minutes of reperfusion immediately before the start of operations. There is no sham intervention. Participants will undergo serum troponin measurements pre-operatively and 1, 2, and 3 days post-operatively. Participants will undergo 12-lead electrocardiograms pre-operatively and on the second post-operative day. Predefined complications within one year of surgery will be recorded. Patient and staff experiences will be explored using qualitative techniques. The primary outcome measure is the proportion of patients who develop elevated serum troponin

  9. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Gang; Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang; Hitomi, Hirofumi, E-mail: hitomi@kms.ac.jp

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation,more » whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.« less

  10. Investigation of terpinen-4-ol effects on vascular smooth muscle relaxation.

    PubMed

    Maia-Joca, Rebeca Peres Moreno; Joca, Humberto Cavalcante; Ribeiro, Francisca Jéssica Penha; do Nascimento, Renata Vieira; Silva-Alves, Kerly Shamyra; Cruz, Jader S; Coelho-de-Souza, Andrelina Noronha; Leal-Cardoso, José Henrique

    2014-10-12

    This study investigated the mechanisms underlying the vascular effects of terpinen-4-ol in isolated rat aortic ring preparations. The thoracic aortae of healthy rats were submitted to isometric tension recording. Membrane resting potential and input membrane resistance were measured by conventional microelectrode technique. Terpinen-4-ol reversibly relaxed endothelium-containing preparations pre-contracted with high K(+) and phenylephrine with IC50 values of 421.43 μM and 802.50 μM, respectively. These effects were significantly reduced by vascular endothelium removal. In Ca(2+)-free and high K(+) (80 mM) medium, the contractions produced by Ba(2+) were reduced by terpinen-4-ol (100-1000 μM) in a concentration-dependent manner. In aortic rings maintained under Ca(2+)-free conditions, terpinen-4-ol significantly reduced the contractions induced by either phenylephrine (1 μM) or phorbol 12,13-dibutyrate (1 μM). Terpinen-4-ol (10-1000 μM) also relaxed the contractions evoked by BAYK-8644 (3 μM) with an IC50 of 454.23 μM. Neither membrane resting potential nor input resistance of smooth muscle cells was altered by terpinen-4-ol exposure. The present results suggest that terpinen-4-ol induced vascular smooth muscle relaxation that was preferentially due to the inhibition of electromechanical pathways related to calcium influx through voltage-operated calcium channels. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Activation of peroxisome proliferator-activated receptor δ inhibits angiotensin II-induced activation of matrix metalloproteinase-2 in vascular smooth muscle cells.

    PubMed

    Ham, Sun Ah; Lee, Hanna; Hwang, Jung Seok; Kang, Eun Sil; Yoo, Taesik; Paek, Kyung Shin; Do, Jeong Tae; Park, Chankyu; Oh, Jae-Wook; Kim, Jin-Hoi; Han, Chang Woo; Seo, Han Geuk

    2014-01-01

    We investigated the role of peroxisome proliferator-activated receptor (PPAR) δ on angiotensin (Ang) II-induced activation of matrix metalloproteinase (MMP)-2 in vascular smooth muscle cells (VSMCs). Activation of PPARδ by GW501516, a specific ligand for PPARδ, attenuated Ang II-induced activation of MMP-2 in a concentration-dependent manner. GW501516 also inhibited the generation of reactive oxygen species in VSMCs treated with Ang II. A marked increase in the mRNA levels of tissue inhibitor of metalloproteinase (TIMP)-2 and -3, endogenous antagonists of MMPs, was also observed in GW501516-treated VSMCs. These effects were markedly reduced in the presence of siRNAs against PPARδ, indicating that the effects of GW501516 are PPARδ dependent. Among the protein kinases inhibited by GW501516, suppression of phosphatidylinositol 3-kinase/Akt signaling was shown to have the greatest effect on activation of MMP-2 in VSMCs treated with Ang II. Concomitantly, GW501516-mediated inhibition of MMP-2 activation in VSMCs treated with Ang II was associated with the suppression of cell migration to levels approaching those in cells not exposed to Ang II. Thus, activation of PPARδ confers resistance to Ang II-induced degradation of the extracellular matrix by upregulating expression of its endogenous inhibitor TIMP and thereby modulating cellular responses to Ang II in vascular cells. © 2014 S. Karger AG, Basel.

  12. Antihypertensive treatment differentially affects vascular sphingolipid biology in spontaneously hypertensive rats.

    PubMed

    Spijkers, Léon J A; Janssen, Ben J A; Nelissen, Jelly; Meens, Merlijn J P M T; Wijesinghe, Dayanjan; Chalfant, Charles E; De Mey, Jo G R; Alewijnse, Astrid E; Peters, Stephan L M

    2011-01-01

    We have previously shown that essential hypertension in humans and spontaneously hypertensive rats (SHR), is associated with increased levels of ceramide and marked alterations in sphingolipid biology. Pharmacological elevation of ceramide in isolated carotid arteries of SHR leads to vasoconstriction via a calcium-independent phospholipase A(2), cyclooxygenase-1 and thromboxane synthase-dependent release of thromboxane A(2). This phenomenon is almost absent in vessels from normotensive Wistar Kyoto (WKY) rats. Here we investigated whether lowering of blood pressure can reverse elevated ceramide levels and reduce ceramide-mediated contractions in SHR. For this purpose SHR were treated for 4 weeks with the angiotensin II type 1 receptor antagonist losartan or the vasodilator hydralazine. Both drugs decreased blood pressure equally (SBP untreated SHR: 191±7 mmHg, losartan: 125±5 mmHg and hydralazine: 113±14 mmHg). The blood pressure lowering was associated with a 20-25% reduction in vascular ceramide levels and improved endothelial function of isolated carotid arteries in both groups. Interestingly, losartan, but not hydralazine treatment, markedly reduced sphingomyelinase-induced contractions. While both drugs lowered cyclooxygenase-1 expression, only losartan and not hydralazine, reduced the endothelial expression of calcium-independent phospholipase A(2). The latter finding may explain the effect of losartan treatment on sphingomyelinase-induced vascular contraction. In summary, this study corroborates the importance of sphingolipid biology in blood pressure control and specifically shows that blood pressure lowering reduces vascular ceramide levels in SHR and that losartan treatment, but not blood pressure lowering per se, reduces ceramide-mediated arterial contractions.

  13. Substance P receptor blockade decreases stretch-induced lung cytokines and lung injury in rats.

    PubMed

    Brégeon, Fabienne; Steinberg, Jean Guillaume; Andreotti, Nicolas; Sabatier, Jean-Marc; Delpierre, Stéphane; Ravailhe, Sylvie; Jammes, Yves

    2010-04-15

    Overdistension of lung tissue during mechanical ventilation causes cytokine release, which may be facilitated by the autonomic nervous system. We used mechanical ventilation to cause lung injury in rats, and studied how cervical section of the vagus nerve, or substance P (SP) antagonism, affected the injury. The effects of 40 or 25 cmH(2)O high airway pressure injurious ventilation (HV(40) and HV(25)) were studied and compared with low airway pressure ventilation (LV) and spontaneous breathing (controls). Lung mechanics, lung weight, gas exchange, lung myeloperoxidase activity, lung concentrations of interleukin (IL)-1 beta and IL-6, and amounts of lung SP were measured. Control rats were intact, others were bivagotomized, and in some animals we administered the neurokinin-1 (NK-1) receptor blocking agent SR140333. We first determined the durations of HV(40) and HV(25) that induced the same levels of lung injury and increased lung contents of IL-1 beta and IL-6. They were 90 min and 120 min, respectively. Both HV(40) and HV(25) increased lung SP, IL-1 beta and IL-6 levels, these effects being markedly reduced by NK-1 receptor blockade. Bivagotomy reduced to a lesser extent the HV(40)- and HV(25)-induced increases in SP but significantly reduced cytokine production. Neither vagotomy nor NK-1 receptor blockade prevented HV(40)-induced lung injury but, in the HV(25) group, they made it possible to maintain lung injury indices close to those measured in the LV group. This study suggests that both neuronal and extra-neuronal SP might be involved in ventilator-induced lung inflammation and injury. NK-1 receptor blockade could be a pharmacological tool to minimize some adverse effects of mechanical ventilation.

  14. Arsenite induces endothelial cell permeability increase through a reactive oxygen species-vascular endothelial growth factor pathway.

    PubMed

    Bao, Lingzhi; Shi, Honglian

    2010-11-15

    As a potent environmental oxidative stressor, arsenic exposure has been reported to exacerbate cardiovascular diseases and increase vascular endothelial cell monolayer permeability. However, the underlying mechanism of this effect is not well understood. In this paper, we test our hypothesis that reactive oxygen species (ROS)-induced vascular endothelial growth factor (VEGF) expression may play an important role in an arsenic-caused increase of endothelial cell monolayer permeability. The mouse brain vascular endothelial cell bEnd3 monolayer was exposed to arsenite for 1, 3, and 6 days. The monolayer permeability, VEGF protein release, and ROS generation were determined. In addition, VE-cadherin and zonula occludens-1 (ZO-1), two membrane structure proteins, were immunostained to elucidate the effects of arsenite on the cell-cell junction. The roles of ROS and VEGF in arsenite-induced permeability was determined by inhibiting ROS with antioxidants and immuno-depleting VEGF with a VEGF antibody. We observed that arsenite increased bEnd3 monolayer permeability, elevated the production of cellular ROS, and increased VEGF release. VE-cadherin and ZO-1 disruptions were also found in cells treated with arsenite. Furthermore, both antioxidant (N-acetyl cysteine and tempol) and the VEGF antibody treatments significantly lowered the arsenite-induced permeability of the bEnd3 monolayer as well as VEGF expression. VE-cadherin and ZO-1 disruptions were also diminished by N-acetyl cysteine and the VEGF antibody. Our data suggest that the increase in VEGF expression caused by ROS may play an important role in the arsenite-induced increase in endothelial cell permeability.

  15. Heliox Improves Carbon Dioxide Removal during Lung Protective Mechanical Ventilation.

    PubMed

    Beurskens, Charlotte J; Brevoord, Daniel; Lagrand, Wim K; van den Bergh, Walter M; Vroom, Margreeth B; Preckel, Benedikt; Horn, Janneke; Juffermans, Nicole P

    2014-01-01

    Introduction. Helium is a noble gas with low density and increased carbon dioxide (CO2) diffusion capacity. This allows lower driving pressures in mechanical ventilation and increased CO2 diffusion. We hypothesized that heliox facilitates ventilation in patients during lung-protective mechanical ventilation using low tidal volumes. Methods. This is an observational cohort substudy of a single arm intervention study. Twenty-four ICU patients were included, who were admitted after a cardiac arrest and mechanically ventilated for 3 hours with heliox (50% helium; 50% oxygen). A fixed protective ventilation protocol (6 mL/kg) was used, with prospective observation for changes in lung mechanics and gas exchange. Statistics was by Bonferroni post-hoc correction with statistical significance set at P < 0.017. Results. During heliox ventilation, respiratory rate decreased (25 ± 4 versus 23 ± 5 breaths min(-1), P = 0.010). Minute volume ventilation showed a trend to decrease compared to baseline (11.1 ± 1.9 versus 9.9 ± 2.1 L min(-1), P = 0.026), while reducing PaCO2 levels (5.0 ± 0.6 versus 4.5 ± 0.6 kPa, P = 0.011) and peak pressures (21.1 ± 3.3 versus 19.8 ± 3.2 cm H2O, P = 0.024). Conclusions. Heliox improved CO2 elimination while allowing reduced minute volume ventilation in adult patients during protective mechanical ventilation.

  16. Effects of types of ventilation system on indoor particle concentrations in residential buildings.

    PubMed

    Park, J S; Jee, N-Y; Jeong, J-W

    2014-12-01

    The objective of this study was to quantify the influence of ventilation systems on indoor particle concentrations in residential buildings. Fifteen occupied, single-family apartments were selected from three sites. The three sites have three different ventilation systems: unbalanced mechanical ventilation, balanced mechanical ventilation, and natural ventilation. Field measurements were conducted between April and June 2012, when outdoor air temperatures were comfortable. Number concentrations of particles, PM2.5 and CO2 , were continuously measured both outdoors and indoors. In the apartments with natural ventilation, I/O ratios of particle number concentrations ranged from 0.56 to 0.72 for submicron particles, and from 0.25 to 0.60 for particles larger than 1.0 μm. The daily average indoor particle concentration decreased to 50% below the outdoor level for submicron particles and 25% below the outdoor level for fine particles, when the apartments were mechanically ventilated. The two mechanical ventilation systems reduced the I/O ratios by 26% for submicron particles and 65% for fine particles compared with the natural ventilation. These results showed that mechanical ventilation can reduce exposure to outdoor particles in residential buildings. Results of this study confirm that mechanical ventilation with filtration can significantly reduce indoor particle levels compared with natural ventilation. The I/O ratios of particles substantially varied at the naturally ventilated apartments because of the influence of variable window opening conditions and unsteadiness of wind flow on the penetration of outdoor air particles. For better prediction of the exposure to outdoor particles in naturally ventilated residential buildings, it is important to understand the penetration of outdoor particles with variable window opening conditions. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. The BK(Ca) channels deficiency as a possible reason for radiation-induced vascular hypercontractility.

    PubMed

    Kyrychenko, Sergii; Tishkin, Sergey; Dosenko, Victor; Ivanova, Irina; Novokhatska, Tatiana; Soloviev, Anatoly

    2012-01-01

    It is likely that large-conductance Ca²⁺-activated K⁺ (BK(Ca)) channels channelopathy tightly involved in vascular malfunctions and arterial hypertension development. In the present study, we compared the results of siRNAs-induced α-BK(Ca) gene silencing and vascular abnormalities produced by whole-body ionized irradiation in rats. The experimental design comprised RT-PCR and patch clamp technique, thoracic aorta smooth muscle (SM) contractile recordings and arterial blood pressure (BP) measurements on the 30th day after whole body irradiation (6Gy) and following siRNAs KCNMA1 gene silencing in vivo. The expression profile of BK(Ca) mRNA transcripts in SM was significantly decreased in siRNAs-treated rats in a manner similar to irradiated SM. In contrast, the mRNA levels of K(v) and K(ATP) were significantly increased while L-type calcium channels mRNA transcripts demonstrated tendency to increment. The SMCs obtained from irradiated animals and after KCNMA1 gene silencing showed a significant decrease in total K⁺ current density amplitude. Paxilline (500 nM)-sensitive components of outward current were significantly decreased in both irradiated and gene silencing SMCs. KCNMA1 gene silencing increased SM sensitivity to norepinephrine while Ach-induced relaxation had decreased. The silencing of KCNMA1 had no significant effect on BP while radiation produced sustained arterial hypertension. Therefore, radiation alters the form and function of the BK(Ca) channel and this type of channelopathy may contribute to related vascular abnormalities. Nevertheless, it is unlikely that BK(Ca) can operate as a crucial factor for radiation-induced arterial hypertension. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. [Alveolar ventilation and recruitment under lung protective ventilation].

