Science.gov

Sample records for reduced brain edema

  1. Telmisartan reduced cerebral edema by inhibiting NLRP3 inflammasome in mice with cold brain injury.

    PubMed

    Wei, Xin; Hu, Chen-Chen; Zhang, Ya-Li; Yao, Shang-Long; Mao, Wei-Ke

    2016-08-01

    The aim of this study was to investigate the possible beneficial role of telmisartan in cerebral edema after traumatic brain injury (TBI) and the potential mechanisms related to the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) pyrin domain-containing 3 (NLRP3) inflammasome activation. TBI model was established by cold-induced brain injury. Male C57BL/6 mice were randomly assigned into 3, 6, 12, 24, 48 and 72 h survival groups to investigate cerebral edema development with time and received 0, 5, 10, 20 and 40 mg/kg telmisartan by oral gavage, 1 h prior to TBI to determine the efficient anti-edemic dose. The therapeutic window was identified by post-treating 30 min, 1 h, 2 h and 4 h after TBI. Blood-brain barrier (BBB) integrity, the neurological function and histological injury were assessed, at the same time, the mRNA and protein expression levels of NLRP3 inflammasome, IL-1β and IL-18 concentrations in peri-contused brain tissue were measured 24 h post TBI. The results showed that the traumatic cerebral edema occurred from 6 h, reached the peak at 24 h and recovered to the baseline 72 h after TBI. A single oral dose of 5, 10 and 20 mg/kg telmisartan could reduce cerebral edema. Post-treatment up to 2 h effectively limited the edema development. Furthermore, prophylactic administration of telmisartan markedly inhibited BBB impairment, NLRP3, apoptotic speck-containing protein (ASC) and Caspase-1 activation, as well as IL-1β and IL-18 maturation, subsequently improved the neurological outcomes. In conclusion, telmisartan can reduce traumatic cerebral edema by inhibiting the NLRP3 inflammasome-regulated IL-1β and IL-18 accumulation. PMID:27465336

  2. Aquaporin-4 Deletion in Mice Reduces Encephalopathy and Brain Edema in Experimental Acute Liver Failure

    PubMed Central

    Rama Rao, Kakulavarapu V.; Verkman, A. S.; Curtis, Kevin M.; Norenberg, Michael D.

    2014-01-01

    Brain edema and associated astrocyte swelling leading to increased intracranial pressure are hallmarks of acute liver failure (ALF). Elevated blood and brain levels of ammonia have been implicated in the development of brain edema in ALF. Cultured astrocytes treated with ammonia have been shown to undergo cell swelling and such swelling was associated with an increase in the plasma membrane expression of aquaporin-4 (AQP4) protein. Further, silencing the AQP4 gene in cultured astrocytes was shown to prevent the ammonia-induced cell swelling. Here, we examined the evolution of brain edema in AQP4-null mice and their wild type counterparts (WT-mice) in different models of ALF induced by thioacetamide (TAA) or acetaminophen (APAP). Induction of ALF with TAA or APAP significantly increased brain water content in WT mice (by 1.6 ± 0.3 and 2.3 ± 0.4 %, respectively). AQP4 protein was significantly increased in brain plasma membranes of WT mice with ALF induced by either TAA or APAP. In contrast to WT-mice, brain water content did not increase in AQP4-null mice. Additionally, AQP4-null mice treated with either TAA or APAP showed a remarkably lesser degree of neurological deficits as compared to WT mice; the latter displayed an inability to maintain proper gait, and demonstrated a markedly reduced exploratory behavior, with the mice remaining in one corner of the cage with its head tilted downwards. These results support a central role of AQP4 in the brain edema associated with ALF. PMID:24321433

  3. Arginine-Vasopressin Receptor Blocker Conivaptan Reduces Brain Edema and Blood-Brain Barrier Disruption after Experimental Stroke in Mice

    PubMed Central

    Zeynalov, Emil; Jones, Susan M.; Seo, Jeong-Woo; Snell, Lawrence D.; Elliott, J. Paul

    2015-01-01

    Background Stroke is a major cause of morbidity and mortality. Stroke is complicated by brain edema and blood-brain barrier (BBB) disruption, and is often accompanied by increased release of arginine-vasopressin (AVP). AVP acts through V1a and V2 receptors to trigger hyponatremia, vasospasm, and platelet aggregation which can exacerbate brain edema. The AVP receptor blockers conivaptan (V1a and V2) and tolvaptan (V2) are used to correct hyponatremia, but their effect on post-ischemic brain edema and BBB disruption remains to be elucidated. Therefore, we conducted this study to investigate if these drugs can prevent brain edema and BBB disruption in mice after stroke. Methods Experimental mice underwent the filament model of middle cerebral artery occlusion (MCAO) with reperfusion. Mice were treated with conivaptan, tolvaptan, or vehicle. Treatments were initiated immediately at reperfusion and administered IV (conivaptan) or orally (tolvaptan) for 48 hours. Physiological variables, neurological deficit scores (NDS), plasma and urine sodium and osmolality were recorded. Brain water content (BWC) and Evans Blue (EB) extravasation index were evaluated at the end point. Results Both conivaptan and tolvaptan produced aquaresis as indicated by changes in plasma and urine sodium levels. However plasma and urine osmolality was changed only by conivaptan. Unlike tolvaptan, conivaptan improved NDS and reduced BWC in the ipsilateral hemisphere: from 81.66 ± 0.43% (vehicle) to 78.28 ± 0.48% (conivaptan, 0.2 mg, p < 0.05 vs vehicle). Conivaptan also attenuated the EB extravasation from 1.22 ± 0.08 (vehicle) to 1.01 ± 0.02 (conivaptan, 0.2 mg, p < 0.05). Conclusion Continuous IV infusion with conivaptan for 48 hours after experimental stroke reduces brain edema, and BBB disruption. Conivaptan but not tolvaptan may potentially be used in patients to prevent brain edema after stroke. PMID:26275173

  4. Aquaporin-4 and brain edema.

    PubMed

    Papadopoulos, Marios C; Verkman, Alan S

    2007-06-01

    Aquaporin-4 (AQP4) is a water-channel protein expressed strongly in the brain, predominantly in astrocyte foot processes at the borders between the brain parenchyma and major fluid compartments, including cerebrospinal fluid (CSF) and blood. This distribution suggests that AQP4 controls water fluxes into and out of the brain parenchyma. Experiments using AQP4-null mice provide strong evidence for AQP4 involvement in cerebral water balance. AQP4-null mice are protected from cellular (cytotoxic) brain edema produced by water intoxication, brain ischemia, or meningitis. However, AQP4 deletion aggravates vasogenic (fluid leak) brain edema produced by tumor, cortical freeze, intraparenchymal fluid infusion, or brain abscess. In cytotoxic edema, AQP4 deletion slows the rate of water entry into brain, whereas in vasogenic edema, AQP4 deletion reduces the rate of water outflow from brain parenchyma. AQP4 deletion also worsens obstructive hydrocephalus. Recently, AQP4 was also found to play a major role in processes unrelated to brain edema, including astrocyte migration and neuronal excitability. These findings suggest that modulation of AQP4 expression or function may be beneficial in several cerebral disorders, including hyponatremic brain edema, hydrocephalus, stroke, tumor, infection, epilepsy, and traumatic brain injury.

  5. Reduced brain edema and infarct volume in aquaporin-4 deficient mice after transient focal cerebral ischemia

    PubMed Central

    Yao, Xiaoming; Derugin, Nikita; Manley, Geoffrey T.; Verkman, A. S.

    2015-01-01

    Aquaporin-4 (AQP4) is a water channel expressed in astrocyte end-feet lining the blood-brain barrier. AQP4 deletion in mice is associated with improved outcomes in global cerebral ischemia produced by transient carotid artery occlusion, and focal cerebral ischemia produced by permanent middle cerebral artery occlusion (MCAO). Here, we investigated the consequences of 1-hour transient MCAO produced by intraluminal suture blockade followed by 23 hours of reperfusion. In nine AQP4+/+ and nine AQP4−/− mice, infarct volume was significantly reduced by an average of 39 ± 4 % at 24 hours in AQP4−/− mice, cerebral hemispheric edema was reduced by 23 ± 3 %, and Evans blue extravasation was reduced by 31 ± 2 % (mean ± SEM). Diffusion-weighted magnetic resonance imaging showed greatest reduction in apparent diffusion coefficient around the occlusion site after reperfusion, with remarkably lesser reduction in AQP4−/− mice. The reduced infarct volume in AQP4−/− mice following transient MCAO supports the potential utility of therapeutic AQP4 inhibition in stroke. PMID:25449874

  6. Aquaporin-4 and traumatic brain edema.

    PubMed

    Xu, Miao; Su, Wei; Xu, Qiu-ping

    2010-04-01

    Brain edema leading to an expansion of brain volume has a crucial impact on morbidity and mortality following traumatic brain injury as it increases intracranial pressure, impairs cerebral perfusion and oxygenation, and contributes to additional ischemic injuries. Classically, two major types of traumatic brain edema exist: "vasogenic" and "cytotoxic/cellular". However, the cellular and molecular mechanisms contributing to the development/resolution of traumatic brain edema are poorly understood and no effective drugs can be used now. Aquaporin-4 (AQP4) is a water-channel protein expressed strongly in the brain, predominantly in astrocyte foot processes at the borders between the brain parenchyma and major fluid compartments, including cerebrospinal fluid and blood. This distribution suggests that AQP4 controls water fluxes into and out of the brain parenchyma. In cytotoxic edema, AQP4 deletion slows the rate of water entry into brain, whereas in vasogenic edema, AQP4 deletion reduces the rate of water outflow from brain parenchyma. AQP4 has been proposed as a novel drug target in brain edema. These findings suggest that modulation of AQP4 expression or function may be beneficial in traumatic brain edema.

  7. Inhibition of HIF prolyl-4-hydroxylases by FG-4497 reduces brain tissue injury and edema formation during ischemic stroke.

    PubMed

    Reischl, Stefan; Li, Lexiao; Walkinshaw, Gail; Flippin, Lee A; Marti, Hugo H; Kunze, Reiner

    2014-01-01

    Ischemic stroke results in disruption of the blood-brain barrier (BBB), edema formation and neuronal cell loss. Some neuroprotective factors such as vascular endothelial growth factor (VEGF) favor edema formation, while others such as erythropoietin (Epo) can mitigate it. Both factors are controlled by hypoxia inducible transcription factors (HIF) and the activity of prolyl hydroxylase domain proteins (PHD). We hypothesize that activation of the adaptive hypoxic response by inhibition of PHD results in neuroprotection and prevention of vascular leakage. Mice, subjected to cerebral ischemia, were pre- or post-treated with the novel PHD inhibitor FG-4497. Inhibition of PHD activity resulted in HIF-1α stabilization, increased expression of VEGF and Epo, improved outcome from ischemic stroke and reduced edema formation by maintaining BBB integrity. Additional in vitro studies using brain endothelial cells and primary astrocytes confirmed that FG-4497 induces the HIF signaling pathway, leading to increased VEGF and Epo expression. In an in vitro ischemia model, using combined oxygen and glucose deprivation, FG-4497 promoted the survival of neurons. Furthermore, FG-4497 prevented the ischemia-induced rearrangement and gap formation of the tight junction proteins zonula occludens 1 and occludin, both in cultured endothelial cells and in infarcted brain tissue in vivo. These results indicate that FG-4497 has the potential to prevent cerebral ischemic damage by neuroprotection and prevention of vascular leakage.

  8. Inhibition of HIF prolyl-4-hydroxylases by FG-4497 reduces brain tissue injury and edema formation during ischemic stroke.

    PubMed

    Reischl, Stefan; Li, Lexiao; Walkinshaw, Gail; Flippin, Lee A; Marti, Hugo H; Kunze, Reiner

    2014-01-01

    Ischemic stroke results in disruption of the blood-brain barrier (BBB), edema formation and neuronal cell loss. Some neuroprotective factors such as vascular endothelial growth factor (VEGF) favor edema formation, while others such as erythropoietin (Epo) can mitigate it. Both factors are controlled by hypoxia inducible transcription factors (HIF) and the activity of prolyl hydroxylase domain proteins (PHD). We hypothesize that activation of the adaptive hypoxic response by inhibition of PHD results in neuroprotection and prevention of vascular leakage. Mice, subjected to cerebral ischemia, were pre- or post-treated with the novel PHD inhibitor FG-4497. Inhibition of PHD activity resulted in HIF-1α stabilization, increased expression of VEGF and Epo, improved outcome from ischemic stroke and reduced edema formation by maintaining BBB integrity. Additional in vitro studies using brain endothelial cells and primary astrocytes confirmed that FG-4497 induces the HIF signaling pathway, leading to increased VEGF and Epo expression. In an in vitro ischemia model, using combined oxygen and glucose deprivation, FG-4497 promoted the survival of neurons. Furthermore, FG-4497 prevented the ischemia-induced rearrangement and gap formation of the tight junction proteins zonula occludens 1 and occludin, both in cultured endothelial cells and in infarcted brain tissue in vivo. These results indicate that FG-4497 has the potential to prevent cerebral ischemic damage by neuroprotection and prevention of vascular leakage. PMID:24409307

  9. Effects of metformin treatment on glioma-induced brain edema.

    PubMed

    Zhao, Bin; Wang, Xiaoke; Zheng, Jun; Wang, Hailiang; Liu, Jun

    2016-01-01

    Considerable evidence has demonstrated that metformin can activate 5'-AMP-activated protein kinase (AMPK) signaling pathway, which plays a critical role in protection of endothelial cell permeability. Hence, the present study evaluated the effects of metformin on blood brain barrier permeability and AQP4 expression in vitro, and assessed the effects of metformin treatment on tumor-induced brain edema in vivo. Hypoxia or VEGF exposure enhanced bEnd3 endothelial cell monolayer permeability and attenuated the expression of tight junction proteins including Occludin, Claudin-5, ZO-1, and ZO-2. However, 0.5 mM metformin treatment protected bEnd3 endothelial cell monolayer from hypoxia or VEGF-induced permeability, which was correlated with increased expression of tight junction proteins. Furthermore, metformin treatment attenuated AQP4 protein expression in cultured astrocytes. Such an effect involved the activation of AMPK and inhibition of NF-κB. Finally, metformin treatment dose-dependently reduced glioma induced vascular permeability and cerebral edema in vivo in rats. Thus, our results suggested that metformin may protect endothelial cell tight junction, prevent damage to the blood brain barrier induced by brain tumor growth, and alleviate the formation of cerebral edema. Furthermore, since the formation of cytotoxic edema and AQP4 expression was positively correlated, our results indicated that metformin may reduce the formation of cytotoxic edema. However, given that AQP4 plays a key role in the elimination of cerebral edema, attenuation of AQP4 expression by metformin may reduce the elimination of cerebral edema. Hence, future studies will be necessary to dissect the specific mechanisms of metformin underlying the dynamics of tumor-induced brain edema in vivo.

  10. Effects of metformin treatment on glioma-induced brain edema

    PubMed Central

    Zhao, Bin; Wang, Xiaoke; Zheng, Jun; Wang, Hailiang; Liu, Jun

    2016-01-01

    Considerable evidence has demonstrated that metformin can activate 5’-AMP-activated protein kinase (AMPK) signaling pathway, which plays a critical role in protection of endothelial cell permeability. Hence, the present study evaluated the effects of metformin on blood brain barrier permeability and AQP4 expression in vitro, and assessed the effects of metformin treatment on tumor-induced brain edema in vivo. Hypoxia or VEGF exposure enhanced bEnd3 endothelial cell monolayer permeability and attenuated the expression of tight junction proteins including Occludin, Claudin-5, ZO-1, and ZO-2. However, 0.5 mM metformin treatment protected bEnd3 endothelial cell monolayer from hypoxia or VEGF-induced permeability, which was correlated with increased expression of tight junction proteins. Furthermore, metformin treatment attenuated AQP4 protein expression in cultured astrocytes. Such an effect involved the activation of AMPK and inhibition of NF-κB. Finally, metformin treatment dose-dependently reduced glioma induced vascular permeability and cerebral edema in vivo in rats. Thus, our results suggested that metformin may protect endothelial cell tight junction, prevent damage to the blood brain barrier induced by brain tumor growth, and alleviate the formation of cerebral edema. Furthermore, since the formation of cytotoxic edema and AQP4 expression was positively correlated, our results indicated that metformin may reduce the formation of cytotoxic edema. However, given that AQP4 plays a key role in the elimination of cerebral edema, attenuation of AQP4 expression by metformin may reduce the elimination of cerebral edema. Hence, future studies will be necessary to dissect the specific mechanisms of metformin underlying the dynamics of tumor-induced brain edema in vivo. PMID:27648126

  11. Effects of metformin treatment on glioma-induced brain edema

    PubMed Central

    Zhao, Bin; Wang, Xiaoke; Zheng, Jun; Wang, Hailiang; Liu, Jun

    2016-01-01

    Considerable evidence has demonstrated that metformin can activate 5’-AMP-activated protein kinase (AMPK) signaling pathway, which plays a critical role in protection of endothelial cell permeability. Hence, the present study evaluated the effects of metformin on blood brain barrier permeability and AQP4 expression in vitro, and assessed the effects of metformin treatment on tumor-induced brain edema in vivo. Hypoxia or VEGF exposure enhanced bEnd3 endothelial cell monolayer permeability and attenuated the expression of tight junction proteins including Occludin, Claudin-5, ZO-1, and ZO-2. However, 0.5 mM metformin treatment protected bEnd3 endothelial cell monolayer from hypoxia or VEGF-induced permeability, which was correlated with increased expression of tight junction proteins. Furthermore, metformin treatment attenuated AQP4 protein expression in cultured astrocytes. Such an effect involved the activation of AMPK and inhibition of NF-κB. Finally, metformin treatment dose-dependently reduced glioma induced vascular permeability and cerebral edema in vivo in rats. Thus, our results suggested that metformin may protect endothelial cell tight junction, prevent damage to the blood brain barrier induced by brain tumor growth, and alleviate the formation of cerebral edema. Furthermore, since the formation of cytotoxic edema and AQP4 expression was positively correlated, our results indicated that metformin may reduce the formation of cytotoxic edema. However, given that AQP4 plays a key role in the elimination of cerebral edema, attenuation of AQP4 expression by metformin may reduce the elimination of cerebral edema. Hence, future studies will be necessary to dissect the specific mechanisms of metformin underlying the dynamics of tumor-induced brain edema in vivo.

  12. Effects of metformin treatment on glioma-induced brain edema.

    PubMed

    Zhao, Bin; Wang, Xiaoke; Zheng, Jun; Wang, Hailiang; Liu, Jun

    2016-01-01

    Considerable evidence has demonstrated that metformin can activate 5'-AMP-activated protein kinase (AMPK) signaling pathway, which plays a critical role in protection of endothelial cell permeability. Hence, the present study evaluated the effects of metformin on blood brain barrier permeability and AQP4 expression in vitro, and assessed the effects of metformin treatment on tumor-induced brain edema in vivo. Hypoxia or VEGF exposure enhanced bEnd3 endothelial cell monolayer permeability and attenuated the expression of tight junction proteins including Occludin, Claudin-5, ZO-1, and ZO-2. However, 0.5 mM metformin treatment protected bEnd3 endothelial cell monolayer from hypoxia or VEGF-induced permeability, which was correlated with increased expression of tight junction proteins. Furthermore, metformin treatment attenuated AQP4 protein expression in cultured astrocytes. Such an effect involved the activation of AMPK and inhibition of NF-κB. Finally, metformin treatment dose-dependently reduced glioma induced vascular permeability and cerebral edema in vivo in rats. Thus, our results suggested that metformin may protect endothelial cell tight junction, prevent damage to the blood brain barrier induced by brain tumor growth, and alleviate the formation of cerebral edema. Furthermore, since the formation of cytotoxic edema and AQP4 expression was positively correlated, our results indicated that metformin may reduce the formation of cytotoxic edema. However, given that AQP4 plays a key role in the elimination of cerebral edema, attenuation of AQP4 expression by metformin may reduce the elimination of cerebral edema. Hence, future studies will be necessary to dissect the specific mechanisms of metformin underlying the dynamics of tumor-induced brain edema in vivo. PMID:27648126

  13. International brain edema symposia 1967-2011.

    PubMed

    Kuroiwa, Toshihiko

    2013-01-01

    This is a brief review of previous international brain edema symposia. The symposia that took place from 1965 to 1999 were summarized by Igor Klatzo and A. Marmarou in the proceedings Brain Edema XI [1]. In this article the author summarized the symposia, including latest five. Images from previous symposia such as the cover pages of the proceedings and snapshots of organizers were included. The outline and key words of the symposia were summarized in tables. The name of the prize winner and the title of the memorial lectures in recent symposia were also summarized in a table. PMID:23564096

  14. Ulinastatin attenuates brain edema after traumatic brain injury in rats.

    PubMed

    Cui, Tao; Zhu, Gangyi

    2015-03-01

    Traumatic brain injury (TBI) remains the leading cause of injury-related death and disability. Brain edema, one of the most major complications of TBI, contributes to elevated intracranial pressure, and poor prognosis following TBI. The objective of this study was to evaluate whether Ulinastatin (UTI), a serine protease inhibitor, attenuates brain edema following TBI. Our results showed that treatment with UTI at a dose of 50,000 U/kg attenuated the brain edema, as assayed by water content 24 h after TBI induction. This attenuation was associated with a significant decrease of the expression level of aquaporin-4. In addition, we showed that UTI treatment also markedly inhibited the expression of pro-inflammatory cytokines including IL-1β and TNF-α as well as activity of NF-κB. Collectively, our findings suggested that UTI may be a promising strategy to treat brain edema following TBI.

  15. Thrombin exacerbates brain edema in focal cerebral ischemia.

    PubMed

    Hua, Y; Wu, J; Keep, R F; Hoff, J T; Xi, G

    2003-01-01

    Thrombin contributes to edema formation after intracerebral hemorrhage. Recent studies suggest that thrombin may also play a role in ischemic brain damage. In the present study, adult male Sprague-Dawley rats were anesthetized with pentobarbital. Middle cerebral artery (MCA) was occluded using the suture method. We found that brain thrombin activity was elevated after permanent MCA occlusion as was prothrombin messenger RNA expression. Intracerebral injection of a thrombin inhibitor, hirudin, reduced neurological deficits following cerebral ischemia. In contrast, intracerebral administration of exogenous thrombin (at a dose that is non-toxic to normal brain), markedly exacerbated brain edema after transient focal cerebral ischemia. These results indicate that extravascular thrombin inhibition may be a new therapeutic target for cerebral ischemia.

  16. Proton nuclear magnetic resonance studies on brain edema

    SciTech Connect

    Naruse, S.; Horikawa, Y.; Tanaka, C.; Hirakawa, K.; Nishikawa, H.; Yoshizaki, K.

    1982-06-01

    The water in normal and edematous brain tissues of rats was studied by the pulse nuclear magnetic resonance (NMR) technique, measuring the longitudinal relaxation time (T1) and the transverse relaxation time (T2). In the normal brain, T1 and T2 were single components, both shorter than in pure water. Prolongation and separation of T2 into two components, one fast and one slow, were the characteristic findings in brain edema induced by both cold injury and triethyl tin (TET), although some differences between the two types of edema existed in the content of the lesion and in the degree of changes in T1 and T2 values. Quantitative analysis of T1 and T2 values in their time course relating to water content demonstrated that prolongation of T1 referred to the volume of increased water in tissues examined, and that two phases of T2 reflected the distribution and the content of the edema fluid. From the analysis of the slow component of T2 versus water content during edema formation, it was demonstrated that the increase in edema fluid was steady, and its content was constant during formation of TET-induced edema. On the contrary, during the formation of cold-injury edema, water-rich edema fluid increased during the initial few hours, and protein-rich edema fluid increased thereafter. It was concluded that proton NMR relaxation time measurements may provide new understanding in the field of brain edema research.

  17. Mathematical modelling of blood-brain barrier failure and edema

    NASA Astrophysics Data System (ADS)

    Waters, Sarah; Lang, Georgina; Vella, Dominic; Goriely, Alain

    2015-11-01

    Injuries such as traumatic brain injury and stroke can result in increased blood-brain barrier permeability. This increase may lead to water accumulation in the brain tissue resulting in vasogenic edema. Although the initial injury may be localised, the resulting edema causes mechanical damage and compression of the vasculature beyond the original injury site. We employ a biphasic mixture model to investigate the consequences of blood-brain barrier permeability changes within a region of brain tissue and the onset of vasogenic edema. We find that such localised changes can indeed result in brain tissue swelling and that the type of damage that results (stress damage or strain damage) depends on the ability of the brain to clear edema fluid.

  18. Drowning stars: Reassessing the role of astrocytes in brain edema

    PubMed Central

    Thrane, Alexander S.; Thrane, Vinita Rangroo; Nedergaard, Maiken

    2014-01-01

    Edema formation frequently complicates brain infarction, tumors and trauma. Despite the significant mortality of this condition, current treatment options are often ineffective or incompletely understood. Recent studies have revealed the existence of a brain-wide paravascular pathway for cerebrospinal (CSF) and interstitial fluid (ISF) exchange. The current review critically examines the contribution of this ‘glymphatic’ system to the main types of brain edema. We propose that in cytotoxic edema, energy depletion enhances glymphatic CSF influx, whilst suppressing ISF efflux. We also argue that paravascular inflammation or ‘paravasculitis’ plays a critical role in vasogenic edema. Finally, recent advances in diagnostic imaging of glymphatic function may hold the key to defining the edema profile of individual patients and thus enable more targeted therapy. PMID:25236348

  19. Laparoscopic Surgery Can Reduce Postoperative Edema Compared with Open Surgery

    PubMed Central

    Guo, Dong; Gong, Jianfeng; Cao, Lei; Wei, Yao; Guo, Zhen

    2016-01-01

    Aim. The study aimed to investigate the impact of laparoscopic surgery and open surgery on postoperative edema in Crohn's disease. Methods. Patients who required enterectomy were divided into open group (Group O) and laparoscopic group (Group L). Edema was measured using bioelectrical impedance analysis preoperatively (PRE) and on postoperative day 3 (POD3) and postoperative day 5 (POD5). The postoperative edema was divided into slight edema and edema by an edema index, defined as the ratio of total extracellular water to total body water. Results. Patients who underwent laparoscopic surgery had better clinical outcomes and lower levels of inflammatory and stress markers. A total of 31 patients (26.05%) developed slight edema and 53 patients (44.54%) developed edema on POD3. More patients developed postoperative edema in Group O than in Group L on POD3 (p = 0.006). The value of the edema index of Group O was higher than that of Group L on POD3 and POD5 (0.402 ± 0.010 versus 0.397 ± 0.008, p = 0.001; 0.401 ± 0.009 versus 0.395 ± 0.007, p = 0.039, resp.). Conclusions. Compared with open surgery, laparoscopic surgery can reduce postoperative edema, which may contribute to the better outcomes of laparoscopic surgery over open surgery. PMID:27777583

  20. Acetazolamide Mitigates Astrocyte Cellular Edema Following Mild Traumatic Brain Injury

    NASA Astrophysics Data System (ADS)

    Sturdivant, Nasya M.; Smith, Sean G.; Ali, Syed F.; Wolchok, Jeffrey C.; Balachandran, Kartik

    2016-09-01

    Non-penetrating or mild traumatic brain injury (mTBI) is commonly experienced in accidents, the battlefield and in full-contact sports. Astrocyte cellular edema is one of the major factors that leads to high morbidity post-mTBI. Various studies have reported an upregulation of aquaporin-4 (AQP4), a water channel protein, following brain injury. AZA is an antiepileptic drug that has been shown to inhibit AQP4 expression and in this study we investigate the drug as a therapeutic to mitigate the extent of mTBI induced cellular edema. We hypothesized that mTBI-mediated astrocyte dysfunction, initiated by increased intracellular volume, could be reduced when treated with AZA. We tested our hypothesis in a three-dimensional in vitro astrocyte model of mTBI. Samples were subject to no stretch (control) or one high-speed stretch (mTBI) injury. AQP4 expression was significantly increased 24 hours after mTBI. mTBI resulted in a significant increase in the cell swelling within 30 min of mTBI, which was significantly reduced in the presence of AZA. Cell death and expression of S100B was significantly reduced when AZA was added shortly before mTBI stretch. Overall, our data point to occurrence of astrocyte swelling immediately following mTBI, and AZA as a promising treatment to mitigate downstream cellular mortality.

  1. Acetazolamide Mitigates Astrocyte Cellular Edema Following Mild Traumatic Brain Injury

    PubMed Central

    Sturdivant, Nasya M.; Smith, Sean G.; Ali, Syed F.; Wolchok, Jeffrey C.; Balachandran, Kartik

    2016-01-01

    Non-penetrating or mild traumatic brain injury (mTBI) is commonly experienced in accidents, the battlefield and in full-contact sports. Astrocyte cellular edema is one of the major factors that leads to high morbidity post-mTBI. Various studies have reported an upregulation of aquaporin-4 (AQP4), a water channel protein, following brain injury. AZA is an antiepileptic drug that has been shown to inhibit AQP4 expression and in this study we investigate the drug as a therapeutic to mitigate the extent of mTBI induced cellular edema. We hypothesized that mTBI-mediated astrocyte dysfunction, initiated by increased intracellular volume, could be reduced when treated with AZA. We tested our hypothesis in a three-dimensional in vitro astrocyte model of mTBI. Samples were subject to no stretch (control) or one high-speed stretch (mTBI) injury. AQP4 expression was significantly increased 24 hours after mTBI. mTBI resulted in a significant increase in the cell swelling within 30 min of mTBI, which was significantly reduced in the presence of AZA. Cell death and expression of S100B was significantly reduced when AZA was added shortly before mTBI stretch. Overall, our data point to occurrence of astrocyte swelling immediately following mTBI, and AZA as a promising treatment to mitigate downstream cellular mortality. PMID:27623738

  2. Acetazolamide Mitigates Astrocyte Cellular Edema Following Mild Traumatic Brain Injury.

    PubMed

    Sturdivant, Nasya M; Smith, Sean G; Ali, Syed F; Wolchok, Jeffrey C; Balachandran, Kartik

    2016-01-01

    Non-penetrating or mild traumatic brain injury (mTBI) is commonly experienced in accidents, the battlefield and in full-contact sports. Astrocyte cellular edema is one of the major factors that leads to high morbidity post-mTBI. Various studies have reported an upregulation of aquaporin-4 (AQP4), a water channel protein, following brain injury. AZA is an antiepileptic drug that has been shown to inhibit AQP4 expression and in this study we investigate the drug as a therapeutic to mitigate the extent of mTBI induced cellular edema. We hypothesized that mTBI-mediated astrocyte dysfunction, initiated by increased intracellular volume, could be reduced when treated with AZA. We tested our hypothesis in a three-dimensional in vitro astrocyte model of mTBI. Samples were subject to no stretch (control) or one high-speed stretch (mTBI) injury. AQP4 expression was significantly increased 24 hours after mTBI. mTBI resulted in a significant increase in the cell swelling within 30 min of mTBI, which was significantly reduced in the presence of AZA. Cell death and expression of S100B was significantly reduced when AZA was added shortly before mTBI stretch. Overall, our data point to occurrence of astrocyte swelling immediately following mTBI, and AZA as a promising treatment to mitigate downstream cellular mortality. PMID:27623738

  3. Evaluation of brain edema using magnetic resonance proton relaxation times

    SciTech Connect

    Fu, Y.; Tanaka, K.; Nishimura, S. )

    1990-01-01

    Experimental and clinical studies on the evaluation of water content in cases of brain edema were performed in vivo, using MR proton relaxation times (longitudinal relaxation time, T1; transverse relaxation time, T2). Brain edema was produced in the white matter of cats by the direct infusion method. The correlations between proton relaxation times obtained from MR images and the water content of white matter were studied both in autoserum-infused cats and in saline-infused cats. The correlations between T1 as well as T2 and the water content in human vasogenic brain edema were also examined and compared with the data obtained from the serum group. T1 and T2 showed good correlations with the water content of white matter not only in the experimental animals but also in the clinical cases. The quality of the edema fluid did not influence relaxation time and T1 seemed to represent almost solely the water content of the tissue. T2, however, was affected by the nature of existence of water and was more sensitive than T1 in detecting extravasated edema fluid. It seems feasible therefore to evaluate the water content of brain edema on the basis of T1 values.

  4. Sulfonylurea Receptor 1 Contributes to the Astrocyte Swelling and Brain Edema in Acute Liver Failure

    PubMed Central

    Jayakumar, A.R.; Valdes, V.; Tong, X.Y.; Shamaladevi, N.; Gonzalez, W.; Norenberg, M.D.

    2014-01-01

    Astrocyte swelling (cytotoxic brain edema) is the major neurological complication of acute liver failure (ALF), a condition in which ammonia has been strongly implicated in its etiology. Ion channels and transporters are known to be involved in cell volume regulation and a disturbance in these systems may result in cell swelling. One ion channel known to contribute to astrocyte swelling/brain edema in other neurological disorders is the ATP-dependent, non-selective cation channel (NCCa-ATP channel). We therefore examined its potential role in the astrocyte swelling/brain edema associated with ALF. Cultured astrocytes treated with 5 mM ammonia showed a 3-fold increase in the sulfonylurea receptor type 1 (SUR1) protein expression, a marker of NCCa-ATP channel activity. Blocking SUR1 with glibenclamide significantly reduced the ammonia-induced cell swelling in cultured astrocytes. Additionally, overexpression of SUR1 in ammonia-treated cultured astrocytes was significantly reduced by co-treatment of cells with BAY 11-7082, an inhibitor of NF-κB, indicating the involvement of an NF-κB-mediated SUR1 upregulation in the mechanism of ammonia-induced astrocyte swelling. Brain SUR1 mRNA level was also found to be increased in the thioacetamide (TAA) rat model of ALF. Additionally, we found a significant increase in SUR1 protein expression in rat brain cortical astrocytes in TAA-treated rats. Treatment with glibenclamide significantly reduced the brain edema in this model of ALF. These findings strongly suggest the involvement of NCCa-ATP channel in the astrocyte swelling/brain edema in ALF, and that targeting this channel may represent a useful approach for the treatment of the brain edema associated with ALF. PMID:24443056

  5. Water entry into astrocytes during brain edema formation.

    PubMed

    Nase, Gabriele; Helm, P Johannes; Enger, Rune; Ottersen, Ole P

    2008-06-01

    The process of brain edema formation has been studied extensively at the macroscopic level. In contrast, little is known about water fluxes and volume changes at the cellular level in the initial phase of brain edema. Insight in these "microscopic" events could pave the way for more efficient prevention and therapy. Here, we report measurements of brain cell volume responses recorded in vivo in a model of systemic hyponatremia. Transgenic mice expressing fluorescent proteins in astrocytes were subjected to hypo-osmotic stress and two photon laser scanning microscopy. Volume measurements of glial cells in the cerebellum and the visual cortex indicate that individual astrocytes undergo a position-dependent increase in cell volume by a factor of two or more during edema formation. Our data are the first to show that volume changes can be monitored at the cellular level in vivo and demonstrate that astrocytes are sites of water entry in the initial phase of brain edema formation. The uptake of water in astrocytes is likely to reflect the strong expression of aquaporin-4 in these cells.

  6. Edema

    MedlinePlus

    ... involve your entire body. Causes of edema include Eating too much salt Sunburn Heart failure Kidney disease Liver problems from cirrhosis Pregnancy Problems with lymph nodes, especially after mastectomy Some ...

  7. Effect of dl-3-n-butylphthalide on brain edema in rats subjected to focal cerebral ischemia.

    PubMed

    Deng, W; Feng, Y

    1997-06-01

    The present study evaluated the effect of dl-3-n-butylphthalide(NBP), a novel brain protective agent, on brain edema in rats following focal ischemia. Edema was induced by occluding the right middle cerebral artery (MCAO), producing permanent focal ischemia in the right cerebral hemisphere, which developed ipsilateral brain edema reproducibly. Edema was assessed 24 h after MCA occlusion by determining the brain water content from wet and dry weight measurements, and the sodium, potassium concentrations with ion-selective electrodes. In this model, NBP at the dose of 80, 160 and 240 mg/kg p.o. 15 min after MCAO prevented from brain edema in a dose-dependent manner. A significant reduction of sodium content and an increase in potassium level were observed in all drug-treated groups. It showed that NBP strongly attenuated brain water entry, sodium accumulation and potassium loss. Nimodipine treatment (5 mg/kg s.c.) also reduced brain edema (P < 0.05). The results suggest that a strong anti-edema activity of NBP may play an important role to contribute to the treatment of ischemic damage.

  8. Melatonin reduces cerebral edema formation caused by transient forebrain ischemia in rats.

    PubMed

    Kondoh, Takashi; Uneyama, Hisayuki; Nishino, Hitoo; Torii, Kunio

    2002-12-20

    Reduction of cerebral edema, an early symptom of ischemia, is one of the most important remedies for reducing subsequent chronic neural damage in stroke. Melatonin, a metabolite of tryptophan released from the pineal gland, has been found to be effective against neurotoxicity in vitro. The present study was aimed to demonstrate the effectiveness of melatonin in vivo in reducing ischemia-induced edema using magnetic resonance imaging (MRI). Rats were subjected to middle cerebral artery (MCA) occlusion/reperfusion surgery. Melatonin was administered twice (6.0 mg/kg, p.o.): just prior to 1 h MCA occlusion and 1 day after the surgery. T2-weighted multislice spin-echo images were acquired 1 day after the surgery. Increases in T2-weighted signals in ischemic sites of the brain were clearly observed after MCA occlusion. The signal increase was found mainly in the striatum and in the cerebral cortex in saline-treated control rats. In the melatonin-treated group, the total volume of cerebral edema was reduced by 45.3% compared to control group (P < 0.01). The protective effect of melatonin against cerebral edema was more clearly observed in the cerebral cortex (reduced by 56.1%, P < 0.01), while the reduction of edema volume in the striatum was weak (reduced by 23.0%). The present MRI study clearly demonstrated that melatonin is effective in reducing edema formation in ischemic animals in vivo, especially in the cerebral cortex. Melatonin may be highly useful in preventing cortical dysfunctions such as motor, sensory, memory, and psychological impairments.

  9. Lethal brain edema, shock, and coagulopathy after scorpion envenomation.

    PubMed

    Cavari, Yuval; Lazar, Isaac; Shelef, Ilan; Sofer, Shaul

    2013-03-01

    We report the case of a 2-year-old Bedouin boy in whom developed severe and unusual complications after being stung, most probably, by the yellow scorpion Leiurus quinquestriatus hebraeus. Five hours after arrival to the emergency department, the boy had multisystem organ failure involving the central nervous system (seizure activity followed by coma with dilated, nonreactive pupils, and severe brain edema), shock (noncardiogenic), disseminated intravascular coagulation, renal failure, hepatic failure, and watery diarrhea, causing his death. In view of the relevant literature, we discuss the pathophysiologic events ultimately leading to his death. PMID:23280335

  10. Reduction of cerebral edema after traumatic brain injury using an osmotic transport device.

    PubMed

    McBride, Devin W; Szu, Jenny I; Hale, Chris; Hsu, Mike S; Rodgers, Victor G J; Binder, Devin K

    2014-12-01

    Traumatic brain injury (TBI) is significant, from a public health standpoint, because it is a major cause of the morbidity and mortality of young people. Cerebral edema after a TBI, if untreated, can lead to devastating damage of the remaining tissue. The current therapies of severe TBI (sTBI), as outlined by the Brain Trauma Foundation, are often ineffective, thus a new method for the treatment of sTBI is necessary. Herein, the reduction of cerebral edema, after TBI, using an osmotic transport device (OTD) was evaluated. Controlled cortical impact (CCI) was performed on adult female CD-1 mice, and cerebral edema was allowed to form for 3 h, followed by 2 h of treatment. The treatment groups were craniectomy only, craniectomy with a hydrogel, OTD without bovine serum albumin (BSA), and OTD. After CCI, brain water content was significantly higher for animals treated with a craniectomy only, craniectomy with a hydrogel, and OTD without BSA, compared to that of control animals. However, when TBI animals were treated with an OTD, brain water content was not significantly higher than that of controls. Further, brain water content of TBI animals treated with an OTD was significantly reduced, compared to that of untreated TBI animals, TBI animals treated with a craniectomy and a hydrogel, and TBI animals treated with an OTD without BSA. Here, we demonstrate the successful reduction of cerebral edema, as determined by brain water content, after TBI using an OTD. These results demonstrate proof of principle for direct water extraction from edematous brain tissue by direct osmotherapy using an OTD.

  11. Alleviation of ischemia-induced brain edema by activation of the central histaminergic system in rats.

    PubMed

    Irisawa, Yumi; Adachi, Naoto; Liu, Keyue; Arai, Tatsuru; Nagaro, Takumi

    2008-09-01

    We have reported that facilitation of central histaminergic activity prevents the development of ischemia-induced brain injury. Since cerebral edema is a major cause of brain damage, we studied effects on brain edema of postischemic administration of L-histidine, a precursor of histamine, and thioperamide, a histamine H(3)-receptor antagonist, both of which enhance central histaminergic activity. Focal cerebral ischemia for 2 h was provoked by transient occlusion of the right middle cerebral artery in rats, and the water content and infarct size were determined 24 h after reperfusion. Changes in the extracellular concentration of histamine were examined in the striatum by a microdialysis procedure, and effects of these compounds were evaluated. Repeated administration of L-histidine (1000 mg/kg x 2, i.p.), immediately and 6 h after reperfusion, reduced the increase in the water contents in ischemic regions. Simultaneous administration of thioperamide (5 mg/kg, s.c.) with L-histidine (1000 mg/kg, i.p.) completely prevented edema formation and alleviated brain infarction, although a single dose of L-histidine, immediately after reperfusion, showed no benefits. The striatal histamine level was gradually increased after reperfusion as well as during ischemia. Simultaneous administration of thioperamide with L-histidine markedly increased the brain histamine concentration, and the value increased up to 230% of that in the saline group 5 - 6 h after reperfusion. L-Histidine alone did not affect the increase in the histamine output after ischemia. These findings suggest that further activation of the central histaminergic system after initiation of cerebral ischemia prevents development of ischemia-induced brain edema.

  12. Cerebral Edema in Traumatic Brain Injury: Pathophysiology and Prospective Therapeutic Targets.

    PubMed

    Winkler, Ethan A; Minter, Daniel; Yue, John K; Manley, Geoffrey T

    2016-10-01

    Traumatic brain injury is a heterogeneous disorder resulting from an external force applied to the head. The development of cerebral edema plays a central role in the evolution of injury following brain trauma and is closely associated with neurologic outcomes. Recent advances in the understanding of the molecular and cellular pathways contributing to the posttraumatic development of cerebral edema have led to the identification of multiple prospective therapeutic targets. The authors summarize the pathogenic mechanisms underlying cerebral edema and highlight the molecular pathways that may be therapeutically targeted to mitigate cerebral edema and associated sequelae following traumatic brain injury. PMID:27637397

  13. The Role of Matricellular Proteins in Brain Edema after Subarachnoid Hemorrhage.

    PubMed

    Suzuki, Hidenori; Fujimoto, Masashi; Shiba, Masato; Kawakita, Fumihiro; Liu, Lei; Ichikawa, Naoki; Kanamaru, Kenji; Imanaka-Yoshida, Kyoko; Yoshida, Toshimichi

    2016-01-01

    Accumulated evidence suggests that blood-brain barrier disruption or brain edema is an important pathologic manifestation for poor outcome after aneurysmal subarachnoid hemorrhage. Many molecules may be involved, acting simultaneously or at different stages during blood-brain barrier disruption via multiple independent or interconnected signaling pathways. Matricellular protein is a class of nonstructural, secreted, and multifunctional extracellular matrix proteins, which potentially mediates brain edema formation. This study reviews the role of osteopontin and tenascin-C, representatives of matricellular proteins, in the context of brain edema formation after subarachnoid hemorrhage in both clinical and experimental settings.

  14. Correlation Between Subacute Sensorimotor Deficits and Brain Edema in Rats after Surgical Brain Injury.

    PubMed

    McBride, Devin W; Wang, Yuechun; Adam, Loic; Oudin, Guillaume; Louis, Jean-Sébastien; Tang, Jiping; Zhang, John H

    2016-01-01

    No matter how carefully a neurosurgical procedure is performed, it is intrinsically linked to postoperative deficits resulting in delayed healing caused by direct trauma, hemorrhage, and brain edema, termed surgical brain injury (SBI). Cerebral edema occurs several hours after SBI and is a major contributor to patient morbidity, resulting in increased postoperative care. Currently, the correlation between functional recovery and brain edema after SBI remains unknown. Here we examine the correlation between neurological function and brain water content in rats 42 h after SBI. SBI was induced in male Sprague-Dawley rats via frontal lobectomy. Twenty-four hours post-ictus animals were subjected to four neurobehavior tests: composite Garcia neuroscore, beam walking test, corner turn test, and beam balance test. Animals were then sacrificed for right-frontal brain water content measurement via the wet-dry method. Right-frontal lobe brain water content was found to significantly correlate with neurobehavioral deficits in the corner turn and beam balance tests: the number of left turns (percentage of total turns) for the corner turn test and distance traveled for the beam balance test were both inversely proportional with brain water content. No correlation was observed for the composite Garcia neuroscore or the beam walking test. PMID:26463968

  15. Vascular endothelial growth factor A protein level and gene expression in intracranial meningiomas with brain edema.

    PubMed

    Nassehi, Damoun; Dyrbye, Henrik; Andresen, Morten; Thomsen, Carsten; Juhler, Marianne; Laursen, Henning; Broholm, Helle

    2011-12-01

    Meningiomas are the second most common primary intracranial tumors in adults. Although meningiomas are mostly benign, more than 50% of patients with meningioma develop peritumoral brain edema (PTBE), which may be fatal because of increased intracranial pressure. Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen and angiogen. VEGF-A protein, which is identical to vascular permeability factor, is a regulator of angiogenesis. In this study, 101 patients with meningiomas, and possible co-factors to PTBE, such as meningioma subtypes and tumor location, were examined. Forty-three patients had primary, solitary, supratentorial meningiomas with PTBE. In these, correlations in PTBE, edema index, VEGF-A protein, VEGF gene expression, capillary length, and tumor water content were investigated. DNA-branched hybridization was used for measuring VEGF gene expression in tissue homogenates prepared from frozen tissue samples. The method for VEGF-A analysis resembled an ELISA assay, but was based on chemiluminescence. The edema index was positively correlated to VEGF-A protein (p = 0.014) and VEGF gene expression (p < 0.05). The capillary length in the meningiomas was positively correlated to the PTBE (p = 0.038). If VEGF is responsible for the formation of PTBE, the edema may be treated with the anti-VEGF drug Bevacizumab (Avastin), which has been shown to reduce PTBE in patients with glioblastoma multiforme. PMID:22085359

  16. [Changes in epidural pulse pressure in brain edema following experimental focal ischemia].

    PubMed

    Mase, M

    1990-07-01

    It is well known that epidural pulse pressure (PP) increases with rising intracranial pressure (ICP). However, PP at the same ICP is not always identical in various intracranial pathologies. Many authors have investigated PP at increased states of ICP, but few studies related to brain edema have been done. This study was carried out in order to clarify the changes of PP in brain edema following focal ischemia. ICP and PP were measured in two groups of anesthetized dogs; 1) increased volume of CSF by cisternal saline injection (control, n = 5), 2) brain edema caused by focal ischemia (edema, n = 11). Ischemia was induced by electro-coagulation of the right anterior cerebral artery and by clipping the right middle cerebral artery and right internal carotid artery transorbitaly. The brain was recirculated for 6 hours after 2 hours of ischemia. The ischemic areas were identified by Evans blue, triphenyl tetrazolium chloride (TTC) or histological examination. Water content of the brain was measured by the wet-dry weight method. The canine focal ischemic model showed consistent ischemic damage in the caudate nucleus and produced brain edema successfully. PP increased linearly with rising ICP to 35 mmHg, and PP in the edema group was significantly smaller than that in the control group at the same ICP value. The slopes of the regression equation of ICP and PP were significantly different between the edema and control group (edema: 0.061 +/- 0.030, control: 0.107 +/- 0.015, mean +/- SD, p less than 0.01). These results suggest that PP is easily affected by ischemic brain edema.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2223260

  17. Proton relaxation in acute and subacute ischemic brain edema

    SciTech Connect

    Boisvert, D.P.; Handa, Y.; Allen, P.S. )

    1990-01-01

    The relation between regional ischemic brain edema and tissue proton relaxation rates (R1 = 1/T1; R2 = 1/T2) were studied in 16 macaque monkeys subjected to MCA occlusion. In vivo R2 measurements were obtained from multiple spin-echo (eight echoes) images taken at 2-, 3-, 4-, and 72-hr postischemia. In vitro R1 and R2 values were determined for corresponding regions after sacrifice at 4 hr (n = 8) or at 72-hr postischemia in seven surviving animals. The water content of the white and gray matter tissue samples was measured by the wet/dry method. Four animals (25%) showed ipsilateral regions of increased signal intensity as early as 2 hr after MCA occlusion. All seven animals imaged at 72 hr displayed such regions. Despite the absence of measured changes in tissue water content, significant decreases in R2, but not in R1, occurred at 4 hr. At this stage, R2 values correlated more closely than R1 with individual variations in water content. At 72 hr, marked decreases in both R1 and R2 were measured in ischemic deep gray matter and white matter. Cortical gray matter was unchanged. In edematous gray and white matter, both R1 and R2 correlated closely with tissue water content, but R2 was consistently 10 to 20 times more sensitive than R1. Biexponential R2 decay was observed at 4 and 72 hr, but only in the white matter region that became severely edematous at 72 hr.

  18. Brain Edema after Repeat Gamma Knife Radiosurgery for a Large Arteriovenous Malformation: A Case Report

    PubMed Central

    Kim, Joo Whan; Chung, Hyun-Tai; Han, Moon Hee; Kim, Dong Gyu

    2016-01-01

    Brain edema due to venous thrombosis following stereotactic radiosurgery for a cerebral arteriovenous malformation (AVM) has rarely been reported. We report a patient with a large AVM in the eloquent area, and brain edema developed in this area after repeat Gamma knife stereotactic radiosurgery (GKRS). An 18-year-old female presented with a 4-year-history of persistent headache. Magnetic resonance imaging and transfemoral carotid angiogram revealed a high-flow large AVM in the left parieto-occipital area. Brain edema developed and aggravated patient's symptoms after time-staged GKRS. The cause of edema was thought to be the failure of the surrounding venous channels to drain the venous flow from the normal brain and the drainage was hampered by the persistent shunt flow from the AVM, which was due to the thrombosis of one huge draining vein of the AVM. The microsurgical resection of the AVM nidus eliminated shunt flow and completely normalized the brain edema. Microsurgical resection of the AVM nidus completely normalized the brain edema due to thrombosis of a draining vein of an AVM develops after SRS. PMID:27574486

  19. Brain Edema after Repeat Gamma Knife Radiosurgery for a Large Arteriovenous Malformation: A Case Report.

    PubMed

    Kim, Joo Whan; Chung, Hyun-Tai; Han, Moon Hee; Kim, Dong Gyu; Paek, Sun Ha

    2016-08-01

    Brain edema due to venous thrombosis following stereotactic radiosurgery for a cerebral arteriovenous malformation (AVM) has rarely been reported. We report a patient with a large AVM in the eloquent area, and brain edema developed in this area after repeat Gamma knife stereotactic radiosurgery (GKRS). An 18-year-old female presented with a 4-year-history of persistent headache. Magnetic resonance imaging and transfemoral carotid angiogram revealed a high-flow large AVM in the left parieto-occipital area. Brain edema developed and aggravated patient's symptoms after time-staged GKRS. The cause of edema was thought to be the failure of the surrounding venous channels to drain the venous flow from the normal brain and the drainage was hampered by the persistent shunt flow from the AVM, which was due to the thrombosis of one huge draining vein of the AVM. The microsurgical resection of the AVM nidus eliminated shunt flow and completely normalized the brain edema. Microsurgical resection of the AVM nidus completely normalized the brain edema due to thrombosis of a draining vein of an AVM develops after SRS. PMID:27574486

  20. Near-infrared spectroscopy technique to evaluate the effects of drugs in treating traumatic brain edema

    NASA Astrophysics Data System (ADS)

    Xie, J.; Qian, Z.; Yang, T.; Li, W.; Hu, G.

    2011-01-01

    The aim of this study was to evaluate the effects of several drugs in treating traumatic brain edema (TBE) following traumatic brain injury (TBI) using near-infrared spectroscopy (NIRs) technology. Rats with TBE models were given hypertonic saline (HS), mannitol and mannitol+HS respectively for different groups. Light scattering properties of rat's local cortex was measured by NIRs within the wavelength range from 700 to 850 nm. TBE models were built in rats' left brains. The scattering properties of the right and left target corresponding to the position of normal and TBE tissue were measured and recorded in vivo and real-time by a bifurcated needle probe. The brain water contents (BWC) were measured by the wet and dry weight method after injury and treatment hours 1, 6, 24, 72 and 120. A marked linear relationship was observed between reduced scattering coefficient (μs') and BWC. By recording μs' of rats' brains, the entire progressions of effects of several drugs were observed. The result may suggest that the NIRs techniques have a potential for assessing effects in vivo and real-time on treatment of the brain injury.

  1. Histological examination on edema formation in the rabbit brain exposed to head-down tilt.

    PubMed

    Shimoyama, R; Kawai, Y

    2000-07-01

    Previous studies demonstrated that exposure to simulated microgravity, head-down tilt (HDT), caused cephalad fluid shift, increased capillary pressure in the head, and produced facial edema and nasal congestion. It is also known that exposure to HDT affects hemodynamics in the brain. Cerebral blood flow (CBF) velocity increases for at least 6 hours after the onset of 6 degrees HDT in humans. Intracranial pressure (ICP) elevates during 6 degrees HDT in humans and monkeys. However, there is little information regarding edema formation in the brain due to HDT except a morphological study reported by Kaplansky and colleagues who showed that perivascular edema occurred in the monkey brain after 7 days of 6 degrees HDT. Thus, it is interesting to examine whether edema formation occurs in the other animal model for simulation of microgravity, since several factors such as the duration of HDT, angle of HDT, and species difference may affect the result. In the present study, formation of brain edema was investigated by histological examinations in rabbits exposed to 45 degrees HDT for 2 days or 8 days. We hypothesized that HDT causes brain edema which can be demonstrated as extravasation of plasma constituents and histological changes.

  2. Cortical edema in moderate fluid percussion brain injury is attenuated by vagus nerve stimulation.

    PubMed

    Clough, R W; Neese, S L; Sherill, L K; Tan, A A; Duke, A; Roosevelt, R W; Browning, R A; Smith, D C

    2007-06-29

    Development of cerebral edema (intracellular and/or extracellular water accumulation) following traumatic brain injury contributes to mortality and morbidity that accompanies brain injury. Chronic intermittent vagus nerve stimulation (VNS) initiated at either 2 h or 24 h (VNS: 30 s train of 0.5 mA, 20 Hz, biphasic pulses every 30 min) following traumatic brain injury enhances recovery of motor and cognitive function in rats in the weeks following brain injury; however, the mechanisms of facilitated recovery are unknown. The present study examines the effects of VNS on development of acute cerebral edema following unilateral fluid percussion brain injury (FPI) in rats, concomitant with assessment of their behavioral recovery. Two hours following FPI, VNS was initiated. Behavioral testing, using both beam walk and locomotor placing tasks, was conducted at 1 and 2 days following FPI. Edema was measured 48 h post-FPI by the customary method of region-specific brain weights before and after complete dehydration. Results of this study replicated that VNS initiated at 2 h after FPI: 1) effectively facilitated the recovery of vestibulomotor function at 2 days after FPI assessed by beam walk performance (P<0.01); and 2) tended to improve locomotor placing performance at the same time point (P=0.18). Most interestingly, results of this study showed that development of edema within the cerebral cortex ipsilateral to FPI was significantly attenuated at 48 h in FPI rats receiving VNS compared with non-VNS FPI rats (P<0.04). Finally, a correlation analysis between beam walk performance and cerebral edema following FPI revealed a significant inverse correlation between behavior performance and cerebral edema. Together, these results suggest that VNS facilitation of motor recovery following experimental brain injury in rats is associated with VNS-mediated attenuation of cerebral edema. PMID:17543463

  3. Continuous IV Infusion is the Choice Treatment Route for Arginine-vasopressin Receptor Blocker Conivaptan in Mice to Study Stroke-evoked Brain Edema.

    PubMed

    Zeynalov, Emil; Jones, Susan M; Elliott, J Paul

    2016-01-01

    Stroke is one of the major causes of morbidity and mortality in the world. Stroke is complicated by brain edema and other pathophysiological events. Among the most important players in the development and evolution of stroke-evoked brain edema is the hormone arginine-vasopressin and its receptors, V1a and V2. Recently, the V1a and V2 receptor blocker conivaptan has been attracting attention as a potential drug to reduce brain edema after stroke. However, animal models which involve conivaptan applications in stroke research need to be modified based on feasible routes of administration. Here the outcomes of 48 hr continuous intravenous (IV) are compared with intraperitoneal (IP) conivaptan treatments after experimental stroke in mice. We developed a protocol in which middle cerebral artery occlusion was combined with catheter installation into the jugular vein for IV treatment of conivaptan (0.2 mg) or vehicle. Different cohorts of animals were treated with 0.2 mg bolus of conivaptan or vehicle IP daily. Experimental stroke-evoked brain edema was evaluated in mice after continuous IV and IP treatments. Comparison of the results revealed that the continuous IV administration of conivaptan alleviates post-ischemic brain edema in mice, unlike the IP administration of conivaptan. We conclude that our model can be used for future studies of conivaptan applications in the context of stroke and brain edema. PMID:27684044

  4. Treadmill exercise ameliorates ischemia-induced brain edema while suppressing Na⁺/H⁺ exchanger 1 expression.

    PubMed

    Nishioka, Ryutaro; Sugimoto, Kana; Aono, Hitomi; Mise, Ayano; Choudhury, Mohammed E; Miyanishi, Kazuya; Islam, Afsana; Fujita, Takahiro; Takeda, Haruna; Takahashi, Hisaaki; Yano, Hajime; Tanaka, Junya

    2016-03-01

    Exercise may be one of the most effective and sound therapies for stroke; however, the mechanisms underlying the curative effects remain unclear. In this study, the effects of forced treadmill exercise with electric shock on ischemic brain edema were investigated. Wistar rats were subjected to transient (90 min) middle cerebral artery occlusion (tMCAO). Eighty nine rats with substantially large ischemic lesions were evaluated using magnetic resonance imaging (MRI) and were randomly assigned to exercise and non-exercise groups. The rats were forced to run at 4-6m/s for 10 min/day on days 2, 3 and 4. Brain edema was measured on day 5 by MRI, histochemical staining of brain sections and tissue water content determination (n=7, each experiment). Motor function in some rats was examined on day 30 (n=6). Exercise reduced brain edema (P<0.05-0.001, varied by the methods) and ameliorated motor function (P<0.05). The anti-glucocorticoid mifepristone or the anti-mineralocorticoid spironolactone abolished these effects, but orally administered corticosterone mimicked the ameliorating effects of exercise. Exercise prevented the ischemia-induced expression of mRNA encoding aquaporin 4 (AQP4) and Na(+)/H(+) exchangers (NHEs) (n=5 or 7, P<0.01). Microglia and NG2 glia expressed NHE1 in the peri-ischemic region of rat brains and also in mixed glial cultures. Corticosterone at ~10nM reduced NHE1 and AQP4 expression in mixed glial and pure microglial cultures. Dexamethasone and aldosterone at 10nM did not significantly alter NHE1 and AQP4 expression. Exposure to a NHE inhibitor caused shrinkage of microglial cells. These results suggest that the stressful short-period and slow-paced treadmill exercise suppressed NHE1 and AQP4 expression resulting in the amelioration of brain edema at least partly via the moderate increase in plasma corticosterone levels.

  5. Ultrastructural Pathology of Oligodendroglial Cells in Traumatic and Hydrocephalic Human Brain Edema: A Review.

    PubMed

    Castejón, Orlando J

    2015-01-01

    Oligodendroglial cell changes in human traumatic brain injuries and hydrocephalus have been reviewed and compared with experimental brain edema. Resting unreactive oligodendrocytes, reactive oligodendrocytes, anoxic-ischemic oligodendrocytes, hyperthrophic phagocytic oligodendrocytes, and apoptotic oligodendrocytes are found. Anoxic-ischemic oligodendrocytes exhibit enlargement of endoplasmic reticulum, Golgi complex, and enlargement and disassembly of nuclear envelope. They appear in contact with degenerated myelinated axons. Hypertrophic phagocytic oligodendrocytes engulf degenerated myelinated axons exerting myelinolytic effects. A continuum oncotic and apoptotic cell death type leading to necrosis is observed. The vasogenic and cytotoxic components of brain edema are discussed in relation to oligodendroglial cell changes and reactivity. PMID:26548433

  6. Acupuncture and moxibustion reduces neuronal edema in Alzheimer's disease rats

    PubMed Central

    Zhou, Hua; Sun, Guojie; Kong, Lihong; Du, Yanjun; Shen, Feng; Wang, Shuju; Chen, Bangguo; Zeng, Xiaoling

    2014-01-01

    To examine the possible correlation of aberrant Wnt signaling and pathological changes in Alzheimer's disease, we established a rat model of Alzheimer's disease and measured axin and β-catenin expression in the hippocampus. Rats were pretreated with moxibustion or electroacupuncture, or both, at Baihui (GV20) and Shenshu (BL23). Axin expression was lower, β-catenin expression was greater, and neuronal cytoplasmic edema was visibly prevented in the rats that had received the pretreatments. Our results suggest that the mechanism underlying the neuroprotective effect of acupuncture and moxibustion in Alzheimer's disease is associated with axin and β-catenin expression in the Wnt signal transduction pathway. PMID:25206919

  7. Attenuation of Acute Phase Injury in Rat Intracranial Hemorrhage by Cerebrolysin that Inhibits Brain Edema and Inflammatory Response.

    PubMed

    Yang, Yang; Zhang, Yan; Wang, Zhaotao; Wang, Shanshan; Gao, Mou; Xu, Ruxiang; Liang, Chunyang; Zhang, Hongtian

    2016-04-01

    The outcome of intracerebral hemorrhage (ICH) is mainly determined by the volume of the hemorrhage core and the secondary brain damage to penumbral tissues due to brain swelling, microcirculation disturbance and inflammation. The present study aims to investigate the protective effects of cerebrolysin on brain edema and inhibition of the inflammation response surrounding the hematoma core in the acute stage after ICH. The ICH model was induced by administration of type VII bacterial collagenase into the stratum of adult rats, which were then randomly divided into three groups: ICH + saline; ICH + Cerebrolysin (5 ml/kg) and sham. Cerebrolysin or saline was administered intraperitoneally 1 h post surgery. Neurological scores, extent of brain edema content and Evans blue dye extravasation were recorded. The levels of pro-inflammatory factors (IL-1β, TNF-α and IL-6) were assayed by Real-time PCR and Elisa kits. Aquaporin-4 (AQP4) and tight junction proteins (TJPs; claudin-5, occludin and zonula occluden-1) expression were measured at multiple time points. The morphological and intercellular changes were characterized by Electron microscopy. It is found that cerebrolysin (5 ml/kg) improved the neurological behavior and reduced the ipsilateral brain water content and Evans blue dye extravasation. After cerebrolysin treated, the levels of pro-inflammatory factors and AQP4 in the peri-hematomal areas were markedly reduced and were accompanied with higher expression of TJPs. Electron microscopy showed the astrocytic swelling and concentrated chromatin in the ICH group and confirmed the cell junction changes. Thus, early cerebrolysin treatment ameliorates secondary injury after ICH and promotes behavioral performance during the acute phase by reducing brain edema, inflammatory response, and blood-brain barrier permeability.

  8. Attenuation of Acute Phase Injury in Rat Intracranial Hemorrhage by Cerebrolysin that Inhibits Brain Edema and Inflammatory Response.

    PubMed

    Yang, Yang; Zhang, Yan; Wang, Zhaotao; Wang, Shanshan; Gao, Mou; Xu, Ruxiang; Liang, Chunyang; Zhang, Hongtian

    2016-04-01

    The outcome of intracerebral hemorrhage (ICH) is mainly determined by the volume of the hemorrhage core and the secondary brain damage to penumbral tissues due to brain swelling, microcirculation disturbance and inflammation. The present study aims to investigate the protective effects of cerebrolysin on brain edema and inhibition of the inflammation response surrounding the hematoma core in the acute stage after ICH. The ICH model was induced by administration of type VII bacterial collagenase into the stratum of adult rats, which were then randomly divided into three groups: ICH + saline; ICH + Cerebrolysin (5 ml/kg) and sham. Cerebrolysin or saline was administered intraperitoneally 1 h post surgery. Neurological scores, extent of brain edema content and Evans blue dye extravasation were recorded. The levels of pro-inflammatory factors (IL-1β, TNF-α and IL-6) were assayed by Real-time PCR and Elisa kits. Aquaporin-4 (AQP4) and tight junction proteins (TJPs; claudin-5, occludin and zonula occluden-1) expression were measured at multiple time points. The morphological and intercellular changes were characterized by Electron microscopy. It is found that cerebrolysin (5 ml/kg) improved the neurological behavior and reduced the ipsilateral brain water content and Evans blue dye extravasation. After cerebrolysin treated, the levels of pro-inflammatory factors and AQP4 in the peri-hematomal areas were markedly reduced and were accompanied with higher expression of TJPs. Electron microscopy showed the astrocytic swelling and concentrated chromatin in the ICH group and confirmed the cell junction changes. Thus, early cerebrolysin treatment ameliorates secondary injury after ICH and promotes behavioral performance during the acute phase by reducing brain edema, inflammatory response, and blood-brain barrier permeability. PMID:26498936

  9. Brain edema and breakdown of the blood-brain barrier during methamphetamine intoxication: critical role of brain hyperthermia.

    PubMed

    Kiyatkin, Eugene A; Brown, P Leon; Sharma, Hari S

    2007-09-01

    To clarify the role of brain temperature in permeability of the blood-brain barrier (BBB), rats were injected with methamphetamine (METH 9 mg/kg) at normal (23 degrees C) and warm (29 degrees C) environmental conditions and internal temperatures were monitored both centrally (nucleus accumbens, NAcc) and peripherally (skin and nonlocomotor muscle). Once NAcc temperatures peaked or reached 41.5 degrees C (a level suggesting possible lethality), animals were administered Evans blue dye (protein tracer that does not normally cross the BBB), rapidly anaesthetized, perfused and had their brains removed. All METH-treated animals showed brain and body hyperthermia associated with relative skin hypothermia, suggesting metabolic activation coupled with peripheral vasoconstriction. While METH-induced NAcc temperature elevation varied from 37.60 to 42.46 degrees C (or 1.2-5.1 degrees C above baseline), it was stronger at 29 degrees C (+4.13 degrees C) than 23 degrees C (+2.31 degrees C). Relative to control, METH-treated animals had significantly higher brain levels of water, Na(+), K(+) and Cl(-), suggesting brain edema, and intense immunostaining for albumin, indicating breakdown of the BBB. METH-treated animals also showed strong immunoreactivity for glial fibrillary acidic protein (GFAP), possibly suggesting acute abnormality or damage of astrocytes. METH-induced changes in brain water, albumin and GFAP correlated linearly with NAcc temperature (r = 0.93, 0.98 and 0.98, respectively), suggesting a key role of brain hyperthermia in BBB permeability, development of brain edema and subsequent functional and structural neural abnormalities. Therefore, along with a direct destructive action on neural cells and functions, brain hyperthermia, via breakdown of the BBB, may be crucial for both decompensation of brain functions and cell injury following acute METH intoxication, possibly contributing to neurodegeneration resulting from chronic drug use.

  10. Effects of cervical-lymphatic blockade on brain edema and infarction volume in cerebral ischemic rats.

    PubMed

    Si, Jinchao; Chen, Lianbi; Xia, Zuoli

    2006-10-31

    To observe the effects of cervical-lymphatic blockade (CLB) on brain edema and infarction volume of ischemic (MCAO) rat, we examined changes in cerebral water content, Ca2+ and glutamate concentrations, cerebral infarction volume and mRNA expression levels of N-methyl-D-aspartame receptor 1 (NMDA receptor 1) in the ischemic (left) hemisphere. The present results demonstrated that all the above indices in rats with middle cerebral artery occlusion plus cervical lymphatic blockade (MCAO+CLB) were markedly higher than those with only middle cerebral artery occlusion (MCAO) at different time points. These results indicated [corrected] that CLB can aggravate cerebral ischemia by increasing brain edema and infarction volume.

  11. Blood Brain Barrier KCa3.1 Channels: Evidence for a Role in Brain Na Uptake and Edema in Ischemic Stroke

    PubMed Central

    Chen, Yi-Je; Wallace, Breanna K.; Yuen, Natalie; Jenkins, David P.; Wulff, Heike; O’Donnell, Martha E.

    2014-01-01

    Background and Purpose KCa3.1, a calcium-activated potassium channel, regulates ion and fluid secretion in the lung and gastrointestinal tract. It is also expressed on vascular endothelium where it participates in blood pressure regulation. However, the expression and physiological role of KCa3.1 in blood-brain barrier (BBB) endothelium has not been investigated. BBB endothelial cells transport Na+ and Cl− from the blood into the brain transcellularly through the cooperation of multiple co-transporters, exchangers, pumps and channels. In the early stages of cerebral ischemia, when the BBB is intact, edema formation occurs by processes involving increased BBB transcellular Na+ transport. This study evaluated whether KCa3.1 is expressed on and participates in BBB ion transport. Methods The expression of KCa3.1 on cultured cerebral microvascular endothelial cells (CMEC), isolated microvessels and brain sections was evaluated by Western blot and immunohistochemistry. Activity of KCa3.1 on CMEC was examined by K+ flux assays and patch-clamp. Magnetic resonance spectroscopy and imaging were used to measure brain Na+ uptake and edema formation in rats with focal ischemic stroke following TRAM-34 treatment. Results KCa3.1 current and channel protein were identified on bovine CMEC and freshly isolated rat microvessels. In situ KCa3.1 expression on BBB endothelium was confirmed in rat and human brain sections. TRAM-34 treatment significantly reduced Na+ uptake, and cytotoxic edema in the ischemic brain. Conclusions BBB endothelial cells exhibit KCa3.1 protein and activity and pharmacological blockade of KCa3.1 appears to provide an effective therapeutic approach for reducing cerebral edema formation in the first 3 hours of ischemic stroke. PMID:25477223

  12. Dimethyl fumarate attenuates cerebral edema formation by protecting the blood-brain barrier integrity.

    PubMed

    Kunze, Reiner; Urrutia, Andrés; Hoffmann, Angelika; Liu, Hui; Helluy, Xavier; Pham, Mirko; Reischl, Stefan; Korff, Thomas; Marti, Hugo H

    2015-04-01

    Brain edema is a hallmark of various neuropathologies, but the underlying mechanisms are poorly understood. We aim to characterize how tissue hypoxia, together with oxidative stress and inflammation, leads to capillary dysfunction and breakdown of the blood-brain barrier (BBB). In a mouse stroke model we show that systemic treatment with dimethyl fumarate (DMF), an antioxidant drug clinically used for psoriasis and multiple sclerosis, significantly prevented edema formation in vivo. Indeed, DMF stabilized the BBB by preventing disruption of interendothelial tight junctions and gap formation, and decreased matrix metalloproteinase activity in brain tissue. In vitro, DMF directly sustained endothelial tight junctions, inhibited inflammatory cytokine expression, and attenuated leukocyte transmigration. We also demonstrate that these effects are mediated via activation of the redox sensitive transcription factor NF-E2 related factor 2 (Nrf2). DMF activated the Nrf2 pathway as shown by up-regulation of several Nrf2 target genes in the brain in vivo, as well as in cerebral endothelial cells and astrocytes in vitro, where DMF also increased protein abundance of nuclear Nrf2. Finally, Nrf2 knockdown in endothelial cells aggravated subcellular delocalization of tight junction proteins during ischemic conditions, and attenuated the protective effect exerted by DMF. Overall, our data suggest that DMF protects from cerebral edema formation during ischemic stroke by targeting interendothelial junctions in an Nrf2-dependent manner, and provide the basis for a completely new approach to treat brain edema. PMID:25725349

  13. Quick detection of brain tumors and edemas: a bounding box method using symmetry.

    PubMed

    Saha, Baidya Nath; Ray, Nilanjan; Greiner, Russell; Murtha, Albert; Zhang, Hong

    2012-03-01

    A significant medical informatics task is indexing patient databases according to size, location, and other characteristics of brain tumors and edemas, possibly based on magnetic resonance (MR) imagery. This requires segmenting tumors and edemas within images from different MR modalities. To date, automated brain tumor or edema segmentation from MR modalities remains a challenging, computationally intensive task. In this paper, we propose a novel automated, fast, and approximate segmentation technique. The input is a patient study consisting of a set of MR slices, and its output is a subset of the slices that include axis-parallel boxes that circumscribe the tumors. Our approach is based on an unsupervised change detection method that searches for the most dissimilar region (axis-parallel bounding boxes) between the left and the right halves of a brain in an axial view MR slice. This change detection process uses a novel score function based on Bhattacharya coefficient computed with gray level intensity histograms. We prove that this score function admits a very fast (linear in image height and width) search to locate the bounding box. The average dice coefficients for localizing brain tumors and edemas, over ten patient studies, are 0.57 and 0.52, respectively, which significantly exceeds the scores for two other competitive region-based bounding box techniques. PMID:21719256

  14. Cerebral edema following iodine-131 therapy for thyroid carcinoma metastatic to the brain

    SciTech Connect

    Datz, F.L.

    1986-05-01

    Brain metastases are rare in well-differentiated thyroid carcinoma but when present they can lead to the patient's death. Iodine-131 therapy for intracerebral thyroid carcinoma metastases causes radiation-induced acute cerebral edema that can lead to CNS complications and even death. We present a case in which a patient with intracerebral /sup 131/I uptake developed seizures, slurred speech, and muscle weakness 12 hr following /sup 131/I therapy. The patient's CT scan, post-therapy, confirmed an intracranial metastasis with a significant amount of surrounding edema. Radiotherapists, when using external beam radiation to treat intracerebral metastases, commonly place these patients on steroids, glycerol, or mannitol prior to instituting therapy, to prevent complications from radiation-induced cerebral edema. This technique could be applied to /sup 131/I therapy of intracranial thyroid carcinoma metastases as well.

  15. Dexamethasone exacerbates cerebral edema and brain injury following lithium-pilocarpine induced status epilepticus.

    PubMed

    Duffy, B A; Chun, K P; Ma, D; Lythgoe, M F; Scott, R C

    2014-03-01

    Anti-inflammatory therapies are the current most plausible drug candidates for anti-epileptogenesis and neuroprotection following prolonged seizures. Given that vasogenic edema is widely considered to be detrimental for outcome following status epilepticus, the anti-inflammatory agent dexamethasone is sometimes used in clinic for alleviating cerebral edema. In this study we perform longitudinal magnetic resonance imaging in order to assess the contribution of dexamethasone on cerebral edema and subsequent neuroprotection following status epilepticus. Lithium-pilocarpine was used to induce status epilepticus in rats. Following status epilepticus, rats were either post-treated with saline or with dexamethasone sodium phosphate (10mg/kg or 2mg/kg). Brain edema was assessed by means of magnetic resonance imaging (T2 relaxometry) and hippocampal volumetry was used as a marker of neuronal injury. T2 relaxometry was performed prior to, 48 h and 96 h following status epilepticus. Volume measurements were performed between 18 and 21 days after status epilepticus. Unexpectedly, cerebral edema was worse in rats that were treated with dexamethasone compared to controls. Furthermore, dexamethasone treated rats had lower hippocampal volumes compared to controls 3 weeks after the initial insult. The T2 measurements at 2 days and 4 days in the hippocampus correlated with hippocampal volumes at 3 weeks. Finally, the mortality rate in the first week following status epilepticus increased from 14% in untreated rats to 33% and 46% in rats treated with 2mg/kg and 10mg/kg dexamethasone respectively. These findings suggest that dexamethasone can exacerbate the acute cerebral edema and brain injury associated with status epilepticus.

  16. Aquaporin-1 Deficiency Protects Against Myocardial Infarction by Reducing Both Edema and Apoptosis in Mice

    PubMed Central

    Li, Lihua; Weng, Zhiyong; Yao, Chenjuan; Song, Yuanlin; Ma, Tonghui

    2015-01-01

    Many studies have determined that AQP1 plays an important role in edema formation and resolution in various tissues via water transport across the cell membrane. The aim of this research was to determine both if and how AQP1 is associated with cardiac ischemic injury, particularly the development of edema following myocardial infarction (MI). AQP1+/+ and AQP1−/− mice were used to create the MI model. Under physiological conditions, AQP1−/− mice develop normally; however, in the setting of MI, they exhibit cardioprotective properties, as shown by reduced cardiac infarct size determined via NBT staining, improved cardiac function determined via left ventricular catheter measurements, decreased AQP1-dependent myocardial edema determined via water content assays, and decreased apoptosis determined via TUNEL analysis. Cardiac ischemia caused by hypoxia secondary to AQP1 deficiency stabilized the expression of HIF-1α in endothelial cells and subsequently decreased microvascular permeability, resulting in the development of edema. The AQP1-dependent myocardial edema and apoptosis contributed to the development of MI. AQP1 deficiency protected cardiac function from ischemic injury following MI. Furthermore, AQP1 deficiency reduced microvascular permeability via the stabilization of HIF-1α levels in endothelial cells and decreased cellular apoptosis following MI. PMID:26348407

  17. Aquaporin-1 Deficiency Protects Against Myocardial Infarction by Reducing Both Edema and Apoptosis in Mice.

    PubMed

    Li, Lihua; Weng, Zhiyong; Yao, Chenjuan; Song, Yuanlin; Ma, Tonghui

    2015-01-01

    Many studies have determined that AQP1 plays an important role in edema formation and resolution in various tissues via water transport across the cell membrane. The aim of this research was to determine both if and how AQP1 is associated with cardiac ischemic injury, particularly the development of edema following myocardial infarction (MI). AQP1+/+ and AQP1-/- mice were used to create the MI model. Under physiological conditions, AQP1-/- mice develop normally; however, in the setting of MI, they exhibit cardioprotective properties, as shown by reduced cardiac infarct size determined via NBT staining, improved cardiac function determined via left ventricular catheter measurements, decreased AQP1-dependent myocardial edema determined via water content assays, and decreased apoptosis determined via TUNEL analysis. Cardiac ischemia caused by hypoxia secondary to AQP1 deficiency stabilized the expression of HIF-1α in endothelial cells and subsequently decreased microvascular permeability, resulting in the development of edema. The AQP1-dependent myocardial edema and apoptosis contributed to the development of MI. AQP1 deficiency protected cardiac function from ischemic injury following MI. Furthermore, AQP1 deficiency reduced microvascular permeability via the stabilization of HIF-1α levels in endothelial cells and decreased cellular apoptosis following MI. PMID:26348407

  18. Segmentation of tumor and edema along with healthy tissues of brain using wavelets and neural networks.

    PubMed

    Demirhan, Ayşe; Toru, Mustafa; Guler, Inan

    2015-07-01

    Robust brain magnetic resonance (MR) segmentation algorithms are critical to analyze tissues and diagnose tumor and edema in a quantitative way. In this study, we present a new tissue segmentation algorithm that segments brain MR images into tumor, edema, white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). The detection of the healthy tissues is performed simultaneously with the diseased tissues because examining the change caused by the spread of tumor and edema on healthy tissues is very important for treatment planning. We used T1, T2, and FLAIR MR images of 20 subjects suffering from glial tumor. We developed an algorithm for stripping the skull before the segmentation process. The segmentation is performed using self-organizing map (SOM) that is trained with unsupervised learning algorithm and fine-tuned with learning vector quantization (LVQ). Unlike other studies, we developed an algorithm for clustering the SOM instead of using an additional network. Input feature vector is constructed with the features obtained from stationary wavelet transform (SWT) coefficients. The results showed that average dice similarity indexes are 91% for WM, 87% for GM, 96% for CSF, 61% for tumor, and 77% for edema.

  19. Central Role of Maladapted Astrocytic Plasticity in Ischemic Brain Edema Formation.

    PubMed

    Wang, Yu-Feng; Parpura, Vladimir

    2016-01-01

    Brain edema formation and the ensuing brain damages are the major cause of high mortality and long term disability following the occurrence of ischemic stroke. In this process, oxygen and glucose deprivation and the resulting reperfusion injury play primary roles. In response to the ischemic insult, the neurovascular unit experiences both intracellular and extracellular edemas, associated with maladapted astrocytic plasticity. The astrocytic plasticity includes both morphological and functional plasticity. The former involves a reactive gliosis and the subsequent glial retraction. It relates to the capacity of astrocytes to buffer changes in extracellular chemical levels, particularly K(+) and glutamate, as well as the integrity of the blood-brain barrier (BBB). The latter involves the expression and activity of a series of ion and water transport proteins. These molecules are grouped together around glial fibrillary acidic protein (GFAP) and water channel protein aquaporin 4 (AQP4) to form functional networks, regulate hydromineral balance across cell membranes and maintain the integrity of the BBB. Intense ischemic challenges can disrupt these capacities of astrocytes and result in their maladaptation. The maladapted astrocytic plasticity in ischemic stroke cannot only disrupt the hydromineral homeostasis across astrocyte membrane and the BBB, but also leads to disorders of the whole neurovascular unit. This review focuses on how the maladapted astrocytic plasticity in ischemic stroke plays the central role in the brain edema formation. PMID:27242440

  20. Central Role of Maladapted Astrocytic Plasticity in Ischemic Brain Edema Formation

    PubMed Central

    Wang, Yu-Feng; Parpura, Vladimir

    2016-01-01

    Brain edema formation and the ensuing brain damages are the major cause of high mortality and long term disability following the occurrence of ischemic stroke. In this process, oxygen and glucose deprivation and the resulting reperfusion injury play primary roles. In response to the ischemic insult, the neurovascular unit experiences both intracellular and extracellular edemas, associated with maladapted astrocytic plasticity. The astrocytic plasticity includes both morphological and functional plasticity. The former involves a reactive gliosis and the subsequent glial retraction. It relates to the capacity of astrocytes to buffer changes in extracellular chemical levels, particularly K+ and glutamate, as well as the integrity of the blood-brain barrier (BBB). The latter involves the expression and activity of a series of ion and water transport proteins. These molecules are grouped together around glial fibrillary acidic protein (GFAP) and water channel protein aquaporin 4 (AQP4) to form functional networks, regulate hydromineral balance across cell membranes and maintain the integrity of the BBB. Intense ischemic challenges can disrupt these capacities of astrocytes and result in their maladaptation. The maladapted astrocytic plasticity in ischemic stroke cannot only disrupt the hydromineral homeostasis across astrocyte membrane and the BBB, but also leads to disorders of the whole neurovascular unit. This review focuses on how the maladapted astrocytic plasticity in ischemic stroke plays the central role in the brain edema formation. PMID:27242440

  1. Antagonists of the Vasopressin V1 Receptor and of the β(1)-Adrenoceptor Inhibit Cytotoxic Brain Edema in Stroke by Effects on Astrocytes - but the Mechanisms Differ.

