Science.gov

Sample records for reduced fat diet

  1. Nutrient content of the diet when the fat is reduced.

    PubMed

    Dougherty, R M; Fong, A K; Iacono, J M

    1988-10-01

    When the fat content of the typical US diet was reduced from 40 to 44% of total energy (en %) to approximately 25 en % there was a marked improvement in the overall nutrient content of the diet. Cholesterol, saturated fatty acid, and monounsaturated fatty acid intake were decreased and the polyunsaturated fatty acid content was moderately increased. This kind of dietary change was achieved without changing the usual intake of meats, dairy products, fish, and eggs. As the amount of fat was decreased, carbohydrates in the form of grains, fruits, and vegetables were increased, providing an improvement in the vitamin and mineral content of the diet. Vitamin C, thiamin, riboflavin, niacin, B-6, B-12, and folates increased in the 25 en % diet. Potassium, calcium, magnesium, phosphorus, iron, zinc, and copper intake also increased when the dietary fat decreased.

  2. Spent turmeric reduces fat mass in rats fed a high-fat diet.

    PubMed

    Han, Kyu-Ho; Lee, Chang-Hyun; Kinoshita, Mikio; Oh, Chan-Ho; Shimada, Ken-ichiro; Fukushima, Michihiro

    2016-04-01

    Indigestible carbohydrates may improve obesity. Spent turmeric contains high levels of dietary fibre and resistant starch (RS), which have fermentation potential in vitro. We hypothesised that indigestible carbohydrates in spent turmeric might prevent obesity development. In the first study, rats were administered 10% turmeric powder (TP) or spent turmeric powder (STP) in a high-fat (HF) diet for 28 d. In the second study, rats were fed 10% STP in a HF diet with or without antibiotics for 15 d. In the third study, rats were treated with a STP-containing suspension. In study 1, the TP and STP diet increased the caecal short-chain fatty acid (SCFA) content compared to that of a control diet. The lower energy intake in the TP and STP group was strongly related to the decrease in visceral fat weight. In study 2, after caecal fermentation suppression with antibiotics, STP treatment decreased the visceral fat mass. In study 3, the plasma glucose levels and incremental area under the curve (AUC) after ingestion of a STP-containing suspension were lower than those after ingestion of suspension alone. These findings suggest the reduction of carbohydrate absorption during the gastrointestinal passage after TP and STP treatment. Our data indicate that the reduced obesity development in rats fed a HF diet may be attributed to the low metabolisable energy density of carbohydrates in the spent turmeric, independent of SCFA-mediated factors.

  3. Time-restricted feeding reduces adiposity in mice fed a high-fat diet.

    PubMed

    Sundaram, Sneha; Yan, Lin

    2016-06-01

    Disruption of the circadian rhythm contributes to obesity. This study tested the hypothesis that time-restricted feeding (TRF) reduces high-fat diet-induced increase in adiposity. Male C57BL/6 mice were fed the AIN93G or the high-fat diet ad libitum (ad lib); TRF of the high-fat diet for 12 or 8hours during the dark cycle was initiated when high-fat diet-fed mice exhibited significant increases in body weight. Energy intake of the TRF 12-hour group was not different from that of the high-fat ad lib group, although that of the TRF 8-hour group was slightly but significantly lower. Restricted feeding of the high-fat diet reduced body fat mass and body weight compared with mice fed the high-fat diet ad lib. There were no differences in respiratory exchange ratio (RER) among TRF and high-fat ad lib groups, but the RER of these groups was lower than that of the AIN93G group. Energy expenditure of the TRF groups was slightly but significantly lower than that of the high-fat ad lib group. Plasma concentrations of ghrelin were increased in TRF groups compared with both AIN93G and high-fat ad lib groups. Elevations of plasma concentrations of insulin, leptin, monocyte chemoattractant protein-1, and tissue inhibitor metalloproteinase-1 by high-fat ad lib feeding were reduced by TRF to the levels of mice fed the AIN93G diet. In conclusion, TRF during the dark cycle reduces high-fat diet-induced increases in adiposity and proinflammatory cytokines. These results indicate that circadian timing of food intake may prevent obesity and abate obesity-related metabolic disturbance.

  4. Switching back to normal diet following high-fat diet feeding reduces cardiac vulnerability to ischaemia and reperfusion injury.

    PubMed

    Littlejohns, Ben; Lin, Hua; Angelini, Gianni D; Halestrap, Andrew P; Suleiman, M Saadeh

    2014-01-01

    We have recently shown that hearts of mice fed high-fat diet exhibit increased vulnerability to ischaemia and reperfusion (I/R) in parallel to changes in catalase protein expression, mitochondrial morphology and intracellular diastolic Ca(2+). To determine whether switching from high-fat back to normal diet alters vulnerability to I/R and to investigate cardiac cellular remodelling in relation to the mechanism(s) underlying I/R injury. Male C57BL/6J mice were fed a high-fat diet for 19-22 weeks; after which a subset of mice was switched back to normal diet for 4-6 weeks. Hearts from mice switched back to normal diet were more resistant to reperfusion injury compared to hearts from mice fed only high-fat diet. This was associated with a significant reversal in catalase expression (western blotting) and recovery of size and density of mitochondria (electron microscopy). In contrast, switching back to normal diet did not alter cardiomyocyte contractility or Ca(2+) transients compared to high-fat diet. This study shows for the first time that switching the diet from high-fat back to normal reduces vulnerability to I/R. This effect is associated with changes in catalase levels and mitochondrial morphology without altering cardiomyocyte contractility or Ca(2+) transients. © 2014 S. Karger AG, Basel.

  5. Switching Back to Normal Diet Following High-Fat Diet Feeding Reduces Cardiac Vulnerability to Ischaemia and Reperfusion Injury

    PubMed Central

    Littlejohns, Ben; Lin, Hua; Angelini, Gianni D.; Halestrap, Andrew P.; Suleiman, M. Saadeh

    2014-01-01

    Background We have recently shown that hearts of mice fed high-fat diet exhibit increased vulnerability to ischaemia and reperfusion (I/R) in parallel to changes in catalase protein expression, mitochondrial morphology and intracellular diastolic Ca2+. Aims To determine whether switching from high-fat back to normal diet alters vulnerability to I/R and to investigate cardiac cellular remodelling in relation to the mechanism(s) underlying I/R injury. Methods and Results Male C57BL/6J mice were fed a high-fat diet for 19-22 weeks; after which a subset of mice was switched back to normal diet for 4-6 weeks. Hearts from mice switched back to normal diet were more resistant to reperfusion injury compared to hearts from mice fed only high-fat diet. This was associated with a significant reversal in catalase expression (western blotting) and recovery of size and density of mitochondria (electron microscopy). In contrast, switching back to normal diet did not alter cardiomyocyte contractility or Ca2+ transients compared to high-fat diet. Conclusion This study shows for the first time that switching the diet from high-fat back to normal reduces vulnerability to I/R. This effect is associated with changes in catalase levels and mitochondrial morphology without altering cardiomyocyte contractility or Ca2+ transients. PMID:25228294

  6. Fat-reduced diet in the treatment of hyperoxaluria in patients with ileopathy

    PubMed Central

    Andersson, Henrik; Jagenburg, Rudolf

    1974-01-01

    Thirteen patients with ileopathy were studied under metabolic ward conditions, first on a 100-g fat diet and later on a 40-g fat diet. Ten of the patients were studied after three to 27 months on a fat-reduced diet. Ten of the patients had a high urinary oxalate excretion on the high-fat diet compared with a control group. The patients with a faecal fat output of more than 15 g a day showed a reduction in oxalate excretion when the fat intake was decreased and in the follow-up study the oxalate excretion was low in all patients except in one with a remaining steatorrhoea. There was a correlation between urinary oxalate excretion and faecal output of fatty acids. It is postulated that a low intraluminal calcium ion concentration, mainly caused by the high fatty acid content, explains the hyperoxaluria. The low fat diet, which also reduced the diarrhoea and increased the urinary output, was acceptable to the patients. The diet is recommended for patients with ileopathy in order to reduce the risk of formation of renal calculi. PMID:18668844

  7. Swimming exercise increases serum irisin level and reduces body fat mass in high-fat-diet fed Wistar rats.

    PubMed

    Lu, Yun; Li, Hongwei; Shen, Shi-Wei; Shen, Zhen-Hai; Xu, Ming; Yang, Cheng-Jian; Li, Feng; Feng, Yin-Bo; Yun, Jing-Ting; Wang, Ling; Qi, Hua-Jin

    2016-05-13

    It has been shown that irisin levels are reduced in skeletal muscle and plasma of obese rats; however, the effect of exercise training on irisin level remains controversial. We aim to evaluate the association of swimming exercise with serum irisin level and other obesity-associated parameters. Forty healthy male Wistar rats were randomly assigned to 4 groups: a normal diet and sedentary group (ND group), normal diet and exercise group (NDE group), high-fat diet and sedentary group (HFD group), and high-fat diet and exercise group (HFDE group. After 8 consecutive weeks of swimming exercise, fat mass and serum irisin level was determined. Higher serum irisin levels were detected in the HFDE group (1.15 ± 0.28 μg/L) and NDE group (1.76 ± 0.17 μg/L) than in the HFD group (0.84 ± 0.23 μg/L) or the ND group (1.24 ± 0.29 μg/L), respectively (HFDE group vs. HFD group, P < 0.05; NDE group vs. ND group, P < 0.01). Pearson's correlation analysis showed that serum irisin level negatively correlated with TG level (r = -0.771, P < 0.05), percentage fat mass (r = -0.68, P < 0.05), fat mass (r = -0.576, P < 0.05), visceral fat mass (r = -0.439, P < 0.05) and TC level (r = -0.389, P < 0.05). The fat mass, visceral fat mass and percentage fat mass were lower in the HFDE group than the HFD group (all P values < 0.01). Swimming exercise decreases body fat mass in high-fat-fed Wistar rats, which may be attributable to elevated irisin levels induced by swimming exercise.

  8. Ghrelin secretion is not reduced by increased fat mass during diet-induced obesity.

    PubMed

    Qi, Xiang; Reed, Jason T; Wang, Guiyun; Han, Song; Englander, Ella W; Greeley, George H

    2008-08-01

    Ghrelin is a stomach hormone that stimulates growth hormone (GH) secretion, adiposity, and food intake. Gastric ghrelin production and secretion are regulated by caloric intake; ghrelin secretion increases during fasting, decreases with refeeding, and is reduced by diet-induced obesity. The aim of the present study was to test the hypotheses that 1) an increase in body adiposity will play an inhibitory role in the reduction of gastric ghrelin synthesis and secretion during chronic ingestion of a high-fat (HF) diet and 2) chronic ingestion of an HF diet will suppress the rise in circulating ghrelin levels in response to acute fasting. Adult male Sprague-Dawley rats were fed a standard AIN-76A (approximately 5-12% of calories from fat) or an HF (approximately 45% of calories from fat) diet. The effect of increased adiposity on gastric ghrelin homeostasis was assessed by comparison of stomach ghrelin production and plasma ghrelin levels in obese and nonobese rats fed the HF diet. HF diet-fed, nonobese rats were generated by administration of triiodothyronine to lower body fat accumulation. Our findings indicate that an increased fat mass per se does not exert an inhibitory effect on ghrelin homeostasis during ingestion of the HF diet. Additionally, the magnitude of change in plasma ghrelin in response to fasting was not blunted, indicating that a presumed, endogenous signal for activation of ingestive behavior remains intact, despite excess stored calories in HF-fed rats.

  9. High-fat diet transition reduces brain DHA levels associated with altered brain plasticity and behaviour.

    PubMed

    Sharma, Sandeep; Zhuang, Yumei; Gomez-Pinilla, Fernando

    2012-01-01

    To assess how the shift from a healthy diet rich in omega-3 fatty acids to a diet rich in saturated fatty acid affects the substrates for brain plasticity and function, we used pregnant rats fed with omega-3 supplemented diet from their 2nd day of gestation period as well as their male pups for 12 weeks. Afterwards, the animals were randomly assigned to either a group fed on the same diet or a group fed on a high-fat diet (HFD) rich in saturated fats for 3 weeks. We found that the HFD increased vulnerability for anxiety-like behavior, and that these modifications harmonized with changes in the anxiety-related NPY1 receptor and the reduced levels of BDNF, and its signalling receptor pTrkB, as well as the CREB protein. Brain DHA contents were significantly associated with the levels of anxiety-like behavior in these rats.

  10. High-fat diet transition reduces brain DHA levels associated with altered brain plasticity and behaviour

    PubMed Central

    Sharma, Sandeep; Zhuang, Yumei; Gomez-Pinilla, Fernando

    2012-01-01

    To assess how the shift from a healthy diet rich in omega-3 fatty acids to a diet rich in saturated fatty acid affects the substrates for brain plasticity and function, we used pregnant rats fed with omega-3 supplemented diet from their 2nd day of gestation period as well as their male pups for 12 weeks. Afterwards, the animals were randomly assigned to either a group fed on the same diet or a group fed on a high-fat diet (HFD) rich in saturated fats for 3 weeks. We found that the HFD increased vulnerability for anxiety-like behavior, and that these modifications harmonized with changes in the anxiety-related NPY1 receptor and the reduced levels of BDNF, and its signalling receptor pTrkB, as well as the CREB protein. Brain DHA contents were significantly associated with the levels of anxiety-like behavior in these rats. PMID:22666534

  11. Fat-reduced diet in the symptomatic treatment of small bowel disease

    PubMed Central

    Andersson, H.; Isaksson, B.; Sjögren, B.

    1974-01-01

    Thirteen patients suffering from Crohn's disease or subjected to small bowel resection were studied under metabolic ward conditions for an average of 32 days. Most of these patients had chronic, severe diarrhoea and varying degrees of steatorrhoea. All were studied at two levels of fat intake, 100 g and 40 g daily. After the introduction of the low-fat diet, there was a marked reduction in the faecal excretion of water and sodium in most patients and 10 of them passed solid faeces. Two other subjects improved only after the addition of cholestyramine. In one patient with an ileostomy, no improvement occurred. On the low-fat diet, there was a positive balance of nitrogen and potassium in many cases. Faecal fat excretion decreased, but there was no change in the fractional absorption of fat. The most gratifying improvement was seen in patients with a functioning gallbladder. Previous resection of the colon seemed to limit the reduction of faecal water and sodium excretion which followed the reduction in fat intake. A fat-reduced diet is recommended in the symptomatic therapy of chronic diarrhoea in patients suffering from diseases of the ileum. PMID:18668843

  12. Green tea aqueous extract reduces visceral fat and decreases protein availability in rats fed with a high-fat diet.

    PubMed

    Bajerska, Joanna; Wozniewicz, Małgorzata; Jeszka, Jan; Drzymala-Czyz, Slawomira; Walkowiak, Jaroslaw

    2011-02-01

    Green tea is associated with beneficial health effects mainly because of its body fat-reducing and hypocholesterolemic activities, but an effective dose without pronounced influence on protein availability is unknown. The objective of this study was to examine the hypothesis that green tea aqueous extract (GTAE) depending on dose improves cardiovascular risk indicators such as body weight, visceral fat content, and atherogenic index of plasma and does not have unfavorable effect on protein availability in rats fed with a high-fat diet. The rats fed with a high-fat diet enriched with 1.1 and 2.0% GTAE for 8 weeks had significantly (P < .05) lower atherogenic index (in both groups, about 14.3%). Only administration of 2.0% GTAE significantly (P < .05) decreased body weight gain (5.6%) and prevented visceral fat accumulation (17.8%) in rats. However, considerably (P < .05), reduction in the digestion of protein (but not fat) was observed in both GTAE groups (1.1% GTAE: 82.6% ± 1.8%; 2.0% GTAE: 84.3% ± 0.8%) when compared to the control (93.3% ± 1.5%). It was concluded that GTAE may have preventive effects on the accumulation of visceral fat but only in higher doses. Although both doses improved cardiovascular risk indicators, they, in addition, significantly inhibited protein digestion. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Effects of a eucaloric reduced-carbohydrate diet on body composition and fat distribution in women with PCOS

    PubMed Central

    Goss, Amy M.; Chandler-Laney, Paula C.; Ovalle, Fernando; Goree, Laura Lee; Azziz, Ricardo; Desmond, Renee A.; Bates, G. Wright; Gower, Barbara A.

    2014-01-01

    Objective To determine if consumption of a reduced-carbohydrate (CHO) diet would result in preferential loss of adipose tissue under eucaloric conditions, and whether changes in adiposity were associated with changes in postprandial insulin concentration. Methods In a crossover-diet intervention, 30 women with PCOS consumed a reduced-CHO diet (41:19:40%energy from CHO:protein:fat) for 8 weeks and a standard diet (55:18:27) for 8 weeks. Body composition by DXA and fat distribution by CT were assessed at baseline and following each diet phase. Insulin AUC was obtained from a solid meal test (SMT) during each diet phase. Results Participants lost 3.7% and 2.2% total fat following the reduced-CHO diet and STD diet, resp. (p<0.05 for difference between diets). The reduced-CHO diet induced a decrease in subcutaneous-abdominal, intra-abdominal, and thigh-intermuscular adipose tissue (−7.1%, −4.6%, and −11.5%, resp.), and the STD diet induced a decrease in total lean mass. Loss of fat mass following the reduced CHO diet arm was associated with lower insulin AUC (p<0.05) during the SMT. Conclusions In women with PCOS, consumption of a diet lower in CHO resulted in preferential loss of fat mass from metabolically harmful adipose depots, whereas a diet high in CHO appeared to promote repartitioning of lean mass to fat mass. PMID:25125349

  14. Dietary energy restriction reduces high-fat diet-enhanced metastasis of Lewis lung carcinoma in mice

    PubMed Central

    Sundaram, Sneha; Yan, Lin

    2016-01-01

    The objective of this study was to determine whether a reduction in energy intake ameliorated the high-fat diet-enhanced spontaneous metastasis of Lewis lung carcinoma in mice. Male C57BL/6 mice were fed the AIN93G diet, a high-fat diet or a high-fat diet with a 5% restriction of the intake. Energy restriction reduced body adiposity and body weight, but maintained growth similar to mice fed the AIN93G diet. The high-fat diet significantly increased the number and size (cross-sectional area and volume) of metastases formed in lungs. Restricted feeding reduced the number of metastases by 23%, metastatic cross-sectional area by 32% and volume by 45% compared to the high-fat diet. The high-fat diet elevated plasma concentrations of proinflammatory cytokines (monocyte chemotactic protein-1, plasminogen activator inhibitor-1, leptin), angiogenic factors (vascular endothelial growth factor, tissue inhibitor of metalloproteinase-1) and insulin. Restricted feeding significantly reduced the high-fat diet-induced elevations in plasma concentrations of proinflammatory cytokines, angiogenic factors and insulin. These results demonstrated that a reduction in diet intake by 5% reduced high-fat diet-enhanced metastasis, which may be associated with the mitigation of adiposity and down-regulation of cancer-promoting proinflammatory cytokines and angiogenic factors. PMID:27582541

  15. Argan oil reduces, in rats, the high fat diet-induced metabolic effects of obesity.

    PubMed

    Sour, S; Belarbi, M; Sari, N; Benammar, C H; Baghdad, C H; Visioli, F

    2015-04-01

    Obesity is a multi-factorial disorder which is of worldwide concern. In addition to calorie control, some specific dietary components might help resolving some of the complication of obesity, by providing antioxidant and anti-inflammatory activities. We investigated the effect of argan oil supplementation on plasma lipid profile and oxidant-antioxidant status of rats with high-fat diet (HFD)-induced obesity compared with rats fed a normal diet (ND). We used an animal model of high fat diet-induced obesity to study the metabolic effects of argan oil and we measured several markers lipid and redox statuses. Consumption of a high-fat diet led to an increase in serum total cholesterol (TC), LDL-cholesterol (LDL-C), and triacylglycerols (TAG) concentrations; however, argan oil blunted the increases of TC, LDL-C and TG, glucose, and insulin. Plasma total antioxidant capacity, erythrocyte catalase and superoxide dismutase activities were lower, whereas plasma hydroperoxide, thiobarbituric acid-reacting substances, and susceptibility of LDL to copper-induced oxidation were higher in obese rats compared with normal rats. Administration of argan oil ameliorated all these indices of redox status. Proper diet and lifestyle should be foremost implemented to reduce the lipoprotein metabolism and oxidant/antioxidant status alterations brought about by obesity. In addition, argan oil reduces the metabolic effects of obesity and its use might be promoted within the context of a balanced diet. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. A reliable, valid questionnaire indicates that preference for dietary fat declines when following a reduced-fat diet.

    PubMed

    Ledikwe, Jenny H; Ello-Martin, Julie; Pelkman, Christine L; Birch, Leann L; Mannino, Michelle L; Rolls, Barbara J

    2007-07-01

    This study establishes the reliability and validity of the Fat Preference Questionnaire, a self-administered instrument to assess preference for dietary fat. Respondents select the food which tastes better and is eaten more frequently from 19 sets of food. Each set is comprised of related foods differing in fat content. The questionnaire was administered to women in laboratory-based (n=63), cross-sectional (n=150), and weight-loss (n=71) studies. The percentage of food sets in which high-fat foods were reported to "taste better" (TASTE score) and to be "eaten more often" (FREQ score) was determined. A measure of dietary fat restriction (DIFF) was created by subtracting TASTE from FREQ. Food intake was assessed by direct measure, 24-h recall, or food diary. Additionally, participants completed a standard survey assessing dietary restraint. Test-retest correlations were high (r=0.75-0.94). TASTE and FREQ scores were positively correlated with total fat intake (r=0.22-0.63). DIFF scores positively correlated with dietary restraint (r=0.39-0.52). Participants in the weight-loss trial experienced declines in fat consumption, TASTE and FREQ scores, and BMI values, and an increase in DIFF scores. Weight loss correlated with declines in FREQ (r=0.36) scores and increases in DIFF scores (r=-0.35). These data suggest that preference for dietary fat declines when following a reduced-fat diet and an increase in restraint for intake of dietary fat is important for weight loss. The Fat Preference Questionnaire is a stable, easily-administered instrument that can be used in research and clinical settings.

  17. A High-Fat, High-Oleic Diet, But Not a High-Fat, Saturated Diet, Reduces Hepatic α-Linolenic Acid and Eicosapentaenoic Acid Content in Mice.

    PubMed

    Picklo, Matthew J; Murphy, Eric J

    2016-05-01

    Considerable research has focused upon the role of linoleic acid (LNA; 18:2n-6) as a competitive inhibitor of α-linolenic (ALA; 18:3n-3) metabolism; however, little data exist as to the impact of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) on ALA metabolism. We tested the hypothesis that a high SFA diet, compared to a high MUFA (oleic acid 18:1n-9) diet, reduces ALA conversion to long chain n-3 fatty acids. Mice were fed for 12 weeks on three diets: (1) a control, 16 % fat energy diet consisting of similar levels of SFA and MUFA (2) a 50 % fat energy high MUFA energy diet (35 % MUFA and 7 % SFA) or (3) a 50 % fat energy, high SFA energy diet (34 % SFA, 8 % MUFA). ALA and LNA content remained constant. Analysis of hepatic lipids demonstrated a selective reduction (40 %) in ALA but not LNA and a 35 % reduction in eicosapentaenoic acid (EPA; 20:5n-3) in the high MUFA mice compared to the other groups. Lower content of ALA was reflected in the neutral lipid fraction, while smaller levels of phospholipid esterified EPA and docosapentaenoic acid (DPA; 22:5n-3) were evident. Docosahexaenoic acid (DHA; 22:6n-3) content was elevated by the high SFA diet. Expression of Fads1 (Δ5 desaturase) and Fads2 (Δ6 desaturase) was elevated by the high MUFA and reduced by the high SFA diet. These data indicate that a high MUFA diet, but not a high SFA diet, reduces ALA metabolism and point to selective hepatic disposition of ALA versus LNA.

  18. Time-restricted feeding reduces adiposity in mice fed a high-fat diet

    USDA-ARS?s Scientific Manuscript database

    Disruption of the circadian rhythm contributes to obesity. The present study investigated the effects of time-restricted feeding (TRF) of a high-fat diet on adiposity in male C57BL/6 mice. Three-week-old mice were fed a low-fat or high-fat diet (16% or 45% of energy from corn oil) ad libitum (ad l...