    PubMed

    Putensen, Christian; Muders, Thomas; Kreyer, Stefan; Wrigge, Hermann

    2008-11-01

    Goal of mechanical ventilation is to improve gas exchange and reduce work of breathing without contributing to further lung injury. Besides providing adequate EELV and thereby arterial oxygenation PEEP in addition to a reduction in tidal volume is required to prevent cyclic alveolar collapse and tidal recruitment and hence protective mechanical ventilation. Currently, there is no consensus if and if yes at which price alveolar recruitment with high airway pressures should be intended ("open up the lung"), or if it is more important to reduce the mechanical stress and strain to the lungs as much as possible ("keep the lung closed"). Potential of alveolar recruitment differs from patient to patient but also between lung regions. Potential for recruitment depends probably more on regional lung mechanics - especially on lung elastance - than on the underlying disease. Based on available data neither high PEEP nor other methods used for alveolar recruitment could demonstrate a survival benefit in patients with ARDS. These results may support an individualized titration of PEEP or other manoeuvres used for recruitment taking into consideration the regional effects. Bedside imaging techniques allowing titration of PEEP or other manoeuvres to prevent end-expiratory alveolar collapse (tidal recruitment) and inspiratory overinflation may be a promising development.

  19. Initial mechanical ventilator settings and lung protective ventilation in the ED.

    PubMed

    Wilcox, Susan R; Richards, Jeremy B; Fisher, Daniel F; Sankoff, Jeffrey; Seigel, Todd A

    2016-08-01

    Mechanical ventilation with low tidal volumes has been shown to improve outcomes for patients both with and without acute respiratory distress syndrome. This study aims to characterize mechanically ventilated patients in the emergency department (ED), describe the initial ED ventilator settings, and assess for associations between lung protective ventilation strategies in the ED and outcomes. This was a multicenter, prospective, observational study of mechanical ventilation at 3 academic EDs. We defined lung protective ventilation as a tidal volume of less than or equal to 8 mL/kg of predicted body weight and compared outcomes for patients ventilated with lung protective vs non-lung protective ventilation, including inhospital mortality, ventilator days, intensive care unit length of stay, and hospital length of stay. Data from 433 patients were analyzed. Altered mental status without respiratory pathology was the most common reason for intubation, followed by trauma and respiratory failure. Two hundred sixty-one patients (60.3%) received lung protective ventilation, but most patients were ventilated with a low positive end-expiratory pressure, high fraction of inspired oxygen strategy. Patients were ventilated in the ED for a mean of 5 hours and 7 minutes but had few ventilator adjustments. Outcomes were not significantly different between patients receiving lung protective vs non-lung protective ventilation. Nearly 40% of ED patients were ventilated with non-lung protective ventilation as well as with low positive end-expiratory pressure and high fraction of inspired oxygen. Despite a mean ED ventilation time of more than 5 hours, few patients had adjustments made to their ventilators. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Magnesium prevents phosphate-induced calcification in human aortic vascular smooth muscle cells.

    PubMed

    Louvet, Loïc; Büchel, Janine; Steppan, Sonja; Passlick-Deetjen, Jutta; Massy, Ziad A

    2013-04-01

    Vascular calcification (VC) is prevalent in patients suffering from chronic kidney disease. Factors promoting calcification include abnormalities in mineral metabolism, particularly high phosphate levels. Inorganic phosphate (Pi) is a classical inducer of in vitro VC. Recently, an inverse relationship between serum magnesium concentrations and VC has been reported. The present study aimed to investigate the effects of magnesium on Pi-induced VC at the cellular level using primary HAVSMC. Alive and fixed HAVSMC were assessed during 14 days in the presence of Pi with increasing concentrations of magnesium (Mg(2+)) chloride. Mineralization was measured using quantification of calcium, von Kossa and alizarin red stainings. Cell viability and secretion of classical VC markers were also assessed using adequate tests. Involvement of transient receptor potential melastatin (TRPM) 7 was assessed using 2-aminoethoxy-diphenylborate (2-APB) inhibitor. Co-incubation with Mg(2+) significantly decreased Pi-induced VC in live HAVSMC, no effect was found in fixed cells. At potent concentrations in Pi-induced HAVSMC, Mg(2+) significantly improved cell viability and restored to basal level increased secretions of osteocalcin and matrix gla protein, whereas a decrease in osteopontin secretion was partially restored. The block of TRPM7 with 2-APB at 10(-4) M led to the inefficiency of Mg(2+) to prevent VC. Increasing Mg(2+) concentrations significantly reduced VC, improved cell viability and modulated secretion of VC markers during cell-mediated matrix mineralization clearly pointing to a cellular role for Mg(2+) and 2-APB further involved TRPM7 and a potential Mg(2+) entry to exert its effects. Further investigations are needed to shed light on additional cellular mechanism(s) by which Mg(2+) is able to prevent VC.

  1. MMP-9-Dependent Serum-Borne Bioactivity Caused by Multiwalled Carbon Nanotube Exposure Induces Vascular Dysfunction via the CD36 Scavenger Receptor

    PubMed Central

    Aragon, Mario; Erdely, Aaron; Bishop, Lindsey; Salmen, Rebecca; Weaver, John; Liu, Jim; Hall, Pamela; Eye, Tracy; Kodali, Vamsi; Zeidler-Erdely, Patti; Stafflinger, Jillian E.; Ottens, Andrew K.; Campen, Matthew J.

    2016-01-01

    Inhalation of multiwalled carbon nanotubes (MWCNT) causes systemic effects including vascular inflammation, endothelial dysfunction, and acute phase protein expression. MWCNTs translocate only minimally beyond the lungs, thus cardiovascular effects thereof may be caused by generation of secondary biomolecular factors from MWCNT-pulmonary interactions that spill over into the systemic circulation. Therefore, we hypothesized that induced matrix metalloproteinase-9 (MMP-9) is a generator of factors that, in turn, drive vascular effects through ligand-receptor interactions with the multiligand pattern recognition receptor, CD36. To test this, wildtype (WT; C57BL/6) and MMP-9−/− mice were exposed to varying doses (10 or 40 µg) of MWCNTs via oropharyngeal aspiration and serum was collected at 4 and 24 h postexposure. Endothelial cells treated with serum from MWCNT-exposed WT mice exhibited significantly reduced nitric oxide (NO) generation, as measured by electron paramagnetic resonance, an effect that was independent of NO scavenging. Serum from MWCNT-exposed WT mice inhibited acetylcholine (ACh)-mediated relaxation of aortic rings at both time points. Absence of CD36 on the aortic rings (obtained from CD36-deficient mice) abolished the serum-induced impairment of vasorelaxation. MWCNT exposure induced MMP-9 protein levels in both bronchoalveolar lavage and whole lung lysates. Serum from MMP-9−/− mice exposed to MWCNT did not diminish the magnitude of vasorelaxation in naïve WT aortic rings, although a modest right shift of the ACh dose–response curve was observed in both MWCNT dose groups relative to controls. In conclusion, pulmonary exposure to MWCNT leads to elevated MMP-9 levels and MMP-9-dependent generation of circulating bioactive factors that promote endothelial dysfunction and decreased NO bioavailability via interaction with vascular CD36. PMID:26801584

  2. Adipokine CTRP6 improves PPARγ activation to alleviate angiotensin II-induced hypertension and vascular endothelial dysfunction in spontaneously hypertensive rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Liyi; Departments of Cardiology, The 451st Hospital of People's Liberation Army; Hu, Xiaojing

    Angiotensin II (AngII) is the most important component of angiotensin, which has been regarded as a major contributor to the incidence of hypertension and vascular endothelial dysfunction. The adipocytokine C1q/TNF-related protein 6 (CTRP6) was recently reported to have multiple protective effects on cardiac and cardiovascular function. However, the exact role of CTRP6 in the progression of AngII induced hypertension and vascular endothelial function remains unclear. Here, we showed that serum CTRP6 content was significantly downregulated in SHRs, accompanied by a marked increase in arterial systolic pressure and serum AngII, CRP and ET-1 content. Then, pcDNA3.1-mediated CTRP6 delivery or CTRP6 siRNAmore » was injected into SHRs. CTRP6 overexpression caused a significant decrease in AngII expression and AngII-mediated hypertension and vascular endothelial inflammation. In contrast, CTRP6 knockdown had the opposite effect to CTRP6 overexpression. Moreover, we found that CTRP6 positively regulated the activation of the ERK1/2 signaling pathway and the expression of peroxisome proliferator-activated receptor γ (PPARγ), a recently proven negative regulator of AngII, in the brain and vascular endothelium of SHRs. Finally, CTRP6 was overexpressed in endothelial cells, and caused a significant increase in PPARγ activation and suppression in AngII-mediated vascular endothelial dysfunction and apoptosis. The effect of that could be rescued by the ERK inhibitor PD98059. In contrast, silencing CTRP6 suppressed PPARγ activation and exacerbated AngII-mediated vascular endothelial dysfunction and apoptosis. In conclusion, CTRP6 improves PPARγ activation and alleviates AngII-induced hypertension and vascular endothelial dysfunction. - Highlights: • Serum CTRP6 was significantly decreased in spontaneously hypertensive rats (SHRs). • CTRP6 positively regulated the activation of the ERK1/2 signaling pathway. • CTRP6 negatively regulates PPARγ mediated Angiotensin II

  3. Effects of Mild Blast Traumatic Brain Injury on Cerebral Vascular, Histopathological, and Behavioral Outcomes in Rats

    PubMed Central

    Zeng, Yaping; Deyo, Donald; Parsley, Margaret A.; Hawkins, Bridget E.; Prough, Donald S.; DeWitt, Douglas S.

    2018-01-01

    Abstract To determine the effects of mild blast-induced traumatic brain injury (bTBI), several groups of rats were subjected to blast injury or sham injury in a compressed air-driven shock tube. The effects of bTBI on relative cerebral perfusion (laser Doppler flowmetry [LDF]), and mean arterial blood pressure (MAP) cerebral vascular resistance were measured for 2 h post-bTBI. Dilator responses to reduced intravascular pressure were measured in isolated middle cerebral arterial (MCA) segments, ex vivo, 30 and 60 min post-bTBI. Neuronal injury was assessed (Fluoro-Jade C [FJC]) 24 and 48 h post-bTBI. Neurological outcomes (beam balance and walking tests) and working memory (Morris water maze [MWM]) were assessed 2 weeks post-bTBI. Because impact TBI (i.e., non-blast TBI) is often associated with reduced cerebral perfusion and impaired cerebrovascular function in part because of the generation of reactive oxygen and nitrogen species such as peroxynitrite (ONOO−), the effects of the administration of the ONOO− scavenger, penicillamine methyl ester (PenME), on cerebral perfusion and cerebral vascular resistance were measured for 2 h post-bTBI. Mild bTBI resulted in reduced relative cerebral perfusion and MCA dilator responses to reduced intravascular pressure, increases in cerebral vascular resistance and in the numbers of FJC-positive cells in the brain, and significantly impaired working memory. PenME administration resulted in significant reductions in cerebral vascular resistance and a trend toward increased cerebral perfusion, suggesting that ONOO− may contribute to blast-induced cerebral vascular dysfunction. PMID:29160141

  4. [Protective effects of polysacchride of Spirulina platensis and Sargassum thunbeergii on vascular of alloxan induced diabetic rats].

    PubMed

    Huang, Zhi-xuan; Mei, Xue-ting; Xu, Dong-hui; Xu, Shi-bo; Lv, Jun-yi

    2005-02-01

    To study the protective effects of polysaccharide of Spirulina platensis and Sargassum thunbeergii on vascular of alloxan (ALX) induced diabetic rats. With the doses of polysaccharide of Spirulina platensis (PSP) and Sargassum thunbeergii (PST) compound (1:1) 12.261, 36.783, 110.349 mg x kg(-1) by i.g. administration to alloxan induced diabetic rats respectively for 6 weeks. Then the blood glucose and the TC, HDL-C, TG, NO, ET in serum were detected. The contraction and relaxation response to NE and ACh in aortic rings of the alloxan induced diabetic rats has been studied. The results showed the compound of PSP and PST could decrease the blood glucose and the TC, TG, NO, ET in serum and increase HDL-C than in the alloxan induced diabetic rats. The contraction responses to NE in aortic rings of the alloxan induced diabetic rats were significantly elevated in the normal rats, and the responses to ACh were significantly lower. PSP and PST compound could significantly lower the responses to NE and significantly elevate the responses to ACh in aortic rings of the alloxan induced diabetic rats. PSP and PST compound could decrease blood glucose and could protect the vascular of alloxan induced diabetic rats.

  5. Ganoderma lucidum Polysaccharides Reduce Lipopolysaccharide-Induced Interleukin-1β Expression in Cultured Smooth Muscle Cells and in Thoracic Aortas in Mice

    PubMed Central

    Liang, Chan-Jung; Lee, Chiang-Wen; Sung, Hsin-Ching; Chen, Yung-Hsiang; Hsu, Hsien-Yeh; Tseng, Ying-Chin; Li, Chi-Yuan; Wang, Shu-Huei

    2014-01-01

    The expression of inflammatory cytokines on vascular walls is a critical event in vascular diseases and inflammation. The aim of the present study was to examine the effects of an extract of Ganoderma lucidum (Reishi) polysaccharides (EORPs), which is effective against immunological disorders, on interleukin- (IL-) 1β expression by human aortic smooth muscle cells (HASMCs) and the underlying mechanism. The lipopolysaccharide- (LPS-) induced IL-1β expression was significantly reduced when HASMCs were pretreated with EORP by Western blot and immunofluorescent staining. Pretreatment with 10 μg/mL EORP decreased LPS-induced ERK, p38, JNK, and Akt phosphorylation. But the increase in IL-1β expression with LPS treatment was only inhibited by pretreatment with the ERK1/2 inhibitor, while the JNK and p38 inhibitors had no effect. In addition, EORP reduced the phosphorylation and nuclear translocation of nuclear factor- (NF-) κB p65 in LPS-treated HASMCs. Furthermore, in vivo, IL-1β expression was strongly expressed in thoracic aortas in LPS-treated mice. Oral administration of EORP decreased IL-1β expression. The level of IL-1β expression in LPS-treated or in LPS/EORP-treated group was very low and was similar to that of the saline-treated group in toll-like receptor 4-deficient (TLR4−/−) mice. These findings suggest that EORP has the anti-inflammatory property and could prove useful in the prevention of vascular diseases and inflammatory responses. PMID:24723958

  6. Combustion-derived nanoparticulate induces the adverse vascular effects of diesel exhaust inhalation

    PubMed Central

    Mills, Nicholas L.; Miller, Mark R.; Lucking, Andrew J.; Beveridge, Jon; Flint, Laura; Boere, A. John F.; Fokkens, Paul H.; Boon, Nicholas A.; Sandstrom, Thomas; Blomberg, Anders; Duffin, Rodger; Donaldson, Ken; Hadoke, Patrick W.F.; Cassee, Flemming R.; Newby, David E.

    2011-01-01

    Aim Exposure to road traffic and air pollution may be a trigger of acute myocardial infarction, but the individual pollutants responsible for this effect have not been established. We assess the role of combustion-derived-nanoparticles in mediating the adverse cardiovascular effects of air pollution. Methods and results To determine the in vivo effects of inhalation of diesel exhaust components, 16 healthy volunteers were exposed to (i) dilute diesel exhaust, (ii) pure carbon nanoparticulate, (iii) filtered diesel exhaust, or (iv) filtered air, in a randomized double blind cross-over study. Following each exposure, forearm blood flow was measured during intra-brachial bradykinin, acetylcholine, sodium nitroprusside, and verapamil infusions. Compared with filtered air, inhalation of diesel exhaust increased systolic blood pressure (145 ± 4 vs. 133 ± 3 mmHg, P< 0.05) and attenuated vasodilatation to bradykinin (P= 0.005), acetylcholine (P= 0.008), and sodium nitroprusside (P< 0.001). Exposure to pure carbon nanoparticulate or filtered exhaust had no effect on endothelium-dependent or -independent vasodilatation. To determine the direct vascular effects of nanoparticulate, isolated rat aortic rings (n= 6–9 per group) were assessed in vitro by wire myography and exposed to diesel exhaust particulate, pure carbon nanoparticulate and vehicle. Compared with vehicle, diesel exhaust particulate (but not pure carbon nanoparticulate) attenuated both acetylcholine (P< 0.001) and sodium-nitroprusside (P= 0.019)-induced vasorelaxation. These effects were partially attributable to both soluble and insoluble components of the particulate. Conclusion Combustion-derived nanoparticulate appears to predominately mediate the adverse vascular effects of diesel exhaust inhalation. This provides a rationale for testing environmental health interventions targeted at reducing traffic-derived particulate emissions. PMID:21753226

  7. Modified rice bran hemicellulose inhibits vascular endothelial growth factor-induced angiogenesis in vitro via VEGFR2 and its downstream signaling pathways

    PubMed Central

    ZHU, Xia; OKUBO, Aya; IGARI, Naoki; NINOMIYA, Kentaro; EGASHIRA, Yukari

    2016-01-01

    Angiogenesis is implicated in diverse pathological conditions such as cancer, rheumatoid arthritis, psoriasis, atherosclerosis, and retinal neovascularization. In the present study, we investigated the effects of modified rice bran hemicellulose (MRBH), a water-soluble hemicellulose preparation from rice bran treated with shiitake enzymes, on vascular endothelial growth factor (VEGF)-induced angiogenesis in vitro and its mechanism. We found that MRBH significantly inhibited VEGF-induced tube formation in human umbilical vein endothelial cells (HUVECs) co-cultured with human dermal fibroblasts. We also observed that MRBH dose-dependently suppressed the VEGF-induced proliferation and migration of HUVECs. Furthermore, examination of the anti-angiogenic mechanism indicated that MRBH reduced not only VEGF-induced activation of VEGF receptor 2 but also of the downstream signaling proteins Akt, extracellular signal-regulated protein kinase 1/2, and p38 mitogen-activated protein kinase. These findings suggest that MRBH has in vitro anti-angiogenic effects that are partially mediated through the inhibition of VEGF signaling. PMID:28439487

  8. Ventilation-perfusion matching during exercise

    NASA Technical Reports Server (NTRS)

    Wagner, P. D.

    1992-01-01

    In normal subjects, exercise widens the alveolar-arterial PO2 difference (P[A-a]O2) despite a more uniform topographic distribution of ventilation-perfusion (VA/Q) ratios. While part of the increase in P(A-a)O2 (especially during heavy exercise) is due to diffusion limitation, a considerable amount is caused by an increase in VA/Q mismatch as detected by the multiple inert gas elimination technique. Why this occurs is unknown, but circumstantial evidence suggests it may be related to interstitial pulmonary edema rather than to factors dependent on ventilation, airway gas mixing, airway muscle tone, or pulmonary vascular tone. In patients with lung disease, the gas exchange consequences of exercise are variable. Thus, arterial PO2 may increase, remain the same, or fall. In general, patients with advanced chronic obstructive pulmonary disease (COPD) or interstitial fibrosis who exercise show a fall in PO2. This is usually not due to worsening VA/Q relationships but mostly to the well-known fall in mixed venous PO2, which itself results from a relatively smaller increase in cardiac output than VO2. However, in interstitial fibrosis (but not COPD), there is good evidence that a part of the fall in PO2 on exercise is caused by alveolar-capillary diffusion limitation of O2 transport; in COPD (but not interstitial fibrosis), a frequent additional contributing factor to the hypoxemia of exercise is an inadequate ventilatory response, such that minute ventilation does not rise as much as does CO2 production or O2 uptake, causing arterial PCO2 to increase and PO2 to fall.

  9. Dissociation of VE-PTP from VE-cadherin is required for leukocyte extravasation and for VEGF-induced vascular permeability in vivo

    PubMed Central

    Broermann, Andre; Winderlich, Mark; Block, Helena; Frye, Maike; Rossaint, Jan; Zarbock, Alexander; Cagna, Giuseppe; Linnepe, Ruth; Schulte, Dörte; Nottebaum, Astrid Fee

    2011-01-01

    We have recently shown that vascular endothelial protein tyrosine phosphatase (VE-PTP), an endothelial membrane protein, associates with VE-cadherin and is required for optimal VE-cadherin function and endothelial cell contact integrity. The dissociation of VE-PTP from VE-cadherin is triggered by vascular endothelial growth factor (VEGF) and by the binding of leukocytes to endothelial cells in vitro, suggesting that this dissociation is a prerequisite for the destabilization of endothelial cell contacts. Here, we show that VE-cadherin/VE-PTP dissociation also occurs in vivo in response to LPS stimulation of the lung or systemic VEGF stimulation. To show that this dissociation is indeed necessary in vivo for leukocyte extravasation and VEGF-induced vascular permeability, we generated knock-in mice expressing the fusion proteins VE-cadherin-FK 506 binding protein and VE-PTP-FRB* under the control of the endogenous VE-cadherin promoter, thus replacing endogenous VE-cadherin. The additional domains in both fusion proteins allow the heterodimeric complex to be stabilized by a chemical compound (rapalog). We found that intravenous application of the rapalog strongly inhibited VEGF-induced (skin) and LPS-induced (lung) vascular permeability and inhibited neutrophil extravasation in the IL-1β inflamed cremaster and the LPS-inflamed lung. We conclude that the dissociation of VE-PTP from VE-cadherin is indeed required in vivo for the opening of endothelial cell contacts during induction of vascular permeability and leukocyte extravasation. PMID:22025303

  10. Ventilator-associated pneumonia.

    PubMed

    Shaw, Michael Jan

    2005-05-01

    This review summarises some of the notable papers on ventilator-associated pneumonia (VAP) from January 2003 to October 2004. Ventilator-associated pneumonia remains an important drain on hospital resources. All population groups are affected, but patients with VAP are more likely to be older, sicker, and male, with invasive medical devices in situ. Early VAP diagnosis is desirable to reduce VAP mortality and to retard emergence of multidrug-resistant microbes. This may be possible using preliminary culture results or intracellular organism in polymorphonuclear cells. In most intensive care units, Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii are the commonest organisms isolated in VAP. However, causative organisms vary between and within hospitals. Consequently, individual intensive care units should develop empirical antibiotic policies to target the pathogenic bacteria prevalent in their patient populations. Preventative strategies aimed at reducing aerodigestive tract colonisation by pathogenic organisms, and also their subsequent aspiration, are becoming increasingly important. Educating medical staff about these simple measures is therefore pertinent. To reduce the occurrence of multidrug-resistant organisms, limiting the duration of antibiotic treatment to 8 days and antimicrobial rotation should be contemplated. Empirical therapy with antipseudomonal penicillins plus beta-lactamase inhibitors should be considered. If methicillin-resistant Staphylococcus aureus VAP is a possibility, linezolid may be better than vancomycin. Prevention remains the key to reducing VAP prevalence.

  11. Reduced survival in patients with ALS with upper airway obstructive events on non-invasive ventilation.

    PubMed

    Georges, Marjolaine; Attali, Valérie; Golmard, Jean Louis; Morélot-Panzini, Capucine; Crevier-Buchman, Lise; Collet, Jean-Marc; Tintignac, Anne; Morawiec, Elise; Trosini-Desert, Valery; Salachas, François; Similowski, Thomas; Gonzalez-Bermejo, Jesus

    2016-10-01

    Non-invasive ventilation (NIV) is part of standard care in amyotrophic lateral sclerosis (ALS). Intolerance or unavailability of NIV, as well as the quality of correction of nocturnal hypoventilation, has a direct impact on prognosis. We describe the importance of NIV failure due to upper airway obstructive events, the clinical characteristics, as well as their impact on the prognosis of ALS. Retrospective analysis of the data of 190 patients with ALS and NIV in a single centre for the period 2011-2014. 179 patients tolerating NIV for more than 4 h per night without leaks were analysed. Among the 179 patients, after correction of leaks, 73 remained inadequately ventilated at night (defined as more than 5% of the night spent at <90% of SpO2), as a result of obstructive events in 67% of cases (n=48). Patients who remained inadequately ventilated after optimal adjustment of ventilator settings presented with shorter survival than adequately ventilated patients. Unexpectedly, patients with upper airway obstructive events without nocturnal desaturation and in whom no adjustment of treatment was therefore performed also presented with shorter survival. On initiation of NIV, no difference was demonstrated between patients with and without upper airway obstructive events. In all patients, upper airway obstruction was concomitant with reduction of ventilatory drive. This study shows that upper airway obstruction during NIV occurs in patients with ALS and is associated with poorer prognosis. Such events should be identified as they can be corrected by adjusting ventilator settings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  12. Mitochondrial Respiration Is Reduced in Atherosclerosis, Promoting Necrotic Core Formation and Reducing Relative Fibrous Cap Thickness.

    PubMed

    Yu, Emma P K; Reinhold, Johannes; Yu, Haixiang; Starks, Lakshi; Uryga, Anna K; Foote, Kirsty; Finigan, Alison; Figg, Nichola; Pung, Yuh-Fen; Logan, Angela; Murphy, Michael P; Bennett, Martin

    2017-12-01

    Mitochondrial DNA (mtDNA) damage is present in murine and human atherosclerotic plaques. However, whether endogenous levels of mtDNA damage are sufficient to cause mitochondrial dysfunction and whether decreasing mtDNA damage and improving mitochondrial respiration affects plaque burden or composition are unclear. We examined mitochondrial respiration in human atherosclerotic plaques and whether augmenting mitochondrial respiration affects atherogenesis. Human atherosclerotic plaques showed marked mitochondrial dysfunction, manifested as reduced mtDNA copy number and oxygen consumption rate in fibrous cap and core regions. Vascular smooth muscle cells derived from plaques showed impaired mitochondrial respiration, reduced complex I expression, and increased mitophagy, which was induced by oxidized low-density lipoprotein. Apolipoprotein E-deficient (ApoE -/- ) mice showed decreased mtDNA integrity and mitochondrial respiration, associated with increased mitochondrial reactive oxygen species. To determine whether alleviating mtDNA damage and increasing mitochondrial respiration affects atherogenesis, we studied ApoE -/- mice overexpressing the mitochondrial helicase Twinkle (Tw + /ApoE -/- ). Tw + /ApoE -/- mice showed increased mtDNA integrity, copy number, respiratory complex abundance, and respiration. Tw + /ApoE -/- mice had decreased necrotic core and increased fibrous cap areas, and Tw + /ApoE -/- bone marrow transplantation also reduced core areas. Twinkle increased vascular smooth muscle cell mtDNA integrity and respiration. Twinkle also promoted vascular smooth muscle cell proliferation and protected both vascular smooth muscle cells and macrophages from oxidative stress-induced apoptosis. Endogenous mtDNA damage in mouse and human atherosclerosis is associated with significantly reduced mitochondrial respiration. Reducing mtDNA damage and increasing mitochondrial respiration decrease necrotic core and increase fibrous cap areas independently of changes in

  13. Contributions of mast cells and vasoactive products, leukotrienes and chymase, to dengue virus-induced vascular leakage

    PubMed Central

    St John, Ashley L; Rathore, Abhay PS; Raghavan, Bhuvanakantham; Ng, Mah-Lee; Abraham, Soman N

    2013-01-01

    Dengue Virus (DENV), a flavivirus spread by mosquito vectors, can cause vascular leakage and hemorrhaging. However, the processes that underlie increased vascular permeability and pathological plasma leakage during viral hemorrhagic fevers are largely unknown. Mast cells (MCs) are activated in vivo during DENV infection, and we show that this elevates systemic levels of their vasoactive products, including chymase, and promotes vascular leakage. Treatment of infected animals with MC-stabilizing drugs or a leukotriene receptor antagonist restores vascular integrity during experimental DENV infection. Validation of these findings using human clinical samples revealed a direct correlation between MC activation and DENV disease severity. In humans, the MC-specific product, chymase, is a predictive biomarker distinguishing dengue fever (DF) and dengue hemorrhagic fever (DHF). Additionally, our findings reveal MCs as potential therapeutic targets to prevent DENV-induced vasculopathy, suggesting MC-stabilizing drugs should be evaluated for their effectiveness in improving disease outcomes during viral hemorrhagic fevers. DOI: http://dx.doi.org/10.7554/eLife.00481.001 PMID:23638300

  14. A butyrolactone derivative suppressed lipopolysaccharide-induced autophagic injury through inhibiting the autoregulatory loop of p8 and p53 in vascular endothelial cells.

    PubMed

    Meng, Ning; Zhao, Jing; Su, Le; Zhao, Baoxiang; Zhang, Yun; Zhang, Shangli; Miao, Junying

    2012-02-01

    Lipopolysaccharide (LPS)-induced vascular endothelial cell (VEC) dysfunction is an important contributing factor in vascular diseases. Recently, we found that LPS impaired VEC by inducing autophagy. Our previous researches showed that a butyrolactone derivative, 3-benzyl-5-((2-nitrophenoxy) methyl)-dihydrofuran-2(3H)-one (3BDO) selectively protected VEC function. The objective of the present study is to investigate whether and how 3BDO inhibits LPS-induced VEC autophagic injury. Our results showed that LPS induced autophagy and led to increase of reactive oxygen species (ROS) and decrease of mitochondrial membrane potential (MMP) in Human umbilical vein vascular endothelial cells (HUVECs). Furthermore, LPS significantly increased p8 and p53 protein levels and the nuclear translocation of p53. All of these effects of LPS on HUVECs were strongly inhibited by 3BDO. Importantly, the ROS scavenger N-acetylcysteine (NAC) could inhibited LPS-induced autophagy and knockdown of p8 by RNA interference inhibited the autophagy, p53 protein level increase, the translocation of p53 into nuclei and the ROS level increase induced by LPS in HUVECs. The data suggested that 3BDO inhibited LPS-induced autophagy in HUVECs through inhibiting the ROS overproduction, the increase of p8 and p53 expression and the nuclear translocation of p53. Our findings provide a potential tool for understanding the mechanism underlying LPS-induced autophagy in HUVECs and open the door to a novel therapeutic drug for LPS-induced vascular diseases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. EETs reduces LPS-induced hyperpermeability by targeting GRP78 mediated Src activation and subsequent Rho/ROCK signaling pathway

    PubMed Central

    Dong, Ruolan; Hu, Danli; Yang, Yan; Chen, Zhihui; Fu, Menglu; Wang, Dao Wen; Xu, Xizhen; Tu, Ling

    2017-01-01

    Integrity of endothelial barrier is a determinant of the prognosis in the acute lung injury caused by sepsis. The epoxyeicosatrienoic acids (EETs), metabolites of arachidonic acid, exhibit protective effects in various pathogenic states, however, whether EETs play a role in endothelial barrier enhancement and the involved mechanisms remain to be investigated. Here, we show that increased EETs level by endothelial specific cytochrome P450 epoxygenase 2J2 over-expression and soluble epoxide hydrolase (sEH) inhibitor TPPU reduced lipopolysaccharide-induced endothelial hyper-permeability in vivo, accompanied by improved survival of septic mice. In addition, sEH inhibitor AUDA and 11,12-EET also decreased endothelial hyper-permeability in the in-vitro study. Importantly, the relative mechanisms were associated with reduced GRP78-Src interaction and ROS production, and subsequently reduced RhoA/ROCK activation, and eventually decreased VE-cadherin and myosin light chain (MLC) phosphorylation. Thus CYP2J2-EETs is crucial for RhoA-dependent regulation of cytoskeletal architecture leading to reversible changes in vascular permeability, which may contribute to the development of new therapeutic approaches for pulmonary edema and other diseases caused by abnormal vascular permeability. PMID:28881620

  16. [Lung protective ventilation. Ventilatory modes and ventilator parameters].

    PubMed

    Schädler, Dirk; Weiler, Norbert

    2008-06-01

    Mechanical ventilation has a considerable potential for injuring the lung tissue. Therefore, attention has to be paid to the proper choice of ventilatory mode and settings to secure lung-protective ventilation whenever possible. Such ventilator strategy should account for low tidal volume ventilation (6 ml/kg PBW), limited plateau pressure (30 to 35 cm H2O) and positive end-expiratory pressure (PEEP). It is unclear whether pressure controlled or volume controlled ventilation with square flow profile is beneficial. The adjustment of inspiration and expiration time should consider the actual breathing mechanics and anticipate the generation of intrinsic PEEP. Ventilatory modes with the possibility of supporting spontaneous breathing should be used as soon as possible.

  17. WE-AB-202-06: Correlating Lung CT HU with Transformation-Based and Xe-CT Derived Ventilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, K; Patton, T; Bayouth, J

    Purpose: Regional lung ventilation is useful to reduce radiation-induced function damage during lung cancer radiation therapy. Recently a new direct HU (Hounsfield unit)-based method was proposed to estimate the ventilation potential without image registration. The purpose of this study is to examine if there is a functional dependence between HU values and transformation-based or Xe-CT derived ventilation. Methods: 4DCT images acquired from 13 patients prior to radiation therapy and 4 mechanically ventilated sheep subjects which also have associated Xe-CT images were used for this analysis. Transformation-based ventilation was computed using Jacobian determinant of the transformation field between peak-exhale and peak-inhalemore » 4DCT images. Both transformation and Xe-CT derived ventilation was computed for each HU bin. Color scatter plot and cumulative histogram were used to compare and validate the direct HU-based method. Results: There was little change of the center and shape of the HU histograms between free breathing CT and 4DCT average, with or without smoothing, and between the repeated 4DCT scans. HU of −750 and −630 were found to have the greatest transformation-based ventilation for human and sheep subjects, respectively. Maximum Xe-CT derived ventilation was found to locate at HU of −600 in sheep subjects. The curve between Xe-CT ventilation and HU was noisy for tissue above HU −400, possibly due to less intensity change of Xe gas during wash-out and wash-in phases. Conclusion: Both transformation-based and Xe-CT ventilation demonstrated that lung tissues with HU values in the range of (-750, −600) HU have the maximum ventilation potential. The correlation between HU and ventilation suggests that HU might be used to help guide the ventilation calculation and make it more robust to noise and image registration errors. Research support from NIH grants CA166703 and CA166119 and a gift from Roger Koch.« less

  18. Variable mechanical ventilation

    PubMed Central

    Fontela, Paula Caitano; Prestes, Renata Bernardy; Forgiarini Jr., Luiz Alberto; Friedman, Gilberto

    2017-01-01

    Objective To review the literature on the use of variable mechanical ventilation and the main outcomes of this technique. Methods Search, selection, and analysis of all original articles on variable ventilation, without restriction on the period of publication and language, available in the electronic databases LILACS, MEDLINE®, and PubMed, by searching the terms "variable ventilation" OR "noisy ventilation" OR "biologically variable ventilation". Results A total of 36 studies were selected. Of these, 24 were original studies, including 21 experimental studies and three clinical studies. Conclusion Several experimental studies reported the beneficial effects of distinct variable ventilation strategies on lung function using different models of lung injury and healthy lungs. Variable ventilation seems to be a viable strategy for improving gas exchange and respiratory mechanics and preventing lung injury associated with mechanical ventilation. However, further clinical studies are necessary to assess the potential of variable ventilation strategies for the clinical improvement of patients undergoing mechanical ventilation. PMID:28444076

  19. Factors Influencing Continuous Breath Signal in Intubated and Mechanically-Ventilated Intensive Care Unit Patients Measured by an Electronic Nose

    PubMed Central

    Leopold, Jan Hendrik; Abu-Hanna, Ameen; Colombo, Camilla; Sterk, Peter J.; Schultz, Marcus J.; Bos, Lieuwe D. J.

    2016-01-01

    Introduction: Continuous breath analysis by electronic nose (eNose) technology in the intensive care unit (ICU) may be useful in monitoring (patho) physiological changes. However, the application of breath monitoring in a non-controlled clinical setting introduces noise into the data. We hypothesized that the sensor signal is influenced by: (1) humidity in the side-stream; (2) patient-ventilator disconnections and the nebulization of medication; and (3) changes in ventilator settings and the amount of exhaled CO2. We aimed to explore whether the aforementioned factors introduce noise into the signal, and discuss several approaches to reduce this noise. Methods: Study in mechanically-ventilated ICU patients. Exhaled breath was monitored using a continuous eNose with metal oxide sensors. Linear (mixed) models were used to study hypothesized associations. Results: In total, 1251 h of eNose data were collected. First, the initial 15 min of the signal was discarded. There was a negative association between humidity and Sensor 1 (Fixed-effect β: −0.05 ± 0.002) and a positive association with Sensors 2–4 (Fixed-effect β: 0.12 ± 0.001); the signal was corrected for this noise. Outliers were most likely due to noise and therefore removed. Sensor values were positively associated with end-tidal CO2, tidal volume and the pressure variables. The signal was corrected for changes in these ventilator variables after which the associations disappeared. Conclusion: Variations in humidity, ventilator disconnections, nebulization of medication and changes of ventilator settings indeed influenced exhaled breath signals measured in ventilated patients by continuous eNose analysis. We discussed several approaches to reduce the effects of these noise inducing variables. PMID:27556467

  20. Flicker-induced retinal arteriole dilation is reduced by ambient lighting.

    PubMed

    Noonan, Jonathan E; Dusting, Gregory J; Nguyen, Thanh T; Man, Ryan E K; Best, William J; Lamoureux, Ecosse L

    2014-08-07

    To investigate the impact of ambient room lighting on the magnitude of flicker light-induced retinal vasodilations in healthy individuals. Twenty healthy nonsmokers participated in a balanced 2 × 2 crossover study. Retinal vascular imaging was performed with the dynamic vessel analyzer under reduced or normal ambient lighting, then again after 20 minutes under the alternate condition. Baseline calibers of selected arteriole and venule segments were recorded in measurement units. Maximum percentage dilations from baseline during 20 seconds of luminance flicker were calculated from the mean of three measurement cycles. Within-subject differences were assessed by repeated measures analysis of variance with the assumption of no carryover effects and pairwise comparisons from the fitted model. Mean (SD) maximum arteriole dilations during flicker stimulation under reduced and normal ambient lighting were 4.8% (2.3%) and 4.1% (1.9%), respectively (P = 0.019). Maximum arteriole dilations were (mean ± 95% confidence interval) 0.7% ± 0.6% lower under normal ambient lighting compared with reduced lighting. Ambient lighting had no significant effect on maximum venular dilations during flicker stimulation or on the baseline calibers of arterioles or venules. Retinal arteriole dilation in response to luminance flicker stimulation is reduced under higher ambient lighting conditions. Reduced responses with higher ambient lighting may reflect reduced contrast between the ON and OFF flicker phases. Although it may not always be feasible to conduct studies under reduced lighting conditions, ambient lighting levels should be consistent to ensure that comparisons are valid. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  1. Exercise training and cardiometabolic diseases: focus on the vascular system.

    PubMed

    Roque, Fernanda R; Hernanz, Raquel; Salaices, Mercedes; Briones, Ana M

    2013-06-01

    The regular practice of physical activity is a well-recommended strategy for the prevention and treatment of several cardiovascular and metabolic diseases. Physical exercise prevents the progression of vascular diseases and reduces cardiovascular morbidity and mortality. Exercise training also ameliorates vascular changes including endothelial dysfunction and arterial remodeling and stiffness, usually present in type 2 diabetes, obesity, hypertension and metabolic syndrome. Common to these diseases is excessive oxidative stress, which plays an important role in the processes underlying vascular changes. At the vascular level, exercise training improves the redox state and consequently NO availability. Moreover, growing evidence indicates that other mediators such as prostanoids might be involved in the beneficial effects of exercise. The purpose of this review is to update recent findings describing the adaptation response induced by exercise in cardiovascular and metabolic diseases, focusing more specifically on the beneficial effects of exercise in the vasculature and the underlying mechanisms.

  2. Vascular Induction of a Disintegrin and Metalloprotease 17 by Angiotensin II Through Hypoxia Inducible Factor 1α

    PubMed Central

    Obama, Takashi; Takayanagi, Takehiko; Kobayashi, Tomonori; Bourne, Allison M.; Elliott, Katherine J.; Charbonneau, Martine; Dubois, Claire M.

    2015-01-01

    BACKGROUND A disintegrin and metalloprotease 17 (ADAM17) is a membrane-spanning metalloprotease overexpressed in various cardiovascular diseases such as hypertension and atherosclerosis. However, little is known regarding the regulation of ADAM17 expression in the cardiovascular system. Here, we test our hypothesis that angiotensin II induces ADAM17 expression in the vasculature. METHODS Cultured vascular smooth muscle cells were stimulated with 100nM angiotensin II. Mice were infused with 1 μg/kg/minute angiotensin II for 2 weeks. ADAM17 expression was evaluated by a promoter–reporter construct, quantitative polymerase chain reaction, immunoblotting, and immunohistochemistry. RESULTS In vascular smooth muscle cells, angiotensin II increased ADAM17 protein expression, mRNA, and promoter activity. We determined that the angiotensin II response involves hypoxia inducible factor 1α and a hypoxia responsive element. In angiotensin II–infused mice, marked induction of ADAM17 and hypoxia inducible factor 1α was seen in vasculatures in heart and kidney, as well as in aortae, by immunohistochemistry. CONCLUSIONS Angiotensin II induces ADAM17 expression in the vasculatures through a hypoxia inducible factor 1α–dependent transcriptional upregulation, potentially contributing to end-organ damage in the cardiovascular system. PMID:24871629

  3. Uric acid promotes vascular stiffness, maladaptive inflammatory responses and proteinuria in western diet fed mice.

    PubMed

    Aroor, Annayya R; Jia, Guanghong; Habibi, Javad; Sun, Zhe; Ramirez-Perez, Francisco I; Brady, Barron; Chen, Dongqing; Martinez-Lemus, Luis A; Manrique, Camila; Nistala, Ravi; Whaley-Connell, Adam T; Demarco, Vincent G; Meininger, Gerald A; Sowers, James R

    2017-09-01

    Aortic vascular stiffness has been implicated in the development of cardiovascular disease (CVD) and chronic kidney disease (CKD) in obese individuals. However, the mechanism promoting these adverse effects are unclear. In this context, promotion of obesity through consumption of a western diet (WD) high in fat and fructose leads to excess circulating uric acid. There is accumulating data implicating elevated uric acid in the promotion of CVD and CKD. Accordingly, we hypothesized that xanthine oxidase(XO) inhibition with allopurinol would prevent a rise in vascular stiffness and proteinuria in a translationally relevant model of WD-induced obesity. Four-week-old C57BL6/J male mice were fed a WD with excess fat (46%) and fructose (17.5%) with or without allopurinol (125mg/L in drinking water) for 16weeks. Aortic endothelial and extracellular matrix/vascular smooth muscle stiffness was evaluated by atomic force microscopy. Aortic XO activity, 3-nitrotyrosine (3-NT) and aortic endothelial sodium channel (EnNaC) expression were evaluated along with aortic expression of inflammatory markers. In the kidney, expression of toll like receptor 4 (TLR4) and fibronectin were assessed along with evaluation of proteinuria. XO inhibition significantly attenuated WD-induced increases in plasma uric acid, vascular XO activity and oxidative stress, in concert with reductions in proteinuria. Further, XO inhibition prevented WD-induced increases in aortic EnNaC expression and associated endothelial and subendothelial stiffness. XO inhibition also reduced vascular pro-inflammatory and maladaptive immune responses induced by consumption of a WD. XO inhibition also decreased WD-induced increases in renal TLR4 and fibronectin that associated proteinuria. Consumption of a WD leads to elevations in plasma uric acid, increased vascular XO activity, oxidative stress, vascular stiffness, and proteinuria all of which are attenuated with allopurinol administration. Copyright © 2017 Elsevier Inc

  4. Ventilator-associated pneumonia management in critical illness.

    PubMed

    Albertos, Raquel; Caralt, Berta; Rello, Jordi

    2011-03-01

    Ventilator-associated pneumonia (VAP) is a frequent adverse event in the intensive care unit.We review recent publications about the management and prevention of VAP. The latest care bundles introduced standard interventions to facilitate implementation of evidence-based clinical guidelines and to improve the outcome of patients. Recent studies find that prevention management of ventilated patients decreases the risk of VAP. Enteral feeding, considered a risk factor for VAP, currently has been recommended, with appropriate administration, for all critical ill patients if no contraindications exist. In view of the recently available data, it can be concluded that the implementation of care bundles on the general management of ventilated patients in daily practice has reduced the VAP rates. The main pharmacological measures to prevent VAP are proper hands hygiene, high nurse-to-patient ratio, avoid unnecessary transfer of ventilated patients, use of noninvasive mechanical ventilation, shortening weaning period, avoid the use of nasal intubation, prevent bio-film deposition in endotracheal tube, aspiration of subglottic secretions, maintenance of adequate pressure of endotracheal cuffs, avoid manipulation of ventilator circuits, semi-recumbent position and adequate enteral feeding.In addition, updated guidelines incorporate more comprehensive diagnostic protocols to the evidence-based management of VAP.

  5. The Effects of Prone Position Ventilation on Experimental Mild Acute Lung Injury Induced by Intraperitoneal Lipopolysaccharide Injection in Rats.

    PubMed

    Bianchi, Aydra Mendes Almeida; Reboredo, Maycon Moura; Lucinda, Leda Marília Fonseca; Reis, Fernando Fonseca; Silva, Manfrinni Vinícius Alves; Rabelo, Maria Aparecida Esteves; Holanda, Marcelo Alcantara; Oliveira, Júlio César Abreu; Lorente, José Ángel; Pinheiro, Bruno do Valle

    2016-04-01

    The benefits of prone position ventilation are well demonstrated in the severe forms of acute respiratory distress syndrome, but not in the milder forms. We investigated the effects of prone position on arterial blood gases, lung inflammation, and histology in an experimental mild acute lung injury (ALI) model. ALI was induced in Wistar rats by intraperitoneal Escherichia coli lipopolysaccharide (LPS, 5 mg/kg). After 24 h, the animals with PaO2/FIO2 between 200 and 300 mmHg were randomized into 2 groups: prone position (n = 6) and supine position (n = 6). Both groups were compared with a control group (n = 5) that was ventilated in the supine position. All of the groups were ventilated for 1 h with volume-controlled ventilation mode (tidal volume = 6 ml/kg, respiratory rate = 80 breaths/min, positive end-expiratory pressure = 5 cmH2O, inspired oxygen fraction = 1) RESULTS: Significantly higher lung injury scores were observed in the LPS-supine group compared to the LPS-prone and control groups (0.32 ± 0.03; 0.17 ± 0.03 and 0.13 ± 0.04, respectively) (p < 0.001), mainly due to a higher neutrophil infiltration level in the interstitial space and more proteinaceous debris that filled the airspaces. Similar differences were observed when the gravity-dependent lung regions and non-dependent lung regions were analyzed separately (p < 0.05). The BAL neutrophil content was also higher in the LPS-supine group compared to the LPS-prone and control groups (p < 0.05). There were no significant differences in the wet/dry ratio and gas exchange levels. In this experimental extrapulmonary mild ALI model, prone position ventilation for 1 h, when compared with supine position ventilation, was associated with lower lung inflammation and injury.

  6. Bundles to prevent ventilator-associated pneumonia: how valuable are they?

    PubMed

    Wip, Charity; Napolitano, Lena

    2009-04-01

    To review the value of care bundles to prevent ventilator-associated pneumonia (VAP). The Ventilator Bundle contains four components, elevation of the head of the bed to 30-45 degrees, daily 'sedation vacation' and daily assessment of readiness to extubate, peptic ulcer disease prophylaxis, and deep venous thrombosis prophylaxis, aimed to improve outcome in mechanically ventilated patients, but not all are associated with VAP prevention. Daily spontaneous awakening and breathing trials are associated with early liberation from mechanical ventilation and VAP reduction. Although a small prospective, randomized clinical study documented that the semirecumbent position was associated with a significant reduction in VAP, more recent studies have documented that the semirecumbent position is difficult to maintain in mechanically ventilated patients and may not impact VAP reduction. Prophylaxis for peptic ulcer disease and deep venous thrombosis do not directly impact VAP reduction. Other methods to reduce VAP, such as oral care and hygiene, chlorhexidine in the posterior pharynx, and specialized endotracheal tubes (continuous aspiration of subglottic secretions, silver-coated), should be considered for inclusion in a revised Ventilator Bundle more specifically aimed at VAP prevention. The Ventilator Bundle is an effective method to reduce VAP rates in ICUs. The ventilator bundle should be modified and expanded to include specific processes of care that have been definitively demonstrated to be effective in VAP reduction or a specific VAP bundle created to focus on VAP prevention.

  7. Vascular brain-derived neurotrophic factor pathway in rats with adjuvant-induced arthritis: Effect of anti-rheumatic drugs.

    PubMed

    Pedard, Martin; Quirié, Aurore; Totoson, Perle; Verhoeven, Frank; Garnier, Philippe; Tessier, Anne; Demougeot, Céline; Marie, Christine

    2018-05-02

    In rheumatoid arthritis, the control of both disease activity and standard cardiovascular (CV) risk factors is expected to attenuate the increased CV risk. Evidence that brain-derived neurotrophic factor (BDNF) plays a role in vascular biology led us to investigate the vascular BDNF pathway in arthritis rats as well as the interaction between endothelial nitric oxide (NO) and BDNF production. The aortic BDNF pathway was studied in rats with adjuvant-induced arthritis, (AIA) using Western blot and immunohistochemical analysis. Control of arthritis score was achieved by administration (for 3 weeks) of an equipotent dosage of etanercept, prednisolone, methotrexate, celecoxib or diclofenac. Aortas were exposed to an NO donor or an NO synthase inhibitor and vasoreactivity experiments were performed using LM22A-4 as a TrkB agonist. Vascular BDNF and full length tropomyosin-related kinase B receptor (TrkB-FL) were higher in AIA than in control rats. These changes coincided with decreased endothelial immunoreactivity in BDNF and pTrkB tyr816 and were disconnected from arthritis score. Among anti-rheumatic drugs, only prednisolone and methotrexate prevented AIA-induced vascular BDNF loss. The effect of AIA on aortic BDNF levels was reversed by an NO donor and reproduced by an NOS inhibitor. Finally, LM22A-4 induced both NO-dependent vasodilation and phosphorylation of endothelial NO synthase at serine 1177. Our study identified changes in the BDNF/TrkB pathway as a disease activity-independent component of AIA-associated changes in endothelial phenotype. It provides new perspectives in the understanding and management of the high CV risk reported in rheumatoid arthritis. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Interactive simulation system for artificial ventilation on the internet: virtual ventilator.

    PubMed

    Takeuchi, Akihiro; Abe, Tadashi; Hirose, Minoru; Kamioka, Koichi; Hamada, Atsushi; Ikeda, Noriaki

    2004-12-01

    To develop an interactive simulation system "virtual ventilator" that demonstrates the dynamics of pressure and flow in the respiratory system under the combination of spontaneous breathing, ventilation modes, and ventilator options. The simulation system was designed to be used by unexperienced health care professionals as a self-training tool. The system consists of a simulation controller and three modules: respiratory, spontaneous breath, and ventilator. The respiratory module models the respiratory system by three resistances representing the main airway, the right and left lungs, and two compliances also representing the right and left lungs. The spontaneous breath module generates inspiratory negative pressure produced by a patient. The ventilator module generates driving force of pressure or flow according to the combination of the ventilation mode and options. These forces are given to the respiratory module through the simulation controller. The simulation system was developed using HTML, VBScript (3000 lines, 100 kB) and ActiveX control (120 kB), and runs on Internet Explorer (5.5 or higher). The spontaneous breath is defined by a frequency, amplitude and inspiratory patterns in the spontaneous breath module. The user can construct a ventilation mode by setting a control variable, phase variables (trigger, limit, and cycle), and options. Available ventilation modes are: controlled mechanical ventilation (CMV), continuous positive airway pressure, synchronized intermittent mandatory ventilation (SIMV), pressure support ventilation (PSV), SIMV + PSV, pressure-controlled ventilation (PCV), pressure-regulated volume control (PRVC), proportional assisted ventilation, mandatory minute ventilation (MMV), bilevel positive airway pressure (BiPAP). The simulation system demonstrates in a graph and animation the airway pressure, flow, and volume of the respiratory system during mechanical ventilation both with and without spontaneous breathing. We developed a web

  9. Influence of propofol and volatile anaesthetics on the inflammatory response in the ventilated lung.

    PubMed

    Kalimeris, K; Christodoulaki, K; Karakitsos, P; Batistatou, A; Lekka, M; Bai, M; Kitsiouli, E; Nakos, G; Kostopanagiotou, G

    2011-07-01

    The immunomodulatory effects of volatile anaesthetics in vitro and the protective effect of propofol in lung injury spurred us to study the effects of volatile anaesthetics and propofol on lung tissue in vivo. Twenty-seven pigs were randomized to 4-h general anaesthesia with propofol (8 mg/kg/h, group P, n=9), sevoflurane [minimum alveolar concentration (MAC)=1.0, group S, n=9) or desflurane (MAC=1.0, group D, n=9). Four healthy animals served as the no-ventilation group. Bronchoalveolar lavage fluid (BALF) was obtained to measure the cell counts, platelet-activating factor acetylhydrolase (PAF-AcH), phospholipase A(2) (PLA(2)) and superoxide dismutase (SOD) activity. Lung tissues were evaluated histologically and for caspase-3 expression. Volatile anaesthetics reduced PAF-AcH levels without affecting PLA(2) activity and resulted in decreased alveolar macrophage and increased lymphocyte counts in BALF (sevoflurane: 29 ± 23%; desflurane: 26 ± 6%, both P<0.05 compared with 4 ± 2% in the no-ventilation group). These findings were accompanied by atelectasis and inflammatory cells' infiltration in the inhalational anaesthetics groups. Also, sevoflurane reduced SOD activity and both sevoflurane and desflurane induced significant caspase-3 expression. In contrast, propofol resulted in a minor degree of inflammation and preserved BALF cells' composition without triggering apoptosis. Halogenated anaesthetics seem to trigger an immune lymphocytic response in the lung, inducing significant apoptosis and impairment of PAF-AcH. In contrast, propofol preserves anti-inflammatory and anti-oxidant defences during mechanical ventilation, thus preventing the emergence of apoptosis. © 2011 The Authors. Acta Anaesthesiologica Scandinavica © 2011 The Acta Anaesthesiologica Scandinavica Foundation.

  10. Interaction in endothelium of non-muscular myosin light-chain kinase and the NF-κB pathway is critical to lipopolysaccharide-induced vascular hyporeactivity.

    PubMed

    Recoquillon, Sylvain; Carusio, Nunzia; Lagrue-Lakhal, Anne-Hélène; Tual-Chalot, Simon; Filippelli, Amelia; Andriantsitohaina, Ramaroson; Martinez, M Carmen

    2015-10-01

    During sepsis, endothelial barrier dysfunction contributes to cardiovascular failure, mainly through the release of oxidative metabolites by penetrant leukocytes. We reported the non-muscular isoform of myosin light chain kinase (nmMLCK) playing a pivotal role in endotoxin shock injury associated with oxidative and nitrative stresses, and vascular hyporeactivity. The present study was aimed at understanding the molecular mechanism of lipopolysaccharide (LPS)-induced vascular alterations as well as studying a probable functional association of nmMLCK with nuclear factor κ-light-chain enhancer of activated B cells (NF-κB). Aortic rings from mice were exposed in vitro to LPS and, then, vascular reactivity was measured. Human aortic endothelial cells (HAoECs) were incubated with LPS, and interaction of nmMLCK with NF-κB was analysed. We provide evidence that nmMLCK deletion prevents vascular hyporeactivity induced by in vitro LPS treatment but not endothelial dysfunction in the aorta. Deletion of nmMLCK inhibits LPS-induced NF-κB activation and increases nitric oxide (NO) release via induction of inducible NO synthase (iNOS) within the vascular wall. Also, removal of endothelium prevented both NF-κB and iNOS expression in aortic rings. Among the proinflammatory factors released by LPS-treated endothelial cells, interleukin-6 accounts for the induction of iNOS on smooth muscle cells in response to LPS. Of particular interest is the demonstration that, in HAoECs, LPS-induced NF-κB activation occurs via increased MLCK activity sensitive to the MLCK inhibitor, ML-7, and physical interactions between nmMLCK and NF-κB. We report for the first time on NF-κB as a novel partner of nmMLCK within endothelial cells. The present study demonstrates a pivotal role of nmMLCK in vascular inflammatory pathologies. © 2015 Authors; published by Portland Press Limited.

  11. Vascular ATP-sensitive potassium channels are over-expressed and partially regulated by nitric oxide in experimental septic shock.

    PubMed

    Collin, Solène; Sennoun, Nacira; Dron, Anne-Gaëlle; de la Bourdonnaye, Mathilde; Montemont, Chantal; Asfar, Pierre; Lacolley, Patrick; Meziani, Ferhat; Levy, Bruno

    2011-05-01

    To study the activation and expression of vascular (aorta and small mesenteric arteries) potassium channels during septic shock with or without modulation of the NO pathway. Septic shock was induced in rats by peritonitis. Selective inhibitors of vascular K(ATP) (PNU-37883A) or BK(Ca) [iberiotoxin (IbTX)] channels were used to demonstrate their involvement in vascular hyporeactivity. Vascular response to phenylephrine was measured on aorta and small mesenteric arteries mounted on a wire myograph. Vascular expression of potassium channels was studied by PCR and Western blot, in the presence or absence of 1400W, an inducible NO synthase (iNOS) inhibitor. Aortic activation of the transcriptional factor nuclear factor-kappaB (NF-κB) was assessed by electrophoretic mobility shift assay. Arterial pressure as well as in vivo and ex vivo vascular reactivity were reduced by sepsis and improved by PNU-37883A but not by IbTX. Sepsis was associated with an up-regulation of mRNA and protein expression of vascular K(ATP) channels, while expression of vascular BK(Ca) channels remained unchanged. Selective iNOS inhibition blunted the sepsis-induced increase in aortic NO, decreased NF-κB activation, and down-regulated vascular K(ATP) channel expression. Vascular K(ATP) but not BK(Ca) channels are activated, over-expressed, and partially regulated by NO via NF-κB activation during septic shock. Their selective inhibition restores arterial pressure and vascular reactivity and decreases lactate concentration. The present data suggest that selective vascular K(ATP) channel inhibitors offer potential therapeutic perspectives for septic shock.

  12. Simulation of shock-induced bubble collapse with application to vascular injury in shockwave lithotripsy

    NASA Astrophysics Data System (ADS)

    Coralic, Vedran

    Shockwave lithotripsy is a noninvasive medical procedure wherein shockwaves are repeatedly focused at the location of kidney stones in order to pulverize them. Stone comminution is thought to be the product of two mechanisms: the propagation of stress waves within the stone and cavitation erosion. However, the latter mechanism has also been implicated in vascular injury. In the present work, shock-induced bubble collapse is studied in order to understand the role that it might play in inducing vascular injury. A high-order accurate, shock- and interface-capturing numerical scheme is developed to simulate the three-dimensional collapse of the bubble in both the free-field and inside a vessel phantom. The primary contributions of the numerical study are the characterization of the shock-bubble and shock-bubble-vessel interactions across a large parameter space that includes clinical shockwave lithotripsy pressure amplitudes, problem geometry and tissue viscoelasticity, and the subsequent correlation of these interactions to vascular injury. Specifically, measurements of the vessel wall pressures and displacements, as well as the finite strains in the fluid surrounding the bubble, are utilized with available experiments in tissue to evaluate damage potential. Estimates are made of the smallest injurious bubbles in the microvasculature during both the collapse and jetting phases of the bubble's life cycle. The present results suggest that bubbles larger than one micrometer in diameter could rupture blood vessels under clinical SWL conditions.

  13. The apoptosis induced by HMME-based photodynamic therapy in rabbit vascular smooth muscle cells

    NASA Astrophysics Data System (ADS)

    Yin, Huijuan; Li, Xiaoyuan; Lin, Hong; Liu, Jianzhong; Yu, Hongkui

    2007-02-01

    Objective To study the effects of HMME-based photodynamic therapy on proliferation and apoptosis of rabbit vascular smooth muscle cells(VSMCs). Method The cytotoxic effect of HMME-PDT on rabbit vascular smooth muscle cells was studied by means of Trypan Blue assay, HMME at 10μg/ml concentration and the light dose at 2.4~4.8 J/cm2 were selected in the studies. The morphological character 24h post-PDT was investigated by HE Staining. Annexin V and propidium iodide (PI) binding assays were performed to analyze the characteristics of cell death after HMME-PDT. Furthermore, The intracellular distributions of the HMME were measured by the confocal laser scanning microscope. Result It was showed the photocytotoxity to VSMC cells was dose related by Trypan Blue assay. Histology observing suggests HMME-PDT could induce cell death through apoptosis or necrosis, and the apoptosic rate was up to 50.5% by AnnexinV /PI assay. Moreover, the fluorescence images of HMME intracellular localization demonstrated that the HMME diffused into the mitochondria. Conclusion HMME-PDT could significantly inhibite VSMC proliferation and induce apoptosis.

  14. Cortactin deficiency is associated with reduced neutrophil recruitment but increased vascular permeability in vivo.

    PubMed

    Schnoor, Michael; Lai, Frank P L; Zarbock, Alexander; Kläver, Ruth; Polaschegg, Christian; Schulte, Dörte; Weich, Herbert A; Oelkers, J Margit; Rottner, Klemens; Vestweber, Dietmar

    2011-08-01

    Neutrophil extravasation and the regulation of vascular permeability require dynamic actin rearrangements in the endothelium. In this study, we analyzed in vivo whether these processes require the function of the actin nucleation-promoting factor cortactin. Basal vascular permeability for high molecular weight substances was enhanced in cortactin-deficient mice. Despite this leakiness, neutrophil extravasation in the tumor necrosis factor-stimulated cremaster was inhibited by the loss of cortactin. The permeability defect was caused by reduced levels of activated Rap1 (Ras-related protein 1) in endothelial cells and could be rescued by activating Rap1 via the guanosine triphosphatase (GTPase) exchange factor EPAC (exchange protein directly activated by cAMP). The defect in neutrophil extravasation was caused by enhanced rolling velocity and reduced adhesion in postcapillary venules. Impaired rolling interactions were linked to contributions of β(2)-integrin ligands, and firm adhesion was compromised by reduced ICAM-1 (intercellular adhesion molecule 1) clustering around neutrophils. A signaling process known to be critical for the formation of ICAM-1-enriched contact areas and for transendothelial migration, the ICAM-1-mediated activation of the GTPase RhoG was blocked in cortactin-deficient endothelial cells. Our results represent the first physiological evidence that cortactin is crucial for orchestrating the molecular events leading to proper endothelial barrier function and leukocyte recruitment in vivo.

  15. Noninvasive Mechanical Ventilation in Acute Ventilatory Failure: Rationale and Current Applications.

    PubMed

    Esquinas, Antonio M; Benhamou, Maly Oron; Glossop, Alastair J; Mina, Bushra

    2017-12-01

    Noninvasive ventilation plays a pivotal role in acute ventilator failure and has been shown, in certain disease processes such as acute exacerbation of chronic obstructive pulmonary disease, to prevent and shorten the duration of invasive mechanical ventilation, reducing the risks and complications associated with it. The application of noninvasive ventilation is relatively simple and well tolerated by patients and in the right setting can change the course of their illness. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Circular RNA hsa_circ_0003575 regulates oxLDL induced vascular endothelial cells proliferation and angiogenesis.

    PubMed

    Li, Chen-Ye; Ma, Lan; Yu, Bo

    2017-11-01

    Circular RNAs (circRNAs) are a novel class of RNAs generated from back-splicing and characterized by covalently closed continuous loops. Recently, circRNAs have recently shown large regulation on cardiovascular system, including atherosclerosis. The present study aims to investigate the circRNA expression profile and identify their roles on vascular endothelial cells induced by oxLDL. Human circRNA microarray analysis revealed that total 943 differently expressed circRNAs were screened with 2 fold change. Hsa_circ_0003575 was validated to be significantly up-regulated in oxLDL induced HUVECs. Loss-of-function experiments indicated that hsa_circ_0003575 silencing promoted the proliferation and angiogenesis ability of HUVECs. Bioinformatics online programs predicted the potential circRNA-miRNA-mRNA network for hsa_circ_0003575. In summary, circRNA microarray analysis reveals the expression profiles of HUVECs and verifies the role of hsa_circ_0003575 on HUVECs, providing a therapeutic strategy for vascular endothelial cell injury of atherosclerosis. Copyright © 2017. Published by Elsevier Masson SAS.

  17. Markers of Vascular Perturbation Correlate with Airway Structural Change in Asthma

    PubMed Central

    Kruger, Stanley J.; Schiebler, Mark L.; Evans, Michael D.; Sorkness, Ronald L.; Denlinger, Loren C.; Busse, William W.; Jarjour, Nizar N.; Montgomery, Robert R.; Mosher, Deane F.; Fain, Sean B.

    2013-01-01

    Rationale: Air trapping and ventilation defects on imaging are characteristics of asthma. Airway wall thickening occurs in asthma and is associated with increased bronchial vascularity and vascular permeability. Vascular endothelial cell products have not been explored as a surrogate to mark structural airway changes in asthma. Objectives: Determine whether reporters of vascular endothelial cell perturbation correlate with airway imaging metrics in patients with asthma of varying severity. Methods: Plasma from Severe Asthma Research Program subjects was analyzed by ELISAs for soluble von Willebrand factor mature protein (VWF:Ag) and propeptide (VWFpp), P-selectin, and platelet factor 4. Additional subjects were analyzed over 48 hours after whole-lung antigen challenge. We calculated ventilation defect volume by hyperpolarized helium-3 magnetic resonance imaging and areas of low signal density by multidetector computed tomography (less than −856 Hounsfield units [HU] at functional residual capacity and −950 HU at total lung capacity [TLC]). Measurements and Main Results: VWFpp and VWFpp/Ag ratio correlated with and predicted greater percentage defect volume on hyperpolarized helium-3 magnetic resonance imaging. P-selectin correlated with and predicted greater area of low density on chest multidetector computed tomography less than −950 HU at TLC. Platelet factor 4 did not correlate. Following whole-lung antigen challenge, variation in VWFpp, VWFpp/Ag, and P-selectin among time-points was less than that among subjects, indicating stability and repeatability of the measurements. Conclusions: Plasma VWFpp and P-selectin may be useful as surrogates of functional and structural defects that are evident on imaging. The results raise important questions about why VWFpp and P-selectin are associated specifically with different imaging abnormalities. PMID:23855693

  18. Treatment with pyrophosphate inhibits uremic vascular calcification

    PubMed Central

    O’Neill, W. Charles; Lomashvili, Koba A.; Malluche, Hartmut H.; Faugere, Marie-Claude; Riser, Bruce L.

    2011-01-01

    Pyrophosphate, which may be deficient in advanced renal failure, is a potent inhibitor of vascular calcification. To explore its use as a potential therapeutic, we injected exogenous pyrophosphate subcutaneously or intraperitoneally in normal rats and found that their plasma pyrophosphate concentrations peaked within 15 min. There was a single exponential decay with a half-life of 33 min. The kinetics were indistinguishable between the two routes of administration or in anephric rats. The effect of daily intraperitoneal pyrophosphate injections on uremic vascular calcification was then tested in rats fed a high-phosphate diet containing adenine for 28 days to induce uremia. Although the incidence of aortic calcification varied and was not altered by pyrophosphate, the calcium content of calcified aortas was significantly reduced by 70%. Studies were repeated in uremic rats given calcitriol to produce more consistent aortic calcification and treated with sodium pyrophosphate delivered intraperitoneally in a larger volume of glucose-containing solution to prolong plasma pyrophosphate levels. This maneuver significantly reduced both the incidence and amount of calcification. Quantitative histomorphometry of bone samples after double-labeling with calcein indicated that there was no effect of pyrophosphate on the rates of bone formation or mineralization. Thus, exogenous pyrophosphate can inhibit uremic vascular calcification without producing adverse effects on bone. PMID:21124302

  19. Treatment with pyrophosphate inhibits uremic vascular calcification.

    PubMed

    O'Neill, W Charles; Lomashvili, Koba A; Malluche, Hartmut H; Faugere, Marie-Claude; Riser, Bruce L

    2011-03-01

    Pyrophosphate, which may be deficient in advanced renal failure, is a potent inhibitor of vascular calcification. To explore its use as a potential therapeutic, we injected exogenous pyrophosphate subcutaneously or intraperitoneally in normal rats and found that their plasma pyrophosphate concentrations peaked within 15 min. There was a single exponential decay with a half-life of 33 min. The kinetics were indistinguishable between the two routes of administration or in anephric rats. The effect of daily intraperitoneal pyrophosphate injections on uremic vascular calcification was then tested in rats fed a high-phosphate diet containing adenine for 28 days to induce uremia. Although the incidence of aortic calcification varied and was not altered by pyrophosphate, the calcium content of calcified aortas was significantly reduced by 70%. Studies were repeated in uremic rats given calcitriol to produce more consistent aortic calcification and treated with sodium pyrophosphate delivered intraperitoneally in a larger volume of glucose-containing solution to prolong plasma pyrophosphate levels. This maneuver significantly reduced both the incidence and amount of calcification. Quantitative histomorphometry of bone samples after double-labeling with calcein indicated that there was no effect of pyrophosphate on the rates of bone formation or mineralization. Thus, exogenous pyrophosphate can inhibit uremic vascular calcification without producing adverse effects on bone.

  20. Antihypertensive Treatment Differentially Affects Vascular Sphingolipid Biology in Spontaneously Hypertensive Rats

    PubMed Central

    Spijkers, Léon J. A.; Janssen, Ben J. A.; Nelissen, Jelly; Meens, Merlijn J. P. M. T.; Wijesinghe, Dayanjan; Chalfant, Charles E.; De Mey, Jo G. R.; Alewijnse, Astrid E.; Peters, Stephan L. M.

    2011-01-01

    Background We have previously shown that essential hypertension in humans and spontaneously hypertensive rats (SHR), is associated with increased levels of ceramide and marked alterations in sphingolipid biology. Pharmacological elevation of ceramide in isolated carotid arteries of SHR leads to vasoconstriction via a calcium-independent phospholipase A2, cyclooxygenase-1 and thromboxane synthase-dependent release of thromboxane A2. This phenomenon is almost absent in vessels from normotensive Wistar Kyoto (WKY) rats. Here we investigated whether lowering of blood pressure can reverse elevated ceramide levels and reduce ceramide-mediated contractions in SHR. Methods and Findings For this purpose SHR were treated for 4 weeks with the angiotensin II type 1 receptor antagonist losartan or the vasodilator hydralazine. Both drugs decreased blood pressure equally (SBP untreated SHR: 191±7 mmHg, losartan: 125±5 mmHg and hydralazine: 113±14 mmHg). The blood pressure lowering was associated with a 20–25% reduction in vascular ceramide levels and improved endothelial function of isolated carotid arteries in both groups. Interestingly, losartan, but not hydralazine treatment, markedly reduced sphingomyelinase-induced contractions. While both drugs lowered cyclooxygenase-1 expression, only losartan and not hydralazine, reduced the endothelial expression of calcium-independent phospholipase A2. The latter finding may explain the effect of losartan treatment on sphingomyelinase-induced vascular contraction. Conclusion In summary, this study corroborates the importance of sphingolipid biology in blood pressure control and specifically shows that blood pressure lowering reduces vascular ceramide levels in SHR and that losartan treatment, but not blood pressure lowering per se, reduces ceramide-mediated arterial contractions. PMID:22195025

  1. Investigation of temporal vascular effects induced by focused ultrasound treatment with speckle-variance optical coherence tomography

    PubMed Central

    Tsai, Meng-Tsan; Chang, Feng-Yu; Lee, Cheng-Kuang; Gong, Cihun-Siyong Alex; Lin, Yu-Xiang; Lee, Jiann-Der; Yang, Chih-Hsun; Liu, Hao-Li

    2014-01-01

    Focused ultrasound (FUS) can be used to locally and temporally enhance vascular permeability, improving the efficiency of drug delivery from the blood vessels into the surrounding tissue. However, it is difficult to evaluate in real time the effect induced by FUS and to noninvasively observe the permeability enhancement. In this study, speckle-variance optical coherence tomography (SVOCT) was implemented for the investigation of temporal effects on vessels induced by FUS treatment. With OCT scanning, the dynamic change in vessels during FUS exposure can be observed and studied. Moreover, the vascular effects induced by FUS treatment with and without the presence of microbubbles were investigated and quantitatively compared. Additionally, 2D and 3D speckle-variance images were used for quantitative observation of blood leakage from vessels due to the permeability enhancement caused by FUS, which could be an indicator that can be used to determine the influence of FUS power exposure. In conclusion, SVOCT can be a useful tool for monitoring FUS treatment in real time, facilitating the dynamic observation of temporal effects and helping to determine the optimal FUS power. PMID:25071945

  2. Early Detection of Ventilation-Induced Brain Injury Using Magnetic Resonance Spectroscopy and Diffusion Tensor Imaging: An In Vivo Study in Preterm Lambs

    PubMed Central

    Skiöld, Béatrice; Wu, Qizhu; Hooper, Stuart B.; Davis, Peter G.; McIntyre, Richard; Tolcos, Mary; Pearson, James; Vreys, Ruth; Egan, Gary F.; Barton, Samantha K.; Cheong, Jeanie L. Y.; Polglase, Graeme R.

    2014-01-01

    Background and Aim High tidal volume (VT) ventilation during resuscitation of preterm lambs results in brain injury evident histologically within hours after birth. We aimed to investigate whether magnetic resonance spectroscopy (MRS) and/or diffusion tensor imaging (DTI) can be used for early in vivo detection of ventilation-induced brain injury in preterm lambs. Methods Newborn lambs (0.85 gestation) were stabilized with a “protective ventilation” strategy (PROT, n = 7: prophylactic Curosurf, sustained inflation, VT 7 mL/kg, positive end expiratory pressure (PEEP) 5 cmH2O) or an initial 15 minutes of “injurious ventilation” (INJ, n = 10: VT 12 mL/kg, no PEEP, late Curosurf) followed by PROT ventilation for the remainder of the experiment. At 1 hour, lambs underwent structural magnetic resonance imaging (Siemens, 3 Tesla). For measures of mean/axial/radial diffusivity (MD, AD, RD) and fractional anisotropy (FA), 30 direction DTI was performed. Regions of interests encompassed the thalamus, internal capsule, periventricular white matter and the cerebellar vermis. MRS was performed using a localized single-voxel (15×15×20 mm3, echo time 270 ms) encompassing suptratentorial deep nuclear grey matter and central white matter. Peak-area ratios for lactate (Lac) relative to N-acetylaspartate (NAA), choline (Cho) and creatine (Cr) were calculated. Groups were compared using 2-way RM-ANOVA, Mann-Whitney U-test and Spearman's correlations. Results No cerebral injury was seen on structural MR images. Lambs in the INJ group had higher mean FA and lower mean RD in the thalamus compared to PROT lambs, but not in the other regions of interest. Peak-area lactate ratios >1.0 was only seen in INJ lambs. A trend of higher mean peak-area ratios for Lac/Cr and Lac/Cho was seen, which correlated with lower pH in both groups. Conclusion Acute changes in brain diffusion measures and metabolite peak-area ratios were observed after injurious ventilation. Early MRS/DTI is

  3. [Neurally adjusted ventilatory assist (NAVA). A new mode of assisted mechanical ventilation].

    PubMed

    Moerer, O; Barwing, J; Quintel, M

    2008-10-01

    The aim of mechanical ventilation is to assure gas exchange while efficiently unloading the respiratory muscles and mechanical ventilation is an integral part of the care of patients with acute respiratory failure. Modern lung protective strategies of mechanical ventilation include low-tidal-volume ventilation and the continuation of spontaneous breathing which has been shown to be beneficial in reducing atelectasis and improving oxygenation. Poor patient-ventilator interaction is a major issue during conventional assisted ventilation. Neurally adjusted ventilator assist (NAVA) is a new mode of mechanical ventilation that uses the electrical activity of the diaphragm (EAdi) to control the ventilator. First experimental studies showed an improved patient-ventilator synchrony and an efficient unloading of the respiratory muscles. Future clinical studies will have to show that NAVA is of clinical advantage when compared to conventional modes of assisted mechanical ventilation. This review characterizes NAVA according to current publications on this topic.

  4. Mechanical ventilation with high tidal volume induces inflammation in patients without lung disease.

    PubMed

    Pinheiro de Oliveira, Roselaine; Hetzel, Marcio Pereira; dos Anjos Silva, Mauro; Dallegrave, Daniele; Friedman, Gilberto

    2010-01-01

    Mechanical ventilation (MV) with high tidal volumes may induce or aggravate lung injury in critical ill patients. We compared the effects of a protective versus a conventional ventilatory strategy, on systemic and lung production of tumor necrosis factor-alpha (TNF-alpha) and interleukin-8 (IL-8) in patients without lung disease. Patients without lung disease and submitted to mechanical ventilation admitted to one trauma and one general adult intensive care unit of two different university hospitals were enrolled in a prospective randomized-control study. Patients were randomized to receive MV either with tidal volume (VT) of 10 to 12 ml/kg predicted body weight (high VT group) (n = 10) or with VT of 5 to 7 ml/kg predicted body weight (low VT group) (n = 10) with an oxygen inspiratory fraction (FIO2) enough to keep arterial oxygen saturation >90% with positive end-expiratory pressure (PEEP) of 5 cmH2O during 12 hours after admission to the study. TNF-alpha and IL-8 concentrations were measured in the serum and in the bronchoalveolar lavage fluid (BALF) at admission and after 12 hours of study observation time. Twenty patients were enrolled and analyzed. At admission or after 12 hours there were no differences in serum TNF-alpha and IL-8 between the two groups. While initial analysis did not reveal significant differences, standardization against urea of logarithmic transformed data revealed that TNF-alpha and IL-8 levels in bronchoalveolar lavage (BAL) fluid were stable in the low VT group but increased in the high VT group (P = 0.04 and P = 0.03). After 12 hours, BALF TNF-alpha (P = 0.03) and BALF IL-8 concentrations (P = 0.03) were higher in the high VT group than in the low VT group. The use of lower tidal volumes may limit pulmonary inflammation in mechanically ventilated patients even without lung injury. NCT00935896.

  5. A historical perspective on ventilator management.

    PubMed

    Shapiro, B A

    1994-02-01

    Paralysis via neuromuscular blockade in ICU patients requires mechanical ventilation. This review historically addresses the technological advances and scientific information upon which ventilatory management concepts are based, with special emphasis on the influence such concepts have had on the use of neuromuscular blocking agents. Specific reference is made to the scientific information and technological advances leading to the newer concepts of ventilatory management. Information from > 100 major studies in the peer-reviewed medical literature, along with the author's 25 yrs of clinical experience and academic involvement in acute respiratory care is presented. Nomenclature related to ventilatory management is specifically defined and consistently utilized to present and interpret the data. Pre-1970 ventilatory management is traced from the clinically unacceptable pressure-limited devices to the reliable performance of volume-limited ventilators. The scientific data and rationale that led to the concept of relatively large tidal volume delivery are reviewed in the light of today's concerns regarding alveolar overdistention, control-mode dyssynchrony, and auto-positive end-expiratory pressure. Also presented are the post-1970 scientific rationales for continuous positive airway pressure/positive end-expiratory pressure therapy, avoidance of alveolar hyperxia, and partial ventilatory support techniques (intermittent mandatory ventilation/synchronized intermittent mandatory ventilation). The development of pressure-support devices is discussed and the capability of pressure-control techniques is presented. The rationale for more recent concepts of total ventilatory support to avoid ventilator-induced lung injury is presented. The traditional techniques utilizing volume-preset ventilators with relatively large tidal volumes remain valid and desirable for the vast majority of patients requiring mechanical ventilation. Neuromuscular blockade is best avoided in these

  6. Novel microspheres reduce the formation of deep venous thrombosis and repair the vascular wall in a rat model.

    PubMed

    Dai, Bingyang; Li, Lan; Li, Qiangqiang; Song, Xiaoxiao; Chen, Dongyang; Dai, Jin; Yao, Yao; Yan, Wenjin; Teng, Huajian; Yang, Fang; Xu, Zhihong; Jiang, Qing

    2017-07-01

    : L-Arginine (L-arg), widely known as a substrate for endogenous nitric oxide synthesis, can improve endothelial function associated with the vasculature, inhibit platelet aggregation, and alter the activity of vascular smooth muscle cells. P-selectin is a membrane component of the platelet alpha-granule and the endothelial cell-specific Wiebel-Palade body that plays a central role in mediating interactions between platelets and both leukocytes and the endothelium. The experiment was designed to evaluate the effect of novel microspheres with L-arg targeting P-selectin on the formation of deep vein thrombosis and repair of vascular wall in a rat model. Thrombosis of the inferior vena cava was induced by applying a piece of filter paper (5 mm × 10 mm) saturated with 10% FeCl3 solution for 5 min. Targeted microspheres with L-arg, targeted microspheres with water, and saline were injected into the tail veins of the rats after 30 min of applying the filter paper saturated with 10% FeCl3 solution. The dry weight and length of the thrombus isolated from the inferior vena cava were significantly decreased in the group with L-arg in microsphere after 24 h. No significant differences in prothrombin time, activated partial thromboplastin time, thrombin time, and fibrinogen among the groups were indicated. Images revealed that apoptosis in the vascular wall was less in the group injected with targeted microspheres with L-arg than in the other two groups at 1 and 8 d postsurgery. Meanwhile, cell proliferation was considerably excessive in the group injected with L-arg wrapped in targeted microspheres. Therefore, these novel microspheres could decrease the formation of thrombus in the early stages and in the subsequent periods of thrombosis. The microspheres can also enhance the vitality of impaired endothelial cells and reduce cell apoptosis.

  7. Novel microspheres reduce the formation of deep venous thrombosis and repair the vascular wall in a rat model

    PubMed Central

    Dai, Bingyang; Li, Lan; Li, Qiangqiang; Song, Xiaoxiao; Chen, Dongyang; Dai, Jin; Yao, Yao; Yan, Wenjin; Teng, Huajian; Yang, Fang; Xu, Zhihong; Jiang, Qing

    2017-01-01

    L-Arginine (L-arg), widely known as a substrate for endogenous nitric oxide synthesis, can improve endothelial function associated with the vasculature, inhibit platelet aggregation, and alter the activity of vascular smooth muscle cells. P-selectin is a membrane component of the platelet alpha-granule and the endothelial cell-specific Wiebel–Palade body that plays a central role in mediating interactions between platelets and both leukocytes and the endothelium. The experiment was designed to evaluate the effect of novel microspheres with L-arg targeting P-selectin on the formation of deep vein thrombosis and repair of vascular wall in a rat model. Thrombosis of the inferior vena cava was induced by applying a piece of filter paper (5 mm × 10 mm) saturated with 10% FeCl3 solution for 5 min. Targeted microspheres with L-arg, targeted microspheres with water, and saline were injected into the tail veins of the rats after 30 min of applying the filter paper saturated with 10% FeCl3 solution. The dry weight and length of the thrombus isolated from the inferior vena cava were significantly decreased in the group with L-arg in microsphere after 24 h. No significant differences in prothrombin time, activated partial thromboplastin time, thrombin time, and fibrinogen among the groups were indicated. Images revealed that apoptosis in the vascular wall was less in the group injected with targeted microspheres with L-arg than in the other two groups at 1 and 8 d postsurgery. Meanwhile, cell proliferation was considerably excessive in the group injected with L-arg wrapped in targeted microspheres. Therefore, these novel microspheres could decrease the formation of thrombus in the early stages and in the subsequent periods of thrombosis. The microspheres can also enhance the vitality of impaired endothelial cells and reduce cell apoptosis. PMID:28306627

  8. Economic, Environmental and Health Implications of Enhanced Ventilation in Office Buildings.

    PubMed

    MacNaughton, Piers; Pegues, James; Satish, Usha; Santanam, Suresh; Spengler, John; Allen, Joseph

    2015-11-18

    Current building ventilation standards are based on acceptable minimums. Three decades of research demonstrates the human health benefits of increased ventilation above these minimums. Recent research also shows the benefits on human decision-making performance in office workers, which translates to increased productivity. However, adoption of enhanced ventilation strategies is lagging. We sought to evaluate two of the perceived potential barriers to more widespread adoption-Economic and environmental costs. We estimated the energy consumption and associated per building occupant costs for office buildings in seven U.S. cities, representing different climate zones for three ventilation scenarios (standard practice (20 cfm/person), 30% enhanced ventilation, and 40 cfm/person) and four different heating, ventilation and air conditioning (HVAC) system strategies (Variable Air Volume (VAV) with reheat and a Fan Coil Unit (FCU), both with and without an energy recovery ventilator). We also estimated emissions of greenhouse gases associated with this increased energy usage, and, for comparison, converted this to the equivalent number of vehicles using greenhouse gas equivalencies. Lastly, we paired results from our previous research on cognitive function and ventilation with labor statistics to estimate the economic benefit of increased productivity associated with increasing ventilation rates. Doubling the ventilation rate from the American Society of Heating, Refrigeration and Air-Conditioning Engineers minimum cost less than $40 per person per year in all climate zones investigated. Using an energy recovery ventilation system significantly reduced energy costs, and in some scenarios led to a net savings. At the highest ventilation rate, adding an ERV essentially neutralized the environmental impact of enhanced ventilation (0.03 additional cars on the road per building across all cities). The same change in ventilation improved the performance of workers by 8

  9. Economic, Environmental and Health Implications of Enhanced Ventilation in Office Buildings

    PubMed Central

    MacNaughton, Piers; Pegues, James; Satish, Usha; Santanam, Suresh; Spengler, John; Allen, Joseph

    2015-01-01

    Introduction: Current building ventilation standards are based on acceptable minimums. Three decades of research demonstrates the human health benefits of increased ventilation above these minimums. Recent research also shows the benefits on human decision-making performance in office workers, which translates to increased productivity. However, adoption of enhanced ventilation strategies is lagging. We sought to evaluate two of the perceived potential barriers to more widespread adoption—Economic and environmental costs. Methods: We estimated the energy consumption and associated per building occupant costs for office buildings in seven U.S. cities, representing different climate zones for three ventilation scenarios (standard practice (20 cfm/person), 30% enhanced ventilation, and 40 cfm/person) and four different heating, ventilation and air conditioning (HVAC) system strategies (Variable Air Volume (VAV) with reheat and a Fan Coil Unit (FCU), both with and without an energy recovery ventilator). We also estimated emissions of greenhouse gases associated with this increased energy usage, and, for comparison, converted this to the equivalent number of vehicles using greenhouse gas equivalencies. Lastly, we paired results from our previous research on cognitive function and ventilation with labor statistics to estimate the economic benefit of increased productivity associated with increasing ventilation rates. Results: Doubling the ventilation rate from the American Society of Heating, Refrigeration and Air-Conditioning Engineers minimum cost less than $40 per person per year in all climate zones investigated. Using an energy recovery ventilation system significantly reduced energy costs, and in some scenarios led to a net savings. At the highest ventilation rate, adding an ERV essentially neutralized the environmental impact of enhanced ventilation (0.03 additional cars on the road per building across all cities). The same change in ventilation improved the

  10. Attenuation of ventilation-induced diaphragm dysfunction through toll-like receptor 4 and nuclear factor-κB in a murine endotoxemia model.

    PubMed

    Li, Li-Fu; Liu, Yung-Yang; Chen, Ning-Hung; Chen, Yen-Huey; Huang, Chung-Chi; Kao, Kuo-Chin; Chang, Chih-Hao; Chuang, Li-Pang; Chiu, Li-Chung

    2018-06-20

    Mechanical ventilation (MV) is often used to maintain life in patients with sepsis and sepsis-related acute lung injury. However, controlled MV may cause diaphragm weakness due to muscle injury and atrophy, an effect termed ventilator-induced diaphragm dysfunction (VIDD). Toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) signaling pathways may elicit sepsis-related acute inflammatory responses and muscle protein degradation and mediate the pathogenic mechanisms of VIDD. However, the mechanisms regulating the interactions between VIDD and endotoxemia are unclear. We hypothesized that mechanical stretch with or without endotoxin treatment would augment diaphragmatic structural damage, the production of free radicals, muscle proteolysis, mitochondrial dysfunction, and autophagy of the diaphragm via the TLR4/NF-κB pathway. Male C57BL/6 mice, either wild-type or TLR4-deficient, aged between 6 and 8 weeks were exposed to MV (6 mL/kg or 10 mL/kg) with or without endotoxemia for 8 h. Nonventilated mice were used as controls. MV with endotoxemia aggravated VIDD, as demonstrated by the increases in the expression levels of TLR4, caspase-3, atrogin-1, muscle ring finger-1, and microtubule-associated protein light chain 3-II. In addition, increased NF-κB phosphorylation and oxidative loads, disorganized myofibrils, disrupted mitochondria, autophagy, and myonuclear apoptosis were also observed. Furthermore, MV with endotoxemia reduced P62 levels and diaphragm muscle fiber size (P < 0.05). Endotoxin-exacerbated VIDD was attenuated by pharmacologic inhibition with a NF-κB inhibitor or in TLR4-deficient mice (P < 0.05). Our data indicate that endotoxin-augmented MV-induced diaphragmatic injury occurs through the activation of the TLR4/NF-κB signaling pathway.

  11. Quantification of Age-Related Lung Tissue Mechanics under Mechanical Ventilation.

    PubMed

    Kim, JongWon; Heise, Rebecca L; Reynolds, Angela M; Pidaparti, Ramana M

    2017-09-29

    Elderly patients with obstructive lung diseases often receive mechanical ventilation to support their breathing and restore respiratory function. However, mechanical ventilation is known to increase the severity of ventilator-induced lung injury (VILI) in the elderly. Therefore, it is important to investigate the effects of aging to better understand the lung tissue mechanics to estimate the severity of ventilator-induced lung injuries. Two age-related geometric models involving human bronchioles from generation G10 to G23 and alveolar sacs were developed. The first is for a 50-year-old (normal) and second is for an 80-year old (aged) model. Lung tissue mechanics of normal and aged models were investigated under mechanical ventilation through computational simulations. Results obtained indicated that lung tissue strains during inhalation (t = 0.2 s) decreased by about 40% in the alveolar sac (G23) and 27% in the bronchiole (G20), respectively, for the 80-year-old as compared to the 50-year-old. The respiratory mechanics parameters (work of breathing per unit volume and maximum tissue strain) over G20 and G23 for the 80-year-old decreased by about 64% (three-fold) and 80% (four-fold), respectively, during the mechanical ventilation breathing cycle. However, there was a significant increase (by about threefold) in lung compliance for the 80-year-old in comparison to the 50-year-old. These findings from the computational simulations demonstrated that lung mechanical characteristics are significantly compromised in aging tissues, and these effects were quantified in this study.

  12. Comparison of exogenous surfactant therapy, mechanical ventilation with high end-expiratory pressure and partial liquid ventilation in a model of acute lung injury.

    PubMed

    Hartog, A; Vazquez de Anda, G F; Gommers, D; Kaisers, U; Verbrugge, S J; Schnabel, R; Lachmann, B

    1999-01-01

    We have compared three treatment strategies, that aim to prevent repetitive alveolar collapse, for their effect on gas exchange, lung mechanics, lung injury, protein transfer into the alveoli and surfactant system, in a model of acute lung injury. In adult rats, the lungs were ventilated mechanically with 100% oxygen and a PEEP of 6 cm H2O, and acute lung injury was induced by repeated lung lavage to obtain a PaO2 value < 13 kPa. Animals were then allocated randomly (n = 12 in each group) to receive exogenous surfactant therapy, ventilation with high PEEP (18 cm H2O), partial liquid ventilation or ventilation with low PEEP (8 cm H2O) (ventilated controls). Blood-gas values were measured hourly. At the end of the 4-h study, in six animals per group, pressure-volume curves were constructed and bronchoalveolar lavage (BAL) was performed, whereas in the remaining animals lung injury was assessed. In the ventilated control group, arterial oxygenation did not improve and protein concentration of BAL and conversion of active to non-active surfactant components increased significantly. In the three treatment groups, PaO2 increased rapidly to > 50 kPa and remained stable over the next 4 h. The protein concentration of BAL fluid increased significantly only in the partial liquid ventilation group. Conversion of active to non-active surfactant components increased significantly in the partial liquid ventilation group and in the group ventilated with high PEEP. In the surfactant group and partial liquid ventilation groups, less lung injury was found compared with the ventilated control group and the group ventilated with high PEEP. We conclude that although all three strategies improved PaO2 to > 50 kPa, the impact on protein transfer into the alveoli, surfactant system and lung injury differed markedly.

  13. Occult pneumothorax in the mechanically ventilated trauma patient

    PubMed Central

    Ball, Chad G.; Hameed, S. Morad; Evans, Dave; Kortbeek, John B.; Kirkpatrick, Andrew W.

    2003-01-01

    The term occult pneumothorax (OP) describes a pneumothorax that is not suspected on the basis of clinical examination or plain radiography but is ultimately detected with thoracoabdominal computed tomography (CT). This situation is increasingly common in trauma care with the increased use of CT. The rate is approximately 5% in injured people presenting to hospital, with CT revealing at least twice as many pneumothoraces as suspected on plain radiography. Whereas pneumothorax is a common and treatable cause of mortality and morbidity, there is substantial disagreement regarding the appropriate treatment of OP. The greatest controversy is in patients in the critical care unit who require positive-pressure ventilation. There is little current evidence to direct the proper management of ventilated trauma patients with OP, and no studies have focussed specifically on these patients. Future randomized trials will need to consider the potential effects of OP on pulmonary mechanics and potential influences on the known risks of ventilator-induced lung injury associated with mechanical ventilation. PMID:14577712

  14. Noninvasive ventilation.

    PubMed

    Rabatin, J T; Gay, P C

    1999-08-01

    Noninvasive ventilation refers to the delivery of assisted ventilatory support without the use of an endotracheal tube. Noninvasive positive pressure ventilation (NPPV) can be delivered by using a volume-controlled ventilator, a pressure-controlled ventilator, a bilevel positive airway pressure ventilator, or a continuous positive airway pressure device. During the past decade, there has been a resurgence in the use of noninvasive ventilation, fueled by advances in technology and clinical trials evaluating its use. Several manufacturers produce portable devices that are simple to operate. This review describes the equipment, techniques, and complications associated with NPPV and also the indications for both short-term and long-term applications. NPPV clearly represents an important addition to the techniques available to manage patients with respiratory failure. Future clinical trials evaluating its many clinical applications will help to define populations of patients most apt to benefit from this type of treatment.

  15. 3-Mercaptopyruvate Sulfurtransferase, Not Cystathionine β-Synthase Nor Cystathionine γ-Lyase, Mediates Hypoxia-Induced Migration of Vascular Endothelial Cells.

    PubMed

    Tao, Beibei; Wang, Rui; Sun, Chen; Zhu, Yichun

    2017-01-01

    Hypoxia-induced angiogenesis is a common phenomenon in many physiological and patho-physiological processes. However, the potential differential roles of three hydrogen sulfide producing systems cystathionine γ-lyase (CSE)/H 2 S, cystathionine β-synthase (CBS)/H 2 S, and 3-mercaptopyruvate sulfurtransferase (MPST)/H 2 S in hypoxia-induced angiogenesis are still unknown. We found that minor hypoxia (10% oxygen) significantly increased the migration of vascular endothelial cells while hypoxia (8% oxygen) significantly inhibited cell migration. The present study was performed using cells cultured in 10% oxygen. RNA interference was used to block the endogenous generation of hydrogen sulfide by CSE, CBS, or MPST in a vascular endothelial cell migration model in both normoxia and hypoxia. The results showed that CBS had a promoting effect on the migration of vascular endothelial cells cultured in both normoxic and hypoxic conditions. In contrast, CSE had an inhibitory effect on cell migration. MPST had a promoting effect on the migration of vascular endothelial cells cultured in hypoxia; however, it had no effect on the cells cultured in normoxia. Importantly, it was found that the hypoxia-induced increase in vascular endothelial cell migration was mediated by MPST, but not CSE or CBS. The western blot analyses showed that hypoxia significantly increased MPST protein levels, decreased CSE protein levels and did not change CBS levels, suggesting that these three hydrogen sulfide-producing systems respond differently to hypoxic conditions. Interestingly, MPST protein levels were elevated by hypoxia in a bi-phasic manner and MPST mRNA levels increased later than the first stage elevation of the protein levels, implying that the expression of MPST induced by hypoxia was also regulated at a post-transcriptional level. RNA pull-down assay showed that some candidate RNA binding proteins, such as nucleolin and Annexin A2, were dissociated from the 3'-UTR of MPST mRNA in

  16. Urokinase Receptor Counteracts Vascular Smooth Muscle Cell Functional Changes Induced by Surface Topography

    PubMed Central

    Kiyan, Yulia; Kurselis, Kestutis; Kiyan, Roman; Haller, Hermann; Chichkov, Boris N.; Dumler, Inna

    2013-01-01

    Current treatments for human coronary artery disease necessitate the development of the next generations of vascular bioimplants. Recent reports provide evidence that controlling cell orientation and morphology through topographical patterning might be beneficial for bioimplants and tissue engineering scaffolds. However, a concise understanding of cellular events underlying cell-biomaterial interaction remains missing. In this study, applying methods of laser material processing, we aimed to obtain useful markers to guide in the choice of better vascular biomaterials. Our data show that topographically treated human primary vascular smooth muscle cells (VSMC) have a distinct differentiation profile. In particular, cultivation of VSMC on the microgrooved biocompatible polymer E-shell induces VSMC modulation from synthetic to contractile phenotype and directs formation and maintaining of cell-cell communication and adhesion structures. We show that the urokinase receptor (uPAR) interferes with VSMC behavior on microstructured surfaces and serves as a critical regulator of VSMC functional fate. Our findings suggest that microtopography of the E-shell polymer could be important in determining VSMC phenotype and cytoskeleton organization. They further suggest uPAR as a useful target in the development of predictive models for clinical VSMC phenotyping on functional advanced biomaterials. PMID:23843899

  17. The influence of music during mechanical ventilation and weaning from mechanical ventilation: A review

    PubMed Central

    Hetland, Breanna; Lindquist, Ruth; Chlan, Linda L.

    2015-01-01

    Background Mechanical ventilation (MV) causes many distressing symptoms. Weaning, the gradual decrease in ventilator assistance leading to termination of MV, increases respiratory effort, which may exacerbate symptoms and prolong MV. Music, a non-pharmacological intervention without side effects may benefit patients during weaning from mechanical ventilatory support. Methods A narrative review of OVID Medline, PsychINFO, and CINAHL databases was conducted to examine the evidence for the use of music intervention in MV and MV weaning. Results Music intervention had a positive impact on ventilated patients; 16 quantitative and 2 qualitative studies were identified. Quantitative studies included randomized clinical trials (10), case controls (3), pilot studies (2) and a feasibility study. Conclusions Evidence supports music as an effective intervention that can lesson symptoms related to MV and promote effective weaning. It has potential to reduce costs and increase patient satisfaction. However, more studies are needed to establish its use during MV weaning. PMID:26227333

  18. Pulmonary lesion induced by low and high positive end-expiratory pressure levels during protective ventilation in experimental acute lung injury.

    PubMed

    Pássaro, Caroline P; Silva, Pedro L; Rzezinski, Andréia F; Abrantes, Simone; Santiago, Viviane R; Nardelli, Liliane; Santos, Raquel S; Barbosa, Carolina M L; Morales, Marcelo M; Zin, Walter A; Amato, Marcelo B P; Capelozzi, Vera L; Pelosi, Paolo; Rocco, Patricia R M

    2009-03-01

    To investigate the effects of low and high levels of positive end-expiratory pressure (PEEP), without recruitment maneuvers, during lung protective ventilation in an experimental model of acute lung injury (ALI). Prospective, randomized, and controlled experimental study. University research laboratory. Wistar rats were randomly assigned to control (C) [saline (0.1 mL), intraperitoneally] and ALI [paraquat (15 mg/kg), intraperitoneally] groups. After 24 hours, each group was further randomized into four groups (six rats each) at different PEEP levels = 1.5, 3, 4.5, or 6 cm H2O and ventilated with a constant tidal volume (6 mL/kg) and open thorax. Lung mechanics [static elastance (Est, L) and viscoelastic pressure (DeltaP2, L)] and arterial blood gases were measured before (Pre) and at the end of 1-hour mechanical ventilation (Post). Pulmonary histology (light and electron microscopy) and type III procollagen (PCIII) messenger RNA (mRNA) expression were measured after 1 hour of mechanical ventilation. In ALI group, low and high PEEP levels induced a greater percentage of increase in Est, L (44% and 50%) and DeltaP2, L (56% and 36%) in Post values related to Pre. Low PEEP yielded alveolar collapse whereas high PEEP caused overdistension and atelectasis, with both levels worsening oxygenation and increasing PCIII mRNA expression. In the present nonrecruited ALI model, protective mechanical ventilation with lower and higher PEEP levels than required for better oxygenation increased Est, L and DeltaP2, L, the amount of atelectasis, and PCIII mRNA expression. PEEP selection titrated for a minimum elastance and maximum oxygenation may prevent lung injury while deviation from these settings may be harmful.

  19. Sphingosine-1-phosphate: a novel nonhypoxic activator of hypoxia-inducible factor-1 in vascular cells.

    PubMed

    Michaud, Maude D; Robitaille, Geneviève A; Gratton, Jean-Philippe; Richard, Darren E

    2009-06-01

    Sphingosine-1-phosphate (S1P) is a potent bioactive phospholipid responsible for a variety of vascular cell responses. Hypoxia-inducible factor-1 (HIF-1) is a transcriptional activator of genes essential for adaptation to low oxygen. S1P and HIF-1 are both important mediators of vascular cell responses such as migation, proliferation, and survival. Studies have shown that nonhypoxic stimuli can activate HIF-1 in oxygenated conditions. Here, we attempt to determine whether S1P can modulate the vascular activation of HIF-1. We show that in vascular endothelial and smooth muscle cells, activation of the S1P type-2 receptor by S1P strongly increases HIF-1 alpha protein levels, the active subunit of HIF-1. This is achieved through pVHL-independent stabilization of HIF-1 alpha. We demonstrate that the HIF-1 nuclear complex, formed on S1P stimulation, is transcriptionally active and specifically binds to a hypoxia-responsive elements. Moreover, S1P activates the expression of genes known to be closely regulated by HIF-1. Our results identify S1P as a novel and potent nonhypoxic activator of HIF-1. We believe that understanding the role played by HIF-1 in S1P gene regulation will have a strong impact on different aspects of vascular biology.

  20. Natural ventilation reduces high TB transmission risk in traditional homes in rural KwaZulu-Natal, South Africa.

    PubMed

    Lygizos, Melissa; Shenoi, Sheela V; Brooks, Ralph P; Bhushan, Ambika; Brust, James C M; Zelterman, Daniel; Deng, Yanhong; Northrup, Veronika; Moll, Anthony P; Friedland, Gerald H

    2013-07-01

    Transmission of drug susceptible and drug resistant TB occurs in health care facilities, and community and households settings, particularly in highly prevalent TB and HIV areas. There is a paucity of data regarding factors that may affect TB transmission risk in household settings. We evaluated air exchange and the impact of natural ventilation on estimated TB transmission risk in traditional Zulu homes in rural South Africa. We utilized a carbon dioxide decay technique to measure ventilation in air changes per hour (ACH). We evaluated predominant home types to determine factors affecting ACH and used the Wells-Riley equation to estimate TB transmission risk. Two hundred eighteen ventilation measurements were taken in 24 traditional homes. All had low ventilation at baseline when windows were closed (mean ACH = 3, SD = 3.0), with estimated TB transmission risk of 55.4% over a ten hour period of exposure to an infectious TB patient. There was significant improvement with opening windows and door, reaching a mean ACH of 20 (SD = 13.1, p < 0.0001) resulting in significant decrease in estimated TB transmission risk to 9.6% (p < 0.0001). Multivariate analysis identified factors predicting ACH, including ventilation conditions (windows/doors open) and window to volume ratio. Expanding ventilation increased the odds of achieving ≥12 ACH by 60-fold. There is high estimated risk of TB transmission in traditional homes of infectious TB patients in rural South Africa. Improving natural ventilation may decrease household TB transmission risk and, combined with other strategies, may enhance TB control efforts.