    PubMed

    Hertz, Leif; Xu, Junnan; Chen, Ye; Gibbs, Marie E; Du, Ting; Hertz, Leif; Xu, Junnan; Chen, Ye; Gibbs, Marie E; Du, Ting

    2014-07-01

    Brain edema is a serious complication in ischemic stroke because even relatively small changes in brain volume can compromise cerebral blood flow or result in compression of vital brain structures on account of the fixed volume of the rigid skull. Literature data indicate that administration of either antagonists of the V1 vasopressin (AVP) receptor or the β1-adrenergic receptor are able to reduce edema or infarct size when administered after the onset of ischemia, a key advantage for possible clinical use. The present review discusses possible mechanisms, focusing on the role of NKCC1, an astrocytic cotransporter of Na(+), K(+), 2Cl(-) and water and its activation by highly increased extracellular K(+) concentrations in the development of cytotoxic cell swelling. However, it also mentions that due to a 3/2 ratio between Na(+) release and K(+) uptake by the Na(+),K(+)-ATPase driving NKCC1 brain extracellular fluid can become hypertonic, which may facilitate water entry across the blood-brain barrier, essential for development of edema. It shows that brain edema does not develop until during reperfusion, which can be explained by lack of metabolic energy during ischemia. V1 antagonists are likely to protect against cytotoxic edema formation by inhibiting AVP enhancement of NKCC1-mediated uptake of ions and water, whereas β1-adrenergic antagonists prevent edema formation because β1-adrenergic stimulation alone is responsible for stimulation of the Na(+),K(+)-ATPase driving NKCC1, first and foremost due to decrease in extracellular Ca(2+) concentration. Inhibition of NKCC1 also has adverse effects, e.g. on memory and the treatment should probably be of shortest possible duration.

  2. Antagonists of the Vasopressin V1 Receptor and of the β1-Adrenoceptor Inhibit Cytotoxic Brain Edema in Stroke by Effects on Astrocytes – but the Mechanisms Differ

    PubMed Central

    Hertz, Leif; Xu, Junnan; Chen, Ye; Gibbs, Marie E; Du, Ting; Hertz, Leif; Xu, Junnan; Chen, Ye; Gibbs, Marie E; Du, Ting

    2014-01-01

    Brain edema is a serious complication in ischemic stroke because even relatively small changes in brain volume can compromise cerebral blood flow or result in compression of vital brain structures on account of the fixed volume of the rigid skull. Literature data indicate that administration of either antagonists of the V1 vasopressin (AVP) receptor or the β1-adrenergic receptor are able to reduce edema or infarct size when administered after the onset of ischemia, a key advantage for possible clinical use. The present review discusses possible mechanisms, focusing on the role of NKCC1, an astrocytic cotransporter of Na+, K+, 2Cl- and water and its activation by highly increased extracellular K+ concentrations in the development of cytotoxic cell swelling. However, it also mentions that due to a 3/2 ratio between Na+ release and K+ uptake by the Na+,K+-ATPase driving NKCC1 brain extracellular fluid can become hypertonic, which may facilitate water entry across the blood-brain barrier, essential for development of edema. It shows that brain edema does not develop until during reperfusion, which can be explained by lack of metabolic energy during ischemia. V1 antagonists are likely to protect against cytotoxic edema formation by inhibiting AVP enhancement of NKCC1-mediated uptake of ions and water, whereas β1-adrenergic antagonists prevent edema formation because β1-adrenergic stimulation alone is responsible for stimulation of the Na+,K+-ATPase driving NKCC1, first and foremost due to decrease in extracellular Ca2+ concentration. Inhibition of NKCC1 also has adverse effects, e.g. on memory and the treatment should probably be of shortest possible duration. PMID:25342939

  3. The role of extracellular-5'-nucleotidase/CD73 in glioma peritumoural brain edema.

    PubMed

    Wang, Bo; Wang, Dong; Zhu, ZhiZhong; Wang, Wei; Zhang, XueBin; Tang, Fan; Zhou, Yu; Wang, HongGuang; Liu, MengYuan; Yao, Xin; Yan, XiaoLing

    2016-04-01

    During pathological conditions, extracellular-5'-nucleotidase/CD73 can protect neurons by reducing the permeability of the blood brain barrier. In recent years, it has been demonstrated that CD73 can negatively contribute to the growth of gliomas; however, the function of CD73 in glioma blood vessels is not clear. We analysed the expression of CD73 in 72 glioma patients using immunohistochemistry and correspondingly compared the results with the Edema index (EI). We established an in vitro model of the blood-tumour barrier and analysed the expression of CD73 in vascular endothelial cells. Lastly, CD73 expression was inhibited in endothelial cells, and the effects of this inhibition on tight junction structure and transendothelial resistance were observed. Compared to normal brains, the expression of CD73 in blood vessels of glioma patients was significantly decreased, and the amount was lower in the centre of the tumour than the periphery. The proportion of CD73-positive blood vessels had a positive correlation with the EI. The expression of CD73 in the in vitro endothelial cell blood-tumour barrier model was decreased. Lastly, inhibiting CD73 was found to decrease the expression of tight junction related proteins in endothelial cells and to decrease the value of transendothelial electric resistance. The expression of CD73 in glioma blood vessels was significantly decreased, which may play a multi-functional role in decreasing the expression of tight junction related proteins of brain microvascular endothelial cells and may also increase blood-tumour barrier permeability and accelerate the formation of PTBE. PMID:26884147

  4. Ability of eugenol to reduce tongue edema induced by Dieffenbachia picta Schott in mice.

    PubMed

    Dip, Etyene Castro; Pereira, Nuno Alvarez; Fernandes, Patricia Dias

    2004-05-01

    Dieffenbachia picta Schott (Araceae), known in Brazil as "comigo-ninguém-pode" is an ornamental plant with toxic properties. Its juice, when chewed, causes a painful edema of the oral mucous membranes, buccal ulcerations and tongue hypertrophy. This acute inflammation sometimes becomes severe enough to produce glottis obstruction, respiratory compromise and death. Eugenol (4-alil-2-metoxiphenol), the essential oil extracted from Caryophyllus aromaticus (Myrtaceae) is widely used in odontology. In this study, our objective was to standardize, in mice, a measurable methodology for the tongue edema induced by the topical application of the D. picta stem juice; evaluate the effects of eugenol in this model and compare the results with emergency treatment used in hospitals. Our results show that in spite of a small increase in edema a few minutes after administration, emergency treatment reduced by 70% the overall edema. When compared with the combination of the above drugs, eugenol, even at the smallest dose of 5 microg/kg, regardless of the chosen administration route, or the moment the treatment began, presents better results in the reduction and inhibition of the tongue edema induced by the D. picta juice.

  5. Perilesional brain edema and seizure activity in patients with calcified neurocysticercosis

    PubMed Central

    Nash, Theodore E.; Pretell, E. Javier; Lescano, Andres. G.; Bustos, Javier A.; Gilman, Robert H.; Gonzalez, Armando E.; Garcia, Héctor H.

    2013-01-01

    Background Cysticercosis due to Taenia solium is a leading cause of adult acquired seizures and epilepsy that frequently occurs in patients with only calcified larval cysts. Transient episodes of perilesional brain edema occur around calcified foci but its importance, association with seizures, incidence, and pathophysiology are unknown. Methods One hundred and ten persons with only calcified lesions and a history of seizures or severe headaches were followed prospectively in a cohort design to assess the incidence of seizure relapses. In a nested case-control sub study, perilesional edema was assessed by MRI at the time a seizure occurred in the symptomatic patient and in a matched asymptomatic control, amongst the 110 followed. Results Median follow up was 32.33 months (SD 19.99). Twenty-nine people had an incident seizure with an estimated 5 year seizure incidence of 36%. Twenty-four patients of the 29 with seizure relapse had an MRI evaluation within five days of the event. Perilesional edema was found in 12 (50.0%) compared to 2 of 23 asymptomatic matched controls (8.7%). Conclusions Perilesional edema occurs frequently and is associated with episodic seizure activity in calcified neurocysticercosis. Our findings are likely representative of symptomatic patients in endemic regions and suggest a unique and possibly preventable cause of seizures in this population. PMID:18986841

  6. Effect of body temperature on brain edema and encephalopathy in the rat after hepatic devascularization.

    PubMed

    Traber, P; DalCanto, M; Ganger, D; Blei, A T

    1989-03-01

    Brain edema is a fatal complication of fulminant hepatic failure and its pathogenesis remains unclear. To determine its presence in a model of ischemic hepatic failure, rats were subjected to a portacaval anastomosis followed by hepatic artery ligation. Brain water was measured using the sensitive gravimetric method. Preliminary studies revealed marked hypothermia in devascularized animals kept at room temperature (26.9 degrees +/- 2.8 degrees C). An additional group of devascularized rats was kept in an incubator. As expected for hypothermia, such animals had a lower arterial pressure and heart rate; the duration of encephalopathy was markedly prolonged. Water content of the cortical gray matter was only increased in normothermic devascularized rats: 80.14% +/- 0.31%, normal; 80.06% +/- 0.22%, portacaval shunt only; 80.42% +/- 0.26%, devascularized at room temperature; 81.29% +/- 0.38%, devascularized at controlled temperature (p less than 0.001). Such differences could not be detected using the dry-weight technique in whole cerebral hemispheres. Astrocyte changes in the cortical gray matter were noted in both edematous and nonedematous devascularized groups, coupled with the presence of vesicles containing horseradish peroxidase in the endothelial capillary cell. This suggests that in this model, brain edema may be due to both a cytotoxic mechanism and changes in the permeability of the blood-brain barrier. Future studies with this widely used model will require strict control of temperature to allow interpretation of experimental results. A therapeutic role for hypothermia in the management of brain edema deserves further attention. PMID:2914649

  7. Multi-fractal texture features for brain tumor and edema segmentation

    NASA Astrophysics Data System (ADS)

    Reza, S.; Iftekharuddin, K. M.

    2014-03-01

    In this work, we propose a fully automatic brain tumor and edema segmentation technique in brain magnetic resonance (MR) images. Different brain tissues are characterized using the novel texture features such as piece-wise triangular prism surface area (PTPSA), multi-fractional Brownian motion (mBm) and Gabor-like textons, along with regular intensity and intensity difference features. Classical Random Forest (RF) classifier is used to formulate the segmentation task as classification of these features in multi-modal MRIs. The segmentation performance is compared with other state-of-art works using a publicly available dataset known as Brain Tumor Segmentation (BRATS) 2012 [1]. Quantitative evaluation is done using the online evaluation tool from Kitware/MIDAS website [2]. The results show that our segmentation performance is more consistent and, on the average, outperforms other state-of-the art works in both training and challenge cases in the BRATS competition.

  8. A fatal adverse effect of cefazolin administration: severe brain edema in a patient with multiple meningiomas.

    PubMed

    Tribuddharat, Sirirat; Sathitkarnmanee, Thepakorn; Kitkhuandee, Amnat; Theerapongpakdee, Sunchai; Ngamsaengsirisup, Kriangsak; Chanthawong, Sarinya

    2016-01-01

    Cefazolin is commonly administered before surgery as a prophylactic antibiotic. Hypersensitivity to cefazolin is not uncommon, and the symptoms mostly include urticaria, skin reaction, diarrhea, vomiting, and transient neutropenia, which are rarely life threatening. We present a rare case of fatal cefazolin hypersensitivity in a female who was diagnosed with multiple meningiomas and scheduled for craniotomy and tumor removal. Immediately after cefazolin IV administration, the patient developed acute hypertensive crisis, which resolved within 10 minutes after the treatment. This was followed by unexplained metabolic acidosis. The patient then developed severe brain edema 100 minutes later. The patient had facial edema when her face was exposed for the next 30 minutes. A computed tomography scan revealed global brain edema with herniation. She was admitted to the intensive care unit for symptomatic treatment and died 10 days after surgery from multiorgan failure. The serum IgE level was very high (734 IU/mL). Single-dose administration of cefazolin for surgical prophylaxis may lead to rare, fatal adverse reaction. The warning signs are sudden, unexplained metabolic acidosis, hypertensive crisis, tachycardia, and facial angioedema predominating with or without cutaneous symptoms like urticaria. PMID:26929668

  9. An Unusual Transudative Pleural Effusion Succeeded by Pulmonary and Brain Edema and Death

    PubMed Central

    Mortazavimoghaddam, Sayyed Gholam Reza; Riasi, H. R.

    2012-01-01

    Here we report a 22-year old woman with massive and bilateral transudative effusion succeeded by pulmonary edema and brain edema and death. Investigations for systemic disorders were negative. Exacerbation of dyspnea after intravenous fluid infusion was a main problem. As effusion was refractory to medical treatment, the patient was referred for surgical pleurodesis and bilateral surgical pleurodesis were done separately. Postsurgically, dyspnea exacerbation occurred after each common cold infection. Vertigo and high intracranial pressure were also a problem postsurgically. CSF pressure was 225 mm/H2O. Therapeutic lumbar puncture was done in two sequential weeks, and the patient was on acetazolamide 250 mg/trivise a day. Despite the medical treatment, progressive dyspnea, headache, and high intracranial pressure followed by death nine months after pleurodesis. As there is a gradient of pressure between pleura and CSF, after pleurodesis brain edema must be a consequence of inversing this gradient. In conclusion, when there are any abnormalities about fluid volume or pressure in any of these cavities, we have to study other cavities. PMID:22934227

  10. Topical mannitol reduces inflammatory edema in a rat model of arthritis.

    PubMed

    Cavone, L; Calosi, L; Cinci, L; Moroni, F; Chiarugi, A

    2012-01-01

    The hexahydric alcohol mannitol is widely used to shift fluids from the intracellular to the extracellular compartments, to increase diuresis and improve mucus clearance in the airways. In principle, because of its physicochemical properties, topical mannitol might also draw fluids out of epidermis or mucosa. Here, we report that topical mannitol applications on the hind paws of rats with adjuvant-induced arthritis reduced paw thickness and tissue edema without affecting the inflammatory infiltrates. Of note, the anti-edema effects of acute (4 h) mannitol application occurred earlier than those prompted by a similar treatment with classic anti-inflammatory drugs such as diclofenac or ketoprofen. Yet, the extent of edema reduction was higher with diclofenac or ketoprofen than with mannitol when the drugs were applied in a chronic (16 h) paradigm. Together, data demonstrate that topical application of mannitol exerts potent and fast anti-edema effects in a rat model of joint inflammation, suggesting a possible utilization in patients affected by osseo-arthritic disorders.

  11. Protective Effect of Quercetin against Oxidative Stress and Brain Edema in an Experimental Rat Model of Subarachnoid Hemorrhage

    PubMed Central

    Dong, Yu-shu; Wang, Ju-lei; Feng, Da-yun; Qin, Huai-zhou; Wen, Hua; Yin, Zhong-min; Gao, Guo-dong; Li, Chuan

    2014-01-01

    Quercetin has been demonstrated to play an important role in altering the progression of ischemic brain injuries and neurodegenerative diseases by protecting against oxidative stress. The effects of quercetin on brain damage after subarachnoid hemorrhage (SAH), however, have not been investigated. This study was designed to explore the effects of quercetin on oxidative stress and brain edema after experimental SAH using four equal groups (n = 16) of adult male Sprague-Dawley (SD) rats, including a sham group, an SAH + vehicle group, an SAH + quercetin10 group, and an SAH + quercetin50 group. The rat SAH model was induced by injection of 0.3 ml of non-heparinised arterial blood into the prechiasmatic cistern. In the SAH + quercetin10 and SAH + quercetin50 groups, doses of 10 mg/kg and 50 mg/kg quercetin, respectively, were directly administered by intraperitoneal injection at 30 min, 12 h, and 24 h after SAH induction. Cerebral tissue samples were extracted for enzymatic antioxidant determination, lipid peroxidation assay, caspase-3 activity and water content testing 48 h after SAH. Treatment with a high dose (50 mg/kg) of quercetin markedly enhanced the activities of copper/zinc superoxide dismutase (CuZn-SOD) and glutathione peroxidase (GSH-Px), and treatment with this dose significantly reduced the level of malondialdehyde (MDA). Caspase-3 and brain edema was ameliorated and neurobehavioral deficits improved in rats that received the high dose of quercetin. The findings suggest that the early administration of optimal dose of quercetin may ameliorate brain damage and provide neuroprotection in the SAH model, potentially by enhancing the activity of endogenous antioxidant enzymes and inhibiting free radical generation. PMID:24516353

  12. Volumetric electromagnetic phase-shift spectroscopy of brain edema and hematoma.

    PubMed

    Gonzalez, Cesar A; Valencia, Jose A; Mora, Alfredo; Gonzalez, Fernando; Velasco, Beatriz; Porras, Martin A; Salgado, Javier; Polo, Salvador M; Hevia-Montiel, Nidiyare; Cordero, Sergio; Rubinsky, Boris

    2013-01-01

    Motivated by the need of poor and rural Mexico, where the population has limited access to advanced medical technology and services, we have developed a new paradigm for medical diagnostic based on the technology of "Volumetric Electromagnetic Phase Shift Spectroscopy" (VEPS), as an inexpensive partial substitute to medical imaging. VEPS, can detect changes in tissue properties inside the body through non-contact, multi-frequency electromagnetic measurements from the exterior of the body, and thereby provide rapid and inexpensive diagnostics in a way that is amenable for use in economically disadvantaged parts of the world. We describe the technology and report results from a limited pilot study with 46 healthy volunteers and eight patients with CT radiology confirmed brain edema and brain hematoma. Data analysis with a non-parametric statistical Mann-Whitney U test, shows that in the frequency range of from 26 MHz to 39 MHz, VEPS can distinguish non-invasively and without contact, with a statistical significance of p<0.05, between healthy subjects and those with a medical conditions in the brain. In the frequency range of between 153 MHz to 166 MHz it can distinguish with a statistical significance of p<0.05 between subjects with brain edema and those with a hematoma in the brain. A classifier build from measurements in these two frequency ranges can provide instantaneous diagnostic of the medical condition of the brain of a patient, from a single set of measurements. While this is a small-scale pilot study, it illustrates the potential of VEPS to change the paradigm of medical diagnostic of brain injury through a VEPS classifier-based technology. Obviously substantially larger-scale studies are needed to verify and expand on the findings in this small pilot study.

  13. Volumetric Electromagnetic Phase-Shift Spectroscopy of Brain Edema and Hematoma

    PubMed Central

    Gonzalez, Cesar A.; Valencia, Jose A.; Mora, Alfredo; Gonzalez, Fernando; Velasco, Beatriz; Porras, Martin A.; Salgado, Javier; Polo, Salvador M.; Hevia-Montiel, Nidiyare; Cordero, Sergio; Rubinsky, Boris

    2013-01-01

    Motivated by the need of poor and rural Mexico, where the population has limited access to advanced medical technology and services, we have developed a new paradigm for medical diagnostic based on the technology of “Volumetric Electromagnetic Phase Shift Spectroscopy” (VEPS), as an inexpensive partial substitute to medical imaging. VEPS, can detect changes in tissue properties inside the body through non-contact, multi-frequency electromagnetic measurements from the exterior of the body, and thereby provide rapid and inexpensive diagnostics in a way that is amenable for use in economically disadvantaged parts of the world. We describe the technology and report results from a limited pilot study with 46 healthy volunteers and eight patients with CT radiology confirmed brain edema and brain hematoma. Data analysis with a non-parametric statistical Mann-Whitney U test, shows that in the frequency range of from 26 MHz to 39 MHz, VEPS can distinguish non-invasively and without contact, with a statistical significance of p<0.05, between healthy subjects and those with a medical conditions in the brain. In the frequency range of between 153 MHz to 166 MHz it can distinguish with a statistical significance of p<0.05 between subjects with brain edema and those with a hematoma in the brain. A classifier build from measurements in these two frequency ranges can provide instantaneous diagnostic of the medical condition of the brain of a patient, from a single set of measurements. While this is a small-scale pilot study, it illustrates the potential of VEPS to change the paradigm of medical diagnostic of brain injury through a VEPS classifier-based technology. Obviously substantially larger-scale studies are needed to verify and expand on the findings in this small pilot study. PMID:23691001

  14. The genesis of peritumoral vasogenic brain edema and tumor cysts: a hypothetical role for tumor-derived vascular permeability factor.

    PubMed Central

    Criscuolo, G. R.

    1993-01-01

    Cerebral edema and fluid-filled cysts are common accompaniments of brain tumors. They contribute to the mass effect imposed by the primary tumor and are often responsible for a patient's signs and symptoms. Cerebral edema significantly increases the morbidity associated with tumor biopsy, excision, radiation therapy, and chemotherapy. Both edema and cyst formation are thought to result from a deficiency in the blood-brain barrier, with consequent extravasation of water, electrolytes, and plasma proteins from altered tumor microvessels. The resultant expansion of the cerebral interstitial space contributes to the elevated intracranial pressure observed with brain tumors. Departure from the typical blood-brain barrier microvascular architecture may only partially explain the occurrence of edema and tumor cyst formation. Biochemical mediators have also been implicated in vascular extravasation. Vascular permeability factor or vascular endothelial growth factor (VPF/VEGF) is a protein that has recently been isolated from a variety of tumors including human brain tumors. VPFb is an extraordinarily potent inducer of both microvascular extravasation (edemagenesis) and the formation of new blood vessels (angiogenesis). Its role in tumor growth and progression would therefore appear pivotal. Herein, the author presents an updated account of the investigation of VPF. Historical and clinical perspectives of the study and treatment of tumor associated edema are provided. The efficacy of high-dose dexamethasone in the treatment of neoplastic brain edema is discussed. A hypothetical role for VPF in edemagenesis is presented and discussed. It is hoped that an expanded understanding of the mechanisms responsible for the genesis of edema will ultimately facilitate therapeutic intervention. Images Figure 1 Figure 2 Figure 3 PMID:7516104

  15. Amelioration of cold injury-induced cortical brain edema formation by selective endothelin ETB receptor antagonists in mice.

    PubMed

    Michinaga, Shotaro; Nagase, Marina; Matsuyama, Emi; Yamanaka, Daisuke; Seno, Naoki; Fuka, Mayu; Yamamoto, Yui; Koyama, Yutaka

    2014-01-01

    Brain edema is a potentially fatal pathological condition that often occurs in stroke and head trauma. Following brain insults, endothelins (ETs) are increased and promote several pathophysiological responses. This study examined the effects of ETB antagonists on brain edema formation and disruption of the blood-brain barrier in a mouse cold injury model (Five- to six-week-old male ddY mice). Cold injury increased the water content of the injured cerebrum, and promoted extravasation of both Evans blue and endogenous albumin. In the injury area, expression of prepro-ET-1 mRNA and ET-1 peptide increased. Intracerebroventricular (ICV) administration of BQ788 (ETB antagonist), IRL-2500 (ETB antagonist), or FR139317 (ETA antagonist) prior to cold injury significantly attenuated the increase in brain water content. Bolus administration of BQ788, IRL-2500, or FR139317 also inhibited the cold injury-induced extravasation of Evans blue and albumin. Repeated administration of BQ788 and IRL-2500 beginning at 24 h after cold injury attenuated both the increase in brain water content and extravasation of markers. In contrast, FR139317 had no effect on edema formation when administrated after cold injury. Cold injury stimulated induction of glial fibrillary acidic protein-positive reactive astrocytes in the injured cerebrum. Induction of reactive astrocytes after cold injury was attenuated by ICV administration of BQ788 or IRL-2500. These results suggest that ETB receptor antagonists may be an effective approach to ameliorate brain edema formation following brain insults.

  16. Association Between a Quantitative CT Scan Measure of Brain Edema and Outcome After Cardiac Arrest

    PubMed Central

    Metter, Robert B.; Rittenberger, Jon C.; Guyette, Francis X.; Callaway, Clifton W.

    2011-01-01

    Background Cerebral edema is one physical change associated with brain injury and decreased survival after cardiac arrest. Edema appears on computed tomography (CT) scan of the brain as decreased x-ray attenuation by gray matter. This study tested whether the gray matter attenuation to white matter attenuation ratio (GWR) was associated with survival and functional recovery. Methods Subjects were patients hospitalized after cardiac arrest at a single institution between 1/1/2005 and 7/30/2010. Subjects were included if they had non-traumatic cardiac arrest and a non-contrast CT scan within 24 hours after cardiac arrest. Attenuation (Hounsfield Units) was measured in gray matter (caudate nucleus, putamen, thalamus, and cortex) and in white matter (internal capsule, corpus callosum and centrum semiovale). The GWR was calculated for basal ganglia and cerebrum. Outcomes included survival and functional status at hospital discharge. Results For 680 patients, 258 CT scans were available, but 18 were excluded because of hemorrhage (10), intravenous contrast (3) or technical artifact (5), leaving 240 CT scans for analysis. Lower GWR values were associated with lower initial Glasgow Coma Scale motor score. Overall survival was 36%, but decreased with decreasing GWR. The average of basal ganglia and cerebrum GWR provided the best discrimination. Only 2/58 subjects with average GWR<1.20 survived and both were treated with hypothermia. The association of GWR with functional outcome was completely explained by mortality when GWR<1.20. Conclusions Subjects with severe cerebral edema, defined by GWR<1.20, have very low survival with conventional care, including hypothermia. GWR estimates pre-treatment likelihood of survival after cardiac arrest. PMID:21592642

  17. Microvascular perfusion during focal vasogenic brain edema: a scanning laser fluorescence microscopy study.

    PubMed

    Lindsberg, P J; Sirén, A L; Hallenbeck, J M

    1997-01-01

    Controversy exists about the effect of tissue edema on cerebral microcirculation. High spatial resolution is required for observation of extravasation and microcirculation during focal vasogenic edema formation. To study the relationship between tissue edema and perfusion, we developed a technique for simultaneous visualization of extravasation and microvessel perfusion in rats. Focal intracortical microvascular injury was generated with a 1-sec Nd-YAG laser pulse. Evans blue albumin (EBA) was infused 30 min before decapitation to study extravasation and FITC-dextran was injected 30 sec prior to decapitation to examine microvessel perfusion. Computerized scanning laser-excited fluorescence microscopy followed by high resolution image analysis permitted quantitative assessment of both parameters on single fresh-frozen brain sections. Studied at 30 min (3.66 +/- 0.15 mm), 2 hr (4.14 +/- 0.08 mm, P < .05), and 8 hr (4.69 +/- 0.18 mm, P < .01) after injury, the diameter of the circular, sharply demarcated zone of EBA-extravasation increased progressively. At 30 min, microvessels at a zone surrounding the area of EBA-extravasation contained 69 +/- 14% (P < .05) more fluorescent FITC-filling than in the control hemisphere, but the density of perfused microvessels was unchanged. At 2 hr, secondary tissue changes had already occurred in a zone surrounding the initial laser lesion. While severe reduction in the density (-76 +/- 13%, P < .05) of perfused microvessels was observed within 400 to 240 microm inside the border of EBA extravasation, perfusion indexes were normal despite the presence of extravasated plasma constituents within 0-80 microm from the border. In a narrow zone (80 microm) outside the border of extravasation, individual microvessels contained 34 +/- 9% (P < .01) less FITC-fluorescence than those in a homologous area of the uninjured contralateral hemisphere. This report demonstrates the feasibility of simultaneous measurement and high-resolution mapping

  18. Severity profile of penetrating ballistic-like brain injury on neurofunctional outcome, blood-brain barrier permeability, and brain edema formation.

    PubMed

    Shear, Deborah A; Lu, Xi-Chun May; Pedersen, Rebecca; Wei, Guo; Chen, Zhiyong; Davis, Angela; Yao, Changping; Dave, Jitendra; Tortella, Frank C

    2011-10-01

    This study evaluated the injury severity profile of unilateral, frontal penetrating ballistic-like brain injury (PBBI) on neurofunctional outcome, blood-brain barrier (BBB) permeability, and brain edema formation. The degree of injury severity was determined by the delivery of a water-pressure pulse designed to produce a temporary cavity by rapid (<40 ms) expansion of the probe's elastic balloon calibrated to equal 5%, 10%, 12.5%, or 15% of total rat brain volume (control groups consisted of sham surgery or insertion of the probe only). Neurofunctional assessments revealed motor and cognitive deficits related to the degree of injury severity, with the most clear-cut profile of PBBI injury severity depicted by the Morris water maze (MWM) results. A biphasic pattern of BBB leakage was detected in the injured hemisphere at all injury severity levels at 4 h post-injury, and again at 48-72 h post-injury, which remained evident out to 7 days post-PBBI in the 10% and 12.5% PBBI groups. Likewise, significant brain edema was detected in the injured hemisphere by 4 h post-injury and remained elevated out to 7 days post-injury in the 10% and 12.5% PBBI groups. However, following 5% PBBI, significant levels of edema were only detected from 24 h to 48h post-injury. These results identify an injury severity profile of BBB permeability, brain edema, and neurofunctional impairment that provides sensitive and clinically relevant outcome metrics for studying potential therapeutics.

  19. Depot delivery of dexamethasone and cediranib for the treatment of brain tumor associated edema in an intracranial rat glioma model.

    PubMed

    Ong, Qunya; Hochberg, Fred H; Cima, Michael J

    2015-11-10

    Treatments of brain tumor associated edema with systemically delivered dexamethasone, the standard of care, and cediranib, a novel anti-edema agent, are associated with systemic toxicities in brain tumor patients. A tunable, reservoir-based drug delivery device was developed to investigate the effects of delivering dexamethasone and cediranib locally in the brain in an intracranial 9L gliosarcoma rat model. Reproducible, sustained releases of both dexamethasone and solid dispersion of cediranib in polyvinylpyrrolidone (AZD/PVP) from these devices were achieved. The water-soluble AZD/PVP, which exhibited similar bioactivity as cediranib, was developed to enhance the release of cediranib from the device. Local and systemic administration of both dexamethasone and cediranib was equally efficacious in alleviating edema but had no effect on tumor growth. Edema reduction led to modest but significant improvement in survival. Local delivery of dexamethasone prevented dexamethasone-induced weight loss, an adverse effect seen in animals treated with systemic dexamethasone. Local deliveries of dexamethasone and cediranib via these devices used only 2.36% and 0.21% of the systemic doses respectively, but achieved similar efficacy as systemic drug deliveries without the side effects associated with systemic administration. Other therapeutic agents targeting brain tumor can be delivered locally in the brain to provide similar improved treatment outcomes.

  20. Midline-shift corresponds to the amount of brain edema early after hemispheric stroke--an MRI study in rats.

    PubMed

    Walberer, Maureen; Blaes, Franz; Stolz, Erwin; Müller, Clemens; Schoenburg, Markus; Tschernatsch, Marlene; Bachmann, Georg; Gerriets, Tibo

    2007-04-01

    Vasogenic brain edema formation is a serious complication in hemispheric stroke. Its space-occupying effect can lead to midline-shift (MLS), cerebral herniation, and death. Clinical studies indicate that quantification of MLS can predict cerebral herniation and subsequent death at early time-points, even before clinical deterioration becomes apparent. The present experimental study was designed to determine the relation between MLS, absolute edema volume, lesion size, and clinical findings in a rat stroke model. Middle cerebral artery-occlusion was performed in 24 rats using the suture technique. Clinical evaluation and magnetic resonance imaging (MRI) (Bruker PharmaScan 7.0T) was performed 24 hours later. Lesion volume, the volume-increase within the affected hemisphere (%HEV), and MLS were quantified on T2-weighted images. The absolute increase of hemispheric water content (DeltaH2O) was determined in a subgroup using the wet-dry method (n=12). MLS correlated significantly with the total amount of brain edema (magnetic resonance imaging study: r=0.82; P<0.01; wet-dry analysis r=0.80; P<0.01). MLS correlated only moderately with T2-lesion volume (r=0.55; P<0.01). No significant correlation could be detected between MLS and clinical scores (r=0.26; P>0.05). MLS thus quantitatively reflects the amount of vasogenic brain edema within the affected hemisphere at early time-points. MLS quantification can be regarded as an easily assessable and valid global quantitative parameter for brain edema and thus might facilitate the surgical and nonsurgical management of edema in acute stroke patients. PMID:17413996

  1. Brain natriuretic peptide levels in six basic underwater demolitions/SEAL recruits presenting with swimming induced pulmonary edema (SIPE).

    PubMed

    Shearer, Damon; Mahon, Richard

    2009-01-01

    Swimming induced pulmonary edema (SIPE) is associated with both SCUBA diving and strenuous surface swimming; however, the majority of reported cases and clinically observed cases tend to occur during or after aggressive surface swimming. Capillary stress failure appears to be central to the pathophysiology of this disorder. Regional pulmonary capillaries are exposed to relatively high pressures secondary to increased vascular volume, elevation of pulmonary vascular resistance, and regional differences in perfusion secondary to forces of gravity and high cardiac output. Acute pulmonary edema can be classified as either cardiogenic or noncardiogenic or both. Cardiogenic pulmonary edema occurs when the pulmonary capillary hydrostatic pressure exceeds plasma oncotic pressure. Noncardiogenic pulmonary edema occurs when pulmonary capillary permeability is increased. Given the pathophysiology noted above, SIPE can be described as a cardiogenic pulmonary edema, at least in part, since an increased transalveolar pressure gradient has been implicated in the pathogenesis of SIPE. Brain natriuretic peptide (BNP) is used in the clinical setting to differentiate cardiac from pulmonary sources of dyspnea, specifically to diagnose cardiogenic pulmonary edema. During clinical management, BNP levels were drawn on six BUD/S recruits simultaneously presenting with pulmonary complaints consistent with SIPE, after an extended surface bay swim. This paper analyzes that data after de-identification and reviews the pathophysiology and clinical management of SIPE.

  2. Curcumin alleviates brain edema by lowering AQP4 expression levels in a rat model of hypoxia-hypercapnia-induced brain damage

    PubMed Central

    YU, LIN-SHENG; FAN, YAN-YAN; YE, GUANGHUA; LI, JUNLI; FENG, XIANG-PING; LIN, KEZHI; DONG, MIUWU; WANG, ZHENYUAN

    2016-01-01

    The present study aimed to investigate the therapeutic effects of curcumin (CU) against brain edema in a rat model of hypoxia-hypercapnia (HH)-induced brain damage (HHBD). Male Sprague-Dawley rats were divided into five groups, including a control group and four treatment groups. The rats in the control group were raised under normal laboratory conditions and were injected with water, whereas the rats in the treatment groups were exposed to a low O2/high CO2 environment simulating HH conditions, and were injected with water, CU, dimethyl sulfoxide (solvent control) or monosialoganglioside GM1. After 2 weeks, the morphological characteristics of the brain tissues were analyzed using optical and electron microscopy. In addition, aquaporin (AQP)-4 protein expression levels in brain tissue samples were analyzed using streptavidin-biotin complex immunohistochemistry and western blotting, and mRNA expression levels were detected using reverse transcription-quantitative polymerase chain reaction. Severe brain edema, tissue structure disruption and increased AQP4 expression levels were detected in the brain tissues of the HH rats. Conversely, the rats treated with CU or GM1 exhibited attenuated HHBD-induced brain edema and tissue structure disruption, and decreased mRNA and protein expression levels of AQP4. The results of the present study suggested that CU treatment was able to attenuate HHBD-induced brain edema by downregulating the expression levels of AQP4 in a rat model. Therefore, CU may be considered a potential therapeutic drug for the treatment of patients with brain edema. PMID:26997983

  3. Relationship between specific gravity, water content, and serum protein extravasation in various types of vasogenic brain edema.

    PubMed

    Bothe, H W; Bodsch, W; Hossmann, K A

    1984-01-01

    Vasogenic brain edema was induced in cats by cold injury (six animals), brain tumors (five animals), and brain abscesses (six animals). Water and electrolyte content, specific gravity, blood volume, and the amount of extravasated serum proteins were determined in small tissue samples taken from gray and white matter at various distances from the lesion. Edema was strictly confined to the white matter of the affected hemisphere and declined from the lesion to the more peripheral regions. It was characterized by the extravasation of serum proteins and an increase of water and sodium content with little or unpredictable changes of potassium and blood volume. The calculated sodium content of edema fluid varied between 129 and 135 mueq/ml, and serum protein content between 8.1 and 11.9 mg/ml. In all three types of edema, specific gravity and water content correlated closely with the same slope and intercept of the calculated regression (y = 1.119-0.0011 x, r = -0.91). The results obtained indicate that the main denominator of specific gravity of edematous white matter is water content and that this relationship is not significantly altered by variations of blood volume or serum protein content. PMID:6475495

  4. What predicts early volumetric edema increase following stereotactic radiosurgery for brain metastases?

    PubMed

    Hanna, Andrew; Boggs, D Hunter; Kwok, Young; Simard, Marc; Regine, William F; Mehta, Minesh

    2016-04-01

    A volumetric analysis of pre- and post-radiosurgery (PreSRS and PostSRS) edema in patients with cerebral metastases was performed to determine factors of a predictive model assessing the risk of developing increased edema relatively early after SRS. One-hundred-fourteen metastases in 55 patients were analyzed. Selection for this analysis required an MRI ≤ 30 days before SRS and an MRI ≤ 100 days after SRS. Tumor volumes were calculated on PreSRS, SRS, and PostSRS T1-weighted postgadolinium images while edema volumes were calculating using PreSRS and PostSRS fluid-attenuated inversion recovery MR images. An increase in edema was defined as an increase in measurable edema of at least 5%. We developed and evaluated a model predicting the relative risk (RR) of increased edema after SRS. Peritumoral edema increased in 18% (21/114) of the analyzed lesions. Melanoma/renal histology, recursive partitioning analysis class III, and prior WBRT carried RRs of developing postSRS edema increase of 2.45, 2.48, and 3.16, respectively (all P values <0.05). The PreSRS edema/tumor ratio predicted for a RR of 1.007/ratio unit, and steroid dose at time of SRS predicted for a RR of 0.89/mg (all P values <0.05). A predictive model for assessing the RR of increased edema after SRS was developed based from these data and may be useful in identifying patients who might benefit from prophylactic anti-edema therapies before, during, or after SRS. This model could be used as the basis of inclusion criteria for prospective trials investigating novel anti-edema therapies. PMID:26721241

  5. Electron microscopic features of brain edema in rodent cerebral malaria in relation to glial fibrillary acidic protein expression.

    PubMed

    Ampawong, Sumate; Chaisri, Urai; Viriyavejakul, Parnpen; Nontprasert, Apichart; Grau, Georges E; Pongponratn, Emsri

    2014-01-01

    The mechanisms leading to cerebral malaria (CM) are not completely understood. Brain edema has been suggested as having an important role in experimental CM. In this study, CBA/CaH mice were infected with Plasmodium berghei ANKA blood-stage and when typical symptoms of CM developed on day 7, brain tissues were processed for electron-microscopic and immunohistochemical studies. The study demonstrated ultrastructural hallmarks of cerebral edema by perivascular edema and astroglial dilatation confirming existing evidence of vasogenic and cytogenic edema. This correlates closely with the clinical features of CM. An adaptive response of astrocytic activity, represented by increasing glial fibrillary acidic protein (GFAP) expression in the perivascular area and increasing numbers of large astrocyte clusters were predominately found in the CM mice. The presence of multivesicular and lamellar bodies indicates the severity of cerebral damage in experimental CM. Congestion of the microvessels with occluded white blood cells (WBCs), parasitized red blood cells (PRBCs) and platelets is also a crucial covariate role for CM pathogenesis.

  6. YiQiFuMai powder injection ameliorates blood–brain barrier dysfunction and brain edema after focal cerebral ischemia–reperfusion injury in mice

    PubMed Central

    Cao, Guosheng; Ye, Xinyi; Xu, Yingqiong; Yin, Mingzhu; Chen, Honglin; Kou, Junping; Yu, Boyang

    2016-01-01

    YiQiFuMai powder injection (YQFM) is a modern preparation derived from the traditional Chinese medicine Sheng-Mai-San. YQFM is widely used in clinical practice in the People’s Republic of China, mainly for the treatment of microcirculatory disturbance-related diseases. However, little is known about its role in animals with ischemic stroke. The aim of this study was to examine the effect of YQFM on brain edema and blood–brain barrier (BBB) dysfunction induced by cerebral ischemia–reperfusion (I/R) injury. Male C57BL/6J mice underwent right middle cerebral artery occlusion for 1 hour with a subsequent 24-hour reperfusion to produce I/R injury. YQFM (three doses: 0.336, 0.671, and 1.342 g/kg) was then given intraperitoneally (IP). The results demonstrated that YQFM significantly decreased infarct size, improved neurological deficits, reduced brain water content, and increased cerebral blood flow after I/R injury. 18F-fluorodeoxyglucose micro-positron emission tomography imaging and hematoxylin and eosin staining results indicated that YQFM is able to ameliorate brain metabolism and histopathological damage after I/R. Moreover, YQFM administration reduced BBB leakage and upregulated the expression of zona occludens-1 (ZO-1) and occludin, which was confirmed by Evans Blue extravasation, Western blotting, and immunofluorescence assay. Our findings suggest that YQFM provides protection against focal cerebral I/R injury in mice, possibly by improving BBB dysfunction via upregulation of the expression of tight junction proteins. PMID:26834461

  7. Improvement of cold injury-induced mouse brain edema by endothelin ETB antagonists is accompanied by decreases in matrixmetalloproteinase 9 and vascular endothelial growth factor-A.

    PubMed

    Michinaga, Shotaro; Seno, Naoki; Fuka, Mayu; Yamamoto, Yui; Minami, Shizuho; Kimura, Akimasa; Hatanaka, Shunichi; Nagase, Marina; Matsuyama, Emi; Yamanaka, Daisuke; Koyama, Yutaka

    2015-09-01

    Brain edema is a potentially fatal pathological state that often occurs after brain injuries such as ischemia and trauma. However, therapeutic agents that fundamentally treat brain edema have not yet been established. We previously found that endothelin ETB receptor antagonists attenuate the formation and maintenance of vasogenic brain edema after cold injury in mice. In this study, the effects of ETB antagonists on matrixmetalloproteinase (MMP)9 and vascular endothelial growth factor (VEGF)-A expression were examined in the cold injury model. Cold injury was performed in the left brain of male ddY mice (5-6 weeks old) for the induction of vasogenic edema. Expression of MMP9 and VEGF-A mRNA in the mouse cerebrum was increased by cold injury. Immunohistochemical observations showed that the MMP9 and VEGF-A were mainly produced in reactive astrocytes in the damaged cerebrum. Intracerebroventricular administration of BQ788 (10 μg) or IRL-2500 (10 μg) (selective ETB antagonists) attenuated brain edema and disruption of the blood-brain barrier after cold injury. BQ788 and IRL-2500 reversed the cold injury-induced increases in MMP9 and VEGF-A expression. The induction of reactive astrocytes producing MMP9 and VEGF-A in the damaged cerebrum was attenuated by BQ788 and IRL-2500. These results suggest that attenuations of astrocytic MMP9 and VEGF-A expression by ETB antagonists may be involved in the amelioration of vasogenic brain edema.

  8. Reduction of the prenatal hypoxic-ischemic brain edema with noscapine.

    PubMed

    Mahmoudian, M; Siadatpour, Zahra; Ziai, S A; Mehrpour, M; Benaissa, Faouzya; Nobakht, M

    2003-01-01

    Cytotoxic free radicals and release of several neurotransmitters such as bradykinin contribute to the pathogenesis of hypoxic-ischemic brain damage. We have studied the efficacy of noscapine, an opium alkaloid and a bradykinin antagonist, in reducing post-hypoxic-ischemic damage in developing brain of 7-d-old rat pups. Hypoxic-ischemic injury to the right cerebral hemisphere was produced by legation of the right common carotid artery followed by 3 h of hypoxia with 8% oxygen. Thirty to 45 min before hypoxia the rat pups received noscapine (dose = 0.5-2 mg/kg) or saline. Pups were scarified at 24 h post recovery for the assessment of cerebral damage by histological methods. Our results showed that noscapine was an effective agent in reducing the extent of brain injury after hypoxic-ischemic insult to neonatal rats. Therefore, it is concluded that noscapine may be a useful drug in the managements of patients after stroke.

  9. Effects of Different Doses of Levetiracetam on Aquaporin 4 Expression in Rats with Brain Edema Following Fluid Percussion Injury.

    PubMed

    Jin, Hongbo; Li, Wenling; Dong, Changzheng; Ma, Li; Wu, Jiang; Zhao, Wenqing

    2016-01-01

    BACKGROUND This study was designed to investigate the effects of different doses of levetiracetam on aquaporin 4 (AQP4) expression in rats after fluid percussion injury. MATERIAL AND METHODS Sprague-Dawley rats were randomly divided into 4 groups: sham operation group, traumatic brain injury group, low-dose levetiracetam group, and high-dose levetiracetam group. Brain edema models were established by fluid percussion injury, and intervened by the administration of levetiracetam. Samples from the 4 groups were collected at 2, 6, 12, and 24 h, and at 3 and 7 days after injury. Histological observation was performed using hematoxylin-eosin staining and immunohistochemical staining. AQP4 and AQP4 mRNA expression was detected using Western blot assay and RT-PCR. Brain water content was measured by the dry-wet method. RESULTS Compared with the traumatic brain injury group, brain water content, AQP4 expression, and AQP4 mRNA expression were lower in the levetiracetam groups at each time point and the differences were statistically significant (P<0.05). The intervention effects of high-dose levetiracetam were more apparent. CONCLUSIONS Levetiracetam can lessen brain edema from fluid percussion injury by down-regulating AQP4 and AQP4 mRNA expression. There is a dose-effect relationship in the preventive effect of levetiracetam within a certain extent. PMID:26927633

  10. Effects of Different Doses of Levetiracetam on Aquaporin 4 Expression in Rats with Brain Edema Following Fluid Percussion Injury

    PubMed Central

    Jin, Hongbo; Li, Wenling; Dong, Changzheng; Ma, Li; Wu, Jiang; Zhao, Wenqing

    2016-01-01

    Background This study was designed to investigate the effects of different doses of levetiracetam on aquaporin 4 (AQP4) expression in rats after fluid percussion injury. Material/Methods Sprague-Dawley rats were randomly divided into 4 groups: sham operation group, traumatic brain injury group, low-dose levetiracetam group, and high-dose levetiracetam group. Brain edema models were established by fluid percussion injury, and intervened by the administration of levetiracetam. Samples from the 4 groups were collected at 2, 6, 12, and 24 h, and at 3 and 7 days after injury. Histological observation was performed using hematoxylin-eosin staining and immunohistochemical staining. AQP4 and AQP4 mRNA expression was detected using Western blot assay and RT-PCR. Brain water content was measured by the dry-wet method. Results Compared with the traumatic brain injury group, brain water content, AQP4 expression, and AQP4 mRNA expression were lower in the levetiracetam groups at each time point and the differences were statistically significant (P<0.05). The intervention effects of high-dose levetiracetam were more apparent. Conclusions Levetiracetam can lessen brain edema from fluid percussion injury by down-regulating AQP4 and AQP4 mRNA expression. There is a dose-effect relationship in the preventive effect of levetiracetam within a certain extent. PMID:26927633

  11. Imatinib treatment reduces brain injury in a murine model of traumatic brain injury

    PubMed Central

    Su, Enming J.; Fredriksson, Linda; Kanzawa, Mia; Moore, Shannon; Folestad, Erika; Stevenson, Tamara K.; Nilsson, Ingrid; Sashindranath, Maithili; Schielke, Gerald P.; Warnock, Mark; Ragsdale, Margaret; Mann, Kris; Lawrence, Anna-Lisa E.; Medcalf, Robert L.; Eriksson, Ulf; Murphy, Geoffrey G.; Lawrence, Daniel A.

    2015-01-01

    Current therapies for Traumatic brain injury (TBI) focus on stabilizing individuals and on preventing further damage from the secondary consequences of TBI. A major complication of TBI is cerebral edema, which can be caused by the loss of blood brain barrier (BBB) integrity. Recent studies in several CNS pathologies have shown that activation of latent platelet derived growth factor-CC (PDGF-CC) within the brain can promote BBB permeability through PDGF receptor α (PDGFRα) signaling, and that blocking this pathway improves outcomes. In this study we examine the efficacy for the treatment of TBI of an FDA approved antagonist of the PDGFRα, Imatinib. Using a murine model we show that Imatinib treatment, begun 45 min after TBI and given twice daily for 5 days, significantly reduces BBB dysfunction. This is associated with significantly reduced lesion size 24 h, 7 days, and 21 days after TBI, reduced cerebral edema, determined from apparent diffusion co-efficient (ADC) measurements, and with the preservation of cognitive function. Finally, analysis of cerebrospinal fluid (CSF) from human TBI patients suggests a possible correlation between high PDGF-CC levels and increased injury severity. Thus, our data suggests a novel strategy for the treatment of TBI with an existing FDA approved antagonist of the PDGFRα. PMID:26500491

  12. Roles of changes in active glutamine transport in brain edema development during hepatic encephalopathy: an emerging concept.

    PubMed

    Zielińska, Magdalena; Popek, Mariusz; Albrecht, Jan

    2014-01-01

    Excessive glutamine (Gln) synthesis in ammonia-overloaded astrocytes contributes to astrocytic swelling and brain edema, the major complication of hepatic encephalopathy (HE). Much of the newly formed Gln is believed to enter mitochondria, where it is recycled to ammonia, which causes mitochondrial dysfunction (a "Trojan horse" mode of action). A portion of Gln may increase osmotic pressure in astrocytes and the interstitial space, directly and independently contributing to brain tissue swelling. Here we discuss the possibility that altered functioning of Gln transport proteins located in the cellular or mitochondrial membranes, modulates the effects of increased Gln synthesis. Accumulation of excess Gln in mitochondria involves a carrier-mediated transport which is activated by ammonia. Studies on the expression of the cell membrane N-system transporters SN1 (SNAT3) and SN2 (SNAT5), which mediate Gln efflux from astrocytes rendered HE model-dependent effects. HE lowered the expression of SN1 at the RNA and protein level in the cerebral cortex (cc) in the thioacetamide (TAA) model of HE and the effect paralleled induction of cerebral cortical edema. Neither SN1 nor SN2 expression was affected by simple hyperammonemia, which produces no cc edema. TAA-induced HE is also associated with decreased expression of mRNA coding for the system A carriers SAT1 and SAT2, which stimulate Gln influx to neurons. Taken together, changes in the expression of Gln transporters during HE appear to favor retention of Gln in astrocytes and/or the interstitial space of the brain. HE may also affect arginine (Arg)/Gln exchange across the astrocytic cell membrane due to changes in the expression of the hybrid Arg/Gln transporter y(+)LAT2. Gln export from brain across the blood-brain barrier may be stimulated by HE via its increased exchange with peripheral tryptophan. PMID:24072671

  13. Radiation brain injury is reduced by the polyamine inhibitor [alpha]-difluoromethylornithine

    SciTech Connect

    Fike, J.R.; Seilhan, T.M.; Gobbel, G.T. ); Marton, L.J. )

    1994-04-01

    [alpha]-difluoromethylornithine (DFMO) was used to reduce [sup 125]I-induced brain injury in normal beagle dogs. Different DFMO doses and administration schedules were used to determine if the reduction in brain injury was dependent on dose and/or dependent upon when the drug was administered relative to the radiation treatment. Doses of DMFO of 75 mg/kg/day and 37.5 mg/kg/day given 2 days before, during and for 14 days after irradiation reduced levels of putrescine (PU) in the cerebrospinal fluid relative to controls. Volume of edema was significantly reduced by 75 mg/kg/day of DFMO before, during and after irradiation and by the same dose when the drug was started immediately after irradiation. A reduction in edema volume after 37.5 mg/kg/day of DFMO before, during and after irradiation was very near significance. Ultrafast CT studies performed on dogs that received a DFMO dose of 75 mg/kg/day before, during and after irradiation suggested that the reduce edema volume was associated with reduced vascular permeability. Volume of necrosis and volume of contrast enhancement (breakdown of the blood-brain barrier) were significantly lower than controls only after a DFMO dose of 75 mg/kg/day before, during and after irradiation. These latter data, coupled with the findings relative to edema, suggest that different mechanisms may be involved with respect to the effects of DFMO on brain injury, or that the extents of edema, necrosis and breakdown of the blood-brain barrier may depend upon different levels of polyamine depletion. The precise mechanisms by which DFMO exerts the effects observed here need to be determined. 41 refs., 5 figs.

  14. Neurological deficits and brain edema after intracerebral hemorrhage in Mongolian gerbils.

    PubMed

    Kuroiwa, T; Okauchi, M; Hua, Y; Schallert, T; Keep, R F; Xi, G

    2008-01-01

    We examined the time course of neurological deficits in gerbils after an intracerebral hemorrhage (ICH) induced by autologous blood infusion and examined its correlation with the severity of perihematomal edema. Mongolian gerbils (n = 15) were subjected to stereotaxic autologous blood infusion (30 or 60 microL) into the left caudate nucleus. Corner-turn and forelimb-placing tests were performed before, and 1 and 3 days after ICH. Perihematomal water content was measured by tissue gravimetry. Gerbils developed neurological deficits and perihematomal edema at day 1 after ICH. Both neurological deficits and perihematomal edema were significantly greater in animals with 60 microL blood infusion compared to the 30 microL infusion group, and both neurological deficits and edema were also greater at 3 days compared to 1 day after ICH. The severity of neurological deficits paralleled the degree of perihematomal edema. We conclude that the Mongolian gerbil is a suitable model for studies on the behavioral effects of ICH. PMID:19066097

  15. Increased expression of vascular endothelial growth factor attenuates contusion necrosis without influencing contusion edema after traumatic brain injury in rats.

    PubMed

    Tado, Masahiro; Mori, Tatsuro; Fukushima, Masamichi; Oshima, Hideki; Maeda, Takeshi; Yoshino, Atsuo; Aizawa, Shin; Katayama, Yoichi

    2014-04-01

    To clarify the role of vascular endothelial growth factor (VEGF) in the formation of contusion edema and necrosis after traumatic brain injury, we examined the time course of changes in the VEGF expression (enzyme-linked immunosorbent assay), cerebrovascular permeability (extravasation of Evans blue), and water content (dry-wet weight method) of the contused brain tissue in a cortical impact injury model using rats. In addition, we tested the effects of administration of bevacizumab (VEGF monoclonal antibody) on changes in the cerebrovascular permeability and water content of the contused brain tissue, as well as the neurological deficits (rota rod test) and volume of contusion necrosis. Increased VEGF expression was maximal at 72 h after injury (p<0.003). Increases in cerebrovascular permeability and water content, however, became maximal within 24 h (p<0.001) after injury (p<0.01), respectively. Administration of bevacizumab did not influence these changes in cerebrovascular permeability and water content, but led to a significant rise in the neurological deficits at 72 h-14 days (p<0.05 or 0.01) and the volume of contusion necrosis at 21 days (p<0.001) after injury. These findings suggest that increased expression of VEGF after injury does not contribute to the formation of contusion edema, but attenuates the formation of contusion necrosis. This is probably because of an increased angiogenesis and improved microcirculation in the areas surrounding the core of contusion. PMID:24294928

  16. Pulmonary edema

    MedlinePlus

    ... congestion; Lung water; Pulmonary congestion; Heart failure - pulmonary edema ... Pulmonary edema is often caused by congestive heart failure . When the heart is not able to pump efficiently, blood ...

  17. An improved gravimetric measure of cerebral edema.

    PubMed

    Marmarou, A; Tanaka, K; Shulman, K

    1982-02-01

    Significant errors are introduced into the measurement of brain tissue water by the specific gravity technique when the edema fluid contains protein. Protein adds to the tissue solids, increasing the density of the tissue, and masks the proportional increase of brain water. Existing equations relating measured specific gravity and tissue water are not applicable, and a new formula was developed that compensates for the protein component of edema and reduces the experimental error. The new method was applied to the measurement of tissue water in cat brain made edematous by direct infusion of fluids of known composition and volume to test the theory. This technique for improving the gravimetric assessment of brain edema is presented.

  18. Epigallocatechin-3-Gallate (EGCG) Attenuates Traumatic Brain Injury by Inhibition of Edema Formation and Oxidative Stress.

    PubMed

    Zhang, Bo; Wang, Bing; Cao, Shuhua; Wang, Yongqiang

    2015-11-01

    Traumatic brain injury (TBI) is a major cause of mortality and long-term disability, which can decrease quality of life. In spite of numerous studies suggesting that Epigallocatechin-3-gallate (EGCG) has been used as a therapeutic agent for a broad range of disorders, the effect of EGCG on TBI remains unknown. In this study, a weight drop model was established to evaluate the therapeutic potential of EGCG on TBI. Rats were administered with 100 mg/kg EGCG or PBS intraperitoneally. At different times following trauma, rats were sacrificed for analysis. It was found that EGCG (100 mg/kg, i.p.) treatment significantly reduced brain water content and vascular permeability at 12, 24, 48, 72 hour after TBI. Real-time PCR results revealed that EGCG inhibited TBI-induced IL-1β and TNF-α mRNA expression. Importantly, CD68 mRNA expression decreasing in the brain suggested that EGCG inhibited microglia activation. Western blotting and immunohistochemistry results showed that administering of EGCG significantly inhibited the levels of aquaporin-4 (AQP4) and glial fibrillary acidic protein (GFAP) expression. TBI-induced oxidative stress was remarkably impaired by EGCG treatment, which elevated the activities of SOD and GSH-PX. Conversely, EGCG significantly reduced the contents of MDA after TBI. In addition, EGCG decreased TBI-induced NADPH oxidase activation through inhibition of p47(phox) translocation from cytoplasm to plasma membrane. These data demonstrate that EGCG treatment may be an effective therapeutic strategy for TBI and the underlying mechanism involves inhibition of oxidative stress. PMID:26557015

  19. Loss of AQP4 polarized localization with loss of β-dystroglycan immunoreactivity may induce brain edema following intracerebral hemorrhage.

    PubMed

    Qiu, Guo-Ping; Xu, Jin; Zhuo, Fei; Sun, Shan-Quan; Liu, Hui; Yang, Mei; Huang, Juan; Lu, Wei-Tian; Huang, Si-Qin

    2015-02-19

    The aquaporin-4 (AQP4) water channel contributes to brain water homeostasis in perivascular and subpial membrane domains of astrocytes where it is concentrated. These membranes form the interface between the neuropil and the extracellular liquid spaces. The brain-selective deletion of the dystroglycan (DG) gene causes a disorganization of AQP4 on the astroglial endfeet. First, we analyzed the expression of AQP4, β-DG in the brain following intracerebral hemorrhage (ICH) and correlated AQP4 expression with the expression pattern of the β-DG, which is a component of dystrophin-dystroglycan complex (DDC). Besides, the vessels ultrastructure and brain water content were investigated at different time points post-ICH (day 1, day 3, day 7). We found that AQP4 polarity was disturbed in parallel with the loss of β-DG in the perihematomal area post-ICH. At day 1 post-ICH, brain edema was obvious and the damage of vascular ultrastructure was the most severe. These results suggest a role for β-DG in targeting and stabilizing AQP4 channel in astrocytic cells, which may be critical for water homeostasis in brain. PMID:25545558

  20. Mildly Reduced Brain Swelling and Improved Neurological Outcome in Aquaporin-4 Knockout Mice following Controlled Cortical Impact Brain Injury

    PubMed Central

    Uchida, Kazuyoshi; Papadopoulos, Marios C.; Zador, Zsolt; Manley, Geoffrey T.; Verkman, Alan S.

    2015-01-01

    Abstract Brain edema following traumatic brain injury (TBI) is associated with considerable morbidity and mortality. Prior indirect evidence has suggested the involvement of astrocyte water channel aquaporin-4 (AQP4) in the pathogenesis of TBI. Here, focal TBI was produced in wild type (AQP4+/+) and knockout (AQP4−/−) mice by controlled cortical impact injury (CCI) following craniotomy with dura intact (parameters: velocity 4.5 m/sec, depth 1.7 mm, dwell time 150 msec). AQP4-deficient mice showed a small but significant reduction in injury volume in the first week after CCI, with a small improvement in neurological outcome. Mechanistic studies showed reduced intracranial pressure at 6 h after CCI in AQP4−/− mice, compared with AQP4+/+ control mice (11 vs. 19 mm Hg), with reduced local brain water accumulation as assessed gravimetrically. Transmission electron microscopy showed reduced astrocyte foot-process area in AQP4−/− mice at 24 h after CCI, with greater capillary lumen area. Blood–brain barrier disruption assessed by Evans blue dye extravasation was similar in AQP4+/+ and AQP4−/− mice. We conclude that the mildly improved outcome in AQP4−/− mice following CCI results from reduced cytotoxic brain water accumulation, though concurrent cytotoxic and vasogenic mechanisms in TBI make the differences small compared to those seen in disorders where cytotoxic edema predominates. PMID:25790314

  1. Hyperbaric oxygen reduces edema and necrosis of skeletal muscle in compartment syndromes associated with hemorrhagic hypotension

    SciTech Connect

    Skyhar, M.J.; Hargens, A.R.; Strauss, M.B.; Gershuni, D.H.; Hart, G.B.; Akeson, W.H.

    1986-10-01

    This study examined the effect of exposures to hyperbaric oxygen on the development of the edema and necrosis of muscle that are associated with compartment syndromes that are complicated by hemorrhagic hypotension. A compartment syndrome (twenty millimeters of mercury for six hours) was induced by infusion of autologous plasma in the anterolateral compartment of the left hind limb of seven anesthetized dogs while the mean arterial blood pressure was maintained at sixty-five millimeters of mercury after 30 per cent loss of blood volume. These dogs were treated with hyperbaric oxygen (two atmospheres of pure oxygen) and were compared with six dogs that had an identical compartment syndrome and hypotensive condition but were not exposed to hyperbaric oxygen. Forty-eight hours later, edema was quantified by measuring the weights of the muscles (the pressurized muscle compared with the contralateral muscle), and necrosis of muscle was evaluated by measuring the uptake of technetium-99m stannous pyrophosphate. The ratio for edema was significantly (p = 0.01) greater in dogs that had not been exposed to hyperbaric oxygen (1.15 +/- 0.01) than in the dogs that had been treated with hyperbaric oxygen (1.01 +/- 0.03), and the ratio for necrosis of muscle was also significantly (p = 0.04) greater in dogs that had not had hyperbaric oxygen (1.96 +/- 0.41) than in those that had been treated with hyperbaric oxygen (1.05 +/- 0.11). Comparisons were also made with the muscles of four normal control dogs and separately with the muscles of six normotensive dogs that had an identical compartment syndrome and normal blood pressure and were not treated with hyperbaric oxygen.

  2. Interferon-Stimulated Gene 15 Upregulation Precedes the Development of Blood–Brain Barrier Disruption and Cerebral Edema after Traumatic Brain Injury in Young Mice

    PubMed Central

    Todd, Tracey; Daniels, Zachary; Bazan, Nicolas G.; Belayev, Ludmila

    2015-01-01

    Abstract Recent studies show that myosin light chain kinase (MLCK) plays a pivotal role in development of cerebral edema, a known complication following traumatic brain injury (TBI) in children and a contributing factor to worsened neurologic recovery. Interferon-stimulated gene 15 (ISG15) is upregulated after cerebral ischemia and is neuroprotective. The significant role of ISG15 after TBI has not been studied. Postnatal Day (PND) 21 and PND24 mice were subjected to lateral closed-skull injury with impact depth of 2.0 or 2.25 mm. Behavior was examined at 7 d using two-object novel recognition and Wire Hang tests. Mice were sacrificed at 6 h, 12 h, 24 h, 48 h, 72 h, and 7 d. ISG15 and MLCK were analyzed by Western blot and immunohistochemistry, blood–brain barrier (BBB) disruption with Evans Blue (EB), and cerebral edema with wet/dry weights. EB extravasation and edema peaked at 72 h in both ages. PND21 mice had more severe neurological deficits, compared with PND24 mice. PND24 mice showed peak ISG15 expression at 6 h, and PND21 mice at 72 h. MLCK peaked in both age groups at 12 h and co-localized with ISG15 on immunohistochemistry and co-immunoprecipitation. These studies provide evidence, ISG15 is elevated following TBI in mice, preceding MLCK elevation, development of BBB disruption, and cerebral edema. PMID:25669448

  3. Glibenclamide reduces secondary brain damage after experimental traumatic brain injury.

    PubMed

    Zweckberger, K; Hackenberg, K; Jung, C S; Hertle, D N; Kiening, K L; Unterberg, A W; Sakowitz, O W

    2014-07-11

    Following traumatic brain injury (TBI) SUR1-regulated NCCa-ATP (SUR1/TRPM4) channels are transcriptionally up-regulated in ischemic astrocytes, neurons, and capillaries. ATP depletion results in depolarization and opening of the channel leading to cytotoxic edema. Glibenclamide is an inhibitor of SUR-1 and, thus, might prevent cytotoxic edema and secondary brain damage following TBI. Anesthetized adult Sprague-Dawley rats underwent parietal craniotomy and were subjected to controlled cortical impact injury (CCI). Glibenclamide was administered as a bolus injection 15min after CCI injury and continuously via osmotic pumps throughout 7days. In an acute trial (180min) mean arterial blood pressure, heart rate, intracranial pressure, encephalographic activity, and cerebral metabolism were monitored. Brain water content was assessed gravimetrically 24h after CCI injury and contusion volumes were measured by MRI scanning technique at 8h, 24h, 72h, and 7d post injury. Throughout the entire time of observation neurological function was quantified using the "beam-walking" test. Glibenclamide-treated animals showed a significant reduction in the development of brain tissue water content(80.47%±0.37% (glibenclamide) vs. 80.83%±0.44% (control); p<0.05; n=14). Contusion sizes increased continuously within 72h following CCI injury, but glibenclamide-treated animals had significantly smaller volumes at any time-points, like 172.53±38.74mm(3) (glibenclamide) vs. 299.20±64.02mm(3) (control) (p<0.01; n=10; 24h) or 211.10±41.03mm(3) (glibenclamide) vs. 309.76±19.45mm(3) (control) (p<0.05; n=10; 72h), respectively. An effect on acute parameters, however, could not be detected, most likely because of the up-regulation of the channel within 3-6h after injury. Furthermore, there was no significant effect on motor function assessed by the beam-walking test throughout 7days. In accordance to these results and the available literature, glibenclamide seems to have promising potency in

  4. Changes in cannabinoid receptors, aquaporin 4 and vimentin expression after traumatic brain injury in adolescent male mice. Association with edema and neurological deficit.

    PubMed

    Lopez-Rodriguez, Ana Belen; Acaz-Fonseca, Estefania; Viveros, Maria-Paz; Garcia-Segura, Luis M

    2015-01-01

    Traumatic brain injury (TBI) incidence rises during adolescence because during this critical neurodevelopmental period some risky behaviors increase. The purpose of this study was to assess the contribution of cannabinoid receptors (CB1 and CB2), blood brain barrier proteins (AQP4) and astrogliosis markers (vimentin) to neurological deficit and brain edema formation in a TBI weight drop model in adolescent male mice. These molecules were selected since they are known to change shortly after lesion. Here we extended their study in three different timepoints after TBI, including short (24h), early mid-term (72h) and late mid-term (two weeks). Our results showed that TBI induced an increase in brain edema up to 72 h after lesion that was directly associated with neurological deficit. Neurological deficit appeared 24 h after TBI and was completely recovered two weeks after trauma. CB1 receptor expression decreased after TBI and was negatively correlated with edema formation and behavioral impairments. CB2 receptor increased after injury and was associated with high neurological deficit whereas no correlation with edema was found. AQP4 increased after TBI and was positively correlated with edema and neurological impairments as occurred with vimentin expression in the same manner. The results suggest that CB1 and CB2 differ in the mechanisms to resolve TBI and also that some of their neuroprotective effects related to the control of reactive astrogliosis may be due to the regulation of AQP4 expression on the end-feet of astrocytes.

  5. Changes in Cannabinoid Receptors, Aquaporin 4 and Vimentin Expression after Traumatic Brain Injury in Adolescent Male Mice. Association with Edema and Neurological Deficit

    PubMed Central

    Lopez-Rodriguez, Ana Belen; Acaz-Fonseca, Estefania; Viveros, Maria-Paz; Garcia-Segura, Luis M.

    2015-01-01

    Traumatic brain injury (TBI) incidence rises during adolescence because during this critical neurodevelopmental period some risky behaviors increase. The purpose of this study was to assess the contribution of cannabinoid receptors (CB1 and CB2), blood brain barrier proteins (AQP4) and astrogliosis markers (vimentin) to neurological deficit and brain edema formation in a TBI weight drop model in adolescent male mice. These molecules were selected since they are known to change shortly after lesion. Here we extended their study in three different timepoints after TBI, including short (24h), early mid-term (72h) and late mid-term (two weeks). Our results showed that TBI induced an increase in brain edema up to 72 h after lesion that was directly associated with neurological deficit. Neurological deficit appeared 24 h after TBI and was completely recovered two weeks after trauma. CB1 receptor expression decreased after TBI and was negatively correlated with edema formation and behavioral impairments. CB2 receptor increased after injury and was associated with high neurological deficit whereas no correlation with edema was found. AQP4 increased after TBI and was positively correlated with edema and neurological impairments as occurred with vimentin expression in the same manner. The results suggest that CB1 and CB2 differ in the mechanisms to resolve TBI and also that some of their neuroprotective effects related to the control of reactive astrogliosis may be due to the regulation of AQP4 expression on the end-feet of astrocytes. PMID:26039099

  6. Reversible restricted-diffusion lesion representing transient intramyelinic cytotoxic edema in a patient with traumatic brain injury.

    PubMed

    Al Brashdi, Yahya H; Albayram, Mehmet S

    2015-08-01

    We report this case to increase the awareness of magnetic resonance imaging (MRI) features of reversible white matter abnormalities in diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) maps in a patient with traumatic brain injury (TBI). An eight-year-old girl, who was hit by a truck, was brought to the emergency department by the emergency medical service (EMS). Eleven days later, she experienced cognitive impairment requiring MRI evaluation. DWI and ADC maps showed restricted diffusion in the white matter of the corpus callosum, peri-atrial white matter, and in the right centrum semiovale. There were no significant hemorrhagic foci in these regions, which showed complete resolution on follow up DWI MRI 13 days later. This reported case revealed TBI-related transient reversible intramyelinic cytotoxic edema. PMID:26306930

  7. Cerebrolysin reduces blood-cerebrospinal fluid barrier permeability change, brain pathology, and functional deficits following traumatic brain injury in the rat.

    PubMed

    Sharma, Hari Shanker; Zimmermann-Meinzingen, Sibilla; Johanson, Conrad E

    2010-06-01

    Traumatic brain injuries (TBIs) induce profound breakdown of the blood-brain and blood-cerebrospinal fluid barriers (BCSFB), brain pathology/edema, and sensory-motor disturbances. Because neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and glial cell-derived neurotrophic factor (GDNF), are neuroprotective in models of brain and spinal cord injuries, we hypothesized that a combination of neurotrophic factors would enhance neuroprotective efficacy. In the present investigation, we examined the effects of Cerebrolysin, a mixture of different neurotrophic factors (Ebewe Neuro Pharma, Austria) on the brain pathology and functional outcome in a rat model of TBI. TBI was produced under Equithesin (3 mL/kg, i.p.) anesthesia by making a longitudinal incision into the right parietal cerebral cortex. Untreated injured rats developed profound disruption of the blood-brain barrier (BBB) to proteins, edema/cell injury, and marked sensory-motor dysfunctions on rota-rod and grid-walking tests at 5 h TBI. Intracerebroventricular administration of Cerebrolysin (10 or 30 microL) either 5 min or 1 h after TBI significantly reduced leakage of Evans blue and radioiodine tracers across the BBB and BCSFB, and attenuated brain edema formation/neuronal damage in the cortex as well as underlying subcortical regions. Cerebrolysin-treated animals also had improved sensory-motor functions. However, administration of Cerebrolysin 2 h after TBI did not affect these parameters significantly. These observations in TBI demonstrate that early intervention with Cerebrolysin reduces BBB and BCSFB permeability changes, attenuates brain pathology and brain edema, and mitigates functional deficits. Taken together, our observations suggest that Cerebrolysin has potential therapeutic value in TBI.

  8. Alpha-syntrophin deletion removes the perivascular but not endothelial pool of aquaporin-4 at the blood-brain barrier and delays the development of brain edema in an experimental model of acute hyponatremia.

    PubMed

    Amiry-Moghaddam, Mahmood; Xue, Rong; Haug, Finn-Mogens; Neely, John D; Bhardwaj, Anish; Agre, Peter; Adams, Marvin E; Froehner, Stanley C; Mori, Susumu; Ottersen, Ole P

    2004-03-01

    The formation of brain edema, commonly occurring as a potentially lethal complication of acute hyponatremia, is delayed following knockout of the water channel aquaporin-4 (AQP4). Here we show by high-resolution immunogold analysis of the blood-brain-barrier that AQP4 is expressed in brain endothelial cells as well as in the perivascular membranes of astrocyte endfeet. A selective removal of perivascular AQP4 by alpha-syntrophin deletion delays the buildup of brain edema (assessed by Diffusion-weighted MRI) following water intoxication, despite the presence of a normal complement of endothelial AQP4. This indicates that the perivascular membrane domain, which is peripheral to the endothelial blood-brain barrier, may control the rate of osmotically driven water entry. This study is also the first to demonstrate that the time course of edema development differs among brain regions, probably reflecting differences in aquaporin-4 distribution. The resolution of the molecular basis and subcellular site of osmotically driven brain water uptake should help design new therapies for acute brain edema.

  9. Controllable permeability of blood-brain barrier and reduced brain injury through low-intensity pulsed ultrasound stimulation

    PubMed Central

    Huang, Sin-Luo; Liu, Shing-Hwa; Yang, Feng-Yi

    2015-01-01

    It has been shown that the blood-brain barrier (BBB) can be locally disrupted by focused ultrasound (FUS) in the presence of microbubbles (MB) while sustaining little damage to the brain tissue. Thus, the safety issue associated with FUS-induced BBB disruption (BBBD) needs to be investigated for future clinical applications. This study demonstrated the neuroprotective effects induced by low-intensity pulsed ultrasound (LIPUS) against brain injury in the sonicated brain. Rats subjected to a BBB disruption injury received LIPUS exposure for 5 min after FUS/MB application. Measurements of BBB permeability, brain water content, and histological analysis were then carried out to evaluate the effects of LIPUS. The permeability and time window of FUS-induced BBBD can be effectively modulated with LIPUS. LIPUS also significantly reduced brain edema, neuronal death, and apoptosis in the sonicated brain. Our results show that brain injury in the FUS-induced BBBD model could be ameliorated by LIPUS and that LIPUS may be proposed as a novel treatment modality for controllable release of drugs into the brain. PMID:26517350

  10. Brain edema and neurologic status with rapid infusion of 0.9% saline or 5% dextrose after head trauma.

    PubMed

    Shapira, Y; Artru, A A; Qassam, N; Navot, N; Vald, U

    1995-01-01

    We previously reported that intravenous (i.v.) administration of large volumes (0.2 ml/g) of either an isotonic dextrose-free solution or 5% dextrose solution given over 18 h after closed head trauma (CHT) in rats did not significantly affect neurological severity score or brain tissue specific gravity. However, it is possible that with more rapid administration, isotonic or 5% dextrose i.v. solutions may alter neurological outcome after CHT. Our study examined whether neurological severity score, brain tissue specific gravity and water content, and blood composition were significantly altered when 0.25 ml/g of either 0.9% saline or 5% dextrose was given i.v. over 0.5 h (rather than over 18 h) after CHT. Eight-four rats that survived ether anesthesia and CHT were randomly assigned to one of 11 experimental groups. Saline- and dextrose-treated rats were evaluated at 4 and 48 h after CHT and were compared to rats without CHT and to untreated rats at 4 and 48 h after CHT. There were no statistically significant differences in neurologic outcome and brain edema between the untreated and the saline-treated groups. However, 5% dextrose i.v. increased mortality (group 6 and 11, 50 and 0% survivors, respectively), decreased specific gravity in the noncontused hemisphere, and worsened neurologic outcome with and without CHT. Blood osmolality remained stable in comparison to the baseline value of 291.9 +/- 7.4 mOsm/kg (mean +/- SD).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7881236

  11. Low-Power 2-MHz Pulsed-Wave Transcranial Ultrasound Reduces Ischemic Brain Damage in Rats.

    PubMed

    Alexandrov, Andrei V; Barlinn, Kristian; Strong, Roger; Alexandrov, Anne W; Aronowski, Jaroslaw

    2011-09-01

    It is largely unknown whether prolonged insonation with ultrasound impacts the ischemic brain tissue by itself. Our goal was to evaluate safety and the effect of high-frequency ultrasound on infarct volume in rats. Thirty-two Long-Evans rats with permanent middle cerebral and carotid artery occlusions received either 2-MHz ultrasound at two levels of insonation power (128 or 10 mW) or no ultrasound (controls). We measured cerebral hemorrhage, indirect and direct infarct volume as well as edema volume at 24 h. No cerebral hemorrhages were detected in all animals. Exposure to low-power (10 mW) ultrasound resulted in a significantly decreased indirect infarct volume (p = 0.0039), direct infarct volume (p = 0.0031), and brain edema volume (p = 0.01) compared with controls. High-power (128 mW) ultrasound had no significant effects. An additional experiment with India ink showed a greater intravascular penetration of dye into ischemic tissues exposed to low-power ultrasound. Insonation with high-frequency, low-power ultrasound reduces ischemic brain damage in rat. Its effect on edema reduction and possible promotion of microcirculation could be used to facilitate drug and nutrient delivery to ischemic areas.

  12. Curcumin reduces brain-infiltrating T lymphocytes after intracerebral hemorrhage in mice.

    PubMed

    Liu, Wei; Yuan, Jichao; Zhu, Haitao; Zhang, Xuan; Li, Lan; Liao, Xiaojun; Wen, Zexian; Chen, Yaxing; Feng, Hua; Lin, Jiangkai

    2016-05-01

    T lymphocytes contribute to inflammation, thereby exacerbating neuronal injury after cerebral ischemia. An increasing amount of evidence indicates that inflammation is a key contributor to intracerebral hemorrhage (ICH)-induced secondary brain injury. Curcumin, a low-molecular-weight curry spice that is derived from the Curcuma longa plant, suppresses T lymphocyte proliferation and migration. Based on these findings, we investigated whether treatment with curcumin would reduce the number of cerebral T lymphocytes in mice with experimentally induced ICH. We found that a large number of T lymphocytes infiltrated the brain at 3days post-ICH. Curcumin significantly improved neurological scores and reduced brain edema in mice with ICH, consistent with a role in reducing neuroinflammation and neurovascular injury. Using flow cytometry, we observed significantly fewer T lymphocytes in brain samples obtained from the curcumin-treated group than in samples obtained from the vehicle-treated group. Moreover, Western blot analysis and immunostaining indicated that treatment with curcumin significantly reduced the expression of a vascular cell adhesion molecule-1 (VCAM-1), interferon-γ (INF-γ) and interleukin-17 (IL-17) in the mouse brain at 72h post-ICH. Our results suggest that administering curcumin may alleviate cerebral inflammation resulting from ICH, at least in part by reducing the infiltration of T lymphocytes into the brain. Therefore, preventing T lymphocytes from infiltrating the brain may become a new strategy for treating clinical ICH. PMID:27026486

  13. The effect of saponification on the mucopolysaccharides of the ground substance of the human brain: the relation to focal edema and multiple sclerosis.

    PubMed

    Feigin, I

    1981-03-01

    The acid mucopolysaccharides of brain tissues are disclosed by their metachromatic staining with toluidine blue following saponification with potassium hydroxide, presumably as a result of the liberation of acid groups previously esterified. Earlier histochemical studies had disclosed the presence of neutral mucopolysaccharides by staining with the periodic acid-Schiff technique, and such staining is intensified by prior saponification. Many biochemical studies have reported the presence of both acid and neutral mucopolysaccharides in brain tissues. Within the white matter following brain edema, the quantity of stained mucopolysaccharides is decreased in the plaques of multiple sclerosis and pontine myelinolysis, and in the lesions of diffuse sclerosis. All of these are characterized by myelin loss with relative preservation of axons. The known physiological effects of the mucopolysaccharides on the water content of normal tissues, and on the properties and diffusability of the increments of fluid that constitute edema, lead to the suggestion that edema may play a major role in the pathogenesis of the demyelinating diseases, including multiple sclerosis.

  14. Deep brain stimulation to reduce sexual drive

    PubMed Central

    Fuss, Johannes; Auer, Matthias K.; Biedermann, Sarah V.; Briken, Peer; Hacke, Werner

    2015-01-01

    To date there are few treatment options to reduce high sexual drive or sexual urges in paraphilic patients with a risk for sexual offending. Pharmacological therapy aims to reduce sexual drive by lowering testosterone at the cost of severe side effects. We hypothesize that high sexual drive could also be reduced with deep brain stimulation (DBS) of circuits that generate sexual drive. This approach would help to avoid systemic side effects of antiandrogenic drug therapies. So far the best investigated target to reduce sexual drive is the ventromedial hypothalamus, which was lesioned unilaterally and bilaterally by stereotaxic interventions in paraphilic patients in the 1970s. Here, we discuss DBS as a treatment strategy in patients with severe paraphilic disorders with a serious risk of sexual offending. There are profound ethical and practical issues associated with DBS treatment of paraphilic patients that must be solved before considering such a treatment approach. PMID:26057198

  15. Density of tumor-infiltrating lymphocytes correlates with extent of brain edema and overall survival time in patients with brain metastases

    PubMed Central

    Berghoff, Anna S; Fuchs, Elisabeth; Ricken, Gerda; Mlecnik, Bernhard; Bindea, Gabriela; Spanberger, Thomas; Hackl, Monika; Widhalm, Georg; Dieckmann, Karin; Prayer, Daniela; Bilocq, Amelie; Heinzl, Harald; Zielinski, Christoph; Bartsch, Rupert; Birner, Peter; Galon, Jerome; Preusser, Matthias

    2016-01-01

    The immune microenvironment of the brain differs from that of other organs and the role of tumor-infiltrating lymphocytes (TILs) in brain metastases (BM), one of the most common and devastating complication of cancer, is unclear. We investigated TIL subsets and their prognostic impact in 116 BM specimens using immunohistochemistry for CD3, CD8, CD45RO, FOXP3, PD1 and PD-L1. The Immunoscore was calculated as published previously. Overall, we found TIL infiltration in 115/116 (99.1%) BM specimens. PD-L1 expression was evident in 19/67 (28.4%) BM specimens and showed no correlation with TIL density (p > 0.05). TIL density was not associated with corticosteroid administration (p > 0.05). A significant difference in infiltration density according to TIL subtype was present (p < 0.001; Chi Square); high infiltration was most frequently observed for CD3+ TILs (95/116; 81.9%) and least frequently for PD1+ TILs (18/116; 15.5%; p < 0.001). Highest TIL density was observed in melanoma, followed by renal cell cancer and lung cancer BM (p < 0.001). The density of CD8+ TILs correlated positively with the extent of peritumoral edema seen on pre-operative magnetic resonance imaging (p = 0.031). The density of CD3+ (15 vs. 6 mo; p = 0.015), CD8+ (15 vs. 11 mo; p = 0.030) and CD45RO+ TILs (18 vs. 8 mo; p = 0.006) showed a positive correlation with favorable median OS times. Immunoscore showed significant correlation with survival prognosis (27 vs. 10 mo; p < 0.001). The prognostic impact of Immunoscore was independent from established prognostic parameters at multivariable analysis (HR 0.612, p < 0.001). In conclusion, our data indicate that dense TILs infiltrates are common in BM and correlate with the amount of peritumoral brain edema and survival prognosis, thus identifying the immune system as potential biomarker for cancer patients with CNS affection. Further studies are needed to substantiate our findings. PMID:26942067

  16. An aqueous extract of Ilex paraguariensis reduces carrageenan-induced edema and inhibits the expression of cyclooxygenase-2 and inducible nitric oxide synthase in animal models of inflammation.

    PubMed

    Schinella, Guillermo; Neyret, Elisa; Cónsole, Gloria; Tournier, Horacio; Prieto, José M; Ríos, José-Luis; Giner, Rosa María

    2014-08-01

    Mate (Ilex paraguariensis) is a highly popular herbal beverage in South America due to its high content of caffeine. Its hypolipidemic and antioxidant properties are of increasing interest in the treatment of cardiovascular disorders and for weight control. In the present study, we show for the first time both the local and systemic anti-inflammatory effects of an aqueous extract of mate in three classic in vivo models, namely acute and chronic 12-O-tetradecanoylphorbol 13-acetate-induced mouse ear edema and acute carrageenan-induced mouse paw edema. Caffeine, rutin, chlorogenic acid, 3,5-dicafeoyl quinic acid, and 4,5-dicafeoyl quinic acid, accompanied by a complex mixture of other simple phenolic acids, were identified in the extract by HPLC-UV analyses. In the acute edema model, mate extract applied topically (1 mg/ear) halved the 12-O-tetradecanoylphorbol 13-acetate-induced acute edema (50 %) and almost suppressed neutrophil infiltration (93 %), while in the 12-O-tetradecanoylphorbol 13-acetate-induced subchronic inflammation, the edema was significantly reduced by 62 % (1 mg/ear/day × seven doses). The oral administration of the mate extract (250 mg/kg) significantly reduced the carrageenan-induced edema at all time points, an effect which was accompanied by a 43 % and 53 % reduction of the expression of cyclooxygenase-2 and inducible nitric oxide synthase, respectively. Histological analyses confirmed a reduction of epithelium thickness, dermis with mild inflammation, hair follicles with some secretory cells of sebaceous glands, and hypodermic adipocytes. In conclusion, mate is endowed with in vivo preventative or therapeutic anti-inflammatory effects in both local and systemic inflammatory processes.

  17. Differences in brain edema and intracranial pressure following traumatic brain injury across the estrous cycle: involvement of female sex steroid hormones.

    PubMed

    Maghool, Fatemeh; Khaksari, Mohammad; Siahposht Khachki, Ali

    2013-02-25

    It has been shown that sex steroid hormones have profound neuroprotective effects in experimental traumatic brain injury (TBI). Because the endogenous hormone levels are proven to differ with estrous cycle stage, we evaluated whether estrous cycle stage affects various outcomes following diffuse TBI. TBI was induced by Marmarou's method in normal cycling and in ovariectomized rats with physiologically relevant restoration of hormonal levels by hormone capsule implantation. Intracranial pressure (ICP) and cerebral perfusion pressure (CPP) were measured before and different times after TBI and brain edema was assessed at 24h after trauma. Results indicated that after TBI, water content (WC) in traumatic proestrous (TP) rats was less than the one in traumatic non-proestrous (TNP) and ovariectomized (TOVX) and also in high estradiol (HE) and progesterone (HP) was statistically less than in TBI untreated groups.There was no significant difference in WC between high doses hormone treated and TP and also between TNP, TOVX, low estradiol (LE) and progesterone (LP) groups. At 4h and 24h after trauma, there was a significant difference in ICP between TP, HE and HP compared to TNP and other TBI nontreated groups. Also in these times, the CPP increased in TP and hormone treated groups compared with TOVX, but the difference between TNP and TOVX was not significant. The results indicate that the estrous cycle has a prominent role in TBI outcome's and the difference in female sex steroid levels might be the reason of the different neuroprotective effects in proestrous and non-proestrous groups.

  18. Role of PiCCO monitoring for the integrated management of neurogenic pulmonary edema following traumatic brain injury: A case report and literature review

    PubMed Central

    Lin, Xiaoping; Xu, Zhijun; Wang, Pengfei; Xu, Yan; Zhang, Gensheng

    2016-01-01

    Neurogenic pulmonary edema (NPE) is occasionally observed in patients with traumatic brain injury (TBI); however, this condition is often underappreciated. NPE is frequently misdiagnosed due to its atypical clinical performance, thus delaying appropriate treatment. A comprehensive management protocol of NPE in patients with TBI has yet to be established. The current study reported the case of a 67-year-old man with severe TBI who was transferred to our intensive care unit (ICU). On day 7 after hospitalization, the patient suddenly suffered tachypnea, tachycardia, systemic hypertension and hypoxemia during lumbar cistern drainage. Intravenous diuretics, tranquilizer and glucocorticoid were administered due to suspected left heart failure attack. Chest radiography examination supported the diagnosis of pulmonary edema; however, hypotension and hypovolemia were subsequently observed. Pulse index continuous cardiac output (PiCCO) hemodynamic monitoring and bedside echocardiography were performed, which excluded the diagnosis of cardiac pulmonary edema, and thus the diagnosis of NPE was confirmed. Goal-directed therapy by dynamic PiCCO monitoring was then implemented. In addition, levosimendan, an inotropic agent, was introduced to improve cardiac output. The patient had complete recovered from pulmonary edema and regained consciousness on day 11 of hospitalization. The current case demonstrated that PiCCO monitoring may serve a central role in the integrated management of NPE in patients with TBI. Levosimendan may be a potential medicine in treating cardiac dysfunction, along with its benefit from improving neurological function in NPE patients. PMID:27698733

  19. Role of PiCCO monitoring for the integrated management of neurogenic pulmonary edema following traumatic brain injury: A case report and literature review

    PubMed Central

    Lin, Xiaoping; Xu, Zhijun; Wang, Pengfei; Xu, Yan; Zhang, Gensheng

    2016-01-01

    Neurogenic pulmonary edema (NPE) is occasionally observed in patients with traumatic brain injury (TBI); however, this condition is often underappreciated. NPE is frequently misdiagnosed due to its atypical clinical performance, thus delaying appropriate treatment. A comprehensive management protocol of NPE in patients with TBI has yet to be established. The current study reported the case of a 67-year-old man with severe TBI who was transferred to our intensive care unit (ICU). On day 7 after hospitalization, the patient suddenly suffered tachypnea, tachycardia, systemic hypertension and hypoxemia during lumbar cistern drainage. Intravenous diuretics, tranquilizer and glucocorticoid were administered due to suspected left heart failure attack. Chest radiography examination supported the diagnosis of pulmonary edema; however, hypotension and hypovolemia were subsequently observed. Pulse index continuous cardiac output (PiCCO) hemodynamic monitoring and bedside echocardiography were performed, which excluded the diagnosis of cardiac pulmonary edema, and thus the diagnosis of NPE was confirmed. Goal-directed therapy by dynamic PiCCO monitoring was then implemented. In addition, levosimendan, an inotropic agent, was introduced to improve cardiac output. The patient had complete recovered from pulmonary edema and regained consciousness on day 11 of hospitalization. The current case demonstrated that PiCCO monitoring may serve a central role in the integrated management of NPE in patients with TBI. Levosimendan may be a potential medicine in treating cardiac dysfunction, along with its benefit from improving neurological function in NPE patients.

  20. Molecular pathophysiology of cerebral edema.

    PubMed

    Stokum, Jesse A; Gerzanich, Volodymyr; Simard, J Marc

    2016-03-01

    Advancements in molecular biology have led to a greater understanding of the individual proteins responsible for generating cerebral edema. In large part, the study of cerebral edema is the study of maladaptive ion transport. Following acute CNS injury, cells of the neurovascular unit, particularly brain endothelial cells and astrocytes, undergo a program of pre- and post-transcriptional changes in the activity of ion channels and transporters. These changes can result in maladaptive ion transport and the generation of abnormal osmotic forces that, ultimately, manifest as cerebral edema. This review discusses past models and current knowledge regarding the molecular and cellular pathophysiology of cerebral edema. PMID:26661240

  1. Molecular pathophysiology of cerebral edema

    PubMed Central

    Gerzanich, Volodymyr; Simard, J Marc

    2015-01-01

    Advancements in molecular biology have led to a greater understanding of the individual proteins responsible for generating cerebral edema. In large part, the study of cerebral edema is the study of maladaptive ion transport. Following acute CNS injury, cells of the neurovascular unit, particularly brain endothelial cells and astrocytes, undergo a program of pre- and post-transcriptional changes in the activity of ion channels and transporters. These changes can result in maladaptive ion transport and the generation of abnormal osmotic forces that, ultimately, manifest as cerebral edema. This review discusses past models and current knowledge regarding the molecular and cellular pathophysiology of cerebral edema. PMID:26661240

  2. Clinical Outcomes of Wulingsan Subtraction Decoction Treatment of Postoperative Brain Edema and Fever as a Complication of Glioma Neurosurgery

    PubMed Central

    Jin, Wei-rong; Zhang, Feng-e; Diao, Bao-zhong; Zhang, Yue-ying

    2016-01-01

    Objective. To evaluate the efficacy of Wulingsan subtraction (五苓散加减 WLSS) decoction in the treatment of postoperative brain edema and fever as a complication of glioma neurosurgery. Methods. This retrospective study was conducted at the Department of Neurosurgery of Liaocheng People's Hospital. Patients hospitalized between March 2011 and December 2014 were divided into three groups: Group A received WLSS oral liquid (50 mL), twice a day; Group B received an intravenous infusion of mannitol; and Group C received WLSS combined with mannitol (n = 30 patients per group). All patients were treated for 10 days continuously. Therapeutic efficacy was evaluated by measuring body temperature and indicators of renal function before and 3, 5, and 10 days after treatment. Results. Compared to the other two groups, significantly greater clinical efficacy was observed in the patients treated with mannitol (Group B; P < 0.05), although marked clinical efficacy was also observed over time in patients treated with WLSS (Group A). After 5 days, the quantifiable effects of the WLSS and mannitol combination group (Group C) were substantial (P < 0.05). The renal damage in Group B was more obvious after 5 days and 10 days. Conclusion. Compared with mannitol treatment alone, WLSS combined with mannitol induced a more rapid reduction in body temperature. Our findings suggest that patients should be started on mannitol for 3 days and then switched to WLSS to achieve obvious antipyretic effects and protect renal function. This method of treatment should be considered for clinical applications. PMID:27019661

  3. Topical tocopherol acetate reduces post-UVB, sunburn-associated erythema, edema, and skin sensitivity in hairless mice.

    PubMed

    Trevithick, J R; Xiong, H; Lee, S; Shum, D T; Sanford, S E; Karlik, S J; Norley, C; Dilworth, G R

    1992-08-01

    Exposure of the skin of the back of skh-1 hairless mice to UVB (310 nm peak) irradiation at doses of 0.115-0.23 J/cm2 results after 24-48 h in an erythema which can be quantified using an erythema meter, providing a useful model of sunburn. Application of pure d-alpha-tocopherol acetate, a thick oil, to the skin immediately following the exposure to UVB significantly reduces the increase in erythema index, by 40-55%. At the lower dose (0.115 J/cm2), skin thickness (associated with edematous swelling of the sunburned skin) was measured by a novel non-invasive technique not previously reported for this purpose--magnetic resonance imaging (MRI). In two experiments the UVB-induced increase in skin thickness was significantly reduced at 24 hr by 29 and 54%, and at 48 hr by 26 and 61%. After 8 days the untreated irradiated mouse skin still showed a significant increase in thickness (24%) compared to the untreated unirradiated control, while the treated irradiated control was not significantly thicker than the unexposed control. Skin sensitivity was tested using a modification of the technique of esthesiometry, by observing rapid avoidance responses of the mouse to a pressure of 0.96 g/cm2 exerted by applying to the skin the tip of a nylon esthesiometer fiber extended to 60 mm in length. The untreated irradiated mice were more sensitive (p less than 0.07, Wilcoxon test) than the treated irradiated mice, and also significantly different from the untreated unirradiated control mice (p less than 0.04, Wilcoxon test), but the treated irradiated mice were not significantly differently sensitive when compared to the unirradiated controls (p less than 0.32). Taken together these data indicate that the erythema, edema, and skin sensitivity commonly associated with UVB-induced sunburn are significantly reduced by topical application of tocopherol acetate even after the exposure has occurred. This observation suggests that treatment of sunburn may be possible even after the

  4. Diabetes aggravates nanoparticles induced breakdown of the blood-brain barrier permeability, brain edema formation, alterations in cerebral blood flow and neuronal injury. An experimental study using physiological and morphological investigations in the rat.

    PubMed

    Sharma, Hari Shanker; Patnaik, Ranjana; Sharma, Aruna

    2010-12-01

    The possibility that diabetes aggravates nanoparticles induced blood-brain barrier (BBB) breakdown, edema formation and brain pathology was examined in a rat model. Engineered nanoparticles from metals Ag and Cu (50-60 mn) were administered (50 mg/kg, i.p.) once daily for 7 days in normal and streptozotocine induced diabetic rats. On the 8th day, BBB permeability to Evans blue and radioactive iodine (131I-sodium) was examined in 16 brain regions. In these brain regions alterations in regional CBF was also evaluated using radiolabelled (125I) carbonized microspheres (o.d. 15 +/- 6 microm). Regional brain edema and Na+, K+ and Cl- ion analysis were done in 8 selected brain regions. Histopathology was used to detect neuronal damage employing Nissl staining. Nanoparticles treatment in diabetic rats showed much more profound disruption of the BBB to Evans blue albumin (EBA) and radioiodine in almost all the 16 regions examined as compared to the normal animals. In these diabetic animals reduction in regional cerebral blood flow (CBF) was more pronounced than in normal rats. Edema development as seen using water content and increase in Na+ and a decrease in K+ ion were most marked in diabetic rats as compared to normal rats after nanoparticles treatment. Cell changes in the regions of BBB disruptions were also exacerbated in diabetic rats compared to normal group after nanoparticles treatment. Taken together, these observations are the first to show that diabetic rats are more susceptible to nanoparticles induced cerebrovascular reactions in the brain and neuronal damage. The possible mechanisms and significance of the present findings are discussed. PMID:21121280

  5. Numerical impact simulation of gradually increased kinetic energy transfer has the potential to break up folded protein structures resulting in cytotoxic brain tissue edema.

    PubMed

    von Holst, Hans; Li, Xiaogai

    2013-07-01

    Although the consequences of traumatic brain injury (TBI) and its treatment have been improved, there is still a substantial lack of understanding the mechanisms. Numerical simulation of the impact can throw further lights on site and mechanism of action. A finite element model of the human head and brain tissue was used to simulate TBI. The consequences of gradually increased kinetic energy transfer was analyzed by evaluating the impact intracranial pressure (ICP), strain level, and their potential influences on binding forces in folded protein structures. The gradually increased kinetic energy was found to have the potential to break apart bonds of Van der Waals in all impacts and hydrogen bonds at simulated impacts from 6 m/s and higher, thereby superseding the energy in folded protein structures. Further, impacts below 6 m/s showed none or very slight increase in impact ICP and strain levels, whereas impacts of 6 m/s or higher showed a gradual increase of the impact ICP and strain levels reaching over 1000 KPa and over 30%, respectively. The present simulation study shows that the free kinetic energy transfer, impact ICP, and strain levels all have the potential to initiate cytotoxic brain tissue edema by unfolding protein structures. The definition of mild, moderate, and severe TBI should thus be looked upon as the same condition and separated only by a gradual severity of impact.

  6. Hydrogen Sulfide Offers Neuroprotection on Traumatic Brain Injury in Parallel with Reduced Apoptosis and Autophagy in Mice

    PubMed Central

    Wang, Tao; Dong, Wenwen; Chen, Xiping; Tao, Luyang

    2014-01-01

    Hydrogen sulfide (H2S), a novel gaseous mediator, has been recognized as an important neuromodulator and neuroprotective agent in the central nervous system. The present study was undertaken to study the effects of exogenous H2S on traumatic brain injury (TBI) and the underlying mechanisms. The effects of exogenous H2S on TBI were examined by using measurement of brain edema, behavior assessment, propidium iodide (PI) staining, and Western blotting, respectively. Compared to TBI groups, H2S pretreatment had reduced brain edema, improved motor performance and ameliorated performance in Morris water maze test after TBI. Immunoblotting results showed that H2S pretreatment reversed TBI-induced cleavage of caspase-3 and decline of Bcl-2, suppressed LC3-II, Beclin-1 and Vps34 activation and maintained p62 level in injured cortex and hippocampus post TBI. The results suggest a protective effect and therapeutic potential of H2S in the treatment of brain injury and the protective effect against TBI may be associated with regulating apoptosis and autophagy. PMID:24466346

  7. Reduced GABAergic Action in the Autistic Brain.

    PubMed

    Robertson, Caroline E; Ratai, Eva-Maria; Kanwisher, Nancy

    2016-01-11

    An imbalance between excitatory/inhibitory neurotransmission has been posited as a central characteristic of the neurobiology of autism [1], inspired in part by the striking prevalence of seizures among individuals with the disorder [2]. Evidence supporting this hypothesis has specifically implicated the signaling pathway of the inhibitory neurotransmitter, γ-aminobutyric acid (GABA), in this putative imbalance: GABA receptor genes have been associated with autism in linkage and copy number variation studies [3-7], fewer GABA receptor subunits have been observed in the post-mortem tissue of autistic individuals [8, 9], and GABAergic signaling is disrupted across heterogeneous mouse models of autism [10]. Yet, empirical evidence supporting this hypothesis in humans is lacking, leaving a gulf between animal and human studies of the condition. Here, we present a direct link between GABA signaling and autistic perceptual symptomatology. We first demonstrate a robust, replicated autistic deficit in binocular rivalry [11], a basic visual function that is thought to rely on the balance of excitation/inhibition in visual cortex [12-15]. Then, using magnetic resonance spectroscopy, we demonstrate a tight linkage between binocular rivalry dynamics in typical participants and both GABA and glutamate levels in the visual cortex. Finally, we show that the link between GABA and binocular rivalry dynamics is completely and specifically absent in autism. These results suggest a disruption in inhibitory signaling in the autistic brain and forge a translational path between animal and human models of the condition.

  8. Allopurinol and dimethylthiourea reduce brain infarction following middle cerebral artery occlusion in rats.

    PubMed

    Martz, D; Rayos, G; Schielke, G P; Betz, A L

    1989-04-01

    Free radicals have been shown to play an important role in ischemia-reperfusion injury in several organ systems; however, the role of free radicals in central nervous system ischemia has been less well studied. Many potential free radical-generating systems exist. The primary products of these reactions, superoxide and hydrogen peroxide, may combine to produce hydroxyl radicals. Of the many potential sources of free radical generation, the enzyme xanthine oxidase has been shown to be important in ischemia in noncerebral tissue. We investigated the effect of the hydroxyl radical scavenger dimethylthiourea and the xanthine oxidase inhibitor allopurinol on infarct volume in a model of continuous partial ischemia. Male Sprague-Dawley rats were treated with dimethylthiourea or allopurinol before middle cerebral artery occlusion. Infarct volume was measured by triphenyltetrazolium chloride staining of brains removed 3 or 24 hours after occlusion. Stroke volume was reduced by 30% after dimethylthiourea treatment and by 32-35% after allopurinol treatment. At 24 hours after stroke, cortical tissue was more effectively protected than caudate tissue with both agents. Pretreatment with dimethylthiourea and allopurinol also significantly reduced cerebral edema formation and improved blood-brain barrier function as measured by fluorescein uptake. Our results imply that hydroxyl radicals are important in tissue injury secondary to partial cerebral ischemia and that xanthine oxidase may be the primary source of these radicals.

  9. Unilateral pulmonary edema following acute subglottic edema.

    PubMed

    Morisaki, H; Ochiai, R; Takeda, J; Nagano, M

    1990-01-01

    Presented here is a case of unilateral pulmonary edema following acute subglottic edema after removal of an endotracheal tube. A 3-year-old boy, diagnosed as having nondiphtheric croup and pectus excavatum deformity, was scheduled for repair of a cleft lip. No complication occurred during the operation. After removal of the endotracheal tube, he showed dyspnea and cyanosis and was later found to have acute subglottic edema. After reintubation of the trachea, frothy pink fluid was discharged from the tube, and chest roentgenogram showed a right-sided alveolar infiltrate. Many factors may cause unilateral pulmonary edema, but it is suggested that acute subglottic edema and unilateral bronchial fragility strongly affected this episode.

  10. Effect of Decompressive Craniectomy on Perihematomal Edema in Patients with Intracerebral Hemorrhage

    PubMed Central

    Klinger-Gratz, Pascal P.; Fiechter, Michael; Z’Graggen, Werner J.; Gautschi, Oliver P.; El-Koussy, Marwan; Gralla, Jan; Schaller, Karl; Zbinden, Martin; Arnold, Marcel; Fischer, Urs; Mattle, Heinrich P.; Raabe, Andreas; Beck, Jürgen

    2016-01-01

    Background Perihematomal edema contributes to secondary brain injury in the course of intracerebral hemorrhage. The effect of decompressive surgery on perihematomal edema after intracerebral hemorrhage is unknown. This study analyzed the course of PHE in patients who were or were not treated with decompressive craniectomy. Methods More than 100 computed tomography images from our published cohort of 25 patients were evaluated retrospectively at two university hospitals in Switzerland. Computed tomography scans covered the time from admission until day 100. Eleven patients were treated by decompressive craniectomy and 14 were treated conservatively. Absolute edema and hematoma volumes were assessed using 3-dimensional volumetric measurements. Relative edema volumes were calculated based on maximal hematoma volume. Results Absolute perihematomal edema increased from 42.9 ml to 125.6 ml (192.8%) after 21 days in the decompressive craniectomy group, versus 50.4 ml to 67.2 ml (33.3%) in the control group (Δ at day 21 = 58.4 ml, p = 0.031). Peak edema developed on days 25 and 35 in patients with decompressive craniectomy and controls respectively, and it took about 60 days for the edema to decline to baseline in both groups. Eight patients (73%) in the decompressive craniectomy group and 6 patients (43%) in the control group had a good outcome (modified Rankin Scale score 0 to 4) at 6 months (P = 0.23). Conclusions Decompressive craniectomy is associated with a significant increase in perihematomal edema compared to patients who have been treated conservatively. Perihematomal edema itself lasts about 60 days if it is not treated, but decompressive craniectomy ameliorates the mass effect exerted by the intracerebral hemorrhage plus the perihematomal edema, as reflected by the reduced midline shift. PMID:26872068

  11. Astaxanthin reduces ischemic brain injury in adult rats.

    PubMed

    Shen, Hui; Kuo, Chi-Chung; Chou, Jenny; Delvolve, Alice; Jackson, Shelley N; Post, Jeremy; Woods, Amina S; Hoffer, Barry J; Wang, Yun; Harvey, Brandon K

    2009-06-01

    Astaxanthin (ATX) is a dietary carotenoid of crustaceans and fish that contributes to their coloration. Dietary ATX is important for development and survival of salmonids and crustaceans and has been shown to reduce cardiac ischemic injury in rodents. The purpose of this study was to examine whether ATX can protect against ischemic injury in the mammalian brain. Adult rats were injected intracerebroventricularly with ATX or vehicle prior to a 60-min middle cerebral artery occlusion (MCAo). ATX was present in the infarction area at 70-75 min after onset of MCAo. Treatment with ATX, compared to vehicle, increased locomotor activity in stroke rats and reduced cerebral infarction at 2 d after MCAo. To evaluate the protective mechanisms of ATX against stroke, brain tissues were assayed for free radical damage, apoptosis, and excitoxicity. ATX antagonized ischemia-mediated loss of aconitase activity and reduced glutamate release, lipid peroxidation, translocation of cytochrome c, and TUNEL labeling in the ischemic cortex. ATX did not alter physiological parameters, such as body temperature, brain temperature, cerebral blood flow, blood gases, blood pressure, and pH. Collectively, our data suggest that ATX can reduce ischemia-related injury in brain tissue through the inhibition of oxidative stress, reduction of glutamate release, and antiapoptosis. ATX may be clinically useful for patients vulnerable or prone to ischemic events. PMID:19218497

  12. Astaxanthin reduces ischemic brain injury in adult rats.

    PubMed

    Shen, Hui; Kuo, Chi-Chung; Chou, Jenny; Delvolve, Alice; Jackson, Shelley N; Post, Jeremy; Woods, Amina S; Hoffer, Barry J; Wang, Yun; Harvey, Brandon K

    2009-06-01

    Astaxanthin (ATX) is a dietary carotenoid of crustaceans and fish that contributes to their coloration. Dietary ATX is important for development and survival of salmonids and crustaceans and has been shown to reduce cardiac ischemic injury in rodents. The purpose of this study was to examine whether ATX can protect against ischemic injury in the mammalian brain. Adult rats were injected intracerebroventricularly with ATX or vehicle prior to a 60-min middle cerebral artery occlusion (MCAo). ATX was present in the infarction area at 70-75 min after onset of MCAo. Treatment with ATX, compared to vehicle, increased locomotor activity in stroke rats and reduced cerebral infarction at 2 d after MCAo. To evaluate the protective mechanisms of ATX against stroke, brain tissues were assayed for free radical damage, apoptosis, and excitoxicity. ATX antagonized ischemia-mediated loss of aconitase activity and reduced glutamate release, lipid peroxidation, translocation of cytochrome c, and TUNEL labeling in the ischemic cortex. ATX did not alter physiological parameters, such as body temperature, brain temperature, cerebral blood flow, blood gases, blood pressure, and pH. Collectively, our data suggest that ATX can reduce ischemia-related injury in brain tissue through the inhibition of oxidative stress, reduction of glutamate release, and antiapoptosis. ATX may be clinically useful for patients vulnerable or prone to ischemic events.

  13. Reducing proactive aggression through non-invasive brain stimulation.

    PubMed

    Dambacher, Franziska; Schuhmann, Teresa; Lobbestael, Jill; Arntz, Arnoud; Brugman, Suzanne; Sack, Alexander T

    2015-10-01

    Aggressive behavior poses a threat to human collaboration and social safety. It is of utmost importance to identify the functional mechanisms underlying aggression and to develop potential interventions capable of reducing dysfunctional aggressive behavior already at a brain level. We here experimentally shifted fronto-cortical asymmetry to manipulate the underlying motivational emotional states in both male and female participants while assessing the behavioral effects on proactive and reactive aggression. Thirty-two healthy volunteers received either anodal transcranial direct current stimulation to increase neural activity within right dorsolateral prefrontal cortex, or sham stimulation. Aggressive behavior was measured with the Taylor Aggression Paradigm. We revealed a general gender effect, showing that men displayed more behavioral aggression than women. After the induction of right fronto-hemispheric dominance, proactive aggression was reduced in men. This study demonstrates that non-invasive brain stimulation can reduce aggression in men. This is a relevant and promising step to better understand how cortical brain states connect to impulsive actions and to examine the causal role of the prefrontal cortex in aggression. Ultimately, such findings could help to examine whether the brain can be a direct target for potential supportive interventions in clinical settings dealing with overly aggressive patients and/or violent offenders.

  14. C1-Inhibitor protects from focal brain trauma in a cortical cryolesion mice model by reducing thrombo-inflammation

    PubMed Central

    Albert-Weissenberger, Christiane; Mencl, Stine; Schuhmann, Michael K.; Salur, Irmak; Göb, Eva; Langhauser, Friederike; Hopp, Sarah; Hennig, Nelli; Meuth, Sven G.; Nolte, Marc W.; Sirén, Anna-Leena; Kleinschnitz, Christoph

    2014-01-01

    Traumatic brain injury (TBI) induces a strong inflammatory response which includes blood-brain barrier damage, edema formation and infiltration of different immune cell subsets. More recently, microvascular thrombosis has been identified as another pathophysiological feature of TBI. The contact-kinin system represents an interface between inflammatory and thrombotic circuits and is activated in different neurological diseases. C1-Inhibitor counteracts activation of the contact-kinin system at multiple levels. We investigated the therapeutic potential of C1-Inhibitor in a model of TBI. Male and female C57BL/6 mice were subjected to cortical cryolesion and treated with C1-Inhibitor after 1 h. Lesion volumes were assessed between day 1 and day 5 and blood-brain barrier damage, thrombus formation as well as the local inflammatory response were determined post TBI. Treatment of male mice with 15.0 IU C1-Inhibitor, but not 7.5 IU, 1 h after cryolesion reduced lesion volumes by ~75% on day 1. This protective effect was preserved in female mice and at later stages of trauma. Mechanistically, C1-Inhibitor stabilized the blood-brain barrier and decreased the invasion of immune cells into the brain parenchyma. Moreover, C1-Inhibitor had strong antithrombotic effects. C1-Inhibitor represents a multifaceted anti-inflammatory and antithrombotic compound that prevents traumatic neurodegeneration in clinically meaningful settings. PMID:25249935

  15. Resveratrol attenuates peripheral and brain inflammation and reduces ischemic brain injury in aged female mice.

    PubMed

    Jeong, Sae Im; Shin, Jin A; Cho, Sunghee; Kim, Hye Won; Lee, Ji Yoon; Kang, Jihee Lee; Park, Eun-Mi

    2016-08-01

    Resveratrol is known to improve metabolic dysfunction associated with obesity. Visceral obesity is a sign of aging and is considered a risk factor for ischemic stroke. In this study, we investigated the effects of resveratrol on inflammation in visceral adipose tissue and the brain and its effects on ischemic brain injury in aged female mice. Mice treated with resveratrol (0.1 mg/kg, p.o.) for 10 days showed reduced levels of interleukin-1β and tumor necrosis factor-α, as well as a reduction in the size of adipocytes in visceral adipose tissue. Resveratrol also reduced interleukin-1β and tumor necrosis factor-α protein levels and immunoglobulin G extravasation in the brain. Mice treated with resveratrol demonstrated smaller infarct size, improved neurological function, and blunted peripheral inflammation at 3 days postischemic stroke. These results showed that resveratrol counteracted inflammation in visceral adipose tissue and in the brain and reduced stroke-induced brain injury and peripheral inflammation in aged female mice. Therefore, resveratrol administration can be a valuable strategy for the prevention of age-associated and disease-provoked inflammation in postmenopausal women.

  16. Statins are Associated With a Reduced Risk of Brain Cancer

    PubMed Central

    Chen, Brian K.; Chiu, Hui-Fen; Yang, Chun-Yuh

    2016-01-01

    Abstract The aim of this study was to investigate whether statin utilization is associated with brain cancer risk. A population-based case–control study was conducted using nationally representative claims data from the National Health Insurance Bureau in Taiwan. Cases included all patients 50 years and older who received an index diagnosis of brain cancer between 2004 and 2011. Our controls were matched by age, sex, and index date. We estimated adjusted odds ratios (ORs) and 95% confidence intervals (CIs) using multiple logistic regression. We examined 213 brain cancer cases and 852 controls. The unadjusted ORs for any statin prescription was 0.77 (95% CI = 0.50–1.18) and the adjusted OR was 0.59 (95% CI = 0.37–0.96). Compared with no use of statins, the adjusted ORs were 0.68 (95% CI = 0.38–1.24) for the group having been prescribed with statins with cumulative defined daily dose (DDD) below 144.67 DDDs and 0.50 (95% CI = 0.28–0.97) for the group with the cumulative statin use of 144.67 DDDs or more. The results of this study suggest that statins may reduce the risk of brain cancer. PMID:27124024

  17. Mechanisms of Astrocyte-Mediated Cerebral Edema

    PubMed Central

    Stokum, Jesse A.; Kurland, David B.; Gerzanich, Volodymyr; Simard, J. Marc

    2014-01-01

    Cerebral edema formation stems from disruption of blood brain barrier (BBB) integrity and occurs after injury to the CNS. Due to the restrictive skull, relatively small increases in brain volume can translate into impaired tissue perfusion and brain herniation. In excess, cerebral edema can be gravely harmful. Astrocytes are key participants in cerebral edema by virtue of their relationship with the cerebral vasculature, their unique compliment of solute and water transport proteins, and their general role in brain volume homeostasis. Following the discovery of aquaporins, passive conduits of water flow, aquaporin 4 (AQP4) was identified as the predominant astrocyte water channel. Normally, AQP4 is highly enriched at perivascular endfeet, the outermost layer of the BBB, whereas after injury, AQP4 expression disseminates to the entire astrocytic plasmalemma, a phenomenon termed dysregulation. Arguably, the most important role of AQP4 is to rapidly neutralize osmotic gradients generated by ionic transporters. In pathological conditions, AQP4 is believed to be intimately involved in the formation and clearance of cerebral edema. In this review, we discuss aquaporin function and localization in the BBB during health and injury, and we examine post-injury ionic events that modulate AQP4- dependent edema formation. PMID:24996934

  18. Aerobic exercise reduces neuronal responses in food reward brain regions.

    PubMed

    Evero, Nero; Hackett, Laura C; Clark, Robert D; Phelan, Suzanne; Hagobian, Todd A

    2012-05-01

    Acute exercise suppresses ad libitum energy intake, but little is known about the effects of exercise on food reward brain regions. After an overnight fast, 30 (17 men, 13 women), healthy, habitually active (age = 22.2 ± 0.7 yr, body mass index = 23.6 ± 0.4 kg/m(2), Vo(2peak) = 44.2 ± 1.5 ml·kg(-1)·min(-1)) individuals completed 60 min of exercise on a cycle ergometer or 60 min of rest (no-exercise) in a counterbalanced, crossover fashion. After each condition, blood oxygen level-dependent responses to high-energy food, low-energy food, and control visual cues, were measured by functional magnetic resonance imaging. Exercise, compared with no-exercise, significantly (P < 0.005) reduced the neuronal response to food (high and low food) cues vs. control cues in the insula (-0.37 ± 0.13 vs. +0.07 ± 0.18%), putamen (-0.39 ± 0.10 vs. -0.10 ± 0.09%), and rolandic operculum (-0.37 ± 0.17 vs. 0.17 ± 0.12%). Exercise alone significantly (P < 0.005) reduced the neuronal response to high food vs. control and low food vs. control cues in the inferior orbitofrontal cortex (-0.94 ± 0.33%), insula (-0.37 ± 0.13%), and putamen (-0.41 ± 0.10%). No-exercise alone significantly (P < 0.005) reduced the neuronal response to high vs. control and low vs. control cues in the middle (-0.47 ± 0.15%) and inferior occipital gyrus (-1.00 ± 0.23%). Exercise reduced neuronal responses in brain regions consistent with reduced pleasure of food, reduced incentive motivation to eat, and reduced anticipation and consumption of food. Reduced neuronal response in these food reward brain regions after exercise is in line with the paradigm that acute exercise suppresses subsequent energy intake.

  19. Downregulating hypoxia-inducible factor-1α expression with perfluorooctyl-bromide nanoparticles reduces early brain injury following experimental subarachnoid hemorrhage in rats

    PubMed Central

    Xu, Wei; Xu, Rui; Li, Xia; Zhang, Huan; Wang, Xin; Zhu, Ji

    2016-01-01

    The aim of the present study was to investigate the effects of perfluorooctyl-bromide (PFOB) nanoparticles on hypoxia-inducible factor 1 alpha (HIF-1α) and its downstream target genes in early brain injury (EBI) after subarachnoid hemorrhage (SAH). Healthy male Sprague Dawley rats (n=100) were randomly divided into five groups: Sham, SAH, SAH + vehicle, SAH + 5 mg/kg PFOB and SAH + 10 mg/kg PFOB. A rat model of SAH was created by endovascular perforation, and PFOB treatment (5 mg/kg or 10 mg/kg injected into the caudal vein) was initiated 1 h after SAH. All rats were subsequently sacrificed 24 h after surgery. Treatment with PFOB significantly alleviated EBI (including neurological dysfunction, brain edema, blood-brain barrier disruption (BBB), and neural cell apoptosis). In addition, it also suppressed the expression of HIF-1α, vascular endothelial growth factor (VEGF) and BNIP3 in the rat hippocampus. The effects of 10 g/kg PFOB were found to be more obvious than those of 5 g/kg PFOB. Our work demonstrated that PFOB treatment alleviated EBI after SAH, potentially through downregulation of the expression of HIF-1α and its target genes, which led to reduced cell apoptosis, BBB disruption and brain edema. PMID:27347319

  20. [Vulvar edema in pregnancy].

    PubMed

    Radomański, T; Sikorski, R; Baszak, E

    1998-12-01

    Reported is a case of massive vulvar edema complicating pregnancy probably as a result of mycotic vulvovaginitis or chemical vulvitis associated with drugs being used in the medication. Medical therapy failed to relieve the edema while the mechanical drainage showed to be an effective method of treatment. PMID:10224778

  1. [Hyponatremic encephalopathy with non-cardiogenic pulmonary edema. Development following marathon run].

    PubMed

    Wellershoff, G

    2013-04-01

    This article presents the case of a 52-year-old woman who developed exercise-associated hyponatremia (EAH) complicated by non-cardiogenic pulmonary edema after a marathon run. The condition of EAH is a potentially life-threatening complication of endurance exercise. The main cause seems to be inadequate intake of free water during or following exercise with enduring antidiuresis due to nonosmotic stimulation of ADH secretion. Known risk factors are female gender, slow running pace and lack of weight loss. Emergency therapy is fluid restriction and bolus infusion of 3% NaCl solution to rapidly reduce brain edema. PMID:23381723

  2. Lactoferrin during lactation reduces lipopolysaccharide-induced brain injury.

    PubMed

    Ginet, Vanessa; van de Looij, Yohan; Petrenko, Volodymyr; Toulotte, Audrey; Kiss, Jozsef; Hüppi, Petra S; Sizonenko, Stéphane V

    2016-05-01

    Lactoferrin (Lf), component of maternal milk, has antioxidant, anti-inflammatory and antimicrobial properties. Neuroprotective effects of Lf on the immature brain have been recently shown in rodent models of intrauterine growth restriction and cerebral hypoxia/ischemia. Here we postulated that Lf could also have beneficial effects on preterm inflammatory brain injury. Lf was supplemented in maternal food during lactation and lipopolysaccharide (LPS) was injected in subcortical white matter of rat pups at postnatal day 3 (P3). Effect of maternal Lf supplementation was investigated 24 h (P4), 4 (P7), or 21 days (P24) after LPS injection mainly on the striatum. Lateral ventricle and brain structures volumes were quantified. Microstructure was evaluated by diffusion tensor imaging, neurite orientation dispersion and density imaging as well as electron microscopy. Neurochemical profile was measured by (1) H-magnetic resonance spectroscopy. GFAP protein, proinflammatory cytokines mRNA expression microglial activation were assessed. Lf displayed neuroprotective effects as shown by reduced LPS-induced ventriculomegaly, brain tissue loss, and microstructural modifications, including myelination deficit. (1) H-MRS neurochemical profile was less altered through an antioxidant action of Lf. Despite the lack of effect on LPS-induced proinflammatory cytokines genes expression and on reactive gliosis, microglia was less activated under Lf treatment. In conclusion, Lf supplemented in food during lactation attenuated acute and long-term cerebral LPS-induced alterations. This provides a new evidence for a promising use of Lf as a preventive neuroprotective approach in preterm encephalopathy. © 2016 BioFactors, 42(3):323-336, 2016. PMID:27313089

  3. Reduced predictable information in brain signals in autism spectrum disorder

    PubMed Central

    Gómez, Carlos; Lizier, Joseph T.; Schaum, Michael; Wollstadt, Patricia; Grützner, Christine; Uhlhaas, Peter; Freitag, Christine M.; Schlitt, Sabine; Bölte, Sven; Hornero, Roberto; Wibral, Michael

    2014-01-01

    Autism spectrum disorder (ASD) is a common developmental disorder characterized by communication difficulties and impaired social interaction. Recent results suggest altered brain dynamics as a potential cause of symptoms in ASD. Here, we aim to describe potential information-processing consequences of these alterations by measuring active information storage (AIS)—a key quantity in the theory of distributed computation in biological networks. AIS is defined as the mutual information between the past state of a process and its next measurement. It measures the amount of stored information that is used for computation of the next time step of a process. AIS is high for rich but predictable dynamics. We recorded magnetoencephalography (MEG) signals in 10 ASD patients and 14 matched control subjects in a visual task. After a beamformer source analysis, 12 task-relevant sources were obtained. For these sources, stationary baseline activity was analyzed using AIS. Our results showed a decrease of AIS values in the hippocampus of ASD patients in comparison with controls, meaning that brain signals in ASD were either less predictable, reduced in their dynamic richness or both. Our study suggests the usefulness of AIS to detect an abnormal type of dynamics in ASD. The observed changes in AIS are compatible with Bayesian theories of reduced use or precision of priors in ASD. PMID:24592235

  4. Intravenous anesthetic propofol suppresses prostaglandin E2 and cysteinyl leukotriene production and reduces edema formation in arachidonic acid-induced ear inflammation.

    PubMed

    Inada, Takefumi; Hirota, Kiichi; Shingu, Koh

    2015-01-01

    Propofol is an intravenous drug widely used for anesthesia and sedation. Previously, propofol was shown to inhibit cyclo-oxygenase (COX) and 5-lipoxygenase (5-LOX) activities. Because these enzyme-inhibiting effects have only been demonstrated in vitro, this study sought to ascertain whether similar effects might also be observed in vivo. In the current studies, effects of propofol were tested in a murine model of arachidonic acid-induced ear inflammation. Specifically, propofol - as a pre-treatment -- was intraperitoneally and then topical application of arachidonic acid was performed. After 1 h, tissue biopsies were collected and tested for the presence of edema and for levels of inflammatory mediators. The results indicated that the administration of propofol significantly suppressed ear edema formation, tissue myeloperoxidase activity, and tissue production of both prostaglandin E2 and cysteinyl leukotrienes. From the data, it can be concluded that propofol could exert anti-COX and anti-5-LOX activities in an in vivo model and that these activities in turn could have, at least in part, suppressed arachidonic acid-induced edema formation in the ear.

  5. Salidroside Improves Behavioral and Histological Outcomes and Reduces Apoptosis via PI3K/Akt Signaling after Experimental Traumatic Brain Injury

    PubMed Central

    Chen, Szu-Fu; Tsai, Hsin-Ju; Hung, Tai-Ho; Chen, Chien-Cheng; Lee, Chao Yu; Wu, Chun-Hu; Wang, Pei-Yi; Liao, Nien-Chieh

    2012-01-01

    Background Traumatic brain injury (TBI) induces a complex sequence of apopototic cascades that contribute to secondary tissue damage. The aim of this study was to investigate the effects of salidroside, a phenolic glycoside with potent anti-apoptotic properties, on behavioral and histological outcomes, brain edema, and apoptosis following experimental TBI and the possible involvement of the phosphoinositide 3-kinase/protein kinase B (PI3K)/Akt signaling pathway. Methodology/Principal Findings Mice subjected to controlled cortical impact injury received intraperitoneal salidroside (20, or 50 mg/kg) or vehicle injection 10 min after injury. Behavioral studies, histology analysis and brain water content assessment were performed. Levels of PI3K/Akt signaling-related molecules, apoptosis-related proteins, cytochrome C (CytoC), and Smac/DIABLO were also analyzed. LY294002, a PI3K inhibitor, was administered to examine the mechanism of protection. The protective effect of salidroside was also investigated in primary cultured neurons subjected to stretch injury. Treatment with 20 mg/kg salidroside_significantly improved functional recovery and reduced brain tissue damage up to post-injury day 28. Salidroside_also significantly reduced neuronal death, apoptosis, and brain edema at day 1. These changes were associated with significant decreases in cleaved caspase-3, CytoC, and Smac/DIABLO at days 1 and 3. Salidroside increased phosphorylation of Akt on Ser473 and the mitochondrial Bcl-2/Bax ratio at day 1, and enhanced phosphorylation of Akt on Thr308 at day 3. This beneficial effect was abolished by pre-injection of LY294002. Moreover, delayed administration of salidroside at 3 or 6 h post-injury reduced neuronal damage at day 1. Salidroside treatment also decreased neuronal vulnerability to stretch-induced injury in vitro. Conclusions/Significance Post-injury salidroside improved long-term behavioral and histological outcomes and reduced brain edema and apoptosis

  6. Reduced brain activation in violent adolescents during response inhibition.

    PubMed

    Qiao, Yi; Mei, Yi; Du, XiaoXia; Xie, Bin; Shao, Yang

    2016-01-01

    Deficits in inhibitory control have been linked to aggression and violent behaviour. This study aimed to observe whether violent adolescents show different brain activation patterns during response inhibition and to ascertain the roles these brain regions play. A self-report method and modified overt aggression scale (MOAS) were used to evaluate violent behaviour. Functional magnetic resonance imaging was performed in 22 violent adolescents and 17 matched healthy subjects aged 12 to 18 years. While scanning, a go/no-go task was performed. Between-group comparisons revealed that activation in the bilateral middle and superior temporal gyrus, hippocampus, and right orbitofrontal area (BA11) regions were significantly reduced in the violent group compared with the control group. Meanwhile, the violent group had more widespread activation in the prefrontal cortex than that observed in the control group. Activation of the prefrontal cortex in the violent group was widespread but lacking in focus, failing to produce intensive activation in some functionally related regions during response inhibition. PMID:26888566

  7. ASB16165, a phosphodiesterase 7A inhibitor, reduces cutaneous TNF-alpha level and ameliorates skin edema in phorbol ester 12-O-tetradecanoylphorbol-13-acetate-induced skin inflammation model in mice.

    PubMed

    Kadoshima-Yamaoka, Kumiko; Goto, Megumi; Murakawa, Masao; Yoshioka, Ryosuke; Tanaka, Yoshitaka; Inoue, Hidekazu; Murafuji, Hidenobu; Kanki, Satomi; Hayashi, Yasuhiro; Nagahira, Kazuhiro; Ogata, Atsuto; Nakatsuka, Takashi; Fukuda, Yoshiaki

    2009-06-24

    Possible role of phosphodiesterase 7A (PDE7A) in skin inflammation was examined using ASB16165, a specific inhibitor for PDE7A. Epicutaneous application of phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) to mouse ear resulted in induction of skin edema, and topical treatment with ASB16165 inhibited the induction of skin edema in a dose-dependent manner. The TPA challenge also increased the level of TNF-alpha at the application site, and the ASB16165 treatment reduced the TNF-alpha level in the skin. In addition, ASB16165 suppressed the production of TNF-alpha by human keratinocytes stimulated in vitro with TPA and calcium ionophore. Forskolin, an activator of adenylyl cyclase, as well as dibutyryl cAMP also showed inhibitory effect on the TNF-alpha production in the cells, suggesting involvement of cAMP in TNF-alpha generation. These results demonstrate that PDE7A might regulate TNF-alpha production in keratinocytes in a cAMP-dependent fashion. As immunostaining analysis revealed that PDE7A is expressed in the epidermis and TNF-alpha is known to contribute to the TPA-induced edema, it is possible that the inhibitory effect of ASB16165 on skin edema in mouse TPA-induced dermatitis model is mediated by suppression of TNF-alpha production. This is the first report suggesting the association of PDE7A with the function of keratinocytes. ASB16165 will be useful as an agent for skin inflammation in which TNF-alpha plays a pathogenic role (e.g. psoriasis).

  8. High-fat diet transition reduces brain DHA levels associated with altered brain plasticity and behaviour.

    PubMed

    Sharma, Sandeep; Zhuang, Yumei; Gomez-Pinilla, Fernando

    2012-01-01

    To assess how the shift from a healthy diet rich in omega-3 fatty acids to a diet rich in saturated fatty acid affects the substrates for brain plasticity and function, we used pregnant rats fed with omega-3 supplemented diet from their 2nd day of gestation period as well as their male pups for 12 weeks. Afterwards, the animals were randomly assigned to either a group fed on the same diet or a group fed on a high-fat diet (HFD) rich in saturated fats for 3 weeks. We found that the HFD increased vulnerability for anxiety-like behavior, and that these modifications harmonized with changes in the anxiety-related NPY1 receptor and the reduced levels of BDNF, and its signalling receptor pTrkB, as well as the CREB protein. Brain DHA contents were significantly associated with the levels of anxiety-like behavior in these rats. PMID:22666534

  9. Oral branched-chain amino acid supplements that reduce brain serotonin during exercise in rats also lower brain catecholamines.

    PubMed

    Choi, Sujean; Disilvio, Briana; Fernstrom, Madelyn H; Fernstrom, John D

    2013-11-01

    Exercise raises brain serotonin release and is postulated to cause fatigue in athletes; ingestion of branched-chain amino acids (BCAA), by competitively inhibiting tryptophan transport into brain, lowers brain tryptophan uptake and serotonin synthesis and release in rats, and reputedly in humans prevents exercise-induced increases in serotonin and fatigue. This latter effect in humans is disputed. But BCAA also competitively inhibit tyrosine uptake into brain, and thus catecholamine synthesis and release. Since increasing brain catecholamines enhances physical performance, BCAA ingestion could lower catecholamines, reduce performance and thus negate any serotonin-linked benefit. We therefore examined in rats whether BCAA would reduce both brain tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis. Sedentary and exercising rats received BCAA or vehicle orally; tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis rates were measured 1 h later in brain. BCAA reduced brain tryptophan and tyrosine concentrations, and serotonin and catecholamine synthesis. These reductions in tyrosine concentrations and catecholamine synthesis, but not tryptophan or serotonin synthesis, could be prevented by co-administering tyrosine with BCAA. Complete essential amino acid mixtures, used to maintain or build muscle mass, were also studied, and produced different effects on brain tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis. Since pharmacologically increasing brain catecholamine function improves physical performance, the finding that BCAA reduce catecholamine synthesis may explain why this treatment does not enhance physical performance in humans, despite reducing serotonin synthesis. If so, adding tyrosine to BCAA supplements might allow a positive action on performance to emerge.

  10. Selective Brain Cooling Reduces Water Turnover in Dehydrated Sheep

    PubMed Central

    Strauss, W. Maartin; Hetem, Robyn S.; Mitchell, Duncan; Maloney, Shane K.; Meyer, Leith C. R.; Fuller, Andrea

    2015-01-01

    In artiodactyls, arterial blood destined for the brain can be cooled through counter-current heat exchange within the cavernous sinus via a process called selective brain cooling. We test the hypothesis that selective brain cooling, which results in lowered hypothalamic temperature, contributes to water conservation in sheep. Nine Dorper sheep, instrumented to provide measurements of carotid blood and brain temperature, were dosed with deuterium oxide (D2O), exposed to heat for 8 days (40◦C for 6-h per day) and deprived of water for the last five days (days 3 to 8). Plasma osmolality increased and the body water fraction decreased over the five days of water deprivation, with the sheep losing 16.7% of their body mass. Following water deprivation, both the mean 24h carotid blood temperature and the mean 24h brain temperature increased, but carotid blood temperature increased more than did brain temperature resulting in increased selective brain cooling. There was considerable inter-individual variation in the degree to which individual sheep used selective brain cooling. In general, sheep spent more time using selective brain cooling, and it was of greater magnitude, when dehydrated compared to when they were euhydrated. We found a significant positive correlation between selective brain cooling magnitude and osmolality (an index of hydration state). Both the magnitude of selective brain cooling and the proportion of time that sheep spent selective brain cooling were negatively correlated with water turnover. Sheep that used selective brain cooling more frequently, and with greater magnitude, lost less water than did conspecifics using selective brain cooling less efficiently. Our results show that a 50kg sheep can save 2.6L of water per day (~60% of daily water intake) when it employs selective brain cooling for 50% of the day during heat exposure. We conclude that selective brain cooling has a water conservation function in artiodactyls. PMID:25675092

  11. [Edema and the tropics].

    PubMed

    Holzer, B R

    2004-11-01

    People visiting or living in tropical or subtropical regions are exposed to various factors, which can lead to edema. Tourists staying for only a short time in the tropics are exposed to different risks, with other disease patterns, than people living in the tropics or immigrants from tropical regions. The differential diagnosis of edema and swelling is extensive and it can sometimes be difficult to distinguish classical edema with fluid retention in the extravascular interstitial space, from lymphedema or swelling due to other aetiologies. The patients often connect the edema to their stay in the tropics although it may have been pre-existing with no obvious relation to their travels. Already the long trip in the plane can lead to an "economy class syndrome" due to deep venous thrombosis. Contacts with animal or plant toxins, parasites or parasitic larvae can produce peripheral edema. The diagnosis can often only be made by taking a meticulous history, checking for eosinophilia and with the help of serological investigations. Chronic lymphedema or elephantiasis of the limbs is often due to blocked lymph vessels by filarial worms. It has to be distinguished from other forms as e.g. podoconiosis due to blockage by mineral particles in barefoot walking people. The trend to book adventure and trekking holidays at high altitude leads to high altitude peripheral edema or non-freezing cold injuries such as frostbites and trench foot. Edema can be an unwanted side effect of a range of drugs e.g. nifedipine, which is used to prevent and treat high altitude pulmonary edema. Protein malnutrition, (Kwashiorkor), and vitamin B6 deficiency, (Beri-Beri) are very rarely observed in immigrants and almost never in tourists. A very painful swelling of fingers and hands in children and young adults of African origin can be observed during a sickle cell crisis. Many protein loosing nephropathies connected with plant and animal toxins but also bacterial, viral or parasitic agents, can

  12. [Cardiogenic and non cardiogenic pulmonary edema: pathomechanisms and causes].

    PubMed

    Glaus, T; Schellenberg, S; Lang, J

    2010-07-01

    The development of pulmonary edema is divided in cardiogenic and non-cardiogenic. Cardiogenic edema pathogenically is caused by elevated hydrostatic pressure in the pulmonary capillaries due to left sided congestive heart failure. Non-cardiogenic pulmonary edema is categorized depending on the underlying pathogenesis in low-alveolar pressure, elevated permeability or neurogenic edema. Some important examples of causes are upper airway obstruction like in laryngeal paralysis or strangulation for low alveolar pressure, leptospirosis and ARDS for elevated permeability, and epilepsy, brain trauma and electrocution for neurogenic edema. The differentiation between cardiogenic versus non-cardiogenic genesis is not always straightforward, but most relevant, because treatment markedly differs between the two. Of further importance is the identification of the specific underlying cause in non-cardiogenic edema, not only for therapeutic but particularly for prognostic reasons. Depending on the cause the prognosis ranges from very poor to good chance of complete recovery. PMID:20582896

  13. Discrimination between different types of white matter edema with diffusion-weighted MR imaging.

    PubMed

    Ebisu, T; Naruse, S; Horikawa, Y; Ueda, S; Tanaka, C; Uto, M; Umeda, M; Higuchi, T

    1993-01-01

    Brain edema can be classified into three categories: vasogenic, cytotoxic, and interstitial. The mechanism of edema is thought to be different in each type. The authors studied the movement of water molecules in each type of white matter edema in a rat model by using diffusion-weighted magnetic resonance imaging. Conventional T2-weighted imaging did not allow distinction between the three types of white matter edema; the three types of edema were, however, distinguished by using diffusion-weighted imaging. The apparent diffusion coefficient (ADC) of water was different in each type of edema. Water molecules in cytotoxic edema induced by triethyl-tin intoxication showed a smaller and less anisotropic ADC than in normal white matter. In contrast, water in vasogenic edema induced by cold injury had a larger and more anisotropic ADC than in normal white matter. Water in interstitial edema due to kaolin-induced hydrocephalus had an anisotropic and very large ADC. PMID:8280975

  14. Vitexin reduces hypoxia-ischemia neonatal brain injury by the inhibition of HIF-1alpha in a rat pup model.

    PubMed

    Min, Jia-Wei; Hu, Jiang-Jian; He, Miao; Sanchez, Russell M; Huang, Wen-Xian; Liu, Yu-Qiang; Bsoul, Najeeb Bassam; Han, Song; Yin, Jun; Liu, Wan-Hong; He, Xiao-Hua; Peng, Bi-Wen

    2015-12-01

    Previous studies have demonstrated that the early suppression of HIF-1α after hypoxia-ischemia (HI) injury provides neuroprotection. Vitexin (5, 7, 4-trihydroxyflavone-8-glucoside), an HIF-1α inhibitor, is a c-glycosylated flavone that has been identified in medicinal plants. Therefore, we hypothesized that treatment with vitexin would protect against HI brain injury. Newborn rat pups were subjected to unilateral carotid artery ligation followed by 2.5 h of hypoxia (8% O2 at 37 °C). Vitexin (30, 45 or 60 mg/kg) was administered intraperitoneally at 5 min or 3 h after HI. Vitexin, administered 5 min after HI, was neuroprotective as seen by decreased infarct volume evaluated at 48 h post-HI. This neuroprotection was removed when vitexin was administered 3 h after HI. Neuronal cell death, blood-brain barrier (BBB) integrity, brain edema, HIF-1α and VEGF protein levels were evaluated using a combination of Nissl staining, IgG staining, brain water content, immunohistochemistry and Western blot at 24 and 48 h after HI. The long-term effects of vitexin were evaluated by brain atrophy measurement, Nissl staining and neurobehavioral tests. Vitexin (45 mg/kg) ameliorated brain edema, BBB disruption and neuronal cell death; Upregulation of HIF-1α by dimethyloxalylglycine (DMOG) increased the BBB permeability and brain edema compared to HI alone. Vitexin attenuated the increase in HIF-1α and VEGF. Vitexin also had long-term effects of protecting against the loss of ipsilateral brain and improveing neurobehavioral outcomes. In conclusion, our data indicate early HIF-1α inhibition with vitexin provides both acute and long-term neuroprotection in the developing brain after neonatal HI injury. PMID:26187393

  15. Latest advances in edema

    NASA Technical Reports Server (NTRS)

    Villavicencio, J. L.; Hargens, A. R.; Pikoulicz, E.

    1996-01-01

    Basic concepts in the physiopathology of edema are reviewed. The mechanisms of fluid exchange across the capillary endothelium are explained. Interstitial flow and lymph formation are examined. Clinical disorders of tissue and lymphatic transport, microcirculatory derangements in venous disorders, protein disorders, and lymphatic system disorders are explored. Techniques for investigational imaging of the lymphatic system are explained.

  16. Aquaporin-4: A Potential Therapeutic Target for Cerebral Edema

    PubMed Central

    Tang, Guanghui; Yang, Guo-Yuan

    2016-01-01

    Aquaporin-4 (AQP4) is a family member of water-channel proteins and is dominantly expressed in the foot process of glial cells surrounding capillaries. The predominant expression at the boundaries between cerebral parenchyma and major fluid compartments suggests the function of aquaporin-4 in water transfer into and out of the brain parenchyma. Accumulating evidences have suggested that the dysregulation of aquaporin-4 relates to the brain edema resulting from a variety of neuro-disorders, such as ischemic or hemorrhagic stroke, trauma, etc. During edema formation in the brain, aquaporin-4 has been shown to contribute to the astrocytic swelling, while in the resolution phase, it has been seen to facilitate the reabsorption of extracellular fluid. In addition, aquaporin-4-deficient mice are protected from cytotoxic edema produced by water intoxication and brain ischemia. However, aquaporin-4 deletion exacerbates vasogenic edema in the brain of different pathological disorders. Recently, our published data showed that the upregulation of aquaporin-4 in astrocytes probably contributes to the transition from cytotoxic edema to vasogenic edema. In this review, apart from the traditional knowledge, we also introduce our latest findings about the effects of mesenchymal stem cells (MSCs) and microRNA-29b on aquaporin-4, which could provide powerful intervention tools targeting aquaporin-4. PMID:27690011

  17. Oral branched-chain amino acid supplements that reduce brain serotonin during exercise in rats also lower brain catecholamines.

    PubMed

    Choi, Sujean; Disilvio, Briana; Fernstrom, Madelyn H; Fernstrom, John D

    2013-11-01

    Exercise raises brain serotonin release and is postulated to cause fatigue in athletes; ingestion of branched-chain amino acids (BCAA), by competitively inhibiting tryptophan transport into brain, lowers brain tryptophan uptake and serotonin synthesis and release in rats, and reputedly in humans prevents exercise-induced increases in serotonin and fatigue. This latter effect in humans is disputed. But BCAA also competitively inhibit tyrosine uptake into brain, and thus catecholamine synthesis and release. Since increasing brain catecholamines enhances physical performance, BCAA ingestion could lower catecholamines, reduce performance and thus negate any serotonin-linked benefit. We therefore examined in rats whether BCAA would reduce both brain tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis. Sedentary and exercising rats received BCAA or vehicle orally; tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis rates were measured 1 h later in brain. BCAA reduced brain tryptophan and tyrosine concentrations, and serotonin and catecholamine synthesis. These reductions in tyrosine concentrations and catecholamine synthesis, but not tryptophan or serotonin synthesis, could be prevented by co-administering tyrosine with BCAA. Complete essential amino acid mixtures, used to maintain or build muscle mass, were also studied, and produced different effects on brain tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis. Since pharmacologically increasing brain catecholamine function improves physical performance, the finding that BCAA reduce catecholamine synthesis may explain why this treatment does not enhance physical performance in humans, despite reducing serotonin synthesis. If so, adding tyrosine to BCAA supplements might allow a positive action on performance to emerge. PMID:23904096

  18. Reduced Fluorescein Angiography and Fundus Photography Use in the Management of Neovascular Macular Degeneration and Macular Edema During the Past Decade

    PubMed Central

    Schneider, Eric W.; Mruthyunjaya, Prithvi; Talwar, Nidhi; Harris Nwanyanwu, Kristen; Nan, Bin; Stein, Joshua D.

    2014-01-01

    Purpose. We assessed recent trends in the use of diagnostic testing for neovascular age-related macular degeneration (NVAMD) and macular edema (ME). Methods. Claims data from a managed-care network were analyzed on patients with NVAMD (n = 22,954) or ME (n = 31,810) to assess the use of fluorescein angiography (FA), fundus photography (FP), and optical coherence tomography (OCT) from 2001 to 2009. Repeated-measures logistic regression was performed to compare patients' odds of undergoing these procedures in 2001, 2005, and 2009. In addition, the proportions of patients with an incident NVAMD or ME diagnosis in 2003 or 2008 who underwent FA, FP, and OCT were compared. Results. From 2001 to 2009, among patients with NVAMD, the odds of undergoing OCT increased 23-fold, whereas the odds of receiving FA and FP decreased by 68% and 79%, respectively. Similar trends were observed for ME. From 2003 to 2008, the proportion of patients undergoing OCT within 1 year of initial diagnosis increased by 315% for NVAMD and by 143% for ME; the proportion undergoing OCT without FA within 1 year increased by 463% for NVAMD and by 216% for ME. Conclusions. Use of OCT increased dramatically during the past decade, whereas use of FA and FP declined considerably, suggesting that OCT may be replacing more traditional diagnostic testing in patients with NVAMD or ME. Future studies should evaluate whether this increased reliance on OCT instead of FA and FP affects patient outcomes. PMID:24346174

  19. The Effect of Complete Decongestive Therapy on Edema Volume Reduction and Pain in Women With Post Breast Surgery Lymph Edema

    PubMed Central

    Angooti Oshnari, Leila; Hosseini, Seyed Ali; Haghighat, Shahpar; Hossein Zadeh, Samaneh

    2016-01-01

    Background Upper extremity lymph edema is the most common side effect of breast cancer treatment that may produce significant physical and psychological morbidity. Pain is the frequent symptom of lymph edema that causes impairment of activities in daily life. Objectives The aim of this study was assessment of the effect of complex decongestive therapy (CDT) on upper extremity lymph edema and pain in women with post breast surgery lymph edema. Patients and Methods In this quasi- experimental research with before- after design, 36 women with moderate lymph edema after breast surgery participated in the program. Edema volume was measured by water displacement method; pain values were evaluated by visual analog scale (VAS). Data were recorded before intervention and 2 and 4 weeks after it. CDT included the first phase (intensive phase) and the second phase (maintenance phase). Each phase lasted 2 weeks. After use of Shapiro Wilk test for normality, analysis of variances with GEE and repeated measurements were used to analyze the data. Results After one month doing CDT program, significant decrease of edema was noticed (P < 0.0001), also pain decreased during 2 and 4 weeks after intervention (P < 0.0001). Conclusions This study indicated that CDT program is effective in reducing lymph edema volume and pain in women with moderate post breast surgery lymph edema. It seems that raising patients’ awareness and training healthcare professionals regarding lymph edema preventive strategies have an important role in earlier and better combating this complication. PMID:27482330

  20. Does exercise reduce brain oxidative stress? A systematic review.

    PubMed

    Camiletti-Moirón, D; Aparicio, V A; Aranda, P; Radak, Z

    2013-08-01

    The aim of the present systematic review was to investigate the influence of different exercise programs on brain oxidative stress. A search of the literature was conducted up to 1 December 2012 across five databases: PUBMED, SCOPUS, SPORTS DISCUS, Web of Science, and The Cochrane Library. The search strategy used in the electronic databases mentioned was established as: (swim* OR exercise OR training) AND ("oxidative stress" AND brain) for each database. A methodological quality assessment valuation/estimation was additionally carried out in the final sample of studies. Of 1553 potentially eligible papers, 19 were included after inclusion and exclusion criteria. The methodological quality assessment showed a total score in the Quality Index between 40% and 80%, with a mean quality of 56.8%. Overall, regular moderate aerobic exercise appears to promote antioxidant capacity on brain. In contrast, anaerobic or high-intensity exercise, aerobic-exhausted exercise, or the combination of both types of training could deteriorate the antioxidant response. Future investigations should be focused on establishing a standardized exercise protocol, depending on the exercise metabolism wanted to test, which could enhance the objective knowledge in this topic.

  1. Behavioral stress reduces RIP140 expression in astrocyte and increases brain lipid accumulation.

    PubMed

    Feng, Xudong; Lin, Yu-Lung; Wei, Li-Na

    2015-05-01

    Receptor-interacting protein 140 (RIP140) is highly expressed in the brain, and acts in neurons and microglia to affect emotional responses. The present study reveals an additional function of RIP140 in the brain, which is to regulate brain lipid homeostasis via its action in astrocytes. We found forced swim stress (FSS) significantly reduces the expression level of RIP140 and elevates cholesterol content in the brain. Mechanistically, FSS elevates endoplasmic reticulum stress, which suppresses RIP140 expression by increasing microRNA 33 (miR33) that targets RIP140 mRNA's 3'-untranslated region. Consequentially, cholesterol biosynthesis and export are dramatically increased in astrocyte, the major source of brain cholesterol. These results demonstrate that RIP140 plays an important role in maintaining brain cholesterol homeostasis through, partially, regulating cholesterol metabolism in, and mobilization from, astrocyte. Altering RIP140 levels can disrupt brain cholesterol homeostasis, which may contribute to behavioral stress-induced neurological disorders. PMID:25697398

  2. Behavioral stress reduces RIP140 expression in astrocyte and increases brain lipid accumulation.

    PubMed

    Feng, Xudong; Lin, Yu-Lung; Wei, Li-Na

    2015-05-01

    Receptor-interacting protein 140 (RIP140) is highly expressed in the brain, and acts in neurons and microglia to affect emotional responses. The present study reveals an additional function of RIP140 in the brain, which is to regulate brain lipid homeostasis via its action in astrocytes. We found forced swim stress (FSS) significantly reduces the expression level of RIP140 and elevates cholesterol content in the brain. Mechanistically, FSS elevates endoplasmic reticulum stress, which suppresses RIP140 expression by increasing microRNA 33 (miR33) that targets RIP140 mRNA's 3'-untranslated region. Consequentially, cholesterol biosynthesis and export are dramatically increased in astrocyte, the major source of brain cholesterol. These results demonstrate that RIP140 plays an important role in maintaining brain cholesterol homeostasis through, partially, regulating cholesterol metabolism in, and mobilization from, astrocyte. Altering RIP140 levels can disrupt brain cholesterol homeostasis, which may contribute to behavioral stress-induced neurological disorders.

  3. Diabetic Macular Edema

    NASA Astrophysics Data System (ADS)

    Lobo, Conceição; Pires, Isabel; Cunha-Vaz, José

    The optical coherence tomography (OCT), a noninvasive and noncontact diagnostic method, was introduced in 1995 for imaging macular diseases. In diabetic macular edema (DME), OCT scans show hyporeflectivity, due to intraretinal and/or subretinal fluid accumulation, related to inner and/or outer blood-retinal barrier breakdown. OCT tomograms may also reveal the presence of hard exudates, as hyperreflective spots with a shadow, in the outer retinal layers, among others. In conclusion, OCT is a particularly valuable diagnostic tool in DME, helpful both in the diagnosis and follow-up procedure.

  4. Ethanol, not metabolized in brain, significantly reduces brain metabolism, probably via specific GABA(A) receptors

    PubMed Central

    Rae, Caroline D.; Davidson, Joanne E.; Maher, Anthony D.; Rowlands, Benjamin D.; Kashem, Mohammed A.; Nasrallah, Fatima A.; Rallapalli, Sundari K.; Cook, James M; Balcar, Vladimir J.

    2014-01-01

    Ethanol is a known neuromodulatory agent with reported actions at a range of neurotransmitter receptors. Here, we used an indirect approach, measuring the effect of alcohol on metabolism of [3-13C]pyruvate in the adult Guinea pig brain cortical tissue slice and comparing the outcomes to those from a library of ligands active in the GABAergic system as well as studying the metabolic fate of [1,2-13C]ethanol. Ethanol (10, 30 and 60 mM) significantly reduced metabolic flux into all measured isotopomers and reduced all metabolic pool sizes. The metabolic profiles of these three concentrations of ethanol were similar and clustered with that of the α4β3δ positive allosteric modulator DS2 (4-Chloro-N-[2-(2-thienyl)imidazo[1,2a]-pyridin-3-yl]benzamide). Ethanol at a very low concentration (0.1 mM) produced a metabolic profile which clustered with those from inhibitors of GABA uptake, and ligands showing affinity for α5, and to a lesser extent, α1-containing GABA(A)R. There was no measureable metabolism of [1,2-13C]ethanol with no significant incorporation of 13C from [1,2-13C]ethanol into any measured metabolite above natural abundance, although there were measurable effects on total metabolite sizes similar to those seen with unlabeled ethanol. The reduction in metabolism seen in the presence of ethanol is therefore likely to be due to its actions at neurotransmitter receptors, particularly α4β3δ receptors, and not because ethanol is substituting as a substrate or because of the effects of ethanol catabolites acetaldehyde or acetate. We suggest that the stimulatory effects of very low concentrations of ethanol are due to release of GABA via GAT1 and the subsequent interaction of this GABA with local α5-containing, and to a lesser extent, α1-containing GABA(A)R. PMID:24313287

  5. Brain-computer interfaces and disability: extending embodiment, reducing stigma?

    PubMed

    Aas, Sean; Wasserman, David

    2016-01-01

    Brain-Computer Interfaces (BCIs) now enable an individual without limb function to "move" a detached mechanical arm to perform simple actions, such as feeding herself. This technology may eventually offer almost everyone a way to move objects at a distance, by exercising cognitive control of a mechanical device. At that point, BCIs may be seen less as an assistive technology for disabled people, and more as a tool, like the internet, which can benefit all users. We will argue that BCIs will have a significant but uncertain impact on attitudes toward disabilities and on norms of bodily form and function. It may be liberating, oppressive, or both. Its impact, we argue, will depend - though not in any simple way - on whether BCIs come to be seen as parts of the body itself or as external tools. PMID:26336895

  6. Brain-computer interfaces and disability: extending embodiment, reducing stigma?

    PubMed

    Aas, Sean; Wasserman, David

    2016-01-01

    Brain-Computer Interfaces (BCIs) now enable an individual without limb function to "move" a detached mechanical arm to perform simple actions, such as feeding herself. This technology may eventually offer almost everyone a way to move objects at a distance, by exercising cognitive control of a mechanical device. At that point, BCIs may be seen less as an assistive technology for disabled people, and more as a tool, like the internet, which can benefit all users. We will argue that BCIs will have a significant but uncertain impact on attitudes toward disabilities and on norms of bodily form and function. It may be liberating, oppressive, or both. Its impact, we argue, will depend - though not in any simple way - on whether BCIs come to be seen as parts of the body itself or as external tools.

  7. [Pathopshysiological mechanisms in macular edema].

    PubMed

    Turlea, Cristian; Zolog, Ileana; Blăjan, Codruta; Roşca, C; Turlea, Magdalena; Munteanu, Mihnea; Boruga, Ovidiu

    2014-01-01

    The treatment of diabetic macular edema has known a fast development in the last 5 years where the transition from laser monotherapy to intravitreal pharmacotherapy is becoming standard practice. Intravitreal injections therapy is in a continuous development with promising positive results. The use of intratvitreal devices in the treatment of macular edema of vascular cause has become a viable alternative also in treating diabetic macular edema. Several clinical studies have revealed the superiority of intravitreal treatment versus laser monotherapy. This article is evaluating and reviewing present and future treatments used to combat diabetic macular edema. [corrected].

  8. Pertuzumab, trastuzumab and docetaxel reduced the recurrence of brain metastasis from breast cancer: a case report.

    PubMed

    Senda, Noriko; Yamaguchi, Ayane; Nishimura, Hideaki; Shiozaki, Toshiki; Tsuyuki, Shigeru

    2016-03-01

    The CLEOPATRA trial reported the survival benefit of pertuzumab with trastuzumab plus docetaxel in HER2-positive metastatic breast cancer patients. However, there are a few case reports concerning the effects of a pertuzumab-containing regimen on brain metastases. A 55-year-old woman, who underwent curative surgery for breast cancer after neoadjuvant chemotherapy 5 years previously, developed repeated solitary brain metastasis in her right occipital lobe. Whole brain radiation therapy, stereotactic radiosurgery and 3 times of surgical resection were performed. Lapatinib and capecitabine plus tamoxifen were administered. The metastasis recurred in the stump of the previous surgery. Pertuzumab with trastuzumab plus docetaxel was initiated as second-line chemotherapy. A complete response of the brain metastasis was achieved, which persisted for 5 months. Pertuzumab with trastuzumab plus docetaxel was effective in reducing the brain metastases from breast cancer. Further studies are warranted to confirm the effect of this regimen on brain metastases.

  9. Use of EPO as an adjuvant in PDT of brain tumors to reduce damage to normal brain

    NASA Astrophysics Data System (ADS)

    Rendon, Cesar A.; Lilge, Lothar

    2004-10-01

    In order to reduce damage to surrounding normal brain in the treatment of brain tumors with photodynamic therapy (PDT), we have investigated the use of the cytokine erythropoietin (EPO) to exploit its well-established role as a neuroprotective agent. In vitro experiments demonstrated that EPO does not confer protection from PDT to rat glioma cells. In vivo testing of the possibility of EPO protecting normal brain tissue was carried out. The normal brains of Lewis rats were treated with Photofrin mediated PDT (6.25 mg/Kg B.W. 22 hours pre irradiation) and the outcome of the treatment compared between animals that received EPO (5000 U/Kg B.W. 22 hours pre irradiation) and controls. This comparison was made based on the volume of necrosis, as measured with the viability stain 2,3,5- Triphenyl tetrazoium chloride (TTC), and incidence of apoptosis, as measured with in situ end labeling assay (ISEL). Western blotting showed that EPO reaches the normal brain and activates the anti-apoptotic protein PKB/AKT1 within the brain cortex. The comparison based on volume of necrosis showed no statistical significance between the two groups. No clear difference was observed in the ISEL staining between the groups. A possible lack of responsivity in the assays that give rise to these results is discussed and future corrections are described.

  10. Caspase 1 deficiency reduces inflammation-induced brain transcription

    PubMed Central

    Mastronardi, Claudio; Whelan, Fiona; Yildiz, Ozlem A.; Hannestad, Jonas; Elashoff, David; McCann, Samuel M.; Licinio, Julio; Wong, Ma-Li

    2007-01-01

    The systemic inflammatory response syndrome (SIRS) is a life-threatening medical condition characterized by a severe and generalized inflammatory state that can lead to multiple organ failure and shock. The CNS regulates many features of SIRS such as fever, cardiovascular, and neuroendocrine responses. Central and systemic manifestations of SIRS can be induced by LPS or IL-1β administration. The crucial role of IL-1β in inflammation has been further highlighted by studies of mice lacking caspase 1 (casp1, also known as IL-1β convertase), a protease that cleaves pro-IL-1β into mature IL-1β. Indeed, casp1 knockout (casp1−/−) mice survive lethal doses of LPS. The key role of IL-1β in sickness behavior and its de novo expression in the CNS during inflammation led us to test the hypothesis that IL-1β plays a major role modulating the brain transcriptome during SIRS. We show a gene–environment effect caused by LPS administration in casp1−/− mice. During SIRS, the expression of several genes, such as chemokines, GTPases, the metalloprotease ADAMTS1, IL-1RA, the inducible nitric oxide synthase, and cyclooxygenase-2, was differentially increased in casp1−/− mice. Our findings may contribute to the understanding of the molecular changes that take place within the CNS during sepsis and SIRS and the development of new therapies for these serious conditions. Our results indicate that those genes may also play a role in several neuropsychiatric conditions in which inflammation has been implicated and indicate that casp1 might be a potential therapeutic target for such disorders. PMID:17409187

  11. Activation of Alpha 7 Cholinergic Nicotinic Receptors Reduce Blood–Brain Barrier Permeability following Experimental Traumatic Brain Injury

    PubMed Central

    Zhao, Jing; Kobori, Nobuhide; Redell, John B.; Hylin, Michael J.; Hood, Kimberly N.; Moore, Anthony N.

    2016-01-01

    Traumatic brain injury (TBI) is a major human health concern that has the greatest impact on young men and women. The breakdown of the blood–brain barrier (BBB) is an important pathological consequence of TBI that initiates secondary processes, including infiltration of inflammatory cells, which can exacerbate brain inflammation and contribute to poor outcome. While the role of inflammation within the injured brain has been examined in some detail, the contribution of peripheral/systemic inflammation to TBI pathophysiology is largely unknown. Recent studies have implicated vagus nerve regulation of splenic cholinergic nicotinic acetylcholine receptor α7 (nAChRa7) signaling in the regulation of systemic inflammation. However, it is not known whether this mechanism plays a role in TBI-triggered inflammation and BBB breakdown. Following TBI, we observed that plasma TNF-α and IL-1β levels, as well as BBB permeability, were significantly increased in nAChRa7 null mice (Chrna7−/−) relative to wild-type mice. The administration of exogenous IL-1β and TNF-α to brain-injured animals worsened Evans Blue dye extravasation, suggesting that systemic inflammation contributes to TBI-triggered BBB permeability. Systemic administration of the nAChRa7 agonist PNU-282987 or the positive allosteric modulator PNU-120596 significantly attenuated TBI-triggered BBB compromise. Supporting a role for splenic nAChRa7 receptors, we demonstrate that splenic injection of the nicotinic receptor blocker α-bungarotoxin increased BBB permeability in brain-injured rats, while PNU-282987 injection decreased such permeability. These effects were not seen when α-bungarotoxin or PNU-282987 were administered to splenectomized, brain-injured rats. Together, these findings support the short-term use of nAChRa7-activating agents as a strategy to reduce TBI-triggered BBB permeability. SIGNIFICANCE STATEMENT Breakdown of the blood–brain barrier (BBB) in response to traumatic brain injury (TBI

  12. Differential reinforcement of other behavior (DRO) to reduce aggressive behavior following traumatic brain injury.

    PubMed

    Hegel, M T; Ferguson, R J

    2000-01-01

    Severe brain injury can result in significant neurobehavioral and social functioning impairment. In rehabilitation settings, behavioral problems of aggression and nonadherence to therapeutic activities can pose barriers to maximal recovery of function. Behavioral interventions seem to be effective in reducing problem behavior among individuals recovering from severe brain trauma, but well-controlled studies examining the efficacy of such interventions are sparse. This article presents a single-case, multiple-baseline study of a differential reinforcement of other behavior (DRO) procedure in a 28-year-old, brain-injured male with aggressive behavior problems. The procedure successfully reduced the frequency of problem behavior by up to 74%, maintained at 1-month follow-up. Implications of this intervention for individuals with brain injury are discussed, and testing of this procedure using a between-group design seems indicated.

  13. Raft disorganization leads to reduced plasmin activity in Alzheimer's disease brains.

    PubMed

    Ledesma, Maria Dolores; Abad-Rodriguez, José; Galvan, Cristian; Biondi, Elisa; Navarro, Pilar; Delacourte, Andre; Dingwall, Colin; Dotti, Carlos G

    2003-12-01

    The serine protease plasmin can efficiently degrade amyloid peptide in vitro, and is found at low levels in the hippocampus of patients with Alzheimer's disease (AD). The cause of such paucity remains unknown. We show here that the levels of total brain plasminogen and plasminogen-binding molecules are normal in these brain samples, yet plasminogen membrane binding is greatly reduced. Biochemical analysis reveals that the membranes of these brains have a mild, still significant, cholesterol reduction compared to age-matched controls, and anomalous raft microdomains. This was reflected by the loss of raft-enriched proteins, including plasminogen-binding and -activating molecules. Using hippocampal neurons in culture, we demonstrate that removal of a similar amount of membrane cholesterol is sufficient to induce raft disorganization, leading to reduced plasminogen membrane binding and low plasmin activity. These results suggest that brain raft alterations may contribute to AD by rendering the plasminogen system inefficient.

  14. Drag-Reducing Polymer Enhances Microvascular Perfusion in the Traumatized Brain with Intracranial Hypertension.

    PubMed

    Bragin, Denis E; Thomson, Susan; Bragina, Olga; Statom, Gloria; Kameneva, Marina V; Nemoto, Edwin M

    2016-01-01

    Current treatments for traumatic brain injury (TBI) have not focused on improving microvascular perfusion. Drag-reducing polymers (DRP), linear, long-chain, blood-soluble, nontoxic macromolecules, may offer a new approach to improving cerebral perfusion by primary alteration of the fluid dynamic properties of blood. Nanomolar concentrations of DRP have been shown to improve hemodynamics in animal models of ischemic myocardium and ischemic limb, but have not yet been studied in the brain. We recently demonstrated that DRP improved microvascular perfusion and tissue oxygenation in a normal rat brain. We hypothesized that DRP could restore microvascular perfusion in hypertensive brain after TBI. Using in vivo two-photon laser scanning microscopy we examined the effect of DRP on microvascular blood flow and tissue oxygenation in hypertensive rat brains with and without TBI. DRP enhanced and restored capillary flow, decreased microvascular shunt flow, and, as a result, reduced tissue hypoxia in both nontraumatized and traumatized rat brains at high intracranial pressure. Our study suggests that DRP could constitute an effective treatment for improving microvascular flow in brain ischemia caused by high intracranial pressure after TBI. PMID:27165871

  15. Drag-Reducing Polymer Enhances Microvascular Perfusion in the Traumatized Brain with Intracranial Hypertension.

    PubMed

    Bragin, Denis E; Thomson, Susan; Bragina, Olga; Statom, Gloria; Kameneva, Marina V; Nemoto, Edwin M

    2016-01-01

    Current treatments for traumatic brain injury (TBI) have not focused on improving microvascular perfusion. Drag-reducing polymers (DRP), linear, long-chain, blood-soluble, nontoxic macromolecules, may offer a new approach to improving cerebral perfusion by primary alteration of the fluid dynamic properties of blood. Nanomolar concentrations of DRP have been shown to improve hemodynamics in animal models of ischemic myocardium and ischemic limb, but have not yet been studied in the brain. We recently demonstrated that DRP improved microvascular perfusion and tissue oxygenation in a normal rat brain. We hypothesized that DRP could restore microvascular perfusion in hypertensive brain after TBI. Using in vivo two-photon laser scanning microscopy we examined the effect of DRP on microvascular blood flow and tissue oxygenation in hypertensive rat brains with and without TBI. DRP enhanced and restored capillary flow, decreased microvascular shunt flow, and, as a result, reduced tissue hypoxia in both nontraumatized and traumatized rat brains at high intracranial pressure. Our study suggests that DRP could constitute an effective treatment for improving microvascular flow in brain ischemia caused by high intracranial pressure after TBI.

  16. Cerebral embolism: local CFBF and edema measured by CT scanning and Xe inhalation. [Baboons

    SciTech Connect

    Meyer, J.S.; Yamamoto, M.; Hayman, L.A.; Sakai, F.; Nakajima, S.; Armstrong, D.

    1980-01-01

    Serial CT scans were made in baboons after cerebral embolization during stable Xe inhalation for measuring local values for CBF and lambda (brain-blood partition or solubility coefficients), followed by iodine infusion for detecting blood-brain barrier (BBB) damage. Persistent zones of zero flow surrounded by reduced flow were measured predominantly in subcortical regions, which showed gross and microscopic evidence of infarction at necropsy. Overlying cortex was relatively spared. Reduced lambda values attributed to edema appeared within 3 to 5 minutes and progressed up to 60 minutes. Damage to BBB with visible transvascular seepage of iodine began to appear 1 to 1 1/2 hours after embolism. In chronic animals, lambda values were persistently reduced in areas showing histologic infarction. Contralateral hemispheric CBF increased for the first 15 minutes after embolism, followed by progressive reduction after 30 minutes (diaschisis).

  17. Cystoid Macular Edema in Bietti's Crystalline Retinopathy

    PubMed Central

    2014-01-01

    A 27-year-old man with progressive bilateral visual decline was diagnosed to have Bietti's crystalline dystrophy (BCD). Fluorescein angiography revealed bilateral petaloid type late hyperfluorescence implicating concurrent cystoid macular edema (CME). Optical coherence tomography exhibited cystoid foveal lacunas OU. During the follow-up of six years, intraretinal crystals reduced in amount but CME persisted angiographically and tomographically. CME is among the rare macular features of BCD including subfoveal sensorial detachment, subretinal neovascular membrane, and macular hole. PMID:24949209

  18. Bone marrow derived mesenchymal stem cells alleviated brain injury via down-regulation of interleukin-1β in focal cerebral ischemic rats

    PubMed Central

    Zhao, Yansong; Wang, Xiaoli; Dong, Peng; Xu, Qinyan; Ma, Ze; Mu, Qingjie; Sun, Xihe; Jiang, Zhengchen; Wang, Xin

    2016-01-01

    Interleukin-1β (IL-1β) plays an important role in brain injury after focal ischemia, and bone marrow-derived mesenchymal stem cells (BMSCs) are capable of reducing the expression of IL-1β, we investigated the effects of BMSCs transplantation on brain edema and cerebral infarction as well as the underlying mechanisms via IL-1β. Male Sprague-Dawley rats were randomly divided into five groups: Normal + phosphate-buffered saline (PBS), middle cerebral artery occlusion (MCAO) + PBS, Normal + BMSCs, MCAO + BMSCs and MCAO + IL-1ra (an antagonist of IL-1β). BMSCs were transplanted 24 hours after MCAO, and brain edema was evaluated by Magnetic Resonance Imaging (MRI) and brain water content method after BMSCs transplantation. The expression of NeuN and AQP4 was analyzed by immunofluorescence staining. Protein level of AQP4 and IL-1β was detected by western blot analysis 48 hours after transplantation. The results showed that BMSCs transplantation reduced brain edema by measurement of brain water content and ADC Value of MRI, as well as the expression of AQP4 and IL-1β. It was also found that BMSCs transplantation could alleviate the cerebral infarction volume and neuronal damage. Both the brain edema and the cerebral infarction were associated with IL-1β expression. In conclusion, BMSCs transplantation was capable of alleviating brain edema as well as reducing cerebral infarction via down-regulation of IL-1β expression, thus repair the injured brain in focal cerebral ischemic rats. PMID:27186280

  19. [Perioperative management of a patient complicated with Quincke's edema].

    PubMed

    Nakaigawa, Naoko; Kamata, Kotoe; Komatsu, Ryu; Ozaki, Makoto

    2010-04-01

    We experienced perioperative management of a patient with Quincke's edema who underwent clipping of ruptured intracranial aneurysm. At the time of presentation, he complained of lip and tongue swelling. We administered dl-chlorpheniramine malate and tranexamic acid perioperatively to prevent further edema. Intraoperatively, we avoided contact of objects to the face and the oral cavity which might have caused mechanical stimuli, and infused albumin to maintain plasma osmotic pressure. The patient was kept intubated postoperatively because of significant tongue edema at the end of the procedure. On postoperative day 1, we extubated the trachea after prophylactic administration of methylpredonisolone. Significant upper airway edema was denied by flexible laryngoscopy. Pathophysiological cause of Quincke's edema is increased permeability of capillary vessels due to vasoactive substances. Aside from anti-histaminergic agents and steroids, tranexamic acid, which reduces production of kinin, is specifically effective for this condition. Although there is a reported case of Quincke's edema, eventually diagnosed after development of postoperative upper airway obstruction, there have been no reports of planned perioperative management of this condition. We demonstrated that Quincke's edema could be managed without life-threatening airway compromise by employing adequate pharmacologic interventions and sensible determination of the timing of extubation.

  20. Brain plasmin enhances APP alpha-cleavage and Abeta degradation and is reduced in Alzheimer's disease brains.

    PubMed

    Ledesma, M D; Da Silva, J S; Crassaerts, K; Delacourte, A; De Strooper, B; Dotti, C G

    2000-12-01

    The proteolytic processing of amyloid precursor protein (APP) has been linked to sphingolipid-cholesterol microdomains (rafts). However, the raft proteases that may be involved in APP cleavage have not yet been identified. In this work we present evidence that the protease plasmin is restricted to rafts of cultured hippocampal neurons. We also show that plasmin increases the processing of human APP preferentially at the alpha-cleavage site, and efficiently degrades secreted amyloidogenic and non-amyloidogenic APP fragments. These results suggest that brain plasmin plays a preventive role in APP amyloidogenesis. Consistently, we show that brain tissue from Alzheimer's disease patients contains reduced levels of plasmin, implying that plasmin downregulation may cause amyloid plaque deposition accompanying sporadic Alzheimer's disease.

  1. Candesartan, an angiotensin II AT₁-receptor blocker and PPAR-γ agonist, reduces lesion volume and improves motor and memory function after traumatic brain injury in mice.

    PubMed

    Villapol, Sonia; Yaszemski, Alexandra K; Logan, Trevor T; Sánchez-Lemus, Enrique; Saavedra, Juan M; Symes, Aviva J

    2012-12-01

    Traumatic brain injury (TBI) results in complex pathological reactions, the initial lesion worsened by secondary inflammation and edema. Angiotensin II (Ang II) is produced in the brain and Ang II receptor type 1 (AT₁R) overstimulation produces vasoconstriction and inflammation. Ang II receptor blockers (ARBs) are neuroprotective in models of stroke but little is known of their effect when administered in TBI models. We therefore performed controlled cortical impact (CCI) injury on mice to investigate whether the ARB candesartan would mitigate any effects of TBI. We administered candesartan or vehicle to mice 5 h before CCI injury. Candesartan treatment reduced the lesion volume after CCI injury by approximately 50%, decreased the number of dying neurons, lessened the number of activated microglial cells, protected cerebral blood flow (CBF), and reduced the expression of the cytokine TGFβ1 while increasing expression of TGFβ3. Candesartan-treated mice also showed better motor skills on the rotarod 3 days after injury, and improved performance in the Morris water maze 4 weeks after injury. These results indicate that candesartan is neuroprotective, reducing neuronal injury, decreasing lesion volume and microglial activation, protecting CBF and improving functional behavior in a mouse model of TBI. Co-treatment with a peroxisome proliferator-activated receptor-gamma (PPARγ) antagonist significantly reduced some of the beneficial effects of candesartan after CCI, suggesting that PPARγ activation may contribute to part or to all of the neuroprotective effect of candesartan. Overall, our data suggest that ARBs with dual AT₁R-blocking and PPARγ activation properties may have therapeutic value in treating TBI.

  2. Pharmacological characterization of the rat paw edema induced by Bothrops lanceolatus (Fer de lance) venom.

    PubMed

    de Faria L; Antunes, E; Bon, C; de Araújo, A L

    2001-06-01

    The inflammatory response induced by Bothrops lanceolatus venom (BLV) in the rat hind-paw was studied measuring paw edema. Non-heated BLV (75microg/paw) caused a marked paw edema accompanied by intense haemorrhage whereas heated venom (97 degrees C, 30s; 12.5-100microg/paw) produced a dose- and time-dependent non-haemorrhagic edema. The response with heated BLV was maximal within 15min disappearing over 24h. Heated venom was then routinely used at the dose of 75microg/paw. The prostacyclin analogue iloprost (0.1microg/paw) potentiated by 125% the venom-induced edema. The histamine H(1) receptor antagonist mepyramine (6mg/kg) or the serotonin/histamine receptor antagonist cyproheptadine (6mg/kg) partially inhibited BLV-induced edema whereas the combination of both compounds virtually abolished the edema. The lipoxygenase inhibitor BWA4C (10mg/kg), but not the cyclooxygenase inhibitor indomethacin (10mg/kg), significantly inhibited the edema (35% reduction; P<0.05). Dexamethasone (1mg/kg) also markedly (P<0.001) reduced venom-induced edema. The bradykinin B(2) receptor antagonist Hoe 140 (0.6mg/kg) reduced by 30% (P<0.05) the venom induced edema, whereas the angiotensin-converting enzyme inhibitor captopril (300microg/paw) potentiated by 42% (P<0.05) the edema. Bothrops lanceolatus antivenon (anti-BLV) reduced by 28% (P<0.05) the venom-induced edema while intravenous administration of antivenom failed to affect the edema. In conclusion, BLV-induced rat paw edema involves mast cell degranulation causing local release of histamine and serotonin, a phenomenon mediated mainly by kinins and lipoxygenase metabolites. Additionally, the use of a specific Bothrops lanceolatus antivenom, given subplantarily or intravenously, revealed to be little effective to prevent BLV-induced edema. PMID:11137542

  3. Dosimetric Predictors of Laryngeal Edema

    SciTech Connect

    Sanguineti, Giuseppe . E-mail: gisangui@utmb.edu; Adapala, Prashanth; Endres, Eugene J. C; Brack, Collin; Fiorino, Claudio; Sormani, Maria Pia; Parker, Brent

    2007-07-01

    Purpose: To investigate dosimetric predictors of laryngeal edema after radiotherapy (RT). Methods and Materials: A total of 66 patients were selected who had squamous cell carcinoma of the head and neck with grossly uninvolved larynx at the time of RT, no prior major surgical operation except for neck dissection and tonsillectomy, treatment planning data available for analysis, and at least one fiberoptic examination of the larynx within 2 years from RT performed by a single observer. Both the biologically equivalent mean dose at 2 Gy per fraction and the cumulative biologic dose-volume histogram of the larynx were extracted for each patient. Laryngeal edema was prospectively scored after treatment. Time to endpoint, moderate or worse laryngeal edema (Radiation Therapy Oncology Group Grade 2+), was calculated with log rank test from the date of treatment end. Results: At a median follow-up of 17.1 months (range, 0.4- 50.0 months), the risk of Grade 2+ edema was 58.9% {+-} 7%. Mean dose to the larynx, V30, V40, V50, V60, and V70 were significantly correlated with Grade 2+ edema at univariate analysis. At multivariate analysis, mean laryngeal dose (continuum, hazard ratio, 1.11; 95% confidence interval, 1.06-1.15; p < 0.001), and positive neck stage at RT (N0-x vs. N +, hazard ratio, 3.66; 95% confidence interval, 1.40-9.58; p = 0.008) were the only independent predictors. Further stratification showed that, to minimize the risk of Grade 2+ edema, the mean dose to the larynx has to be kept {<=}43.5 Gy at 2 Gy per fraction. Conclusion: Laryngeal edema is strictly correlated with various dosimetric parameters; mean dose to the larynx should be kept {<=}43.5 Gy.

  4. Impaired myelination and reduced brain ferric iron in the mouse model of mucolipidosis IV.

    PubMed

    Grishchuk, Yulia; Peña, Karina A; Coblentz, Jessica; King, Victoria E; Humphrey, Daniel M; Wang, Shirley L; Kiselyov, Kirill I; Slaugenhaupt, Susan A

    2015-12-01

    Mucolipidosis type IV (MLIV) is a lysosomal storage disease caused by mutations in the MCOLN1 gene, which encodes the lysosomal transient receptor potential ion channel mucolipin-1 (TRPML1). MLIV causes impaired motor and cognitive development, progressive loss of vision and gastric achlorhydria. How loss of TRPML1 leads to severe psychomotor retardation is currently unknown, and there is no therapy for MLIV. White matter abnormalities and a hypoplastic corpus callosum are the major hallmarks of MLIV brain pathology. Here, we report that loss of TRPML1 in mice results in developmental aberrations of brain myelination as a result of deficient maturation and loss of oligodendrocytes. Defective myelination is evident in Mcoln1(-/-) mice at postnatal day 10, an active stage of postnatal myelination in the mouse brain. Expression of mature oligodendrocyte markers is reduced in Mcoln1(-/-) mice at postnatal day 10 and remains lower throughout the course of the disease. We observed reduced Perls' staining in Mcoln1(-/-) brain, indicating lower levels of ferric iron. Total iron content in unperfused brain is not significantly different between Mcoln1(-/-) and wild-type littermate mice, suggesting that the observed maturation delay or loss of oligodendrocytes might be caused by impaired iron handling, rather than by global iron deficiency. Overall, these data emphasize a developmental rather than a degenerative disease course in MLIV, and suggest that there should be a stronger focus on oligodendrocyte maturation and survival to better understand MLIV pathogenesis and aid treatment development.

  5. Compliant Intracortical Implants Reduce Strains and Strain Rates in Brain Tissue In Vivo

    PubMed Central

    Sridharan, Arati; Nguyen, Jessica K.; Capadona, Jeffrey R.; Muthuswamy, Jit

    2015-01-01

    Objective The objective of this research is to characterize the mechanical interactions of (1) soft, compliant and (2) non-compliant implants with the surrounding brain tissue in a rodent brain. Understanding such interactions will enable the engineering of novel materials that will improve stability and reliability of brain implants. Approach Acute force measurements were made using a load cell in n=3 live rats, each with 4 craniotomies. Using an indentation method, brain tissue was tested for changes in force using established protocols. A total of 4 non-compliant, bare silicon microshanks, 3 non-compliant polyvinyl acetate (PVAc)-coated silicon microshanks, and 6 compliant, nanocomposite microshanks were tested. Stress values were calculated by dividing the force by surface area and strain was estimated using a linear stress-strain relationship. Micromotion effects from breathing and vascular pulsatility on tissue stress were estimated from a 5 sec interval of steady-state measurements. Viscoelastic properties were estimated using a second-order Prony series expansion of stress-displacement curves for each shank. Main results The distribution of strain values imposed on brain tissue for both compliant nanocomposite microshanks and PVAc-coated, non-compliant silicon microshanks were significantly lower compared to non-compliant bare silicon shanks. Interestingly, step-indentation experiments also showed that compliant, nanocomposite materials significantly decreased stress relaxation rates in the brain tissue at the interface (p<0.05) compared to non-compliant silicon and PVAc-coated silicon materials. Further, both PVAc-coated non-compliant silicon and compliant nanocomposite shanks showed significantly reduced (by 4–5 fold) stresses due to tissue micromotion at the interface. Significance The results of this study showed that soft, adaptive materials reduce strains and strain rates and micromotion induced stresses in the surrounding brain tissue

  6. Compliant intracortical implants reduce strains and strain rates in brain tissue in vivo

    NASA Astrophysics Data System (ADS)

    Sridharan, Arati; Nguyen, Jessica K.; Capadona, Jeffrey R.; Muthuswamy, Jit

    2015-06-01

    Objective. The objective of this research is to characterize the mechanical interactions of (1) soft, compliant and (2) non-compliant implants with the surrounding brain tissue in a rodent brain. Understanding such interactions will enable the engineering of novel materials that will improve stability and reliability of brain implants. Approach. Acute force measurements were made using a load cell in n = 3 live rats, each with 4 craniotomies. Using an indentation method, brain tissue was tested for changes in force using established protocols. A total of 4 non-compliant, bare silicon microshanks, 3 non-compliant polyvinyl acetate (PVAc)-coated silicon microshanks, and 6 compliant, nanocomposite microshanks were tested. Stress values were calculated by dividing the force by surface area and strain was estimated using a linear stress-strain relationship. Micromotion effects from breathing and vascular pulsatility on tissue stress were estimated from a 5 s interval of steady-state measurements. Viscoelastic properties were estimated using a second-order Prony series expansion of stress-displacement curves for each shank. Main results. The distribution of strain values imposed on brain tissue for both compliant nanocomposite microshanks and PVAc-coated, non-compliant silicon microshanks were significantly lower compared to non-compliant bare silicon shanks. Interestingly, step-indentation experiments also showed that compliant, nanocomposite materials significantly decreased stress relaxation rates in the brain tissue at the interface (p < 0.05) compared to non-compliant silicon and PVAc-coated silicon materials. Furthermore, both PVAc-coated non-compliant silicon and compliant nanocomposite shanks showed significantly reduced (by 4-5 fold) stresses due to tissue micromotion at the interface. Significance. The results of this study showed that soft, adaptive materials reduce strains and strain rates and micromotion induced stresses in the surrounding brain tissue

  7. Environment matters: synaptic properties of neurons born in the epileptic adult brain develop to reduce excitability.

    PubMed

    Jakubs, Katherine; Nanobashvili, Avtandil; Bonde, Sara; Ekdahl, Christine T; Kokaia, Zaal; Kokaia, Merab; Lindvall, Olle

    2006-12-21

    Neural progenitors in the adult dentate gyrus continuously produce new functional granule cells. Here we used whole-cell patch-clamp recordings to explore whether a pathological environment influences synaptic properties of new granule cells labeled with a GFP-retroviral vector. Rats were exposed to a physiological stimulus, i.e., running, or a brain insult, i.e., status epilepticus, which gave rise to neuronal death, inflammation, and chronic seizures. Granule cells formed after these stimuli exhibited similar intrinsic membrane properties. However, the new neurons born into the pathological environment differed with respect to synaptic drive and short-term plasticity of both excitatory and inhibitory afferents. The new granule cells formed in the epileptic brain exhibited functional connectivity consistent with reduced excitability. We demonstrate a high degree of plasticity in synaptic inputs to adult-born new neurons, which could act to mitigate pathological brain function.

  8. Cerebral complexity preceded enlarged brain size and reduced olfactory bulbs in Old World monkeys

    PubMed Central

    Gonzales, Lauren A.; Benefit, Brenda R.; McCrossin, Monte L.; Spoor, Fred

    2015-01-01

    Analysis of the only complete early cercopithecoid (Old World monkey) endocast currently known, that of 15-million-year (Myr)-old Victoriapithecus, reveals an unexpectedly small endocranial volume (ECV) relative to body size and a large olfactory bulb volume relative to ECV, similar to extant lemurs and Oligocene anthropoids. However, the Victoriapithecus brain has principal and arcuate sulci of the frontal lobe not seen in the stem catarrhine Aegyptopithecus, as well as a distinctive cercopithecoid pattern of gyrification, indicating that cerebral complexity preceded encephalization in cercopithecoids. Since larger ECVs, expanded frontal lobes, and reduced olfactory bulbs are already present in the 17- to 18-Myr-old ape Proconsul these features evolved independently in hominoids (apes) and cercopithecoids and much earlier in the former. Moreover, the order of encephalization and brain reorganization was apparently different in hominoids and cercopithecoids, showing that brain size and cerebral organization evolve independently. PMID:26138795

  9. Approximation error method can reduce artifacts due to scalp blood flow in optical brain activation imaging

    NASA Astrophysics Data System (ADS)

    Heiskala, Juha; Kolehmainen, Ville; Tarvainen, Tanja; Kaipio, Jari. P.; Arridge, Simon R.

    2012-09-01

    Diffuse optical tomography can image the hemodynamic response to an activation in the human brain by measuring changes in optical absorption of near-infrared light. Since optodes placed on the scalp are used, the measurements are very sensitive to changes in optical attenuation in the scalp, making optical brain activation imaging susceptible to artifacts due to effects of systemic circulation and local circulation of the scalp. We propose to use the Bayesian approximation error approach to reduce these artifacts. The feasibility of the approach is evaluated using simulated brain activations. When a localized cortical activation occurs simultaneously with changes in the scalp blood flow, these changes can mask the cortical activity causing spurious artifacts. We show that the proposed approach is able to recover from these artifacts even when the nominal tissue properties are not well known.

  10. Histamine-3 receptor antagonists reduce superoxide anion generation and lipid peroxidation in rat brain homogenates.

    PubMed

    Badenhorst, H E; Maharaj, D S; Malan, S F; Daya, S; van Dyk, S

    2005-06-01

    Using a cyanide model to induce neurotoxic effects in rat brain homogenates, we examined the neuroprotective properties of three H3 antagonists, namely clobenpropit, thioperamide and impentamine, and compared them to aspirin, a known neuroprotective agent. Superoxide anion levels and malondialdehyde concentration were assessed using the nitroblue tetrazolium and lipid peroxidation assays. Clobenpropit and thioperamide significantly reduced superoxide anion generation and lipid peroxidation. Impentamine reduced lipid peroxidation at all concentrations used, but only reduced superoxide anion generation at a concentration of 1 mM. In the lipid peroxidation assay, all the drugs compared favourably to aspirin. This study demonstrates the potential of these agents to be neuroprotective by exerting antioxidant effects.

  11. Acute Hemorrhagic Edema of Infancy.

    PubMed

    Serra E Moura Garcia, C; Sokolova, A; Torre, M L; Amaro, C

    2016-01-01

    Acute Hemorrhagic Edema of Infancy is a small vessel leucocytoclastic vasculitis affecting young infants. It is characterized by large, target-like, macular to purpuric plaques predominantly affecting the face, ear lobes and extremities. Non-pitting edema of the distal extremities and low-grade fever may also be present. Extra-cutaneous involvement is very rare. Although the lesions have a dramatic onset in a twenty-four to forty-eight hour period, usually the child has a non-toxic appearance. In most cases there are no changes in laboratory parameters. The cutaneous biopsy reveals an inflammatory perivascular infiltrate. It is a benign and auto-limited disease, with complete resolution within two to three weeks leaving no sequelae in the majority of cases. No recurrences are described. We report a case of a 42-day old girl admitted at our hospital with Acute Hemorrhagic Edema of Infancy.

  12. Reversible lesions in the brain parenchyma in Wilson's disease confirmed by magnetic resonance imaging: earlier administration of chelating therapy can reduce the damage to the brain

    PubMed Central

    Kozić, Duško B.; Petrović, Igor; Svetel, Marina; Pekmezović, Tatjana; Ragaji, Aleksandar; Kostić, Vladimir S.

    2014-01-01

    The aim of this study was to evaluate the resolution of brain lesions in patients with Wilson's disease during the long-term chelating therapy using magnetic resonance imaging and a possible significance of the time latency between the initial symptoms of the disease and the introduction of this therapy. Initial magnetic resonance examination was performed in 37 patients with proven neurological form of Wilson's disease with cerebellar, parkinsonian and dystonic presentation. Magnetic resonance reexamination was done 5.7 ± 1.3 years later in 14 patients. Patients were divided into: group A, where chelating therapy was initiated < 24 months from the first symptoms and group B, where the therapy started ≥ 24 months after the initial symptoms. Symmetry of the lesions was seen in 100% of patients. There was a significant difference between groups A and B regarding complete resolution of brain stem and putaminal lesions (P = 0.005 and P = 0.024, respectively). If the correct diagnosis and adequate treatment are not established less than 24 months after onset of the symptoms, irreversible lesions in the brain parenchyma could be expected. Signal abnormalities on magnetic resonance imaging might therefore, at least in the early stages, represent reversible myelinolisis or cytotoxic edema associated with copper toxicity. PMID:25558242

  13. Reversible lesions in the brain parenchyma in Wilson's disease confirmed by magnetic resonance imaging: earlier administration of chelating therapy can reduce the damage to the brain.

    PubMed

    Kozić, Duško B; Petrović, Igor; Svetel, Marina; Pekmezović, Tatjana; Ragaji, Aleksandar; Kostić, Vladimir S

    2014-11-01

    The aim of this study was to evaluate the resolution of brain lesions in patients with Wilson's disease during the long-term chelating therapy using magnetic resonance imaging and a possible significance of the time latency between the initial symptoms of the disease and the introduction of this therapy. Initial magnetic resonance examination was performed in 37 patients with proven neurological form of Wilson's disease with cerebellar, parkinsonian and dystonic presentation. Magnetic resonance reexamination was done 5.7 ± 1.3 years later in 14 patients. Patients were divided into: group A, where chelating therapy was initiated < 24 months from the first symptoms and group B, where the therapy started ≥ 24 months after the initial symptoms. Symmetry of the lesions was seen in 100% of patients. There was a significant difference between groups A and B regarding complete resolution of brain stem and putaminal lesions (P = 0.005 and P = 0.024, respectively). If the correct diagnosis and adequate treatment are not established less than 24 months after onset of the symptoms, irreversible lesions in the brain parenchyma could be expected. Signal abnormalities on magnetic resonance imaging might therefore, at least in the early stages, represent reversible myelinolisis or cytotoxic edema associated with copper toxicity.

  14. Electroacupuncture increased cerebral blood flow and reduced ischemic brain injury: dependence on stimulation intensity and frequency

    PubMed Central

    Zhou, Fei; Guo, Jingchun; Cheng, Jieshi; Wu, Gencheng

    2011-01-01

    Stroke causes ischemic brain injury and is a leading cause of neurological disability and death. There is, however, no promising therapy to protect the brain from ischemic stress to date. Here we show an exciting finding that optimal electroacupuncture (EA) effectively protects the brain from ischemic injury. The experiments were performed on rats subjected to middle cerebral artery occlusion (MCAO) with continuous monitoring of cerebral blood flow. EA was delivered to acupoints of “Shuigou” (Du 26) and “Baihui” (Du 20) with different intensities and frequencies to optimize the stimulation parameters. The results showed that 1) EA at 1.0–1.2 mA and 5–20 Hz remarkably reduced ischemic infarction, neurological deficit, and death rate; 2) the EA treatment increased the blood flow by >100%, which appeared immediately after the initiation of EA and disappeared after the cessation of EA; 3) the EA treatment promoted the recovery of the blood flow after MCAO; 4) “nonoptimal” parameters of EA (e.g., <0.6 mA or >40 Hz) could not improve the blood flow or reduce ischemic injury; and 5) the same EA treatment with optimal parameters could not increase the blood flow in naive brains. These novel observations suggest that appropriate EA treatment protects the brain from cerebral ischemia by increasing blood flow to the ischemic brain region via a rapid regulation. Our findings have far-reaching impacts on the prevention and treatment of ischemic encephalopathy, and the optimized EA parameters may potentially be a useful clue for the clinical application of EA. PMID:21836043

  15. Pulmonary edema of scuba divers.

    PubMed

    Hampson, N B; Dunford, R G

    1997-01-01

    A syndrome of acute pulmonary edema has been previously reported among scuba divers in cold, European waters. Because of the temperatures involved, the name "cold-induced pulmonary edema" was coined in the original 1989 description. We report six individuals who developed the identical syndrome, five while diving in Puget Sound and one in the Gulf of Mexico. The four women and two men ranged in age from 24 to 60 yr. They experienced one to six episodes apiece, each with the development severe dyspnea at depth without excessive exertion. Associated symptoms included cough, weakness, expectoration of froth, chest discomfort, orthopnea, wheezing, hemoptysis, and dizziness. Emergency medical evaluation of four divers revealed rales on examination and pulmonary edema on chest radiograph. In one diver with pulmonary edema on chest radiograph, pulmonary capillary wedge pressure was normal when measured acutely. Symptoms resolved either spontaneously over 1-2 days or with standard medial treatment for pulmonary edema. Prior history of cardiovascular disease was negative except for hypertension and mitral valve prolapse in one diver. Cardiac evaluations following recovery from the acute episodes were normal. Episodes in the cold waters of Puget Sound sometimes occurred despite the use of dry suits. Furthermore, one diver developed recurrent episodes in 27 degrees C water off Cozumel, Mexico. Development of pulmonary edema while scuba diving constitutes a distinct clinical entity which may occur in either "cold" or "warm" water. It is not associated with a decompression mechanism. Personnel caring for divers should be aware of the syndrome in order to provide optimal medical management.

  16. Propofol anesthesia reduces Lempel-Ziv complexity of spontaneous brain activity in rats.

    PubMed

    Hudetz, Anthony G; Liu, Xiping; Pillay, Siveshigan; Boly, Melanie; Tononi, Giulio

    2016-08-15

    Consciousness is thought to scale with brain complexity, and it may be diminished in anesthesia. Lempel-Ziv complexity (LZC) of field potentials has been shown to be a promising measure of the level of consciousness in anesthetized human subjects, neurological patients, and across the sleep-wake states in rats. Whether this relationship holds for intrinsic networks obtained by functional brain imaging has not been tested. To fill this gap of knowledge, we estimated LZC from large-scale dynamic analysis of functional magnetic resonance images (fMRI) in conscious sedated and unconscious anesthetized rats. Blood oxygen dependent (BOLD) signals were obtained from 30-min whole-brain resting-state scans while the anesthetic propofol was infused intravenously at constant infusion rates of 20mg/kg/h (conscious sedated) and 40mg/kg/h (unconscious). Dynamic brain networks were defined at voxel level by sliding window analysis of regional homogeneity (ReHo) of the BOLD signal. From scans performed at low to high propofol dose, the LZC was significantly reduced by 110%. The results suggest that the difference in LZC between conscious sedated and anesthetized unconscious subjects is conserved in rats and this effect is detectable in large-scale brain network obtained from fMRI. PMID:27291459

  17. Delayed post-conditioning reduces post-ischemic glutamate level and improves protein synthesis in brain.

    PubMed

    Bonova, Petra; Burda, Jozef; Danielisova, Viera; Nemethova, Miroslava; Gottlieb, Miroslav

    2013-05-01

    In the clinic delayed post-conditioning would represent an attractive strategy for the survival of vulnerable neurons after an ischemic event. In this paper we studied the impact of ischemia and delayed post-conditioning on blood and brain tissue concentrations of glutamate and protein synthesis. We designed two groups of animals for analysis of brain tissues and blood after global ischemia and post-conditioning, and one for analysis of blood glutamate after transient focal ischemia. Our results showed elevated blood glutamate in two models of transient brain ischemia and decreases in blood glutamate to control in the first 20min of post-conditioning recirculation followed by a consecutive drop of about 20.5% on the first day. Similarly, we recorded reduced protein synthesis in hippocampus and cortex 2 and 3days after ischemia. However, increased glutamate was registered only in the hippocampus. Post-conditioning improves protein synthesis in CA1 and dentate gyrus and, surprisingly, leads to 50% reduction in glutamate in whole hippocampus and cortex. In conclusion, ischemia leads to meaningful elevation of blood and tissue glutamate. Post-conditioning activates mechanisms resulting in rapid elimination of glutamate from brain tissue and/or in the circulatory system that could otherwise impede brain-to-blood glutamate efflux mechanisms. Moreover, post-conditioning induces protein synthesis renewing in ischemia affected tissues that could also contribute to elimination of excitotoxicity. In addition, the potential of glutamate for monitoring the progress of ischemia and efficacy of therapy was shown.

  18. Exercise reduces activation of microglia isolated from hippocampus and brain of aged mice

    PubMed Central

    2013-01-01

    Background Aging is associated with low-grade neuroinflammation that includes basal increases in proinflammatory cytokines and expression of inflammatory markers on microglia. Exercise can reduce neuroinflammation following infection in aged animals, but whether exercise modulates basal changes in microglia activation is unknown. Therefore, we evaluated changes in basal microglia activation in cells isolated from the hippocampus and remaining brain following running-wheel access. Methods Adult (4 months) and aged (22 months) male and female BALB/c mice were housed with or without running wheels for 10 weeks. Microglia were isolated from the hippocampus or remaining brain. Flow cytometry was used to determine microglia (CD11b+ and CD45low) that co-labeled with CD86, CD206, and MHC II. Results Aged mice showed a greater proportion of CD86 and MHC II positive microglia. In aged females, access to a running wheel decreased proportion of CD86+ and MHC II+ microglia in the hippocampus whereas aged males in the running group showed a decrease in the proportion of CD86+ microglia in the brain and an increase in the proportion of MHC II+ microglia in hippocampus and brain. Conclusion Overall, these data indicate that running-wheel access modulates microglia activation, but these effects vary by age, sex, and brain region. PMID:24044641

  19. Pathophysiology, Evaluation, and Management of Edema in Childhood Nephrotic Syndrome

    PubMed Central

    Ellis, Demetrius

    2016-01-01

    Generalized edema is a major presenting clinical feature of children with nephrotic syndrome (NS) exemplified by such primary conditions as minimal change disease (MCD). In these children with classical NS and marked proteinuria and hypoalbuminemia, the ensuing tendency to hypovolemia triggers compensatory physiological mechanisms, which enhance renal sodium (Na+) and water retention; this is known as the “underfill hypothesis.” Edema can also occur in secondary forms of NS and several other glomerulonephritides, in which the degree of proteinuria and hypoalbuminemia, are variable. In contrast to MCD, in these latter conditions, the predominant mechanism of edema formation is “primary” or “pathophysiological,” Na+ and water retention; this is known as the “overfill hypothesis.” A major clinical challenge in children with these disorders is to distinguish the predominant mechanism of edema formation, identify other potential contributing factors, and prevent the deleterious effects of diuretic regimens in those with unsuspected reduced effective circulatory volume (i.e., underfill). This article reviews the Starling forces that become altered in NS so as to tip the balance of fluid movement in favor of edema formation. An understanding of these pathomechanisms then serves to formulate a more rational approach to prevention, evaluation, and management of such edema. PMID:26793696

  20. Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography

    PubMed Central

    Rodriguez, Carissa L. R.; Szu, Jenny I.; Eberle, Melissa M.; Wang, Yan; Hsu, Mike S.; Binder, Devin K.; Park, B. Hyle

    2014-01-01

    Abstract. Cerebral edema develops in response to a variety of conditions, including traumatic brain injury and stroke, and contributes to the poor prognosis associated with these injuries. This study examines the use of optical coherence tomography (OCT) for detecting cerebral edema in vivo. Three-dimensional imaging of an in vivo water intoxication model in mice was performed using a spectral-domain OCT system centered at 1300 nm. The change in attenuation coefficient was calculated and cerebral blood flow was analyzed using Doppler OCT techniques. We found that the average attenuation coefficient in the cerebral cortex decreased over time as edema progressed. The initial decrease began within minutes of inducing cerebral edema and a maximum decrease of 8% was observed by the end of the experiment. Additionally, cerebral blood flow slowed during late-stage edema. Analysis of local regions revealed the same trend at various locations in the brain, consistent with the global nature of the cerebral edema model used in this study. These results demonstrate that OCT is capable of detecting in vivo optical changes occurring due to cerebral edema and highlights the potential of OCT for precise spatiotemporal detection of cerebral edema. PMID:25674578

  1. Impaired myelination and reduced brain ferric iron in the mouse model of mucolipidosis IV

    PubMed Central

    Grishchuk, Yulia; Peña, Karina A.; Coblentz, Jessica; King, Victoria E.; Humphrey, Daniel M.; Wang, Shirley L.; Kiselyov, Kirill I.; Slaugenhaupt, Susan A.

    2015-01-01

    ABSTRACT Mucolipidosis type IV (MLIV) is a lysosomal storage disease caused by mutations in the MCOLN1 gene, which encodes the lysosomal transient receptor potential ion channel mucolipin-1 (TRPML1). MLIV causes impaired motor and cognitive development, progressive loss of vision and gastric achlorhydria. How loss of TRPML1 leads to severe psychomotor retardation is currently unknown, and there is no therapy for MLIV. White matter abnormalities and a hypoplastic corpus callosum are the major hallmarks of MLIV brain pathology. Here, we report that loss of TRPML1 in mice results in developmental aberrations of brain myelination as a result of deficient maturation and loss of oligodendrocytes. Defective myelination is evident in Mcoln1−/− mice at postnatal day 10, an active stage of postnatal myelination in the mouse brain. Expression of mature oligodendrocyte markers is reduced in Mcoln1−/− mice at postnatal day 10 and remains lower throughout the course of the disease. We observed reduced Perls' staining in Mcoln1−/− brain, indicating lower levels of ferric iron. Total iron content in unperfused brain is not significantly different between Mcoln1−/− and wild-type littermate mice, suggesting that the observed maturation delay or loss of oligodendrocytes might be caused by impaired iron handling, rather than by global iron deficiency. Overall, these data emphasize a developmental rather than a degenerative disease course in MLIV, and suggest that there should be a stronger focus on oligodendrocyte maturation and survival to better understand MLIV pathogenesis and aid treatment development. PMID:26398942

  2. Dynamic Repertoire of Intrinsic Brain States Is Reduced in Propofol-Induced Unconsciousness

    PubMed Central

    Liu, Xiping; Pillay, Siveshigan

    2015-01-01

    Abstract The richness of conscious experience is thought to scale with the size of the repertoire of causal brain states, and it may be diminished in anesthesia. We estimated the state repertoire from dynamic analysis of intrinsic functional brain networks in conscious sedated and unconscious anesthetized rats. Functional resonance images were obtained from 30-min whole-brain resting-state blood oxygen level-dependent (BOLD) signals at propofol infusion rates of 20 and 40 mg/kg/h, intravenously. Dynamic brain networks were defined at the voxel level by sliding window analysis of regional homogeneity (ReHo) or coincident threshold crossings (CTC) of the BOLD signal acquired in nine sagittal slices. The state repertoire was characterized by the temporal variance of the number of voxels with significant ReHo or positive CTC. From low to high propofol dose, the temporal variances of ReHo and CTC were reduced by 78%±20% and 76%±20%, respectively. Both baseline and propofol-induced reduction of CTC temporal variance increased from lateral to medial position. Group analysis showed a 20% reduction in the number of unique states at the higher propofol dose. Analysis of temporal variance in 12 anatomically defined regions of interest predicted that the largest changes occurred in visual cortex, parietal cortex, and caudate-putamen. The results suggest that the repertoire of large-scale brain states derived from the spatiotemporal dynamics of intrinsic networks is substantially reduced at an anesthetic dose associated with loss of consciousness. PMID:24702200

  3. Putrescine as a marker of the effects of 2-chloropropionic acid in the rat brain.

    PubMed

    de Vera, Núria; Camón, Lluïsa; Martínez, Emili

    2004-05-27

    The neurotoxin 2-chloropropionic acid (2CPA, 750 mg/kg, per os) induces ataxia in rats causing neuropathological changes (necrosis and edema) localized mainly in the cerebellum (CB). It has been described that putrescine (PUT) is a good marker of severe brain damage. We measured the concentration of PUT (by HPLC) in ataxic rat brains 3 days after 2CPA dosing. PUT was 9-fold higher than normal values in CB, 5-fold higher in midbrain (MB) and medulla oblongata + pons (MO) and 3-fold higher in the remaining areas studied. Treatment with glycerol, a reducer of brain edema, lowered the concentration of PUT only in CB, MB and MO. Histological damage was found in CB and the spinal trigeminal nucleus (located in the pontomedullar brainstem). We suggest that PUT can act as a marker of both neuronal necrosis and brain edema.

  4. An intervention to reduce disruptive behaviours in children with brain injury.

    PubMed

    Mottram, Lisa; Berger-Gross, Paul

    2004-01-01

    This study investigated the effectiveness of a behavioural intervention programme in reducing disruptive behaviours in children with brain injury. The behavioural package included programme rules, a token economy with response cost and mystery motivators. Participants were three male patients in an after-school programme at a rehabilitation hospital who were identified as having both a brain injury and disruptive behaviours in the classroom setting. Two control composites were formed, one with children who behaved appropriately and one with children who behaved in a disruptive manner. This study employed a multiple baseline design across individuals. The participants' disruptive behaviour decreased during the intervention phase by an average of 69%; the effect size of each participant's improvement was 'large'. The comparisons' disruptive behaviour was unchanged. This pronounced decrease in disruptive behaviours for the three participants was maintained in the follow-up phase. This short-term, easily implemented package altered important programme and social behaviours positively, were well received by children and staff and resulted in long-term improvements to behavioural deficits secondary to brain injury. These results are discussed in terms of theoretical disagreements, methodological issues and practical community-based interventions in brain-injured children. PMID:15204584

  5. Neuroprotection of lipoic acid treatment promotes angiogenesis and reduces the glial scar formation after brain injury.

    PubMed

    Rocamonde, B; Paradells, S; Barcia, J M; Barcia, C; García Verdugo, J M; Miranda, M; Romero Gómez, F J; Soria, J M

    2012-11-01

    After trauma brain injury, a large number of cells die, releasing neurotoxic chemicals into the extracellular medium, decreasing cellular glutathione levels and increasing reactive oxygen species that affect cell survival and provoke an enlargement of the initial lesion. Alpha-lipoic acid is a potent antioxidant commonly used as a treatment of many degenerative diseases such as multiple sclerosis or diabetic neuropathy. Herein, the antioxidant effects of lipoic acid treatment after brain cryo-injury in rat have been studied, as well as cell survival, proliferation in the injured area, gliogenesis and angiogenesis. Thus, it is shown that newborn cells, mostly corresponded with blood vessels and glial cells, colonized the damaged area 15 days after the lesion. However, lipoic acid was able to stimulate the synthesis of glutathione, decrease cell death, promote angiogenesis and decrease the glial scar formation. All those facts allow the formation of new neural tissue. In view of the results herein, lipoic acid might be a plausible pharmacological treatment after brain injury, acting as a neuroprotective agent of the neural tissue, promoting angiogenesis and reducing the glial scar formation. These findings open new possibilities for restorative strategies after brain injury, stroke or related disorders.

  6. Brain SERT Expression of Male Rats Is Reduced by Aging and Increased by Testosterone Restitution

    PubMed Central

    Herrera-Pérez, José Jaime; Fernández-Guasti, Alonso; Martínez-Mota, Lucía

    2013-01-01

    In preclinical and clinical studies aging has been associated with a deteriorated response to antidepressant treatment. We hypothesize that such impairment is explained by an age-related decrease in brain serotonin transporter (SERT) expression associated with low testosterone (T) levels. The objectives of this study were to establish (1) if brain SERT expression is reduced by aging and (2) if the SERT expression in middle-aged rats is increased by T-restitution. Intact young rats (3–5 months) and gonad-intact middle-aged rats with or without T-restitution were used. The identification of the brain SERT expression was done by immunofluorescence in prefrontal cortex, lateral septum, hippocampus, and raphe nuclei. An age-dependent reduction of SERT expression was observed in all brain regions examined, while T-restitution recovered the SERT expression only in the dorsal raphe of middle-aged rats. This last action seems relevant since dorsal raphe plays an important role in the antidepressant action of selective serotonin reuptake inhibitors. All data suggest that this mechanism accounts for the T-replacement usefulness to improve the response to antidepressants in the aged population. PMID:26317087

  7. Oxaloacetate activates brain mitochondrial biogenesis, enhances the insulin pathway, reduces inflammation and stimulates neurogenesis.

    PubMed

    Wilkins, Heather M; Harris, Janna L; Carl, Steven M; E, Lezi; Lu, Jianghua; Eva Selfridge, J; Roy, Nairita; Hutfles, Lewis; Koppel, Scott; Morris, Jill; Burns, Jeffrey M; Michaelis, Mary L; Michaelis, Elias K; Brooks, William M; Swerdlow, Russell H

    2014-12-15

    Brain bioenergetic function declines in some neurodegenerative diseases, this may influence other pathologies and administering bioenergetic intermediates could have therapeutic value. To test how one intermediate, oxaloacetate (OAA) affects brain bioenergetics, insulin signaling, inflammation and neurogenesis, we administered intraperitoneal OAA, 1-2 g/kg once per day for 1-2 weeks, to C57Bl/6 mice. OAA altered levels, distributions or post-translational modifications of mRNA and proteins (proliferator-activated receptor-gamma coactivator 1α, PGC1 related co-activator, nuclear respiratory factor 1, transcription factor A of the mitochondria, cytochrome oxidase subunit 4 isoform 1, cAMP-response element binding, p38 MAPK and adenosine monophosphate-activated protein kinase) in ways that should promote mitochondrial biogenesis. OAA increased Akt, mammalian target of rapamycin and P70S6K phosphorylation. OAA lowered nuclear factor κB nucleus-to-cytoplasm ratios and CCL11 mRNA. Hippocampal vascular endothelial growth factor mRNA, doublecortin mRNA, doublecortin protein, doublecortin-positive neuron counts and neurite length increased in OAA-treated mice. (1)H-MRS showed OAA increased brain lactate, GABA and glutathione thereby demonstrating metabolic changes are detectable in vivo. In mice, OAA promotes brain mitochondrial biogenesis, activates the insulin signaling pathway, reduces neuroinflammation and activates hippocampal neurogenesis.

  8. An intervention to reduce disruptive behaviours in children with brain injury.

    PubMed

    Mottram, Lisa; Berger-Gross, Paul

    2004-01-01

    This study investigated the effectiveness of a behavioural intervention programme in reducing disruptive behaviours in children with brain injury. The behavioural package included programme rules, a token economy with response cost and mystery motivators. Participants were three male patients in an after-school programme at a rehabilitation hospital who were identified as having both a brain injury and disruptive behaviours in the classroom setting. Two control composites were formed, one with children who behaved appropriately and one with children who behaved in a disruptive manner. This study employed a multiple baseline design across individuals. The participants' disruptive behaviour decreased during the intervention phase by an average of 69%; the effect size of each participant's improvement was 'large'. The comparisons' disruptive behaviour was unchanged. This pronounced decrease in disruptive behaviours for the three participants was maintained in the follow-up phase. This short-term, easily implemented package altered important programme and social behaviours positively, were well received by children and staff and resulted in long-term improvements to behavioural deficits secondary to brain injury. These results are discussed in terms of theoretical disagreements, methodological issues and practical community-based interventions in brain-injured children.

  9. Treatment of Acute Low Pressure Pulmonary Edema in Dogs

    PubMed Central

    Prewitt, R. M.; McCarthy, J.; Wood, L. D. H.

    1981-01-01

    Severe pulmonary edema sometimes develops despite normal pulmonary capillary wedge pressure (Ppw). The equation describing net transvascular flux of lung liquid predicts decreased edema when hydrostatic pressure is reduced or when colloid osmotic pressure is increased in the pulmonary vessels. We tested these predictions in a model of pulmonary capillary leak produced in 35 dogs by intravenous oleic acid. 1 h later, the dogs were divided into five equal groups and treated for 4 h in different ways: (a) not treated, to serve as the control group (Ppw = 11.1 mm Hg); (b) given albumin to increase colloid osmotic pressure by 5 mm Hg (Ppw = 10.6 mm Hg); (c) ventilated with 10 cm H2O positive end-expiratory pressure (Peep) (transmural Ppw = 10.4 mm Hg); (d) phlebotomized to reduce Ppw to 6 mm Hg; (e) infused with nitroprusside, which also reduced Ppw to 6 mm Hg. Phlebotomy and nitroprusside reduced the edema in excised lungs by 50% (P< 0.001), but Peep and albumin did not affect the edema. Pulmonary shunt decreased on Peep and increased on nitroprusside, and lung compliance was not different among the treatment groups, demonstrating that these variables are poor indicators of changes in edema. Cardiac output decreased during the treatment period in all but the nitroprusside group, where Ppw decreased and cardiac output did not. We conclude that canine oleic acid pulmonary edema is reduced by small reductions in hydrostatic pressure, but not by increased colloid osmotic pressure, because the vascular permeability to liquid and protein is increased. These results suggest that low pressure pulmonary edema may be reduced by seeking the lowest Ppw consistent with adequate cardiac output enhanced by vasoactive agents like nitroprusside. Further, colloid infusions and Peep are not helpful in reducing edema, so they may be used in the lowest amount that provides adequate circulating volume and arterial O2 saturation on nontoxic inspired O2. Until these therapeutic principles

  10. Reduced bone mass accrual in mouse model of repetitive mild traumatic brain injury.

    PubMed

    Yu, Hongrun; Wergedal, Jon E; Rundle, Charles H; Mohan, Subburaman

    2014-01-01

    Traumatic brain injury (TBI) can affect bone by influencing the production/actions of pituitary hormones and neuropeptides that play significant regulatory roles in bone metabolism. Previously, we demonstrated that experimental TBI exerted a negative effect on the skeleton. Since mild TBI (mTBI) accounts for the majority of TBI cases, this study was undertaken to evaluate TBI effects using a milder impact model in female mice. Repetitive mTBI caused microhemorrhaging, astrocytosis, and increased anti-inflammatory protective actions in the brain of the impacted versus control mice 2 wk after the first impact. Serum levels of growth regulating insulin-like growth factor 1 (IGF-I) were reduced by 28.9%. Bone mass was reduced significantly in total body as well as individual skeletons. Tibial total cortical density was reduced by 7.0%, which led to weaker bones, as shown by a 31.3% decrease in femoral size adjusted peak torque. A 27.5% decrease in tibial trabecular bone volume per total volume was accompanied by a 34.3% (p = 0.07) decrease in bone formation rate (BFR) per total area. Based on our data, we conclude that repetitive mTBI exerted significant negative effects on accrual of both cortical and trabecular bone mass in mice caused by a reduced BFR. PMID:25785491

  11. Preliminary evidence of reduced brain network activation in patients with post-traumatic migraine following concussion.

    PubMed

    Kontos, Anthony P; Reches, Amit; Elbin, R J; Dickman, Dalia; Laufer, Ilan; Geva, Amir B; Shacham, Galit; DeWolf, Ryan; Collins, Michael W

    2016-06-01

    Post-traumatic migraine (PTM) (i.e., headache, nausea, light and/or noise sensitivity) is an emerging risk factor for prolonged recovery following concussion. Concussions and migraine share similar pathophysiology characterized by specific ionic imbalances in the brain. Given these similarities, patients with PTM following concussion may exhibit distinct electrophysiological patterns, although researchers have yet to examine the electrophysiological brain activation in patients with PTM following concussion. A novel approach that may help differentiate brain activation in patients with and without PTM is brain network activation (BNA) analysis. BNA involves an algorithmic analysis applied to multichannel EEG-ERP data that provides a network map of cortical activity and quantitative data during specific tasks. A prospective, repeated measures design was used to evaluate BNA (during Go/NoGo task), EEG-ERP, cognitive performance, and concussion related symptoms at 1, 2, 3, and 4 weeks post-injury intervals among athletes with a medically diagnosed concussion with PTM (n = 15) and without (NO-PTM) (n = 22); and age, sex, and concussion history matched controls without concussion (CONTROL) (n = 20). Participants with PTM had significantly reduced BNA compared to NO-PTM and CONTROLS for Go and NoGo components at 3 weeks and for NoGo component at 4 weeks post-injury. The PTM group also demonstrated a more prominent deviation of network activity compared to the other two groups over a longer period of time. The composite BNA algorithm may be a more sensitive measure of electrophysiological change in the brain that can augment established cognitive assessment tools for detecting impairment in individuals with PTM.

  12. Syzigium cumini seed extracts reduce tissue damage in diabetic rat brain.

    PubMed

    Stanely Mainzen Prince, P; Kamalakkannan, N; Menon, Venugopal P

    2003-02-01

    Syzigium cumini commonly known as Jamun, is widely used in different parts of India for the treatment of diabetes mellitus. Oral administration of an aqueous Jamun seed extract (JSEt) for 6 weeks caused a significant decrease in lipids, thiobarbituric acid reactive substances (TBARS) and an increase in catalase and superoxide dismutase in the brain of alloxan induced diabetic rats. Oral administration of an alcoholic JSEt for 6 weeks brought back all the parameters to near normal. The effect of alcoholic JSEt (100 mg/kg) was better than aqueous JSEt (5 g/kg). The effect of both these extracts was better than glibenclamide (600 microg/kg). Thus, our study shows that S. cumini seed extracts reduce tissue damage in diabetic rat brain. PMID:12648817

  13. Impaired brain development and reduced cognitive function in phospholipase D-deficient mice.

    PubMed

    Burkhardt, Ute; Stegner, David; Hattingen, Elke; Beyer, Sandra; Nieswandt, Bernhard; Klein, Jochen

    2014-06-20

    The phospholipases D (PLD1 and 2) are signaling enzymes that catalyze the hydrolysis of phosphatidylcholine to phosphatidic acid, a lipid second messenger involved in cell proliferation, and choline, a precursor of acetylcholine (ACh). In the present study, we investigated development and cognitive function in mice that were deficient for PLD1, or PLD2, or both. We found that PLD-deficient mice had reduced brain growth at 14-27 days post partum when compared to wild-type mice. In adult PLD-deficient mice, cognitive function was impaired in social and object recognition tasks. Using brain microdialysis, we found that wild-type mice responded with a 4-fold increase of hippocampal ACh release upon behavioral stimulation in the open field, while PLD-deficient mice released significantly less ACh. These results may be relevant for cognitive dysfunctions observed in fetal alcohol syndrome and in Alzheimer' disease. PMID:24813107

  14. Naloxone-induced pulmonary edema.

    PubMed

    Schwartz, J A; Koenigsberg, M D

    1987-11-01

    We present the case of a 68-year-old woman with acute pulmonary edema secondary to the administration of naloxone to reverse an inadvertent narcotic overdose. The patient presented following a 12-hour history of increasingly bizarre behavior and confusion. A total IV dose of 1.6 mg naloxone was administered in an attempt to reverse the suspected overconsumption of a codeine-containing cough suppressant. She immediately became agitated, tachycardic, and diaphoretic; a clinical diagnosis of acute pulmonary edema was made. Following treatment with furosemide, nitroglycerin, and morphine sulfate, the patient recovered completely without further incident. Although naloxone is thought to be a safe drug with few complications, it should not be used indiscriminantly, and the smallest doses necessary to elicit the desired response should be used. PMID:3662194

  15. A Cannabinoid Receptor 2 Agonist Prevents Thrombin-Induced Blood-Brain Barrier Damage via the Inhibition of Microglial Activation and Matrix Metalloproteinase Expression in Rats.

    PubMed

    Li, Lin; Tao, Yihao; Tang, Jun; Chen, Qianwei; Yang, Yang; Feng, Zhou; Chen, Yujie; Yang, Liming; Yang, Yunfeng; Zhu, Gang; Feng, Hua; Chen, Zhi

    2015-12-01

    Thrombin mediates the life-threatening cerebral edema and blood-brain barrier (BBB) damage that occurs after intracerebral hemorrhage (ICH). We previously found that the selective cannabinoid receptor 2 (CB2R) agonist JWH-133 reduced brain edema and neurological deficits following germinal matrix hemorrhage (GMH). We explored whether CB2R stimulation ameliorated thrombin-induced brain edema and BBB permeability as well as the possible molecular mechanism involved. A total of 144 Sprague-Dawley (S-D) rats received a thrombin (20 U) injection in the right basal ganglia. JWH-133 (1.5 mg/kg) or SR-144528 (3.0 mg/kg) and vehicle were intraperitoneally (i.p.) injected 1 h after surgery. Brain water content measurement, Evans blue (EB) extravasation, Western blot, and immunofluorescence were used to study the effects of a CB2R agonist 24 h after surgery. The results demonstrated that JWH-133 administration significantly decreased thrombin-induced brain edema and reduced the number of Iba-1-positive microglia. JWH-133 also decreased the number of P44/P42(+)/Iba-1(+) microglia, lowered Evans blue extravasation, and inhibited the elevated matrix metallopeptidase (MMP)-9 and matrix metallopeptidase (MMP)-12 activities. However, a selective CB2R antagonist (SR-144528) reversed these effects. We demonstrated that CB2R stimulation reduced thrombin-induced brain edema and alleviated BBB damage. We also found that matrix metalloproteinase suppression may be partially involved in these processes. PMID:26376816

  16. Brain

    MedlinePlus

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  17. Exendin-4 reduces tau hyperphosphorylation in type 2 diabetic rats via increasing brain insulin level.

    PubMed

    Yang, Yan; Ma, Delin; Xu, Weijie; Chen, Fuqiong; Du, Tingting; Yue, Wenzhu; Shao, Shiying; Yuan, Gang

    2016-01-01

    Type 2 diabetes (T2D) is a high risk factor for Alzheimer's disease (AD). Our previous study identified that hyperphosphorylation of tau protein, which is one of the pathophysiologic hallmarks of AD, also occurred in T2D rats' brain; while glucagon-like peptide-1 (GLP-1) mimetics, a type of drug used in T2D, could decrease the phosphorylation of tau, probably via augmenting insulin signaling pathway. The purpose of this study was to further explore the mechanisms that underlie the effect of exendin-4 (ex-4, a GLP-1 receptor agonist) in reducing tau phosphorylation. We found that peripheral ex-4 injection in T2D rats reduced hyperphosphorylation of tau protein in rat hippocampus, probably via increasing hippocampal insulin which activated insulin signaling. Furthermore, we found that ex-4 could neither activate insulin signaling, nor reduce tau phosphorylation in HT22 neuronal cells in the absence of insulin. These results suggested that insulin is required in reduction of tau hyperphosphorylation by ex-4 in brain rats with T2D.

  18. Evaluation of Peritumoral Edema in the Delineation of Radiotherapy Clinical Target Volumes for Glioblastoma

    SciTech Connect

    Chang, Eric L. . E-mail: echang@mdanderson.org; Akyurek, Serap; Avalos, Tedde C; Rebueno, Neal C; Spicer, Chris C; Garcia, John C; Famiglietti, Robin; Allen, Pamela K.; Chao, K.S. Clifford; Mahajan, Anita; Woo, Shiao Y.; Maor, Moshe H.

    2007-05-01

    Purpose: To evaluate the spatial relationship between peritumoral edema and recurrence pattern in patients with glioblastoma (GBM). Methods and Materials: Forty-eight primary GBM patients received three-dimensional conformal radiotherapy that did not intentionally include peritumoral edema within the clinical target volume between July 2000 and June 2001. All 48 patients have subsequently recurred, and their original treatment planning parameters were used for this study. New theoretical radiation treatment plans were created for the same 48 patients, based on Radiation Therapy Oncology Group (RTOG) target delineation guidelines that specify inclusion of peritumoral edema. Target volume and recurrent tumor coverage, as well as percent volume of normal brain irradiated, were assessed for both methods of target delineation using dose-volume histograms. Results: A comparison between the location of recurrent tumor and peritumoral edema volumes from all 48 cases failed to show correlation by linear regression modeling (r {sup 2} 0.0007; p = 0.3). For patients with edema >75 cm{sup 3}, the percent volume of brain irradiated to 46 Gy was significantly greater in treatment plans that intentionally included peritumoral edema compared with those that did not (38% vs. 31%; p = 0.003). The pattern of failure was identical between the two sets of plans (40 central, 3 in-field, 3 marginal, and 2 distant recurrence). Conclusion: Clinical target volume delineation based on a 2-cm margin rather than on peritumoral edema did not seem to alter the central pattern of failure for patients with GBM. For patients with peritumoral edema >75 cm{sup 3}, using a constant 2-cm margin resulted in a smaller median percent volume of brain being irradiated to 30 Gy, 46 Gy, and 50 Gy compared with corresponding theoretical RTOG plans that deliberately included peritumoral edema.

  19. Pyrazole antagonists of the CB1 receptor with reduced brain penetration.

    PubMed

    Fulp, Alan; Zhang, Yanan; Bortoff, Katherine; Seltzman, Herbert; Snyder, Rodney; Wiethe, Robert; Amato, George; Maitra, Rangan

    2016-03-01

    Type 1 cannabinoid receptor (CB1) antagonists might be useful for treating obesity, liver disease, metabolic syndrome, and dyslipidemias. Unfortunately, inhibition of CB1 in the central nervous system (CNS) produces adverse effects, including depression, anxiety and suicidal ideation in some patients, which led to withdrawal of the pyrazole inverse agonist rimonabant (SR141716A) from European markets. Efforts are underway to produce peripherally selective CB1 antagonists to circumvent CNS-associated adverse effects. In this study, novel analogs of rimonabant (1) were explored in which the 1-aminopiperidine group was switched to a 4-aminopiperidine, attached at the 4-amino position (5). The piperidine nitrogen was functionalized with carbamates, amides, and sulfonamides, providing compounds that are potent inverse agonists of hCB1 with good selectivity for hCB1 over hCB2. Select compounds were further studied using in vitro models of brain penetration, oral absorption and metabolic stability. Several compounds were identified with predicted minimal brain penetration and good metabolic stability. In vivo pharmacokinetic testing revealed that inverse agonist 8c is orally bioavailable and has vastly reduced brain penetration compared to rimonabant.

  20. Pyrazole antagonists of the CB1 receptor with reduced brain penetration.

    PubMed

    Fulp, Alan; Zhang, Yanan; Bortoff, Katherine; Seltzman, Herbert; Snyder, Rodney; Wiethe, Robert; Amato, George; Maitra, Rangan

    2016-03-01

    Type 1 cannabinoid receptor (CB1) antagonists might be useful for treating obesity, liver disease, metabolic syndrome, and dyslipidemias. Unfortunately, inhibition of CB1 in the central nervous system (CNS) produces adverse effects, including depression, anxiety and suicidal ideation in some patients, which led to withdrawal of the pyrazole inverse agonist rimonabant (SR141716A) from European markets. Efforts are underway to produce peripherally selective CB1 antagonists to circumvent CNS-associated adverse effects. In this study, novel analogs of rimonabant (1) were explored in which the 1-aminopiperidine group was switched to a 4-aminopiperidine, attached at the 4-amino position (5). The piperidine nitrogen was functionalized with carbamates, amides, and sulfonamides, providing compounds that are potent inverse agonists of hCB1 with good selectivity for hCB1 over hCB2. Select compounds were further studied using in vitro models of brain penetration, oral absorption and metabolic stability. Several compounds were identified with predicted minimal brain penetration and good metabolic stability. In vivo pharmacokinetic testing revealed that inverse agonist 8c is orally bioavailable and has vastly reduced brain penetration compared to rimonabant. PMID:26827137

  1. Tideglusib reduces progression of brain atrophy in progressive supranuclear palsy in a randomized trial.

    PubMed

    Höglinger, Günter U; Huppertz, Hans-Jürgen; Wagenpfeil, Stefan; Andrés, María V; Belloch, Vincente; León, Teresa; Del Ser, Teodoro

    2014-04-01

    It is believed that glycogen synthase kinase-3 hyperphosphorylates tau protein in progressive supranuclear palsy (PSP). The Tau Restoration on PSP (TAUROS) trial assessed the glycogen synthase kinase-3 inhibitor tideglusib as potential treatment. For the magnetic resonance imaging (MRI) substudy reported here, we assessed the progression of brain atrophy. TAUROS was a multinational, phase 2, double-blind, placebo-controlled trial in patients with mild-to-moderate PSP who were treated with oral tideglusib (600 mg or 800 mg daily) or with placebo for 1 year. A subset of patients underwent baseline and 52-week MRI. Automated, observer-independent, atlas-based, and mask-based volumetry was done on high-resolution, T1-weighted, three-dimensional data. For primary outcomes, progression of atrophy was compared both globally (brain, cerebrum) and regionally (third ventricle, midbrain, pons) between the active and placebo groups (Bonferroni correction). For secondary outcomes, 15 additional brain structures were explored (Benjamini & Yekutieli correction). In total, MRIs from 37 patient were studied (placebo group, N = 9; tideglusib 600 mg group, N = 19; tideglusib 800 mg group, N = 9). The groups compared well in their demographic characteristics. Clinical results showed no effect of tideglusib over placebo. Progression of atrophy was significantly lower in the active group than in the placebo group for the brain (mean ± standard error of the mean: -1.3% ± 1.4% vs. -3.1% ± 2.3%, respectively), cerebrum (-1.3% ± 1.5% vs. -3.2% ± 2.1%, respectively), parietal lobe (-1.6% ± 1.9% vs. -4.1% ± 3.0%, respectively), and occipital lobe (-0.3% ± 1.8% vs. -2.7% ± 3.2%, respectively). A trend toward reduced atrophy also was observed in the frontal lobe, hippocampus, caudate nucleus, midbrain, and brainstem. In patients with PSP, tideglusib reduced the progression of atrophy in the whole brain, particularly in the parietal and occipital lobes.

  2. Pathogenesis of optic disc edema in raised intracranial pressure.

    PubMed

    Hayreh, Sohan Singh

    2016-01-01

    Optic disc edema in raised intracranial pressure was first described in 1853. Ever since, there has been a plethora of controversial hypotheses to explain its pathogenesis. I have explored the subject comprehensively by doing basic, experimental and clinical studies. My objective was to investigate the fundamentals of the subject, to test the validity of the previous theories, and finally, based on all these studies, to find a logical explanation for the pathogenesis. My studies included the following issues pertinent to the pathogenesis of optic disc edema in raised intracranial pressure: the anatomy and blood supply of the optic nerve, the roles of the sheath of the optic nerve, of the centripetal flow of fluids along the optic nerve, of compression of the central retinal vein, and of acute intracranial hypertension and its associated effects. I found that, contrary to some previous claims, an acute rise of intracranial pressure was not quickly followed by production of optic disc edema. Then, in rhesus monkeys, I produced experimentally chronic intracranial hypertension by slowly increasing in size space-occupying lesions, in different parts of the brain. Those produced raised cerebrospinal fluid pressure (CSFP) and optic disc edema, identical to those seen in patients with elevated CSFP. Having achieved that, I investigated various aspects of optic disc edema by ophthalmoscopy, stereoscopic color fundus photography and fluorescein fundus angiography, and light microscopic, electron microscopic, horseradish peroxidase and axoplasmic transport studies, and evaluated the effect of opening the sheath of the optic nerve on the optic disc edema. This latter study showed that opening the sheath resulted in resolution of optic disc edema on the side of the sheath fenestration, in spite of high intracranial CSFP, proving that a rise of CSFP in the sheath was the essential pre-requisite for the development of optic disc edema. I also investigated optic disc edema with

  3. Pulmonary edema associated with scuba diving : case reports and review.

    PubMed

    Slade, J B; Hattori, T; Ray, C S; Bove, A A; Cianci, P

    2001-11-01

    Acute pulmonary edema has been associated with cold-water immersion in swimmers and divers. We report on eight divers using a self-contained underwater breathing apparatus (scuba) who developed acute pulmonary edema manifested by dyspnea, hypoxemia, and characteristic chest radiographic findings. All cases occurred in cold water. All scuba divers were treated with complete resolution, and three have returned to diving without further episodes. Mechanisms that would contribute to a raised capillary transmural pressure or to a reduced blood-gas barrier function or integrity are discussed. Pulmonary edema in scuba divers is multifactorial, and constitutional factors may play a role. Physicians should be aware of this potential, likely underreported, problem in scuba divers.

  4. The Associative Memory Deficit in Aging Is Related to Reduced Selectivity of Brain Activity during Encoding.

    PubMed

    Saverino, Cristina; Fatima, Zainab; Sarraf, Saman; Oder, Anita; Strother, Stephen C; Grady, Cheryl L

    2016-09-01

    Human aging is characterized by reductions in the ability to remember associations between items, despite intact memory for single items. Older adults also show less selectivity in task-related brain activity, such that patterns of activation become less distinct across multiple experimental tasks. This reduced selectivity or dedifferentiation has been found for episodic memory, which is often reduced in older adults, but not for semantic memory, which is maintained with age. We used fMRI to investigate whether there is a specific reduction in selectivity of brain activity during associative encoding in older adults, but not during item encoding, and whether this reduction predicts associative memory performance. Healthy young and older adults were scanned while performing an incidental encoding task for pictures of objects and houses under item or associative instructions. An old/new recognition test was administered outside the scanner. We used agnostic canonical variates analysis and split-half resampling to detect whole-brain patterns of activation that predicted item versus associative encoding for stimuli that were later correctly recognized. Older adults had poorer memory for associations than did younger adults, whereas item memory was comparable across groups. Associative encoding trials, but not item encoding trials, were predicted less successfully in older compared with young adults, indicating less distinct patterns of associative-related activity in the older group. Importantly, higher probability of predicting associative encoding trials was related to better associative memory after accounting for age and performance on a battery of neuropsychological tests. These results provide evidence that neural distinctiveness at encoding supports associative memory and that a specific reduction of selectivity in neural recruitment underlies age differences in associative memory. PMID:27082043

  5. Quercetin stabilizes apolipoprotein E and reduces brain Aβ levels in amyloid model mice.

    PubMed

    Zhang, Xilin; Hu, Jin; Zhong, Li; Wang, Na; Yang, Longyu; Liu, Chia-Chen; Li, Huifang; Wang, Xin; Zhou, Ying; Zhang, Yunwu; Xu, Huaxi; Bu, Guojun; Zhuang, Jiangxing

    2016-09-01

    Apolipoprotein E (apoE) is a major cholesterol carrier that regulates lipid homeostasis by mediating lipid transport from one tissue or cell type to another. In the central neural system (CNS), apoE is mainly produced by astrocytes, and transports cholesterol to neurons via apoE receptors, which are members of the low-density lipoprotein receptor family. The APOEε4 gene is a strong genetic risk factor for late-onset sporadic Alzheimer's disease (AD), likely through its strong effect on the accumulation of amyloid-β (Aβ) peptide. ApoE protein levels in cerebrospinal fluid (CSF) and plasma are reduced in APOEε4 carriers and in patients with AD. Furthermore, altered cholesterol levels are also associated with the risk of AD. Aβ accumulation, oligomerization and deposition in the brain are central to the pathogenesis of AD. Mounting evidence demonstrates that apoE and apoE receptors play important roles in these processes. Astrocyte-derived apoE is pivotal for cerebral cholesterol metabolism and clearance of Aβ. Thus, we hypothesized that increased apoE in the brain may be an effective therapeutic strategy for AD. We report here that quercetin can significantly increase apoE levels by inhibiting apoE degradation in immortalized astrocytes. Importantly, we show that oral administration of quercetin significantly increased brain apoE and reduced insoluble Aβ levels in the cortex of 5xFAD amyloid model mice. Our results demonstrate that quercetin increases apoE levels through a novel mechanism and can be explored as a novel class of drug for AD therapy. PMID:27114256

  6. Reduced activity of monoamine oxidase in the rat brain following repeated nandrolone decanoate administration.

    PubMed

    Birgner, Carolina; Kindlundh-Högberg, Anna M S; Oreland, Lars; Alsiö, Johan; Lindblom, Jonas; Schiöth, Helgi B; Bergström, Lena

    2008-07-11

    Anabolic androgenic steroids (AAS) are known as doping agents within sports and body-building, but are currently also abused by other groups in society in order to promote increased courage and aggression. We previously showed that 14 days of daily intramuscular injections of the AAS nandrolone decanoate (15 mg/kg) reduced the extracellular levels of the dopaminergic metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the nucleus accumbens shell using microdialysis. The aim of the present study was to investigate whether the same dose regimen of nandrolone decanoate may affect the activities of the dopamine-metabolizing enzymes monoamine oxidases A and B (MAO-A and MAO-B). A radiometric assay was used to determine the activities of MAO-A and MAO-B in rat brain tissues after 14 days of daily i.m. nandrolone decanoate injections at the doses 3 and 15 mg/kg. Gene transcript contents of MAO-A, MAO-B and cathecol-O-methyltransferase (COMT) were measured with quantitative real-time reverse transcription PCR. 3 mg/kg of nandrolone decanoate significantly reduced the activity of both MAO-A and -B in the caudate putamen. 15 mg/kg of nandrolone decanoate significantly reduced the activity of MAO-A in the amygdala and increased the gene transcript level of MAO-B in the substantia nigra. In conclusion, imbalanced MAO activities may contribute to explain the impulsive and aggressive behaviour often described in AAS abusers. The reduced MAO activities observed are in line with our previously presented findings of decreased extracellular levels of DOPAC and HVA in the rat brain, indicating decreased monoaminergic activity following repeated AAS administration. PMID:18539264

  7. β-Hydroxybutyrate supports synaptic vesicle cycling but reduces endocytosis and exocytosis in rat brain synaptosomes.

    PubMed

    Hrynevich, Sviatlana V; Waseem, Tatyana V; Hébert, Audrey; Pellerin, Luc; Fedorovich, Sergei V

    2016-02-01

    The ketogenic diet is used as a prophylactic treatment for different types of brain diseases, such as epilepsy or Alzheimer's disease. In such a diet, carbohydrates are replaced by fats in everyday food, resulting in an elevation of blood-borne ketone bodies levels. Despite clinical applications of this treatment, the molecular mechanisms by which the ketogenic diet exerts its beneficial effects are still uncertain. In this study, we investigated the effect of replacing glucose by the ketone body β-hydroxybutyrate as the main energy substrate on synaptic vesicle recycling in rat brain synaptosomes. First, we observed that exposing presynaptic terminals to nonglycolytic energy substrates instead of glucose did not alter the plasma membrane potential. Next, we found that synaptosomes were able to maintain the synaptic vesicle cycle monitored with the fluorescent dye acridine orange when glucose was replaced by β-hydroxybutyrate. However, in presence of β-hydroxybutyrate, synaptic vesicle recycling was modified with reduced endocytosis. Replacing glucose by pyruvate also led to a reduced endocytosis. Addition of β-hydroxybutyrate to glucose-containing incubation medium was without effect. Reduced endocytosis in presence of β-hydroxybutyrate as sole energy substrate was confirmed using the fluorescent dye FM2-10. Also we found that replacement of glucose by ketone bodies leads to inhibition of exocytosis, monitored by FM2-10. However this reduction was smaller than the effect on endocytosis under the same conditions. Using both acridine orange in synaptosomes and the genetically encoded sensor synaptopHluorin in cortical neurons, we observed that replacing glucose by β-hydroxybutyrate did not modify the pH gradient of synaptic vesicles. In conclusion, the nonglycolytic energy substrates β-hydroxybutyrate and pyruvate are able to support synaptic vesicle recycling. However, they both reduce endocytosis. Reduction of both endocytosis and exocytosis together with

  8. β-Hydroxybutyrate supports synaptic vesicle cycling but reduces endocytosis and exocytosis in rat brain synaptosomes.

    PubMed

    Hrynevich, Sviatlana V; Waseem, Tatyana V; Hébert, Audrey; Pellerin, Luc; Fedorovich, Sergei V

    2016-02-01

    The ketogenic diet is used as a prophylactic treatment for different types of brain diseases, such as epilepsy or Alzheimer's disease. In such a diet, carbohydrates are replaced by fats in everyday food, resulting in an elevation of blood-borne ketone bodies levels. Despite clinical applications of this treatment, the molecular mechanisms by which the ketogenic diet exerts its beneficial effects are still uncertain. In this study, we investigated the effect of replacing glucose by the ketone body β-hydroxybutyrate as the main energy substrate on synaptic vesicle recycling in rat brain synaptosomes. First, we observed that exposing presynaptic terminals to nonglycolytic energy substrates instead of glucose did not alter the plasma membrane potential. Next, we found that synaptosomes were able to maintain the synaptic vesicle cycle monitored with the fluorescent dye acridine orange when glucose was replaced by β-hydroxybutyrate. However, in presence of β-hydroxybutyrate, synaptic vesicle recycling was modified with reduced endocytosis. Replacing glucose by pyruvate also led to a reduced endocytosis. Addition of β-hydroxybutyrate to glucose-containing incubation medium was without effect. Reduced endocytosis in presence of β-hydroxybutyrate as sole energy substrate was confirmed using the fluorescent dye FM2-10. Also we found that replacement of glucose by ketone bodies leads to inhibition of exocytosis, monitored by FM2-10. However this reduction was smaller than the effect on endocytosis under the same conditions. Using both acridine orange in synaptosomes and the genetically encoded sensor synaptopHluorin in cortical neurons, we observed that replacing glucose by β-hydroxybutyrate did not modify the pH gradient of synaptic vesicles. In conclusion, the nonglycolytic energy substrates β-hydroxybutyrate and pyruvate are able to support synaptic vesicle recycling. However, they both reduce endocytosis. Reduction of both endocytosis and exocytosis together with

  9. [Lung edema in scuba diving].

    PubMed

    Hempe, S; Lierz, P

    2003-10-01

    The management of a diving-related emergency is frequently a great challenge for an emergency physician without a special diving medicine training or experiences. Almost every physician knows something about the medical therapy of diving-related accidents which are combined with a barotrauma or a decompression sickness. But there are still some rare symptoms and organ affections of diving-related emergencies which are unknown in common. In consideration of the present case of an acute diving-related lung edema we discuss the different reasons and differential diagnosis of diving emergencies.

  10. Treatment with gelsolin reduces brain inflammation and apoptotic signaling in mice following thermal injury

    PubMed Central

    2011-01-01

    Background Burn survivors develop long-term cognitive impairment with increased inflammation and apoptosis in the brain. Gelsolin, an actin-binding protein with capping and severing activities, plays a crucial role in the septic response. We investigated if gelsolin infusion could attenuate neural damage in burned mice. Methods Mice with 15% total body surface area burns were injected intravenously with bovine serum albumin as placebo (2 mg/kg), or with low (2 mg/kg) or high doses (20 mg/kg) of gelsolin. Samples were harvested at 8, 24, 48 and 72 hours postburn. The immune function of splenic T cells was analyzed. Cerebral pathology was examined by hematoxylin/eosin staining, while activated glial cells and infiltrating leukocytes were detected by immunohistochemistry. Cerebral cytokine mRNAs were further assessed by quantitative real-time PCR, while apoptosis was evaluated by caspase-3. Neural damage was determined using enzyme-linked immunosorbent assay of neuron-specific enolase (NSE) and soluble protein-100 (S-100). Finally, cerebral phospho-ERK expression was measured by western blot. Results Gelsolin significantly improved the outcomes of mice following major burns in a dose-dependent manner. The survival rate was improved by high dose gelsolin treatment compared with the placebo group (56.67% vs. 30%). Although there was no significant improvement in outcome in mice receiving low dose gelsolin (30%), survival time was prolonged against the placebo control (43.1 ± 4.5 h vs. 35.5 ± 5.0 h; P < 0.05). Burn-induced T cell suppression was greatly alleviated by high dose gelsolin treatment. Concurrently, cerebral abnormalities were greatly ameliorated as shown by reduced NSE and S-100 content of brain, decreased cytokine mRNA expressions, suppressed microglial activation, and enhanced infiltration of CD11b+ and CD45+ cells into the brain. Furthermore, the elevated caspase-3 activity seen following burn injury was remarkably reduced by high dose gelsolin treatment

  11. Update on corticosteroids for diabetic macular edema.

    PubMed

    Schwartz, Stephen G; Scott, Ingrid U; Stewart, Michael W; Flynn, Harry W

    2016-01-01

    Diabetic macular edema (DME) remains an important cause of visual loss. Although anti-vascular endothelial growth factor (VEGF) agents are generally used as first-line treatments for patients with center-involving DME, there is an important role for corticosteroids as well. Corticosteroids may be especially useful in pseudophakic patients poorly responsive to anti-VEGF therapies, in patients wishing to reduce the number of required injections, and in pregnant patients. Intravitreal triamcinolone acetonide has been used for many years but is not approved for this indication. An extended-release bioerodable dexamethasone delivery system and an extended-release nonbioerodable fluocinolone acetonide insert have both achieved regulatory approval for the treatment of DME. All intravitreal corticosteroids are associated with risks of cataract progression, elevation of intraocular pressure, and endophthalmitis. There is no current consensus regarding the use of corticosteroids, but they are valuable for selected patients with center-involving DME. PMID:27660409

  12. Update on corticosteroids for diabetic macular edema

    PubMed Central

    Schwartz, Stephen G; Scott, Ingrid U; Stewart, Michael W; Flynn, Harry W

    2016-01-01

    Diabetic macular edema (DME) remains an important cause of visual loss. Although anti-vascular endothelial growth factor (VEGF) agents are generally used as first-line treatments for patients with center-involving DME, there is an important role for corticosteroids as well. Corticosteroids may be especially useful in pseudophakic patients poorly responsive to anti-VEGF therapies, in patients wishing to reduce the number of required injections, and in pregnant patients. Intravitreal triamcinolone acetonide has been used for many years but is not approved for this indication. An extended-release bioerodable dexamethasone delivery system and an extended-release nonbioerodable fluocinolone acetonide insert have both achieved regulatory approval for the treatment of DME. All intravitreal corticosteroids are associated with risks of cataract progression, elevation of intraocular pressure, and endophthalmitis. There is no current consensus regarding the use of corticosteroids, but they are valuable for selected patients with center-involving DME. PMID:27660409

  13. Update on corticosteroids for diabetic macular edema

    PubMed Central

    Schwartz, Stephen G; Scott, Ingrid U; Stewart, Michael W; Flynn, Harry W

    2016-01-01

    Diabetic macular edema (DME) remains an important cause of visual loss. Although anti-vascular endothelial growth factor (VEGF) agents are generally used as first-line treatments for patients with center-involving DME, there is an important role for corticosteroids as well. Corticosteroids may be especially useful in pseudophakic patients poorly responsive to anti-VEGF therapies, in patients wishing to reduce the number of required injections, and in pregnant patients. Intravitreal triamcinolone acetonide has been used for many years but is not approved for this indication. An extended-release bioerodable dexamethasone delivery system and an extended-release nonbioerodable fluocinolone acetonide insert have both achieved regulatory approval for the treatment of DME. All intravitreal corticosteroids are associated with risks of cataract progression, elevation of intraocular pressure, and endophthalmitis. There is no current consensus regarding the use of corticosteroids, but they are valuable for selected patients with center-involving DME.

  14. Reexpansion pulmonary edema in children

    PubMed Central

    Rodrigues, Antonio Lucas L.; Lopes, Carlos Eduardo; Romaneli, Mariana Tresoldi das N.; Fraga, Andrea de Melo A.; Pereira, Ricardo Mendes; Tresoldi, Antonia Teresinha

    2013-01-01

    OBJECTIVE To present a case of a patient with clinical and radiological features of reexpansion pulmonary edema, a rare and potentially fatal disease. CASE DESCRIPTION An 11-year-old boy presenting fever, clinical signs and radiological features of large pleural effusion initially treated as a parapneumonic process. Due to clinical deterioration he underwent tube thoracostomy, with evacuation of 3,000 mL of fluid; he shortly presented acute respiratory insufficiency and needed mechanical ventilation. He had an atypical evolution (extubated twice with no satisfactory response). Computerized tomography findings matched those of reexpansion edema. He recovered satisfactorily after intensive care, and pleural tuberculosis was diagnosed afterwards. COMMENTS Despite its rareness in the pediatric population (only five case reports gathered), the knowledge of this pathology and its prevention is very important, due to high mortality rates. It is recommended, among other measures, slow evacuation of the pleural effusion, not removing more than 1,500 mL of fluid at once. PMID:24142327

  15. [Therapeutic approach in persistent diabetic macular edema].

    PubMed

    Brănişteanu, Daniel; Moraru, Andreea

    2014-01-01

    Terminology of persistent diabetic macular edema has been initially reserved to cases unresponsive to conventional laser photocoagulation according to ETDRS criteria. While knowledge about pathophysiology of macular edema evolved and new drugs became available, the terminology of persistent diabetic macular edema expanded to include resistance to most current therapies. The purpose of this paper is to review medical and surgical options in the treatment of such difficult cases according to literature data and personal experience.

  16. Immediate Remote Ischemic Postconditioning Reduces Brain Nitrotyrosine Formation in a Piglet Asphyxia Model

    PubMed Central

    Rocha-Ferreira, Eridan; Rudge, Brogan; Hughes, Michael P.; Rahim, Ahad A.; Hristova, Mariya; Robertson, Nicola J.

    2016-01-01

    Remote ischemic postconditioning (RIPostC) is a promising therapeutic intervention that could be administered as an alternative to cooling in cases of perinatal hypoxia-ischemia (HI). In the current study we hypothesized that RIPostC in the piglet model of birth asphyxia confers protection by reducing nitrosative stress and subsequent nitrotyrosine formation, as well as having an effect on glial immunoreactivity. Postnatal day 1 (P1) piglets underwent HI brain injury and were randomised to HI (control) or HI + RIPostC. Immunohistochemistry assessment 48 hours after HI revealed a significant decrease in brain nitrotyrosine deposits in the RIPostC-treated group (p = 0.02). This was accompanied by a significant increase in eNOS expression (p < 0.0001) and decrease in iNOS (p = 0.010), with no alteration in nNOS activity. Interestingly, RIPostC treatment was associated with a significant increase in GFAP (p = 0.002) and IBA1 (p = 0.006), markers of astroglial and microglial activity, respectively. The current study demonstrates a beneficial effect of RIPostC therapy in the preclinical piglet model of neonatal asphyxia, which appears to be mediated by modulation of nitrosative stress, despite glial activation. PMID:27379176

  17. Methylphenidate reduces functional connectivity of nucleus accumbens in brain reward circuit.

    PubMed

    Ramaekers, J G; Evers, E A; Theunissen, E L; Kuypers, K P C; Goulas, A; Stiers, P

    2013-09-01

    Release of dopamine in the nucleus accumbens (NAcc) is essential for acute drug reward. The present study was designed to trace the reinforcing effect of dopamine release by measuring the functional connectivity (FC) between the NAcc and brain regions involved in a limbic cortical-subcortical circuit during a dopaminergic challenge. Twenty healthy volunteers received single doses of methylphenidate (40 mg) and placebo on separate test days according to a double-blind, cross-over study design. Resting state functional magnetic resonance imaging (fMRI) was measured between 1.5 and 2 h postdosing. FC between regions of interest (ROI) in the NAcc, the medial dorsal nucleus (MDN) of the thalamus and remote areas within the limbic circuit was explored. Methylphenidate significantly reduced FC between the NAcc and the basal ganglia (i.e., subthalamic nucleus and ventral pallidum (VP)), relative to placebo. Methylphenidate also decreased FC between the NAcc and the medial prefrontal cortex (mPFC) as well as the temporal cortex. Methylphenidate did not affect FC between MDN and the limbic circuit. It is concluded that methylphenidate directly affects the limbic reward circuit. Drug-induced changes in FC of the NAcc may serve as a useful marker of drug activity in in the brain reward circuit.

  18. Immediate Remote Ischemic Postconditioning Reduces Brain Nitrotyrosine Formation in a Piglet Asphyxia Model.

    PubMed

    Rocha-Ferreira, Eridan; Rudge, Brogan; Hughes, Michael P; Rahim, Ahad A; Hristova, Mariya; Robertson, Nicola J

    2016-01-01

    Remote ischemic postconditioning (RIPostC) is a promising therapeutic intervention that could be administered as an alternative to cooling in cases of perinatal hypoxia-ischemia (HI). In the current study we hypothesized that RIPostC in the piglet model of birth asphyxia confers protection by reducing nitrosative stress and subsequent nitrotyrosine formation, as well as having an effect on glial immunoreactivity. Postnatal day 1 (P1) piglets underwent HI brain injury and were randomised to HI (control) or HI + RIPostC. Immunohistochemistry assessment 48 hours after HI revealed a significant decrease in brain nitrotyrosine deposits in the RIPostC-treated group (p = 0.02). This was accompanied by a significant increase in eNOS expression (p < 0.0001) and decrease in iNOS (p = 0.010), with no alteration in nNOS activity. Interestingly, RIPostC treatment was associated with a significant increase in GFAP (p = 0.002) and IBA1 (p = 0.006), markers of astroglial and microglial activity, respectively. The current study demonstrates a beneficial effect of RIPostC therapy in the preclinical piglet model of neonatal asphyxia, which appears to be mediated by modulation of nitrosative stress, despite glial activation.

  19. Relationships between edema degree and clinical and biochemical parameters in posterior reversible encephalopathy syndrome: a preliminary study.

    PubMed

    Bo, Gao; Hui, Liang; Feng-Li, Liu; Cui, Lv

    2012-09-01

    The objective of the study was to investigate the associations between the degree of edema with the clinical and biochemical parameters such as serum lactate dehydrogenase (LDH), albumin (ALB) in posterior reversible encephalopathy syndrome (PRES) patients. Forty-nine patients with typical clinical symptoms and characteristic MR imaging findings of PRES were included in this study. Lactate dehydrogenase and ALB were analyzed with the immunoluminometric assays. Fluid-attenuated inversion recovery images were used to evaluate the distribution of the extent or severity of vasogenic edema by two observers. Correlation analysis between the scores of brain edema and the blood pressures, clinical conditions and biochemical parameters was performed. No significant difference of brain edema score was found between patients with eclampsia, chronic renal failure and other clinical condition (P > 0.05). Both mean arterial pressures and LDH level were moderately correlated with the scores of brain edema distribution (Spearman's ρ test, r = 0.405 and 0.497, respectively, P < 0.01). Serum ALB level was not correlated with the scores of brain edema distribution (P > 0.05). Larger and more diffuse lesions may be predicted by higher LDH level and blood pressure. The overall severity of the systemic process might be predicted by the degree of edema expression in PRES.

  20. Neural evidence that conscious awareness of errors is reduced in depression following a traumatic brain injury.

    PubMed

    Bailey, N W; Hoy, K E; Maller, J J; Upton, D J; Segrave, R A; Fitzgibbon, B M; Fitzgerald, P B

    2015-03-01

    Impaired error awareness is related to poorer outcome following traumatic brain injury (TBI). Error awareness deficits are also found in major depressive disorder (MDD), but have not been examined in the MDD that follows a TBI (TBI-MDD). This study assessed neural activity related to error awareness in TBI-MDD. Four groups completed a response inhibition task while EEG was recorded- healthy controls (N = 15), MDD-only (N = 15), TBI-only (N = 16), and TBI-MDD (N = 12). Error related EEG activity was compared using powerful randomisation statistics that included all electrodes and time points. Participants with TBI-MDD displayed less frontally distributed neural activity, suggesting reduced contribution from frontal generating sources. Neural activity during this time window is thought to reflect conscious awareness of errors. The TBI-only and MDD-only groups did not differ from controls, and early error processing was unaffected, suggesting early error detection is intact.

  1. Bacopa monnieri as an Antioxidant Therapy to Reduce Oxidative Stress in the Aging Brain.

    PubMed

    Simpson, Tamara; Pase, Matthew; Stough, Con

    2015-01-01

    The detrimental effect of neuronal cell death due to oxidative stress and mitochondrial dysfunction has been implicated in age-related cognitive decline and neurodegenerative disorders such as Alzheimer's disease. The Indian herb Bacopa monnieri is a dietary antioxidant, with animal and in vitro studies indicating several modes of action that may protect the brain against oxidative damage. In parallel, several studies using the CDRI08 extract have shown that extracts of Bacopa monnieri improve cognitive function in humans. The biological mechanisms of this cognitive enhancement are unknown. In this review we discuss the animal studies and in vivo evidence for Bacopa monnieri as a potential therapeutic antioxidant to reduce oxidative stress and improve cognitive function. We suggest that future studies incorporate neuroimaging particularly magnetic resonance spectroscopy into their randomized controlled trials to better understand whether changes in antioxidant status in vivo cause improvements in cognitive function.

  2. Bacopa monnieri as an Antioxidant Therapy to Reduce Oxidative Stress in the Aging Brain

    PubMed Central

    Simpson, Tamara; Pase, Matthew; Stough, Con

    2015-01-01

    The detrimental effect of neuronal cell death due to oxidative stress and mitochondrial dysfunction has been implicated in age-related cognitive decline and neurodegenerative disorders such as Alzheimer's disease. The Indian herb Bacopa monnieri is a dietary antioxidant, with animal and in vitro studies indicating several modes of action that may protect the brain against oxidative damage. In parallel, several studies using the CDRI08 extract have shown that extracts of Bacopa monnieri improve cognitive function in humans. The biological mechanisms of this cognitive enhancement are unknown. In this review we discuss the animal studies and in vivo evidence for Bacopa monnieri as a potential therapeutic antioxidant to reduce oxidative stress and improve cognitive function. We suggest that future studies incorporate neuroimaging particularly magnetic resonance spectroscopy into their randomized controlled trials to better understand whether changes in antioxidant status in vivo cause improvements in cognitive function. PMID:26413126

  3. Reduced occipital and prefrontal brain volumes in dysbindin-associated schizophrenia.

    PubMed

    Donohoe, Gary; Frodl, Thomas; Morris, Derek; Spoletini, Ilaria; Cannon, Dara M; Cherubini, Andrea; Caltagirone, Carlo; Bossù, Paola; McDonald, Colm; Gill, Michael; Corvin, Aiden P; Spalletta, Gianfranco

    2010-01-01

    A three-marker C-A-T dysbindin haplotype identified by Williams et al (PMID: 15066891) is associated with increased risk for schizophrenia, decreased mRNA expression, poorer cognitive performance, and early sensory processing deficits. We investigated whether this same dysbindin risk haplotype was also associated with structural variation in the gray matter volume (GMV). Using voxel-based morphometry, whole-volume analysis revealed significantly reduced GMVs in both the right dorsolateral prefrontal and left occipital cortex, corresponding to the behavioral findings of impaired spatial working memory and EEG findings of impaired visual processing already reported. These data provide important evidence of the influence of dysbindin risk variants on brain structure, and suggest a possible mechanism by which disease risk is being increased. PMID:19794403

  4. Decreased brain zinc availability reduces hippocampal neurogenesis in mice and rats.

    PubMed

    Suh, Sang Won; Won, Seok Joon; Hamby, Aaron M; Yoo, Byung Hoon; Fan, Yang; Sheline, Christian T; Tamano, Haruna; Takeda, Atsushi; Liu, Jialing

    2009-09-01

    In the adult brain, neurogenesis occurs in the subgranular zone of the dentate gyrus (DG), where high levels of vesicular zinc are localized in the presynaptic terminals. To determine whether zinc has a role in modulating hippocampal neurogenesis under normal or pathologic conditions, we manipulated the level of vesicular zinc experimentally. To reduce hippocampal vesicular zinc, rats were either fed a zinc-deficient diet or treated with a zinc chelator, clioquinol (CQ). The number of progenitor cells and immature neurons was decreased significantly in the DG after 6 weeks of dietary zinc deprivation. Conversely, the number of progenitor cells and immature neurons was restored after a 2-week reversal to a normal zinc-containing diet. Similarly, a 1-week treatment with the zinc chelator, CQ, reduced the number of progenitor cells. The results of our previous study showed that hypoglycemia increased hippocampal neurogenesis. This study shows that zinc chelation reduced hypoglycemia-induced progenitor cell proliferation and neurogenesis. Finally, the role of vesicular zinc on neurogenesis was further assessed in zinc transporter 3 (ZnT3) gene deleted mice. Zinc transporter 3 knockout (KO) mice had significantly fewer proliferating progenitor cells and immature neurons after hypoglycemia. Our data provide converging evidence in support of the essential role zinc has in modulating hippocampal neurogenesis.

  5. Deep Brain Stimulation for Obsessive Compulsive Disorder Reduces Symptoms of Irritable Bowel Syndrome in a Single Patient

    PubMed Central

    Langguth, Berthold; Sturm, Kornelia; Wetter, Thomas C.; Lange, Max; Gabriels, Loes; Mayer, Emeran A.; Schlaier, Juergen

    2016-01-01

    Irritable bowel syndrome (IBS) is a frequent gastrointestinal disorder that is difficult to treat. We describe findings from evaluation of a woman (55 years old) with obsessive compulsive disorder, which was treated with bilateral deep brain stimulation in the anterior limb of the internal capsule, and IBS. After the brain stimulation treatment she reported substantial relief of her IBS symptoms. This reduction depended on specific stimulation parameters, was reproducible over time, and was not directly associated with improvements in obsessive compulsive disorder symptoms. These observations indicate a specific effect of deep brain stimulation on IBS. This observation confirms involvement of specific brain structures in the pathophysiology of IBS and shows that symptoms can be reduced through modulation of neuronal activity in the central nervous system. Further studies of the effects of brain stimulation on IBS are required. PMID:25638586

  6. Sunitinib impedes brain tumor progression and reduces tumor-induced neurodegeneration in the microenvironment

    PubMed Central

    Hatipoglu, Gökçe; Hock, Stefan W; Weiss, Ruth; Fan, Zheng; Sehm, Tina; Ghoochani, Ali; Buchfelder, Michael; Savaskan, Nicolai E; Eyüpoglu, Ilker Y

    2015-01-01

    Malignant gliomas can be counted to the most devastating tumors in humans. Novel therapies do not achieve significant prolonged survival rates. The cancer cells have an impact on the surrounding vital tissue and form tumor zones, which make up the tumor microenvironment. We investigated the effects of sunitinib, a small molecule multitargeted receptor tyrosine kinase inhibitor, on constituents of the tumor microenvironment such as gliomas, astrocytes, endothelial cells, and neurons. Sunitinib has a known anti-angiogenic effect. We found that sunitinib normalizes the aberrant tumor-derived vasculature and reduces tumor vessel pathologies (i.e. auto-loops). Sunitinib has only minor effects on the normal, physiological, non-proliferating vasculature. We found that neurons and astrocytes are protected by sunitinib against glutamate-induced cell death, whereas sunitinib acts as a toxin towards proliferating endothelial cells and tumor vessels. Moreover, sunitinib is effective in inducing glioma cell death. We determined the underlying pathways by which sunitinib operates as a toxin on gliomas and found vascular endothelial growth factor receptor 2 (VEGFR2, KDR/Flk1) as the main target to execute gliomatoxicity. The apoptosis-inducing effect of sunitinib can be mimicked by inhibition of VEGFR2. Knockdown of VEGFR2 can, in part, foster the resistance of glioma cells to receptor tyrosine kinase inhibitors. Furthermore, sunitinib alleviates tumor-induced neurodegeneration. Hence, we tested whether temozolomide treatment could be potentiated by sunitinib application. Here we show that sunitinib can amplify the effects of temozolomide in glioma cells. Thus, our data indicate that combined treatment with temozolomide does not abrogate the effects of sunitinib. In conclusion, we found that sunitinib acts as a gliomatoxic agent and at the same time carries out neuroprotective effects, reducing tumor-induced neurodegeneration. Thus, this report uncovered sunitinib's actions on

  7. Neuroprotective effects of vagus nerve stimulation on traumatic brain injury

    PubMed Central

    Zhou, Long; Lin, Jinhuang; Lin, Junming; Kui, Guoju; Zhang, Jianhua; Yu, Yigang

    2014-01-01

    Previous studies have shown that vagus nerve stimulation can improve the prognosis of traumatic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimulation in rabbits with brain explosive injury. Rabbits with brain explosive injury received continuous stimulation (10 V, 5 Hz, 5 ms, 20 minutes) of the right cervical vagus nerve. Tumor necrosis factor-α, interleukin-1β and interleukin-10 concentrations were detected in serum and brain tissues, and water content in brain tissues was measured. Results showed that vagus nerve stimulation could reduce the degree of brain edema, decrease tumor necrosis factor-α and interleukin-1β concentrations, and increase interleukin-10 concentration after brain explosive injury in rabbits. These data suggest that vagus nerve stimulation may exert neuroprotective effects against explosive injury via regulating the expression of tumor necrosis factor-α, interleukin-1β and interleukin-10 in the serum and brain tissue. PMID:25368644

  8. Reduced cerebral glucose metabolism and increased brain capillary permeability following high-dose methotrexate chemotherapy: a positron emission tomographic study

    SciTech Connect

    Phillips, P.C.; Dhawan, V.; Strother, S.C.; Sidtis, J.J.; Evans, A.C.; Allen, J.C.; Rottenberg, D.A.

    1987-01-01

    Regional glucose metabolic rate constants and blood-to-brain transport of rubidium were estimated using positron emission tomography in an adolescent patient with a brain tumor, before and after chemotherapy with intravenous high-dose methotrexate. Widespread depression of cerebral glucose metabolism was apparent 24 hours after drug administration, which may reflect reduced glucose phosphorylation, and the influx rate constant for /sup 82/Rb was increased, indicating a drug-induced alteration in blood-brain barrier function. Associated changes in neuropsychological performance, electroencephalogram, and plasma amino acid concentration were identified in the absence of evidence of systemic methotrexate toxicity, suggesting primary methotrexate neurotoxicity.

  9. Neuronal damage in pericontusional edema zone.

    PubMed

    Kushi, H; Saito, T; Makino, K; Hayashi, N

    2003-01-01

    In this study, we investigated the molecular biological and histopathological aspects of the etiological mechanisms for pericontusional edema zone (PEZ). The subjects were 5 patients with traumatic brain injury who underwent surgery to evacuate the resulting hematoma. The average age of the subjects was 52 +/- 27.5 years. The GCS at the time of admission was 5-9. At operation apart from evacuating the hematoma, the PEZ was also excised and then examined histopathologically. Cerebrospinal fluid (CSF) levels of IL-6, IL-8, and IL-10 were measured at the time of admission and at 24 and 72 hours. Histological examination revealed large numbers of neutrophils accumulating within blood vessels in the PEZ, with some focal migration. IL-6: CSF levels at the time of admission and at 24, 72, and 72 hours were 550, 4350, and 878000 pg/ml, respectively (median values). IL-8: CSF levels were 715, 804, and 24900 pg/ml, respectively. IL-10: CSF levels were 15, 4, and 5 pg/ml, respectively. High levels of IL-6 and IL-8 were seen from an early stage, and became markedly higher with enlargement of the PEZ. The PEZ is thought to be due to microvascular disturbance by neutrophils stimulated by inflammatory cytokines, and neuronal damage from migrated neutrophils. PMID:14753464

  10. Prohibitin reduces mitochondrial free radical production and protects brain cells from different injury modalities

    PubMed Central

    Zhou, Ping; Qian, Liping; D’Aurelio, Marilena; Cho, Sunghee; Wang, Gang; Manfredi, Giovanni; Pickel, Virginia; Iadecola, Costantino

    2012-01-01

    Prohibitin is an essential mitochondrial protein that has been implicated in a wide variety of functions in many cell types, but its role in neurons remains unclear. In a proteomic screen of rat brains in which ischemic tolerance was induced by electrical stimulation of the cerebellar fastigial nucleus, we found that prohibitin is upregulated in mitochondria. This observation prompted us to investigate the role of prohibitin in neuronal death and survival. We found that prohibitin is upregulated also in the ischemic tolerance induced by transient ischemia in vivo, or oxygen-glucose deprivation in neuronal cultures. Cell fractionation and electron microscopic immunolabeling studies demonstrated that prohibitin is localized to neuronal mitochondria. Upregulation of prohibitin in neuronal cultures or hippocampal slices was markedly neuroprotective, whereas prohibitin gene-silencing increased neuronal vulnerability, an effect associated with loss of mitochondrial membrane potential and increased mitochondrial production of reactive oxygen species. Prohibitin upregulation was associated with reduced production of reactive oxygen species in mitochondria exposed to the complex I inhibitor rotenone. In addition, prohibitin protected complex I activity from the inhibitory effects of rotenone. These observations, collectively, establish prohibitin as an endogenous neuroprotective protein involved in ischemic tolerance. Prohibitin exerts beneficial effects on neurons by reducing mitochondrial free radical production. The data with complex I activity suggest that prohibitin may stabilize the function of complex I. The protective effect of prohibitin has potential translational relevance in diseases of the nervous system associated with mitochondrial dysfunction and oxidative stress. PMID:22238093

  11. Chronic edema of the lower extremities: international consensus recommendations for compression therapy clinical research trials.

    PubMed

    Stout, N; Partsch, H; Szolnoky, G; Forner-Cordero, I; Mosti, G; Mortimer, P; Flour, M; Damstra, R; Piller, N; Geyer, M J; Benigni, J-P; Moffat, C; Cornu-Thenard, A; Schingale, F; Clark, M; Chauveau, M

    2012-08-01

    Chronic edema is a multifactorial condition affecting patients with various diseases. Although the pathophysiology of edema varies, compression therapy is a basic tenant of treatment, vital to reducing swelling. Clinical trials are disparate or lacking regarding specific protocols and application recommendations for compression materials and methodology to enable optimal efficacy. Compression therapy is a basic treatment modality for chronic leg edema; however, the evidence base for the optimal application, duration and intensity of compression therapy is lacking. The aim of this document was to present the proceedings of a day-long international expert consensus group meeting that examined the current state of the science for the use of compression therapy in chronic edema. An expert consensus group met in Brighton, UK, in March 2010 to examine the current state of the science for compression therapy in chronic edema of the lower extremities. Panel discussions and open space discussions examined the current literature, clinical practice patterns, common materials and emerging technologies for the management of chronic edema. This document outlines a proposed clinical research agenda focusing on compression therapy in chronic edema. Future trials comparing different compression devices, materials, pressures and parameters for application are needed to enhance the evidence base for optimal chronic oedema management. Important outcomes measures and methods of pressure and oedema quantification are outlined. Future trials are encouraged to optimize compression therapy in chronic edema of the lower extremities.

  12. Multifunctional liposomes reduce brain β-amyloid burden and ameliorate memory impairment in Alzheimer's disease mouse models.

    PubMed

    Balducci, Claudia; Mancini, Simona; Minniti, Stefania; La Vitola, Pietro; Zotti, Margherita; Sancini, Giulio; Mauri, Mario; Cagnotto, Alfredo; Colombo, Laura; Fiordaliso, Fabio; Grigoli, Emanuele; Salmona, Mario; Snellman, Anniina; Haaparanta-Solin, Merja; Forloni, Gianluigi; Masserini, Massimo; Re, Francesca

    2014-10-15

    Alzheimer's disease is characterized by the accumulation and deposition of plaques of β-amyloid (Aβ) peptide in the brain. Given its pivotal role, new therapies targeting Aβ are in demand. We rationally designed liposomes targeting the brain and promoting the disaggregation of Aβ assemblies and evaluated their efficiency in reducing the Aβ burden in Alzheimer's disease mouse models. Liposomes were bifunctionalized with a peptide derived from the apolipoprotein-E receptor-binding domain for blood-brain barrier targeting and with phosphatidic acid for Aβ binding. Bifunctionalized liposomes display the unique ability to hinder the formation of, and disaggregate, Aβ assemblies in vitro (EM experiments). Administration of bifunctionalized liposomes to APP/presenilin 1 transgenic mice (aged 10 months) for 3 weeks (three injections per week) decreased total brain-insoluble Aβ1-42 (-33%), assessed by ELISA, and the number and total area of plaques (-34%) detected histologically. Also, brain Aβ oligomers were reduced (-70.5%), as assessed by SDS-PAGE. Plaque reduction was confirmed in APP23 transgenic mice (aged 15 months) either histologically or by PET imaging with [(11)C]Pittsburgh compound B (PIB). The reduction of brain Aβ was associated with its increase in liver (+18%) and spleen (+20%). Notably, the novel-object recognition test showed that the treatment ameliorated mouse impaired memory. Finally, liposomes reached the brain in an intact form, as determined by confocal microscopy experiments with fluorescently labeled liposomes. These data suggest that bifunctionalized liposomes destabilize brain Aβ aggregates and promote peptide removal across the blood-brain barrier and its peripheral clearance. This all-in-one multitask therapeutic device can be considered as a candidate for the treatment of Alzheimer's disease. PMID:25319699

  13. Multifunctional Liposomes Reduce Brain β-Amyloid Burden and Ameliorate Memory Impairment in Alzheimer's Disease Mouse Models

    PubMed Central

    Balducci, Claudia; Mancini, Simona; Minniti, Stefania; La Vitola, Pietro; Zotti, Margherita; Sancini, Giulio; Mauri, Mario; Cagnotto, Alfredo; Colombo, Laura; Fiordaliso, Fabio; Grigoli, Emanuele; Salmona, Mario; Snellman, Anniina; Haaparanta-Solin, Merja; Forloni, Gianluigi; Re, Francesca

    2014-01-01

    Alzheimer's disease is characterized by the accumulation and deposition of plaques of β-amyloid (Aβ) peptide in the brain. Given its pivotal role, new therapies targeting Aβ are in demand. We rationally designed liposomes targeting the brain and promoting the disaggregation of Aβ assemblies and evaluated their efficiency in reducing the Aβ burden in Alzheimer's disease mouse models. Liposomes were bifunctionalized with a peptide derived from the apolipoprotein-E receptor-binding domain for blood–brain barrier targeting and with phosphatidic acid for Aβ binding. Bifunctionalized liposomes display the unique ability to hinder the formation of, and disaggregate, Aβ assemblies in vitro (EM experiments). Administration of bifunctionalized liposomes to APP/presenilin 1 transgenic mice (aged 10 months) for 3 weeks (three injections per week) decreased total brain-insoluble Aβ1–42 (−33%), assessed by ELISA, and the number and total area of plaques (−34%) detected histologically. Also, brain Aβ oligomers were reduced (−70.5%), as assessed by SDS-PAGE. Plaque reduction was confirmed in APP23 transgenic mice (aged 15 months) either histologically or by PET imaging with [11C]Pittsburgh compound B (PIB). The reduction of brain Aβ was associated with its increase in liver (+18%) and spleen (+20%). Notably, the novel-object recognition test showed that the treatment ameliorated mouse impaired memory. Finally, liposomes reached the brain in an intact form, as determined by confocal microscopy experiments with fluorescently labeled liposomes. These data suggest that bifunctionalized liposomes destabilize brain Aβ aggregates and promote peptide removal across the blood–brain barrier and its peripheral clearance. This all-in-one multitask therapeutic device can be considered as a candidate for the treatment of Alzheimer's disease. PMID:25319699

  14. Intraventricular brain-derived neurotrophic factor reduces infarct size after focal cerebral ischemia in rats.

    PubMed

    Schäbitz, W R; Schwab, S; Spranger, M; Hacke, W

    1997-05-01

    Brain-derived neurotrophic factor (BDNF), acting through the high-affinity receptor tyrosine kinase (TrkB), is widely distributed throughout the central nervous system and displays in vitro trophic effects on a wide range of neuronal cells, including hippocampal, cerebellar, and cortical neurons. In vivo, BDNF rescues motorneurons, hippocampal, and substantia nigral dopaminergic cells from traumatic and toxic brain injury. After transient middle cerebral artery occlusion (MCAO), upregulation of BDNF-mRNA in cortical neurons suggests that BDNF potentially plays a neuroprotective role in focal cerebral ischemia. In the current study, BDNF (2.1 micrograms/d) in vehicle or vehicle alone (controls) was delivered intraventricularly for 8 days, beginning 24 hours before permanent middle cerebral artery occlusion by intraluminal suture in Wistar rats (n = 13 per group). There were no differences in physiological variables recorded during surgery for the two groups. Neurological deficit (0 to 4 scale), which was assessed on a daily basis, improved in BDNF-treated animals compared with controls (P < 0.05; analysis of variance and Scheffe's test). There were no significant differences in weight in BDNF-treated animals and controls during the experiment. After elective killing on day 7 after MCAO, brains underwent 2,3,5-triphenyltetrazolium chloride staining for calculation of the infarct volume and for histology (hematoxylin and eosin and glial fibrillary acid protein). The mean total infarct volume was 83.1 +/- 27.1 mm3 in BDNF-treated animals and 139.2 +/- 56.4 mm3 in controls (mean +/- SD; P < 0.01, unpaired, two-tailed t-test). The cortical infarct volume was 10.8 +/- 7.1 mm3 in BDNF-treated animals and 37.9 +/- 19.8 mm3 in controls (mean +/- SD; P < 0.05; unpaired, two-tailed t-test), whereas ischemic lesion volume in caudoputaminal infarction was not significantly different. These results show that pretreatment with intraventricular BDNF reduces infarct size after focal

  15. Iron porphyrinate Fe(TPPS) reduces brain cell damage in rats intrastriatally lesioned by quinolinate.

    PubMed

    González-Cortés, Carolina; Salinas-Lara, Citlaltepetl; Gómez-López, Marcos Artemio; Tena-Suck, Martha Lilia; Pérez-De La Cruz, Verónica; Rembao-Bojórquez, Daniel; Pedraza-Chaverrí, José; Gómez-Ruiz, Celedonio; Galván-Arzate, Sonia; Ali, Syed F; Santamaría, Abel

    2008-01-01

    It has been recently demonstrated that the reactive nitrogen species (RNS) peroxynitrite (ONOO(-)) is involved in the neurotoxic pattern produced by quinolinic acid in the rat brain [V. Pérez-De La Cruz, C. González-Cortés, S. Galván-Arzate, O.N. Medina-Campos, F. Pérez-Severiano, S.F. Ali, J. Pedraza-Chaverrí, A. Santamaría, Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington's disease in rats: protective role of iron porphyrinate 5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III), Neuroscience 135 (2005) 463-474.]. The aim of this work was to investigate whether ONOO(-) can also be responsible for morphological alterations and inflammatory events in the same paradigm. For this purpose, we evaluated the effect of a pre-treatment with the iron porphyrinate Fe(TPPS), a well-known ONOO(-) decomposition catalyst (10 mg/kg, i.p., 120 min before lesion), on the quinolinate-induced striatal cell damage and immunoreactivities to glial-fibrilar acidic protein (GFAP), interleukin 6 (IL-6) and inducible nitric oxide synthase (iNOS), one and seven days after the intrastriatal infusion of quinolinate (240 nmol/microl) to rats. The striatal tissue from animals lesioned by quinolinate showed a significant degree of damage and enhanced immunoreactivities to GFAP, IL-6 and iNOS, both at 1 and 7 days post-lesion. Pre-treatment of rats with Fe(TPPS) significantly attenuated or prevented all these markers at both post-lesion times tested, except for GFAP immunoreactivity at 7 days post-lesion and iNOS immunoreactivity at 1 day post-lesion. Altogether, our results suggest that ONOO(-) is actively participating in triggering inflammatory events and morphological alterations in the toxic model produced by quinolinate, since the use of agents affecting its formation, such as Fe(TPPS), are effective experimental tools to reduce the brain lesions associated to excitotoxic and oxidative damage.

  16. Reduced Cerebral Oxygen Content in the DG and SVZ In Situ Promotes Neurogenesis in the Adult Rat Brain In Vivo.

    PubMed

    Zhang, Kuan; Zhou, Yanzhao; Zhao, Tong; Wu, Liying; Huang, Xin; Wu, Kuiwu; Xu, Lun; Li, Dahu; Liu, Shuhong; Zhao, Yongqi; Fan, Ming; Zhu, Lingling

    2015-01-01

    Neurogenesis in the adult brain occurs mainly within two neurogenic structures, the dentate gyrus (DG) of the hippocampus and the sub-ventricular zone (SVZ) of the forebrain. It has been reported that mild hypoxia promoted the proliferation of Neural Stem Cells (NSCs)in vitro. Our previous study further demonstrated that an external hypoxic environment stimulated neurogenesis in the adult rat brain in vivo. However, it remains unknown how external hypoxic environments affect the oxygen content in the brain and result in neurogenesis. Here we use an optical fiber luminescent oxygen sensor to detect the oxygen content in the adult rat brain in situ under normoxia and hypoxia. We found that the distribution of oxygen in cerebral regions is spatiotemporally heterogeneous. The Po2 values in the ventricles (45∼50 Torr) and DG (approximately 10 Torr) were much higher than those of other parts of the brain, such as the cortex and thalamus (approximately 2 Torr). Interestingly, our in vivo studies showed that an external hypoxic environment could change the intrinsic oxygen content in brain tissues, notably reducing oxygen levels in both the DG and SVZ, the major sites of adult neurogenesis. Furthermore, the hypoxic environment also increased the expression of HIF-1α and VEGF, two factors that have been reported to regulate neurogenesis, within the DG and SVZ. Thus, we have demonstrated that reducing the oxygen content of the external environment decreased Po2 levels in the DG and SVZ. This reduced oxygen level in the DG and SVZ might be the main mechanism triggering neurogenesis in the adult brain. More importantly, we speculate that varying oxygen levels may be the physiological basis of the regionally restricted neurogenesis in the adult brain.

  17. Reinke Edema: Watch For Vocal Fold Cysts.

    PubMed

    Tüzüner, Arzu; Demirci, Sule; Yavanoglu, Ahmet; Kurkcuoglu, Melih; Arslan, Necmi

    2015-06-01

    Reinke edema is one of the common cause of dysphonia middle-aged population, and severe thickening of vocal folds require surgical treatment. Smoking plays a major role on etiology. Vocal fold cysts are also benign lesions and vocal trauma blamed for acquired cysts. We would like to present 3 cases with vocal fold cyst related with Reinke edema. First case had a subepidermal epidermoid cyst with Reinke edema, which could be easily observed before surgery during laryngostroboscopy. Second case had a mucous retention cyst into the edematous Reinke tissue, which was detected during surgical intervention, and third case had a epidermoid cyst that occurred 2 months after before microlaryngeal operation regarding Reinke edema reduction. These 3 cases revealed that surgical management of Reinke edema needs a careful dissection and close follow-up after surgery for presence of vocal fold cysts.

  18. Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling

    PubMed Central

    Hagmann, Patric; Deco, Gustavo

    2015-01-01

    How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamental open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven brain dynamics is the decrease of variability with respect to the spontaneous level, an effect seen across multiple experimental conditions and in brain signals observed at different spatiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal variance of functional magnetic resonance imaging (fMRI) signals decrease in the task-driven activity. Here we examined the dynamics of a large-scale model of the human cortex to provide a mechanistic understanding of these observations. The model allows computing the statistics of synaptic activity in the spontaneous condition and in putative tasks determined by external inputs to a given subset of brain regions. We demonstrated that external inputs decrease the variance, increase the covariances, and decrease the autocovariance of synaptic activity as a consequence of single node and large-scale network dynamics. Altogether, these changes in network statistics imply a reduction of entropy, meaning that the spontaneous synaptic activity outlines a larger multidimensional activity space than does the task-driven activity. We tested this model’s prediction on fMRI signals from healthy humans acquired during rest and task conditions and found a significant decrease of entropy in the stimulus-driven activity. Altogether, our study proposes a mechanism for increasing the information capacity of brain networks by enlarging the volume of possible activity configurations at rest and reliably settling into a confined stimulus-driven state to allow better transmission of stimulus-related information. PMID:26317432

  19. Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling.

    PubMed

    Ponce-Alvarez, Adrián; He, Biyu J; Hagmann, Patric; Deco, Gustavo

    2015-08-01

    How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamental open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven brain dynamics is the decrease of variability with respect to the spontaneous level, an effect seen across multiple experimental conditions and in brain signals observed at different spatiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal variance of functional magnetic resonance imaging (fMRI) signals decrease in the task-driven activity. Here we examined the dynamics of a large-scale model of the human cortex to provide a mechanistic understanding of these observations. The model allows computing the statistics of synaptic activity in the spontaneous condition and in putative tasks determined by external inputs to a given subset of brain regions. We demonstrated that external inputs decrease the variance, increase the covariances, and decrease the autocovariance of synaptic activity as a consequence of single node and large-scale network dynamics. Altogether, these changes in network statistics imply a reduction of entropy, meaning that the spontaneous synaptic activity outlines a larger multidimensional activity space than does the task-driven activity. We tested this model's prediction on fMRI signals from healthy humans acquired during rest and task conditions and found a significant decrease of entropy in the stimulus-driven activity. Altogether, our study proposes a mechanism for increasing the information capacity of brain networks by enlarging the volume of possible activity configurations at rest and reliably settling into a confined stimulus-driven state to allow better transmission of stimulus-related information.

  20. Hypothermia modulates cytokine responses after neonatal rat hypoxic-ischemic injury and reduces brain damage.

    PubMed

    Yuan, Xiangpeng; Ghosh, Nirmalya; McFadden, Brian; Tone, Beatriz; Bellinger, Denise L; Obenaus, Andre; Ashwal, Stephen

    2014-01-01

    While hypothermia (HT) is the standard-of-care for neonates with hypoxic ischemic injury (HII), the mechanisms underlying its neuroprotective effect are poorly understood. We examined ischemic core/penumbra and cytokine/chemokine evolution in a 10-day-old rat pup model of HII. Pups were treated for 24 hr after HII with HT (32℃; n = 18) or normothermia (NT, 35℃; n = 15). Outcomes included magnetic resonance imaging (MRI), neurobehavioral testing, and brain cytokine/chemokine profiling (0, 24, 48, and 72 hr post-HII). Lesion volumes (24 hr) were reduced in HT pups (total 74%, p < .05; penumbra 68%, p < .05; core 85%, p = .19). Lesion volumes rebounded at 72 hr (48 hr post-HT) with no significant differences between NT and HT pups. HT reduced interleukin-1β (IL-1β) at all time points (p < .05); monocyte chemoattractant protein-1 (MCP-1) trended toward being decreased in HT pups (p = .09). The stem cell signaling molecule, stromal cell-derived factor-1 (SDF-1) was not altered by HT. Our data demonstrate that HT reduces total and penumbral lesion volumes (at 24 and 48 hr), potentially by decreasing IL-1β without affecting SDF-1. Disassociation between the increasing trend in HII volumes from 48 to 72 hr post-HII when IL-1β levels remained low suggests that after rewarming, mechanisms unrelated to IL-1β expression are likely to contribute to this delayed increase in injury. Additional studies should be considered to determine what these mechanisms might be and also to explore whether extending the duration or degree of HT might ameliorate this delayed increase in injury.

  1. Hypothermia modulates cytokine responses after neonatal rat hypoxic-ischemic injury and reduces brain damage.

    PubMed

    Yuan, Xiangpeng; Ghosh, Nirmalya; McFadden, Brian; Tone, Beatriz; Bellinger, Denise L; Obenaus, Andre; Ashwal, Stephen

    2014-01-01

    While hypothermia (HT) is the standard-of-care for neonates with hypoxic ischemic injury (HII), the mechanisms underlying its neuroprotective effect are poorly understood. We examined ischemic core/penumbra and cytokine/chemokine evolution in a 10-day-old rat pup model of HII. Pups were treated for 24 hr after HII with HT (32℃; n = 18) or normothermia (NT, 35℃; n = 15). Outcomes included magnetic resonance imaging (MRI), neurobehavioral testing, and brain cytokine/chemokine profiling (0, 24, 48, and 72 hr post-HII). Lesion volumes (24 hr) were reduced in HT pups (total 74%, p < .05; penumbra 68%, p < .05; core 85%, p = .19). Lesion volumes rebounded at 72 hr (48 hr post-HT) with no significant differences between NT and HT pups. HT reduced interleukin-1β (IL-1β) at all time points (p < .05); monocyte chemoattractant protein-1 (MCP-1) trended toward being decreased in HT pups (p = .09). The stem cell signaling molecule, stromal cell-derived factor-1 (SDF-1) was not altered by HT. Our data demonstrate that HT reduces total and penumbral lesion volumes (at 24 and 48 hr), potentially by decreasing IL-1β without affecting SDF-1. Disassociation between the increasing trend in HII volumes from 48 to 72 hr post-HII when IL-1β levels remained low suggests that after rewarming, mechanisms unrelated to IL-1β expression are likely to contribute to this delayed increase in injury. Additional studies should be considered to determine what these mechanisms might be and also to explore whether extending the duration or degree of HT might ameliorate this delayed increase in injury. PMID:25424430

  2. Transcription Factor EB Is Selectively Reduced in the Nuclear Fractions of Alzheimer's and Amyotrophic Lateral Sclerosis Brains

    PubMed Central

    Wang, Hongjie

    2016-01-01

    Multiple studies suggest that autophagy is strongly dysregulated in Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), as evidenced by accumulation of numerous autophagosomes, lysosomes with discontinuous membranes, and aggregated proteins in the patients' brains. Transcription factor EB (TFEB) was recently discovered to be a master regulator of lysosome biogenesis and autophagy. To examine whether aberrant autophagy in AD and ALS is due to alterations in TFEB expression, we systematically quantified the levels of TFEB in these brains by immunoblotting. Interestingly, cytoplasmic fractions of AD brains showed increased levels of normalized (to tubulin) TFEB only at Braak stage IV (61%, p < 0.01). Most importantly, normalized (to lamin) TFEB levels in the nuclear fractions were consistently reduced starting from Braak stage IV (52%, p < 0.01), stage V (67%, p < 0.01), and stage VI (85%, p < 0.01) when compared to normal control (NC) brains. In the ALS brains also, nuclear TFEB levels were reduced by 62% (p < 0.001). These data suggest that nuclear TFEB is selectively lost in ALS as well as AD brains, in which TFEB reduction was Braak-stage-dependent. Taken together, the observed reductions in TFEB protein levels may be responsible for the widely reported autophagy defects in these disorders. PMID:27433468

  3. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats.

    PubMed

    McBride, Devin W; Wang, Yuechun; Sherchan, Prativa; Tang, Jiping; Zhang, John H

    2015-09-01

    Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected to either sham surgery or surgical brain injury via partial frontal lobectomy. All animals were tested for neurological deficits 24 post-SBI and fourteen were also tested 72 h after surgery using seven common behavior tests: modified Garcia neuroscore (Neuroscore), beam walking, corner turn test, forelimb placement test, adhesive removal test, beam balance test, and foot fault test. After assessing the functional outcome, animals were euthanized for brain water content measurement. Surgical brain injury resulted in significantly elevated frontal lobe brain water content 24 and 72 h after surgery compared to that of sham animals. In all behavior tests, significance was observed between sham and SBI animals. However, a correlation between brain water content and functional outcome was observed for all tests except Neuroscore. The selection of behavior tests is critical to determine the effectiveness of therapeutics. Based on this study's results, we recommend using beam walking, the corner turn test, the beam balance test, and the foot fault test since correlations with brain water content were observed at both 24 and 72 h post-SBI. PMID:25975171

  4. Lacosamide reduces HDAC levels in the brain and improves memory: Potential for treatment of Alzheimer's disease.

    PubMed

    Bang, Shraddha R; Ambavade, Shirishkumar D; Jagdale, Priti G; Adkar, Prafulla P; Waghmare, Arun B; Ambavade, Prashant D

    2015-07-01

    Lacosamide, a histone deacetylase (HDAC) inhibitor, has been approved for the treatment of epilepsy. Some HDAC inhibitors have been proven effective for the treatment of memory disorders. The present investigation was designed to evaluate the effect of lacosamide on memory and brain HDAC levels. The effect on memory was evaluated in animals with scopolamine-induced amnesia using the elevated plus maze, object recognition test, and radial arm maze. The levels of acetylcholinesterase and HDAC in the cerebral cortex were evaluated. Lacosamide at doses of 10 and 30mg/kg significantly reduced the transfer latency in the elevated plus maze. Lacosamide at a dose of 30mg/kg significantly increased the time spent with a familiar object in the object recognition test at the 24h interval and decreased the time spent in the baited arm. Moreover, at this dose, the number of errors in the radial arm maze at 3 and 24h intervals was minimized and a reduction in the level of HDAC1, but not acetylcholinesterase, was observed in the cerebral cortex. These effects of lacosamide are equivalent to those of piracetam at a dose of 300mg/kg. These results suggest that lacosamide at a 30mg/kg dose improves disrupted memory, possibly by inhibiting HDAC, and could be used to treat amnesic symptoms of Alzheimer's disease.

  5. Reduced specificity of functional connectivity in the aging brain during task performance.

    PubMed

    Geerligs, Linda; Maurits, Natasha M; Renken, Remco J; Lorist, Monicque M

    2014-01-01

    The importance of studying connectivity in the aging brain is increasingly recognized. Recent studies have shown that connectivity within the default mode network is reduced with age and have demonstrated a clear relation of these changes with cognitive functioning. However, research on age-related changes in other functional networks is sparse and mainly focused on prespecified functional networks. Using functional magnetic resonance imaging, we investigated age-related changes in functional connectivity during a visual oddball task in a range of functional networks. It was found that compared with young participants, elderly showed a decrease in connectivity between areas belonging to the same functional network. This was found in the default mode network and the somatomotor network. Moreover, in all identified networks, elderly showed increased connectivity between areas within these networks and areas belonging to different functional networks. Decreased connectivity within functional networks was related to poorer cognitive functioning in elderly. The results were interpreted as a decrease in the specificity of functional networks in older participants.

  6. Hyaluronidase injection for the treatment of eyelid edema: a retrospective analysis of 20 patients

    PubMed Central

    2014-01-01

    Background Hyaluronidase (Hylase Dessau®) is a hyaluronic acid-metabolizing enzyme, which has been shown to loosen the extracellular matrix, thereby improving the diffusion of local anesthetics. Lower eyelid edema is a common post-interventional complication of cosmetic procedures performed in the lid region, such as the injection of hyaluronic acid fillers for tear-trough augmentation. The purpose of this study was to validate the efficacy of hyaluronidase in the management of lower eyelid edema. Methods We performed a retrospective analysis with 20 patients with lower eyelid edema. Most patients (n = 14) presented with edema following hyaluronic acid injection (tear-trough augmentation), whereas the minority (n = 6) were treated due to idiopathic edema (malar edema or malar mounds). Patients were treated by local infiltration of approximately 0.2 ml to 0.5 ml of hyaluronidase (Hylase Dessau® 20 IU to 75 IU) per eyelid. Photographs were taken prior to and seven days after infiltration. Results Hyaluronidase was found to reduce effectively and rapidly or resolve eyelid edema after a single injection. No relevant adverse effects were observed. However, it must be noted that a hyaluronidase injection may also dissolve injected hyaluronic acid fillers and may therefore negatively affect tear-trough augmentations. While the effects of a treatment for edema due to tear-trough augmentation were permanent, malar edema and malar mounds reoccurred within two to three weeks. Conclusion The infiltration of hyaluronidase is rapid, safe and currently the only effective option for the management of eyelid edema. No relevant adverse effects were observed. PMID:24886711

  7. Subthalamic Nucleus Deep Brain Stimulation May Reduce Medication Costs in Early Stage Parkinson’s Disease

    PubMed Central

    Hacker, Mallory L.; Currie, Amanda D.; Molinari, Anna L.; Turchan, Maxim; Millan, Sarah M.; Heusinkveld, Lauren E.; Roach, Jonathon; Konrad, Peter E.; Davis, Thomas L.; Neimat, Joseph S.; Phibbs, Fenna T.; Hedera, Peter; Byrne, Daniel W.; Charles, David

    2016-01-01

    Background: Subthalamic nucleus deep brain stimulation (STN-DBS) is well-known to reduce medication burden in advanced stage Parkinson’s disease (PD). Preliminary data from a prospective, single blind, controlled pilot trial demonstrated that early stage PD subjects treated with STN-DBS also required less medication than those treated with optimal drug therapy (ODT). Objective: The purpose of this study was to analyze medication cost and utilization from the pilot trial of DBS in early stage PD and to project 10 year medication costs. Methods: Medication data collected at each visit were used to calculate medication costs. Medications were converted to levodopa equivalent daily dose, categorized by medication class, and compared. Medication costs were projected to advanced stage PD, the time when a typical patient may be offered DBS. Results: Medication costs increased 72% in the ODT group and decreased 16% in the DBS+ODT group from baseline to 24 months. This cost difference translates into a cumulative savings for the DBS+ODT group of $7,150 over the study period. Projected medication cost savings over 10 years reach $64,590. Additionally, DBS+ODT subjects were 80% less likely to require polypharmacy compared with ODT subjects at 24 months (p <  0.05; OR = 0.2; 95% CI: 0.04–0.97). Conclusions: STN-DBS in early PD reduced medication cost over the two-year study period. DBS may offer substantial long-term reduction in medication cost by maintaining a simplified, low dose medication regimen. Further study is needed to confirm these findings, and the FDA has approved a pivotal, multicenter clinical trial evaluating STN-DBS in early PD. PMID:26967937

  8. Free radical scavenger, edaravone, reduces the lesion size of lacunar infarction in human brain ischemic stroke

    PubMed Central

    2011-01-01

    Background Although free radicals have been reported to play a role in the expansion of ischemic brain lesions, the effect of free radical scavengers is still under debate. In this study, the temporal profile of ischemic stroke lesion sizes was assessed for more than one year to evaluate the effect of edaravone which might reduce ischemic damage. Methods We sequentially enrolled acute ischemic stroke patients, who admitted between April 2003 and March 2004, into the edaravone(-) group (n = 83) and, who admitted between April 2004 and March 2005, into the edaravone(+) group (n = 93). Because, edaravone has been used as the standard treatment after April 2004 in our hospital. To assess the temporal profile of the stroke lesion size, the ratio of the area [T2-weighted magnetic resonance images (T2WI)/iffusion-weighted magnetic resonance images (DWI)] were calculated. Observations on T2WI were continued beyond one year, and observational times were classified into subacute (1-2 months after the onset), early chronic (3-6 month), late chronic (7-12 months) and old (≥13 months) stages. Neurological deficits were assessed by the National Institutes of Health Stroke Scale upon admission and at discharge and by the modified Rankin Scale at 1 year following stroke onset. Results Stroke lesion size was significantly attenuated in the edaravone(+) group compared with the edaravone(-) group in the period of early and late chronic observational stages. However, this reduction in lesion size was significant within a year and only for the small-vessel occlusion stroke patients treated with edaravone. Moreover, patients with small-vessel occlusion strokes that were treated with edaravone showed significant neurological improvement during their hospital stay, although there were no significant differences in outcome one year after the stroke. Conclusion Edaravone treatment reduced the volume of the infarct and improved neurological deficits during the subacute period, especially

  9. Macular edema. A complication of diabetic retinopathy.

    PubMed

    Ferris, F L; Patz, A

    1984-05-01

    Diabetic macular edema is the leading cause of decreased vision from diabetic retinopathy. This decreased vision is caused by an increase in extracellular fluid within the retina distorting the retinal architecture and frequently taking on a pattern of cystoid macular edema. This fluid accumulates within the retina because of the breakdown of the barriers within the retinal blood vessels and possibly the pigment epithelium. Diabetic macular edema tends to be a chronic disorder. Although spontaneous recovery is not an uncommon occurrence, over one-half of diabetics with macular edema will lose two or more lines of visual acuity within two years. The most promising treatment for diabetic macular edema has been photocoagulation. It is recommended that in all patients with diabetic macular edema attempts be made to normalize elevated blood glucose, decrease elevated blood pressure, and improve cardiac or renal status. Reduction of serum lipids by diet or pharmacologic means is an unproven treatment at this time. The Early Treatment Diabetic Retinopathy Study hopefully will provide more definitive information as to whether photocoagulation is effective in various subgroups of patients with diabetic macular edema.

  10. A novel multi-target ligand (JM-20) protects mitochondrial integrity, inhibits brain excitatory amino acid release and reduces cerebral ischemia injury in vitro and in vivo.

    PubMed

    Nuñez-Figueredo, Yanier; Ramírez-Sánchez, Jeney; Hansel, Gisele; Simões Pires, Elisa Nicoloso; Merino, Nelson; Valdes, Odalys; Delgado-Hernández, René; Parra, Alicia Lagarto; Ochoa-Rodríguez, Estael; Verdecia-Reyes, Yamila; Salbego, Christianne; Costa, Silvia L; Souza, Diogo O; Pardo-Andreu, Gilberto L

    2014-10-01

    We previously showed that JM-20, a novel 1,5-benzodiazepine fused to a dihydropyridine moiety, possessed an anxiolytic profile similar to diazepam and strong neuroprotective activity in different cell models relevant to cerebral ischemia. Here, we investigated whether JM-20 protects against ischemic neuronal damage in vitro and in vivo. The effects of JM-20 were evaluated on hippocampal slices subjected to oxygen and glucose deprivation (OGD). For in vivo studies, Wistar rats were subjected 90 min of middle cerebral artery occlusion (MCAo) and oral administration of JM-20 at 2, 4 and 8 mg/kg 1 h following reperfusion. Twenty-four hours after cerebral blood flow restoration, neurological deficits were scored, and the infarct volume, histopathological changes in cortex, number of hippocampal and striatal neurons, and glutamate/aspartate concentrations in the cerebrospinal fluid were measured. Susceptibility to brain mitochondrial swelling, membrane potential dissipation, H2O2 generation, cytochrome c release, Ca2+ accumulation, and morphological changes in the organelles were assessed 24 h post-ischemia. In vitro, JM-20 (1 and 10 μM) administered during reperfusion significantly reduced cell death in hippocampal slices subjected to OGD. In vivo, JM-20 treatment (4 and 8 mg/kg) significantly decreased neurological deficit scores, edema formation, total infarct volumes and histological alterations in different brain regions. JM-20 treatment also protected brain mitochondria from ischemic damage, most likely by preventing Ca2+ accumulation in organelles. Moreover, an 8-mg/kg JM-20 dose reduced glutamate and aspartate concentrations in cerebrospinal fluid and the deleterious effects of MCAo even when delivered 8 h after blood flow restoration. These results suggest that in rats, JM-20 is a robust neuroprotective agent against ischemia/reperfusion injury with a wide therapeutic window. Our findings support the further examination of potential clinical JM-20 use to treat

  11. A novel multi-target ligand (JM-20) protects mitochondrial integrity, inhibits brain excitatory amino acid release and reduces cerebral ischemia injury in vitro and in vivo.

    PubMed

    Nuñez-Figueredo, Yanier; Ramírez-Sánchez, Jeney; Hansel, Gisele; Simões Pires, Elisa Nicoloso; Merino, Nelson; Valdes, Odalys; Delgado-Hernández, René; Parra, Alicia Lagarto; Ochoa-Rodríguez, Estael; Verdecia-Reyes, Yamila; Salbego, Christianne; Costa, Silvia L; Souza, Diogo O; Pardo-Andreu, Gilberto L

    2014-10-01

    We previously showed that JM-20, a novel 1,5-benzodiazepine fused to a dihydropyridine moiety, possessed an anxiolytic profile similar to diazepam and strong neuroprotective activity in different cell models relevant to cerebral ischemia. Here, we investigated whether JM-20 protects against ischemic neuronal damage in vitro and in vivo. The effects of JM-20 were evaluated on hippocampal slices subjected to oxygen and glucose deprivation (OGD). For in vivo studies, Wistar rats were subjected 90 min of middle cerebral artery occlusion (MCAo) and oral administration of JM-20 at 2, 4 and 8 mg/kg 1 h following reperfusion. Twenty-four hours after cerebral blood flow restoration, neurological deficits were scored, and the infarct volume, histopathological changes in cortex, number of hippocampal and striatal neurons, and glutamate/aspartate concentrations in the cerebrospinal fluid were measured. Susceptibility to brain mitochondrial swelling, membrane potential dissipation, H2O2 generation, cytochrome c release, Ca2+ accumulation, and morphological changes in the organelles were assessed 24 h post-ischemia. In vitro, JM-20 (1 and 10 μM) administered during reperfusion significantly reduced cell death in hippocampal slices subjected to OGD. In vivo, JM-20 treatment (4 and 8 mg/kg) significantly decreased neurological deficit scores, edema formation, total infarct volumes and histological alterations in different brain regions. JM-20 treatment also protected brain mitochondria from ischemic damage, most likely by preventing Ca2+ accumulation in organelles. Moreover, an 8-mg/kg JM-20 dose reduced glutamate and aspartate concentrations in cerebrospinal fluid and the deleterious effects of MCAo even when delivered 8 h after blood flow restoration. These results suggest that in rats, JM-20 is a robust neuroprotective agent against ischemia/reperfusion injury with a wide therapeutic window. Our findings support the further examination of potential clinical JM-20 use to treat

  12. Molecular Mechanisms of Reduced Nerve Toxicity by Titanium Dioxide Nanoparticles in the Phoxim-Exposed Brain of Bombyx mori

    PubMed Central

    Ni, Min; Shen, Weide; Hong, Fashui; Li, Bing

    2014-01-01

    Bombyx mori (B. mori), silkworm, is one of the most important economic insects in the world, while phoxim, an organophosphorus (OP) pesticide, impact its economic benefits seriously. Phoxim exposure can damage the brain, fatbody, midgut and haemolymph of B. mori. However the metabolism of proteins and carbohydrates in phoxim-exposed B. mori can be improved by Titanium dioxide nanoparticles (TiO2 NPs). In this study, we explored whether TiO2 NPs treatment can reduce the phoxim-induced brain damage of the 5th larval instar of B. mori. We observed that TiO2 NPs pretreatments significantly reduced the mortality of phoxim-exposed larva and relieved severe brain damage and oxidative stress under phoxim exposure in the brain. The treatments also relieved the phoxim-induced increases in the contents of acetylcholine (Ach), glutamate (Glu) and nitric oxide (NO) and the phoxim-induced decreases in the contents of norepinephrine (NE), Dopamine (DA), and 5-hydroxytryptamine (5-HT), and reduced the inhibition of acetylcholinesterase (AChE), Na+/K+-ATPase, Ca2+-ATPase, and Ca2+/Mg2+-ATPase activities and the activation of total nitric oxide synthase (TNOS) in the brain. Furthermore, digital gene expression profile (DGE) analysis and real time quantitative PCR (qRT-PCR) assay revealed that TiO2 NPs pretreatment inhibited the up-regulated expression of ace1, cytochrome c, caspase-9, caspase-3, Bm109 and down-regulated expression of BmIap caused by phoxim; these genes are involved in nerve conduction, oxidative stress and apoptosis. TiO2 NPs pretreatment also inhibited the down-regulated expression of H+ transporting ATP synthase and vacuolar ATP synthase under phoxim exposure, which are involved in ion transport and energy metabolism. These results indicate that TiO2 NPs pretreatment reduced the phoxim-induced nerve toxicity in the brain of B. mori. PMID:24971466

  13. Acute pulmonary edema associated with naphazoline ingestion.

    PubMed

    Fukushima, Hidetada; Norimoto, Kazunobu; Seki, Tadahiko; Nishiguchi, Takashi; Nakamura, Tatsuya; Konobu, Toshifumi; Nishio, Kenji; Okuchi, Kazuo

    2008-03-01

    In published reports of naphazoline ingestion, clinical effects are hypertension, bradycardia, pallor, diaphoresis, and respiratory distress. We report three cases of acute pulmonary edema after the intentional ingestion of naphazoline-containing antiseptic first aid liquid. These cases presented with altered mental status, hypertension, bradycardia, and diaphoresis. Chest x-ray on admission revealed acute pulmonary edema. Two cases required mechanical ventilation. All of these clinical effects resolved within 24 hours and the patients were discharged with no sequelae. Since naphazoline stimulates the peripheral alpha-2 adrenergic receptor, we speculate that intense vasoconstriction may have elevated cardiac afterload and left atrial-ventricular blood volume and caused acute pulmonary edema.

  14. Polyethylene glycol treatment after traumatic brain injury reduces beta-amyloid precursor protein accumulation in degenerating axons.

    PubMed

    Koob, Andrew O; Borgens, Richard B

    2006-06-01

    Polyethylene glycol (PEG; 2,000 MW; 30% v/v) is a nontoxic molecule that can be injected intravenously and possesses well-documented neuroprotective properties in the spinal cord of the guinea pig. Recent studies have shown that intravenous PEG can also enter the rat brain parenchyma after injury and repair cellular membrane damage in the region of the corpus callosum. Disrupted anterograde axonal transport and resulting beta-amyloid precursor protein (APP) accumulation are byproducts of traumatic axonal injury (TAI) in the brain. APP accumulation indicates axonal degeneration as a result of axotomy, a detriment that can lead to cell death. In this study, we show that PEG treatment can eliminate APP accumulation in specific brain areas of rats receiving TAI. Six areas of the brain were analyzed: the medial cortex, hippocampus, lateral cortex, thalamus, medial lemniscus, and medial longitudinal fasciculus. Increased APP expression after injury was abolished in the thalamus and reduced in the medial longitudinal fasciculus by PEG treatment. In all remaining areas except for the lateral cortex, APP expression was not increased between injured and uninjured brains, indicating that damage was undetected in those brain areas in this study.

  15. Elevated Intracranial Pressure and Cerebral Edema following Permanent MCA Occlusion in an Ovine Model

    PubMed Central

    Wells, Adam J.; Vink, Robert; Helps, Stephen C.; Knox, Steven J.; Blumbergs, Peter C.; Turner, Renée J.

    2015-01-01

    Introduction Malignant middle cerebral artery (MCA) stroke has a disproportionately high mortality due to the rapid development of refractory space-occupying cerebral edema. Animal models are essential in developing successful anti-edema therapies; however to date poor clinical translation has been associated with the predominately used rodent models. As such, large animal gyrencephalic models of stroke are urgently needed. The aim of the study was to characterize the intracranial pressure (ICP) response to MCA occlusion in our recently developed ovine stroke model. Materials and Methods 30 adult female Merino sheep (n = 8–12/gp) were randomized to sham surgery, temporary or permanent proximal MCA occlusion. ICP and brain tissue oxygen were monitored for 24 hours under general anesthesia. MRI, infarct volume with triphenyltetrazolium chloride (TTC) staining and histology were performed. Results No increase in ICP, radiological evidence of ischemia within the MCA territory but without space-occupying edema, and TTC infarct volumes of 7.9+/-5.1% were seen with temporary MCAO. Permanent MCAO resulted in significantly elevated ICP, accompanied by 30% mortality, radiological evidence of space-occupying cerebral edema and TTC infarct volumes of 27.4+/-6.4%. Conclusions Permanent proximal MCAO in the sheep results in space-occupying cerebral edema, raised ICP and mortality similar to human malignant MCA stroke. This animal model may prove useful for pre-clinical testing of anti-edema therapies that have shown promise in rodent studies. PMID:26121036

  16. Mitochondrial Complex 1 Activity Measured by Spectrophotometry Is Reduced across All Brain Regions in Ageing and More Specifically in Neurodegeneration

    PubMed Central

    Chakrabarti, Lisa

    2016-01-01

    Mitochondrial function, in particular complex 1 of the electron transport chain (ETC), has been shown to decrease during normal ageing and in neurodegenerative disease. However, there is some debate concerning which area of the brain has the greatest complex 1 activity. It is important to identify the pattern of activity in order to be able to gauge the effect of age or disease related changes. We determined complex 1 activity spectrophotometrically in the cortex, brainstem and cerebellum of middle aged mice (70–71 weeks), a cerebellar ataxic neurodegeneration model (pcd5J) and young wild type controls. We share our updated protocol on the measurements of complex1 activity and find that mitochondrial fractions isolated from frozen tissues can be measured for robust activity. We show that complex 1 activity is clearly highest in the cortex when compared with brainstem and cerebellum (p<0.003). Cerebellum and brainstem mitochondria exhibit similar levels of complex 1 activity in wild type brains. In the aged brain we see similar levels of complex 1 activity in all three-brain regions. The specific activity of complex 1 measured in the aged cortex is significantly decreased when compared with controls (p<0.0001). Both the cerebellum and brainstem mitochondria also show significantly reduced activity with ageing (p<0.05). The mouse model of ataxia predictably has a lower complex 1 activity in the cerebellum, and although reductions are measured in the cortex and brain stem, the remaining activity is higher than in the aged brains. We present clear evidence that complex 1 activity decreases across the brain with age and much more specifically in the cerebellum of the pcd5j mouse. Mitochondrial impairment can be a region specific phenomenon in disease, but in ageing appears to affect the entire brain, abolishing the pattern of higher activity in cortical regions. PMID:27333203

  17. Perspectives on edema in childhood nephrotic syndrome.

    PubMed

    Teoh, Chia Wei; Robinson, Lisa A; Noone, Damien

    2015-10-01

    There have been two major theories surrounding the development of edema in nephrotic syndrome (NS), namely, the under- and overfill hypotheses. Edema is one of the cardinal features of NS and remains one of the principal reasons for admission of children to the hospital. Recently, the discovery that proteases in the glomerular filtrate of patients with NS are activating the epithelial sodium channel (ENaC), resulting in intrarenal salt retention and thereby contributing to edema, might suggest that targeting ENaC with amiloride might be a suitable strategy to manage the edema of NS. Other potential agents, particularly urearetics and aquaretics, might also prove useful in NS. Recent evidence also suggests that there may be other areas involved in salt storage, especially the skin, and it will be intriguing to study the implications of this in NS.

  18. Polychlorinated biphenyls and methylmercury act synergistically to reduce rat brain dopamine content in vitro.

    PubMed Central

    Bemis, J C; Seegal, R F

    1999-01-01

    Consumption of contaminated Great Lakes fish by pregnant women is associated with decreased birth weight and deficits in cognitive function in their infants and children. These fish contain many known and suspected anthropogenic neurotoxicants, making it difficult to determine which contaminant(s) are responsible for the observed deficits. We have undertaken a series of experiments to determine the relevant toxicants by comparing the neurotoxic effects of two of these contaminants--polychlorinated biphenyls (PCBs) and methylmercury (MeHg)--both of which are recognized neurotoxicants. Striatal punches obtained from adult rat brain were exposed to PCBs only, MeHg only, or the two in combination, and tissue and media concentrations of dopamine (DA) and its metabolites were determined by high performance liquid chromatography. Exposure to PCBs only reduced tissue DA and elevated media DA in a dose-dependent fashion. Exposure to MeHg only did not significantly affect either measure. However, when striatal punches were simultaneously exposed to PCBs and MeHg, there were significantly greater decreases in tissue DA concentrations and elevations in media DA than those caused by PCBs only, in the absence of changes in media lactate dehydrogenase concentrations. Elevations in both tissue and media 3, 4-dihydroxyphenylacetic acid concentrations were also observed. We suggest that the significant interactions between these two toxicants may be due to a common site of action (i.e., toxicant-induced increases in intracellular calcium and changes in second messenger systems) that influences DA function. The synergism between these contaminants suggests that future revisions of fish-consumption guidelines should consider contaminant interactions. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:10544155

  19. Anandamide inhibits Theiler's virus induced VCAM-1 in brain endothelial cells and reduces leukocyte transmigration in a model of blood brain barrier by activation of CB1 receptors

    PubMed Central

    2011-01-01

    Background VCAM-1 represents one of the most important adhesion molecule involved in the transmigration of blood leukocytes across the blood-brain barrier (BBB) that is an essential step in the pathogenesis of MS. Several evidences have suggested the potential therapeutic value of cannabinoids (CBs) in the treatment of MS and their experimental models. However, the effects of endocannabinoids on VCAM-1 regulation are poorly understood. In the present study we investigated the effects of anandamide (AEA) in the regulation of VCAM-1 expression induced by Theiler's virus (TMEV) infection of brain endothelial cells using in vitro and in vivo approaches. Methods i) in vitro: VCAM-1 was measured by ELISA in supernatants of brain endothelial cells infected with TMEV and subjected to AEA and/or cannabinoid receptors antagonist treatment. To evaluate the functional effect of VCAM-1 modulation we developed a blood brain barrier model based on a system of astrocytes and brain endothelial cells co-culture. ii) in vivo: CB1 receptor deficient mice (Cnr1-/-) infected with TMEV were treated with the AEA uptake inhibitor UCM-707 for three days. VCAM-1 expression and microglial reactivity were evaluated by immunohistochemistry. Results Anandamide-induced inhibition of VCAM-1 expression in brain endothelial cell cultures was mediated by activation of CB1 receptors. The study of leukocyte transmigration confirmed the functional relevance of VCAM-1 inhibition by AEA. In vivo approaches also showed that the inhibition of AEA uptake reduced the expression of brain VCAM-1 in response to TMEV infection. Although a decreased expression of VCAM-1 by UCM-707 was observed in both, wild type and CB1 receptor deficient mice (Cnr1-/-), the magnitude of VCAM-1 inhibition was significantly higher in the wild type mice. Interestingly, Cnr1-/- mice showed enhanced microglial reactivity and VCAM-1 expression following TMEV infection, indicating that the lack of CB1 receptor exacerbated

  20. Water permeability and TCDD-induced edema in zebrafish early-life stages.

    PubMed

    Hill, Adrian J; Bello, Susan M; Prasch, Amy L; Peterson, Richard E; Heideman, Warren

    2004-03-01

    A common response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure in teleost embryos is blue-sac disease, characterized by pericardial and yolk-sac edema. The cellular and extracellular fluids of freshwater fish are hyperosmotic compared to the surrounding water. In order to be in osmotic balance, freshwater fish must maintain a barrier to minimize water entry and excrete excess water that passes the barrier. We hypothesized that edema observed in TCDD-exposed zebrafish was caused by a failure of a barrier to incoming water. As a test of this hypothesis, we removed the osmotic gradient that drives water entry by increasing the osmolarity of the surrounding water with mannitol. Abolishing the osmotic gradient between the interior body fluids and the water environment of the developing zebrafish significantly reduced both pericardial and yolk-sac edema. When added after edema formation had already started, mannitol only partially reversed pre-existing edema. An alternate hypothesis is that TCDD impairs water excretion, allowing water to accumulate as edema fluid. However, we were unable to demonstrate an alteration in kidney function: expression of early markers for kidney development appeared normal, and we did not observe TCDD-induced changes in kidney filtration. An alteration in the overall shape of the kidney was observed, but this may be a consequence of compression by edema. In conclusion, TCDD exposure may inhibit the function of a permeability barrier to water, which is critical for maintaining osmotic balance in early development.

  1. Optimization of Treatment Geometry to Reduce Normal Brain Dose in Radiosurgery of Multiple Brain Metastases with Single–Isocenter Volumetric Modulated Arc Therapy

    PubMed Central

    Wu, Qixue; Snyder, Karen Chin; Liu, Chang; Huang, Yimei; Zhao, Bo; Chetty, Indrin J.; Wen, Ning

    2016-01-01

    Treatment of patients with multiple brain metastases using a single-isocenter volumetric modulated arc therapy (VMAT) has been shown to decrease treatment time with the tradeoff of larger low dose to the normal brain tissue. We have developed an efficient Projection Summing Optimization Algorithm to optimize the treatment geometry in order to reduce dose to normal brain tissue for radiosurgery of multiple metastases with single-isocenter VMAT. The algorithm: (a) measures coordinates of outer boundary points of each lesion to be treated using the Eclipse Scripting Application Programming Interface, (b) determines the rotations of couch, collimator, and gantry using three matrices about the cardinal axes, (c) projects the outer boundary points of the lesion on to Beam Eye View projection plane, (d) optimizes couch and collimator angles by selecting the least total unblocked area for each specific treatment arc, and (e) generates a treatment plan with the optimized angles. The results showed significant reduction in the mean dose and low dose volume to normal brain, while maintaining the similar treatment plan qualities on the thirteen patients treated previously. The algorithm has the flexibility with regard to the beam arrangements and can be integrated in the treatment planning system for clinical application directly. PMID:27688047

  2. [Volumetric verification of edema protection with Serrapeptase after third molar osteotomy].

    PubMed

    Merten, H A; Müller, K; Drubel, F; Halling, F

    1991-01-01

    Preventive edema protection using Serrapeptase after standardized one-stage osteotomy procedures of 4 third molars was verified by means of an opto-electronic measuring instrument. This measuring technique proved to be a sensitive tool for demonstrating the efficacy of Serrapeptase in reducing postoperative edema. Although statistically significant, the reduction of soft tissue swelling was only approximately 15% when compared with a patient group without Serrapeptase medication.

  3. Transient Corneal Edema is a Predictive Factor for Pseudophakic Cystoid Macular Edema after Uncomplicated Cataract Surgery

    PubMed Central

    Do, Jae Rock; Oh, Jong-Hyun; Chuck, Roy S.

    2015-01-01

    Purpose To report transient corneal edema after phacoemulsification as a predictive factor for the development of pseudophakic cystoid macular edema (PCME). Methods A total of 150 eyes from 150 patients (59 men and 91 women; mean age, 68.0 ± 10.15 years) were analyzed using spectral domain optical coherence tomography 1 week and 5 weeks after routine phacoemulsification cataract surgery. Transient corneal edema detected 1 week after surgery was analyzed to reveal any significant relationship with the development of PCME 5 weeks after surgery. Results Transient corneal edema developed in 17 (11.3%) of 150 eyes 1 week after surgery. A history of diabetes mellitus was significantly associated with development of transient corneal edema (odds ratio [OR], 4.04; 95% confidence interval [CI], 1.41 to 11.54; p = 0.011). Both diabetes mellitus and transient corneal edema were significantly associated with PCME development 5 weeks after surgery (OR, 4.58; 95% CI, 1.56 to 13.43; p = 0.007; and OR, 6.71; CI, 2.05 to 21.95; p = 0.003, respectively). In the 8 eyes with both diabetes mellitus and transient corneal edema, 4 (50%) developed PCME 5 weeks after surgery. Conclusions Transient corneal edema detected 1 week after routine cataract surgery is a predictive factor for development of PCME. Close postoperative observation and intervention is recommended in patients with transient corneal edema. PMID:25646056

  4. THYROID HORMONE INSUFFICIENCY DURING BRAIN DEVELOPMENT REDUCES PARVALBUMIN IMMUNOREACTIVITY AND INHIBITORY FUNCTION IN THE HIPPOCAMPUS.

    EPA Science Inventory

    The EPA must evaluate the risk of exposure of the developing brain to chemicals with the potential to disrupt thyroid hormone homeostasis. The existing literature identifies morphological and neurochemical indices of severe neonatal hypothyroidism in the early postnatal period i...

  5. Simvastatin reduces VEGF and NO levels in acute stages of experimental traumatic brain injury.

    PubMed

    Yüksel, Hatice; Yavuz, Özlem; Iş, Merih; Çomunoğlu, Nil; Üzüm, Gülay; Akyüz, Feyzullah; Yıldırım, Hayriye Ak

    2013-11-01

    This study was undertaken to evaluate the effect of simvastatin, a cholesterol-lowering agent, on vascular endothelial growth factors (VEGFs), nitric oxide (NO) levels and neuroprotection, in rats with experimentally induced traumatic brain injury (TBI). Forty Wistar albino rats were categorized into four groups: sham operated (S), trauma (T), trauma + vehicle (T + V) and trauma + simvastatin (T + S). The T, T + V and T + S groups were subjected to TBI. The T + V group was administered vehicle [ethanol:saline (1/2)] and the T + S group was administered 1 mg/kg of simvastatin 3 h after the injury insult. Blood and brain tissue specimens were obtained 24 h after the trauma to measure VEGFs and NO levels and perform histopathological examinations. The histopathological injury scores of brain tissues were significantly higher in the T group, and simvastatin significantly prevented brain injury in the T + S group. In the T group, significant increases of VEGF levels in serum and brain tissues were noted, which were prevented with simvastatin treatment in the T + S group. The markedly high levels of NO in brain tissues of the T group were decreased by simvastatin treatment in the T + S group. It can be concluded that, as evidenced by histopathological findings, simvastatin treatment improves neuropathology in acute stages of TBI.

  6. Inhibition of cytochrome p450 brain aromatase reduces two male specific sexual behaviours in the male Endler guppy (Poecilia reticulata).

    PubMed

    Hallgren, Stefan L E; Linderoth, Maria; Olsén, K Håkan

    2006-07-01

    In mammalian and avian vertebrate groups, androgens act as controlling agents on male aggression and courtship behaviour by their conversion to oestrogens by cytochrome P450 aromatase in well-defined brain regions. Despite the fact that bony fishes have exceptionally high brain aromatase activity, little is known about it's possible regulatory effects on the reproductive behaviours of teleosts. In this study, Endler guppy males (Poecilia reticulata) were subjected to 26-29 days of 24-h exposure to two different concentrations (15 and 100 microg/L) of the aromatase inhibitor fadrozole in the water. Compared with the control males, two of three courtship activities in males exposed to the higher concentration were reduced when they were paired with receptive stimulus females. Reduction in brain aromatase activity was confirmed in both exposed groups with the use of the tritiated water assay.

  7. Raloxifene and Tamoxifen Reduce PARP Activity, Cytokine and Oxidative Stress Levels in the Brain and Blood of Ovariectomized Rats.

    PubMed

    Yazğan, Betül; Yazğan, Yener; Övey, İshak Suat; Nazıroğlu, Mustafa

    2016-10-01

    It is well known that 17β-estradiol (E2) has an antioxidant role on neurological systems in the brain. Raloxifene (RLX) and tamoxifen (TMX) are selective estrogen receptor modulators. An E2 deficiency stimulates mitochondrial functions for promoting apoptosis and increasing reactive oxygen species (ROS) production. However, RLX and TMX may reduce the mitochondrial ROS production via their antioxidant properties in the brain and erythrocytes of ovariectomized (OVX) rats. We aimed to investigate the effects of E2, RLX, and TMX on oxidative stress, apoptosis, and cytokine production in the brain and erythrocytes of OVX rats.Forty female rats were divided into five groups. The first group was used as a control group. The second group was the OVX group. The third, fourth, and fifth groups were OVX + E2, OVX + TMX, and OVX + RLX groups, respectively. E2, TMX, and RLX were given subcutaneously to the OVX + E2 and OVX + TMX, OVX + RLX groups for 14 days after the ovariectomy respectively.While brain and erythrocyte lipid peroxidation levels were high in the OVX group, they were low in the OVX + E2, OVX + RLX, and OVX + TMX groups. OVX + E2, OVX + RLX, and OVX + TMX treatments increased the lowered glutathione peroxidase activity in erythrocytes and the brain and reduced glutathione and vitamin E concentrations in the brain. β-carotene and vitamin A concentrations in the brain and TNF-α and interleukin (IL)-1β levels in the plasma of the five groups were not significantly changed by the treatments. However, increased plasma IL-4 levels and Western blot results for brain poly (ADP-ribose) polymerase (PARP) in the OVX groups were decreased by E2, TMX, and RLX treatments, although proapoptotic procaspase 3 and 9 activities were increased by the treatments.In conclusion, we observed that E2, RLX, and TMX administrations were beneficial on oxidative stress, inflammation, and PARP levels in the serum and brain of OVX rats by

  8. Topical application of cerium nitrate prevents burn edema after burn plasma transfer.

    PubMed

    Kremer, Thomas; Hernekamp, F; Riedel, K; Peter, Ch; Gebhardt, M M; Germann, G; Heitmann, Ch; Walther, Andreas

    2009-12-01

    Thermal injuries of more than 20% body surface area (BSA) result in systemic capillary leakage with subsequent edema. This can similarly be induced by burn plasma transfer (BPT) from burned individuals to healthy rats. We evaluated if cerium nitrate (CN) bathing can prevent edema after BPT. Therefore, donor rats (DR) underwent thermal injury (100 degrees C water, 30%BSA, 12 s) for positive controls and were additionally bathed in CN (0.05M, at 10 and 120 min) for study groups. For negative controls DR underwent shamburn (37 degrees C water, 30%BSA, 12 s). DR-plasma (harvested 4 h post trauma) was transferred to healthy individuals. Intravital microscopy was performed in mesenteric venules (0/60/120 min). Edema was assessed by FITC-albumin extravasation. Additionally, leukocyte sticking (cells/mm(2)) and micro hemodynamic parameters were assessed. Significant systemic capillary leakage was observed after BPT at 120 min. Edema formation was significantly lower in negative controls. Topical CN application after 10 and 120 min reduced FITC-efflux to baseline levels. Adherent leukocytes increased slightly in all groups. Leukocyte-sticking tended to be reduced after CN bathing. In conclusion, BPT induces burn edema in healthy individuals. CN bathing after 10 and 120 min reduces mediator levels in burned individuals. Therefore, BPT after CN application does not induce burn shock anymore. Burn edema is partially independent from leukocyte activation because CN significantly influences macromolecular leakage whereas leukocyte activation is not significantly altered.

  9. Intrathecal enzyme replacement therapy reduces lysosomal storage in the brain and meninges of the canine model of MPS I.

    PubMed

    Kakkis, E; McEntee, M; Vogler, C; Le, S; Levy, B; Belichenko, P; Mobley, W; Dickson, P; Hanson, S; Passage, M

    2004-01-01

    Enzyme replacement therapy (ERT) has been developed for several lysosomal storage disorders, including mucopolysaccharidosis I (MPS I), and is effective at reducing lysosomal storage in many tissues and in ameliorating clinical disease. However, intravenous ERT does not adequately treat storage disease in the central nervous system (CNS), presumably due to effects of the blood-brain barrier on enzyme distribution. To circumvent this barrier, we studied whether intrathecal (IT) recombinant human alpha-L-iduronidase (rhIDU) could penetrate and treat the brain and meninges. An initial dose-response study showed that doses of 0.46-4.14 mg of IT rhIDU successfully penetrated the brain of normal dogs and reached tissue levels 5.6 to 18.9-fold normal overall and 2.7 to 5.9-fold normal in deep brain sections lacking CSF contact. To assess the efficacy and safety in treating lysosomal storage disease, four weekly doses of approximately 1 mg of IT rhIDU were administered to MPS I-affected dogs resulting in a mean 23- and 300-fold normal levels of iduronidase in total brain and meninges, respectively. Quantitative glycosaminoglycan (GAG) analysis showed that the IT treatment reduced mean total brain GAG to normal levels and achieved a 57% reduction in meningeal GAG levels accompanied by histologic improvement in lysosomal storage in all cell types. The dogs did develop a dose-dependent immune response against the recombinant human protein and a meningeal lymphocytic/plasmacytic infiltrate. The IT route of ERT administration may be an effective way to treat the CNS disease in MPS I and could be applicable to other lysosomal storage disorders.

  10. Reduced Fetal Cerebral Oxygen Consumption is Associated With Smaller Brain Size in Fetuses With Congenital Heart Disease

    PubMed Central

    Sun, Liqun; Macgowan, Christopher K; Sled, John G; Yoo, Shi-Joon; Manlhiot, Cedric; Porayette, Prashob; Grosse-Wortmann, Lars; Jaeggi, Edgar; McCrindle, Brian W; Kingdom, John; Hickey, Edward; Miller, Steven; Seed, Mike

    2015-01-01

    Background Fetal hypoxia has been implicated in the abnormal brain development seen in newborns with congenital heart disease (CHD). New magnetic resonance imaging (MRI) technology now offers the potential to investigate the relationship between fetal hemodynamics and brain dysmaturation. Methods and Results We measured fetal brain size, oxygen saturation and blood flow in the major vessels of the fetal circulation in 30 late gestation fetuses with CHD and 30 normal controls using phase contrast MRI and T2 mapping. Fetal hemodynamic parameters were calculated using a combination of MRI flow and oximetry data and fetal hemoglobin concentrations estimated from population averages. In fetuses with CHD, reductions in umbilical vein oxygen content (p<0.001), and failure of the normal streaming of oxygenated blood from the placenta to the ascending aorta were associated with a mean reduction in ascending aortic saturation of 10% (p < 0.001), while cerebral blood flow and cerebral oxygen extraction were no different from controls. This accounted for the mean 15% reduction in cerebral oxygen delivery (p = 0.08) and 32% reduction cerebral VO2 in CHD fetuses (p < 0.001), which were associated with a 13% reduction in fetal brain volume (p < 0.001). Fetal brain size correlated with ascending aortic oxygen saturation and cerebral VO2 (r = 0.37 p = 0.004). Conclusions This study supports a direct link between reduced cerebral oxygenation and impaired brain growth in fetuses with CHD and raises the possibility that in utero brain development could be improved with maternal oxygen therapy. PMID:25762062

  11. Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements.

    PubMed

    Asuni, Ayodeji A; Boutajangout, Allal; Quartermain, David; Sigurdsson, Einar M

    2007-08-22

    Immunotherapies for various neurodegenerative diseases have recently emerged as a promising approach for clearing pathological protein conformers in these disorders. This type of treatment has not been assessed in models that develop neuronal tau aggregates as observed in frontotemporal dementia and Alzheimer's disease. Here, we present that active immunization with a phosphorylated tau epitope, in P301L tangle model mice, reduces aggregated tau in the brain and slows progression of the tangle-related behavioral phenotype. Females had more tau pathology than males but were also more receptive to the immunotherapy. The tau antibodies generated in these animals recognized pathological tau on brain sections. Performance on behavioral assays that require extensive motor coordination correlated with tau pathology in corresponding brain areas, and antibody levels against the immunogen correlated inversely with tau pathology. Interestingly, age-dependent autoantibodies that recognized recombinant tau protein but not the immunogen were detected in the P301L mice. To confirm that anti-tau antibodies could enter the brain and bind to pathological tau, FITC-tagged antibodies purified from a P301L mouse, with a high antibody titer against the immunogen, were injected into the carotid artery of P301L mice. These antibodies were subsequently detected within the brain and colocalized with PHF1 and MC1 antibodies that recognize pathological tau. Currently, no treatment is available for clearing tau aggregates. Our present findings may lead to a novel therapy targeting one of the major hallmarks of Alzheimer's disease and frontotemporal dementia.

  12. Minocycline Transiently Reduces Microglia/Macrophage Activation but Exacerbates Cognitive Deficits Following Repetitive Traumatic Brain Injury in the Neonatal Rat.

    PubMed

    Hanlon, Lauren A; Huh, Jimmy W; Raghupathi, Ramesh

    2016-03-01

    Elevated microglial/macrophage-associated biomarkers in the cerebrospinal fluid of infant victims of abusive head trauma (AHT) suggest that these cells play a role in the pathophysiology of the injury. In a model of AHT in 11-day-old rats, 3 impacts (24 hours apart) resulted in spatial learning and memory deficits and increased brain microglial/macrophage reactivity, traumatic axonal injury, neuronal degeneration, and cortical and white-matter atrophy. The antibiotic minocycline has been effective in decreasing injury-induced microglial/macrophage activation while simultaneously attenuating cellular and functional deficits in models of neonatal hypoxic ischemia, but the potential for this compound to rescue deficits after impact-based trauma to the immature brain remains unexplored. Acute minocycline administration in this model of AHT decreased microglial/macrophage reactivity in the corpus callosum of brain-injured animals at 3 days postinjury, but this effect was lost by 7 days postinjury. Additionally, minocycline treatment had no effect on traumatic axonal injury, neurodegeneration, tissue atrophy, or spatial learning deficits. Interestingly, minocycline-treated animals demonstrated exacerbated injury-induced spatial memory deficits. These results contrast with previous findings in other models of brain injury and suggest that minocycline is ineffective in reducing microglial/macrophage activation and ameliorating injury-induced deficits following repetitive neonatal traumatic brain injury. PMID:26825312

  13. Reduced phosphorylation of brain insulin receptor substrate and Akt proteins in apolipoprotein-E4 targeted replacement mice.

    PubMed

    Ong, Qi-Rui; Chan, Elizabeth S; Lim, Mei-Li; Cole, Gregory M; Wong, Boon-Seng

    2014-01-17

    Human ApoE4 accelerates memory decline in ageing and in Alzheimer's disease. Although intranasal insulin can improve cognition, this has little effect in ApoE4 subjects. To understand this ApoE genotype-dependent effect, we examined brain insulin signaling in huApoE3 and huApoE4 targeted replacement (TR) mice. At 32 weeks, lower insulin receptor substrate 1 (IRS1) at S636/639 and Akt phosphorylation at T308 were detected in fasting huApoE4 TR mice as compared to fasting huApoE3 TR mice. These changes in fasting huApoE4 TR mice were linked to lower brain glucose content and have no effect on plasma glucose level. However, at 72 weeks of age, these early changes were accompanied by reduction in IRS2 expression, IRS1 phosphorylation at Y608, Akt phosphorylation at S473, and MAPK (p38 and p44/42) activation in the fasting huApoE4 TR mice. The lower brain glucose was significantly associated with higher brain insulin in the aged huApoE4 TR mice. These results show that ApoE4 reduces brain insulin signaling and glucose level leading to higher insulin content.

  14. Modification of radiation-induced brain injury by alpha-difluoromethylornithine.

    PubMed

    Gobbel, G T; Marton, L J; Lamborn, K; Seilhan, T M; Fike, J R

    1991-12-01

    The effect of alpha-difluoromethylornithine (DFMO) on 125I-induced brain injury was investigated in a dog model. Cerebrospinal putrescine levels were reduced from baseline levels 1-2 weeks after irradiation in animals treated with 125I and DFMO, while putrescine levels were elevated in 125I and saline-treated animals. In addition, the time course of changes in the volumes of edema, necrosis, and tissue showing evidence of blood-brain barrier breakdown was altered significantly by DFMO treatment. The most significant alterations occurred 2-4 weeks after irradiation, at which times the average volumes of damage in DFMO-treated animals were reduced compared to saline-treated animals. The time course of alterations in blood-to-brain transfer, brain-to-blood transfer, and vascularity following irradiation was also altered by DFMO treatment. Analysis of variance demonstrated a strong relationship of blood-to-brain transfer and vascularity to volume of edema, suggesting that the effect of DFMO on edema may be partially mediated by its effects on blood-brain barrier breakdown.

  15. Neuronal hemoglobin in mitochondria is reduced by forming a complex with α-synuclein in aging monkey brains

    PubMed Central

    Yang, Weiwei; Li, Xuran; Li, Xin; Li, Xuying; Yu, Shun

    2016-01-01

    Neuronal hemoglobin (nHb) plays a critical role in maintaining normal mitochondrial functioning in the brain. However, in aging and Parkinson's disease (PD) brains, mitochondrial nHb levels are greatly reduced in neurons that accumulate α-synuclein (α-syn), suggesting a link between the two proteins. In this study, we demonstrate that α-syn and Hb can form a complex in both brain tissue and peripheral red blood cells (RBCs) in aging cynomolgus monkeys. nHb-α-syn complex levels in the mitochondrial fraction of the striatum decreased with age; this was negatively correlated with levels in the cytoplasmic fraction and in RBCs and was accompanied by a reduction in mitochondrial free nHb. In contrast, no changes in nHb-α-syn complex formation or free nHb levels were detected in the cerebellum. In vitro studies using a cultured dopaminergic cell line showed that intracellular accumulation of α-syn caused an elevation in nHb-α-syn complex levels in both mitochondrial and cytoplasmic fractions as well as a reduction in mitochondrial free nHb. nHb overexpression increased free nHb levels in mitochondria, stabilized mitochondrial membrane potential, and reduced α-syn-induced apoptosis. The above results suggest that α-syn forms a complex with nHb in selected regions of the aging brain, thereby decreasing mitochondrial function and increasing the risk of PD. PMID:26824991

  16. t-PA reduces ischemic impairment of blood-brain barrier by strengthening endothelium junction.

    PubMed

    Zhang, Zhongling; Chen, Xuhui; Li, Le; Zhang, Keling; Tian, Shuqing; Gao, Hongmei; Li, Hulun

    2013-09-01

    Cerebral ischemic stroke is one of the most prevalent diseases in senior individuals. Its therapeutical strategies include anticoagulation, thrombolysis and cell protection. Tissue-type plasminogen activator (t-PA) that interacts with thrombin for the lysis of thrombosis is widely used to treat stroke patients in early stage. The mechanism of action of t-PA is not clear. Here, we report a novel role of t-PA in protecting blood-brain barrier and its potential mechanisms. In a model of the blood-brain barrier with human umbilical vascular epithelium cells, we found that t-PA in low concentrations prevented the impairment of the blood-brain barrier as a result of oxygen and glucose deprivation. This protection was fulfilled by strengthening the junctions among vascular endothelia and by upregulating the productions of vascular endothelium growth factor and of zonula occludens-1. Therefore, t-PA may strengthen the junctions of vascular endothelia in the blood-brain barrier to improve the microenvironment of brain cells and, in turn, the outcome of stroke patients.

  17. A Ruptured Basilar Tip Aneurysm Showing Repeated Perianeurysmal Edema after Endovascular Coil Embolization: Case Report

    PubMed Central

    TAKESHITA, Tomonori; HORIE, Nobutaka; FUKUDA, Yutaka; SO, Gohei; HAYASHI, Kentaro; MORIKAWA, Minoru; SUYAMA, Kazuhiko; NAGATA, Izumi

    The authors present an extremely rare case of a 48-year-old female who developed repeated perianeurysmal edema at 2, 9, and 16 weeks after endovascular coil embolization for the ruptured intracranial aneurysm. Interestingly, the mechanism for this edema could be different at each time point in this case; acute thrombosis formation, chemical inflammation, and aneurysm recanalization. We have to be aware of this potential complication in the long term after endovascular coil embolization for the intracranial aneurysm, especially with large size or buried into the brain parenchyma. The clinical implications of this case are discussed with a review of the literature. PMID:24390180

  18. Curcumin reduces oxidative damage by increasing reduced glutathione and preventing membrane permeability transition in isolated brain mitochondria.

    PubMed

    Jat, D; Parihar, P; Kothari, S C; Parihar, M S

    2013-12-31

    Mitochondria are critical regulators of energy metabolism and programmed cell death pathways. Mitochondria are also the major site for the production of reactive oxygen species which make this organelle more susceptible to oxidative damage and impairments of mitochondrial functions. Antioxidants have been of limited therapeutic success to ameliorate the toxic effects of oxidative stress in mitochondria. One reason may be the inability of mitochondria to selectively take up antioxidants. In the present study we synthesized mitochondrially targeted curcumin with an aim of delivering this polyphenolic compound to isolated mitochondria. Our observations show the strong anti-oxidative effects of curcumin and mitochondrially targeted curcumin against the lipid peroxidation, protein carbonylation and mitochondrial permeability transition induced by tert-butylhydroperoxide. Both curcumin and mitochondrially targeted curcumin significantly enhanced endogenous reduced glutathione level in the mitochondria thus preserving mitochondrial defense system against oxidative stress. We concluded that curcumin and mitochondrially targeted curcumin protected mitochondria against tert-butylhydroperoxide by lowering the oxidative damage, increasing the availability of endogenous reduced glutathione and preserving the mitochondrial integrity. Importantly, mitochondrially targeted curcumin was found most effective in ameliorating oxidative stress and preserving mitochondrial integrity than curcumin.

  19. Etiology and treatment of the inflammatory causes of cystoid macular edema.

    PubMed

    Cho, Hyung; Madu, Assumpta

    2009-01-01

    Cystoid macular edema in its various forms can be considered one of the leading causes of central vision loss in the developed world. It occurs in a wide variety of pathologic conditions and represents the final common pathway of several basic processes. Therapeutic approaches to cystoid macular edema depend on a clear understanding of its contributing pathophysiologic mechanisms. This review will discuss the mechanism of ocular inflammation in cystoid macular edema with a particular focus on the inflammatory causes: post-operative, uveitic, and after laser procedures. A variety of pharmacologic agents targeting inflammatory molecules have been shown to reduce macular edema and improve visual function. However, the long-term efficacy and safety of most new therapies have yet to be established in controlled clinical trials.

  20. Etiology and treatment of the inflammatory causes of cystoid macular edema

    PubMed Central

    Cho, Hyung; Madu, Assumpta

    2009-01-01

    Cystoid macular edema in its various forms can be considered one of the leading causes of central vision loss in the developed world. It occurs in a wide variety of pathologic conditions and represents the final common pathway of several basic processes. Therapeutic approaches to cystoid macular edema depend on a clear understanding of its contributing pathophysiologic mechanisms. This review will discuss the mechanism of ocular inflammation in cystoid macular edema with a particular focus on the inflammatory causes: post-operative, uveitic, and after laser procedures. A variety of pharmacologic agents targeting inflammatory molecules have been shown to reduce macular edema and improve visual function. However, the long-term efficacy and safety of most new therapies have yet to be established in controlled clinical trials. PMID:22096351

  1. Sudan Black B treatment reduces autofluorescence and improves resolution of in situ hybridization specific fluorescent signals of brain sections.

    PubMed

    Oliveira, V C; Carrara, R C V; Simoes, D L C; Saggioro, F P; Carlotti, C G; Covas, D T; Neder, L

    2010-08-01

    Interference by autofluorescence is one of the major concerns of immunofluorescence analysis of in situ hybridization-based diagnostic assays. We present a useful technique that reduces autofluorescent background without affecting the tissue integrity or direct immunofluorescence signals in brain sections. Using six different protocols, such as ammonia/ethanol, Sudan Black B (SBB) in 70% ethanol, photobleaching with UV light and different combinations of them in both formalin-fixed paraffin-embedded and frozen human brain tissue sections, we have found that tissue treatment of SBB in a concentration of 0.1% in 70% ethanol is the best approach to reduce/eliminate tissue autofluorescence and background, while preserving the specific fluorescence hybridization signals. This strategy is a feasible, non-time consuming method that provides a reasonable compromise between total reduction of the tissue autofluorescence and maintenance of specific fluorescent labels.

  2. Properties of conditioned abducens nerve responses in a highly reduced in vitro brain stem preparation from the turtle.

    PubMed

    Anderson, C W; Keifer, J

    1999-03-01

    Previous work suggested that the cerebellum and red nucleus are not necessary for the acquisition, extinction, and reacquistion of the in vitro classically conditioned abducens nerve response in the turtle. These findings are extended in the present study by obtaining conditioned responses (CRs) in preparations that received a partial ablation of the brain stem circuitry. In addition to removing all tissue rostral to and including the midbrain and cerebellum, a transection was made just caudal to the emergence of the IXth nerve. Such ablations result in a 4-mm-thick section of brain stem tissue that functionally eliminates the sustained component of the unconditioned response (UR) while leaving only a phasic component. We refer to this region of brain stem tissue caudal to the IXth nerve as the "caudal premotor blink region." Neural discharge was recorded from the abducens nerve following a single shock unconditioned stimulus (US) applied to the ipsilateral trigeminal nerve. When the US was paired with a conditioned stimulus (CS) applied to the posterior eighth, or auditory, nerve using a delay conditioning paradigm, a positive slope of CR acquisition was recorded in the abducens nerve, and CR extinction was recorded when the stimuli were alternated. Resumption of paired stimuli resulted in reacquisition. Quantitative analysis of the CRs in preparations in which the caudal premotor blink region had been removed and those with cerebellar/red nucleus lesions showed that both types of preparations had abnormally short latency CR onsets compared with preparations in which these regions were intact. Preparations with brain stem transections had significantly earlier CR offsets as more CRs terminated as short bursts when compared with intact or cerebellar lesioned preparations. These data suggest that a highly reduced in vitro brain stem preparation from the turtle can be classically conditioned. Furthermore, the caudal brain stem is not a site of acquisition in this

  3. [Acute heart failure: acute cardiogenic pulmonary edema and cardiogenic shock].

    PubMed

    Sánchez Marteles, Marta; Urrutia, Agustín

    2014-03-01

    Acute cardiogenic pulmonary edema and cardiogenic shock are two of the main forms of presentation of acute heart failure. Both entities are serious, with high mortality, and require early diagnosis and prompt and aggressive management. Acute pulmonary edema is due to the passage of fluid through the alveolarcapillary membrane and is usually the result of an acute cardiac episode. Correct evaluation and clinical identification of the process is essential in the management of acute pulmonary edema. The initial aim of treatment is to ensure hemodynamic stability and to correct hypoxemia. Other measures that can be used are vasodilators such as nitroglycerin, loop diuretics and, in specific instances, opioids. Cardiogenic shock is characterized by sustained hypoperfusion, pulmonary wedge pressure > 18 mmHg and a cardiac index < 2.2l/min/m(2). The process typically presents with hypotension (systolic blood pressure < 90 mmHg or a decrease in mean arterial pressure > 30 mmHg) and absent or reduced diuresis (< 0.5 ml/kg/h). The most common cause is left ventricular failure due to acute myocardial infarction. Treatment consists of general measures to reverse acidosis and hypoxemia, as well as the use of vasopressors and inotropic drugs. Early coronary revascularization has been demonstrated to improve survival in shock associated with ischaemic heart disease.

  4. Bilateral leg edema in an older woman.

    PubMed

    Thaler, H W; Pienaar, S; Wirnsberger, G; Roller-Wirnsberger, R E

    2015-01-01

    Bilateral leg edema is a frequent symptom in older people and an important concern in geriatric medicine. Further evaluation is frequently not performed and simple therapy with diuretics is prescribed. Particularly in older patients, long-term use of diuretics can lead to severe electrolyte imbalances, volume depletion, and falls. In this case report we want to focus the physicians' attention on the necessity to determine the cause and show a correspondingly effective treatment for bilateral leg edema in older people. A thorough approach is required to recognize diseases and to avoid adverse drug events as geriatric patients often show an atypical presentation or minor symptoms. The cause of swollen legs is often multifactorial; therefore, the patient's individual history and an appropriate physical examination are important. Depending on the clinical symptoms, evaluation including basic laboratory tests, urinalysis, chest radiography, and echocardiogram may be indicated. The most probable cause of bilateral edema in older patients is chronic venous insufficiency. Heart failure is also a common cause. Other systemic causes such as renal disease or liver disease are much rarer. Antihypertensive and anti-inflammatory drugs can frequently cause leg edema, but the incidence of drug-induced leg swelling is unknown. With the help of this special case we tried to develop an approach to the diagnosis of symmetric leg edema in older patients, a problem frequently neglected in geriatric medicine.

  5. Celecoxib reduces brain dopaminergic neuronaldysfunction, and improves sensorimotor behavioral performance in neonatal rats exposed to systemic lipopolysaccharide

    PubMed Central

    2013-01-01

    Background Cyclooxygenase-2 (COX-2) is induced in inflammatory cells in response to cytokines and pro-inflammatory molecules, suggesting that COX-2 has a role in the inflammatory process. The objective of the current study was to examine whether celecoxib, a selective COX-2 inhibitor, could ameliorate lipopolysaccharide (LPS)-induced brain inflammation, dopaminergic neuronal dysfunction and sensorimotor behavioral impairments. Methods Intraperitoneal (i.p.) injection of LPS (2 mg/kg) was performed in rat pups on postnatal Day 5 (P5), and celecoxib (20 mg/kg) or vehicle was administered (i.p.) five minutes after LPS injection. Sensorimotor behavioral tests were carried out 24 h after LPS exposure, and brain injury was examined on P6. Results Our results showed that LPS exposure resulted in impairment in sensorimotor behavioral performance and injury to brain dopaminergic neurons, as indicated by loss of tyrosine hydroxylase (TH) immunoreactivity, as well as decreases in mitochondria activity in the rat brain. LPS exposure also led to increases in the expression of α-synuclein and dopamine transporter proteins and enhanced [3H]dopamine uptake. Treatment with celecoxib significantly reduced LPS-induced sensorimotor behavioral disturbances and dopaminergic neuronal dysfunction. Celecoxib administration significantly attenuated LPS-induced increases in the numbers of activated microglia and astrocytes and in the concentration of IL-1β in the neonatal rat brain. The protective effect of celecoxib was also associated with an attenuation of LPS-induced COX-2+ cells, which were double labeled with TH + (dopaminergic neuron) or glial fibrillary acidic protein (GFAP) + (astrocyte) cells. Conclusion Systemic LPS administration induced brain inflammatory responses in neonatal rats; these inflammatory responses included induction of COX-2 expression in TH neurons and astrocytes. Application of the COX-2 inhibitor celecoxib after LPS treatment attenuated the inflammatory

  6. Reduced N400 Semantic Priming Effects in Adult Survivors of Paediatric and Adolescent Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Knuepffer, C.; Murdoch, B. E.; Lloyd, D.; Lewis, F. M.; Hinchliffe, F. J.

    2012-01-01

    The immediate and long-term neural correlates of linguistic processing deficits reported following paediatric and adolescent traumatic brain injury (TBI) are poorly understood. Therefore, the current research investigated event-related potentials (ERPs) elicited during a semantic picture-word priming experiment in two groups of highly functioning…

  7. An Online Family Intervention to Reduce Parental Distress Following Pediatric Brain Injury

    ERIC Educational Resources Information Center

    Wade, Shari L.; Carey, Joanne; Wolfe, Christopher R.

    2006-01-01

    This study examined whether an online problem-solving intervention could improve parental adjustment following pediatric traumatic brain injury (TBI). Families of children with moderate-to-severe TBI were recruited from the trauma registry of a large children's hospital and randomly assigned to receive online family problem solving therapy (FPS; n…

  8. Reduced cortical neurotransmitter receptor complex levels in fetal Down syndrome brain.

    PubMed

    Falsafi, Soheil Keihan; Dierssen, Mara; Ghafari, Maryam; Pollak, Arnold; Lubec, Gert

    2016-01-01

    In this study, cortical receptor complex levels were determined in fetal Down syndrome (DS, trisomy 21) brain. Frontal cortices were obtained from individuals with DS (19th-22nd week of gestation) and controls. Membrane proteins were extracted, assayed on blue native gels and immunoblotted with brain receptor antibodies. Levels of a D1R-containing complex were markedly decreased in male and female cortices of DS individuals. Females with DS had significant reductions of nicotinic acetylcholine receptors α4 and α7, NMDA receptor GluN1 and AMPA receptor GluA1- and GluA3-containing receptor complexes. Levels of other brain receptor complexes (5-hydroxytryptamine 1A, GluA2 and GluR4 receptor-containing complexes) were comparable between the groups of females. Levels of GluA2- and GluA3-containing complexes were significantly increased in males. Decreased levels of D1R complexes in both sexes, along with the significant reduction of α4, α7-containing receptor complexes observed in females, may explain the brain deficits and impaired cognition observed in DS.

  9. Tau elevations in the brain extracellular space correlate with reduced amyloid-β levels and predict adverse clinical outcomes after severe traumatic brain injury.

    PubMed

    Magnoni, Sandra; Esparza, Thomas J; Conte, Valeria; Carbonara, Marco; Carrabba, Giorgio; Holtzman, David M; Zipfel, Greg J; Stocchetti, Nino; Brody, David L

    2012-04-01

    Axonal injury is believed to be a major determinant of adverse outcomes following traumatic brain injury. However, it has been difficult to assess acutely the severity of axonal injury in human traumatic brain injury patients. We hypothesized that microdialysis-based measurements of the brain extracellular fluid levels of tau and neurofilament light chain, two low molecular weight axonal proteins, could be helpful in this regard. To test this hypothesis, 100 kDa cut-off microdialysis catheters were placed in 16 patients with severe traumatic brain injury at two neurological/neurosurgical intensive care units. Tau levels in the microdialysis samples were highest early and fell over time in all patients. Initial tau levels were >3-fold higher in patients with microdialysis catheters placed in pericontusional regions than in patients in whom catheters were placed in normal-appearing right frontal lobe tissue (P = 0.005). Tau levels and neurofilament light-chain levels were positively correlated (r = 0.6, P = 0.013). Neurofilament light-chain levels were also higher in patients with pericontusional catheters (P = 0.04). Interestingly, initial tau levels were inversely correlated with initial amyloid-β levels measured in the same samples (r = -0.87, P = 0.000023). This could be due to reduced synaptic activity in areas with substantial axonal injury, as amyloid-β release is closely coupled with synaptic activity. Importantly, high initial tau levels correlated with worse clinical outcomes, as assessed using the Glasgow Outcome Scale 6 months after injury (r = -0.6, P = 0.018). Taken together, our data add support for the hypothesis that axonal injury may be related to long-term impairments following traumatic brain injury. Microdialysis-based measurement of tau levels in the brain extracellular space may be a useful way to assess the severity of axonal injury acutely in the intensive care unit. Further studies with larger numbers of

  10. Intranasal guanosine administration presents a wide therapeutic time window to reduce brain damage induced by permanent ischemia in rats.

    PubMed

    Ramos, Denise Barbosa; Muller, Gabriel Cardozo; Rocha, Guilherme Botter Maio; Dellavia, Gustavo Hirata; Almeida, Roberto Farina; Pettenuzzo, Leticia Ferreira; Loureiro, Samanta Oliveira; Hansel, Gisele; Horn, Ângelo Cássio Magalhães; Souza, Diogo Onofre; Ganzella, Marcelo

    2016-03-01

    In addition to its intracellular roles, the nucleoside guanosine (GUO) also has extracellular effects that identify it as a putative neuromodulator signaling molecule in the central nervous system. Indeed, GUO can modulate glutamatergic neurotransmission, and it can promote neuroprotective effects in animal models involving glutamate neurotoxicity, which is the case in brain ischemia. In the present study, we aimed to investigate a new in vivo GUO administration route (intranasal, IN) to determine putative improvement of GUO neuroprotective effects against an experimental model of permanent focal cerebral ischemia. Initially, we demonstrated that IN [(3)H] GUO administration reached the brain in a dose-dependent and saturable pattern in as few as 5 min, presenting a higher cerebrospinal GUO level compared with systemic administration. IN GUO treatment started immediately or even 3 h after ischemia onset prevented behavior impairment. The behavior recovery was not correlated to decreased brain infarct volume, but it was correlated to reduced mitochondrial dysfunction in the penumbra area. Therefore, we showed that the IN route is an efficient way to promptly deliver GUO to the CNS and that IN GUO treatment prevented behavioral and brain impairment caused by ischemia in a therapeutically wide time window.

  11. Hyperglycemia Reduces Efficiency of Brain Networks in Subjects with Type 2 Diabetes

    PubMed Central

    Kim, Dae-Jin; Yu, Ji Hee; Shin, Mi-Seon

    2016-01-01

    Previous research has shown that the brain is an important target of diabetic complications. Since brain regions are interconnected to form a large-scale neural network, we investigated whether severe hyperglycemia affects the topology of the brain network in people with type 2 diabetes. Twenty middle-aged (average age: 54 years) individuals with poorly controlled diabetes (HbA1c: 8.9−14.6%, 74−136 mmol/mol) and 20 age-, sex-, and education-matched healthy volunteers were recruited. Graph theoretic network analysis was performed with axonal fiber tractography and tract-based spatial statistics (TBSS) using diffusion tensor imaging. Associations between the blood glucose level and white matter network characteristics were investigated. Individuals with diabetes had lower white matter network efficiency (P<0.001) and longer white matter path length (P<0.05) compared to healthy individuals. Higher HbA1c was associated with lower network efficiency (r = −0.53, P = 0.001) and longer network path length (r = 0.40, P<0.05). A disruption in local microstructural integrity was found in the multiple white matter regions and associated with higher HbA1c and fasting plasma glucose levels (corrected P<0.05). Poorer glycemic control is associated with lower efficiency and longer connection paths of the global brain network in individuals with diabetes. Chronic hyperglycemia in people with diabetes may disrupt the brain’s topological integration, and lead to mental slowing and cognitive impairment. PMID:27336309

  12. Prostaglandin synthesis inhibitors reduce Cannabis and restraint stress induced increase in rat brain serotonin concentrations.

    PubMed

    Bhattacharya, S K; Bhattacharya, D

    1983-01-01

    Cannabis resin (CI) produced a dose-related increase in rat brain serotonin concentrations, whereas restraint stress produced maximal rise of the neurotransmitter concentrations at 1 h, followed by a tendency to normalise by 4 h. The prostaglandin (PG) synthesis inhibitors, diclofenac and paracetamol, antagonized CI and restraint stress induced rise in serotonin concentrations. The findings lend credence to earlier reports that PG synthesis inhibitors antagonize serotonin-mediated neuropharmacological actions of CI and restraint stress in rats.

  13. Reduced Metabolsim in Brain 'Control Networks' Following Cocaine-Cues Exposure in Female Cocaine Abusers

    SciTech Connect

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Tomasi, D.; Wang, G.-J.; Fowler, J.S.; Telang, F.; Goldstein, R.Z.; Alia-Klein, N.; Wong, C.T.

    2011-03-01

    Gender differences in vulnerability for cocaine addiction have been reported. Though the mechanisms are not understood, here we hypothesize that gender differences in reactivity to conditioned-cues, which contributes to relapse, are involved. To test this we compared brain metabolism (using PET and {sup 18}FDG) between female (n = 10) and male (n = 16) active cocaine abusers when they watched a neutral video (nature scenes) versus a cocaine-cues video. Self-reports of craving increased with the cocaine-cue video but responses did not differ between genders. In contrast, changes in whole brain metabolism with cocaine-cues differed by gender (p<0.05); females significantly decreased metabolism (-8.6% {+-} 10) whereas males tended to increase it (+5.5% {+-} 18). SPM analysis (Cocaine-cues vs Neutral) in females revealed decreases in frontal, cingulate and parietal cortices, thalamus and midbrain (p<0.001) whereas males showed increases in right inferior frontal gyrus (BA 44/45) (only at p<0.005). The gender-cue interaction showed greater decrements with Cocaine-cues in females than males (p<0.001) in frontal (BA 8, 9, 10), anterior cingulate (BA 24, 32), posterior cingulate (BA 23, 31), inferior parietal (BA 40) and thalamus (dorsomedial nucleus). Females showed greater brain reactivity to cocaine-cues than males but no differences in craving, suggesting that there may be gender differences in response to cues that are not linked with craving but could affect subsequent drug use. Specifically deactivation of brain regions from 'control networks' (prefrontal, cingulate, inferior parietal, thalamus) in females could increase their vulnerability to relapse since it would interfere with executive function (cognitive inhibition). This highlights the importance of gender tailored interventions for cocaine addiction.

  14. Impaired planning in Parkinson's disease is reflected by reduced brain activation and connectivity

    PubMed Central

    Trujillo, James P.; Gerrits, Niels J.H.M.; Vriend, Chris; Berendse, Henk W.; van den Heuvel, Odile A.

    2015-01-01

    Abstract Objective Parkinson's disease (PD) often entails impairments of executive functions, such as planning. Although widely held that these impairments arise from dopaminergic denervation of the striatum, not all executive functions are affected early on, and the underlying neural dynamics are not fully understood. In a combined longitudinal and cross‐sectional study, we investigated how planning deficits progress over time in the early stages of PD compared to matched healthy controls. We used functional magnetic resonance imaging (fMRI) to identify accompanying neural dynamics. Methods Seventeen PD patients and 20 healthy controls performed a parametric Tower of London task at two time points separated by ∼3 years (baseline and follow‐up). We assessed task performance longitudinally in both groups; at follow‐up, a subset of participants (14 patients, 19 controls) performed a parallel version of the task during fMRI. We performed meta‐analyses to localize regions‐of‐interest (ROIs), that is, the bilateral dorsolateral prefrontal cortex (DLPFC), inferior parietal cortex, and caudate nucleus, and performed group‐by‐task analyses and within‐group regression analyses of planning‐related neural activation. We studied task‐related functional connectivity of seeds in the DLPFC and caudate nucleus. Results PD patients, compared with controls, showed impaired task performance at both time‐points, while both groups showed similar performance reductions from baseline to follow‐up. Compared to controls, patients showed lower planning‐related brain activation together with decreased functional connectivity. Conclusion These findings support the notion that planning is affected early in the PD disease course, and that this impairment in planning is accompanied by decreases in both task‐related brain activity and connectivity. Hum Brain Mapp 36:3703–3715, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID

  15. Osmotic Edema Rapidly Increases Neuronal Excitability Through Activation of NMDA Receptor-Dependent Slow Inward Currents in Juvenile and Adult Hippocampus

    PubMed Central

    Lauderdale, Kelli; Murphy, Thomas; Tung, Tina; Davila, David; Binder, Devin K.

    2015-01-01

    Cellular edema (cell swelling) is a principal component of numerous brain disorders including ischemia, cortical spreading depression, hyponatremia, and epilepsy. Cellular edema increases seizure-like activity in vitro and in vivo, largely through nonsynaptic mechanisms attributable to reduction of the extracellular space. However, the types of excitability changes occurring in individual neurons during the acute phase of cell volume increase remain unclear. Using whole-cell patch clamp techniques, we report that one of the first effects of osmotic edema on excitability of CA1 pyramidal cells is the generation of slow inward currents (SICs), which initiate after approximately 1 min. Frequency of SICs increased as osmolarity decreased in a dose-dependent manner. Imaging of real-time volume changes in astrocytes revealed that neuronal SICs occurred while astrocytes were still in the process of swelling. SICs evoked by cell swelling were mainly nonsynaptic in origin and NMDA receptor-dependent. To better understand the relationship between SICs and changes in neuronal excitability, recordings were performed in increasingly physiological conditions. In the absence of any added pharmacological reagents or imposed voltage clamp, osmotic edema induced excitatory postsynaptic potentials and burst firing over the same timecourse as SICs. Like SICs, action potentials were blocked by NMDAR antagonists. Effects were more pronounced in adult (8–20 weeks old) compared with juvenile (P15–P21) mice. Together, our results indicate that cell swelling triggered by reduced osmolarity rapidly increases neuronal excitability through activation of NMDA receptors. Our findings have important implications for understanding nonsynaptic mechanisms of epilepsy in relation to cell swelling and reduction of the extracellular space. PMID:26489684

  16. The natural xanthone alpha-mangostin reduces oxidative damage in rat brain tissue.

    PubMed

    Márquez-Valadez, Berenice; Lugo-Huitrón, Rafael; Valdivia-Cerda, Verónica; Miranda-Ramírez, Luis Rubén; Pérez-De La Cruz, Verónica; González-Cuahutencos, Octavio; Rivero-Cruz, Isabel; Mata, Rachel; Santamaría, Abel; Pedraza-Chaverrí, José

    2009-02-01

    The antiperoxidative properties of alpha-mangostin, a xanthone isolated from mangosteen fruit, were tested for the first time in nerve tissue exposed to different toxic insults. Two reliable biological preparations (rat brain homogenates and synaptosomal P2 fractions) were exposed to the toxic actions of a free radical generator (ferrous sulfate), an excitotoxic agent (quinolinate), and a mitochondrial toxin (3-nitropropionate). alpha-Mangostin decreased the lipoperoxidative action of FeSO(4) in both preparations in a concentration-dependent manner, and completely abolished the peroxidative effects of quinolinate, 3-nitropropionate and FeSO(4) + quinolinate at all concentrations tested. Interestingly, when tested alone in brain homogenates, alpha-mangostin significantly decreased the lipoperoxidation even below basal levels. alpha-Mangostin also prevented the decreased reductant capacity of mitochondria in synaptosomal fractions. Our results suggest that alpha-mangostin exerts a robust antiperoxidative effect in brain tissue preparations probably through its properties as a free radical scavenger. In light of these findings, this antioxidant should be tested in other neurotoxic models involving oxidative stress.

  17. Smoothened Agonist Reduces Human Immunodeficiency Virus Type-1-Induced Blood-Brain Barrier Breakdown in Humanized Mice

    PubMed Central

    Singh, Vir B.; Singh, Meera V.; Gorantla, Santhi; Poluektova, Larisa Y.; Maggirwar, Sanjay B.

    2016-01-01

    Human Immunodeficiency Virus type-1 (HIV)-associated neurocognitive disorder is characterized by recruitment of activated/infected leukocytes into the CNS via disrupted Blood Brain Barrier (BBB) that contributes to persistent neuro-inflammation. In this report, humanized NOD/scid-IL2Rγcnull mice were used to establish that impaired Sonic hedgehog (Shh) signaling is associated with loss of BBB function and neurological damage, and that modulating Shh signaling can rescue these detrimental effects. Plasma viral load, p24 levels and CD4+ T cells were measured as markers of productive HIV infection. These mice also showed impaired exclusion of Evans blue dye from the brain, increased plasma levels of S100B, an astrocytic protein, and down-regulation of tight junction proteins Occludin and Claudin5, collectively indicating BBB dysfunction. Further, brain tissue from HIV+ mice indicated reduced synaptic density, neuronal atrophy, microglial activation, and astrocytosis. Importantly, reduced expression of Shh and Gli1 was also observed in these mice, demonstrating diminished Shh signaling. Administration of Shh mimetic, smoothened agonist (SAG) restored BBB integrity and also abated the neuropathology in infected mice. Together, our results suggest a neuroprotective role for Shh signaling in the context of HIV infection, underscoring the therapeutic potential of SAG in controlling HAND pathogenesis. PMID:27241024

  18. Reducing dietary intake of linoleic acid of mouse dams during lactation increases offspring brain n-3 LCPUFA content.

    PubMed

    Schipper, L; Oosting, A; Scheurink, A J W; van Dijk, G; van der Beek, E M

    2016-07-01

    Omega (n-)3 and n-6 long chain polyunsaturated fatty acids (LCPUFA) accumulation in the infant brain after birth is strongly driven by dietary supply of n-3 and n-6 LCPUFAs and their C18 precursors through breast milk or infant formula. n-3 LCPUFA accretion is associated with positive effects on neurodevelopmental outcome whereas high n-6 LCPUFA accumulation is considered disadvantageous. Maternal diet is crucial for breast milk fatty acid composition. Unfortunately, global increases in linoleic acid (C18:2n-6; LA) intake have dramatically increased n-6 LCPUFA and reduced n-3 LCPUFA availability for breastfed infants. We investigated the effects of reducing maternal dietary LA, or increasing n-3 LCPUFA, during lactation on milk and offspring brain fatty acids in mice. Offspring brain n-3 LCPUFA was higher following both interventions, although effects were mediated by different mechanisms. Because of competitive interactions between n-3 and n-6 fatty acids, lowering maternal LA intake may support neurodevelopment in breastfed infants. PMID:27255638

  19. Smoothened Agonist Reduces Human Immunodeficiency Virus Type-1-Induced Blood-Brain Barrier Breakdown in Humanized Mice.

    PubMed

    Singh, Vir B; Singh, Meera V; Gorantla, Santhi; Poluektova, Larisa Y; Maggirwar, Sanjay B

    2016-01-01

    Human Immunodeficiency Virus type-1 (HIV)-associated neurocognitive disorder is characterized by recruitment of activated/infected leukocytes into the CNS via disrupted Blood Brain Barrier (BBB) that contributes to persistent neuro-inflammation. In this report, humanized NOD/scid-IL2Rγc(null) mice were used to establish that impaired Sonic hedgehog (Shh) signaling is associated with loss of BBB function and neurological damage, and that modulating Shh signaling can rescue these detrimental effects. Plasma viral load, p24 levels and CD4(+) T cells were measured as markers of productive HIV infection. These mice also showed impaired exclusion of Evans blue dye from the brain, increased plasma levels of S100B, an astrocytic protein, and down-regulation of tight junction proteins Occludin and Claudin5, collectively indicating BBB dysfunction. Further, brain tissue from HIV(+) mice indicated reduced synaptic density, neuronal atrophy, microglial activation, and astrocytosis. Importantly, reduced expression of Shh and Gli1 was also observed in these mice, demonstrating diminished Shh signaling. Administration of Shh mimetic, smoothened agonist (SAG) restored BBB integrity and also abated the neuropathology in infected mice. Together, our results suggest a neuroprotective role for Shh signaling in the context of HIV infection, underscoring the therapeutic potential of SAG in controlling HAND pathogenesis. PMID:27241024

  20. The neuroprotection of hypoxic preconditioning on rat brain against traumatic brain injury by up-regulated transcription factor Nrf2 and HO-1 expression.

    PubMed

    Shu, Longfei; Wang, Chunlin; Wang, Jinbiao; Zhang, Yongming; Zhang, Xing; Yang, Yanyan; Zhuo, Jianwei; Liu, Jiachuan

    2016-01-12

    Hypoxic preconditioning (HPC) increases the inherent tolerance of brain tissue suffering from severe hypoxia or ischemia insult by stimulating the protective ability of the brain. However, little is known concerning the effect of HPC on traumatic brain injury (TBI). We designed this study to investigate the effect of HPC on TBI and explore its underlying mechanisms. We found that HPC significantly alleviates neurological dysfunction, lessens brain edema, reduces cell apoptosis, increases neuronal survival, up-regulates the expressions of Nrf2 and HO-1, and decreases the inducer of protein carbonyls, 4-hydroxy-2-nonenal, and 8-hydroxy-2-deoxyguanosine in the brain tissue of rats 24h after brain injury. However, no influence was observed in normal rats after only 3d of hypoxic training. Results further indicated that HPC protects the brain against traumatic damage. This protective effect may be achieved by up-regulating Nrf2 and HO-1 expression and alleviating oxidative stress damage. PMID:26590328

  1. Arginine-Restricted Therapy Resistant Bilateral Macular Edema Associated with Gyrate Atrophy.

    PubMed

    Doguizi, Sibel; Sekeroglu, Mehmet Ali; Anayol, Mustafa Alpaslan; Yilmazbas, Pelin

    2015-01-01

    Introduction. Gyrate atrophy is a rare genetical metabolic disorder affecting vision. Here, we report a 9-year-old boy with gyrate atrophy associated with bilateral macular edema at the time of diagnosis and the effect of long term metabolic control on macular edema. Case Presentation. A 9-year-old boy presented with a complaint of low visual acuity (best corrected visual acuity: 20/80 in both eyes, refractive error: -12.00 D). Dilated fundus examination revealed multiple bilateral, sharply defined, and scalloped chorioretinal atrophy areas in the midperipheral and peripheral zone. Spectral-domain optical coherence tomography revealed bilateral cystoid macular edema in both eyes. Serum ornithine level was high (622 μmol/L). An arginine-restricted diet reduced serum ornithine level (55 μmol/L). However, visual findings including macular edema remained unchanged in 2 years of follow-up. Conclusion. Arginine-restricted diet did not improve macular edema in our patient with gyrate atrophy. A more comprehensive understanding of the underlying factors for macular edema will lead to the development of effective therapies.

  2. Chronic hypertension aggravates heat stress-induced brain damage: possible neuroprotection by cerebrolysin.

    PubMed

    Muresanu, Dafin Fior; Zimmermann-Meinzingen, Sibilla; Sharma, Hari Shanker

    2010-01-01

    Whole body hyperthermia (WBH) aggravates brain edema formation and cell damage in chronic hypertensive rats compared with normotensive animals. In this investigation, we examined the influence of cerebrolysin on WBH-induced edema formation and brain pathology in hypertensive and normotensive rats. Rats subjected to 4 h WBH at 38 degrees C in a biological oxygen demand (BOD) incubator showed breakdown of the blood-brain barrier (BBB), reduced cerebral blood flow (CBF), edema formation and cell injuries in several parts of the brain. These effects were further aggravated in chronic hypertensive rats (two-kidney one clip model (2K1C), for 4 weeks) subjected to WBH. Pretreatment with cerebrolysin (5 mL/kg, 24 h and 30 min before heat stress) markedly attenuated the BBB dysfunction and brain pathology in normal animals. However, in hypertensive animals, a high dose of cerebrolysin (10 mL/kg, 24 h and 30 min before heat stress) was needed to attenuate WBH-induced BBB dysfunction and brain pathology. These observations indicate that heat stress could affect differently in normal and hypertensive conditions. Furthermore, our results suggest that patients suffering from various chronic cardiovascular diseases may respond differently to hyperthermia and to neuroprotective drugs, e.g., cerebrolysin not reported earlier.

  3. Reduced mural cell coverage and impaired vessel integrity after angiogenic stimulation in the Alk1-deficient brain

    PubMed Central

    Chen, Wanqiu; Guo, Yi; Walker, Espen J.; Shen, Fanxia; Jun, Kristine; Oh, S. Paul; Degos, Vincent; Lawton, Michael T.; Tihan, Tarik; Davalos, Dimitrios; Akassoglou, Katerina; Nelson, Jeffrey; Pile-Spellman, John; Su, Hua; Young, William L.

    2013-01-01

    Objective Vessels in brain arteriovenous malformations (bAVM) are prone to rupture. The underlying pathogenesis is not clear. Hereditary hemorrhagic telangiectasia type 2 (HHT2) patients with activin receptor-like kinase 1 (Alk1) mutation have a higher incidence of bAVM than the general population. We tested the hypothesis that vascular endothelial growth factor (VEGF) impairs vascular integrity in the Alk1-deficient brain through reduction of mural cell-coverage. Methods and Results Adult Alk11f/2f mice (loxP sites flanking exons 4-6) and wild-type (WT) mice were injected with 2×107 PFU Ad-Cre and 2×109 genome copies of AAV-VEGF to induce focal homozygous Alk1 deletion (in Alk11f/2f mice) and angiogenesis. Brain vessels were analyzed eight weeks later. Compared to WT mice, the Alk1-deficient brain had more fibrin (99±30×103 pixels/mm2 vs. 40±13×103, P=0.001), iron deposition (508±506 pixels/mm2 vs. 6 ±49, P=0.04), and Iba1+ microglia/macrophage infiltration (888±420 Iba1+ cells/mm2 vs. 240±104 Iba1+, P=0.001) after VEGF stimulation. In the angiogenic foci, the Alk1-deficient brain had more α-SMA- vessels (52±9% vs. 12±7%, P<0.001), fewer vascular associated pericytes (503±179/mm2 vs. 931±115, P<0.001), and reduced PDGFR-β expression (26±9%, P<0.001). Conclusion Reduction of mural cell coverage in response to VEGF stimulation is a potential mechanism for the impairment of vessel wall integrity in HHT2-associated bAVM. PMID:23241407

  4. The impact of prostate edema on cell survival and tumor control after permanent interstitial brachytherapy for early stage prostate cancers

    NASA Astrophysics Data System (ADS)

    (Jay Chen, Zhe; Roberts, Kenneth; Decker, Roy; Pathare, Pradip; Rockwell, Sara; Nath, Ravinder

    2011-08-01

    that of 131Cs (9.7 days), because the advantage of the longer 103Pd decay half-life was negated by the lower effective energy of the photons it emits (~21 keV compared to ~30.4 keV for 131Cs). In addition, the impact of edema could be reduced or enhanced by differences in the tumor characteristics (e.g. potential tumor doubling time or the α/β ratio), and the effect of these factors varied for the different radioactive sources. There is a clear need to consider the effects of prostate edema during the planning and evaluation of permanent interstitial brachytherapy treatments for prostate cancer.

  5. Zinc chelation reduces traumatic brain injury-induced neurogenesis in the subgranular zone of the hippocampal dentate gyrus.

    PubMed

    Choi, Bo Young; Kim, Jin Hee; Kim, Hyun Jung; Lee, Bo Eun; Kim, In Yeol; Sohn, Min; Suh, Sang Won

    2014-10-01

    Numerous studies have demonstrated that traumatic brain injury (TBI) increases hippocampal neurogenesis in the rodent brain. However, the mechanisms underlying increased neurogenesis after TBI remain unknown. Continuous neurogenesis occurs in the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG) in the adult brain. The mechanism that maintains active neurogenesis in the hippocampal area is not known. A high level of vesicular zinc is localized in the presynaptic terminals of the SGZ (mossy fiber). The mossy fiber of dentate granular cells contains high levels of chelatable zinc in their terminal vesicles, which can be released into the extracellular space during neuronal activity. Previously, our lab presented findings indicating that a possible correlation may exist between synaptic zinc localization and high rates of neurogenesis in this area after hypoglycemia or epilepsy. Using a weight drop animal model to mimic human TBI, we tested our hypothesis that zinc plays a key role in modulating hippocampal neurogenesis after TBI. Thus, we injected a zinc chelator, clioquinol (CQ, 30mg/kg), into the intraperitoneal space to reduce brain zinc availability twice per day for 1 week. Neuronal death was evaluated with Fluoro Jade-B and NeuN staining to determine whether CQ has neuroprotective effects after TBI. The number of degenerating neurons (FJB (+)) and live neurons (NeuN (+)) was similar in vehicle and in CQ-treated rats at 1 week after TBI. Neurogenesis was evaluated using BrdU, Ki67 and doublecortin (DCX) immunostaining 1 week after TBI. The number of BrdU, Ki67 and DCX positive cell was increased after TBI. However, the number of BrdU, Ki67 and DCX positive cells was significantly decreased by CQ treatment. The present study shows that zinc chelation did not prevent neurodegeneration but did reduce TBI-induced progenitor cell proliferation and neurogenesis. Therefore, this study suggests that zinc has an essential role for modulating hippocampal

  6. Acute pulmonary edema following inflation of arterial tourniquet.

    PubMed

    Santhosh, M C B; Pai, R B; Rao, R P

    2014-10-01

    Arterial tourniquets are used as one of the methods for reducing blood loss and for allowing blood free surgical field. A 20-year-old, 45 kg healthy female with a sphere shaped pendunculated hemangioma in the popliteal fossa of her left lower limb was applied with arterial tourniquet after exsanguination. The procedure was performed under general anesthesia. Soon after exsanguination and tourniquet inflation, the patient developed pulmonary edema which subsided after deflating the tourniquet. The clinical evolution, treatment and pathophysiology of this complication are described.

  7. Topical Nonsteroidal Anti-Inflammatory Drugs for Macular Edema

    PubMed Central

    Parmeggiani, Francesco; Romano, Mario R.; dell'Omo, Roberto

    2013-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are nowadays widely used in ophthalmology to reduce eye inflammation, pain, and cystoid macular edema associated with cataract surgery. Recently, new topical NSAIDs have been approved for topical ophthalmic use, allowing for greater drug penetration into the vitreous. Hence, new therapeutic effects can be achieved, such as reduction of exudation secondary to age-related macular degeneration or diabetic maculopathy. We provide an updated review on the clinical use of NSAIDs for retinal diseases, with a focus on the potential future applications. PMID:24227908

  8. Dysphagia Caused by Chronic Laryngeal Edema.

    PubMed

    Delides, Alexander; Sakagiannis, George; Maragoudakis, Pavlos; Gouloumi, Αlina-Roxani; Katsimbri, Pelagia; Giotakis, Ioannis; Panayiotides, John G

    2015-10-01

    A rare case of a young female with chronic diffuse laryngeal edema causing severe swallowing difficulty is presented. The patient was previously treated with antibiotics and steroids with no improvement. Diagnosis was made with biopsy of the epiglottis under local anesthesia in the office.

  9. An uncommon cause of acute pulmonary edema.

    PubMed

    Nepal, Santosh; Giri, Smith; Bhusal, Mohan; Siwakoti, Krishmita; Pathak, Ranjan

    2016-09-01

    Acute cardiogenic pulmonary edema secondary to catecholamine-induced cardiomyopathy is a very uncommon and fatal initial presentation of pheochromocytoma. However, with early clinical suspicion and aggressive management, the condition is reversible. This case report describes a patient who presented with hypertension, dyspnea, and cough with bloody streaks, and who recovered within 48 hours after appropriate treatment. PMID:27575897

  10. Mast cells promote blood brain barrier breakdown and neutrophil infiltration in a mouse model of focal cerebral ischemia

    PubMed Central

    McKittrick, Craig M; Lawrence, Catherine E; Carswell, Hilary V O

    2015-01-01

    Blood brain barrier (BBB) breakdown and neuroinflammation are key events in ischemic stroke morbidity and mortality. The present study investigated the effects of mast cell deficiency and stabilization on BBB breakdown and neutrophil infiltration in mice after transient middle cerebral artery occlusion (tMCAo). Adult male C57BL6/J wild type (WT) and mast cell-deficient (C57BL6/J KitWsh/Wsh (Wsh)) mice underwent tMCAo and BBB breakdown, brain edema and neutrophil infiltration were examined after 4 hours of reperfusion. Blood brain barrier breakdown, brain edema, and neutrophil infiltration were significantly reduced in Wsh versus WT mice (P<0.05). These results were reproduced pharmacologically using mast cell stabilizer, cromoglycate. Wild-type mice administered cromoglycate intraventricularly exhibited reduced BBB breakdown, brain edema, and neutrophil infiltration versus vehicle (P<0.05). There was no effect of cromoglycate versus vehicle in Wsh mice, validating specificity of cromoglycate on brain mast cells. Proteomic analysis in Wsh versus WT indicated that effects may be via expression of endoglin, endothelin-1, and matrix metalloproteinase-9. Using an in vivo model of mast cell deficiency, this is the first study showing that mast cells promote BBB breakdown in focal ischemia in mice, and opens up future opportunities for using mice to identify specific mechanisms of mast cell-related BBB injury. PMID:25564235

  11. Cross-sex hormone treatment in male-to-female transsexual persons reduces serum brain-derived neurotrophic factor (BDNF).

    PubMed

    Fuss, Johannes; Hellweg, Rainer; Van Caenegem, Eva; Briken, Peer; Stalla, Günter K; T'Sjoen, Guy; Auer, Matthias K

    2015-01-01

    Serum levels of brain-derived neurotrophic factor (BDNF) are reduced in male-to-female transsexual persons (MtF) compared to male controls. It was hypothesized before that this might reflect either an involvement of BDNF in a biomechanism of transsexualism or to be the result of persistent social stress due to the condition. Here, we demonstrate that 12 month of cross-sex hormone treatment reduces serum BDNF levels in male-to-female transsexual persons independent of anthropometric measures. Participants were acquired through the European Network for the Investigation of Gender Incongruence (ENIGI). Reduced serum BDNF in MtF thus seems to be a result of hormonal treatment rather than a consequence or risk factor of transsexualism.

  12. Reducing Inhomogeneity Artifacts in Functional MRI of Human Brain Activation—Thin Sections vs Gradient Compensation

    NASA Astrophysics Data System (ADS)

    Merboldt, Klaus-Dietmar; Finsterbusch, Jürgen; Frahm, Jens

    2000-08-01

    We evaluated two methods for correcting inhomogeneity-induced signal losses in magnetic resonance gradient-echo imaging that either use gradient compensation or simply acquire thin sections. The strategies were tested in the human brain in terms of achievable quality of T2*-weighted images at the level of the hippocampus and of functional activation maps of the visual cortex. Experiments were performed at 2.0 T and based on single-shot echo-planar imaging at 2.0 × 2.0 mm2 resolution, 4 mm section thickness, and 2.0 s temporal resolution. Gradient compensation involved a sequential 16-step variation of the refocusing lobe of the slice-selection gradient (TR/TE = 125/53 ms, flip angle 15°), whereas thin sections divided the 4-mm target plane into either four 1-mm or eight 0.5-mm interleaved multislice acquisitions (TR/TE = 2000/54 ms, flip angle 70°). Both approaches were capable of alleviating the inhomogeneity problem for structures in the base of the brain. When compared to standard 4-mm EPI, functional mapping in the visual cortex was partially compromised because of a lower signal-to-noise ratio of inhomogeneity-corrected images by either method. Relative to each other, consistently better results were obtained with the use of contiguous thin sections, in particular for a thickness of 1 mm. Multislice acquisitions of thin sections require minimal technical adjustments.

  13. Demyelination reduces brain parenchymal stiffness quantified in vivo by magnetic resonance elastography

    PubMed Central

    Schregel, Katharina; Wuerfel née Tysiak, Eva; Garteiser, Philippe; Gemeinhardt, Ines; Prozorovski, Timour; Aktas, Orhan; Merz, Hartmut; Petersen, Dirk; Wuerfel, Jens; Sinkus, Ralph

    2012-01-01

    The detection of pathological tissue alterations by manual palpation is a simple but essential diagnostic tool, which has been applied by physicians since the beginnings of medicine. Recently, the virtual “palpation” of the brain has become feasible using magnetic resonance elastography, which quantifies biomechanical properties of the brain parenchyma by analyzing the propagation of externally elicited shear waves. However, the precise molecular and cellular patterns underlying changes of viscoelasticity measured by magnetic resonance elastography have not been investigated up to date. We assessed changes of viscoelasticity in a murine model of multiple sclerosis, inducing reversible demyelination by feeding the copper chelator cuprizone, and correlated our results with detailed histological analyses, comprising myelination, extracellular matrix alterations, immune cell infiltration and axonal damage. We show firstly that the magnitude of the complex shear modulus decreases with progressive demyelination and global extracellular matrix degradation, secondly that the loss modulus decreases faster than the dynamic modulus during the destruction of the corpus callosum, and finally that those processes are reversible after remyelination. PMID:22492966

  14. Reduced hippocampal brain-derived neurotrophic factor (BDNF) in neonatal rats after prenatal exposure to propylthiouracil (PTU).

    PubMed

    Chakraborty, Goutam; Magagna-Poveda, Alejandra; Parratt, Carolyn; Umans, Jason G; MacLusky, Neil J; Scharfman, Helen E

    2012-03-01

    Thyroid hormone is critical for central nervous system development. Fetal hypothyroidism leads to reduced cognitive performance in offspring as well as other effects on neural development in both humans and experimental animals. The nature of these impairments suggests that thyroid hormone may exert its effects via dysregulation of the neurotrophin brain-derived neurotrophic factor (BDNF), which is critical to normal development of the central nervous system and has been implicated in neurodevelopmental disorders. The only evidence of BDNF dysregulation in early development, however, comes from experimental models in which severe prenatal hypothyroidism occurred. By contrast, milder prenatal hypothyroidism has been shown to alter BDNF levels and BDNF-dependent functions only much later in life. We hypothesized that mild experimental prenatal hypothyroidism might lead to dysregulation of BDNF in the early postnatal period. BDNF levels were measured by ELISA at 3 or 7 d after birth in different regions of the brains of rats exposed to propylthiouracil (PTU) in the drinking water. The dose of PTU that was used induced mild maternal thyroid hormone insufficiency. Pups, but not the parents, exhibited alterations in tissue BDNF levels. Hippocampal BDNF levels were reduced at both d 3 and 7, but no significant reductions were observed in either the cerebellum or brain stem. Unexpectedly, more males than females were born to PTU-treated dams, suggesting an effect of PTU on sex determination. These results support the hypothesis that reduced hippocampal BDNF levels during early development may contribute to the adverse neurodevelopmental effects of mild thyroid hormone insufficiency during pregnancy.

  15. Reduced Hippocampal Brain-Derived Neurotrophic Factor (BDNF) in Neonatal Rats after Prenatal Exposure to Propylthiouracil (PTU)

    PubMed Central

    Chakraborty, Goutam; Magagna-Poveda, Alejandra; Parratt, Carolyn; Umans, Jason G.; MacLusky, Neil J.

    2012-01-01

    Thyroid hormone is critical for central nervous system development. Fetal hypothyroidism leads to reduced cognitive performance in offspring as well as other effects on neural development in both humans and experimental animals. The nature of these impairments suggests that thyroid hormone may exert its effects via dysregulation of the neurotrophin brain-derived neurotrophic factor (BDNF), which is critical to normal development of the central nervous system and has been implicated in neurodevelopmental disorders. The only evidence of BDNF dysregulation in early development, however, comes from experimental models in which severe prenatal hypothyroidism occurred. By contrast, milder prenatal hypothyroidism has been shown to alter BDNF levels and BDNF-dependent functions only much later in life. We hypothesized that mild experimental prenatal hypothyroidism might lead to dysregulation of BDNF in the early postnatal period. BDNF levels were measured by ELISA at 3 or 7 d after birth in different regions of the brains of rats exposed to propylthiouracil (PTU) in the drinking water. The dose of PTU that was used induced mild maternal thyroid hormone insufficiency. Pups, but not the parents, exhibited alterations in tissue BDNF levels. Hippocampal BDNF levels were reduced at both d 3 and 7, but no significant reductions were observed in either the cerebellum or brain stem. Unexpectedly, more males than females were born to PTU-treated dams, suggesting an effect of PTU on sex determination. These results support the hypothesis that reduced hippocampal BDNF levels during early development may contribute to the adverse neurodevelopmental effects of mild thyroid hormone insufficiency during pregnancy. PMID:22253429

  16. Molecular Signatures of Reduced Nerve Toxicity by CeCl3 in Phoxim-exposed Silkworm Brains

    PubMed Central

    Wang, Binbin; Li, Fanchi; Ni, Min; Zhang, Hua; Xu, Kaizun; Tian, Jianghai; Hu, Jingsheng; Shen, Weide; Li, Bing

    2015-01-01

    CeCl3 can reduce the damage caused by OP pesticides, in this study we used the brain of silkworms to investigate the mechanism of CeCl3 effects on pesticide resistance. The results showed that phoxim treatments led to brain damages, swelling and death of neurons, chromatin condensation, and mitochondrial damage. Normal nerve conduction was severely affected by phoxim treatments, as revealed by: increases in the contents of neurotransmitters Glu, NO, and ACh by 63.65%, 61.14%, and 98.54%, respectively; decreases in the contents of 5-HT and DA by 53.19% and 43.71%, respectively; reductions in the activities of Na+/K+-ATPase, Ca2+/Mg2+-ATPase, and AChE by 85.27%, 85.63%, and 85.63%, respectively; and increase in the activity of TNOS by 22.33%. CeCl3 pretreatment can significantly reduce such damages. Results of DGE and qRT-PCR indicated that CeCl3 treatments significantly upregulated the expression levels of CYP4G23, cyt-b5, GSTs-σ1, ace1, esterase-FE4, and β-esterase 2. Overall, phoxim treatments cause nerve tissue lesions, neuron death, and nerve conduction hindrance, but CeCl3 pretreatments can promote the expression of phoxim resistance-related genes in silkworm brains to reduce phoxim-induced damages. Our study provides a potential new method to improve the resistance of silkworms against OP pesticides. PMID:26227613

  17. Blood-brain barrier in acute liver failure

    PubMed Central

    Nguyen, Justin H.

    2011-01-01

    Brain edema remains a challenging obstacle in the management of acute liver failure (ALF). Cytotoxic mechanisms associated with brain edema have been well recognized, but evidence for vasogenic mechanisms in the pathogenesis of brain edema in ALF has been lacking. Recent reports have not only shown a role of matrix metalloproteinase-9 in the pathogenesis of brain edema in experimental ALF but have also found significant alterations in the tight junction elements including occludin and claudin-5, suggesting a vasogenic injury in the blood-brain barrier (BBB) integrity. This article reviews and explores the role of the paracellular tight junction proteins in the increased selective BBB permeability that leads to brain edema in ALF. PMID:22100566

  18. Stress-dose hydrocortisone reduces critical illness-related corticosteroid insufficiency associated with severe traumatic brain injury in rats

    PubMed Central

    2013-01-01

    Introduction The spectrum of critical illness-related corticosteroid insufficiency (CIRCI) in severe traumatic brain injury (TBI) is not fully defined and no effective treatments for TBI-induced CIRCI are available to date. Despite growing interest in the use of stress-dose hydrocortisone as a potential therapy for CIRCI, there remains a paucity of data regarding its benefits following severe TBI. This study was designed to investigate the effects of stress-dose hydrocortisone on CIRCI development and neurological outcomes in a rat model of severe traumatic brain injury. Methods Rats were subjected to lateral fluid percussion injury of 3.2-3.5 atmosphere. These rats were then treated with either a stress-dose hydrocortisone (HC, 3 mg/kg/d for 5 days, 1.5 mg/kg on day 6, and 0.75 mg on day 7), a low-dose methylprednisolone (MP, 1 mg/kg/d for 5 days, 0.5 mg/kg on day 6, and 0.25 mg on day 7) or control saline solution intraperitoneally daily for 7 days after injury. Results We investigated the effects of stress-dose HC on the mortality, CIRCI occurrence, and neurological deficits using an electrical stimulation test to assess corticosteroid response and modified neurological severity score (mNSS). We also studied pathological changes in the hypothalamus, especially in the paraventricular nuclei (PVN), after stress-dose HC or a low dose of MP was administered, including apoptosis detected by a TUNEL assay, blood–brain barrier (BBB) permeability assessed by brain water content and Evans Blue extravasation into the cerebral parenchyma, and BBB integrity evaluated by CD31 and claudin-5 expression. We made the following observations. First, 70% injured rats developed CIRCI, with a peak incidence on post-injury day 7. The TBI-associated CIRCI was closely correlated with an increased mortality and delayed neurological recovery. Second, post-injury administration of stress-dose HC, but not MP or saline increased corticosteroid response, prevented CIRCI, reduced mortality

  19. A subcutaneous cellular implant for passive immunization against amyloid-β reduces brain amyloid and tau pathologies.

    PubMed

    Lathuilière, Aurélien; Laversenne, Vanessa; Astolfo, Alberto; Kopetzki, Erhard; Jacobsen, Helmut; Stampanoni, Marco; Bohrmann, Bernd; Schneider, Bernard L; Aebischer, Patrick

    2016-05-01

    Passive immunization against misfolded toxic proteins is a promising approach to treat neurodegenerative disorders. For effective immunotherapy against Alzheimer's disease, recent clinical data indicate that monoclonal antibodies directed against the amyloid-β peptide should be administered before the onset of symptoms associated with irreversible brain damage. It is therefore critical to develop technologies for continuous antibody delivery applicable to disease prevention. Here, we addressed this question using a bioactive cellular implant to deliver recombinant anti-amyloid-β antibodies in the subcutaneous tissue. An encapsulating device permeable to macromolecules supports the long-term survival of myogenic cells over more than 10 months in immunocompetent allogeneic recipients. The encapsulated cells are genetically engineered to secrete high levels of anti-amyloid-β antibodies. Peripheral implantation leads to continuous antibody delivery to reach plasma levels that exceed 50 µg/ml. In a proof-of-concept study, we show that the recombinant antibodies produced by this system penetrate the brain and bind amyloid plaques in two mouse models of the Alzheimer's pathology. When encapsulated cells are implanted before the onset of amyloid plaque deposition in TauPS2APP mice, chronic exposure to anti-amyloid-β antibodies dramatically reduces amyloid-β40 and amyloid-β42 levels in the brain, decreases amyloid plaque burden, and most notably, prevents phospho-tau pathology in the hippocampus. These results support the use of encapsulated cell implants for passive immunotherapy against the misfolded proteins, which accumulate in Alzheimer's disease and other neurodegenerative disorders.

  20. Hereditary angioneurotic edema and HLA types in two Danish families.

    PubMed

    Eggert, J; Zachariae, H; Svejgaard, E; Svejgaard, A; Kissmeyer-Nielsen, F

    1982-01-01

    HLA types were determined in 19 patients and 9 healthy members of 2 Danish families with hereditary angioneurotic edema. The study revealed no connections between hereditary angioneurotic edema and the HLA system. PMID:7165360

  1. Anti-inflammatory effect of laser acupuncture in ST36 (Zusanli) acupoint in mouse paw edema.

    PubMed

    Erthal, Vanessa; Maria-Ferreira, Daniele; Werner, Maria Fernanda de Paula; Baggio, Cristiane Hatsuko; Nohama, Percy

    2016-02-01

    Low-level laser therapy (LLLT) in acupuncture is a low-power laser applied to acupoints for providing luminous energy, capable to produce photobiological induction that results in biochemical, bioelectric, and bioenergetic effects. ST36 (Zusanli) is a point of acupuncture commonly used for treatment of several pathological alterations, such as inflammation, acute pain, and gastrointestinal disorders. In this study, we evaluated the anti-inflammatory effect of LLLT (830 nm, 4 J/cm(2)) in ST36 acupoint through the model of carrageenan-induced paw edema in mice and the possible mechanisms involved. Female Swiss mice were treated with LLLT in ST36 before the paw edema induction, which was measured by means of a digital micrometer and the temperature through a high-resolution digital thermograph. After this, the levels of reactive oxygen species (ROS), lipid hydroperoxides (LOOH), and reduced glutathione (GSH) were quantified. In another set of experiments, the paw edema was induced by bradykinin, histamine, and prostaglandin E2 (PGE2). LLLT in ST36 acupoint significantly inhibited the edema formation for 4 h after the carrageenan injection and reduced the paw temperature in 10 %. Furthermore, LLLT also reduced the levels of ROS (55 %) and LOOH (50 %) but, however, did not alter the GSH levels. LLLT in ST36 reduced the paw edema induced by bradykinin (30 min, 6 %, 60 min, 7 %), histamine (30 min, 11 %), and PGE2 (90 min, 10 %, 120 min, 16 %). In conclusion, these results prove that LLLT in ST36 acupoint produces a relevant anti-inflammatory effect, reducing edema, temperature, and free radicals levels in mice paw. PMID:26738499

  2. Zinc and calcium reduce lead induced perturbations in the aminergic system of developing brain.

    PubMed

    Jaya Prasanthi, R P; Hariprasad Reddy, G; Bhuvaneswari Devi, C; Rajarami Reddy, G

    2005-12-01

    Since alterations in monoamines and monoamine oxidase (MAO) have been postulated to play a role in toxic effects of lead (Pb) on the central nervous system, we have examined the protective effects of calcium (Ca2+) and zinc (Zn2+) supplementation on Pb-induced perturbations in the levels of monoamines and the activity of MAO. Swiss albino mice were lactationally exposed to low (0.2%) and high (1%) levels of Pb-acetate via drinking water of the mother. Pb-exposure commenced on postnatal day (PND) 1, continued up to PND 21 and stopped at weaning. Ca2+ or Zn2+ (0.02% in 0.2% Pb-water or 0.1% in 1% Pb-water) was supplemented separately to the mother up to PND 21. The levels of monoamines (epinephrine, norepinephrine, dopamine and serotonin) and the activity of MAO in the brain regions such as hippocampus, cortex, cerebellum and medulla of young (1 month old) and adult (3 month old) mice were determined in the synaptosomal fractions. The synaptosomal monoamines though increased with low level (0.2%) Pb-exposure, significantly decreased with high level (1%) Pb-exposure in all the brain regions in both the age groups. In general, the young mice seem to be more vulnerable to Pb-neurotoxicity. Ca2+ or Zn2+ supplementation significantly reversed the Pb-induced perturbations both in the levels of monoamines and in the activity of MAO. However, the recovery in monoamine levels and MAO activity was more pronounced with Ca2+ supplementation as compared to Zn2+. These results provide evidence that dietary Ca2+ and/or Zn2+ provide protection against Pb-induced neurotoxic effects.

  3. Hypothalamic Deep Brain Stimulation Reduces Weight Gain in an Obesity-Animal Model

    PubMed Central

    Melega, William P.; Lacan, Goran; Gorgulho, Alessandra A.; Behnke, Eric J.; De Salles, Antonio A. F.

    2012-01-01

    Prior studies of appetite regulatory networks, primarily in rodents, have established that targeted electrical stimulation of ventromedial hypothalamus (VMH) can alter food intake patterns and metabolic homeostasis. Consideration of this method for weight modulation in humans with severe overeating disorders and morbid obesity can be further advanced by modeling procedures and assessing endpoints that can provide preclinical data on efficacy and safety. In this study we adapted human deep brain stimulation (DBS) stereotactic methods and instrumentation to demonstrate in a large animal model the modulation of weight gain with VMH-DBS. Female Göttingen minipigs were used because of their dietary habits, physiologic characteristics, and brain structures that resemble those of primates. Further, these animals become obese on extra-feeding regimens. DBS electrodes were first bilaterally implanted into the VMH of the animals (n = 8) which were then maintained on a restricted food regimen for 1 mo following the surgery. The daily amount of food was then doubled for the next 2 mo in all animals to produce obesity associated with extra calorie intake, with half of the animals (n = 4) concurrently receiving continuous low frequency (50 Hz) VMH-DBS. Adverse motoric or behavioral effects were not observed subsequent to the surgical procedure or during the DBS period. Throughout this 2 mo DBS period, all animals consumed the doubled amount of daily food. However, the animals that had received VMH-DBS showed a cumulative weight gain (6.1±0.4 kg; mean ± SEM) that was lower than the nonstimulated VMH-DBS animals (9.4±1.3 kg; p<0.05), suggestive of a DBS-associated increase in metabolic rate. These results in a porcine obesity model demonstrate the efficacy and behavioral safety of a low frequency VMH-DBS application as a potential clinical strategy for modulation of body weight. PMID:22295102

  4. Hypothalamic deep brain stimulation reduces weight gain in an obesity-animal model.

    PubMed

    Melega, William P; Lacan, Goran; Gorgulho, Alessandra A; Behnke, Eric J; De Salles, Antonio A F

    2012-01-01

    Prior studies of appetite regulatory networks, primarily in rodents, have established that targeted electrical stimulation of ventromedial hypothalamus (VMH) can alter food intake patterns and metabolic homeostasis. Consideration of this method for weight modulation in humans with severe overeating disorders and morbid obesity can be further advanced by modeling procedures and assessing endpoints that can provide preclinical data on efficacy and safety. In this study we adapted human deep brain stimulation (DBS) stereotactic methods and instrumentation to demonstrate in a large animal model the modulation of weight gain with VMH-DBS. Female Göttingen minipigs were used because of their dietary habits, physiologic characteristics, and brain structures that resemble those of primates. Further, these animals become obese on extra-feeding regimens. DBS electrodes were first bilaterally implanted into the VMH of the animals (n = 8) which were then maintained on a restricted food regimen for 1 mo following the surgery. The daily amount of food was then doubled for the next 2 mo in all animals to produce obesity associated with extra calorie intake, with half of the animals (n = 4) concurrently receiving continuous low frequency (50 Hz) VMH-DBS. Adverse motoric or behavioral effects were not observed subsequent to the surgical procedure or during the DBS period. Throughout this 2 mo DBS period, all animals consumed the doubled amount of daily food. However, the animals that had received VMH-DBS showed a cumulative weight gain (6.1±0.4 kg; mean ± SEM) that was lower than the nonstimulated VMH-DBS animals (9.4±1.3 kg; p<0.05), suggestive of a DBS-associated increase in metabolic rate. These results in a porcine obesity model demonstrate the efficacy and behavioral safety of a low frequency VMH-DBS application as a potential clinical strategy for modulation of body weight.

  5. Therapeutic Hypothermia Reduces Intracranial Pressure and Partial Brain Oxygen Tension in Patients with Severe Traumatic Brain Injury: Preliminary Data from the Eurotherm3235 Trial.

    PubMed

    Flynn, Liam M C; Rhodes, Jonathan; Andrews, Peter J D

    2015-09-01

    Traumatic brain injury (TBI) is a significant cause of disability and death and a huge economic burden throughout the world. Much of the morbidity associated with TBI is attributed to secondary brain injuries resulting in hypoxia and ischemia after the initial trauma. Intracranial hypertension and decreased partial brain oxygen tension (PbtO2) are targeted as potentially avoidable causes of morbidity. Therapeutic hypothermia (TH) may be an effective intervention to reduce intracranial pressure (ICP), but could also affect cerebral blood flow (CBF). This is a retrospective analysis of prospectively collected data from 17 patients admitted to the Western General Hospital, Edinburgh. Patients with an ICP >20 mmHg refractory to initial therapy were randomized to standard care or standard care and TH (intervention group) titrated between 32°C and 35°C to reduce ICP. ICP and PbtO2 were measured using the Licox system and core temperature was recorded through rectal thermometer. Data were analyzed at the hour before cooling, the first hour at target temperature, 2 consecutive hours at target temperature, and after 6 hours of hypothermia. There was a mean decrease in ICP of 4.3±1.6 mmHg (p<0.04) from 15.7 to 11.4 mmHg, from precooling to the first epoch of hypothermia in the intervention group (n=9) that was not seen in the control group (n=8). A decrease in ICP was maintained throughout all time periods. There was a mean decrease in PbtO2 of 7.8±3.1 mmHg (p<0.05) from 30.2 to 22.4 mmHg, from precooling to stable hypothermia, which was not seen in the control group. This research supports others in demonstrating a decrease in ICP with temperature, which could facilitate a reduction in the use of hyperosmolar agents or other stage II interventions. The decrease in PbtO2 is not below the suggested treatment threshold of 20 mmHg, but might indicate a decrease in CBF.

  6. Reduced expression of the TrkB receptor in Huntington's disease mouse models and in human brain.

    PubMed

    Ginés, Silvia; Bosch, Miquel; Marco, Sonia; Gavaldà, Núria; Díaz-Hernández, Miguel; Lucas, José J; Canals, Josep M; Alberch, Jordi

    2006-02-01

    Deficits of neurotrophic support caused by reduced levels of brain-derived neurotrophic factor (BDNF) have been implicated in the selective vulnerability of striatal neurones in Huntington's disease (HD). Therapeutic strategies based on BDNF administration have been proposed to slow or prevent the disease progression. However, the effectiveness of BDNF may depend on the proper expression of its receptor TrkB. In this study, we analysed the expression of TrkB in several HD models and in postmortem HD brains. We found a specific reduction of TrkB receptors in transgenic exon-1 and full-length knock-in HD mouse models and also in the motor cortex and caudate nucleus of HD brains. Our findings also demonstrated that continuous expression of mutant huntingtin is required to down-regulate TrkB levels. This was shown by findings in an inducible HD mouse model showing rescue of TrkB by turning off mutant huntingtin expression. Interestingly, the length of the polyglutamine tract in huntingtin appears to modulate the reduction of TrkB. Finally, to analyse the effect of BDNF in TrkB we compared TrkB expression in mutant huntingtin R6/1 and double mutant (R6/1 : BDNF+/-) mice. Similar TrkB expression was found in both transgenic mice suggesting that reduced TrkB is not a direct consequence of decreased BDNF. Therefore, taken together our findings identify TrkB as an additional component that potentially might contribute to the altered neurotrophic support in HD.

  7. Localized delivery of fibroblast growth factor-2 and brain-derived neurotrophic factor reduces spontaneous seizures in an epilepsy model.

    PubMed

    Paradiso, Beatrice; Marconi, Peggy; Zucchini, Silvia; Berto, Elena; Binaschi, Anna; Bozac, Aleksandra; Buzzi, Andrea; Mazzuferi, Manuela; Magri, Eros; Navarro Mora, Graciela; Rodi, Donata; Su, Tao; Volpi, Ilaria; Zanetti, Lara; Marzola, Andrea; Manservigi, Roberto; Fabene, Paolo F; Simonato, Michele

    2009-04-28

    A loss of neurons is observed in the hippocampus of many patients with epilepsies of temporal lobe origin. It has been hypothesized that damage limitation or repair, for example using neurotrophic factors (NTFs), may prevent the transformation of a normal tissue into epileptic (epileptogenesis). Here, we used viral vectors to locally supplement two NTFs, fibroblast growth factor-2 (FGF-2) and brain-derived neurotrophic factor (BDNF), when epileptogenic damage was already in place. These vectors were first characterized in vitro, where they increased proliferation of neural progenitors and favored their differentiation into neurons, and they were then tested in a model of status epilepticus-induced neurodegeneration and epileptogenesis. When injected in a lesioned hippocampus, FGF-2/BDNF expressing vectors increased neuronogenesis, embanked neuronal damage, and reduced epileptogenesis. It is concluded that reduction of damage reduces epileptogenesis and that supplementing specific NTFs in lesion areas represents a new approach to the therapy of neuronal damage and of its consequences.

  8. Localized delivery of fibroblast growth factor–2 and brain-derived neurotrophic factor reduces spontaneous seizures in an epilepsy model

    PubMed Central

    Paradiso, Beatrice; Marconi, Peggy; Zucchini, Silvia; Berto, Elena; Binaschi, Anna; Bozac, Aleksandra; Buzzi, Andrea; Mazzuferi, Manuela; Magri, Eros; Mora, Graciela Navarro; Rodi, Donata; Su, Tao; Volpi, Ilaria; Zanetti, Lara; Marzola, Andrea; Manservigi, Roberto; Fabene, Paolo F.; Simonato, Michele

    2009-01-01

    A loss of neurons is observed in the hippocampus of many patients with epilepsies of temporal lobe origin. It has been hypothesized that damage limitation or repair, for example using neurotrophic factors (NTFs), may prevent the transformation of a normal tissue into epileptic (epileptogenesis). Here, we used viral vectors to locally supplement two NTFs, fibroblast growth factor–2 (FGF-2) and brain-derived neurotrophic factor (BDNF), when epileptogenic damage was already in place. These vectors were first characterized in vitro, where they increased proliferation of neural progenitors and favored their differentiation into neurons, and they were then tested in a model of status epilepticus-induced neurodegeneration and epileptogenesis. When injected in a lesioned hippocampus, FGF-2/BDNF expressing vectors increased neuronogenesis, embanked neuronal damage, and reduced epileptogenesis. It is concluded that reduction of damage reduces epileptogenesis and that supplementing specific NTFs in lesion areas represents a new approach to the therapy of neuronal damage and of its consequences. PMID:19366663

  9. Combination of omega-3 Fatty acids, lithium, and aripiprazole reduces oxidative stress in brain of mice with mania.

    PubMed

    Arunagiri, Pandiyan; Rajeshwaran, Krishnamoorthy; Shanthakumar, Janakiraman; Tamilselvan, Thangavel; Balamurugan, Elumalai

    2014-09-01

    Manic episode in bipolar disorder (BD) was evaluated in the present study with supplementation of omega-3 fatty acids in combination with aripiprazole and lithium on methylphenidate (MPD)-induced manic mice model. Administration of MPD 5 mg/kg bw intraperitoneally (i.p.) caused increase in oxidative stress in mice brain. To retract this effect, supplementation of omega-3 fatty acids 1.5 ml/kg (p.o.), aripiprazole 1.5 mg/kg bw (i.p.), and lithium 50 mg/kg bw (p.o) were given to mice. Omega-3 fatty acids alone and in combination with aripiprazole- and lithium-treated groups significantly reduced the levels of superoxide dismutase (SOD), catalase (CAT), and lipid peroxidation products (thiobarbituric acid reactive substances) in the brain. MPD treatment significantly decreased the reduced glutathione (GSH) level and glutathione peroxidase (GPx) activity, and they were restored by supplementation of omega-3 fatty acids with aripiprazole and lithium. There is no remarkable difference in the effect of creatine kinase (CK) activity between MPD-induced manic model and the treatment groups. Therefore, our results demonstrate that oxidative stress imbalance and mild insignificant CK alterations induced by administration of MPD can be restored back to normal physiological levels through omega-3 fatty acids combined with lithium and aripiprazole that attributes to effective prevention against mania in adult male Swiss albino mice.

  10. Chronic caloric restriction reduces tissue damage and improves spatial memory in a rat model of traumatic brain injury.

    PubMed

    Rich, Nicholas J; Van Landingham, Jacob W; Figueiroa, Silvia; Seth, Rohit; Corniola, Rikki S; Levenson, Cathy W

    2010-10-01

    Although it has been known for some time that chronic caloric or dietary restriction reduces the risk of neurodegenerative disorders and injury following ischemia, the possible role of chronic restriction in improving outcomes after traumatic brain injury (TBI) has not been previously studied. Therefore, 2-month-old male Sprague-Dawley rats were divided into two dietary groups, an ad libitum fed group (AL) and a caloric-restriction group (CR) that was provided with 70% of the food intake of AL rats (n = 10/group). After 4 months, a weight-drop device (300 g) was used to produce a 2-mm bilateral medial frontal cortex contusion following craniotomy. Additional animals in each dietary group (n = 10) were used as sham-operated controls. The CR diet resulted in body weights that were reduced by 30% compared with AL controls. Not only did CR decrease the size of the cortical lesion after injury, there were marked improvements in spatial memory as measured by Morris water maze that included an increase in the number of animals successfully finding the platform as well as significantly reduced time to finding the hidden platform. Western analysis, used to examine the expression of proteins that play a role in neuronal survival, revealed significant increases in brain-derived neurotrophic factor (BDNF) in the cortical region around the site of injury and in the hippocampus in CR rats after injury. These findings suggest that molecular mechanisms involved in cell survival may play a role in reducing tissue damage and improving cognition after TBI and that these mechanisms can be regulated by dietary interventions. PMID:20544832

  11. Subject-to-subject adaptation to reduce calibration time in motor imagery-based brain-computer interface.

    PubMed

    Arvaneh, Mahnaz; Robertson, Ian; Ward, Tomas E

    2014-01-01

    In order to enhance the usability of a motor imagery-based brain-computer interface (BCI), it is highly desirable to reduce the calibration time. Due to inter-subject variability, typically a new subject has to undergo a 20-30 minutes calibration session to collect sufficient data for training a BCI model based on his/her brain patterns. This paper proposes a new subject-to-subject adaptation algorithm to reliably reduce the calibration time of a new subject to only 3-4 minutes. To reduce the calibration time, unlike several past studies, the proposed algorithm does not require a large pool of historic sessions. In the proposed algorithm, using only a few trials from the new subject, first, the new subject's data is adapted to each available historic session separately. This is done by a linear transformation minimizing the distribution difference between the two groups of EEG data. Thereafter, among the available historic sessions, the one matched the most to the new subject's adapted data is selected as the calibration session. Consequently, the previously trained model based on the selected historic session is entirely used for the classification of the new subject's data after adaptation. The proposed algorithm is evaluated on a publicly available dataset with 9 subjects. For each subject, the calibration session is selected only from the calibration sessions of the eight other subjects. The experimental results showed that our proposed algorithm not only reduced the calibration time by 85%, but also performed on average only 1.7% less accurate than the subject-dependent calibration results.

  12. [The effects of taurine on oxidative processes in brain edema].

    PubMed

    Hovsepyan, L M; Zakaryan, G V; Melkonyan, M M; Zakaryan, A V

    2015-01-01

    Цель исследования — изучение свободнорадикального окисления липидов, окислительной модификации белка, активности глутатионпероксидазы и глутатионредуктазы, а также конечного продукта оксида азота — нитрита в митохондриальной фракции головного мозга животных во время экспериментально вызванного отека мозга при лечении таурином. Материал и методы. Токсический отек головного мозга вызывали внутрибрюшинным введением крысам тетраэтилолова в дозе 10 мг на 1 кг массы животного. Интенсивность перекисного окисления липидов регистрировали по содержанию гидроперекисей и малонового диальдегида. Результаты и заключение. Анализ уровней окислительной модификации белков показал, что отек мозга характеризуется повышением содержания продуктов окислительной модификации белков и липидов, оксида азота, а также снижением содержания глутатиона и понижением активности глутатионсодержащих ферментов (глутатионпероксидаза и глутатионредуктаза). Исходя из этого, большой интерес вызывает использование препаратов, которые могут повышать содержание глутатиона и активизировать ферменты, содержащие его в своей структуре. К таким препаратам относится таурин. По нашим данным, введение таурина в течение 5 дней в дозе 50 мг/кг приводило к уменьшению содержания продуктов перекисного окисления липидов, нормализации окислительной модификации белков в митохондриальной фракции головного мозга крыс с экспериментальным отеком мозга.

  13. Use of video laryngoscopy and camera phones to communicate progression of laryngeal edema in assessing for extubation: a case series.

    PubMed

    Newmark, Jordan L; Ahn, Young K; Adams, Mark C; Bittner, Edward A; Wilcox, Susan R

    2013-01-01

    Video laryngoscopy has demonstrated utility in airway management. For the present case series, we report the use of video laryngoscopy to evaluate the airway of critically ill, mechanically ventilated patients, as a means to reduce the risk of immediate postextubation stridor by assessing the degree of laryngeal edema. We also describe the use of cellular phone cameras to document and communicate airway edema in using video laryngoscopy for the patients' medical records. We found video laryngoscopy to be an effective method of assessing airway edema, and cellular phone cameras were useful for recording and documenting video laryngoscopy images for patients' medical records.

  14. Melatonin reduces membrane rigidity and oxidative damage in the brain of SAMP8 mice.

    PubMed

    García, J J; Piñol-Ripoll, G; Martínez-Ballarín, E; Fuentes-Broto, L; Miana-Mena, F J; Venegas, C; Caballero, B; Escames, G; Coto-Montes, A; Acuña-Castroviejo, D

    2011-11-01

    We evaluated the autophagy-lysosomal pathway and membrane fluidity in brain cells and mitochondrial membranes obtained from senescence-accelerated (SAMP(8)) and senescence-resistant (SAMR(1)) mice at 5 and 10 months of age. Moreover, we studied whether chronic treatment from age 1 to 10 months with melatonin stabilizes membrane fluidity. Fluidity was measured by polarization changes of 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene-p-toluene sulfonate. Results showed that in untreated animals at 5 months of age, synaptosomal and mitochondrial fluidity was decreased in SAMP(8) compared to SAMR(1), as was the cathepsin D/B ratio, indicating dysfunction of the autophagy-lysosomal pathway. Moreover, we detected synaptosomal rigidity and programmed cell death capability in both groups at 10 months of age. Mitochondrial fluidity, however, did not show a significant age-dependent change but was lower in SAMP(8) than in SAMR(1) at the 5- and 10-month time points. Melatonin administration prevented rigidity in the mitochondrial membrane and seemed to decrease age-related autophagy-lysosomal alterations. These data suggest that melatonin may act to slow down the aging process because of its ability to enhance membrane fluidity and maintain structural pathways. PMID:20096480

  15. Congenital brain serotonin deficiency leads to reduced ethanol sensitivity and increased ethanol consumption in mice.

    PubMed

    Sachs, Benjamin D; Salahi, A Ayten; Caron, Marc G

    2014-02-01

    Serotonergic dysfunction has been hypothesized to play an important role in the pathophysiology of alcoholism. However, whether congenital serotonin (5-HT) deficiency leads to increased alcohol consumption or affects ethanol-related behaviors has not been established. Here, we use a transgenic mouse line that expresses a hypofunctional variant of the 5-HT synthesis enzyme, tryptophan hydroxylase 2, to examine the impact of 5-HT deficiency on responses to alcohol. We demonstrate that these 5-HT-deficient transgenic animals (Tph2KI mice) recover their righting reflex more rapidly than wild-type controls following a high dose of ethanol and exhibit blunted locomotor retardation in response to repeated ethanol administration. In addition, compared to WT controls, 5-HT-deficient animals consume significantly more ethanol and exhibit increased preference for ethanol in two-bottle choice tests. Our data also suggest that 5-HT plays a critical role in mediating the effects of ethanol on Akt/GSK3β signaling in the nucleus accumbens. Overall, our results corroborate previous theories regarding the importance of brain 5-HT levels in mediating responsiveness to alcohol and demonstrate, for the first time, that congenital 5-HT deficiency leads to increased ethanol consumption and decreased sensitivity to the sedative-like effects of ethanol, perhaps in part through modulating Akt/GSK3β signaling.

  16. Luteolin Reduces Alzheimer’s Disease Pathologies Induced by Traumatic Brain Injury

    PubMed Central

    Sawmiller, Darrell; Li, Song; Shahaduzzaman, Md; Smith, Adam J.; Obregon, Demian; Giunta, Brian; Borlongan, Cesar V.; Sanberg, Paul R.; Tan, Jun

    2014-01-01

    Traumatic brain injury (TBI) occurs in response to an acute insult to the head and is recognized as a major risk factor for Alzheimer’s disease (AD). Indeed, recent studies have suggested a pathological overlap between TBI and AD, with both conditions exhibiting amyloid-beta (Aβ) deposits, tauopathy, and neuroinflammation. Additional studies involving animal models of AD indicate that some AD-related genotypic determinants may be critical factors enhancing temporal and phenotypic symptoms of TBI. Thus in the present study, we examined sub-acute effects of moderate TBI delivered by a gas-driven shock tube device in Aβ depositing Tg2576 mice. Three days later, significant increases in b-amyloid deposition, glycogen synthase-3 (GSK-3) activation, phospho-tau, and pro-inflammatory cytokines were observed. Importantly, peripheral treatment with the naturally occurring flavonoid, luteolin, significantly abolished these accelerated pathologies. This study lays the groundwork for a safe and natural compound that could prevent or treat TBI with minimal or no deleterious side effects in combat personnel and others at risk or who have experienced TBI. PMID:24413756

  17. MAP training: combining meditation and aerobic exercise reduces depression and rumination while enhancing synchronized brain activity

    PubMed Central

    Alderman, B L; Olson, R L; Brush, C J; Shors, T J

    2016-01-01

    Mental and physical (MAP) training is a novel clinical intervention that combines mental training through meditation and physical training through aerobic exercise. The intervention was translated from neuroscientific studies indicating that MAP training increases neurogenesis in the adult brain. Each session consisted of 30 min of focused-attention (FA) meditation and 30 min of moderate-intensity aerobic exercise. Fifty-two participants completed the 8-week intervention, which consisted of two sessions per week. Following the intervention, individuals with major depressive disorder (MDD; n=22) reported significantly less depressive symptoms and ruminative thoughts. Typical healthy individuals (n=30) also reported less depressive symptoms at follow-up. Behavioral and event-related potential indices of cognitive control were collected at baseline and follow-up during a modified flanker task. Following MAP training, N2 and P3 component amplitudes increased relative to baseline, especially among individuals with MDD. These data indicate enhanced neural responses during the detection and resolution of conflicting stimuli. Although previous research has supported the individual beneficial effects of aerobic exercise and meditation for depression, these findings indicate that a combination of the two may be particularly effective in increasing cognitive control processes and decreasing ruminative thought patterns. PMID:26836414

  18. CAR T Cells Targeting Podoplanin Reduce Orthotopic Glioblastomas in Mouse Brains.

    PubMed

    Shiina, Satoshi; Ohno, Masasuke; Ohka, Fumiharu; Kuramitsu, Shunichiro; Yamamichi, Akane; Kato, Akira; Motomura, Kazuya; Tanahashi, Kuniaki; Yamamoto, Takashi; Watanabe, Reiko; Ito, Ichiro; Senga, Takeshi; Hamaguchi, Michinari; Wakabayashi, Toshihiko; Kaneko, Mika K; Kato, Yukinari; Chandramohan, Vidyalakshmi; Bigner, Darell D; Natsume, Atsushi

    2016-03-01

    Glioblastoma (GBM) is the most common and lethal primary malignant brain tumor in adults with a 5-year overall survival rate of less than 10%. Podoplanin (PDPN) is a type I transmembrane mucin-like glycoprotein, expressed in the lymphatic endothelium. Several solid tumors overexpress PDPN, including the mesenchymal type of GBM, which has been reported to present the worst prognosis among GBM subtypes. Chimeric antigen receptor (CAR)-transduced T cells can recognize predefined tumor surface antigens independent of MHC restriction, which is often downregulated in gliomas. We constructed a lentiviral vector expressing a third-generation CAR comprising a PDPN-specific antibody (NZ-1-based single-chain variable fragment) with CD28, 4-1BB, and CD3ζ intracellular domains. CAR-transduced peripheral blood monocytes were immunologically evaluated by calcein-mediated cytotoxic assay, ELISA, tumor size, and overall survival. The generated CAR T cells were specific and effective against PDPN-positive GBM cells in vitro. Systemic injection of the CAR T cells into an immunodeficient mouse model inhibited the growth of intracranial glioma xenografts in vivo. CAR T-cell therapy that targets PDPN would be a promising adoptive immunotherapy to treat mesenchymal GBM.

  19. MAP training: combining meditation and aerobic exercise reduces depression and rumination while enhancing synchronized brain activity.

    PubMed

    Alderman, B L; Olson, R L; Brush, C J; Shors, T J

    2016-02-02

    Mental and physical (MAP) training is a novel clinical intervention that combines mental training through meditation and physical training through aerobic exercise. The intervention was translated from neuroscientific studies indicating that MAP training increases neurogenesis in the adult brain. Each session consisted of 30 min of focused-attention (FA) meditation and 30 min of moderate-intensity aerobic exercise. Fifty-two participants completed the 8-week intervention, which consisted of two sessions per week. Following the intervention, individuals with major depressive disorder (MDD; n=22) reported significantly less depressive symptoms and ruminative thoughts. Typical healthy individuals (n=30) also reported less depressive symptoms at follow-up. Behavioral and event-related potential indices of cognitive control were collected at baseline and follow-up during a modified flanker task. Following MAP training, N2 and P3 component amplitudes increased relative to baseline, especially among individuals with MDD. These data indicate enhanced neural responses during the detection and resolution of conflicting stimuli. Although previous research has supported the individual beneficial effects of aerobic exercise and meditation for depression, these findings indicate that a combination of the two may be particularly effective in increasing cognitive control processes and decreasing ruminative thought patterns.

  20. The evolution of scuba divers pulmonary edema.

    PubMed

    Edmonds, Carl

    2016-01-01

    The evolution of scuba divers pulmonary edema is described. When discovered in 1981, it was believed to be a cold-induced response in a submerged, otherwise healthy, scuba diver. The clinical features are described and discussed, as are the demographics. An alleged prevalence of 1.1% was complicated by problematic statistics and an apparent increase in reported cases. Recurrences both while diving and swimming or snorkeling were common. More recent case reports and surveys are described, identifying predisposing factors and associations, including cardiac pathology. Stress cardiomyopathies, reversible myocardial disorder or Takotsubo cardiomyopathy, may complicate the presentation, especially in older females. Relevant cardiac investigations and autopsy findings are reviewed. Disease severity and potential lethality of scuba divers pulmonary edema became more apparent early this century, and these influence our current recommendations to survivors. First aid and treatment are also discussed. PMID:27265985

  1. Influenza leaves a TRAIL to pulmonary edema.

    PubMed

    Brauer, Rena; Chen, Peter

    2016-04-01

    Influenza infection can cause acute respiratory distress syndrome (ARDS), leading to poor disease outcome with high mortality. One of the driving features in the pathogenesis of ARDS is the accumulation of fluid in the alveoli, which causes severe pulmonary edema and impaired oxygen uptake. In this issue of the JCI, Peteranderl and colleagues define a paracrine communication between macrophages and type II alveolar epithelial cells during influenza infection where IFNα induces macrophage secretion of TRAIL that causes endocytosis of Na,K-ATPase by the alveolar epithelium. This reduction of Na,K-ATPase expression decreases alveolar fluid clearance, which in turn leads to pulmonary edema. Inhibition of the TRAIL signaling pathway has been shown to improve lung injury after influenza infection, and future studies will be needed to determine if blocking this pathway is a viable option in the treatment of ARDS. PMID:26999598

  2. Management of pseudophakic cystoid macular edema.

    PubMed

    Guo, Suqin; Patel, Shriji; Baumrind, Ben; Johnson, Keegan; Levinsohn, Daniel; Marcus, Edward; Tannen, Brad; Roy, Monique; Bhagat, Neelakshi; Zarbin, Marco

    2015-01-01

    Pseudophakic cystoid macular edema (PCME) is a common complication following cataract surgery. Acute PCME may resolve spontaneously, but some patients will develop chronic macular edema that affects vision and is difficult to treat. This disease was described more than 50 years ago, and there are multiple options for clinical management. We discuss mechanisms, clinical efficacy, and adverse effects of these treatment modalities. Topical non-steroidal anti-inflammatory agents and corticosteroids are widely used and, when combined, may have a synergistic effect. Intravitreal corticosteroids and anti-vascular endothelial growth factor (anti-VEGF) agents have shown promise when topical medications either fail or have had limited effects. Randomized clinical studies evaluating anti-VEGF agents are needed to fully evaluate benefits and risks. When PCME is either refractory to medical therapy or is associated with significant vitreous involvement, pars plana vitrectomy has been shown to improve outcomes, though it is associated with additional risks.

  3. The evolution of scuba divers pulmonary edema.

    PubMed

    Edmonds, Carl

    2016-01-01

    The evolution of scuba divers pulmonary edema is described. When discovered in 1981, it was believed to be a cold-induced response in a submerged, otherwise healthy, scuba diver. The clinical features are described and discussed, as are the demographics. An alleged prevalence of 1.1% was complicated by problematic statistics and an apparent increase in reported cases. Recurrences both while diving and swimming or snorkeling were common. More recent case reports and surveys are described, identifying predisposing factors and associations, including cardiac pathology. Stress cardiomyopathies, reversible myocardial disorder or Takotsubo cardiomyopathy, may complicate the presentation, especially in older females. Relevant cardiac investigations and autopsy findings are reviewed. Disease severity and potential lethality of scuba divers pulmonary edema became more apparent early this century, and these influence our current recommendations to survivors. First aid and treatment are also discussed.

  4. Expression pattern of aquaporins in patients with primary nephrotic syndrome with edema.

    PubMed

    Wang, Yu; Bu, Jimei; Zhang, Qing; Chen, Kai; Zhang, Jihong; Bao, Xiaorong

    2015-10-01

    The association between the expression of aquaporins (AQPs) in kidney tissues and the occurrence of edema in nephrotic syndrome (NS) remains unclear. The current study aimed to investigate this association. A total of 54 patients with primary glomerular disease, diagnosed by renal biopsy, were divided into three groups: Control, NS without edema and NS with edema. The expression of AQP1, AQP2, AQP3 and AQP4 in kidney tissues from these patients was assessed using immunohistochemistry, and urinary AQP concentrations were quantified by ELISA. Comparison of the three groups was conducted using one way analysis of variance, independent samples t‑test or the Chi‑square test. AQP1 was strongly expressed in the proximal tubules. The proportion of the AQP1‑positive area in kidney tissues from patients with NS with edema was significantly reduced, in comparison with the other two groups. By contrast, the proportion of the AQP2‑positive area in the NS with edema group was significantly higher than that of the other two groups; significant differences were also observed between the control and NS without edema groups for this parameter. Urinary AQP2 concentrations in patients with NS (with and without edema) were significantly higher than that of the control group, and exhibited a significant positive correlation with kidney tissue AQP2 concentrations. The present study demonstrated the abnormal expression pattern of AQP1‑AQP4 in the kidney tissues of patients with NS, providing a basis for an improved understanding of the role of AQP in the pathogenesis of NS.

  5. High altitude pulmonary edema in mountain climbers.

    PubMed

    Korzeniewski, Krzysztof; Nitsch-Osuch, Aneta; Guzek, Aneta; Juszczak, Dariusz

    2015-04-01

    Every year thousands of ski, trekking or climbing fans travel to the mountains where they stay at the altitude of more than 2500-3000m above sea level or climb mountain peaks, often exceeding 7000-8000m. High mountain climbers are at a serious risk from the effects of adverse environmental conditions prevailing at higher elevations. They may experience health problems resulting from hypotension, hypoxia or exposure to low temperatures; the severity of those conditions is largely dependent on elevation, time of exposure as well as the rate of ascent and descent. A disease which poses a direct threat to the lives of mountain climbers is high altitude pulmonary edema (HAPE). It is a non-cardiogenic pulmonary edema which typically occurs in rapidly climbing unacclimatized lowlanders usually within 2-4 days of ascent above 2500-3000m. It is the most common cause of death resulting from the exposure to high altitude. The risk of HAPE rises with increased altitude and faster ascent. HAPE incidence ranges from an estimated 0.01% to 15.5%. Climbers with a previous history of HAPE, who ascent rapidly above 4500m have a 60% chance of illness recurrence. The aim of this article was to present the relevant details concerning epidemiology, pathophysiology, clinical symptoms, prevention, and treatment of high altitude pulmonary edema among climbers in the mountain environment.

  6. [High-altitude pulmonary edema in Japan].

    PubMed

    Kobayashi, T

    1995-12-01

    To understand the pathophysiology of high-altitude pulmonary edema (HAPE), we examined the pathway of adaptation to high altitude in lifelong of Tibet. The Tibetan natives had higher exercise performance, but lower maximal oxygen uptake and lower blood lactate concentrations than did acclimatized Han newcomers. Clinical and basic studies done to determine the pathophysiologic characteristics of 47 patients with HAPE and of subjects susceptible to HAPE. The altitude of onset was 2,680 m to 3,190 m above sea level. Results of hemodynamic studies and the presence of protein-rich edema fluid indicated that HAPE is noncardiogenic and is a type of increased permeability edema. The levels of IL-1 beta, IL-6, IL-8, and TNF-alpha in bronchoalveolar lavage fluid from subjects with HAPE were high on admission. The subjects susceptible to HAPE had much greater increases in an index of pulmonary vascular resistance than did the controls, which resulted in much higher levels of pulmonary arterial pressure during both acute hypoxia and hypobaria. The subjects susceptible to HAPE also has blunted hypoxic ventilatory drives. We studied whether human leukocyte antigen DR-6 functions as a genetic predisposition to HAPE. The frequency of DR-6 was increased in the subjects susceptible to HAPE, which suggests that they have a constitutional abnormality in the pulmonary circulatory, and ventilatory responses to hypoxia and hypobaria, and that genetic factors may be involved in the development of HAPE.

  7. Regulation of brain aquaporins.

    PubMed

    Zelenina, Marina

    2010-11-01

    Three aquaporins are expressed in the brain. AQP4, the predominant brain water channel, is expressed in astrocyte endfeet facing brain capillaries, perisynaptic spaces, and nodes of Ranvier. It is implicated in brain edema formation and resolution. It is also believed to assist clearance of K(+) released during neuronal activity. AQP1 is expressed in epithelial cells of choroid plexus and is implicated in cerebrospinal fluid formation. AQP9, which has been reported to be present in astrocytes and in subpopulations of neurons, is implicated in the brain energy metabolism. All three brain AQPs are strongly upregulated in brain tumors and in injured brain tissue. Water and solute transport via AQPs depends on concentration gradients across the membrane, but the magnitude of the transport is to a large extent determined by the single channel permeability of AQPs and by their abundance in the cell membrane. The future therapies will have to address not only the forces driving the water and solute transport (e.g. as mannitol infusion does in the treatment of brain edema), but also the regulation of AQPs, which provide the means for water entry to the brain, for water exit from the brain, and for redistribution of water and solutes within the brain compartments. This review summarizes the data concerning structure, permeability, role in the brain, short-term and long-term regulation of the three AQPs.

  8. Reduced glucose uptake and Aβ in brain regions with hyperintensities in connected white matter

    PubMed Central

    Rusinek, H.; Tsui, W.; Mosconi, L.; Li, Y.; Osorio, R.S.; Williams, S.; Randall, C.; Spector, N.; McHugh, P.; Murray, J.; Pirraglia, E.; Vallabhajosula, S.; Raj, A.; de Leon, M.J.

    2014-01-01

    Interstitial concentration of amyloid beta (Aß) is positively related to synaptic activity in animal experiments. In humans, Aß deposition in Alzheimer's disease overlaps with cortical regions highly active earlier in life. White matter lesions (WML) disrupt connections between gray matter (GM) regions which in turn changes their activation patterns. Here, we tested if WML are related to Aß accumulation (measured with PiB-PET) and glucose uptake (measured with FDGPET) in connected GM. WML masks from 72 cognitively normal (age 61.7±9.6 years, 71% women) individuals were obtained from T2-FLAIR. MRI and PET images were normalized into common space, segmented and parcellated into gray matter (GM) regions. The effects of WML on connected GM regions were assessed using the Change in Connectivity (ChaCo) score. Defined for each GM region, ChaCo is the percentage of WM tracts connecting to that region that pass through the WML mask. The regional relationship between ChaCo, glucose uptake and Aß was explored via linear regression. Subcortical regions of the bilateral caudate, putamen, calcarine, insula, thalamus and anterior cingulum had WM connections with the most lesions, followed by frontal, occipital, temporal, parietal and cerebellar regions. Regional analysis revealed that GM with more lesions in connecting WM and thus impaired connectivity had lower FDG-PET (r=0.20, p<0.05 corrected) and lower PiB uptake (r=0.28, p<0.05 corrected). Regional regression also revealed that both ChaCo (β=0.045) and FDG-PET (β=0.089) were significant predictors of PiB. In conclusion, brain regions with more lesions in connecting WM had lower glucose metabolism and lower Aß deposition. PMID:24999038

  9. Reduced glucose uptake and Aβ in brain regions with hyperintensities in connected white matter.

    PubMed

    Glodzik, L; Kuceyeski, A; Rusinek, H; Tsui, W; Mosconi, L; Li, Y; Osorio, R S; Williams, S; Randall, C; Spector, N; McHugh, P; Murray, J; Pirraglia, E; Vallabhajosula, S; Raj, A; de Leon, M J

    2014-10-15

    Interstitial concentration of amyloid beta (Aß) is positively related to synaptic activity in animal experiments. In humans, Aß deposition in Alzheimer's disease overlaps with cortical regions highly active earlier in life. White matter lesions (WML) disrupt connections between gray matter (GM) regions which in turn changes their activation patterns. Here, we tested if WML are related to Aß accumulation (measured with PiB-PET) and glucose uptake (measured with FDG-PET) in connected GM. WML masks from 72 cognitively normal (age 61.7 ± 9.6 years, 71% women) individuals were obtained from T2-FLAIR. MRI and PET images were normalized into common space, segmented and parcellated into gray matter (GM) regions. The effects of WML on connected GM regions were assessed using the Change in Connectivity (ChaCo) score. Defined for each GM region, ChaCo is the percentage of WM tracts connecting to that region that pass through the WML mask. The regional relationship between ChaCo, glucose uptake and Aß was explored via linear regression. Subcortical regions of the bilateral caudate, putamen, calcarine, insula, thalamus and anterior cingulum had WM connections with the most lesions, followed by frontal, occipital, temporal, parietal and cerebellar regions. Regional analysis revealed that GM with more lesions in connecting WM and thus impaired connectivity had lower FDG-PET (r = 0.20, p<0.05 corrected) and lower PiB uptake (r = 0.28, p<0.05 corrected). Regional regression also revealed that both ChaCo (β = 0.045) and FDG-PET (β = 0.089) were significant predictors of PiB. In conclusion, brain regions with more lesions in connecting WM had lower glucose metabolism and lower Aß deposition.

  10. Treatment with a monoclonal antibody against methamphetamine and amphetamine reduces maternal and fetal rat brain concentrations in late pregnancy.

    PubMed

    White, Sarah J; Hendrickson, Howard P; Atchley, William T; Laurenzana, Elizabeth M; Gentry, W Brooks; Williams, D Keith; Owens, S Michael

    2014-08-01

    We hypothesized that treatment of pregnant rat dams with a dual reactive monoclonal antibody (mAb4G9) against (+)-methamphetamine [METH; equilibrium dissociation rate constant (KD) = 16 nM] and (+)-amphetamine (AMP; KD = 102 nM) could confer maternal and fetal protection from brain accumulation of both drugs of abuse. To test this hypothesis, pregnant Sprague-Dawley rats (on gestational day 21) received a 1 mg/kg i.v. METH dose, followed 30 minutes later by vehicle or mAb4G9 treatment. The mAb4G9 dose was 0.56 mole-equivalent in binding sites to the METH body burden. Pharmacokinetic analysis showed baseline METH and AMP elimination half-lives were congruent in dams and fetuses, but the METH volume of distribution in dams was nearly double the fetal values. The METH and AMP area under the serum concentration-versus-time curves from 40 minutes to 5 hours after mAb4G9 treatment increased >7000% and 2000%, respectively, in dams. Fetal METH serum did not change, but AMP decreased 23%. The increased METH and AMP concentrations in maternal serum resulted from significant increases in mAb4G9 binding. Protein binding changed from ∼15% to > 90% for METH and AMP. Fetal serum protein binding appeared to gradually increase, but the absolute fraction bound was trivial compared with the dams. mAb4G9 treatment significantly reduced METH and AMP brain values by 66% and 45% in dams and 44% and 46% in fetuses (P < 0.05), respectively. These results show anti-METH/AMP mAb4G9 therapy in dams can offer maternal and fetal brain protection from the potentially harmful effects of METH and AMP.

  11. Protective Ventilation of Preterm Lambs Exposed to Acute Chorioamnionitis Does Not Reduce Ventilation-Induced Lung or Brain Injury

    PubMed Central

    Barton, Samantha K.; Moss, Timothy J. M.; Hooper, Stuart B.; Crossley, Kelly J.; Gill, Andrew W.; Kluckow, Martin; Zahra, Valerie; Wong, Flora Y.; Pichler, Gerhard; Galinsky, Robert; Miller, Suzanne L.

    2014-01-01

    Background The onset of mechanical ventilation is a critical time for the initiation of cerebral white matter (WM) injury in preterm neonates, particularly if they are inadvertently exposed to high tidal volumes (VT) in the delivery room. Protective ventilation strategies at birth reduce ventilation-induced lung and brain inflammation and injury, however its efficacy in a compromised newborn is not known. Chorioamnionitis is a common antecedent of preterm birth, and increases the risk and severity of WM injury. We investigated the effects of high VT ventilation, after chorioamnionitis, on preterm lung and WM inflammation and injury, and whether a protective ventilation strategy could mitigate the response. Methods Pregnant ewes (n = 18) received intra-amniotic lipopolysaccharide (LPS) 2 days before delivery, instrumentation and ventilation at 127±1 days gestation. Lambs were either immediately euthanased and used as unventilated controls (LPSUVC; n = 6), or were ventilated using an injurious high VT strategy (LPSINJ; n = 5) or a protective ventilation strategy (LPSPROT; n = 7) for a total of 90 min. Mean arterial pressure, heart rate and cerebral haemodynamics and oxygenation were measured continuously. Lungs and brains underwent molecular and histological assessment of inflammation and injury. Results LPSINJ lambs had poorer oxygenation than LPSPROT lambs. Ventilation requirements and cardiopulmonary and systemic haemodynamics were not different between ventilation strategies. Compared to unventilated lambs, LPSINJ and LPSPROT lambs had increases in pro-inflammatory cytokine expression within the lungs and brain, and increased astrogliosis (p<0.02) and cell death (p<0.05) in the WM, which were equivalent in magnitude between groups. Conclusions Ventilation after acute chorioamnionitis, irrespective of strategy used, increases haemodynamic instability and lung and cerebral inflammation and injury. Mechanical ventilation is a potential contributor

  12. Cyclosporine Treatment Reduces Oxygen Free Radical Generation and Oxidative Stress in the Brain of Hypoxia-Reoxygenated Newborn Piglets

    PubMed Central

    Liu, Jiang-Qin; Chaudhary, Hetal; Brocks, Dion R.; Bigam, David L.; Cheung, Po-Yin

    2012-01-01

    Oxygen free radicals have been implicated in the pathogenesis of hypoxic-ischemic encephalopathy. It has previously been shown in traumatic brain injury animal models that treatment with cyclosporine reduces brain injury. However, the potential neuroprotective effect of cyclosporine in asphyxiated neonates has yet to be fully studied. Using an acute newborn swine model of hypoxia-reoxygenation, we evaluated the effects of cyclosporine on the brain, focusing on hydrogen peroxide (H2O2) production and markers of oxidative stress. Piglets (1–4 d, 1.4–2.5 kg) were block-randomized into three hypoxia-reoxygenation experimental groups (2 h hypoxia followed by 4 h reoxygenation)(n = 8/group). At 5 min after reoxygenation, piglets were given either i.v. saline (placebo, controls) or cyclosporine (2.5 or 10 mg/kg i.v. bolus) in a blinded-randomized fashion. An additional sham-operated group (n = 4) underwent no hypoxia-reoxygenation. Systemic hemodynamics, carotid arterial blood flow (transit-time ultrasonic probe), cerebral cortical H2O2 production (electrochemical sensor), cerebral tissue glutathione (ELISA) and cytosolic cytochrome-c (western blot) levels were examined. Hypoxic piglets had cardiogenic shock (cardiac output 40–48% of baseline), hypotension (mean arterial pressure 27–31 mmHg) and acidosis (pH 7.04) at the end of 2 h of hypoxia. Post-resuscitation cyclosporine treatment, particularly the higher dose (10 mg/kg), significantly attenuated the increase in cortical H2O2 concentration during reoxygenation, and was associated with lower cerebral oxidized glutathione levels. Furthermore, cyclosporine treatment significantly attenuated the increase in cortical cytochrome-c and lactate levels. Carotid blood arterial flow was similar among groups during reoxygenation. Conclusively, post-resuscitation administration of cyclosporine significantly attenuates H2O2 production and minimizes oxidative stress in newborn piglets following hypoxia

  13. Cortical surface-based analysis reduces bias and variance in kinetic modeling of brain PET data.

    PubMed

    Greve, Douglas N; Svarer, Claus; Fisher, Patrick M; Feng, Ling; Hansen, Adam E; Baare, William; Rosen, Bruce; Fischl, Bruce; Knudsen, Gitte M

    2014-05-15

    Exploratory (i.e., voxelwise) spatial methods are commonly used in neuroimaging to identify areas that show an effect when a region-of-interest (ROI) analysis cannot be performed because no strong a priori anatomical hypothesis exists. However, noise at a single voxel is much higher than noise in a ROI making noise management critical to successful exploratory analysis. This work explores how preprocessing choices affect the bias and variability of voxelwise kinetic modeling analysis of brain positron emission tomography (PET) data. These choices include the use of volume- or cortical surface-based smoothing, level of smoothing, use of voxelwise partial volume correction (PVC), and PVC masking threshold. PVC was implemented using the Muller-Gartner method with the masking out of voxels with low gray matter (GM) partial volume fraction. Dynamic PET scans of an antagonist serotonin-4 receptor radioligand ([(11)C]SB207145) were collected on sixteen healthy subjects using a Siemens HRRT PET scanner. Kinetic modeling was used to compute maps of non-displaceable binding potential (BPND) after preprocessing. The results showed a complicated interaction between smoothing, PVC, and masking on BPND estimates. Volume-based smoothing resulted in large bias and intersubject variance because it smears signal across tissue types. In some cases, PVC with volume smoothing paradoxically caused the estimated BPND to be less than when no PVC was used at all. When applied in the absence of PVC, cortical surface-based smoothing resulted in dramatically less bias and the least variance of the methods tested for smoothing levels 5mm and higher. When used in combination with PVC, surface-based smoothing minimized the bias without significantly increasing the variance. Surface-based smoothing resulted in 2-4 times less intersubject variance than when volume smoothing was used. This translates into more than 4 times fewer subjects needed in a group analysis to achieve similarly powered

  14. Cerebrolysin attenuates blood-brain barrier and brain pathology following whole body hyperthermia in the rat.

    PubMed

    Sharma, Hari Shanker; Zimmermann-Meinzingen, Sibilla; Sharma, Aruna; Johanson, Conrad E

    2010-01-01

    The possibility that Cerebrolysin, a mixture of several neurotrophic factors, has some neuroprotective effects on whole body hyperthermia (WBH) induced breakdown of the blood-brain barrier (BBB), blood-CSF barrier (BCSFB), brain edema formation and neuropathology were examined in a rat model. Rats subjected to a 4 h heat stress at 38 degrees C in a biological oxygen demand (BOD) incubator exhibited profound increases in BBB and BCSFB permeability to Evans blue and radioiodine tracers compared to controls. Hippocampus, caudate nucleus, thalamus and hypothalamus exhibited pronounced increase in water content and brain pathology following 4 h heat stress. Pretreatment with Cerebrolysin (1, 2 or 5 mL/kg i.v.) 24 h before WBH significantly attenuated breakdown of the BBB or BCSFB and brain edema formation. This effect was dose dependent. Interestingly, the cell and tissue injury following WBH in cerebrolysin-treated groups were also considerably reduced. These novel observations suggest that cerebrolysin can attenuate WBH induced BBB and BCSFB damage resulting in neuroprotection.

  15. Neurons in Vulnerable Regions of the Alzheimer’s Disease Brain Display Reduced ATM Signaling123

    PubMed Central

    Shen, Xuting; Chen, Jianmin; Li, Jiali; Kofler, Julia

    2016-01-01

    Abstract Ataxia telangiectasia (A-T) is a multisystemic disease caused by mutations in the ATM (A-T mutated) gene. It strikes before 5 years of age and leads to dysfunctions in many tissues, including the CNS, where it leads to neurodegeneration, primarily in cerebellum. Alzheimer’s disease (AD), by contrast, is a largely sporadic neurodegenerative disorder that rarely strikes before the 7th decade of life with primary neuronal losses in hippocampus, frontal cortex, and certain subcortical nuclei. Despite these differences, we present data supporting the hypothesis that a failure of ATM signaling is involved in the neuronal death in individuals with AD. In both, partially ATM-deficient mice and AD mouse models, neurons show evidence for a loss of ATM. In human AD, three independent indices of reduced ATM function—nuclear translocation of histone deacetylase 4, trimethylation of histone H3, and the presence of cell cycle activity—appear coordinately in neurons in regions where degeneration is prevalent. These same neurons also show reduced ATM protein levels. And though they represent only a fraction of the total neurons in each affected region, their numbers significantly correlate with disease stage. This previously unknown role for the ATM kinase in AD pathogenesis suggests that the failure of ATM function may be an important contributor to the death of neurons in AD individuals. PMID:27022623

  16. Cranial grafting of stem cell-derived microvesicles improves cognition and reduces neuropathology in the irradiated brain.

    PubMed

    Baulch, Janet E; Acharya, Munjal M; Allen, Barrett D; Ru, Ning; Chmielewski, Nicole N; Martirosian, Vahan; Giedzinski, Erich; Syage, Amber; Park, Audrey L; Benke, Sarah N; Parihar, Vipan K; Limoli, Charles L

    2016-04-26

    Cancer survivors face a variety of challenges as they cope with disease recurrence and a myriad of normal tissue complications brought on by radio- and chemotherapeutic treatment regimens. For patients subjected to cranial irradiation for the control of CNS malignancy, progressive and debilitating cognitive dysfunction remains a pressing unmet medical need. Although this problem has been recognized for decades, few if any satisfactory long-term solutions exist to resolve this serious unintended side effect of radiotherapy. Past work from our laboratory has demonstrated the neurocognitive benefits of human neural stem cell (hNSC) grafting in the irradiated brain, where intrahippocampal transplantation of hNSC ameliorated radiation-induced cognitive deficits. Using a similar strategy, we now provide, to our knowledge, the first evidence that cranial grafting of microvesicles secreted from hNSC affords similar neuroprotective phenotypes after head-only irradiation. Cortical- and hippocampal-based deficits found 1 mo after irradiation were completely resolved in animals cranially grafted with microvesicles. Microvesicle treatment was found to attenuate neuroinflammation and preserve host neuronal morphology in distinct regions of the brain. These data suggest that the neuroprotective properties of microvesicles act through a trophic support mechanism that reduces inflammation and preserves the structural integrity of the irradiated microenvironment. PMID:27044087

  17. Accumulation of DNA damage and reduced levels of nicotine adenine dinucleotide in the brains of Atm-deficient mice.

    PubMed

    Stern, Nora; Hochman, Ayala; Zemach, Naty; Weizman, Nir; Hammel, Ilan; Shiloh, Yosef; Rotman, Galit; Barzilai, Ari

    2002-01-01

    Ataxia-telangiectasia (A-T) is a human genetic disorder caused by mutational inactivation of the ATM gene. A-T patients display a pleiotropic phenotype, in which a major neurological feature is progressive ataxia due to degeneration of cerebellar Purkinje and granule neurons. Disruption of the mouse Atm locus creates a murine model of A-T that exhibits most of the clinical and cellular features of the human disease, but the neurological phenotype is barely expressed. We present evidence for the accumulation of DNA strand breaks in the brains of Atm(-/-), supporting the notion that ATM plays a major role in maintaining genomic stability. We also show a perturbation of the steady state levels of pyridine nucleotides. There is a significant decrease in both the reduced and the oxidized forms of NAD and in the total levels of NADP(T) and NADP(+) in the brains of Atm(-/-) mice. The changes in NAD(T), NADH, NAD(+), NADP(T), and NADP(+) were progressive and observed primarily in the cerebellum of 4-month-old Atm(-/-) mice. Higher rates of mitochondrial respiration were also recorded in 4-month-old Atm(-/-) cerebella. Taken together, our findings support the hypothesis that absence of functional ATM results in continuous stress, which may be an important cause of the degeneration of cerebellar neurons in A-T. PMID:11679583

  18. Deficiency of prolyl oligopeptidase in mice disturbs synaptic plasticity and reduces anxiety-like behaviour, body weight, and brain volume.

    PubMed

    Höfling, Corinna; Kulesskaya, Natalia; Jaako, Külli; Peltonen, Iida; Männistö, Pekka T; Nurmi, Antti; Vartiainen, Nina; Morawski, Markus; Zharkovsky, Alexander; Võikar, Vootele; Roßner, Steffen; García-Horsman, J Arturo

    2016-06-01

    Prolyl oligopeptidase (PREP) has been implicated in neurodegeneration and neuroinflammation and has been considered a drug target to enhance memory in dementia. However, the true physiological role of PREP is not yet understood. In this paper, we report the phenotyping of a mouse line where the PREP gene has been knocked out. This work indicates that the lack of PREP in mice causes reduced anxiety but also hyperactivity. The cortical volumes of PREP knockout mice were smaller than those of wild type littermates. Additionally, we found increased expression of diazepam binding inhibitor protein in the cortex and of the somatostatin receptor-2 in the hippocampus of PREP knockout mice. Furthermore, immunohistochemistry and tail suspension test revealed lack of response of PREP knockout mice to lipopolysaccharide insult. Further analysis revealed significantly increased levels of polysialylated-neural cell adhesion molecule in PREP deficient mice. These findings might be explained as possible alteration in brain plasticity caused by PREP deficiency, which in turn affect behaviour and brain development.

  19. Insulin-degrading enzyme in brain microvessels: proteolysis of amyloid {beta} vasculotropic variants and reduced activity in cerebral amyloid angiopathy.

    PubMed

    Morelli, Laura; Llovera, Ramiro E; Mathov, Irina; Lue, Lih-Fen; Frangione, Blas; Ghiso, Jorge; Castaño, Eduardo M

    2004-12-31

    The accumulation of amyloid beta (Abeta) in the walls of small vessels in the cerebral cortex is associated with diseases characterized by dementia or stroke. These include Alzheimer's disease, Down syndrome, and sporadic and hereditary cerebral amyloid angiopathies (CAAs) related to mutations within the Abeta sequence. A higher tendency of Abeta to aggregate, a defective clearance to the systemic circulation, and insufficient proteolytic removal have been proposed as mechanisms that lead to Abeta accumulation in the brain. By using immunoprecipitation and mass spectrometry, we show that insulin-degrading enzyme (IDE) from isolated human brain microvessels was capable of degrading (125)I-insulin and cleaved Abeta-(1-40) wild type and the genetic variants Abeta A21G (Flemish), Abeta E22Q (Dutch), and Abeta E22K (Italian) at the predicted sites. In microvessels from Alzheimer's disease cases with CAA, IDE protein levels showed a 44% increase as determined by sandwich enzyme-linked immunosorbent assay and Western blot. However, the activity of IDE upon radiolabeled insulin was significantly reduced in CAA as compared with age-matched controls. These results support the notion that a defect in Abeta proteolysis by IDE contributes to the accumulation of this peptide in the cortical microvasculature. Moreover they raise the possibility that IDE inhibition or inactivation is a pathogenic mechanism that may open novel strategies for the treatment of cerebrovascular Abeta amyloidoses. PMID:15489232

  20. Cranial grafting of stem cell-derived microvesicles improves cognition and reduces neuropathology in the irradiated brain

    PubMed Central

    Baulch, Janet E.; Acharya, Munjal M.; Allen, Barrett D.; Ru, Ning; Chmielewski, Nicole N.; Martirosian, Vahan; Giedzinski, Erich; Syage, Amber; Park, Audrey L.; Benke, Sarah N.; Parihar, Vipan K.; Limoli, Charles L.

    2016-01-01

    Cancer survivors face a variety of challenges as they cope with disease recurrence and a myriad of normal tissue complications brought on by radio- and chemotherapeutic treatment regimens. For patients subjected to cranial irradiation for the control of CNS malignancy, progressive and debilitating cognitive dysfunction remains a pressing unmet medical need. Although this problem has been recognized for decades, few if any satisfactory long-term solutions exist to resolve this serious unintended side effect of radiotherapy. Past work from our laboratory has demonstrated the neurocognitive benefits of human neural stem cell (hNSC) grafting in the irradiated brain, where intrahippocampal transplantation of hNSC ameliorated radiation-induced cognitive deficits. Using a similar strategy, we now provide, to our knowledge, the first evidence that cranial grafting of microvesicles secreted from hNSC affords similar neuroprotective phenotypes after head-only irradiation. Cortical- and hippocampal-based deficits found 1 mo after irradiation were completely resolved in animals cranially grafted with microvesicles. Microvesicle treatment was found to attenuate neuroinflammation and preserve host neuronal morphology in distinct regions of the brain. These data suggest that the neuroprotective properties of microvesicles act through a trophic support mechanism that reduces inflammation and preserves the structural integrity of the irradiated microenvironment. PMID:27044087

  1. Does closure of acid-sensing ion channels reduce ischemia/reperfusion injury in the rat brain?★

    PubMed Central

    Wang, Jie; Xu, Yinghui; Lian, Zhigang; Zhang, Jian; Zhu, Tingzhun; Li, Mengkao; Wei, Yi; Dong, Bin

    2013-01-01

    Acidosis is a common characteristic of brain damage. Because studies have shown that permeable Ca2+-acid-sensing ion channels can mediate the toxic effects of calcium ions, they have become new targets against pain and various intracranial diseases. However, the mechanism associated with expression of these channels remains unclear. This study sought to observe the expression characteristics of permeable Ca2+-acid-sensing ion channels during different reperfusion inflows in rats after cerebral ischemia. The rat models were randomly divided into three groups: adaptive ischemia/reperfusion group, one-time ischemia/reperfusion group, and severe cerebral ischemic injury group. Western blot assays and immunofluorescence staining results exhibited that when compared with the one-time ischemia/reperfusion group, acid-sensing ion channel 3 and Bcl-x/l expression decreased in the adaptive ischemia/reperfusion group. Calmodulin expression was lowest in the adaptive ischemia/reperfusion group. Following adaptive reperfusion, common carotid artery flow was close to normal, and the pH value improved. Results verified that adaptive reperfusion following cerebral ischemia can suppress acid-sensing ion channel 3 expression, significantly reduce Ca2+ influx, inhibit calcium overload, and diminish Ca2+ toxicity. The effects of adaptive ischemia/reperfusion on suppressing cell apoptosis and relieving brain damage were better than that of one-time ischemia/reperfusion. PMID:25206411

  2. Intranasal IGF-1 Reduced Rat Pup Germinal Matrix Hemorrhage.

    PubMed

    Lekic, Tim; Flores, Jerry; Klebe, Damon; Doycheva, Desislava; Rolland, William B; Tang, Jiping; Zhang, John H

    2016-01-01

    Germinal matrix hemorrhage (GMH) is the most devastating neurological problem of premature infants. Current treatment strategies are ineffective and brain injury is unpreventable. Insulin-like growth factor 1 (IGF-1) is an endogenous protein shown to have multiple neuroprotective properties. We therefore hypothesized that IGF-1 would reduce brain injury after GMH. Neonatal rats (P7 age) received stereotactic collagenase into the right ganglionic eminence. The following groups were studied: (1) sham, (2) GMH + vehicle, (3) GMH + intranasal IGF-1. Three days later, the animals were evaluated using the righting-reflex (early neurobehavior), Evans blue dye leakage (blood-brain barrier (BBB) permeability), brain water content (edema), and hemoglobin assay (extent of bleeding). Three weeks later, juvenile rats were tested using a water maze (delayed neurobehavior), and then were sacrificed on day 28 for assessment of hydrocephalus (ventricular size). Intranasal IGF-1 treated animals had improved neurological function, and amelioration of BBB permeability, edema, and re-bleeding. IGF-1 may play a part in protective brain signaling following GMH, and our observed protective effect may offer new promise for treatment targeting this vulnerable patient population. PMID:26463950

  3. Inhibitory Effects of Medium Molecular Weight Heparinyl Amino Acid Derivatives on Ischemic Paw Edema in Mice.

    PubMed

    Takeda, Seiichi; Toda, Takao; Nakamura, Kazuki

    2016-01-01

    We investigated the radical-scavenging effects of heparin (HE), medium molecular weight heparinyl phenylalanine (MHF), and medium molecular weight heparinyl leucine (MHL) using ischemic paw edema in mice. We also examined the activated partial thromboplastin time (APTT) of mice that were administered these compounds as an index of their side-effects. HE had a preventative effect and significant reduced ischemic paw edema. However, its effect was not dose-dependent and the dose-response curve was bell-shaped. The effective dose of HE also exhibited a prolonged APTT. Pretreatment using MHF and MHL were effective against ischemic paw edema without a prolonged APTT. Remarkably, the action of MHF was not only preventively, but also therapeutically active. These results suggest that MHF and MHL are superior to HE as safe radical scavengers in vivo. PMID:27381605

  4. Huoxue Rongluo Tablet reduces matrix metalloproteinase-9 expression in infarcted brain tissue.

    PubMed

    Zhou, Desheng; Li, Mei; Hu, Hua; Chen, Yao; Yang, Yang; Zhong, Jie; Liu, Lijuan

    2013-12-01

    Huoxue Rongluo Tablet was made of tall gastrodis tuber, dahurian angelica root, honeysuckle stem, grassleaf sweetflag rhizome, common flowering quince fruit, figwort root, red peony root and peach seed at a ratio of 3:2:6:2:3:3:3:3. Huoxue Rongluo Tablet is a well-established and common pre-scription for the treatment of cerebral infarction. In this study, a rat model of cerebral ischemia was established and the animals were intragastrically administered Huoxue Rongluo Tablet. This treat-ment reduced infarct volume, decreased matrix metalloproteinase-9 expression, and improved neurological function. Moreover, the effects of Huoxue Rongluo Tablet were better than those of buflomedil pyridoxal phosphate. These results indicate that Huoxue Rongluo Tablet is effective in treating cerebral infarction by regulating matrix metalloproteinase-9 protein expression.

  5. Huoxue Rongluo Tablet reduces matrix metalloproteinase-9 expression in infarcted brain tissue

    PubMed Central

    Zhou, Desheng; Li, Mei; Hu, Hua; Chen, Yao; Yang, Yang; Zhong, Jie; Liu, Lijuan

    2013-01-01

    Huoxue Rongluo Tablet was made of tall gastrodis tuber, dahurian angelica root, honeysuckle stem, grassleaf sweetflag rhizome, common flowering quince fruit, figwort root, red peony root and peach seed at a ratio of 3:2:6:2:3:3:3:3. Huoxue Rongluo Tablet is a well-established and common pre-scription for the treatment of cerebral infarction. In this study, a rat model of cerebral ischemia was established and the animals were intragastrically administered Huoxue Rongluo Tablet. This treat-ment reduced infarct volume, decreased matrix metalloproteinase-9 expression, and improved neurological function. Moreover, the effects of Huoxue Rongluo Tablet were better than those of buflomedil pyridoxal phosphate. These results indicate that Huoxue Rongluo Tablet is effective in treating cerebral infarction by regulating matrix metalloproteinase-9 protein expression. PMID:25206642

  6. Increased release of brain serotonin reduces vulnerability to ventricular fibrillation in the cat

    NASA Technical Reports Server (NTRS)

    Lehnert, Hendrik; Lombardi, Federico; Raeder, Ernst A.; Lorenzo, Antonio V.; Verrier, Richard L.; Lown, Bernard; Wurtman, Richard J.

    1987-01-01

    The effect of administering the serotonin precursor 5-l-hydroxytryptophan, in conjunction with a monamine oxidase inhibitor phenelzine and a l-amino acid decarboxylase inhibitor carbidopa, on neurochemical changes in the concentrations of serotonin and 5-hydroxyindoleacetic acid (5-HIAA) in the cerebrospinal fluid of the cat were investigated. Results showed that this drug regimen led to increases of serotonin and 5-hydroxyindoleacetic acid (5-HIAA) concentrations in the cerebrospinal fluid by 330 and 830 percent, respectively. Concomitantly, the threshold of ventricular fibrillation was found to be elevated by 42 percent and the effective refractory period was prolonged by 7 percent; the efferent sympathetic neural activity was suppressed in the normal heart. The results indicate that the enhancement of central serotoninergic neurotransmission can reduce the susceptibility of the heart to ventricular fibrillation mediated through a decline in sympathetic neural traffic to the heart.

  7. Insufficient intake of L-histidine reduces brain histamine and causes anxiety-like behaviors in male mice.

    PubMed

    Yoshikawa, Takeo; Nakamura, Tadaho; Shibakusa, Tetsuro; Sugita, Mayu; Naganuma, Fumito; Iida, Tomomitsu; Miura, Yamato; Mohsen, Attayeb; Harada, Ryuichi; Yanai, Kazuhiko

    2014-10-01

    L-histidine is one of the essential amino acids for humans, and it plays a critical role as a component of proteins. L-histidine is also important as a precursor of histamine. Brain histamine is synthesized from L-histidine in the presence of histidine decarboxylase, which is expressed in histamine neurons. In the present study, we aimed to elucidate the importance of dietary L-histidine as a precursor of brain histamine and the histaminergic nervous system. C57BL/6J male mice at 8 wk of age were assigned to 2 different diets for at least 2 wk: the control (Con) diet (5.08 g L-histidine/kg diet) or the low L-histidine diet (LHD) (1.28 g L-histidine/kg diet). We measured the histamine concentration in the brain areas of Con diet-fed mice (Con group) and LHD-fed mice (LHD group). The histamine concentration was significantly lower in the LHD group [Con group vs. LHD group: histamine in cortex (means ± SEs): 13.9 ± 1.25 vs. 9.36 ± 0.549 ng/g tissue; P = 0.002]. Our in vivo microdialysis assays revealed that histamine release stimulated by high K(+) from the hypothalamus in the LHD group was 60% of that in the Con group (P = 0.012). However, the concentrations of other monoamines and their metabolites were not changed by the LHD. The open-field tests showed that the LHD group spent a shorter amount of time in the central zone (87.6 ± 14.1 vs. 50.0 ± 6.03 s/10 min; P = 0.019), and the light/dark box tests demonstrated that the LHD group spent a shorter amount of time in the light box (198 ± 8.19 vs. 162 ± 14.1 s/10 min; P = 0.048), suggesting that the LHD induced anxiety-like behaviors. However, locomotor activity, memory functions, and social interaction did not differ between the 2 groups. The results of the present study demonstrated that insufficient intake of histidine reduced the brain histamine content, leading to anxiety-like behaviors in the mice.

  8. Emotional graphic cigarette warning labels reduce the electrophysiological brain response to smoking cues

    PubMed Central

    Wang, An-Li; Romer, Dan; Elman, Igor; Turetsky, Bruce I.; Gur, Ruben C.; Langleben, Daniel D.

    2015-01-01

    There is an ongoing public debate about the new graphic warning labels (GWLs) that the Food and Drug Administration (FDA) proposes to place on cigarette packs. Tobacco companies argued that the strongly emotional images FDA proposed to include in the GWLs encroached on their constitutional rights. The court ruled that FDA did not provide sufficient scientific evidence of compelling public interest in such encroachment. This study’s objectives were to examine the effects of the GWLs on the electrophysiological and behavioral correlates of smoking addiction and to determine whether labels rated higher on the emotional reaction (ER) scale are associated with greater effects. We studied 25 non-treatment-seeking smokers. Event-related potentials (ERPs) were recorded while participants viewed a random sequence of paired images, in which visual smoking (Cues) or non-smoking (non-Cues) images were preceded by GWLs or neutral images. Participants reported their cigarette craving after viewing each pair. Dependent variables were magnitude of P300 ERPs and self-reported cigarette craving in response to Cues. We found that subjective craving response to Cues was significantly reduced by preceding GWLs, whereas the P300 amplitude response to Cues was reduced only by preceding GWLs rated high on the ER scale. In conclusion, our study provides experimental neuroscience evidence that weighs in on the ongoing public and legal debate about how to balance the constitutional and public health aspects of the FDA-proposed GWLs. The high toll of smoking-related illness and death adds urgency to the debate and prompts consideration of our findings while longitudinal studies of GWLs are underway. PMID:24330194

  9. Emotional graphic cigarette warning labels reduce the electrophysiological brain response to smoking cues.

    PubMed

    Wang, An-Li; Romer, Dan; Elman, Igor; Turetsky, Bruce I; Gur, Ruben C; Langleben, Daniel D

    2015-03-01

    There is an ongoing public debate about the new graphic warning labels (GWLs) that the Food and Drug Administration (FDA) proposes to place on cigarette packs. Tobacco companies argued that the strongly emotional images FDA proposed to include in the GWLs encroached on their constitutional rights. The court ruled that FDA did not provide sufficient scientific evidence of compelling public interest in such encroachment. This study's objectives were to examine the effects of the GWLs on the electrophysiological and behavioral correlates of smoking addiction and to determine whether labels rated higher on the emotional reaction (ER) scale are associated with greater effects. We studied 25 non-treatment-seeking smokers. Event-related potentials (ERPs) were recorded while participants viewed a random sequence of paired images, in which visual smoking (Cues) or non-smoking (non-Cues) images were preceded by GWLs or neutral images. Participants reported their cigarette craving after viewing each pair. Dependent variables were magnitude of P300 ERPs and self-reported cigarette craving in response to Cues. We found that subjective craving response to Cues was significantly reduced by preceding GWLs, whereas the P300 amplitude response to Cues was reduced only by preceding GWLs rated high on the ER scale. In conclusion, our study provides experimental neuroscience evidence that weighs in on the ongoing public and legal debate about how to balance the constitutional and public health aspects of the FDA-proposed GWLs. The high toll of smoking-related illness and death adds urgency to the debate and prompts consideration of our findings while longitudinal studies of GWLs are underway. PMID:24330194

  10. Reducing the neural search space for hominid cognition: what distinguishes human and great ape brains from those of small apes?

    PubMed

    Butler, David; Suddendorf, Thomas

    2014-06-01

    Differences in the psychological capacities of closely related species are likely due to differences in their brains. Here, we review neuroanatomical comparisons between hominids (i.e., great apes and humans) and their closest living relatives, the hylobatids (i.e., small apes). We report the differences in quantitative, as well as qualitative, neural characteristics on the basis of 19 comparative studies that each included representatives of all hominid genera and at least one genus of hylobatid. The current data are patchy, based on a small number of hylobatids and few neuroanatomical features. Yet a systematic interspecies comparison could help reduce the neuroanatomical search space for the neural correlates underlying psychological abilities restricted to hominids. We illustrate the potential power of this approach by discussing the neural features of visual self-recognition.

  11. Noopept reduces the postischemic functional and metabolic disorders in the brain of rats with different sensitivity to hypoxia.

    PubMed

    Zarubina, I V; Shabanov, P D

    2009-03-01

    Chronic cerebral ischemia was induced by ligation of both common carotid arteries in Wistar rats, divided by sensitivity to hypoxia into highly sensitive and low-sensitive. Noopept (peptide preparation), injected (0.5 mg/kg) during 7 days after occlusion of the carotid arteries, reduced the neurological disorders in rats with high and low sensitivity to hypoxia and improved their survival during the postischemic period. Noopept normalized behavior disordered by cerebral ischemia (according to the open field and elevated plus maze tests), prevented accumulation of LPO products and inhibition of antioxidant systems in the brain of rats with high and low sensitivity to hypoxia. Hence, noopept exhibited a neuroprotective effect in cerebral ischemia. PMID:19529857

  12. Cerebral edema induced in mice by a convulsive dose of soman. Evaluation through diffusion-weighted magnetic resonance imaging and histology

    SciTech Connect

    Testylier, Guy . E-mail: guytestylier@crssa.net; Lahrech, Hana; Montigon, Olivier; Foquin, Annie; Delacour, Claire; Bernabe, Denis; Segebarth, Christoph; Dorandeu, Frederic; Carpentier, Pierre

    2007-04-15

    Purpose: In the present study, diffusion-weighted magnetic resonance imaging (DW-MRI) and histology were used to assess cerebral edema and lesions in mice intoxicated by a convulsive dose of soman, an organophosphate compound acting as an irreversible cholinesterase inhibitor. Methods: Three hours and 24 h after the intoxication with soman (172 {mu}g/kg), the mice were anesthetized with an isoflurane/N{sub 2}O mixture and their brain examined with DW-MRI. After the imaging sessions, the mice were sacrificed for histological analysis of their brain. Results: A decrease in the apparent diffusion coefficient (ADC) was detected as soon as 3 h after the intoxication and was found strongly enhanced at 24 h. A correlation was obtained between the ADC change and the severity of the overall brain damage (edema and cellular degeneration): the more severe the damage, the stronger the ADC drop. Anesthesia was shown to interrupt soman-induced seizures and to attenuate edema and cell change in certain sensitive brain areas. Finally, brain water content was assessed using the traditional dry/wet weight method. A significant increase of brain water was observed following the intoxication. Conclusions: The ADC decrease observed in the present study suggests that brain edema in soman poisoning is mainly intracellular and cytotoxic. Since entry of water into Brain was also evidenced, this type of edema is certainly mixed with others (vasogenic, hydrostatic, osmotic). The present study confirms the potential of DW-MRI as a non-invasive tool for monitoring the acute neuropathological consequences (edema and neurodegeneration) of soman-induced seizures.

  13. Exercise reduces diet-induced cognitive decline and increases hippocampal brain-derived neurotrophic factor in CA3 neurons

    PubMed Central

    Noble, Emily E.; Mavanji, Vijayakumar; Little, Morgan R.; Billington, Charles J.; Kotz, Catherine M.; Wang, ChuanFeng

    2014-01-01

    Background Previous studies have shown that a western diet impairs, whereas physical exercise enhances hippocampus-dependent learning and memory. Both diet and exercise influence expression of hippocampal brain-derived neurotrophic factor (BDNF), which is associated with improved cognition. We hypothesized that exercise reverses diet-induced cognitive decline while increasing hippocampal BDNF. Methods To test the effects of exercise on hippocampal-dependent memory, we compared cognitive scores of Sprague-Dawley rats exercised by voluntary running wheel (RW) access or forced treadmill (TM) to sedentary (Sed) animals. Memory was tested by two-way active avoidance test (TWAA), in which animals are exposed to a brief shock in a specific chamber area. When an animal avoids, escapes or has reduced latency to do either, this is considered a measure of memory. In a second experiment, rats were fed either a high-fat diet or control diet for 16 weeks, then randomly assigned to running wheel access or sedentary condition, and TWAA memory was tested once a week for seven weeks of exercise intervention. Results Both groups of exercised animals had improved memory as indicated by reduced latency to avoid and escape shock, and increased avoid and escape episodes (p<0.05). Exposure to a high-fat diet resulted in poor performance during both the acquisition and retrieval phases of the memory test as compared to controls. Exercise reversed high-fat diet-induced memory impairment, and increased brain-derived neurotrophic factor (BDNF) in neurons of the hippocampal CA3 region. Conclusions These data suggest that exercise improves memory retrieval, particularly with respect to avoiding aversive stimuli, and may be beneficial in protecting against diet induced cognitive decline, likely via elevated BDNF in neurons of the CA3 region. PMID:24755094

  14. Aquaporins and Brain Tumors

    PubMed Central

    Maugeri, Rosario; Schiera, Gabriella; Di Liegro, Carlo Maria; Fricano, Anna; Iacopino, Domenico Gerardo; Di Liegro, Italia

    2016-01-01

    Brain primary tumors are among the most diverse and complex human cancers, and they are normally classified on the basis of the cell-type and/or the grade of malignancy (the most malignant being glioblastoma multiforme (GBM), grade IV). Glioma cells are able to migrate throughout the brain and to stimulate angiogenesis, by inducing brain capillary endothelial cell proliferation. This in turn causes loss of tight junctions and fragility of the blood–brain barrier, which becomes leaky. As a consequence, the most serious clinical complication of glioblastoma is the vasogenic brain edema. Both glioma cell migration and edema have been correlated with modification of the expression/localization of different isoforms of aquaporins (AQPs), a family of water channels, some of which are also involved in the transport of other small molecules, such as glycerol and urea. In this review, we discuss relationships among expression/localization of AQPs and brain tumors/edema, also focusing on the possible role of these molecules as both diagnostic biomarkers of cancer progression, and therapeutic targets. Finally, we will discuss the possibility that AQPs, together with other cancer promoting factors, can be exchanged among brain cells via extracellular vesicles (EVs). PMID:27367682

  15. Subclinical pulmonary edema in endurance athletes.

    PubMed

    Bussotti, M; Di Marco, S; Marchese, G; Agostoni, P G

    2012-06-01

    Strenuous exercise may cause progressive and proportional haemodynamic overload damage to the alveolar membrane, even in athletes. Despite the high incidence of arterial desaturation reported in endurance athletes has been attributed, into other factors, also to the damage of the alveolar-capillary membrane this evidence is equivocal. Some studies demonstrated flood of the interstitial space and consequent increase in pulmonary water content, but most of them were able to show this through indirect signs of interstitial oedema. The present review illustrates the literature's data in favour or against pulmonary interstitial edema due to intense exercise in athletes.

  16. DKA with Severe Hypertriglyceridemia and Cerebral Edema in an Adolescent Boy: A Case Study and Review of the Literature.

    PubMed

    Saengkaew, Tansit; Sahakitrungruang, Taninee; Wacharasindhu, Suttipong; Supornsilchai, Vichit

    2016-01-01

    A 13-year-old adolescent boy with type 1 diabetes mellitus (1b) presented with diabetic ketoacidosis (DKA) and cerebral edema. Grossly lipemic serum and lipemia retinals due to extremely high triglyceride (TG) level were observed without evidence of xanthoma or xanthelasma. Cerebral edema was treated by appropriate ventilation and mannitol administration. Normal saline was carefully given and regular insulin was titrated according to blood sugar levels. Triglyceride levels were reduced from 9,800 mg/dL to normal range within 9 days after conventional treatment was commenced without antilipid medication. Based on our review of the literature, this is the first reported case of confirmed pediatric DKA with severe hypertriglyceridemia and cerebral edema. In patients with DKA and hypertriglyceridemia, clinicians should be mindful of the possibility of associated acute pancreatitis and cerebral edema. PMID:26904318

  17. Effect of glycerol on ischemic cerebral edema assessed by magnetic resonance imaging.

    PubMed

    Sakamaki, Masanori; Igarashi, Hironaka; Nishiyama, Yutaka; Hagiwara, Hiroshi; Ando, Jun; Chishiki, Tetsurou; Curran, Brian C; Katayama, Yasuo

    2003-05-15

    The aim of this study is to assess the anticerebral edema effect of glycerol on a large cerebral infarction with magnetic resonance imaging (MRI). Glycerol, which is widely used as an osmotic agent against cerebral edema, could exacerbate brain tissue shift, since it has been suggested that glycerol might shrink a noninfarcted hemisphere and worsen the mass effect after a large hemispheric cerebral infarction. To investigate these issues, changes in a large hemispheric infarction with cerebral edema were studied using MRI before and after glycerol administration. Infarct volumes, normal brain tissue volumes and lateral ventricle volumes, in addition to signal intensities of T(2)-weighted images, were measured in six patients before and after administration of 300 ml of glycerol. Ventricle volumes were significantly increased (p=0.0015) and the T(2) signal intensity of the post-treatment ischemic region decreased after glycerol administration. In contrast, no significant differences in either cerebral volume or T(2) signal intensity were seen in the noninfarcted hemisphere before and after administration. Our data suggest that glycerol does not exacerbate the mass effect on a large hemispheric infarction. PMID:12686405

  18. Cilostazol reduces blood brain barrier dysfunction, white matter lesion formation and motor deficits following chronic cerebral hypoperfusion.

    PubMed

    Edrissi, Hamidreza; Schock, Sarah C; Cadonic, Robert; Hakim, Antoine M; Thompson, Charlie S

    2016-09-01

    Cerebral small vessel disease (CSVD) is a pathological process leading to lacunar infarcts, leukoaraiosis and cerebral microbleeds. Dysfunction of the blood brain barrier (BBB) has been proposed as a mechanism in the progression cerebral small vessel disease. A rodent model commonly used to study some aspects of CSVD is bilateral common carotid artery occlusion (BCCAO) in the rat. In the present study it was determined that gait impairment, as determined by a tapered beam test, and BBB permeability increased following BCCAO. Cilostazol, a type III phosphodiesterase inhibitor, has been shown to have anti-apoptotic effects and prevent white matter vacuolation and rarefaction induced by BCCAO in rats. In this study the protective effect of cilostazol administration on the increase BBB permeability following BCCAO was determined as well as the effect on plasma levels of circulating microparticles (MPs), cerebral white matter rarefaction, glial activation and gait disturbance. The effect of cilostazol on in vitro endothelial barriers was also evaluated. Cilostazol treatment improved BBB permeability and reduced gait disturbance, visual impairment and microglial activation in optic tract following BCCAO in vivo. It also reduced the degree of cell death and the reduction in trans-endothelial electrical resistance (TEER) in artificial endothelial barriers in vitro induced by MP treatment of in vitro barriers. PMID:27350079

  19. Anti-inflammatory effect of the hydralcoholic extract of Zingiber officinale rhizomes on rat paw and skin edema.

    PubMed

    Penna, S C; Medeiros, M V; Aimbire, F S C; Faria-Neto, H C C; Sertié, J A A; Lopes-Martins, R A B

    2003-01-01

    Plant extracts have been used for centuries as a popular mode of treatment for several health disorders. Over the last ten years, the study of those extracts has attracted attention in different fields of the biological sciences. Ginger, the rhizome of Zingiber officinale Roscoe (Zingiberaceae), is a commom constituent of diet worldwide and it has been reported that its extracts present some pharmacological activities. Here we investigate the effects of the crude hydralcoholic extract of ginger rhizomes on the classical models of rat paw and skin edema. The carrageenan-, compound 48/80- or serotonin-induced rat paw edema were inhibited significantly by the intraperitoneal administration of alcoholic ginger extract. Ginger extract was also effective in inhibiting 48/80-induced rat skin edema at doses of 0.6 and 1.8 mg/site. Rat skin edema induced by substance P or bradikinin was not affected by treatment with Z. officinalle extract. The intraperitoneal administration of ginger extract (186 mg/kg(-1) body wt.) 1 h prior to serotonin injections, reduced significantly the serotonin-induced rat skin edema. Our results demonstrated that crude extract of Zingiber officinale was able to reduce rat paw and skin edema induced by carrageenan, 48/80 compound and serotonin. The antiedematogenic activity seems to be related, at least partially, to an antagonism of the serotonin receptor. PMID:12834002

  20. Diffusion tensor-based tumor infiltration index cannot discriminate vasogenic edema from tumor-infiltrated edema.

    PubMed

    Kinoshita, Manabu; Goto, Tetsu; Okita, Yoshiko; Kagawa, Naoki; Kishima, Haruhiko; Hashimoto, Naoya; Yoshimine, Toshiki

    2010-02-01

    Diffusion tensor imaging (DTI) by magnetic resonance imaging (MRI) is now used not only for delineating white matter fiber tracts, but also for assessing the histological characteristics of pathological tissues. Among these uses, predicting the extent or existence of tumor cell invasion into white matter by DTI is under extensive investigation. The previously reported tumor infiltration index (TII) holds great potential for the discrimination of pure vasogenic edema from tumor-infiltrated edema. However, conflicting data are being reported questioning the clinical value of TII. The present investigation reevaluated the utility of TII in patients with meningioma or glioma. We found that TII was unable to discriminate vasogenic from tumor-infiltrated edema. Conversely, detailed voxel-by-voxel comparison of TII and (11)C-methionie PET in the T2-hyperintense area of gliomas showed that TII and (11)C-methionie PET has a positive correlation, suggesting that, although TII is unable to discriminate the cause of edema, the extent of tumor cell invasion into white matter is depicted in gliomas by TII. These data suggest that TII involves both vasogenic and tumor-infiltrated factors, rather than only a single factor. A more intensive investigation is required to reach a complete understanding of TII.

  1. Macular edema in branch retinal vein occlusion: types and treatment.

    PubMed

    Jalkh, A E; Trempe, C L

    1989-01-01

    In this study of branch retinal vein occlusion, we distinguished between cystoid macular edema caused by increased capillary pressure and noncystoid edema due to hard exudates in the macula caused by chronic leakage from vascular abnormalities in the posterior pole or midperiphery. We performed laser photocoagulation in 51 eyes with cystoid macular edema to achieve focal narrowing of the retinal arterioles perfusing the macular area affected by the cystoid edema; good anatomic and functional results were achieved in 40 of these eyes (78%). In 25 of the five eyes, the treated segment of the retinal arteriole was outside the area of macular edema; results were successful in 19 of these eyes (76%). In 14 eyes with noncystoid exudative macular edema, we performed laser photocoagulation to the vascular abnormalities; good anatomic and functional results were obtained in 12 of these (86%). PMID:2927879

  2. Blocking NMDA receptors delays death in rats with acute liver failure by dual protective mechanisms in kidney and brain.

    PubMed

    Cauli, Omar; González-Usano, Alba; Cabrera-Pastor, Andrea; Gimenez-Garzó, Carla; López-Larrubia, Pilar; Ruiz-Sauri, Amparo; Hernández-Rabaza, Vicente; Duszczyk, Malgorzata; Malek, Michal; Lazarewicz, Jerzy W; Carratalá, Arturo; Urios, Amparo; Miguel, Alfonso; Torregrosa, Isidro; Carda, Carmen; Montoliu, Carmina; Felipo, Vicente

    2014-06-01

    Treatment of patients with acute liver failure (ALF) is unsatisfactory and mortality remains unacceptably high. Blocking NMDA receptors delays or prevents death of rats with ALF. The underlying mechanisms remain unclear. Clarifying these mechanisms will help to design more efficient treatments to increase patient's survival. The aim of this work was to shed light on the mechanisms by which blocking NMDA receptors delays rat's death in ALF. ALF was induced by galactosamine injection. NMDA receptors were blocked by continuous MK-801 administration. Edema and cerebral blood flow were assessed by magnetic resonance. The time course of ammonia levels in brain, muscle, blood, and urine; of glutamine, lactate, and water content in brain; of glomerular filtration rate and kidney damage; and of hepatic encephalopathy (HE) and intracranial pressure was assessed. ALF reduces kidney glomerular filtration rate (GFR) as reflected by reduced inulin clearance. GFR reduction is due to both reduced renal perfusion and kidney tubular damage as reflected by increased Kim-1 in urine and histological analysis. Blocking NMDA receptors delays kidney damage, allowing transient increased GFR and ammonia elimination which delays hyperammonemia and associated changes in brain. Blocking NMDA receptors does not prevent cerebral edema or blood-brain barrier permeability but reduces or prevents changes in cerebral blood flow and brain lactate. The data show that dual protective effects of MK-801 in kidney and brain delay cerebral alterations, HE, intracranial pressure increase and death. NMDA receptors antagonists may increase survival of patients with ALF by providing additional time for liver transplantation or regeneration.

  3. Reconstituted high-density lipoproteins acutely reduce soluble brain Aβ levels in symptomatic APP/PS1 mice.

    PubMed

    Robert, Jérôme; Stukas, Sophie; Button, Emily; Cheng, Wai Hang; Lee, Michael; Fan, Jianjia; Wilkinson, Anna; Kulic, Iva; Wright, Samuel D; Wellington, Cheryl L

    2016-05-01

    Many lines of evidence suggest a protective role for high-density lipoprotein (HDL) and its major apolipoprotein (apo)A-I in Alzheimer's Disease (AD). HDL/apoA-I particles are produced by the liver and intestine and, in addition to removing excess cholesterol from the body, are increasingly recognized to have vasoprotective functions. Here we tested the ability of reconstituted HDL (rHDL) consisting of human apoA-I reconstituted with soy phosphatidylcholine for its ability to lower amyloid beta (Aβ) levels in symptomatic APP/PS1 mice, a well-characterized preclinical model of amyloidosis. Animals were treated intravenously either with four weekly doses (chronic study) or a single dose of 60mg/kg of rHDL (acute study). The major finding of our acute study is that soluble brain Aβ40 and Aβ42 levels were significantly reduced within 24h of a single dose of rHDL. By contrast, no changes were observed in our chronic study with respect to soluble or deposited Aβ levels in animals assessed 7days after the final weekly dose of rHDL, suggesting that beneficial effects diminish as rHDL is cleared from the body. Further, rHDL-treated animals showed no change in amyloid burden, cerebrospinal fluid (CSF) Aβ levels, neuroinflammation, or endothelial activation in the chronic study, suggesting that the pathology-modifying effects of rHDL may indeed be acute and may be specific to the soluble Aβ pool. That systemic administration of rHDL can acutely modify brain Aβ levels provides support for further investigation of the therapeutic potential of apoA-I-based agents for AD. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.

  4. 5-HT1 agonists reduce 5-hydroxytryptamine release in rat hippocampus in vivo as determined by brain microdialysis.

    PubMed Central

    Sharp, T.; Bramwell, S. R.; Grahame-Smith, D. G.

    1989-01-01

    1. An intracerebral perfusion method, brain microdialysis, was used to assess changes of 5-hydroxytryptamine (5-HT) release in the ventral hippocampus of the chloral hydrate-anaesthetized rat in response to systemic administration of a variety of 5-HT1 receptor agonists. 2. A stable output of reliably detectable endogenous 5-HT was measured in dialysates collected from ventral hippocampus with the 5-HT reuptake inhibitor, citalopram, present in the perfusion medium. 3. Under these conditions the putative 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) caused a dose-dependent (5-250 micrograms kg-1, s.c.) reduction of 5-HT in hippocampal dialysates. 4. Similarly, the putative 5-HT1A agonists gepirone (5 mg kg-1, s.c.), ipsapirone (5 mg kg-1, s.c.) and buspirone (5 mg kg-1, s.c.) markedly reduced levels of 5-HT in hippocampal perfusates whereas their common metabolite 1-(2-pyrimidinyl) piperazine (5 mg kg-1, s.c.), which does not bind to central 5-HT1A recognition sites, had no effect. 5. 5-Methoxy-3-(1,2,3,6-tetrahydro-4-pyridinyl)-1H-indole (RU 24969), a drug with reported high affinity for brain 5-HT1B binding sites, also produced a dose-dependent (0.25-5 mg kg-1, s.c.) decrease of hippocampal 5-HT output. 6. These data are direct biochemical evidence that systemically administered putative 5-HT1A and 5-HT1B agonists markedly inhibit 5-HT release in rat ventral hippocampus in vivo. PMID:2466516

  5. Brain acetylcholinesterase, malondialdehyde and reduced glutathione as biomarkers of continuous exposure of tench, Tinca tinca, to carbofuran or deltamethrin.

    PubMed

    Hernández-Moreno, D; Soler, F; Míguez, M P; Pérez-López, M

    2010-10-01

    In this study, the chronic effect of the insecticides carbofuran and deltamethrin on acetylcholinesterase (AChE) activity and malondialdehyde (MDA) and reduced glutathione (GSH) levels were examined in the brain of tench. Both pesticides were evaluated in two separate experiments, and animals were exposed in a continuous flow-system to three different concentrations of carbofuran (0, 10 and 100 microg/L) and deltamethrin (0, 0.0039 and 0.039 microg/L) for 60 days. After that period, animals were kept into pesticide-free water for other 30 days. In all cases, animals were sampled every 10 days all along the experience. AChE activity was significantly inhibited in fish exposed to 100 microg/L of carbofuran, during the first 30 days of exposition, returning to basal levels after this initial period. With respect to deltamethrin exposure, AChE activity was not significantly affected. When considering MDA levels, significant changes could only be detected during the recovery period for both pesticides, with a maximum of induction at 70 and 80 days, respectively associated to the highest dose of carbofuran and deltamethrin. Similarly, GSH levels varied all along the experience, with a maximum of significant increase at day 80 of exposition to the highest dose of both pesticides. This study shows that changes in AChE brain activity in tench can be used as a biomarker of early pesticide exposition in environmental monitoring programs, whereas MDA and GSH levels could be more associated to long-term expositions. The above results confirm and broaden former observations, suggesting that more investigations are needed before these biochemical parameters can be used as biomarkers.

  6. Observational study of subclinical diabetic macular edema

    PubMed Central

    Bressler, N M; Miller, K M; Beck, R W; Bressler, S B; Glassman, A R; Kitchens, J W; Melia, M; Schlossman, D K

    2012-01-01

    Purpose To determine the rate of progression of eyes with subclinical diabetic macular edema (DME) to clinically apparent DME or DME necessitating treatment during a 2-year period. Methods In all, 43 eyes from 39 study participants with subclinical DME, defined as absence of foveal center edema as determined with slit lamp biomicroscopy but a center point thickness (CPT) between 225 and 299 μm on time domain (Stratus, Carl Zeiss Meditec) optical coherence tomography (OCT) scan, were enrolled from 891 eyes of 582 subjects screened. Eyes were evaluated annually for up to 2 years for the primary outcome, which was an increase in OCT CPT of at least 50 μm from baseline and a CPT of at least 300 μm, or treatment for DME (performed at the discretion of the investigator). Results The cumulative probability of meeting an increase in OCT CPT of at least 50 μm from baseline and a CPT of at least 300 μm, or treatment for DME was 27% (95% confidence interval (CI): 14%, 38%) by 1 year and 38% (95% CI: 23%, 50%) by 2 years. Conclusions Although subclinical DME may be uncommon, this study suggests that between approximately one-quarter and one-half of eyes with subclinical DME will progress to more definite thickening or be judged to need treatment for DME within 2 years after its identification. PMID:22441027

  7. New Compton densitometer for measuring pulmonary edema

    SciTech Connect

    Loo, B.W.; Goulding, F.S.; Simon, D.S.

    1985-10-01

    Pulmonary edema is the pathological increase of extravascular lung water found most often in patients with congestive heart failure and other critically ill patients who suffer from intravenous fluid overload. A non-invasive lung density monitor that is accurate, easily portable, safe and inexpensive is needed for clinical evaluation of pulmonary edema. Other researchers who have employed Compton scattering techniques generally used systems of extended size and detectors with poor energy resolution. This has resulted in significant systematic biases from multiply-scattered photons and larger errors in counting statistics at a given radiation dose to the patient. We are proposing a patented approach in which only backscattered photons are measured with a high-resolution HPGe detector in a compact system geometry. By proper design and a unique data extraction scheme, effects of the variable chest wall on lung density measurements are minimized. Preliminary test results indicate that with a radioactive source of under 30 GBq, it should be possible to make an accurate lung density measurement in one minute, with a risk of radiation exposure to the patient a thousand times smaller than that from a typical chest x-ray. The ability to make safe, frequent lung density measurements could be very helpful for monitoring the course of P.E. at the hospital bedside or outpatient clinics, and for evaluating the efficacy of therapy in clinical research. 6 refs., 5 figs.

  8. [Effect of prostaglandin synthesis inhibitors of diabetic cystoid macular edema].

    PubMed

    Kieselbach, G; Juen, S

    1990-01-01

    In most cases, diabetic macular edema is treated successfully with central laser photocoagulation. However, only few studies report such favorable results in cystoid macular edema, which has a poor visual prognosis. In the present prospective study on diabetics with cystoid macular edema, aged less than 40 years, a better visual outcome was obtained in patients treated with prostaglandin synthesis inhibitors than in an untreated group. PMID:2345629

  9. GABAergic interneuronal loss and reduced inhibitory synaptic transmission in the hippocampal CA1 region after mild traumatic brain injury.

    PubMed

    Almeida-Suhett, Camila P; Prager, Eric M; Pidoplichko, Volodymyr; Figueiredo, Taiza H; Marini, Ann M; Li, Zheng; Eiden, Lee E; Braga, Maria F M

    2015-11-01

    Patients that suffer mild traumatic brain injuries (mTBI) often develop cognitive impairments, including memory and learning deficits. The hippocampus shows a high susceptibility to mTBI-induced damage due to its anatomical localization and has been implicated in cognitive and neurological impairments after mTBI. However, it remains unknown whether mTBI cognitive impairments are a result of morphological and pathophysiological alterations occurring in the CA1 hippocampal region. We investigated whether mTBI induces morphological and pathophysiological alterations in the CA1 using the controlled cortical impact (CCI) model. Seven days after CCI, animals subjected to mTBI showed cognitive impairment in the passive avoidance test and deficits to long-term potentiation (LTP) of synaptic transmission. Deficiencies in inducing or maintaining LTP were likely due to an observed reduction in the activation of NMDA but not AMPA receptors. Significant reductions in the frequency and amplitude of spontaneous and miniature GABAA-receptor mediated inhibitory postsynaptic currents (IPSCs) were also observed 7 days after CCI. Design-based stereology revealed that although the total number of neurons was unaltered, the number of GABAergic interneurons is significantly reduced in the CA1 region 7 days after CCI. Additionally, the surface expression of α1, ß2/3, and γ2 subunits of the GABAA receptor were reduced, contributing to a reduced mIPSC frequency and amplitude, respectively. Together, these results suggest that mTBI causes a significant reduction in GABAergic inhibitory transmission and deficits to NMDA receptor mediated currents in the CA1, which may contribute to changes in hippocampal excitability and subsequent cognitive impairments after mTBI.

  10. Scuba diving-induced pulmonary edema in a swimming pool.

    PubMed

    Gnadinger, C A; Colwell, C B; Knaut, A L

    2001-11-01

    SCUBA diving-induced pulmonary edema is a rare syndrome that has been previously reported to occur in cold water. We present a case of SCUBA diving-induced pulmonary edema in a 52-year-old man diving in a warm swimming pool. The pathophysiology of this syndrome is unclear, but it is unrelated to either barotrauma or decompression illness. This patient developed frank pulmonary edema while submerged, which resolved after surfacing. As with other patients who have had this syndrome, he did not have any cardiorespiratory disease. The presentation and pathophysiology of SCUBA diving-induced pulmonary edema are discussed.

  11. The Curious Question of Exercise-Induced Pulmonary Edema

    PubMed Central

    Bates, Melissa L.; Farrell, Emily T.; Eldridge, Marlowe W.

    2011-01-01

    The question of whether pulmonary edema develops during exercise on land is controversial. Yet, the development of pulmonary edema during swimming and diving is well established. This paper addresses the current controversies that exist in the field of exercise-induced pulmonary edema on land and with water immersion. It also discusses the mechanisms by which pulmonary edema can develop during land exercise, swimming, and diving and the current gaps in knowledge that exist. Finally, this paper discusses how these fields can continue to advance and the areas where clinical knowledge is lacking. PMID:21660232

  12. Long-chain n-3 PUFAs from fish oil enhance resting state brain glucose utilization and reduce anxiety in an adult nonhuman primate, the grey mouse lemur.

    PubMed

    Pifferi, Fabien; Dorieux, Olène; Castellano, Christian-Alexandre; Croteau, Etienne; Masson, Marie; Guillermier, Martine; Van Camp, Nadja; Guesnet, Philippe; Alessandri, Jean-Marc; Cunnane, Stephen; Dhenain, Marc; Aujard, Fabienne

    2015-08-01

    Decreased brain content of DHA, the most abundant long-chain n-3 polyunsaturated fatty acid (n-3 LCPUFA) in the brain, is accompanied by severe neurosensorial impairments linked to impaired neurotransmission and impaired brain glucose utilization. In the present study, we hypothesized that increasing n-3 LCPUFA intake at an early age may help to prevent or correct the glucose hypometabolism observed during aging and age-related cognitive decline. The effects of 12 months' supplementation with n-3 LCPUFA on brain glucose utilization assessed by positron emission tomography was tested in young adult mouse lemurs (Microcebus murinus). Cognitive function was tested in parallel in the same animals. Lemurs supplemented with n-3 LCPUFA had higher brain glucose uptake and cerebral metabolic rate of glucose compared with controls in all brain regions. The n-3 LCPUFA-supplemented animals also had higher exploratory activity in an open-field task and lower evidence of anxiety in the Barnes maze. Our results demonstrate for the first time in a nonhuman primate that n-3 LCPUFA supplementation increases brain glucose uptake and metabolism and concomitantly reduces anxiety. PMID:26063461

  13. 3-Nitropropionic acid-induced ischemia tolerance in the rat brain is mediated by reduced metabolic activity and cerebral blood flow

    PubMed Central

    Bracko, Oliver; Di Pietro, Valentina; Lazzarino, Giacomo; Amorini, Angela M; Tavazzi, Barbara; Artmann, Judith; Wong, Eric C; Buxton, Richard B; Weller, Michael; Luft, Andreas R; Wegener, Susanne

    2014-01-01

    Tissue tolerance to ischemia can be achieved by noxious stimuli that are below a threshold to cause irreversible damage (‘preconditioning'). Understanding the mechanisms underlying preconditioning may lead to the identification of novel therapeutic targets for diseases such as stroke. We here used the oxidative chain inhibitor 3-nitropropionic acid (NPA) to induce ischemia tolerance in a rat middle cerebral artery occlusion (MCAO) stroke model. Cerebral blood flow (CBF) and structural integrity were characterized by longitudinal magnetic resonance imaging (MRI) in combination with behavioral, histologic, and biochemical assessment of NPA-preconditioned animals and controls. Using this approach we show that the ischemia-tolerant state is characterized by a lower energy charge potential and lower CBF, indicating a reduced baseline metabolic demand, and therefore a cellular mechanism of neural protection. Blood vessel density and structural integrity were not altered by NPA treatment. When subjected to MCAO, preconditioned animals had a characteristic MRI signature consisting of enhanced CBF maintenance within the ischemic territory and intraischemic reversal of the initial cytotoxic edema, resulting in reduced infarct volumes. Thus, our data show that tissue protection through preconditioning occurs early during ischemia and indicate that a reduced cellular metabolism is associated with tissue tolerance to ischemia. PMID:24938399

  14. Salubrinal reduces oxidative stress, neuroinflammation and impulsive-like behavior in a rodent model of traumatic brain injury.

    PubMed

    Logsdon, Aric F; Lucke-Wold, Brandon P; Nguyen, Linda; Matsumoto, Rae R; Turner, Ryan C; Rosen, Charles L; Huber, Jason D

    2016-07-15

    Traumatic brain injury (TBI) is the leading cause of trauma related morbidity in the developed world. TBI has been shown to trigger secondary injury cascades including endoplasmic reticulum (ER) stress, oxidative stress, and neuroinflammation. The link between secondary injury cascades and behavioral outcome following TBI is poorly understood warranting further investigation. Using our validated rodent blast TBI model, we examined the interaction of secondary injury cascades following single injury and how these interactions may contribute to impulsive-like behavior after a clinically relevant repetitive TBI paradigm. We targeted these secondary pathways acutely following single injury with the cellular stress modulator, salubrinal (SAL). We examined the neuroprotective effects of SAL administration on significantly reducing ER stress: janus-N-terminal kinase (JNK) phosphorylation and C/EBP homology protein (CHOP), oxidative stress: superoxide and carbonyls, and neuroinflammation: nuclear factor kappa beta (NFκB) activity, inducible nitric oxide synthase (iNOS) protein expression, and pro-inflammatory cytokines at 24h post-TBI. We then used the more clinically relevant repeat injury paradigm and observed elevated NFκB and iNOS activity. These injury cascades were associated with impulsive-like behavior measured on the elevated plus maze. SAL administration attenuated secondary iNOS activity at 72h following repetitive TBI, and most importantly prevented impulsive-like behavior. Overall, these results suggest a link between secondary injury cascades and impulsive-like behavior that can be modulated by SAL administration. PMID:27131989

  15. Angular Impact Mitigation System for Bicycle Helmets to Reduce Head Acceleration and Risk of Traumatic Brain Injury

    PubMed Central

    Hansen, Kirk; Dau, Nathan; Feist, Florian; Deck, Caroline; Willinger, Rémy; Madey, Steven M.; Bottlang, Michael

    2013-01-01

    Angular acceleration of the head is a known cause of traumatic brain injury (TBI), but contemporary bicycle helmets lack dedicated mechanisms to mitigate angular acceleration. A novel Angular Impact Mitigation (AIM) system for bicycle helmets has been developed that employs an elastically suspended aluminum honeycomb liner to absorb linear acceleration in normal impacts as well as angular acceleration in oblique impacts. This study tested bicycle helmets with and without AIM technology to comparatively assess impact mitigation. Normal impact tests were performed to measure linear head acceleration. Oblique impact tests were performed to measure angular head acceleration and neck loading. Furthermore, acceleration histories of oblique impacts were analyzed in a computational head model to predict the resulting risk of TBI in the form of concussion and diffuse axonal injury (DAI). Compared to standard helmets, AIM helmets resulted in a 14% reduction in peak linear acceleration (p < 0.001), a 34% reduction in peak angular acceleration (p < 0.001), and a 22% to 32% reduction in neck loading (p < 0.001). Computational results predicted that AIM helmets reduced the risk of concussion and DAI by 27% and 44%, respectively. In conclusion, these results demonstrated that AIM technology could effectively improve impact mitigation compared to a contemporary expanded polystyrene-based bicycle helmet, and may enhance prevention of bicycle-related TBI. Further research is required. PMID:23770518

  16. Antioxidant and iron-binding properties of curcumin, capsaicin, and S-allylcysteine reduce oxidative stress in rat brain homogenate.

    PubMed

    Dairam, Amichand; Fogel, Ronen; Daya, Santy; Limson, Janice L

    2008-05-14

    Research demonstrates that antioxidants and metal chelators may be of beneficial use in the treatment of neurodegenerative diseases, such as Alzheimer's disease (AD). This study investigated the antioxidant and metal-binding properties of curcumin, capsaicin, and S-allylcysteine, which are major components found in commonly used dietary spice ingredients turmeric, chilli, and garlic, respectively. The DPPH assay demonstrates that these compounds readily scavenge free radicals. These compounds significantly curtail iron- (Fe2+) and quinolinic acid (QA)-induced lipid peroxidation and potently scavenge the superoxide anion generated by 1 mM cyanide in rat brain homogenate. The ferrozine assay was used to measure the extent of Fe2+ chelation, and electrochemistry was employed to measure the Fe3+ binding activity of curcumin, capsaicin, and S-allylcysteine. Both assays demonstrate that these compounds bind Fe2+ and Fe3+ and prevent the redox cycling of iron, suggesting that this may be an additional method through which these agents reduce Fe2+-induced lipid peroxidation. This study demonstrates the antioxidant and metal-binding properties of these spice ingredients, and it is hereby postulate that these compounds have important implications in the prevention or treatment of neurodegenerative diseases such as AD.

  17. Angular Impact Mitigation system for bicycle helmets to reduce head acceleration and risk of traumatic brain injury.

    PubMed

    Hansen, Kirk; Dau, Nathan; Feist, Florian; Deck, Caroline; Willinger, Rémy; Madey, Steven M; Bottlang, Michael

    2013-10-01

    Angular acceleration of the head is a known cause of traumatic brain injury (TBI), but contemporary bicycle helmets lack dedicated mechanisms to mitigate angular acceleration. A novel Angular Impact Mitigation (AIM) system for bicycle helmets has been developed that employs an elastically suspended aluminum honeycomb liner to absorb linear acceleration in normal impacts as well as angular acceleration in oblique impacts. This study tested bicycle helmets with and without AIM technology to comparatively assess impact mitigation. Normal impact tests were performed to measure linear head acceleration. Oblique impact tests were performed to measure angular head acceleration and neck loading. Furthermore, acceleration histories of oblique impacts were analyzed in a computational head model to predict the resulting risk of TBI in the form of concussion and diffuse axonal injury (DAI). Compared to standard helmets, AIM helmets resulted in a 14% reduction in peak linear acceleration (p<0.001), a 34% reduction in peak angular acceleration (p<0.001), and a 22-32% reduction in neck loading (p<0.001). Computational results predicted that AIM helmets reduced the risk of concussion and DAI by 27% and 44%, respectively. In conclusion, these results demonstrated that AIM technology could effectively improve impact mitigation compared to a contemporary expanded polystyrene-based bicycle helmet, and may enhance prevention of bicycle-related TBI. Further research is required.

  18. Towards reducing impact-induced brain injury: lessons from a computational study of army and football helmet pads.

    PubMed

    Moss, William C; King, Michael J; Blackman, Eric G

    2014-01-01

    We use computational simulations to compare the impact response of different football and U.S. Army helmet pad materials. We conduct experiments to characterise the material response of different helmet pads. We simulate experimental helmet impact tests performed by the U.S. Army to validate our methods. We then simulate a cylindrical impactor striking different pads. The acceleration history of the impactor is used to calculate the head injury criterion for each pad. We conduct sensitivity studies exploring the effects of pad composition, geometry and material stiffness. We find that (1) the football pad materials do not outperform the currently used military pad material in militarily relevant impact scenarios; (2) optimal material properties for a pad depend on impact energy and (3) thicker pads perform better at all velocities. Although we considered only the isolated response of pad materials, not entire helmet systems, our analysis suggests that by using larger helmet shells with correspondingly thicker pads, impact-induced traumatic brain injury may be reduced.

  19. Serotonin syndrome presenting as pulmonary edema

    PubMed Central

    Shah, Nilima Deepak; Jain, Ajay B.

    2016-01-01

    Serotonin syndrome (SS) is a potentially life-threatening condition resulting from excessive central and peripheral serotonergic activity. Clinically, it is a triad of mental-status changes, neuromuscular abnormalities, and autonomic disturbances. It can be caused by intentional self-poisoning, overdose, or inadvertent drug interactions. We report the case of a 58-year-old male with type 2 diabetes mellitus and obsessive compulsive disorder who developed pulmonary edema as a possible complication of SS. SS was caused by a combination of three specific serotonin re-uptake inhibitors (fluoxetine, fluvoxamine, and sertraline), linezolid, and fentanyl. The hospital course was further complicated by difficult weaning from the ventilator. SS was identified and successfully treated with cyproheptadine and lorazepam. The case highlights the importance of effective consultation-liaison and prompt recognition of SS as the presentation may be complex in the presence of co-morbid medical illness. PMID:26997733

  20. Nonproliferative diabetic retinopathy and macular edema.

    PubMed

    Smith, S C

    1999-01-01

    As previously noted, although visual loss usually does not fall below 20/200 in the presence of ME, it may nevertheless be a significant disability. Additional interventions may include referral to low vision clinics, home health agencies, visual loss support groups, and local or regional blindness agencies to aid the patient's occupational rehabilitation, coping mechanisms, and adaptation responses in the presence of this potentially debilitating process. Control of blood sugar, blood pressure, and the intervention of focal/grid laser treatments to seal leaks and prevent further edema provide the best chance of maintaining useful vision throughout life. Patient education is paramount to improve comprehension of the condition, recommended treatment modalities, and compliance with prescribed regimens. Assessments and interventions related to knowledge and sensory deficits, anxiety, discomfort, ineffective coping mechanisms, and health maintenance behaviors add a quality link in the multidisciplinary approach surrounding the delivery of care to patients with NPDR and clinically significant ME. PMID:11907881

  1. Pseudophakic cystoid macular edema: update 2016

    PubMed Central

    Grzybowski, Andrzej; Sikorski, Bartosz L; Ascaso, Francisco J; Huerva, Valentín

    2016-01-01

    Pseudophakic cystoid macular edema (PCME) is the most common complication of cataract surgery, leading in some cases to a decrease in vision. Although the pathogenesis of PCME is not completely understood, the contribution of postsurgical inflammation is generally accepted. Consequently, anti-inflammatory medicines, including steroids and nonsteroidal anti-inflammatory drugs, have been postulated as having a role in both the prophylaxis and treatment of PCME. However, the lack of a uniformly accepted PCME definition, conflicting data on some risk factors, and the scarcity of studies comparing the role of nonsteroidal anti-inflammatory drugs to steroids in PCME prevention make the problem of PCME one of the puzzles of ophthalmology. This paper presents an updated review on the pathogenesis, risk factors, and use of anti-inflammatory drugs in PCME that reflect current research and practice.

  2. Pseudophakic cystoid macular edema: update 2016

    PubMed Central

    Grzybowski, Andrzej; Sikorski, Bartosz L; Ascaso, Francisco J; Huerva, Valentín

    2016-01-01

    Pseudophakic cystoid macular edema (PCME) is the most common complication of cataract surgery, leading in some cases to a decrease in vision. Although the pathogenesis of PCME is not completely understood, the contribution of postsurgical inflammation is generally accepted. Consequently, anti-inflammatory medicines, including steroids and nonsteroidal anti-inflammatory drugs, have been postulated as having a role in both the prophylaxis and treatment of PCME. However, the lack of a uniformly accepted PCME definition, conflicting data on some risk factors, and the scarcity of studies comparing the role of nonsteroidal anti-inflammatory drugs to steroids in PCME prevention make the problem of PCME one of the puzzles of ophthalmology. This paper presents an updated review on the pathogenesis, risk factors, and use of anti-inflammatory drugs in PCME that reflect current research and practice. PMID:27672316

  3. Smoke aldehyde component influences pulmonary edema

    SciTech Connect

    Hales, C.A.; Musto, S.W.; Janssens, S.; Jung, W.; Quinn, D.A.; Witten, M. , Massachusetts General Hospital, Boston )

    1992-02-01

    The pulmonary edema of smoke inhalation is caused by the toxins of smoke and not the heat. We investigated the potential of smoke consisting of carbon in combination with either acrolein or formaldehyde (both common components of smoke) to cause pulmonary edema in anesthetized sheep. Seven animals received acrolein smoke, seven animals received a low-dose formaldehyde smoke, and five animals received a high-dose formaldehyde smoke. Pulmonary arterial pressure, pulmonary capillary wedge pressure, and cardiac output were not affected by smoke in any group. Peak airway pressure increased after acrolein (14 +/- 1 to 21 +/- 2 mmHg; P less than 0.05) and after low- and high-dose formaldehyde (14 +/- 1 to 21 +/- 1 and 20 +/- 1 mmHg, respectively; both P less than 0.05). The partial pressure of O2 in arterial blood fell sharply after acrolein (219 +/- 29 to 86 +/- 9 (SE) Torr; P less than 0.05) but not after formaldehyde. Only acrolein resulted in a rise in lung lymph flow (6.5 +/- 2.2 to 17.9 +/- 2.6 ml/h; P less than 0.05). Lung lymph-to-plasma protein ratio was unchanged for all three groups, but clearance of lymph protein was increased after acrolein. After acrolein, the blood-free extravascular lung water-to-lung dry weight ratio was elevated (P less than 0.05) compared with both low- and high-dose formaldehyde groups (4.8 +/- 0.4 to 3.3 +/- 0.2 and 3.6 +/- 0.2, respectively). Lymph clearance (ng/h) of thromboxane B2, leukotriene B4, and the sulfidopeptide leukotrienes was elevated after acrolein but not formaldehyde.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Massive vulvar edema in 2 prepartum dairy cows.

    PubMed

    Cheong, Soon Hon; Gilbert, Robert O

    2014-05-01

    Two late gestation Holstein cows about to begin the third lactation developed massive vulvar edema. These were the only affected animals in the herd of 500 milking cows. The vulvar edema spontaneously regressed postpartum for both cows. Massive vulvar swelling is seldom observed in dairy cows in advanced pregnancy and is not described in the literature.

  5. Sex hormones regulate cerebral drug metabolism via brain miRNAs: down-regulation of brain CYP2D by androgens reduces the analgesic effects of tramadol

    PubMed Central

    Li, Jie; Xie, Mengmeng; Wang, Xiaoshuang; Ouyang, Xiufang; Wan, Yu; Dong, Guicheng; Yang, Zheqiong; Yang, Jing; Yue, Jiang

    2015-01-01

    Background and Purpose Brain cytochrome P450 2D (CYP2D) metabolises exogenous neurotoxins, endogenous substances and neurotransmitters. Brain CYP2D can be regulated in an organ-specific manner, but the possible regulatory mechanisms are poorly understood. We investigated the involvement of miRNAs in the selective regulation of brain CYP2D by testosterone and the corresponding alteration of the pharmacological profiles of tramadol by testosterone. Experimental Approach The regulation of CYP2D and brain-enriched miRNAs by testosterone was investigated using SH-SY5Y cells, U251 cells, and HepG2 cells as well as orchiectomized growth hormone receptor knockout (GHR-KO) mice and rats. Concentration–time curves of tramadol in rat brain were determined using a microdialysis technique. The analgesic action of tramadol was assessed by the tail-flick test in rats. Key Results miR-101 and miR-128-2 bound the 3′-untranslated region of the CYP2D6 mRNA and decreased its level. Testosterone decreased CYP2D6 catalytic function via the up-regulation of miR-101 and miR-128-2 in SH-SY5Y and U251 cells, but not in HepG2 cells. Orchiectomy decreased the levels of miR-101 and miR-128-2 in the hippocampus of male GHR-KO mice, indicating that androgens regulate miRNAs directly, not via the alteration of growth hormone secretion patterns. Changes in the pharmacokinetic and pharmacodynamic profiles of tramadol by orchiectomy was attenuated by either testosterone supplementation or a specific brain CYP2D inhibitor. Conclusions and Implications The selective regulation of brain CYP2D via brain-enriched miRNAs, following changes in androgen levels, such as in testosterone therapy, androgen deprivation therapy and/or ageing may alter the response to centrally active substances. PMID:26031356

  6. Macrophage-epithelial paracrine crosstalk inhibits lung edema clearance during influenza infection

    PubMed Central

    Peteranderl, Christin; Morales-Nebreda, Luisa; Lecuona, Emilia; Vadász, István; Morty, Rory E.; Schmoldt, Carole; Bespalowa, Julia; Pleschka, Stephan; Mayer, Konstantin; Gattenloehner, Stefan; Fink, Ludger; Lohmeyer, Juergen; Seeger, Werner; Sznajder, Jacob I.; Mutlu, Gökhan M.; Budinger, G.R. Scott

    2016-01-01

    Influenza A viruses (IAV) can cause lung injury and acute respiratory distress syndrome (ARDS), which is characterized by accumulation of excessive fluid (edema) in the alveolar airspaces and leads to hypoxemia and death if not corrected. Clearance of excess edema fluid is driven mostly by the alveolar epithelial Na,K-ATPase and is crucial for survival of patients with ARDS. We therefore investigated whether IAV infection alters Na,K-ATPase expression and function in alveolar epithelial cells (AECs) and the ability of the lung to clear edema. IAV infection reduced Na,K-ATPase in the plasma membrane of human and murine AECs and in distal lung epithelium of infected mice. Moreover, induced Na,K-ATPase improved alveolar fluid clearance (AFC) in IAV-infected mice. We identified a paracrine cell communication network between infected and noninfected AECs and alveolar macrophages that leads to decreased alveolar epithelial Na,K-ATPase function and plasma membrane abundance and inhibition of AFC. We determined that the IAV-induced reduction of Na,K-ATPase is mediated by a host signaling pathway that involves epithelial type I IFN and an IFN-dependent elevation of macrophage TNF-related apoptosis–inducing ligand (TRAIL). Our data reveal that interruption of this cellular crosstalk improves edema resolution, which is of biologic and clinical importance to patients with IAV-induced lung injury. PMID:26999599

  7. Reduced expression of NO-sensitive guanylyl cyclase in reactive astrocytes of Alzheimer disease, Creutzfeldt-Jakob disease, and multiple sclerosis brains.

    PubMed

    Baltrons, María Antonia; Pifarré, Paula; Ferrer, Isidre; Carot, José Miguel; García, Agustina

    2004-12-01

    In Alzheimer's disease (AD) brains increased NO synthase (NOS) expression is found in reactive astrocytes surrounding amyloid plaques. We have recently shown that treatment with beta-amyloid peptides or IL-1beta down-regulates NO-sensitive soluble guanylyl cyclase (sGC) in cultured astrocytes and in adult rat brain. In this work, we have examined sGC activity and expression in postmortem brain tissue of AD patients and matched controls. No significant alteration was observed in basal or NO-stimulated sGC activity, nor in sGC beta1 and alpha1 subunit levels in cortical extracts of AD brains. Immunohistochemistry showed intense and widespread labeling of sGC beta1 in cortical and hippocampal neurons and white matter fibrillar astrocytes, while grey matter astrocytes were faintly stained. In AD, expression of sGC in neurons and fibrillar astrocytes is not altered but is markedly reduced in reactive astrocytes surrounding amyloid plaques. Immunostaining for sGC beta1 was also lacking in reactive astrocytes in cortex and subcortical white matter in Creutzfeldt-Jakob disease brains and in subacute and chronic plaques in multiple sclerosis (MS) brains. Thus, induction of astrocyte reactivity is associated with decreased capacity to generate cGMP in response to NO both in vitro and in vivo. This effect may be related to the development of the astroglial inflammatory response. PMID:15571982

  8. Reduced levels of dopamine and altered metabolism in brains of HPRT knock-out rats: a new rodent model of Lesch-Nyhan Disease

    PubMed Central

    Meek, Stephen; Thomson, Alison J.; Sutherland, Linda; Sharp, Matthew G. F.; Thomson, Julie; Bishop, Valerie; Meddle, Simone L.; Gloaguen, Yoann; Weidt, Stefan; Singh-Dolt, Karamjit; Buehr, Mia; Brown, Helen K.; Gill, Andrew C.; Burdon, Tom

    2016-01-01

    Lesch-Nyhan disease (LND) is a severe neurological disorder caused by loss-of-function mutations in the gene encoding hypoxanthine phosphoribosyltransferase (HPRT), an enzyme required for efficient recycling of purine nucleotides. Although this biochemical defect reconfigures purine metabolism and leads to elevated levels of the breakdown product urea, it remains unclear exactly how loss of HPRT activity disrupts brain function. As the rat is the preferred rodent experimental model for studying neurobiology and diseases of the brain, we used genetically-modified embryonic stem cells to generate an HPRT knock-out rat. Male HPRT-deficient rats were viable, fertile and displayed normal caged behaviour. However, metabolomic analysis revealed changes in brain biochemistry consistent with disruption of purine recycling and nucleotide metabolism. Broader changes in brain biochemistry were also indicated by increased levels of the core metabolite citrate and reduced levels of lipids and fatty acids. Targeted MS/MS analysis identified reduced levels of dopamine in the brains of HPRT-deficient animals, consistent with deficits noted previously in human LND patients and HPRT knock-out mice. The HPRT-deficient rat therefore provides a new experimental platform for future investigation of how HPRT activity and disruption of purine metabolism affects neural function and behaviour. PMID:27185277

  9. Combined Intraperitoneal and Intrathecal Etanercept Reduce Increased Brain Tumor Necrosis Factor-Alpha and Asymmetric Dimethylarginine Levels and Rescues Spatial Deficits in Young Rats after Bile Duct Ligation

    PubMed Central

    Sheen, Jiunn-Ming; Chen, Yu-Chieh; Hsu, Mei-Hsin; Tain, You-Lin; Yu, Hong-Ren; Huang, Li-Tung

    2016-01-01

    Background: Rats subjected to bile duct ligation (BDL) exhibit increased systemic oxidative stress and brain dysfunction characteristic of hepatic encephalopathy (HE), including fatigue, neurotransmitter alterations, cognitive and motor impairment, and brain inflammation. The levels of tumor necrosis factor-alpha (TNF-α) and asymmetric dimethylarginine (ADMA) are both increased in plasma and brain in encephalopathy induced by chronic liver failure. This study first determined the temporal profiles of TNF-α and ADMA in the plasma, brain cortex, and hippocampus in young BDL rats. Next, we examined whether etanercept was beneficial in preventing brain damage. Methods: Young rats underwent sham ligation or BDL at day 17 ± 1 for 4 weeks. Treatment group rats were administered etanercept (10 mg/kg) intraperitoneally (IP) three times per week with or without etanercept (100 μg) intrathecally (IT) three times in total. Results: We found increased plasma TNF-α, soluble tumor necrosis factor receptor 1 (sTNFR1), soluble tumor necrosis factor receptor 2 (sTNFR2), and ADMA levels, increased cortical TNF-α mRNA and protein and ADMA, and hippocampal TNF-α mRNA and protein, and spatial defects in young BDL rats. The increase in cortex TNF-α mRNA and ADMA were reduced by IP etanercept or combined IP and IT etanercept. Dually IP/IT etanercept administration reduced the increased cortical and hippocampal TNF-α mRNA and protein level as well as spatial deficits. Conclusions: We conclude that combined intraperitoneal and intrathecal etanercept reduce increased brain TNF-α and ADMA levels and rescues spatial deficits in young rats after BDL. PMID:27445694

  10. An oxycodone conjugate vaccine elicits drug-specific antibodies that reduce oxycodone distribution to brain and hot-plate analgesia.

    PubMed

    Pravetoni, M; Le Naour, M; Harmon, T M; Tucker, A M; Portoghese, P S; Pentel, P R

    2012-04-01

    Opioid conjugate vaccines have shown promise in attenuating the behavioral effects of heroin or morphine in animals. The goal of this study was to extend this approach to oxycodone (OXY), a commonly abused prescription opioid. Haptens were generated by adding tetraglycine (Gly)(4) or hemisuccinate (HS) linkers at the 6-position of OXY. Immunization of rats with OXY(Gly)(4) conjugated to the carrier proteins bovine serum albumin (BSA) or keyhole limpet hemocyanin (KLH) produced high-titer antibodies to OXY and its metabolite oxymorphone with substantially lower affinities for other structurally related opioid agonists and antagonists. There was no measurable binding of antibody by the (Gly)(4) linker alone or off-target opioids methadone and buprenorphine. OXY(HS) conjugates were less immunogenic despite achieving protein haptenation ratios comparable to OXY(Gly)(4)-BSA. In rats given a single intravenous dose of OXY, immunization with OXY(Gly)(4)-KLH increased OXY protein binding and retention in serum while decreasing its unbound (free) concentration in plasma and distribution to brain. Vaccine efficacy correlated with serum antibody titers, and it was greatest in rats given the lowest OXY dose (0.05 mg/kg) but was significant even after a larger OXY dose (0.5 mg/kg), equivalent to the high end of the therapeutic range in humans. These effects of OXY(Gly)(4)-KLH on drug disposition were comparable to those of nicotine or cocaine vaccines that are in clinical trials as addiction treatments. Immunization with OXY(Gly)(4)-KLH also reduced OXY analgesia in a thermal nociception test. These data support further study of vaccination with the OXY(Gly)(4)-KLH immunogen as a potential treatment option for OXY abuse or addiction.

  11. An Oxycodone Conjugate Vaccine Elicits Drug-Specific Antibodies that Reduce Oxycodone Distribution to Brain and Hot-Plate Analgesia

    PubMed Central

    Le Naour, M.; Harmon, T. M.; Tucker, A. M.; Portoghese, P. S.; Pentel, P. R.

    2012-01-01

    Opioid conjugate vaccines have shown promise in attenuating the behavioral effects of heroin or morphine in animals. The goal of this study was to extend this approach to oxycodone (OXY), a commonly abused prescription opioid. Haptens were generated by adding tetraglycine (Gly)4 or hemisuccinate (HS) linkers at the 6-position of OXY. Immunization of rats with OXY(Gly)4 conjugated to the carrier proteins bovine serum albumin (BSA) or keyhole limpet hemocyanin (KLH) produced high-titer antibodies to OXY and its metabolite oxymorphone with substantially lower affinities for other structurally related opioid agonists and antagonists. There was no measurable binding of antibody by the (Gly)4 linker alone or off-target opioids methadone and buprenorphine. OXY(HS) conjugates were less immunogenic despite achieving protein haptenation ratios comparable to OXY(Gly)4-BSA. In rats given a single intravenous dose of OXY, immunization with OXY(Gly)4-KLH increased OXY protein binding and retention in serum while decreasing its unbound (free) concentration in plasma and distribution to brain. Vaccine efficacy correlated with serum antibody titers, and it was greatest in rats given the lowest OXY dose (0.05 mg/kg) but was significant even after a larger OXY dose (0.5 mg/kg), equivalent to the high end of the therapeutic range in humans. These effects of OXY(Gly)4-KLH on drug disposition were comparable to those of nicotine or cocaine vaccines that are in clinical trials as addiction treatments. Immunization with OXY(Gly)4-KLH also reduced OXY analgesia in a thermal nociception test. These data support further study of vaccination with the OXY(Gly)4-KLH immunogen as a potential treatment option for OXY abuse or addiction. PMID:22262924

  12. Edema surrounding calcified intracranial cysticerci: clinical manifestations, natural history, and treatment

    PubMed Central

    Nash, Theodore

    2012-01-01

    Calcified granulomas are the most common radiological finding in neurocysticercosis (10–20% of endemic populations). A small proportion serves as foci of seizure activity, which results in large numbers of persons with epilepsy. Calcified granulomas are not all the same. Some demonstrate blood–brain barrier dysfunction (magnetic resonance imaging enhancement) most likely due to the presence of inflammation, visualizable scolices, and/or gliosis. About half the patients with a recent history of seizures, positive serology, and only calcified lesions develop perilesional edema at the time of a seizure recurrence. The natural history, treatment, and pathophysiology of this phenomenon are not well studied. Episodes are usually associated with seizures or other neurological manifestations, resolve by 4–6 weeks, sometimes occur repeatedly, and usually involve a subset of the same calcifications. Treatment is supportive. Histopathological examination of one calcification associated with multiple perilesional edema episodes revealed significant inflammation and supports the concept that perilesional edema is inflammatory in nature. This most likely is due to host responses to released or newly recognized parasite antigen and/or upregulation of the host immune response. Immunosuppressive and anti-inflammatory agents may be useful in prevention and/or treatment of this phenomenon. PMID:23265551

  13. Chemical modification of paclitaxel (Taxol) reduces P-glycoprotein interactions and increases permeation across the blood-brain barrier in vitro and in situ.

    PubMed

    Rice, Antonie; Liu, Yanbin; Michaelis, Mary Lou; Himes, Richard H; Georg, Gunda I; Audus, Kenneth L

    2005-02-10

    The purpose of this work was to introduce a chemical modification into the paclitaxel (Taxol) structure to reduce interactions with the product of the multidrug resistant type 1 (MDR1) gene, P-glycoprotein (Pgp), resulting in improved blood-brain barrier (BBB) permeability. Specifically, a taxane analogue, Tx-67, with a succinate group added at the C10 position of Taxol, was synthesized and identified as such a candidate. In comparison studies, Tx-67 had no apparent interactions with Pgp, as demonstrated by the lack of enhanced uptake of rhodamine 123 by brain microvessel endothelial cells (BMECs) in the presence of the agent. By contrast, Taxol exposure substantially enhanced rhodamine 123 uptake by BMECs through inhibition of Pgp. The transport across BMEC monolayers was polarized for both Tx-67 and Taxol with permeation in the apical to basolateral direction greater for Tx-67 and substantially reduced for Taxol relative to basolateral to apical permeation. Taxol and cyclosporin A treatments also did not enhance Tx-67 permeation across BMEC monolayers. In an in situ rat brain perfusion study, Tx-67 was demonstrated to permeate across the BBB at a greater rate than Taxol. These results demonstrate that the Taxol analogue Tx-67 had a reduced interaction with Pgp and, as a consequence, enhanced permeation across the blood-brain barrier in vitro and in situ.

  14. Chronic type 2 diabetes reduces the integrity of the blood-brain barrier by reducing tight junction proteins in the hippocampus

    PubMed Central

    YOO, Dae Young; YIM, Hee Sun; JUNG, Hyo Young; NAM, Sung Min; KIM, Jong Whi; CHOI, Jung Hoon; SEONG, Je Kyung; YOON, Yeo Sung; KIM, Dae Won; HWANG, In Koo

    2016-01-01

    In the present study, we investigated the effects of type 2 diabetes-induced hyperglycemia on the integrity of the blood–brain barrier and tight junction markers in the rat hippocampus. Forty-week-old diabetic (Zucker diabetic fatty, ZDF) rats and littermate control (Zucker lean control, ZLC) rats were used in this study. We evaluated the integrity of the blood–brain barrier by measuring sodium fluorescein extravasation and blood vessel ultrastructure. In addition, tight junction markers, such as zona occludens-1, occludin and claudin-5, were quantified by western blot analysis. ZDF rats showed significantly increased sodium fluorescein leakage in the hippocampus. Tight junction markers, such as occludin and claudin-5, were significantly decreased in the hippocampi of ZDF rats compared to those of ZLC rats. In addition, ZDF rats showed ultrastructural changes with phagocytic findings in the blood vessels. These results suggest that chronic untreated diabetes impairs the permeability of the hippocampal blood–brain barrier by down-regulating occludin and claudin-5, indicating that chronic untreated diabetes may cause hippocampus-dependent dysfunction. PMID:26876499

  15. Melatonin suppresses cerebral edema caused by middle cerebral artery occlusion/reperfusion in rats assessed by magnetic resonance imaging.

    PubMed

    Torii, Kunio; Uneyama, Hisayuki; Nishino, Hitoo; Kondoh, Takashi

    2004-01-01

    Melatonin, a pineal secretory product synthesized from tryptophan, has been found to be effective against neurotoxicity. The present study was aimed at demonstrating the effectiveness of melatonin in vivo in reducing ischemia-induced cerebral edema using magnetic resonance imaging (MRI). Rats were subjected to middle cerebral artery (MCA) occlusion/reperfusion surgery. Melatonin was administered twice (6.0 mg/kg, p.o.) just prior to 1 hr of MCA occlusion and 1 day after the surgery. T2-weighted multislice spin-echo images were acquired 1 day after the surgery. In the saline-treated control rats, increases in T2-weighted signals (water content) were clearly observed in the striatum and in the cerebral cortex. In the melatonin-treated group, total volume of edema was reduced by 51.6% compared with control group (P < 0.01). The protective effect of melatonin against edema was more clearly observed in the cerebral cortex (reduced by 59.8%, P < 0.01) than in the striatum (reduced by 34.2%, P < 0.05). Edema volume in a coronal slice was the greatest at the level of the bregma. Suppression of cerebral edema by melatonin was more effective posterior than anterior to the bregma. Melatonin appeared to reduce the volume of the edematous sites rather than to shift the signal intensity distribution. The present MRI study clearly demonstrates the effectiveness of melatonin against cerebral edema formation in ischemic animals in vivo, especially in the cerebral cortex. Melatonin may be highly useful in preventing cortical dysfunctions such as motor, sensory, memory, and psychological impairments associated with ischemic stroke.

  16. Augmentation of M-Type (KCNQ) Potassium Channels as a Novel Strategy to Reduce Stroke-Induced Brain Injury

    PubMed Central

    Bierbower, Sonya M.; Choveau, Frank S.; Lechleiter, James D.

    2015-01-01

    Cerebral ischemic stroke is a worldwide cause of mortality/morbidity and thus an important focus of research to decrease the severity of brain injury. Therapeutic options for acute stroke are still limited. In neurons throughout the brain, “M-type” K+ currents, underlain by KCNQ subunits 2–5, play dominant roles in control over excitability, and are thus implicated in myriad neurological and psychiatric disorders. Although KCNQ channel openers, such as retigabine, have emerged as anti-epilepsy drugs, their effects on ischemic injury remain unknown. Here, we investigated the protective effects of M-channel openers on stroke-induced brain injury in mouse photothrombotic and middle cerebral artery occlusion (MCAo) models. Both photothrombosis and MCAo led to rapid, predictable, and consistently sized necrotic brain lesions, inflammatory responses, and behavioral deficits. Administration of three distinct M-channel openers at 0–6 h after ischemic injury significantly decreased brain infarct size and inflammation, and prevented neurological dysfunction, although they were more effective when administered 0–3 h poststroke. Thus, we show beneficial effects against stroke-induced brain injury and neuronal death through pharmacological regulation of ion channels that control neuronal excitability. PMID:25653366

  17. Fish oil improves motor function, limits blood-brain barrier disruption, and reduces Mmp9 gene expression in a rat model of juvenile traumatic brain injury.

    PubMed

    Russell, K L; Berman, N E J; Gregg, P R A; Levant, B

    2014-01-01

    The effects of an oral fish oil treatment regimen on sensorimotor, blood-brain barrier, and biochemical outcomes of traumatic brain injury (TBI) were investigated in a juvenile rat model. Seventeen-day old Long-Evans rats were given a 15mL/kg fish oil (2.01g/kg EPA, 1.34g/kg DHA) or soybean oil dose via oral gavage 30min prior to being subjected to a controlled cortical impact injury or sham surgery, followed by daily doses for seven days. Fish oil treatment resulted in less severe hindlimb deficits after TBI as assessed with the beam walk test, decreased cerebral IgG infiltration, and decreased TBI-induced expression of the Mmp9 gene one day after injury. These results indicate that fish oil improved functional outcome after TBI resulting, at least in part from decreased disruption of the blood-brain barrier through a mechanism that includes attenuation of TBI-induced expression of Mmp9. PMID:24342130

  18. FISH OIL IMPROVES MOTOR FUNCTION, LIMITS BLOOD-BRAIN BARRIER DISRUPTION, AND REDUCES MMP9 GENE EXPRESSION IN A RAT MODEL OF JUVENILE TRAUMATIC BRAIN INJURY

    PubMed Central

    Russell, K. L.; Berman, N. E. J.; Gregg, P. R. A.; Levant, B.

    2014-01-01

    SUMMARY The effects of an oral fish oil treatment regimen on sensorimotor, blood-brain barrier, and biochemical outcomes of traumatic brain injury (TBI) were investigated in a juvenile rat model. Seventeen-day old Long-Evans rats were given a 15 mL/kg fish oil (2.01 g/kg EPA, 1.34 g/kg DHA) or soybean oil dose via oral gavage 30 minutes prior to being subjected to a controlled cortical impact injury or sham surgery, followed by daily doses for seven days. Fish oil treatment resulted in less severe hindlimb deficits after TBI as assessed with the beam walk test, decreased cerebral IgG infiltration, and decreased TBI-induced expression of the Mmp9h gene one day after injury. These results indicate that fish oil improved functional outcome after TBI resulting, at least in part from decreased disruption of the blood-brain barrier through a mechanism that includes attenuation of TBI-induced expression of Mmp9. PMID:24342130

  19. Perimicrovascular edema in the frontal cortex in a rat model of intraperitoneal sepsis.

    PubMed

    Ari, Ilknur; Kafa, Ilker M; Kurt, M Ayberk

    2006-03-01

    Septic encephalopathy is a complication of sepsis, and it is closely associated with the increased mortality of the sufferers. Pathophysiology of septic encephalopathy is not still completely understood. In an attempt to provide insight into the pathogenesis of septic encephalopathy, a light and electron microscopic investigation has been carried out in a rat model of intraperitoneal sepsis. Experimental fecal peritonitis was induced in Wistar rats which have been monitored for 6 h and sacrificed to harvest the samples of frontal cortex. Vital parameters and morphometric data obtained from investigation of the microvessels were then compared with the sham-operated and unoperated controls. In addition to the discernible drop in the blood pressure and in rectal temperature following initial increases, unstable but usually increased heart rate and marked respiratory failure were recorded. Estimation of the percentage of the microvessel area occupied by edema revealed the presence of significantly more perimicrovascular edema in the experimental fecal peritonitis group compared to both sham-operated and unoperated controls, while no significant difference was present between the latter two groups. Electron microscopic investigation confirmed the presence of distinctive perimicrovascular edema in the fecal peritonitis group although the endothelial cells were linked by tight junctions which appeared morphologically intact. Although it might be premature to draw any strict parallels between the septic encephalopathy in humans and the findings observed in the present model, the results may suggest that the edema observed around the microvessels would bare a role in the pathogenesis of the septic encephalopathy probably by affecting the exchange of oxygen and nutrients with carbon dioxide and waste products between the blood and brain parenchyma.

  20. Synthetic smoke with acrolein but not HCl produces pulmonary edema

    SciTech Connect

    Hales, C.A.; Barkin, P.W.; Jung, W.; Trautman, E.; Lamborghini, D.; Herrig, N.; Burke, J.

    1988-03-01

    The chemical toxins in smoke and not the heat are responsible for the pulmonary edema of smoke inhalation. We developed a synthetic smoke composed of carbon particles (mean diameter of 4.3 microns) to which toxins known to be in smoke, such as HCl or acrolein, could be added one at a time. We delivered synthetic smoke to dogs for 10 min and monitored extravascular lung water (EVLW) accumulation thereafter with a double-indicator thermodilution technique. Final EVLW correlated highly with gravimetric values (r = 0.93, P less than 0.01). HCl in concentrations of 0.1-6 N when added to heated carbon (120 degrees C) and cooled to 39 degrees C produced airway damage but no pulmonary edema. Acrolein, in contrast, produced airway damage but also pulmonary edema, whereas capillary wedge pressures remained stable. Low-dose acrolein smoke (less than 200 ppm) produced edema in two of five animals with a 2- to 4-h delay. Intermediate-dose acrolein smoke (200-300 ppm) always produced edema at an average of 147 +/- 57 min after smoke, whereas high-dose acrolein (greater than 300 ppm) produced edema at 65 +/- 16 min after smoke. Thus acrolein but not HCl, when presented as a synthetic smoke, produced a delayed-onset, noncardiogenic, and peribronchiolar edema in a roughly dose-dependent fashion.

  1. Exercise-Induced Pulmonary Edema in a Triathlon.

    PubMed

    Yamanashi, Hirotomo; Koyamatsu, Jun; Nobuyoshi, Masaharu; Murase, Kunihiko; Maeda, Takahiro

    2015-01-01

    Introduction. Family physicians have more opportunities to attend athletic competitions as medical staff at first-aid centers because of the increasing popularity of endurance sports. Case. A 38-year-old man who participated in a triathlon race experienced difficulty in breathing after swimming and was moved to a first-aid center. His initial oxygen saturation was 82% and a thoracic computed tomography scan showed bilateral ground glass opacity in the peripheral lungs. His diagnosis was noncardiogenic pulmonary edema associated with exercise or swimming: exercise-induced pulmonary edema (EIPE) or swimming-induced pulmonary edema (SIPE). Treatment with furosemide and corticosteroid relieved his symptoms of pulmonary edema. Discussion. Noncardiogenic pulmonary edema associated with endurance sports is not common, but knowledge about EIPE/SIPE or neurogenic pulmonary edema associated with hyponatremia, which is called Ayus-Arieff syndrome, is crucial. Knowledge and caution for possible risk factors, such as exposure to cold water or overhydration, are essential for both medical staff and endurance athletes. Conclusion. To determine the presence of pulmonary edema associated with strenuous exercise, oxygen saturation should be used as a screening tool at a first-aid center. To avoid risks for EIPE/SIPE, knowledge about these diseases is essential for medical staff and for athletes who perform extreme exercise.

  2. Exercise-Induced Pulmonary Edema in a Triathlon

    PubMed Central

    Yamanashi, Hirotomo; Koyamatsu, Jun; Nobuyoshi, Masaharu; Murase, Kunihiko; Maeda, Takahiro

    2015-01-01

    Introduction. Family physicians have more opportunities to attend athletic competitions as medical staff at first-aid centers because of the increasing popularity of endurance sports. Case. A 38-year-old man who participated in a triathlon race experienced difficulty in breathing after swimming and was moved to a first-aid center. His initial oxygen saturation was 82% and a thoracic computed tomography scan showed bilateral ground glass opacity in the peripheral lungs. His diagnosis was noncardiogenic pulmonary edema associated with exercise or swimming: exercise-induced pulmonary edema (EIPE) or swimming-induced pulmonary edema (SIPE). Treatment with furosemide and corticosteroid relieved his symptoms of pulmonary edema. Discussion. Noncardiogenic pulmonary edema associated with endurance sports is not common, but knowledge about EIPE/SIPE or neurogenic pulmonary edema associated with hyponatremia, which is called Ayus-Arieff syndrome, is crucial. Knowledge and caution for possible risk factors, such as exposure to cold water or overhydration, are essential for both medical staff and endurance athletes. Conclusion. To determine the presence of pulmonary edema associated with strenuous exercise, oxygen saturation should be used as a screening tool at a first-aid center. To avoid risks for EIPE/SIPE, knowledge about these diseases is essential for medical staff and for athletes who perform extreme exercise. PMID:26229538

  3. Diabetic Macular Edema Pathophysiology: Vasogenic versus Inflammatory

    PubMed Central

    Baget-Bernaldiz, Marc; Pareja-Rios, Alicia; Lopez-Galvez, Maribel; Navarro-Gil, Raul; Verges, Raquel

    2016-01-01

    Diabetic macular edema (DME) can cause blindness in diabetic patients suffering from diabetic retinopathy (DR). DM parameters controls (glycemia, arterial tension, and lipids) are the gold standard for preventing DR and DME. Although the vascular endothelial growth factor (VEGF) is known to play a role in the development of DME, the pathological processes leading to the onset of this disease are highly complex and the exact sequence in which they occur is still not completely understood. Angiogenesis and inflammation have been shown to be involved in the pathogenesis of this disease. However, it still remains to be clarified whether angiogenesis following VEGF overexpression is a cause or a consequence of inflammation. This paper provides a review of the data currently available, focusing on VEGF, angiogenesis, and inflammation. Our analysis suggests that angiogenesis and inflammation act interdependently during the development of DME. Knowledge of DME etiology seems to be important in treatments with anti-VEGF or anti-inflammatory drugs. Current diagnostic techniques do not permit us to differentiate between both etiologies. In the future, diagnosing the physiopathology of each patient with DME will help us to select the most effective drug. PMID:27761468

  4. Glyphosate poisoning with acute pulmonary edema.

    PubMed

    Thakur, Darshana Sudip; Khot, Rajashree; Joshi, P P; Pandharipande, Madhuri; Nagpure, Keshav

    2014-01-01

    GlySH-surfactant herbicide (GlySH), one of the most commonly used herbicides worldwide, has been considered as minimally toxic to humans. However, clinical toxicologists occasionally encounter cases of severe systemic toxicity. The US Environmental Protection Agency (EPA) states that 'GlySH' is of relatively low oral and acute dermal toxicity. It does not have anticholinesterase effect and no organophosphate-like central nervous system (CNS) effects. The clinical features range from skin and throat irritation to hypotension and death. Severe GlySH-surfactant poisoning is manifested by gastroenteritis, respiratory disturbances, altered mental status, hypotension refractory to the treatment, renal failure, and shock.[1] GlySH intoxication has a case fatality rate 3.2-29.3%. Pulmonary toxicity and renal toxicity seem to be responsible for mortality. Metabolic acidosis, abnormal chest X-ray, arrhythmias, and elevated serum creatinine levels are useful prognostic factors for predicting GlySH mortality.[2] There is no antidote and the mainstay of treatment for systemic toxicity is decontamination and aggressive supportive therapy. We report a case of acute pulmonary edema, which is a rare but severe manifestation of oral GlySH poisoning, where patient survived with aggressive supportive therapy. PMID:25948977

  5. Intraperitoneal injection of the pancreatic peptide amylin potently reduces behavioral impairment and brain amyloid pathology in murine models of Alzheimer's disease.

    PubMed

    Zhu, H; Wang, X; Wallack, M; Li, H; Carreras, I; Dedeoglu, A; Hur, J-Y; Zheng, H; Li, H; Fine, R; Mwamburi, M; Sun, X; Kowall, N; Stern, R A; Qiu, W Q

    2015-02-01

    Amylin, a pancreatic peptide, and amyloid-beta peptides (Aβ), a major component of Alzheimer's disease (AD) brain, share similar β-sheet secondary structures, but it is not known whether pancreatic amylin affects amyloid pathogenesis in the AD brain. Using AD mouse models, we investigated the effects of amylin and its clinical analog, pramlintide, on AD pathogenesis. Surprisingly, chronic intraperitoneal (i.p.) injection of AD animals with either amylin or pramlintide reduces the amyloid burden as well as lowers the concentrations of Aβ in the brain. These treatments significantly improve their learning and memory assessed by two behavioral tests, Y maze and Morris water maze. Both amylin and pramlintide treatments increase the concentrations of Aβ1-42 in cerebral spinal fluid (CSF). A single i.p. injection of either peptide also induces a surge of Aβ in the serum, the magnitude of which is proportionate to the amount of Aβ in brain tissue. One intracerebroventricular injection of amylin induces a more significant surge in serum Aβ than one i.p. injection of the peptide. In 330 human plasma samples, a positive association between amylin and Aβ1-42 as well as Aβ1-40 is found only in patients with AD or amnestic mild cognitive impairment. As amylin readily crosses the blood-brain barrier, our study demonstrates that peripheral amylin's action on the central nervous system results in translocation of Aβ from the brain into the CSF and blood that could be an explanation for a positive relationship between amylin and Aβ in blood. As naturally occurring amylin may play a role in regulating Aβ in brain, amylin class peptides may provide a new avenue for both treatment and diagnosis of AD.

  6. NTCP Modeling of Subacute/Late Laryngeal Edema Scored by Fiberoptic Examination

    SciTech Connect

    Rancati, Tiziana; Fiorino, Claudio; Sanguineti, Giuseppe

    2009-11-01

    Purpose: Finding best-fit parameters of normal tissue complication probability (NTCP) models for laryngeal edema after radiotherapy for head and neck cancer. Methods and Materials: Forty-eight patients were considered for this study who met the following criteria: (1) grossly uninvolved larynx, (2) no prior major surgery except for neck dissection and tonsillectomy, (3) at least one fiberoptic examination of the larynx within 2 years from radiotherapy, (4) minimum follow-up of 15 months. Larynx dose-volume histograms (DVHs) were corrected into a linear quadratic equivalent one at 2 Gy/fr with alpha/beta = 3 Gy. Subacute/late edema was prospectively scored at each follow-up examination according to the Radiation Therapy Oncology Group scale. G2-G3 edema within 15 months from RT was considered as our endpoint. Two NTCP models were considered: (1) the Lyman model with DVH reduced to the equivalent uniform dose (EUD; LEUD) and (2) the Logit model with DVH reduced to the EUD (LOGEUD). The parameters for the models were fit to patient data using a maximum likelihood analysis. Results: All patients had a minimum of 15 months follow-up (only 8/48 received concurrent chemotherapy): 25/48 (52.1%) experienced G2-G3 edema. Both NTCP models fit well the clinical data: with LOGEUD the relationship between EUD and NTCP can be described with TD50 = 46.7 +- 2.1 Gy, n = 1.41 +- 0.8 and a steepness parameter k = 7.2 +- 2.5 Gy. Best fit parameters for LEUD are n = 1.17 +- 0.6, m = 0.23 +- 0.07 and TD50 = 47.3 +- 2.1 Gy. Conclusions: A clear volume effect was found for edema, consistent with a parallel architecture of the larynx for this endpoint. On the basis of our findings, an EUD <30-35 Gy should drastically reduce the risk of G2-G3 edema.

  7. New Perspectives in Edema Control via Electrical Stimulation

    PubMed Central

    Mendel, Frank C.; Fish, Dale R.

    1993-01-01

    Clinicians commonly use electrical stimulation (ES) to control acute edema. But, except for anecdotal reports, there is little evidence to support that practice. We recently conducted a series of controlled, blinded studies on several nonhuman animal models to determine the efficacy of several forms of ES, but high-voltage pulsed current (HVPC) in particular, in controlling acute posttraumatic edema. We observed that acute posttraumatic edema is curbed by HVPC when certain protocols are used. Results of these studies suggest to us that wave form, polarity, treatment schedule, intensity and frequency of pulses all influence ES, and that clinical protocols need revision. PMID:16558209

  8. Gold ions bio-released from metallic gold particles reduce inflammation and apoptosis and increase the regenerative responses in focal brain injury.

    PubMed

    Larsen, Agnete; Kolind, Kristian; Pedersen, Dan Sonne; Doering, Peter; Pedersen, Mie Ostergaard; Danscher, Gorm; Penkowa, Milena; Stoltenberg, Meredin

    2008-10-01

    Traumatic brain injury results in loss of neurons caused as much by the resulting neuroinflammation as by the injury. Gold salts are known to be immunosuppressive, but their use are limited by nephrotoxicity. However, as we have proven that implants of pure metallic gold release gold ions which do not spread in the body, but are taken up by cells near the implant, we hypothesize that metallic gold could reduce local neuroinflammation in a safe way. Bio-liberation, or dissolucytosis, of gold ions from metallic gold surfaces requires the presence of disolycytes i.e. macrophages and the process is limited by their number and activity. We injected 20-45 mum gold particles into the neocortex of mice before generating a cryo-injury. Comparing gold-treated and untreated cryolesions, the release of gold reduced microgliosis and neuronal apoptosis accompanied by a transient astrogliosis and an increased neural stem cell response. We conclude that bio-liberated gold ions possess pronounced anti-inflammatory and neuron-protective capacities in the brain and suggest that metallic gold has clinical potentials. Intra-cerebral application of metallic gold as a pharmaceutical source of gold ions represents a completely new medical concept that bypasses the blood-brain-barrier and allows direct drug delivery to inflamed brain tissue.

  9. Propofol Attenuates Early Brain Injury After Subarachnoid Hemorrhage in Rats.

    PubMed

    Shi, Song-sheng; Zhang, Hua-bin; Wang, Chun-hua; Yang, Wei-zhong; Liang, Ri-sheng; Chen, Ye; Tu, Xian-kun

    2015-12-01

    Our previous studies demonstrated that propofol protects rat brain against focal cerebral ischemia. However, whether propofol attenuates early brain injury after subarachnoid hemorrhage in rats remains unknown until now. The present study was performed to evaluate the effect of propofol on early brain injury after subarachnoid hemorrhage in rats and further explore the potential mechanisms. Sprague-Dawley rats underwent subarachnoid hemorrhage (SAH) by endovascular perforation then received treatment with propofol (10 or 50 mg/kg) or vehicle after 2 and 12 h of SAH. SAH grading, neurological scores, brain water content, Evans blue extravasation, the myeloperoxidase activity, and malondialdehyde (MDA) content were measured 24 h after SAH. Expression of nuclear factor erythroid-related factor 2 (Nrf2), nuclear factor-kappa B (NF-κB) p65, and aquaporin 4 (AQP4) expression in rat brain were detected by Western blot. Expression of cyclooxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9) were determined by reverse transcription-polymerase chain reaction (RT-PCR). Expressions of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were assessed by ELISA. Neurological scores, brain water content, Evans blue extravasation, the myeloperoxidase activity, and MDA content were significantly reduced by propofol. Furthermore, expression of Nrf2 in rat brain was upregulated by propofol, and expression of NF-κB p65, AQP4, COX-2, MMP-9, TNF-α, and IL-1β in rat brain were attenuated by propofol. Our results demonstrated that propofol improves neurological scores, reduces brain edema, blood-brain barrier (BBB) permeability, inflammatory reaction, and lipid peroxidation in rats of SAH. Propofol exerts neuroprotection against SAH-induced early brain injury, which might be associated with the inhibition of inflammation and lipid peroxidation. PMID:26342279

  10. Propofol Attenuates Early Brain Injury After Subarachnoid Hemorrhage in Rats.

    PubMed

    Shi, Song-sheng; Zhang, Hua-bin; Wang, Chun-hua; Yang, Wei-zhong; Liang, Ri-sheng; Chen, Ye; Tu, Xian-kun

    2015-12-01

    Our previous studies demonstrated that propofol protects rat brain against focal cerebral ischemia. However, whether propofol attenuates early brain injury after subarachnoid hemorrhage in rats remains unknown until now. The present study was performed to evaluate the effect of propofol on early brain injury after subarachnoid hemorrhage in rats and further explore the potential mechanisms. Sprague-Dawley rats underwent subarachnoid hemorrhage (SAH) by endovascular perforation then received treatment with propofol (10 or 50 mg/kg) or vehicle after 2 and 12 h of SAH. SAH grading, neurological scores, brain water content, Evans blue extravasation, the myeloperoxidase activity, and malondialdehyde (MDA) content were measured 24 h after SAH. Expression of nuclear factor erythroid-related factor 2 (Nrf2), nuclear factor-kappa B (NF-κB) p65, and aquaporin 4 (AQP4) expression in rat brain were detected by Western blot. Expression of cyclooxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9) were determined by reverse transcription-polymerase chain reaction (RT-PCR). Expressions of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were assessed by ELISA. Neurological scores, brain water content, Evans blue extravasation, the myeloperoxidase activity, and MDA content were significantly reduced by propofol. Furthermore, expression of Nrf2 in rat brain was upregulated by propofol, and expression of NF-κB p65, AQP4, COX-2, MMP-9, TNF-α, and IL-1β in rat brain were attenuated by propofol. Our results demonstrated that propofol improves neurological scores, reduces brain edema, blood-brain barrier (BBB) permeability, inflammatory reaction, and lipid peroxidation in rats of SAH. Propofol exerts neuroprotection against SAH-induced early brain injury, which might be associated with the inhibition of inflammation and lipid peroxidation.

  11. Neuroprotective effect of suppression of astrocytic activation by arundic acid on brain injuries in rats with acute subdural hematomas.

    PubMed

    Wajima, Daisuke; Nakagawa, Ichiro; Nakase, Hiroyuki; Yonezawa, Taiji

    2013-06-26

    Acute subdural hematoma (ASDH) can cause massive ischemic cerebral blood flow (CBF) underneath the hematoma, but early surgical evacuation of the mass reduces mortality. The aim of this study was to evaluate whether arundic acid improves the secondary ischemic damage induced by ASDH. Our results confirmed that arundic acid decreases the expression of S100 protein produced by activated astrocytes around ischemic lesions due to cytotoxic edema after ASDH as well as reducing infarction volumes and numbers of apoptotic cells around the ischemic lesions. In this study, we also evaluate the relationship of brain edema and the expression of Aquaporin 4 (AQP4) in an ASDH model. The expression of AQP4 was decreased in the acute phase after ASDH. Cytotoxic edema, assumed to be the main cause of ASDH, could also cause ischemic lesions around the edema area. Arundic acid decreased the infarction volume and number of apoptotic cells via suppression of S100 protein expression in ischemic lesions without changing the expression of AQP4.

  12. Scalp edema: don't forget sunburn in children.

    PubMed

    Shah, Binod; Yavuz, Süleyman Tolga; Tekşam, Ozlem

    2012-01-01

    Scalp edema is an uncommon and striking finding in children that may alarm both parents and physicians. The objectives of this case report were to raise awareness among pediatric emergency physicians of the unusual presentation of sunburn as scalp edema. We present the case of an eight-year-old boy with sunburn of the head, presenting with scalp and face edema. Pitting edema and erythema were dominant on the forehead. Shaving of the boy's head the day before the symptoms was the most striking issue, and the sunburn healed gradually without any complications. Healthcare professionals should be aware of this condition, and the diagnosis of sunburn must be kept in mind in otherwise healthy-looking patients with a unique history.

  13. A type-II positive allosteric modulator of α7 nAChRs reduces brain injury and improves neurological function after focal cerebral ischemia in rats.

    PubMed

    Sun, Fen; Jin, Kunlin; Uteshev, Victor V

    2013-01-01

    In the absence of clinically-efficacious therapies for ischemic stroke there is a critical need for development of new therapeutic concepts and approaches for prevention of brain injury secondary to cerebral ischemia. This study tests the hypothesis that administration of PNU-120596, a type-II positive allosteric modulator (PAM-II) of α7 nicotinic acetylcholine receptors (nAChRs), as long as 6 hours after the onset of focal cerebral ischemia significantly reduces brain injury and neurological deficits in an animal model of ischemic stroke. Focal cerebral ischemia was induced by a transient (90 min) middle cerebral artery occlusion (MCAO). Animals were then subdivided into two groups and injected intravenously (i.v.) 6 hours post-MCAO with either 1 mg/kg PNU-120596 (treated group) or vehicle only (untreated group). Measurements of cerebral infarct volumes and neurological behavioral tests were performed 24 hrs post-MCAO. PNU-120596 significantly reduced cerebral infarct volume and improved neurological function as evidenced by the results of Bederson, rolling cylinder and ladder rung walking tests. These results forecast a high therapeutic potential for PAMs-II as effective recruiters and activators of endogenous α7 nAChR-dependent cholinergic pathways to reduce brain injury and improve neurological function after cerebral ischemic stroke. PMID:23951360

  14. Angioneurotic edema: a rare case of hypersensitivity to metoclopramide

    PubMed Central

    Zakrzewski, Aleksander; Matuszewski, Tomasz; Kruszewski, Jerzy

    2013-01-01

    The case of a 30-year-old woman who had already experienced two incidents of angioneurotic edema and urticaria caused by drugs during the acute gastroenteritis. The allergological workup revealed hypersensitivity to metoclopramide. This case documents that metoclopramide, a drug commonly used to inhibit the vomiting, may cause not only bronchospastic reaction in an asthmatic patient but also angioneurotic edema of the tongue and larynx as well as urticaria. No similar cases in the literature were found. PMID:24278059

  15. Local fluid shifts and edema in humans during simulated microgravity

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.

    1991-01-01

    Local fluid shifts and edema in humans during simulated microgravity is studied. Recent results and significance and future plans on the following research topics are discussed: mechanisms of headward edema formation during head-down tilt; postural responses of head and foot microcirculations and their sensitivity to bed rest; and transcapillary fluid transport associated with lower body negative pressure (LBNP) with and without saline ingestion.

  16. Blood pressure, edema and proteinuria in pregnancy. 7. Edema-plus-proteinuria relationships.

    PubMed

    Sellmann, A H

    1976-01-01

    1. A total of 488 pregnancies had the combination of two-plus or more proteinuria and edema of the hands and face. Of these, 208 were white and 280 were black gravidas. In the white gravidas, 8 fetal and neonatal deaths occurred with a perinatal mortality of 38.5 per 1,000. There were 13 perinatal deaths in the black subgroup with a perinatal mortality rate of 46.4 per 1,000. The overall perinatal mortality rate was 43.0 per 1,000, which could be compared to the overall perinatal mortality rate of 32.8 per 1,000 for the segment of the study population without edema or proteinuria. This underscored the implication of increased hazard to fetal outcome of these clinical signs in combination. 2. The analysis of the matrix data showed scattered rates throughout gestation in white median-age nulliparas. Their black counterparts had comparable increased mortality rates. In the white multiparas of ages 20 to 34 years, the highest rates were found at relatively low blood pressure levels. The black median-age multiparas had rates associated with higher pressure readings, especially at or above 125/75. In teenage mulliparas with edema and proteinuria, perinatal mortality rates were similar for both subgroups and were found in somewhat lower blood pressures. 3. The incremental analysis was remarkable in that rates were scattered widely in the white subgroups, but tightly clustered in the black subgroups. The black median-age nulliparas had perinatal mortality concentrated about 115 to 134 mm. Hg systolic and 65 to 84 mm. Hg diastolic. The overall mortality rates of this subgroup were the highest of the subgroups studied. The black 20 to 34 year old multiparas had highest coassociated deaths in the 134-154 mm. Hg systolic levels throughout pregnancy. The clustering effect was most pronounced in black teenage nulliparas in both systolic and diastolic blood pressure groups at much lower levels. 4. The use of a critical cut-off blood pressure level of 125 mm. Hg systolic and 75 mm

  17. Erythropoietin delivered via intra-arterial infusion reduces endoplasmic reticulum stress in brain microvessels of rats following cerebral ischemia and reperfusion.

    PubMed

    Zhao, Haiping; Wang, Rongliang; Wu, Xiaoning; Liang, Jia; Qi, Zhifeng; Liu, Xiangrong; Min, Lianqiu; Ji, Xunming; Luo, Yumin

    2015-03-01

    Local infusion of low dose erythropoietin (EPO) alleviates cerebral ischemia and reperfusion (I/R) injury in rats; however, the underlying molecular mechanisms are still unclear. The present study investigated the effect of low dose EPO treatment on I/R-induced endoplasmic reticulum (ER) stress in brain tissue and isolated microvessels in rodents. Sprague-Dawley rats were subjected to 2 h ischemia/24 h reperfusion by middle cerebral artery (MCA) occlusion, then administered fluorescein isothiocyanate-labeled EPO via MCA infusion (MCAI) or subcutaneous injection (SI) to compare the efficiency of two modes of delivery. Neurobehavioral deficits and infarct volume, and the expression of ER stress-associated proteins and apoptosis in brain tissue or isolated microvessels, as well as the transcriptional activity of 16 factors involved in ER stress and the unfolded protein response in brain tissue was asscessed. A higher EPO level in cerebrospinal fluid and brain tissue was observed in rats treated with EPO by MCAI (800 IU/kg) than by SI (5000 IU/kg). Moreover, neurobehavioral deficits and infarct volume were reduced in rats treated with EPO by MCAI and salubrinal. EPO suppressed the expression of ER stress signals glucose-regulated protein 78, activating transcription factor (ATF) 6α, and CCAAT enhancer-binding protein homologous protein (CHOP), as well as that of the pro-apoptotic protein caspase-3 in brain microvessels, and decreased the number of CHOP-positive, apoptotic neurons. EPO treatment also reduced the transcriptional activities of CHOP, forkhead box protein O1, and ATF4. These results provide evidence that low dose EPO treatment via MCAI provides neuroprotection following acute ischemic stroke by inhibiting the ER stress response. PMID:25626440

  18. Prenatal Ethanol Exposure Up-Regulates the Cholesterol Transporters ATP-Binding Cassette A1 and G1 and Reduces Cholesterol Levels in the Developing Rat Brain

    PubMed Central

    Zhou, Chunyan; Chen, Jing; Zhang, Xiaolu; Costa, Lucio G.; Guizzetti, Marina

    2014-01-01

    Aims: Cholesterol plays a pivotal role in many aspects of brain development; reduced cholesterol levels during brain development, as a consequence of genetic defects in cholesterol biosynthesis, leads to severe brain damage, including microcephaly and mental retardation, both of which are also hallmarks of the fetal alcohol syndrome. We had previously shown that ethanol up-regulates the levels of two cholesterol transporters, ABCA1 (ATP binding cassette-A1) and ABCG1, leading to increased cholesterol efflux and decreased cholesterol content in astrocytes in vitro. In the present study we investigated whether similar effects could be seen in vivo. Methods: Pregnant Sprague-Dawley rats were fed liquid diets containing 36% of the calories from ethanol from gestational day (GD) 6 to GD 21. A pair-fed control groups and an ad libitum control group were included in the study. ABCA1 and ABCG1 protein expression and cholesterol and phospholipid levels were measured in the neocortex of female and male fetuses at GD 21. Results: Body weights were decreased in female fetuses as a consequence of ethanol treatments. ABCA1 and ABCG1 protein levels were increased, and cholesterol levels were decreased, in the neocortex of ethanol-exposed female, but not male, fetuses. Levels of phospholipids were unchanged. Control female fetuses fed ad libitum displayed an up-regulation of ABCA1 and a decrease in cholesterol content compared with pair-fed controls, suggesting that a compensatory up-regulation of cholesterol levels may occur during food restriction. Conclusion: Maternal ethanol consumption may affect fetal brain development by increasing cholesterol transporters’ expression and reducing brain cholesterol levels. PMID:25081040

  19. Developmental Thyroid Hormone Insufficiency Reduces Expression of Brain-Derived Neurotrophic Factor (BDNF) in Adults But Not in Neonates

    EPA Science Inventory

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin critical for many developmental and physiological aspects of CNS function. Severe hypothyroidism in the early neonatal period results in developmental and cognitive impairments and reductions in mRNA and protein expressio...

  20. The Episodic Engram Transformed: Time Reduces Retrieval-Related Brain Activity but Correlates It with Memory Accuracy

    ERIC Educational Resources Information Center

    Furman, Orit; Mendelsohn, Avi; Dudai, Yadin

    2012-01-01

    We took snapshots of human brain activity with fMRI during retrieval of realistic episodic memory over several months. Three groups of participants were scanned during a memory test either hours, weeks, or months after viewing a documentary movie. High recognition accuracy after hours decreased after weeks and remained at similar levels after…