  19. ACE Reduces Metabolic Abnormalities in a High-Fat Diet Mouse Model

    PubMed Central

    Lee, Seong-Jong; Han, Jong-Min; Lee, Jin-Seok; Son, Chang-Gue; Im, Hwi-Jin; Jo, Hyun-Kyung; Yoo, Ho-Ryong; Kim, Yoon-Sik; Seol, In-Chan

    2015-01-01

    The medicinal plants Artemisia iwayomogi (A. iwayomogi) and Curcuma longa (C. longa) radix have been used to treat metabolic abnormalities in traditional Korean medicine and traditional Chinese medicine (TKM and TCM). In this study we evaluated the effect of the water extract of a mixture of A. iwayomogi and C. longa (ACE) on high-fat diet-induced metabolic syndrome in a mouse model. Four groups of C57BL/6N male mice (except for the naive group) were fed a high-fat diet freely for 10 weeks. Among these, three groups (except the control group) were administered a high-fat diet supplemented with ACE (100 or 200 mg/kg) or curcumin (50 mg/kg). Body weight, accumulation of adipose tissues in abdomen and size of adipocytes, serum lipid profiles, hepatic steatosis, and oxidative stress markers were analyzed. ACE significantly reduced the body and peritoneal adipose tissue weights, serum lipid profiles (total cholesterol and triglycerides), glucose levels, hepatic lipid accumulation, and oxidative stress markers. ACE normalized lipid synthesis-associated gene expressions (peroxisome proliferator-activated receptor gamma, PPARγ; fatty acid synthase, FAS; sterol regulatory element-binding transcription factor-1c, SREBP-1c; and peroxisome proliferator-activated receptor alpha, PPARα). The results from this study suggest that ACE has the pharmaceutical potential reducing the metabolic abnormalities in an animal model. PMID:26508977

  20. Following a calorie-restricted diet may help in reducing healthcare students' fat-phobia.

    PubMed

    Cotugna, Nancy; Mallick, Anum

    2010-06-01

    Data from National Health and Nutrition Examination Survey 2005/2006 show that 32.7% of US adults are overweight (BMI 25.0-29.9), 34.3% are obese (BMI 30-39.9), and 5.9% are extremely obese (BMI >or= 40). For the first time, the number of obese American adults is greater than those who are merely overweight. Negative attitudes and fat phobia toward the overweight exist not only in the general population, but also among health professionals including dietitians and dietetics students. The purpose of this study was to determine if fat phobia might be reduced among future professionals by putting students on a calorie-restricted diet for a short period. Forty dietetics and health promotion students enrolled in a university obesity course completed the Fat Phobia Scale test before and after following a calorie restricted diet for 1 week (1,200 calories and 1,500 calories for women and men, respectively). Students also reflected their thoughts about following such a diet via brief journal entries. Results showed the change in fat phobias after following a calorie-restricted diet was significant. Many journal entries reflected a newfound respect for individuals struggling to lose weight and change in prior negative attitudes. Students reported that this experience would impact their future dealings with overweight/obese clients. It may be useful to incorporate this type of activity into the training of nutrition and other health professional students to increase sensitivity and reduce existing biases and negative attitudes toward overweight/obese clients.

  1. A high-protein diet for reducing body fat: mechanisms and possible caveats.

    PubMed

    Pesta, Dominik H; Samuel, Varman T

    2014-01-01

    High protein diets are increasingly popularized in lay media as a promising strategy for weight loss by providing the twin benefits of improving satiety and decreasing fat mass. Some of the potential mechanisms that account for weight loss associated with high-protein diets involve increased secretion of satiety hormones (GIP, GLP-1), reduced orexigenic hormone secretion (ghrelin), the increased thermic effect of food and protein-induced alterations in gluconeogenesis to improve glucose homeostasis. There are, however, also possible caveats that have to be considered when choosing to consume a high-protein diet. A high intake of branched-chain amino acids in combination with a western diet might exacerbate the development of metabolic disease. A diet high in protein can also pose a significant acid load to the kidneys. Finally, when energy demand is low, excess protein can be converted to glucose (via gluconeogenesis) or ketone bodies and contribute to a positive energy balance, which is undesirable if weight loss is the goal. In this review, we will therefore explore the mechanisms whereby a high-protein diet may exert beneficial effects on whole body metabolism while we also want to present possible caveats associated with the consumption of a high-protein diet.

  2. Grape pomace reduced reperfusion arrhythmias in rats with a high-fat-fructose diet.

    PubMed

    Perdicaro, Diahann J; Rodriguez Lanzi, Cecilia; Fontana, Ariel R; Antoniolli, Andrea; Piccoli, Patricia; Miatello, Roberto M; Diez, Emiliano R; Vazquez Prieto, Marcela A

    2017-10-02

    Metabolic syndrome (MetS) is a risk factor for sudden cardiac death in humans, but animal models are needed for the study of this association. Grape pomace (GP), obtained from the winemaking process, contains phenolic compounds with potential cardioprotective effects. The aim of this study was to evaluate if a high-fat-fructose (HFF) diet facilitates the occurrence of arrhythmias during the reperfusion, and if a GP supplementation could counteract these effects. Wistar rats were fed with control (Ctrl), HFF diet and HFF plus GP (1 g kg(-1) day(-1)) for six weeks. The HFF diet induces characteristic features of MetS (higher systolic blood pressure, dyslipidemia and insulin resistance) which was attenuated by GP supplementation. In addition, HFF induced increased reperfusion arrhythmias that were reduced upon GP supplementation. GP also reduced the non-phosphorylated form of connexin-43 (Cx43) while enhancing heart p-AKT and p-eNOS protein levels and reducing Nox4 levels enhanced by the HFF diet, indicating that GP may increase NO bioavailability in the heart. We found a murine model of MetS with increased arrhythmogenesis and translational value. Furthermore, GP prevents diet-induced heart dysfunction and metabolic alterations. These results highlight the potential utilization of winemaking by-products containing significant amounts of bioactive compounds to prevent/attenuate MetS-associated cardiovascular pathologies.

  3. Swimming exercise reduces preference for a high-fat diet by increasing insulin sensitivity in C57BL/6 mice.

    PubMed

    Wang, Hai-Jun; Yang, Hong-Tao; Chen, Wei

    2017-01-01

    The present study examined the effect of 4-week swimming training on the preference for a high-fat diet and insulin sensitivity in mice. C57BL/6 J mice were placed on either a low-fat diet or a choice diet (with both low-fat and high-fat diets available) for 6 weeks. During this period, a group of mice on the free-choice diet were randomly selected to receive a 4-week swimming exercise intervention. Mice that received the swimming exercise intervention showed a reduced preference for the high-fat diet as well as a slower rate of weight gain. Moreover, changes in insulin sensitivity, tyrosine hydroxylase expression in the ventral tegmental area-nucleus accumbens system, and the expression of IRS2, IRS2, and high-fat diet-induced Akt phosphorylation in the nucleus accumbens were delayed in the swimming exercise intervention group. Taken together, these results suggest that swimming exercise regulates the dopaminergic reward system to decrease high-fat diet intake, thereby controlling body weight to prevent obesity, in a manner likely mediated by increased insulin signal transduction in the nucleus accumbens.

  4. High Fat High Sugar Diet Reduces Voluntary Wheel Running in Mice Independent of Sex Hormone Involvement

    PubMed Central

    Vellers, Heather L.; Letsinger, Ayland C.; Walker, Nicholas R.; Granados, Jorge Z.; Lightfoot, J. Timothy

    2017-01-01

    Introduction: Indirect results in humans suggest that chronic overfeeding decreases physical activity with few suggestions regarding what mechanism(s) may link overfeeding and decreased activity. The primary sex hormones are known regulators of activity and there are reports that chronic overfeeding alters sex hormone levels. Thepurpose of this study was to determine if chronic overfeeding altered wheel running through altered sex hormone levels. Materials and Methods: C57BL/6J mice were bred and the pups were weaned at 3-weeks of age and randomly assigned to either a control (CFD) or high fat/high sugar (HFHS) diet for 9–11 weeks depending on activity analysis. Nutritional intake, body composition, sex hormone levels, and 3-day and 2-week wheel-running activity were measured. Additionally, groups of HFHS animals were supplemented with testosterone (males) and 17β-estradiol (females) to determine if sex hormone augmentation altered diet-induced changes in activity. Results: 117 mice (56♂, 61♀) were analyzed. The HFHS mice consumed significantly more calories per day than CFD mice (male: p < 0.0001; female: p < 0.0001) and had significantly higher body fat (male: p < 0.0001; female: p < 0.0001). The HFHS diet did not reduce sex hormone levels, but did significantly reduce acute running-wheel distance in male (p = 0.05, 70 ± 28%) and female mice (p = 0.02, 57 ± 26%). In animals that received hormone supplementation, there was no significant effect on activity levels. Two-weeks of wheel access was not sufficient to alter HFHS-induced reductions in activity or increases in body fat. Conclusion: Chronic overfeeding reduces wheel running, but is independent of the primary sex hormones. PMID:28890701

  5. High Fat High Sugar Diet Reduces Voluntary Wheel Running in Mice Independent of Sex Hormone Involvement.

    PubMed

    Vellers, Heather L; Letsinger, Ayland C; Walker, Nicholas R; Granados, Jorge Z; Lightfoot, J Timothy

    2017-01-01

    Introduction: Indirect results in humans suggest that chronic overfeeding decreases physical activity with few suggestions regarding what mechanism(s) may link overfeeding and decreased activity. The primary sex hormones are known regulators of activity and there are reports that chronic overfeeding alters sex hormone levels. Thepurpose of this study was to determine if chronic overfeeding altered wheel running through altered sex hormone levels. Materials and Methods: C57BL/6J mice were bred and the pups were weaned at 3-weeks of age and randomly assigned to either a control (CFD) or high fat/high sugar (HFHS) diet for 9-11 weeks depending on activity analysis. Nutritional intake, body composition, sex hormone levels, and 3-day and 2-week wheel-running activity were measured. Additionally, groups of HFHS animals were supplemented with testosterone (males) and 17β-estradiol (females) to determine if sex hormone augmentation altered diet-induced changes in activity. Results: 117 mice (56♂, 61♀) were analyzed. The HFHS mice consumed significantly more calories per day than CFD mice (male: p < 0.0001; female: p < 0.0001) and had significantly higher body fat (male: p < 0.0001; female: p < 0.0001). The HFHS diet did not reduce sex hormone levels, but did significantly reduce acute running-wheel distance in male (p = 0.05, 70 ± 28%) and female mice (p = 0.02, 57 ± 26%). In animals that received hormone supplementation, there was no significant effect on activity levels. Two-weeks of wheel access was not sufficient to alter HFHS-induced reductions in activity or increases in body fat. Conclusion: Chronic overfeeding reduces wheel running, but is independent of the primary sex hormones.

  6. Combined intervention of medium-chain triacylglycerol diet and exercise reduces body fat mass and enhances energy expenditure in rats.

    PubMed

    Ooyama, Katsuhiko; Wu, Jian; Nosaka, Naohisa; Aoyama, Toshiaki; Kasai, Michio

    2008-04-01

    Previous studies indicated that a medium-chain triacylglycerol (MCT) diet could inhibit body fat accumulation. It is also well established that exercise can reduce fat mass. However, the effects of a combination of MCT diet and exercise on reduction of fat mass have not been studied. Here we examined whether MCT diet and exercise intervention exert cooperative effects on body composition. Rats were assigned to 4 groups: 1. LCT diet, control (LCT-C); 2. MCT diet, control (MCT-C); 3. LCT diet, exercise (LCT-E); 4. MCT diet, exercise (MCT-E). After the 6-wk intervention, visceral fat mass was measured by CT scan and dissection, and energy expenditure was estimated for 24 h. The value of the visceral fat mass showed a significant correlation between CT scan and dissection (r=0.995, p<0.001). Visceral fat mass in the MCT-C group was lower than that in the LCT-C group. Furthermore, the fat-lowering effects were greater in the MCT-E group than that in either intervention alone. Thus significant effects of the MCT diet and exercise on the reduction of visceral fat mass were observed. Energy expenditure was significantly higher in the MCT-E group than in the other groups. Our present findings suggest that combined intervention of MCT diet and exercise has an additive effect on reduction of visceral and subcutaneous fat accumulation, and that this effect may be partially related to increased energy expenditure. However, future studies are necessary to define the relationship between energy expenditure and fat mass accumulation.

  7. Prolonged High Fat Diet Reduces Dopamine Reuptake without Altering DAT Gene Expression

    PubMed Central

    Cone, Jackson J.; Chartoff, Elena H.; Potter, David N.; Ebner, Stephanie R.; Roitman, Mitchell F.

    2013-01-01

    The development of diet-induced obesity (DIO) can potently alter multiple aspects of dopamine signaling, including dopamine transporter (DAT) expression and dopamine reuptake. However, the time-course of diet-induced changes in DAT expression and function and whether such changes are dependent upon the development of DIO remains unresolved. Here, we fed rats a high (HFD) or low (LFD) fat diet for 2 or 6 weeks. Following diet exposure, rats were anesthetized with urethane and striatal DAT function was assessed by electrically stimulating the dopamine cell bodies in the ventral tegmental area (VTA) and recording resultant changes in dopamine concentration in the ventral striatum using fast-scan cyclic voltammetry. We also quantified the effect of HFD on membrane associated DAT in striatal cell fractions from a separate group of rats following exposure to the same diet protocol. Notably, none of our treatment groups differed in body weight. We found a deficit in the rate of dopamine reuptake in HFD rats relative to LFD rats after 6 but not 2 weeks of diet exposure. Additionally, the increase in evoked dopamine following a pharmacological challenge of cocaine was significantly attenuated in HFD relative to LFD rats. Western blot analysis revealed that there was no effect of diet on total DAT protein. However, 6 weeks of HFD exposure significantly reduced the 50 kDa DAT isoform in a synaptosomal membrane-associated fraction, but not in a fraction associated with recycling endosomes. Our data provide further evidence for diet-induced alterations in dopamine reuptake independent of changes in DAT production and demonstrates that such changes can manifest without the development of DIO. PMID:23516454

  8. Bitter melon (Momordica charantia) reduces adiposity, lowers serum insulin and normalizes glucose tolerance in rats fed a high fat diet.

    PubMed

    Chen, Qixuan; Chan, Laureen L Y; Li, Edmund T S

    2003-04-01

    Bitter melon (BM) is known for its hypoglycemic effect but its effect on rats fed a hyperinsulinemic high fat diet has not been examined. In a dose-response (0.375, 0.75 and 1.5%) study, oral glucose tolerance was improved in rats fed a high fat (HF; 30%) diet supplemented with freeze-dried BM juice at a dose of 0.75% or higher (P < 0.05). At the highest dose, BM-supplemented rats had lower energy efficiency (P < 0.05) and tended (P = 0.10) to have less visceral fat mass. In a subsequent experiment, rats habitually fed a HF diet either continued to consume the diet or were switched to a HF+BM, low fat (LF; 7%) or LF+BM diet for 7 wk. BM was added at 0.75%. Final body weight and visceral fat mass of the two last-mentioned groups were similar to those of rats fed a LF diet for the entire duration. Rats switched to the HF+BM diet gained less weight and had less visceral fat than those fed the HF diet (P < 0.05). The addition of BM did not change apparent fat absorption. BM supplementation to the HF diet improved insulin resistance, lowered serum insulin and leptin but raised serum free fatty acid concentration (P < 0.05). This study reveals for the first time that BM reduces adiposity in rats fed a HF diet. BM appears to have multiple influences on glucose and lipid metabolism that strongly counteract the untoward effects of a high fat diet.

  9. Beneficial effect of a weight-stable, low-fat/low-saturated fat/low-glycaemic index diet to reduce liver fat in older subjects.

    PubMed

    Utzschneider, Kristina M; Bayer-Carter, Jennifer L; Arbuckle, Matthew D; Tidwell, Jaime M; Richards, Todd L; Craft, Suzanne

    2013-03-28

    Non-alcoholic fatty liver disease is associated with insulin resistance and dyslipidaemia and can progress to steatohepatitis and cirrhosis. We sought to determine whether dietary fat and saturated fat content alter liver fat in the absence of weight change in an older population. Liver fat was quantified by magnetic resonance spectroscopy before and after 4 weeks on an isoenergetic low-fat/low-saturated fat/low-glycaemic index (LGI) (LSAT: 23 % fat/7 % saturated fat/GI < 55) or a high-fat/high-saturated fat/high-GI (HSAT: 43 % fat/24 % saturated fat/GI>70) diet in older subjects. In the present study, twenty subjects (seven males/thirteen females; age 69.3 (SEM 1.6) years, BMI 26.9 (SEM 0.8) kg/m2) were randomised to the LSAT diet and fifteen subjects (six males/nine females; age 68.6 (SEM 1.8) years, BMI 28.1 (SEM 0.9) kg/m2) to the HSAT diet. Weight remained stable. Liver fat decreased significantly on the LSAT diet (median 2.2 (interquartile range (IQR) 3.1) to 1.7 (IQR 1.8) %, P= 0.002) but did not change on the HSAT diet (median 1.2 (IQR 4.1) to 1.6 (IQR 3.9) %). The LSAT diet lowered fasting glucose and total cholesterol, HDL-cholesterol and LDL-cholesterol and raised TAG (P< 0.05), while the HSAT diet had no effect on glucose or HDL-cholesterol but increased total cholesterol and LDL-cholesterol (P< 0.05). Fasting insulin and homeostasis model of insulin resistance did not change significantly on either diet, but the Matsuda index of insulin sensitivity improved on the LSAT diet (P< 0.05). Assignment to the LSAT v. HSAT diet was a predictor of changes in lipid parameters but not liver fat. We conclude that diet composition may be an important factor in the accumulation of liver fat, with a low-fat/low-saturated fat/LGI diet being beneficial.

  10. Body fat accumulation in zebrafish is induced by a diet rich in fat and reduced by supplementation with green tea extract.

    PubMed

    Meguro, Shinichi; Hasumura, Takahiro; Hase, Tadashi

    2015-01-01

    Fat-rich diets not only induce obesity in humans but also make animals obese. Therefore, animals that accumulate body fat in response to a high-fat diet (especially rodents) are commonly used in obesity research. The effect of dietary fat on body fat accumulation is not fully understood in zebrafish, an excellent model of vertebrate lipid metabolism. Here, we explored the effects of dietary fat and green tea extract, which has anti-obesity properties, on body fat accumulation in zebrafish. Adult zebrafish were allocated to four diet groups and over 6 weeks were fed a high-fat diet containing basal diet plus two types of fat or a low-fat diet containing basal diet plus carbohydrate or protein. Another group of adult zebrafish was fed a high-fat diet with or without 5% green tea extract supplementation. Zebrafish fed the high-fat diets had nearly twice the body fat (visceral, subcutaneous, and total fat) volume and body fat volume ratio (body fat volume/body weight) of those fed low-fat diets. There were no differences in body fat accumulation between the two high-fat groups, nor were there any differences between the two low-fat groups. Adding green tea extract to the high-fat diet significantly suppressed body weight, body fat volume, and body fat volume ratio compared with the same diet lacking green tea extract. 3-Hydroxyacyl-coenzyme A dehydrogenase and citrate synthase activity in the liver and skeletal muscle were significantly higher in fish fed the diet supplemented with green tea extract than in those fed the unsupplemented diet. Our results suggest that a diet rich in fat, instead of protein or carbohydrate, induced body fat accumulation in zebrafish with mechanisms that might be similar to those in mammals. Consequently, zebrafish might serve as a good animal model for research into obesity induced by high-fat diets.

  11. Body Fat Accumulation in Zebrafish Is Induced by a Diet Rich in Fat and Reduced by Supplementation with Green Tea Extract

    PubMed Central

    Meguro, Shinichi; Hasumura, Takahiro; Hase, Tadashi

    2015-01-01

    Fat-rich diets not only induce obesity in humans but also make animals obese. Therefore, animals that accumulate body fat in response to a high-fat diet (especially rodents) are commonly used in obesity research. The effect of dietary fat on body fat accumulation is not fully understood in zebrafish, an excellent model of vertebrate lipid metabolism. Here, we explored the effects of dietary fat and green tea extract, which has anti-obesity properties, on body fat accumulation in zebrafish. Adult zebrafish were allocated to four diet groups and over 6 weeks were fed a high-fat diet containing basal diet plus two types of fat or a low-fat diet containing basal diet plus carbohydrate or protein. Another group of adult zebrafish was fed a high-fat diet with or without 5% green tea extract supplementation. Zebrafish fed the high-fat diets had nearly twice the body fat (visceral, subcutaneous, and total fat) volume and body fat volume ratio (body fat volume/body weight) of those fed low-fat diets. There were no differences in body fat accumulation between the two high-fat groups, nor were there any differences between the two low-fat groups. Adding green tea extract to the high-fat diet significantly suppressed body weight, body fat volume, and body fat volume ratio compared with the same diet lacking green tea extract. 3-Hydroxyacyl-coenzyme A dehydrogenase and citrate synthase activity in the liver and skeletal muscle were significantly higher in fish fed the diet supplemented with green tea extract than in those fed the unsupplemented diet. Our results suggest that a diet rich in fat, instead of protein or carbohydrate, induced body fat accumulation in zebrafish with mechanisms that might be similar to those in mammals. Consequently, zebrafish might serve as a good animal model for research into obesity induced by high-fat diets. PMID:25785691

  12. Administration of dried Aloe vera gel powder reduced body fat mass in diet-induced obesity (DIO) rats.

    PubMed

    Misawa, Eriko; Tanaka, Miyuki; Nabeshima, Kazumi; Nomaguchi, Kouji; Yamada, Muneo; Toida, Tomohiro; Iwatsuki, Keiji

    2012-01-01

    The aim of the present study was to investigate the anti-obesity effects of Aloe vera gel administration in male Sprague-Dawley (SD) rats with diet-induced obesity (DIO). SD rats at 7 wk of age were fed either a standard diet (10 kcal% fat) (StdD) or high-fat (60 kcal% fat) diet (HFD) during the experimental period. Four weeks after of HFD-feeding, DIO rats (11 wk of age) were orally administered with two doses of Aloe vera gel powder (20 and 200 mg/kg/d) for 90 d. Body weights (g) and body fat (%) of HFD fed rats were significantly higher than those of StdD-fed rats. Although a modest decrease of body weight (g) was observed with the administration of dried Aloe vera gel powder, both subcutaneous and visceral fat weight (g) and body fat (%) were reduced significantly in Aloe vera gel-treated rats. Serum lipid parameters elevated by HFD were also improved by the Aloe vera gel treatment. The oxygen consumption (VO(2)), an index of energy expenditure, was decreased in HFD-fed rats compared with that in StdD-fed rats. Administration of Aloe vera gel reversed the change in VO(2) in the HFD-fed rats. These results suggest that intake of Aloe vera gel reduced body fat accumulation, in part, by stimulation of energy expenditure. Aloe vera gel might be beneficial for the prevention and improvement of diet-induced obesity.

  13. Ginger extract and aerobic training reduces lipid profile in high-fat fed diet rats.

    PubMed

    Khosravani, M; Azarbayjani, M A; Abolmaesoomi, M; Yusof, A; Zainal Abidin, N; Rahimi, E; Feizolahi, F; Akbari, M; Seyedjalali, S; Dehghan, F

    2016-04-01

    Obesity, hyperglycemia and dyslipidemia, are major risk factors. However, natural therapies, dietary components, and physical activity may effect on these concerns. The aim of this study was to examine the effect of aerobic exercise and consumption of liquid ginger extract on lipid profile of Male rats with a high-fat fed diet. 32 rats were randomly divided into 4 groups: 1) aerobic exercise, 2) Ginger extract, 3) combined aerobic exercise and Ginger extract, and 4) the control. Subjects of the first three groups received ginger extract via gavage feeding of 250 mg/kg. The exercise program was 3 sessions per week on 3 different days over 4 weeks. Total cholesterol (TC), Triglyceride (TG), HDL and LDL were measured 24-h before the first session and 24-h after the final training session. The concentration of TG in the control group was significantly higher than other groups. In addition, the mean concentration of TG in the aerobic exercise group was significantly lower than Ginger extract group but there was no significant difference as compared to combined aerobic exercise and ginger extract group. The combination of aerobic exercise and ginger consumption significantly reduced the TG level compared to ginger group. TC and LDL concentrations were significantly decreased in all groups compare to control. The combination of aerobic exercise and ginger extract feeding caused a significant increase in HDL levels. The finding of this study suggests that the combination of aerobic exercise and liquid ginger extract consumption might be an effective method of reducing lipid profiles, which will reduce the risk of cardiovascular diseases caused by high-fat diets.

  14. High-Fat Diet Reduces the Formation of Butyrate, but Increases Succinate, Inflammation, Liver Fat and Cholesterol in Rats, while Dietary Fibre Counteracts These Effects

    PubMed Central

    Jakobsdottir, Greta; Xu, Jie; Molin, Göran; Ahrné, Siv; Nyman, Margareta

    2013-01-01

    Introduction Obesity is linked to type 2 diabetes and risk factors associated to the metabolic syndrome. Consumption of dietary fibres has been shown to have positive metabolic health effects, such as by increasing satiety, lowering blood glucose and cholesterol levels. These effects may be associated with short-chain fatty acids (SCFAs), particularly propionic and butyric acids, formed by microbial degradation of dietary fibres in colon, and by their capacity to reduce low-grade inflammation. Objective To investigate whether dietary fibres, giving rise to different SCFAs, would affect metabolic risk markers in low-fat and high-fat diets using a model with conventional rats for 2, 4 and 6 weeks. Material and Methods Conventional rats were administered low-fat or high-fat diets, for 2, 4 or 6 weeks, supplemented with fermentable dietary fibres, giving rise to different SCFA patterns (pectin – acetic acid; guar gum – propionic acid; or a mixture – butyric acid). At the end of each experimental period, liver fat, cholesterol and triglycerides, serum and caecal SCFAs, plasma cholesterol, and inflammatory cytokines were analysed. The caecal microbiota was analysed after 6 weeks. Results and Discussion Fermentable dietary fibre decreased weight gain, liver fat, cholesterol and triglyceride content, and changed the formation of SCFAs. The high-fat diet primarily reduced formation of SCFAs but, after a longer experimental period, the formation of propionic and acetic acids recovered. The concentration of succinic acid in the rats increased in high-fat diets with time, indicating harmful effect of high-fat consumption. The dietary fibre partly counteracted these harmful effects and reduced inflammation. Furthermore, the number of Bacteroides was higher with guar gum, while noticeably that of Akkermansia was highest with the fibre-free diet. PMID:24236183

  15. Sesamin Ameliorates High-Fat Diet-Induced Dyslipidemia and Kidney Injury by Reducing Oxidative Stress.

    PubMed

    Zhang, Ruijuan; Yu, Yan; Deng, Jianjun; Zhang, Chao; Zhang, Jinghua; Cheng, Yue; Luo, Xiaoqin; Han, Bei; Yang, Haixia

    2016-05-09

    The study explored the protective effect of sesamin against lipid-induced renal injury and hyperlipidemia in a rat model. An animal model of hyperlipidemia was established in Sprague-Dawley rats. Fifty-five adult Sprague-Dawley rats were divided into five groups. The control group was fed a standard diet, while the other four groups were fed a high-fat diet for 5 weeks to induce hyperlipidemia. Three groups received oral sesamin in doses of 40, 80, or 160 mg/(kg·day). Seven weeks later, the blood lipids, renal function, antioxidant enzyme activities, and hyperoxide levels in kidney tissues were measured. The renal pathological changes and expression levels of collagen type IV (Col-IV) and α-smooth muscle actin (α-SMA) were analyzed. The administration of sesamin improved the serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, apolipoprotein-B, oxidized-low-density lipoprotein, and serum creatinine levels in hyperlipidemic rats, while it increased the high-density lipoprotein cholesterol and apolipoprotein-A levels. Sesamin reduced the excretion of 24-h urinary protein and urinary albumin and downregulated α-SMA and Col-IV expression. Moreover, sesamin ameliorated the superoxide dismutase activity and reduced malondialdehyde levels in kidney tissue. Sesamin could mediate lipid metabolism and ameliorate renal injury caused by lipid metabolism disorders in a rat model of hyperlipidemia.

  16. Green tea, black tea, and oolong tea polyphenols reduce visceral fat and inflammation in mice fed high-fat, high-sucrose obesogenic diets.

    PubMed

    Heber, David; Zhang, Yanjun; Yang, Jieping; Ma, Janice E; Henning, Susanne M; Li, Zhaoping

    2014-09-01

    Green tea (GT) and caffeine in combination were shown to increase energy expenditure and fat oxidation, but less is known about the effects of black tea (BT) and oolong tea (OT). This study investigated whether decaffeinated polyphenol extracts from GT, BT, and OT decrease body fat and inflammation in male C57BL/6J mice fed high-fat/high-sucrose [HF/HS (32% energy from fat, 25% energy from sucrose)] diets. Mice were fed either an HF/HS diet with 0.25% of polyphenol from GT, OT, or BT or a low-fat/high-sucrose [LF/HS (10.6% energy from fat, 25% energy from sucrose)] diet for 20 wk. Monomeric tea polyphenols were found in the liver and adipose tissue of mice fed the HF/HS diet with GT polyphenols (GTPs) and OT polyphenols (OTPs) but not BT polyphenols (BTPs). Treatment with GTPs, OTPs, BTPs, and an LF/HS diet led to significantly lower body weight, total visceral fat volume by MRI, and liver lipid weight compared with mice in the HF/HS control group. Only GTPs reduced food intake significantly by ∼10%. GTP, BTP, and LF/HS-diet treatments significantly reduced serum monocyte chemotactic protein-1 (MCP-1) compared with HF/HS controls. In mesenteric fat, monocyte chemotactic protein-1 (Mcp1) gene expression was significantly decreased by treatment with GTPs, BTPs, OTPs, and an LF/HS diet and in liver tissue by GTP and BTP treatments. Mcp1 gene expression in epididymal fat was significantly decreased by the BTP and LF/HS diet interventions. In epididymal fat, consistent with an anti-inflammatory effect, adiponectin gene expression was significantly increased by GTPs and OTPs. Angiogenesis during adipose tissue expansion is anti-inflammatory by maintaining adipocyte perfusion. We observed significantly increased gene expression of vascular endothelial growth factor A by GTPs and vascular endothelial growth factor receptor 2 by BTPs and the LF/HS diet and a decrease in pigment epithelium-derived factor gene expression by OTPs and BTPs. In summary, all 3 tea polyphenol

  17. Does running with or without diet changes reduce fat mass in novice runners? A 1-year prospective study.

    PubMed

    Nielsen, Rasmus O; Videbaek, Solvej; Hansen, Mette; Parner, Erik T; Rasmussen, Sten; Langberg, Henning

    2016-01-01

    The aim of this study was to explore how average weekly running distance, combined with changes in diet habits and reasons to take up running, influence fat mass. Fat mass was assessed by bioelectrical impedance at baseline and after 12 months in 538 novice runners included in a 1-year observational prospective follow-up study. During follow-up, running distance for each participant was continuously measured by GPS while reasons to take up running and diet changes were assessed trough web-based questionnaires. Loss of fat mass was compared between runners covering an average of 5 km or more per week and those running shorter distances. Runners who took up running to lose weight and ran over 5 km per week in average over a one-year period combined with a diet change reduced fat mass by -5.58 kg (95% CI: -8.69; -2.46; P<0.001). Compared with subjects also running over 5 km per week but without diet changes, the mean difference in fat mass between groups was 3.81 kg (95% CI: -5.96; -1.66; P<0.001). A difference of -3.55 kg (95% CI: -5.69; -1.41; P<0.001) was found when comparing with those running less than 5 km per week and making changes to their own diet. An average running distance of more than 5 km per week in runners who took up running to lose weight combined with a targeted diet change seems effective in reducing fat mass over a one-year period among novice runners. Still, randomized controlled trials are needed to better document the effects of self-selected diet changes.

  18. Time-restricted feeding of a high-fat diet reduces diet-induced obesity

    USDA-ARS?s Scientific Manuscript database

    Reducing obesity may alleviate many medical complications including diabetes, cardiovascular disease and cancer. It has been suggested that obesity is contributed by the disruption of the circadian rhythms in addition to increased caloric intake. Restricting feeding to particular times of the day ma...

  19. Brazilian Green Propolis Promotes Weight Loss and Reduces Fat Accumulation in C57BL/6 Mice Fed A High-Fat Diet.

    PubMed

    Sakai, Tohru; Ohhata, Miyuki; Fujii, Misaki; Oda, Sayaka; Kusaka, Yasuna; Matsumoto, Miki; Nakamoto, Akiko; Taki, Tomoyo; Nakamoto, Mariko; Shuto, Emi

    2017-01-01

    Propolis is a bee product with various biological properties. C57BL/6 mice were fed a high-fat diet and treated with propolis for 14 weeks. Body weight in mice treated with 2% propolis was less than that in control mice from 3 weeks after the start of treatment until 14 weeks except for the 7th week. Mice treated with propolis showed significantly lower epididymal fat weight and subcutaneous fat weight. Infiltration of epididymal fat by macrophages and T cells was reduced in the propolis group. Supplementation of propolis increased feces weight and fat content in feces, suggesting that mechanisms of weight reduction by propolis partly include a laxative effect and inhibition of fat absorption.

  20. High maysin corn silk extract reduces body weight and fat deposition in C57BL/6J mice fed high-fat diets

    PubMed Central

    Lee, Eun Young; Kim, Sun Lim; Kang, Hyeon Jung; Kim, Myung Hwan; Ha, Ae Wha

    2016-01-01

    BACKGROUNG/OBJECTIVES The study was performed to investigate the effects and mechanisms of action of high maysin corn silk extract on body weight and fat deposition in experimental animals. MATERIALS/METHODS A total of 30 male C57BL/6J mice, 4-weeks-old, were purchased and divided into three groups by weight using a randomized block design. The normal-fat (NF) group received 7% fat (diet weight basis), the high-fat (HF) group received 25% fat and 0.5% cholesterol, and the high-fat corn silk (HFCS) group received high-fat diet and high maysin corn silk extract at 100 mg/kg body weight through daily oral administration. Body weight and body fat were measured, and mRNA expression levels of proteins involved in adipocyte differentiation, fat accumulation, fat synthesis, lipolysis, and fat oxidation in adipose tissue and the liver were measured. RESULTS After experimental diet intake for 8 weeks, body weight was significantly lower in the HFCS group compared to the HF group (P < 0.05), and kidney fat and epididymal fat pad weights were significantly lower in the HFCS group compared to the HF group (P < 0.05). In the HFCS group, CCAAT/enhancer binding protein-β, peroxisome proliferator-activated receptor-γ1 (PPAR-γ1), and PPAR-γ2 mRNA expression levels were significantly reduced (P < 0.05) in the epididymal fat pad, whereas cluster of differentiation 36, lipoprotein lipase, acetyl-CoA carboxylase-1, sterol regulatory element binding protein-1c, pyruvate dehydrogenase kinase, isozyme-4, glucose-6-phosphate dehydrogenase, and stearoyl-CoA desaturase-1 mRNA expression levels were significantly decreased in liver and adipose tissues (P < 0.05). In the HFCS group, mRNA expression levels of AMP-activated protein kinase, hormone-sensitive lipase, and carnitine palmitoyltransferase-1 were elevated (P < 0.05). CONCLUSIONS It can be concluded that high maysin corn silk extract inhibits expression of genes involved in adipocyte differentiation, fat accumulation, and fat

  1. High maysin corn silk extract reduces body weight and fat deposition in C57BL/6J mice fed high-fat diets.

    PubMed

    Lee, Eun Young; Kim, Sun Lim; Kang, Hyeon Jung; Kim, Myung Hwan; Ha, Ae Wha; Kim, Woo Kyoung

    2016-12-01

    The study was performed to investigate the effects and mechanisms of action of high maysin corn silk extract on body weight and fat deposition in experimental animals. A total of 30 male C57BL/6J mice, 4-weeks-old, were purchased and divided into three groups by weight using a randomized block design. The normal-fat (NF) group received 7% fat (diet weight basis), the high-fat (HF) group received 25% fat and 0.5% cholesterol, and the high-fat corn silk (HFCS) group received high-fat diet and high maysin corn silk extract at 100 mg/kg body weight through daily oral administration. Body weight and body fat were measured, and mRNA expression levels of proteins involved in adipocyte differentiation, fat accumulation, fat synthesis, lipolysis, and fat oxidation in adipose tissue and the liver were measured. After experimental diet intake for 8 weeks, body weight was significantly lower in the HFCS group compared to the HF group (P < 0.05), and kidney fat and epididymal fat pad weights were significantly lower in the HFCS group compared to the HF group (P < 0.05). In the HFCS group, CCAAT/enhancer binding protein-β, peroxisome proliferator-activated receptor-γ1 (PPAR-γ1), and PPAR-γ2 mRNA expression levels were significantly reduced (P < 0.05) in the epididymal fat pad, whereas cluster of differentiation 36, lipoprotein lipase, acetyl-CoA carboxylase-1, sterol regulatory element binding protein-1c, pyruvate dehydrogenase kinase, isozyme-4, glucose-6-phosphate dehydrogenase, and stearoyl-CoA desaturase-1 mRNA expression levels were significantly decreased in liver and adipose tissues (P < 0.05). In the HFCS group, mRNA expression levels of AMP-activated protein kinase, hormone-sensitive lipase, and carnitine palmitoyltransferase-1 were elevated (P < 0.05). It can be concluded that high maysin corn silk extract inhibits expression of genes involved in adipocyte differentiation, fat accumulation, and fat synthesis as well as promotes expression of genes involved in

  2. Intermittent fasting reduces body fat but exacerbates hepatic insulin resistance in young rats regardless of high protein and fat diets.

    PubMed

    Park, Sunmin; Yoo, Kyung Min; Hyun, Joo Suk; Kang, Suna

    2017-02-01

    Intermittent fasting (IMF) is a relatively new dietary approach to weight management, although the efficacy and adverse effects have not been full elucidated and the optimal diets for IMF are unknown. We tested the hypothesis that a one-meal-per-day intermittent fasting with high fat (HF) or protein (HP) diets can modify energy, lipid, and glucose metabolism in normal young male Sprague-Dawley rats with diet-induced obesity or overweight. Male rats aged 5 weeks received either HF (40% fat) or HP (26% protein) diets ad libitum (AL) or for 3 h at the beginning of the dark cycle (IMF) for 5 weeks. Epidydimal fat pads and fat deposits in the leg and abdomen were lower with HP and IMF. Energy expenditure at the beginning of the dark cycle, especially from fat oxidation, was higher with IMF than AL, possibly due to greater activity levels. Brown fat content was higher with IMF. Serum ghrelin levels were higher in HP-IMF than other groups, and accordingly, cumulative food intake was also higher in HP-IMF than HF-IMF. HF-IMF exhibited higher area under the curve (AUC) of serum glucose at the first part (0-40 min) during oral glucose tolerance test, whereas AUC of serum insulin levels in both parts were higher in IMF and HF. During intraperitoneal insulin tolerance test, serum glucose levels were higher with IMF than AL. Consistently, hepatic insulin signaling (GLUT2, pAkt) was attenuated and PEPCK expression was higher with IMF and HF than other groups, and HOMA-IR revealed significantly impaired attenuated insulin sensitivity in the IMF groups. However, surprisingly, hepatic and skeletal muscle glycogen storage was higher in IMF groups than AL. The higher glycogen storage in the IMF groups was associated with the lower expression of glycogen phosphorylase than the AL groups. In conclusion, IMF especially with HF increased insulin resistance, possibly by attenuating hepatic insulin signaling, and lowered glycogen phosphorylase expression despite decreased fat mass in young

  3. Ablation of PPP1R3G reduces glycogen deposition and mitigates high-fat diet induced obesity.

    PubMed

    Zhang, Yongxian; Gu, Jin; Wang, Lin; Zhao, Zilong; Pan, Yi; Chen, Yan

    2017-01-05

    Glycogen and triglyceride are two major forms of energy storage in the body and provide the fuel during different phases of food deprivation. However, how glycogen metabolism is linked to fat deposition in adipose tissue has not been clearly characterized. We generated a mouse model with whole-body deletion of PPP1R3G, a glycogen-targeting subunit of protein phosphatase-1 required for glycogen synthesis. Upon feeding with high-fat diet, the body weight and fat composition are significantly reduced in the PPP1R3G(-/-) mice compared to the wild type controls. The metabolic rate of the mice as measured by O2 consumption and CO2 production is accelerated by PPP1R3G deletion. The high-fat diet-induced liver steatosis is also slightly relieved by PPP1R3G deletion. The glycogen level in adipose tissue is reduced by PPP1R3G deletion. In 3T3L1 cells, overexpression of PPP1R3G leads to increases of both glycogen and triglyceride levels. In conclusion, our study indicates that glycogen is actively involved in fat accumulation in adipose tissue and obesity development upon high-fat diet. Our study also suggests that PPP1R3G is an important player that links glycogen metabolism to lipid metabolism in vivo. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Time-restricted feeding of a high-fat diet reduces adiposity and inflammatory cytokine production in mice

    USDA-ARS?s Scientific Manuscript database

    Disruption of the circadian rhythms contributes to obesity. Restricting feeding to particular times of the day may reset the circadian rhythms and reduce obesity and resulting complications. The present study investigated the effects of time-restricted feeding (TRF) of a high-fat diet on adiposity...

  5. Hypothalamic Leptin Gene Therapy Reduces Bone Marrow Adiposity in ob/ob Mice Fed Regular and High-Fat Diets

    PubMed Central

    Lindenmaier, Laurence B.; Philbrick, Kenneth A.; Branscum, Adam J.; Kalra, Satya P.; Turner, Russell T.; Iwaniec, Urszula T.

    2016-01-01

    Low bone mass is often associated with elevated bone marrow adiposity. Since osteoblasts and adipocytes are derived from the same mesenchymal stem cell (MSC) progenitor, adipocyte formation may increase at the expense of osteoblast formation. Leptin is an adipocyte-derived hormone known to regulate energy and bone metabolism. Leptin deficiency and high-fat diet-induced obesity are associated with increased marrow adipose tissue (MAT) and reduced bone formation. Short-duration studies suggest that leptin treatment reduces MAT and increases bone formation in leptin-deficient ob/ob mice fed a regular diet. Here, we determined the long-duration impact of increased hypothalamic leptin on marrow adipocytes and osteoblasts in ob/ob mice following recombinant adeno-associated virus (rAAV) gene therapy. Eight- to 10-week-old male ob/ob mice were randomized into four groups: (1) untreated, (2) rAAV-Lep, (3) rAAV-green fluorescent protein (rAAV-GFP), or (4) pair-fed to rAAV-Lep. For vector administration, mice were injected intracerebroventricularly with either rAAV-leptin gene therapy (rAAV-Lep) or rAAV-GFP (9 × 107 particles) and maintained for 30 weeks. In a second study, the impact of increased hypothalamic leptin levels on MAT was determined in mice fed high-fat diets; ob/ob mice were randomized into two groups and treated with either rAAV-Lep or rAAV-GFP. At 7 weeks post-vector administration, half the mice in each group were switched to a high-fat diet for 8 weeks. Wild-type (WT) controls included age-matched mice fed regular or high-fat diet. High-fat diet resulted in a threefold increase in MAT in WT mice, whereas MAT was increased by leptin deficiency up to 50-fold. Hypothalamic leptin gene therapy increased osteoblast perimeter and osteoclast perimeter with minor change in cancellous bone architecture. The gene therapy decreased MAT levels in ob/ob mice fed regular or high-fat diet to values similar to WT mice fed regular diet. These findings suggest

  6. Isocaloric Diets High in Animal or Plant Protein Reduce Liver Fat and Inflammation in Individuals With Type 2 Diabetes.

    PubMed

    Markova, Mariya; Pivovarova, Olga; Hornemann, Silke; Sucher, Stephanie; Frahnow, Turid; Wegner, Katrin; Machann, Jürgen; Petzke, Klaus Jürgen; Hierholzer, Johannes; Lichtinghagen, Ralf; Herder, Christian; Carstensen-Kirberg, Maren; Roden, Michael; Rudovich, Natalia; Klaus, Susanne; Thomann, Ralph; Schneeweiss, Rosemarie; Rohn, Sascha; Pfeiffer, Andreas F H

    2017-02-01

    Nonalcoholic fatty liver disease (NAFLD) is associated with increased risk of hepatic, cardiovascular, and metabolic diseases. High-protein diets, rich in methionine and branched chain amino acids (BCAAs), apparently reduce liver fat, but can induce insulin resistance. We investigated the effects of diets high in animal protein (AP) vs plant protein (PP), which differ in levels of methionine and BCAAs, in patients with type 2 diabetes and NAFLD. We examined levels of liver fat, lipogenic indices, markers of inflammation, serum levels of fibroblast growth factor 21 (FGF21), and activation of signaling pathways in adipose tissue. We performed a prospective study of individuals with type 2 diabetes and NAFLD at a tertiary medical center in Germany from June 2013 through March 2015. We analyzed data from 37 subjects placed on a diet high in AP (rich in meat and dairy foods; n = 18) or PP (mainly legume protein; n = 19) without calorie restriction for 6 weeks. The diets were isocaloric with the same macronutrient composition (30% protein, 40% carbohydrates, and 30% fat). Participants were examined at the start of the study and after the 6-week diet period for body mass index, body composition, hip circumference, resting energy expenditure, and respiratory quotient. Body fat and intrahepatic fat were detected by magnetic resonance imaging and spectroscopy, respectively. Levels of glucose, insulin, liver enzymes, and inflammation markers, as well as individual free fatty acids and free amino acids, were measured in collected blood samples. Hyperinsulinemic euglycemic clamps were performed to determine whole-body insulin sensitivity. Subcutaneous adipose tissue samples were collected and analyzed for gene expression patterns and phosphorylation of signaling proteins. Postprandial levels of BCAAs and methionine were significantly higher in subjects on the AP vs the PP diet. The AP and PP diets each reduced liver fat by 36%-48% within 6 weeks (for AP diet P = .0002; for

  7. Beneficial effects of exercise on offspring obesity and insulin resistance are reduced by maternal high-fat diet

    PubMed Central

    Schreiber, Saskia; Klaus, Susanne; Kanzleiter, Isabel

    2017-01-01

    Scope We investigated the long-term effects of maternal high-fat consumption and post-weaning exercise on offspring obesity susceptibility and insulin resistance. Methods C57BL/6J dams were fed either a high-fat (HFD, 40% kcal fat) or low-fat (LFD, 10% kcal fat) semi-synthetic diet during pregnancy and lactation. After weaning, male offspring of both maternal diet groups (mLFD; mHFD) received a LFD. At week 7, half of the mice got access to a running wheel (+RW) as voluntary exercise training. To induce obesity, all offspring groups (mLFD +/-RW and mHFD +/-RW) received HFD from week 15 until week 25. Results Compared to mLFD, mHFD offspring were more prone to HFD-induced body fat gain and exhibited an increased liver mass which was not due to increased hepatic triglyceride levels. RW improved the endurance capacity in mLFD, but not in mHFD offspring. Additionally, mHFD offspring +RW exhibited higher plasma insulin levels during glucose tolerance test and an elevated basal pancreatic insulin production compared to mLFD offspring. Conclusion Taken together, maternal HFD reduced offspring responsiveness to the beneficial effects of voluntary exercise training regarding the improvement of endurance capacity, reduction of fat mass gain, and amelioration of HFD-induced insulin resistance. PMID:28235071

  8. Beneficial effects of exercise on offspring obesity and insulin resistance are reduced by maternal high-fat diet.

    PubMed

    Kasch, Juliane; Schumann, Sara; Schreiber, Saskia; Klaus, Susanne; Kanzleiter, Isabel

    2017-01-01

    We investigated the long-term effects of maternal high-fat consumption and post-weaning exercise on offspring obesity susceptibility and insulin resistance. C57BL/6J dams were fed either a high-fat (HFD, 40% kcal fat) or low-fat (LFD, 10% kcal fat) semi-synthetic diet during pregnancy and lactation. After weaning, male offspring of both maternal diet groups (mLFD; mHFD) received a LFD. At week 7, half of the mice got access to a running wheel (+RW) as voluntary exercise training. To induce obesity, all offspring groups (mLFD +/-RW and mHFD +/-RW) received HFD from week 15 until week 25. Compared to mLFD, mHFD offspring were more prone to HFD-induced body fat gain and exhibited an increased liver mass which was not due to increased hepatic triglyceride levels. RW improved the endurance capacity in mLFD, but not in mHFD offspring. Additionally, mHFD offspring +RW exhibited higher plasma insulin levels during glucose tolerance test and an elevated basal pancreatic insulin production compared to mLFD offspring. Taken together, maternal HFD reduced offspring responsiveness to the beneficial effects of voluntary exercise training regarding the improvement of endurance capacity, reduction of fat mass gain, and amelioration of HFD-induced insulin resistance.

  9. High-fat diet induces metabolic changes and reduces oxidative stress in female mouse hearts.

    PubMed

    Barba, Ignasi; Miró-Casas, Elisabet; Torrecilla, José L; Pladevall, Eulàlia; Tejedor, Sergi; Sebastián-Pérez, Rubén; Ruiz-Meana, Marisol; Berrendero, José R; Cuevas, Antonio; García-Dorado, David

    2017-02-01

    After an acute myocardial infarction, obese patients generally have a better prognosis than their leaner counterparts, known as the "obesity paradox". In addition, female sex is associated with a lower risk of cardiac ischemic events and smaller infarct size compared to males. The objective of the present work was to study the metabolic phenotype and mitochondrial function associated to female sex and short-term high-fat diet. (1)H NMR spectra of mice heart extracts were analysed by mRMR variable selection and linear discriminant analysis was used to evaluate metabolic changes. In separate experiments, O2 consumption and H2O2 production were measured from isolated mitochondria as well as serum oxidation susceptibility. Fingerprinting showed that male hearts contained more myo-inositol, taurine and glutamate than female hearts. HFD reduced the levels of creatine, taurine citrate and acetate. Profiling showed increased alanine and fumarate in HFD suggesting altered glycolitic and Krebs cycle pathways. Female mice contained less glucose than males. Female sex nor HFD altered mitochondria oxygen consumption but both conditions reduced the amount of H2O2 produced in an additive manner. Serum of females had lower oxidation susceptibility than serum from males but there were no differences associated with HFD. In conclusion, female sex and short-term HFD have an effect on the myocardial metabolic pattern and reduce the amount of H2O2 produced by mitochondria in an additive manner suggesting different mechanisms of action. This could explain, at least in part, the protection afforded by female sex and the "obesity paradox".

  10. Diet and Exercise Interventions Reduce Intrahepatic Fat Content and Improve Insulin Sensitivity in Obese Older Adults

    PubMed Central

    Shah, Krupa; Stufflebam, Abby; Hilton, Tiffany N.; Sinacore, David R.; Klein, Samuel; Villareal, Dennis T.

    2009-01-01

    Both obesity and aging increase intrahepatic fat (IHF) content, which leads to non-alcoholic fatty liver disease and metabolic abnormalities such as insulin resistance. We evaluated the effects of diet and diet in conjunction with exercise on IHF content and associated metabolic abnormalities in obese older adults. Eighteen obese (BMI ≥30 kg/m2) older (≥65 years old) adults completed a 6-month clinical trial. Participants were randomized to diet (D group; n=9) or diet+exercise (D+E group; n=9). Primary outcome was IHF quantified by magnetic resonance spectroscopy. Secondary outcomes included insulin sensitivity (assessed by oral glucose tolerance), body composition (assessed by DXA), physical function (VO2peak and strength), glucose, lipids, and blood pressure. Body weight (D: −9±1%, D+E: −10±2%, both p<0.05) and fat mass (D: −13±3%, D+E −16±3%, both p<0.05) decreased in both groups but there was no difference between groups. IHF decreased to a similar extent in both groups (D: −46±11%, D+E: −45 ± 8%, both p<0.05), which was accompanied by comparable improvements in insulin sensitivity (D: 66±25%, D+E: 68±28%, both p<0.05). The relative decreases in IHF correlated directly with relative increases in insulin sensitivity index (r=−0.52; p<0.05). Improvements in VO2peak, strength, plasma triglyceride and HDL-cholesterol concentration, and diastolic blood pressure occurred in the D+E group (all p<0.05) but not in the D group. Diet with or without exercise results in significant decreases in IHF content accompanied by considerable improvements in insulin sensitivity in obese older adults. The addition of exercise to diet therapy improves physical function and other obesity- and aging-related metabolic abnormalities. PMID:19390517

  11. Sensory analysis and consumer surveys of fat- and salt-reduced meat products and their use in an energy-reduced diet in overweight individuals.

    PubMed

    Arnarson, A; Olafsdottir, A; Ramel, A; Martinsdottir, E; Reykdal, O; Thorsdottir, I; Thorkelsson, G

    2011-12-01

    Meat and meat products are of high nutritional value; however, they frequently provide salt and fat in high amounts, which can have negative health effects when consumed in excess. We investigated salt- and fat-reduced meat products, i.e. sensory evaluation and consumer surveys were carried out as well as a dietary intervention study was carried out in overweight individuals who used salt- and fat-reduced products as a part of an energy-restricted diet. Although differences were detected in the sensory evaluation between reduced and regular meat products, the participants in the consumer surveys and in the dietary intervention study gave good ratings for the fat and fat-reduced meat products. The intervention study led to weight loss and improved cardiovascular risk, but did not reveal side effects associated with the consumption of these products. Our study indicates that such products are well accepted by potential consumers and can be included successfully in a weight loss programme.

  12. High-viscosity dietary fibers reduce adiposity and decrease hepatic steatosis in rats fed a high-fat diet.

    PubMed

    Brockman, David A; Chen, Xiaoli; Gallaher, Daniel D

    2014-09-01

    Viscous dietary fiber consumption lowers the postprandial glucose curve and may decrease obesity and associated comorbidities such as insulin resistance and fatty liver. We determined the effect of 2 viscous fibers, one fermentable and one not, on the development of adiposity, fatty liver, and metabolic flexibility in a model of diet-induced obesity. Rats were fed a normal-fat (NF) diet (26% energy from fat), a high-fat diet (60% energy from fat), each containing 5% fiber as cellulose (CL; nonviscous and nonfermentable), or 5% of 1 of 2 highly viscous fibers-hydroxypropyl methylcellulose (HPMC; nonfermentable) or guar gum (GG; fermentable). After 10 wk, fat mass percentage in the NF (18.0%; P = 0.03) and GG groups (17.0%; P < 0.01) was lower than the CL group (20.7%). The epididymal fat pad weight of the NF (3.9 g; P = 0.04), HPMC (3.9 g; P = 0.03), and GG groups (3.6 g; P < 0.01) was also lower than the CL group (5.0 g). The HPMC (0.11 g/g liver) and GG (0.092 g/g liver) groups had lower liver lipid concentrations compared with the CL group (0.14 g/g liver). Fat mass percentage, epididymal fat pad weight, and liver lipid concentration were not different among the NF, HPMC, and GG groups. The respiratory quotient was higher during the transition from the diet-deprived to fed state in the GG group (P = 0.002) and tended to be higher in the HPMC group (P = 0.06) compared with the CL group, suggesting a quicker shift from fatty acid (FA) to carbohydrate oxidation. The HPMC group [15.1 nmol/(mg ⋅ h)] had higher ex vivo palmitate oxidation in muscle compared with the GG [11.7 nmol/(mg ⋅ h); P = 0.04] and CL groups [10.8 nmol/(mg ⋅ h); P < 0.01], implying a higher capacity to oxidize FAs. Viscous fibers can reduce the adiposity and hepatic steatosis that accompany a high-fat diet, and increase metabolic flexibility, regardless of fermentability.

  13. Resistance training in overweight women on a ketogenic diet conserved lean body mass while reducing body fat

    PubMed Central

    2010-01-01

    Background The aim of the present study was to compare the effects of 10 weeks resistance training in combination with either a regular diet (Ex) or a low carbohydrate, ketogenic diet (Lc+Ex) in overweight women on body weight and body composition. Methods 18 untrained women between 20 and 40 years with BMI ≥ 25 kg*m-2 were randomly assigned into the Ex or Lc+Ex group. Both groups performed 60-100 min of varied resistance exercise twice weekly. Dietary estimates were based on two 4-day weighed records. Body composition was estimated using Dual Energy X-ray Absorptiometry. Fasting blood samples were analyzed for total-, HDL- and LDL-cholesterol, triacylglycerols, and glucose. Results 16 subjects were included in the analyses. Percentage of energy (En%) from carbohydrates, fat and protein was 6, 66, and 22 respectively in the (Lc+Ex) group and 41, 34, 17 in the Ex group. Mean weight change (pre-post) was -5.6 ± 2.6 kg in Lc+Ex; (p < 0.001) and 0.8 ± 1.5 kg in Ex; (p = 0.175). The Lc+Ex group lost 5.6 ± 2.9 kg of fat mass (p = 0.001) with no significant change in lean body mass (LBM), while the Ex group gained 1.6 ± 1.8 kg of LBM (p = 0.045) with no significant change in fat mass (p = 0.059). Fasting blood lipids and blood glucose were not significantly affected by the interventions. Conclusion Resistance exercise in combination with a ketogenic diet may reduce body fat without significantly changing LBM, while resistance exercise on a regular diet may increase LBM in without significantly affecting fat mass. Fasting blood lipids do not seem to be negatively influenced by the combination of resistance exercise and a low carbohydrate diet. PMID:20196854

  14. A randomized controlled trial on the efficacy of carbohydrate-reduced or fat-reduced diets in patients attending a telemedically guided weight loss program.

    PubMed

    Frisch, Sabine; Zittermann, Armin; Berthold, Heiner K; Götting, Christian; Kuhn, Joachim; Kleesiek, Knut; Stehle, Peter; Körtke, Heinrich

    2009-07-18

    We investigated whether macronutrient composition of energy-restricted diets influences the efficacy of a telemedically guided weight loss program. Two hundred overweight subjects were randomly assigned to a conventional low-fat diet and a low-carbohydrate diet group (target carbohydrate content: >55% energy and <40% energy, respectively). Both groups attended a weekly nutrition education program and dietary counselling by telephone, and had to transfer actual body weight data to our clinic weekly with added Bluetooth technology by mobile phone. Various fatness and fat distribution parameters, energy and macronutrient intake, and various biochemical risk markers were measured at baseline and after 6, and 12 months. In both groups, energy intake decreased by 400 kcal/d compared to baseline values within the first 6 months and slightly increased again within the second 6 months. Macronutrient composition differed significantly between the groups from the beginning to month 12. At study termination, weight loss was 5.8 kg (SD: 6.1 kg) in the low-carbohydrate group and 4.3 kg (SD: 5.1 kg) in the low-fat group (p = 0.065). In the low-carbohydrate group, triglyceride and HDL-cholesterol levels were lower at month 6 and waist circumference and systolic blood pressure were lower at month 12 compared with the low-fat group (P = 0.005-0.037). Other risk markers improved to a similar extent in both groups. Despite favourable effects of both diets on weight loss, the carbohydrate-reduced diet was more beneficial with respect to cardiovascular risk factors compared to the fat-reduced diet. Nevertheless, compliance with a weight loss program appears to be even a more important factor for success in prevention and treatment of obesity than the composition of the diet. Clinicaltrials.gov as NCT00868387.

  15. Dietary energy restriction reduces high-fat diet-enhanced metastasis of Lewis lung carcinoma in mice

    USDA-ARS?s Scientific Manuscript database

    Obesity is a risk factor for cancer. The objective of this study was to determine the effects of dietary energy restriction on high-fat diet-enhanced spontaneous metastasis of Lewis lung carcinoma (LLC) in mice. Male C57BL/6 mice were fed an AIN93G diet or a high-fat diet (16% or 45% of energy fro...

  16. Wheel running reduces high-fat diet intake, preference and mu-opioid agonist stimulated intake.

    PubMed

    Liang, Nu-Chu; Bello, Nicholas T; Moran, Timothy H

    2015-05-01

    The ranges of mechanisms by which exercise affects energy balance remain unclear. One potential mechanism may be that exercise reduces intake and preference for highly palatable, energy dense fatty foods. The current study used a rodent wheel running model to determine whether and how physical activity affects HF diet intake/preference and reward signaling. Experiment 1 examined whether wheel running affected the ability of intracerebroventricular (ICV) μ opioid receptor agonist D-Ala2, NMe-Phe4, Glyol5-enkephalin (DAMGO) to increase HF diet intake. Experiment 2 examined the effects of wheel running on the intake of and preference for a previously preferred HF diet. We also assessed the effects of wheel running and diet choice on mesolimbic dopaminergic and opioidergic gene expression. Experiment 1 revealed that wheel running decreased the ability of ICV DAMGO administration to stimulate HF diet intake. Experiment 2 showed that wheel running suppressed weight gain and reduced intake and preference for a previously preferred HF diet. Furthermore, the mesolimbic gene expression profile of wheel running rats was different from that of their sedentary paired-fed controls but similar to that of sedentary rats with large HF diet consumption. These data suggest that alterations in preference for palatable, energy dense foods play a role in the effects of exercise on energy homeostasis. The gene expression results also suggest that the hedonic effects of exercise may substitute for food reward to limit food intake and suppress weight gain. Published by Elsevier B.V.

  17. Wheel running reduces high-fat diet intake, preference and mu-opioid agonist stimulated intake

    PubMed Central

    Liang, Nu-Chu; Bello, Nicholas T.; Moran, Timothy H.

    2015-01-01

    The ranges of mechanisms by which exercise affects energy balance remain unclear. One potential mechanism may be that exercise reduces intake and preference for highly palatable, energy dense fatty foods. The current study used a rodent wheel running model to determine whether and how physical activity affects HF diet intake/preference and reward signaling. Experiment 1 examined whether wheel running affected the ability of intracerebroventricular (ICV) µ opioid receptor agonist D-Ala2, NMe-Phe4, Glyol5-enkephalin (DAMGO) to increase HF diet intake. Experiment 2 examined the effects of wheel running on the intake of and preference for a previously preferred HF diet. We also assessed the effects of wheel running and diet choice on mesolimbic dopaminergic and opioidergic gene expression. Experiment 1 revealed that wheel running decreased the ability of ICV DAMGO administration to stimulate HF diet intake. Experiment 2 showed that wheel running suppressed weight gain and reduced intake and preference for a previously preferred HF diet. Furthermore, the mesolimbic gene expression profile of wheel running rats was different from that of their sedentary paired-fed controls but similar to that of sedentary rats with large HF diet consumption. These data suggest that alterations in preference for palatable, energy dense foods play a role in the effects of exercise on energy homeostasis. The gene expression results also suggest that the hedonic effects of exercise may substitute for food reward to limit food intake and suppress weight gain. PMID:25668514

  18. Ipragliflozin effectively reduced visceral fat in Japanese patients with type 2 diabetes under adequate diet therapy.

    PubMed

    Yamamoto, Chiho; Miyoshi, Hideaki; Ono, Kota; Sugawara, Hajime; Kameda, Reina; Ichiyama, Mei; Yamamoto, Kohei; Nomoto, Hiroshi; Nakamura, Akinobu; Atsumi, Tatsuya

    2016-06-30

    To investigate if ipragliflozin, a novel sodium-glucose co-transporter 2 inhibitor, alters body composition and to identify variables associated with reductions in visceral adipose tissue in Japanese patients with type 2 diabetes mellitus. This prospective observational study enrolled Japanese participants with type 2 diabetes mellitus. Subjects were administered ipragliflozin (50 mg/day) once daily for 16 weeks. Body composition, visceral adipose tissue volume and plasma variables were measured at 0, 8, and 16-weeks. The subjects' lifestyle habits including diet and exercise were evaluated at baseline and 16 weeks. The primary endpoint was defined as the decrease of visceral adipose tissue mass. Twenty-four of 26 enrolled participants completed the study. The visceral adipose tissue decreased significantly (110 ± 33 to 101 ± 36 cm(2), p = 0.005) as well as other parameters for metabolic insufficiency including hemoglobin A1c. Seventy-one % of the total body weight reduction (-2.49 kg) was estimated by a decrease in fat mass (-1.77 kg), and the remaining reduction (22%) by water volume (-0.55 kg). A minor but significant reduction in the skeletal muscle index was also observed. Correlation analyses were performed to identify variables associated with changes in visceral adipose tissue and the only significant variable identified was diet therapy (Spearman's r = -0.416, p = 0.043). Ipragliflozin significantly decreased visceral adipose tissue, and improved parametres for metabolic dysfunction. Adequate diet therapy would be necessary to induce and enhance the therapeutic merit.

  19. Overexpression of Jazf1 reduces body weight gain and regulates lipid metabolism in high fat diet.

    PubMed

    Jang, Woo Young; Bae, Ki Beom; Kim, Sung Hyun; Yu, Dong Hun; Kim, Hei Jung; Ji, Young Rae; Park, Seo Jin; Park, Si Jun; Kang, Min-Cheol; Jeong, Ja In; Park, Sang-Joon; Lee, Sang Gyu; Lee, Inkyu; Kim, Myoung Ok; Yoon, Duhak; Ryoo, Zae Young

    2014-02-14

    Jazf1 is a 27 kDa nuclear protein containing three putative zinc finger motifs that is associated with diabetes mellitus and prostate cancer; however, little is known about the role that this gene plays in regulation of metabolism. Recent evidence indicates that Jazf1 transcription factors bind to the nuclear orphan receptor TR4. This receptor regulates PEPCK, the key enzyme involved in gluconeogenesis. To elucidate Jazf1's role in metabolism, we fed a 60% fat diet for up to 15 weeks. In Jazf1 overexpression mice, weight gain was found to be significantly decreased. The expression of Jazf1 in the liver also suppressed lipid accumulation and decreased droplet size. These results suggest that Jazf1 plays a critical role in the regulation of lipid homeostasis. Finally, Jazf1 may provide a new therapeutic target in the management of obesity and diabetes.

  20. Metformin Reduces Lipogenesis Markers in Obese Mice Fed a Low-Carbohydrate and High-Fat Diet.

    PubMed

    de Oliveira Santana, Karla Nayara; Lelis, Deborah Farias; Mendes, Keila Lopes; Lula, Jamille Fernandes; Paraíso, Alanna Fernandes; Andrade, João Marcus Oliveira; Feltenberger, John David; Cota, Junio; da Costa, Diego Vicente; de Paula, Alfredo Mauricio Batista; Guimarães, André Luiz Sena; Santos, Sérgio Henrique Sousa

    2016-12-01

    Lipogenesis is the process by which fatty acids are synthesized. In metabolic syndrome, an insulin resistant state along with high plasma levels of free fatty acids (FFA) and hyperglycemia may contribute to the lipogenic process. The aim of the present study was to investigate the effects of oral administration of metformin on the expression of lipogenic genes and glycemic profile in mice fed with low-carbohydrate high-fat diet by evaluating their metabolic profile. SWISS male mice were divided into 4 groups (N = 7) that were fed with standard (ST), standard plus metformin (ST + MET), low-carbohydrate high-fat diet (LCHFD) and low-carbohydrate high-fat diet plus metformin (LCHFD + MET) (100 mg kg(-1) diet) diets respectively. Food intake, body weight and blood parameters, such as glucose tolerance, insulin sensitivity, glucose, HDL-c, total cholesterol, triglycerides, ASL and ALT levels were assessed. Histological analyses were performed on hematoxylin and eosin-stained epididymal adipose tissue histological specimens. The expression levels of peroxisome proliferator-activated receptor (PPARγ), sterol regulatory element-binding protein 1 (SREBP1), fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC), were assessed by RT-PCR. This study showed that metformin decreased adipocyte area, body weight and food consumption in obese animals when compared to the standard group. Furthermore, the expression of lipogenic markers in adipose tissue were diminished in obese animals treated with metformin. This data showed that oral administration of metformin improved glucose and lipid metabolic parameters in white adipose tissue by reducing the expression of lipogenesis markers, suggesting an important clinical application of MET in treating obesity-related diseases in metabolic syndrome.

  1. Rapeseed oil fortified with micronutrients reduces atherosclerosis risk factors in rats fed a high-fat diet

    PubMed Central

    2011-01-01

    Background Micronutrients polyphenols, tocopherols and phytosterols in rapeseed exert potential benefit to cardiovascular system, but most of these micronutrients are removed by the refining process. The aim of this study was to determine the effect of rapeseed oil fortified with these micronutrients on the atherosclerosis risk factors in rats fed a high-fat diet. Methods The rodent diet contained 20% fat whose source was refined rapeseed oil (RRO) or fortified refined rapeseed oil with low, middle and high quantities of these micronutrients (L-, M- and H-FRRO). Forty male SD rats were divided into four groups. One group received RRO diet and other groups received L-, M- and H-FRRO diet for 10 weeks. Results Micronutrients supplementation significantly increased plasma antioxidant defense capacities, as evaluated by the significant elevation in the activities of GPx, CAT and SOD as well as the level of GSH, and the significant decline in lipid peroxidation. These micronutrients also reduced the plasma contents of TG, TC and LDL-C and increased the ratio of HDL-C/LDL-C. In addition, in parallel with the enhancement of these micronutrients, plasma levels of IL-6 and CRP declined remarkably. Conclusion Rapeseed oil fortified with micronutrients polyphenols, tocopherols and phytosterols may contribute to prevent atherogenesis by ameliorating plasma oxidative stress, lipid profile and inflammation. PMID:21663699

  2. High-protein diet selectively reduces fat mass and improves glucose tolerance in Western-type diet-induced obese rats.

    PubMed

    Stengel, Andreas; Goebel-Stengel, Miriam; Wang, Lixin; Hu, Eugenia; Karasawa, Hiroshi; Pisegna, Joseph R; Taché, Yvette

    2013-09-15

    Obesity is an increasing health problem. Because drug treatments are limited, diets remain popular. High-protein diets (HPD) reduce body weight (BW), although the mechanisms are unclear. We investigated physiological mechanisms altered by switching diet induced obesity (DIO) rats from Western-type diet (WTD) to HPD. Male rats were fed standard (SD) or WTD (45% calories from fat). After developing DIO (50% of rats), they were switched to SD (15% calories from protein) or HPD (52% calories from protein) for up to 4 weeks. Food intake (FI), BW, body composition, glucose tolerance, insulin sensitivity, and intestinal hormone plasma levels were monitored. Rats fed WTD showed an increased FI and had a 25% greater BW gain after 9 wk compared with SD (P < 0.05). Diet-induced obese rats switched from WTD to HPD reduced daily FI by 30% on day 1, which lasted to day 9 (-9%) and decreased BW during the 2-wk period compared with SD/SD (P < 0.05). During these 2 wk, WTD/HPD rats lost 72% more fat mass than WTD/SD (P < 0.05), whereas lean mass was unaltered. WTD/HPD rats had lower blood glucose than WTD/SD at 30 min postglucose gavage (P < 0.05). The increase of pancreatic polypeptide and peptide YY during the 2-h dark-phase feeding was higher in WTD/HPD compared with WTD/SD (P < 0.05). These data indicate that HPD reduces BW in WTD rats, which may be related to decreased FI and the selective reduction of fat mass accompanied by improved glucose tolerance, suggesting relevant benefits of HPD in the treatment of obesity.

  3. High-protein diet selectively reduces fat mass and improves glucose tolerance in Western-type diet-induced obese rats

    PubMed Central

    Stengel, Andreas; Goebel-Stengel, Miriam; Wang, Lixin; Hu, Eugenia; Karasawa, Hiroshi; Pisegna, Joseph R.

    2013-01-01

    Obesity is an increasing health problem. Because drug treatments are limited, diets remain popular. High-protein diets (HPD) reduce body weight (BW), although the mechanisms are unclear. We investigated physiological mechanisms altered by switching diet induced obesity (DIO) rats from Western-type diet (WTD) to HPD. Male rats were fed standard (SD) or WTD (45% calories from fat). After developing DIO (50% of rats), they were switched to SD (15% calories from protein) or HPD (52% calories from protein) for up to 4 weeks. Food intake (FI), BW, body composition, glucose tolerance, insulin sensitivity, and intestinal hormone plasma levels were monitored. Rats fed WTD showed an increased FI and had a 25% greater BW gain after 9 wk compared with SD (P < 0.05). Diet-induced obese rats switched from WTD to HPD reduced daily FI by 30% on day 1, which lasted to day 9 (−9%) and decreased BW during the 2-wk period compared with SD/SD (P < 0.05). During these 2 wk, WTD/HPD rats lost 72% more fat mass than WTD/SD (P < 0.05), whereas lean mass was unaltered. WTD/HPD rats had lower blood glucose than WTD/SD at 30 min postglucose gavage (P < 0.05). The increase of pancreatic polypeptide and peptide YY during the 2-h dark-phase feeding was higher in WTD/HPD compared with WTD/SD (P < 0.05). These data indicate that HPD reduces BW in WTD rats, which may be related to decreased FI and the selective reduction of fat mass accompanied by improved glucose tolerance, suggesting relevant benefits of HPD in the treatment of obesity. PMID:23883680

  4. A high-fat, high-oleic diet, but not a high-fat, saturated diet, reduces hepatic n3 fatty acid content in mice

    USDA-ARS?s Scientific Manuscript database

    While considerable research has centered upon the role of linoleic acid (LNA; 18:2n6) as a competitive inhibitor of alpha-linolenic (ALA; 18:3n3) metabolism, a growing literature indicates that the amount of fat consumed can reduce the elongation and desaturation process. However, little data exist ...

  5. A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning.

    PubMed

    Molteni, R; Barnard, R J; Ying, Z; Roberts, C K; Gómez-Pinilla, F

    2002-01-01

    We have investigated a potential mechanism by which a diet, similar in composition to the typical diet of most industrialized western societies rich in saturated fat and refined sugar (HFS), can influence brain structure and function via regulation of neurotrophins. We show that animals that learn a spatial memory task faster have more brain-derived neurotrophic factor (BDNF) mRNA and protein in the hippocampus. Two months on the HFS diet were sufficient to reduce hippocampal level of BDNF and spatial learning performance. Consequent to the action of BDNF on synaptic function, downstream effectors for the action of BDNF on synaptic plasticity were reduced proportionally to BDNF levels, in the hippocampus of rats maintained on the HFS diet between 2 and 24 months. In particular, animals maintained on the HFS diet showed a decrease in levels of: (i) synapsin I mRNA and protein (total and phosphorylated), important for neurotransmitter release; (ii) cyclic AMP-response element-binding protein (CREB) mRNA and protein (total and phosphorylated); CREB is required for various forms of memory and is under regulatory control of BDNF; (iii) growth-associated protein 43 mRNA, important for neurite outgrowth, neurotransmitter release, and learning and memory. Diet-related changes were specific for the hippocampus consequent to its role in memory formation, and did not involve neurotrophin-3, another member of the neurotrophin family. Our results indicate that a popularly consumed diet can influence crucial aspects of neuronal and behavioral plasticity associated with the function of BDNF.

  6. Voluntary running of defined distances reduces body adiposity and its associated inflammation in C57BL/6 mice fed a high-fat diet.

    PubMed

    Yan, Lin; Sundaram, Sneha; Nielsen, Forrest H

    2017-07-17

    This study investigated the effect of voluntary running of defined distances on body adiposity in male C57BL/6 mice fed a high-fat diet. Mice were assigned to 6 groups and fed a standard AIN93G diet (sedentary) or a modified high-fat AIN93G diet (sedentary; unrestricted running; or 75%, 50%, or 25% of unrestricted running) for 12 weeks. The average running distance was 8.3, 6.3, 4.2, and 2.1 km/day for the unrestricted, 75%, 50%, and 25% of unrestricted runners, respectively. Body adiposity was 46% higher in sedentary mice when fed the high-fat diet instead of the standard diet. Running decreased adiposity in mice fed the high-fat diet in a dose-dependent manner but with no significant difference between sedentary mice and those running 2.1 km/day. In sedentary mice, the high-fat instead of the standard diet increased insulin resistance, hepatic triacylglycerides, and adipose and plasma concentrations of leptin and monocyte chemotactic protein-1 (MCP-1). Running reduced these variables in a dose-dependent manner. Adipose adiponectin was lowest in sedentary mice fed the high-fat diet; running raised adiponectin in both adipose tissue and plasma. Running 8.3 and 6.3 km/day had the greatest, but similar, effects on the aforementioned variables. Running 2.1 km/day did not affect these variables except, when compared with sedentariness, it significantly decreased MCP-1. The findings showed that running 6.3 kg/day was optimal for reducing adiposity and associated inflammation that was increased in mice by feeding a high-fat diet. The findings suggest that voluntary running of defined distances may counteract the obesogenic effects of a high-fat diet.

  7. Aliskiren Reduces Hepatic steatosis and Epididymal Fat Mass and Increases Skeletal Muscle Insulin Sensitivity in High-Fat Diet-Fed Mice.

    PubMed

    Lee, Kuei-Chuan; Hsieh, Yun-Cheng; Yang, Ying-Ying; Chan, Che-Chang; Huang, Yi-Hsiang; Lin, Han-Chieh

    2016-01-06

    Aliskiren has been found to reduce chronic injury and steatosis in the liver of methionine-choline-deficient (MCD) diet-fed mice. This study investigated whether aliskiren has an anti-steatotic effect in HFD-fed mice, which are more relevant to human patients with non-alcoholic fatty liver disease than MCD mice. Mice fed with 4-week normal chow or HFD randomly received aliskiren (50 mg/kg/day) or vehicle via osmotic minipumps for further 4 weeks. Aliskiren reduced systemic insulin resistance, hepatic steatosis, epididymal fat mass and increased gastrocnemius muscle glucose transporter type 4 levels with lower tissue angiotensin II levels in the HFD-fed mice. In addition, aliskiren lowered nuclear peroxisome proliferator-activated receptor gamma and its down-signaling molecules and increased cytochrome P450 4A14 and carnitine palmitoyltransferase 1A (CPT1a) in liver. In epididymal fat, aliskiren inhibited expressions of lipogenic genes, leading to decrease in fat mass, body weight, and serum levels of leptin and free fatty acid. Notably, in the gastrocnemius muscle, aliskiren increased phosphorylation of insulin receptor substrate 1 and Akt. Based on these beneficial effects on liver, peripheral fat and skeletal muscle, aliskiren is a promising therapeutic agent for patients with NAFLD.

  8. Exenatide improves liver mitochondrial dysfunction and insulin resistance by reducing oxidative stress in high fat diet-induced obese mice.

    PubMed

    Wang, Zixuan; Hou, Lin; Huang, Lanhui; Guo, Jun; Zhou, Xinli

    2017-04-22

    Oxidative stress is associated with obesity and may be accompanied by liver insulin resistance and mitochondrial dysfunction. Decreased mitochondrial respiratory chain enzymatic activities and decreased insulin metabolic signaling may promote these maladaptive changes. In this context, exenatide has been reported to reduce hepatic lipid deposition, improve insulin sensitivity and improve mitochondrial dysfunction. We hypothesized that exenatide would attenuate mitochondrial dysfunction by reducing hepatic lipid deposition, blunting oxidant stress and promoting insulin metabolic signaling in a high fat diet-induced model of obesity and insulin resistance. Sixteen-week-old male C57BL/6 diet-induced obese (DIO) mices and age-matched standard diet (STD) mices were treated with exenatide (10 μg/kg twice a day) for 28 days. Compared with untreated STD mice, untreated DIO mice exhibited deposited excessive lipid in liver and produced the oxidative stress in conjunction with insulin resistance, abnormal hepatic cells and mitochondrial histoarchitecture, mitochondrial dysfunction and reduced organism metabolism. Exenatide reduced hepatic steatosis, decreased oxidative stress, and improved insulin resistance in DIO mice, in concert with improvements in the insulin metabolic signaling, mitochondrial respiratory chain enzymatic activation, adenine nucleotide production, organism metabolism and weight gain. Results support the hypothesis that exenatide reduces hepatic cells and mitochondrial structural anomaly and improves insulin resistance in concert with improvements in insulin sensitivity and mitochondrial function activation, concomitantly with reductions in oxidative stress.

  9. Overexpression of Jazf1 reduces body weight gain and regulates lipid metabolism in high fat diet

    SciTech Connect

    Jang, Woo Young; Bae, Ki Beom; Kim, Sung Hyun; Yu, Dong Hun; Kim, Hei Jung; Ji, Young Rae; Park, Seo Jin; Park, Si Jun; Kang, Min-Cheol; Jeong, Ja In; Park, Sang-Joon; Lee, Sang Gyu; Lee, Inkyu; Kim, Myoung Ok; Yoon, Duhak; Ryoo, Zae Young

    2014-02-14

    Highlights: • The expression of Jazf1 in the liver suppressed lipid accumulation. • Jazf1 significantly increases transcription of fatty acid synthase. • Jazf1 plays a critical role in the regulation of energy and lipid homeostasis. • Jazf1 associates the development of metabolic disorder. • Jazf1 may provide a new therapeutic target in the management of metabolic disorder. - Abstract: Jazf1 is a 27 kDa nuclear protein containing three putative zinc finger motifs that is associated with diabetes mellitus and prostate cancer; however, little is known about the role that this gene plays in regulation of metabolism. Recent evidence indicates that Jazf1 transcription factors bind to the nuclear orphan receptor TR4. This receptor regulates PEPCK, the key enzyme involved in gluconeogenesis. To elucidate Jazf1’s role in metabolism, we fed a 60% fat diet for up to 15 weeks. In Jazf1 overexpression mice, weight gain was found to be significantly decreased. The expression of Jazf1 in the liver also suppressed lipid accumulation and decreased droplet size. These results suggest that Jazf1 plays a critical role in the regulation of lipid homeostasis. Finally, Jazf1 may provide a new therapeutic target in the management of obesity and diabetes.

  10. Liver glycogen reduces food intake and attenuates obesity in a high-fat diet-fed mouse model.

    PubMed

    López-Soldado, Iliana; Zafra, Delia; Duran, Jordi; Adrover, Anna; Calbó, Joaquim; Guinovart, Joan J

    2015-03-01

    We generated mice that overexpress protein targeting to glycogen (PTG) in the liver (PTG(OE)), which results in an increase in liver glycogen. When fed a high-fat diet (HFD), these animals reduced their food intake. The resulting effect was a lower body weight, decreased fat mass, and reduced leptin levels. Furthermore, PTG overexpression reversed the glucose intolerance and hyperinsulinemia caused by the HFD and protected against HFD-induced hepatic steatosis. Of note, when fed an HFD, PTG(OE) mice did not show the decrease in hepatic ATP content observed in control animals and had lower expression of neuropeptide Y and higher expression of proopiomelanocortin in the hypothalamus. Additionally, after an overnight fast, PTG(OE) animals presented high liver glycogen content, lower liver triacylglycerol content, and lower serum concentrations of fatty acids and β-hydroxybutyrate than control mice, regardless of whether they were fed an HFD or a standard diet. In conclusion, liver glycogen accumulation caused a reduced food intake, protected against the deleterious effects of an HFD, and diminished the metabolic impact of fasting. Therefore, we propose that hepatic glycogen content be considered a potential target for the pharmacological manipulation of diabetes and obesity. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  11. HPMC supplementation reduces abdominal fat content, intestinal permeability, inflammation, and insulin resistance in diet-induced obese mice

    USDA-ARS?s Scientific Manuscript database

    The effects of hydroxypropyl methylcellulose (HPMC), a highly viscous non-fermentable soluble dietary fiber, were evaluated on adipose tissue inflammation and insulin resistance in diet induced obese (DIO) mice fed a high fat (HF) diet supplemented with either HPMC or insoluble fiber. DIO C57BL/6J m...

  12. A maternal diet of fatty fish reduces body fat of offspring compared with a maternal diet of beef and a post-weaning diet of fish improves insulin sensitivity and lipid profile in adult C57BL/6 male mice.

    PubMed

    Hussain, A; Nookaew, I; Khoomrung, S; Andersson, L; Larsson, I; Hulthén, L; Jansson, N; Jakubowicz, R; Nilsson, S; Sandberg, A-S; Nielsen, J; Holmäng, A

    2013-11-01

    The maternal diet during pregnancy and lactation may affect the long-term health of the offspring. Our aim was to study how a fish or meat diet perinatal and after weaning affects body composition, insulin sensitivity and the profile of n-3 and n-6 polyunsaturated fatty acids (PUFAs) in breast milk, fat depots, skeletal muscle and liver in male adult mice offspring. During gestation and lactation, C57BL/6 dams were fed a herring- or beef-based diet. Half of the pups in each group changed diets after weaning. In offspring, body composition measured by DEXA, plasma lipid profile and insulin sensitivity measured by euglycemic clamp or QUICKI were monitored to adulthood. Analysis of total FAs by GC-MS were performed in the diet, breast milk and in different tissues. At 9 week of age, offspring of herring-fed dams had less body fat than offspring of beef-fed dams. Mice fed herring after weaning had increased insulin sensitivity at 15 week of age, reduced total plasma cholesterol and triglyceride levels, and compared with beef-fed mice, larger interscapular brown adipose tissue depots. The FA composition of the maternal diet was mirrored in breast milk, and the herring diet significantly affected the FA profile of different tissues, leading to an increased content of n-3 PUFAs. A herring-based maternal diet reduces body fat in the offspring, but the insulin sensitivity, plasma lipids and amount of brown adipose tissue are affected by the offspring's own diet; the herring diet is more beneficial than the beef diet. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  13. Interleukin-18 null mutation increases weight and food intake and reduces energy expenditure and lipid substrate utilization in high-fat diet fed mice

    PubMed Central

    Zorrilla, Eric P.; Conti, Bruno

    2014-01-01

    Objective The proinflammatory cytokine interleukin-18 (IL-18) putatively modulates food intake and energy metabolism, but the effects of IL-18 in high-fat diet fed animals are unknown. Whether IL-18 alters basal metabolic rate or metabolic processes of living is unknown. Here, we tested the hypothesis that IL-18 modulates weight gain, energy intake, whole-body energy expenditure, and utilization of lipid as a fuel substrate in high-fat diet fed mice. Methods Food intake, whole-body metabolism, and motor activity of IL-18 knockout mice were compared to those of wildtype littermates; anorectic effects of intracerebroventricular IL-18 administration were compared between IL-18 receptor knockout, IL-18/IL-18R knockout and wildtype mice. Results Chow-reared IL-18 knockout mice were overweight at 6 months of age and then gained excess weight on both low-fat and high-fat diets, ate more high-fat diet, and showed reduced whole-body energy expenditure and increased respiratory exchange ratios. Reductions in energy expenditure of IL-18 knockout mice were seen across fasting vs. feeding conditions, low- vs. high-fat diets, high vs. low levels of physical activity and times of day, suggesting actions on basal metabolic rate. The circadian amplitude of energy expenditure, but not respiratory exchange ratio, food intake, or motor activity, also was blunted in IL-18 knockout mice. Central IL-18 administration reduced high-fat diet intake in wildtype mice, but not in mice lacking the IL-18 receptor. Conclusion The loss-of-function results support the hypothesis that endogenous IL-18 suppresses appetite and promote energy expenditure and lipid fuel substrate utilization not only during sickness, but also in healthy adults consuming high-fat diets. PMID:24316258

  14. Interleukin-18 null mutation increases weight and food intake and reduces energy expenditure and lipid substrate utilization in high-fat diet fed mice.

    PubMed

    Zorrilla, Eric P; Conti, Bruno

    2014-03-01

    The proinflammatory cytokine interleukin-18 (IL-18) putatively modulates food intake and energy metabolism, but the effects of IL-18 in high-fat diet fed animals are unknown. Whether IL-18 alters basal metabolic rate or metabolic processes of living is unknown. Here, we tested the hypothesis that IL-18 modulates weight gain, energy intake, whole-body energy expenditure, and utilization of lipid as a fuel substrate in high-fat diet fed mice. Food intake, whole-body metabolism, and motor activity of IL-18 knockout mice were compared to those of wildtype littermates; anorectic effects of intracerebroventricular IL-18 administration were compared between IL-18 receptor knockout, IL-18/IL-18R knockout and wildtype mice. Chow-reared IL-18 knockout mice were overweight at 6 months of age and then gained excess weight on both low-fat and high-fat diets, ate more high-fat diet, and showed reduced whole-body energy expenditure and increased respiratory exchange ratios. Reductions in energy expenditure of IL-18 knockout mice were seen across fasting vs. feeding conditions, low- vs. high-fat diets, high vs. low levels of physical activity and times of day, suggesting actions on basal metabolic rate. The circadian amplitude of energy expenditure, but not respiratory exchange ratio, food intake, or motor activity, also was blunted in IL-18 knockout mice. Central IL-18 administration reduced high-fat diet intake in wildtype mice, but not in mice lacking the IL-18 receptor. The loss-of-function results support the hypothesis that endogenous IL-18 suppresses appetite and promote energy expenditure and lipid fuel substrate utilization not only during sickness, but also in healthy adults consuming high-fat diets. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. A lower-carbohydrate, higher-fat diet reduces abdominal and intermuscular fat and increases insulin sensitivity in adults at risk of type 2 diabetes.

    PubMed

    Gower, Barbara A; Goss, Amy M

    2015-01-01

    Obesity, particularly visceral and ectopic adiposity, increases the risk of type 2 diabetes. The aim of this study was to determine if restriction of dietary carbohydrate is beneficial for body composition and metabolic health. Two studies were conducted. In the first, 69 overweight/obese men and women, 53% of whom were European American (EA) and 47% of whom were African American (AA), were provided with 1 of 2 diets (lower-fat diet: 55%, 18%, and 27% of energy from carbohydrate, protein, and fat, respectively; lower-carbohydrate diet: 43%, 18%, and 39%, respectively) for 8 wk at a eucaloric level and 8 wk at a hypocaloric level. In the second study, 30 women with polycystic ovary syndrome (PCOS) were provided with 2 diets (lower-fat diet: 55%, 18%, and 27% of energy from carbohydrate, protein, and fat, respectively; lower-carbohydrate diet: 41%, 19%, and 40%, respectively) at a eucaloric level for 8 wk in a random-order crossover design. As previously reported, among overweight/obese adults, after the eucaloric phase, participants who consumed the lower-carbohydrate vs. the lower-fat diet lost more intra-abdominal adipose tissue (IAAT) (11 ± 3% vs. 1 ± 3%; P < 0.05). After weight loss, participants who consumed the lower-carbohydrate diet had 4.4% less total fat mass. Original to this report, across the entire 16-wk study, AAs lost more fat mass with a lower-carbohydrate diet (6.2 vs. 2.9 kg; P < 0.01), whereas EAs showed no difference between diets. As previously reported, among women with PCOS, the lower-carbohydrate arm showed decreased fasting insulin (-2.8 μIU/mL; P < 0.001) and fasting glucose (-4.7 mg/dL; P < 0.01) and increased insulin sensitivity (1.06 arbitrary units; P < 0.05) and "dynamic" β-cell response (96.1 · 10(9); P < 0.001). In the lower-carbohydrate arm, women lost both IAAT (-4.8 cm(2); P < 0.01) and intermuscular fat (-1.2 cm(2); P < 0.01). In the lower-fat arm, women lost lean mass (-0.6 kg; P < 0.05). Original to this report, after the

  16. Green Tea Extract Supplementation Induces the Lipolytic Pathway, Attenuates Obesity, and Reduces Low-Grade Inflammation in Mice Fed a High-Fat Diet

    PubMed Central

    Cunha, Cláudio A.; Lira, Fábio S.; Rosa Neto, José C.; Pimentel, Gustavo D.; Souza, Gabriel I. H.; da Silva, Camila Morais Gonçalves; de Souza, Cláudio T.; Ribeiro, Eliane B.; Sawaya, Alexandra Christine Helena Frankland; Oller do Nascimento, Cláudia M.; Rodrigues, Bruno; de Oliveira Carvalho, Patrícia; Oyama, Lila M.

    2013-01-01

    The aim of this study was to evaluate the effects of green tea Camellia sinensis extract on proinflammatory molecules and lipolytic protein levels in adipose tissue of diet-induced obese mice. Animals were randomized into four groups: CW (chow diet and water); CG (chow diet and water + green tea extract); HW (high-fat diet and water); HG (high-fat diet and water + green tea extract). The mice were fed ad libitum with chow or high-fat diet and concomitantly supplemented (oral gavage) with 400 mg/kg body weight/day of green tea extract (CG and HG, resp.). The treatments were performed for eight weeks. UPLC showed that in 10 mg/mL green tea extract, there were 15 μg/mg epigallocatechin, 95 μg/mg epigallocatechin gallate, 20.8 μg/mg epicatechin gallate, and 4.9 μg/mg gallocatechin gallate. Green tea administered concomitantly with a high-fat diet increased HSL, ABHD5, and perilipin in mesenteric adipose tissue, and this was associated with reduced body weight and adipose tissue gain. Further, we observed that green tea supplementation reduced inflammatory cytokine TNFα levels, as well as TLR4, MYD88, and TRAF6 proinflammatory signalling. Our results show that green tea increases the lipolytic pathway and reduces adipose tissue, and this may explain the attenuation of low-grade inflammation in obese mice. PMID:23431242

  17. Green tea extract supplementation induces the lipolytic pathway, attenuates obesity, and reduces low-grade inflammation in mice fed a high-fat diet.

    PubMed

    Cunha, Cláudio A; Lira, Fábio S; Rosa Neto, José C; Pimentel, Gustavo D; Souza, Gabriel I H; da Silva, Camila Morais Gonçalves; de Souza, Cláudio T; Ribeiro, Eliane B; Sawaya, Alexandra Christine Helena Frankland; Oller do Nascimento, Cláudia M; Rodrigues, Bruno; de Oliveira Carvalho, Patrícia; Oyama, Lila M

    2013-01-01

    The aim of this study was to evaluate the effects of green tea Camellia sinensis extract on proinflammatory molecules and lipolytic protein levels in adipose tissue of diet-induced obese mice. Animals were randomized into four groups: CW (chow diet and water); CG (chow diet and water + green tea extract); HW (high-fat diet and water); HG (high-fat diet and water + green tea extract). The mice were fed ad libitum with chow or high-fat diet and concomitantly supplemented (oral gavage) with 400 mg/kg body weight/day of green tea extract (CG and HG, resp.). The treatments were performed for eight weeks. UPLC showed that in 10 mg/mL green tea extract, there were 15 μg/mg epigallocatechin, 95 μg/mg epigallocatechin gallate, 20.8 μg/mg epicatechin gallate, and 4.9 μg/mg gallocatechin gallate. Green tea administered concomitantly with a high-fat diet increased HSL, ABHD5, and perilipin in mesenteric adipose tissue, and this was associated with reduced body weight and adipose tissue gain. Further, we observed that green tea supplementation reduced inflammatory cytokine TNFα levels, as well as TLR4, MYD88, and TRAF6 proinflammatory signalling. Our results show that green tea increases the lipolytic pathway and reduces adipose tissue, and this may explain the attenuation of low-grade inflammation in obese mice.

  18. Green tea decoction improves glucose tolerance and reduces weight gain of rats fed normal and high-fat diet.

    PubMed

    Snoussi, Chahira; Ducroc, Robert; Hamdaoui, Mohamed Hédi; Dhaouadi, Karima; Abaidi, Houda; Cluzeaud, Francoise; Nazaret, Corinne; Le Gall, Maude; Bado, André

    2014-05-01

    Green tea containing polyphenols exerts antidiabetic and antiobesity effects, but the mechanisms involved are not fully understood. In this study, we first analyzed and compared polyphenol compounds [epigallocatechin gallate (EGCG), epigallocatechin (EGC)] in decoction of green tea leaves versus usual green tea extracts. Second, the effects of acute (30 min) or chronic (6 weeks) oral administration of green tea decoction (GTD) on intestinal glucose absorption were studied in vitro in Ussing chamber, ex vivo using isolated jejunal loops and in vivo through glucose tolerance tests. Finally, we explore in rat model fed normal or high-fat diet the effects of GTD on body weight, blood parameters and on the relative expression of glucose transporters SGLT-1, GLUT2 and GLUT4. GTD cooked for 15 min contained the highest amounts of phenolic compounds. In fasted rats, acute administration of GTD inhibited SGLT-1 activity, increased GLUT2 activity and improved glucose tolerance. Similarly to GTD, acute administration of synthetic phenolic compounds (2/3 EGCG+1/3 EGC) inhibited SGLT-1 activity. Chronic administration of GTD in rat fed high-fat diet reduced body weight gain, circulating triglycerides and cholesterol and improved glucose tolerance. GTD-treated rats for 6 weeks display significantly reduced SGLT-1 and increased GLUT2 mRNA levels in the jejunum mucosa. Moreover, adipose tissue GLUT4 mRNA levels were increased. These results indicate that GTD, a traditional beverage rich in EGCG and EGC reduces intestinal SGLT-1/GLUT2 ratio, a hallmark of regulation of glucose absorption in enterocyte, and enhances adipose GLUT4 providing new insights in its possible role in the control of glucose homeostasis. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. High fat diet reduces neuroprotection of isoflurane post-treatment: role of carboxyl-terminal modulator protein-Akt signaling

    PubMed Central

    Yu, Hai; Deng, Jiao; Zuo, Zhiyi

    2014-01-01

    Objective High fat diet (HFD) contributes to the increased prevalence of obesity and hyperlipidemia in young adults, a possible cause for their recent increase in stroke. Isoflurane post-treatment provides neuroprotection. We determined whether isoflurane post-treatment induced neuroprotection in HFD-fed mice. Design and Methods Six-week old CD-1 male mice were fed HFD or regular diet (RD) for 5 or 10 weeks. Their hippocampal slices (400 µm) were subjected to oxygen-glucose deprivation (OGD). Some slices were exposed to isoflurane for 30 min immediately after OGD. Some mice had a 90-min middle cerebral arterial occlusion and were post-treated with 2% isoflurane for 30 min. Results OGD time-dependently induced cell injury. This injury was dose-dependently reduced by isoflurane. The effect was apparent at 1% or 2% isoflurane in RD-fed mice but required 3% isoflurane in HFD-fed mice. HFD influenced the isoflurane effects in DG. OGD increased carboxyl-terminal modulator protein (CTMP), an Akt inhibitor, and decreased Akt signaling. Isoflurane reduced these effects. LY294002, an Akt activation inhibitor, attenuated the isoflurane effects. HFD increased CTMP and reduced Akt signaling. Isoflurane improved neurological outcome in the RD-fed mice but not in the HFD-fed mice. Conclusions HFD attenuated isoflurane post-treatment-induced neuroprotection possibly due to decreased prosurvival Akt signaling. PMID:25142024

  20. Arctigenin Inhibits Adipogenesis by Inducing AMPK Activation and Reduces Weight Gain in High-Fat Diet-Induced Obese Mice.

    PubMed

    Han, Yo-Han; Kee, Ji-Ye; Park, Jinbong; Kim, Hye-Lin; Jeong, Mi-Young; Kim, Dae-Seung; Jeon, Yong-Deok; Jung, Yunu; Youn, Dong-Hyun; Kang, JongWook; So, Hong-Seob; Park, Raekil; Lee, Jong-Hyun; Shin, Soyoung; Kim, Su-Jin; Um, Jae-Young; Hong, Seung-Heon

    2016-09-01

    Although arctigenin (ARC) has been reported to have some pharmacological effects such as anti-inflammation, anti-cancer, and antioxidant, there have been no reports on the anti-obesity effect of ARC. The aim of this study is to investigate whether ARC has an anti-obesity effect and mediates the AMP-activated protein kinase (AMPK) pathway. We investigated the anti-adipogenic effect of ARC using 3T3-L1 pre-adipocytes and human adipose tissue-derived mesenchymal stem cells (hAMSCs). In high-fat diet (HFD)-induced obese mice, whether ARC can inhibit weight gain was investigated. We found that ARC reduced weight gain, fat pad weight, and triglycerides in HFD-induced obese mice. ARC also inhibited the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα) in in vitro and in vivo. Furthermore, ARC induced the AMPK activation resulting in down-modulation of adipogenesis-related factors including PPARγ, C/EBPα, fatty acid synthase, adipocyte fatty acid-binding protein, and lipoprotein lipase. This study demonstrates that ARC can reduce key adipogenic factors by activating the AMPK in vitro and in vivo and suggests a therapeutic implication of ARC for obesity treatment. J. Cell. Biochem. 117: 2067-2077, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Green tea epigallocatechin 3-gallate alleviates hyperglycemia and reduces advanced glycation end products via nrf2 pathway in mice with high fat diet-induced obesity.

    PubMed

    Sampath, Chethan; Rashid, Muhammed Raihan; Sang, Shengmin; Ahmedna, Mohamed

    2017-03-01

    Epigallocatechin 3-gallate (EGCG) from green tea may reduce plasma glucose and alleviate complications of diabetes by attenuating advanced glycation end products (AGEs) formation. We hypothesized that EGCG would mitigate AGEs formation via activating the nuclear factor erythroid-2-related-factor-2 (Nrf2) pathway in a mouse model of high fat diet-induced obesity. Dietary EGCG was tested in C57BL/6 mice that were placed on a high-fat diet with or without ECGC for 17 weeks and compared to a control group placed on low-fat diet for the same period. Weight gain and fasting blood glucose were measured throughout the study duration. Supplementation of high fat diet with dietary EGCG significantly reduced weight gain, plasma glucose, insulin level, liver and kidney weight. EGCG administration also decreased the levels of AGEs in both plasma and liver while inhibiting the receptor for AGE (RAGE) expression of, activating Nrf2 and enhancing GSH/GSSG ratio compared to mice on high fat diet without added EGCG. This study demonstrated that EGCG has the potential to help control hyperglycemia, reduce weight, and alleviate diabetes complications. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Reduced-fat foods: the complex science of developing diet-based strategies for tackling overweight and obesity.

    PubMed

    McClements, David J

    2015-05-01

    Fat plays multiple roles in determining the desirable physicochemical properties, sensory attributes, nutritional profile, and biologic response of food products. Overconsumption of fats is linked to chronic diseases, such as obesity, coronary heart disease, diabetes, and cancer. There is therefore a need to develop reduced-fat products with physicochemical properties and sensory profiles that match those of their full-fat counterparts. In addition, foods may be redesigned to increase the feelings of satiety and satiation, and thereby reduce overall food intake. The successful design of these types of functional foods requires a good understanding of the numerous roles that fat plays in determining food attributes and the development of effective strategies to replace these attributes. This article provides an overview of the current understanding of the influence of fat on the physicochemical and physiologic attributes of emulsion-based food products and highlights approaches to create high-quality foods with reduced-fat contents. © 2015 American Society for Nutrition.

  3. Reduced-Fat Foods: The Complex Science of Developing Diet-Based Strategies for Tackling Overweight and Obesity1234

    PubMed Central

    McClements, David J

    2015-01-01

    Fat plays multiple roles in determining the desirable physicochemical properties, sensory attributes, nutritional profile, and biologic response of food products. Overconsumption of fats is linked to chronic diseases, such as obesity, coronary heart disease, diabetes, and cancer. There is therefore a need to develop reduced-fat products with physicochemical properties and sensory profiles that match those of their full-fat counterparts. In addition, foods may be redesigned to increase the feelings of satiety and satiation, and thereby reduce overall food intake. The successful design of these types of functional foods requires a good understanding of the numerous roles that fat plays in determining food attributes and the development of effective strategies to replace these attributes. This article provides an overview of the current understanding of the influence of fat on the physicochemical and physiologic attributes of emulsion-based food products and highlights approaches to create high-quality foods with reduced-fat contents. PMID:25979507

  4. Reduced protein diets increase intramuscular fat of psoas major, a red muscle, in lean and fatty pig genotypes.

    PubMed

    Madeira, M S; Lopes, P A; Costa, P; Coelho, D; Alfaia, C M; Prates, J A M

    2017-05-02

    The present study aims to assess the effects of pig's genotype (lean v. fatty) and dietary protein level (control v. reduced) on intramuscular fat (IMF) content, fatty acid composition and fibre profile of psoas major, a representative red muscle in pig's carcass scarcely studied relative to white longissimus lumborum. The experiment was conducted on 40 intact male pigs (20 Alentejana purebred and 20 Large White×Landrace×Pietrain crossbred) from 60 to 93 kg of live weight. Pigs were divided and allocated to four dietary groups: control protein diet equilibrated for lysine (17.5% of CP and 0.7% of lysine) and reduced protein diet (RPD) not equilibrated for lysine (13.1% of crude protein and 0.4% of lysine) within a 2×2 factorial arrangement (two genotypes and two diets). Alentejana purebred had higher IMF content (15.7%) and monounsaturated fatty acids (MUFA) (8.9%), whereas crossbred pigs had higher PM weight (46.3%) and polyunsaturated fatty acids (PUFA) (20.1%). The genotype also affected colour with higher lightness (15.1%) and yellowness (33.8%) and lower redness (9.9%) scores in crossbred pigs. In line with this, fatty pigs displayed more oxidative fibres (29.5%), whilst lean pigs had more glycolytic (54.4%). Relative to fatty acids, RPD increased MUFA (5.2%) and SFA (3.2%) but decreased PUFA (14.8%). Ultimately, RPD increased IMF content (15.7%) in the red muscle under study, with no impact on glycolytic to oxidative fibre type transformation.

  5. Changes in body weight and metabolic indexes in overweight breast cancer survivors enrolled in a randomized trial of low-fat vs. reduced carbohydrate diets.

    PubMed

    Thomson, Cynthia A; Stopeck, Alison T; Bea, Jennifer W; Cussler, Ellen; Nardi, Emily; Frey, Georgette; Thompson, Patricia A

    2010-01-01

    Overweight status is common among women breast cancer survivors and places them at greater risk for metabolic disorders, cardiovascular morbidity, and breast cancer recurrence than nonoverweight survivors. Efforts to promote weight control in this population are needed. The objective of this research was to evaluate the effect of low-fat or low-carbohydrate diet counseling on weight loss, body composition, and changes in metabolic indexes in overweight postmenopausal breast cancer survivors. Survivors (n = 40) were randomized to receive dietitian counseling for a low-fat or a reduced carbohydrate diet for 6 mo. Weight and metabolic measures, including glucose, insulin, HbA1c, HOMA, lipids, hsCRP, as well as blood pressure were measured at baseline, 6, 12 and 24 wk. Dietary intake of fat and carbohydrate was reduced by 24 and 76 g/day, respectively. Weight loss averaged 6.1 (± 4.8 kg) at 24 wk and was not significantly different by diet group; loss of lean mass was also demonstrated. All subjects demonstrated improvements in total/HDL cholesterol ratio, and significant reductions in HbA1c, insulin, and HOMA. Triglycerides levels were significantly reduced only in the low-carbohydrate diet group (-31.1 ± 36.6; P = 0.01). Significant improvements in weight and metabolic indexes can be demonstrated among overweight breast cancer survivors adherent to either a carbohydrate- or fat-restricted diet.

  6. Eicosapentaenoic acid reduces high-fat diet-induced insulin resistance by altering adipose tissue glycolytic and inflammatory function

    USDA-ARS?s Scientific Manuscript database

    We previously reported Eicosapentaenoic Acid (EPA)'s ability to prevent high-fat (HF) diet-induced obesity, insulin resistance, and inflammation. In this study, we dissected mechanisms mediating anti-inflammatory and anti-lipogenic actions of EPA, using histology/ immunohistochemistry, transcriptomi...

  7. Tis7 deletion reduces survival and induces intestinal anastomotic inflammation and obstruction in high-fat diet-fed mice with short bowel syndrome.

    PubMed

    Garcia, Amy M; Wakeman, Derek; Lu, Jianyun; Rowley, Christopher; Geisman, Taylor; Butler, Catherine; Bala, Shashi; Swietlicki, Elzbieta A; Warner, Brad W; Levin, Marc S; Rubin, Deborah C

    2014-09-15

    Effective therapies are limited for patients with parenteral nutrition-dependent short bowel syndrome. We previously showed that intestinal expression of the transcriptional coregulator tetradecanoyl phorbol acetate-induced sequence 7 (tis7) is markedly increased during the adaptive response following massive small bowel resection and tis7 plays a role in normal gut lipid metabolism. Here, we further explore the functional implications of tis7 deletion in intestinal lipid metabolism and the adaptive response following small bowel resection. Intestinal tis7 transgenic (tis7(tg)), tis7(-/-), and wild-type (WT) littermates were subjected to 50% small bowel resection. Mice were fed a control or a high-saturated-fat (42% energy) diet for 21 days. Survival, body weight recovery, lipid absorption, mucosal lipid analysis, and the morphometric adaptive response were analyzed. Quantitative real-time PCR was performed to identify tis7 downstream gene targets. Postresection survival was markedly reduced in high-fat, but not control, diet-fed tis7(-/-) mice. Decreased survival was associated with anastomotic inflammation and intestinal obstruction postresection. High-fat, but not control, diet-fed tis7(-/-) mice had increased intestinal IL-6 expression. Intestinal lipid trafficking was altered in tis7(-/-) compared with WT mice postresection. In contrast, high-fat diet-fed tis7(tg) mice had improved survival postresection compared with WT littermates. High-fat diet feeding in the setting of tis7 deletion resulted in postresection anastomotic inflammation and small bowel obstruction. Tolerance of a calorie-rich, high-fat diet postresection may require tis7 and its target genes. The presence of luminal fat in the setting of tis7 deletion promotes an intestinal inflammatory response postresection.

  8. Amyrins from Protium heptaphyllum Reduce High-Fat Diet-Induced Obesity in Mice via Modulation of Enzymatic, Hormonal And Inflammatory Responses.

    PubMed

    Carvalho, Karine Maria Martins Bezerra; de Melo, Tiago Sousa; de Melo, Karina Moura; Quinderé, Ana Luiza Gomes; de Oliveira, Francisca Tuelly Bandeira; Viana, Ana Flávia Seraine Custódio; Nunes, Paulo Iury Gomes; Quetz, Josiane da Silva; Viana, Daniel de Araújo; da Silva, Armenio André de Carvalho Almeida; Havt, Alexandre; Fonseca, Said Gonçalves da Cruz; Chaves, Mariana Helena; Rao, Vietla Satyanarayana; Santos, Flávia Almeida

    2017-02-01

    Obesity remains a global problem. In search of phytochemicals that have antiobesity potential, this study evaluated α,β-amyrin, a triterpenoid mixture from Protium heptaphyllum, on high-fat diet-induced obesity in mice. Groups of mice (n = 8) were fed a normal diet or a high-fat diet, and were orally treated or not treated with either α,β-amyrin (10 or 20 mg/kg) or sibutramine (10 mg/kg) for 15 weeks. Variables measured at termination were body weight, visceral fat accumulation, adipocyte surface area, peroxisome proliferator-activated receptor gamma, and lipoprotein lipase expressions in adipose tissue, the levels of plasma glucose and insulin, the satiety hormones ghrelin and leptin, the digestive enzymes amylase and lipase, and the inflammatory mediators TNF-α, interleukin-6, and MCP-1. Results showed that α,β-amyrin treatment resulted in lower high-fat diet-induced increases in body weight, visceral fat content, adipocyte surface area, peroxisome proliferator-activated receptor gamma, and lipoprotein lipase expressions, and blood glucose and insulin levels. Additionally, the markedly elevated leptin and decreased ghrelin levels seen in the high-fat diet-fed control mice were significantly modulated by α,β-amyrin treatment. Furthermore, α,β-amyrin decreased serum TNF-α and MCP-1. These results suggest that α,β-amyrin could be beneficial in reducing high-fat diet-induced obesity and associated disorders via modulation of enzymatic, hormonal, and inflammatory responses. Georg Thieme Verlag KG Stuttgart · New York.

  9. Polyphenol-Rich Fraction of Brown Alga Ecklonia cava Collected from Gijang, Korea, Reduces Obesity and Glucose Levels in High-Fat Diet-Induced Obese Mice

    PubMed Central

    Park, Eun Young; Kim, Eung Hwi; Kim, Mi Hwi; Seo, Young Wan; Lee, Jung Im; Jun, Hee Sook

    2012-01-01

    Ecklonia cava (E. cava) is a brown alga that has beneficial effects in models of type 1 and type 2 diabetes. However, the effects of E. cava extracts on diet-induced obesity and type 2 diabetes have not been specifically examined. We investigated the effects of E. cava on body weight, fat content, and hyperglycemia in high-fat diet- (HFD) induced obese mice and sought the mechanisms involved. C57BL/6 male mice were fed a HFD (60% fat) diet or normal chow. After 3 weeks, the HFD diet group was given extracts (200 mg/kg) of E. cava harvested from Jeju (CA) or Gijang (G-CA), Korea or PBS by oral intubation for 8 weeks. Body weights were measured weekly. Blood glucose and glucose tolerance were measured at 7 weeks, and fat pad content and mRNA expression of adipogenic genes and inflammatory cytokines were measured after 8 weeks of treatment. G-CA was effective in reducing body weight gain, body fat, and hyperglycemia and improving glucose tolerance as compared with PBS-HFD mice. The mRNA expression of adipogenic genes was increased, and mRNA expression of inflammatory cytokines and macrophage marker gene was decreased in G-CA-treated obese mice. We suggest that G-CA reduces obesity and glucose levels by anti-inflammatory actions and improvement of lipid metabolism. PMID:22844333

  10. Dietary supplementation of Chardonnay grape seed flour reduces plasma cholesterol concentration, hepatic steatosis, and abdominal fat content in high-fat diet-induced obese hamsters

    USDA-ARS?s Scientific Manuscript database

    The mechanisms for the hypocholesterolemic and anti-obesity effects of grape seed flours derived from white and red winemaking processing were investigated. Male Golden Syrian hamsters were fed high-fat (HF) diets supplemented with 10% partially defatted grape seed flours from Chardonnay (ChrSd), Ca...

  11. A Lower-Carbohydrate, Higher-Fat Diet Reduces Abdominal and Intermuscular Fat and Increases Insulin Sensitivity in Adults at Risk of Type 2 Diabetes123

    PubMed Central

    Gower, Barbara A; Goss, Amy M

    2015-01-01

    Background: Obesity, particularly visceral and ectopic adiposity, increases the risk of type 2 diabetes. Objective: The aim of this study was to determine if restriction of dietary carbohydrate is beneficial for body composition and metabolic health. Methods: Two studies were conducted. In the first, 69 overweight/obese men and women, 53% of whom were European American (EA) and 47% of whom were African American (AA), were provided with 1 of 2 diets (lower-fat diet: 55%, 18%, and 27% of energy from carbohydrate, protein, and fat, respectively; lower-carbohydrate diet: 43%, 18%, and 39%, respectively) for 8 wk at a eucaloric level and 8 wk at a hypocaloric level. In the second study, 30 women with polycystic ovary syndrome (PCOS) were provided with 2 diets (lower-fat diet: 55%, 18%, and 27% of energy from carbohydrate, protein, and fat, respectively; lower-carbohydrate diet: 41%, 19%, and 40%, respectively) at a eucaloric level for 8 wk in a random-order crossover design. Results: As previously reported, among overweight/obese adults, after the eucaloric phase, participants who consumed the lower-carbohydrate vs. the lower-fat diet lost more intra-abdominal adipose tissue (IAAT) (11 ± 3% vs. 1 ± 3%; P < 0.05). After weight loss, participants who consumed the lower-carbohydrate diet had 4.4% less total fat mass. Original to this report, across the entire 16-wk study, AAs lost more fat mass with a lower-carbohydrate diet (6.2 vs. 2.9 kg; P < 0.01), whereas EAs showed no difference between diets. As previously reported, among women with PCOS, the lower-carbohydrate arm showed decreased fasting insulin (−2.8 μIU/mL; P < 0.001) and fasting glucose (−4.7 mg/dL; P < 0.01) and increased insulin sensitivity (1.06 arbitrary units; P < 0.05) and “dynamic” β-cell response (96.1 · 109; P < 0.001). In the lower-carbohydrate arm, women lost both IAAT (−4.8 cm2; P < 0.01) and intermuscular fat (−1.2 cm2; P < 0.01). In the lower-fat arm, women lost lean mass (−0

  12. Raspberry ketone fails to reduce adiposity beyond decreasing food intake in C57BL/6 mice fed a high-fat diet.

    PubMed

    Cotten, Bradley M; Diamond, Stephanie A; Banh, Taylor; Hsiao, Yung-Hsuan; Cole, Rachel M; Li, Jinhui; Simons, Christopher T; Bruno, Richard S; Belury, Martha A; Vodovotz, Yael

    2017-04-05

    As the incidence of obesity continues to increase, identifying novel nutritional therapies to enhance weight loss are needed. Raspberry ketone (RK; 4-(4-hydroxyphenyl) butan-2-one) is a bioactive phytochemical that is marketed as a weight loss supplement in the United States, yet there is scant scientific evidence demonstrating that RK promotes weight loss. The aim of the current study was to investigate the effect of RK on accumulation of adipose mass, hepatic lipid storage, and levels of plasma adiponectin in mice fed a high-fat (HF) diet. Mice were individually housed and fed a HF control diet (45% kcal from fat) for two weeks to induce weight gain, then assigned to HF control, high-dose (1.74% wt/wt) raspberry ketone (HRK), low-dose (0.25% wt/wt) raspberry ketone (LRK), or a pair-fed group (PF) fed similar food intake to LRK mice. Following five weeks of feeding, mice fed LRK and HRK diets showed reduced food intake and body weight compared to mice maintained on control diet. When normalized to body weight, mice fed HRK diet exhibited decreased inguinal fat mass and increased liver mass compared to the control group. Hepatic steatosis was lowest in mice fed HRK diet, whereas LRK diet did not have an effect when compared to the PF group. Plasma adiponectin concentration was unaffected by RK and pair-feeding. Our findings demonstrate that RK supplementation has limited benefit to adipose loss beyond reducing energy intake in mice fed a high-fat diet. The present study supports the need for appropriate study design when validating weight-loss supplements.

  13. Reduced hepatic mitochondrial respiration following acute high-fat diet is prevented by PGC-1α overexpression

    PubMed Central

    Morris, E. Matthew; Jackman, Matthew R.; Meers, Grace M. E.; Johnson, Ginger C.; Lopez, Jordan L.; MacLean, Paul S.

    2013-01-01

    Changes in substrate utilization and reduced mitochondrial respiratory capacity following exposure to energy-dense, high-fat diets (HFD) are putatively key components in the development of obesity-related metabolic disease. We examined the effect of a 3-day HFD on isolated liver mitochondrial respiration and whole body energy utilization in obesity-prone (OP) rats. We also examined if hepatic overexpression of peroxisomal proliferator-activated receptor-γ coactivator-1α (PGC-1α), a master regulator of mitochondrial respiratory capacity and biogenesis, would modify liver and whole body responses to the HFD. Acute, 3-day HFD (45% kcal) in OP rats resulted in increased daily energy intake, energy balance, weight gain, and adiposity, without an increase in liver triglyceride (triacylglycerol) accumulation. HFD-fed OP rats also displayed decreased whole body substrate switching from the dark to the light cycle, which was paired with reductions in hepatic mitochondrial respiration of multiple substrates in multiple respiratory states. Hepatic PGC-1α overexpression was observed to protect whole body substrate switching, as well as maintain mitochondrial respiration, following the acute HFD. Additionally, liver PGC-1α overexpression did not alter whole body dietary fatty acid oxidation but resulted in greater storage of dietary free fatty acids in liver lipid, primarily as triacylglycerol. Together, these data demonstrate that a short-term HFD can result in a decrease in metabolic flexibility and hepatic mitochondrial respiratory capacity in OP rats that is completely prevented by hepatic overexpression of PGC-1α. PMID:24091599

  14. Reduced hepatic mitochondrial respiration following acute high-fat diet is prevented by PGC-1α overexpression.

    PubMed

    Morris, E Matthew; Jackman, Matthew R; Meers, Grace M E; Johnson, Ginger C; Lopez, Jordan L; MacLean, Paul S; Thyfault, John P

    2013-12-01

    Changes in substrate utilization and reduced mitochondrial respiratory capacity following exposure to energy-dense, high-fat diets (HFD) are putatively key components in the development of obesity-related metabolic disease. We examined the effect of a 3-day HFD on isolated liver mitochondrial respiration and whole body energy utilization in obesity-prone (OP) rats. We also examined if hepatic overexpression of peroxisomal proliferator-activated receptor-γ coactivator-1α (PGC-1α), a master regulator of mitochondrial respiratory capacity and biogenesis, would modify liver and whole body responses to the HFD. Acute, 3-day HFD (45% kcal) in OP rats resulted in increased daily energy intake, energy balance, weight gain, and adiposity, without an increase in liver triglyceride (triacylglycerol) accumulation. HFD-fed OP rats also displayed decreased whole body substrate switching from the dark to the light cycle, which was paired with reductions in hepatic mitochondrial respiration of multiple substrates in multiple respiratory states. Hepatic PGC-1α overexpression was observed to protect whole body substrate switching, as well as maintain mitochondrial respiration, following the acute HFD. Additionally, liver PGC-1α overexpression did not alter whole body dietary fatty acid oxidation but resulted in greater storage of dietary free fatty acids in liver lipid, primarily as triacylglycerol. Together, these data demonstrate that a short-term HFD can result in a decrease in metabolic flexibility and hepatic mitochondrial respiratory capacity in OP rats that is completely prevented by hepatic overexpression of PGC-1α.

  15. Supplemental fermented plant product ('Manda Koso') reduces succinate and deoxycholate, as well as elevates IgA and mucin levels, in rats fed a high-fat diet.

    PubMed

    Yang, Yongshou; Sitanggang, Novita Vivi; Okazaki, Yukako; Tomotake, Hiroyuki; Arita, Kentaro; Ashida, Takayuki; Kato, Norihisa

    2015-11-01

    'Manda Koso' is a commercial fermented plant product (FPP) made from 53 types of fruits and vegetables that have been fermented for >3 years and 3 months. We hypothesized that FPP intake improves the luminal environment of rats fed a high-fat diet. Thus, the present study examined the effects of consumption of 5% FPP diet for 3 weeks on colonic luminal parameters in rats fed a 30% beef tallow diet. Food intake and body weight gain were unaffected. Consumption of the FPP diet did not influence the proportions of Bifidobacterium, Lactobacillus, Bacteroides, Prevotella or Clostridium in cecal contents. However, the FPP diet caused a significant reduction (-88%) in the level of cecal succinate, a putative inflammatory signal (P<0.01), but did not affect the levels of n-butyrate, propionate, acetate and lactate. The fecal levels of deoxycholate and hyodeoxycholate, which are toxic bile acids, were also significantly reduced by the FPP diet (P<0.05). The FPP diet significantly increased fecal immunoglobulin A and mucins responsible for intestinal immune and barrier functions (P<0.05). The results suggest that the consumption of FPP is beneficial for the colonic luminal environment in rats fed a high-fat diet.

  16. Aspirin reduces hypertriglyceridemia by lowering VLDL-triglyceride production in mice fed a high-fat diet

    PubMed Central

    Vroegrijk, Irene O. C. M.; Berbée, Jimmy F. P.; Shoelson, Steven E.; Romijn, Johannes A.; Havekes, Louis M.; Rensen, Patrick C. N.; Voshol, Peter J.

    2011-01-01

    Systemic inflammation is strongly involved in the pathophysiology of the metabolic syndrome, a cluster of metabolic risk factors that includes hypertriglyceridemia. Aspirin treatment lowers inflammation via inhibition of NF-κB activity but also reduces hypertriglyceridemia in humans. The aim of this study was to investigate the mechanism by which aspirin improves hypertriglyceridemia. Human apolipoprotein CI (apoCI)-expressing mice (APOC1 mice), an animal model with elevated plasma triglyceride (TG) levels, as well as normolipidemic wild-type (WT) mice were fed a high-fat diet (HFD) and treated with aspirin. Aspirin treatment reduced hepatic NF-κB activity in HFD-fed APOC1 and WT mice, and in addition, aspirin decreased plasma TG levels (−32%, P < 0.05) in hypertriglyceridemic APOC1 mice. This TG-lowering effect could not be explained by enhanced VLDL-TG clearance, but aspirin selectively reduced hepatic production of VLDL-TG in both APOC1 (−28%, P < 0.05) and WT mice (−33%, P < 0.05) without affecting VLDL-apoB production. Aspirin did not alter hepatic expression of genes involved in FA oxidation, lipogenesis, and VLDL production but decreased the incorporation of plasma-derived FA by the liver into VLDL-TG (−24%, P < 0.05), which was independent of hepatic expression of genes involved in FA uptake and transport. We conclude that aspirin improves hypertriglyceridemia by decreasing VLDL-TG production without affecting VLDL particle production. Therefore, the inhibition of inflammatory pathways by aspirin could be an interesting target for the treatment of hypertriglyceridemia. PMID:21862721

  17. Suppressed Fat Appetite after Roux-en-Y Gastric Bypass Surgery Associates with Reduced Brain μ-opioid Receptor Availability in Diet-Induced Obese Male Rats.

    PubMed

    Hankir, Mohammed K; Patt, Marianne; Patt, Jörg T W; Becker, Georg A; Rullmann, Michael; Kranz, Mathias; Deuther-Conrad, Winnie; Schischke, Kristin; Seyfried, Florian; Brust, Peter; Hesse, Swen; Sabri, Osama; Krügel, Ute; Fenske, Wiebke K

    2016-01-01

    Brain μ-opioid receptors (MORs) stimulate high-fat (HF) feeding and have been implicated in the distinct long term outcomes on body weight of bariatric surgery and dieting. Whether alterations in fat appetite specifically following these disparate weight loss interventions relate to changes in brain MOR signaling is unknown. To address this issue, diet-induced obese male rats underwent either Roux-en-Y gastric bypass (RYGB) or sham surgeries. Postoperatively, animals were placed on a two-choice diet consisting of low-fat (LF) and HF food and sham-operated rats were further split into ad libitum fed (Sham-LF/HF) and body weight-matched (Sham-BWM) to RYGB groups. An additional set of sham-operated rats always only on a LF diet (Sham-LF) served as lean controls, making four experimental groups in total. Corresponding to a stage of weight loss maintenance for RYGB rats, two-bottle fat preference tests in conjunction with small-animal positron emission tomography (PET) imaging studies with the selective MOR radioligand [(11)C]carfentanil were performed. Brains were subsequently collected and MOR protein levels in the hypothalamus, striatum, prefrontal cortex and orbitofrontal cortex were analyzed by Western Blot. We found that only the RYGB group presented with intervention-specific changes: having markedly suppressed intake and preference for high concentration fat emulsions, a widespread reduction in [(11)C]carfentanil binding potential (reflecting MOR availability) in various brain regions, and a downregulation of striatal and prefrontal MOR protein levels compared to the remaining groups. These findings suggest that the suppressed fat appetite caused by RYGB surgery is due to reduced brain MOR signaling, which may contribute to sustained weight loss unlike the case for dieting.

  18. Suppressed Fat Appetite after Roux-en-Y Gastric Bypass Surgery Associates with Reduced Brain μ-opioid Receptor Availability in Diet-Induced Obese Male Rats

    PubMed Central

    Hankir, Mohammed K.; Patt, Marianne; Patt, Jörg T. W.; Becker, Georg A.; Rullmann, Michael; Kranz, Mathias; Deuther-Conrad, Winnie; Schischke, Kristin; Seyfried, Florian; Brust, Peter; Hesse, Swen; Sabri, Osama; Krügel, Ute; Fenske, Wiebke K.

    2017-01-01

    Brain μ-opioid receptors (MORs) stimulate high-fat (HF) feeding and have been implicated in the distinct long term outcomes on body weight of bariatric surgery and dieting. Whether alterations in fat appetite specifically following these disparate weight loss interventions relate to changes in brain MOR signaling is unknown. To address this issue, diet-induced obese male rats underwent either Roux-en-Y gastric bypass (RYGB) or sham surgeries. Postoperatively, animals were placed on a two-choice diet consisting of low-fat (LF) and HF food and sham-operated rats were further split into ad libitum fed (Sham-LF/HF) and body weight-matched (Sham-BWM) to RYGB groups. An additional set of sham-operated rats always only on a LF diet (Sham-LF) served as lean controls, making four experimental groups in total. Corresponding to a stage of weight loss maintenance for RYGB rats, two-bottle fat preference tests in conjunction with small-animal positron emission tomography (PET) imaging studies with the selective MOR radioligand [11C]carfentanil were performed. Brains were subsequently collected and MOR protein levels in the hypothalamus, striatum, prefrontal cortex and orbitofrontal cortex were analyzed by Western Blot. We found that only the RYGB group presented with intervention-specific changes: having markedly suppressed intake and preference for high concentration fat emulsions, a widespread reduction in [11C]carfentanil binding potential (reflecting MOR availability) in various brain regions, and a downregulation of striatal and prefrontal MOR protein levels compared to the remaining groups. These findings suggest that the suppressed fat appetite caused by RYGB surgery is due to reduced brain MOR signaling, which may contribute to sustained weight loss unlike the case for dieting. PMID:28133443

  19. Treatment with 17β-Estradiol Reduced Body Weight and the Risk of Cardiovascular Disease in a High-Fat Diet-Induced Animal Model of Obesity

    PubMed Central

    Ting, Wei-Jen; Huang, Chih-Yang; Jiang, Chong-He; Lin, Yueh-Min; Chung, Li-Chin; Shen, Chia-Yao; Pai, Peiying; Lin, Kuan-Ho; Viswanadha, Vijaya Padma; Liao, Shih-Chieh

    2017-01-01

    Estrogen receptor α (ERα) and estrogen receptor β (ERβ) play important roles in cardiovascular disease (CVD) prevention. Recently, these estrogen receptors were reconsidered as an important treatment target of obesity leading to CVD. In this study, 17β-estradiol (17β-E) replacement therapy applied to high-fat diet-induced obese C57B male mice and ovariectomized (OVX) rats were evaluated, and the protective effects against high-fat diet-induced obesity were assessed in C57B mouse hearts. The results showed that 17β-E treatment activated both ERα and ERβ, and ERβ levels increased in a dose-dependent manner in high-fat diet C57B mouse cardiomyocytes following 17β-E treatment. Notably, an almost 16% reduction in body weight was observed in the 17β-E-treated (12 μg/kg/day for 60 days) high-fat diet-induced obese C57B male mice. These results suggested that 17β-E supplements may reduce CVD risk due to obesity. PMID:28335423

  20. Treatment with 17β-Estradiol Reduced Body Weight and the Risk of Cardiovascular Disease in a High-Fat Diet-Induced Animal Model of Obesity.

    PubMed

    Ting, Wei-Jen; Huang, Chih-Yang; Jiang, Chong-He; Lin, Yueh-Min; Chung, Li-Chin; Shen, Chia-Yao; Pai, Peiying; Lin, Kuan-Ho; Viswanadha, Vijaya Padma; Liao, Shih-Chieh

    2017-03-14

    Estrogen receptor α (ERα) and estrogen receptor β (ERβ) play important roles in cardiovascular disease (CVD) prevention. Recently, these estrogen receptors were reconsidered as an important treatment target of obesity leading to CVD. In this study, 17β-estradiol (17β-E) replacement therapy applied to high-fat diet-induced obese C57B male mice and ovariectomized (OVX) rats were evaluated, and the protective effects against high-fat diet-induced obesity were assessed in C57B mouse hearts. The results showed that 17β-E treatment activated both ERα and ERβ, and ERβ levels increased in a dose-dependent manner in high-fat diet C57B mouse cardiomyocytes following 17β-E treatment. Notably, an almost 16% reduction in body weight was observed in the 17β-E-treated (12 μg/kg/day for 60 days) high-fat diet-induced obese C57B male mice. These results suggested that 17β-E supplements may reduce CVD risk due to obesity.

  1. Chemical chaperones reduce ER stress and adipose tissue inflammation in high fat diet-induced mouse model of obesity

    PubMed Central

    Chen, Yaqin; Wu, Zhihong; Zhao, Shuiping; Xiang, Rong

    2016-01-01

    Obesity, which is characteristic by chronic inflammation, is defined as abnormal or excessive fat accumulation in adipose tissues. Endoplasmic reticulum (ER) stress is increased in adipose tissue of obese state and is known to be strongly associated with chronic inflammation. The aim of this study was to investigate the effect of ER stress on adipokine secretion in obese mice and explore the potential mechanisms. In this study, we found high-fat diet induced-obesity contributed to strengthened ER stress and triggered chronic inflammation in adipose tissue. Chemical chaperones, 4-PBA and TUDCA, modified metabolic disorders and decreased the levels of inflammatory cytokines in obese mice fed a high-fat diet. The alleviation of ER stress is in accordance with the decrease of free cholesterol in adipose tissue. Furthermore chemical chaperones suppress NF-κB activity in adipose tissue of obese mice in vivo. In vitro studies showed IKK/NF-κB may be involved in the signal transduction of adipokine secretion dysfunction induced by ER stress. The present study revealed the possibility that inhibition of ER stress may be a novel drug target for metabolic abnormalities associated with obesity. Further studies are now needed to characterize the initial incentive of sustained ER stress in obese. PMID:27271106

  2. The obesity and fatty liver are reduced by plant-derived Pediococcus pentosaceus LP28 in high fat diet-induced obese mice.

    PubMed

    Zhao, Xingrong; Higashikawa, Fumiko; Noda, Masafumi; Kawamura, Yusuke; Matoba, Yasuyuki; Kumagai, Takanori; Sugiyama, Masanori

    2012-01-01

    We evaluated the effect of an oral administration of a plant-derived lactic acid bacterium, Pediococcus pentosaceus LP28 (LP28), on metabolic syndrome by using high fat diet-induced obese mice. The obese mice were divided into 2 groups and fed either a high fat or regular diet for 8 weeks. Each group was further divided into 3 groups, which took LP28, another plant-derived Lactobacillus plantarum SN13T (SN13T) or no lactic acid bacteria (LAB). The lean control mice were fed a regular diet without inducing obesity prior to the experiment. LP28 reduced body weight gain and liver lipid contents (triglyceride and cholesterol), in mice fed a high fat diet for 8 weeks (40%, 54%, and 70% less than those of the control group without LAB, and P = 0.018, P<0.001, and P = 0.021, respectively), whereas SN13T and the heat treated LP28 at 121°C for 15 min were ineffective. Abdominal visceral fat in the high fat diet mice fed with LP28 was also lower than that without LAB by 44%, although it was not significant but borderline (P = 0.076). The sizes of the adipocytes and the lipid droplets in the livers were obviously decreased. A real-time PCR analyses showed that lipid metabolism-related genes, such as CD36 (P = 0.013), SCD1 encoding stearoyl-CoA desaturase 1 (not significant but borderline, P = 0.066), and PPARγ encoding peroxisome proliferator-activated receptor gamma (P = 0.039), were down-regulated by taking LP28 continuously, when compared with those of the control group. In conclusion, LP28 may be a useful LAB strain for the prevention and reduction of the metabolic syndrome.

  3. Neonatal serotonin reuptake inhibition reduces hypercaloric diet effects on fat mass and hypothalamic gene expression in adult rats.

    PubMed

    Galindo, Lígia Cristina Monteiro; Barros, Manuella da Luz Duarte; Pinheiro, Isabeli Lins; Santana, Ricardo Vinicius de Carvalho; de Matos, Rhowena Jane Barbosa; Leandro, Carol Góis; de Souza, Sandra Lopes; de Castro, Raul Manhães

    2015-11-01

    Serotonin (5-HT) is involved in nervous system ontogenesis, and is important for neurotransmission and behavior modulation after the developmental stage. Alterations in 5-HT levels during the early period of life may signal to feeding behavior and hypothalamic genic expression changes in adulthood. Investigate the effects of hypercaloric diet in adult rats submitted to neonatal serotonin reuptake inhibition on food intake, fat pad mass, plasmatic triglycerides/cholesterol and gene expression of hypothalamic peptides (POMC, NPY) and serotonin receptors (5-HT1B, 5-HT2C). In each litter, 8 pups were divided into two groups: control (C) and fluoxetine (F). From the 1(st) to the 21(st) postnatal day, C pups received sterile saline while F pups received fluoxetine (10mg/kg). From 180 to 215 days, a group of rats from C and F groups were fed hypercaloric diet (CH and FH, 421.4Kcal/100 g) while the rest of animals from C and F groups fed chow diet (CC and FC). The use of hypercaloric diet was associated with lower accumulation of white adipose tissue in adult rats subjected to neonatal serotonin reuptake inhibition. Adult rats of group FC showed decreased 5-HT2C and neuropeptide Y mRNA expression compared with control chow diet group (CC). After chronic use of a hypercaloric diet, the expression of 5-HT2C was higher in the FH group than the FC group and neuropeptide Y expression decreased in FH related to FC. These findings suggest that neonatal serotonin reuptake inhibition is associated with better adaptation to hypercaloric diet in adult rats. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Dietary supplementation of chardonnay grape seed flour reduces plasma cholesterol concentration, hepatic steatosis, and abdominal fat content in high-fat diet-induced obese hamsters.

    PubMed

    Kim, Hyunsook; Bartley, Glenn E; Arvik, Torey; Lipson, Rebecca; Nah, Seung-Yeol; Seo, Kunho; Yokoyama, Wallace

    2014-02-26

    The mechanisms for the hypocholesterolemic and antiobesity effects of grape seed flours derived from white and red winemaking processing were investigated using male Golden Syrian hamsters fed high-fat (HF) diets supplemented with 10% partially defatted grape seed flours from Chardonnay (ChrSd), Cabernet Sauvignon (CabSd), or Syrah (SyrSd) pomace as compared to a HF control diet for 3 weeks. Hamsters fed the ChrSd diet had significantly lowered plasma total-, VLDL-, and LDL-cholesterol concentrations compared to the CabSd, SyrSd, and control diets. The improved plasma cholesterol after ChrSd was correlated with the up-regulation of hepatic genes related to cholesterol (CYP51) and bile acid (CYP7A1) synthesis as well as LDL-cholesterol uptake (LDLR). A reduction of hepatic lipid content was associated with altered expression of the genes related to lipid metabolism. However, fecal total lipid content was not changed. Expression of ileal apical sodium bile acid transporter (ASBT) was not affected by ChrSd, indicating unchanged ileal bile acid reabsorption. The antiobesity effect of the ChrSd diet appears to be related to expression of adipogenesis- and inflammation-related genes in adipose tissue. These findings suggest that flavonoid-rich Chardonnay grape seed flour induced cholesterol-lowering, antiobesity, and anti-inflammatory health benefits and attenuation of hepatic steatosis via regulation of gene expression related to cholesterol, bile acid, and lipid metabolism in liver and adipose tissue.

  5. Ingestion of cinnamaldehyde, a TRPA1 agonist, reduces visceral fats in mice fed a high-fat and high-sucrose diet.

    PubMed

    Tamura, Yasuko; Iwasaki, Yusaku; Narukawa, Masataka; Watanabe, Tatsuo

    2012-01-01

    Cinnamaldehyde (CNA), a pungent compound in cinnamon or dried bark of cassia, is a TRPA1 agonist. The effect of 0.1-1.0% CNA on pair-fed mice with high fat and high sucrose (HFS) diet for 1 mo was investigated. The total food intake was similar in the mice fed control and CNA diets, but the body weight showed a tendency to be lower in CNA-fed mice than in control mice. By adding CNA at 0.1, 0.5, and 1.0% concentrations, the weight of the mesenteric adipose tissue decreased significantly, and there was a tendency foward lower perirenal and epididymal adipose tissue weights compared to the control. No differences were found in any blood component measured. UCP1 protein levels in the interscapular brown adipose tissue were higher in the 0.5 and 1.0% CNA groups than in the HSF group, as shown by Western blotting. Collectively, these data show that the addition of CNA diminishes visceral fat deposition in HFS diet-fed mice, in part by stimulating interscapular brown adipose tissue.

  6. Loss of NHE1 activity leads to reduced oxidative stress in heart and mitigates high-fat diet-induced myocardial stress.

    PubMed

    Prasad, Vikram; Lorenz, John N; Miller, Marian L; Vairamani, Kanimozhi; Nieman, Michelle L; Wang, Yigang; Shull, Gary E

    2013-12-01

    Acute inhibition of the NHE1 Na(+)/H(+) exchanger protects against ischemia-reperfusion injury and chronic inhibition attenuates development of cardiac hypertrophy and failure. To determine the cardiac effects of chronic inhibition of NHE1 under non-pathological conditions we used NHE1-null mice as a model of long-term NHE1 inhibition. Cardiovascular performance was relatively normal in Nhe1(-/-) mice although cardiac contractility and relaxation were slightly improved in mutant mice of the FVB/N background. GSH levels and GSH:GSSG ratios were elevated in Nhe1(-/-) hearts indicating an enhanced redox potential. Consistent with a reduced need for antioxidant protection, expression of heat shock proteins Hsp60 and Hsp25 was lower in Nhe1(-/-) hearts. Similarly, expression of mitochondrial superoxide dismutase 2 was reduced, with no increase in expression of other ROS scavenging enzymes. GLUT1 levels were increased in Nhe1(-/-) hearts, the number of lipid droplets in myocytes was reduced, and PDK4 expression was refractory to high-fat diet-induced upregulation observed in wild-type hearts. High-fat diet-induced stress was attenuated in Nhe1(-/-) hearts, as indicated by smaller increases in phosphorylation of Hsp25 and α-B crystallin, and there was better preservation of insulin sensitivity, as evidenced by PKB/Akt phosphorylation. Plasma glucose and insulin levels were lower and high-fat diet-induced hepatic lipid accumulation was reduced in Nhe1(-/-) mice, demonstrating extracardiac effects of NHE1 ablation. These data indicate that long-term ablation of NHE1 activity increases the redox potential, mitigates high-fat diet-induced myocardial stress and fatty liver disease, leads to better preservation of insulin sensitivity, and may alter both cardiac and systemic metabolic substrate handling in mice.

  7. Calcium Reduces Liver Injury in Mice on a High-Fat Diet: Alterations in Microbial and Bile Acid Profiles

    PubMed Central

    Nadeem Aslam, Muhammad; Bassis, Christine M.; Zhang, Li; Zaidi, Sameer

    2016-01-01

    A high-fat “Western-style” diet (HFWD) promotes obesity-related conditions including non-alcoholic steatohepatitis (NASH), the histologic manifestation of non-alcoholic fatty liver disease (NAFLD). In addition to high saturated fat and processed carbohydrates, the typical HFWD is deficient in calcium. Calcium-deficiency is an independent risk factor for many conditions associated with the Western-style diet. However, calcium has not been widely evaluated in the context of NAFLD. The goal of the present study was to determine if dietary calcium supplementation could protect mice fed a HFWD from NAFLD, specifically by decreasing non-alcoholic steatohepatitis (NASH) and its down-stream consequences. Male C57BL/6NCrl mice were maintained for 18-months on a HFWD containing dietary calcium at either 0.41 gm/kg feed (unsupplemented) or 5.25 gm/kg feed (supplemented). Although there was no difference in body weight or steatosis, calcium-supplemented mice were protected against downstream consequences of hepatic steatosis, manifested by lower inflammation, less fibrosis, and by lower overall histologic NAFLD activity scores (NAS). Calcium supplementation correlated with distinctly segregating gut fecal and cecal microbial communities as defined by 16S rRNA gene sequence. Further, calcium supplementation also correlated with decreased hepatic concentration of the major conjugated murine primary bile acid, tauro-β-muricholic acid (as well as a decrease in the parent unconjugated bile acid). Thus, calcium was protective against progression of diet-induced hepatic steatosis to NASH and end-stage liver disease, suggesting that calcium supplementation may effectively protect against adverse hepatic consequences of HFWD in cases where overall diet modification cannot be sustained. This protective effect occurred in concert with calcium-mediated gut microbial community shifts and alterations of the hepatic bile acid pool. PMID:27851786

  8. Calcium Reduces Liver Injury in Mice on a High-Fat Diet: Alterations in Microbial and Bile Acid Profiles.

    PubMed

    Nadeem Aslam, Muhammad; Bassis, Christine M; Zhang, Li; Zaidi, Sameer; Varani, James; Bergin, Ingrid L

    2016-01-01

    A high-fat "Western-style" diet (HFWD) promotes obesity-related conditions including non-alcoholic steatohepatitis (NASH), the histologic manifestation of non-alcoholic fatty liver disease (NAFLD). In addition to high saturated fat and processed carbohydrates, the typical HFWD is deficient in calcium. Calcium-deficiency is an independent risk factor for many conditions associated with the Western-style diet. However, calcium has not been widely evaluated in the context of NAFLD. The goal of the present study was to determine if dietary calcium supplementation could protect mice fed a HFWD from NAFLD, specifically by decreasing non-alcoholic steatohepatitis (NASH) and its down-stream consequences. Male C57BL/6NCrl mice were maintained for 18-months on a HFWD containing dietary calcium at either 0.41 gm/kg feed (unsupplemented) or 5.25 gm/kg feed (supplemented). Although there was no difference in body weight or steatosis, calcium-supplemented mice were protected against downstream consequences of hepatic steatosis, manifested by lower inflammation, less fibrosis, and by lower overall histologic NAFLD activity scores (NAS). Calcium supplementation correlated with distinctly segregating gut fecal and cecal microbial communities as defined by 16S rRNA gene sequence. Further, calcium supplementation also correlated with decreased hepatic concentration of the major conjugated murine primary bile acid, tauro-β-muricholic acid (as well as a decrease in the parent unconjugated bile acid). Thus, calcium was protective against progression of diet-induced hepatic steatosis to NASH and end-stage liver disease, suggesting that calcium supplementation may effectively protect against adverse hepatic consequences of HFWD in cases where overall diet modification cannot be sustained. This protective effect occurred in concert with calcium-mediated gut microbial community shifts and alterations of the hepatic bile acid pool.

  9. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet.

    PubMed

    Hatori, Megumi; Vollmers, Christopher; Zarrinpar, Amir; DiTacchio, Luciano; Bushong, Eric A; Gill, Shubhroz; Leblanc, Mathias; Chaix, Amandine; Joens, Matthew; Fitzpatrick, James A J; Ellisman, Mark H; Panda, Satchidananda

    2012-06-06

    While diet-induced obesity has been exclusively attributed to increased caloric intake from fat, animals fed a high-fat diet (HFD) ad libitum (ad lib) eat frequently throughout day and night, disrupting the normal feeding cycle. To test whether obesity and metabolic diseases result from HFD or disruption of metabolic cycles, we subjected mice to either ad lib or time-restricted feeding (tRF) of a HFD for 8 hr per day. Mice under tRF consume equivalent calories from HFD as those with ad lib access yet are protected against obesity, hyperinsulinemia, hepatic steatosis, and inflammation and have improved motor coordination. The tRF regimen improved CREB, mTOR, and AMPK pathway function and oscillations of the circadian clock and their target genes' expression. These changes in catabolic and anabolic pathways altered liver metabolome and improved nutrient utilization and energy expenditure. We demonstrate in mice that tRF regimen is a nonpharmacological strategy against obesity and associated diseases.

  10. Grape seed and skin extract reduces pancreas lipotoxicity, oxidative stress and inflammation in high fat diet fed rats.

    PubMed

    Aloui, Faten; Charradi, Kamel; Hichami, Aziz; Subramaniam, Selvakumar; Khan, Naim Akhtar; Limam, Ferid; Aouani, Ezzedine

    2016-12-01

    Obesity is related to an elevated risk of diabetes and the mechanisms whereby fat adversely affects the pancreas are poorly understood. We studied the effect of a high fat diet (HFD) on pancreas steatosis, oxidative stress and inflammation as well as the putative protection afforded by grape seed and skin extract (GSSE). HFD induced body weight gain, without affecting insulinemia, nor glycemia and dropped adiponectemia. HFD also provoked the ectopic deposition of cholesterol and triglyceride, and an oxidative stress characterized by increased lipoperoxidation and carbonylation, inhibition of antioxidant enzyme activities such as CAT, GPx and SOD, depletion of zinc and a concomitant increase in calcium and H2O2. HFD induced pro-inflammatory chemokines mRNA as RANTES and MCP1 as well as cytokines expression as TNFα, IL6 and IL1β. Importantly GSSE counteracted all the deleterious effects of HFD on pancreas in vivo i-e lipotoxicity, oxidative stress and inflammation. In conclusion, GSSE could find potential applications in fat-induced pancreas lipotoxicity and dysfunction. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Low-cholesterol and high-fat diets reduce atherosclerotic lesion development in ApoE-knockout mice.

    PubMed

    Calleja, L; París, M A; Paul, A; Vilella, E; Joven, J; Jiménez, A; Beltrán, G; Uceda, M; Maeda, N; Osada, J

    1999-10-01

    We have investigated the effect of most common oils used in human nutrition on the development of atherosclerosis in apoE-knockout mice. Seven groups of animals, separated according to sex, were fed for 10 weeks either chow diet or the chow diet 10% (wt/wt) enriched with different oils (palm, coconut, 2 types of olive oil, and 2 types of sunflower oil) without addition of cholesterol. At the end of this period, plasma lipid parameters were measured and vascular lesions scored. None of the diets induced changes in plasma cholesterol concentrations, whereas plasma triglycerides were uniformly reduced in all diet groups. Some diets caused significant reductions in the size of atherosclerotic lesions in males and others in females; males responded most to sunflower oils and females to palm oil and one olive oil (II). The lesion reduction in males consuming sunflower oils was associated with the decrease of triglycerides in triglyceride-rich lipoproteins, whereas the decrease in females consuming olive oil II or palm oil was accompanied by an increase in plasma apoA-I. The increase in plasma apoA-I in the latter condition, is mainly due to overexpression of hepatic message elicited by a mechanism independent of apoE ligand. The data suggest that the different diets modulate lesion development in a gender specific manner and by different mechanisms and that the development of atherosclerosis, due to genetic deficiencies, may be modulated by nutritional maneuvers that may be implemented in human nutrition.

  12. Alpha-mangostin from mangosteen (Garcinia mangostana Linn.) pericarp extract reduces high fat-diet induced hepatic steatosis in rats by regulating mitochondria function and apoptosis.

    PubMed

    Tsai, Shin-Yu; Chung, Pei-Chin; Owaga, Eddy E; Tsai, I-Jong; Wang, Pei-Yuan; Tsai, Jeng-I; Yeh, Tien-Shun; Hsieh, Rong-Hong

    2016-01-01

    potential, enhanced cellular oxygen consumption rate (OCR), decreased tROS (total ROS) and mitoROS (mitochondrial ROS) levels ; reduced Ca(2+) and cytochrome c (cyt c) release from mitochondria, and reduced caspases 9 and 3 activities compared with control group. These findings demonstrate α-MG attenuated hepatic steatosis in high fat-diet fed rats potentially through enhanced cellular antioxidant capacity and improved mitochondrial functions as well as suppressed apoptosis of hepatocytes. The findings of study represent a novel nutritional approach on the use of α-MG in the prevention and management of NAFLD.

  13. Comparing the effects of meal replacements with an isocaloric reduced-fat diet on nutrient intake and lower urinary tract symptoms in obese men.

    PubMed

    Khoo, J; Ling, P-S; Chen, R Y-T; Ng, K-K; Tay, T-L; Tan, E; Cho, L-W; Cheong, M

    2014-06-01

    Lower urinary tract symptoms (LUTS) in men are associated with obesity, particularly central obesity as measured by waist circumference (WC), and may improve with weight loss. We aimed to compare effects of a meal-replacement based diet with isocaloric reduced-fat plan on LUTS and nutrient intake in obese Asian men. Obese Asian [mean (range) body mass index of 32.9 (30.5-42.3) kg m(-2) ] men [mean (range) age 40.2 (30-61) years] were randomised to a reduced-fat (< 30% of energy) diet [conventional reduced-fat diet (CD) group; n = 23] or meal-replacement-based plan [meal replacement (MR) group; n = 23], to reduce daily intake by 2000 kJ for 12 weeks. CD and MR groups had statistically significant and similar reductions in weight (-2.6 ± 1.9 kg versus -4.2 ± 3.8 kg), overall LUTS severity measured with International Prostate Symptom Scale (IPSS) scores (-1.71 ± 1.93 points versus -2.42 ± 2.12 points) and insulin resistance [homeostasis model assessment (HOMA) calculated from plasma glucose and insulin]. The MR group had significantly greater decreases in WC (-4.8 ± 3.3 cm versus -2.5 ± 2.3 cm), fat mass (-2.47 ± 3.63 kg versus -1.59 ± 2.32 kg), fat intake, plasma C-reactive protein, and in storage LUTS score (-1.59 ± 1.33 points versus -1.00 ± 0.87 points), which was associated with a decreased fat intake (r = 0.48, P = 0.03). A decrease in overall IPSS score was associated with reductions in weight, WC and HOMA. Weight loss as a result of CD or MR had similar efficacy in relieving LUTS. MR produced greater reductions in fat intake, adiposity and storage LUTS. © 2013 The British Dietetic Association Ltd.

  14. Fat Quality Influences the Obesogenic Effect of High Fat Diets

    PubMed Central

    Crescenzo, Raffaella; Bianco, Francesca; Mazzoli, Arianna; Giacco, Antonia; Cancelliere, Rosa; di Fabio, Giovanni; Zarrelli, Armando; Liverini, Giovanna; Iossa, Susanna

    2015-01-01

    High fat and/or carbohydrate intake are associated with an elevated risk for obesity and chronic diseases such as diabetes and cardiovascular diseases. The harmful effects of a high fat diet could be different, depending on dietary fat quality. In fact, high fat diets rich in unsaturated fatty acids are considered less deleterious for human health than those rich in saturated fat. In our previous studies, we have shown that rats fed a high fat diet developed obesity and exhibited a decrease in oxidative capacity and an increase in oxidative stress in liver mitochondria. To investigate whether polyunsaturated fats could attenuate the above deleterious effects of high fat diets, energy balance and body composition were assessed after two weeks in rats fed isocaloric amounts of a high-fat diet (58.2% by energy) rich either in lard or safflower/linseed oil. Hepatic functionality, plasma parameters, and oxidative status were also measured. The results show that feeding on safflower/linseed oil diet attenuates the obesogenic effect of high fat diets and ameliorates the blood lipid profile. Conversely, hepatic steatosis and mitochondrial oxidative stress appear to be negatively affected by a diet rich in unsaturated fatty acids. PMID:26580650

  15. Lemon detox diet reduced body fat, insulin resistance, and serum hs-CRP level without hematological changes in overweight Korean women.

    PubMed

    Kim, Mi Joung; Hwang, Jung Hyun; Ko, Hyun Ji; Na, Hye Bock; Kim, Jung Hee

    2015-05-01

    The lemon detox program is a very low-calorie diet which consists of a mixture of organic maple and palm syrups, and lemon juice for abstinence period of 7 days. We hypothesized that the lemon detox program would reduce body weight, body fat mass, thus lowering insulin resistance and known risk factors of cardiovascular disease. We investigated anthropometric indices, insulin sensitivity, levels of serum adipokines, and inflammatory markers in overweight Korean women before and after clinical intervention trial. Eighty-four premenopausal women were randomly divided into 3 groups: a control group without diet restriction (Normal-C), a pair-fed placebo diet group (Positive-C), and a lemon detox diet group (Lemon-D). The intervention period was 11 days total: 7 days with the lemon detox juice or the placebo juice, and then 4 days with transitioning food. Changes in body weight, body mass index, percentage body fat, and waist-hip ratio were significantly greater in the Lemon-D and Positive-C groups compared to the Normal-C group. Serum insulin level, homeostasis model assessment insulin resistance scores, leptin, and adiponectin levels decreased in the Lemon-D and Positive-C groups. Serum high-sensitive C-reactive protein (hs-CRP) levels were also reduced only in the Lemon-D group. Hemoglobin and hematocrit levels remained stable in the Lemon-D group while they decreased in the Positive-C and Normal-C groups. Therefore, we suppose that the lemon detox program reduces body fat and insulin resistance through caloric restriction and might have a potential beneficial effect on risk factors for cardiovascular disease related to circulating hs-CRP reduction without hematological changes. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Voluntary running of defined distances reduces body adiposity and its associated inflammation in C57BL/6 mice fed a high-fat diet

    USDA-ARS?s Scientific Manuscript database

    A sedentary lifestyle contributes to obesity. This study determined the effects of quantitative voluntary running on body adiposity and its associated inflammation in mice fed a high-fat diet. Male C57BL/6 mice were assigned to six groups and fed an AIN93G (sedentary) or a high-fat diet (sedentary...

  17. Restricted feeding of a high-fat diet reduces spontaneous metastases of Lewis lung carcinoma in C57BL/6 mice

    USDA-ARS?s Scientific Manuscript database

    Obesity is a risk factor for cancer. We previously reported that consumption of a high-fat diet enhances metastasis in mice (Yan, Clin Exp Metastasis 2010). The present study investigated the effects of restricted feeding of a high-fat diet on spontaneous metastasis of Lewis lung carcinoma (LLC) i...

  18. Consumption of sericin reduces serum lipids, ameliorates glucose tolerance and elevates serum adiponectin in rats fed a high-fat diet.

    PubMed

    Okazaki, Yukako; Kakehi, Shoko; Xu, Yonghui; Tsujimoto, Kazuhisa; Sasaki, Masahiro; Ogawa, Hiroshi; Kato, Norihisa

    2010-01-01

    The effect was examined of dietary sericin on the lipid and carbohydrate metabolism in rats fed with a high-fat diet. The rats were fed with a 20% beef tallow diet with or without sericin at the level of 4% for 5 weeks. The final body weight and white adipose tissue weight were unaffected by dietary manipulation. The consumption of sericin significantly reduced the serum levels of triglyceride, cholesterol, phospholipids and free fatty acids. Serum very-low-density lipoprotein (VLDL)-triglyceride, VLDL-cholesterol, low-density lipoprotein (LDL)-cholesterol and LDL-phospholipids were also significantly reduced by the sericin intake. Liver triglyceride and the activities of glucose 6-phosphate dehydrogenase and malic enzyme, the lipogenic enzymes, were also reduced by the sericin intake. Dietary sericin caused a marked elevation in serum adiponectin. The consumption of sericin suppressed the increases in plasma glucose and insulin levels after an intraperitoneal glucose injection. These results imply the usefulness of sericin for improving the lipid and carbohydrate metabolism in rats fed on a high-fat diet.

  19. Krill powder increases liver lipid catabolism and reduces glucose mobilization in tumor necrosis factor-alpha transgenic mice fed a high-fat diet.

    PubMed

    Bjørndal, Bodil; Vik, Rita; Brattelid, Trond; Vigerust, Natalya Filipchuk; Burri, Lena; Bohov, Pavol; Nygård, Ottar; Skorve, Jon; Berge, Rolf K

    2012-10-01

    A promising approach to ameliorate obesity and obesity-associated diseases is the identification of new sources of dietary ingredients. The present study investigated the hepatic regulation of energy metabolism after feeding a powder isolated from Antarctic krill (Euphausia superba) in a transgenic mouse model of chronic inflammation (human tumor necrosis factor-alpha (hTNFα) mice) known to display unfavorable effects on lipid metabolism. Male hTNFα mice were fed high-fat diets (23.6%, w/w) with or without krill powder (6.4% lipids, 4.3% protein, w/w) for 6 weeks. Blood, liver lipid, and fatty acid composition, as well as hepatic enzyme activities and gene expressions, were determined. Krill powder fed mice displayed lowered hepatic and plasma triacylglycerol levels compared to mice on a high-fat casein diet. This was accompanied by down-regulated hepatic expression of genes involved in lipogenesis and glycerolipid synthesis, and increased β-oxidation activity. In addition, the krill powder diet lowered plasma levels of cholesterol, as well as hepatic gene expression of sterol regulatory element binding transcription factor 2 (SREBP2) and enzymes involved in cholesterol synthesis. Notably, genes involved in glycolysis and gluconeogenesis were significantly reduced in liver by the krill powder diet, while genes involved in oxidative phosphorylation and uncoupling were not affected. Krill powder also reduced endogenous TNFα in liver, indicating an anti-inflammatory effect. In a high-fat mouse model with disturbed lipid metabolism due to persistent hTNFα expression, krill powder showed significant effects on hepatic glucose- and lipid metabolism, resulting in an improved lipid status in liver and plasma. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. High-fat diet with stress impaired islets' insulin secretion by reducing plasma estradiol and pancreatic GLUT2 protein levels in rats' proestrus phase.

    PubMed

    Salimi, M; Zardooz, H; Khodagholi, F; Rostamkhani, F; Shaerzadeh, F

    2016-10-01

    This study was conducted to determine whether two estrus phases (proestrus and diestrus) in female rats may influence the metabolic response to a high-fat diet and/or stress, focusing on pancreatic insulin secretion and content. Animals were divided into high-fat and normal diet groups, then each group was subdivided into stress and non-stress groups, and finally, each one of these was divided into proestrus and diestrus subgroups. At the end of high-fat diet treatment, foot-shock stress was applied to the animals. Then, blood samples were taken to measure plasma factors. Finally, the pancreas was removed for determination of glucose transporter 2 (GLUT2) protein levels and assessment of insulin content and secretion of the isolated islets. In the normal and high-fat diet groups, stress increased plasma corticosterone concentration in both phases. In both study phases, high-fat diet consumption decreased estradiol and increased leptin plasma levels. In the high-fat diet group in response to high glucose concentration, a reduction in insulin secretion was observed in the proestrus phase compared with the same phase in the normal diet group in the presence and absence of stress. Also, high-fat diet decreased the insulin content of islets in the proestrus phase compared with the normal diet. High-fat diet and/or stress caused a reduction in islet GLUT2 protein levels in both phases. In conclusion, it seems possible that high-fat diet alone or combined with foot-shock, predispose female rats to impaired insulin secretion, at least in part, by interfering with estradiol levels in the proestrus phase and decreasing pancreatic GLUT2 protein levels.

  1. A Combination of Flaxseed Oil and Astaxanthin Improves Hepatic Lipid Accumulation and Reduces Oxidative Stress in High Fat-Diet Fed Rats

    PubMed Central

    Xu, Jiqu; Rong, Shuang; Gao, Hui; Chen, Chang; Yang, Wei; Deng, Qianchun; Huang, Qingde; Xiao, Lingyun; Huang, Fenghong

    2017-01-01

    Hepatic lipid accumulation and oxidative stress are crucial pathophysiological mechanisms for non-alcoholic fatty liver disease (NAFLD). Thus, we examined the effect of a combination of flaxseed oil (FO) and astaxanthin (ASX) on hepatic lipid accumulation and oxidative stress in rats fed a high-fat diet. ASX was dissolved in flaxseed oil (1 g/kg; FO + ASX). Animals were fed diets containing 20% fat, where the source was lard, or 75% lard and 25% FO + ASX, or 50% lard and 50% FO + ASX, or FO + ASX, for 10 weeks. Substitution of lard with FO + ASX reduced steatosis and reduced hepatic triacylglycerol and cholesterol. The combination of FO and ASX significantly decreased hepatic sterol regulatory element-binding transcription factor 1 and 3-hydroxy-3-methylglutaryl-CoA reductase but increased peroxisome proliferator activated receptor expression. FO + ASX significantly suppressed fatty acid synthase and acetyl CoA carboxylase but induced carnitine palmitoyl transferase-1 and acyl CoA oxidase expression. FO + ASX also significantly elevated hepatic SOD, CAT and GPx activity and GSH, and markedly reduced hepatic lipid peroxidation. Thus, FO and ASX may reduce NAFLD by reversing hepatic steatosis and reducing lipid accumulation and oxidative stress. PMID:28335388

  2. Supplementation of a Fermented Soybean Extract Reduces Body Mass and Prevents Obesity in High Fat Diet-Induced C57BL/6J Obese Mice

    PubMed Central

    Lee, Jae Yeon; Aravinthan, Adithan; Park, Young Shik; Hwang, Kyo Yeol; Seong, Su-Il; Hwang, Kwontack

    2016-01-01

    Obesity is a growing health problem that many countries face, mostly due to the consumption of a Westernized diet. In this present study we observed the effects of a soybean extract fermented by Bacillus subtilis MORI (BTD-1) containing 1-deoxynojirimycin against high fat diet-induced obesity. The results obtained from this study indicated that BTD-1 reduced body weight, regulated hepatic lipid content and adipose tissue, and also affected liver antioxidant enzymes and glucose metabolism. These results suggest that administration of BTD-1 affects obesity by inhibiting hyperglycemia and free radical-mediated stress; it also reduces lipid accumulation. Therefore, BTD-1 may be potentially useful for the prevention of obesity and its related secondary complications. PMID:27752494

  3. Comparison of Methods to Reduce Myocardial 18F-FDG Uptake in Mice: Calcium Channel Blockers versus High-Fat Diets

    PubMed Central

    Cussó, Lorena; Vaquero, Juan José; Bacharach, Stephen; Desco, Manuel

    2014-01-01

    Purpose Besides its application in oncology, 18F-FDG PET-CT imaging is also useful in the diagnosis of certain lung infections, inflammatory diseases, and atherosclerotic plaques. Myocardial uptake of 18F-FDG may hamper visualization of the lesions caused by these diseases. Two approaches have been proposed for reducing myocardial uptake in preclinical studies, namely, calcium channel blockers (verapamil) and high-fat diets such as commercial ketogenic diets and sunflower seed diets. The objective of this study was to compare the efficacy of these approaches in reducing myocardial uptake of 18F-FDG in mice. Methods We performed two experiments. In experiment A, each animal underwent four 18F-FDG PET/CT scans in the following order: baseline, after administration of verapamil, after two days on ketogenic diet and after two days on sunflower seeds. PET scans were performed 60 minutes after injection of 18.5 MBq of 18F-FDG. In experiment B, the best protocol of the three (ketogenic diet) was evaluated in a lung inflammation model to assess the efficacy of reducing myocardial uptake of 18F-FDG. Results Compared with baseline (SUV 2.03±1.21); the greatest reduction in uptake of 18F-FDG was with ketogenic diet (SUV 0.79±0.16; p = 0.008), followed by sunflower seeds (SUV 0.91±0.13; p = 0.015); the reduction in myocardial uptake produced by verapamil was not statistically significant (SUV 1.78±0.79; p = NS). In experiment B, complete suppression of myocardial uptake noticeably improved the visualization of inflamed areas near the heart, while in the case of null or partial myocardial suppression, it was much harder to distinguish lung inflammation from myocardial spillover. Conclusion A high-fat diet appeared to be the most effective method for decreasing myocardial uptake of 18F-FDG in healthy mice, outperforming verapamil. Our findings also demonstrate that ketogenic diet actually improves visualization of inflammatory lesions near the heart. PMID

  4. Pharmacological administration of the isoflavone daidzein enhances cell proliferation and reduces high fat diet-induced apoptosis and gliosis in the rat hippocampus.

    PubMed

    Rivera, Patricia; Pérez-Martín, Margarita; Pavón, Francisco J; Serrano, Antonia; Crespillo, Ana; Cifuentes, Manuel; López-Ávalos, María-Dolores; Grondona, Jesús M; Vida, Margarita; Fernández-Llebrez, Pedro; de Fonseca, Fernando Rodríguez; Suárez, Juan

    2013-01-01

    Soy extracts have been claimed to be neuroprotective against brain insults, an effect related to the estrogenic properties of isoflavones. However, the effects of individual isoflavones on obesity-induced disruption of adult neurogenesis have not yet been analyzed. In the present study we explore the effects of pharmacological administration of daidzein, a main soy isoflavone, in cell proliferation, cell apoptosis and gliosis in the adult hippocampus of animals exposed to a very high-fat diet. Rats made obese after 12-week exposure to a standard or high-fat (HFD, 60%) diets were treated with daidzein (50 mg kg(-1)) for 13 days. Then, plasma levels of metabolites and metabolic hormones, cell proliferation in the subgranular zone of the dentate gyrus (SGZ), and immunohistochemical markers of hippocampal cell apoptosis (caspase-3), gliosis (GFAP and Iba-1), food reward factor FosB and estrogen receptor alpha (ERα) were analyzed. Treatment with daidzein reduced food/caloric intake and body weight gain in obese rats. This was associated with glucose tolerance, low levels of HDL-cholesterol, insulin, adiponectin and testosterone, and high levels of leptin and 17β-estradiol. Daidzein increased the number of phospho-histone H3 and 5-bromo-2-deoxyuridine (BrdU)-ir cells detected in the SGZ of standard diet and HFD-fed rats. Daidzein reversed the HFD-associated enhanced immunohistochemical expression of caspase-3, FosB, GFAP, Iba-1 and ERα in the hippocampus, being more prominent in the dentate gyrus. These results suggest that pharmacological treatment with isoflavones regulates metabolic alterations associated with enhancement of cell proliferation and reduction of apoptosis and gliosis in response to high-fat diet.

  5. Pharmacological Administration of the Isoflavone Daidzein Enhances Cell Proliferation and Reduces High Fat Diet-Induced Apoptosis and Gliosis in the Rat Hippocampus

    PubMed Central

    Rivera, Patricia; Pérez-Martín, Margarita; Pavón, Francisco J.; Serrano, Antonia; Crespillo, Ana; Cifuentes, Manuel; López-Ávalos, María-Dolores; Grondona, Jesús M.; Vida, Margarita; Fernández-Llebrez, Pedro; de Fonseca, Fernando Rodríguez; Suárez, Juan

    2013-01-01

    Soy extracts have been claimed to be neuroprotective against brain insults, an effect related to the estrogenic properties of isoflavones. However, the effects of individual isoflavones on obesity-induced disruption of adult neurogenesis have not yet been analyzed. In the present study we explore the effects of pharmacological administration of daidzein, a main soy isoflavone, in cell proliferation, cell apoptosis and gliosis in the adult hippocampus of animals exposed to a very high-fat diet. Rats made obese after 12-week exposure to a standard or high-fat (HFD, 60%) diets were treated with daidzein (50 mg kg−1) for 13 days. Then, plasma levels of metabolites and metabolic hormones, cell proliferation in the subgranular zone of the dentate gyrus (SGZ), and immunohistochemical markers of hippocampal cell apoptosis (caspase-3), gliosis (GFAP and Iba-1), food reward factor FosB and estrogen receptor alpha (ERα) were analyzed. Treatment with daidzein reduced food/caloric intake and body weight gain in obese rats. This was associated with glucose tolerance, low levels of HDL-cholesterol, insulin, adiponectin and testosterone, and high levels of leptin and 17β-estradiol. Daidzein increased the number of phospho-histone H3 and 5-bromo-2-deoxyuridine (BrdU)-ir cells detected in the SGZ of standard diet and HFD-fed rats. Daidzein reversed the HFD-associated enhanced immunohistochemical expression of caspase-3, FosB, GFAP, Iba-1 and ERα in the hippocampus, being more prominent in the dentate gyrus. These results suggest that pharmacological treatment with isoflavones regulates metabolic alterations associated with enhancement of cell proliferation and reduction of apoptosis and gliosis in response to high-fat diet. PMID:23741384

  6. Advising patients about low-fat diets.

    PubMed Central

    Rosser, W. W.

    1993-01-01

    Flooded with dietary information, Canadians often ask their family physicians for dietary advice. A literature review reveals evidence that low-fat diets will lower serum cholesterol by a maximum of 17%, but no study has demonstrated a concurrent decrease in mortality. Because the benefits of low-fat diets are not proven, family physicians should be cautious about giving dietary advice. PMID:8382094

  7. A mixture of the aqueous extract of Garcinia cambogia, soy peptide and l-carnitine reduces the accumulation of visceral fat mass in rats rendered obese by a high fat diet

    PubMed Central

    Kim, Yun Jung; Kim, Keun-Young; Kim, Min Sun; Lee, Jin Hee; Lee, Kang Pyo

    2007-01-01

    The aim of the present study was to investigate the anti-obesity effect of a mixture composed of Garcinia cambogia extract, soypeptide, and l-carnitine (1.2:0.3:0.02, w/w/w) in rats rendered obese by a high-fat diet (HFD). Sprague-Dawley rats were fed either the high-fat control diet (CD) or the 0.38% mixture-supplemented HFD (CD + M) for 9 weeks. The mixture significantly reduced body weight gain and the accumulation of visceral fat mass in a rat model of HFD-induced obesity. Moreover, the mixture effectively lowered blood and hepatic lipid concentrations and serum glucose, insulin, c-peptide, and leptin levels in rats with HFD-induced obesity. Results from real-time reverse transcription-polymerase chain reaction analyses indicated that the expression levels of leptin, tumor necrosis factor-alpha (TNF-α), and sterol regulatory element binding protein 1c (SREBP1c) genes in the epididymal fat tissue of rats fed the CD + M diet were 0.4-, 0.6-, and 0.48-fold, respectively, of those found in the CD rats (P  < 0.05), while expression of the uncoupling protein 2 (UCP2) gene in epididymal adipose tissue was 1.25-fold (P  < 0.05) of that found in CD rats. In conclusion, a mixture composed of G. cambogia extract, soy peptide, and l-carnitine attenuated visceral fat accumulation and improved dyslipidemia in a rat model with HFD-induced obesity. PMID:18850230

  8. Comparing the effects of meal replacements with reduced-fat diet on weight, sexual and endothelial function, testosterone and quality of life in obese Asian men.

    PubMed

    Khoo, J; Ling, P-S; Tan, J; Teo, A; Ng, H-L; Chen, R Y-T; Tay, T-L; Tan, E; Cheong, M

    2014-01-01

    Sexual dysfunction is more prevalent in obese than in normal-weight men. Meal replacements (MRs) are useful weight-loss strategies. We randomized obese (body mass index 27.5 kg m(-2), waist circumference (WC) 90 cm) Asian men (mean age 40.5 years, range 30-61) to a conventional reduced-fat diet (CD) (n=24) or MR-based plan (n=24) to reduce daily intake by 400 kcal for 12 weeks. There were significantly greater reductions in weight (4.2 ± 0.8 kg), WC (4.6 ± 0.7 cm), calorie and fat intake in the MR group, compared with the CD group (2.5 ± 0.4 kg, 2.6 ± 0.5 cm). Erectile function (International Index of Erectile Function 5-item score) improved comparably in the MR (3.4 ± 0.7 points) and CD (2.5 ± 0.5 points) groups, as did the Sexual Desire Inventory score (5.5 ± 2.3 vs 7.7 ± 2.1 points), quality of life (36-item Short Form survey score), plasma testosterone and endothelial function (Reactive Hyperemia Index). Subjects were switched to or continued CD for another 28 weeks. Weight, WC and erectile function were maintained at 40 weeks. MR induces greater reductions in weight and abdominal obesity than conventional diet, and comparable improvements in sexual and endothelial function, testosterone and quality of life.

  9. Creosote Bush (Larrea tridentata) Improves Insulin Sensitivity and Reduces Plasma and Hepatic Lipids in Hamsters Fed a High Fat and Cholesterol Diet

    PubMed Central

    Del Vecchyo-Tenorio, Georgina; Rodríguez-Cruz, Maricela; Andrade-Cetto, Adolfo; Cárdenas-Vázquez, René

    2016-01-01

    Creosote bush, Larrea tridentata (Sesse y Moc. Ex DC, Zygophyllaceae) is a shrub found in the deserts of Northern Mexico and Southwestern United States. In traditional medicine, it is used to treat a variety of illnesses including type 2 diabetes. The present study aims to investigate the effects of creosote bush ethanolic extract on plasma and liver parameters associated with the metabolic syndrome in hamsters fed a high fat and cholesterol diet (HFD), comparing them with those induced by ezetimibe (EZ). Seven groups of six hamsters each were formed. Six groups were fed HFD for 2 weeks. The following 2 weeks, the HFD groups received: (1) only HFD, (2) HFD + 3 mg% EZ, (3) HFD + 0.2% creosote bush ethanolic extract, (4) only standard diet (Std Diet), (5) Std Diet + 3 mg% EZ, (6) Std Diet + 0.2% creosote bush ethanolic extract. The beneficial effects of creosote bush ethanolic extract in the HFD hamster model were a reduction of insulin resistance, associated with lower serum insulin and leptin, lower hepatic lipid peroxidation and higher liver antioxidant capacity. Plasma and liver lipids tended or were reduced to values closer to those of animals fed standard diet. A similar effect on lipids was induced by EZ, although with even lower hepatic cholesterol and total lipids concentrations. In general, the change from HFD to standard diet plus ethanolic extract induced the same but deeper changes, including a reduction in plasma glucose and an increase in the percentage of HDL cholesterol. Unlike creosote bush extract, EZ increased food consumption and neutral fecal steroids, with no significant effect on body weight, epididymal fat pads, liver peroxidation or antioxidant capacity. Also EZ did not modify serum insulin and leptin. However, insulin sensitivity improved to values similar to those induced by the extract. This suggests that the mechanism of action of creosote bush ethanolic extract is different to inhibition of cholesterol absorption or increase excretion

  10. Creosote Bush (Larrea tridentata) Improves Insulin Sensitivity and Reduces Plasma and Hepatic Lipids in Hamsters Fed a High Fat and Cholesterol Diet.

    PubMed

    Del Vecchyo-Tenorio, Georgina; Rodríguez-Cruz, Maricela; Andrade-Cetto, Adolfo; Cárdenas-Vázquez, René

    2016-01-01

    Creosote bush, Larrea tridentata (Sesse y Moc. Ex DC, Zygophyllaceae) is a shrub found in the deserts of Northern Mexico and Southwestern United States. In traditional medicine, it is used to treat a variety of illnesses including type 2 diabetes. The present study aims to investigate the effects of creosote bush ethanolic extract on plasma and liver parameters associated with the metabolic syndrome in hamsters fed a high fat and cholesterol diet (HFD), comparing them with those induced by ezetimibe (EZ). Seven groups of six hamsters each were formed. Six groups were fed HFD for 2 weeks. The following 2 weeks, the HFD groups received: (1) only HFD, (2) HFD + 3 mg% EZ, (3) HFD + 0.2% creosote bush ethanolic extract, (4) only standard diet (Std Diet), (5) Std Diet + 3 mg% EZ, (6) Std Diet + 0.2% creosote bush ethanolic extract. The beneficial effects of creosote bush ethanolic extract in the HFD hamster model were a reduction of insulin resistance, associated with lower serum insulin and leptin, lower hepatic lipid peroxidation and higher liver antioxidant capacity. Plasma and liver lipids tended or were reduced to values closer to those of animals fed standard diet. A similar effect on lipids was induced by EZ, although with even lower hepatic cholesterol and total lipids concentrations. In general, the change from HFD to standard diet plus ethanolic extract induced the same but deeper changes, including a reduction in plasma glucose and an increase in the percentage of HDL cholesterol. Unlike creosote bush extract, EZ increased food consumption and neutral fecal steroids, with no significant effect on body weight, epididymal fat pads, liver peroxidation or antioxidant capacity. Also EZ did not modify serum insulin and leptin. However, insulin sensitivity improved to values similar to those induced by the extract. This suggests that the mechanism of action of creosote bush ethanolic extract is different to inhibition of cholesterol absorption or increase excretion

  11. Metformin reduces body weight gain and improves glucose intolerance in high-fat diet-fed C57BL/6J mice.

    PubMed

    Matsui, Yukari; Hirasawa, Yasushi; Sugiura, Takahiro; Toyoshi, Tohru; Kyuki, Kohei; Ito, Mikio

    2010-01-01

    In an acute treatment experiment, metformin (150, 300 mg/kg, per os (p.o.)) markedly reduced the consumption of a high-fat diet (HFD) (45 kcal% fat-containing diet) for 2 h after the HFD was given to the fasted male C57BL/6J (B6) mice. In addition, metformin at a higher dose increased plasma active glucagon-like peptide-1 (GLP-1) levels at 1 h after the HFD was given. On the other hand, pioglitazone (12 mg/kg, p.o.) slightly increased the food intake but did not affect active GLP-1 levels when given at 6 and 12 mg/kg, p.o. In a long-team experiment for 9 weeks, metformin treatment (0.25, 0.5% in the HFD) resulted in reduction of body weight gain and HFD intake. When wet weights of various body fat pads of each mouse were measured at 9 weeks after treatment, metformin markedly decreased these weights. However, pioglitazone treatment (0.01, 0.02% in the HFD) did not have obvious effects on these parameters. Oral glucose tolerance test was carried out after 20-h fasting at 4 weeks post-treatment. Whereas metformin treatment (0.25, 0.5%) markedly improved glucose intolerance, pioglitazone treatment (0.02%) slightly improved this parameter. At 9 weeks, both metformin and pioglitazone markedly improved hyperglycemia and hyperinsulinemia. