Sample records for reduce wind loads

  1. Methods and apparatus for reduction of asymmetric rotor loads in wind turbines

    DOEpatents

    Moroz, Emilian Mieczyslaw; Pierce, Kirk Gee

    2006-10-10

    A method for reducing load and providing yaw alignment in a wind turbine includes measuring displacements or moments resulting from asymmetric loads on the wind turbine. These measured displacements or moments are used to determine a pitch for each rotor blade to reduce or counter asymmetric rotor loading and a favorable yaw orientation to reduce pitch activity. Yaw alignment of the wind turbine is adjusted in accordance with the favorable yaw orientation and the pitch of each rotor blade is adjusted in accordance with the determined pitch to reduce or counter asymmetric rotor loading.

  2. Methods and apparatus for reducing peak wind turbine loads

    DOEpatents

    Moroz, Emilian Mieczyslaw

    2007-02-13

    A method for reducing peak loads of wind turbines in a changing wind environment includes measuring or estimating an instantaneous wind speed and direction at the wind turbine and determining a yaw error of the wind turbine relative to the measured instantaneous wind direction. The method further includes comparing the yaw error to a yaw error trigger that has different values at different wind speeds and shutting down the wind turbine when the yaw error exceeds the yaw error trigger corresponding to the measured or estimated instantaneous wind speed.

  3. Wind Turbine Load Mitigation based on Multivariable Robust Control and Blade Root Sensors

    NASA Astrophysics Data System (ADS)

    Díaz de Corcuera, A.; Pujana-Arrese, A.; Ezquerra, J. M.; Segurola, E.; Landaluze, J.

    2014-12-01

    This paper presents two H∞ multivariable robust controllers based on blade root sensors' information for individual pitch angle control. The wind turbine of 5 MW defined in the Upwind European project is the reference non-linear model used in this research work, which has been modelled in the GH Bladed 4.0 software package. The main objective of these controllers is load mitigation in different components of wind turbines during power production in the above rated control zone. The first proposed multi-input multi-output (MIMO) individual pitch H" controller mitigates the wind effect on the tower side-to-side acceleration and reduces the asymmetrical loads which appear in the rotor due to its misalignment. The second individual pitch H" multivariable controller mitigates the loads on the three blades reducing the wind effect on the bending flapwise and edgewise momentums in the blades. The designed H" controllers have been validated in GH Bladed and an exhaustive analysis has been carried out to calculate fatigue load reduction on wind turbine components, as well as to analyze load mitigation in some extreme cases.

  4. Combined wind turbine fatigue and ultimate load reduction by individual blade control

    NASA Astrophysics Data System (ADS)

    Han, Y.; Leithead, W. E.

    2014-06-01

    If each blade of the wind turbine has individual pitch actuator, there is possibility of employing the pitch system to mitigate structural loads through advanced control methods. Previously, considerable reduction of blade lifetime equivalent fatigue loads has been achieved by Individual Blade Control (IBC) and in addition, it has also been shown the potential in blade ultimate loads reduction. However, both fatigue and ultimate loads impact on the design and life of wind turbine blades. In this paper, the design and application of IBC that concurrently reduce both blade fatigue and ultimate loads is investigated. The contributions of blade load spectral components, which are 1P, 2P and edgewise mode from blade in-plane and/or out-of-plane bending moments, are firstly explored. Four different control options for reducing various combinations of these load components are compared. In response to the different spectral peaks of both fatigue and ultimate loads, the controller has been designed so that it can act on different frequency components which vary with wind speed. The performance of the IBC controller on fatigue and ultimate load reduction is assessed by simulating a 5MW exemplar wind turbine. Simulation results show that with a proper selection of controlling inputs at different wind speed, the use of a single combined IBC can achieve satisfactory reduction on both fatigue and ultimate loads.

  5. Floating Offshore WTG Integrated Load Analysis & Optimization Employing a Tuned Mass Damper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez Tsouroukdissian, Arturo; Lackner, Matt; Cross-Whiter, John

    2015-09-25

    Floating offshore wind turbines (FOWTs) present complex design challenges due to the coupled dynamics of the platform motion, mooring system, and turbine control systems, in response to wind and wave loading. This can lead to higher extreme and fatigue loads than a comparable fixed bottom or onshore system. Previous research[1] has shown the potential to reduced extreme and fatigue loads on FOWT using tuned mass dampers (TMD) for structural control. This project aims to reduce maximum loads using passive TMDs located at the tower top during extreme storm events, when grid supplied power for other controls systems may not bemore » available. The Alstom Haliade 6MW wind turbine is modelled on the Glosten Pelastar tension-leg platform (TLP). The primary objectives of this project are to provide a preliminary assessment of the load reduction potential of passive TMDs on real wind turbine and TLP designs.« less

  6. Optimum Parameters of a Tuned Liquid Column Damper in a Wind Turbine Subject to Stochastic Load

    NASA Astrophysics Data System (ADS)

    Alkmim, M. H.; de Morais, M. V. G.; Fabro, A. T.

    2017-12-01

    Parameter optimization for tuned liquid column dampers (TLCD), a class of passive structural control, have been previously proposed in the literature for reducing vibration in wind turbines, and several other applications. However, most of the available work consider the wind excitation as either a deterministic harmonic load or random load with white noise spectra. In this paper, a global direct search optimization algorithm to reduce vibration of a tuned liquid column damper (TLCD), a class of passive structural control device, is presented. The objective is to find optimized parameters for the TLCD under stochastic load from different wind power spectral density. A verification is made considering the analytical solution of undamped primary system under white noise excitation by comparing with result from the literature. Finally, it is shown that different wind profiles can significantly affect the optimum TLCD parameters.

  7. NWTC Researchers Field-Test Advanced Control Turbine Systems to Increase Performance, Decrease Structural Loading of Wind Turbines and Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Researchers at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC) are studying component controls, including new advanced actuators and sensors, for both conventional turbines as well as wind plants. This research will help develop innovative control strategies that reduce aerodynamic structural loads and improve performance. Structural loads can cause damage that increase maintenance costs and shorten the life of a turbine or wind plant.

  8. Analyzing the Energy Performance, Wind Loading, and Costs of Photovoltaic Slat Modules on Commercial Rooftops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Geet, Otto D.; Fu, Ran; Horowitz, Kelsey A.

    NREL studied a new type of photovoltaic (PV) module configuration wherein multiple narrow, tilted slats are mounted in a single frame. Each slat of the PV slat module contains a single row of cells and is made using ordinary crystalline silicon PV module materials and processes, including a glass front sheet and weatherproof polymer encapsulation. Compared to a conventional ballasted system, a system using slat modules offer higher energy production and lower weight at lower LCOE. The key benefits of slat modules are reduced wind loading, improved capacity factor and reduced installation cost. First, the individual slats allow air tomore » flow through, which reduce wind loading. Using PV performance modeling software, we compared the performance of an optimized installation of slats modules to a typical installation of conventional modules in a ballasted rack mounting system. Based on the results of the performance modeling two different row tilt and spacing were tested in a wind tunnel. Scaled models of the PV Slat modules were wind tunnel tested to quantify the wind loading of a slat module system on a commercial rooftop, comparing the results to conventional ballasted rack mounted PV modules. Some commercial roofs do not have sufficient reserve dead load capacity to accommodate a ballasted system. A reduced ballast system design could make PV system installation on these roofs feasible for the first time without accepting the disadvantages of penetrating mounts. Finally, technoeconomic analysis was conducted to enable an economic comparison between a conventional commercial rooftop system and a reduced-ballast slat module installation.« less

  9. Wind effects on long-span bridges: Probabilistic wind data format for buffeting and VIV load assessments

    NASA Astrophysics Data System (ADS)

    Hoffmann, K.; Srouji, R. G.; Hansen, S. O.

    2017-12-01

    The technology development within the structural design of long-span bridges in Norwegian fjords has created a need for reformulating the calculation format and the physical quantities used to describe the properties of wind and the associated wind-induced effects on bridge decks. Parts of a new probabilistic format describing the incoming, undisturbed wind is presented. It is expected that a fixed probabilistic format will facilitate a more physically consistent and precise description of the wind conditions, which in turn increase the accuracy and considerably reduce uncertainties in wind load assessments. Because the format is probabilistic, a quantification of the level of safety and uncertainty in predicted wind loads is readily accessible. A simple buffeting response calculation demonstrates the use of probabilistic wind data in the assessment of wind loads and responses. Furthermore, vortex-induced fatigue damage is discussed in relation to probabilistic wind turbulence data and response measurements from wind tunnel tests.

  10. Wind Turbine Control Design to Reduce Capital Costs: 7 January 2009 - 31 August 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darrow, P. J.

    2010-01-01

    This report first discusses and identifies which wind turbine components can benefit from advanced control algorithms and also presents results from a preliminary loads case analysis using a baseline controller. Next, it describes the design, implementation, and simulation-based testing of an advanced controller to reduce loads on those components. The case-by-case loads analysis and advanced controller design will help guide future control research.

  11. Methods and apparatus for rotor load control in wind turbines

    DOEpatents

    Moroz, Emilian Mieczyslaw

    2006-08-22

    A wind turbine having a rotor, at least one rotor blade, and a plurality of generators, of which a first generator is configured to provide power to an electric grid and a second generator is configured to provide power to the wind turbine during times of grid loss. The wind turbine is configured to utilize power provided by the second generator to reduce loads on the wind turbine during times of grid loss.

  12. Lidar-Enhanced Wind Turbine Control: Past, Present, and Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholbrock, Andrew; Fleming, Paul; Schlipf, David

    The main challenges in harvesting energy from the wind arise from the unknown incoming turbulent wind field. Balancing the competing interests of reduction in structural loads and increasing energy production is the goal of a wind turbine controller to reduce the cost of producing wind energy. Conventional wind turbines use feedback methods to optimize these goals, reacting to wind disturbances after they have already impacted the wind turbine. Lidar sensors offer a means to provide additional inputs to a wind turbine controller, enabling new techniques to improve control methods, allowing a controller to actuate a wind turbine in anticipation ofmore » an incoming wind disturbance. This paper will look at the development of lidar-enhanced controls and how they have been used for various turbine load reductions with pitch actuation, as well as increased energy production with improved yaw control. Ongoing work will also be discussed to show that combining pitch and torque control using feedforward nonlinear model predictive control can lead to both reduced loads and increased energy production. Future work is also proposed on extending individual wind turbine controls to the wind plant level and determining how lidars can be used for control methods to further lower the cost of wind energy by minimizing wake impacts in a wind farm.« less

  13. Multi-objective Extremum Seeking Control for Enhancement of Wind Turbine Power Capture with Load Reduction

    NASA Astrophysics Data System (ADS)

    Xiao, Yan; Li, Yaoyu; Rotea, Mario A.

    2016-09-01

    The primary objective in below rated wind speed (Region 2) is to maximize the turbine's energy capture. Due to uncertainty, variability of turbine characteristics and lack of inexpensive but precise wind measurements, model-free control strategies that do not use wind measurements such as Extremum Seeking Control (ESC) have received significant attention. Based on a dither-demodulation scheme, ESC can maximize the wind power capture in real time despite uncertainty, variabilities and lack of accurate wind measurements. The existing work on ESC based wind turbine control focuses on power capture only. In this paper, a multi-objective extremum seeking control strategy is proposed to achieve nearly optimum wind energy capture while decreasing structural fatigue loads. The performance index of the ESC combines the rotor power and penalty terms of the standard deviations of selected fatigue load variables. Simulation studies of the proposed multi-objective ESC demonstrate that the damage-equivalent loads of tower and/or blade loads can be reduced with slight compromise in energy capture.

  14. A Compendium of Wind Statistics and Models for the NASA Space Shuttle and Other Aerospace Vehicle Programs

    NASA Technical Reports Server (NTRS)

    Smith, O. E.; Adelfang, S. I.

    1998-01-01

    The wind profile with all of its variations with respect to altitude has been, is now, and will continue to be important for aerospace vehicle design and operations. Wind profile databases and models are used for the vehicle ascent flight design for structural wind loading, flight control systems, performance analysis, and launch operations. This report presents the evolution of wind statistics and wind models from the empirical scalar wind profile model established for the Saturn Program through the development of the vector wind profile model used for the Space Shuttle design to the variations of this wind modeling concept for the X-33 program. Because wind is a vector quantity, the vector wind models use the rigorous mathematical probability properties of the multivariate normal probability distribution. When the vehicle ascent steering commands (ascent guidance) are wind biased to the wind profile measured on the day-of-launch, ascent structural wind loads are reduced and launch probability is increased. This wind load alleviation technique is recommended in the initial phase of vehicle development. The vehicle must fly through the largest load allowable versus altitude to achieve its mission. The Gumbel extreme value probability distribution is used to obtain the probability of exceeding (or not exceeding) the load allowable. The time conditional probability function is derived from the Gumbel bivariate extreme value distribution. This time conditional function is used for calculation of wind loads persistence increments using 3.5-hour Jimsphere wind pairs. These increments are used to protect the commit-to-launch decision. Other topics presented include the Shuttle Shuttle load-response to smoothed wind profiles, a new gust model, and advancements in wind profile measuring systems. From the lessons learned and knowledge gained from past vehicle programs, the development of future launch vehicles can be accelerated. However, new vehicle programs by their very nature will require specialized support for new databases and analyses for wind, atmospheric parameters (pressure, temperature, and density versus altitude), and weather. It is for this reason that project managers are encouraged to collaborate with natural environment specialists early in the conceptual design phase. Such action will give the lead time necessary to meet the natural environment design and operational requirements, and thus, reduce development costs.

  15. FLORIS 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-08-04

    This code is an enhancement to the existing FLORIS code, SWR 14-20. In particular, this enhancement computes overall thrust and turbulence intensity throughout a wind plant. This information is used to form a description of the fatigue loads experienced throughtout the wind plant. FLORIS has been updated to include an optimization routine that optimizes FLORIS to minimize thrust and turbulence intensity (and therefore loads) across the wind plant. Previously, FLORIS had been designed to optimize power out of a wind plant. However, as turbines age, more wind plant owner/operators are looking for ways to reduce their fatigue loads without sacrificingmore » too much power.« less

  16. Active tower damping and pitch balancing - design, simulation and field test

    NASA Astrophysics Data System (ADS)

    Duckwitz, Daniel; Shan, Martin

    2014-12-01

    The tower is one of the major components in wind turbines with a contribution to the cost of energy of 8 to 12% [1]. In this overview the load situation of the tower will be described in terms of sources of loads, load components and fatigue contribution. Then two load reduction control schemes are described along with simulation and field test results. Pitch Balancing is described as a method to reduce aerodynamic asymmetry and the resulting fatigue loads. Active Tower Damping is reducing the tower oscillations by applying appropiate pitch angle changes. A field test was conducted on an Areva M5000 wind turbine.

  17. Method and apparatus for reducing rotor blade deflections, loads, and/or peak rotational speed

    DOEpatents

    Moroz, Emilian Mieczyslaw; Pierce, Kirk Gee

    2006-10-17

    A method for reducing at least one of loads, deflections of rotor blades, or peak rotational speed of a wind turbine includes storing recent historical pitch related data, wind related data, or both. The stored recent historical data is analyzed to determine at least one of whether rapid pitching is occurring or whether wind speed decreases are occurring. A minimum pitch, a pitch rate limit, or both are imposed on pitch angle controls of the rotor blades conditioned upon results of the analysis.

  18. Structural Load Alleviation Applied to Next Generation Aircraft and Wind Turbines

    NASA Technical Reports Server (NTRS)

    Frost, Susan

    2011-01-01

    Reducing the environmental impact of aviation is a goal of the Subsonic Fixed Wing Project under the Fundamental Aeronautics Program of NASAs Aeronautics Research Mission Directorate. Environmental impact of aviation is being addressed by novel aircraft configurations and materials that reduce aircraft weight and increase aerodynamic efficiency. NASA is developing tools to address the challenges of increased airframe flexibility created by wings constructed with reduced structural material and novel light-weight materials. This talk will present a framework and demonstration of a flight control system using optimal control allocation with structural load feedback and constraints to achieve safe aircraft operation. As wind turbines age, they become susceptible to many forms of blade degradation. Results will be presented on work in progress that uses adaptive contingency control for load mitigation in a wind turbine simulation with blade damage progression modeled.

  19. Implementation of internal model based control and individual pitch control to reduce fatigue loads and tower vibrations in wind turbines

    NASA Astrophysics Data System (ADS)

    Mohammadi, Ebrahim; Fadaeinedjad, Roohollah; Moschopoulos, Gerry

    2018-05-01

    Vibration control and fatigue loads reduction are important issues in large-scale wind turbines. Identifying the vibration frequencies and tuning dampers and controllers at these frequencies are major concerns in many control methods. In this paper, an internal model control (IMC) method with an adaptive algorithm is implemented to first identify the vibration frequency of the wind turbine tower and then to cancel the vibration signal. Standard individual pitch control (IPC) is also implemented to compare the performance of the controllers in term of fatigue loads reduction. Finally, the performance of the system when both controllers are implemented together is evaluated. Simulation results demonstrate that using only IMC or IPC alone has advantages and can reduce fatigue loads on specific components. IMC can identify and suppress tower vibrations in both fore-aft and side-to-side directions, whereas, IPC can reduce fatigue loads on blades, shaft and yaw bearings. When both IMC and IPC are implemented together, the advantages of both controllers can be used. The aforementioned analysis and comparisons were not studied in literature and this study fills this gap. FAST, AreoDyn and Simulink are used to simulate the mechanical, aerodynamic and electrical aspects of wind turbine.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholbrock, A. K.; Fleming, P. A.; Fingersh, L. J.

    Wind turbines are complex, nonlinear, dynamic systems driven by aerodynamic, gravitational, centrifugal, and gyroscopic forces. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a chaotic three-dimensional (3-D) turbulent wind inflow field with imbedded coherent vortices that drive fatigue loads and reduce lifetime. In order to reduce cost of energy, future large multimegawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, maximize energy capture, and add active damping to maintain stability for these dynamically active structures operating in a complex environment. Researchers at the National Renewable Energymore » Laboratory (NREL) and University of Stuttgart are designing, implementing, and testing advanced feed-back and feed-forward controls in order to reduce the cost of energy for wind turbines.« less

  1. Analysis of Wind Forces on Roof-Top Solar Panel

    NASA Astrophysics Data System (ADS)

    Panta, Yogendra; Kudav, Ganesh

    2011-03-01

    Structural loads on solar panels include forces due to high wind, gravity, thermal expansion, and earthquakes. International Building Code (IBC) and the American Society of Civil Engineers are two commonly used approaches in solar industries to address wind loads. Minimum Design Loads for Buildings and Other Structures (ASCE 7-02) can be used to calculate wind uplift loads on roof-mounted solar panels. The present study is primarily focused on 2D and 3D modeling with steady, and turbulent flow over an inclined solar panel on the flat based roof to predict the wind forces for designing wind management system. For the numerical simulation, 3-D incompressible flow with the standard k- ɛ was adopted and commercial CFD software ANSYS FLUENT was used. Results were then validated with wind tunnel experiments with a good agreement. Solar panels with various aspect ratios for various high wind speeds and angle of attacks were modeled and simulated in order to predict the wind loads in various scenarios. The present study concluded to reduce the strong wind uplift by designing a guide plate or a deflector before the panel. Acknowledgments to Northern States Metal Inc., OH (GK & YP) and School of Graduate Studies of YSU for RP & URC 2009-2010 (YP).

  2. Power control and management of the grid containing largescale wind power systems

    NASA Astrophysics Data System (ADS)

    Aula, Fadhil Toufick

    The ever increasing demand for electricity has driven many countries toward the installation of new generation facilities. However, concerns such as environmental pollution and global warming issues, clean energy sources, high costs associated with installation of new conventional power plants, and fossil fuels depletion have created many interests in finding alternatives to conventional fossil fuels for generating electricity. Wind energy is one of the most rapidly growing renewable power sources and wind power generations have been increasingly demanded as an alternative to the conventional fossil fuels. However, wind power fluctuates due to variation of wind speed. Therefore, large-scale integration of wind energy conversion systems is a threat to the stability and reliability of utility grids containing these systems. They disturb the balance between power generation and consumption, affect the quality of the electricity, and complicate load sharing and load distribution managing and planning. Overall, wind power systems do not help in providing any services such as operating and regulating reserves to the power grid. In order to resolve these issues, research has been conducted in utilizing weather forecasting data to improve the performance of the wind power system, reduce the influence of the fluctuations, and plan power management of the grid containing large-scale wind power systems which consist of doubly-fed induction generator based energy conversion system. The aims of this research, my dissertation, are to provide new methods for: smoothing the output power of the wind power systems and reducing the influence of their fluctuations, power managing and planning of a grid containing these systems and other conventional power plants, and providing a new structure of implementing of latest microprocessor technology for controlling and managing the operation of the wind power system. In this research, in order to reduce and smooth the fluctuations, two methods are presented. The first method is based on a de-loaded technique while the other method is based on utilizing multiple storage facilities. The de-loaded technique is based on characteristics of the power of a wind turbine and estimation of the generated power according to weather forecasting data. The technique provides a reference power by which the wind power system will operate and generate a smooth power. In contrast, utilizing storage facilities will allow the wind power system to operate at its maximum tracking power points' strategy. Two types of energy storages are considered in this research, battery energy storage system (BESS) and pumped-hydropower storage system (PHSS), to suppress the output fluctuations and to support the wind power system to follow the system load demands. Furthermore, this method provides the ability to store energy when there is a surplus of the generated power and to reuse it when there is a shortage of power generation from wind power systems. Both methods are new in terms of utilizing of the techniques and wind speed data. A microprocessor embedded system using an IntelRTM Atom(TM) processor is presented for controlling the wind power system and for providing the remote communication for enhancing the operation of the individual wind power system in a wind farm. The embedded system helps the wind power system to respond and to follow the commands of the central control of the power system. Moreover, it enhances the performance of the wind power system through self-managing, self-functioning, and self-correcting. Finally, a method of system power management and planning is modeled and studied for a grid containing large-scale wind power systems. The method is based on a new technique through constructing a new load demand curve (NLDC) from merging the estimation of generated power from wind power systems and forecasting of the load. To summarize, the methods and their results presented in this dissertation, enhance the operation of the large-scale wind power systems and reduce their drawbacks on the operation of the power grid.

  3. Active structural control of a floating wind turbine with a stroke-limited hybrid mass damper

    NASA Astrophysics Data System (ADS)

    Hu, Yaqi; He, Erming

    2017-12-01

    Floating wind turbines are subjected to more severe structural loads than fixed-bottom wind turbines due to additional degrees of freedom (DOFs) of their floating foundations. It's a promising way of using active structural control method to improve the structural responses of floating wind turbines. This paper investigates an active vibration control strategy for a barge-type floating wind turbine by setting a stroke-limited hybrid mass damper (HMD) in the turbine's nacelle. Firstly, a contact nonlinear modeling method for the floating wind turbine with clearance between the HMD and the stroke limiters is presented based on Euler-Lagrange's equations and an active control model of the whole system is established. The structural parameters are validated for the active control model and an equivalent load coefficient method is presented for identifying the wind and wave disturbances. Then, a state-feedback linear quadratic regulator (LQR) controller is designed to reduce vibration and loads of the wind turbine, and two optimization methods are combined to optimize the weighting coefficients when considering the stroke of the HMD and the active control power consumption as constraints. Finally, the designed controllers are implemented in high fidelity simulations under five typical wind and wave conditions. The results show that active HMD control strategy is shown to be achievable and the designed controllers could further reduce more vibration and loads of the wind turbine under the constraints of stroke limitation and power consumption. "V"-shaped distribution of the TMD suppression effect is inconsistent with the Weibull distribution in practical offshore floating wind farms, and the active HMD control could overcome this shortcoming of the passive TMD.

  4. Turbulent Extreme Event Simulations for Lidar-Assisted Wind Turbine Control

    NASA Astrophysics Data System (ADS)

    Schlipf, David; Raach, Steffen

    2016-09-01

    This work presents a wind field generator which allows to shape wind fields in the time domain while maintaining the spectral properties. This is done by an iterative generation of wind fields and by minimizing the error between wind characteristics of the generated wind fields and desired values. The method leads towards realistic ultimate load calculations for lidar-assisted control. This is demonstrated by fitting a turbulent wind field to an Extreme Operating Gust. The wind field is then used to compare a baseline feedback controller alone against a combined feedback and feedforward controller using simulated lidar measurements. The comparison confirms that the lidar-assisted controller is still able to significantly reduce the ultimate loads on the tower base under this more realistic conditions.

  5. Wind Turbine Control Systems | Wind | NREL

    Science.gov Websites

    Turbine Control Systems Wind Turbine Control Systems Advanced wind turbine controls can reduce the loads on wind turbine components while capturing more wind energy and converting it into electricity turbines. A photo of a wind turbine against blue sky with white blades on their sides in the foreground

  6. Operational load estimation of a smart wind turbine rotor blade

    NASA Astrophysics Data System (ADS)

    White, Jonathan R.; Adams, Douglas E.; Rumsey, Mark A.

    2009-03-01

    Rising energy prices and carbon emission standards are driving a fundamental shift from fossil fuels to alternative sources of energy such as biofuel, solar, wind, clean coal and nuclear. In 2008, the U.S. installed 8,358 MW of new wind capacity increasing the total installed wind power by 50% to 25,170 MW. A key technology to improve the efficiency of wind turbines is smart rotor blades that can monitor the physical loads being applied by the wind and then adapt the airfoil for increased energy capture. For extreme wind and gust events, the airfoil could be changed to reduce the loads to prevent excessive fatigue or catastrophic failure. Knowledge of the actual loading to the turbine is also useful for maintenance planning and design improvements. In this work, an array of uniaxial and triaxial accelerometers was integrally manufactured into a 9m smart rotor blade. DC type accelerometers were utilized in order to estimate the loading and deflection from both quasi-steady-state and dynamic events. A method is presented that designs an estimator of the rotor blade static deflection and loading and then optimizes the placement of the sensor(s). Example results show that the method can identify the optimal location for the sensor for both simple example cases and realistic complex loading. The optimal location of a single sensor shifts towards the tip as the curvature of the blade deflection increases with increasingly complex wind loading. The framework developed is practical for the expansion of sensor optimization in more complex blade models and for higher numbers of sensors.

  7. A Breath of Fresh Air in Foraging Theory: The Importance of Wind for Food Size Selection in a Central-Place Forager.

    PubMed

    Alma, Andrea Marina; Farji-Brener, Alejandro G; Elizalde, Luciana

    2017-09-01

    Empirical data about food size carried by central-place foragers do not often fit with the optimum predicted by classical foraging theory. Traditionally, biotic constraints such as predation risk and competition have been proposed to explain this inconsistency, leaving aside the possible role of abiotic factors. Here we documented how wind affects the load size of a central-place forager (leaf-cutting ants) through a mathematical model including the whole foraging process. The model showed that as wind speed at ground level increased from 0 to 2 km/h, load size decreased from 91 to 30 mm 2 , a prediction that agreed with empirical data from windy zones, highlighting the relevance of considering abiotic factors to predict foraging behavior. Furthermore, wind reduced the range of load sizes that workers should select to maintain a similar rate of food intake and decreased the foraging rate by ∼70% when wind speed increased 1 km/h. These results suggest that wind could reduce the fitness of colonies and limit the geographic distribution of leaf-cutting ants. The developed model offers a complementary explanation for why load size in central-place foragers may not fit theoretical predictions and could serve as a basis to study the effects of other abiotic factors that influence foraging.

  8. Structural optimization procedure of a composite wind turbine blade for reducing both material cost and blade weight

    NASA Astrophysics Data System (ADS)

    Hu, Weifei; Park, Dohyun; Choi, DongHoon

    2013-12-01

    A composite blade structure for a 2 MW horizontal axis wind turbine is optimally designed. Design requirements are simultaneously minimizing material cost and blade weight while satisfying the constraints on stress ratio, tip deflection, fatigue life and laminate layup requirements. The stress ratio and tip deflection under extreme gust loads and the fatigue life under a stochastic normal wind load are evaluated. A blade element wind load model is proposed to explain the wind pressure difference due to blade height change during rotor rotation. For fatigue life evaluation, the stress result of an implicit nonlinear dynamic analysis under a time-varying fluctuating wind is converted to the histograms of mean and amplitude of maximum stress ratio using the rainflow counting algorithm Miner's rule is employed to predict the fatigue life. After integrating and automating the whole analysis procedure an evolutionary algorithm is used to solve the discrete optimization problem.

  9. Mixed H2/H∞ pitch control of wind turbine with a Markovian jump model

    NASA Astrophysics Data System (ADS)

    Lin, Zhongwei; Liu, Jizhen; Wu, Qiuwei; Niu, Yuguang

    2018-01-01

    This paper proposes a Markovian jump model and the corresponding H2/H∞ control strategy for the wind turbine driven by the stochastic switching wind speed, which can be used to regulate the generator speed in order to harvest the rated power while reducing the fatigue loads on the mechanical side of wind turbine. Through sampling the low-frequency wind speed data into separate intervals, the stochastic characteristic of the steady wind speed can be represented as a Markov process, while the high-frequency wind speed in the each interval is regarded as the disturbance input. Then, the traditional operating points of wind turbine can be divided into separate subregions correspondingly, where the model parameters and the control mode can be fixed in each mode. Then, the mixed H2/H∞ control problem is discussed for such a class of Markovian jump wind turbine working above the rated wind speed to guarantee both the disturbance rejection and the mechanical loads objectives, which can reduce the power volatility and the generator torque fluctuation of the whole transmission mechanism efficiently. Simulation results for a 2 MW wind turbine show the effectiveness of the proposed method.

  10. Evaluating the Impacts of Real-Time Pricing on the Cost and Value of Wind Generation

    DOE PAGES

    Siohansi, Ramteen

    2010-05-01

    One of the costs associated with integrating wind generation into a power system is the cost of redispatching the system in real-time due to day-ahead wind resource forecast errors. One possible way of reducing these redispatch costs is to introduce demand response in the form of real-time pricing (RTP), which could allow electricity demand to respond to actual real-time wind resource availability using price signals. A day-ahead unit commitment model with day-ahead wind forecasts and a real-time dispatch model with actual wind resource availability is used to estimate system operations in a high wind penetration scenario. System operations are comparedmore » to a perfect foresight benchmark, in which actual wind resource availability is known day-ahead. The results show that wind integration costs with fixed demands can be high, both due to real-time redispatch costs and lost load. It is demonstrated that introducing RTP can reduce redispatch costs and eliminate loss of load events. Finally, social surplus with wind generation and RTP is compared to a system with neither and the results demonstrate that introducing wind and RTP into a market can result in superadditive surplus gains.« less

  11. Application of model predictive control for optimal operation of wind turbines

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan; Cao, Pei; Tang, J.

    2017-04-01

    For large-scale wind turbines, reducing maintenance cost is a major challenge. Model predictive control (MPC) is a promising approach to deal with multiple conflicting objectives using the weighed sum approach. In this research, model predictive control method is applied to wind turbine to find an optimal balance between multiple objectives, such as the energy capture, loads on turbine components, and the pitch actuator usage. The actuator constraints are integrated into the objective function at the control design stage. The analysis is carried out in both the partial load region and full load region, and the performances are compared with those of a baseline gain scheduling PID controller. The application of this strategy achieves enhanced balance of component loads, the average power and actuator usages in partial load region.

  12. Application of two passive strategies on the load mitigation of large offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Shirzadeh, Rasoul; Kühn, Martin

    2016-09-01

    This study presents the numerical results of two passive strategies to reduce the support structure loads of a large offshore wind turbine. In the first approach, an omnidirectional tuned mass damper is designed and implemented in the tower top to alleviate the structural vibrations. In the second approach, a viscous fluid damper model which is diagonally attached to the tower at two points is developed. Aeroelastic simulations are performed for the offshore 10MW INNWIND.EU reference wind turbine mounted on a jacket structure. Lifetime damage equivalent loads are evaluated at the tower base and compared with those for the reference wind turbine. The results show that the integrated design can extend the lifetime of the support structure.

  13. Investigation of Dynamic Aerodynamics and Control of Wind Turbine Sections Under Relevant Inflow/Blade Attitude Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naughton, Jonathan W.

    2014-08-05

    The growth of wind turbines has led to highly variable loading on the blades. Coupled with the relative reduced stiffness of longer blades, the need to control loading on the blades has become important. One method of controlling loads and maximizing energy extraction is local control of the flow on the wind turbine blades. The goal of the present work was to better understand the sources of the unsteady loading and then to control them. This is accomplished through an experimental effort to characterize the unsteadiness and the effect of a Gurney flap on the flow, as well as anmore » analytical effort to develop control approaches. It was planned to combine these two efforts to demonstrate control of a wind tunnel test model, but that final piece still remains to be accomplished.« less

  14. Enhanced Actuator Line Simulation of a Wind Turbine by including the Conservative Load at the Blade Tip

    NASA Astrophysics Data System (ADS)

    Herraez, Ivan; Micallef, Daniel; van Kuik, Gijs A. M.; Peinke, Joachim

    2015-11-01

    At the tip of wind turbine blades, the radial bound circulation is transformed into chordwise circulation just before being released as trailing vorticity, giving rise to the tip vortex. The force acting on the chordwise circulation contains a radial and a normal component with respect to the blade axis. This load does not contribute to the torque, so it is a conservative load. Due to this, it is disregarded in the engineering tools used for the design of wind turbines. However, as we demonstrated in a previous work, the conservative load might influence the trajectory of the tip vortex. In order to see how this affects the blade loads, in this research we perform large eddy simulations with an actuator line model where the conservative load has been included. The conservative load reduces the angle of attack in the tip region as a consequence of the modified tip vortex trajectory. This has a negative influence on the lift and the power output. We conclude that the accuracy of engineering design tools of wind turbines can be improved if the conservative load acting at the tip is considered.

  15. Wind turbine ring/shroud drive system

    DOEpatents

    Blakemore, Ralph W.

    2005-10-04

    A wind turbine capable of driving multiple electric generators having a ring or shroud structure for reducing blade root bending moments, hub loads, blade fastener loads and pitch bearing loads. The shroud may further incorporate a ring gear for driving an electric generator. In one embodiment, the electric generator may be cantilevered from the nacelle such that the gear on the generator drive shaft is contacted by the ring gear of the shroud. The shroud also provides protection for the gearing and aids in preventing gear lubricant contamination.

  16. Lidar-Enhanced Wind Turbine Control: Past, Present, and Future: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholbrock, Andrew; Fleming, Paul; Wright, Alan

    2016-07-01

    This paper will look at the development of lidar-enhanced controls and how they have been used for turbine load reduction with pitch actuation, as well as increased energy production with improved yaw control. Ongoing work will also be discussed to show that combining pitch and torque control using feedforward nonlinear model predictive control can lead to both reduced loads and increased energy production. Future work is also proposed on extending individual wind turbine controls to the wind plant level and determining how lidars can be used for control methods to further lower the cost of wind energy by minimizing wakemore » impacts in a wind farm.« less

  17. Combined Effects of Gravity, Bending Moment, Bearing Clearance, and Input Torque on Wind Turbine Planetary Gear Load Sharing: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Y.; Keller, J.; LaCava, W.

    2012-09-01

    This computational work investigates planetary gear load sharing of three-mount suspension wind turbine gearboxes. A three dimensional multibody dynamic model is established, including gravity, bending moments, fluctuating mesh stiffness, nonlinear tooth contact, and bearing clearance. A flexible main shaft, planetary carrier, housing, and gear shafts are modeled using reduced degrees-of-freedom through modal compensation. This drivetrain model is validated against the experimental data of Gearbox Reliability Collaborative for gearbox internal loads. Planet load sharing is a combined effect of gravity, bending moment, bearing clearance, and input torque. Influences of each of these parameters and their combined effects on the resulting planetmore » load sharing are investigated. Bending moments and gravity induce fundamental excitations in the rotating carrier frame, which can increase gearbox internal loads and disturb load sharing. Clearance in carrier bearings reduces the bearing load carrying capacity and thus the bending moment from the rotor can be transmitted into gear meshes. With bearing clearance, the bending moment can cause tooth micropitting and can induce planet bearing fatigue, leading to reduced gearbox life. Planet bearings are susceptible to skidding at low input torque.« less

  18. Computationally inexpensive approach for pitch control of offshore wind turbine on barge floating platform.

    PubMed

    Zuo, Shan; Song, Y D; Wang, Lei; Song, Qing-wang

    2013-01-01

    Offshore floating wind turbine (OFWT) has gained increasing attention during the past decade because of the offshore high-quality wind power and complex load environment. The control system is a tradeoff between power tracking and fatigue load reduction in the above-rated wind speed area. In allusion to the external disturbances and uncertain system parameters of OFWT due to the proximity to load centers and strong wave coupling, this paper proposes a computationally inexpensive robust adaptive control approach with memory-based compensation for blade pitch control. The method is tested and compared with a baseline controller and a conventional individual blade pitch controller with the "NREL offshore 5 MW baseline wind turbine" being mounted on a barge platform run on FAST and Matlab/Simulink, operating in the above-rated condition. It is shown that the advanced control approach is not only robust to complex wind and wave disturbances but adaptive to varying and uncertain system parameters as well. The simulation results demonstrate that the proposed method performs better in reducing power fluctuations, fatigue loads and platform vibration as compared to the conventional individual blade pitch control.

  19. Computationally Inexpensive Approach for Pitch Control of Offshore Wind Turbine on Barge Floating Platform

    PubMed Central

    Zuo, Shan; Song, Y. D.; Wang, Lei; Song, Qing-wang

    2013-01-01

    Offshore floating wind turbine (OFWT) has gained increasing attention during the past decade because of the offshore high-quality wind power and complex load environment. The control system is a tradeoff between power tracking and fatigue load reduction in the above-rated wind speed area. In allusion to the external disturbances and uncertain system parameters of OFWT due to the proximity to load centers and strong wave coupling, this paper proposes a computationally inexpensive robust adaptive control approach with memory-based compensation for blade pitch control. The method is tested and compared with a baseline controller and a conventional individual blade pitch controller with the “NREL offshore 5 MW baseline wind turbine” being mounted on a barge platform run on FAST and Matlab/Simulink, operating in the above-rated condition. It is shown that the advanced control approach is not only robust to complex wind and wave disturbances but adaptive to varying and uncertain system parameters as well. The simulation results demonstrate that the proposed method performs better in reducing power fluctuations, fatigue loads and platform vibration as compared to the conventional individual blade pitch control. PMID:24453834

  20. Impacts of demand response and renewable generation in electricity power market

    NASA Astrophysics Data System (ADS)

    Zhao, Zhechong

    This thesis presents the objective of the research which is to analyze the impacts of uncertain wind power and demand response on power systems operation and power market clearing. First, in order to effectively utilize available wind generation, it is usually given the highest priority by assigning zero or negative energy bidding prices when clearing the day-ahead electric power market. However, when congestion occurs, negative wind bidding prices would aggravate locational marginal prices (LMPs) to be negative in certain locations. A load shifting model is explored to alleviate possible congestions and enhance the utilization of wind generation, by shifting proper amount of load from peak hours to off peaks. The problem is to determine proper amount of load to be shifted, for enhancing the utilization of wind generation, alleviating transmission congestions, and making LMPs to be non-negative values. The second piece of work considered the price-based demand response (DR) program which is a mechanism for electricity consumers to dynamically manage their energy consumption in response to time-varying electricity prices. It encourages consumers to reduce their energy consumption when electricity prices are high, and thereby reduce the peak electricity demand and alleviate the pressure to power systems. However, it brings additional dynamics and new challenges on the real-time supply and demand balance. Specifically, price-sensitive DR load levels are constantly changing in response to dynamic real-time electricity prices, which will impact the economic dispatch (ED) schedule and in turn affect electricity market clearing prices. This thesis adopts two methods for examining the impacts of different DR price elasticity characteristics on the stability performance: a closed-loop iterative simulation method and a non-iterative method based on the contraction mapping theorem. This thesis also analyzes the financial stability of DR load consumers, by incorporating explicit LMP formulations and consumer payment requirements into the network-constrained unit commitment (NCUC) problem. The proposed model determines the proper amount of DR loads to be shifted from peak hours to off-peaks under ISO's direct load control, for reducing the operation cost and ensuring that consumer payments of DR loads will not deteriorate significantly after load shifting. Both MINLP and MILP models are discussed, and improved formulation strategies are presented.

  1. Smart Novel Semi-Active Tuned Mass Damper for Fixed-Bottom and Floating Offshore Wind (Paper)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez Tsouroukdissian, Arturo; Lackner, Mathew; Cross-Whiter, John

    The intention of this paper is to present the results of a novel smart semi-active tuned mass damper (SA-TMD), which mitigates unwanted loads for both fixed-bottom and floating offshore wind systems. The paper will focus on the most challenging water depths for both fixed-bottom and floating systems. A close to 38m Monopile and 55m Tension Leg Platform (TLP) will be considered. A technical development and trade-off analysis will be presented comparing the new system with existing passive non-linear TMD (N-TMD) technology and semi-active. TheSATMD works passively and activates itself with low power source under unwanted dynamic loading in less thanmore » 60msec. It is composed of both variable stiffness and damping elements coupled to a central pendulum mass. The analysis has been done numerically in both FAST(NREL) and Orcaflex (Orcina), and integrated in the Wind Turbine system employing CAD/CAE. The results of this work will pave the way for experimental testing to complete the technology qualification process. The load reductions under extreme and fatigue cases reach up significant levels at tower base, consequently reducing LCOE for fixed-bottom to floating wind solutions. The nacelle acceleration is reduced substantially under severe random wind and sea states, reducing the risks of failure of electromechanical components and blades at the rotor nacelle assembly. The SA-TMD system isa new technology that has not been applied previously in wind solutions. Structural damping devices aim to increase offshore wind turbine system robustness and reliability, which eases multiple substructures installations and global stability.« less

  2. Dynamics modeling and loads analysis of an offshore floating wind turbine

    NASA Astrophysics Data System (ADS)

    Jonkman, Jason Mark

    The vast deepwater wind resource represents a potential to use offshore floating wind turbines to power much of the world with renewable energy. Many floating wind turbine concepts have been proposed, but dynamics models, which account for the wind inflow, aerodynamics, elasticity, and controls of the wind turbine, along with the incident waves, sea current, hydrodynamics, and platform and mooring dynamics of the floater, were needed to determine their technical and economic feasibility. This work presents the development of a comprehensive simulation tool for modeling the coupled dynamic response of offshore floating wind turbines, the verification of the simulation tool through model-to-model comparisons, and the application of the simulation tool to an integrated loads analysis for one of the promising system concepts. A fully coupled aero-hydro-servo-elastic simulation tool was developed with enough sophistication to address the limitations of previous frequency- and time-domain studies and to have the features required to perform loads analyses for a variety of wind turbine, support platform, and mooring system configurations. The simulation capability was tested using model-to-model comparisons. The favorable results of all of the verification exercises provided confidence to perform more thorough analyses. The simulation tool was then applied in a preliminary loads analysis of a wind turbine supported by a barge with catenary moorings. A barge platform was chosen because of its simplicity in design, fabrication, and installation. The loads analysis aimed to characterize the dynamic response and to identify potential loads and instabilities resulting from the dynamic couplings between the turbine and the floating barge in the presence of combined wind and wave excitation. The coupling between the wind turbine response and the barge-pitch motion, in particular, produced larger extreme loads in the floating turbine than experienced by an equivalent land-based turbine. Instabilities were also found in the system. The influence of conventional wind turbine blade-pitch control actions on the pitch damping of the floating turbine was also assessed. Design modifications for reducing the platform motions, improving the turbine response, and eliminating the instabilities are suggested. These suggestions are aimed at obtaining cost-effective designs that achieve favorable performance while maintaining structural integrity.

  3. Evaluation of New Actuators in a Buffet Loads Environment

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Wieseman, Carol D.; Bent, Aaron A.; Pizzochero, Alessandro E.

    2001-01-01

    Ongoing research in buffet loads alleviation has provided an application for recently developed piezoelectric actuators capable of higher force output than previously existing actuators could provide and that can be embedded within the vehicle s structure. These new actuators, having interdigitated electrodes, promise increased performance over previous piezoelectric actuators that were tested on the fin of an F/A-18 aircraft. Two new actuators being considered by the United States Air Force to reduce buffet loads on high performance aircraft were embedded into the fins of an F/A-18 wind-tunnel model and tested in the Transonic Dynamics Tunnel at the NASA Langley Research Center. The purpose of this test program, called ENABLE (Evaluation of New Actuators in a Buffet Loads Environment), was to examine the performance of the new actuators in alleviating fin buffeting, leading to a systems -level study of a fin buffet loads alleviation system architecture being considered by the USAF, Boeing, and NASA for implementation on high performance aircraft. During this windtunnel test, the two actuators performed superbly in alleviating fin buffeting. Peak values of the power spectral density functions for tip acceleration were reduced by as much as 85%. RMS values of tip acceleration were reduced by as much as 40% while using less than 50% of the actuators capacity. Details of the wind-tunnel model and results of the wind-tunnel test are provided herein.

  4. Wind loading analysis and strategy for deflection reduction on HET wide field upgrade

    NASA Astrophysics Data System (ADS)

    South, Brian J.; Soukup, Ian M.; Worthington, Michael S.; Zierer, Joseph J.; Booth, John A.; Good, John M.

    2010-07-01

    Wind loading can be a detrimental source of vibration and deflection for any large terrestrial optical telescope. The Hobby-Eberly Telescope* (HET) in the Davis Mountains of West Texas is undergoing a Wide Field Upgrade (WFU) in support of the Dark Energy Experiment (HETDEX) that will greatly increase the size of the instrumentation subjected to operating wind speeds of up to 20.1 m/s (45 mph). A non-trivial consideration for this telescope (or others) is to quantify the wind loads and resulting deflections of telescope structures induced under normal operating conditions so that appropriate design changes can be made. A quasi-static computational fluid dynamics (CFD) model was generated using wind speeds collected on-site as inputs to characterize dynamic wind forces on telescope structures under various conditions. The CFD model was refined until predicted wind speed and direction inside the dome agreed with experimental data. The dynamic wind forces were then used in static loading analysis to determine maximum deflections under typical operating conditions. This approach also allows for exploration of operating parameters without impact to the observation schedule of the telescope. With optimum combinations of parameters (i.e. dome orientation, tracker position, and louver deployment), deflections due to current wind conditions can be significantly reduced. Furthermore, the upper limit for operating wind speed could be increased, provided these parameters are monitored closely. This translates into increased image quality and observing time.

  5. Effect of wind turbine generator model and siting on wind power changes out of large WECS arrays

    NASA Technical Reports Server (NTRS)

    Schleuter, R. A.; Park, G. L.; Lotfalian, M.; Dorsey, J.; Shayanfar, H.

    1981-01-01

    Methods of reducing the WECS generation change through selection of the wind turbine model for each site, selection of an appropriate siting configuration, and wind array controls are discussed. An analysis of wind generation change from an echelon and a farm for passage of a thunderstorm is presented. Reduction of the wind generation change over ten minutes is shown to reduce the increase in spinning reserve, unloadable generation and load following requirements on unit commitment when significant WECS generation is present and the farm penetration constraint is satisfied. Controls on the blade pitch angle of all wind turbines in an array or a battery control are shown to reduce both the wind generation change out of an array and the effective farm penetration in anticipation of a storm so that the farm penetration constraint may be satisfied.

  6. Downwind pre-aligned rotors for extreme-scale wind turbines

    DOE PAGES

    Loth, Eric; Steele, Adam; Qin, Chao; ...

    2017-03-08

    Downwind force angles are small for current turbines systems (1-5 MW) such that they may be readily accommodated by conventional upwind configurations. However, analysis indicates that extreme-scale systems (10-20 MW) will have larger angles that may benefit from downwind-aligned configurations. To examine potential rotor mass reduction, the pre-alignment concept was investigated a two-bladed configuration by keeping the structural and aerodynamic characteristics of each blade fixed (to avoids a complete blade re-design). Simulations for a 13.2 MW rated rotor at steady-state conditions show that this concept-level two-bladed design may yield 25% rotor mass savings while also reducing average blade stress overmore » all wind speeds. These results employed a pre-alignment on the basis of a wind speed of 1.25 times the rated wind speed. The downwind pre-aligned concept may also reduce damage equivalent loads on the blades by 60% for steady rated wind conditions. Even higher mass and damage equivalent load savings (relative to conventional upwind designs) may be possible for larger systems (15-20 MW) for which load-alignment angles become even larger. Furthermore, much more work is needed to determine whether this concept can be translated into a practical design that must meet a wide myriad of other criteria.« less

  7. Downwind pre-aligned rotors for extreme-scale wind turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loth, Eric; Steele, Adam; Qin, Chao

    Downwind force angles are small for current turbines systems (1-5 MW) such that they may be readily accommodated by conventional upwind configurations. However, analysis indicates that extreme-scale systems (10-20 MW) will have larger angles that may benefit from downwind-aligned configurations. To examine potential rotor mass reduction, the pre-alignment concept was investigated a two-bladed configuration by keeping the structural and aerodynamic characteristics of each blade fixed (to avoids a complete blade re-design). Simulations for a 13.2 MW rated rotor at steady-state conditions show that this concept-level two-bladed design may yield 25% rotor mass savings while also reducing average blade stress overmore » all wind speeds. These results employed a pre-alignment on the basis of a wind speed of 1.25 times the rated wind speed. The downwind pre-aligned concept may also reduce damage equivalent loads on the blades by 60% for steady rated wind conditions. Even higher mass and damage equivalent load savings (relative to conventional upwind designs) may be possible for larger systems (15-20 MW) for which load-alignment angles become even larger. Furthermore, much more work is needed to determine whether this concept can be translated into a practical design that must meet a wide myriad of other criteria.« less

  8. The results of a wind tunnel investigation of a model rotor with a free tip

    NASA Technical Reports Server (NTRS)

    Stroub, Robert H.; Young, Larry A.

    1985-01-01

    The results of a wind-tunnel test of the free tip rotor are presented. The free tip extended over the outer 10% of the rotor blade and included a simple, passive controller mechanism. Wind-tunnel test hardware is described. The free-tip assembly, which includes the controller, functioned flawlessly throughout the test. The tip pitched freely and responded to airflow perturbation in a sharp, quick, and stable manner. Tip pitch-angle responses are presented for an advance ratio range of 0.1 to 0.397 and for a thrust coefficient range of 0.038 to 0.092. The free tip reduced power requirements, loads going into the control system, and some flatwise blade-bending moments. Chordwise loads were not reduced by the free tip.

  9. Load alleviation maneuvers for a launch vehicle

    NASA Technical Reports Server (NTRS)

    Seywald, Hans; Bless, Robert

    1993-01-01

    This paper addresses the design of a forward-looking autopilot that is capable of employing a priori knowledge of wind gusts ahead of the flight path to reduce the bending loads experienced by a launch vehicle. The analysis presented in the present paper is only preliminary, employing a very simple vehicle dynamical model and restricting itself to wind gusts of the form of isolated spikes. The main result of the present study is that LQR based feedback laws are inappropriate to handle spike-type wind perturbations with large amplitude and narrow base. The best performance is achieved with an interior-point penalty optimal control formulation which can be well approximated by a simple feedback control law. Reduction of the maximum bending loads by nearly 50 percent is demonstrated.

  10. Effect of vortex generators on the power conversion performance and structural dynamic loads of the Mod-2 wind turbine

    NASA Technical Reports Server (NTRS)

    Sullivan, T. L.

    1984-01-01

    Applying vortex generators from 20 to 100 percent span of the Mod-2 rotor resulted in a projected increase in annual energy capture of 20 percent and reduced the wind speed at which rated power is reached by nearly 3 m/sec. Application of vortex generators from 20 to 70 percent span, the fixed portion of the Mod-2 rotor, resulted in a projected increase in annual energy capture of about half this. This improved performance came at the cost of a small increase in cyclic blade loads in below rated power conditions. Cyclic blade loads were found to correlate well with the change in wind speed during one rotor revolution.

  11. Single Vector Calibration System for Multi-Axis Load Cells and Method for Calibrating a Multi-Axis Load Cell

    NASA Technical Reports Server (NTRS)

    Parker, Peter A. (Inventor)

    2003-01-01

    A single vector calibration system is provided which facilitates the calibration of multi-axis load cells, including wind tunnel force balances. The single vector system provides the capability to calibrate a multi-axis load cell using a single directional load, for example loading solely in the gravitational direction. The system manipulates the load cell in three-dimensional space, while keeping the uni-directional calibration load aligned. The use of a single vector calibration load reduces the set-up time for the multi-axis load combinations needed to generate a complete calibration mathematical model. The system also reduces load application inaccuracies caused by the conventional requirement to generate multiple force vectors. The simplicity of the system reduces calibration time and cost, while simultaneously increasing calibration accuracy.

  12. Low Probability Tail Event Analysis and Mitigation in BPA Control Area: Task One Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Shuai; Makarov, Yuri V.

    This is a report for task one of the tail event analysis project for BPA. Tail event refers to the situation in a power system when unfavorable forecast errors of load and wind are superposed onto fast load and wind ramps, or non-wind generators falling short of scheduled output, the imbalance between generation and load becomes very significant. This type of events occurs infrequently and appears on the tails of the distribution of system power imbalance; therefore, is referred to as tail events. This report analyzes what happened during the Electric Reliability Council of Texas (ERCOT) reliability event on Februarymore » 26, 2008, which was widely reported because of the involvement of wind generation. The objective is to identify sources of the problem, solutions to it and potential improvements that can be made to the system. Lessons learned from the analysis include the following: (1) Large mismatch between generation and load can be caused by load forecast error, wind forecast error and generation scheduling control error on traditional generators, or a combination of all of the above; (2) The capability of system balancing resources should be evaluated both in capacity (MW) and in ramp rate (MW/min), and be procured accordingly to meet both requirements. The resources need to be able to cover a range corresponding to the variability of load and wind in the system, additional to other uncertainties; (3) Unexpected ramps caused by load and wind can both become the cause leading to serious issues; (4) A look-ahead tool evaluating system balancing requirement during real-time operations and comparing that with available system resources should be very helpful to system operators in predicting the forthcoming of similar events and planning ahead; and (5) Demand response (only load reduction in ERCOT event) can effectively reduce load-generation mismatch and terminate frequency deviation in an emergency situation.« less

  13. Daytime and nighttime wind differentially affects hydraulic properties and thigmomorphogenic response of poplar saplings.

    PubMed

    Huang, Ping; Wan, Xianchong; Lieffers, Victor J

    2016-05-01

    This study tested how wind in daytime and nighttime affects hydraulic properties and thigmomorphogenic response of poplar saplings. It shows that wind in daytime interrupted water balance of poplar plants by aggravating cavitation in the stem xylem under high xylem tension in the daytime, reducing water potential in midday and hence reducing gas exchange, including stomatal conductance and CO2 assimilation. The wind blowing in daytime significantly reduced plant growth, including height, diameter, leaf size, leaf area, root and whole biomass, whereas wind blowing in nighttime only caused a reduction in radial and height growth at the early stage compared with the control but decreased height:diameter ratios. In summary, the interaction between wind loading and xylem tension exerted a negative impact on water balance, gas exchanges and growth of poplar plants, and wind in nighttime caused only a small thigmomorphogenic response. © 2015 Scandinavian Plant Physiology Society.

  14. Efficient critical design load case identification for floating offshore wind turbines with a reduced nonlinear model

    NASA Astrophysics Data System (ADS)

    Matha, Denis; Sandner, Frank; Schlipf, David

    2014-12-01

    Design verification of wind turbines is performed by simulation of design load cases (DLC) defined in the IEC 61400-1 and -3 standards or equivalent guidelines. Due to the resulting large number of necessary load simulations, here a method is presented to reduce the computational effort for DLC simulations significantly by introducing a reduced nonlinear model and simplified hydro- and aerodynamics. The advantage of the formulation is that the nonlinear ODE system only contains basic mathematic operations and no iterations or internal loops which makes it very computationally efficient. Global turbine extreme and fatigue loads such as rotor thrust, tower base bending moment and mooring line tension, as well as platform motions are outputs of the model. They can be used to identify critical and less critical load situations to be then analysed with a higher fidelity tool and so speed up the design process. Results from these reduced model DLC simulations are presented and compared to higher fidelity models. Results in frequency and time domain as well as extreme and fatigue load predictions demonstrate that good agreement between the reduced and advanced model is achieved, allowing to efficiently exclude less critical DLC simulations, and to identify the most critical subset of cases for a given design. Additionally, the model is applicable for brute force optimization of floater control system parameters.

  15. A review of wind turbine-oriented active flow control strategies

    NASA Astrophysics Data System (ADS)

    Aubrun, Sandrine; Leroy, Annie; Devinant, Philippe

    2017-10-01

    To reduce the levelized cost of energy, the energy production, robustness and lifespan of horizontal axis wind turbines (HAWTs) have to be improved to ensure optimal energy production and operational availability during periods longer than 15-20 years. HAWTs are subject to unsteady wind loads that generate combinations of unsteady mechanical loads with characteristic time scales from seconds to minutes. This can be reduced by controlling the aerodynamic performance of the wind turbine rotors in real time to compensate the overloads. Mitigating load fluctuations and optimizing the aerodynamic performance at higher time scales need the development of fast-response active flow control (AFC) strategies located as close as possible to the torque generation, i.e., directly on the blades. The most conventional actuators currently used in HAWTs are mechanical flaps/tabs (similar to aeronautical accessories), but some more innovative concepts based on fluidic and plasma actuators are very promising since they are devoid of mechanical parts, have a fast response and can be driven in unsteady modes to influence natural instabilities of the flow. In this context, the present paper aims at giving a state-of-the-art review of current research in wind turbine-oriented flow control strategies applied at the blade scale. It provides an overview of research conducted in the last decade dealing with the actuators and devices devoted to developing AFC on rotor blades, focusing on the flow phenomena that they cause and that can lead to aerodynamic load increase or decrease. After providing some general background on wind turbine blade aerodynamics and on the atmospheric flows in which HAWTs operate, the review focuses on flow separation control and circulation control mainly through experimental investigations. It is followed by a discussion about the overall limitations of current studies in the wind energy context, with a focus on a few studies that attempt to provide a global efficiency assessment and wind energy-oriented energy balance.

  16. LPV control for the full region operation of a wind turbine integrated with synchronous generator.

    PubMed

    Cao, Guoyan; Grigoriadis, Karolos M; Nyanteh, Yaw D

    2015-01-01

    Wind turbine conversion systems require feedback control to achieve reliable wind turbine operation and stable current supply. A robust linear parameter varying (LPV) controller is proposed to reduce the structural loads and improve the power extraction of a horizontal axis wind turbine operating in both the partial load and the full load regions. The LPV model is derived from the wind turbine state space models extracted by FAST (fatigue, aerodynamics, structural, and turbulence) code linearization at different operating points. In order to assure a smooth transition between the two regions, appropriate frequency-dependent varying scaling parametric weighting functions are designed in the LPV control structure. The solution of a set of linear matrix inequalities (LMIs) leads to the LPV controller. A synchronous generator model is connected with the closed LPV control loop for examining the electrical subsystem performance obtained by an inner speed control loop. Simulation results of a 1.5 MW horizontal axis wind turbine model on the FAST platform illustrates the benefit of the LPV control and demonstrates the advantages of this proposed LPV controller, when compared with a traditional gain scheduling PI control and prior LPV control configurations. Enhanced structural load mitigation, improved power extraction, and good current performance were obtained from the proposed LPV control.

  17. LPV Control for the Full Region Operation of a Wind Turbine Integrated with Synchronous Generator

    PubMed Central

    Grigoriadis, Karolos M.; Nyanteh, Yaw D.

    2015-01-01

    Wind turbine conversion systems require feedback control to achieve reliable wind turbine operation and stable current supply. A robust linear parameter varying (LPV) controller is proposed to reduce the structural loads and improve the power extraction of a horizontal axis wind turbine operating in both the partial load and the full load regions. The LPV model is derived from the wind turbine state space models extracted by FAST (fatigue, aerodynamics, structural, and turbulence) code linearization at different operating points. In order to assure a smooth transition between the two regions, appropriate frequency-dependent varying scaling parametric weighting functions are designed in the LPV control structure. The solution of a set of linear matrix inequalities (LMIs) leads to the LPV controller. A synchronous generator model is connected with the closed LPV control loop for examining the electrical subsystem performance obtained by an inner speed control loop. Simulation results of a 1.5 MW horizontal axis wind turbine model on the FAST platform illustrates the benefit of the LPV control and demonstrates the advantages of this proposed LPV controller, when compared with a traditional gain scheduling PI control and prior LPV control configurations. Enhanced structural load mitigation, improved power extraction, and good current performance were obtained from the proposed LPV control. PMID:25884036

  18. Advanced wind turbine design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamieson, P.M.; Jaffrey, A.

    1995-09-01

    Garrad Hassan have a project in progress funded by the UK Department of Trade and Industry (DTI) to assess the prospects and cost benefits of advanced wind turbine design. In the course of this work, a new concept, the coned rotor design, has been developed. This enables a wind turbine system to operate in effect with variable rotor diameter augmenting energy capture in light winds and shedding loads in storm conditions. Comparisons with conventional design suggest that a major benefit in reduced cost of wind generated electricity may be possible.

  19. Advanced wind turbine design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamieson, P.M.; Jaffrey, A.

    1997-11-01

    Garrad Hassan have a project in progress funded by the U.K. Department of Trade and Industry (DTI) to assess the prospects and cost benefits of advanced wind turbine design. In the course of this work, a new concept, the coned rotor design, has been developed. This enables a wind turbine system to operate in effect with variable rotor diameter augmenting energy capture in light winds and shedding loads in storm conditions. Comparisons with conventional design suggest that a major benefit in reduced cost of wind-generated electricity may be possible.

  20. Load alleviation maneuvers for a launch vehicle

    NASA Technical Reports Server (NTRS)

    Seywald, Hans; Bless, Robert R.

    1993-01-01

    This paper addresses the design of a forward-looking autopilot that is capable of employing a priori knowledge of wind gusts ahead of the flight path to reduce the bending loads experienced by a launch vehicle. The analysis presented in the present paper is only preliminary, employing a very simple vehicle dynamical model and restricting itself to wind gusts of the form of isolated spikes. The main result of the present study is that linear quadratic regulator (LQR) based feedback laws are inappropriate to handle spike-type wind perturbations with large amplitude and narrow base. The best performance is achieved with an interior-point penalty optimal control formulation which can be well approximated by a simple feedback control law. Reduction of the maximum bending loads by nearly 50% is demonstrated.

  1. Assessment and Optimization of Lidar Measurement Availability for Wind Turbine Control (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholbrock, F. A.; Fleming, P.; Wright, A.

    2014-02-01

    Integrating Lidar to improve wind turbine controls is a potential breakthrough for reducing the cost of wind energy. By providing undisturbed wind measurements up to 400m in front of the rotor, Lidar may provide an accurate update of the turbine inflow with a preview time of several seconds. Focusing on loads, several studies have evaluated potential reductions using integrated Lidar, either by simulation or full scale field testing.

  2. Real-time POD-CFD Wind-Load Calculator for PV Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huayamave, Victor; Divo, Eduardo; Ceballos, Andres

    The primary objective of this project is to create an accurate web-based real-time wind-load calculator. This is of paramount importance for (1) the rapid and accurate assessments of the uplift and downforce loads on a PV mounting system, (2) identifying viable solutions from available mounting systems, and therefore helping reduce the cost of mounting hardware and installation. Wind loading calculations for structures are currently performed according to the American Society of Civil Engineers/ Structural Engineering Institute Standard ASCE/SEI 7; the values in this standard were calculated from simplified models that do not necessarily take into account relevant characteristics such asmore » those from full 3D effects, end effects, turbulence generation and dissipation, as well as minor effects derived from shear forces on installation brackets and other accessories. This standard does not include provisions that address the special requirements of rooftop PV systems, and attempts to apply this standard may lead to significant design errors as wind loads are incorrectly estimated. Therefore, an accurate calculator would be of paramount importance for the preliminary assessments of the uplift and downforce loads on a PV mounting system, identifying viable solutions from available mounting systems, and therefore helping reduce the cost of the mounting system and installation. The challenge is that although a full-fledged three-dimensional computational fluid dynamics (CFD) analysis would properly and accurately capture the complete physical effects of air flow over PV systems, it would be impractical for this tool, which is intended to be a real-time web-based calculator. CFD routinely requires enormous computation times to arrive at solutions that can be deemed accurate and grid-independent even in powerful and massively parallel computer platforms. This work is expected not only to accelerate solar deployment nationwide, but also help reach the SunShot Initiative goals of reducing the total installed cost of solar energy systems by 75%. The largest percentage of the total installed cost of solar energy system is associated with balance of system cost, with up to 40% going to “soft” costs; which include customer acquisition, financing, contracting, permitting, interconnection, inspection, installation, performance, operations, and maintenance. The calculator that is being developed will provide wind loads in real-time for any solar system designs and suggest the proper installation configuration and hardware; and therefore, it is anticipated to reduce system design, installation and permitting costs.« less

  3. Booster Interface Loads

    NASA Technical Reports Server (NTRS)

    Gentz, Steve; Wood, Bill; Nettles, Mindy

    2015-01-01

    The interaction between shock waves and the wake shed from the forward booster/core attach hardware results in unsteady pressure fluctuations, which can lead to large buffeting loads on the vehicle. This task investigates whether computational tools can adequately predict these flows, and whether alternative booster nose shapes can reduce these loads. Results from wind tunnel tests will be used to validate the computations and provide design information for future Space Launch System (SLS) configurations. The current work combines numerical simulations with wind tunnel testing to predict buffeting loads caused by the boosters. Variations in nosecone shape, similar to the Ariane 5 design (fig. 1), are being evaluated with regard to lowering the buffet loads. The task will provide design information for the mitigation of buffet loads for SLS, along with validated simulation tools to be used to assess future SLS designs.

  4. Wind Turbine Modeling Overview for Control Engineers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriarty, P. J.; Butterfield, S. B.

    2009-01-01

    Accurate modeling of wind turbine systems is of paramount importance for controls engineers seeking to reduce loads and optimize energy capture of operating turbines in the field. When designing control systems, engineers often employ a series of models developed in the different disciplines of wind energy. The limitations and coupling of each of these models is explained to highlight how these models might influence control system design.

  5. A zero torsional stiffness twist morphing blade as a wind turbine load alleviation device

    NASA Astrophysics Data System (ADS)

    Lachenal, X.; Daynes, S.; Weaver, P. M.

    2013-06-01

    This paper presents the design, analysis and realization of a zero stiffness twist morphing wind turbine blade. The morphing blade is designed to actively twist as a means of alleviating the gust loads which reduce the fatigue life of wind turbine blades. The morphing structure exploits an elastic strain energy balance within the blade to enable large twisting deformations with modest actuation requirements. While twist is introduced using the warping of the blade skin, internal pre-stressed members ensure that a constant strain energy balance is achieved throughout the deformation, resulting in a zero torsional stiffness structure. The torsional stability of the morphing blade is characterized by analysing the elastic strain energy in the device. Analytical models of the skin, the pre-stressed components and the complete blade are compared to their respective finite element models as well as experimental results. The load alleviation potential of the adaptive structure is quantified using a two-dimensional steady flow aerodynamic model which is experimentally validated with wind tunnel measurements.

  6. A wind-tunnel investigation of wind-turbine wakes in different yawed and loading conditions

    NASA Astrophysics Data System (ADS)

    Bastankhah, Majid; Porté-Agel, Fernando

    2015-04-01

    Wind-turbine wakes have negative effects on wind-farm performance. They are associated with: (a) the velocity deficit, which reduces the generated power of downwind turbines; and (b) the turbulence level, which increases the fatigue loads on downwind turbines. Controlling the yaw angle of turbines can potentially improve the performance of wind farms by deflecting the wake away from downwind turbines. However, except for few studies, wakes of yawed turbines still suffer from the lack of systematic research. To fill this research gap, we performed wind-tunnel experiments in the recirculating boundary-layer wind tunnel at the WIRE Laboratory of EPFL to better understand the wakes of yawed turbines. High-resolution stereoscopic particle image-velocimetry (S-PIV) was used to measure three velocity components in a horizontal plane located downwind of a horizontal-axis, three-blade model turbine. A servo-controller was connected to the DC generator of the turbine, which allowed us to apply different loadings. The power and thrust coefficients of the turbine were also measured for each case. These power and thrust measurements together with the highly-resolved flow measurements enabled us to study different wake characteristics such as the energy entrainment from the outer flow into the wake, the wake deflection and the helicoidal tip vortices for yawed turbines.

  7. System ID modern control algorithms for active aerodynamic load control and impact on gearbox loading.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Jonathan Charles; Halse, Chris; Crowther, Ashley

    2010-06-01

    Prior work on active aerodynamic load control (AALC) of wind turbine blades has demonstrated that appropriate use of this technology has the potential to yield significant reductions in blade loads, leading to a decrease in wind cost of energy. While the general concept of AALC is usually discussed in the context of multiple sensors and active control devices (such as flaps) distributed over the length of the blade, most work to date has been limited to consideration of a single control device per blade with very basic Proportional Derivative controllers, due to limitations in the aeroservoelastic codes used to performmore » turbine simulations. This work utilizes a new aeroservoelastic code developed at Delft University of Technology to model the NREL/Upwind 5 MW wind turbine to investigate the relative advantage of utilizing multiple-device AALC. System identification techniques are used to identify the frequencies and shapes of turbine vibration modes, and these are used with modern control techniques to develop both Single-Input Single-Output (SISO) and Multiple-Input Multiple-Output (MIMO) LQR flap controllers. Comparison of simulation results with these controllers shows that the MIMO controller does yield some improvement over the SISO controller in fatigue load reduction, but additional improvement is possible with further refinement. In addition, a preliminary investigation shows that AALC has the potential to reduce off-axis gearbox loads, leading to reduced gearbox bearing fatigue damage and improved lifetimes.« less

  8. Exploration of a Permanent Magnet Synchronous Generator with Compensated Reactance Windings in Parallel Rod Configuration

    NASA Astrophysics Data System (ADS)

    Lyan, Oleg; Jankunas, Valdas; Guseinoviene, Eleonora; Pašilis, Aleksas; Senulis, Audrius; Knolis, Audrius; Kurt, Erol

    2018-02-01

    In this study, a permanent magnet synchronous generator (PMSG) topology with compensated reactance windings in parallel rod configuration is proposed to reduce the armature reactance X L and to achieve higher efficiency of PMSG. The PMSG was designed using iron-cored bifilar coil topology to overcome problems of market-dominant rotary type generators. Often the problem is a comparatively high armature reactance X L, which is usually bigger than armature resistance R a. Therefore, the topology is proposed to partially compensate or negligibly reduce the PMSG reactance. The study was performed by using finite element method (FEM) analysis and experimental investigation. FEM analysis was used to investigate magnetic field flux distribution and density in PMSG. The PMSG experimental analyses of no-load losses and electromotive force versus frequency (i.e., speed) was performed. Also terminal voltage, power output and efficiency relation with load current at different frequencies have been evaluated. The reactance of PMSG has low value and a linear relation with operating frequency. The low reactance gives a small variation of efficiency (from 90% to 95%) in a wide range of load (from 3 A to 10 A) and operation frequency (from 44 Hz to 114 Hz). The comparison of PMSG characteristics with parallel and series winding connection showed insignificant power variation. The research results showed that compensated reactance winding in parallel rod configuration in PMSG design provides lower reactance and therefore, higher efficiency under wider load and frequency variation.

  9. Comparison of individual pitch and smart rotor control strategies for load reduction

    NASA Astrophysics Data System (ADS)

    Plumley, C.; Leithead, W.; Jamieson, P.; Bossanyi, E.; Graham, M.

    2014-06-01

    Load reduction is increasingly seen as an essential part of controller and wind turbine design. On large multi-MW wind turbines that experience high levels of wind shear and turbulence across the rotor, individual pitch control and smart rotor control are being considered. While individual pitch control involves adjusting the pitch of each blade individually to reduce the cyclic loadings on the rotor, smart rotor control involves activating control devices distributed along the blades to alter the local aerodynamics of the blades. Here we investigate the effectiveness of using a DQ-axis control and a distributed (independent) control for both individual pitch and trailing edge flap smart rotor control. While load reductions are similar amongst the four strategies across a wide range of variables, including blade root bending moments, yaw bearing and shaft, the pitch actuator requirements vary. The smart rotor pitch actuator has reduced travel, rates, accelerations and power requirements than that of the individual pitch controlled wind turbines. This benefit alone however would be hard to justify the added design complexities of using a smart rotor, which can be seen as an alternative to upgrading the pitch actuator and bearing. In addition, it is found that the independent control strategy is apt at roles that the collective pitch usually targets, such as tower motion and speed control, and it is perhaps here, in supplementing other systems, that the future of the smart rotor lies.

  10. Mechatronic modeling of a 750kW fixed-speed wind energy conversion system using the Bond Graph Approach.

    PubMed

    Khaouch, Zakaria; Zekraoui, Mustapha; Bengourram, Jamaa; Kouider, Nourreeddine; Mabrouki, Mustapha

    2016-11-01

    In this paper, we would like to focus on modeling main parts of the wind turbines (blades, gearbox, tower, generator and pitching system) from a mechatronics viewpoint using the Bond-Graph Approach (BGA). Then, these parts are combined together in order to simulate the complete system. Moreover, the real dynamic behavior of the wind turbine is taken into account and with the new model; final load simulation is more realistic offering benefits and reliable system performance. This model can be used to develop control algorithms to reduce fatigue loads and enhance power production. Different simulations are carried-out in order to validate the proposed wind turbine model, using real data provided in the open literature (blade profile and gearbox parameters for a 750 kW wind turbine). Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Rolling Maneuver Load Alleviation using active controls

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Pototzky, Anthony S.

    1992-01-01

    Rolling Maneuver Load Alleviation (RMLA) has been demonstrated on the Active Flexible Wing (AFW) wind tunnel model in the NASA Langley Transonic Dynamics Tunnel. The design objective was to develop a systematic approach for developing active control laws to alleviate wing incremental loads during roll maneuvers. Using linear load models for the AFW wind-tunnel model which were based on experimental measurements, two RMLA control laws were developed based on a single-degree-of-freedom roll model. The RMLA control laws utilized actuation of outboard control surface pairs to counteract incremental loads generated during rolling maneuvers and actuation of the trailing edge inboard control surface pairs to maintain roll performance. To evaluate the RMLA control laws, roll maneuvers were performed in the wind tunnel at dynamic pressures of 150, 200, and 250 psf and Mach numbers of 0.33, .38 and .44, respectively. Loads obtained during these maneuvers were compared to baseline maneuver loads. For both RMLA controllers, the incremental torsion moments were reduced by up to 60 percent at all dynamic pressures and performance times. Results for bending moment load reductions during roll maneuvers varied. In addition, in a multiple function test, RMLA and flutter suppression system control laws were operated simultaneously during roll maneuvers at dynamic pressures 11 percent above the open-loop flutter dynamic pressure.

  12. Power Control for Direct-Driven Permanent Magnet Wind Generator System with Battery Storage

    PubMed Central

    Guang, Chu Xiao; Ying, Kong

    2014-01-01

    The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient. PMID:25050405

  13. Power control for direct-driven permanent magnet wind generator system with battery storage.

    PubMed

    Guang, Chu Xiao; Ying, Kong

    2014-01-01

    The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient.

  14. Experimental study of the effect on span loading on aircraft wakes

    NASA Technical Reports Server (NTRS)

    Corsiglia, V. R.; Rossow, V. J.; Ciffone, D. L.

    1975-01-01

    Measurements were made in the NASA-Ames 40- by 80-foot wind tunnel of the rolling moment induced on a following model in the wake 13.6 spans behind a subsonic transport model for a variety of trailing edge flap settings of the generator. It was found that the rolling moment on the following model was reduced substantially, compared to the conventional landing configuration, by reshaping the span loading on the generating model to approximate a span loading, found in earlier studies, which resulted in reduced wake velocities. This was accomplished by retracting the outboard trailing edge flaps. It was concluded, based on flow visualization conducted in the wind tunnel as well as in a water tow facility, that this flap arrangement redistributes the vorticity shed by the wing along the span to form three vortex pairs that interact to disperse the wake.

  15. Wind Turbine Contingency Control Through Generator De-Rating

    NASA Technical Reports Server (NTRS)

    Frost, Susan; Goebel, Kai; Balas, Mark

    2013-01-01

    Maximizing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. In that context, systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage to the turbine. Advanced contingency control is one way to enable autonomous decision-making by providing the mechanism to enable safe and efficient turbine operation. The work reported herein explores the integration of condition monitoring of wind turbines with contingency control to balance the trade-offs between maintaining system health and energy capture. The contingency control involves de-rating the generator operating point to achieve reduced loads on the wind turbine. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  16. Investigation of UH-60A Rotor Structural Loads from Flight and Wind Tunnel Tests

    DTIC Science & Technology

    2016-05-19

    and main rotor blades. A bifilar pendulum -type vibration absorber system was mounted on top of the hub to reduce 3/rev rotating in-plane loads. Main... pendulum weights were not attached (no 3/rev in-plane load absorption). The rotor assembly was mounted on a large test stand with its own fixed system

  17. Field testing of linear individual pitch control on the two-bladed controls advanced research turbine

    DOE PAGES

    van Solingen, Edwin; Fleming, Paul A.; Scholbrock, Andrew; ...

    2015-04-17

    This paper presents the results of field tests using linear individual pitch control (LIPC) on the two-bladed Controls Advanced Research Turbine 2 (CART2) at the National Renewable Energy Laboratory (NREL). LIPC has recently been introduced as an alternative to the conventional individual pitch control (IPC) strategy for two-bladed wind turbines. The main advantage of LIPC over conventional IPC is that it requires, at most, only two feedback loops to potentially reduce the periodic blade loads. In previous work, LIPC was designed to implement blade pitch angles at a fixed frequency (e.g., the once-per-revolution (1P) frequency), which made it only applicablemore » in above-rated wind turbine operating conditions. In this study, LIPC is extended to below-rated operating conditions by gain scheduling the controller on the rotor speed. With this extension, LIPC and conventional IPC are successfully applied to the NREL CART2 wind turbine. Lastly, the field-test results obtained during the measurement campaign indicate that LIPC significantly reduces the wind turbine loads for both below-rated and above-rated operation.« less

  18. Conceptual design and thermal analysis of a modular cryostat for one single coil of a 10 MW offshore superconducting wind turbine

    NASA Astrophysics Data System (ADS)

    Sun, Jiuce; Sanz, Santiago; Neumann, Holger

    2015-12-01

    Superconducting generators show the potential to reduce the head mass of large offshore wind turbines. A 10 MW offshore superconducting wind turbine has been investigated in the SUPRAPOWER project. The superconducting coils based on MgB2 tapes are supposed to work at cryogenic temperature of 20 K. In this paper, a novel modular rotating cryostat was presented for one single coil of the superconducting wind turbine. The modular concept and cryogen-free cooling method were proposed to fulfil the requirements of handling, maintenance, reliability of long term and offshore operations. Two stage Gifford-McMahon cryocoolers were used to provide cooling source. Supporting rods made of titanium alloy were selected as support structures of the cryostat in aim of reducing the heat load. The thermal performance in the modular cryostat was carefully investigated. The heat load applied to the cryocooler second stage was 2.17 W@20 K per coil. The corresponding temperature difference along the superconducting coil was only around 1 K.

  19. Yaw Systems for wind turbines - Overview of concepts, current challenges and design methods

    NASA Astrophysics Data System (ADS)

    Kim, M.-G.; Dalhoff, P. H.

    2014-06-01

    Looking at the upscaling of the rotor diameter not only the loss in power production but the aerodynamic loads arising from yaw misalignment will have an increasing impact on the yaw system design in future wind turbines. This paper presents an overview of yaw systems used in current wind turbines and a review of patents with regards to the yaw system. The current state of the art of yaw systems has been analyzed through a systematic literature review. Further a patent analysis has been done through the European Patent Office. Todays design and strength requirements as per IEC and GL standards will be reviewed and alternative design calculations will be discussed. Over 100 patents have been identified as relevant to the yaw system and have been analyzed. It has been found that most patents are dealing with load reduction possibilities on the yaw system, where fatigue loads seem more of a problem than ultimate loads. Most of these patents concern especially the yaw actuator, which consists of multiple electrical motors, reduction gears and shaft pinions. This is due to the nature of the gearing in the actuator and the gearing between the shaft pinion and the ring gear. This coincides with the patents for yaw brakes, which mostly aim to reduce the fatigue loads during yaw maneuverer and during nacelle standstill. Patents for the yaw bearing are incorporating the reduction of loads through the usage of friction bearings or different bearing arrangement approaches. The paper shows that the conventional yaw system designs are still trying to meet the high requirements regarding the lifetime of a wind turbine and turbulent wind loads. New designs for yaw systems in general are hard to find. Many patents concentrate on control algorithms that depend on additional instruments and incorporate electromechanical systems.

  20. Assessment of Experimental Uncertainty for a Floating Wind Semisubmersible under Hydrodynamic Loading: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Amy N; Wendt, Fabian F; Jonkman, Jason

    The objective of this paper is to assess the sources of experimental uncertainty in an offshore wind validation campaign focused on better understanding the nonlinear hydrodynamic response behavior of a floating semisubmersible. The test specimen and conditions were simplified compared to other floating wind test campaigns to reduce potential sources of uncertainties and better focus on the hydrodynamic load attributes. Repeat tests were used to understand the repeatability of the test conditions and to assess the level of random uncertainty in the measurements. Attention was also given to understanding bias in all components of the test. The end goal ofmore » this work is to set uncertainty bounds on the response metrics of interest, which will be used in future work to evaluate the success of modeling tools in accurately calculating hydrodynamic loads and the associated motion responses of the system.« less

  1. Simulating Turbulent Wind Fields for Offshore Turbines in Hurricane-Prone Regions (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Y.; Damiani, R.; Musial, W.

    Extreme wind load cases are one of the most important external conditions in the design of offshore wind turbines in hurricane prone regions. Furthermore, in these areas, the increase in load with storm return-period is higher than in extra-tropical regions. However, current standards have limited information on the appropriate models to simulate wind loads from hurricanes. This study investigates turbulent wind models for load analysis of offshore wind turbines subjected to hurricane conditions. Suggested extreme wind models in IEC 61400-3 and API/ABS (a widely-used standard in oil and gas industry) are investigated. The present study further examines the wind turbinemore » response subjected to Hurricane wind loads. Three-dimensional wind simulator, TurbSim, is modified to include the API wind model. Wind fields simulated using IEC and API wind models are used for an offshore wind turbine model established in FAST to calculate turbine loads and response.« less

  2. Visual display and alarm system for wind tunnel static and dynamic loads

    NASA Technical Reports Server (NTRS)

    Hanly, Richard D.; Fogarty, James T.

    1987-01-01

    A wind tunnel balance monitor and alarm system developed at NASA Ames Research Center will produce several beneficial results. The costs of wind tunnel delays because of inadvertent balance damage and the costs of balance repair or replacement can be greatly reduced or eliminated with better real-time information on the balance static and dynamic loading. The wind tunnel itself will have enhanced utility with the elimination of overly cautious limits on test conditions. The microprocessor-based system features automatic scaling and 16 multicolored LED bargraphs to indicate both static and dynamic components of the signals from eight individual channels. Five individually programmable alarm levels are available with relay closures for internal or external visual and audible warning devices and other functions such as automatic activation of external recording devices, model positioning mechanisms, or tunnel shutdown.

  3. Visual display and alarm system for wind tunnel static and dynamic loads

    NASA Technical Reports Server (NTRS)

    Hanly, Richard D.; Fogarty, James T.

    1987-01-01

    A wind tunnel balance monitor and alarm system developed at NASA Ames Research Center will produce several beneficial results. The costs of wind tunnel delays because of inadvertent balance damage and the costs of balance repair or replacement can be greatly reduced or eliminated with better real-time information on the balance static and dynamic loading. The wind tunnel itself will have enhanced utility with the elimination of overly cautious limits on test conditions. The microprocessor-based system features automatic scaling and 16 multicolored LED bargraphs to indicate both static and dynamic components of the signals from eight individual channels. Five individually programmable alarm levels are available with relay closures for internal or external visual and audible warning devices and other functions such as automatic activation of external recording devices, model positioning mechanism, or tunnel shutdown.

  4. Monitoring of wind load and response for cable-supported bridges in Hong Kong

    NASA Astrophysics Data System (ADS)

    Wong, Kai-yuen; Chan, Wai-Yee K.; Man, King-Leung

    2001-08-01

    Structural health monitoring for the three cable-supported bridges located in the West of Hong Kong or the Tsing Ma Control Area has been carried out since the opening of these bridges to public traffic. The three cable-supported bridges are referred to as the Tsing Ma (suspension) Bridge, the Kap Shui Mun (cable-stayed) Bridge and the Ting Kau (cable-stayed) Bridge. The structural health monitoring works involved are classified as six monitoring categories, namely, wind load and response, temperature load and response, traffic load and response, geometrical configuration monitoring, strains and stresses/forces monitoring and global dynamic characteristics monitoring. As wind loads and responses had been a major concern in the design and construction stages, this paper therefore outlines the work of wind load and response monitoring on Tsing Ma, Kap Shui Mun and Ting Kau Bridges. The paper starts with a brief description of the sensory systems. The description includes the layout and performance requirements of sensory systems for wind load and responses monitoring. Typical results of wind load and response monitoring in graphical forms are then presented. These graphical forms include the plots of wind rose diagrams, wind incidences vs wind speeds, wind turbulence intensities, wind power spectra, gust wind factors, coefficient of terrain roughness, extreme wind analyses, deck deflections/rotations vs wind speeds, acceleration spectra, acceleration/displacement contours, and stress demand ratios. Finally conclusions on wind load and response monitoring on the three cable-supported bridges are drawn.

  5. Advanced Composites for Air and Ground Vehicles

    DTIC Science & Technology

    2015-08-01

    Engineering A, 429: 225–235. [2] Sharma, S. (2010). “Process development issues of glass-carbon hybrid- reinforced polymer composite wind turbine blades...with numerous possibilities including “zero- slip ” behavior, reduced/delayed delaminations under load, and enhanced load-carrying capacities relative to...pads having a Shore-A durometer of 55 and thickness of 3 mm were glued to the loading block to prevent slipping . The loading and support bars were

  6. Aerodynamic drag on intermodal railcars

    NASA Astrophysics Data System (ADS)

    Kinghorn, Philip; Maynes, Daniel

    2014-11-01

    The aerodynamic drag associated with transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. This study aims to increase the efficiency of intermodal cargo trains by reducing the aerodynamic drag on the load carrying cars. For intermodal railcars a significant amount of aerodynamic drag is a result of the large distance between loads that often occurs and the resulting pressure drag resulting from the separated flow. In the present study aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the size of the intermodal containers. The experiments were performed in the BYU low speed wind tunnel and the test track utilizes two leading locomotives followed by a set of five articulated well cars with double stacked containers. The drag on a representative mid-train car is measured using an isolated load cell balance and the wind tunnel speed is varied from 20 to 100 mph. We characterize the effect that the gap distance between the containers and the container size has on the aerodynamic drag of this representative rail car and investigate methods to reduce the gap distance.

  7. Study on Determination Method of Fatigue Testing Load for Wind Turbine Blade

    NASA Astrophysics Data System (ADS)

    Liao, Gaohua; Wu, Jianzhong

    2017-07-01

    In this paper, the load calculation method of the fatigue test was studied for the wind turbine blade under uniaxial loading. The characteristics of wind load and blade equivalent load were analyzed. The fatigue property and damage theory of blade material were studied. The fatigue load for 2MW blade was calculated by Bladed, and the stress calculated by ANSYS. Goodman modified exponential function S-N curve and linear cumulative damage rule were used to calculate the fatigue load of wind turbine blades. It lays the foundation for the design and experiment of wind turbine blade fatigue loading system.

  8. Automated Wing Twist And Bending Measurements Under Aerodynamic Load

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Martinson, S. D.

    1996-01-01

    An automated system to measure the change in wing twist and bending under aerodynamic load in a wind tunnel is described. The basic instrumentation consists of a single CCD video camera and a frame grabber interfaced to a computer. The technique is based upon a single view photogrammetric determination of two dimensional coordinates of wing targets with a fixed (and known) third dimensional coordinate, namely the spanwise location. The measurement technique has been used successfully at the National Transonic Facility, the Transonic Dynamics Tunnel, and the Unitary Plan Wind Tunnel at NASA Langley Research Center. The advantages and limitations (including targeting) of the technique are discussed. A major consideration in the development was that use of the technique must not appreciably reduce wind tunnel productivity.

  9. Some properties of a 5-parameter bivariate probability distribution

    NASA Technical Reports Server (NTRS)

    Tubbs, J. D.; Brewer, D. W.; Smith, O. E.

    1983-01-01

    A five-parameter bivariate gamma distribution having two shape parameters, two location parameters and a correlation parameter was developed. This more general bivariate gamma distribution reduces to the known four-parameter distribution. The five-parameter distribution gives a better fit to the gust data. The statistical properties of this general bivariate gamma distribution and a hypothesis test were investigated. Although these developments have come too late in the Shuttle program to be used directly as design criteria for ascent wind gust loads, the new wind gust model has helped to explain the wind profile conditions which cause large dynamic loads. Other potential applications of the newly developed five-parameter bivariate gamma distribution are in the areas of reliability theory, signal noise, and vibration mechanics.

  10. Assessment of Wind Parameter Sensitivity on Ultimate and Fatigue Wind Turbine Loads: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Amy N; Sethuraman, Latha; Jonkman, Jason

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using anmore » Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.« less

  11. Assessment of Wind Parameter Sensitivity on Extreme and Fatigue Wind Turbine Loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Amy N; Sethuraman, Latha; Jonkman, Jason

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using anmore » Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.« less

  12. Advanced Composite Wind Turbine Blade Design Based on Durability and Damage Tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abumeri, Galib; Abdi, Frank

    2012-02-16

    The objective of the program was to demonstrate and verify Certification-by-Analysis (CBA) capability for wind turbine blades made from advanced lightweight composite materials. The approach integrated durability and damage tolerance analysis with robust design and virtual testing capabilities to deliver superior, durable, low weight, low cost, long life, and reliable wind blade design. The GENOA durability and life prediction software suite was be used as the primary simulation tool. First, a micromechanics-based computational approach was used to assess the durability of composite laminates with ply drop features commonly used in wind turbine applications. Ply drops occur in composite joints andmore » closures of wind turbine blades to reduce skin thicknesses along the blade span. They increase localized stress concentration, which may cause premature delamination failure in composite and reduced fatigue service life. Durability and damage tolerance (D&DT) were evaluated utilizing a multi-scale micro-macro progressive failure analysis (PFA) technique. PFA is finite element based and is capable of detecting all stages of material damage including initiation and propagation of delamination. It assesses multiple failure criteria and includes the effects of manufacturing anomalies (i.e., void, fiber waviness). Two different approaches have been used within PFA. The first approach is Virtual Crack Closure Technique (VCCT) PFA while the second one is strength-based. Constituent stiffness and strength properties for glass and carbon based material systems were reverse engineered for use in D&DT evaluation of coupons with ply drops under static loading. Lamina and laminate properties calculated using manufacturing and composite architecture details matched closely published test data. Similarly, resin properties were determined for fatigue life calculation. The simulation not only reproduced static strength and fatigue life as observed in the test, it also showed composite damage and fracture modes that resemble those reported in the tests. The results show that computational simulation can be relied on to enhance the design of tapered composite structures such as the ones used in turbine wind blades. A computational simulation for durability, damage tolerance (D&DT) and reliability of composite wind turbine blade structures in presence of uncertainties in material properties was performed. A composite turbine blade was first assessed with finite element based multi-scale progressive failure analysis to determine failure modes and locations as well as the fracture load. D&DT analyses were then validated with static test performed at Sandia National Laboratories. The work was followed by detailed weight analysis to identify contribution of various materials to the overall weight of the blade. The methodology ensured that certain types of failure modes, such as delamination progression, are contained to reduce risk to the structure. Probabilistic analysis indicated that composite shear strength has a great influence on the blade ultimate load under static loading. Weight was reduced by 12% with robust design without loss in reliability or D&DT. Structural benefits obtained with the use of enhanced matrix properties through nanoparticles infusion were also assessed. Thin unidirectional fiberglass layers enriched with silica nanoparticles were applied to the outer surfaces of a wind blade to improve its overall structural performance and durability. The wind blade was a 9-meter prototype structure manufactured and tested subject to three saddle static loading at Sandia National Laboratory (SNL). The blade manufacturing did not include the use of any nano-material. With silica nanoparticles in glass composite applied to the exterior surfaces of the blade, the durability and damage tolerance (D&DT) results from multi-scale PFA showed an increase in ultimate load of the blade by 9.2% as compared to baseline structural performance (without nano). The use of nanoparticles lead to a delay in the onset of delamination. Load-displacement relationships obtained from testing of the blade with baseline neat material were compared to the ones from analytical simulation using neat resin and using silica nanoparticles in the resin. Multi-scale PFA results for the neat material construction matched closely those from test for both load displacement and location and type of damage and failure. AlphaSTAR demonstrated that wind blade structures made from advanced composite materials can be certified with multi-scale progressive failure analysis by following building block verification approach.« less

  13. Kalman filter based data fusion for neutral axis tracking in wind turbine towers

    NASA Astrophysics Data System (ADS)

    Soman, Rohan; Malinowski, Pawel; Ostachowicz, Wieslaw; Paulsen, Uwe S.

    2015-03-01

    Wind energy is seen as one of the most promising solutions to man's ever increasing demands of a clean source of energy. In particular to reduce the cost of energy (COE) generated, there are efforts to increase the life-time of the wind turbines, to reduce maintenance costs and to ensure high availability. Maintenance costs may be lowered and the high availability and low repair costs ensured through the use of condition monitoring (CM) and structural health monitoring (SHM). SHM allows early detection of damage and allows maintenance planning. Furthermore, it can allow us to avoid unnecessary downtime, hence increasing the availability of the system. The present work is based on the use of neutral axis (NA) for SHM of the structure. The NA is tracked by data fusion of measured yaw angle and strain through the use of Extended Kalman Filter (EKF). The EKF allows accurate tracking even in the presence of changing ambient conditions. NA is defined as the line or plane in the section of the beam which does not experience any tensile or compressive forces when loaded. The NA is the property of the cross section of the tower and is independent of the applied loads and ambient conditions. Any change in the NA position may be used for detecting and locating the damage. The wind turbine tower has been modelled with FE software ABAQUS and validated on data from load measurements carried out on the 34m high tower of the Nordtank, NTK 500/41 wind turbine.

  14. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phadke, Amol; Abhyankar, NIkit; Rao, Poorvi

    We analyze variability in load and wind generation in India to assess its implications for grid integration of large scale wind projects using actual wind generation and load data from two states in India, Karnataka and Tamil Nadu. We compare the largest variations in load and net load (load ?wind, i.e., load after integrating wind) that the generation fleet has to meet. In Tamil Nadu, where wind capacity is about 53percent of the peak demand, we find that the additional variation added due to wind over the current variation in load is modest; if wind penetration reaches 15percent and 30percentmore » by energy, the additional hourly variation is less than 0.5percent and 4.5percent of the peak demand respectively for 99percent of the time. For wind penetration of 15percent by energy, Tamil Nadu system is found to be capable of meeting the additional ramping requirement for 98.8percent of the time. Potential higher uncertainty in net load compared to load is found to have limited impact on ramping capability requirements of the system if coal plants can me ramped down to 50percent of their capacity. Load and wind aggregation in Tamil Nadu and Karnataka is found to lower the variation by at least 20percent indicating the benefits geographic diversification. These findings suggest modest additional flexible capacity requirements and costs for absorbing variation in wind power and indicate that the potential capacity support (if wind does not generate enough during peak periods) may be the issue that has more bearing on the economics of integrating wind« less

  15. Simulation Comparison of Wake Mitigation Control Strategies for a Two-Turbine Case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Paul; Gebraad, Pieter M. O.; Lee, Sang

    2015-12-01

    Wind turbines arranged in a wind plant impact each other through their wakes. Wind plant control is an active research field that attempts to improve wind plant performance by coordinating control of individual turbines to take into account these turbine–wake interactions. High-fidelity simulations of a two-turbine fully waked scenario are used to investigate several wake mitigation strategies, in this paper, including modification of yaw and tilt angles of an upstream turbine to induce wake skew, as well as repositioning of the downstream turbine. The simulation results are compared through change relative to a baseline operation in terms of overall powermore » capture and loading on the upstream and downstream turbine. Results demonstrated improved power production for all methods. Moreover, analysis of control options, including individual pitch control, shows potential to minimize the increase of, or even reduce, turbine loads.« less

  16. High-Throughput Computation and the Applicability of Monte Carlo Integration in Fatigue Load Estimation of Floating Offshore Wind Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, Peter A.; Stewart, Gordon; Lackner, Matthew

    Long-term fatigue loads for floating offshore wind turbines are hard to estimate because they require the evaluation of the integral of a highly nonlinear function over a wide variety of wind and wave conditions. Current design standards involve scanning over a uniform rectangular grid of metocean inputs (e.g., wind speed and direction and wave height and period), which becomes intractable in high dimensions as the number of required evaluations grows exponentially with dimension. Monte Carlo integration offers a potentially efficient alternative because it has theoretical convergence proportional to the inverse of the square root of the number of samples, whichmore » is independent of dimension. In this paper, we first report on the integration of the aeroelastic code FAST into NREL's systems engineering tool, WISDEM, and the development of a high-throughput pipeline capable of sampling from arbitrary distributions, running FAST on a large scale, and postprocessing the results into estimates of fatigue loads. Second, we use this tool to run a variety of studies aimed at comparing grid-based and Monte Carlo-based approaches with calculating long-term fatigue loads. We observe that for more than a few dimensions, the Monte Carlo approach can represent a large improvement in computational efficiency, but that as nonlinearity increases, the effectiveness of Monte Carlo is correspondingly reduced. The present work sets the stage for future research focusing on using advanced statistical methods for analysis of wind turbine fatigue as well as extreme loads.« less

  17. Reducing Wind Curtailment through Transmission Expansion in a Wind Vision Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorgensen, Jennie; Mai, Trieu; Brinkman, Greg

    The Department of Energy's 2015 Wind Vision study, which analyzed an ambitious scenario where wind power served 35% of U.S. electricity consumption in 2050, showed the potential for wind energy to provide substantial health, environmental, and economic benefits. Using a commercial unit commitment and economic dispatch model, we build on this research by assessing the hourly operational feasibility of a similar high wind future in the Western United States. Our detailed simulations found no hours of unmet load or reserve violations with more than 35% potential wind (and 12% potential solar) available on the system, which highlights the technical possibilitymore » of integrating large amounts of wind energy. However, absent significant changes to the western grid, we find that substantial wind curtailment could be an issue, as it could degrade the potential for wind power to reduce fuel costs and lowering the emission benefits. To assess the value of transmission to mitigate wind curtailment, we model a suite of transmission expansion scenarios. We find that wind curtailment could be reduced by approximately half under a scenario where new transmission is based only on proposed projects. This avoided wind curtailment could lower annual production costs and reduce carbon dioxide emissions substantially. Greater transmission expansion was found to yield further benefits, although the marginal benefits of these new lines were found to decline. Overall, these results suggest that power systems operation can be realized with more than 35% wind penetration, but that transmission expansion is likely to play a vital role.« less

  18. Advanced Offshore Wind Turbine/Foundation Concept for the Great Lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afjeh, Abdollah A.; Windpower, Nautica; Marrone, Joseph

    2013-08-29

    This project investigated a conceptual 2-bladed rotor wind turbine design and assessed its feasibility for installation in the Great Lakes. The levelized cost of energy was used for this purpose. A location in Lake Erie near the coast of Cleveland, Ohio was selected as the application site. The loading environment was defined using wind and wave data collected at a weather station in Lake Erie near Cleveland. In addition, the probability distributions of the annual significant wave height and wind speed were determined. A model of the dependence of the above two quantities was also developed and used in themore » study of wind turbine system loads. Loads from ice floes and ridges were also included.The NREL 5 MW 3-bladed rotor wind turbine concept was used as the baseline design. The proposed turbine design employs variable pitch blade control with tip-brakes and a teeter mechanism. The rotor diameter, rated power and the tower dimensions were selected to closely match those of the NREL 5 MW wind turbine.A semi-floating gravity base foundation was designed for this project primarily to adapt to regional logistical constraints to transport and install the gravity base foundation. This foundation consists of, from bottom to top, a base plate, a buoyancy chamber, a taper zone, a column (with ice cone), and a service platform. A compound upward-downward ice cone was selected to secure the foundation from moving because of ice impact.The turbine loads analysis was based on International ElectroTechnical Committee (IEC) Standard 61400-1, Class III winds. The NREL software FAST was the primary computational tool used in this study to determine all design load cases. An initial set of studies of the dynamics of wind turbines using Automatic Dynamic Analysis of Mechanical Systems (ADAMS) demonstrated that FAST and ADAMS load predictions were comparable. Because of its relative simplicity and short run times, FAST was selected for this study. For ice load calculations, a method was developed and implemented in FAST to extend its capability for ice load modeling.Both upwind and downwind 2-bladed rotor wind turbine designs were developed and studied. The new rotor blade uses a new twist angle distribution design and a new pitch control algorithm compared with the baseline model. The coning and tilt angles were selected for both the upwind and downwind configurations to maximize the annual energy production. The risk of blade-tower impact is greater for the downwind design, particularly under a power grid fault; however, this risk was effectively reduced by adjusting the tilt angle for the downwind configuration.« less

  19. Measurement of unsteady loading and power output variability in a micro wind farm model in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Bossuyt, Juliaan; Howland, Michael F.; Meneveau, Charles; Meyers, Johan

    2017-01-01

    Unsteady loading and spatiotemporal characteristics of power output are measured in a wind tunnel experiment of a microscale wind farm model with 100 porous disk models. The model wind farm is placed in a scaled turbulent boundary layer, and six different layouts, varied from aligned to staggered, are considered. The measurements are done by making use of a specially designed small-scale porous disk model, instrumented with strain gages. The frequency response of the measurements goes up to the natural frequency of the model, which corresponds to a reduced frequency of 0.6 when normalized by the diameter and the mean hub height velocity. The equivalent range of timescales, scaled to field-scale values, is 15 s and longer. The accuracy and limitations of the acquisition technique are documented and verified with hot-wire measurements. The spatiotemporal measurement capabilities of the experimental setup are used to study the cross-correlation in the power output of various porous disk models of wind turbines. A significant correlation is confirmed between streamwise aligned models, while staggered models show an anti-correlation.

  20. Design and simulation of Macro-Fiber composite based serrated microflap for wind turbine blade fatigue load reduction

    NASA Astrophysics Data System (ADS)

    Sun, Xiao; Dai, Qingli; Bilgen, Onur

    2018-05-01

    A Macro-Fiber Composite (MFC) based active serrated microflap is designed in this research for wind turbine blades. Its fatigue load reduction potential is evaluated in normal operating conditions. The force and displacement output of the MFC-based actuator are simulated using a bimorph beam model. The work done by the aerodynamic, centripetal and gravitational forces acting on the microflap were calculated to determine the required capacity of the MFC-based actuator. MFC-based actuators with a lever mechanical linkage are designed to achieve the required force and displacement to activate the microflap. A feedback control scheme is designed to control the microflap during operation. Through an aerodynamic-aeroelastic time marching simulation with the designed control scheme, the time responses of the wind turbine blades are obtained. The fatigue analysis shows that the serrated microflap can reduce the standard deviation of the blade root flapwise bending moment and the fatigue damage equivalent loads.

  1. Operating wind turbines in strong wind conditions by using feedforward-feedback control

    NASA Astrophysics Data System (ADS)

    Feng, Ju; Sheng, Wen Zhong

    2014-12-01

    Due to the increasing penetration of wind energy into power systems, it becomes critical to reduce the impact of wind energy on the stability and reliability of the overall power system. In precedent works, Shen and his co-workers developed a re-designed operation schema to run wind turbines in strong wind conditions based on optimization method and standard PI feedback control, which can prevent the typical shutdowns of wind turbines when reaching the cut-out wind speed. In this paper, a new control strategy combing the standard PI feedback control with feedforward controls using the optimization results is investigated for the operation of variable-speed pitch-regulated wind turbines in strong wind conditions. It is shown that the developed control strategy is capable of smoothening the power output of wind turbine and avoiding its sudden showdown at high wind speeds without worsening the loads on rotor and blades.

  2. Wind tunnel test of a variable-diameter tiltrotor (VDTR) model

    NASA Technical Reports Server (NTRS)

    Matuska, David; Dale, Allen; Lorber, Peter

    1994-01-01

    This report documents the results from a wind tunnel test of a 1/6th scale Variable Diameter Tiltrotor (VDTR). This test was a joint effort of NASA Ames and Sikorsky Aircraft. The objective was to evaluate the aeroelastic and performance characteristics of the VDTR in conversion, hover, and cruise. The rotor diameter and nacelle angle of the model were remotely changed to represent tiltrotor operating conditions. Data is presented showing the propulsive force required in conversion, blade loads, angle of attack stability and simulated gust response, and hover and cruise performance. This test represents the first wind tunnel test of a variable diameter rotor applied to a tiltrotor concept. The results confirm some of the potential advantages of the VDTR and establish the variable diameter rotor a viable candidate for an advanced tiltrotor. This wind tunnel test successfully demonstrated the feasibility of the Variable Diameter rotor for tilt rotor aircraft. A wide range of test points were taken in hover, conversion, and cruise modes. The concept was shown to have a number of advantages over conventional tiltrotors such as reduced hover downwash with lower disk loading and significantly reduced longitudinal gust response in cruise. In the conversion regime, a high propulsive force was demonstrated for sustained flight with acceptable blade loads. The VDTR demonstrated excellent gust response capabilities. The horizontal gust response correlated well with predictions revealing only half the response to turbulence of the conventional civil tiltrotor.

  3. Wind energy conversion system

    DOEpatents

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  4. Decentralized coordinated control of elastic web winding systems without tension sensor.

    PubMed

    Hou, Hailiang; Nian, Xiaohong; Chen, Jie; Xiao, Dengfeng

    2018-06-26

    In elastic web winding systems, precise regulation of web tension in each span is critical to ensure final product quality, and to achieve low cost by reducing the occurrence of web break or fold. Generally, web winding systems use load cells or swing rolls as tension sensors, which add cost, reduce system reliability and increase the difficulty of control. In this paper, a decentralized coordinated control scheme with tension observers is designed for a three-motor web-winding system. First, two tension observers are proposed to estimate the unwinding and winding tension. The designed observers consider the essential dynamic, radius, and inertial variation effects and only require the modest computational effort. Then, using the estimated tensions as feedback signals, a robust decentralized coordinated controller is adopted to reduce the interaction between subsystems. Asymptotic stabilities of the observer error dynamics and the closed-loop winding systems are demonstrated via Lyapunov stability theory. The observer gains and the controller gains can be obtained by solving matrix inequalities. Finally, some simulations and experiments are performed on a paper winding setup to test the performance of the designed observers and the observer-base DCC method, respectively. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Airfoil family design for large offshore wind turbine blades

    NASA Astrophysics Data System (ADS)

    Méndez, B.; Munduate, X.; San Miguel, U.

    2014-06-01

    Wind turbine blades size has scaled-up during last years due to wind turbine platform increase especially for offshore applications. The EOLIA project 2007-2010 (Spanish Goverment funded project) was focused on the design of large offshore wind turbines for deep waters. The project was managed by ACCIONA Energia and the wind turbine technology was designed by ACCIONA Windpower. The project included the design of a wind turbine airfoil family especially conceived for large offshore wind turbine blades, in the order of 5MW machine. Large offshore wind turbines suffer high extreme loads due to their size, in addition the lack of noise restrictions allow higher tip speeds. Consequently, the airfoils presented in this work are designed for high Reynolds numbers with the main goal of reducing blade loads and mantainig power production. The new airfoil family was designed in collaboration with CENER (Spanish National Renewable Energy Centre). The airfoil family was designed using a evolutionary algorithm based optimization tool with different objectives, both aerodynamic and structural, coupled with an airfoil geometry generation tool. Force coefficients of the designed airfoil were obtained using the panel code XFOIL in which the boundary layer/inviscid flow coupling is ineracted via surface transpiration model. The desing methodology includes a novel technique to define the objective functions based on normalizing the functions using weight parameters created from data of airfoils used as reference. Four airfoils have been designed, here three of them will be presented, with relative thickness of 18%, 21%, 25%, which have been verified with the in-house CFD code, Wind Multi Block WMB, and later validated with wind tunnel experiments. Some of the objectives for the designed airfoils concern the aerodynamic behavior (high efficiency and lift, high tangential coefficient, insensitivity to rough conditions, etc.), others concern the geometry (good for structural design, compatibility for the different airfoil family members, etc.) and with the ultimate objective that the airfoils will reduce the blade loads. In this paper the whole airfoil design process and the main characteristics of the airfoil family are described. Some force coefficients for the design Reynolds number are also presented. The new designed airfoils have been studied with computational calculations (panel method code and CFD) and also in a wind tunnel experimental campaign. Some of these results will be also presented in this paper.

  6. Inverse load calculation procedure for offshore wind turbines and application to a 5-MW wind turbine support structure: Inverse load calculation procedure for offshore wind turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pahn, T.; Rolfes, R.; Jonkman, J.

    A significant number of wind turbines installed today have reached their designed service life of 20 years, and the number will rise continuously. Most of these turbines promise a more economical performance if they operate for more than 20 years. To assess a continued operation, we have to analyze the load-bearing capacity of the support structure with respect to site-specific conditions. Such an analysis requires the comparison of the loads used for the design of the support structure with the actual loads experienced. This publication presents the application of a so-called inverse load calculation to a 5-MW wind turbine supportmore » structure. The inverse load calculation determines external loads derived from a mechanical description of the support structure and from measured structural responses. Using numerical simulations with the software fast, we investigated the influence of wind-turbine-specific effects such as the wind turbine control or the dynamic interaction between the loads and the support structure to the presented inverse load calculation procedure. fast is used to study the inverse calculation of simultaneously acting wind and wave loads, which has not been carried out until now. Furthermore, the application of the inverse load calculation procedure to a real 5-MW wind turbine support structure is demonstrated. In terms of this practical application, setting up the mechanical system for the support structure using measurement data is discussed. The paper presents results for defined load cases and assesses the accuracy of the inversely derived dynamic loads for both the simulations and the practical application.« less

  7. Wind increases leaf water use efficiency.

    PubMed

    Schymanski, Stanislaus J; Or, Dani

    2016-07-01

    A widespread perception is that, with increasing wind speed, transpiration from plant leaves increases. However, evidence suggests that increasing wind speed enhances carbon dioxide (CO2 ) uptake while reducing transpiration because of more efficient convective cooling (under high solar radiation loads). We provide theoretical and experimental evidence that leaf water use efficiency (WUE, carbon uptake per water transpired) commonly increases with increasing wind speed, thus improving plants' ability to conserve water during photosynthesis. Our leaf-scale analysis suggests that the observed global decrease in near-surface wind speeds could have reduced WUE at a magnitude similar to the increase in WUE attributed to global rise in atmospheric CO2 concentrations. However, there is indication that the effect of long-term trends in wind speed on leaf gas exchange may be compensated for by the concurrent reduction in mean leaf sizes. These unintuitive feedbacks between wind, leaf size and water use efficiency call for re-evaluation of the role of wind in plant water relations and potential re-interpretation of temporal and geographic trends in leaf sizes. © 2015 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  8. Evaluating the impacts of real-time pricing on the usage of wind generation

    DOE PAGES

    Sioshansi, Ramteen; Short, Walter

    2009-02-13

    One of the impediments to large-scale use of wind generation within power systems is its nondispatchability and variable and uncertain real-time availability. Operating constraints on conventional generators such as minimum generation points, forbidden zones, and ramping limits as well as system constraints such as power flow limits and ancillary service requirements may force a system operator to curtail wind generation in order to ensure feasibility. Furthermore, the pattern of wind availability and electricity demand may not allow wind generation to be fully utilized in all hours. One solution to these issues, which could reduce these inflexibilities, is the use ofmore » real-time pricing (RTP) tariffs which can both smooth-out the diurnal load pattern in order to reduce the impact of binding unit operating and system constraints on wind utilization, and allow demand to increase in response to the availability of costless wind generation. As a result, we use and analyze a detailed unit commitment model of the Texas power system with different estimates of demand elasticities to demonstrate the potential increases in wind generation from implementing RTP.« less

  9. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study. Appendix E: Pressure-fed booster test bed for the liquid rocket booster study

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The stress analysis/structural design of the Pressure-Fed Booster Engine Test Bed using the existing F-1 Test Facility Test Stand at Huntsville, Alabama is described. The analysis has been coded and set up for solution on NASTRAN. A separate stress program was established to take the NASTRAN output and perform stress checks on the members. Joint checks and other necessary additional checks were performed by hand. The notes include a brief description of other programs which assist in reproducing and reviewing the NASTRAN results. The redesign of the test stand members and the stress analysis was performed per the A.I.S.C. Code. Loads on the stand consist of the loaded run tanks; wind loads; seismic loads; live loads consisting of snow and ice: live and dead loads of steel; and loaded pressurant bottle. In combining loads, wind loads and seismic loads were each combined with full live loads. Wind and seismic loads were not combined. No one third increase in allowables was taken for the environmental loads except at decks 147 and 214, where the increase was used when considering the stay rods, brackets and stay beams. Wind and seismic loads were considered from each of the four coordinate directions (i.e. N,S,E,W) to give eight basic conditions. The analysis was run with the pressurant tank mounted at level 125. One seismic condition was also run with the tank mounted at levels 169 and 214. No failures were noted with mounting at level 169, but extensive deck failure with mounting at level 214 (the loadsets used are included on the tape, but no detailed results are included in the package). Decking support beams at levels 147 and 214 are not included in the model. The stress program thus does not reduce strut lengths to the length between support beams (the struts are attached to the beams at intersection points) and gives stress ratios larger than one for some of the struts. The affected members were therefore checked by hand.

  10. CFD simulation of a 2 bladed multi megawatt wind turbine with flexible rotor connection

    NASA Astrophysics Data System (ADS)

    Klein, L.; Luhmann, B.; Rösch, K.-N.; Lutz, T.; Cheng, P.-W.; Krämer, E.

    2016-09-01

    An innovative passive load reduction concept for a two bladed 3.4 MW wind turbine is investigated by a conjoint CFD and MBS - BEM methodology. The concept consists of a flexible hub mount which allows a tumbling motion of the rotor. First, the system is simulated with a MBS tool coupled to a BEM code. Then, the resulting motion of the rotor is extracted from the simulation and applied on the CFD simulation as prescribed motion. The aerodynamic results show a significant load reduction on the support structure. Hub pitching and yawing moment amplitudes are reduced by more than 50% in a vertically sheared inflow. Furthermore, the suitability of the MBS - BEM approach for the simulation of the load reduction system is shown.

  11. Morphing Downwind-Aligned Rotor Concept Based on a 13-MW Wind Turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ichter, Brian; Steele, Adam; Loth, Eric

    To alleviate the mass-scaling issues associated with conventional upwind rotors of extreme-scale wind turbines (>/=10 MW), a morphing downwind-aligned rotor (MoDaR) concept is proposed herein. The concept employs a downwind rotor with blades whose elements are stiff (no intentional flexibility) but with hub-joints that can be unlocked to allow for moment-free downwind alignment. Aligning the combination of gravitational, centrifugal and thrust forces along the blade path reduces downwind cantilever loads, resulting in primarily tensile loading. For control simplicity, the blade curvature can be fixed with a single morphing degree of freedom using a near-hub joint for coning angle: 22 degreesmore » at rated conditions. The conventional baseline was set as the 13.2-MW Sandia 100-m all glass blade in a three-bladed upwind configuration. To quantify potential mass savings, a downwind load-aligning, two-bladed rotor was designed. Because of the reduced number of blades, the MoDaR concept had a favorable 33% mass reduction. The blade reduction and coning led to a reduction in rated power, but morphing increased energy capture at lower speeds such that both the MoDaR and conventional rotors have the same average power: 5.4 MW. A finite element analysis showed that quasi-steady structural stresses could be reduced, over a range of operating wind speeds and azimuthal angles, despite the increases in loading per blade. However, the concept feasibility requires additional investigation of the mass, cost and complexity of the morphing hinge, the impact of unsteady aeroelastic influence because of turbulence and off-design conditions, along with system-level Levelized Cost of Energy analysis.« less

  12. Wind models for the NSTS ascent trajectory biasing for wind load alleviation

    NASA Technical Reports Server (NTRS)

    Smith, O. E.; Adelfang, S. I.; Batts, G. W.; Hill, C. K.

    1989-01-01

    New concepts are presented for aerospace vehicle ascent wind profile biasing. The purpose for wind biasing the ascent trajectory is to provide ascent wind loads relief and thus decrease the probability for launch delays due to wind loads exceeding critical limits. Wind biasing trajectories to the profile of monthly mean winds have been widely used for this purpose. The wind profile models presented give additional alternatives for wind biased trajectories. They are derived from the properties of the bivariate normal probability function using the available wind statistical parameters for the launch site. The analytical expressions are presented to permit generalizations. Specific examples are given to illustrate the procedures. The wind profile models can be used to establish the ascent trajectory steering commands to guide the vehicle through the first stage. For the National Space Transportation System (NSTS) program these steering commands are called I-loads.

  13. Optimal shutdown management

    NASA Astrophysics Data System (ADS)

    Bottasso, C. L.; Croce, A.; Riboldi, C. E. D.

    2014-06-01

    The paper presents a novel approach for the synthesis of the open-loop pitch profile during emergency shutdowns. The problem is of interest in the design of wind turbines, as such maneuvers often generate design driving loads on some of the machine components. The pitch profile synthesis is formulated as a constrained optimal control problem, solved numerically using a direct single shooting approach. A cost function expressing a compromise between load reduction and rotor overspeed is minimized with respect to the unknown blade pitch profile. Constraints may include a load reduction not-to-exceed the next dominating loads, a not-to-be-exceeded maximum rotor speed, and a maximum achievable blade pitch rate. Cost function and constraints are computed over a possibly large number of operating conditions, defined so as to cover as well as possible the operating situations encountered in the lifetime of the machine. All such conditions are simulated by using a high-fidelity aeroservoelastic model of the wind turbine, ensuring the accuracy of the evaluation of all relevant parameters. The paper demonstrates the capabilities of the novel proposed formulation, by optimizing the pitch profile of a multi-MW wind turbine. Results show that the procedure can reliably identify optimal pitch profiles that reduce design-driving loads, in a fully automated way.

  14. A comparison of measured wind park load histories with the WISPER and WISPERX load spectra

    NASA Astrophysics Data System (ADS)

    Kelley, N. D.

    1995-01-01

    The blade-loading histories from two adjacent Micon 65/13 wind turbines are compared with the variable-amplitude test-loading histories known as the WISPER and WISPERX spectra. These standardized loading sequences were developed from blade flapwise load histories taken from nine different horizontal-axis wind turbines operating under a wide range of conditions in Europe. The subject turbines covered a broad spectrum of rotor diameters, materials, and operating environments. The final loading sequences were developed as a joint effort of thirteen different European organizations. The goal was to develop a meaningful loading standard for horizontal-axis wind turbine blades that represents common interaction effects seen in service. In 1990, NREL made extensive load measurements on two adjacent Micon 65/13 wind turbines in simultaneous operation in the very turbulent environment of a large wind park. Further, before and during the collection of the loads data, comprehensive measurements of the statistics of the turbulent environment were obtained at both the turbines under test and at two other locations within the park. The trend to larger but lighter wind turbine structures has made an understanding of the expected lifetime loading history of paramount importance. Experience in the US has shown that the turbulence-induced loads associated with multi-row wind parks in general are much more severe than for turbines operating individually or within widely spaced environments. Multi-row wind parks are much more common in the US than in Europe. In this paper we report on our results in applying the methodology utilized to develop the WISPER and WISPERX standardized loading sequences using the available data from the Micon turbines. While the intended purpose of the WISPER sequences were not to represent a specific operating environment, we believe the exercise is useful, especially when a turbine design is likely to be installed in a multi-row wind park.

  15. A model of rotationally-sampled wind turbulence for predicting fatigue loads in wind turbines

    NASA Technical Reports Server (NTRS)

    Spera, David A.

    1995-01-01

    Empirical equations are presented with which to model rotationally-sampled (R-S) turbulence for input to structural-dynamic computer codes and the calculation of wind turbine fatigue loads. These equations are derived from R-S turbulence data which were measured at the vertical-plane array in Clayton, New Mexico. For validation, the equations are applied to the calculation of cyclic flapwise blade loads for the NASA/DOE Mod-2 2.5-MW experimental HAWT's (horizontal-axis wind turbines), and the results compared to measured cyclic loads. Good correlation is achieved, indicating that the R-S turbulence model developed in this study contains the characteristics of the wind which produce many of the fatigue loads sustained by wind turbines. Empirical factors are included which permit the prediction of load levels at specified percentiles of occurrence, which is required for the generation of fatigue load spectra and the prediction of the fatigue lifetime of structures.

  16. Aeroelastic Ground Wind Loads Analysis Tool for Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Ivanco, Thomas G.

    2016-01-01

    Launch vehicles are exposed to ground winds during rollout and on the launch pad that can induce static and dynamic loads. Of particular concern are the dynamic loads caused by vortex shedding from nearly-cylindrical structures. When the frequency of vortex shedding nears that of a lowly-damped structural mode, the dynamic loads can be more than an order of magnitude greater than mean drag loads. Accurately predicting vehicle response to vortex shedding during the design and analysis cycles is difficult and typically exceeds the practical capabilities of modern computational fluid dynamics codes. Therefore, mitigating the ground wind loads risk typically requires wind-tunnel tests of dynamically-scaled models that are time consuming and expensive to conduct. In recent years, NASA has developed a ground wind loads analysis tool for launch vehicles to fill this analytical capability gap in order to provide predictions for prelaunch static and dynamic loads. This paper includes a background of the ground wind loads problem and the current state-of-the-art. It then discusses the history and significance of the analysis tool and the methodology used to develop it. Finally, results of the analysis tool are compared to wind-tunnel and full-scale data of various geometries and Reynolds numbers.

  17. Wind Farm Flow Modeling using an Input-Output Reduced-Order Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annoni, Jennifer; Gebraad, Pieter; Seiler, Peter

    Wind turbines in a wind farm operate individually to maximize their own power regardless of the impact of aerodynamic interactions on neighboring turbines. There is the potential to increase power and reduce overall structural loads by properly coordinating turbines. To perform control design and analysis, a model needs to be of low computational cost, but retains the necessary dynamics seen in high-fidelity models. The objective of this work is to obtain a reduced-order model that represents the full-order flow computed using a high-fidelity model. A variety of methods, including proper orthogonal decomposition and dynamic mode decomposition, can be used tomore » extract the dominant flow structures and obtain a reduced-order model. In this paper, we combine proper orthogonal decomposition with a system identification technique to produce an input-output reduced-order model. This technique is used to construct a reduced-order model of the flow within a two-turbine array computed using a large-eddy simulation.« less

  18. Dust emission and transport over Iraq associated with the summer Shamal winds

    NASA Astrophysics Data System (ADS)

    Karam Francis, Diana Bou; Flamant, Cyrille; Chaboureau, Jean-Pierre; Banks, Jamie

    2016-04-01

    In this study, we investigate the diurnal evolution of the summer Shamal wind (a quasi-permanent low-level northwesterly wind feature) and its role in dust emission and transport over Iraq, using ground-based and space-borne observations together with a numerical simulation performed with the mesoscale model Meso-NH. A 6-year dataset from the synoptic stations over Iraq allows establishing the prominence of the link between strong near surface winds and reduced visibility in the summer. The detailed processes at play during Shamal events are explored on the basis of a Meso-NH simulation for a given, representative case study (25 June-3 July 2010). The Shamal exhibits an out-of-phase relationship between the surface wind and winds in the lower troposphere (typically 500 m above ground level), the maximum surface wind speeds being observed during the day while in altitude the maximum wind speeds are observed at night. The daytime near surface winds, at the origin of dust emission, are associated with the downward transfer of momentum from the nocturnal low-level jet to the surface due to turbulent mixing after solar heating commences each day. For the first time, an estimate of the dust load associated with summer Shamal events over Iraq has been made using aerosol optical depths derived from the Spinning Enhanced Visible and Infrared Imager, the Moderate Resolution Imaging Spectroradiometer, and the simulation. The dust load exhibits a large diurnal variability, with a daily minimum value of 1 Tg around 0600 UTC and a daily peak of 2.5 Tg or more around 1500 UTC, and is driven by the diurnal cycle of the near surface wind speed. The daily dust load peak associated with the summer Shamal over Iraq is in the same order of magnitude as those derived from simulations downstream of the Bodélé depression in Chad, known to be the world's largest dust source. Keywords: Dust, Low Level Jet, Shamal winds, Middle East, dust sources.

  19. The analysis of dynamic characteristics and wind-induced displacement response of space Beam String Structure

    NASA Astrophysics Data System (ADS)

    Chen, Yong Jian; Feng, Zhen Fa; Qi, Ai; Huang, Ying

    2018-06-01

    The Beam String Structure structural system, also called BSS, has the advantages of lighter dead weight and greater flexibility. The wind load is the main design control factor. The dynamic characteristics and wind-induced displacement response of BSS are studied by the finite element method. The roof structure of the stadium roof of the Fuzhou Olympic Sports Center is the engineering background. 1)The numerical model was built by ANSYS, by shape finding, determine the initial stress state of structural members such as external cables; 2)From the analysis of dynamic characteristics, the main mode of vibration is the vibration of cables; 3)The wind speed spectrum of MATLAB generation structure is obtained by AR method, the structural response of the structure under static wind load and fluctuating wind load is calculated. From the analysis result, considering the equivalent static wind load of BSS , the design of adverse wind is not safe, and the fluctuating wind load should be taken into account.

  20. Wind loading on solar concentrators: some general considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roschke, E. J.

    A survey has been completed to examine the problems and complications arising from wind loading on solar concentrators. Wind loading is site specific and has an important bearing on the design, cost, performance, operation and maintenance, safety, survival, and replacement of solar collecting systems. Emphasis herein is on paraboloidal, two-axis tracking systems. Thermal receiver problems also are discussed. Wind characteristics are discussed from a general point of view; current methods for determining design wind speed are reviewed. Aerodynamic coefficients are defined and illustrative examples are presented. Wind tunnel testing is discussed, and environmental wind tunnels are reviewed; recent results onmore » heliostat arrays are reviewed as well. Aeroelasticity in relation to structural design is discussed briefly. Wind loads, i.e., forces and moments, are proportional to the square of the mean wind velocity. Forces are proportional to the square of concentrator diameter, and moments are proportional to the cube of diameter. Thus, wind loads have an important bearing on size selection from both cost and performance standpoints. It is concluded that sufficient information exists so that reasonably accurate predictions of wind loading are possible for a given paraboloidal concentrator configuration, provided that reliable and relevant wind conditions are specified. Such predictions will be useful to the design engineer and to the systems engineer as well. Information is lacking, however, on wind effects in field arrays of paraboloidal concentrators. Wind tunnel tests have been performed on model heliostat arrays, but there are important aerodynamic differences between heliostats and paraboloidal dishes.« less

  1. CFD-based design load analysis of 5MW offshore wind turbine

    NASA Astrophysics Data System (ADS)

    Tran, T. T.; Ryu, G. J.; Kim, Y. H.; Kim, D. H.

    2012-11-01

    The structure and aerodynamic loads acting on NREL 5MW reference wind turbine blade are calculated and analyzed based on advanced Computational Fluid Dynamics (CFD) and unsteady Blade Element Momentum (BEM). A detailed examination of the six force components has been carried out (three force components and three moment components). Structure load (gravity and inertia load) and aerodynamic load have been obtained by additional structural calculations (CFD or BEM, respectively,). In CFD method, the Reynolds Average Navier-Stokes approach was applied to solve the continuity equation of mass conservation and momentum balance so that the complex flow around wind turbines was modeled. Written in C programming language, a User Defined Function (UDF) code which defines transient velocity profile according to the Extreme Operating Gust condition was compiled into commercial FLUENT package. Furthermore, the unsteady BEM with 3D stall model has also adopted to investigate load components on wind turbine rotor. The present study introduces a comparison between advanced CFD and unsteady BEM for determining load on wind turbine rotor. Results indicate that there are good agreements between both present methods. It is importantly shown that six load components on wind turbine rotor is significant effect under Extreme Operating Gust (EOG) condition. Using advanced CFD and additional structural calculations, this study has succeeded to construct accuracy numerical methodology to estimate total load of wind turbine that compose of aerodynamic load and structure load.

  2. Structural health and prognostics management for the enhancement of offshore wind turbine operations and maintenance strategies

    DOE PAGES

    Griffith, D. Todd; Yoder, Nathanael C.; Resor, Brian; ...

    2013-09-19

    Offshore wind turbines are an attractive source for clean and renewable energy for reasons including their proximity to population centers and higher capacity factors. One obstacle to the more widespread installation of offshore wind turbines in the USA, however, is that recent projections of offshore operations and maintenance costs vary from two to five times the land-based costs. One way in which these costs could be reduced is through use of a structural health and prognostics management (SHPM) system as part of a condition-based maintenance paradigm with smart loads management. Our paper contributes to the development of such strategies bymore » developing an initial roadmap for SHPM, with application to the blades. One of the key elements of the approach is a multiscale simulation approach developed to identify how the underlying physics of the system are affected by the presence of damage and how these changes manifest themselves in the operational response of a full turbine. A case study of a trailing edge disbond is analysed to demonstrate the multiscale sensitivity of damage approach and to show the potential life extension and increased energy capture that can be achieved using simple changes in the overall turbine control and loads management strategy. Finally, the integration of health monitoring information, economic considerations such as repair costs versus state of health, and a smart loads management methodology provides an initial roadmap for reducing operations and maintenance costs for offshore wind farms while increasing turbine availability and overall profit.« less

  3. Investigation of Wind Turbine Rotor Concepts for Offshore Wind Farms

    NASA Astrophysics Data System (ADS)

    Ceyhan, Özlem; Grasso, Francesco

    2014-06-01

    Current plans in offshore wind energy developments call for further reduction of cost of energy. In order to contribute to this goal, several wind turbine rotor concepts have been investigated. Assuming the future offshore wind turbines will operate only in the offshore wind farms, the rotor concepts are not only evaluated for their stand-alone performances and their potential in reducing the loads, but also for their performance in an offshore wind farm. In order to do that, the 10MW reference wind turbine designed in Innwind.EU project is chosen as baseline. Several rotor parameters have been modified and their influences are investigated for offshore wind turbine design purposes. This investigation is carried out as a conceptual parametrical study. All concepts are evaluated numerically with BOT (Blade optimisation tool) software in wind turbine level and with Farmflow software in wind farm level for two wind farm layouts. At the end, all these concepts are compared with each other in terms of their advantages and disadvantages.

  4. Numerical Investigation of Synthetic-jet based Flow Control on Vertical-axis Wind Turbine Blades

    NASA Astrophysics Data System (ADS)

    Menon, Ashwin; Tran, Steven; Sahni, Onkar

    2013-11-01

    Vertical-axis wind turbines encounter large unsteady aerodynamic loads in a sustained fashion due to the continuously varying angle of attack that is experienced by turbine blades during each revolution. Moreover, the detachment of the leading edge vortex at high angles of attack leads to sudden change in aerodynamic loads that result in structural vibrations and fatigue, and possibly failure. This numerical study focuses on using synthetic-jet based fluidic actuation to reduce the unsteady loading on VAWT blades. In the simulations, the jets are placed at the dominant separation location that is observed in the baseline case. We consider different tip-speed ratios, O(2-5), and we also study the effect of blowing ratio (to be in O(0.5-1.5)) and reduced frequency, i.e., ratio of jet frequency to flow frequency (to be in O(5-15)). For all cases, unsteady Reynolds-averaged Navier-Stokes simulations are carried out by using the Spallart-Allamaras turbulence model, where stabilized finite element method is employed for spatial discretization along with an implicit time-integration scheme.

  5. Mapping Wind Farm Loads and Power Production - A Case Study on Horns Rev 1

    NASA Astrophysics Data System (ADS)

    Galinos, Christos; Dimitrov, Nikolay; Larsen, Torben J.; Natarajan, Anand; Hansen, Kurt S.

    2016-09-01

    This paper describes the development of a wind turbine (WT) component lifetime fatigue load variation map within an offshore wind farm. A case study on the offshore wind farm Horns Rev I is conducted with this purpose, by quantifying wake effects using the Dynamic Wake Meandering (DWM) method, which has previously been validated based on CFD, Lidar and full scale load measurements. Fully coupled aeroelastic load simulations using turbulent wind conditions are conducted for all wind directions and mean wind speeds between cut-in and cut-out using site specific turbulence level measurements. Based on the mean wind speed and direction distribution, the representative 20-year lifetime fatigue loads are calculated. It is found that the heaviest loaded WT is not the same when looking at blade root, tower top or tower base components. The blade loads are mainly dominated by the wake situations above rated wind speed and the highest loaded blades are in the easternmost row as the dominating wind direction is from West. Regarding the tower components, the highest loaded WTs are also located towards the eastern central location. The turbines with highest power production are, not surprisingly, the ones facing a free sector towards west and south. The power production results of few turbines are compared with SCADA data. The results of this paper are expected to have significance for operation and maintenance planning, where the schedules for inspection and service activities can be adjusted to the requirements arising from the varying fatigue levels. Furthermore, the results can be used in the context of remaining fatigue lifetime assessment and planning of decommissioning.

  6. Wind loads on flat plate photovoltaic array fields (nonsteady winds)

    NASA Technical Reports Server (NTRS)

    Miller, R. D.; Zimmerman, D. K.

    1981-01-01

    Techniques to predict the dynamic response and the structural dynamic loads of flat plate photovoltaic arrays due to wind turbulence were analyzed. Guidelines for use in predicting the turbulent portion of the wind loading on future similar arrays are presented. The dynamic response and the loads dynamic magnification factor of the two array configurations are similar. The magnification factors at a mid chord and outer chord location on the array illustrated and at four points on the chord are shown. The wind tunnel test experimental rms pressure coefficient on which magnification factors are based is shown. It is found that the largest response and dynamic magnification factor occur at a mid chord location on an array and near the trailing edge. A technique employing these magnification factors and the wind tunnel test rms fluctuating pressure coefficients to calculate design pressure loads due to wind turbulence is presented.

  7. Wind Loads on Flat Plate Photovoltaic Array Fields

    NASA Technical Reports Server (NTRS)

    Miller, R.; Zimmerman, D.

    1979-01-01

    The aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays were investigated. Local pressure distributions and total aerodynamic forces on the arrays are shown. Design loads are presented to cover the conditions of array angles relative to the ground from 20 deg to 60 deg, variable array spacings, a ground clearance gap up to 1.2 m (4 ft) and array slant heights of 2.4 m (8 ft) and 4.8 m (16 ft). Several means of alleviating the wind loads on the arrays are detailed. The expected reduction of the steady state wind velocity with the use of fences as a load alleviation device are indicated to be in excess of a factor of three for some conditions. This yields steady state wind load reductions as much as a factor of ten compared to the load incurred if no fence is used to protect the arrays. This steady state wind load reduction is offset by the increase in turbulence due to the fence but still an overall load reduction of 2.5 can be realized. Other load alleviation devices suggested are the installation of air gaps in the arrays, blocking the flow under the arrays and rounding the edges of the array. A wind tunnel test plan to supplement the theoretical study and to evaluate the load alleviation devices is outlined.

  8. Dust emission and transport over Iraq associated with the summer Shamal winds

    NASA Astrophysics Data System (ADS)

    Bou Karam Francis, D.; Flamant, C.; Chaboureau, J.-P.; Banks, J.; Cuesta, J.; Brindley, H.; Oolman, L.

    2017-02-01

    In this study, we investigate the diurnal evolution of the summer Shamal wind (a quasi-permanent low-level northwesterly wind feature) and its role in dust emission and transport over Iraq, using ground-based and space-borne observations together with a numerical simulation performed with the mesoscale model meso-NH. A 6-year dataset from the synoptic stations over Iraq allows establishing the prominence of the link between strong near surface winds and reduced visibility in the summer. The detailed processes at play during Shamal events are explored on the basis of a meso-NH simulation for a given, representative case study (25 June-3 July 2010). The Shamal exhibits an out-of-phase relationship between the surface wind and winds in the lower troposphere (typically 500 m above ground level), the maximum surface wind speeds being observed during the day while in altitude the maximum wind speeds are observed at night. The daytime near surface winds, at the origin of dust emission, are associated with the downward transfer of momentum from the nocturnal low-level jet to the surface due to turbulent mixing after solar heating commences each day. For the first time, an estimate of the dust load associated with summer Shamal events over Iraq has been made using aerosol optical depths derived from the Spinning Enhanced Visible and Infrared Imager, the Moderate Resolution Imaging Spectroradiometer, and the simulation. The dust load exhibits a large diurnal variability, with a daily minimum value of 1 Tg around 0600 UTC and a daily peak of 2.5 Tg or more around 1500 UTC, and is driven by the diurnal cycle of the near surface wind speed. The daily dust load peak associated with the summer Shamal over Iraq is in the same order of magnitude as those derived from simulations downstream of the Bodélé depression in Chad, known to be the world's largest dust source.

  9. Study of wind-induced vibrations in tall buildings with tuned mass dampers taking into account vortices effects

    NASA Astrophysics Data System (ADS)

    Momtaz, Ali Ajilian; Abdollahian, Mohamadreza Akhavan; Farshidianfar, Anooshiravan

    2017-12-01

    In recent years, construction of tall buildings has been of great interest. Use of lightweight materials in such structures reduces stiffness and damping, making the building more influenced by wind loads. Moreover, tall buildings of more than 30 to 40 stories, depending on the geographical location, the wind effects are more influential than earthquakes. In addition, the complexity of the effects of wind flow on the structure due to the interaction of the fluid flow and solid body results in serious damages to the structure by eliminating them. Considering the importance of the issue, the present study investigates the phenomenon of wind-induced vibration on high-rise buildings, taking into account the effects of vortices created by the fluid flow and the control of this phenomenon. To this end, the governing equations of the structure, the fluid flow and the tuned mass damper (TMD) are first introduced, and their coefficient values are extracted according to the characteristics of ACT skyscraper in Japan. Then, these three coupled equations are solved using a program coded in MATLAB. After validation of the results, the effects of wind loads are analyzed and considered with regard to the effects of vortices and the use of TMD, and are compared with the results of the state where no vortices are considered. Generally, the results of this study point out the significance of vibrations caused by vortices in construction of engineering structures as well as the appropriate performance of a TMD in reducing oscillations in tall buildings.

  10. Operation and Equivalent Loads of Wind Turbines in Large Wind Farms

    NASA Astrophysics Data System (ADS)

    Andersen, Soren Juhl; Sorensen, Jens Norkaer; Mikkelsen, Robert Flemming

    2017-11-01

    Wind farms continue to grow in size and as the technology matures, the design of wind farms move towards including dynamic effects besides merely annual power production estimates. The unsteady operation of wind turbines in large wind farms has been modelled with EllipSys3D(Michelsen, 1992, and Sørensen, 1995) for a number of different scenarios using a fully coupled large eddy simulations(LES) and aero-elastic framework. The turbines are represented in the flow fields using the actuator line method(Sørensen and Shen, 2002), where the aerodynamic forces and deflections are derived from an aero-elastic code, Flex5(Øye, 1996). The simulations constitute a database of full turbine operation in terms of both production and loads for various wind speeds, turbulence intensities, and turbine spacings. The operating conditions are examined in terms of averaged power production and thrust force, as well as 10min equivalent flapwise bending, yaw, and tilt moment loads. The analyses focus on how the performance and loads change throughout a given farm as well as comparing how various input parameters affect the operation and loads of the wind turbines during different scenarios. COMWIND(Grant 2104-09- 067216/DSF), Nordic Consortium on Optimization and Control of Wind Farms, Eurotech Greentech Wind project, Winds2Loads, and CCA LES. Ressources Granted on SNIC and JESS. The Vestas NM80 turbine has been used.

  11. Determination of the wind power systems load to achieve operation in the maximum energy area

    NASA Astrophysics Data System (ADS)

    Chioncel, C. P.; Tirian, G. O.; Spunei, E.; Gillich, N.

    2018-01-01

    This paper analyses the operation of the wind turbine, WT, in the maximum power point, MPP, by linking the load of the Permanent Magnet Synchronous Generator, PMSG, with the wind speed value. The load control methods at wind power systems aiming an optimum performance in terms of energy are based on the fact that the energy captured by the wind turbine significantly depends on the mechanical angular speed of the wind turbine. The presented control method consists in determining the optimal mechanical angular speed, ωOPTIM, using an auxiliary low power wind turbine, WTAUX, operating without load, at maximum angular velocity, ωMAX. The method relies on the fact that the ratio ωOPTIM/ωMAX has a constant value for a given wind turbine and does not depend on the time variation of the wind speed values.

  12. Aerodynamic Simulation of A Containership to Evaluate Cargo Configuration Effect on Frontal Wind Loads

    NASA Astrophysics Data System (ADS)

    Majidian, Hamed; Azarsina, Farhood

    2018-04-01

    Fuel consumption has always been a matter of concern for ships propulsion. In this research we aim to develop computer models of several containership cargo stacking configurations and discuss an optimal configuration at a constant front wind speed. The paper presents the simulation results by using ANSYS CFX for a 1:4 scale Post- Panamax 9000 TEU containership. The ship is modelled in a cubic domain that contains unstructured mesh with details, in such a way that can demonstrate the influence of the container configuration on wind force. Also the numerical results are verified versus wind tunnel test data. An optimal stack configuration led to about 25% reduction in air resistance. It is proposed that in order to reduce the wind drag force and consequently reduce the fuel consumption and pollutant emissions, empty spaces between the cargo containers and unbalanced cargo distribution over the deck should be inhibited. Also, it is advised to make the cargo distribution on the most forward and aftward deck areas more streamlined.

  13. Calculation of design load for the MOD-5A 7.3 mW wind turbine system

    NASA Technical Reports Server (NTRS)

    Mirandy, L.; Strain, J. C.

    1995-01-01

    Design loads are presented for the General Electric MOD-SA wind turbine. The MOD-SA system consists of a 400 ft. diameter, upwind, two-bladed, teetered rotor connected to a 7.3 mW variable-speed generator. Fatigue loads are specified in the form of histograms for the 30 year life of the machine, while limit (or maximum) loads have been derived from transient dynamic analysis at critical operating conditions. Loads prediction was accomplished using state of the art aeroelastic analyses developed at General Electric. Features of the primary predictive tool - the Transient Rotor Analysis Code (TRAC) are described in the paper. Key to the load predictions are the following wind models: (1) yearly mean wind distribution; (2) mean wind variations during operation; (3) number of start/shutdown cycles; (4) spatially large gusts; and (5) spatially small gusts (local turbulence). The methods used to develop statistical distributions from load calculations represent an extension of procedures used in past wind programs and are believed to be a significant contribution to Wind Turbine Generator analysis. Test/theory correlations are presented to demonstrate code load predictive capability and to support the wind models used in the analysis. In addition MOD-5A loads are compared with those of existing machines. The MOD-5A design was performed by the General Electric Company, Advanced Energy Program Department, under Contract DEN3-153 with NASA Lewis Research Center and sponsored by the Department of Energy.

  14. Modified Adaptive Control for Region 3 Operation in the Presence of Wind Turbine Structural Modes

    NASA Technical Reports Server (NTRS)

    Frost, Susan Alane; Balas, Mark J.; Wright, Alan D.

    2010-01-01

    Many challenges exist for the operation of wind turbines in an efficient manner that is reliable and avoids component fatigue and failure. Turbines operate in highly turbulent environments resulting in aerodynamic loads that can easily excite turbine structural modes, possibly causing component fatigue and failure. Wind turbine manufacturers are highly motivated to reduce component fatigue and failure that can lead to loss of revenue due to turbine down time and maintenance costs. The trend in wind turbine design is toward larger, more flexible turbines that are ideally suited to adaptive control methods due to the complexity and expense required to create accurate models of their dynamic characteristics. In this paper, we design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed horizontal axis wind turbine operating in Region 3. The objective of the adaptive pitch controller is to regulate generator speed, accommodate wind gusts, and reduce the excitation of structural modes in the wind turbine. The control objective is accomplished by collectively pitching the turbine blades. The adaptive collective pitch controller for Region 3 was compared in simulations with a baseline classical Proportional Integrator (PI) collective pitch controller. The adaptive controller will demonstrate the ability to regulate generator speed in Region 3, while accommodating gusts, and reducing the excitation of certain structural modes in the wind turbine.

  15. Tornado and extreme wind design criteria for nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1973-12-01

    Nuclear power plant design criteria for tornadoes and extreme winds are presented. Data, formulas, and procedures for determining maximum wind loading on structures and parts of structures are included. Extreme wind loading is applied to structures using methods and procedures consistent with ANSI Building Code A58.1- 1972. The design wind velocities specified generally exceed 100-year recurrent interval winds. Tornado wind loading is applied to structures using procedures paralleling those for extrene winds with additional criteria resulting from the atmospheric pressure change accompanying tornadoes and tornado missile inipact effects. Tornado loading for the 48 contiguous United States is specified for twomore » major zones separated by the Continental Divide. A cross reference listing items related to Atomic Energy Commission Safety Analysis Report format is provided. Development supporting tornado criteria is included. (auth)« less

  16. Design, fabrication, and test of a steel spar wind turbine blade

    NASA Technical Reports Server (NTRS)

    Sullivan, T. L.; Sirocky, P. J., Jr.; Viterna, L. A.

    1979-01-01

    The design and fabrication of wind turbine blades based on 60 foot steel spars are discussed. Performance and blade load information is given and compared to analytical prediction. In addition, performance is compared to that of the original MOD-O aluminum blades. Costs for building the two blades are given, and a projection is made for the cost in mass production. Design improvements to reduce weight and improve fatigue life are suggested.

  17. Airship-floated wind turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, W. K.

    1985-01-01

    A wind turbine, by use of a tethered airship for support, may be designed for the economical recovery of power at heights of 2,000 feet or more above ground, at which height power density in the wind is typically three times the power density available to a conventionally supported wind turbine. Means can be added to such an airship-floated wind turbine which will permit its generators to be used to meet load demand even during periods of little or no wind. Described to this end is a wind turbine system which combines, among other novel features: a novel tether linemore » system which provides access for men and materials to the supporting airship while in active service, a novel system for providing additional buoyant lift at the nose of the turbine-supporting airship to offset the vertical component of tension induced in the tether line by the downwind force exerted by the turbine blades, a novel bearing assembly at the nose of the supporting airship which permits the airship to rotate as a unit with the turbine it supports without causing a similar rotation of the tether line, a novel turbine airship structure which handles concentrated loads from the turbine efficiently and also permits the safe use of hydrogen for buoyancy, a novel ''space frame'' structure which supports the turbine blades and greatly reduces blade weight, a novel system for controlling turbine blade angle of incidence and for varying blade incidene in synchrony with blade angular position abut the turbine axis to provide greater control over airship movement, a novel system for locating propellor-driven generators out at the wind turbine perimeter and for using lightweight, high-RPM generators to produce electrical energy at a power line frequency, which greatly reduces the weight required to convert turbine blade torque into useful power, and a novel system for incorporating compressed air storage and combustion turbine components into the wind turbine's generator drive systems.« less

  18. Switching power pulse system

    DOEpatents

    Aaland, K.

    1983-08-09

    A switching system for delivering pulses of power from a source to a load using a storage capacitor charged through a rectifier, and maintained charged to a reference voltage level by a transistor switch and voltage comparator. A thyristor is triggered to discharge the storage capacitor through a saturable reactor and fractional turn saturable transformer having a secondary to primary turn ratio N of n:l/n = n[sup 2]. The saturable reactor functions as a soaker'' while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor charges, and then switches to a low impedance state to dump the charge of the storage capacitor into the load through the coupling capacitor. The transformer is comprised of a multilayer core having two secondary windings tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe for a linear particle accelerator and capacitance of a pulse forming network. To hold off discharge of the capacitance until it is fully charged, a saturable core is provided around the resistive beampipe to isolate the beampipe from the capacitance until it is fully charged. 5 figs.

  19. Data centers as dispatchable loads to harness stranded power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kibaek; Yang, Fan; Zavala, Victor M.

    Here, we analyze how traditional data center placement and optimal placement of dispatchable data centers affect power grid efficiency. We use detailed network models, stochastic optimization formulations, and diverse renewable generation scenarios to perform our analysis. Our results reveal that significant spillage and stranded power will persist in power grids as wind power levels are increased. A counter-intuitive finding is that collocating data centers with inflexible loads next to wind farms has limited impacts on renewable portfolio standard (RPS) goals because it provides limited system-level flexibility. Such an approach can, in fact, increase stranded power and fossil-fueled generation. In contrast,more » optimally placing data centers that are dispatchable provides system-wide flexibility, reduces stranded power, and improves efficiency. In short, optimally placed dispatchable computing loads can enable better scaling to high RPS. In our case study, we find that these dispatchable computing loads are powered to 60-80% of their requested capacity, indicating that there are significant economic incentives provided by stranded power.« less

  20. Data centers as dispatchable loads to harness stranded power

    DOE PAGES

    Kim, Kibaek; Yang, Fan; Zavala, Victor M.; ...

    2016-07-20

    Here, we analyze how traditional data center placement and optimal placement of dispatchable data centers affect power grid efficiency. We use detailed network models, stochastic optimization formulations, and diverse renewable generation scenarios to perform our analysis. Our results reveal that significant spillage and stranded power will persist in power grids as wind power levels are increased. A counter-intuitive finding is that collocating data centers with inflexible loads next to wind farms has limited impacts on renewable portfolio standard (RPS) goals because it provides limited system-level flexibility. Such an approach can, in fact, increase stranded power and fossil-fueled generation. In contrast,more » optimally placing data centers that are dispatchable provides system-wide flexibility, reduces stranded power, and improves efficiency. In short, optimally placed dispatchable computing loads can enable better scaling to high RPS. In our case study, we find that these dispatchable computing loads are powered to 60-80% of their requested capacity, indicating that there are significant economic incentives provided by stranded power.« less

  1. Offshore wind turbine foundation monitoring, extrapolating fatigue measurements from fleet leaders to the entire wind farm

    NASA Astrophysics Data System (ADS)

    Weijtens, Wout; Noppe, Nymfa; Verbelen, Tim; Iliopoulos, Alexandros; Devriendt, Christof

    2016-09-01

    The present contribution is part of the ongoing development of a fatigue assessment strategy driven purely on in-situ measurements on operational wind turbines. The primary objective is to estimate the remaining life time of existing wind farms and individual turbines by instrumenting part of the farm with a load monitoring setup. This load monitoring setup allows to measure interface loads and local stress histories. This contribution will briefly discuss how these load measurements can be translated into fatigue assessment of the instrumented turbine. However, due to different conditions at the wind farm, such as turbulence, differences in water depth and foundation design this turbine will not be fully representable for all turbines in the farm. In this paper we will use the load measurements on two offshore wind turbines in the Northwind offshore wind farm to discuss fatigue progression in an operational wind farm. By calculating the damage equivalent loads on the two turbines the fatigue progression is quantified for every 10 minute interval and can be analyzed against turbulence and site conditions. In future work these results will be used to predict the fatigue life progression in the entire farm.

  2. Guidelines for reducing dynamic loads in two-bladed teetering-hub downwind wind turbines

    NASA Astrophysics Data System (ADS)

    Wright, A. D.; Bir, G. S.; Butterfield, C. D.

    1995-06-01

    A major goal of the federal Wind Energy Program is the rapid development and validation of structural models to determine loads and response for a wide variety of different wind turbine configurations operating under extreme conditions. Such codes are crucial to the successful design of future advanced wind turbines. In previous papers the authors described steps they took to develop a model of a two-bladed teetering-hub downwind wind turbine using ADAMS (Automatic Dynamic Analysis of Mechanical Systems), as well as comparison of model predictions to test data. In this paper they show the use of this analytical model to study the influence of various turbine parameters on predicted system loads. They concentrate their study on turbine response in the frequency range of six to ten times the rotor rotational frequency (6P to 10P). Their goal is to identify the most important parameters which influence the response of this type of machine in this frequency range and give turbine designers some general design guidelines for designing two-bladed teetering-hub machines to be less susceptible to vibration. They study the effects of such parameters as blade edgewise and flapwise stiffness, tower top stiffness, blade tip-brake mass, low-speed shaft stiffness, nacelle mass momenta of inertia, and rotor speed. They show which parameters can be varied in order to make the turbine less responsive to such atmospheric inputs as wind shear and tower shadow. They then give designers a set of design guidelines in order to show how these machines can be designed to be less responsive to these inputs.

  3. Reponse dynamique des structures sous charges de vent

    NASA Astrophysics Data System (ADS)

    Gani, Ferawati

    The main purpose of this research is to assemble numerical tools that allows realistic dynamic study of structures under wind loading. The availability of such numerical tools is becoming more important for the industry, following previous experiences in structural damages after extreme wind events. The methodology of the present study involves two main steps: (i) preparing the wind loading according to its spatial and temporal correlations by using digitally generated wind or real measured wind; (ii) preparing the numerical model that captures the characteristics of the real structures and respects all the necessary numerical requirements to pursue transient dynamic analyses. The thesis is presented as an ensemble of four articles written for refereed journals and conferences that showcase the contributions of the present study to the advancement of transient dynamic study of structures under wind loading, on the wind model itself (the first article) and on the application of the wind study on complex structures (the next three articles). The articles presented are as follows: (a) the evaluation of three-dimensional correlations of wind, an important issue for more precise prediction of wind loading for flexible and line-like structures, the results presented in this first article helps design engineers to choose a more suitable models to define three-dimensional wind loading; (b) the refinement of design for solar photovoltaic concentrator-tracker structure developed for utility scale, this study addressed concerns related strict operational criteria and fatigue under wind load for a large parabolic truss structure; (c) the study of guyed towers for TLs, the applicability of the static-equivalent method from the current industry documents for the design of this type of flexible TL support was questioned, a simplified method to improve the wind design was proposed; (d) the fundamental issue of nonlinear behaviour under extreme wind loading for single-degree-of-freedom systems is evaluated here, the use of real measured hurricane and winter storm have highlighted the possible interest of taking into account the ductility in the extreme wind loading design. The present research project has shown the versatility of the use of the developed wind study methodology to solve concerns related to different type of complex structures. In addition, this study proposes simplified methods that are useful for practical engineers when there is the need to solve similar problems. Key words: nonlinear, dynamic, wind, guyed tower, parabolic structure, ductility.

  4. Comparison of computer codes for calculating dynamic loads in wind turbines

    NASA Technical Reports Server (NTRS)

    Spera, D. A.

    1977-01-01

    Seven computer codes for analyzing performance and loads in large, horizontal axis wind turbines were used to calculate blade bending moment loads for two operational conditions of the 100 kW Mod-0 wind turbine. Results were compared with test data on the basis of cyclic loads, peak loads, and harmonic contents. Four of the seven codes include rotor-tower interaction and three were limited to rotor analysis. With a few exceptions, all calculated loads were within 25 percent of nominal test data.

  5. Sideband Algorithm for Automatic Wind Turbine Gearbox Fault Detection and Diagnosis: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zappala, D.; Tavner, P.; Crabtree, C.

    2013-01-01

    Improving the availability of wind turbines (WT) is critical to minimize the cost of wind energy, especially for offshore installations. As gearbox downtime has a significant impact on WT availabilities, the development of reliable and cost-effective gearbox condition monitoring systems (CMS) is of great concern to the wind industry. Timely detection and diagnosis of developing gear defects within a gearbox is an essential part of minimizing unplanned downtime of wind turbines. Monitoring signals from WT gearboxes are highly non-stationary as turbine load and speed vary continuously with time. Time-consuming and costly manual handling of large amounts of monitoring data representmore » one of the main limitations of most current CMSs, so automated algorithms are required. This paper presents a fault detection algorithm for incorporation into a commercial CMS for automatic gear fault detection and diagnosis. The algorithm allowed the assessment of gear fault severity by tracking progressive tooth gear damage during variable speed and load operating conditions of the test rig. Results show that the proposed technique proves efficient and reliable for detecting gear damage. Once implemented into WT CMSs, this algorithm can automate data interpretation reducing the quantity of information that WT operators must handle.« less

  6. Mitigating shear lag in tall buildings

    NASA Astrophysics Data System (ADS)

    Gaur, Himanshu; Goliya, Ravindra K.

    2015-09-01

    As the height of building increases, effect of shear lag also becomes considerable in the design of high-rise buildings. In this paper, shear lag effect in tall buildings of heights, i.e., 120, 96, 72, 48 and 36 stories of which aspect ratio ranges from 3 to 10 is studied. Tube-in-tube structural system with façade bracing is used for designing the building of height 120 story. It is found that bracing system considerably reduces the shear lag effect and hence increases the building stiffness to withstand lateral loads. Different geometric patterns of bracing system are considered. The best effective geometric configuration of bracing system is concluded in this study. Lateral force, as wind load is applied on the buildings as it is the most dominating lateral force for such heights. Wind load is set as per Indian standard code of practice IS 875 Part-3. For analysis purpose SAP 2000 software program is used.

  7. A VERSATILE FAMILY OF GALACTIC WIND MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bustard, Chad; Zweibel, Ellen G.; D’Onghia, Elena, E-mail: bustard@wisc.edu

    2016-03-01

    We present a versatile family of model galactic outflows including non-uniform mass and energy source distributions, a gravitational potential from an extended mass source, and radiative losses. The model easily produces steady-state wind solutions for a range of mass-loading factors, energy-loading factors, galaxy mass, and galaxy radius. We find that, with radiative losses included, highly mass-loaded winds must be driven at high central temperatures, whereas low mass-loaded winds can be driven at low temperatures just above the peak of the cooling curve, meaning radiative losses can drastically affect the wind solution even for low mass-loading factors. By including radiative losses,more » we are able to show that subsonic flows can be ignored as a possible mechanism for expelling mass and energy from a galaxy compared to the more efficient transonic solutions. Specifically, the transonic solutions with low mass loading and high energy loading are the most efficient. Our model also produces low-temperature, high-velocity winds that could explain the prevalence of low-temperature material in observed outflows. Finally, we show that our model, unlike the well-known Chevalier and Clegg model, can reproduce the observed linear relationship between wind X-ray luminosity and star formation rate (SFR) over a large range of SFR from 1–1000 M{sub ⊙} yr{sup −1} assuming the wind mass-loading factor is higher for low-mass, and hence, low-SFR galaxies. We also constrain the allowed mass-loading factors that can fit the observed X-ray luminosity versus SFR trend, further suggesting an inverse relationship between mass loading and SFR as explored in advanced numerical simulations.« less

  8. Coupled CFD/CSD Analysis of an Active-Twist Rotor in a Wind Tunnel with Experimental Validation

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Kreshock, Andrew R.; Sekula, Martin K.

    2015-01-01

    An unsteady Reynolds averaged Navier-Stokes analysis loosely coupled with a comprehensive rotorcraft code is presented for a second-generation active-twist rotor. High fidelity Navier-Stokes results for three configurations: an isolated rotor, a rotor with fuselage, and a rotor with fuselage mounted in a wind tunnel, are compared to lifting-line theory based comprehensive rotorcraft code calculations and wind tunnel data. Results indicate that CFD/CSD predictions of flapwise bending moments are in good agreement with wind tunnel measurements for configurations with a fuselage, and that modeling the wind tunnel environment does not significantly enhance computed results. Actuated rotor results for the rotor with fuselage configuration are also validated for predictions of vibratory blade loads and fixed-system vibratory loads. Varying levels of agreement with wind tunnel measurements are observed for blade vibratory loads, depending on the load component (flap, lag, or torsion) and the harmonic being examined. Predicted trends in fixed-system vibratory loads are in good agreement with wind tunnel measurements.

  9. Lidar configurations for wind turbine control

    NASA Astrophysics Data System (ADS)

    Mirzaei, Mahmood; Mann, Jakob

    2016-09-01

    Lidar sensors have proved to be very beneficial in the wind energy industry. They can be used for yaw correction, feed-forward pitch control and load verification. However, the current lidars are expensive. One way to reduce the price is to use lidars with few measurement points. Finding the best configuration of an inexpensive lidar in terms of number of measurement points, the measurement distance and the opening angle is the subject of this study. In order to solve the problem, a lidar model is developed and used to measure wind speed in a turbulence box. The effective wind speed measured by the lidar is compared against the effective wind speed on a wind turbine rotor both theoretically and through simulations. The study provides some results to choose the best configuration of the lidar with few measurement points.

  10. Wind loads on flat plate photovoltaic array fields

    NASA Technical Reports Server (NTRS)

    Miller, R. D.; Zimmerman, D. K.

    1981-01-01

    The results of an experimental analysis (boundary layer wind tunnel test) of the aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays are presented. Local pressure coefficient distributions and normal force coefficients on the arrays are shown and compared to theoretical results. Parameters that were varied when determining the aerodynamic forces included tilt angle, array separation, ground clearance, protective wind barriers, and the effect of the wind velocity profile. Recommended design wind forces and pressures are presented, which envelop the test results for winds perpendicular to the array's longitudinal axis. This wind direction produces the maximum wind loads on the arrays except at the array edge where oblique winds produce larger edge pressure loads. The arrays located at the outer boundary of an array field have a protective influence on the interior arrays of the field. A significant decrease of the array wind loads were recorded in the wind tunnel test on array panels located behind a fence and/or interior to the array field compared to the arrays on the boundary and unprotected from the wind. The magnitude of this decrease was the same whether caused by a fence or upwind arrays.

  11. Active Power Control of Wind Turbines for Ancillary Services: A Comparison of Pitch and Torque Control Methodologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aho, Jacob; Fleming, Paul; Pao, Lucy Y.

    As wind energy generation becomes more prevalent in some regions, there is increased demand for wind power plants to provide ancillary services, which are essential for grid reliability. This paper compares two different wind turbine control methodologies to provide active power control (APC) ancillary services, which include derating or curtailing power generation, providing automatic generation control (AGC), and providing primary frequency control (PFC). The torque APC controller provides all power control through the power electronics whereas the pitch APC controller uses the blade pitch actuators as the primary means of power control. These controllers are simulated under various wind conditionsmore » with different derating set points and AGC participation levels. The metrics used to compare their performance are the damage equivalent loads (DELs) induced on the structural components and AGC performance metrics, which are used to determine the payments for AGC services by system operators in the United States. The simulation results show that derating the turbine reduces structural loads for both control methods, with the APC pitch control providing larger reductions in DELs, lower AGC performance scores, and higher root-mean-square pitch rates. Providing AGC increases the structural loads when compared to only derating the turbine, but even the AGC DELs are generally lower than those of the baseline control system. The torque APC control methodology also allows for more sustained PFC responses under certain derating conditions.« less

  12. A coupled aero-structural model of a HAWT blade for dynamic load and response prediction in time-domain for health monitoring applications

    NASA Astrophysics Data System (ADS)

    Sauder, Heather Scot

    To reach the high standards set for renewable energy production in the US and around the globe, wind turbines with taller towers and longer blades are being designed for onshore and offshore wind developments to capture more energy from higher winds aloft and a larger rotor diameter. However, amongst all the wind turbine components wind turbine blades are still the most prone to damage. Given that wind turbine blades experience dynamic loads from multiple sources, there is a need to be able to predict the real-time load, stress distribution and response of the blade in a given wind environment for damage, flutter and fatigue life predictions. Current methods of wind-induced response analysis for wind turbine blades use approximations that are not suitable for wind turbine blade airfoils which are thick, and therefore lead to inaccurate life predictions. Additionally, a time-domain formulation can prove to be especially advantageous for predicting aerodynamic loads on wind turbine blades since they operate in a turbulent atmospheric boundary layer. This will help to analyze the blades on wind turbines that operate individually or in a farm setting where they experience high turbulence in the wake of another wind turbine. A time-domain formulation is also useful for examining the effects of gusty winds that are transient in nature like in gust fronts, thunderstorms or extreme events such as hurricanes, microbursts, and tornadoes. Time-domain methods present the opportunity for real-time health monitoring strategies that can easily be used with finite element methods for prediction of fatigue life or onset of flutter instability. The purpose of the proposed work is to develop a robust computational model to predict the loads, stresses and response of a wind turbine blade in operating and extreme wind conditions. The model can be used to inform health monitoring strategies for preventative maintenance and provide a realistic number of stress cycles that the blade will experience for fatigue life prediction procedures. To fill in the gaps in the existing knowledge and meet the overall goal of the proposed research, the following objectives were accomplished: (a) improve the existing aeroelastic (motion- and turbulence-induced) load models to predict the response of wind turbine blade airfoils to understand its behavior in turbulent wind, (b) understand, model and predict the response of wind turbine blades in transient or gusty wind, boundary-layer wind and incoherent wind over the span of the blade, (c) understand the effects of aero-structural coupling between the along-wind, cross-wind and torsional vibrations, and finally (d) develop a computational tool using the improved time-domain load model to predict the real-time load, stress distribution and response of a given wind turbine blade during operating and parked conditions subject to a specific wind environment both in a short and long term for damage, flutter and fatigue life predictions.

  13. Validation of the Dynamic Wake Meander model with focus on tower loads

    NASA Astrophysics Data System (ADS)

    Larsen, T. J.; Larsen, G. C.; Pedersen, M. M.; Enevoldsen, K.; Madsen, H. A.

    2017-05-01

    This paper presents a comparison between measured and simulated tower loads for the Danish offshore wind farm Nysted 2. Previously, only limited full scale experimental data containing tower load measurements have been published, and in many cases the measurements include only a limited range of wind speeds. In general, tower loads in wake conditions are very challenging to predict correctly in simulations. The Nysted project offers an improved insight to this field as six wind turbines located in the Nysted II wind farm have been instrumented to measure tower top and tower bottom moments. All recorded structural data have been organized in a database, which in addition contains relevant wind turbine SCADA data as well as relevant meteorological data - e.g. wind speed and wind direction - from an offshore mast located in the immediate vicinity of the wind farm. The database contains data from a period extending over a time span of more than 3 years. Based on the recorded data basic mechanisms driving the increased loading experienced by wind turbines operating in offshore wind farm conditions have been identified, characterized and modeled. The modeling is based on the Dynamic Wake Meandering (DWM) approach in combination with the state-of-the-art aeroelastic model HAWC2, and has previously as well as in this study shown good agreement with the measurements. The conclusions from the study have several parts. In general the tower bending and yaw loads show a good agreement between measurements and simulations. However, there are situations that are still difficult to match. One is tower loads of single-wake operation near rated ambient wind speed for single wake situations for spacing’s around 7-8D. A specific target of the study was to investigate whether the largest tower fatigue loads are associated with a certain downstream distance. This has been identified in both simulations and measurements, though a rather flat optimum is seen in the measurements.

  14. Effects of incoming surface wind conditions on the wake characteristics and dynamic wind loads acting on a wind turbine model

    NASA Astrophysics Data System (ADS)

    Tian, Wei; Ozbay, Ahmet; Hu, Hui

    2014-12-01

    An experimental investigation was conducted to examine the effects of incoming surface wind conditions on the wake characteristics and dynamic wind loads acting on a wind turbine model. The experimental study was performed in a large-scale wind tunnel with a scaled three-blade Horizontal Axial Wind Turbine model placed in two different types of Atmospheric Boundary Layer (ABL) winds with distinct mean and turbulence characteristics. In addition to measuring dynamic wind loads acting on the model turbine by using a force-moment sensor, a high-resolution Particle Image Velocimetry system was used to achieve detailed flow field measurements to characterize the turbulent wake flows behind the model turbine. The measurement results reveal clearly that the discrepancies in the incoming surface winds would affect the wake characteristics and dynamic wind loads acting on the model turbine dramatically. The dynamic wind loads acting on the model turbine were found to fluctuate much more significantly, thereby, much larger fatigue loads, for the case with the wind turbine model sited in the incoming ABL wind with higher turbulence intensity levels. The turbulent kinetic energy and Reynolds stress levels in the wake behind the model turbine were also found to be significantly higher for the high turbulence inflow case, in comparison to those of the low turbulence inflow case. The flow characteristics in the turbine wake were found to be dominated by the formation, shedding, and breakdown of various unsteady wake vortices. In comparison with the case with relatively low turbulence intensities in the incoming ABL wind, much more turbulent and randomly shedding, faster dissipation, and earlier breakdown of the wake vortices were observed for the high turbulence inflow case, which would promote the vertical transport of kinetic energy by entraining more high-speed airflow from above to re-charge the wake flow and result in a much faster recovery of the velocity deficits in the turbine wake.

  15. Short-Term Forecasting of Loads and Wind Power for Latvian Power System: Accuracy and Capacity of the Developed Tools

    NASA Astrophysics Data System (ADS)

    Radziukynas, V.; Klementavičius, A.

    2016-04-01

    The paper analyses the performance results of the recently developed short-term forecasting suit for the Latvian power system. The system load and wind power are forecasted using ANN and ARIMA models, respectively, and the forecasting accuracy is evaluated in terms of errors, mean absolute errors and mean absolute percentage errors. The investigation of influence of additional input variables on load forecasting errors is performed. The interplay of hourly loads and wind power forecasting errors is also evaluated for the Latvian power system with historical loads (the year 2011) and planned wind power capacities (the year 2023).

  16. A 100-kW metal wind turbine blade basic data, loads and stress analysis

    NASA Technical Reports Server (NTRS)

    Cherritt, A. W.; Gaidelis, J. A.

    1975-01-01

    A rotor loads computer program was used to define the steady state and cyclic loads acting on 60 ft long metal blades designed for the ERDA/NASA 100 kW wind turbine. Blade load and stress analysis used to support the structural design are presented. For the loading conditions examined, the metal blades are structurally adequate for use, within the normal operating range, as part of the wind turbine system.

  17. Effect of accuracy of wind power prediction on power system operator

    NASA Technical Reports Server (NTRS)

    Schlueter, R. A.; Sigari, G.; Costi, T.

    1985-01-01

    This research project proposed a modified unit commitment that schedules connection and disconnection of generating units in response to load. A modified generation control is also proposed that controls steam units under automatic generation control, fast responding diesels, gas turbines and hydro units under a feedforward control, and wind turbine array output under a closed loop array control. This modified generation control and unit commitment require prediction of trend wind power variation one hour ahead and the prediction of error in this trend wind power prediction one half hour ahead. An improved meter for predicting trend wind speed variation is developed. Methods for accurately simulating the wind array power from a limited number of wind speed prediction records was developed. Finally, two methods for predicting the error in the trend wind power prediction were developed. This research provides a foundation for testing and evaluating the modified unit commitment and generation control that was developed to maintain operating reliability at a greatly reduced overall production cost for utilities with wind generation capacity.

  18. Some problems of the solar wind interaction with Venus

    NASA Astrophysics Data System (ADS)

    Breus, T. K.; Krymskii, A. M.

    1987-09-01

    The aim of this paper is to analyze the effect of solar wind mass-loading due to hot-oxygen Venus corona photoionization on the plasma flow parameters in the nose part of the magnetosheath and the flow stability, taking into consideration the axial symmetry of the flow. The analysis has shown that the mass-loading effect increases the distance between the shock front and the ionopause and reduces the maximum magnetic field strength in the magnetic barrier in the vicinity of the stagnation region of the ionopause. The axial symmetry of the stream stabilizes the ionopause disturbances in the nose part. For shorter wavelengths the instability problem should be investigated numerically and should account for the stabilizing effect of the finite Larmor ion radius.

  19. 24 CFR 3280.302 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Body and Frame Construction Requirements.... Loads: (1) Dead load: means the weight of all permanent construction including walls, floors, roof... occupancy of the manufactured home, including wind load and snow load, but not including dead load. (3) Wind...

  20. 24 CFR 3280.302 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Body and Frame Construction Requirements.... Loads: (1) Dead load: means the weight of all permanent construction including walls, floors, roof... occupancy of the manufactured home, including wind load and snow load, but not including dead load. (3) Wind...

  1. 24 CFR 3280.302 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Body and Frame Construction Requirements.... Loads: (1) Dead load: means the weight of all permanent construction including walls, floors, roof... occupancy of the manufactured home, including wind load and snow load, but not including dead load. (3) Wind...

  2. 24 CFR 3280.302 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Body and Frame Construction Requirements.... Loads: (1) Dead load: means the weight of all permanent construction including walls, floors, roof... occupancy of the manufactured home, including wind load and snow load, but not including dead load. (3) Wind...

  3. On the Use of Coupled Wind, Wave, and Current Fields in the Simulation of Loads on Bottom-Supported Offshore Wind Turbines during Hurricanes: March 2012 - September 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Eungsoo; Manuel, Lance; Curcic, Milan

    In the United States, potential offshore wind plant sites have been identified along the Atlantic seaboard and in the Gulf of Mexico. It is imperative that we define external conditions associated with hurricanes and severe winter storms and consider load cases for which wind turbines may need to be designed. We selected two hurricanes, Ike (2008) and Sandy (2012), and investigated the effect these tropical storms would have on bottom-supported offshore wind turbines that were hypothetically in or close to their path as they made landfall. For realistic turbine loads assessment, it is important that the coupled influences of themore » changing wind, wave, and current fields are simulated throughout the evolution of the hurricanes. We employed a coupled model--specifically, the University of Miami Coupled Model (UMCM)--that integrates atmospheric, wave, and ocean components to produce needed wind, wave, and current data. The wind data are used to generate appropriate vertical wind profiles and full wind velocity fields including turbulence; the current field over the water column is obtained by interpolated discrete output current data; and short-crested irregular second-order waves are simulated using output directional wave spectra from the coupled model. We studied two monopile-supported offshore wind turbines sited in 20 meters of water in the Gulf of Mexico to estimate loads during Hurricane Ike, and a jacket space-frame platform-supported offshore wind turbine sited in 50 meters of water in the mid-Atlantic region to estimate loads during Hurricane Sandy. In this report we discuss in detail how the simulated hurricane wind, wave, and current output data are used in turbine loads studies. In addition, important characteristics of the external conditions are studied, including the relative importance of swell versus wind seas, aerodynamic versus hydrodynamic forces, current velocity effects, yaw control options for the turbine, hydrodynamic drag versus inertia forces, and soil-structure interaction effects. A detailed framework is presented that explains how coupled inputs can be included in turbine loads studies during a hurricane. This framework can aid in future efforts aimed at developing offshore wind turbine design criteria and load cases related to hurricanes.« less

  4. Design, manufacturing and characterization of aero-elastically scaled wind turbine blades for testing active and passive load alleviation techniques within a ABL wind tunnel

    NASA Astrophysics Data System (ADS)

    Campagnolo, Filippo; Bottasso, Carlo L.; Bettini, Paolo

    2014-06-01

    In the research described in this paper, a scaled wind turbine model featuring individual pitch control (IPC) capabilities, and equipped with aero-elastically scaled blades featuring passive load reduction capabilities (bend-twist coupling, BTC), was constructed to investigate, by means of wind tunnel testing, the load alleviation potential of BTC and its synergy with active load reduction techniques. The paper mainly focus on the design of the aero-elastic blades and their dynamic and static structural characterization. The experimental results highlight that manufactured blades show desired bend-twist coupling behavior and are a first milestone toward their testing in the wind tunnel.

  5. Wind loading on solar concentrators: Some general considerations

    NASA Technical Reports Server (NTRS)

    Roschke, E. J.

    1984-01-01

    A survey was completed to examine the problems and complications arising from wind loading on solar concentrators. Wind loading is site specific and has an important bearing on the design, cost, performance, operation and maintenance, safety, survival, and replacement of solar collecting systems. Emphasis herein is on paraboloidal, two-axis tracking systems. Thermal receiver problems also are discussed. Wind characteristics are discussed from a general point of view. Current methods for determining design wind speed are reviewed. Aerodynamic coefficients are defined and illustrative examples are presented. Wind tunnel testing is discussed, and environmental wind tunnels are reviewed. Recent results on heliostat arrays are reviewed as well. Aeroelasticity in relation to structural design is discussed briefly.

  6. River delta network hydraulic residence time distributions and their role in coastal nutrient biogeochemistry

    NASA Astrophysics Data System (ADS)

    Hiatt, M. R.; Castaneda, E.; Twilley, R.; Hodges, B. R.; Passalacqua, P.

    2015-12-01

    River deltas have the potential to mitigate increased nutrient loading to coastal waters by acting as biofilters that reduce the impact of nutrient enrichment on downstream ecosystems. Hydraulic residence time (HRT) is known to be a major control on biogeochemical processes and deltaic floodplains are hypothesized to have relatively long HRTs. Hydrological connectivity and delta floodplain inundation induced by riverine forces, tides, and winds likely alter surface water flow patterns and HRTs. Since deltaic floodplains are important elements of delta networks and receive significant fluxes of water, sediment, and nutrients from distributary channels, biogeochemical transformations occurring within these zones could significantly reduce nutrient loading to coastal receiving waters. However, network-scale estimates of HRT in river deltas are lacking and little is known about the effects of tides, wind, and the riverine input on the HRT distribution. Subsequently, there lacks a benchmark for evaluating the impact of engineered river diversions on coastal nutrient ecology. In this study, we estimate the HRT of a coastal river delta by using hydrodynamic modeling supported by field data and relate the HRT to spatial and temporal patterns in nitrate levels measured at discrete stations inside a delta island at Wax Lake Delta. We highlight the control of the degree of hydrological connectivity between distributary channels and interdistributary islands on the network HRT distribution and address the roles of tides and wind on altering the shape of the distribution. We compare the observed nitrate concentrations to patterns of channel-floodplain hydrological connectivity and find this connectivity to play a significant role in the nutrient removal. Our results provide insight into the potential role of deltaic wetlands in reducing the nutrient loading to near-shore waters in response to large-scale river diversions.

  7. Reduced Design Load Basis for Ultimate Blade Loads Estimation in Multidisciplinary Design Optimization Frameworks

    NASA Astrophysics Data System (ADS)

    Pavese, Christian; Tibaldi, Carlo; Larsen, Torben J.; Kim, Taeseong; Thomsen, Kenneth

    2016-09-01

    The aim is to provide a fast and reliable approach to estimate ultimate blade loads for a multidisciplinary design optimization (MDO) framework. For blade design purposes, the standards require a large amount of computationally expensive simulations, which cannot be efficiently run each cost function evaluation of an MDO process. This work describes a method that allows integrating the calculation of the blade load envelopes inside an MDO loop. Ultimate blade load envelopes are calculated for a baseline design and a design obtained after an iteration of an MDO. These envelopes are computed for a full standard design load basis (DLB) and a deterministic reduced DLB. Ultimate loads extracted from the two DLBs with the two blade designs each are compared and analyzed. Although the reduced DLB supplies ultimate loads of different magnitude, the shape of the estimated envelopes are similar to the one computed using the full DLB. This observation is used to propose a scheme that is computationally cheap, and that can be integrated inside an MDO framework, providing a sufficiently reliable estimation of the blade ultimate loading. The latter aspect is of key importance when design variables implementing passive control methodologies are included in the formulation of the optimization problem. An MDO of a 10 MW wind turbine blade is presented as an applied case study to show the efficacy of the reduced DLB concept.

  8. Advances in the Assessment of Wind Turbine Operating Extreme Loads via More Efficient Calculation Approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, Peter; Damiani, Rick R.; Dykes, Katherine

    2017-01-09

    A new adaptive stratified importance sampling (ASIS) method is proposed as an alternative approach for the calculation of the 50 year extreme load under operational conditions, as in design load case 1.1 of the the International Electrotechnical Commission design standard. ASIS combines elements of the binning and extrapolation technique, currently described by the standard, and of the importance sampling (IS) method to estimate load probability of exceedances (POEs). Whereas a Monte Carlo (MC) approach would lead to the sought level of POE with a daunting number of simulations, IS-based techniques are promising as they target the sampling of the inputmore » parameters on the parts of the distributions that are most responsible for the extreme loads, thus reducing the number of runs required. We compared the various methods on select load channels as output from FAST, an aero-hydro-servo-elastic tool for the design and analysis of wind turbines developed by the National Renewable Energy Laboratory (NREL). Our newly devised method, although still in its infancy in terms of tuning of the subparameters, is comparable to the others in terms of load estimation and its variance versus computational cost, and offers great promise going forward due to the incorporation of adaptivity into the already powerful importance sampling concept.« less

  9. Modeling of the UAE Wind Turbine for Refinement of FAST{_}AD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonkman, J. M.

    The Unsteady Aerodynamics Experiment (UAE) research wind turbine was modeled both aerodynamically and structurally in the FAST{_}AD wind turbine design code, and its response to wind inflows was simulated for a sample of test cases. A study was conducted to determine why wind turbine load magnitude discrepancies-inconsistencies in aerodynamic force coefficients, rotor shaft torque, and out-of-plane bending moments at the blade root across a range of operating conditions-exist between load predictions made by FAST{_}AD and other modeling tools and measured loads taken from the actual UAE wind turbine during the NASA-Ames wind tunnel tests. The acquired experimental test data representmore » the finest, most accurate set of wind turbine aerodynamic and induced flow field data available today. A sample of the FAST{_}AD model input parameters most critical to the aerodynamics computations was also systematically perturbed to determine their effect on load and performance predictions. Attention was focused on the simpler upwind rotor configuration, zero yaw error test cases. Inconsistencies in input file parameters, such as aerodynamic performance characteristics, explain a noteworthy fraction of the load prediction discrepancies of the various modeling tools.« less

  10. Systems Performance Analyses of Alaska Wind-Diesel Projects; St. Paul, Alaska (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in St. Paul, Alaska. Data provided for this project include load data, average wind turbine output, average diesel plant output, dump (controlling) load, average net capacity factor, average net wind penetration, estimated fuel savings, and wind system availability.

  11. Four essays on offshore wind power potential, development, regulatory framework, and integration

    NASA Astrophysics Data System (ADS)

    Dhanju, Amardeep

    Offshore wind power is an energy resource whose potential in the US has been recognized only recently. There is now growing interest among the coastal states to harness the resource, particularly in states adjacent to the Mid-Atlantic Bight where the shallow continental shelf allows installation of wind turbines using the existing foundation technology. But the promise of bountiful clean energy from offshore wind could be delayed or forestalled due to policy and regulatory challenges. This dissertation is an effort to identify and address some of the important challenges. Focusing on Delaware as a case study it calculates the extent of the wind resource; considers one means to facilitate resource development---the establishment of statewide and regional public power authorities; analyzes possible regulatory frameworks to manage the resource in state-controlled waters; and assesses the use of distributed storage to manage intermittent output from wind turbines. In order to cover a diversity of topics, this research uses a multi-paper format with four essays forming the body of work. The first essay lays out an accessible methodology to calculate offshore wind resource potential using publicly available data, and uses this methodology to access wind resources off Delaware. The assessment suggests a wind resource approximately four times the average electrical load in Delaware. The second essay examines the potential role of a power authority, a quasi-public institution, in lowering the cost of capital, reducing financial risk of developing and operating a wind farm, and enhancing regional collaboration on resource development and management issues. The analysis suggests that a power authority can lower the cost of offshore wind power by as much as 1/3, thereby preserving the ability to pursue cost-competitive development even if the current federal incentives are removed. The third essay addresses the existing regulatory void in state-controlled waters of Delaware. It outlines a regulatory framework touching on key elements such as the leasing system, length of tenure, and financial terms for allocating property rights. In addition, the framework also provides recommendations on environmental assessment that would be required prior to lease issuance. The fourth essay analyzes offshore wind power integration using electric thermal storage in housing units. It presents a model of wind generation, heating load and wind driven thermal storage to assess the potential of storage to buffer wind intermittency. The analysis suggests that thermal load matches the seasonal excess of offshore wind during winter months, and that electric thermal storage could provide significant temporal, spatial, and cost advantages for balancing output from offshore wind generation, while also converting a major residential load (space heating) now met by fossil fuels to low carbon energy resources. Together, the four essays provide new analyses of policy, regulatory, and system integration issues that could impede resource development, and also analyze and recommend strategies to manage these issues.

  12. Switching power pulse system

    DOEpatents

    Aaland, Kristian

    1983-01-01

    A switching system for delivering pulses of power from a source (10) to a load (20) using a storage capacitor (C3) charged through a rectifier (D1, D2), and maintained charged to a reference voltage level by a transistor switch (Q1) and voltage comparator (12). A thyristor (22) is triggered to discharge the storage capacitor through a saturable reactor (18) and fractional turn saturable transformer (16) having a secondary to primary turn ratio N of n:l/n=n.sup.2. The saturable reactor (18) functions as a "soaker" while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor (C4) charges, and then switches to a low impedance state to dump the charge of the storage capacitor (C3) into the load through the coupling capacitor (C4). The transformer is comprised of a multilayer core (26) having two secondary windings (28, 30) tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes (32, 34) for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe (40) for a linear particle accelerator and capacitance of a pulse forming network (42). To hold off discharge of the capacitance until it is fully charged, a saturable core (44) is provided around the resistive beampipe (40) to isolate the beampipe from the capacitance (42) until it is fully charged.

  13. A Methodology for the Estimation of the Wind Generator Economic Efficiency

    NASA Astrophysics Data System (ADS)

    Zaleskis, G.

    2017-12-01

    Integration of renewable energy sources and the improvement of the technological base may not only reduce the consumption of fossil fuel and environmental load, but also ensure the power supply in regions with difficult fuel delivery or power failures. The main goal of the research is to develop the methodology of evaluation of the wind turbine economic efficiency. The research has demonstrated that the electricity produced from renewable sources may be much more expensive than the electricity purchased from the conventional grid.

  14. Proportional plus integral MIMO controller for regulation and tracking with anti-wind-up features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puleston, P.F.; Mantz, R.J.

    1993-11-01

    A proportional plus integral matrix control structure for MIMO systems is proposed. Based on a standard optimal control structure with integral action, it permits a greater degree of independence of the design and tuning of the regulating and tracking features, without considerably increasing the controller complexity. Fast recovery from load disturbances is achieved, while large overshoots associated with set-point changes and reset wind-up problems can be reduced. A simple effective procedure for practical tuning is introduced.

  15. Forecasting Wind and Solar Generation: Improving System Operations, Greening the Grid (Spanish Version)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Tian; Chernyakhovskiy, Ilya; Brancucci Martinez-Anido, Carlo

    This document is the Spanish version of 'Greening the Grid- Forecasting Wind and Solar Generation Improving System Operations'. It discusses improving system operations with forecasting with and solar generation. By integrating variable renewable energy (VRE) forecasts into system operations, power system operators can anticipate up- and down-ramps in VRE generation in order to cost-effectively balance load and generation in intra-day and day-ahead scheduling. This leads to reduced fuel costs, improved system reliability, and maximum use of renewable resources.

  16. Numerical simulation of wind loads on solar panels

    NASA Astrophysics Data System (ADS)

    Su, Kao-Chun; Chung, Kung-Ming; Hsu, Shu-Tsung

    2018-05-01

    Solar panels mounted on the roof of a building or ground are often vulnerable to strong wind loads. This study aims to investigate wind loads on solar panels using computational fluid dynamic (CFD). The results show good agreement with wind tunnel data, e.g. the streamwise distribution of mean surface pressure coefficient of a solar panel. Wind uplift for solar panels with four aspect ratios is evaluated. The effect of inclined angle and clearance (or height) of a solar panel is addressed. It is found that wind uplift of a solar panel increases when there is an increase in inclined angle and the clearance above ground shows an opposite effect.

  17. Control of Next Generation Aircraft and Wind Turbines

    NASA Technical Reports Server (NTRS)

    Frost, Susan

    2010-01-01

    The first part of this talk will describe some of the exciting new next generation aircraft that NASA is proposing for the future. These aircraft are being designed to reduce aircraft fuel consumption and environmental impact. Reducing the aircraft weight is one approach that will be used to achieve these goals. A new control framework will be presented that enables lighter, more flexible aircraft to maintain aircraft handling qualities, while preventing the aircraft from exceeding structural load limits. The second part of the talk will give an overview of utility-scale wind turbines and their control. Results of collaboration with Dr. Balas will be presented, including new theory to adaptively control the turbine in the presence of structural modes, with the focus on the application of this theory to a high-fidelity simulation of a wind turbine.

  18. Wind Turbines Adaptation to the Variability of the Wind Field

    NASA Astrophysics Data System (ADS)

    Ulianov, Yuriy; Martynenko, Gennadii; Misaylov, Vitaliy; Soliannikova, Iuliia

    2010-05-01

    WIND TURBINES ADAPTATION TO THE VARIABILITY OF THE WIND FIELD The subject of our scientific research is wind power turbines (WPT) with the horizontal axis which were now common in the world. Efficient wind turbines work is largely determined by non-stationarity of the wind field, expressed in its gustiness, the presence of vertical and horizontal shifts of wind speed and direction. At critical values of the wind parameters WPT has aerodynamic and mechanical overload, leading to breakdowns, premature wear and reduce the life of the wind turbine. To prevent accidents at the peak values of wind speed it is used the regulatory system of windwheels. WPT control systems provide a process orientation of the wind turbine rotor axis in the line of the mean wind. Wind turbines are also equipped with braking device used to protect against breakdowns when a significant increase in the wind. In general, all these methods of regulation are not always effective. Thus, in practice there may be situations when the wind speed is many times greater than the stated limit. For example, if there are microbursts in the atmospheric boundary layer, low-level wind shears caused by its gust front, storms, etc. It is required for a wind power turbine adaptation to intensive short-term wind impulses and considerable vertical wind shifts that the data about them shall be obtained ahead of time. To do this it is necessary to have the information on the real structure of the wind field in the area of the blade sweep for the minimum range against the wind that is determined by the mean speed and the system action time. The implementation of acoustic and laser traditional wind sounding systems is limited by ambient acoustic noise, by heavy rain, snowfall and by fog. There are free of these disadvantages the inclined radioacoustic sounding (IRASS) technique which works for a system of remote detection and control of wind gusts. IRASS technique is realized as low-potential Doppler pulse radar including combined RF-acoustic antenna installed coaxially with the gondola of the wind power turbine. The work of the technique is synchronized with rotation of blades to eliminate their shielding action. Dangerous in terms of dynamic strength is the wind load pulse, the rise time which is comparable with the period of the natural frequency of the wind turbine elements (blade, tower, rotor, etc.). The amplitude decay of resonant vibrations at critical values of the speed of rotation can be realized through the use of mechanical elastic supports with nonlinear artificial dampers. They have a high coefficient of resistance, but may cause self-excited oscillations. We propose the way to deal with raised vibration of wind turbine elements at the expense of short-term increase of damping in the range of critical rotary axis speeds or during impulsive effects of wind loadings (wind gusts). This is possible through the use of non-linear electromagnetic dampers or active magnetic bearings. Their feature is the possibility of varying the mechanical stiffness and damping properties by changing the electrical parameters of electromagnets. The controlling of these parameters is carried out by the control system (CS) with the information feedback on the spatial-temporal structure of the wind field obtained from IRASS. In the composition of the CS can also be included the rotational speed sensor of the WPT rotor. This approach to the adaptation of wind turbines will allow to reduce vibration and to perform early compensation of the load on their components, which arise under the wind gusts. In addition, corrections about the wind field obtained with IRASS, would increase the mean power of WPT.

  19. Wind Tunnel Testing of Microtabs and Microjets for Active Load Control of Wind Turbine Blades

    NASA Astrophysics Data System (ADS)

    Cooperman, Aubryn Murray

    Increases in wind turbine size have made controlling loads on the blades an important consideration for future turbine designs. One approach that could reduce extreme loads and minimize load variation is to incorporate active control devices into the blades that are able to change the aerodynamic forces acting on the turbine. A wind tunnel model has been constructed to allow testing of different active aerodynamic load control devices. Two such devices have been tested in the UC Davis Aeronautical Wind Tunnel: microtabs and microjets. Microtabs are small surfaces oriented perpendicular to an airfoil surface that can be deployed and retracted to alter the lift coefficient of the airfoil. Microjets produce similar effects using air blown perpendicular to the airfoil surface. Results are presented here for both static and dynamic performance of the two devices. Microtabs, located at 95% chord on the lower surface and 90% chord on the upper surface, with a height of 1% chord, produce a change in the lift coefficient of 0.18, increasing lift when deployed on the lower surface and decreasing lift when deployed on the upper surface. Microjets with a momentum coefficient of 0.006 at the same locations produce a change in the lift coefficient of 0.19. The activation time for both devices is less than 0.3 s, which is rapid compared to typical gust rise times. The potential of active device to mitigate changes in loads was tested using simulated gusts. The gusts were produced in the wind tunnel by accelerating the test section air speed at rates of up to 7 ft/s 2. Open-loop control of microtabs was tested in two modes: simultaneous and sequential tab deployment. Activating all tabs along the model span simultaneously was found to produce a change in the loads that occurred more rapidly than a gust. Sequential tab deployment more closely matched the rates of change due to gusts and tab deployment. A closed-loop control system was developed for the microtabs using a simple feedback control based on lift measurements from a six-component balance. An alternative input to the control system that would be easier to implement on a turbine was also investigated: the lift force was estimated using the difference in surface pressure at 15% chord. Both control system approaches were found to decrease lift deviations by around 50% during rapid changes in the free stream air speed.

  20. Load attenuating passively adaptive wind turbine blade

    DOEpatents

    Veers, Paul S.; Lobitz, Donald W.

    2003-01-07

    A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

  1. Load attenuating passively adaptive wind turbine blade

    DOEpatents

    Veers, Paul S.; Lobitz, Donald W.

    2003-01-01

    A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

  2. Design and evaluation of low-cost laminated wood composite blades for intermediate size wind turbines: Blade design, fabrication concept, and cost analysis

    NASA Technical Reports Server (NTRS)

    Lieblein, S.; Gaugeon, M.; Thomas, G.; Zueck, M.

    1982-01-01

    As part of a program to reduce wind turbine costs, an evaluation was conducted of a laminated wood composite blade for the Mod-OA 200 kW wind turbine. The effort included the design and fabrication concept for the blade, together with cost and load analyses. The blade structure is composed of laminated Douglas fir veneers for the primary spar and nose sections, and honeycomb cored plywood panels for the trailing edges sections. The attachment of the wood blade to the rotor hub was through load takeoff studs bonded into the blade root. Tests were conducted on specimens of the key structural components to verify the feasibility of the concept. It is concluded that the proposed wood composite blade design and fabrication concept is suitable for Mod-OA size turbines (125-ft diameter rotor) at a cost that is very competitive with other methods of manufacture.

  3. Nonlinear behaviors of FRP-wrapped tall trees subjected to high wind loads

    NASA Astrophysics Data System (ADS)

    Kang, J.; Yi, Z. Z.; Choi, S. G.

    2017-12-01

    This study investigated the mechanical stability of historical tall trees wrapped with fiber-reinforced polymer (FRP) laminates using finite element (FE) analysis. High wind loads are considered as external loading conditions as they are one of the major threats on the structural stability of tall old trees. There have been several traditional practices to enhance the stability of tall trees exposed to high windstorms such as tree supporters and anchorages. They, however, have been sometimes causing negative effects with their misuses as the application guidelines for those methods were not adequately studied or documented. Furthermore, the oldest known trees in the country should be protected from the damage of external surface as well as ruin of the landscape. The objective of this study was to evaluate the structural effects of FRP wraps applied to tall trees subjected to high wind loads. The anisotropic material properties of wood and FRP laminates were considered in the analysis in addition to geometrically nonlinear behaviors. This study revealed that FRP wrapping for tall trees could effectively reduce the deflections and maximum stresses of trees, which results in the enhanced stability of tall trees. The optimum geometry and thicknesses of FRP wraps proposed in this study would provide fundemental guidelines for designing and constructing the application of innovative FRP wraps on tall trees, which are structurally unstable or should be preserved nationally and historically.

  4. Development in helicopter tail boom strake applications in the US

    NASA Technical Reports Server (NTRS)

    Wilson, John C.; Kelley, Henry L.; Donahue, Cynthia C.; Yenni, Kenneth R.

    1988-01-01

    The use of a strake or spoiler on a helicopter tail boom to beneficially change helicopter tail boom air loads was suggested in the United States in 1975. The anticipated benefits were a change of tail boom loads to reduce required tail rotor thrust and power and improve directional control. High tail boom air loads experienced by the YAH-64 and described in 1978 led to a wind tunnel investigation of the usefullness of strakes in altering such loads on the AH-64, UH-60, and UH-1 helicopters. The wind tunnel tests of 2-D cross sections of the tail boom of each demonstrated that a strake or strakes would be effective. Several limited test programs with the U.S. Army's OH-58A, AH-64, and UH-60A were conducted which showed the effects of strakes were modest for those helicopters. The most recent flight test program, with a Bell 204B, disclosed that for the 204B the tail boom strake or strakes would provide more than a modest improvement in directional control and reduction in tail rotor power.

  5. On damage detection in wind turbine gearboxes using outlier analysis

    NASA Astrophysics Data System (ADS)

    Antoniadou, Ifigeneia; Manson, Graeme; Dervilis, Nikolaos; Staszewski, Wieslaw J.; Worden, Keith

    2012-04-01

    The proportion of worldwide installed wind power in power systems increases over the years as a result of the steadily growing interest in renewable energy sources. Still, the advantages offered by the use of wind power are overshadowed by the high operational and maintenance costs, resulting in the low competitiveness of wind power in the energy market. In order to reduce the costs of corrective maintenance, the application of condition monitoring to gearboxes becomes highly important, since gearboxes are among the wind turbine components with the most frequent failure observations. While condition monitoring of gearboxes in general is common practice, with various methods having been developed over the last few decades, wind turbine gearbox condition monitoring faces a major challenge: the detection of faults under the time-varying load conditions prevailing in wind turbine systems. Classical time and frequency domain methods fail to detect faults under variable load conditions, due to the temporary effect that these faults have on vibration signals. This paper uses the statistical discipline of outlier analysis for the damage detection of gearbox tooth faults. A simplified two-degree-of-freedom gearbox model considering nonlinear backlash, time-periodic mesh stiffness and static transmission error, simulates the vibration signals to be analysed. Local stiffness reduction is used for the simulation of tooth faults and statistical processes determine the existence of intermittencies. The lowest level of fault detection, the threshold value, is considered and the Mahalanobis squared-distance is calculated for the novelty detection problem.

  6. Energy saving concepts relating to induction generators

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1980-01-01

    Energy saving concepts relating to induction generators are presented. The first describes a regenerative scheme using an induction generator as a variable load for prime movers under test is described. A method for reducing losses in induction machines used specifically as wind driven generators is also described.

  7. Optimal Design of Wind-PV-Diesel-Battery System using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Suryoatmojo, Heri; Hiyama, Takashi; Elbaset, Adel A.; Ashari, Mochamad

    Application of diesel generators to supply the load demand on isolated islands in Indonesia has widely spread. With increases in oil price and the concerns about global warming, the integration of diesel generators with renewable energy systems have become an attractive energy sources for supplying the load demand. This paper performs an optimal design of integrated system involving Wind-PV-Diesel-Battery system for isolated island with CO2 emission evaluation by using genetic algorithm. The proposed system has been designed for the hybrid power generation in East Nusa Tenggara, Indonesia-latitude 09.30S, longitude 122.0E. From simulation results, the proposed system is able to minimize the total annual cost of the system under study and reduce CO2 emission generated by diesel generators.

  8. Augmented Adaptive Control of a Wind Turbine in the Presence of Structural Modes

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Balas, Mark J.; Wright, Alan D.

    2010-01-01

    Wind turbines operate in highly turbulent environments resulting in aerodynamic loads that can easily excite turbine structural modes, potentially causing component fatigue and failure. Two key technology drivers for turbine manufacturers are increasing turbine up time and reducing maintenance costs. Since the trend in wind turbine design is towards larger, more flexible turbines with lower frequency structural modes, manufacturers will want to develop methods to operate in the presence of these modes. Accurate models of the dynamic characteristics of new wind turbines are often not available due to the complexity and expense of the modeling task, making wind turbines ideally suited to adaptive control. In this paper, we develop theory for adaptive control with rejection of disturbances in the presence of modes that inhibit the controller. We use this method to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine operating in Region 3. The objective of the adaptive pitch controller is to regulate generator speed, accommodate wind gusts, and reduce the interference of certain structural modes in feedback. The control objective is accomplished by collectively pitching the turbine blades. The adaptive pitch controller for Region 3 is compared in simulations with a baseline classical Proportional Integrator (PI) collective pitch controller.

  9. Simple model of cable-stayed bridge deck subjected to static wind loading

    NASA Astrophysics Data System (ADS)

    Kang, Yi-Lung; Wang, Yang Cheng

    1997-05-01

    Cable-stayed bridges have been known since 18th century with aesthetics design. The structural system and the structural behavior are significantly different from those of continuous bridges. Compared to continuous bridge, cable- stayed bridges have more flexure bridge deck than those of continuous bridges.On the other hand, cable-stayed bridges have less stiffness to resist wind loading especially for lateral loads. The first considering of bridge engineering is safety. In 1940's, Tacoma Narrows Suspension Bridge destroyed by wind loading is a good example even though it is not a cable-stayed bridge. After the bridge was destroyed, a lot of research articles have been published regarding cable supported bridge subjected to wind loading. In recent days, high strength materials have been served. The bridge engineers use the advantages to expand the span length of cable-stayed bridges. Due to the span length increased and the use of high strength materials, cable- stayed bridges have more significant nonlinear behavior subjected to wind loading. In this paper, a slice bridge deck of cable-stayed bridge connected to internal support cables is considered. The deck has been considered to be subjected to lateral static wind loading. Since cables can not take compressive force, the deck has strongly nonlinear behavior even though the materials are linear elastic. Several primary load combinations have ben considered in this paper such as the bridge deck supposed to be moved horizontally without rotation or the bridge deck supposed to be moved horizontally with rotational deformation. The mathematical formulas and the numerical solutions are found and represented in graphical forms. The results can be provided to bridge designers and researchers for further study of this type of structure subjected to wind loading.

  10. Environmental predictors of dispersal traits across a species' geographic range.

    PubMed

    LaRue, Elizabeth A; Holland, Jeffrey D; Emery, Nancy C

    2018-05-30

    Variation in habitat quality and quantity drive selection on dispersal traits in heterogeneous environments, but the extent to which environmental conditions predict geographic variation in dispersal is rarely evaluated. We assessed dispersal trait variation across the range of Cakile edentula var. lacustris, an annual herb that occupies beaches of the Great Lakes. Cakile edentula has dimorphic fruits that each contain one dispersive and one non-dispersive seed. Previous work showed that plant height, branching density, and dispersive fruit wing-loading can determine the distance that seeds disperse locally by wind, while pericarp thickness influences the distance they disperse by water. We tested if these traits vary predictably with latitude across the species' geographic range, and if variation in dispersal characteristics can be predicted by the quality and quantity of habitat available at a site. We observed that the dispersive fruits from northern and southern populations had thinner pericarps than those from the interior of the species' range, reflecting reduced long-distance dispersal by water at both range limits. Plants at the northern range limit were shorter with less dense branching and lower wing-loading than populations elsewhere in the range, suggesting that these populations have enhanced local wind dispersal. In contrast, southern populations exhibited traits with inconsistent effects on wind dispersal: plants tended to be short, which facilitates wind dispersal in C. edentula, but also had relatively higher branching density and distal segment wing-loading that reduce wind dispersal. Geographic variation in maternal plant height and branching density was partially explained by variation in habitat quality, which declined at the species' range limits. In addition, population differences in branching density, fruit wing-loading, and pericarp thickness were predicted by the abundance and distribution of beach habitat. Finally, a common garden analysis recovered latitudinal patterns for the dispersal traits associated with fruits, but not those associated with maternal architecture. Thus, the geographic patterns of dispersal trait variation that we observed likely reflect responses to past selection by the distribution, abundance, and quality of habitat, strong plasticity in dispersal traits, and the effects dispersal itself has in shaping local adaptation by driving gene flow among populations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Simulation of probabilistic wind loads and building analysis

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Chamis, Christos C.

    1991-01-01

    Probabilistic wind loads likely to occur on a structure during its design life are predicted. Described here is a suitable multifactor interactive equation (MFIE) model and its use in the Composite Load Spectra (CLS) computer program to simulate the wind pressure cumulative distribution functions on four sides of a building. The simulated probabilistic wind pressure load was applied to a building frame, and cumulative distribution functions of sway displacements and reliability against overturning were obtained using NESSUS (Numerical Evaluation of Stochastic Structure Under Stress), a stochastic finite element computer code. The geometry of the building and the properties of building members were also considered as random in the NESSUS analysis. The uncertainties of wind pressure, building geometry, and member section property were qualified in terms of their respective sensitivities on the structural response.

  12. Specifiers Properties Information Exchange (SPie): Minimum Building Information Model (BIM) Object Definitions

    DTIC Science & Technology

    2013-03-01

    Weave Welding Method Wheel Assembly Wind Load Wind Loads Wind Uplift Resistance Wind Uplift Resistance Class Window Category Window Finish Window... wind - blast Elongation UFGS 2.1 percent Insert Value Visual Defects UFGS 2.1 n/a Insert Value ERDC/CERL CR-13-1 39 Attribute Source...Sustainability COBie Guide n/a insert reqts FRP Strengthening UFGS 1.2 n/a seismic - wind - blast Elongation UFGS 2.2 percent Insert Value Tensile

  13. Design and Analysis of Wind Turbine Blade Hub using Aluminium Alloy AA 6061-T6

    NASA Astrophysics Data System (ADS)

    Ravikumar, S.; Jaswanthvenkatram, V.; Sai kumar, Y. J. N. V.; Sohaib, S. Md.

    2017-05-01

    This work presents the design and analysis of horizontal axis wind turbine blade hub using different material. The hub is very crucial part of the wind turbine, which experience the loads from the blades and the loads were transmitted to the main shaft. At present wind turbine is more expensive and weights more than a million pounds, with the nacelle, rotor hub and blades accounting for most of the weight. In this work Spheroidal graphite cast iron GGG 40.3 is replaced by aluminium alloy 6061-T6 to enhance the casting properties and also to improve the strength-weight ratio. This transition of material leads to reduction in weight of the wind turbine. All the loads caused by wind and extreme loads on the blades are transferred to the hub. Considering the IEC 61400-1 standard for defining extreme loads on the hub the stress and deflection were calculated on the hub by using Finite element Analysis. Result obtained from ANSYS is compared and discussed with the existing design.

  14. The Future Impact of Wind on BPA Power System Load Following and Regulation Requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Yuri V.; Lu, Shuai; McManus, Bart

    Wind power is growing in a very fast pace as an alternative generating resource. As the ratio of wind power over total system capacity increases, the impact of wind on various system aspects becomes significant. This paper presents a methodology to study the future impact of wind on BPA power system load following and regulation requirements. Existing methodologies for similar analysis include dispatch model simulation and standard deviation evaluation on load and wind data. The methodology proposed in this paper uses historical data and stochastic processes to simulate the load balancing processes in the BPA power system. It mimics themore » actual power system operations therefore the results are close to reality yet the study based on this methodology is convenient to perform. The capacity, ramp rate and ramp duration characteristics are extracted from the simulation results. System load following and regulation capacity requirements are calculated accordingly. The ramp rate and ramp duration data obtained from the analysis can be used to evaluate generator response or maneuverability requirement and regulating units’ energy requirement, respectively.« less

  15. Development and test of a 100 kVA superconducting transformer operated at 77 K

    NASA Astrophysics Data System (ADS)

    Kummeth, P.; Schlosser, R.; Massek, P.; Schmidt, H.; Albrecht, C.; Breitfelder, D.; Neumüller, H.-W.

    2000-05-01

    High-temperature superconducting (HTS) transformers are very promising candidates for application in electrical power engineering. Their main advantages are reduced size, weight, better efficiency and reduced potential fire and environmental hazards. We have designed, constructed and tested a 100 kVA HTS power transformer operated at 77 K. The nominal primary and secondary currents (voltages) are 18 A (5.6 kV) and 92 A (1.1 kV), respectively. No-load tests, short-circuit tests and load tests proved repeatedly that the transformer has the rated capacity. HTS winding losses of 20.6 W and iron losses of 403 W were measured.

  16. Load management as a smart grid concept for sizing and designing of hybrid renewable energy systems

    NASA Astrophysics Data System (ADS)

    Eltamaly, Ali M.; Mohamed, Mohamed A.; Al-Saud, M. S.; Alolah, Abdulrahman I.

    2017-10-01

    Optimal sizing of hybrid renewable energy systems (HRES) to satisfy load requirements with the highest reliability and lowest cost is a crucial step in building HRESs to supply electricity to remote areas. Applying smart grid concepts such as load management can reduce the size of HRES components and reduce the cost of generated energy considerably. In this article, sizing of HRES is carried out by dividing the load into high- and low-priority parts. The proposed system is formed by a photovoltaic array, wind turbines, batteries, fuel cells and a diesel generator as a back-up energy source. A smart particle swarm optimization (PSO) algorithm using MATLAB is introduced to determine the optimal size of the HRES. The simulation was carried out with and without division of the load to compare these concepts. HOMER software was also used to simulate the proposed system without dividing the loads to verify the results obtained from the proposed PSO algorithm. The results show that the percentage of division of the load is inversely proportional to the cost of the generated energy.

  17. Vibration and loads in hingeless rotors. Volume 2: Experimental data

    NASA Technical Reports Server (NTRS)

    Watts, G. A.; London, R. J.

    1972-01-01

    Descriptions, geometry, and technical data covering three rotor systems are presented. Tables of experimental data gathered during wind tunnel testing of two of the systems are included. Both analyzed experimental data, ready for comparison with theory, and the basic reduced data from which they were obtained are reported.

  18. Low Probability Tail Event Analysis and Mitigation in BPA Control Area: Task 2 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Shuai; Makarov, Yuri V.; McKinstry, Craig A.

    Task report detailing low probability tail event analysis and mitigation in BPA control area. Tail event refers to the situation in a power system when unfavorable forecast errors of load and wind are superposed onto fast load and wind ramps, or non-wind generators falling short of scheduled output, causing the imbalance between generation and load to become very significant.

  19. SLS Trade Study 0058: Day of Launch (DOL) Wind Biasing

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Duffin, Paul; Hill, Ashley; Beck, Roger; Dukeman, Greg

    2014-01-01

    SLS heritage hardware and legacy designs have shown load exceedances at several locations during Design Analysis Cycles (DAC): MPCV Z bending moments; ICPS Electro-Mechanical Actuator (EMA) loads; Core Stage loads just downstream of Booster forward interface. SLS Buffet Loads Mitigation Task Team (BLMTT) tasked to study issue. Identified low frequency buffet load responses are a function of the vehicle's total angle of attack (AlphaTotal). SLS DOL Wind Biasing Trade team to analyze DOL wind biasing methods to limit maximum AlphaTotal in the M0.8 - 2.0 altitude region for EM-1 and EM-2 missions through investigating: Trajectory design process; Wind wavelength filtering options; Launch availability; DOL process to achieve shorter processing/uplink timeline. Trade Team consisted of personnel supporting SLS, MPCV, GSDO programs.

  20. Testing and Modeling of a 3-MW Wind Turbine Using Fully Coupled Simulation Codes (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaCava, W.; Guo, Y.; Van Dam, J.

    This poster describes the NREL/Alstom Wind testing and model verification of the Alstom 3-MW wind turbine located at NREL's National Wind Technology Center. NREL,in collaboration with ALSTOM Wind, is studying a 3-MW wind turbine installed at the National Wind Technology Center(NWTC). The project analyzes the turbine design using a state-of-the-art simulation code validated with detailed test data. This poster describes the testing and the model validation effort, and provides conclusions about the performance of the unique drive train configuration used in this wind turbine. The 3-MW machine has been operating at the NWTC since March 2011, and drive train measurementsmore » will be collected through the spring of 2012. The NWTC testing site has particularly turbulent wind patterns that allow for the measurement of large transient loads and the resulting turbine response. This poster describes the 3-MW turbine test project, the instrumentation installed, and the load cases captured. The design of a reliable wind turbine drive train increasingly relies on the use of advanced simulation to predict structural responses in a varying wind field. This poster presents a fully coupled, aero-elastic and dynamic model of the wind turbine. It also shows the methodology used to validate the model, including the use of measured tower modes, model-to-model comparisons of the power curve, and mainshaft bending predictions for various load cases. The drivetrain is designed to only transmit torque to the gearbox, eliminating non-torque moments that are known to cause gear misalignment. Preliminary results show that the drivetrain is able to divert bending loads in extreme loading cases, and that a significantly smaller bending moment is induced on the mainshaft compared to a three-point mounting design.« less

  1. Finite Element Analysis of Single Wheat Mechanical Response to Wind and Rain Loads

    NASA Astrophysics Data System (ADS)

    Liang, Li; Guo, Yuming

    One variety of wheat in the breeding process was chosen to determine the wheat morphological traits and biomechanical properties. ANSYS was used to build the mechanical model of wheat to wind load and the dynamic response of wheat to wind load was simulated. The maximum Von Mises stress is obtained by the powerful calculation function of ANSYS. And the changing stress and displacement of each node and finite element in the process of simulation can be output through displacement nephogram and stress nephogram. The load support capability can be evaluated and to predict the wheat lodging. It is concluded that computer simulation technology has unique advantages such as convenient and efficient in simulating mechanical response of wheat stalk under wind and rain load. Especially it is possible to apply various load types on model and the deformation process can be observed simultaneously.

  2. Influence of sediment resuspension on the efficacy of geoengineering materials in the control of internal phosphorous loading from shallow eutrophic lakes.

    PubMed

    Yin, Hongbin; Kong, Ming; Han, Meixiang; Fan, Chengxin

    2016-12-01

    Modified clay-based solid-phase phosphorous (P) sorbents are increasingly used as lake geoengineering materials for lake eutrophication control. However, some still dispute the feasibility of using these materials to control internal P loading from shallow eutrophic lakes. The lack of information about P behavior while undergoing frequent sediment resuspension greatly inhibits the modified minerals' use. In this study, a sediment resuspension generating system was used to simulate the effect of both moderate winds (5.1 m/s) and strong winds (8.7 m/s) on the stability of sediment treated by two geoengineering materials, Phoslock ® (a lanthanum modified bentonite) and thermally-treated calcium-rich attapulgite. This study also presents an analysis of the P dynamics across the sediment-water interface of two shallow eutrophic lakes. In addition, the effect of wind velocity on P forms and P supply from the treated sediment were studied using chemical extraction and diffusive gradients in thin films (DGT) technique, respectively. Results showed that adding geoengineering materials can enhance the stability of surface sediment and reduce the erosion depth caused by wind accordingly. All treatments can effectively reduce soluble reactive phosphorus (SRP) concentration in overlying water when sediment is capped with thermally-treated calcium-rich attapulgite, which performs better than sediment mixed with modified attapulgite but not as well as sediment treated with Phoslock ® . However, their efficiency decreased with the increase in occurrences of sediment resuspension. The addition of the selected geoengineering materials effectively reduced the P fluxes across sediment-water interface and lowered P supply ability from the treated sediment during sediment resuspension. The reduction of mobile P and enhancement of calcium bound P and residual P fraction in the treated sediment was beneficial to the long-term lake internal P loading management. All of the results indicated that the studied geoengineering materials are suitable for application in shallow eutrophic lakes with frequent sediment resuspension activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Numerical Simulations of Mass Loading in the Solar Wind Interaction with Venus

    NASA Technical Reports Server (NTRS)

    Murawski, K.; Steinolfson, R. S.

    1996-01-01

    Numerical simulations are performed in the framework of nonlinear two-dimensional magnetohydrodynamics to investigate the influence of mass loading on the solar wind interaction with Venus. The principal physical features of the interaction of the solar wind with the atmosphere of Venus are presented. The formation of the bow shock, the magnetic barrier, and the magnetotail are some typical features of the interaction. The deceleration of the solar wind due to the mass loading near Venus is an additional feature. The effect of the mass loading is to push the shock farther outward from the planet. The influence of different values of the magnetic field strength on plasma evolution is considered.

  4. Wind Turbine Structural Dynamics

    NASA Technical Reports Server (NTRS)

    Miller, D. R. (Editor)

    1978-01-01

    A workshop on wind turbine structural dynamics was held to review and document current United States work on the dynamic behavior of large wind turbines, primarily of the horizontal-axis type, and to identify and discuss other wind turbine configurations that may have lower cost and weight. Information was exchanged on the following topics: (1) Methods for calculating dynamic loads; (2) Aeroelasticity stability (3) Wind loads, both steady and transient; (4) Critical design conditions; (5) Drive train dynamics; and (6) Behavior of operating wind turbines.

  5. Time Accurate Unsteady Pressure Loads Simulated for the Space Launch System at a Wind Tunnel Condition

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, Bil; Streett, Craig L; Glass, Christopher E.; Schuster, David M.

    2015-01-01

    Using the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics code, an unsteady, time-accurate flow field about a Space Launch System configuration was simulated at a transonic wind tunnel condition (Mach = 0.9). Delayed detached eddy simulation combined with Reynolds Averaged Naiver-Stokes and a Spallart-Almaras turbulence model were employed for the simulation. Second order accurate time evolution scheme was used to simulate the flow field, with a minimum of 0.2 seconds of simulated time to as much as 1.4 seconds. Data was collected at 480 pressure taps at locations, 139 of which matched a 3% wind tunnel model, tested in the Transonic Dynamic Tunnel (TDT) facility at NASA Langley Research Center. Comparisons between computation and experiment showed agreement within 5% in terms of location for peak RMS levels, and 20% for frequency and magnitude of power spectral densities. Grid resolution and time step sensitivity studies were performed to identify methods for improved accuracy comparisons to wind tunnel data. With limited computational resources, accurate trends for reduced vibratory loads on the vehicle were observed. Exploratory methods such as determining minimized computed errors based on CFL number and sub-iterations, as well as evaluating frequency content of the unsteady pressures and evaluation of oscillatory shock structures were used in this study to enhance computational efficiency and solution accuracy. These techniques enabled development of a set of best practices, for the evaluation of future flight vehicle designs in terms of vibratory loads.

  6. Evaluation of Aeroelastically Tailored Small Wind Turbine Blades Final Project Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, Dayton A.

    2005-09-29

    Evaluation of Aeroelastically Tailored Small Wind Turbine Blades Final Report Global Energy Concepts, LLC (GEC) has performed a conceptual design study concerning aeroelastic tailoring of small wind turbine blades. The primary objectives were to evaluate ways that blade/rotor geometry could be used to enable cost-of-energy reductions by enhancing energy capture while constraining or mitigating blade costs, system loads, and related component costs. This work builds on insights developed in ongoing adaptive-blade programs but with a focus on application to small turbine systems with isotropic blade material properties and with combined blade sweep and pre-bending/pre-curving to achieve the desired twist coupling.more » Specific goals of this project are to: (A) Evaluate and quantify the extent to which rotor geometry can be used to realize load-mitigating small wind turbine rotors. Primary aspects of the load mitigation are: (1) Improved overspeed safety affected by blades twisting toward stall in response to speed increases. (2) Reduced fatigue loading affected by blade twisting toward feather in response to turbulent gusts. (B) Illustrate trade-offs and design sensitivities for this concept. (C) Provide the technical basis for small wind turbine manufacturers to evaluate this concept and commercialize if the technology appears favorable. The SolidWorks code was used to rapidly develop solid models of blade with varying shapes and material properties. Finite element analyses (FEA) were performed using the COSMOS code modeling with tip-loads and centripetal accelerations. This tool set was used to investigate the potential for aeroelastic tailoring with combined planform sweep and pre-curve. An extensive matrix of design variables was investigated, including aerodynamic design, magnitude and shape of planform sweep, magnitude and shape of blade pre-curve, material stiffness, and rotor diameter. The FEA simulations resulted in substantial insights into the structural response of these blades. The trends were used to identify geometries and rotor configurations that showed the greatest promise for achieving beneficial aeroelastic response. The ADAMS code was used to perform complete aeroelastic simulations of selected rotor configurations; however, the results of these simulations were not satisfactory. This report documents the challenges encountered with the ADAMS simulations and presents recommendations for further development of this concept for aeroelastically tailored small wind turbine blades.« less

  7. Gaussian vs non-Gaussian turbulence: impact on wind turbine loads

    NASA Astrophysics Data System (ADS)

    Berg, J.; Mann, J.; Natarajan, A.; Patton, E. G.

    2014-12-01

    In wind energy applications the turbulent velocity field of the Atmospheric Boundary Layer (ABL) is often characterised by Gaussian probability density functions. When estimating the dynamical loads on wind turbines this has been the rule more than anything else. From numerous studies in the laboratory, in Direct Numerical Simulations, and from in-situ measurements of the ABL we know, however, that turbulence is not purely Gaussian: the smallest and fastest scales often exhibit extreme behaviour characterised by strong non-Gaussian statistics. In this contribution we want to investigate whether these non-Gaussian effects are important when determining wind turbine loads, and hence of utmost importance to the design criteria and lifetime of a wind turbine. We devise a method based on Principal Orthogonal Decomposition where non-Gaussian velocity fields generated by high-resolution pseudo-spectral Large-Eddy Simulation (LES) of the ABL are transformed so that they maintain the exact same second-order statistics including variations of the statistics with height, but are otherwise Gaussian. In that way we can investigate in isolation the question whether it is important for wind turbine loads to include non-Gaussian properties of atmospheric turbulence. As an illustration the Figure show both a non-Gaussian velocity field (left) from our LES, and its transformed Gaussian Counterpart (right). Whereas the horizontal velocity components (top) look close to identical, the vertical components (bottom) are not: the non-Gaussian case is much more fluid-like (like in a sketch by Michelangelo). The question is then: Does the wind turbine see this? Using the load simulation software HAWC2 with both the non-Gaussian and newly constructed Gaussian fields, respectively, we show that the Fatigue loads and most of the Extreme loads are unaltered when using non-Gaussian velocity fields. The turbine thus acts like a low-pass filter which average out the non-Gaussian behaviour on time scales close to and faster than the revolution time of the turbine. For a few of the Extreme load estimations there is, on the other hand, a tendency that non-Gaussian effects increase the overall dynamical load, and hence can be of importance in wind energy load estimations.

  8. Dynamic load environment of bridge-mounted sign support structures : research implementation plan.

    DOT National Transportation Integrated Search

    2005-09-01

    Welded aluminum highway sign support trusses must withstand in-service dynamic loads, which largely : constitute the fatigue environment. Sources of these dynamic loads include the natural wind and seismic : environment, the artificial wind environme...

  9. Righting response of artificially inclined maritime pine (Pinus pinaster) saplings to wind loading.

    PubMed

    Berthier, Stephane; Stokes, Alexia

    2006-01-01

    To determine if trees respond to dynamic and static loading in the same manner, 2-year-old maritime pine (Pinus pinaster Ait.) trees were subjected to different types of mechanical loading in the field. One block of trees (the control) were kept in pots and planted in the field at an angle of 0 or 45 degrees to the vertical. A similar block of leaning potted trees was planted nearby and subjected to frequent, unilateral wind loading for a period of 1 s every 2 min. Half the leaning trees were oriented toward the direction of wind loading and half were oriented along the axis of wind loading. The stem profile was measured three times during the growing season to quantify the rate of stem straightening. Compression wood formation and stem shape were measured in all plants. No differences in mean height or diameter were observed between blocks and all leaning trees straightened, but not at the same rate. Although no difference in the rate of apical straightening occurred between control and wind-treated trees, the righting response of the basal part of the stem of leaning trees subjected to wind was four times greater than that of leaning trees without wind. No differences in the righting response were observed between leaning trees growing toward and trees growing away from the source of wind. No significant differences in compression wood formation were found between control trees and wind-treated trees, indicating that other factors must determine the reorientation rate of leaning trees. Results are discussed with reference to the quality of compression wood in conifers and the mechanotransductive pathway in plants.

  10. Risk-Informed Mean Recurrence Intervals for Updated Wind Maps in ASCE 7-16.

    PubMed

    McAllister, Therese P; Wang, Naiyu; Ellingwood, Bruce R

    2018-05-01

    ASCE 7 is moving toward adopting load requirements that are consistent with risk-informed design goals characteristic of performance-based engineering (PBE). ASCE 7-10 provided wind maps that correspond to return periods of 300, 700, and 1,700 years for Risk Categories I, II, and combined III/IV, respectively. The risk targets for Risk Categories III and IV buildings and other structures (designated as essential facilities) are different in PBE. The reliability analyses reported in this paper were conducted using updated wind load data to (1) confirm that the return periods already in ASCE 7-10 were also appropriate for risk-informed PBE, and (2) to determine a new risk-based return period for Risk Category IV. The use of data for wind directionality factor, K d , which has become available from recent wind tunnel tests, revealed that reliabilities associated with wind load combinations for Risk Category II structures are, in fact, consistent with the reliabilities associated with the ASCE 7 gravity load combinations. This paper shows that the new wind maps in ASCE 7-16, which are based on return periods of 300, 700, 1,700, and 3,000 years for Risk Categories I, II, III, and IV, respectively), achieve the reliability targets in Section 1.3.1.3 of ASCE 7-16 for nonhurricane wind loads.

  11. Wind Energy Conference, Boulder, Colo., April 9-11, 1980, Technical Papers

    NASA Astrophysics Data System (ADS)

    1980-03-01

    Papers are presented concerning the technology, and economics of wind energy conversion systems. Specific topics include the aerodynamic analysis of the Darrieus rotor, the numerical calculation of the flow near horizontal-axis wind turbine rotors, the calculation of dynamic wind turbine rotor loads, markets for wind energy systems, an oscillating-wing windmill, wind tunnel tests of wind rotors, wind turbine generator wakes, the application of a multi-speed electrical generator to wind turbines, the feasibility of wind-powered systems for dairy farms, and wind characteristics over uniform and complex terrain. Attention is also given to performance tests of the DOE/NASA MOD-1 2000-kW wind turbine generator, the assessment of utility-related test data, offshore wind energy conversion systems, and the optimization of wind energy utilization economics through load management.

  12. Validation of Simplified Load Equations through Loads Measurement and Modeling of a Small Horizontal-Axis Wind Turbine Tower; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dana, S.; Damiani, R.; vanDam, J.

    As part of an ongoing effort to improve the modeling and prediction of small wind turbine dynamics, NREL tested a small horizontal axis wind turbine in the field at the National Wind Technology Center (NWTC). The test turbine was a 2.1-kW downwind machine mounted on an 18-meter multi-section fiberglass composite tower. The tower was instrumented and monitored for approximately 6 months. The collected data were analyzed to assess the turbine and tower loads and further validate the simplified loads equations from the International Electrotechnical Commission (IEC) 61400-2 design standards. Field-measured loads were also compared to the output of an aeroelasticmore » model of the turbine. Ultimate loads at the tower base were assessed using both the simplified design equations and the aeroelastic model output. The simplified design equations in IEC 61400-2 do not accurately model fatigue loads. In this project, we compared fatigue loads as measured in the field, as predicted by the aeroelastic model, and as calculated using the simplified design equations.« less

  13. Medium fidelity modelling of loads in wind farms under non-neutral ABL stability conditions - a full-scale validation study

    NASA Astrophysics Data System (ADS)

    Larsen, G. C.; Larsen, T. J.; Chougule, A.

    2017-05-01

    The aim of the present paper is to demonstrate the capability of medium fidelity modelling of wind turbine component fatigue loading, when the wind turbines are subjected to wake affected non-stationary flow fields under non-neutral atmospheric stability conditions. To accomplish this we combine the classical Dynamic Wake Meandering model with a fundamental conjecture stating: Atmospheric boundary layer stability affects primary wake meandering dynamics driven by large turbulent scales, whereas wake expansion in the meandering frame of reference is hardly affected. Inclusion of stability (i.e. buoyancy) in description of both large- and small scale atmospheric boundary layer turbulence is facilitated by a generalization of the classical Mann spectral tensor, which consistently includes buoyancy effects. With non-stationary wind turbine inflow fields modelled as described above, fatigue loads are obtained using the state-of-the art aeroelastic model HAWC2. The Lillgrund offshore wind farm (WF) constitute an interesting case study for wind farm model validation, because the WT interspacing is small, which in turn means that wake effects are significant. A huge data set, comprising 5 years of blade and tower load recordings, is available for model validation. For a multitude of wake situations this data set displays a considerable scatter, which to a large degree seems to be caused by atmospheric boundary layer stability effects. Notable is also that rotating wind turbine components predominantly experience high fatigue loading for stable stratification with significant shear, whereas high fatigue loading of non-rotating wind turbine components are associated with unstable atmospheric boundary layer stratification.

  14. Monitoring Wind Turbine Loading Using Power Converter Signals

    NASA Astrophysics Data System (ADS)

    Rieg, C. A.; Smith, C. J.; Crabtree, C. J.

    2016-09-01

    The ability to detect faults and predict loads on a wind turbine drivetrain's mechanical components cost-effectively is critical to making the cost of wind energy competitive. In order to investigate whether this is possible using the readily available power converter current signals, an existing permanent magnet synchronous generator based wind energy conversion system computer model was modified to include a grid-side converter (GSC) for an improved converter model and a gearbox. The GSC maintains a constant DC link voltage via vector control. The gearbox was modelled as a 3-mass model to allow faults to be included. Gusts and gearbox faults were introduced to investigate the ability of the machine side converter (MSC) current (I q) to detect and quantify loads on the mechanical components. In this model, gearbox faults were not detectable in the I q signal due to shaft stiffness and damping interaction. However, a model that predicts the load change on mechanical wind turbine components using I q was developed and verified using synthetic and real wind data.

  15. Numerical investigation of wind loads on an operating heliostat

    NASA Astrophysics Data System (ADS)

    Ghanadi, Farzin; Yu, Jeremy; Emes, Matthew; Arjomandi, Maziar; Kelso, Richard

    2017-06-01

    The velocity fluctuations within the atmospheric boundary layer (ABL) and the wind direction are two important parameters which affect the resulting loads on the heliostats. In this study, the drag force on a square heliostat within the ABL at different turbulence intensities is simulated. To this end, numerical analysis of the wind loads have been conducted by implementing the three-dimensional Embedded Large Eddy Simulation (ELES). The results prove that in contrast with other models which are too dissipative for highly turbulent flow, the present model can accurately predict boundary effects and calculate the peak loads on heliostat at different elevation angles and turbulence intensities. Therefore, it is recommended that the model is used as a tool to provide new information about the relationship between wind loads and turbulence structures within ABL such as vortex length scale.

  16. Extreme load alleviation using industrial implementation of active trailing edge flaps in a full design load basis

    NASA Astrophysics Data System (ADS)

    Barlas, Thanasis; Pettas, Vasilis; Gertz, Drew; Madsen, Helge A.

    2016-09-01

    The application of active trailing edge flaps in an industrial oriented implementation is evaluated in terms of capability of alleviating design extreme loads. A flap system with basic control functionality is implemented and tested in a realistic full Design Load Basis (DLB) for the DTU 10MW Reference Wind Turbine (RWT) model and for an upscaled rotor version in DTU's aeroelastic code HAWC2. The flap system implementation shows considerable potential in reducing extreme loads in components of interest including the blades, main bearing and tower top, with no influence on fatigue loads and power performance. In addition, an individual flap controller for fatigue load reduction in above rated power conditions is also implemented and integrated in the general controller architecture. The system is shown to be a technology enabler for rotor upscaling, by combining extreme and fatigue load reduction.

  17. Guy cable design and damping for vertical axis wind turbines

    NASA Technical Reports Server (NTRS)

    Carne, T. G.

    1981-01-01

    Guy cables are frequently used to support vertical axis wind turbines since guying the turbine reduces some of the structural requirements on the tower. The guys must be designed to provide both the required strength and the required stiffness at the top of the turbine. The axial load which the guys apply to the tower, bearings, and foundations is an undesirable consequence of using guys to support the turbine. Limiting the axial load so that it does not significantly affect the cost of the turbine is an important objective of the cable design. The lateral vibrations of the cables is another feature of the cable design which needs to be considered. These aspects of the cable design are discussed, and a technique for damping cable vibrations was mathematically analyzed and demonstrated with experimental data.

  18. Orion GN&C Detection and Mitigation of Parachute Pendulosity

    NASA Technical Reports Server (NTRS)

    Kane, Mark A.; Wacker, Roger

    2016-01-01

    New techniques being employed by Orion guidance, navigation, and control (GN&C) using a reaction control system (RCS) under parachutes are described. Pendulosity refers to a pendulum-oscillatory mode that can occur during descent under main parachutes and that has been observed during Orion parachute drop tests. The pendulum mode reduces the ability of GN&C to maneuver the suspended vehicle resulting in undesirable increases to structural loads at touchdown. Parachute redesign efforts have been unsuccessful in reducing the pendulous behavior necessitating GN&C mitigation options. An observer has been developed to estimate the pendulum motion as well as the underlying wind velocity vector. Using this knowledge, the control system maneuvers the vehicle using two separate strategies determined by wind velocity magnitude and pendulum energy thresholds; at high wind velocities the vehicle is aligned with the wind direction and for cases with lower wind velocities and large pendulum amplitudes the vehicle is aligned such that it is perpendicular to the swing plane. Pendulum damping techniques using RCS thrusters are discussed but have not been selected for use onboard the Orion spacecraft. The techniques discussed in this paper will be flown on Exploration Mission 1 (EM-1).

  19. Orion GN&C Detection and Mitigation of Parachute Pendulosity

    NASA Technical Reports Server (NTRS)

    Kane, Mark A.; Wacker, Roger

    2016-01-01

    New techniques being employed by Orion guidance, navigation, and control (GN&C) using a reaction control system (RCS) under parachutes are described. Pendulosity refers to a pendulum-oscillatory mode that can occur during descent under main parachutes and that has been observed during Orion parachute drop tests. The pendulum mode reduces the ability of GN&C to maneuver the suspended vehicle resulting in undesirable increases to structural loads at touch-down. Parachute redesign efforts have been unsuccessful in reducing the pendulous behavior necessitating GN&C mitigation options. An observer has been developed to estimate the pendulum motion as well as the underlying wind velocity vector. Using this knowledge the control system maneuvers the vehicle using two separate strategies determined by a wind velocity magnitude threshold; at high wind velocities the vehicle is aligned with the wind direction and for cases with lower wind velocities the vehicle is aligned such that it is perpendicular to the swing plane. Pendulum damping techniques using RCS thrusters are discussed but have not been selected for use onboard the Orion spacecraft. The techniques discussed in this paper will be flown on Exploration Mission 1 (EM-1).

  20. Structural Control of a Wind Turbine Accounting for Second Order Effects

    NASA Astrophysics Data System (ADS)

    Caterino, Nicola; Spizzuoco, Mariacristina

    2017-10-01

    The negative impact of the use of fossil fuels on the environment has lead to a boom in the production of wind turbines. The progressively increasing turbines’ height, decided to take ad-vantage of the smoother winds at higher altitude, has led to an increased demand to control tower forces. The proposed work is focused on the application of a semi-active (SA) control system to limit bending moment demand at the base of a wind turbine by relaxing the base restraint of the turbine’s tower, without increasing the top displacement. The proposed SA control system reproduces a variable restraint at the base that changes in real time its mechanical properties according to the instantaneous response of the turbine’s tower. This smart restraint is made of a central smooth hinge, elastic springs and SA magnetorheological dampers driven by a properly designed control algorithm. A commercial 105 m tall wind turbine has been considered as a case study. Several numerical simulations have been performed with reference to two extreme loads, different one each other for intensity, duration, frequency content, so as to understand if a unique optimal configuration of the controller can be defined for both of them. The proposed study is also focused on understanding whether and how to reduce the residual top displacement due to the possible incremental base rotation that may happen during a wind load history, especially when it is long lasting.

  1. Serially-Connected Compensator for Eliminating the Unbalanced Three-Phase Voltage Impact on Wind Turbine Generators: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Z.; Hsu, P.; Muljadi, E.

    2015-04-06

    Untransposed transmission lines, unbalanced tap changer operations, and unbalanced loading in weak distribution lines can cause unbalanced-voltage conditions. The resulting unbalanced voltage at the point of interconnection affects proper gird integration and reduces the lifetime of wind turbines due to power oscillations, torque pulsations, mechanical stresses, energy losses, and uneven and overheating of the generator stator winding. This work investigates the dynamic impact of unbalanced voltage on the mechanical and electrical components of integrated Fatigue, Aerodynamics, Structures, and Turbulence (FAST) wind turbine generation systems (WTGs) of Type 1 (squirrel-cage induction generator) and Type 3 (doubly-fed induction generator). To alleviate thismore » impact, a serially-connected compensator for a three-phase power line is proposed to balance the wind turbine-side voltage. Dynamic simulation studies are conducted in MATLAB/Simulink to compare the responses of these two types of wind turbine models under normal and unbalanced-voltage operation conditions and demonstrate the effectiveness of the proposed compensator.« less

  2. A Serially-Connected Compensator for Eliminating the Unbalanced Three-Phase Voltage Impact on Wind Turbine Generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ziping; Hsu, Ping; Muljadi, Eduard

    2015-10-05

    Untransposed transmission lines, unbalanced tap changer operations, and unbalanced loading in weak distribution lines can cause unbalanced-voltage conditions. The resulting unbalanced voltage at the point of interconnection affects proper gird integration and reduces the lifetime of wind turbines due to power oscillations, torque pulsations, mechanical stresses, energy losses, and uneven and overheating of the generator stator winding. This work investigates the dynamic impact of unbalanced voltage on the mechanical and electrical components of integrated Fatigue, Aerodynamics, Structures, and Turbulence (FAST) wind turbine generation systems (WTGs) of Type 1 (squirrel-cage induction generator) and Type 3 (doubly-fed induction generator). To alleviate thismore » impact, a serially-connected compensator for a three-phase power line is proposed to balance the wind turbine-side voltage. Dynamic simulation studies are conducted in MATLAB/Simulink to compare the responses of these two types of wind turbine models under normal and unbalanced-voltage operation conditions and demonstrate the effectiveness of the proposed compensator.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonkman, Jason; Annoni, Jennifer; Hayman, Greg

    This paper presents the development of FAST.Farm, a new multiphysics tool applicable to engineering problems in research and industry involving wind farm performance and cost optimization that is needed to address the current underperformance, failures, and expenses plaguing the wind industry. Achieving wind cost-of-energy targets - which requires improvements in wind farm performance and reliability, together with reduced uncertainty and expenditures - has been eluded by the complicated nature of the wind farm design problem, especially the sophisticated interaction between atmospheric phenomena and wake dynamics and array effects. FAST.Farm aims to balance the need for accurate modeling of the relevantmore » physics for predicting power performance and loads while maintaining low computational cost to support a highly iterative and probabilistic design process and system-wide optimization. FAST.Farm makes use of FAST to model the aero-hydro-servo-elastics of distinct turbines in the wind farm, and it is based on some of the principles of the Dynamic Wake Meandering (DWM) model, but avoids many of the limitations of existing DWM implementations.« less

  4. Big Spring wind project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, G.L.

    1999-11-01

    Harnessing the wind is not a new concept to Texans. But it is a concept that has evolved over the years from one of pumping water to fill stock tanks for watering livestock to one of providing electricity for the people of Texas. This evolution has occurred due to improved micro-siting techniques that help identify robust wind resource sites and wind turbine technology that improves wind capture and energy conversion efficiencies. Over the last seven to ten years this siting technology and wind turbine technology have significantly reduced the bus-bar cost associated with wind generation. On December 2, 1998, atmore » a public dedication of the Big Spring Wind Project, the first of 42 Vestas V47 wind turbines was released for commercial operation. Since that date an additional fifteen V47 Turbines have been placed into service. It is expected that the Big Spring Wind Project will be complete and released of full operation prior to the summer peak-load season of 1999. As of the writing of this paper (January 1999) the Vestas V47 turbines have performed as expected with excellent availability and, based on foregoing resource analysis, better than expected output.« less

  5. Analyse dynamique des lignes de grande portee sous charges de vent

    NASA Astrophysics Data System (ADS)

    Ashby, Mathieu

    There are two types of electric crossing : i) subterranean / submarine line ii) overhead-line crossing. We always consider the last one as a more economic option. The inconvenience of an overhead-line crossing would be the environmental constraints among which the existing obstacles, the clearance for the navigation and the aesthetics demanded by the public. The overhead-line crossings usually have conductors of long ranges which are outside of the field of application for the current transmission line codes. These are limited to reaches of a length included between 200 m and 800 m, as well as a height of support lower than 60 m. However, for reaches over 800 m and over a height over 60 m, the criteria of conception in the transmission line codes for the calculation of wind loads are not applicable. In this study we concentrate on loads on the supports owed to the limit wind applied to bare conductors and insulators chains The objective of the present study is to examine the effect of the temporal and spatial correlation of the wind load along the conductors on a finite element model. A special attention was brought to the evaluation of the importance of the dynamic load transmitted on by the conductors and the insulators chains for the case of a turbulent wind load. The numerical study on finite element model for the example of a overhead-line crossing was done with the software ADINA. The wind load for the finite element model for the example of a overhead-line crossing was generated by the software WindGen which uses the method of Simiu-Scanlan and the method of spectral representation developed by Shinozuka-Deodatis. Wind loads generated where integrated into the finite element model ADINA for a dynamic analysis of the overhead-line crossing. For the first part, the current methods are used to calculate the efforts in supports due to the wind loads with an engineering approach and a comparaison approach. The current methods are then compared with the efforts obtained from an advanced method, transient dynamic and spectral stochastic, and specifically for the case of a simple overhead-line and an overhead-line crossings. For the second part, the effect of the longitudinal correlation of the wind load on two parallel conductors was examined. Finally, dynamic experiments on an insulators chain were made to determine the variation of the damping and the rigidity of the system for different type of insulators, different speed of application of the load and the inclination of the insulator. Key words : transient dynamics, spectral stochastic, turbulent wind, conductor, aerodynamic damping, structural damping, spatial correlation, wind spectra

  6. Design guidelines for wind-resistant structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, J.R.; Mehta, K.C.; Minor, J.E.

    1975-06-01

    The purpose of this document is to prescribe criteria and to provide guidance for professional personnel who are involved in the design and evaluation of buildings and structures to resist tornadoes and extreme winds at the Oak Ridge, Tennessee, Portsmouth, Ohio, and Paducah, Kentucky, Plant Sites. The scope of the document covers loads due to extreme winds and tornadoes. Other loading conditions such as dead, live, or earthquake loads shall be considered as prescribed by the Union Carbide Corporation. In Section II the method for determining the maximum design windspeed for any specified level of risk is described. The straightmore » wind and tornado parameters are then deduced from the value of maximum design windspeed. The three types of tornado and extreme wind loads (aerodynamic, atmospheric pressure change and missiles) are treated in Sections III, IV, and V, respectively. Appropriate load combinations are defined in Section VI. The final section contains several examples showing how the design guidelines are used to determine appropriate design wind pressures. A description of the computer program used to predict missile accelerations, velocities and trajectories is contained in Appendix A. Additional design examples are provided in Appendix B.« less

  7. Yawing characteristics during slippage of the nacelle of a multi MW wind turbine

    NASA Astrophysics Data System (ADS)

    Kim, M.-G.; Dalhoff, P. H.; Gust, P.

    2016-09-01

    High aerodynamic yaw loads coupled with electrical failures in the wind turbine can result to a slippage of the nacelle, due to limited braking capabilities of the yaw system. A slippage on the other hand can lead to a mechanical malfunction of the yaw system. To analyse the yawing characteristics of a wind turbine during nacelle slippage situations, a detailed multibody system model of the yaw system has been developed and incorporated in a multibody system model of a wind turbine based on a 3.3 MW turbine. Extreme load cases which lead to a nacelle slippage have been simulated. The dynamics and loads on different wind turbine components are presented and discussed. First results show minimal load increases of the rotor torque and the bending moments of the blade root sections during slippage but unfavourable rotational speeds of the yaw drives.

  8. Comparison of Wind Power and Load Forecasting Error Distributions: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, B. M.; Florita, A.; Orwig, K.

    2012-07-01

    The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent Systemmore » Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.« less

  9. Influences of Atmospheric Stability State on Wind Turbine Aerodynamic Loadings

    NASA Astrophysics Data System (ADS)

    Vijayakumar, Ganesh; Lavely, Adam; Brasseur, James; Paterson, Eric; Kinzel, Michael

    2011-11-01

    Wind turbine power and loadings are influenced by the structure of atmospheric turbulence and thus on the stability state of the atmosphere. Statistical differences in loadings with atmospheric stability could impact controls, blade design, etc. Large-eddy simulation (LES) of the neutral and moderately convective atmospheric boundary layer (NBL, MCBL) are used as inflow to the NREL FAST advanced blade-element momentum theory code to predict wind turbine rotor power, sectional lift and drag, blade bending moments and shaft torque. Using horizontal homogeneity, we combine time and ensemble averages to obtain converged statistics equivalent to ``infinite'' time averages over a single turbine. The MCBL required longer effective time periods to obtain converged statistics than the NBL. Variances and correlation coefficients among wind velocities, turbine power and blade loadings were higher in the MCBL than the NBL. We conclude that the stability state of the ABL strongly influences wind turbine performance. Supported by NSF and DOE.

  10. Power quality improvement by using STATCOM control scheme in wind energy generation interface to grid

    NASA Astrophysics Data System (ADS)

    Kirmani, Sheeraz; Kumar, Brijesh

    2018-01-01

    “Electric Power Quality (EPQ) is a term that refers to maintaining the near sinusoidal waveform of power distribution bus voltages and currents at rated magnitude and frequency”. Today customers are more aware of the seriousness that the power quality possesses, this prompt the utilities to assure good quality of power to their customer. The power quality is basically customer centric. Increased focus of utilities toward maintaining reliable power supply by employing power quality improvement tools has reduced the power outages and black out considerably. Good power quality is the characteristic of reliable power supply. Low power factor, harmonic pollution, load imbalance, fast voltage variations are some common parameters which are used to define the power quality. If the power quality issues are not checked i.e. the parameters that define power quality doesn't fall within the predefined standards than it will lead into high electricity bill, high running cost in industries, malfunctioning of equipments, challenges in connecting renewable. Capacitor banks, FACTS devices, harmonic filters, SVC’s (static voltage compensators), STATCOM (Static-Compensator) are the solutions to achieve the power quality. The performance of Wind turbine generators is affected by poor quality power, at the same time these wind power generating plant affects the power quality negatively. This paper presents the STATCOM-BESS (battery energy storage system) system and studies its impact on the power quality in a system which consists of wind turbine generator, non linear load, hysteresis controller for controlling the operation of STATCOM and grid. The model is simulated in the MATLAB/Simulink. This scheme mitigates the power quality issues, improves voltage profile and also reduces harmonic distortion of the waveforms. BESS level out the imbalances caused in real power due to intermittent nature of wind power available due to varying wind speeds.

  11. Natural environment analysis

    NASA Technical Reports Server (NTRS)

    Frost, W.

    1985-01-01

    The influence of terrain features on wind loading of the space shuttle while on the launch pad, or during early liftoff, was investigated both qualitatively and quantitatively. The climatology and meteorology producing macroscale wind patterns and characteristics for the Vandenburg Air Force Base launch site are described. Field test data are analyzed, and the nature and characteristic of flow disturbances due to the various terrain features, both natural and man-made, are reviewed. The magnitude of these wind loads are estimated. Finally, effects of turbulence are discussed. It is concluded that the influence of complex terrain can create significant wind loading on the vehicle.

  12. Effects of Daytime Atmospheric Boundary Layer Turbulence on the Generation of Nonsteady Wind Turbine Loadings and Predictive Accuracy of Lower Order Models

    NASA Astrophysics Data System (ADS)

    Lavely, Adam W.

    Modern utility-scale wind turbines operate in the the lower atmospheric boundary layer (ABL), which is characterized by large gradients in mean velocity and temperature and the existence of strong coherent turbulence eddies that reflect the interaction between strong mean shear and vertical buoyancy driven by solar heating. The spatio-temporal velocity variations drive nonsteady loadings on wind turbines that contribute to premature wind turbine component fatigue failure, decreasing the levelized cost of (wind) energy (LCOE). The aims of the current comprehensive research program center on the quantification of the characteristics of the nonsteady loads resulting from the interactions between the coherent energy contain gin atmospheric turbulence eddies within the lower ABL as the eddies advect through the rotor plane and the rotating wind turbine blade encounter the internal turbulence structure of the atmospheric eddies. We focus on the daytime atmospheric boundary layer, where buoyancy due to surface heating interacts with shear to create coherent turbulence structures. Pseudo-spectral large eddy simulation (LES) is used to generate an equilibrium atmospheric boundary layer over at terrain with uniform surface roughness characteristic of the Midwest on a typical sunny windy afternoon when the ABL can be approximated as quasi-steady. The energy-containing eddies are found to create advective time-responses of order 30-90 seconds with lateral spatial scales of order the wind turbine rotor diameter. Different wind turbine simulation methods of a representative utility scale turbine were applied using the atmospheric turbulence as in flow. We apply three different fidelity wind turbine simulation methods to quantify the extent to which lower order models are able to accurately predict the nonsteady loading due to atmospheric turbulence eddies advecting through the rotor plane and interacting with the wind turbine. The methods vary both the coupling to the atmospheric boundary layer and the way in which the blade geometry is resolved and sectional blade forces are calculated. The highest fidelity simulation resolves the blade geometry to capture unsteady boundary layer response and separation dynamics within a simulation of the atmospheric boundary layer coupling the effect of the turbine to the atmospheric in flow. The lower order models both use empirical look-up tables to predict the time changes in blade sectional forces as a function of time changes in local velocity vector. The actuator line method (ALM) is two-way coupled and feeds these blade forces back into a simulation of the atmospheric boundary layer. The blade element momentum theory (BEMT) is one-way coupled and models the effect of the turbine on the incoming velocity field. The coupling method and method of blade resolution are both found to have an effect on the ability to accurately predict sectional blade load response to nonsteady atmospheric turbulence. The BEMT cannot accurately predict the timing of the response changes as these are modulated by the wind turbine within the ABL simulations. The lower order models have increased blade sectional load range and temporal gradients due to their inability to accurately capture the temporal response of the blade geometry to in flow changes. Taking advantage of horizontal homogeneity to collect statistics, we investigate the time period required to create well converged statistics in the equilibrium atmospheric boundary layer and find whereas the 10-minute industry standard for 'averages' retains variability of order 10%, the 10-minute average is an optimal choice. We compare the industry standard 10-minute averaging period. The residual variability within the 10-minute period to the National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) field test database to find that whereas the 10-minute window still contains large variability, it is, in some sense, optimal because averaging times much longer would be required to significantly reduce variability. Turbulence fluctuations in streamwise velocity are found to be the primary driver of temporal variations in local angles of attack and sectional blade loads. Based on this new understanding, we develop analyses to show that whereas rotor torque and thrust correlate well with upstream horizontal velocity averaged over the rotor disk, out-of-plane bending moment magnitude correlates with the asymmetry in the horizontal fluctuating velocity over the rotor disk. Consequentially, off-design motions of the drivetrain and gearbox shown with the GRC field test data are well predicted using an asymmetry index designed to capture the response of a three-bladed turbine to asymmetry in the rotor plane. The predictors for torque, thrust and out-of-plane bending moment are shown to correlate well to upstream rotor planes indicating that they may be applied to advanced feed-forward control methods such as forward-facing LIDAR used to detect velocity changes in front of a wind turbine. This has the potential to increase wind turbine reliability by using controls to reduce potentially detrimental load responses to incoming atmospheric turbulence and decrease the LCOE.

  13. Overview: Performance Adaptive Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Hashemi, Kelley

    2017-01-01

    An overview of recent aeroelasitc wing-shaping work at the NASA Ames Research Center is presented. The highlight focuses on activity related to the Performance Adaptive Aeroelastic Wing concept and related Variable Camber Continuous Trailing Edge Flap actuation system. Topics covered include drag-reducing configurations and online algorithms, gust and maneuver load techniques, and wind tunnel demonstrations.

  14. Analysis of series resonant converter with series-parallel connection

    NASA Astrophysics Data System (ADS)

    Lin, Bor-Ren; Huang, Chien-Lan

    2011-02-01

    In this study, a parallel inductor-inductor-capacitor (LLC) resonant converter series-connected on the primary side and parallel-connected on the secondary side is presented for server power supply systems. Based on series resonant behaviour, the power metal-oxide-semiconductor field-effect transistors are turned on at zero voltage switching and the rectifier diodes are turned off at zero current switching. Thus, the switching losses on the power semiconductors are reduced. In the proposed converter, the primary windings of the two LLC converters are connected in series. Thus, the two converters have the same primary currents to ensure that they can supply the balance load current. On the output side, two LLC converters are connected in parallel to share the load current and to reduce the current stress on the secondary windings and the rectifier diodes. In this article, the principle of operation, steady-state analysis and design considerations of the proposed converter are provided and discussed. Experiments with a laboratory prototype with a 24 V/21 A output for server power supply were performed to verify the effectiveness of the proposed converter.

  15. Structural health and prognostics management for offshore wind turbines :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffith, Daniel; Resor, Brian Ray; White, Jonathan Randall

    2012-12-01

    Operations and maintenance costs for offshore wind plants are expected to be significantly higher than the current costs for onshore plants. One way in which these costs may be able to be reduced is through the use of a structural health and prognostic management system as part of a condition based maintenance paradigm with smart load management. To facilitate the creation of such a system a multiscale modeling approach has been developed to identify how the underlying physics of the system are affected by the presence of damage and how these changes manifest themselves in the operational response of amore » full turbine. The developed methodology was used to investigate the effects of a candidate blade damage feature, a trailing edge disbond, on a 5-MW offshore wind turbine and the measurements that demonstrated the highest sensitivity to the damage were the local pitching moments around the disbond. The multiscale method demonstrated that these changes were caused by a local decrease in the blades torsional stiffness due to the disbond, which also resulted in changes in the blades local strain field. Full turbine simulations were also used to demonstrate that derating the turbine power by as little as 5% could extend the fatigue life of a blade by as much as a factor of 3. The integration of the health monitoring information, conceptual repair cost versus damage size information, and this load management methodology provides an initial roadmap for reducing operations and maintenance costs for offshore wind farms while increasing turbine availability and overall profit.« less

  16. Multiple tuned mass damper based vibration mitigation of offshore wind turbine considering soil-structure interaction

    NASA Astrophysics Data System (ADS)

    Hussan, Mosaruf; Sharmin, Faria; Kim, Dookie

    2017-08-01

    The dynamics of jacket supported offshore wind turbine (OWT) in earthquake environment is one of the progressing focuses in the renewable energy field. Soil-structure interaction (SSI) is a fundamental principle to analyze stability and safety of the structure. This study focuses on the performance of the multiple tuned mass damper (MTMD) in minimizing the dynamic responses of the structures objected to seismic loads combined with static wind and wave loads. Response surface methodology (RSM) has been applied to design the MTMD parameters. The analyses have been performed under two different boundary conditions: fixed base (without SSI) and flexible base (with SSI). Two vibration modes of the structure have been suppressed by multi-mode vibration control principle in both cases. The effectiveness of the MTMD in reducing the dynamic response of the structure is presented. The dynamic SSI plays an important role in the seismic behavior of the jacket supported OWT, especially resting on the soft soil deposit. Finally, it shows that excluding the SSI effect could be the reason of overestimating the MTMD performance.

  17. Assessment of Wind Turbine Component Loads Under Yaw-Offset Conditions

    DOE PAGES

    Damiani, Rick R.; Dana, Scott; Annoni, Jennifer; ...

    2018-04-13

    Renewed interest in yaw control for wind turbine and power plants for wake redirection and load mitigation demands a clear understanding of the effects of running with skewed inflow. In this paper, we investigate the physics of yawed operations, building up the complexity from a simplified analytical treatment to more complex aeroelastic simulations. Results in terms of damage equivalent loads (DELs) and extreme loads under operating, misaligned conditions are compared to data collected from an instrumented, utility-scale wind turbine. The analysis shows that multiple factors are responsible for the DELs of the various components, and that airfoil aerodynamics, elastic characteristicsmore » of the rotor, and turbulence intensities are the primary drivers. Both fatigue and extreme loads are observed to have relatively complex trends with yaw offsets, which can change depending on the wind-speed regime. As a result, good agreement is found between predicted and measured trends for both fatigue and ultimate loads.« less

  18. Assessment of Wind Turbine Component Loads Under Yaw-Offset Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damiani, Rick R.; Dana, Scott; Annoni, Jennifer

    Renewed interest in yaw control for wind turbine and power plants for wake redirection and load mitigation demands a clear understanding of the effects of running with skewed inflow. In this paper, we investigate the physics of yawed operations, building up the complexity from a simplified analytical treatment to more complex aeroelastic simulations. Results in terms of damage equivalent loads (DELs) and extreme loads under operating, misaligned conditions are compared to data collected from an instrumented, utility-scale wind turbine. The analysis shows that multiple factors are responsible for the DELs of the various components, and that airfoil aerodynamics, elastic characteristicsmore » of the rotor, and turbulence intensities are the primary drivers. Both fatigue and extreme loads are observed to have relatively complex trends with yaw offsets, which can change depending on the wind-speed regime. As a result, good agreement is found between predicted and measured trends for both fatigue and ultimate loads.« less

  19. Tower Based Load Measurements for Individual Pitch Control and Tower Damping of Wind Turbines

    NASA Astrophysics Data System (ADS)

    Kumar, A. A.; Hugues-Salas, O.; Savini, B.; Keogh, W.

    2016-09-01

    The cost of IPC has hindered adoption outside of Europe despite significant loading advantages for large wind turbines. In this work we presented a method for applying individual pitch control (including for higher-harmonics) using tower-top strain gauge feedback instead of blade-root strain gauge feedback. Tower-top strain gauges offer hardware savings of approximately 50% in addition to the possibility of easier access for maintenance and installation and requiring a less specialised skill-set than that required for applying strain gauges to composite blade roots. A further advantage is the possibility of using the same tower-top sensor array for tower damping control. This method is made possible by including a second order IPC loop in addition to the tower damping loop to reduce the typically dominating 3P content in tower-top load measurements. High-fidelity Bladed simulations show that the resulting turbine spectral characteristics from tower-top feedback IPC and from the combination of tower-top IPC and damping loops largely match those of blade-root feedback IPC and nacelle- velocity feedback damping. Lifetime weighted fatigue analysis shows that the methods allows load reductions within 2.5% of traditional methods.

  20. Developing a passive load reduction blade for the DTU 10 MW reference turbine

    NASA Astrophysics Data System (ADS)

    de Vaal, J. B.; Nygaard, T. A.; Stenbro, R.

    2016-09-01

    This paper presents the development of a passive load reduction blade for the DTU 10 MW reference wind turbine, using the aero-hydro-servo-elastic analysis tool 3DFloat. Passive load reduction is achieved by introducing sweep to the path of the blade elastic axis, so that out-of-plane bending deflections result in load alleviating torsional deformations of the blade. Swept blades are designed to yield similar annual energy production as a rotor with a reference straight blade. This is achieved by modifying the aerodynamic twist distribution for swept blades based on non-linear blade deflection under steady state loads. The passive load reduction capability of a blade design is evaluated by running a selection of fatigue- and extreme load cases with the analysis tool 3DFloat and determining equivalent fatigue loads, fatigue damage and extreme loads at the blade root and tower base. The influence of sweep on the flutter speed of a blade design is also investigated. A large number of blade designs are evaluated by varying the parameters defining the sweep path of a blade's elastic axis. Results show that a moderate amount of sweep can effectively reduce equivalent fatigue damage and extreme loads, without significantly reducing the flutter speed, or compromising annual energy production.

  1. Tornado risks and design windspeeds for the Oak Ridge Plant Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1975-08-01

    The effects of tornadoes and other extreme winds should be considered in establishing design criteria for structures to resist wind loads. Design standards that are incorporated in building codes do not normally include the effects of tornadoes in their wind load criteria. Some tornado risk models ignore the presence of nontornadic extreme winds. The purpose of this study is to determine the probability of tornadic and straight winds exceeding a threshold value in the geographical region surrounding the Oak Ridge, Tennessee plant site.

  2. Influence of Reynolds Number on Multi-Objective Aerodynamic Design of a Wind Turbine Blade.

    PubMed

    Ge, Mingwei; Fang, Le; Tian, De

    2015-01-01

    At present, the radius of wind turbine rotors ranges from several meters to one hundred meters, or even more, which extends Reynolds number of the airfoil profile from the order of 105 to 107. Taking the blade for 3MW wind turbines as an example, the influence of Reynolds number on the aerodynamic design of a wind turbine blade is studied. To make the study more general, two kinds of multi-objective optimization are involved: one is based on the maximum power coefficient (CPopt) and the ultimate load, and the other is based on the ultimate load and the annual energy production (AEP). It is found that under the same configuration, the optimal design has a larger CPopt or AEP (CPopt//AEP) for the same ultimate load, or a smaller load for the same CPopt//AEP at higher Reynolds number. At a certain tip-speed ratio or ultimate load, the blade operating at higher Reynolds number should have a larger chord length and twist angle for the maximum Cpopt//AEP. If a wind turbine blade is designed by using an airfoil database with a mismatched Reynolds number from the actual one, both the load and Cpopt//AEP will be incorrectly estimated to some extent. In some cases, the assessment error attributed to Reynolds number is quite significant, which may bring unexpected risks to the earnings and safety of a wind power project.

  3. Airfoil flutter model suspension system

    NASA Technical Reports Server (NTRS)

    Reed, Wilmer H. (Inventor)

    1987-01-01

    A wind tunnel suspension system for testing flutter models under various loads and at various angles of attack is described. The invention comprises a mounting bracket assembly affixing the suspension system to the wind tunnel, a drag-link assembly and a compound spring arrangement comprises a plunge spring working in opposition to a compressive spring so as to provide a high stiffness to trim out steady state loads and simultaneously a low stiffness to dynamic loads. By this arrangement an airfoil may be tested for oscillatory response in both plunge and pitch modes while being held under high lifting loads in a wind tunnel.

  4. Influence of the gap size on the wind loading on heliostats

    NASA Astrophysics Data System (ADS)

    Poulain, Pierre E.; Craig, Ken J.; Meyer, Josua P.

    2016-05-01

    Generally built in desert areas, heliostat fields undergo various wind loading conditions. An ANSYS Fluent CFD model of an isolated heliostat in worst-case orientation for the drag force is realized via numerical simulations using the realizable k-ɛ turbulence model. This paper focuses on the gap width between the panels and its influence on the wind loading that heliostats are subjected to. An atmospheric boundary layer profile is generated based on a wind tunnel experiment. For a heliostat in upright and tilted orientations with the wind angle being zero degrees, the gap width is varied and the force and moment coefficients are calculated. In the range tested, all the coefficients globally increase with the widening of the gaps.

  5. Modeling particulate matter emissions during mineral loading process under weak wind simulation.

    PubMed

    Zhang, Xiaochun; Chen, Weiping; Ma, Chun; Zhan, Shuifen

    2013-04-01

    The quantification of particulate matter emissions from mineral handling is an important problem for the quantification of global emissions on industrial sites. Mineral particulate matter emissions could adversely impact environmental quality in mining regions, transport regions, and even on a global scale. Mineral loading is an important process contributing to mineral particulate matter emissions, especially under weak wind conditions. Mathematical models are effective ways to evaluate particulate matter emissions during the mineral loading process. The currently used empirical models based on the form of a power function do not predict particulate matter emissions accurately under weak wind conditions. At low particulate matter emissions, the models overestimated, and at high particulate matter emissions, the models underestimated emission factors. We conducted wind tunnel experiments to evaluate the particulate matter emission factors for the mineral loading process. A new approach based on the mathematical form of a logistical function was developed and tested. It provided a realistic depiction of the particulate matter emissions during the mineral loading process, accounting for fractions of fine mineral particles, dropping height, and wind velocity. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Crack detection on wind turbine blades in an operating environment using vibro-acoustic modulation technique

    NASA Astrophysics Data System (ADS)

    Kim, S.; Adams, D. E.; Sohn, H.

    2013-01-01

    As the wind power industry has grown rapidly in the recent decade, maintenance costs have become a significant concern. Due to the high repair costs for wind turbine blades, it is especially important to detect initial blade defects before they become structural failures leading to other potential failures in the tower or nacelle. This research presents a method of detecting cracks on wind turbine blades using the Vibo-Acoustic Modulation technique. Using Vibro-Acoustic Modulation, a crack detection test is conducted on a WHISPER 100 wind turbine in its operating environment. Wind turbines provide the ideal conditions in which to utilize Vibro-Acoustic Modulation because wind turbines experience large structural vibrations. The structural vibration of the wind turbine balde was used as a pumping signal and a PZT was used to generate the probing signal. Because the non-linear portion of the dynamic response is more sensitive to the presence of a crack than the environmental conditions or operating loads, the Vibro-Acoustic Modulation technique can provide a robust structural health monitoring approach for wind turbines. Structural health monitoring can significantly reduce maintenance costs when paired with predictive modeling to minimize unscheduled maintenance.

  7. Development of FAST.Farm: A New Multiphysics Engineering Tool for Wind Farm Design and Analysis: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonkman, Jason; Annoni, Jennifer; Hayman, Greg

    2017-01-01

    This paper presents the development of FAST.Farm, a new multiphysics tool applicable to engineering problems in research and industry involving wind farm performance and cost optimization that is needed to address the current underperformance, failures, and expenses plaguing the wind industry. Achieving wind cost-of-energy targets - which requires improvements in wind farm performance and reliability, together with reduced uncertainty and expenditures - has been eluded by the complicated nature of the wind farm design problem, especially the sophisticated interaction between atmospheric phenomena and wake dynamics and array effects. FAST.Farm aims to balance the need for accurate modeling of the relevantmore » physics for predicting power performance and loads while maintaining low computational cost to support a highly iterative and probabilistic design process and system-wide optimization. FAST.Farm makes use of FAST to model the aero-hydro-servo-elastics of distinct turbines in the wind farm, and it is based on some of the principles of the Dynamic Wake Meandering (DWM) model, but avoids many of the limitations of existing DWM implementations.« less

  8. Floating wind turbine system

    NASA Technical Reports Server (NTRS)

    Viterna, Larry A. (Inventor)

    2009-01-01

    A floating wind turbine system with a tower structure that includes at least one stability arm extending therefrom and that is anchored to the sea floor with a rotatable position retention device that facilitates deep water installations. Variable buoyancy for the wind turbine system is provided by buoyancy chambers that are integral to the tower itself as well as the stability arm. Pumps are included for adjusting the buoyancy as an aid in system transport, installation, repair and removal. The wind turbine rotor is located downwind of the tower structure to allow the wind turbine to follow the wind direction without an active yaw drive system. The support tower and stability arm structure is designed to balance tension in the tether with buoyancy, gravity and wind forces in such a way that the top of the support tower leans downwind, providing a large clearance between the support tower and the rotor blade tips. This large clearance facilitates the use of articulated rotor hubs to reduced damaging structural dynamic loads. Major components of the turbine can be assembled at the shore and transported to an offshore installation site.

  9. Wind Extraction for Natural Ventilation

    NASA Astrophysics Data System (ADS)

    Fagundes, Tadeu; Yaghoobian, Neda; Kumar, Rajan; Ordonez, Juan

    2017-11-01

    Due to the depletion of energy resources and the environmental impact of pollution and unsustainable energy resources, energy consumption has become one of the main concerns in our rapidly growing world. Natural ventilation, a traditional method to remove anthropogenic and solar heat gains, proved to be a cost-effective, alternative method to mechanical ventilation. However, while natural ventilation is simple in theory, its detailed design can be a challenge, particularly for wind-driven ventilation, which its performance highly involves the buildings' form, surrounding topography, turbulent flow characteristics, and climate. One of the main challenges with wind-driven natural ventilation schemes is due to the turbulent and unpredictable nature of the wind around the building that impose complex pressure loads on the structure. In practice, these challenges have resulted in founding the natural ventilation mainly on buoyancy (rather than the wind), as the primary force. This study is the initial step for investigating the physical principals of wind extraction over building walls and investigating strategies to reduce the dependence of the wind extraction on the incoming flow characteristics and the target building form.

  10. Offshore Wind Turbines Subjected to Hurricanes

    NASA Astrophysics Data System (ADS)

    Amirinia, Gholamreza

    Hurricane Andrew (1992) caused one of the largest property losses in U.S. history, but limited availability of surface wind measurements hindered the advancement of wind engineering research. Many studies have been conducted on regular boundary layer winds (non-hurricane winds) and their effects on the structures. In this case, their results were used in the standards and codes; however, hurricane winds and their effects on the structures still need more studies and observations. Analysis of hurricane surface winds revealed that turbulence spectrum of hurricane winds differs from that of non-hurricane surface winds. Vertical profile of wind velocity and turbulence intensity are also important for determining the wind loads on high-rise structures. Vertical profile of hurricane winds is affected by different parameters such as terrain or surface roughness. Recent studies show that wind velocity profile and turbulence intensity of hurricane winds may be different from those used in the design codes. Most of the studies and available models for analyzing wind turbines subjected to high-winds neglect unsteady aerodynamic forces on a parked wind tower. Since the blade pitch angle in a parked wind turbine is usually about 90°, the drag coefficient on blade airfoils are very small therefore the along-wind aerodynamic forces on the blades are smaller than those on the tower. Hence, the tower in parked condition plays an important role in along-wind responses of the wind turbine. The objectives of this study are, first, to explore the nature of the hurricane surface winds. Next, to establish a time domain procedure for addressing structure-wind-wave-soil interactions. Third, investigating the behavior of wind turbines subjected to hurricane loads resulted form hurricane nature and, lastly, to investigate reconfiguration of turbine structure to reduce wind forces. In order to achieve these objective, first, recent observations on hurricane turbulence models were discussed. Then a new formulation for addressing unsteady wind forces on the tower was introduced and NREL-FAST package was modified with the new formulation. Interaction of wind-wave-soil-structure was also included in the modification. After customizing the package, the tower and blade buffeting responses, the low cycle fatigue during different hurricane categories, and extreme value of the short-term responses were analyzed. In the second part, piezoelectric materials were used to generate perturbations on the surface of a specimen in the wind tunnel. This perturbation was used to combine upward wall motion and surface curvature. For this purpose, a Macro Fiber Composite (MFC) material was mounted on the surface of a cylindrical specimen for generating perturbation in the wind tunnel. Four different perturbation frequencies (1 Hz, 2 Hz, 3 Hz, and 4Hz) as well as the baseline specimen were tested in a low-speed wind tunnel (Re= 2.8x104). Results showed that recently observed turbulence models resulted in larger structural responses and low-cycle fatigue damage than existing models. In addition, extreme value analysis of the short-term results showed that the IEC 61400-3 recommendation for wind turbine class I was sufficient for designing the tower for wind turbine class S subjected to hurricane; however, for designing the blade, IEC 61400-3 recommendations for class I underestimated the responses. In addition, wind tunnel testing results showed that the perturbation of the surface of the specimen increased the turbulence in the leeward in specific distance from the specimen. The surface perturbation technique had potential to reduce the drag by 4.8%.

  11. Fatigue life prediction of rotor blade composites: Validation of constant amplitude formulations with variable amplitude experiments

    NASA Astrophysics Data System (ADS)

    Westphal, T.; Nijssen, R. P. L.

    2014-12-01

    The effect of Constant Life Diagram (CLD) formulation on the fatigue life prediction under variable amplitude (VA) loading was investigated based on variable amplitude tests using three different load spectra representative for wind turbine loading. Next to the Wisper and WisperX spectra, the recently developed NewWisper2 spectrum was used. Based on these variable amplitude fatigue results the prediction accuracy of 4 CLD formulations is investigated. In the study a piecewise linear CLD based on the S-N curves for 9 load ratios compares favourably in terms of prediction accuracy and conservativeness. For the specific laminate used in this study Boerstra's Multislope model provides a good alternative at reduced test effort.

  12. Employing static excitation control and tie line reactance to stabilize wind turbine generators

    NASA Technical Reports Server (NTRS)

    Hwang, H. H.; Mozeico, H. V.; Guo, T.

    1978-01-01

    An analytical representation of a wind turbine generator is presented which employs blade pitch angle feedback control. A mathematical model was formulated. With the functioning MOD-0 wind turbine serving as a practical case study, results of computer simulations of the model as applied to the problem of dynamic stability at rated load are also presented. The effect of the tower shadow was included in the input to the system. Different configurations of the drive train, and optimal values of the tie line reactance were used in the simulations. Computer results revealed that a static excitation control system coupled with optimal values of the tie line reactance would effectively reduce oscillations of the power output, without the use of a slip clutch.

  13. Stress analysis of composite wind turbine blade by finite element method

    NASA Astrophysics Data System (ADS)

    Yeh, Meng-Kao; Wang, Chen-Hsu

    2017-10-01

    In this study, the finite element analysis software ANSYS was used to analyze the composite wind turbine blade. The wind turbine blade model used is adopted from the 5 MW model of US National Renewable Energy Laboratory (NREL). The wind turbine blade is a sandwich structure, comprising outermost carbon fiber cloth/epoxy composites, the inner glass fiber/vinylester layers, and PVC foam core, together with stiffeners. The wind pressure is converted into the load on the blade structure. The stress distribution and deformation of wind turbine blade were obtained by considering different pitch angles and at different angular positions. The Tsai-Hill criterion was used to determine the failure of wind turbine blade. The results show that at the 0° pitch angle, the wind turbine blade is subjected to the largest combined load and therefore the stress is the largest; with the increasing pitch angle, the load gradually decreases and the stress is also smaller. The stress and displacement are the greatest when the wind blade is located at 120° angular position from its highest vertex.

  14. Validation of Simplified Load Equations Through Loads Measurement and Modeling of a Small Horizontal-Axis Wind Turbine Tower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dana, Scott; Van Dam, Jeroen J; Damiani, Rick R

    As part of an ongoing effort to improve the modeling and prediction of small wind turbine dynamics, the National Renewable Energy Laboratory (NREL) tested a small horizontal-axis wind turbine in the field at the National Wind Technology Center. The test turbine was a 2.1-kW downwind machine mounted on an 18-m multi-section fiberglass composite tower. The tower was instrumented and monitored for approximately 6 months. The collected data were analyzed to assess the turbine and tower loads and further validate the simplified loads equations from the International Electrotechnical Commission (IEC) 61400-2 design standards. Field-measured loads were also compared to the outputmore » of an aeroelastic model of the turbine. In particular, we compared fatigue loads as measured in the field, predicted by the aeroelastic model, and calculated using the simplified design equations. Ultimate loads at the tower base were assessed using both the simplified design equations and the aeroelastic model output. The simplified design equations in IEC 61400-2 do not accurately model fatigue loads and a discussion about the simplified design equations is discussed.« less

  15. Simulation of a 5MW wind turbine in an atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Meister, Konrad; Lutz, Thorsten; Krämer, Ewald

    2014-12-01

    This article presents detached eddy simulation (DES) results of a 5MW wind turbine in an unsteady atmospheric boundary layer. The evaluation performed in this article focuses on turbine blade loads as well as on the influence of atmospheric turbulence and tower on blade loads. Therefore, the turbulence transport of the atmospheric boundary layer to the turbine position is analyzed. To determine the influence of atmospheric turbulence on wind turbines the blade load spectrum is evaluated and compared to wind turbine simulation results with uniform inflow. Moreover, the influences of different frequency regimes and the tower on the blade loads are discussed. Finally, the normal force coefficient spectrum is analyzed at three different radial positions and the influence of tower and atmospheric turbulence is shown.

  16. Natural environment analysis

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Qualitative analyses (and quantitatively to the extend possible) of the influence of terrain features on wind loading of the space shuttle while on the launch pad, or during early liftoff, are presented. Initially, the climatology and meteorology producing macroscale wind patterns and characteristics fot he Vandenburg Air Force Base (VAFB) launch site are described. Also, limited field test data are analyzed, and then the nature and characteristic of flow disturbances due to the various terrain features, both natural and man-made, are then reviewed. Following this, the magnitude of these wind loads are estimated. Finally, effects of turbulence are discussed. The study concludes that the influence of complex terrain can create significant wind loading on the vehicle. Because of the limited information, it is not possible to quantify the magnitude of these loads.

  17. Effects of Second-Order Hydrodynamics on a Semisubmersible Floating Offshore Wind Turbine: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayati, I.; Jonkman, J.; Robertson, A.

    2014-07-01

    The objective of this paper is to assess the second-order hydrodynamic effects on a semisubmersible floating offshore wind turbine. Second-order hydrodynamics induce loads and motions at the sum- and difference-frequencies of the incident waves. These effects have often been ignored in offshore wind analysis, under the assumption that they are significantly smaller than first-order effects. The sum- and difference-frequency loads can, however, excite eigenfrequencies of the system, leading to large oscillations that strain the mooring system or vibrations that cause fatigue damage to the structure. Observations of supposed second-order responses in wave-tank tests performed by the DeepCwind consortium at themore » MARIN offshore basin suggest that these effects might be more important than originally expected. These observations inspired interest in investigating how second-order excitation affects floating offshore wind turbines and whether second-order hydrodynamics should be included in offshore wind simulation tools like FAST in the future. In this work, the effects of second-order hydrodynamics on a floating semisubmersible offshore wind turbine are investigated. Because FAST is currently unable to account for second-order effects, a method to assess these effects was applied in which linearized properties of the floating wind system derived from FAST (including the 6x6 mass and stiffness matrices) are used by WAMIT to solve the first- and second-order hydrodynamics problems in the frequency domain. The method has been applied to the OC4-DeepCwind semisubmersible platform, supporting the NREL 5-MW baseline wind turbine. The loads and response of the system due to the second-order hydrodynamics are analysed and compared to first-order hydrodynamic loads and induced motions in the frequency domain. Further, the second-order loads and induced response data are compared to the loads and motions induced by aerodynamic loading as solved by FAST.« less

  18. Effect of linear and non-linear blade modelling techniques on simulated fatigue and extreme loads using Bladed

    NASA Astrophysics Data System (ADS)

    Beardsell, Alec; Collier, William; Han, Tao

    2016-09-01

    There is a trend in the wind industry towards ever larger and more flexible turbine blades. Blade tip deflections in modern blades now commonly exceed 10% of blade length. Historically, the dynamic response of wind turbine blades has been analysed using linear models of blade deflection which include the assumption of small deflections. For modern flexible blades, this assumption is becoming less valid. In order to continue to simulate dynamic turbine performance accurately, routine use of non-linear models of blade deflection may be required. This can be achieved by representing the blade as a connected series of individual flexible linear bodies - referred to in this paper as the multi-part approach. In this paper, Bladed is used to compare load predictions using single-part and multi-part blade models for several turbines. The study examines the impact on fatigue and extreme loads and blade deflection through reduced sets of load calculations based on IEC 61400-1 ed. 3. Damage equivalent load changes of up to 16% and extreme load changes of up to 29% are observed at some turbine load locations. It is found that there is no general pattern in the loading differences observed between single-part and multi-part blade models. Rather, changes in fatigue and extreme loads with a multi-part blade model depend on the characteristics of the individual turbine and blade. Key underlying causes of damage equivalent load change are identified as differences in edgewise- torsional coupling between the multi-part and single-part models, and increased edgewise rotor mode damping in the multi-part model. Similarly, a causal link is identified between torsional blade dynamics and changes in ultimate load results.

  19. Hub vortex instability within wind turbine wakes: Effects of wind turbulence, loading conditions, and blade aerodynamics

    NASA Astrophysics Data System (ADS)

    Ashton, Ryan; Viola, Francesco; Camarri, Simone; Gallaire, Francois; Iungo, Giacomo Valerio

    2016-11-01

    The near wake of wind turbines is characterized by the presence of the hub vortex, which is a coherent vorticity structure generated from the interaction between the root vortices and the boundary layer evolving over the turbine nacelle. By moving downstream, the hub vortex undergoes an instability with growth rate, azimuthal and axial wavenumbers determined by the characteristics of the incoming wind and turbine aerodynamics. Thus, a large variability of the hub vortex instability is expected for wind energy applications with consequent effects on wake downstream evolution, wake interactions within a wind farm, power production, and fatigue loads on turbines invested by wakes generated upstream. In order to predict characteristics of the hub vortex instability for different operating conditions, linear stability analysis is carried out by considering different statistics of the incoming wind turbulence, thrust coefficient, tip speed ratio, and blade lift distribution of a wind turbine. Axial and azimuthal wake velocity fields are modeled through Carton-McWilliams velocity profiles by mimicking the presence of the hub vortex, helicoidal tip vortices, and matching the wind turbine thrust coefficient predicted through the actuator disk model. The linear stability analysis shows that hub vortex instability is strongly affected by the wind turbine loading conditions, and specifically it is promoted by a larger thrust coefficient. A higher load of the wind turbines produces an enhanced axial velocity deficit and, in turn, higher shear in the radial direction of the streamwise velocity. The axial velocity shear within the turbine wake is also the main physical mechanism promoting the hub vortex instability when varying the lift distribution over the blade span for a specific loading condition. Cases with a larger velocity deficit in proximity of the wake center and less aerodynamic load towards the blade tip result to be more unstable. Moreover, wake swirl promotes hub vortex instability, and it can also affect the azimuthal wave number of the most unstable mode. Finally, higher Reynolds stresses and turbulent eddy viscosity decrease both growth rate and azimuthal wave number of the most unstable mode.

  20. Effect of blade flutter and electrical loading on small wind turbine noise

    USDA-ARS?s Scientific Manuscript database

    The effect of blade flutter and electrical loading on the noise level of two different size wind turbines was investigated at the Conservation and Production Research Laboratory (CPRL) near Bushland, TX. Noise and performance data were collected on two blade designs tested on a wind turbine rated a...

  1. Structural Research Facilities | Wind | NREL

    Science.gov Websites

    enable the characterization and validation of wind turbine blades and components. A photo of a wind operating loads experienced by blades during field operation and accelerated fatigue lifetime loading can be are capable of validating blades and components smaller than 1 meter (m) to more than 50 m in length

  2. 24 CFR 3280.306 - Windstorm protection.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., and across the surface of the full roof structure, as uplift loading. For Wind Zones II and III, the... the structure may be used to resist these wind loading effects in all Wind Zones. (1) The provisions... frame structure to be used as the points for connection of diagonal ties, no specific connecting devices...

  3. 24 CFR 3280.306 - Windstorm protection.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., and across the surface of the full roof structure, as uplift loading. For Wind Zones II and III, the... the structure may be used to resist these wind loading effects in all Wind Zones. (1) The provisions... frame structure to be used as the points for connection of diagonal ties, no specific connecting devices...

  4. High energy overcurrent protective device

    DOEpatents

    Praeg, Walter F.

    1982-01-01

    Electrical loads connected to capacitance elements in high voltage direct current systems are protected from damage by capacitance discharge overcurrents by connecting between the capacitance element and the load, a longitudinal inductor comprising a bifilar winding wound about a magnetic core, which forms an incomplete magnetic circuit. A diode is connected across a portion of the bifilar winding which conducts a unidirectional current only. Energy discharged from the capacitance element is stored in the inductor and then dissipated in an L-R circuit including the diode and the coil winding. Multiple high voltage circuits having capacitance elements may be connected to loads through bifilar windings all wound about the aforementioned magnetic core.

  5. Research on wind power grid-connected operation and dispatching strategies of Liaoning power grid

    NASA Astrophysics Data System (ADS)

    Han, Qiu; Qu, Zhi; Zhou, Zhi; He, Xiaoyang; Li, Tie; Jin, Xiaoming; Li, Jinze; Ling, Zhaowei

    2018-02-01

    As a kind of clean energy, wind power has gained rapid development in recent years. Liaoning Province has abundant wind resources and the total installed capacity of wind power is in the forefront. With the large-scale wind power grid-connected operation, the contradiction between wind power utilization and peak load regulation of power grid has been more prominent. To this point, starting with the power structure and power grid installation situation of Liaoning power grid, the distribution and the space-time output characteristics of wind farm, the prediction accuracy, the curtailment and the off-grid situation of wind power are analyzed. Based on the deep analysis of the seasonal characteristics of power network load, the composition and distribution of main load are presented. Aiming at the problem between the acceptance of wind power and power grid adjustment, the scheduling strategies are given, including unit maintenance scheduling, spinning reserve, energy storage equipment settings by the analysis of the operation characteristics and the response time of thermal power units and hydroelectric units, which can meet the demand of wind power acceptance and provide a solution to improve the level of power grid dispatching.

  6. A New Non-gaussian Turbulent Wind Field Generator to Estimate Design-Loads of Wind-Turbines

    NASA Astrophysics Data System (ADS)

    Schaffarczyk, A. P.; Gontier, H.; Kleinhans, D.; Friedrich, R.

    Climate change and finite fossil fuel resources make it urgent to turn into electricity generation from mostly renewable energies. One major part will play wind-energy supplied by wind-turbines of rated power up to 10 MW. For their design and development wind field models have to be used. The standard models are based on the empirical spectra, for example by von Karman or Kaimal. From investigation of measured data it is clear that gusts are underrepresented in such models. Based on some fundamental discoveries of the nature of turbulence by Friedrich [1] derived from the Navier-Stokes equation directly, we used the concept of Continuous Time Random Walks to construct three dimensional wind fields obeying non-Gaussian statistics. These wind fields were used to estimate critical fatigue loads necessary within the certification process. Calculations are carried out with an implementation of a beam-model (FLEX5) for two types of state-of-the-art wind turbines The authors considered the edgewise and flapwise blade-root bending moments as well as tilt moment at tower top due to the standard wind field models and our new non-Gaussian wind field model. Clear differences in the loads were found.

  7. Extreme winds and tornadoes: design and evaluation of buildings and structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, J.R.

    1985-01-01

    The general provisions of ANSI A58.1-1982 are explained in detail. As mentioned above, these procedures may be used to determine design wind loads on structures from extreme winds, hurricane and tornado winds. Treatment of atmospheric pressure change loads are discussed, including recommendations for venting a building, if necessary, and the effects of rate of pressure change on HVAC systems. Finally, techniques for evaluating existing facilities are described.

  8. Assessing Fatigue and Ultimate Load Uncertainty in Floating Offshore Wind Turbines Due to Varying Simulation Length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, G.; Lackner, M.; Haid, L.

    2013-07-01

    With the push towards siting wind turbines farther offshore due to higher wind quality and less visibility, floating offshore wind turbines, which can be located in deep water, are becoming an economically attractive option. The International Electrotechnical Commission's (IEC) 61400-3 design standard covers fixed-bottom offshore wind turbines, but there are a number of new research questions that need to be answered to modify these standards so that they are applicable to floating wind turbines. One issue is the appropriate simulation length needed for floating turbines. This paper will discuss the results from a study assessing the impact of simulation lengthmore » on the ultimate and fatigue loads of the structure, and will address uncertainties associated with changing the simulation length for the analyzed floating platform. Recommendations of required simulation length based on load uncertainty will be made and compared to current simulation length requirements.« less

  9. Power performance optimization and loads alleviation with active flaps using individual flap control

    NASA Astrophysics Data System (ADS)

    Pettas, Vasilis; Barlas, Thanasis; Gertz, Drew; Madsen, Helge A.

    2016-09-01

    The present article investigates the potential of Active Trailing Edge Flaps (ATEF) in terms of increase in annual energy production (AEP) as well as reduction of fatigue loads. The basis for this study is the DTU 10 MW Reference Wind Turbine (RWT) simulated using the aeroelastic code HAWC2. In an industrial-oriented manner the baseline rotor is upscaled by 5% and the ATEFs are implemented in the outer 30% of the blades. The flap system is kept simple and robust with a single flap section and control with wind speed, rotor azimuth, root bending moments and angle of attack in flap's mid-section being the sensor inputs. The AEP is increased due to the upscaling but also further due to the flap system while the fatigue loads in components of interest (blade, tower, nacelle and main bearing) are reduced close to the level of the original turbine. The aim of this study is to demonstrate a simple and applicable method that can be a technology enabler for rotor upscaling and lowering cost of energy.

  10. Aerothermoelastic Analysis of a NASP-Like Vertical Fin

    NASA Technical Reports Server (NTRS)

    Rodgers, John P.

    1992-01-01

    Several aeroelastic stability analyses for a vertical fin similar to that of the National Aero-Space Plane are described. The objectives of the study were to design and obtain an experimental data base for a supersonic wind-tunnel model of the fin in order to examine the effects of thermal loading on the flutter characteristics. This paper describes the preliminary efforts to design the wind-tunnel model, including several of the geometric parameter variations that were analyzed. The dominant flutter mechanism involved a flap vibration mode and a fin bending mode. Variation of the thicknesses of flap and root flexures, used to attach the flap to the fin, and the fin to a support, significantly affected the flutter boundary. Uniform thermal loads, affecting only material properties, had little effect, as did the application of different uniform temperatures to each side of the fin. In contrast, the application of significant chord-wise thermal gradients induced stresses which reduced the flutter dynamic pressure by as much as 37 percent. For less extreme distributed loading, the low-aspect ratio fin was relatively unaffected.

  11. Tailoring the Employment of Offshore Wind Turbine Support Structure Load Mitigation Controllers

    NASA Astrophysics Data System (ADS)

    Shrestha, Binita; Kühn, Martin

    2016-09-01

    The currently available control concepts to mitigate aerodynamic and hydrodynamic induced support structure loads reduce either fore-aft or side-to-side damage under certain operational conditions. The load reduction is achieved together with an increase in loads in other components of the turbine e.g. pitch actuators or drive train, increasing the risk of unscheduled maintenance. The main objective of this paper is to demonstrate a methodology for reduction of support structure damage equivalent loads (DEL) in fore-aft and side-to-side directions using already available control concepts. A multi-objective optimization problem is formulated to minimize the DELs, while limiting the collateral effects of the control algorithms for load reduction. The optimization gives trigger values of sea state condition for the activation or deactivation of certain control concepts. As a result, by accepting the consumption of a small fraction of the load reserve in the design load envelope of other turbine components, a considerable reduction of the support structure loads is facilitated.

  12. Electric Grid Expansion Planning with High Levels of Variable Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadley, Stanton W.; You, Shutang; Shankar, Mallikarjun

    2016-02-01

    Renewables are taking a large proportion of generation capacity in U.S. power grids. As their randomness has increasing influence on power system operation, it is necessary to consider their impact on system expansion planning. To this end, this project studies the generation and transmission expansion co-optimization problem of the US Eastern Interconnection (EI) power grid with a high wind power penetration rate. In this project, the generation and transmission expansion problem for the EI system is modeled as a mixed-integer programming (MIP) problem. This study analyzed a time series creation method to capture the diversity of load and wind powermore » across balancing regions in the EI system. The obtained time series can be easily introduced into the MIP co-optimization problem and then solved robustly through available MIP solvers. Simulation results show that the proposed time series generation method and the expansion co-optimization model and can improve the expansion result significantly after considering the diversity of wind and load across EI regions. The improved expansion plan that combines generation and transmission will aid system planners and policy makers to maximize the social welfare. This study shows that modelling load and wind variations and diversities across balancing regions will produce significantly different expansion result compared with former studies. For example, if wind is modeled in more details (by increasing the number of wind output levels) so that more wind blocks are considered in expansion planning, transmission expansion will be larger and the expansion timing will be earlier. Regarding generation expansion, more wind scenarios will slightly reduce wind generation expansion in the EI system and increase the expansion of other generation such as gas. Also, adopting detailed wind scenarios will reveal that it may be uneconomic to expand transmission networks for transmitting a large amount of wind power through a long distance in the EI system. Incorporating more details of renewables in expansion planning will inevitably increase the computational burden. Therefore, high performance computing (HPC) techniques are urgently needed for power system operation and planning optimization. As a scoping study task, this project tested some preliminary parallel computation techniques such as breaking down the simulation task into several sub-tasks based on chronology splitting or sample splitting, and then assigning these sub-tasks to different cores. Testing results show significant time reduction when a simulation task is split into several sub-tasks for parallel execution.« less

  13. Extreme winds and tornadoes: an overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, J.R.

    1985-01-01

    The objective of this course on extreme winds, hurricanes and tornadoes is to provide an overview of these natural phenomenon from the perspective of design of new buildings and structures or the evaluation of existing ones. Information is directly applicable to design and evaluation processes. The premise is that the facility under consideration, which may consist of various buildings, structures, processing equipment, stacks, ventilation ducts, etc., can be classified into certain categories, depending on the importance of the mission performed in the facility or the hazard that is presented by the particular operation. Having classified the facility into an appropriatemore » category will automatically define certain design goals for the facility. The design goals are then met by selecting a design wind speed that is appropriate for the specified exceedance probability and by following certain specified design procedures. The problem then is to determine appropriate wind loads and other applicable loads, including dead loads, live loads, seismic loads and other loads that may act on the structures. The design process can then proceed in the usual manner. In the case of existing facilities the strengths of the various structural elements, subsystems and systems are evaluated and these strengths are related to wind speeds that would result in failure to meet the design goals. 12 refs.« less

  14. On Wind Forces in the Forest-Edge Region During Extreme-Gust Passages and Their Implications for Damage Patterns

    NASA Astrophysics Data System (ADS)

    Gromke, Christof; Ruck, Bodo

    2018-03-01

    A damage pattern that is occasionally found after a period of strong winds shows an area of damaged trees inside a forest stand behind an intact stripe of trees directly at the windward edge. In an effort to understand the mechanism leading to this damage pattern, wind loading in the forest-edge region during passages of extreme gusts with different characteristics are investigated using a scaled forest model in the wind tunnel. The interaction of a transient extreme gust with the stationary atmospheric boundary layer (ABL) as a background flow at the forest edge leads to the formation of a vortex at the top of the canopy. This vortex intensifies when travelling downstream and subsequently deflects high-momentum air from above the canopy downwards resulting in increased wind loading on the tree crowns. Under such conditions, the decrease in wind loading in the streamwise direction can be relatively weak compared to stationary ABL approach flows. The resistance of trees with streamwise distance from the forest edge, however, is the result of adaptive growth to wind loading under stationary flow conditions and shows a rapid decline within two to three tree heights behind the windward edge. For some of the extreme gusts realized, an exceedance of the wind loading over the resistance of the trees is found at approximately three tree heights behind the forest edge, suggesting that the damage pattern described above can be caused by the interaction of a transient extreme gust with the stationary ABL flow.

  15. An experimental investigation on wind turbine aeromechanics and wake interferences among multiple wind turbines

    NASA Astrophysics Data System (ADS)

    Ozbay, Ahmet

    A comprehensive experimental study was conducted to investigate wind turbine aeromechanics and wake interferences among multiple wind turbines sited in onshore and offshore wind farms. The experiments were carried out in a large-scale Aerodynamic/Atmospheric Boundary Layer (AABL) Wind Tunnel available at Iowa State University. An array of scaled three-blade Horizontal Axial Wind Turbine (HAWT) models were placed in atmospheric boundary layer winds with different mean and turbulence characteristics to simulate the situations in onshore and offshore wind farms. The effects of the important design parameters for wind farm layout optimization, which include the mean and turbulence characteristics of the oncoming surface winds, the yaw angles of the turbines with respect to the oncoming surface winds, the array spacing and layout pattern, and the terrain topology of wind farms on the turbine performances (i.e., both power output and dynamic wind loadings) and the wake interferences among multiple wind turbines, were assessed in detail. The aeromechanic performance and near wake characteristics of a novel dual-rotor wind turbine (DRWT) design with co-rotating or counter-rotating configuration were also investigated, in comparison to a conventional single rotor wind turbine (SRWT). During the experiments, in addition to measuring dynamic wind loads (both forces and moments) and the power outputs of the scaled turbine models, a high-resolution Particle Image Velocity (PIV) system was used to conduct detailed flow field measurements (i.e., both free-run and phase-locked flow fields measurements) to reveal the transient behavior of the unsteady wake vortices and turbulent flow structures behind wind turbines and to quantify the characteristics of the wake interferences among the wind turbines sited in non-homogenous surface winds. A miniature cobra anemometer was also used to provide high-temporal-resolution data at points of interest to supplement the full field PIV measurement results. The detailed flow field measurements are correlated with the dynamic wind loads and power output measurements to elucidate underlying physics in order to gain further insight into the characteristics of the power generation performance, dynamic wind loads and wake interferences of the wind turbines for higher total power yield and better durability of the wind turbines sited in atmospheric boundary layer (ABL) winds.

  16. DOE/NASA Mod-0 100KW wind turbine test results

    NASA Technical Reports Server (NTRS)

    Glasgow, J. C.

    1978-01-01

    The Wind Turbine demonstrates the capability of automatic unattended operation, including startup, achieving synchronism, and shutdown as dictated by wind conditions. During the course of these operations, a wealth of engineering data was generated. Some of the data which is associated with rotor and machine dynamics problems encountered, and the machine modifications incorporated as a solution are presented. These include high blade loads due to tower shadow, excessive nacelle yawing motion, and power oscillations. The results of efforts to correlate measured wind velocity with power output and wind turbine loads are also discussed.

  17. Experimental analysis on the dynamic wake of an actuator disc undergoing transient loads

    NASA Astrophysics Data System (ADS)

    Yu, W.; Hong, V. W.; Ferreira, C.; van Kuik, G. A. M.

    2017-10-01

    The Blade Element Momentum model, which is based on the actuator disc theory, is still the model most used for the design of open rotors. Although derived from steady cases with a fully developed wake, this approach is also applied to unsteady cases, with additional engineering corrections. This work aims to study the impact of an unsteady loading on the wake of an actuator disc. The load and flow of an actuator disc are measured in the Open Jet Facility wind tunnel of Delft University of Technology, for steady and unsteady cases. The velocity and turbulence profiles are characterized in three regions: the inner wake region, the shear layer region and the region outside the wake. For unsteady load cases, the measured velocity field shows a hysteresis effect in relation to the loading, showing differences between the cases when loading is increased and loading is decreased. The flow field also shows a transient response to the step change in loading, with either an overshoot or undershoot of the velocity in relation to the steady-state velocity. In general, a smaller reduced ramp time results in a faster velocity transient, and in turn a larger amplitude of overshoot or undershoot. Time constants analysis shows that the flow reaches the new steady-state slower for load increase than for load decrease; the time constants outside the wake are generally larger than at other radial locations for a given downstream plane; the time constants of measured velocity in the wake show radial dependence.The data are relevant for the validation of numerical models for unsteady actuator discs and wind turbines, and are made available in an open source database (see Appendix).

  18. Optimisation and evaluation of pre-design models for offshore wind turbines with jacket support structures and their influence on integrated load simulations

    NASA Astrophysics Data System (ADS)

    Schafhirt, S.; Kaufer, D.; Cheng, P. W.

    2014-12-01

    In recent years many advanced load simulation tools, allowing an aero-servo-hydroelastic analyses of an entire offshore wind turbine, have been developed and verified. Nowadays, even an offshore wind turbine with a complex support structure such as a jacket can be analysed. However, the computational effort rises significantly with an increasing level of details. This counts especially for offshore wind turbines with lattice support structures, since those models do naturally have a higher number of nodes and elements than simpler monopile structures. During the design process multiple load simulations are demanded to obtain an optimal solution. In the view of pre-design tasks it is crucial to apply load simulations which keep the simulation quality and the computational effort in balance. The paper will introduce a reference wind turbine model consisting of the REpower5M wind turbine and a jacket support structure with a high level of detail. In total twelve variations of this reference model are derived and presented. Main focus is to simplify the models of the support structure and the foundation. The reference model and the simplified models are simulated with the coupled simulation tool Flex5-Poseidon and analysed regarding frequencies, fatigue loads, and ultimate loads. A model has been found which reaches an adequate increase of simulation speed while holding the results in an acceptable range compared to the reference results.

  19. Influence of Reynolds Number on Multi-Objective Aerodynamic Design of a Wind Turbine Blade

    PubMed Central

    Ge, Mingwei; Fang, Le; Tian, De

    2015-01-01

    At present, the radius of wind turbine rotors ranges from several meters to one hundred meters, or even more, which extends Reynolds number of the airfoil profile from the order of 105 to 107. Taking the blade for 3MW wind turbines as an example, the influence of Reynolds number on the aerodynamic design of a wind turbine blade is studied. To make the study more general, two kinds of multi-objective optimization are involved: one is based on the maximum power coefficient (C Popt) and the ultimate load, and the other is based on the ultimate load and the annual energy production (AEP). It is found that under the same configuration, the optimal design has a larger C Popt or AEP (C Popt//AEP) for the same ultimate load, or a smaller load for the same C Popt//AEP at higher Reynolds number. At a certain tip-speed ratio or ultimate load, the blade operating at higher Reynolds number should have a larger chord length and twist angle for the maximum C popt//AEP. If a wind turbine blade is designed by using an airfoil database with a mismatched Reynolds number from the actual one, both the load and C popt//AEP will be incorrectly estimated to some extent. In some cases, the assessment error attributed to Reynolds number is quite significant, which may bring unexpected risks to the earnings and safety of a wind power project. PMID:26528815

  20. Effects of Offshore Wind Turbines on Ocean Waves

    NASA Astrophysics Data System (ADS)

    Wimer, Nicholas; Churchfield, Matthew; Hamlington, Peter

    2014-11-01

    Wakes from horizontal axis wind turbines create large downstream velocity deficits, thus reducing the available energy for downstream turbines while simultaneously increasing turbulent loading. Along with this deficit, however, comes a local increase in the velocity around the turbine rotor, resulting in increased surface wind speeds. For offshore turbines, these increased speeds can result in changes to the properties of wind-induced waves at the ocean surface. In this study, the characteristics and implications of such waves are explored by coupling a wave simulation code to the Simulator for Offshore Wind Farm Applications (SOWFA) developed by the National Renewable Energy Laboratory. The wave simulator and SOWFA are bi-directionally coupled using the surface wind field produced by an offshore wind farm to drive an ocean wave field, which is used to calculate a wave-dependent surface roughness that is fed back into SOWFA. The details of this combined framework are outlined. The potential for using the wave field created at offshore wind farms as an additional energy resource through the installation of on-site wave converters is discussed. Potential negative impacts of the turbine-induced wave field are also discussed, including increased oscillation of floating turbines.

  1. Differential Effects of Cognitive Load on University Wind Students' Practice

    ERIC Educational Resources Information Center

    Stambaugh, Laura A.

    2013-01-01

    The purpose of this study was to investigate the effects of cognitive load during practice on university wind students' learning. Cognitive load was manipulated through instrument family (woodwind or brass) and the amount of repetition used in practice (highly repetitive or random). University woodwind and valved-brass students (N = 46)…

  2. Wind Energy Deployment in Isolated Islanded Power Systems: Challenges & Realities (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baring-Gould, I.

    Rising costs of fuels, energy surety, and the carbon impacts of diesel fuel are driving remote and islanded communities dependent on diesel power generation to look for alternatives. Over the past few years, interest in using wind energy to reduce diesel fuel consumption has increased dramatically, potentially providing economic, environmental, social, and security benefits to the energy supply of isolated and islanded communities. However, the task of implementing such systems has remained elusive and subject to many cases of lower-than-expected performance. This poster describes the current status of integrating higher contribution wind technology into islanded power systems, the progress ofmore » recent initiatives implemented by the U.S. Department of Energy and Interior, and some of the lingering technical and commercial challenges. Operating experience from a number of power systems is described. The worldwide market for wind development in islanded communities (some of these supplying large domestic loads) provides a strong market niche for the wind industry, even in the midst of a slow global recovery.« less

  3. Design and Optimization of Slot Aluminum Alloy Connectors of Photovoltaics Applied to High-rise Building Facades

    NASA Astrophysics Data System (ADS)

    Liang, Ya-Wei; Zhang, Hong-Mei; Dong, Jin-Zhi; Shi, Zhen-Hua

    2016-05-01

    Building Integrated Photovoltaic (BIPV) is a resort to save energy and reduce heat gain of buildings, utilize new and renewable energy, solve environment problems and alleviate electricity shortage in large cities. The area needed to generate power makes facade integrated photovoltaic panel a superb choice, especially in high-rise buildings. Numerous scholars have hitherto explored Building Facade Integrated Photovoltaic, however, focusing mainly on thermal performance, which fails to ensure seismic safety of high-rise buildings integrated photovoltaic. Based on connecting forms of the glass curtain wall, a connector jointing photovoltaic panel and facade was designed, which underwent loading position and size optimization. Static loading scenarios were conducted to test and verify the connector's mechanical properties under gravity and wind loading by means of HyperWorks. Compared to the unoptimized design, the optimized one saved material and managed to reduce maximum deflection by 74.64%.

  4. Probabilistic characterization of wind turbine blades via aeroelasticity and spinning finite element formulation

    NASA Astrophysics Data System (ADS)

    Velazquez, Antonio; Swartz, R. Andrew

    2012-04-01

    Wind energy is an increasingly important component of this nation's renewable energy portfolio, however safe and economical wind turbine operation is a critical need to ensure continued adoption. Safe operation of wind turbine structures requires not only information regarding their condition, but their operational environment. Given the difficulty inherent in SHM processes for wind turbines (damage detection, location, and characterization), some uncertainty in conditional assessment is expected. Furthermore, given the stochastic nature of the loading on turbine structures, a probabilistic framework is appropriate to characterize their risk of failure at a given time. Such information will be invaluable to turbine controllers, allowing them to operate the structures within acceptable risk profiles. This study explores the characterization of the turbine loading and response envelopes for critical failure modes of the turbine blade structures. A framework is presented to develop an analytical estimation of the loading environment (including loading effects) based on the dynamic behavior of the blades. This is influenced by behaviors including along and across-wind aero-elastic effects, wind shear gradient, tower shadow effects, and centrifugal stiffening effects. The proposed solution includes methods that are based on modal decomposition of the blades and require frequent updates to the estimated modal properties to account for the time-varying nature of the turbine and its environment. The estimated demand statistics are compared to a code-based resistance curve to determine a probabilistic estimate of the risk of blade failure given the loading environment.

  5. Unsteady wind loads for TMT: replacing parametric models with CFD

    NASA Astrophysics Data System (ADS)

    MacMartin, Douglas G.; Vogiatzis, Konstantinos

    2014-08-01

    Unsteady wind loads due to turbulence inside the telescope enclosure result in image jitter and higher-order image degradation due to M1 segment motion. Advances in computational fluid dynamics (CFD) allow unsteady simulations of the flow around realistic telescope geometry, in order to compute the unsteady forces due to wind turbulence. These simulations can then be used to understand the characteristics of the wind loads. Previous estimates used a parametric model based on a number of assumptions about the wind characteristics, such as a von Karman spectrum and frozen-flow turbulence across M1, and relied on CFD only to estimate parameters such as mean wind speed and turbulent kinetic energy. Using the CFD-computed forces avoids the need for assumptions regarding the flow. We discuss here both the loads on the telescope that lead to image jitter, and the spatially-varying force distribution across the primary mirror, using simulations with the Thirty Meter Telescope (TMT) geometry. The amplitude, temporal spectrum, and spatial distribution of wind disturbances are all estimated; these are then used to compute the resulting image motion and degradation. There are several key differences relative to our earlier parametric model. First, the TMT enclosure provides sufficient wind reduction at the top end (near M2) to render the larger cross-sectional structural areas further inside the enclosure (including M1) significant in determining the overall image jitter. Second, the temporal spectrum is not von Karman as the turbulence is not fully developed; this applies both in predicting image jitter and M1 segment motion. And third, for loads on M1, the spatial characteristics are not consistent with propagating a frozen-flow turbulence screen across the mirror: Frozen flow would result in a relationship between temporal frequency content and spatial frequency content that does not hold in the CFD predictions. Incorporating the new estimates of wind load characteristics into TMT response predictions leads to revised estimates of the response of TMT to wind turbulence, and validates the aerodynamic design of the enclosure.

  6. The structure of mass-loading shocks. [interaction of solar wind with cometary coma or local interstellar medium using two-fluid model

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Khabibrakhmanov, I. KH.; Story, T.

    1993-01-01

    A new two-fluid model which describes mass loading in the solar wind (e.g., the interaction of the solar wind with a cometary coma or the local interstellar medium) is presented. The self-consistent back-reaction of the mass-loaded ions is included through their effective scattering in low-frequency MHD turbulence and the invocation of a diffusive approximation. Such an approximation has the advantage of introducing self-consistent dissipation coefficients into the governing equations, thereby facilitating the investigation of the internal structure of shocks in mass-loading environments. To illustrate the utility of the new model, we consider the structure of cometary shocks in the hypersonic one-dimensional limit, finding that the incoming solar wind is slowed by both mass loading and the development of a large cometary ion pressure gradient. The shock is broadened and smoothed by the cometary ions with a thickness of the order of the cometary ion diffusion scale.

  7. Coordinated Control of Wind Turbine and Energy Storage System for Reducing Wind Power Fluctuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Chunghun; Muljadi, Eduard; Chung, Chung Choo

    This paper proposes a method for the coordinated control of a wind turbine and an energy storage system (ESS). Because wind power (WP) is highly dependent on wind speed, which is variable, severe stability problems can be caused in power systems, especially when the WP has a high penetration level. To solve this problem, many power generation corporations or grid operators have begun using ESSs. An ESS has very quick response and good performance for reducing the impact of WP fluctuation; however, its installation cost is high. Therefore, it is important to design the control algorithm by considering both themore » ESS capacity and WP fluctuation. Thus, we propose a control algorithm to mitigate the WP fluctuation by using the coordinated control between the wind turbine and the ESS by considering the ESS capacity and the WP fluctuation. Using de-loaded control, according to the WP fluctuation and ESS capacity, we can expand the ESS lifespan and improve grid reliability by avoiding the extreme value of state of charge (SoC) (i.e., 0 or 1 pu). The effectiveness of the proposed method was validated via MATLAB/Simulink by considering a small power system that includes both a wind turbine generator and conventional generators that react to system frequency deviation. We found that the proposed method has better performance in SoC management, thereby improving the frequency regulation by mitigating the impact of the WP fluctuation on the small power system.« less

  8. Coordinated Control of Wind Turbine and Energy Storage System for Reducing Wind Power Fluctuation

    DOE PAGES

    Kim, Chunghun; Muljadi, Eduard; Chung, Chung Choo

    2017-12-27

    This paper proposes a method for the coordinated control of a wind turbine and an energy storage system (ESS). Because wind power (WP) is highly dependent on wind speed, which is variable, severe stability problems can be caused in power systems, especially when the WP has a high penetration level. To solve this problem, many power generation corporations or grid operators have begun using ESSs. An ESS has very quick response and good performance for reducing the impact of WP fluctuation; however, its installation cost is high. Therefore, it is important to design the control algorithm by considering both themore » ESS capacity and WP fluctuation. Thus, we propose a control algorithm to mitigate the WP fluctuation by using the coordinated control between the wind turbine and the ESS by considering the ESS capacity and the WP fluctuation. Using de-loaded control, according to the WP fluctuation and ESS capacity, we can expand the ESS lifespan and improve grid reliability by avoiding the extreme value of state of charge (SoC) (i.e., 0 or 1 pu). The effectiveness of the proposed method was validated via MATLAB/Simulink by considering a small power system that includes both a wind turbine generator and conventional generators that react to system frequency deviation. We found that the proposed method has better performance in SoC management, thereby improving the frequency regulation by mitigating the impact of the WP fluctuation on the small power system.« less

  9. Power Flow Simulations of a More Renewable California Grid Utilizing Wind and Solar Insolation Forecasting

    NASA Astrophysics Data System (ADS)

    Hart, E. K.; Jacobson, M. Z.; Dvorak, M. J.

    2008-12-01

    Time series power flow analyses of the California electricity grid are performed with extensive addition of intermittent renewable power. The study focuses on the effects of replacing non-renewable and imported (out-of-state) electricity with wind and solar power on the reliability of the transmission grid. Simulations are performed for specific days chosen throughout the year to capture seasonal fluctuations in load, wind, and insolation. Wind farm expansions and new wind farms are proposed based on regional wind resources and time-dependent wind power output is calculated using a meteorological model and the power curves of specific wind turbines. Solar power is incorporated both as centralized and distributed generation. Concentrating solar thermal plants are modeled using local insolation data and the efficiencies of pre-existing plants. Distributed generation from rooftop PV systems is included using regional insolation data, efficiencies of common PV systems, and census data. The additional power output of these technologies offsets power from large natural gas plants and is balanced for the purposes of load matching largely with hydroelectric power and by curtailment when necessary. A quantitative analysis of the effects of this significant shift in the electricity portfolio of the state of California on power availability and transmission line congestion, using a transmission load-flow model, is presented. A sensitivity analysis is also performed to determine the effects of forecasting errors in wind and insolation on load-matching and transmission line congestion.

  10. Development of performance specifications for hybrid modeling of floating wind turbines in wave basin tests

    DOE PAGES

    Hall, Matthew; Goupee, Andrew; Jonkman, Jason

    2017-08-24

    Hybrid modeling—combining physical testing and numerical simulation in real time$-$opens new opportunities in floating wind turbine research. Wave basin testing is an important validation step for floating support structure design, but the conventional approaches that use physical wind above the basin are limited by scaling problems in the aerodynamics. Applying wind turbine loads with an actuation system that is controlled by a simulation responding to the basin test in real time offers a way to avoid scaling problems and reduce cost barriers for floating wind turbine design validation in realistic coupled wind and wave conditions. This paper demonstrates the developmentmore » of performance specifications for a system that couples a wave basin experiment with a wind turbine simulation. Two different points for the hybrid coupling are considered: the tower-base interface and the aero-rotor interface (the boundary between aerodynamics and the rotor structure). Analyzing simulations of three floating wind turbine designs across seven load cases reveals the motion and force requirements of the coupling system. By simulating errors in the hybrid coupling system, the sensitivity of the floating wind turbine response to coupling quality can be quantified. The sensitivity results can then be used to determine tolerances for motion tracking errors, force actuation errors, bandwidth limitations, and latency in the hybrid coupling system. These tolerances can guide the design of hybrid coupling systems to achieve desired levels of accuracy. An example demonstrates how the developed methods can be used to generate performance specifications for a system at 1:50 scale. Results show that sensitivities vary significantly between support structure designs and that coupling at the aero-rotor interface has less stringent requirements than those for coupling at the tower base. As a result, the methods and results presented here can inform design of future hybrid coupling systems and enhance understanding of how test results are affected by hybrid coupling quality.« less

  11. Development of performance specifications for hybrid modeling of floating wind turbines in wave basin tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Matthew; Goupee, Andrew; Jonkman, Jason

    Hybrid modeling—combining physical testing and numerical simulation in real time$-$opens new opportunities in floating wind turbine research. Wave basin testing is an important validation step for floating support structure design, but the conventional approaches that use physical wind above the basin are limited by scaling problems in the aerodynamics. Applying wind turbine loads with an actuation system that is controlled by a simulation responding to the basin test in real time offers a way to avoid scaling problems and reduce cost barriers for floating wind turbine design validation in realistic coupled wind and wave conditions. This paper demonstrates the developmentmore » of performance specifications for a system that couples a wave basin experiment with a wind turbine simulation. Two different points for the hybrid coupling are considered: the tower-base interface and the aero-rotor interface (the boundary between aerodynamics and the rotor structure). Analyzing simulations of three floating wind turbine designs across seven load cases reveals the motion and force requirements of the coupling system. By simulating errors in the hybrid coupling system, the sensitivity of the floating wind turbine response to coupling quality can be quantified. The sensitivity results can then be used to determine tolerances for motion tracking errors, force actuation errors, bandwidth limitations, and latency in the hybrid coupling system. These tolerances can guide the design of hybrid coupling systems to achieve desired levels of accuracy. An example demonstrates how the developed methods can be used to generate performance specifications for a system at 1:50 scale. Results show that sensitivities vary significantly between support structure designs and that coupling at the aero-rotor interface has less stringent requirements than those for coupling at the tower base. As a result, the methods and results presented here can inform design of future hybrid coupling systems and enhance understanding of how test results are affected by hybrid coupling quality.« less

  12. Comparison of the lifting-line free vortex wake method and the blade-element-momentum theory regarding the simulated loads of multi-MW wind turbines

    NASA Astrophysics Data System (ADS)

    Hauptmann, S.; Bülk, M.; Schön, L.; Erbslöh, S.; Boorsma, K.; Grasso, F.; Kühn, M.; Cheng, P. W.

    2014-12-01

    Design load simulations for wind turbines are traditionally based on the blade- element-momentum theory (BEM). The BEM approach is derived from a simplified representation of the rotor aerodynamics and several semi-empirical correction models. A more sophisticated approach to account for the complex flow phenomena on wind turbine rotors can be found in the lifting-line free vortex wake method. This approach is based on a more physics based representation, especially for global flow effects. This theory relies on empirical correction models only for the local flow effects, which are associated with the boundary layer of the rotor blades. In this paper the lifting-line free vortex wake method is compared to a state- of-the-art BEM formulation with regard to aerodynamic and aeroelastic load simulations of the 5MW UpWind reference wind turbine. Different aerodynamic load situations as well as standardised design load cases that are sensitive to the aeroelastic modelling are evaluated in detail. This benchmark makes use of the AeroModule developed by ECN, which has been coupled to the multibody simulation code SIMPACK.

  13. An examination of loads and responses of a wind turbine undergoing variable-speed operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, A.D.; Buhl, M.L. Jr.; Bir, G.S.

    1996-11-01

    The National Renewable Energy Laboratory has recently developed the ability to predict turbine loads and responses for machines undergoing variable-speed operation. The wind industry has debated the potential benefits of operating wind turbine sat variable speeds for some time. Turbine system dynamic responses (structural response, resonance, and component interactions) are an important consideration for variable-speed operation of wind turbines. The authors have implemented simple, variable-speed control algorithms for both the FAST and ADAMS dynamics codes. The control algorithm is a simple one, allowing the turbine to track the optimum power coefficient (C{sub p}). The objective of this paper is tomore » show turbine loads and responses for a particular two-bladed, teetering-hub, downwind turbine undergoing variable-speed operation. The authors examined the response of the machine to various turbulent wind inflow conditions. In addition, they compare the structural responses under fixed-speed and variable-speed operation. For this paper, they restrict their comparisons to those wind-speed ranges for which limiting power by some additional control strategy (blade pitch or aileron control, for example) is not necessary. The objective here is to develop a basic understanding of the differences in loads and responses between the fixed-speed and variable-speed operation of this wind turbine configuration.« less

  14. Dynamically Tuned Blade Pitch Links for Vibration Reduction

    NASA Technical Reports Server (NTRS)

    Milgram, Judah; Chopra, Inderjit; Kottapalli, Sesi

    1994-01-01

    A passive vibration reduction device in which the conventional main rotor blade pitch link is replaced by a spring/damper element is investigated using a comprehensive rotorcraft analysis code. A case study is conducted for a modern articulated helicopter main rotor. Correlation of vibratory pitch link loads with wind tunnel test data is satisfactory for lower harmonics. Inclusion of unsteady aerodynamics had little effect on the correlation. In the absence of pushrod damping, reduction in pushrod stiffness from the baseline value had an adverse effect on vibratory hub loads in forward flight. However, pushrod damping in combination with reduced pushrod stiffness resulted in modest improvements in fixed and rotating system hub loads.

  15. Loads and performance data from a wind-tunnel test of model articulated helicopter rotors with 2 different blade torsional stiffnesses

    NASA Technical Reports Server (NTRS)

    Yeager, W. T., Jr.; Mantay, W. R.

    1983-01-01

    A passive means of tailoring helicopter rotor blades to improve performance and reduce loads was evaluated. The parameters investigated were blade torsional stiffness, blade section camber, and distance between blade structural elastic axis and blade tip aerodynamic center. This offset was accomplished by sweeping the tip. The investigation was conducted at advance ratios of 0.20, 0.30, and 0.40. Data are presented without analysis; however, cross referencing of performance data and harmonic loads data may be useful to the analyst for validating aeroelastic theories and design methodologies as well as for evaluating passive aeroelastic tailoring or rotor blade parameters.

  16. Coordinated control strategy for improving the two drops of the wind storage combined system

    NASA Astrophysics Data System (ADS)

    Qian, Zhou; Chenggen, Wang; Jing, Bu

    2018-05-01

    In the power system with high permeability wind power, due to wind power fluctuation, the operation of large-scale wind power grid connected to the system brings challenges to the frequency stability of the system. When the doubly fed wind power generation unit does not reserve spare capacity to participate in the system frequency regulation, the system frequency will produce two drops in different degrees when the wind power exits frequency modulation and enters the speed recovery stage. To solve this problem, based on the complementary advantages of wind turbines and energy storage systems in power transmission and frequency modulation, a wind storage combined frequency modulation strategy based on sectional control is proposed in this paper. Based on the TOP wind power frequency modulation strategy, the wind power output reference value is determined according to the linear relationship between the output and the speed of the wind turbine, and the auxiliary wind power load reduction is controlled when the wind power exits frequency modulation into the speed recovery stage, so that the wind turbine is recovered to run at the optimal speed. Then, according to the system frequency and the wind turbine operation state, set the energy storage system frequency modulation output. Energy storage output active support is triggered during wind speed recovery. And then when the system frequency to return to the normal operating frequency range, reduce energy storage output or to exit frequency modulation. The simulation results verify the effectiveness of the proposed method.

  17. Active load control during rolling maneuvers. [performed in the Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Pototzky, Anthony S.; Hoadley, Sherwood T.

    1994-01-01

    A rolling maneuver load alleviation (RMLA) system has been demonstrated on the active flexible wing (AFW) wind tunnel model in the Langley Transonic Dynamics Tunnel (TDT). The objective was to develop a systematic approach for designing active control laws to alleviate wing loads during rolling maneuvers. Two RMLA control laws were developed that utilized outboard control-surface pairs (leading and trailing edge) to counteract the loads and that used inboard trailing-edge control-surface pairs to maintain roll performance. Rolling maneuver load tests were performed in the TDT at several dynamic pressures that included two below and one 11 percent above open-loop flutter dynamic pressure. The RMLA system was operated simultaneously with an active flutter suppression system above open-loop flutter dynamic pressure. At all dynamic pressures for which baseline results were obtained, torsion-moment loads were reduced for both RMLA control laws. Results for bending-moment load reductions were mixed; however, design equations developed in this study provided conservative estimates of load reduction in all cases.

  18. Study on Unified Chaotic System-Based Wind Turbine Blade Fault Diagnostic System

    NASA Astrophysics Data System (ADS)

    Kuo, Ying-Che; Hsieh, Chin-Tsung; Yau, Her-Terng; Li, Yu-Chung

    At present, vibration signals are processed and analyzed mostly in the frequency domain. The spectrum clearly shows the signal structure and the specific characteristic frequency band is analyzed, but the number of calculations required is huge, resulting in delays. Therefore, this study uses the characteristics of a nonlinear system to load the complete vibration signal to the unified chaotic system, applying the dynamic error to analyze the wind turbine vibration signal, and adopting extenics theory for artificial intelligent fault diagnosis of the analysis signal. Hence, a fault diagnostor has been developed for wind turbine rotating blades. This study simulates three wind turbine blade states, namely stress rupture, screw loosening and blade loss, and validates the methods. The experimental results prove that the unified chaotic system used in this paper has a significant effect on vibration signal analysis. Thus, the operating conditions of wind turbines can be quickly known from this fault diagnostic system, and the maintenance schedule can be arranged before the faults worsen, making the management and implementation of wind turbines smoother, so as to reduce many unnecessary costs.

  19. On the integration of wind and solar energy to provide a total energy supply in the USA

    NASA Astrophysics Data System (ADS)

    Archer, Cristina; Mills, David; Cheng, Weili; Sloggy, Matthew; Liebig, Edwin; Rhoades, Alan

    2010-05-01

    This study examines the feasibility of using renewable energy - mostly wind and solar radiation - as the primary source of energy in the USA, under the assumption that a nationwide electric transmission grid is in place. Previous studies have shown that solar or wind alone can power the present U.S. grid on average. Other studies have shown that solar output from California and Texas using energy storage is well correlated with the state energy load on an hour by hour basis throughout the year and with the U.S. national load on a monthly basis. This study explores scenarios for use of wind and solar energy together at the national scale on an hour by hour basis to determine if such a combination is a better match to national seasonal load scenarios than either of the two alone on an hour-by-hour basis. Actual hour by hour national load data from the year 2006 are used as a basis, with some scenarios incorporating vehicle sector electrification and building heating and cooling using electric heat pumps. Hourly wind speed data were calculated at the hub height of 80 m above the ground for the year 2006 at over 150 windy locations in the continental U.S. using an extrapolation technique based on 10-m wind speed measurements and vertical sounding profiles. Using a 1.5 MW wind turbine as benchmark, the hourly wind power production nationwide was determined at all suitable locations. Similarly, the hourly output from solar plants, with and without thermal storage, was calculated based on Ausra's model assuming that the solar production would occur in the Southwest, the area with the greatest solar radiation density in the U.S. Hourly electricity demand for the year 2006 was obtained nationwide from a variety of sources, including the Federal Energy Regulation Commission. Hourly residential heating and cooking, industrial heat processing, and future electrified transportation loads were calculated from monthly and yearly energy consumption data from the Energy Information Administration. Using different scenarios of wind power penetration (between 10% and 120% of the average national electricity and/or energy demand), the remaining hourly electricity and/or energy load was covered by solar thermal electricity produced via the Ausra's innovative linear reflective system, with various amounts of storage. With a 20% redundancy (i.e., an average production of 120% of the demand), a match of ~98% for electric load and ~96% for total energy load were found for the 60%wind-60%solar combination and with 12-hr storage. Work is continuing on improving that match through more sophisticated storage usage strategies and by looking at other options for the few days in the year for which wind and solar might be insufficient.

  20. Improved reliability of wind turbine towers with active tuned mass dampers (ATMDs)

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Breiffni; Sarkar, Saptarshi; Staino, Andrea

    2018-04-01

    Modern multi-megawatt wind turbines are composed of slender, flexible, and lightly damped blades and towers. These components exhibit high susceptibility to wind-induced vibrations. As the size, flexibility and cost of the towers have increased in recent years, the need to protect these structures against damage induced by turbulent aerodynamic loading has become apparent. This paper combines structural dynamic models and probabilistic assessment tools to demonstrate improvements in structural reliability when modern wind turbine towers are equipped with active tuned mass dampers (ATMDs). This study proposes a multi-modal wind turbine model for wind turbine control design and analysis. This study incorporates an ATMD into the tower of this model. The model is subjected to stochastically generated wind loads of varying speeds to develop wind-induced probabilistic demand models for towers of modern multi-megawatt wind turbines under structural uncertainty. Numerical simulations have been carried out to ascertain the effectiveness of the active control system to improve the structural performance of the wind turbine and its reliability. The study constructs fragility curves, which illustrate reductions in the vulnerability of towers to wind loading owing to the inclusion of the damper. Results show that the active controller is successful in increasing the reliability of the tower responses. According to the analysis carried out in this paper, a strong reduction of the probability of exceeding a given displacement at the rated wind speed has been observed.

  1. Multi-time Scale Joint Scheduling Method Considering the Grid of Renewable Energy

    NASA Astrophysics Data System (ADS)

    Zhijun, E.; Wang, Weichen; Cao, Jin; Wang, Xin; Kong, Xiangyu; Quan, Shuping

    2018-01-01

    Renewable new energy power generation prediction error like wind and light, brings difficulties to dispatch the power system. In this paper, a multi-time scale robust scheduling method is set to solve this problem. It reduces the impact of clean energy prediction bias to the power grid by using multi-time scale (day-ahead, intraday, real time) and coordinating the dispatching power output of various power supplies such as hydropower, thermal power, wind power, gas power and. The method adopts the robust scheduling method to ensure the robustness of the scheduling scheme. By calculating the cost of the abandon wind and the load, it transforms the robustness into the risk cost and optimizes the optimal uncertainty set for the smallest integrative costs. The validity of the method is verified by simulation.

  2. Field programmable gate array processing of eye-safe all-fiber coherent wind Doppler lidar return signals

    NASA Astrophysics Data System (ADS)

    Abdelazim, S.; Santoro, D.; Arend, M.; Moshary, F.; Ahmed, S.

    2011-11-01

    A field deployable all-fiber eye-safe Coherent Doppler LIDAR is being developed at the Optical Remote Sensing Lab at the City College of New York (CCNY) and is designed to monitor wind fields autonomously and continuously in urban settings. Data acquisition is accomplished by sampling lidar return signals at 400 MHz and performing onboard processing using field programmable gate arrays (FPGAs). The FPGA is programmed to accumulate signal information that is used to calculate the power spectrum of the atmospherically back scattered signal. The advantage of using FPGA is that signal processing will be performed at the hardware level, reducing the load on the host computer and allowing for 100% return signal processing. An experimental setup measured wind speeds at ranges of up to 3 km.

  3. Balancing Authority Cooperation Concepts to Reduce Variable Generation Integration Costs in the Western Interconnection: Consolidating Balancing Authorities and Sharing Balancing Reserves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samaan, Nader A.; Makarov, Yuri V.; Nguyen, Tony B.

    2017-05-07

    The study described in this chapter demonstrates the benefits of BA consolidation with the help of a detailed WECC system model and advanced methodology, which is also described in this chapter. The study aims to determine the potential savings in production cost and reduction in balancing reserve requirements in the WECC system. The study has found that effective use of the diversity in load and variable generation over a wide area can indeed help to achieve significant savings. The implementation cost for the consolidation was beyond the scope of this study. The analysis was performed for two different scenarios ofmore » VG penetration: 11% (8% wind and 3% solar) and 33% (24% wind and 9% solar) of WECC projected energy demand in 2020. In analysis of balancing reserves, the objective was to determine the reduction in balancing reserve requirements due to BA consolidation, in terms of required capacity and ramp-rates. Hour-ahead and 10-minute ahead forecast errors for load, wind, and solar were simulated. In addition, 1-minute resolution load, wind and solar data were used to derive balancing reserve requirements i.e. load-following and regulation requirements for each individual BA and for the consolidated BA (CBA). The reduction in balancing reserves was determined by calculating the difference between total reserve requirements that need to be carried by different BAs if they operate individually, and reserve requirements that need to be carried by the CBA. The study results show that the consolidated WECC system would have about a 50% overall reduction in balancing reserves for the 11% penetration scenario and a 65% reduction for the 33% penetration scenario in comparison with total reserve requirements that need to be carried by different BAs if they operate individually.« less

  4. Dynamic Load Predictions for Launchers Using Extra-Large Eddy Simulations X-Les

    NASA Astrophysics Data System (ADS)

    Maseland, J. E. J.; Soemarwoto, B. I.; Kok, J. C.

    2005-02-01

    Flow-induced unsteady loads can have a strong impact on performance and flight characteristics of aerospace vehicles and therefore play a crucial role in their design and operation. Complementary to costly flight tests and delicate wind-tunnel experiments, unsteady loads can be calculated using time-accurate Computational Fluid Dynamics. A capability to accurately predict the dynamic loads on aerospace structures at flight Reynolds numbers can be of great value for the design and analysis of aerospace vehicles. Advanced space launchers are subject to dynamic loads in the base region during the ascent to space. In particular the engine and nozzle experience aerodynamic pressure fluctuations resulting from massive flow separations. Understanding these phenomena is essential for performance enhancements for future launchers which operate a larger nozzle. A new hybrid RANS-LES turbulence modelling approach termed eXtra-Large Eddy Simulations (X-LES) holds the promise to capture the flow structures associated with massive separations and enables the prediction of the broad-band spectrum of dynamic loads. This type of method has become a focal point, reducing the cost of full LES, driven by the demand for their applicability in an industrial environment. The industrial feasibility of X-LES simulations is demonstrated by computing the unsteady aerodynamic loads on the main-engine nozzle of a generic space launcher configuration. The potential to calculate the dynamic loads is qualitatively assessed for transonic flow conditions in a comparison to wind-tunnel experiments. In terms of turn-around-times, X-LES computations are already feasible within the time-frames of the development process to support the structural design. Key words: massive separated flows; buffet loads; nozzle vibrations; space launchers; time-accurate CFD; composite RANS-LES formulation.

  5. A Comparison of Forecast Error Generators for Modeling Wind and Load Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ning; Diao, Ruisheng; Hafen, Ryan P.

    2013-07-25

    This paper presents four algorithms to generate random forecast error time series. The performance of four algorithms is compared. The error time series are used to create real-time (RT), hour-ahead (HA), and day-ahead (DA) wind and load forecast time series that statistically match historically observed forecasting data sets used in power grid operation to study the net load balancing need in variable generation integration studies. The four algorithms are truncated-normal distribution models, state-space based Markov models, seasonal autoregressive moving average (ARMA) models, and a stochastic-optimization based approach. The comparison is made using historical DA load forecast and actual load valuesmore » to generate new sets of DA forecasts with similar stoical forecast error characteristics (i.e., mean, standard deviation, autocorrelation, and cross-correlation). The results show that all methods generate satisfactory results. One method may preserve one or two required statistical characteristics better the other methods, but may not preserve other statistical characteristics as well compared with the other methods. Because the wind and load forecast error generators are used in wind integration studies to produce wind and load forecasts time series for stochastic planning processes, it is sometimes critical to use multiple methods to generate the error time series to obtain a statistically robust result. Therefore, this paper discusses and compares the capabilities of each algorithm to preserve the characteristics of the historical forecast data sets.« less

  6. Static and Dynamic Analysis in Design of Exoskeleton Structure

    NASA Astrophysics Data System (ADS)

    Ivánkova, Ol'ga; Méri, Dávid; Vojteková, Eva

    2017-10-01

    This paper introduces a numerical experiment of creating the load bearing system of a high rise building. When designing the high-rise building, it is always an important task to find the right proportion between the height of the building and its perceptive width from the various angles of street view. Investigated high rise building in this article was designed according to these criteria. The load bearing structure of the analysed object consists of a reinforced core, plates and steel tubes of an exoskeleton. Eight models of the building were created using the spatial variant of FEM in Scia Engineer Software. Individual models varied in number and dimensions of diagrids in the exoskeleton. In the models, loadings due to the own weight, weight of external glass cladding, and due to the wind according to the Standard, have been considered. The building was loaded by wind load from all four main directions with respect to its shape. Wind load was calculated using the 3D wind generator, which is a part of the Scia Engineer Software. For each model the static analysis was performed. Its most important criterion was the maximum or minimum horizontal displacement (rotation) of the highest point of the building. This displacement was compared with the limit values of the displacement of the analysed high-rise building. By step-by-step adding diagrids and optimizing their dimensions the building model was obtained that complied with the criteria of the Limit Serviceability State. The last model building was assessed also for the Ultimate Limit State. This model was loaded also by seismic loads for comparison with the load due to the wind.

  7. Wind turbine rotor simulation using the actuator disk and actuator line methods

    NASA Astrophysics Data System (ADS)

    Tzimas, M.; Prospathopoulos, J.

    2016-09-01

    The present paper focuses on wind turbine rotor modeling for loads and wake flow prediction. Two steady-state models based on the actuator disk approach are considered, using either a uniform thrust or a blade element momentum calculation of the wind turbine loads. A third model is based on the unsteady-state actuator line approach. Predictions are compared with measurements in wind tunnel experiments and in atmospheric environment and the capabilities and weaknesses of the different models are addressed.

  8. Full-scale S-76 rotor performance and loads at low speeds in the NASA Ames 80- by 120-Foot Wind Tunnel. Vol. 1

    NASA Technical Reports Server (NTRS)

    Shinoda, Patrick M.

    1996-01-01

    A full-scale helicopter rotor test was conducted in the NASA Ames 80- by 120-Foot Wind Tunnel with a four-bladed S-76 rotor system. Rotor performance and loads data were obtained over a wide range of rotor shaft angles-of-attack and thrust conditions at tunnel speeds ranging from 0 to 100 kt. The primary objectives of this test were (1) to acquire forward flight rotor performance and loads data for comparison with analytical results; (2) to acquire S-76 forward flight rotor performance data in the 80- by 120-Foot Wind Tunnel to compare with existing full-scale 40- by 80-Foot Wind Tunnel test data that were acquired in 1977; (3) to evaluate the acoustic capability of the 80- by 120- Foot Wind Tunnel for acquiring blade vortex interaction (BVI) noise in the low speed range and compare BVI noise with in-flight test data; and (4) to evaluate the capability of the 80- by 120-Foot Wind Tunnel test section as a hover facility. The secondary objectives were (1) to evaluate rotor inflow and wake effects (variations in tunnel speed, shaft angle, and thrust condition) on wind tunnel test section wall and floor pressures; (2) to establish the criteria for the definition of flow breakdown (condition where wall corrections are no longer valid) for this size rotor and wind tunnel cross-sectional area; and (3) to evaluate the wide-field shadowgraph technique for visualizing full-scale rotor wakes. This data base of rotor performance and loads can be used for analytical and experimental comparison studies for full-scale, four-bladed, fully articulated rotor systems. Rotor performance and structural loads data are presented in this report.

  9. A process for providing positive primary control power by wind turbines

    NASA Astrophysics Data System (ADS)

    Marschner, V.; Michael, J.; Liersch, J.

    2014-12-01

    Due to the increasing share of wind energy in electricity generation, wind turbines have to fulfil additional requirements in the context of grid integration. The paper examines to which extent wind turbines can provide positive control power following the related grid code. The additional power has to be obtained from the rotating flywheel mass of the wind turbine's rotor. A simple physical model is developed that allows to draw conclusions about appropriate concepts by means of a dynamic simulation of the variables rotational speed, torque, power output and rotor power. The paper discusses scenarios to provide control power. The supply of control power at partial load is examined in detail using simulations. Under partial load conditions control power can be fed into the grid for a short time. Thereby the rotational speed drops so that aerodynamic efficiency decreases and feed-in power is below the initial value after the control process. In this way an unfavourable situation for the grid control is produced, therefore the paper proposes a modified partial load condition with a higher rotational speed. By providing primary control power the rotor is delayed to the optimum rotational speed so that more rotational energy can be fed in and fed-in power can be increased persistently. However, as the rotor does not operate at optimum speed, a small amount of the energy yield is lost. Finally, the paper shows that a wind farm can combine these two concepts: A part of the wind turbines work under modified partial load conditions can compensate the decrease of power of the wind turbines working under partial load conditions. Therefore the requested control power is provided and afterwards the original value of power is maintained.

  10. Preliminary study of inphase gusts and moment force wind loads over the first 150 meters at KSC, Florida

    NASA Technical Reports Server (NTRS)

    Kaufman, J. W.

    1985-01-01

    A mathematical/statistical analysis of inphase gusts and wind velocity moment forces over the first 150 m at the Kennedy Space Center (KSC) is presented. The wind velocity profile data were acquired at the KSC 150 m ground wind tower. The results show that planetary boundary layer (PBL) winds can sustain near peak speeds for periods up to 60 sec and longer. This is proven from calculating the autocorrelation functions of moment forces for several 10 min cases of wind profile data. The results show that lower atmospheric planetary boundary layer winds have periodic variations for long periods of time. This flow characteristic is valuable as aerospace vehicle engineering and design criteria where wind loading must be determined.

  11. A New Load Residual Threshold Definition for the Evaluation of Wind Tunnel Strain-Gage Balance Data

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; Volden, T.

    2016-01-01

    A new definition of a threshold for the detection of load residual outliers of wind tunnel strain-gage balance data was developed. The new threshold is defined as the product between the inverse of the absolute value of the primary gage sensitivity and an empirical limit of the electrical outputs of a strain{gage. The empirical limit of the outputs is either 2.5 microV/V for balance calibration or check load residuals. A reduced limit of 0.5 microV/V is recommended for the evaluation of differences between repeat load points because, by design, the calculation of these differences removes errors in the residuals that are associated with the regression analysis of the data itself. The definition of the new threshold and different methods for the determination of the primary gage sensitivity are discussed. In addition, calibration data of a six-component force balance and a five-component semi-span balance are used to illustrate the application of the proposed new threshold definition to different types of strain{gage balances. During the discussion of the force balance example it is also explained how the estimated maximum expected output of a balance gage can be used to better understand results of the application of the new threshold definition.

  12. Woody regeneration in a Southern Appalachian Quercus stand following wind disturbance and salvage logging

    Treesearch

    Stephen D. White; Justin Hart; Lauren E. Cox; Callie J. Schweitzer

    2014-01-01

    In the eastern United States, the practice of salvage logging is common to reclaim economic losses and/or reduce fuel loading following a natural disturbance. A current hypothesis states that two disturbances in rapid succession (i.e., compounded disturbance) have a cumulative severity of impact and may displace the successional trajectory further than either...

  13. Effect of a Spaced Thinning in Mature Lodgepole Pine on Within-Stand Microclimate and Fine Fuel Moisture Content

    Treesearch

    R. J. Whitehead; G. L. Russo; B. C. Hawkes; S. W. Taylor; B. N. Brown; H. J. Barclay; R. A. Benton

    2006-01-01

    Thinning mature forest stands to wide spacing is prescribed to reduce crown bulk density and likelihood of severe crown fire behaviour. However, it may adversely affect surface fuel load, moisture content and within-stand wind, which influence surface fire behaviour and crowning potential. Comparison of a mature lodgepole pine (Pinus contorta Dougl....

  14. Building Integrated Active Flow Control: Improving the Aerodynamic Performance of Tall Buildings Using Fluid-Based Aerodynamic Modification

    NASA Astrophysics Data System (ADS)

    Menicovich, David

    By 2050 an estimated 9 billion people will inhabit planet earth and almost all the growth in the next 40 years will be in urban areas putting tremendous pressure on creating sustainable cities. The rapid increase in population, rise in land value and decrease in plot sizes in cities around the world positions tall or more importantly slender buildings as the best suited building typology to address the increasingly critical demand for space in this pressing urbanization trend. However, the majority of new tall building urban developments have not followed principles of environmental and/or sustainable design and incentives to innovate, both technological and economic, are urgently required. The biggest climatic challenge to the design, construction and performance of tall buildings is wind sensitivity. This challenge is further emphasized seeing two market driven trends: on one hand as urban population grows, land value rises while plot sizes decrease; on the other, more cost effective modular construction techniques are introducing much lighter tall building structures. The combination of the two suggests a potential increase in the slenderness ratio of tall buildings (typically less than 6:1 but stretching to 20:1 in the near future) where not-so-tall but much lighter buildings will be the bulk of new construction in densely populated cities, providing affordable housing in the face of fast urbanization but also introducing wind sensitivity which was previously the problem of a very limited number of super tall buildings to a much larger number of buildings and communities. The proposed research aims to investigate a novel approach to the interaction between tall buildings and their environment. Through this approach the research proposes a new relationship between buildings and the flows around, through and inside them, where buildings could adapt to better control and manage the air flow around them, and consequently produce significant opportunities to reduce material and energy consumption profiles of tall building. To date, the increasing use of light-weight and high-strength materials in tall buildings, with greater flexibility and reduced damping, has increased susceptibility to dynamic wind load effects that limit the gains afforded by incorporating these new materials. Wind, particularly fluctuating wind and its interaction with buildings induces two main responses; alongwind - in the direction of the flow and crosswind - perpendicular to the flow. The main risk associated with this vulnerability is resonant oscillations induced by von-Karman-like vortex shedding at or near the natural frequency of the structure caused by flow separation. Dynamic wind loading effects often increase with a power of wind speed greater than 3, thus increasingly, tall buildings pay a significant price in material to increase the natural frequency and/or the damping to overcome this response. In particular, crosswind response often governs serviceability (human habitability) design criteria of slender buildings. Currently, reducing crosswind response relies on a Solid-based Aerodynamic Modification (SAM), either by changing structural or geometric characteristics such as the tower shape or through the addition of damping systems. While this approach has merit it has two major drawbacks: firstly, the loss of valuable rentable areas and high construction costs due to increased structural requirements for mass and stiffness, further contributing towards the high consumption of non-renewable resources by the commercial building sector. For example, in order to insure human comfort within an acceptable range of crosswind response induced accelerations at the top of a building, an aerodynamically efficient plan shape comes at the expense of floor area. To compensate for the loss of valuable area compensatory stories are required, resulting in an increase in wind loads and construction costs. Secondly, a limited, if at all, ability to adaptively respond to fluctuating environmental conditions such as changes in wind direction or velocity over the height of building which could be of consequence if the conditions for which the building was designed for change due to, for example, changes in the built environment surrounding it. Fluidic-based Aerodynamic Modification (FAM) is a fundamentally different approach; instead of adjusting the solid material to improve the aerodynamic 'shape' of the structure, fluid-based flow control is used to manipulate the boundary layer characteristics. The local flow field is modified to 'view' the solid as a different shape, and thus, that solid will experience reduced loads.

  15. Automated wind load characterization of wind turbine structures by embedded model updating

    NASA Astrophysics Data System (ADS)

    Swartz, R. Andrew; Zimmerman, Andrew T.; Lynch, Jerome P.

    2010-04-01

    The continued development of renewable energy resources is for the nation to limit its carbon footprint and to enjoy independence in energy production. Key to that effort are reliable generators of renewable energy sources that are economically competitive with legacy sources. In the area of wind energy, a major contributor to the cost of implementation is large uncertainty regarding the condition of wind turbines in the field due to lack of information about loading, dynamic response, and fatigue life of the structure expended. Under favorable circumstances, this uncertainty leads to overly conservative designs and maintenance schedules. Under unfavorable circumstances, it leads to inadequate maintenance schedules, damage to electrical systems, or even structural failure. Low-cost wireless sensors can provide more certainty for stakeholders by measuring the dynamic response of the structure to loading, estimating the fatigue state of the structure, and extracting loading information from the structural response without the need of an upwind instrumentation tower. This study presents a method for using wireless sensor networks to estimate the spectral properties of a wind turbine tower loading based on its measured response and some rudimentary knowledge of its structure. Structural parameters are estimated via model-updating in the frequency domain to produce an identification of the system. The updated structural model and the measured output spectra are then used to estimate the input spectra. Laboratory results are presented indicating accurate load characterization.

  16. Dynamic Stall Control Using Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Webb, Nathan; Singhal, Achal; Castaneda, David; Samimy, Mo

    2017-11-01

    Dynamic stall occurs in many applications, including sharp maneuvers of fixed wing aircraft, wind turbines, and rotorcraft and produces large unsteady aerodynamic loads that can lead to flutter and mechanical failure. This work uses flow control to reduce the unsteady loads by excitation of instabilities in the shear layer over the separated region using nanosecond pulse driven dielectric barrier discharge (NS-DBD) plasma actuators. These actuators have been shown to effectively delay or mitigate static stall. A wide range of flow parameters were explored in the current work: Reynolds number (Re = 167,000 to 500,000), reduced frequency (k = 0.025 to 0.075), and excitation Strouhal number (Ste = 0 to 10). Based on the results, three major conclusions were drawn: (a) Low Strouhal number excitation (Ste <0.5) results in oscillatory aerodynamic loads in the stalled stage of dynamic stall; (b) All excitation resulted in earlier flow reattachment; and (c) Excitation at progressively higher Ste weakened and eventually eliminated the dynamic stall vortex (DSV), thereby dramatically reducing the unsteady loading. The decrease in the strength of the DSV is achieved by the formation of shear layer coherent structures that bleed the leading-edge vorticity prior to the ejection of the DSV.

  17. Nectar vs. pollen loading affects the tradeoff between flight stability and maneuverability in bumblebees

    PubMed Central

    Mountcastle, Andrew M.; Combes, Stacey A.

    2015-01-01

    Bumblebee foragers spend a significant portion of their lives transporting nectar and pollen, often carrying loads equivalent to more than half their body mass. Whereas nectar is stored in the abdomen near the bee’s center of mass, pollen is carried on the hind legs, farther from the center of mass. We examine how load position changes the rotational moment of inertia in bumblebees and whether this affects their flight maneuverability and/or stability. We applied simulated pollen or nectar loads of equal mass to Bombus impatiens bumblebees and examined flight performance in a wind tunnel under three conditions: flight in unsteady flow, tracking an oscillating flower in smooth flow, and flower tracking in unsteady flow. Using an inertial model, we estimated that carrying a load on the legs rather than in the abdomen increases a bee’s moment of inertia about the roll and yaw axes but not the pitch axis. Consistent with these predictions, we found that bees carrying a load on their legs displayed slower rotations about their roll and yaw axes, regardless of whether these rotations were driven by external perturbations or self-initiated steering maneuvers. This allowed pollen-loaded bees to maintain a more stable body orientation and higher median flight speed in unsteady flow but reduced their performance when tracking a moving flower, supporting the concept of a tradeoff between stability and maneuverability. These results demonstrate that the types of resources collected by bees affect their flight performance and energetics and suggest that wind conditions may influence resource selection. PMID:26240364

  18. Analysis of stress-strain state of RVS-20000 tank under non-axisymmetric wind load action

    NASA Astrophysics Data System (ADS)

    Tarasenko, A. A.; Chepur, P. V.; Gruchenkova, A. A.

    2018-03-01

    In modern reference documentation, it is customary to set the wind load as uniformly distributed pressure over the area and wall of the tank. Experimental studies in the wind tunnel for various designs of the VST carried out under the guidance of professors V.E. Shutov and V.L. Berezin showed that when wind acts on the shell, there occur rarefaction zones, which must be taken into account during strain analysis of tanks. A finite-element model of the RVS-20000 tank was developed to calculate the wind load in a non-axisymmetric setting, taking into account the array of differentiated values of the aerodynamic coefficient. The distribution of stresses and strains of RVS-20000 metal structures under the effect of unevenly distributed wind pressure with a normal value of Qn = 600 Pa is obtained. It is established that the greatest strains and stresses occur at the interface of the wall and the fixed floor.

  19. Thermal responses and perceptions under distinct ambient temperature and wind conditions.

    PubMed

    Shimazaki, Yasuhiro; Yoshida, Atsumasa; Yamamoto, Takanori

    2015-01-01

    Wind conditions are widely recognized to influence the thermal states of humans. In this study, we investigated the relationship between wind conditions and thermal perception and energy balance in humans. The study participants were exposed for 20 min to 3 distinct ambient temperatures, wind speeds, and wind angles. During the exposure, the skin temperatures as a physiological reaction and mental reactions of the human body were measured and the energy balance was calculated based on the human thermal-load method. The results indicate that the human thermal load is an accurate indicator of human thermal states under all wind conditions. Furthermore, wind speed and direction by themselves do not account for the human thermal experience. Because of the thermoregulation that occurs to prevent heat loss and protect the core of the body, a low skin temperature was maintained and regional differences in skin temperature were detected under cool ambient conditions. Thus, the human thermal load, which represents physiological parameters such as skin-temperature change, adequately describes the mixed sensation of the human thermal experience. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Comparison of upwind and downwind rotor operation of the DOE/NASA 100-kW MOD-0 wind turbine

    NASA Technical Reports Server (NTRS)

    Glasgow, J. C.; Miller, D. R.; Corrigan, R. D.

    1981-01-01

    Tests were conducted on a 38m diameter horizontal axis wind turbine, which had first a rotor downwind of the supporting truss tower and then upwind of the tower. Aside from the placement of the rotor and the direction of rotation of the drive train, the wind turbine was identical for both tests. Three aspects of the test results are compared: rotor blade bending loads, rotor teeter response, and nacelle yaw moments. As a result of the tests, it is shown that while mean flatwise bending moments were unaffected by the placement of the rotor, cyclic flatwise bending tended to increase with wind speed for the downwind rotor while remaining somewhat uniform with wind speed for the upwind rotor, reflecting the effects of increased flow disturbance for downwind rotor. Rotor teeter response was not significantly affected by the rotor location relative to the tower, but appears to reflect reduced teeter stability near rated wind speed for both configurations. Teeter stability appears to return above rated wind speed, however. Nacelle yaw moments are higher for the upwind rotor but do not indicate significant design problems for either configuration.

  1. Aerodynamic load control strategy of wind turbine in microgrid

    NASA Astrophysics Data System (ADS)

    Wang, Xiangming; Liu, Heshun; Chen, Yanfei

    2017-12-01

    A control strategy is proposed in the paper to optimize the aerodynamic load of the wind turbine in micro-grid. In grid-connection mode, the wind turbine adopts a new individual variable pitch control strategy. The pitch angle of the blade is rapidly given by the controller, and the pitch angle of each blade is fine tuned by the weight coefficient distributor. In islanding mode, according to the requirements of energy storage system, a given power tracking control method based on fuzzy PID control is proposed. Simulation result shows that this control strategy can effectively improve the axial aerodynamic load of the blade under rated wind speed in grid-connection mode, and ensure the smooth operation of the micro-grid in islanding mode.

  2. Gas tube-switched high voltage DC power converter

    DOEpatents

    She, Xu; Bray, James William; Sommerer, Timothy John; Chokhawala, Rahul

    2018-05-15

    A direct current (DC)-DC converter includes a transformer and a gas tube-switched inverter circuit. The transformer includes a primary winding and a secondary winding. The gas tube-switched inverter circuit includes first and second inverter load terminals and first and second inverter input terminals. The first and second inverter load terminals are coupled to the primary winding. The first and second inverter input terminals are couplable to a DC node. The gas tube-switched inverter circuit further includes a plurality of gas tube switches respectively coupled between the first and second inverter load terminals and the first and second inverter input terminals. The plurality of gas tube switches is configured to operate to generate an alternating current (AC) voltage at the primary winding.

  3. The dependence of cosmic ray-driven galactic winds on halo mass

    NASA Astrophysics Data System (ADS)

    Jacob, Svenja; Pakmor, Rüdiger; Simpson, Christine M.; Springel, Volker; Pfrommer, Christoph

    2018-03-01

    Galactic winds regulate star formation in disc galaxies and help to enrich the circum-galactic medium. They are therefore crucial for galaxy formation, but their driving mechanism is still poorly understood. Recent studies have demonstrated that cosmic rays (CRs) can drive outflows if active CR transport is taken into account. Using hydrodynamical simulations of isolated galaxies with virial masses between 1010 and 1013 M⊙, we study how the properties of CR-driven winds depend on halo mass. CRs are treated in a two-fluid approximation and their transport is modelled through isotropic or anisotropic diffusion. We find that CRs are only able to drive mass-loaded winds beyond the virial radius in haloes with masses below 1012 M⊙. For our lowest examined halo mass, the wind is roughly spherical and has velocities of ˜20 km s-1. With increasing halo mass, the wind becomes biconical and can reach 10 times higher velocities. The mass loading factor drops rapidly with virial mass, a dependence that approximately follows a power law with a slope between -1 and -2. This scaling is slightly steeper than observational inferences, and also steeper than commonly used prescriptions for wind feedback in cosmological simulations. The slope is quite robust to variations of the CR injection efficiency or the CR diffusion coefficient. In contrast to the mass loading, the energy loading shows no significant dependence on halo mass. While these scalings are close to successful heuristic models of wind feedback, the CR-driven winds in our present models are not yet powerful enough to fully account for the required feedback strength.

  4. Novelty detection applied to vibration data from a CX-100 wind turbine blade under fatigue loading

    NASA Astrophysics Data System (ADS)

    Dervilis, N.; Choi, M.; Antoniadou, I.; Farinholt, K. M.; Taylor, S. G.; Barthorpe, R. J.; Park, G.; Worden, K.; Farrar, C. R.

    2012-08-01

    The remarkable evolution of new generation wind turbines has led to a dramatic increase of wind turbine blade size. In turn, a reliable structural health monitoring (SHM) system will be a key factor for the successful implementation of such systems. Detection of damage at an early stage is a crucial issue as blade failure would be a catastrophic result for the entire wind turbine. In this study the SHM analysis will be based on experimental measurements of Frequency Response Functions (FRFs) extracted by using an input/output acquisition technique under a fatigue loading of a 9m CX-100 blade at the National Renewable Energy Laboratory (NREL) and National Wind Technology Center (NWTC) performed in the Los Alamos National Laboratory. The blade was harmonically excited at its first natural frequency using a Universal Resonant Excitation (UREX) system. For analysis, the Auto-Associative Neural Network (AANN) is a non-parametric method where a set of damage sensitive features gathered from the measured structure are used to train a network that acts as a novelty detector. This traditionally has a highly complex "bottleneck" structure with five layers in the AANN. In the current paper, a new attempt is also exploited based on an AANN with one hidden layer in order to reduce the theoretical and computational difficulties. Damage detection of composite bodies of blades is a "grand challenge" due to varying aerodynamic and gravitational loads and environmental conditions. A study of the noise tolerant capability of the AANN which is associated to its generalisation capacity is addressed. It will be shown that vibration response data combined with AANNs is a robust and powerful tool, offering novelty detection even when operational and environmental variations are present. The AANN is a method which has not yet been widely used in the structural health monitoring of composite blades.

  5. 78 FR 28258 - mPower\\TM\\ Design-Specific Review Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... Public Documents'' and then select ``Begin Web- based ADAMS Search.'' For problems with ADAMS, please... Classification ML12272A013 3.2.2 System Quality Group ML12272A015 Classification. 3.3.1 Severe Wind Loading... ML12324A156 3.3.2 Extreme Wind Loads ML12324A166 (Tornado and Hurricane Loads). 3.4.1 Internal Flood...

  6. The design of low cost structures for extensive ground arrays

    NASA Technical Reports Server (NTRS)

    Franklin, H. A.; Leonard, R. S.

    1980-01-01

    The development of conceptual designs of solar array support structures and their foundations including considerations of the use of concrete, steel, aluminum, or timber are reported. Some cost trends were examined by varying selected parameters to determine optimum configurations. Detailed civil/structural design criteria were developed. Using these criteria, eight detailed designs for support structures and foundations were developed and cost estimates were made. As a result of the study wind was identified as the major loading experienced by these low height structures, whose arrays are likely to extend over large tracts of land. Proper wind load estimating is considered essential to developing realistic structural designs and achieving minimum cost support structures. Wind tunnel testing of a conceptual array field was undertaken and some of the resulting wind design criteria are presented. The SPS rectenna system designs may be less sensitive to wind load estimates, but consistent design criteria remain important.

  7. Analysis on the accommodation of renewable energy in northeast China

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Zhang, Jinfang; Tian, Feng; Mi, Zhe

    2017-01-01

    The accommodation and curtailment of renewable energy in northeast China have attracted much attention with the rapid growth of wind and solar power generation. Large amount of wind power has been curtailed or abandoned in northeast China due to several reasons, such as, the redundancy of power supplies, inadequate power demands, imperfect power structure with less flexibility and limited cross-regional transmission capacity. In this paper, we use multi-area production simulation to analyse the accommodation of renewable energy in northeast China by 2020. Furthermore, we suggest the measures that could be adopted in generation, grid and load side to reduce curtailment of renewables.

  8. Comparison of analytical and wind-tunnel results for flutter and gust response of a transport wing with active controls

    NASA Technical Reports Server (NTRS)

    Abel, I.; Perry, B., III; Newsom, J. R.

    1982-01-01

    Two flutter suppression control laws wre designed and tested on a low speed aeroelastic model of a DC-10 derivative wing. Both control laws demontrated increases in flutter speed in excess of 25 percent above the passive wing flutter speed. In addition, one of the control laws was effective in reducing loads due to turbulence generated in the wind tunnel. The effect of variations in gain and phase on the closed-loop performance was measured and is compared with predictions. In general, both flutter and gust response predictions agree reasonably well with experimental data.

  9. Analyzing Sustainable Energy Opportunities for a Small Scale Off-Grid Facility: A Case Study at Experimental Lakes Area (ELA), Ontario

    NASA Astrophysics Data System (ADS)

    Duggirala, Bhanu

    This thesis explored the opportunities to reduce energy demand and renewable energy feasibility at an off-grid science "community" called the Experimental Lakes Area (ELA) in Ontario. Being off-grid, ELA is completely dependent on diesel and propane fuel supply for all its electrical and heating needs, which makes ELA vulnerable to fluctuating fuel prices. As a result ELA emits a large amount of greenhouse gases (GHG) for its size. Energy efficiency and renewable energy technologies can reduce energy consumption and consequently energy cost, as well as GHG. Energy efficiency was very important to ELA due to the elevated fuel costs at this remote location. Minor upgrades to lighting, equipment and building envelope were able to reduce energy costs and reduce load. Efficient energy saving measures were recommended that save on operating and maintenance costs, namely, changing to LED lights, replacing old equipment like refrigerators and downsizing of ice makers. This resulted in a 4.8% load reduction and subsequently reduced the initial capital cost for biomass by 27,000, by 49,500 for wind power and by 136,500 for solar power. Many alternative energies show promise as potential energy sources to reduce the diesel and propane consumption at ELA including wind energy, solar heating and biomass. A biomass based CHP system using the existing diesel generators as back-up has the shortest pay back period of the technologies modeled. The biomass based CHP system has a pay back period of 4.1 years at 0.80 per liter of diesel, as diesel price approaches $2.00 per liter the pay back period reduces to 0.9 years, 50% the generation cost compared to present generation costs. Biomass has been successfully tried and tested in many off-grid communities particularly in a small-scale off-grid setting in North America and internationally. Also, the site specific solar and wind data show that ELA has potential to harvest renewable resources and produce heat and power at competitive rates compared to diesel and propane.

  10. OC5 Project Phase II: Validation of Global Loads of the DeepCwind Floating Semisubmersible Wind Turbine

    DOE PAGES

    Robertson, Amy N.; Wendt, Fabian; Jonkman, Jason M.; ...

    2017-10-01

    This paper summarizes the findings from Phase II of the Offshore Code Comparison, Collaboration, Continued, with Correlation project. The project is run under the International Energy Agency Wind Research Task 30, and is focused on validating the tools used for modeling offshore wind systems through the comparison of simulated responses of select system designs to physical test data. Validation activities such as these lead to improvement of offshore wind modeling tools, which will enable the development of more innovative and cost-effective offshore wind designs. For Phase II of the project, numerical models of the DeepCwind floating semisubmersible wind system weremore » validated using measurement data from a 1/50th-scale validation campaign performed at the Maritime Research Institute Netherlands offshore wave basin. Validation of the models was performed by comparing the calculated ultimate and fatigue loads for eight different wave-only and combined wind/wave test cases against the measured data, after calibration was performed using free-decay, wind-only, and wave-only tests. The results show a decent estimation of both the ultimate and fatigue loads for the simulated results, but with a fairly consistent underestimation in the tower and upwind mooring line loads that can be attributed to an underestimation of wave-excitation forces outside the linear wave-excitation region, and the presence of broadband frequency excitation in the experimental measurements from wind. Participant results showed varied agreement with the experimental measurements based on the modeling approach used. Modeling attributes that enabled better agreement included: the use of a dynamic mooring model; wave stretching, or some other hydrodynamic modeling approach that excites frequencies outside the linear wave region; nonlinear wave kinematics models; and unsteady aerodynamics models. Also, it was observed that a Morison-only hydrodynamic modeling approach could create excessive pitch excitation and resulting tower loads in some frequency bands.« less

  11. OC5 Project Phase II: Validation of Global Loads of the DeepCwind Floating Semisubmersible Wind Turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Amy N.; Wendt, Fabian; Jonkman, Jason M.

    This paper summarizes the findings from Phase II of the Offshore Code Comparison, Collaboration, Continued, with Correlation project. The project is run under the International Energy Agency Wind Research Task 30, and is focused on validating the tools used for modeling offshore wind systems through the comparison of simulated responses of select system designs to physical test data. Validation activities such as these lead to improvement of offshore wind modeling tools, which will enable the development of more innovative and cost-effective offshore wind designs. For Phase II of the project, numerical models of the DeepCwind floating semisubmersible wind system weremore » validated using measurement data from a 1/50th-scale validation campaign performed at the Maritime Research Institute Netherlands offshore wave basin. Validation of the models was performed by comparing the calculated ultimate and fatigue loads for eight different wave-only and combined wind/wave test cases against the measured data, after calibration was performed using free-decay, wind-only, and wave-only tests. The results show a decent estimation of both the ultimate and fatigue loads for the simulated results, but with a fairly consistent underestimation in the tower and upwind mooring line loads that can be attributed to an underestimation of wave-excitation forces outside the linear wave-excitation region, and the presence of broadband frequency excitation in the experimental measurements from wind. Participant results showed varied agreement with the experimental measurements based on the modeling approach used. Modeling attributes that enabled better agreement included: the use of a dynamic mooring model; wave stretching, or some other hydrodynamic modeling approach that excites frequencies outside the linear wave region; nonlinear wave kinematics models; and unsteady aerodynamics models. Also, it was observed that a Morison-only hydrodynamic modeling approach could create excessive pitch excitation and resulting tower loads in some frequency bands.« less

  12. Toward Development of a Stochastic Wake Model: Validation Using LES and Turbine Loads

    DOE PAGES

    Moon, Jae; Manuel, Lance; Churchfield, Matthew; ...

    2017-12-28

    Wind turbines within an array do not experience free-stream undisturbed flow fields. Rather, the flow fields on internal turbines are influenced by wakes generated by upwind unit and exhibit different dynamic characteristics relative to the free stream. The International Electrotechnical Commission (IEC) standard 61400-1 for the design of wind turbines only considers a deterministic wake model for the design of a wind plant. This study is focused on the development of a stochastic model for waked wind fields. First, high-fidelity physics-based waked wind velocity fields are generated using Large-Eddy Simulation (LES). Stochastic characteristics of these LES waked wind velocity field,more » including mean and turbulence components, are analyzed. Wake-related mean and turbulence field-related parameters are then estimated for use with a stochastic model, using Multivariate Multiple Linear Regression (MMLR) with the LES data. To validate the simulated wind fields based on the stochastic model, wind turbine tower and blade loads are generated using aeroelastic simulation for utility-scale wind turbine models and compared with those based directly on the LES inflow. The study's overall objective is to offer efficient and validated stochastic approaches that are computationally tractable for assessing the performance and loads of turbines operating in wakes.« less

  13. Toward Development of a Stochastic Wake Model: Validation Using LES and Turbine Loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Jae; Manuel, Lance; Churchfield, Matthew

    Wind turbines within an array do not experience free-stream undisturbed flow fields. Rather, the flow fields on internal turbines are influenced by wakes generated by upwind unit and exhibit different dynamic characteristics relative to the free stream. The International Electrotechnical Commission (IEC) standard 61400-1 for the design of wind turbines only considers a deterministic wake model for the design of a wind plant. This study is focused on the development of a stochastic model for waked wind fields. First, high-fidelity physics-based waked wind velocity fields are generated using Large-Eddy Simulation (LES). Stochastic characteristics of these LES waked wind velocity field,more » including mean and turbulence components, are analyzed. Wake-related mean and turbulence field-related parameters are then estimated for use with a stochastic model, using Multivariate Multiple Linear Regression (MMLR) with the LES data. To validate the simulated wind fields based on the stochastic model, wind turbine tower and blade loads are generated using aeroelastic simulation for utility-scale wind turbine models and compared with those based directly on the LES inflow. The study's overall objective is to offer efficient and validated stochastic approaches that are computationally tractable for assessing the performance and loads of turbines operating in wakes.« less

  14. Wind Turbine Controller to Mitigate Structural Loads on a Floating Wind Turbine Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Paul A.; Peiffer, Antoine; Schlipf, David

    This paper summarizes the control design work that was performed to optimize the controller of a wind turbine on the WindFloat structure. The WindFloat is a semi-submersible floating platform designed to be a support structure for a multi-megawatt power-generating wind turbine. A controller developed for a bottom-fixed wind turbine configuration was modified for use when the turbine is mounted on the WindFloat platform. This results in an efficient platform heel resonance mitigation scheme. In addition several control modules, designed with a coupled linear model, were added to the fixed-bottom baseline controller. The approach was tested in a fully coupled nonlinearmore » aero-hydroelastic simulation tool in which wind and wave disturbances were modeled. This testing yielded significant improvements in platform global performance and tower-base-bending loading.« less

  15. Load reduction of a monopile wind turbine tower using optimal tuned mass dampers

    NASA Astrophysics Data System (ADS)

    Tong, Xin; Zhao, Xiaowei; Zhao, Shi

    2017-07-01

    We investigate to apply tuned mass dampers (TMDs) (one in the fore-aft direction, one in the side-side direction) to suppress the vibration of a monopile wind turbine tower. Using the spectral element method, we derive a finite-dimensional state-space model Σd from an infinite-dimensional model Σ of a monopile wind turbine tower stabilised by a TMD located in the nacelle. Σ and Σd can be used to represent the dynamics of the tower and TMD in either the fore-aft direction or the side-side direction. The wind turbine tower subsystem of Σ is modelled as a non-uniform SCOLE (NASA Spacecraft Control Laboratory Experiment) system consisting of an Euler-Bernoulli beam equation describing the dynamics of the flexible tower and the Newton-Euler rigid body equations describing the dynamics of the heavy rotor-nacelle assembly (RNA) by neglecting any coupling with blade motions. Σd can be used for fast and accurate simulation for the dynamics of the wind turbine tower as well as for optimal TMD designs. We show that Σd agrees very well with the FAST (fatigue, aerodynamics, structures and turbulence) simulation of the NREL 5-MW wind turbine model. We optimise the parameters of the TMD by minimising the frequency-limited ?-norm of the transfer function matrix of Σd which has input of force and torque acting on the RNA, and output of tower-top displacement. The performances of the optimal TMDs in the fore-aft and side-side directions are tested through FAST simulations, which achieve substantial fatigue load reductions. This research also demonstrates how to optimally tune TMDs to reduce vibrations of flexible structures described by partial differential equations.

  16. Adequacy assessment of composite generation and transmission systems incorporating wind energy conversion systems

    NASA Astrophysics Data System (ADS)

    Gao, Yi

    The development and utilization of wind energy for satisfying electrical demand has received considerable attention in recent years due to its tremendous environmental, social and economic benefits, together with public support and government incentives. Electric power generation from wind energy behaves quite differently from that of conventional sources. The fundamentally different operating characteristics of wind energy facilities therefore affect power system reliability in a different manner than those of conventional systems. The reliability impact of such a highly variable energy source is an important aspect that must be assessed when the wind power penetration is significant. The focus of the research described in this thesis is on the utilization of state sampling Monte Carlo simulation in wind integrated bulk electric system reliability analysis and the application of these concepts in system planning and decision making. Load forecast uncertainty is an important factor in long range planning and system development. This thesis describes two approximate approaches developed to reduce the number of steps in a load duration curve which includes load forecast uncertainty, and to provide reasonably accurate generating and bulk system reliability index predictions. The developed approaches are illustrated by application to two composite test systems. A method of generating correlated random numbers with uniform distributions and a specified correlation coefficient in the state sampling method is proposed and used to conduct adequacy assessment in generating systems and in bulk electric systems containing correlated wind farms in this thesis. The studies described show that it is possible to use the state sampling Monte Carlo simulation technique to quantitatively assess the reliability implications associated with adding wind power to a composite generation and transmission system including the effects of multiple correlated wind sites. This is an important development as it permits correlated wind farms to be incorporated in large practical system studies without requiring excessive increases in computer solution time. The procedures described in this thesis for creating monthly and seasonal wind farm models should prove useful in situations where time period models are required to incorporate scheduled maintenance of generation and transmission facilities. There is growing interest in combining deterministic considerations with probabilistic assessment in order to evaluate the quantitative system risk and conduct bulk power system planning. A relatively new approach that incorporates deterministic and probabilistic considerations in a single risk assessment framework has been designated as the joint deterministic-probabilistic approach. The research work described in this thesis illustrates that the joint deterministic-probabilistic approach can be effectively used to integrate wind power in bulk electric system planning. The studies described in this thesis show that the application of the joint deterministic-probabilistic method provides more stringent results for a system with wind power than the traditional deterministic N-1 method because the joint deterministic-probabilistic technique is driven by the deterministic N-1 criterion with an added probabilistic perspective which recognizes the power output characteristics of a wind turbine generator.

  17. Fractographic study of epoxy fractured under mode I loading and mixed mode I/III loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Fei; Wang, Jy-An John; Bertelsen, Williams D.

    2011-01-01

    Fiber reinforced polymeric composite materials are widely used in structural components such as wind turbine blades, which are typically subject to complicated loading conditions. Thus, material response under mixed mode loading is of great significance to the reliability of these structures. Epoxy is a thermosetting polymer that is currently used in manufacturing wind turbine blades. The fracture behavior of epoxy is relevant to the mechanical integrity of the wind turbine composite materials. In this study, a novel fracture testing methodology, the spiral notch torsion test (SNTT), was applied to study the fracture behavior of an epoxy material. SNTT samples weremore » tested using either monotonic loading or cyclic loading, while both mode I and mixed mode I/III loading conditions were used. Fractographic examination indicated the epoxy samples included in this study were prone to mode I failure even when the samples were subject to mixed mode loading. Different fatigue precracks were observed on mode I and mixed mode samples, i.e. precracks appeared as a uniform band under mode I loading, and a semi-ellipse under mixed mode loading. Fracture toughness was also estimated using quantitative fractography.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karr, Dale G.; Yu, Bingbin; Sirnivas, Senu

    To create long-term solutions for offshore wind turbines in a variety of environmental conditions, CAE tools are needed to model the design-driving loads that interact with an offshore wind turbine system during operation. This report describes our efforts in augmenting existing CAE tools used for offshore wind turbine analysis with a new module that can provide simulation capabilities for ice loading on the system. This augmentation was accomplished by creating an ice-loading module coupled to FAST8, the CAE tool maintained by the NREL for simulating land-based and offshore wind turbine dynamics. The new module includes both static and dynamic icemore » loading that can be applied during a dynamic simulation of the response of an offshore wind turbine. The ice forces can be prescribed, or influenced by the structure’s compliant response, or by the dynamics of both the structure and the ice floe. The new module covers ice failure modes of spalling, buckling, crushing, splitting, and bending. The supporting structure of wind turbines can be modeled as a vertical or sloping form at the waterline. The Inward Battered Guide Structure (IBGS) foundation designed by Keystone Engineering for the Great Lakes was used to study the ice models coupled to FAST8. The IBGS foundation ice loading simulations in FAST8 were compared to the baseline simulation case without ice loading. The ice conditions reflecting those from Lake Huron at Port Huron and Lake Michigan at North Manitou were studied under near rated wind speed of 12 m/s for the NREL 5-MW reference turbine. Simulations were performed on ice loading models 1 through 4 and ice model 6 with their respective sub-models. The purpose of ice model 5 is to investigate ice loading on sloping structures such as ice-cones on a monopile and is not suitable for multi-membered jacketed structures like the IBGS foundation. The key response parameters from the simulations, shear forces and moments from the tower base and IBGS foundation base, were compared. Ice models 1 and 6 do not significantly affect the tower fore-aft shear and moment. However, ice model 2 (dynamic analyses), model 3 (random ice loading), and model 4 (multiple ice failure zone loading) show increased effect on the tower fore-aft shear and moment with significant effect from ice model 3.1. In general ice loading creates large reaction forces and moments at the base of the IBGS foundation; the largest occurred in model 1.1 (steady creep ice indentation loading) followed by model 3.1 (random creep ice indentation loading). In general the power production from the ice loading cases had little deviation from the baseline case without ice loading. For ultimate limit state (ULS), ice model 1.1 ice and 3.1 appear to be the ice most critical models to consider at an early stage of design. Ice model 4 is an important tool for assessing structural fatigue.« less

  19. Fatigue minimising power reference control of a de-rated wind farm

    NASA Astrophysics Data System (ADS)

    Jensen, T. N.; Knudsen, T.; Bak, T.

    2016-09-01

    Modern wind farms (cluster of wind turbines) can be required to control the total power output to meet a set-point, and would then profit by minimising the structural loads and thereby the cost of energy. In this paper, we propose a new control strategy for a derated wind farm with the objective of maintaining a desired reference power production for the wind farm, while minimising the sum of fatigues on the wind turbines in steady-state. The controller outputs a vector of power references for the individual turbines. It exploits the positive correlation between fatigue and added turbulence to minimise fatigue indirectly by minimising the added turbulence. Simulated results for a wind farm with three turbines demonstrate the efficacy of the proposed solution by assessing the damage equivalent loads.

  20. Dynamics modeling and periodic control of horizontal-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Stol, Karl Alexander

    2001-07-01

    The development of large multi-megawatt wind turbines has increased the need for active feedback control to meet multiple performance objectives. Power regulation is still of prime concern but there is an increasing interest in mitigating loads for these very large, dynamically soft and highly integrated power systems. This work explores the opportunities for utilizing state space modeling, modal analysis, and multi-objective controllers in advanced horizontal-axis wind turbines. A linear state-space representation of a generic, multiple degree-of-freedom wind turbine is developed to test various control methods and paradigms. The structural model, SymDyn, provides for limited flexibility in the tower, drive train and blades assuming a rigid component architecture with joint springs and dampers. Equations of motion are derived symbolically, verified by numerical simulation, and implemented in the Matlab with Simulink computational environment. AeroDyn, an industry-standard aerodynamics package for wind turbines, provides the aerodynamic load data through interfaced subroutines. Linearization of the structural model produces state equations with periodic coefficients due to the interaction of rotating and non-rotating components. Floquet theory is used to extract the necessary modal properties and several parametric studies identify the damping levels and dominant dynamic coupling influences. Two separate issues of control design are investigated: full-state feedback and state estimation. Periodic gains are developed using time-varying LQR techniques and many different time-invariant control designs are constructed, including a classical PID controller. Disturbance accommodating control (DAC) allows the estimation of wind speed for minimization of the disturbance effects on the system. Controllers are tested in simulation for multiple objectives using measurement of rotor position and rotor speed only and actuation of independent blade pitch. It is found that periodic control is capable of reducing cyclic blade bending moments while regulating speed but that optimal performance requires additional sensor information. Periodic control is also the only design found that could successfully control the yaw alignment although blade loads are increased as a consequence. When speed regulation is the only performance objective then a time-invariant state-space design or PID is appropriate.

  1. Investigation of Rotor Performance and Loads of a UH-60A Individual Blade Control System

    NASA Technical Reports Server (NTRS)

    Yeo, Hyeonsoo; Romander, Ethan A.; Norman, Thomas R.

    2010-01-01

    A full-scale wind tunnel test was recently conducted (March 2009) in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-FootWind Tunnel to evaluate the potential of an individual blade control (IBC) system to improve rotor performance and reduce vibrations, loads, and noise for a UH-60A rotor system [1]. This test was the culmination of a long-termcollaborative effort between NASA, U.S. Army, Sikorsky Aircraft Corporation, and ZF Luftfahrttechnik GmbH (ZFL) to demonstrate the benefits of IBC for a UH-60Arotor. Figure 1 shows the UH-60Arotor and IBC system mounted on the NFAC Large Rotor Test Apparatus (LRTA). The IBC concept used in the current study utilizes actuators placed in the rotating frame, one per blade. In particular, the pitch link of the rotor blade was replacedwith an actuator, so that the blade root pitch can be changed independently. This concept, designed for a full-scale UH-60A rotor, was previously tested in the NFAC 80- by 120-FootWind Tunnel in September 2001 at speeds up to 85 knots [2]. For the current test, the same UH-60A rotor and IBC system were tested in the 40- by 80-FootWind Tunnel at speeds up to 170 knots. Figure 2 shows the servo-hydraulic IBC actuator installed between the swashplate and the blade pitch horn. Although previous wind tunnel experiments [3, 4] and analytical studies on IBC [5, 6] have shown the promise to improve the rotor s performance, in-depth correlation studies have not been performed. Thus, the current test provides a unique resource that can be used to assess the accuracy and reliability of prediction methods and refine theoretical models, with the ultimate goal of providing the technology for timely and cost-effective design and development of new rotors. In this paper, rotor performance and loads calculations are carried out using the analyses CAMRAD II and coupled OVERFLOW-2/CAMRAD II and the results are compared with these UH-60A/IBC wind tunnel test data.

  2. Rotating electric machine with fluid supported parts

    DOEpatents

    Smith, Jr., Joseph L.; Kirtley, Jr., James L.

    1981-01-01

    A rotating electric machine in which the armature winding thereof and other parts are supported by a liquid to withstand the mechanical stresses applied during transient overloads and the like. In particular, a narrow gap is provided between the armature winding and the stator which supports it and this gap is filled with an externally pressurized viscous liquid. The liquid is externally pressurized sufficiently to balance the static loads on the armature winding. Transient mechanical loads which deform the armature winding alter the gap dimensions and thereby additionally pressurize the viscous liquid to oppose the armature winding deformation and more nearly uniformly to distribute the resulting mechanical stresses.

  3. Variable diameter wind turbine rotor blades

    DOEpatents

    Jamieson, Peter McKeich; Hornzee-Jones, Chris; Moroz, Emilian M.; Blakemore, Ralph W.

    2005-12-06

    A system and method for changing wind turbine rotor diameters to meet changing wind speeds and control system loads is disclosed. The rotor blades on the wind turbine are able to adjust length by extensions nested within or containing the base blade. The blades can have more than one extension in a variety of configurations. A cable winching system, a hydraulic system, a pneumatic system, inflatable or elastic extensions, and a spring-loaded jack knife deployment are some of the methods of adjustment. The extension is also protected from lightning by a grounding system.

  4. Calibration Variable Selection and Natural Zero Determination for Semispan and Canard Balances

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert M.

    2013-01-01

    Independent calibration variables for the characterization of semispan and canard wind tunnel balances are discussed. It is shown that the variable selection for a semispan balance is determined by the location of the resultant normal and axial forces that act on the balance. These two forces are the first and second calibration variable. The pitching moment becomes the third calibration variable after the normal and axial forces are shifted to the pitch axis of the balance. Two geometric distances, i.e., the rolling and yawing moment arms, are the fourth and fifth calibration variable. They are traditionally substituted by corresponding moments to simplify the use of calibration data during a wind tunnel test. A canard balance is related to a semispan balance. It also only measures loads on one half of a lifting surface. However, the axial force and yawing moment are of no interest to users of a canard balance. Therefore, its calibration variable set is reduced to the normal force, pitching moment, and rolling moment. The combined load diagrams of the rolling and yawing moment for a semispan balance are discussed. They may be used to illustrate connections between the wind tunnel model geometry, the test section size, and the calibration load schedule. Then, methods are reviewed that may be used to obtain the natural zeros of a semispan or canard balance. In addition, characteristics of three semispan balance calibration rigs are discussed. Finally, basic requirements for a full characterization of a semispan balance are reviewed.

  5. Quality Control Algorithms for the Kennedy Space Center 50-Megahertz Doppler Radar Wind Profiler Winds Database

    NASA Technical Reports Server (NTRS)

    Barbre, Robert E., Jr.

    2012-01-01

    This paper presents the process used by the Marshall Space Flight Center Natural Environments Branch (EV44) to quality control (QC) data from the Kennedy Space Center's 50-MHz Doppler Radar Wind Profiler for use in vehicle wind loads and steering commands. The database has been built to mitigate limitations of using the currently archived databases from weather balloons. The DRWP database contains wind measurements from approximately 2.7-18.6 km altitude at roughly five minute intervals for the August 1997 to December 2009 period of record, and the extensive QC process was designed to remove spurious data from various forms of atmospheric and non-atmospheric artifacts. The QC process is largely based on DRWP literature, but two new algorithms have been developed to remove data contaminated by convection and excessive first guess propagations from the Median Filter First Guess Algorithm. In addition to describing the automated and manual QC process in detail, this paper describes the extent of the data retained. Roughly 58% of all possible wind observations exist in the database, with approximately 100 times as many complete profile sets existing relative to the EV44 balloon databases. This increased sample of near-continuous wind profile measurements may help increase launch availability by reducing the uncertainty of wind changes during launch countdown

  6. Assessment and Optimization of Lidar Measurement Availability for Wind Turbine Control: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davoust, S.; Jehu, A.; Bouillet, M.

    2014-05-01

    Turbine-mounted lidars provide preview measurements of the incoming wind field. By reducing loads on critical components and increasing the potential power extracted from the wind, the performance of wind turbine controllers can be improved [2]. As a result, integrating a light detection and ranging (lidar) system has the potential to lower the cost of wind energy. This paper presents an evaluation of turbine-mounted lidar availability. Availability is a metric which measures the proportion of time the lidar is producing controller-usable data, and is essential when a wind turbine controller relies on a lidar. To accomplish this, researchers from Avent Lidarmore » Technology and the National Renewable Energy Laboratory first assessed and modeled the effect of extreme atmospheric events. This shows how a multirange lidar delivers measurements for a wide variety of conditions. Second, by using a theoretical approach and conducting an analysis of field feedback, we investigated the effects of the lidar setup on the wind turbine. This helps determine the optimal lidar mounting position at the back of the nacelle, and establishes a relationship between availability, turbine rpm, and lidar sampling time. Lastly, we considered the role of the wind field reconstruction strategies and the turbine controller on the definition and performance of a lidar's measurement availability.« less

  7. Reduction in bearing size due to superconductors in magnetic bearings

    NASA Technical Reports Server (NTRS)

    Rao, Dantam K.; Lewis, Paul; Dill, James F.

    1991-01-01

    A design concept that reduces the size of magnetic bearings is assessed. The small size will enable magnetic bearings to fit into limited available bearing volume of cryogenic machinery. The design concept, called SUPERC, uses (high Tc) superconductors or high-purity aluminum conductors in windings instead of copper. The relatively high-current density of these conductors reduces the slot radial thickness for windings, which reduces the size of the bearings. MTI developed a sizing program called SUPERC that translates the high-current density of these conductors into smaller sized bearings. This program was used to size a superconducting bearing to carry a 500 lb. load. The sizes of magnetic bearings needed by various design concepts are as follows: SUPERC design concept = 3.75 in.; magnet-bias design concept = 5.25 in.; and all electromagnet design concept = 7.0 in. These results indicate that the SUPERC design concept can significantly reduce the size of the bearing. This reduction, in turn, reduces the weight and yields a lighter bearing. Since the superconductors have inherently near-zero resistance, they are also expected to save power needed for operation considerably.

  8. Two mooring dolphin concept for exposed tanker terminals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khanna, J.; Birt, C.

    1978-02-01

    The conventional design of a tanker terminal provides for two or more mooring dolphins on each side of the breasting dolphins. Head and stern lines are attached to the outer mooring dolphins and breast lines to the inner mooring dolphins. In exposed locations, the expense of construction may be significantly reduced if a way can be found to reduce the number of mooring dolphins required for the safe mooring of ships at a fixed berth. A study based on plans for a proposed terminal for tankers from 25,000 to 100,000 dwt in the Bay of Fundy in eastern Canada considersmore » the possibility of reducing the total number of mooring dolphins from four to two. Results of a static analysis of mooring loads due to wind and current and a hydraulic model test for mooring loads due to waves are presented.« less

  9. MOD-1 Wind Turbine Generator Analysis and Design Report, Volume 2

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The MOD-1 detail design is appended. The supporting analyses presented include a parametric system trade study, a verification of the computer codes used for rotor loads analysis, a metal blade study, and a definition of the design loads at each principal wind turbine generator interface for critical loading conditions. Shipping and assembly requirements, composite blade development, and electrical stability are also discussed.

  10. Velocity and rolling-moment measurements in the wake of a swept-wing model in the 40 by 80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Rossow, V. J.; Corsiglia, V. R.; Schwind, R. G.; Frick, J. K. D.; Lemmer, O. J.

    1975-01-01

    Measurements were made in the wake of a swept wing model to study the structure of lift generated vortex wakes shed by conventional span loadings and by several span loadings designed to reduce wake velocities. Variations in the span loading on the swept wing generator were obtained by deflecting seven flap segments on each side by amounts determined by vortex lattice theory to approximate the desired span loadings. The resulting wakes were probed with a three component, hot wire probe to measure velocity, and with a wing to measure the rolling moment that would be induced on a following aircraft. The experimental techniques are described herein, and the measured velocity and rolling moments are presented, along with some comparisons with the applicable theories.

  11. Direct-Current Monitor With Flux-Reset Transformer Coupling

    NASA Technical Reports Server (NTRS)

    Canter, Stanley

    1993-01-01

    Circuit measures constant or slowly-varying unidirectional electrical current using flux-reset transformer coupling. Measurement nonintrusive in sense that no need for direct contact with wire that carries load current to be measured, and no need to install series resistive element in load-current path. Toroidal magnetic core wrapped with coil of wire placed around load-current-carrying wire, acts as transformer core, load-current-carrying wire acts as primary winding of transformer, and coil wrapped on core acts as secondary winding.

  12. Performance of a steel spar wind turbine blade on the Mod-0 100 kW experimental wind turbine

    NASA Technical Reports Server (NTRS)

    Keith, T. G., Jr.; Sullivan, T. L.; Viterna, L. A.

    1980-01-01

    The performance and loading of a large wind rotor, 38.4 m in diameter and composed of two low-cost steel spar blades were examined. Two blades were fabricated at Lewis Research Center and successfully operated on the Mod-0 wind turbine at Plum Brook. The blades were operated on a tower on which the natural bending frequency were altered by placing the tower on a leaf-spring apparatus. It was found that neither blade performance nor loading were affected significantly by this tower softening technique. Rotor performance exceeded prediction while blade loads were found to be in reasonable agreement with those predicted. Seventy-five hours of operation over a five month period resulted in no deterioration in the blade.

  13. A wind turbine hybrid simulation framework considering aeroelastic effects

    NASA Astrophysics Data System (ADS)

    Song, Wei; Su, Weihua

    2015-04-01

    In performing an effective structural analysis for wind turbine, the simulation of turbine aerodynamic loads is of great importance. The interaction between the wake flow and the blades may impact turbine blades loading condition, energy yield and operational behavior. Direct experimental measurement of wind flow field and wind profiles around wind turbines is very helpful to support the wind turbine design. However, with the growth of the size of wind turbines for higher energy output, it is not convenient to obtain all the desired data in wind-tunnel and field tests. In this paper, firstly the modeling of dynamic responses of large-span wind turbine blades will consider nonlinear aeroelastic effects. A strain-based geometrically nonlinear beam formulation will be used for the basic structural dynamic modeling, which will be coupled with unsteady aerodynamic equations and rigid-body rotations of the rotor. Full wind turbines can be modeled by using the multi-connected beams. Then, a hybrid simulation experimental framework is proposed to potentially address this issue. The aerodynamic-dominant components, such as the turbine blades and rotor, are simulated as numerical components using the nonlinear aeroelastic model; while the turbine tower, where the collapse of failure may occur under high level of wind load, is simulated separately as the physical component. With the proposed framework, dynamic behavior of NREL's 5MW wind turbine blades will be studied and correlated with available numerical data. The current work will be the basis of the authors' further studies on flow control and hazard mitigation on wind turbine blades and towers.

  14. The effects of Hurricane Hugo on suspended-sediment loads, Lago Loiza Basin, Puerto Rico

    USGS Publications Warehouse

    Gellis, A.

    1993-01-01

    In the two main tributaries that enter Lago Loiza, Rio Grande de Loiza and Rio Gurabo, 99 600 tonnes of suspended sediment was transported by 58.2??106 m3 of runoff in a 48 h period. The storm-average suspended-sediment concentration in the Rio Grande de Loiza for Hurricane Hugo was 2290 mgl-1, the second lowest for the 12 storms that have been monitored at this site. In Rio Gurabo the storm-average suspended-sediment concentration was 1420 mg l -1, the sixth lowest recorded out of 15 monitored storms. In Quebrada Salvatierra, a small tributary to Rio Grande de Loiza, suspended-sediment concentrations were as low as 33 mg l-1 during peak runoff of 20m3s-1. Normally the suspended-sediment concentrations at this discharge are 300 mg l-1. Hurricane force winds seem to be the most important factor contributing to the lower than expected suspended-sediment loads. High winds caused vegetation and debris to be dislodged and displaced. Debris accumulated on hillslopes and in small channels, blocked bridges and formed debris dams. These dams caused local backwater effects that reduced stream velocities and decreased suspended-sediment loads. -from Author

  15. Variable speed wind turbine control by discrete-time sliding mode approach.

    PubMed

    Torchani, Borhen; Sellami, Anis; Garcia, Germain

    2016-05-01

    The aim of this paper is to propose a new design variable speed wind turbine control by discrete-time sliding mode approach. This methodology is designed for linear saturated system. The saturation constraint is reported on inputs vector. To this end, the back stepping design procedure is followed to construct a suitable sliding manifold that guarantees the attainment of a stabilization control objective. It is well known that the mechanisms are investigated in term of the most proposed assumptions to deal with the damping, shaft stiffness and inertia effect of the gear. The objectives are to synthesize robust controllers that maximize the energy extracted from wind, while reducing mechanical loads and rotor speed tracking combined with an electromagnetic torque. Simulation results of the proposed scheme are presented. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Estimation of efficiency of the heat supply system based on a boiler house and a wind turbine in the northern environment

    NASA Astrophysics Data System (ADS)

    Bezhan, A. V.; Minin, V. A.

    2017-03-01

    This article describes a methodological approach to defining indoor air temperature in buildings heated by a power supply unit consisting of a boiler house and a wind-driven power plant (WDPP). We discuss a heating option for a residential building in the windy conditions of Murmansk city. We proved that, during the periods of strong wind, a WDPP can partially or fully satisfy the heat demand and sometimes even create a surplus of energy. During low wind weather, almost all loads are handled by the boiler house. We considered a possibility to accumulate the surplus energy obtained from a WDPP during strong wind by increasing the temperature in the whole building up to 25°C and further using the accumulated heat during the lowwind period when indoor air temperature may fall below 20°C. This allows saving organic fuel in the boiler house. We demonstrated how indoor air temperature in the building may change throughout the year when using the surplus energy from the WDPP due to thermal storage capacitance of the building. We also provided the results of study, showing favorable energy-related effects of using a WDPP along with the boiler house. It was determined that engaging a WDPP in fulfilling the diagram of heating loads promotes the decrease in the boiler house's contribution to heat supply by 30 to 50%, and using the surplus energy from the WDPP and thermal storage capacitance of the building allows reducing the contribution of the boiler house by 5-15% more in certain months.

  17. Wind/tornado design criteria, development to achieve required probabilistic performance goals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, D.S.

    1991-06-01

    This paper describes the strategy for developing new design criteria for a critical facility to withstand loading induced by the wind/tornado hazard. The proposed design requirements for resisting wind/tornado loads are based on probabilistic performance goals. The proposed design criteria were prepared by a Working Group consisting of six experts in wind/tornado engineering and meteorology. Utilizing their best technical knowledge and judgment in the wind/tornado field, they met and discussed the methodologies and reviewed available data. A review of the available wind/tornado hazard model for the site, structural response evaluation methods, and conservative acceptance criteria lead to proposed design criteriamore » that has a high probability of achieving the required performance goals.« less

  18. Wind/tornado design criteria, development to achieve required probabilistic performance goals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, D.S.

    This paper describes the strategy for developing new design criteria for a critical facility to withstand loading induced by the wind/tornado hazard. The proposed design requirements for resisting wind/tornado loads are based on probabilistic performance goals. The proposed design criteria were prepared by a Working Group consisting of six experts in wind/tornado engineering and meteorology. Utilizing their best technical knowledge and judgment in the wind/tornado field, they met and discussed the methodologies and reviewed available data. A review of the available wind/tornado hazard model for the site, structural response evaluation methods, and conservative acceptance criteria lead to proposed design criteriamore » that has a high probability of achieving the required performance goals.« less

  19. A peaking-regulation-balance-based method for wind & PV power integrated accommodation

    NASA Astrophysics Data System (ADS)

    Zhang, Jinfang; Li, Nan; Liu, Jun

    2018-02-01

    Rapid development of China’s new energy in current and future should be focused on cooperation of wind and PV power. Based on the analysis of system peaking balance, combined with the statistical features of wind and PV power output characteristics, a method of comprehensive integrated accommodation analysis of wind and PV power is put forward. By the electric power balance during night peaking load period in typical day, wind power installed capacity is determined firstly; then PV power installed capacity could be figured out by midday peak load hours, which effectively solves the problem of uncertainty when traditional method hard determines the combination of the wind and solar power simultaneously. The simulation results have validated the effectiveness of the proposed method.

  20. Offshore fatigue design turbulence

    NASA Astrophysics Data System (ADS)

    Larsen, Gunner C.

    2001-07-01

    Fatigue damage on wind turbines is mainly caused by stochastic loading originating from turbulence. While onshore sites display large differences in terrain topology, and thereby also in turbulence conditions, offshore sites are far more homogeneous, as the majority of them are likely to be associated with shallow water areas. However, despite this fact, specific recommendations on offshore turbulence intensities, applicable for fatigue design purposes, are lacking in the present IEC code. This article presents specific guidelines for such loading. These guidelines are based on the statistical analysis of a large number of wind data originating from two Danish shallow water offshore sites. The turbulence standard deviation depends on the mean wind speed, upstream conditions, measuring height and thermal convection. Defining a population of turbulence standard deviations, at a given measuring position, uniquely by the mean wind speed, variations in upstream conditions and atmospheric stability will appear as variability of the turbulence standard deviation. Distributions of such turbulence standard deviations, conditioned on the mean wind speed, are quantified by fitting the measured data to logarithmic Gaussian distributions. By combining a simple heuristic load model with the parametrized conditional probability density functions of the turbulence standard deviations, an empirical offshore design turbulence intensity is determined. For pure stochastic loading (as associated with standstill situations), the design turbulence intensity yields a fatigue damage equal to the average fatigue damage caused by the distributed turbulence intensity. If the stochastic loading is combined with a periodic deterministic loading (as in the normal operating situation), the proposed design turbulence intensity is shown to be conservative.

  1. Disturbance accommodating control design for wind turbines using solvability conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Na; Wright, Alan D.; Balas, Mark J.

    In this study, solvability conditions for disturbance accommodating control (DAC) have been discussed and applied on wind turbine controller design in above-rated wind speed to regulate rotor speed and to mitigate turbine structural loads. DAC incorporates a predetermined waveform model and uses it as part of the state-space formulation, which is known as the internal model principle to reduce or minimize the wind disturbance effects on the outputs of the wind turbine. An asymptotically stabilizing DAC controller with disturbance impact on the wind turbine being totally canceled out can be found if certain conditions are fulfilled. Designing a rotor speedmore » regulation controller without steady-state error is important for applying linear control methodology such as DAC on wind turbines. Therefore, solvability conditions of DAC without steady-state error are attractive and can be taken as examples when designing a multitask turbine controller. DAC controllers solved via Moore-Penrose Pseudoinverse and the Kronecker product are discussed, and solvability conditions of using them are given. Additionally, a new solvability condition based on inverting the feed-through D term is proposed for the sake of reducing computational burden in the Kronecker product. Applications of designing collective pitch and independent pitch controllers based on DAC are presented. Recommendations of designing a DAC-based wind turbine controller are given. A DAC controller motivated by the proposed solvability condition that utilizes the inverse of feed-through D term is developed to mitigate the blade flapwise once-per-revolution bending moment together with a standard proportional integral controller in the control loop to assist rotor speed regulation. Simulation studies verify the discussed solvability conditions of DAC and show the effectiveness of the proposed DAC control design methodology.« less

  2. Disturbance accommodating control design for wind turbines using solvability conditions

    DOE PAGES

    Wang, Na; Wright, Alan D.; Balas, Mark J.

    2017-02-07

    In this study, solvability conditions for disturbance accommodating control (DAC) have been discussed and applied on wind turbine controller design in above-rated wind speed to regulate rotor speed and to mitigate turbine structural loads. DAC incorporates a predetermined waveform model and uses it as part of the state-space formulation, which is known as the internal model principle to reduce or minimize the wind disturbance effects on the outputs of the wind turbine. An asymptotically stabilizing DAC controller with disturbance impact on the wind turbine being totally canceled out can be found if certain conditions are fulfilled. Designing a rotor speedmore » regulation controller without steady-state error is important for applying linear control methodology such as DAC on wind turbines. Therefore, solvability conditions of DAC without steady-state error are attractive and can be taken as examples when designing a multitask turbine controller. DAC controllers solved via Moore-Penrose Pseudoinverse and the Kronecker product are discussed, and solvability conditions of using them are given. Additionally, a new solvability condition based on inverting the feed-through D term is proposed for the sake of reducing computational burden in the Kronecker product. Applications of designing collective pitch and independent pitch controllers based on DAC are presented. Recommendations of designing a DAC-based wind turbine controller are given. A DAC controller motivated by the proposed solvability condition that utilizes the inverse of feed-through D term is developed to mitigate the blade flapwise once-per-revolution bending moment together with a standard proportional integral controller in the control loop to assist rotor speed regulation. Simulation studies verify the discussed solvability conditions of DAC and show the effectiveness of the proposed DAC control design methodology.« less

  3. Impact of red giant/AGB winds on active galactic nucleus jet propagation

    NASA Astrophysics Data System (ADS)

    Perucho, M.; Bosch-Ramon, V.; Barkov, M. V.

    2017-10-01

    Context. Dense stellar winds may mass-load the jets of active galactic nuclei, although it is unclear on what time and spatial scales the mixing takes place. Aims: Our aim is to study the first steps of the interaction between jets and stellar winds, and also the scales on which the stellar wind mixes with the jet and mass-loads it. Methods: We present a detailed 2D simulation - including thermal cooling - of a bubble formed by the wind of a star designed to study the initial stages of jet-star interaction. We also study the first interaction of the wind bubble with the jet using a 3D simulation in which the star enters the jet. Stability analysis is carried out for the shocked wind structure to evaluate the distances over which the jet-dragged wind, which forms a tail, can propagate without mixing with the jet flow. Results.The 2D simulations point to quick wind bubble expansion and fragmentation after about one bubble shock crossing time. Three-dimensional simulations and stability analysis point to local mixing in the case of strong perturbations and relatively low density ratios between the jet and the jet dragged-wind, and to a possibly more stable shocked wind structure at the phase of maximum tail mass flux. Analytical estimates also indicate that very early stages of the star jet-penetration time may be also relevant for mass-loading. The combination of these and previous results from the literature suggests highly unstable interaction structures and efficient wind-jet flow mixing on the scale of the jet interaction height. Conclusions: The winds of stars with strong mass loss can efficiently mix with jets from active galactic nuclei. In addition, the initial wind bubble shocked by the jet leads to a transient, large interaction surface. The interaction between jets and stars can produce strong inhomogeneities within the jet. As mixing is expected to be effective on large scales, even individual asymptotic giant branch stars can significantly contribute to the mass-load of the jet and thus affect its dynamics. Shear layer mass-entrainment could be important. The interaction structure can be a source of significant non-thermal emission.

  4. Wind tunnel tests for wind pressure distribution on gable roof buildings.

    PubMed

    Jing, Xiao-kun; Li, Yuan-qi

    2013-01-01

    Gable roof buildings are widely used in industrial buildings. Based on wind tunnel tests with rigid models, wind pressure distributions on gable roof buildings with different aspect ratios were measured simultaneously. Some characteristics of the measured wind pressure field on the surfaces of the models were analyzed, including mean wind pressure, fluctuating wind pressure, peak negative wind pressure, and characteristics of proper orthogonal decomposition results of the measured wind pressure field. The results show that extremely high local suctions often occur in the leading edges of longitudinal wall and windward roof, roof corner, and roof ridge which are the severe damaged locations under strong wind. The aspect ratio of building has a certain effect on the mean wind pressure coefficients, and the effect relates to wind attack angle. Compared with experimental results, the region division of roof corner and roof ridge from AIJ2004 is more reasonable than those from CECS102:2002 and MBMA2006.The contributions of the first several eigenvectors to the overall wind pressure distributions become much bigger. The investigation can offer some basic understanding for estimating wind load distribution on gable roof buildings and facilitate wind-resistant design of cladding components and their connections considering wind load path.

  5. Wind/seismic comparisons for upgrading existing structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giller, R.A.

    1989-10-01

    This paper depicts the analysis procedures and methods used to evaluate three existing building structures for extreme wind loads. The three structures involved in this evaluation are located at the US Department of Energy's Hanford Site near Richland, Washington. This site is characterized by open flat grassland with few surrounding obstructions and has extreme winds in lieu of tornados as a design basis accident condition. This group of buildings represents a variety of construction types, including a concrete stack, a concrete load-bearing wall structure, and a rigid steel-frame building. The three structures included in this group have recently been evaluatedmore » for response to the design basis earthquake that included non-linear time history effects. The resulting loads and stresses from the wind analyses were compared to the loads and stresses resulting from seismic analyses. This approach eliminated the need to prepare additional capacity calculations that were already contained in the seismic evaluations. 4 refs., 5 figs., 5 tabs.« less

  6. Comparison of measured and calculated dynamic loads for the Mod-2 2.5 mW wind turbine system

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. K.; Shipley, S. A.; Miller, R. D.

    1995-01-01

    The Boeing Company, under contract to the Electric Power Research Institute (EPRI), has completed a test program on the Mod-2 wind turbines at Goodnoe Hills, Washington. The objectives were to update fatigue load spectra, discern site and machine differences, measure vortex generator effects, and to evaluate rotational sampling techniques. This paper shows the test setup and loads instrumentation, loads data comparisons and test/analysis correlations. Test data are correlated with DYLOSAT predictions using both the NASA interim turbulence model and rotationally sampled winds as inputs. The latter is demonstrated to have the potential to improve the test/analysis correlations. The paper concludes with an assessment of the importance of vortex generators, site dependence, and machine differences on fatigue loads. The adequacy of prediction techniques used are evaluated and recommendations are made for improvements to the methodology.

  7. Structural Dynamic Behavior of Wind Turbines

    NASA Technical Reports Server (NTRS)

    Thresher, Robert W.; Mirandy, Louis P.; Carne, Thomas G.; Lobitz, Donald W.; James, George H. III

    2009-01-01

    The structural dynamicist s areas of responsibility require interaction with most other members of the wind turbine project team. These responsibilities are to predict structural loads and deflections that will occur over the lifetime of the machine, ensure favorable dynamic responses through appropriate design and operational procedures, evaluate potential design improvements for their impact on dynamic loads and stability, and correlate load and control test data with design predictions. Load prediction has been a major concern in wind turbine designs to date, and it is perhaps the single most important task faced by the structural dynamics engineer. However, even if we were able to predict all loads perfectly, this in itself would not lead to an economic system. Reduction of dynamic loads, not merely a "design to loads" policy, is required to achieve a cost-effective design. The two processes of load prediction and structural design are highly interactive: loads and deflections must be known before designers and stress analysts can perform structural sizing, which in turn influences the loads through changes in stiffness and mass. Structural design identifies "hot spots" (local areas of high stress) that would benefit most from dynamic load alleviation. Convergence of this cycle leads to a turbine structure that is neither under-designed (which may result in structural failure), nor over-designed (which will lead to excessive weight and cost).

  8. Bi-directional vibration control of offshore wind turbines using a 3D pendulum tuned mass damper

    NASA Astrophysics Data System (ADS)

    Sun, C.; Jahangiri, V.

    2018-05-01

    Offshore wind turbines suffer from excessive bi-directional vibrations due to wind-wave misalignment and vortex induced vibrations. However, most of existing research focus on unidirectional vibration attenuation which is inadequate for real applications. The present paper proposes a three dimensional pendulum tuned mass damper (3d-PTMD) to mitigate the tower and nacelle dynamic response in the fore-aft and side-side directions. An analytical model of the wind turbine coupled with the 3d-PTMD is established wherein the interaction between the blades, the tower and the 3d-PTMD is modeled. Aerodynamic loading is computed using the Blade Element Momentum method where the Prandtls tip loss factor and the Glauert correction are considered. JONSWAP spectrum is adopted to generate wave data. Wave loading is computed using Morisons equation in collaboration with the strip theory. Via a numerical search approach, the design formula of the 3d-PTMD is obtained and examined on a National Renewable Energy Lab (NREL) monopile 5 MW baseline wind turbine model under misaligned wind, wave and seismic loading. Dual linear tuned mass dampers (TMDs) deployed in the fore-aft and side-side directions are utilized for comparison. It is found that the 3d-PTMD with a mass ratio of 2 % can improve the mitigation of the root mean square and peak response by around 10 % when compared with the dual linear TMDs in controlling the bi-directional vibration of the offshore wind turbines under misaligned wind, wave and seismic loading.

  9. Techno-Economic and dynamic analysis of low velocity wind turbines for rural electrification in agricultural area of Ratchaburi Province, Thailand

    NASA Astrophysics Data System (ADS)

    Lipirodjanapong, Sumate; Namboonruang, Weerapol

    2017-07-01

    This paper presents the analysis of potential wind speed of electrical power generating using for agriculture in Ratchaburi province, Thailand. The total area is 1,900 square kilometers. First of all, the agriculture electrical load (AEL) data was investigated from all farming districts in Ratchaburi. Subsequently, the load data was analyzed and classified by the load power and energy consumption at individual district. The wind turbine generator (WTG) at capacity rate of 200w, 500w, 1,000w, and 2,000w were adopted to implement for the AEL in each area at wind speed range of 3 to 6 m/s. This paper shows the approach based on the wind speed at individual district to determine the capacity of WTG using the capacitor factor (CF) and the cost of energy (COE) in baht per unit under different WTG value rates. Ten locations for wind station installations are practical investigated. Results show that for instance, the Damnoen Sa-duak (DN-04) one of WTG candidate site is identically significant for economic investment of installing rated WTG. The results of COE are important to determine whether a wind site is good or not.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koh, J. H.; Robertson, A.; Jonkman, J.

    Need to modify simulated system behavior to the measured data, but the tower wind loads improved the comparison for nonoperating conditions. the SWAY system in both turbine operating and nonoperating conditions. Mixed results were observed when comparing the simulated system behavior to the measured data, but the tower wind loads improved the comparison for nonoperating conditions. without the new tower-load capability to examine its influence on the response characteristics of the system. This is important in situations when the turbine is parked in survival conditions. The simulation results were then compared to measured data from the SWAY system in bothmore » turbine operating and nonoperating conditions. Mixed results were observed when comparing the simulated system behavior to the measured data, but the tower wind loads improved the comparison for nonoperating conditions.« less

  11. Controller design for wind turbine load reduction via multiobjective parameter synthesis

    NASA Astrophysics Data System (ADS)

    Hoffmann, A. F.; Weiβ, F. A.

    2016-09-01

    During the design process for a wind turbine load reduction controller many different, sometimes conflicting requirements must be fulfilled simultaneously. If the requirements can be expressed as mathematical criteria, such a design problem can be solved by a criterion-vector and multi-objective design optimization. The software environment MOPS (Multi-Objective Parameter Synthesis) supports the engineer for such a design optimization. In this paper MOPS is applied to design a multi-objective load reduction controller for the well-known DTU 10 MW reference wind turbine. A significant reduction in the fatigue criteria especially the blade damage can be reached by the use of an additional Individual Pitch Controller (IPC) and an additional tower damper. This reduction is reached as a trade-off with an increase of actuator load.

  12. Opening Loads Analyses for Various Disk-Gap-Band Parachutes

    NASA Technical Reports Server (NTRS)

    Cruz, J. R.; Kandis, M.; Witkowski, A.

    2003-01-01

    Detailed opening loads data is presented for 18 tests of Disk-Gap-Band (DGB) parachutes of varying geometry with nominal diameters ranging from 43.2 to 50.1 ft. All of the test parachutes were deployed from a mortar. Six of these tests were conducted via drop testing with drop test vehicles weighing approximately 3,000 or 8,000 lb. Twelve tests were conducted in the National Full-Scale Aerodynamics Complex 80- by 120-foot wind tunnel at the NASA Ames Research Center. The purpose of these tests was to structurally qualify the parachute for the Mars Exploration Rover mission. A key requirement of all tests was that peak parachute load had to be reached at full inflation to more closely simulate the load profile encountered during operation at Mars. Peak loads measured during the tests were in the range from 12,889 to 30,027 lb. Of the two test methods, the wind tunnel tests yielded more accurate and repeatable data. Application of an apparent mass model to the opening loads data yielded insights into the nature of these loads. Although the apparent mass model could reconstruct specific tests with reasonable accuracy, the use of this model for predictive analyses was not accurate enough to set test conditions for either the drop or wind tunnel tests. A simpler empirical model was found to be suitable for predicting opening loads for the wind tunnel tests to a satisfactory level of accuracy. However, this simple empirical model is not applicable to the drop tests.

  13. Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.

    2010-01-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the loadmore » and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. Currently, uncertainties associated with wind and load forecasts, as well as uncertainties associated with random generator outages and unexpected disconnection of supply lines, are not taken into account in power grid operation. Thus, operators have little means to weigh the likelihood and magnitude of upcoming events of power imbalance. In this project, funded by the U.S. Department of Energy (DOE), a framework has been developed for incorporating uncertainties associated with wind and load forecast errors, unpredicted ramps, and forced generation disconnections into the energy management system (EMS) as well as generation dispatch and commitment applications. A new approach to evaluate the uncertainty ranges for the required generation performance envelope including balancing capacity, ramping capability, and ramp duration has been proposed. The approach includes three stages: forecast and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence levels. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis, incorporating all sources of uncertainties of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the “flying brick” technique has been developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation algorithm has been developed to validate the accuracy of the confidence intervals.« less

  14. Experimental study on the wind-turbine wake meandering inside a scale model wind farm placed in an atmospheric-boundary-layer wind tunnel

    NASA Astrophysics Data System (ADS)

    Coudou, N.; Buckingham, S.; van Beeck, J.

    2017-05-01

    Increasing use of wind energy over the years results in more and larger clustered wind farms. It is therefore fundamental to have an in-depth knowledge of wind-turbine wakes, and especially a better understanding of the well-known but less understood wake-meandering phenomenon which causes the wake to move as a whole in both horizontal and vertical directions as it is convected downstream. This oscillatory motion of the wake is crucial for loading on downstream turbines because it increases fatigue loads and in particular yaw loads. In order to address this phenomenon, experimental investigations were carried out in an atmospheric-boundary-layer wind tunnel using a 3 × 3 scaled wind farm composed of three-bladed rotating wind-turbine models subject to a neutral atmospheric boundary layer (ABL) corresponding to a slightly rough terrain, i.e. to offshore conditions. Particle Image Velocimetry (PIV) measurements were performed in a horizontal plane, at hub height, in the wake of the three wind turbines in the wind-farm centreline. From the PIV velocity fields obtained, the wake-centrelines were determined and a spectral analysis was performed to obtain the characteristics of the wake-meandering phenomenon. In addition, Hot-Wire Anemometry (HWA) measurements were performed in the wakes of the same wind turbines to validate the PIV results. The spectral analysis performed with the spatial and temporal signals obtained from PIV and HWA measurements respectively, led to Strouhal numbers St = fD/Uhub ≃ 0.20 - 0.22.

  15. Wind turbine wake visualization and characteristics analysis by Doppler lidar.

    PubMed

    Wu, Songhua; Liu, Bingyi; Liu, Jintao; Zhai, Xiaochun; Feng, Changzhong; Wang, Guining; Zhang, Hongwei; Yin, Jiaping; Wang, Xitao; Li, Rongzhong; Gallacher, Daniel

    2016-05-16

    Wind power generation is growing fast as one of the most promising renewable energy sources that can serve as an alternative to fossil fuel-generated electricity. When the wind turbine generator (WTG) extracts power from the wind, the wake evolves and leads to a considerable reduction in the efficiency of the actual power generation. Furthermore, the wake effect can lead to the increase of turbulence induced fatigue loads that reduce the life time of WTGs. In this work, a pulsed coherent Doppler lidar (PCDL) has been developed and deployed to visualize wind turbine wakes and to characterize the geometry and dynamics of wakes. As compared with the commercial off-the-shelf coherent lidars, the PCDL in this work has higher updating rate of 4 Hz and variable physical spatial resolution from 15 to 60 m, which improves its capability to observation the instantaneous turbulent wind field. The wind speed estimation method from the arc scan technique was evaluated in comparison with wind mast measurements. Field experiments were performed to study the turbulent wind field in the vicinity of operating WTGs in the onshore and offshore wind parks from 2013 to 2015. Techniques based on a single and a dual Doppler lidar were employed for elucidating main features of turbine wakes, including wind velocity deficit, wake dimension, velocity profile, 2D wind vector with resolution of 10 m, turbulence dissipation rate and turbulence intensity under different conditions of surface roughness. The paper shows that the PCDL is a practical tool for wind energy research and will provide a significant basis for wind farm site selection, design and optimization.

  16. Span-Load Distribution as a Factor in Stability in Roll

    NASA Technical Reports Server (NTRS)

    Knight, Montgomery; Noyes, Richard W

    1932-01-01

    This report gives the results of pressure-distribution tests made to study the effects on lateral stability of changing the span-load distribution on a rectangular monoplane wing model of fairly thick section. Three methods of changing the distribution were employed: variation in profile along the span to a thin symmetrical section at the tip, twist from +5 degrees to -15 degrees at the tip, and sweepback from +20 degrees to -20 degrees. The tests were conducted in a 5-foot closed-throat atmospheric wind tunnel. The investigation shows the following results: (1) change in profile along the span from the NACA-84 at the root to the NACA-M2 at the tip considerably reduces lateral instability, but also reduces the general effectiveness of the wing. (2) washout up to 11 degrees progressively reduces maximum lateral instability. (3) transition from sweepforward to sweepback gradually reduces the useful angle-of-attack range, but has no clearly defined effect on maximum lateral instability.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system ismore » based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.« less

  18. Impact analysis of air gap motion with respect to parameters of mooring system for floating platform

    NASA Astrophysics Data System (ADS)

    Shen, Zhong-xiang; Huo, Fa-li; Nie, Yan; Liu, Yin-dong

    2017-04-01

    In this paper, the impact analysis of air gap concerning the parameters of mooring system for the semi-submersible platform is conducted. It is challenging to simulate the wave, current and wind loads of a platform based on a model test simultaneously. Furthermore, the dynamic equivalence between the truncated and full-depth mooring system is still a tuff work. However, the wind and current loads can be tested accurately in wind tunnel model. Furthermore, the wave can be simulated accurately in wave tank test. The full-scale mooring system and the all environment loads can be simulated accurately by using the numerical model based on the model tests simultaneously. In this paper, the air gap response of a floating platform is calculated based on the results of tunnel test and wave tank. Meanwhile, full-scale mooring system, the wind, wave and current load can be considered simultaneously. In addition, a numerical model of the platform is tuned and validated by ANSYS AQWA according to the model test results. With the support of the tuned numerical model, seventeen simulation cases about the presented platform are considered to study the wave, wind, and current loads simultaneously. Then, the impact analysis studies of air gap motion regarding the length, elasticity, and type of the mooring line are performed in the time domain under the beam wave, head wave, and oblique wave conditions.

  19. Systems Engineering Workshop 2017 | Wind | NREL

    Science.gov Websites

    Energy for Wind Systems Today Cost and Value of Wind Power-Implications of Wind Turbine Design, János Aaron Smith, PPI Session II: Uncertainty Impacts on Wind Turbine Design and Performance Mitigation of Wind Turbine Design Load Uncertainties, Anand Natarajan, DTU Wind Energy Uncertainty in the Wind

  20. Wind Tunnel Strain-Gage Balance Calibration Data Analysis Using a Weighted Least Squares Approach

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; Volden, T.

    2017-01-01

    A new approach is presented that uses a weighted least squares fit to analyze wind tunnel strain-gage balance calibration data. The weighted least squares fit is specifically designed to increase the influence of single-component loadings during the regression analysis. The weighted least squares fit also reduces the impact of calibration load schedule asymmetries on the predicted primary sensitivities of the balance gages. A weighting factor between zero and one is assigned to each calibration data point that depends on a simple count of its intentionally loaded load components or gages. The greater the number of a data point's intentionally loaded load components or gages is, the smaller its weighting factor becomes. The proposed approach is applicable to both the Iterative and Non-Iterative Methods that are used for the analysis of strain-gage balance calibration data in the aerospace testing community. The Iterative Method uses a reasonable estimate of the tare corrected load set as input for the determination of the weighting factors. The Non-Iterative Method, on the other hand, uses gage output differences relative to the natural zeros as input for the determination of the weighting factors. Machine calibration data of a six-component force balance is used to illustrate benefits of the proposed weighted least squares fit. In addition, a detailed derivation of the PRESS residuals associated with a weighted least squares fit is given in the appendices of the paper as this information could not be found in the literature. These PRESS residuals may be needed to evaluate the predictive capabilities of the final regression models that result from a weighted least squares fit of the balance calibration data.

  1. The Future Impact of Wind on BPA Power System Ancillary Services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Yuri V.; Lu, Shuai; McManus, Bart

    Wind power is growing in a very fast pace as an alternative generating resource. As the ratio of wind power over total system capacity increases, the impact of wind on various system aspects becomes significant. This paper presents a methodology to study the future impact of wind on BPA power system ancillary services including load following and regulation. Existing approaches for similar analysis include dispatch model simulation and standard deviation evaluation. The methodology proposed in this paper uses historical data and stochastic processes to simulate the load balancing processes in BPA power system. Then capacity, ramp rate and ramp durationmore » characteristics are extracted from the simulation results, and load following and regulation requirements are calculated accordingly. It mimics the actual power system operations therefore the results can be more realistic yet the approach is convenient to perform. Further, the ramp rate and ramp duration data obtained from the analysis can be used to evaluate generator response or maneuverability and energy requirement, respectively, additional to the capacity requirement.« less

  2. Inflow characteristics associated with high-blade-loading events in a wind farm

    NASA Astrophysics Data System (ADS)

    Kelley, N. D.

    1993-07-01

    The stochastic characteristics of the turbulent inflow have been shown to be of major significance in the accumulation of fatigue in wind turbines. Because most of the wind turbine installations in the U.S. have taken place in multi-turbine or windfarm configurations, the fatigue damage associated with the higher turbulence levels within such arrangements must be taken into account when making estimates of component service lifetimes. The simultaneous monitoring of two adjacent wind turbines over a wide range of turbulent inflow conditions has given the authors more confidence in describing the structural load distributions that can be expected in such an environment. The adjacent testing of the two turbines allowed the authors to postulate that observed similarities in the response dynamics and load distributions could be considered quasi-universal, while the dissimilarities could be considered to result from the differing design of the rotors. The format has also allowed them to begin to define appropriate statistical load distribution models for many of the critical components in which fatigue is a major driver of the design. In addition to the adjacent turbine measurements, they also briefly discuss load distributions measured on a teetered-hub turbine.

  3. Bulk electric system reliability evaluation incorporating wind power and demand side management

    NASA Astrophysics Data System (ADS)

    Huang, Dange

    Electric power systems are experiencing dramatic changes with respect to structure, operation and regulation and are facing increasing pressure due to environmental and societal constraints. Bulk electric system reliability is an important consideration in power system planning, design and operation particularly in the new competitive environment. A wide range of methods have been developed to perform bulk electric system reliability evaluation. Theoretically, sequential Monte Carlo simulation can include all aspects and contingencies in a power system and can be used to produce an informative set of reliability indices. It has become a practical and viable tool for large system reliability assessment technique due to the development of computing power and is used in the studies described in this thesis. The well-being approach used in this research provides the opportunity to integrate an accepted deterministic criterion into a probabilistic framework. This research work includes the investigation of important factors that impact bulk electric system adequacy evaluation and security constrained adequacy assessment using the well-being analysis framework. Load forecast uncertainty is an important consideration in an electrical power system. This research includes load forecast uncertainty considerations in bulk electric system reliability assessment and the effects on system, load point and well-being indices and reliability index probability distributions are examined. There has been increasing worldwide interest in the utilization of wind power as a renewable energy source over the last two decades due to enhanced public awareness of the environment. Increasing penetration of wind power has significant impacts on power system reliability, and security analyses become more uncertain due to the unpredictable nature of wind power. The effects of wind power additions in generating and bulk electric system reliability assessment considering site wind speed correlations and the interactive effects of wind power and load forecast uncertainty on system reliability are examined. The concept of the security cost associated with operating in the marginal state in the well-being framework is incorporated in the economic analyses associated with system expansion planning including wind power and load forecast uncertainty. Overall reliability cost/worth analyses including security cost concepts are applied to select an optimal wind power injection strategy in a bulk electric system. The effects of the various demand side management measures on system reliability are illustrated using the system, load point, and well-being indices, and the reliability index probability distributions. The reliability effects of demand side management procedures in a bulk electric system including wind power and load forecast uncertainty considerations are also investigated. The system reliability effects due to specific demand side management programs are quantified and examined in terms of their reliability benefits.

  4. Active Wake Redirection Control to Improve Energy Yield (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churchfield, M. J.; Fleming, P.; DeGeorge, E.

    Wake effects can dramatically reduce the efficiency of waked turbines relative to the unwaked turbines. Wakes can be deflected, or 'redirected,' by applying yaw misalignment to the turbines. Yaw misalignment causes part of the rotor thrust vector to be pointed in the cross-stream direction, deflecting the flow and the wake. Yaw misalignment reduces power production, but the global increase in wind plant power due to decreased wake effect creates a net increase in power production. It is also a fairly simple control idea to implement at existing or new wind plants. We performed high-fidelity computational fluid dynamics simulations of themore » wake flow of the proposed Fishermen's Atlantic City Windfarm (FACW) that predict that under certain waking conditions, wake redirection can increase plant efficiency by 10%. This means that by applying wake redirection control, for a given watersheet area, a wind plant can either produce more power, or the same amount of power can be produced with a smaller watersheet area. With the power increase may come increased loads, though, due to the yaw misalignment. If misalignment is applied properly, or if layered with individual blade pitch control, though, the load increase can be mitigated. In this talk we will discuss the concept of wake redirection through yaw misalignment and present our CFD results of the FACW project. We will also discuss the implications of wake redirection control on annual energy production, and finally we will discuss plans to implement wake redirection control at FACW when it is operational.« less

  5. Tornado damage risk assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinhold, T.A.; Ellingwood, B.

    1982-09-01

    Several proposed models were evaluated for predicting tornado wind speed probabilities at nuclear plant sites as part of a program to develop statistical data on tornadoes needed for probability-based load combination analysis. A unified model was developed which synthesized the desired aspects of tornado occurrence and damage potential. The sensitivity of wind speed probability estimates to various tornado modeling assumptions are examined, and the probability distributions of tornado wind speed that are needed for load combination studies are presented.

  6. Smart structure for small wind turbine blade

    NASA Astrophysics Data System (ADS)

    Supeni, E. E.; Epaarachchi, J. A.; Islam, M. M.; Lau, K. T.

    2013-08-01

    Wind energy is seen as a viable alternative energy option for future energy demand. The blades of wind turbines are generally regarded as the most critical component of the wind turbine system. Ultimately, the blades act as the prime mover of the whole system which interacts with the wind flow during the production of energy. During wind turbine operation the wind loading cause the deflection of the wind turbine blade which can be significant and affect the turbine efficiency. Such a deflection in wind blade not only will result in lower performance in electrical power generation but also increase of material degradation due high fatigue life and can significantly shorten the longevity for the wind turbine material. In harnessing stiffness of the blade will contribute massive weight factor and consequently excessive bending moment. To overcome this excessive deflection due to wind loading on the blade, it is feasible to use shape memory alloy (SMA) wires which has ability take the blade back to its optimal operational shape. This paper details analytical and experimental work being carried out to minimize blade flapping deflection using SMA.

  7. Reduction of Helicopter BVI Noise, Vibration, and Power Consumption Through Individual Blade Control

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.; Blaas, Achim; Teves, Dietrich; Kube, Roland; Warmbrodt, William (Technical Monitor)

    1994-01-01

    A wind tunnel test was conducted with a full-scale BO 105 helicopter rotor to evaluate the potential of open-loop individual blade control (IBC) to improve rotor performance, to reduce blade vortex interaction (BVI) noise, and to alleviate helicopter vibrations. The wind tunnel test was an international collaborative effort between NASA/U.S. Army AFDD, ZF Luftfahrttechnik, Eurocopter Deutschland, and the German Aerospace Laboratory (DLR) and was conducted under the auspices of the U.S./German MOU on Rotorcraft Aeromechanics. In this test the normal blade pitch links of the rotor were replaced by servo-actuators so that the pitch of each blade could be controlled independently of the other blades. The specially designed servoactuators and IBC control system were designed and manufactured by ZF Luftfahrttechnik, GmbH. The wind tunnel test was conducted in the 40- by 80-Foot Wind Tunnel at the NASA Ames Research Center. An extensive amount of measurement information was acquired for each IBC data point. These data include rotor performance, static and dynamic hub forces and moments, rotor loads, control loads, inboard and outboard blade pitch motion, and BVI noise data. The data indicated very significant (80 percent) simultaneous reductions in both BVI noise and hub vibrations could be obtained using multi-harmonic input at the critical descent (terminal approach) condition. The data also showed that performance improvements of up to 7 percent could be obtained using 2P input at high-speed forward flight conditions.

  8. Performance of a wind turbine over a ridged terrain

    NASA Astrophysics Data System (ADS)

    Santoni, Christian; Ciri, Umberto; Leonardi, Stefano

    2016-11-01

    Performance of wind turbines is affected by their interaction with the topography. Low momentum flow from the terrain may impinge the turbine resulting in fatigue loads that may reduce durability. However, at the same time it may promote the transport of momentum and kinetic energy into the wake improving the power production on the downstream turbines. In order to address how the topography affects the flow, Large Eddy Simulations of a wind turbine located on a wavy surface are performed. The height variation of the topography is described by a sinusoidal wave. Two different amplitudes were considered, 0 . 10 D and 0 . 05 D , where D is the rotor diameter. The wavelength has been kept constant to 3 D . The effect of the relative position of rotor and terrain geometry was assessed by placing the turbine either at the crest or at the trough of the undulated wall. NREL-5MW turbine blades were modeled using the actuator line model whereas the tower, nacelle and topography using the immersed boundary method. A simulation of a wind turbine on a flat terrain was performed as reference case. The performance of the turbine was evaluated in terms of the power production and blade load fluctuations, as well as for the energy entrainment into the wake of the turbine. The numerical simulations were performed on XSEDE TACC under Grant No. CTS070066. This work was supported by the National Science Foundation, Grant Number IIA-1243482 (the WINDINSPIRE project).

  9. Fully vs. Sequentially Coupled Loads Analysis of Offshore Wind Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damiani, Rick; Wendt, Fabian; Musial, Walter

    The design and analysis methods for offshore wind turbines must consider the aerodynamic and hydrodynamic loads and response of the entire system (turbine, tower, substructure, and foundation) coupled to the turbine control system dynamics. Whereas a fully coupled (turbine and support structure) modeling approach is more rigorous, intellectual property concerns can preclude this approach. In fact, turbine control system algorithms and turbine properties are strictly guarded and often not shared. In many cases, a partially coupled analysis using separate tools and an exchange of reduced sets of data via sequential coupling may be necessary. In the sequentially coupled approach, themore » turbine and substructure designers will independently determine and exchange an abridged model of their respective subsystems to be used in their partners' dynamic simulations. Although the ability to achieve design optimization is sacrificed to some degree with a sequentially coupled analysis method, the central question here is whether this approach can deliver the required safety and how the differences in the results from the fully coupled method could affect the design. This work summarizes the scope and preliminary results of a study conducted for the Bureau of Safety and Environmental Enforcement aimed at quantifying differences between these approaches through aero-hydro-servo-elastic simulations of two offshore wind turbines on a monopile and jacket substructure.« less

  10. On the Integration of Wind and Solar Energy to Provide a Total Energy Supply in the U.S

    NASA Astrophysics Data System (ADS)

    Liebig, E. C.; Rhoades, A.; Sloggy, M.; Mills, D.; Archer, C. L.

    2009-12-01

    This study examines the feasibility of using renewable energy - mostly wind and solar radiation - as the primary sources of energy in the U.S., under the assumption that a nationwide electric transmission grid is in place. Previous studies have shown that solar output from California and Texas using energy storage is well correlated with the state energy load on an hour by hour basis throughout the year and with the US national load on a monthly basis. Other studies have shown that solar or wind alone can power the present US grid on average. This study explores scenarios for use of wind and solar energy together at the national scale on an hour by hour basis to determine if such a combination is a better match to national seasonal load scenarios than either of the two alone on an hour-by-hour basis. Actual hour by hour national load data from a particular year will be used as a basis, with some scenarios incorporating vehicle sector electrification and building heating and cooling using electric heat pumps. Hydro and geothermal generation can provide additional controllable output, when needed, to fulfill the hourly electricity and/or energy needs. Hourly wind speed data were calculated at the hub height of 80 m above the ground for the year 2006 at over 150 windy locations in the continental US using an extrapolation technique based on 10-m wind speed measurements and vertical sounding profiles. Using a 1.5 MW wind turbine as benchmark, the hourly wind power production nationwide was determined at all locations. Similarly, the hourly output from solar plants, with and without thermal storage, was calculated based on Ausra’s model assuming that the solar production would occur in the Southwest, the area with the greatest solar radiation density in the U.S. Hourly electricity demand for the year 2006 was obtained nationwide from a variety of sources, including the Federal Energy Regulation Commission. Hourly residential heating and cooking, industrial heat processing, and future electrified transportation loads were calculated from monthly energy consumption data from the Energy Information Administration. Using different scenarios of wind power penetration (10%, 20%, 30%, 50%, 80%, 100% of the average national electricity and/or energy demand), the remaining hourly electricity and/or energy load was covered by various combinations of solar, hydro, and geothermal generation. Statistics of the reliability of the various scenarios, as well as details on the area covered by wind and solar farms per each scenario, will be analyzed and presented.

  11. Wind Tunnel Tests for Wind Pressure Distribution on Gable Roof Buildings

    PubMed Central

    2013-01-01

    Gable roof buildings are widely used in industrial buildings. Based on wind tunnel tests with rigid models, wind pressure distributions on gable roof buildings with different aspect ratios were measured simultaneously. Some characteristics of the measured wind pressure field on the surfaces of the models were analyzed, including mean wind pressure, fluctuating wind pressure, peak negative wind pressure, and characteristics of proper orthogonal decomposition results of the measured wind pressure field. The results show that extremely high local suctions often occur in the leading edges of longitudinal wall and windward roof, roof corner, and roof ridge which are the severe damaged locations under strong wind. The aspect ratio of building has a certain effect on the mean wind pressure coefficients, and the effect relates to wind attack angle. Compared with experimental results, the region division of roof corner and roof ridge from AIJ2004 is more reasonable than those from CECS102:2002 and MBMA2006.The contributions of the first several eigenvectors to the overall wind pressure distributions become much bigger. The investigation can offer some basic understanding for estimating wind load distribution on gable roof buildings and facilitate wind-resistant design of cladding components and their connections considering wind load path. PMID:24082851

  12. User's Guide for Monthly Vector Wind Profile Model

    NASA Technical Reports Server (NTRS)

    Adelfang, S. I.

    1999-01-01

    The background, theoretical concepts, and methodology for construction of vector wind profiles based on a statistical model are presented. The derived monthly vector wind profiles are to be applied by the launch vehicle design community for establishing realistic estimates of critical vehicle design parameter dispersions related to wind profile dispersions. During initial studies a number of months are used to establish the model profiles that produce the largest monthly dispersions of ascent vehicle aerodynamic load indicators. The largest monthly dispersions for wind, which occur during the winter high-wind months, are used for establishing the design reference dispersions for the aerodynamic load indicators. This document includes a description of the computational process for the vector wind model including specification of input data, parameter settings, and output data formats. Sample output data listings are provided to aid the user in the verification of test output.

  13. Research on Power System Scheduling Improving Wind Power Accommodation Considering Thermal Energy Storage and Flexible Load

    NASA Astrophysics Data System (ADS)

    Zou, Chenlu; Cui, Xue; Wang, Heng; Zhou, Bin; Liu, Yang

    2018-01-01

    In the case of rapid development of wind power and heavy wind curtailment, the study of wind power accommodation of combined heat and power system has become the focus of attention. A two-stage scheduling model contains of wind power, thermal energy storage, CHP unit and flexible load were constructed. This model with the objective function of minimizing wind curtailment and the operation cost of units while taking into account of the total coal consumption of units, constraint of thermal energy storage and electricity-heat characteristic of CHP. This paper uses MICA to solve the problem of too many constraints and make the solution more feasible. A numerical example showed that the two stage decision scheduling model can consume more wind power, and it could provide a reference for combined heat and power system short-term operation

  14. A Novel Method for Reducing Rotor Blade-Vortex Interaction

    NASA Technical Reports Server (NTRS)

    Glinka, A. T.

    2000-01-01

    One of the major hindrances to expansion of the rotorcraft market is the high-amplitude noise they produce, especially during low-speed descent, where blade-vortex interactions frequently occur. In an attempt to reduce the noise levels caused by blade-vortex interactions, the flip-tip rotor blade concept was devised. The flip-tip rotor increases the miss distance between the shed vortices and the rotor blades, reducing BVI noise. The distance is increased by rotating an outboard portion of the rotor tip either up or down depending on the flight condition. The proposed plan for the grant consisted of a computational simulation of the rotor aerodynamics and its wake geometry to determine the effectiveness of the concept, coupled with a series of wind tunnel experiments exploring the value of the device and validating the computer model. The computational model did in fact show that the miss distance could be increased, giving a measure of the effectiveness of the flip-tip rotor. However, the wind experiments were not able to be conducted. Increased outside demand for the 7'x lO' wind tunnel at NASA Ames and low priority at Ames for this project forced numerous postponements of the tests, eventually pushing the tests beyond the life of the grant. A design for the rotor blades to be tested in the wind tunnel was completed and an analysis of the strength of the model blades based on predicted loads, including dynamic forces, was done.

  15. Extended Glauert tip correction to include vortex rollup effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maniaci, David; Schmitz, Sven

    Wind turbine loads predictions by blade-element momentum theory using the standard tip-loss correction have been shown to over-predict loading near the blade tip in comparison to experimental data. This over-prediction is theorized to be due to the assumption of light rotor loading, inherent in the standard tip-loss correction model of Glauert. A higher- order free-wake method, WindDVE, is used to compute the rollup process of the trailing vortex sheets downstream of wind turbine blades. Results obtained serve an exact correction function to the Glauert tip correction used in blade-element momentum methods. Lastly, it is found that accounting for the effectsmore » of tip vortex rollup within the Glauert tip correction indeed results in improved prediction of blade tip loads computed by blade-element momentum methods.« less

  16. Analysis of dynamic behavior of multiple-stage planetary gear train used in wind driven generator.

    PubMed

    Wang, Jungang; Wang, Yong; Huo, Zhipu

    2014-01-01

    A dynamic model of multiple-stage planetary gear train composed of a two-stage planetary gear train and a one-stage parallel axis gear is proposed to be used in wind driven generator to analyze the influence of revolution speed and mesh error on dynamic load sharing characteristic based on the lumped parameter theory. Dynamic equation of the model is solved using numerical method to analyze the uniform load distribution of the system. It is shown that the load sharing property of the system is significantly affected by mesh error and rotational speed; load sharing coefficient and change rate of internal and external meshing of the system are of obvious difference from each other. The study provides useful theoretical guideline for the design of the multiple-stage planetary gear train of wind driven generator.

  17. Extended Glauert tip correction to include vortex rollup effects

    DOE PAGES

    Maniaci, David; Schmitz, Sven

    2016-10-03

    Wind turbine loads predictions by blade-element momentum theory using the standard tip-loss correction have been shown to over-predict loading near the blade tip in comparison to experimental data. This over-prediction is theorized to be due to the assumption of light rotor loading, inherent in the standard tip-loss correction model of Glauert. A higher- order free-wake method, WindDVE, is used to compute the rollup process of the trailing vortex sheets downstream of wind turbine blades. Results obtained serve an exact correction function to the Glauert tip correction used in blade-element momentum methods. Lastly, it is found that accounting for the effectsmore » of tip vortex rollup within the Glauert tip correction indeed results in improved prediction of blade tip loads computed by blade-element momentum methods.« less

  18. Analysis of Dynamic Behavior of Multiple-Stage Planetary Gear Train Used in Wind Driven Generator

    PubMed Central

    Wang, Jungang; Wang, Yong; Huo, Zhipu

    2014-01-01

    A dynamic model of multiple-stage planetary gear train composed of a two-stage planetary gear train and a one-stage parallel axis gear is proposed to be used in wind driven generator to analyze the influence of revolution speed and mesh error on dynamic load sharing characteristic based on the lumped parameter theory. Dynamic equation of the model is solved using numerical method to analyze the uniform load distribution of the system. It is shown that the load sharing property of the system is significantly affected by mesh error and rotational speed; load sharing coefficient and change rate of internal and external meshing of the system are of obvious difference from each other. The study provides useful theoretical guideline for the design of the multiple-stage planetary gear train of wind driven generator. PMID:24511295

  19. Wind turbine wake characterization using long-range Doppler lidar

    NASA Astrophysics Data System (ADS)

    Aitken, M.; Lundquist, J. K.; Hestmark, K.; Banta, R. M.; Pichugina, Y.; Brewer, A.

    2012-12-01

    Wind turbines extract energy from the freestream flow, resulting in a waked region behind the rotor which is characterized by reduced wind speed and increased turbulence. The velocity deficit in the wake diminishes with distance, as faster-moving air outside is gradually entrained. In a concentrated group of turbines, then, downwind machines experience very different inflow conditions compared to those in the front row. As utility-scale turbines rarely exist in isolation, detailed knowledge of the mean flow and turbulence structure inside wakes is needed to correctly model both power production and turbine loading at modern wind farms. To this end, the Turbine Wake and Inflow Characterization Study (TWICS) was conducted in the spring of 2011 to determine the reduction in wind speeds downstream from a multi-MW turbine located at the National Renewable Energy Laboratory's National Wind Technology Center (NWTC) near Boulder, Colorado. Full-scale measurements of wake dynamics are hardly practical or even possible with conventional sensors, such as cup anemometers mounted on meteorological (met) masts. Accordingly, the High Resolution Doppler Lidar (HRDL) developed by the National Oceanic and Atmospheric Administration's Earth System Research Laboratory was employed to investigate the formation and propagation of wakes under varying levels of ambient wind speed, shear, atmospheric stability, and turbulence. HRDL remotely senses line-of-sight wind velocities and has been used in several previous studies of boundary layer aerodynamics. With a fully steerable beam and a maximum range up to about 5 km, depending on atmospheric conditions, HRDL performed a comprehensive survey of the wind flow in front of and behind the turbine to study the shape, meandering, and attenuation of wakes. Due in large part to limited experimental data availability, wind farm wake modeling is still subject to an unacceptable amount of uncertainty, particularly in complex terrain. Here, analytical techniques are developed to distinguish wakes from the background variability, and moreover, wakes are then classified by width, height, length, and velocity deficit based on atmospheric stability and inflow conditions. By integrating these advanced observational capabilities with innovative approaches to atmospheric modeling, this work will help to improve simulation tools used to quantify power loss and fatigue loading due to wake effects, thereby aiding the optimization of wind farm layouts.

  20. Development and Verification of the Soil-Pile Interaction Extension for SubDyn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damiani, Rick R; Wendt, Fabian F

    SubDyn is the substructure structural-dynamics module for the aero-hydro-servo-elastic tool FAST v8. SubDyn uses a finite-element model (FEM) to simulate complex multimember lattice structures connected to conventional turbines and towers, and it can make use of the Craig-Bampton model reduction. Here we describe the newly added capability to handle soil-pile stiffness and compare results for monopile and jacket-based offshore wind turbines as obtained with FAST v8, SACS, and EDP (the latter two are modeling software packages commonly used in the offshore oil and gas industry). The level of agreement in terms of modal properties and loads for the entire offshoremore » wind turbine components is excellent, thus allowing SubDyn and FAST v8 to accurately simulate offshore wind turbines on fixed-bottom structures and accounting for the effect of soil dynamics, thus reducing risk to the project.« less

  1. An Adaptive Coordinated Control for an Offshore Wind Farm Connected VSC Based Multi-Terminal DC Transmission System

    NASA Astrophysics Data System (ADS)

    Kumar, M. Ajay; Srikanth, N. V.

    2015-01-01

    The voltage source converter (VSC) based multiterminal high voltage direct current (MTDC) transmission system is an interesting technical option to integrate offshore wind farms with the onshore grid due to its unique performance characteristics and reduced power loss via extruded DC cables. In order to enhance the reliability and stability of the MTDC system, an adaptive neuro fuzzy inference system (ANFIS) based coordinated control design has been addressed in this paper. A four terminal VSC-MTDC system which consists of an offshore wind farm and oil platform is implemented in MATLAB/ SimPowerSystems software. The proposed model is tested under different fault scenarios along with the converter outage and simulation results show that the novel coordinated control design has great dynamic stabilities and also the VSC-MTDC system can supply AC voltage of good quality to offshore loads during the disturbances.

  2. Test evaluation of a laminated wood wind turbine blade concept

    NASA Technical Reports Server (NTRS)

    Faddoul, J. R.

    1981-01-01

    A series of tests conducted on a root end section of a laminated wood wind turbine blade are reported. The blade to hub transition of the wood blade uses steel studs cast into the wood D spar with a filled epoxy. Both individual studs and a full scale, short length, root section were tested. Results indicate that the bonded stud concept is more than adequate for both the 30 year life fatigue loads and for the high wind or hurricane gust loads.

  3. Experimental data and theoretical analysis of an operating 100 kW wind turbine

    NASA Technical Reports Server (NTRS)

    Linscott, B. S.; Glasgow, J. C.; Anderson, W. D.; Donham, R. E.

    1978-01-01

    Experimental test data are correlated with analyses of turbine loads and complete system behavior of the ERDA-NASA 100 kW Mod-0 wind turbine generator over a broad range of steady state conditions, as well as during transient conditions. The deficit in the ambient wind field due to the upwind tower turbine support structure is found to be very significant in exciting higher harmonic loads associated with the flapping response of the blade in bending.

  4. Wind and Water Power Fact Sheets | Wind | NREL

    Science.gov Websites

    Advanced Control Turbine Systems to Increase Performance, Decrease Structural Loading of Wind Turbines and and Water Power Fact Sheets Wind and Water Power Fact Sheets The capabilities for research at the National Wind Technology Center (NWTC) are numerous. Below you will find fact sheets about the many

  5. Wind tunnel analysis of the aerodynamic loads on rolling stock over railway embankments: the effect of shelter windbreaks.

    PubMed

    Avila-Sanchez, Sergio; Pindado, Santiago; Lopez-Garcia, Oscar; Sanz-Andres, Angel

    2014-01-01

    Wind-flow pattern over embankments involves an overexposure of the rolling stock travelling on them to wind loads. Windbreaks are a common solution for changing the flow characteristic in order to decrease unwanted effects induced by the presence of cross-wind. The shelter effectiveness of a set of windbreaks placed over a railway twin-track embankment is experimentally analysed. A set of two-dimensional wind tunnel tests are undertaken and results corresponding to pressure tap measurements over a section of a typical high-speed train are herein presented. The results indicate that even small-height windbreaks provide sheltering effects to the vehicles. Also, eaves located at the windbreak tips seem to improve their sheltering effect.

  6. Wind Tunnel Analysis of the Aerodynamic Loads on Rolling Stock over Railway Embankments: The Effect of Shelter Windbreaks

    PubMed Central

    Avila-Sanchez, Sergio; Lopez-Garcia, Oscar; Sanz-Andres, Angel

    2014-01-01

    Wind-flow pattern over embankments involves an overexposure of the rolling stock travelling on them to wind loads. Windbreaks are a common solution for changing the flow characteristic in order to decrease unwanted effects induced by the presence of cross-wind. The shelter effectiveness of a set of windbreaks placed over a railway twin-track embankment is experimentally analysed. A set of two-dimensional wind tunnel tests are undertaken and results corresponding to pressure tap measurements over a section of a typical high-speed train are herein presented. The results indicate that even small-height windbreaks provide sheltering effects to the vehicles. Also, eaves located at the windbreak tips seem to improve their sheltering effect. PMID:25544954

  7. 24 CFR 200.925b - Residential and institutional building code comparison items.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...); (6) Individual unit smoke detectors; (7) Building alarm systems; (8) Highrise criteria; (b) Light and...) Design live loads; (2) Design dead loads; (3) Snow loads; (4) Wind loads. (5) Earthquake loads (in...

  8. 24 CFR 200.925b - Residential and institutional building code comparison items.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...); (6) Individual unit smoke detectors; (7) Building alarm systems; (8) Highrise criteria; (b) Light and...) Design live loads; (2) Design dead loads; (3) Snow loads; (4) Wind loads. (5) Earthquake loads (in...

  9. 24 CFR 200.925b - Residential and institutional building code comparison items.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...); (6) Individual unit smoke detectors; (7) Building alarm systems; (8) Highrise criteria; (b) Light and...) Design live loads; (2) Design dead loads; (3) Snow loads; (4) Wind loads. (5) Earthquake loads (in...

  10. Analysis of wind-resistant and stability for cable tower in cable-stayed bridge with four towers

    NASA Astrophysics Data System (ADS)

    Meng, Yangjun; Li, Can

    2017-06-01

    Wind speed time history simulation methods have been introduced first, especially the harmonic synthesis method introduced in detail. Second, taking Chishi bridge for example, choosing the particular sections, and combined with the design wind speed, three-component coefficient simulate analysis between -4°and 4°has been carry out with the Fluent software. The results show that drag coefficient reaches maximum when the attack Angle is 1°. According to measured wind speed samples,time history curves of wind speed at bridge deck and tower roof have been obtained,and wind-resistant time history analysis for No.5 tower has been carry out. Their results show that the dynamic coefficients are different with different calculation standard, especially transverse bending moment, pulsating crosswind load does not show a dynamic amplification effect.Under pulsating wind loads at bridge deck or tower roof, the maximum displacement at the top of the tower and the maximum stress at the bottom of the tower are within the allowable range. The transverse stiffness of tower is greater than that of the longitudinal stiffness, therefore wind-resistant analysis should give priority to the longitudinal direction. Dynamic coefficients are different with different standard, the maximum dynamic coefficient should be used for the pseudo-static analysis.Finally, the static stability of tower is analyzed with different load combinations, and the galloping stabilities of cable tower is proved.

  11. Comparison of analytical methods for calculation of wind loads

    NASA Technical Reports Server (NTRS)

    Minderman, Donald J.; Schultz, Larry L.

    1989-01-01

    The following analysis is a comparison of analytical methods for calculation of wind load pressures. The analytical methods specified in ASCE Paper No. 3269, ANSI A58.1-1982, the Standard Building Code, and the Uniform Building Code were analyzed using various hurricane speeds to determine the differences in the calculated results. The winds used for the analysis ranged from 100 mph to 125 mph and applied inland from the shoreline of a large open body of water (i.e., an enormous lake or the ocean) a distance of 1500 feet or ten times the height of the building or structure considered. For a building or structure less than or equal to 250 feet in height acted upon by a wind greater than or equal to 115 mph, it was determined that the method specified in ANSI A58.1-1982 calculates a larger wind load pressure than the other methods. For a building or structure between 250 feet and 500 feet tall acted upon by a wind rangind from 100 mph to 110 mph, there is no clear choice of which method to use; for these cases, factors that must be considered are the steady-state or peak wind velocity, the geographic location, the distance from a large open body of water, and the expected design life and its risk factor.

  12. Preliminary analysis of dynamic stall effects on a 91-meter wind turbine rotor

    NASA Technical Reports Server (NTRS)

    Wilson, Robert E.

    1995-01-01

    Analytical investigation of dynamic stall on HAWT (horizontal-axis wind turbines) rotor loads was conducted. Dynamic stall was modeled using the Gormont approach on the MOD-2 rotor, treating the blade as a rigid body teetering about a fixed axis. Blade flapwise bending moments at station 370 were determined with and without dynamic stall for spatial variations in local wind speed due to wind shear and yaw. The predicted mean flapwise bending moments were found to be in good agreement with test results. Results obtained with and without dynamic stall showed no significant difference for the mean flapwise bending moment. The cyclic bending moments calculated with and without dynamic stall effects were substantially the same. None of the calculated cyclic loads reached the level of the cyclic loads measured on the MOD-2 using the Boeing five-minute-average technique.

  13. Design and Installation of Nearshore Ocean Cable Protection Systems,

    DTIC Science & Technology

    1979-11-01

    4-6 Figure 4-2. Maximum deflection versus cable tension for cables exposed to lateral wind and current loads ...deflection versus cable tension for cables exposed to lateral wind and current loads (from: Project Execution Plan FPO-1-77(15)). 4-6- -" O.5knot u 4re...with the mass of concrete on the seafloor to prevent pour- ing through the water column . If subsequent loads of concrete are required at the same

  14. Investigation of high-speed shaft bearing loads in wind turbine gearboxes through dynamometer testing

    DOE PAGES

    Guo, Yi; Keller, Jonathan

    2017-11-10

    Many wind turbine gearboxes require repair or replacement well before reaching the end of their design life. The most common failure is bearing axial cracks, commonly called white etching cracks (WECs), which typically occur in the inner raceways of the high-speed parallel-stage rolling element bearings. Although the root causes of WECs are debated, one theory is that they are related to routine dynamic operating conditions and occasional transient events prevalent in wind turbines that can result in high bearing stress and sliding of the rolling elements. Here, this paper examined wind turbine gearbox high-speed shaft bearing loads and stresses throughmore » modeling and full-scale dynamometer testing. Bearing outer race loads were directly measured and predicted using a variety of modeling tools in normal operations, misaligned conditions, and transient events particularly prone to bearing sliding. Test data and models of bearing loads were well correlated. Neither operational misalignment due to rotor moments nor static generator misalignment affected the bearing loads when compared with pure-torque conditions. Thus, it is not likely that generator misalignment is a causal factor of WECs. In contrast, during transient events, the bearings experienced alternating periods of high stress, torque reversals, and loads under the minimum requisite at high rotating speeds while showing indications of sliding, all of which could be related to the formation of WECs.« less

  15. Investigation of high-speed shaft bearing loads in wind turbine gearboxes through dynamometer testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Yi; Keller, Jonathan

    Many wind turbine gearboxes require repair or replacement well before reaching the end of their design life. The most common failure is bearing axial cracks, commonly called white etching cracks (WECs), which typically occur in the inner raceways of the high-speed parallel-stage rolling element bearings. Although the root causes of WECs are debated, one theory is that they are related to routine dynamic operating conditions and occasional transient events prevalent in wind turbines that can result in high bearing stress and sliding of the rolling elements. Here, this paper examined wind turbine gearbox high-speed shaft bearing loads and stresses throughmore » modeling and full-scale dynamometer testing. Bearing outer race loads were directly measured and predicted using a variety of modeling tools in normal operations, misaligned conditions, and transient events particularly prone to bearing sliding. Test data and models of bearing loads were well correlated. Neither operational misalignment due to rotor moments nor static generator misalignment affected the bearing loads when compared with pure-torque conditions. Thus, it is not likely that generator misalignment is a causal factor of WECs. In contrast, during transient events, the bearings experienced alternating periods of high stress, torque reversals, and loads under the minimum requisite at high rotating speeds while showing indications of sliding, all of which could be related to the formation of WECs.« less

  16. Aerodynamic vibrations of a maglev vehicle running on flexible guideways under oncoming wind actions

    NASA Astrophysics Data System (ADS)

    Yau, J. D.

    2010-05-01

    This paper intends to present a computational framework of aerodynamic analysis for a maglev (magnetically levitated) vehicle traveling over flexible guideways under oncoming wind loads. The guideway unit is simulated as a series of simple beams with identical span and the maglev vehicle as a rigid car body supported by levitation forces. To carry out the interaction dynamics of maglev vehicle/guideway system, this study adopts an onboard PID (proportional-integral-derivative) controller based on Ziegler-Nicholas (Z-N) method to control the levitation forces. Interaction of wind with high-speed train is a complicated situation arising from unsteady airflow around the train. In this study, the oncoming wind loads acting on the running maglev vehicle are generated in temporal/spatial domain using digital simulation techniques that can account for the moving effect of vehicle's speed and the spatial correlation of stochastic airflow velocity field. Considering the motion-dependent nature of levitation forces and the non-conservative characteristics of turbulent airflows, an iterative approach is used to compute the interaction response of the maglev vehicle/guideway coupling system under wind actions. For the purpose of numerical simulation, this paper employs Galerkin's method to convert the governing equations containing a maglev vehicle into a set of differential equations in generalized systems, and then solve the two sets of differential equations using an iterative approach with the Newmark method. From the present investigation, the aerodynamic forces may result in a significant amplification on acceleration amplitude of the running maglev vehicle at higher speeds. For this problem, a PID+LQR (linear quadratic regulator) controller is proposed to reduce the vehicle's acceleration response for the ride comfort of passengers.

  17. Short-term load and wind power forecasting using neural network-based prediction intervals.

    PubMed

    Quan, Hao; Srinivasan, Dipti; Khosravi, Abbas

    2014-02-01

    Electrical power systems are evolving from today's centralized bulk systems to more decentralized systems. Penetrations of renewable energies, such as wind and solar power, significantly increase the level of uncertainty in power systems. Accurate load forecasting becomes more complex, yet more important for management of power systems. Traditional methods for generating point forecasts of load demands cannot properly handle uncertainties in system operations. To quantify potential uncertainties associated with forecasts, this paper implements a neural network (NN)-based method for the construction of prediction intervals (PIs). A newly introduced method, called lower upper bound estimation (LUBE), is applied and extended to develop PIs using NN models. A new problem formulation is proposed, which translates the primary multiobjective problem into a constrained single-objective problem. Compared with the cost function, this new formulation is closer to the primary problem and has fewer parameters. Particle swarm optimization (PSO) integrated with the mutation operator is used to solve the problem. Electrical demands from Singapore and New South Wales (Australia), as well as wind power generation from Capital Wind Farm, are used to validate the PSO-based LUBE method. Comparative results show that the proposed method can construct higher quality PIs for load and wind power generation forecasts in a short time.

  18. Uncertainty propagation through an aeroelastic wind turbine model using polynomial surrogates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murcia, Juan Pablo; Réthoré, Pierre-Elouan; Dimitrov, Nikolay

    Polynomial surrogates are used to characterize the energy production and lifetime equivalent fatigue loads for different components of the DTU 10 MW reference wind turbine under realistic atmospheric conditions. The variability caused by different turbulent inflow fields are captured by creating independent surrogates for the mean and standard deviation of each output with respect to the inflow realizations. A global sensitivity analysis shows that the turbulent inflow realization has a bigger impact on the total distribution of equivalent fatigue loads than the shear coefficient or yaw miss-alignment. The methodology presented extends the deterministic power and thrust coefficient curves to uncertaintymore » models and adds new variables like damage equivalent fatigue loads in different components of the turbine. These surrogate models can then be implemented inside other work-flows such as: estimation of the uncertainty in annual energy production due to wind resource variability and/or robust wind power plant layout optimization. It can be concluded that it is possible to capture the global behavior of a modern wind turbine and its uncertainty under realistic inflow conditions using polynomial response surfaces. In conclusion, the surrogates are a way to obtain power and load estimation under site specific characteristics without sharing the proprietary aeroelastic design.« less

  19. Uncertainty propagation through an aeroelastic wind turbine model using polynomial surrogates

    DOE PAGES

    Murcia, Juan Pablo; Réthoré, Pierre-Elouan; Dimitrov, Nikolay; ...

    2017-07-17

    Polynomial surrogates are used to characterize the energy production and lifetime equivalent fatigue loads for different components of the DTU 10 MW reference wind turbine under realistic atmospheric conditions. The variability caused by different turbulent inflow fields are captured by creating independent surrogates for the mean and standard deviation of each output with respect to the inflow realizations. A global sensitivity analysis shows that the turbulent inflow realization has a bigger impact on the total distribution of equivalent fatigue loads than the shear coefficient or yaw miss-alignment. The methodology presented extends the deterministic power and thrust coefficient curves to uncertaintymore » models and adds new variables like damage equivalent fatigue loads in different components of the turbine. These surrogate models can then be implemented inside other work-flows such as: estimation of the uncertainty in annual energy production due to wind resource variability and/or robust wind power plant layout optimization. It can be concluded that it is possible to capture the global behavior of a modern wind turbine and its uncertainty under realistic inflow conditions using polynomial response surfaces. In conclusion, the surrogates are a way to obtain power and load estimation under site specific characteristics without sharing the proprietary aeroelastic design.« less

  20. A simplified model predicting the weight of the load carrying beam in a wind turbine blade

    NASA Astrophysics Data System (ADS)

    Mikkelsen, Lars P.

    2016-07-01

    Based on a simplified beam model, the loads, stresses and deflections experienced by a wind turbine blade of a given length is estimated. Due to the simplicity of the model used, the model is well suited for work investigating scaling effects of wind turbine blades. Presently, the model is used to predict the weight of the load carrying beam when using glass fibre reinforced polymers, carbon fibre reinforced polymers or an aluminium alloy as the construction material. Thereby, it is found that the weight of a glass fibre wind turbine blade is increased from 0.5 to 33 tons when the blade length grows from 20 to 90 m. In addition, it can be seen that for a blade using glass fibre reinforced polymers, the design is controlled by the deflection and thereby the material stiffness in order to avoid the blade to hit the tower. On the other hand if using aluminium, the design will be controlled by the fatigue resistance in order to making the material survive the 100 to 500 million load cycles experience of the wind turbine blade throughout the lifetime. The aluminium blade is also found to be considerably heavier compared with the composite blades.

  1. Operational Impacts of Wind Energy Resources in the Bonneville Power Administration Control Area - Phase I Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Yuri V.; Lu, Shuai

    2008-07-15

    This report presents a methodology developed to study the future impact of wind on BPA power system load following and regulation requirements. The methodology uses historical data and stochastic processes to simulate the load balancing processes in the BPA power system, by mimicking the actual power system operations. Therefore, the results are close to reality, yet the study based on this methodology is convenient to conduct. Compared with the proposed methodology, existing methodologies for doing similar analysis include dispatch model simulation and standard deviation evaluation on load and wind data. Dispatch model simulation is constrained by the design of themore » dispatch program, and standard deviation evaluation is artificial in separating the load following and regulation requirements, both of which usually do not reflect actual operational practice. The methodology used in this study provides not only capacity requirement information, it also analyzes the ramp rate requirements for system load following and regulation processes. The ramp rate data can be used to evaluate generator response/maneuverability requirements, which is another necessary capability of the generation fleet for the smooth integration of wind energy. The study results are presented in an innovative way such that the increased generation capacity or ramp requirements are compared for two different years, across 24 hours a day. Therefore, the impact of different levels of wind energy on generation requirements at different times can be easily visualized.« less

  2. Integrated Approach Using Condition Monitoring and Modeling to Investigate Wind Turbine Gearbox Design: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, S.; Guo, Y.

    2015-03-01

    Vibration-based condition monitoring (CM) of geared utility-scale turbine drivetrains has been used by the wind industry to help improve operation and maintenance (O&M) practices, increase turbine availability, and reduce O&M cost. This study is a new endeavor that integrates the vibration-based CM technique with wind turbine gearbox modeling to investigate various gearbox design options. A teamof researchers performed vibration-based CM measurements on a damaged wind turbine gearbox with a classic configuration, (i.e., one planetary stage and two parallel stages). We observed that the acceleration amplitudes around the first-order sidebands of the intermediate stage gear set meshing frequency were much lowermore » than that measured at the high-speed gear set, and similar difference wasalso observed in a healthy gearbox. One factor for a reduction at the intermediate stage gear set is hypothesized to be the soft sun-spline configuration in the test gearbox. To evaluate this hypothesis, a multibody dynamic model of the healthy test gearbox was first developed and validated. Relative percent difference of the first-order sidebands--of the high-speed and intermediate stagegear-meshing frequencies--in the soft and the rigid sun spline configurations were compared. The results verified that the soft sun-spline configuration can reduce the sidebands of the intermediate stage gear set and also the locating bearing loads. The study demonstrates that combining vibration-based CM with appropriate modeling can provide insights for evaluating different wind turbinegearbox design options.« less

  3. Planetary Load Sharing in Three-Point Mounted Wind Turbine Gearboxes: A Design and Test Comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Jonathan; Guo, Yi; Zhang, Zhiwei

    This work compares the planetary load-sharing characteristics of wind turbine gearboxes supported by cylindrical roller bearings (CRBs) and preloaded tapered roller bearings (TRBs) when subjected to rotor moments. Planetary bearing loads were measured in field-representative dynamometer tests and compared to loads predicted by finite-element models. Preloaded TRBs significantly improved load sharing. In pure torque conditions, the upwind planet bearing load in the gearbox with preloaded TRBs was only 14% more than the assumed load compared to 47% more for the gearbox with CRBs. Consequently, the predicted fatigue life of the complete set of planetary bearings for the gearbox with preloadedmore » TRBs is 3.5 times greater than that of the gearbox with CRBs.« less

  4. Active aerodynamic drag reduction on morphable cylinders

    NASA Astrophysics Data System (ADS)

    Guttag, M.; Reis, P. M.

    2017-12-01

    We study a mechanism for active aerodynamic drag reduction on morphable grooved cylinders, whose topography can be modified pneumatically. Our design is inspired by the morphology of the Saguaro cactus (Carnegiea gigantea), which possesses an array of axial grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. Our analog experimental samples comprise a spoked rigid skeleton with axial cavities, covered by a stretched elastomeric film. Decreasing the inner pressure of the sample produces axial grooves, whose depth can be accurately varied, on demand. First, we characterize the relation between groove depth and pneumatic loading through a combination of precision mechanical experiments and finite element simulations. Second, wind tunnel tests are used to measure the aerodynamic drag coefficient (as a function of Reynolds number) of the grooved samples, with different levels of periodicity and groove depths. We focus specifically on the drag crisis and systematically measure the associated minimum drag coefficient and the critical Reynolds number at which it occurs. The results are in agreement with the classic literature of rough cylinders, albeit with an unprecedented level of precision and resolution in varying topography using a single sample. Finally, we leverage the morphable nature of our system to dynamically reduce drag for varying aerodynamic loading conditions. We demonstrate that actively controlling the groove depth yields a drag coefficient that decreases monotonically with Reynolds number and is significantly lower than the fixed sample counterparts. These findings open the possibility for the drag reduction of grooved cylinders to be operated over a wide range of flow conditions.

  5. Characterization of the High-Speed-Stage Bearing Skidding of Wind Turbine Gearboxes Induced by Dynamic Electricity Grid Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helsen, Jan; Guillaume, Patrick; Guo, Yi

    Bearing behavior is an important factor for wind turbine drivetrain reliability. Extreme loads and dynamic excitations pose challenges to the bearing design and therefore its performance. Excessive skidding of the bearing rollers should be avoided because it can cause scuffing failures. Excitations coming from wind and the electricity grid can subject the drivetrain to fluctuating torque and nontorque loads. Wind-induced excitations have been investigated predominantly in literature. However, modern wind turbines are subjected more and more to grid-induced loads because of stricter electricity grid regulations. For example, during fault-ride-through events, turbines are required to stay connected for a longer periodmore » of time during the grid failure. This work investigates the influence of electrically induced excitations on the skidding behaviour of the tapered roller bearings on the high-speed stage of a wind turbine gearbox. This skidding behaviour during dynamic events is described as a potential bearing failure initiator by many researchers; however, only limited full-scale dynamic testing is documented. Therefore, a dedicated gridloss-type event is defined in the paper and conducted in a dynamometer test on a full-scale wind turbine nacelle. During the event, a complete electricity grid failure is simulated while the turbine is at rated speed and predefined torque levels. Particular focus is on the characterization of the high-speed shaft tapered roller bearing slip behavior. Strain-gauge bridges in grooves along the circumference of the outer ring are used to characterize the bearing load zone in detail. It is shown that during the torque reversals of the transient event, roller slip can be induced. This indicates the potential of the applied load case to go beyond the preload of the tapered roller bearing. Furthermore, the relation between the applied torque and skidding level is studied.« less

  6. Characterization of the High-Speed-Stage Bearing Skidding of Wind Turbine Gearboxes Induced by Dynamic Electricity Grid Events: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helsen, Jan; Guillaume, Patrick; Guo, Yi

    Bearing behavior is an important factor for wind turbine drivetrain reliability. Extreme loads and dynamic excitations pose challenges to the bearing design and therefore its performance. Excessive skidding of the bearing rollers should be avoided because it can cause scuffing failures. Excitations coming from wind and the electricity grid can subject the drivetrain to fluctuating torque and nontorque loads. Wind-induced excitations have been investigated predominantly in literature. However, modern wind turbines are subjected more and more to grid-induced loads because of stricter electricity grid regulations. For example, during fault-ride-through events, turbines are required to stay connected for a longer periodmore » of time during the grid failure. This work investigates the influence of electrically induced excitations on the skidding behaviour of the tapered roller bearings on the high-speed stage of a wind turbine gearbox. This skidding behaviour during dynamic events is described as a potential bearing failure initiator by many researchers; however, only limited full-scale dynamic testing is documented. Therefore, a dedicated gridloss-type event is defined in the paper and conducted in a dynamometer test on a full-scale wind turbine nacelle. During the event, a complete electricity grid failure is simulated while the turbine is at rated speed and predefined torque levels. Particular focus is on the characterization of the high-speed shaft tapered roller bearing slip behavior. Strain-gauge bridges in grooves along the circumference of the outer ring are used to characterize the bearing load zone in detail. It is shown that during the torque reversals of the transient event, roller slip can be induced. This indicates the potential of the applied load case to go beyond the preload of the tapered roller bearing. Furthermore, the relation between the applied torque and skidding level is studied.« less

  7. Modeling Framework and Validation of a Smart Grid and Demand Response System for Wind Power Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broeer, Torsten; Fuller, Jason C.; Tuffner, Francis K.

    2014-01-31

    Electricity generation from wind power and other renewable energy sources is increasing, and their variability introduces new challenges to the power system. The emergence of smart grid technologies in recent years has seen a paradigm shift in redefining the electrical system of the future, in which controlled response of the demand side is used to balance fluctuations and intermittencies from the generation side. This paper presents a modeling framework for an integrated electricity system where loads become an additional resource. The agent-based model represents a smart grid power system integrating generators, transmission, distribution, loads and market. The model incorporates generatormore » and load controllers, allowing suppliers and demanders to bid into a Real-Time Pricing (RTP) electricity market. The modeling framework is applied to represent a physical demonstration project conducted on the Olympic Peninsula, Washington, USA, and validation simulations are performed using actual dynamic data. Wind power is then introduced into the power generation mix illustrating the potential of demand response to mitigate the impact of wind power variability, primarily through thermostatically controlled loads. The results also indicate that effective implementation of Demand Response (DR) to assist integration of variable renewable energy resources requires a diversity of loads to ensure functionality of the overall system.« less

  8. How supernovae launch galactic winds?

    NASA Astrophysics Data System (ADS)

    Fielding, Drummond; Quataert, Eliot; Martizzi, Davide; Faucher-Giguère, Claude-André

    2017-09-01

    We use idealized three-dimensional hydrodynamic simulations of global galactic discs to study the launching of galactic winds by supernovae (SNe). The simulations resolve the cooling radii of the majority of supernova remnants (SNRs) and thus self-consistently capture how SNe drive galactic winds. We find that SNe launch highly supersonic winds with properties that agree reasonably well with expectations from analytic models. The energy loading (η _E= \\dot{E}_wind/ \\dot{E}_SN) of the winds in our simulations are well converged with spatial resolution while the wind mass loading (η _M= \\dot{M}_wind/\\dot{M}_\\star) decreases with resolution at the resolutions we achieve. We present a simple analytic model based on the concept that SNRs with cooling radii greater than the local scaleheight break out of the disc and power the wind. This model successfully explains the dependence (or lack thereof) of ηE (and by extension ηM) on the gas surface density, star formation efficiency, disc radius and the clustering of SNe. The winds our simulations are weaker than expected in reality, likely due to the fact that we seed SNe preferentially at density peaks. Clustering SNe in time and space substantially increases the wind power.

  9. Wind load effects on high rise buildings in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Nizamani, Z.; Thang, K. C.; Haider, B.; Shariff, M.

    2018-04-01

    Wind is a randomly varying dynamic phenomenon composed of a multitude of eddies of varying sizes and rotational characteristics along a general stream of air moving relative to the ground. These eddies give wind its gustiness, creating fluctuation and results in a complex flow characteristics. The wind vector at any point can be regarded as the sum of mean wind vector and the fluctuation components. These components not only vary with height but also dependant on the approach terrain and topography. Prevailing wind exerts pressure onto the structural surfaces. The effects of wind pressure in the form of shear and bending moments are found to be a major problem in structural failure. This study aims to study the effects of wind load on a fifteen-storey high rise building using EN 1991-1-4 code and MS1553:2002. The simulation results showed that by increasing the wind speed, the storey resultant forces, namely storey shear and storey moment increases significantly. Furthermore, simulation results according to EN 1991-1-4 yield higher values compared to the simulation results according to MS1553:2002.

  10. The value of compressed air energy storage with wind in transmission-constrained electric power systems

    DOE PAGES

    Denholm, Paul; Sioshansi, Ramteen

    2009-05-05

    In this paper, we examine the potential advantages of co-locating wind and energy storage to increase transmission utilization and decrease transmission costs. Co-location of wind and storage decreases transmission requirements, but also decreases the economic value of energy storage compared to locating energy storage at the load. This represents a tradeoff which we examine to estimate the transmission costs required to justify moving storage from load-sited to wind-sited in three different locations in the United States. We examined compressed air energy storage (CAES) in three “wind by wire” scenarios with a variety of transmission and CAES sizes relative to amore » given amount of wind. In the sites and years evaluated, the optimal amount of transmission ranges from 60% to 100% of the wind farm rating, with the optimal amount of CAES equal to 0–35% of the wind farm rating, depending heavily on wind resource, value of electricity in the local market, and the cost of natural gas.« less

  11. WindPACT Reference Wind Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykes, Katherine L; Rinker, Jennifer

    To fully understand how loads and turbine cost scale with turbine size, it is necessary to have identical turbine models that have been scaled to different rated powers. The report presents the WindPACT baseline models, which are a series of four baseline models that were designed to facilitate investigations into the scalings of loads and turbine cost with size. The models have four different rated powers (750 kW, 1.5 MW, 3.0 MW, and 5.0 MW), and each model was designed to its specified rated power using the same design methodology. The models were originally implemented in FAST_AD, the predecessor tomore » NREL's open-source wind turbine simulator FAST, but have yet to be implemented in FAST. This report contains the specifications for all four WindPACT baseline models - including structural, aerodynamic, and control specifications - along with the inherent assumptions and equations that were used to calculate the model parameters. It is hoped that these baseline models will serve as extremely useful resources for investigations into the scalings of costs, loads, or optimization routines.« less

  12. Efficient preliminary floating offshore wind turbine design and testing methodologies and application to a concrete spar design

    PubMed Central

    Matha, Denis; Sandner, Frank; Molins, Climent; Campos, Alexis; Cheng, Po Wen

    2015-01-01

    The current key challenge in the floating offshore wind turbine industry and research is on designing economic floating systems that can compete with fixed-bottom offshore turbines in terms of levelized cost of energy. The preliminary platform design, as well as early experimental design assessments, are critical elements in the overall design process. In this contribution, a brief review of current floating offshore wind turbine platform pre-design and scaled testing methodologies is provided, with a focus on their ability to accommodate the coupled dynamic behaviour of floating offshore wind systems. The exemplary design and testing methodology for a monolithic concrete spar platform as performed within the European KIC AFOSP project is presented. Results from the experimental tests compared to numerical simulations are presented and analysed and show very good agreement for relevant basic dynamic platform properties. Extreme and fatigue loads and cost analysis of the AFOSP system confirm the viability of the presented design process. In summary, the exemplary application of the reduced design and testing methodology for AFOSP confirms that it represents a viable procedure during pre-design of floating offshore wind turbine platforms. PMID:25583870

  13. Analysis of Control-Oriented Wake Modeling Tools Using Lidar Field Results

    DOE PAGES

    Annoni, Jennifer; Fleming, Paul; Scholbrock, Andrew; ...

    2018-02-08

    Wind turbines in a wind farm operate individually to maximize their own performance regardless of the impact of aerodynamic interactions on neighboring turbines. Wind farm controls can be used to increase power production or reduce overall structural loads by properly coordinating turbines. One wind farm control strategy that is addressed in literature is known as wake steering, wherein upstream turbines operate in yaw misaligned conditions to redirect their wakes away from downstream turbines. The National Renewable Energy Laboratory (NREL) in Golden, CO conducted a demonstration of wake steering on a single utility-scale turbine. In this study, the turbine was operatedmore » at various yaw misalignment setpoints while a lidar mounted on the nacelle scanned five downstream distances. The lidar measurements were combined with turbine data, as well as measurements of the inflow made by a highly instrumented meteorological mast upstream. The full-scale measurements are used to validate controls-oriented tools, including wind turbine wake models, used for wind farm controls and optimization. This paper presents a quantitative comparison of the lidar data and controls-oriented wake models under different atmospheric conditions and turbine operation. The results show good agreement between the lidar data and the models under these different conditions.« less

  14. Analysis of Control-Oriented Wake Modeling Tools Using Lidar Field Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annoni, Jennifer; Fleming, Paul; Scholbrock, Andrew

    Wind turbines in a wind farm operate individually to maximize their own performance regardless of the impact of aerodynamic interactions on neighboring turbines. Wind farm controls can be used to increase power production or reduce overall structural loads by properly coordinating turbines. One wind farm control strategy that is addressed in literature is known as wake steering, wherein upstream turbines operate in yaw misaligned conditions to redirect their wakes away from downstream turbines. The National Renewable Energy Laboratory (NREL) in Golden, CO conducted a demonstration of wake steering on a single utility-scale turbine. In this study, the turbine was operatedmore » at various yaw misalignment setpoints while a lidar mounted on the nacelle scanned five downstream distances. The lidar measurements were combined with turbine data, as well as measurements of the inflow made by a highly instrumented meteorological mast upstream. The full-scale measurements are used to validate controls-oriented tools, including wind turbine wake models, used for wind farm controls and optimization. This paper presents a quantitative comparison of the lidar data and controls-oriented wake models under different atmospheric conditions and turbine operation. The results show good agreement between the lidar data and the models under these different conditions.« less

  15. Model predictive control of a wind turbine modelled in Simpack

    NASA Astrophysics Data System (ADS)

    Jassmann, U.; Berroth, J.; Matzke, D.; Schelenz, R.; Reiter, M.; Jacobs, G.; Abel, D.

    2014-06-01

    Wind turbines (WT) are steadily growing in size to increase their power production, which also causes increasing loads acting on the turbine's components. At the same time large structures, such as the blades and the tower get more flexible. To minimize this impact, the classical control loops for keeping the power production in an optimum state are more and more extended by load alleviation strategies. These additional control loops can be unified by a multiple-input multiple-output (MIMO) controller to achieve better balancing of tuning parameters. An example for MIMO control, which has been paid more attention to recently by wind industry, is Model Predictive Control (MPC). In a MPC framework a simplified model of the WT is used to predict its controlled outputs. Based on a user-defined cost function an online optimization calculates the optimal control sequence. Thereby MPC can intrinsically incorporate constraints e.g. of actuators. Turbine models used for calculation within the MPC are typically simplified. For testing and verification usually multi body simulations, such as FAST, BLADED or FLEX5 are used to model system dynamics, but they are still limited in the number of degrees of freedom (DOF). Detailed information about load distribution (e.g. inside the gearbox) cannot be provided by such models. In this paper a Model Predictive Controller is presented and tested in a co-simulation with SlMPACK, a multi body system (MBS) simulation framework used for detailed load analysis. The analysis are performed on the basis of the IME6.0 MBS WT model, described in this paper. It is based on the rotor of the NREL 5MW WT and consists of a detailed representation of the drive train. This takes into account a flexible main shaft and its main bearings with a planetary gearbox, where all components are modelled flexible, as well as a supporting flexible main frame. The wind loads are simulated using the NREL AERODYN v13 code which has been implemented as a routine to SlMPACK. This modeling approach allows to investigate the nonlinear behavior of wind loads and nonlinear drive train dynamics. Thereby the MPC's impact on specific loads and effects not covered by standard simulation tools can be assessed and investigated. Keywords. wind turbine simulation, model predictive control, multi body simulation, MIMO, load alleviation

  16. Aeroservoelastic Testing of Free Flying Wind Tunnel Models Part 2: A Centerline Supported Fullspan Model Tested for Gust Load Alleviation

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Vetter, Travis K.; Penning, Kevin B.; Coulson, David A.; Heeg, Jennifer

    2014-01-01

    This is part 2 of a two part document. Part 1 is titled: "Aeroservoelastic Testing of Free Flying Wind Tunnel Models Part 1: A Sidewall Supported Semispan Model Tested for Gust Load Alleviation and Flutter Suppression." A team comprised of the Air Force Research Laboratory (AFRL), Boeing, and the NASA Langley Research Center conducted three aeroservoelastic wind tunnel tests in the Transonic Dynamics Tunnel to demonstrate active control technologies relevant to large, flexible vehicles. In the first of these three tests, a full-span, aeroelastically scaled, wind tunnel model of a joined wing SensorCraft vehicle was mounted to a force balance to acquire a basic aerodynamic data set. In the second and third tests, the same wind tunnel model was mated to a new, two degree of freedom, beam mount. This mount allowed the full-span model to translate vertically and pitch. Trimmed flight at10 percent static margin and gust load alleviation were successfully demonstrated. The rigid body degrees of freedom required that the model be flown in the wind tunnel using an active control system. This risky mode of testing necessitated that a model arrestment system be integrated into the new mount. The safe and successful completion of these free-flying tests required the development and integration of custom hardware and software. This paper describes the many systems, software, and procedures that were developed as part of this effort. The balance and free flying wind tunnel tests will be summarized. The design of the trim and gust load alleviation control laws along with the associated results will also be discussed.

  17. Multidimensional optimal droop control for wind resources in DC microgrids

    NASA Astrophysics Data System (ADS)

    Bunker, Kaitlyn J.

    Two important and upcoming technologies, microgrids and electricity generation from wind resources, are increasingly being combined. Various control strategies can be implemented, and droop control provides a simple option without requiring communication between microgrid components. Eliminating the single source of potential failure around the communication system is especially important in remote, islanded microgrids, which are considered in this work. However, traditional droop control does not allow the microgrid to utilize much of the power available from the wind. This dissertation presents a novel droop control strategy, which implements a droop surface in higher dimension than the traditional strategy. The droop control relationship then depends on two variables: the dc microgrid bus voltage, and the wind speed at the current time. An approach for optimizing this droop control surface in order to meet a given objective, for example utilizing all of the power available from a wind resource, is proposed and demonstrated. Various cases are used to test the proposed optimal high dimension droop control method, and demonstrate its function. First, the use of linear multidimensional droop control without optimization is demonstrated through simulation. Next, an optimal high dimension droop control surface is implemented with a simple dc microgrid containing two sources and one load. Various cases for changing load and wind speed are investigated using simulation and hardware-in-the-loop techniques. Optimal multidimensional droop control is demonstrated with a wind resource in a full dc microgrid example, containing an energy storage device as well as multiple sources and loads. Finally, the optimal high dimension droop control method is applied with a solar resource, and using a load model developed for a military patrol base application. The operation of the proposed control is again investigated using simulation and hardware-in-the-loop techniques.

  18. Verification of the New FAST v8 Capabilities for the Modeling of Fixed-Bottom Offshore Wind Turbines: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barahona, B.; Jonkman, J.; Damiani, R.

    2014-12-01

    Coupled dynamic analysis has an important role in the design of offshore wind turbines because the systems are subject to complex operating conditions from the combined action of waves and wind. The aero-hydro-servo-elastic tool FAST v8 is framed in a novel modularization scheme that facilitates such analysis. Here, we present the verification of new capabilities of FAST v8 to model fixed-bottom offshore wind turbines. We analyze a series of load cases with both wind and wave loads and compare the results against those from the previous international code comparison projects-the International Energy Agency (IEA) Wind Task 23 Subtask 2 Offshoremore » Code Comparison Collaboration (OC3) and the IEA Wind Task 30 OC3 Continued (OC4) projects. The verification is performed using the NREL 5-MW reference turbine supported by monopile, tripod, and jacket substructures. The substructure structural-dynamics models are built within the new SubDyn module of FAST v8, which uses a linear finite-element beam model with Craig-Bampton dynamic system reduction. This allows the modal properties of the substructure to be synthesized and coupled to hydrodynamic loads and tower dynamics. The hydrodynamic loads are calculated using a new strip theory approach for multimember substructures in the updated HydroDyn module of FAST v8. These modules are linked to the rest of FAST through the new coupling scheme involving mapping between module-independent spatial discretizations and a numerically rigorous implicit solver. The results show that the new structural dynamics, hydrodynamics, and coupled solutions compare well to the results from the previous code comparison projects.« less

  19. Effects of mass loading on dayside solar wind-magnetosphere interactions

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Brambles, O.; Wiltberger, M. J.; Lyon, J.; Lotko, W.

    2016-12-01

    Satellite observations have shown that terrestrial-sourced plasmas mass load the dayside magnetopause and cause reductions in local reconnection rates. Whether the integrated dayside reconnection rate is affected by these local mass-loading processes is still an open question. Several mechanisms have been proposed to describe the control of dayside reconnection, including the local-control and global-control hypotheses. We have conducted a series of controlled numerical simulations to investigate the response of dayside solar wind-magnetopshere (SW-M) coupling to mass loading processes. Our simulation results show that the coupled SW-M system may exhibit both local and global control behaviors depending on the amount of mass loading. With a small amount of mass loading, the changes in the local reconnection rate does not affect magnetosheath properties and the geoeffective length in the upstream solar wind, resulting in the same integrated dayside reconnection rate. With a large amount of mass loading, the magnetosheath properties and the geoeffective length are significantly modified by slowing down the local reconnection rate, resulting in a significant reduction in the integrated dayside reconnection rate. The response of magnetosheath properties to mass loading is expected from the Cassak-Shay asymmetric reconnection theory through conservation of energy. The physical origin of the transition regime between local and global control is qualitatively explained. The parameters that determine the transition regime depend on the location, spatial extension and density of the mass loading process.

  20. Use of blade pitch control to provide power train damping for the Mod-2, 2.5-mW wind turbine

    NASA Technical Reports Server (NTRS)

    Blissell, W. A., Jr.

    1995-01-01

    The Control System for the Mod-2 wind turbine system is required to provide not only for startup, RPM regulation, maximizing or regulating power, and stopping the rotor, but also for load limiting, especially in the power train. Early operations with above-rated winds revealed an instability which was caused primarily by coupling between the quill shaft and the rotor air loads. This instability caused the first of several major Mod-2 Control System changes which are reviewed in the paper.

  1. Improving Bending Moment Measurements on Wind Turbine Blades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, Nathan L.

    Full-scale fatigue testing of wind turbine blades is conducted using resonance test techniques where the blade plus additional masses is excited at its first resonance frequency to achieve the target loading amplitude. Because there is not a direct relationship between the force applied by an actuator and the bending moment, the blade is instrumented with strain gauges that are calibrated under static loading conditions to determine the sensitivity or relationship between strain and applied moment. Then, during dynamic loading the applied moment is calculated using the strain response of the structure. A similar procedure is also used in the fieldmore » to measure in-service loads on turbine blades. Because wind turbine blades are complex twisted structures and the deflections are large, there is often significant cross-talk coupling in the sensitivity of strain gauges placed on the structure. Recent work has shown that a sensitivity matrix with nonzero cross terms must be employed to find constant results when a blade is subjected to both flap and lead-lag loading. However, even under controlled laboratory conditions, potential for errors of 3 percent or more in the measured moment exist when using the typical cross-talk matrix approach due to neglecting the influence of large deformations and torsion. This is particularly critical when considering a biaxial load as would be applied on the turbine or during a biaxial fatigue test. This presentation describes these results demonstrating errors made when performing current loads measurement practices on wind turbine blades in the lab and evaluating potential improvements using enhanced cross-talk matrix approaches and calibration procedures.« less

  2. Calculating the sensitivity of wind turbine loads to wind inputs using response surfaces

    NASA Astrophysics Data System (ADS)

    Rinker, Jennifer M.

    2016-09-01

    This paper presents a methodology to calculate wind turbine load sensitivities to turbulence parameters through the use of response surfaces. A response surface is a highdimensional polynomial surface that can be calibrated to any set of input/output data and then used to generate synthetic data at a low computational cost. Sobol sensitivity indices (SIs) can then be calculated with relative ease using the calibrated response surface. The proposed methodology is demonstrated by calculating the total sensitivity of the maximum blade root bending moment of the WindPACT 5 MW reference model to four turbulence input parameters: a reference mean wind speed, a reference turbulence intensity, the Kaimal length scale, and a novel parameter reflecting the nonstationarity present in the inflow turbulence. The input/output data used to calibrate the response surface were generated for a previous project. The fit of the calibrated response surface is evaluated in terms of error between the model and the training data and in terms of the convergence. The Sobol SIs are calculated using the calibrated response surface, and the convergence is examined. The Sobol SIs reveal that, of the four turbulence parameters examined in this paper, the variance caused by the Kaimal length scale and nonstationarity parameter are negligible. Thus, the findings in this paper represent the first systematic evidence that stochastic wind turbine load response statistics can be modeled purely by mean wind wind speed and turbulence intensity.

  3. Power quality improvement of a stand-alone power system subjected to various disturbances

    NASA Astrophysics Data System (ADS)

    Lone, Shameem Ahmad; Mufti, Mairaj Ud-Din

    In wind-diesel stand-alone power systems, the disturbances like random nature of wind power, turbulent wind, sudden changes in load demand and the wind park disconnection effect continuously the system voltage and frequency. The satisfactory operation of such a system is not an easy task and the control design has to take in to account all these subtleties. For maintaining the power quality, generally, a short-term energy storage device is used. In this paper, the performance of a wind-diesel system associated with a superconducting magnetic energy storage (SMES) system is studied. The effect of installing SMES at wind park bus/load bus, on the system performance is investigated. To control the exchange of real and reactive powers between the SMES unit and the wind-diesel system, a control strategy based on fuzzy logic is proposed. The dynamic models of the hybrid power system for most common scenarios are developed and the results presented.

  4. Solar Wind Deflection by Mass Loading in the Martian Magnetosheath Based on MAVEN Observations

    NASA Astrophysics Data System (ADS)

    Dubinin, E.; Fraenz, M.; Pätzold, M.; Halekas, J. S.; Mcfadden, J.; Connerney, J. E. P.; Jakosky, B. M.; Vaisberg, O.; Zelenyi, L.

    2018-03-01

    Mars Atmosphere and Volatile EvolutioN observations at Mars show clear signatures of the shocked solar wind interaction with the extended oxygen atmosphere and hot corona displayed in a lateral deflection of the magnetosheath flow in the direction opposite to the direction of the solar wind motional electric field. The value of the velocity deflection reaches ˜50 km/s. The occurrence of such deflection is caused by the "Lorentz-type" force due to a differential streaming of the solar wind protons and oxygen ions originating from the extended oxygen corona. The value of the total deceleration of the magnetosheath flow due to mass loading is estimated as ˜40 km/s.

  5. Materials for Wind Turbine Blades: An Overview.

    PubMed

    Mishnaevsky, Leon; Branner, Kim; Petersen, Helga Nørgaard; Beauson, Justine; McGugan, Malcolm; Sørensen, Bent F

    2017-11-09

    A short overview of composite materials for wind turbine applications is presented here. Requirements toward the wind turbine materials, loads, as well as available materials are reviewed. Apart from the traditional composites for wind turbine blades (glass fibers/epoxy matrix composites), natural composites, hybrid and nanoengineered composites are discussed. Manufacturing technologies for wind turbine composites, as well their testing and modelling approaches are reviewed.

  6. Variability in large-scale wind power generation: Variability in large-scale wind power generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiviluoma, Juha; Holttinen, Hannele; Weir, David

    2015-10-25

    The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net load events. The comparison shows regions with low variability (Sweden, Spain and Germany), medium variability (Portugal, Ireland, Finland and Denmark) and regions with higher variability (Quebec, Bonneville Power Administration and Electric Reliability Council of Texas in North America; Gansu, Jilin and Liaoning in China; and Norway and offshore wind power in Denmark). For regions with low variability, the maximum 1more » h wind ramps are below 10% of nominal capacity, and for regions with high variability, they may be close to 30%. Wind power variability is mainly explained by the extent of geographical spread, but also higher capacity factor causes higher variability. It was also shown how wind power ramps are autocorrelated and dependent on the operating output level. When wind power was concentrated in smaller area, there were outliers with high changes in wind output, which were not present in large areas with well-dispersed wind power.« less

  7. Full load estimation of an offshore wind turbine based on SCADA and accelerometer data

    NASA Astrophysics Data System (ADS)

    Noppe, N.; Iliopoulos, A.; Weijtjens, W.; Devriendt, C.

    2016-09-01

    As offshore wind farms (OWFs) grow older, the optimal use of the actual fatigue lifetime of an offshore wind turbine (OWT) and predominantly its foundation will get more important. In case of OWTs, both quasi-static wind/thrust loads and dynamic loads, as induced by turbulence, waves and the turbine's dynamics, contribute to its fatigue life progression. To estimate the remaining useful life of an OWT, the stresses acting on the fatigue critical locations within the structure should be monitored continuously. Unfortunately, in case of the most common monopile foundations these locations are often situated below sea-level and near the mud line and thus difficult or even impossible to access for existing OWTs. Actual strain measurements taken at accessible locations above the sea level show a correlation between thrust load and several SCADA parameters. Therefore a model is created to estimate the thrust load using SCADA data and strain measurements. Afterwards the thrust load acting on the OWT is estimated using the created model and SCADA data only. From this model the quasi static loads on the foundation can be estimated over the lifetime of the OWT. To estimate the contribution of the dynamic loads a modal decomposition and expansion based virtual sensing technique is applied. This method only uses acceleration measurements recorded at accessible locations on the tower. Superimposing both contributions leads to a so-called multi-band virtual sensing. The result is a method that allows to estimate the strain history at any location on the foundation and thus the full load, being a combination of both quasi-static and dynamic loads, acting on the entire structure. This approach is validated using data from an operating Belgian OWF. An initial good match between measured and predicted strains for a short period of time proofs the concept.

  8. Investigation of the Effect of Tip Tanks on the Wing Loading of a Republic F-84 Airplane in the Ames 40- by 80-foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Hunton, Lynn W.; Dew, Joseph K.; Salisbury, Ralph D.

    1949-01-01

    Wind-tunnel tests at low Mach number of a Republic F-84C airplane were conducted to determine by pressure-distribution measurements the air loads on wing-tip tanks and the change in wing load distribution due to the presence of tip tanks. Measurements of the aeroelastic twist of the wing were also obtained. Results are presented in the form of loading coefficient, center-of- pressure location, pitching-moment coefficient, aerodynamic-center location, and aeroelastic twist. The investigation revealed that the redistributions in loading brought about by either the tip tanks or elastic deformation of the wing were relatively small when compared with the chnnges in loading normally associated with the deflection of an aileron.

  9. Orbital Winch for High-Strength, Space-Survivable Tethers

    NASA Technical Reports Server (NTRS)

    Hoyt, Robert; Barnes, Ian; Slostad, Jeffrey; Frank, Scott

    2010-01-01

    An Orbital Winch mechanism enables high-load, multi-line tethers to be deployed and retracted without rotating the spool on which the tether is wound. To minimize damage to the tether and the wound package during retraction or deployment under load, it can incorporate a Tension Management Module that reduces the infeed tension by a factor of 15 through the use of a powered capstan with guide rollers. This design eliminates the need for rotating high-voltage electrical connections in tether systems that use propellantless electro-dynamic propulsion. It can also eliminate the need for rotating optical connections in applications where the tether contains optical fibers. This winch design was developed to deploy a 15-km-long, 15-kg high-strength Hoytether structure incorporating conductive wires as part of the MXER-1 demonstration mission concept. Two slewing rings that orbit around the tether spool, combined with translation of one of the slewing rings back and forth along the spool axis to traverse the wind point, enables the winch to wind the tether. Variations of the traverse motion of the slewing ring can accomplish level winds and conical pirn winds. By removing the non-traversing slewing ring, and adding an actuated guide arm, the winch can manage rapid, low-drag deployment of a tether off the end of a pirn-wound spool, followed by controlled retraction and rewinding, in a manner very similar to a spin-casting reel. The winch requires at least two motor driver controller units to coordinate the action of two stepper motors to accomplish tether deployment or retraction.

  10. Observations of Building Performance under Combined Wind and Surge Loading from Hurricane Harvey

    NASA Astrophysics Data System (ADS)

    Lombardo, F.; Roueche, D. B.; Krupar, R. J.; Smith, D. J.; Soto, M. G.

    2017-12-01

    Hurricane Harvey struck the Texas coastline on August 25, 2017, as a Category 4 hurricane - the first major hurricane to reach the US in twelve years. Wind gusts over 130 mph and storm surge as high as 12.5 ft caused widespread damage to buildings and critical infrastructure in coastal communities including Rockport, Fulton, Port Aransas and Aransas Pass. This study presents the methodology and preliminary observations of a coordinated response effort to document residential building performance under wind and storm surge loading. Over a twelve day survey period the study team assessed the performance of more than 1,000 individual, geo-located residential buildings. Assessments were logged via a smartphone application to facilitate rapid collection and collation of geotagged photographs, building attributes and structural details, and structural damage observations. Detailed assessments were also made of hazard intensity, specifically storm surge heights and both wind speed and direction indicators. Preliminary observations and findings will be presented, showing strong gradients in damage between inland and coastal regions of the affected areas that may be due in part to enhanced individual loading effects of wind and storm surge and potentially joint-hazard loading effects. Contributing factors to the many cases of disproportionate damage observed in close proximity will also be discussed. Ongoing efforts to relate building damage to near-surface hazard measurements (e.g., radar, anemometry) in close proximity will also be described.

  11. Shear and Turbulence Estimates for Calculation of Wind Turbine Loads and Responses Under Hurricane Strength Winds

    NASA Astrophysics Data System (ADS)

    Kosovic, B.; Bryan, G. H.; Haupt, S. E.

    2012-12-01

    Schwartz et al. (2010) recently reported that the total gross energy-generating offshore wind resource in the United States in waters less than 30m deep is approximately 1000 GW. Estimated offshore generating capacity is thus equivalent to the current generating capacity in the United States. Offshore wind power can therefore play important role in electricity production in the United States. However, most of this resource is located along the East Coast of the United States and in the Gulf of Mexico, areas frequently affected by tropical cyclones including hurricanes. Hurricane strength winds, associated shear and turbulence can affect performance and structural integrity of wind turbines. In a recent study Rose et al. (2012) attempted to estimate the risk to offshore wind turbines from hurricane strength winds over a lifetime of a wind farm (i.e. 20 years). According to Rose et al. turbine tower buckling has been observed in typhoons. They concluded that there is "substantial risk that Category 3 and higher hurricanes can destroy half or more of the turbines at some locations." More robust designs including appropriate controls can mitigate the risk of wind turbine damage. To develop such designs good estimates of turbine loads under hurricane strength winds are essential. We use output from a large-eddy simulation of a hurricane to estimate shear and turbulence intensity over first couple of hundred meters above sea surface. We compute power spectra of three velocity components at several distances from the eye of the hurricane. Based on these spectra analytical spectral forms are developed and included in TurbSim, a stochastic inflow turbulence code developed by the National Renewable Energy Laboratory (NREL, http://wind.nrel.gov/designcodes/preprocessors/turbsim/). TurbSim provides a numerical simulation including bursts of coherent turbulence associated with organized turbulent structures. It can generate realistic flow conditions that an operating turbine would encounter under hurricane strength winds. These flow fields can be used to estimate wind turbine loads and responses with AeroDyn (http://wind.nrel.gov/designcodes/simulators/aerodyn/) and FAST (http://wind.nrel.gov/designcodes/simulators/fast/) codes also developed by NREL.

  12. Mesoscale and Synoptic Summertime Circulations and Their Impact on Visibility in the Arabian Gulf

    NASA Astrophysics Data System (ADS)

    Eleuterio, D. P.; Walker, A. L.

    2005-12-01

    Although frequently characterized as a region of relatively persistent northwesterly winds, often referred to as the 40-day shamal, several researchers have recognized significant temporal and spatial variability in the summer low level winds in the Arabian Gulf. In addition to the synoptically driven gradient between the subtropical high to the north and the monsoon trough across the Gulf of Oman and Northern Arabian Sea, there are complex interactions between the Saudi Arabian and Pakistani heat lows, land-sea breeze circulations, and coastal terrain influence due to the proximity of the Zagros Mountains. These interactions frequently result in several distinct wind regimes within the Arabian Gulf, to include weak thermally and dynamically forced southerlies in the southern Gulf, a diurnally varying region of convergence/ divergence across the central Gulf, and northwesterly shamal type flow in the northern Gulf. The relative orientation and strength of these wind regimes and the strength of the subsidence inversion at the top of the marine boundary layer greatly impact the aerosol loading over water and resulting visibility due to wind-blown sand, dust, and smoke. Several case studies are examined to explore the interaction between mesoscale and synoptic forcing and the resulting spatial and temporal variability in visibility and aerosol optical depth. Conditions range from two to three day periods of rapid and persistent regional clearing with freshening northwesterly winds, to persistent periods of moderate to poor visibility in marine haze under light winds, to large scale events that create a distinct wind and dust front, severely reducing visibility through much of Iraq, Kuwait, and Saudi Arabia, and extending well into the Arabian Gulf. These strong, widespread events may be correlated with synoptically forced conditions farther north. Alternatively, smaller scale regional plumes of mobilized dust are often created by mesoscale events which, in conjunction with oil smoke and industrial pollution, can rapidly reduce visibility in localized regions for periods of 1-2 days and are relatively difficult to forecast because of their mesoscale nature.

  13. Structural Health and Prognostics Management for Offshore Wind Turbines: Sensitivity Analysis of Rotor Fault and Blade Damage with O&M Cost Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myrent, Noah J.; Barrett, Natalie C.; Adams, Douglas E.

    2014-07-01

    Operations and maintenance costs for offshore wind plants are significantly higher than the current costs for land-based (onshore) wind plants. One way to reduce these costs would be to implement a structural health and prognostic management (SHPM) system as part of a condition based maintenance paradigm with smart load management and utilize a state-based cost model to assess the economics associated with use of the SHPM system. To facilitate the development of such a system a multi-scale modeling and simulation approach developed in prior work is used to identify how the underlying physics of the system are affected by themore » presence of damage and faults, and how these changes manifest themselves in the operational response of a full turbine. This methodology was used to investigate two case studies: (1) the effects of rotor imbalance due to pitch error (aerodynamic imbalance) and mass imbalance and (2) disbond of the shear web; both on a 5-MW offshore wind turbine in the present report. Sensitivity analyses were carried out for the detection strategies of rotor imbalance and shear web disbond developed in prior work by evaluating the robustness of key measurement parameters in the presence of varying wind speeds, horizontal shear, and turbulence. Detection strategies were refined for these fault mechanisms and probabilities of detection were calculated. For all three fault mechanisms, the probability of detection was 96% or higher for the optimized wind speed ranges of the laminar, 30% horizontal shear, and 60% horizontal shear wind profiles. The revised cost model provided insight into the estimated savings in operations and maintenance costs as they relate to the characteristics of the SHPM system. The integration of the health monitoring information and O&M cost versus damage/fault severity information provides the initial steps to identify processes to reduce operations and maintenance costs for an offshore wind farm while increasing turbine availability, revenue, and overall profit.« less

  14. 24 CFR 3280.403 - Standard for windows and sliding glass doors used in manufactured homes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... pressure tests must be conducted at the design wind loads required for components and cladding specified in... certification must be based on tests conducted at the design wind loads specified in § 3280.305(c)(1). (1) All... agency shall conduct pre-production specimen tests in accordance with AAMA 1701.2-95. Further, such...

  15. Wind turbine blade fatigue tests: lessons learned and application to SHM system development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Stuart G.; Farinholt, Kevin M.; Jeong, Hyomi

    2012-06-28

    This paper presents experimental results of several structural health monitoring (SHM) methods applied to a 9-meter CX-100 wind turbine blade that underwent fatigue loading. The blade was instrumented with piezoelectric transducers, accelerometers, acoustic emission sensors, and foil strain gauges. It underwent harmonic excitation at its first natural frequency using a hydraulically actuated resonant excitation system. The blade was initially excited at 25% of its design load, and then with steadily increasing loads until it failed. Various data were collected between and during fatigue loading sessions. The data were measured over multiple frequency ranges using a variety of acquisition equipment, includingmore » off-the-shelf systems and specially designed hardware developed by the authors. Modal response, diffuse wave-field transfer functions, and ultrasonic guided wave methods were applied to assess the condition of the wind turbine blade. The piezoelectric sensors themselves were also monitored using a sensor diagnostics procedure. This paper summarizes experimental procedures and results, focusing particularly on fatigue crack detection, and concludes with considerations for implementing such damage identification systems, which will be used as a guideline for future SHM system development for operating wind turbine blades.« less

  16. Manufacturing technology of integrated textile-based sensor networks for in situ monitoring applications of composite wind turbine blades

    NASA Astrophysics Data System (ADS)

    Haentzsche, Eric; Mueller, Ralf; Huebner, Matthias; Ruder, Tristan; Unger, Reimar; Nocke, Andreas; Cherif, Chokri

    2016-10-01

    Based on in situ strain sensors consisting of piezo-resistive carbon filament yarns (CFYs), which have been successfully integrated into textile reinforcement structures during their textile-technological manufacturing process, a continuous load of fibre-reinforced plastic (FRP) components has been realised. These sensors are also suitable for structural health monitoring (SHM) applications. The two-dimensional sensor layout is made feasible by the usage of a modular warp yarn path manipulation unit. Using a functional model of a small wind turbine blade in thermoset composite design, the sensor function for basic SHM applications (e.g. static load monitoring) are demonstrated. Any mechanical loads along the pressure or suction side of the wind turbine blade can be measured and calculated via a correlative change in resistance of the CFYs within the textile reinforcement plies. Performing quasi-static load tests on both tensile specimen and full-scale wind turbine blade, elementary results have been obtained concerning electro-mechanical behaviour and spatial resolution of global and even local static stresses according to the CFY sensor integration length. This paper demonstrates the great potential of textile-based and textile-technological integrated sensors in reinforcement structures for future SHM applications of FRPs.

  17. Concept design and coupled dynamic response analysis on 6-MW spar-type floating offshore wind turbine

    NASA Astrophysics Data System (ADS)

    Meng, Long; Zhou, Tao; He, Yan-ping; Zhao, Yong-sheng; Liu, Ya-dong

    2017-10-01

    Tower, Spar platform and mooring system are designed in the project based on a given 6-MW wind turbine. Under wind-induced only, wave-induced only and combined wind and wave induced loads, dynamic response is analyzed for a 6-MW Spar-type floating offshore wind turbine (FOWT) under operating conditions and parked conditions respectively. Comparison with a platform-fixed system (land-based system) of a 6-MW wind turbine is carried out as well. Results demonstrate that the maximal out-of-plane deflection of the blade of a Spar-type system is 3.1% larger than that of a land-based system; the maximum response value of the nacelle acceleration is 215% larger for all the designed load cases being considered; the ultimate tower base fore-aft bending moment of the Spar-type system is 92% larger than that of the land-based system in all of the Design Load Cases (DLCs) being considered; the fluctuations of the mooring tension is mainly wave-induced, and the safety factor of the mooring tension is adequate for the 6-MW FOWT. The results can provide relevant modifications to the initial design for the Spar-type system, the detailed design and model basin test of the 6-MW Spar-type system.

  18. Composite rotor blades for large wind energy installations

    NASA Technical Reports Server (NTRS)

    Kussmann, A.; Molly, J.; Muser, D.

    1980-01-01

    The design of large wind power systems in Germany is reviewed with attention given to elaboration of the total wind energy system, aerodynamic design of the rotor blade, and wind loading effects. Particular consideration is given to the development of composite glass fiber/plastic or carbon fiber/plastic rotor blades for such installations.

  19. An investigation of tip planform influence on the aerodynamic load characteristics of semispan, upswept wing and wing-tip

    NASA Technical Reports Server (NTRS)

    Vanaken, Johannes M.

    1986-01-01

    A semi-span wing, equipped with an interchangeable tip, which was varied in planform and size was examined. Total wing aerodynamic loading was obtained from the wind tunnel scale system. The wing tip was mounted on a separate six-component strain gauge balance, which provided the aerodynamic loads on the tip. The tests were accomplished in the NASA Ames 7X10-Foot Wind Tunnel at a Mach number of 0.178. The aerodynamic load characteristics of the wing and of the tip were presented with the tip at several incidence angles relative to the wing inboard section.

  20. Transition from global to local control of dayside reconnection from ionospheric-sourced mass loading

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Brambles, O. J.; Cassak, P. A.; Ouellette, J. E.; Wiltberger, M.; Lotko, W.; Lyon, J. G.

    2017-09-01

    We have conducted a series of controlled numerical simulations to investigate the response of dayside reconnection to idealized, ionosphere-sourced mass loading processes to determine whether they affect the integrated dayside reconnection rate. Our simulation results show that the coupled solar wind-magnetosphere system may exhibit both local and global control behaviors depending on the amount of mass loading. With a small amount of mass loading, the changes in local reconnection rate affects magnetosheath properties only weakly and the geoeffective length in the upstream solar wind is essentially unchanged, resulting in the same integrated dayside reconnection rate. With a large amount of mass loading, however, the magnetosheath properties and the geoeffective length are significantly affected by slowing down the local reconnection rate, resulting in an increase of the magnetic pressure in the magnetosheath, with a significant reduction in the geoeffective length in the upstream solar wind and in the integrated dayside reconnection rate. In this controlled simulation setup, the behavior of dayside reconnection potential is determined by the role of the enhanced magnetic pressure in the magnetospheath due to magnetospheric mass loading. The reconnection potential starts to decrease significantly when the enhanced magnetic pressure alters the thickness of the magnetosheath.

  1. The DOE Next-Generation Drivetrain for Wind Turbine Applications: Gearbox, Generator, and Advanced Si/SiC Hybrid Inverter System: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdman, William; Keller, Jonathan

    This paper reports on the design and testing results from the U.S. Department of Energy Next-Generation Wind Turbine Drivetrain Project. The drivetrain design reduces the cost of energy by increasing energy capture through drivetrain efficiency improvements; by reducing operation and maintenance costs through reducing gearbox failures; and by lowering capital costs through weight reduction and a series of mechanical and electronic innovations. The paper provides an overview of the drivetrain gearbox and generator and provides a deeper look into the power converter system. The power converter has a number of innovations including the use of hybrid silicon (Si)/silicon carbide (SiC)more » isolated baseplate switching modules. Switching energies are compared between SiC and Si PIN diodes. The efficiency improvement by use of the SiC diode in a three-level converter is also described. Finally, a brief discussion covering utility interconnect requirements for turbines is provided with a particular focus on utility events that lead to high transient torque loads on drivetrain mechanical elements.« less

  2. Investigation of load current feed-forward control strategy for wind power grid connected inverter through VSC-HVDC

    NASA Astrophysics Data System (ADS)

    Liu, Hongbo; Liu, Haihan; Liu, Sitong; Peng, Huanhuan

    2018-06-01

    The VSC-HVDC connection system will be the effective transmission method for the large scale and long distance integrated wind farm. Because of the fluctuating power, the DC voltage will be over-voltage or under-voltage in transmission line which will affect the steady operation of the wind power integrating system. In order to mitigate the DC voltage variation of the grid-connected inverter on the grid side and improve the dynamic response of the system, a load current feed-forward control scheme is put forward. Firstly, this paper analyses stability of a system without additional feed-forward control based on double close loop. Secondly, the load current which can indicate the power changes is introduced to counteract the fluctuation of DC voltage in the improvement control scheme. By simulating the results show that the proposed control strategy can improve the dynamic response performance and mitigate the fluctuation of the active power output of the wind farm.

  3. Noise of two high-speed model counter-rotation propellers at takeoff/approach conditions

    NASA Astrophysics Data System (ADS)

    Woodward, Richard P.

    1992-08-01

    This paper presents acoustic results for two model counter-rotation propellers which were tested in the NASA Lewis 9- x 15-ft Anechoic Wind Tunnel. The propellers had a common forward rotor, but the diameter of the aft rotor of the second propeller was reduced in an effort to reduce its interaction with the forward rotor tip vortex. The propellers were tested at Mach 0.20, which is representative of takeoff/approach operation. Acoustic results are presented for these propellers which show the effect of rotor spacing, reduced aft rotor diameter, operation at angle-of-attack, blade loading, and blade number. Limited aerodynamic results are also presented to establish the propeller operating conditions.

  4. Noise of two high-speed model counter-rotation propellers at takeoff/approach conditions

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.

    1992-01-01

    This paper presents acoustic results for two model counter-rotation propellers which were tested in the NASA Lewis 9- x 15-ft Anechoic Wind Tunnel. The propellers had a common forward rotor, but the diameter of the aft rotor of the second propeller was reduced in an effort to reduce its interaction with the forward rotor tip vortex. The propellers were tested at Mach 0.20, which is representative of takeoff/approach operation. Acoustic results are presented for these propellers which show the effect of rotor spacing, reduced aft rotor diameter, operation at angle-of-attack, blade loading, and blade number. Limited aerodynamic results are also presented to establish the propeller operating conditions.

  5. Materials for Wind Turbine Blades: An Overview

    PubMed Central

    Branner, Kim; Petersen, Helga Nørgaard; Beauson, Justine; McGugan, Malcolm; Sørensen, Bent F.

    2017-01-01

    A short overview of composite materials for wind turbine applications is presented here. Requirements toward the wind turbine materials, loads, as well as available materials are reviewed. Apart from the traditional composites for wind turbine blades (glass fibers/epoxy matrix composites), natural composites, hybrid and nanoengineered composites are discussed. Manufacturing technologies for wind turbine composites, as well their testing and modelling approaches are reviewed. PMID:29120396

  6. Estimation of Gust Response Factor for a Tall Building Model with 1:1.5 Plan Ratios

    NASA Astrophysics Data System (ADS)

    Sarath Kumar, H.; Selvi Rajan, S.

    2017-08-01

    The purpose of structural analysis and design of structures as per the building codes and its corresponding standers is to ensure the safety of structure under maximum loads and remains functional under service load. The structure which is designed under consideration of codes should also satisfy the durability, economy and aesthetics. The primary purpose of this work is to understand and compare design wind loads according with the Gust Response Factor as per codes of practices. The paper is concerned with the calculation of design wind loads on a rectangular building model (1:300gemetric scale) of size 10cm x 15cm x 70cm with an aspect ratio of 1:1.5:7 at eight different levels over the height under sub-urban terrain category for 00 angle and 900 angle wind incidence. The experiment id conducted in an atmospheric boundary layer wind tunnel facility of CSIR-Structural engineering Research centre, Chennai. The measured pressures are integrated to evaluate mean and RMS (Root, Mean, Square). Further the variation of above mentioned loads and response factor along the heights of the building with respect to sub-urban terrain condition are discussed and summarized in addition, the codal values of various international standards [IS-875 part-3 1987, IS-875 part-3 draft, ASCE-07] have also considered for comparison.

  7. Upper Atmospheric Monitoring for Ares I-X Ascent Loads and Trajectory Evaluation on the Day-of-Launch

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.; McGrath, Kevin; Starr, Brett; Brandon, Jay

    2009-01-01

    During the launch countdown of the Ares I-X test vehicle, engineers from Langley Research Center will use profiles of atmospheric density and winds in evaluating vehicle ascent loads and controllability. A schedule for the release of balloons to measure atmospheric density and winds has been developed by the Natural Environments Branch at Marshall Space Flight Center to help ensure timely evaluation of the vehicle ascent loads and controllability parameters and support a successful launch of the Ares I-X vehicle.

  8. Study of ground handling characteristics of a maritime patrol airship

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Mooring concepts appropriate for maritime patrol airship (MPA) vehicles are investigated. The evolution of ground handling systems and procedures for all airship types is reviewed to ensure that appropriate consideration is given to past experiences. A tri-rotor maritime patrol airship is identified and described. Wind loads on a moored airship and the effects of these loads on vehicle design are analyzed. Several mooring concepts are assessed with respect to the airship design, wind loads, and mooring site considerations. Basing requirements and applicability of expeditionary mooring also are addressed.

  9. Coastal Ohio Wind Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin

    The Coastal Ohio Wind Project intends to address problems that impede deployment of wind turbines in the coastal and offshore regions of Northern Ohio. The project evaluates different wind turbine designs and the potential impact of offshore turbines on migratory and resident birds by developing multidisciplinary research, which involves wildlife biology, electrical and mechanical engineering, and geospatial science. Firstly, the project conducts cost and performance studies of two- and three-blade wind turbines using a turbine design suited for the Great Lakes. The numerical studies comprised an analysis and evaluation of the annual energy production of two- and three-blade wind turbinesmore » to determine the levelized cost of energy. This task also involved wind tunnel studies of model wind turbines to quantify the wake flow field of upwind and downwind wind turbine-tower arrangements. The experimental work included a study of a scaled model of an offshore wind turbine platform in a water tunnel. The levelized cost of energy work consisted of the development and application of a cost model to predict the cost of energy produced by a wind turbine system placed offshore. The analysis found that a floating two-blade wind turbine presents the most cost effective alternative for the Great Lakes. The load effects studies showed that the two-blade wind turbine model experiences less torque under all IEC Standard design load cases considered. Other load effects did not show this trend and depending on the design load cases, the two-bladed wind turbine showed higher or lower load effects. The experimental studies of the wake were conducted using smoke flow visualization and hot wire anemometry. Flow visualization studies showed that in the downwind turbine configuration the wake flow was insensitive to the presence of the blade and was very similar to that of the tower alone. On the other hand, in the upwind turbine configuration, increasing the rotor blade angle of attack reduced the wake size and enhanced the vortices in the flow downstream of the turbine-tower compared with the tower alone case. Mean and rms velocity distributions from hot wire anemometer data confirmed that in a downwind configuration, the wake of the tower dominates the flow, thus the flow fields of a tower alone and tower-turbine combinations are nearly the same. For the upwind configuration, the mean velocity shows a narrowing of the wake compared with the tower alone case. The downwind configuration wake persisted longer than that of an upwind configuration; however, it was not possible to quantify this difference because of the size limitation of the wind tunnel downstream of the test section. The water tunnel studies demonstrated that the scale model studies could be used to adequately produce accurate motions to model the motions of a wind turbine platform subject to large waves. It was found that the important factors that affect the platform is whether the platform is submerged or surface piercing. In the former, the loads on the platform will be relatively reduced whereas in the latter case, the structure pierces the wave free surface and gains stiffness and stability. The other important element that affects the movement of the platform is depth of the sea in which the wind turbine will be installed. Furthermore, the wildlife biology component evaluated migratory patterns by different monitoring systems consisting of marine radar, thermal IR camera and acoustic recorders. The types of radar used in the project are weather surveillance radar and marine radar. The weather surveillance radar (1988 Doppler), also known as Next Generation Radar (NEXRAD), provides a network of weather stations in the US. Data generated from this network were used to understand general migratory patterns, migratory stopover habitats, and other patterns caused by the effects of weather conditions. At a local scale our marine radar was used to complement the datasets from NEXRAD and to collect additional monitoring parameters such as passage rates, flight paths, flight directions, and flight altitudes of nocturnal migrating species. Our work focused on the design and development of custom built marine radar that used t-bar and parabolic dish antennas. The marine radar used in the project was Furuno (XANK250) which was coupled with a XIR3000B digitizing card from Russell Technologies for collection of the radar data. The radar data was processed by open source radR processing software using different computational techniques and methods. Additional data from thermal IR imaging cameras were collected to detect heat emitted from objects and provide information on movements of birds and bats, data which we used for different animal flight behavior analysis. Lastly, the data from the acoustic recorders were used to provide the number of bird calls for assessing patterns and peak passage rates during migration. The development of the geospatial database included collection of different data sources that are used to support offshore wind turbine development. Many different data sets were collected and organized using initial version of web-based repository software tools that can accommodate distribution of rectified pertinent data sets such as the lake depth, lake bottom engineering parameters, extent of ice, navigation pathways, wind speed, important bird habitats, fish efforts and other layers that are relevant for supporting robust offshore wind turbine developments. Additional geospatial products developed during the project included few different prototypes for offshore wind farm suitability which can involve different stakeholders and participants for solving complex planning problems and building consensus. Some of the prototypes include spatial decision support system (SDSS) for collaborative decision making, a web-based Participatory Geographic Information System (PGIS) framework for evaluating importance of different decision alternatives using different evaluation criteria, and an Android application for collection of field data using mobile and tablet devices . In summary, the simulations of two- and three-blade wind turbines suggested that two-bladed machines could produce comparable annual energy as the three-blade wind turbines but have a lighter tower top weight, which leads to lower cost of energy. In addition, the two-blade rotor configuration potentially costs 20% less than a three blade configuration that produces the same power at the same site. The cost model analysis predicted a potential cost savings of approximately 15% for offshore two-blade wind turbines. The foundation design for a wind turbine in Lake Erie is likely to be driven by ice loads based on the currently available ice data and ice mechanics models. Hence, for Lake Eire, the cost savings will be somewhat smaller than the other lakes in the Great Lakes. Considering the size of cranes and vessels currently available in the Great Lakes, the cost optimal wind turbine size should be 3 MW, not larger. The surveillance data from different monitoring systems suggested that bird and bat passage rates per hour were comparable during heavy migrations in both spring and fall seasons while passage rates were significantly correlated to wind directions and wind speeds. The altitude of migration was higher during heavy migrations and higher over water relative to over land. Notable portions of migration on some spring nights occurred parallel the shoreline, often moving perpendicular to southern winds. The birds approaching the Western basin have a higher propensity to cross than birds approaching the Central basin of Lake Erie and as such offshore turbine development might be a better option further east towards Cleveland than in the Western basin. The high stopover density was more strongly associated with migration volume the following night rather than the preceding night. The processed mean scalar wind speeds with temporal resolutions as fine as 10-minute intervals near turbine height showed that August is the month with the weakest winds while December is the month, which typically has the strongest winds. The ice data suggests that shallow western basin of Lake Erie has higher ice cover duration many times exceeding 90 days during some winters.« less

  10. Cost of wind energy: comparing distant wind resources to local resources in the midwestern United States.

    PubMed

    Hoppock, David C; Patiño-Echeverri, Dalia

    2010-11-15

    The best wind sites in the United States are often located far from electricity demand centers and lack transmission access. Local sites that have lower quality wind resources but do not require as much power transmission capacity are an alternative to distant wind resources. In this paper, we explore the trade-offs between developing new wind generation at local sites and installing wind farms at remote sites. We first examine the general relationship between the high capital costs required for local wind development and the relatively lower capital costs required to install a wind farm capable of generating the same electrical output at a remote site,with the results representing the maximum amount an investor should be willing to pay for transmission access. We suggest that this analysis can be used as a first step in comparing potential wind resources to meet a state renewable portfolio standard (RPS). To illustrate, we compare the cost of local wind (∼50 km from the load) to the cost of distant wind requiring new transmission (∼550-750 km from the load) to meet the Illinois RPS. We find that local, lower capacity factor wind sites are the lowest cost option for meeting the Illinois RPS if new long distance transmission is required to access distant, higher capacity factor wind resources. If higher capacity wind sites can be connected to the existing grid at minimal cost, in many cases they will have lower costs.

  11. DOE/NREL supported wind energy activities in Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drouilhet, S.

    1997-12-01

    This paper describes three wind energy projects implemented in Alaska. The first, a sustainable technology energy partnerships (STEP) wind energy deployment project in Kotzebue will install 6 AOC 15/50 wind turbines and connect to the existing village diesel grid, consisting of approximately 1 MW average load. It seeks to develop solutions to the problems of arctic wind energy installations (transport, foundations, erection, operation, and maintenance), to establish a wind turbine test site, and to establish the Kotzebue Electric Association as a training and deployment center for wind/diesel technology in rural Alaska. The second project, a large village medium-penetration wind/diesel system,more » also in Kotzebue, will install a 1-2 MW windfarm, which will supplement the AOC turbines of the STEP project. The program will investigate the impact of medium penetration wind energy on power quality and system stability. The third project, the Alaska high-penetration wind/diesel village power pilot project in Wales will install a high penetration (80-100%) wind/diesel system in a remote Alaskan village. The system will include about 180 kW installed wind capacity, meeting an average village load of about 60 kW. This program will provide a model for high penetration wind retrofits to village diesel power systems and build the capability in Alaska to operate, maintain, and replicate wind/diesel technology. The program will also address problems of: effective use of excess wind energy; reliable diesel-off operation; and the role of energy storage.« less

  12. Relevance of aerodynamic modelling for load reduction control strategies of two-bladed wind turbines

    NASA Astrophysics Data System (ADS)

    Luhmann, B.; Cheng, P. W.

    2014-06-01

    A new load reduction concept is being developed for the two-bladed prototype of the Skywind 3.5MW wind turbine. Due to transport and installation advantages both offshore and in complex terrain two-bladed turbine designs are potentially more cost-effective than comparable three-bladed configurations. A disadvantage of two-bladed wind turbines is the increased fatigue loading, which is a result of asymmetrically distributed rotor forces. The innovative load reduction concept of the Skywind prototype consists of a combination of cyclic pitch control and tumbling rotor kinematics to mitigate periodic structural loading. Aerodynamic design tools must be able to model correctly the advanced dynamics of the rotor. In this paper the impact of the aerodynamic modelling approach is investigated for critical operational modes of a two-bladed wind turbine. Using a lifting line free wake vortex code (FVM) the physical limitations of the classical blade element momentum theory (BEM) can be evaluated. During regular operation vertical shear and yawed inflow are the main contributors to periodic blade load asymmetry. It is shown that the near wake interaction of the blades under such conditions is not fully captured by the correction models of BEM approach. The differing prediction of local induction causes a high fatigue load uncertainty especially for two-bladed turbines. The implementation of both cyclic pitch control and a tumbling rotor can mitigate the fatigue loading by increasing the aerodynamic and structural damping. The influence of the time and space variant vorticity distribution in the near wake is evaluated in detail for different cyclic pitch control functions and tumble dynamics respectively. It is demonstrated that dynamic inflow as well as wake blade interaction have a significant impact on the calculated blade forces and need to be accounted for by the aerodynamic modelling approach. Aeroelastic simulations are carried out using the high fidelity multi body simulation software SIMPACK. The aerodynamic loads are calculated using ECN's AeroModule and NREL's BEM code Aerodynl3.

  13. ELECTRON EMISSION REGULATING MEANS

    DOEpatents

    Brenholdt, I.R.

    1957-11-19

    >An electronic regulating system is described for controlling the electron emission of a cathode, for example, the cathode in a mass spectrometer. The system incorporates a transformer having a first secondary winding for the above-mentioned cathode and a second secondary winding for the above-mentioned cathode and a second secondary winding load by grid controlled vacuum tubes. A portion of the electron current emitted by the cathode is passed through a network which develops a feedback signal. The system arrangement is completed by using the feedback signal to control the vacuum tubes in the second secondary winding through a regulator tube. When a change in cathode emission occurs, the feedback signal acts to correct this change by adjusting the load on the transformer.

  14. 24 CFR 3280.404 - Standard for egress windows and devices for use in manufactured homes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... interior pressure tests for components and cladding must be conducted at the design wind loads required by... in high wind areas. For homes designed to be located in Wind Zones II and III, manufacturers shall... egress window openings. This method must be capable of resisting the design wind pressures specified in...

  15. 24 CFR 3280.404 - Standard for egress windows and devices for use in manufactured homes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... interior pressure tests for components and cladding must be conducted at the design wind loads required by... in high wind areas. For homes designed to be located in Wind Zones II and III, manufacturers shall... egress window openings. This method must be capable of resisting the design wind pressures specified in...

  16. 24 CFR 3280.404 - Standard for egress windows and devices for use in manufactured homes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... interior pressure tests for components and cladding must be conducted at the design wind loads required by... in high wind areas. For homes designed to be located in Wind Zones II and III, manufacturers shall... egress window openings. This method must be capable of resisting the design wind pressures specified in...

  17. Adding concentrated solar power plants to wind farms to achieve a good utility electrical load match

    USDA-ARS?s Scientific Manuscript database

    Texas has the greatest installed wind turbine capacity of any state in the United States, the percentage of wind capacity approaches 10% of the utilities capacity (in 2010 the total wind generated capacity in Texas was 8%). It is becomimg increasingly difficult for the utility to balance the elec...

  18. 40 CFR 53.65 - Test procedure: Loading test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... performing the test in § 53.62 (full wind tunnel test), § 53.63 (wind tunnel inlet aspiration test), or § 53... particle delivery system shall consist of a static chamber or a low velocity wind tunnel having a.... The mean velocity in the test section of the static chamber or wind tunnel shall not exceed 2 km/hr...

  19. Evaluation of observed blast loading effects on NIF x-ray diagnostic collimators.

    PubMed

    Masters, N D; Fisher, A; Kalantar, D; Prasad, R; Stölken, J S; Wlodarczyk, C

    2014-11-01

    We present the "debris wind" models used to estimate the impulsive load to which x-ray diagnostics and other structures are subject during National Ignition Facility experiments. These models are used as part of the engineering design process. Isotropic models, based on simulations or simplified "expanding shell" models, are augmented by debris wind multipliers to account for directional anisotropy. We present improvements to these multipliers based on measurements of the permanent deflections of diagnostic components: 4× for the polar direction and 2× within the equatorial plane-the latter relaxing the previous heuristic debris wind multiplier.

  20. Research on power source structure optimization for East China Power Grid

    NASA Astrophysics Data System (ADS)

    Xu, Lingjun; Sang, Da; Zhang, Jianping; Tang, Chunyi; Xu, Da

    2017-05-01

    The structure of east china power grid is not reasonable for the coal power takes a much higher proportion than hydropower, at present the coal power takes charge of most peak load regulation, and the pressure of peak load regulation cannot be ignored. The nuclear power, wind power, photovoltaic, other clean energy and hydropower, coal power and wind power from outside will be actively developed in future, which increases the pressure of peak load regulation. According to development of economic and social, Load status and load prediction, status quo and planning of power source and the characteristics of power source, the peak load regulation balance is carried out and put forward a reasonable plan of power source allocation. The ultimate aim is to optimize the power source structure and to provide reference for power source allocation in east china.

  1. The Wind Integration National Dataset (WIND) toolkit (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caroline Draxl: NREL

    2014-01-01

    Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.

  2. Seismic analysis of offshore wind turbines on bottom-fixed support structures.

    PubMed

    Alati, Natale; Failla, Giuseppe; Arena, Felice

    2015-02-28

    This study investigates the seismic response of a horizontal axis wind turbine on two bottom-fixed support structures for transitional water depths (30-60 m), a tripod and a jacket, both resting on pile foundations. Fully coupled, nonlinear time-domain simulations on full system models are carried out under combined wind-wave-earthquake loadings, for different load cases, considering fixed and flexible foundation models. It is shown that earthquake loading may cause a significant increase of stress resultant demands, even for moderate peak ground accelerations, and that fully coupled nonlinear time-domain simulations on full system models are essential to capture relevant information on the moment demand in the rotor blades, which cannot be predicted by analyses on simplified models allowed by existing standards. A comparison with some typical design load cases substantiates the need for an accurate seismic assessment in sites at risk from earthquakes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. Optimal Operation Method of Smart House by Controllable Loads based on Smart Grid Topology

    NASA Astrophysics Data System (ADS)

    Yoza, Akihiro; Uchida, Kosuke; Yona, Atsushi; Senju, Tomonobu

    2013-08-01

    From the perspective of global warming suppression and depletion of energy resources, renewable energy such as wind generation (WG) and photovoltaic generation (PV) are getting attention in distribution systems. Additionally, all electrification apartment house or residence such as DC smart house have increased in recent years. However, due to fluctuating power from renewable energy sources and loads, supply-demand balancing fluctuations of power system become problematic. Therefore, "smart grid" has become very popular in the worldwide. This article presents a methodology for optimal operation of a smart grid to minimize the interconnection point power flow fluctuations. To achieve the proposed optimal operation, we use distributed controllable loads such as battery and heat pump. By minimizing the interconnection point power flow fluctuations, it is possible to reduce the maximum electric power consumption and the electric cost. This system consists of photovoltaics generator, heat pump, battery, solar collector, and load. In order to verify the effectiveness of the proposed system, MATLAB is used in simulations.

  4. Wind Energy Management System Integration Project Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.

    2010-09-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation) and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and windmore » forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. In order to improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively, by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. In this report, a new methodology to predict the uncertainty ranges for the required balancing capacity, ramping capability and ramp duration is presented. Uncertainties created by system load forecast errors, wind and solar forecast errors, generation forced outages are taken into account. The uncertainty ranges are evaluated for different confidence levels of having the actual generation requirements within the corresponding limits. The methodology helps to identify system balancing reserve requirement based on a desired system performance levels, identify system “breaking points”, where the generation system becomes unable to follow the generation requirement curve with the user-specified probability level, and determine the time remaining to these potential events. The approach includes three stages: statistical and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence intervals. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis incorporating all sources of uncertainty and parameters of a continuous (wind forecast and load forecast errors) and discrete (forced generator outages and failures to start up) nature. Preliminary simulations using California Independent System Operator (California ISO) real life data have shown the effectiveness of the proposed approach. A tool developed based on the new methodology described in this report will be integrated with the California ISO systems. Contractual work is currently in place to integrate the tool with the AREVA EMS system.« less

  5. The effect of real-time pricing on load shifting in a highly renewable power system dominated by generation from the renewable sources of wind and photovoltaics

    NASA Astrophysics Data System (ADS)

    Kies, Alexander; Brown, Tom; Schlachtberger, David; Schramm, Stefan

    2017-04-01

    The supply-demand imbalance is a major concern in the presence of large shares of highly variable renewable generation from sources like wind and photovoltaics (PV) in power systems. Other than the measures on the generation side, such as flexible backup generation or energy storage, sector coupling or demand side management are the most likely option to counter imbalances, therefore to ease the integration of renewable generation. Demand side management usually refers to load shifting, which comprises the reaction of electricity consumers to price fluctuations. In this work, we derive a novel methodology to model the interplay of load shifting and provided incentives via real-time pricing in highly renewable power systems. We use weather data to simulate generation from the renewable sources of wind and photovoltaics, as well as historical load data, split into different consumption categories, such as, heating, cooling, domestic, etc., to model a simplified power system. Together with renewable power forecast data, a simple market model and approaches to incorporate sector coupling [1] and load shifting [2,3], we model the interplay of incentives and load shifting for different scenarios (e.g., in dependency of the risk-aversion of consumers or the forecast horizon) and demonstrate the practical benefits of load shifting. First, we introduce the novel methodology and compare it with existing approaches. Secondly, we show results of numerical simulations on the effects of load shifting: It supports the integration of PV power by providing a storage, which characteristics can be described as "daily" and provides a significant amount of balancing potential. Lastly, we propose an experimental setup to obtain empirical data on end-consumer load-shifting behaviour in response to price incentives. References [1] Brown, T., Schlachtberger, D., Kies. A., Greiner, M., Sector coupling in a highly renewable European energy system, Proc. of the 15th International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants, Vienna, Austria, 15.-17. November 2016 [2] Kleinhans, D.: Towards a systematic characterization of the potential of demand side management, arXiv preprint arXiv:1401.4121, 2014 [3] Kies, A., Schyska, B. U., von Bremen, L., The Demand Side Management Potential to Balance a Highly Renewable European Power System. Energies, 9(11), 955, 2016

  6. Loading Analysis of Composite Wind Turbine Blade for Fatigue Life Prediction of Adhesively Bonded Root Joint

    NASA Astrophysics Data System (ADS)

    Salimi-Majd, Davood; Azimzadeh, Vahid; Mohammadi, Bijan

    2015-06-01

    Nowadays wind energy is widely used as a non-polluting cost-effective renewable energy resource. During the lifetime of a composite wind turbine which is about 20 years, the rotor blades are subjected to different cyclic loads such as aerodynamics, centrifugal and gravitational forces. These loading conditions, cause to fatigue failure of the blade at the adhesively bonded root joint, where the highest bending moments will occur and consequently, is the most critical zone of the blade. So it is important to estimate the fatigue life of the root joint. The cohesive zone model is one of the best methods for prediction of initiation and propagation of debonding at the root joint. The advantage of this method is the possibility of modeling the debonding without any requirement to the remeshing. However in order to use this approach, it is necessary to analyze the cyclic loading condition at the root joint. For this purpose after implementing a cohesive interface element in the Ansys finite element software, one blade of a horizontal axis wind turbine with 46 m rotor diameter was modelled in full scale. Then after applying loads on the blade under different condition of the blade in a full rotation, the critical condition of the blade is obtained based on the delamination index and also the load ratio on the root joint in fatigue cycles is calculated. These data are the inputs for fatigue damage growth analysis of the root joint by using CZM approach that will be investigated in future work.

  7. Research on Operation Strategy for Bundled Wind-thermal Generation Power Systems Based on Two-Stage Optimization Model

    NASA Astrophysics Data System (ADS)

    Sun, Congcong; Wang, Zhijie; Liu, Sanming; Jiang, Xiuchen; Sheng, Gehao; Liu, Tianyu

    2017-05-01

    Wind power has the advantages of being clean and non-polluting and the development of bundled wind-thermal generation power systems (BWTGSs) is one of the important means to improve wind power accommodation rate and implement “clean alternative” on generation side. A two-stage optimization strategy for BWTGSs considering wind speed forecasting results and load characteristics is proposed. By taking short-term wind speed forecasting results of generation side and load characteristics of demand side into account, a two-stage optimization model for BWTGSs is formulated. By using the environmental benefit index of BWTGSs as the objective function, supply-demand balance and generator operation as the constraints, the first-stage optimization model is developed with the chance-constrained programming theory. By using the operation cost for BWTGSs as the objective function, the second-stage optimization model is developed with the greedy algorithm. The improved PSO algorithm is employed to solve the model and numerical test verifies the effectiveness of the proposed strategy.

  8. Experimental investigations on the aerodynamics and aeromechanics of wind turbines for floating offshore applications

    NASA Astrophysics Data System (ADS)

    Khosravi, Morteza

    There are many advantages in floating wind turbines in deep waters, however, there are also significant technological challenges associated with it too. The dynamic excitation of wind and waves can induce excessive motions along each of the 6 degrees of freedom (6-DOF) of the floating platforms. These motions will then be transferred to the turbine, and directly impact the wake characteristics of the floating wind turbines, and consequently the resultant wind loadings and performances of the wind turbines sited in offshore wind farms. In the present study, a comprehensive experimental study was performed to analyze the performance, loading, and the near wake characteristics of a rigid wind turbine model subjected to surge, heave, and pitch motions. The experimental study was performed in a large-scale atmospheric boundary layer wind tunnel with a scaled three-blade Horizontal Axial Wind Turbine model placed in a turbulent boundary layer airflow with similar mean and turbulence characteristics as those over a typical offshore wind farm. The base of the 1:300 scaled model wind turbine was mounted on translation and rotation stages. These stages can be controlled to generate surge, pitch and heave motions to simulate the dynamic motions experienced by floating offshore wind turbines. During the experiments, the velocity scaling method was chosen to maintain the similar velocity ratios (i.e., the ratios of the incoming airflow flow to that of turbine base motion) between the model and the prototype. During the experiments, a high resolution digital particle image velocimetry (PIV) system was used to achieve flow field measurements to quantify the characteristics of the turbulent vortex flow in the near wake of the wind turbine model. Besides conducting ''free run'' PIV measurements to determine the ensemble-averaged statistics of the flow quantities such as mean velocity, Reynolds stress, and turbulence kinetic energy (TKE) distributions in the wake flow, ''phase-locked'' PIV measurements were also performed to elucidate further details about evolution of the unsteady vortex structures in the wake flow in relation to the position of the rotating turbine blades. The effects of the surge, heave, and pitch motions of the wind turbine base on the wake flow characteristics were examined in great details based on the PIV measurements. The findings derived from the present study can be used to improve the understanding of the underlying physics for optimal mechanical design of floating offshore wind turbines, as well as the layout optimization of floating offshore wind farms. Although, the mean power measurement results show little difference between the oscillating turbine and the bottom fixed turbine, but the excessive fluctuations in the power output of the oscillating turbine is anticipated to greatly reduce the power quality of such floating turbines. The load measurements also show substantial amount of difference both in terms of mean and the fluctuating components. The results of the wake study reveal that the wake of a wind turbine subjected to base motions, is highly dependent on which direction the turbine is oscillating. In the case of the moving turbine, the wake accelerates as the turbine is moving with the flow, hence, reducing the power extraction by the turbine. A decrease in Reynolds shear stress and the turbulent kinetic energy production was noted as the turbine was oscillating with the flow. However, as the turbine was moving into the flow, these effects reverse, and causes a deceleration in the wake of the moving turbine, hence increases the power production by the turbine, and increase the Reynolds shear stress and the turbulent kinetic energy. Finally, The wake flow field (x/D < 2.5) measurements behind a two-bladed Darrieus type VAWT were also carried out by using a high-resolution PIV system, and the results obtained at two different horizontal (x-y) planes, at the equator height (H/2) and above the equator height (3H/4), for four different tip speed ratios (lambda = 2, 2.5, 3 and 3.5) of the VAWT were then evaluated and compared. The wake of the VAWT is found to be significantly different to that of the HAWT's. At lower tip-speed-ratio (i.e. TSR 2) the wake tends to be very asymmetric and skewed with relatively higher amount of momentum in the wake in comparison to higher tip-speed ratios (i.e. 3 or 3.5). As tip-speed ratio increases, there is a tendency in flow stagnation in the wake and eventually flow reversal would occur at higher tip-speed-ratios. The wake dynamics (i.e., the instabilities inherent in VAWT) behind the VAWTs would lead to a much faster wake recovery in comparison to the HAWTs.

  9. Update on the Comparison of Second-Order Loads on a Tension Leg Platform for Wind Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gueydon, Sebastien; Jonkman, Jason

    2016-07-01

    In comparison to other kinds of floaters (like a spar or a semisubmersible), the tension leg platform has several notable advantages: its vertical motions are negligible, its weight is lighter, and its mooring system's footprint is smaller. Although a tension leg platform has a negligible response to first-order vertical wave loads, the second-order wave loads need to be addressed. This paper follows up on a verification study of second-order wave loads on a tension leg platform for wind turbines done by the Maritime Research Institute of The Netherlands and National Renewable Energy Laboratory and it brings some corrections to itsmore » conclusions.« less

  10. Evaluation of MOSTAS computer code for predicting dynamic loads in two-bladed wind turbines

    NASA Technical Reports Server (NTRS)

    Kaza, K. R. V.; Janetzke, D. C.; Sullivan, T. L.

    1979-01-01

    Calculated dynamic blade loads are compared with measured loads over a range of yaw stiffnesses of the DOE/NASA Mod-0 wind turbine to evaluate the performance of two versions of the MOSTAS computer code. The first version uses a time-averaged coefficient approximation in conjunction with a multiblade coordinate transformation for two-bladed rotors to solve the equations of motion by standard eigenanalysis. The results obtained with this approximate analysis do not agree with dynamic blade load amplifications at or close to resonance conditions. The results of the second version, which accounts for periodic coefficients while solving the equations by a time history integration, compare well with the measured data.

  11. Simulation of Mechanical Behavior and Damage of a Large Composite Wind Turbine Blade under Critical Loads

    NASA Astrophysics Data System (ADS)

    Tarfaoui, M.; Nachtane, M.; Khadimallah, H.; Saifaoui, D.

    2018-04-01

    Issues such as energy generation/transmission and greenhouse gas emissions are the two energy problems we face today. In this context, renewable energy sources are a necessary part of the solution essentially winds power, which is one of the most profitable sources of competition with new fossil energy facilities. This paper present the simulation of mechanical behavior and damage of a 48 m composite wind turbine blade under critical wind loads. The finite element analysis was performed by using ABAQUS code to predict the most critical damage behavior and to apprehend and obtain knowledge of the complex structural behavior of wind turbine blades. The approach developed based on the nonlinear FE analysis using mean values for the material properties and the failure criteria of Tsai-Hill to predict failure modes in large structures and to identify the sensitive zones.

  12. Launch flexibility using NLP guidance and remote wind sensing

    NASA Technical Reports Server (NTRS)

    Cramer, Evin J.; Bradt, Jerre E.; Hardtla, John W.

    1990-01-01

    This paper examines the use of lidar wind measurements in the implementation of a guidance strategy for a nonlinear programming (NLP) launch guidance algorithm. The NLP algorithm uses B-spline command function representation for flexibility in the design of the guidance steering commands. Using this algorithm, the guidance system solves a two-point boundary value problem at each guidance update. The specification of different boundary value problems at each guidance update provides flexibility that can be used in the design of the guidance strategy. The algorithm can use lidar wind measurements for on pad guidance retargeting and for load limiting guidance steering commands. Examples presented in the paper use simulated wind updates to correct wind induced final orbit errors and to adjust the guidance steering commands to limit the product of the dynamic pressure and angle-of-attack for launch vehicle load alleviation.

  13. Analyzing wind turbine flow interaction through vibration data

    NASA Astrophysics Data System (ADS)

    Castellani, Francesco; D'Elia, Gianluca; Astolfi, Davide; Mucchi, Emiliano; Giorgio, Dalpiaz; Terzi, Ludovico

    2016-09-01

    Wind turbines commonly undergo non-stationary flow and, not rarely, even rather extreme phenomena. In particular, rough terrains represent a challenging testing ground, because of the combination of terrain-driven flow and wakes. It is therefore crucial to assess the impact of dynamic loads on the turbines. In this work, tower and drive-train vibrations are analyzed, from a subcluster of four turbines of a wind farm sited in a very complex terrain. The main outcome of the study is that it is possible to start from the analysis of wind conditions and interpret how wakes manifest in the vibrations of the turbines, both at structural level (tower vibrations) and at the drive-train level. This wind to gear approach therefore allows to build a connection between a flow phenomenon and a mechanical phenomenon (vibrations) and can be precious to assess loads in different working conditions.

  14. Application of stochastic methods for wind speed forecasting and wind turbines design at the area of Thessaly, Greece

    NASA Astrophysics Data System (ADS)

    Dimitriadis, Panayiotis; Lazaros, Lappas; Daskalou, Olympia; Filippidou, Ariadni; Giannakou, Marianna; Gkova, Eleni; Ioannidis, Romanos; Polydera, Angeliki; Polymerou, Eleni; Psarrou, Eleftheria; Vyrini, Alexandra; Papalexiou, Simon; Koutsoyiannis, Demetris

    2015-04-01

    Several methods exist for estimating the statistical properties of wind speed, most of them being deterministic or probabilistic, disregarding though its long-term behaviour. Here, we focus on the stochastic nature of wind. After analyzing several historical timeseries at the area of interest (AoI) in Thessaly (Greece), we show that a Hurst-Kolmogorov (HK) behaviour is apparent. Thus, disregarding the latter could lead to unrealistic predictions and wind load situations, causing some impact on the energy production and management. Moreover, we construct a stochastic model capable of preserving the HK behaviour and we produce synthetic timeseries using a Monte-Carlo approach to estimate the future wind loads in the AoI. Finally, we identify the appropriate types of wind turbines for the AoI (based on the IEC 61400 standards) and propose several industrial solutions. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.

  15. Variation of Extreme and Fatigue Design Loads on the Main Bearing of a Front Mounted Direct Drive System

    NASA Astrophysics Data System (ADS)

    Abrahamsen, Asger Bech; Natarajan, Anand

    2016-09-01

    The drivetrain of a 10 MW wind turbine has been designed as a direct drive transmission with a superconducting generator mounted in front of the hub and connected to the main frame through a King-pin stiff assembly by DNV-GL. The aeroelastic design loads of such an arrangement are evaluated based on the thrust and bending moments at the main bearing, both for ultimate design and in fatigue. It is found that the initial superconductor generator weight of 363 tons must be reduced by 25% in order not to result in higher extreme loads on main and yaw bearing than the reference10 MW geared reference drive train. A weight reduction of 50% is needed in order to maintain main bearing fatigue damage equivalent to the reference drive train. Thus a target mass of front mounted superconducting direct drive generators is found to be between 183-272 tons.

  16. Aeroservoelastic Testing of Free Flying Wind Tunnel Models Part 1: A Sidewall Supported Semispan Model Tested for Gust Load Alleviation and Flutter Suppression

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Vetter, Travis K.; Penning, Kevin B.; Coulson, David A.; Heeg, Jennifer.

    2013-01-01

    of a two part document. Part 2 is titled: "Aeroservoelastic Testing of Free Flying Wind Tunnel Models, Part 2: A Centerline Supported Fullspan Model Tested for Gust Load Alleviation." A team comprised of the Air Force Research Laboratory (AFRL), Northrop Grumman, Lockheed Martin, and the NASA Langley Research Center conducted three aeroservoelastic wind tunnel tests in the Transonic Dynamics Tunnel to demonstrate active control technologies relevant to large, flexible vehicles. In the first of these three tests, a semispan, aeroelastically scaled, wind tunnel model of a flying wing SensorCraft vehicle was mounted to a force balance to demonstrate gust load alleviation. In the second and third tests, the same wing was mated to a new, multi-degree of freedom, sidewall mount. This mount allowed the half-span model to translate vertically and pitch at the wing root, allowing better simulation of the full span vehicle's rigid body modes. Gust load alleviation (GLA) and Body freedom flutter (BFF) suppression were successfully demonstrated. The rigid body degrees-of-freedom required that the model be flown in the wind tunnel using an active control system. This risky mode of testing necessitated that a model arrestment system be integrated into the new mount. The safe and successful completion of these free flying tests required the development and integration of custom hardware and software. This paper describes the many systems, software, and procedures that were developed as part of this effort.

  17. Comparison of Hydrodynamic Load Predictions Between Engineering Models and Computational Fluid Dynamics for the OC4-DeepCwind Semi-Submersible: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benitz, M. A.; Schmidt, D. P.; Lackner, M. A.

    Hydrodynamic loads on the platforms of floating offshore wind turbines are often predicted with computer-aided engineering tools that employ Morison's equation and/or potential-flow theory. This work compares results from one such tool, FAST, NREL's wind turbine computer-aided engineering tool, and the computational fluid dynamics package, OpenFOAM, for the OC4-DeepCwind semi-submersible analyzed in the International Energy Agency Wind Task 30 project. Load predictions from HydroDyn, the offshore hydrodynamics module of FAST, are compared with high-fidelity results from OpenFOAM. HydroDyn uses a combination of Morison's equations and potential flow to predict the hydrodynamic forces on the structure. The implications of the assumptionsmore » in HydroDyn are evaluated based on this code-to-code comparison.« less

  18. 2012 Market Report on U.S. Wind Technologies in Distributed Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrell, Alice C.; Flowers, L. T.; Gagne, M. N.

    2013-08-06

    At the end of 2012, U.S. wind turbines in distributed applications reached a 10-year cumulative installed capacity of more than 812 MW from more than 69,000 units across all 50 states. In 2012 alone, nearly 3,800 wind turbines totaling 175 MW of distributed wind capacity were documented in 40 states and in the U.S. Virgin Islands, with 138 MW using utility-scale turbines (i.e., greater than 1 MW in size), 19 MW using mid-size turbines (i.e., 101 kW to 1 MW in size), and 18.4 MW using small turbines (i.e., up to 100 kW in size). Distributed wind is defined inmore » terms of technology application based on a wind project’s location relative to end-use and power-distribution infrastructure, rather than on technology size or project size. Distributed wind systems are either connected on the customer side of the meter (to meet the onsite load) or directly to distribution or micro grids (to support grid operations or offset large loads nearby). Estimated capacity-weighted average costs for 2012 U.S. distributed wind installations was $2,540/kW for utility-scale wind turbines, $2,810/kW for mid-sized wind turbines, and $6,960/kW for newly manufactured (domestic and imported) small wind turbines. An emerging trend observed in 2012 was an increased use of refurbished turbines. The estimated capacity-weighted average cost of refurbished small wind turbines installed in 2012 was $4,080/kW. As a result of multiple projects using utility-scale turbines, Iowa deployed the most new overall distributed wind capacity, 37 MW, in 2012. Nevada deployed the most small wind capacity in 2012, with nearly 8 MW of small wind turbines installed in distributed applications. In the case of mid-size turbines, Ohio led all states in 2012 with 4.9 MW installed in distributed applications. State and federal policies and incentives continued to play a substantial role in the development of distributed wind projects. In 2012, U.S. Treasury Section 1603 payments and grants and loans from the U.S. Department of Agriculture’s Rural Energy for America Program were the main sources of federal funding for distributed wind projects. State and local funding varied across the country, from rebates to loans, tax credits, and other incentives. Reducing utility bills and hedging against potentially rising electricity rates remain drivers of distributed wind installations. In 2012, other drivers included taking advantage of the expiring U.S. Treasury Section 1603 program and a prosperous year for farmers. While 2012 saw a large addition of distributed wind capacity, considerable barriers and challenges remain, such as a weak domestic economy, inconsistent state incentives, and very competitive solar photovoltaic and natural gas prices. The industry remains committed to improving the distributed wind marketplace by advancing the third-party certification process and introducing alternative financing models, such as third-party power purchase agreements and lease-to-own agreements more typical in the solar photovoltaic market. Continued growth is expected in 2013.« less

  19. Assessment of fatigue load alleviation potential through blade trailing edge morphing

    NASA Astrophysics Data System (ADS)

    Tsiantas, Theofanis; Manolas, Dimitris I.; Machairas, Theodore; Karakalas, Anargyros; Riziotis, Vasilis A.; Saravanos, Dimitrios; Voutsinas, Spyros G.

    2016-09-01

    The possibility of alleviating wind turbine loads through blade trailing edge shape morphing is investigated in the present paper. Emphasis is put on analyzing the effect of the trailing edge flap geometry on load reduction levels. The choice of the shape deformation of the camber line as well as the chordwise and spanwise dimensions of the trailing edge flap are addressed. The analysis concerns the conceptual DTU 10 MW RWT. Aeroelastic control of loads is materialized through a standard individual flap controller. Furthermore, a comb ined individual pitch-flap controller is evaluated and found to present advantages compared to the flap only controller. Flapwise fatigue load reduction ranging from 10% to 20%, depending on wind velocity and configuration considered, is obtained. Better performance is achieved by the combined pitch-flap controller.

  20. Prediction Interval Development for Wind-Tunnel Balance Check-Loading

    NASA Technical Reports Server (NTRS)

    Landman, Drew; Toro, Kenneth G.; Commo, Sean A.; Lynn, Keith C.

    2014-01-01

    Results from the Facility Analysis Verification and Operational Reliability project revealed a critical gap in capability in ground-based aeronautics research applications. Without a standardized process for check-loading the wind-tunnel balance or the model system, the quality of the aerodynamic force data collected varied significantly between facilities. A prediction interval is required in order to confirm a check-loading. The prediction interval provides an expected upper and lower bound on balance load prediction at a given confidence level. A method has been developed which accounts for sources of variability due to calibration and check-load application. The prediction interval method of calculation and a case study demonstrating its use is provided. Validation of the methods is demonstrated for the case study based on the probability of capture of confirmation points.

Top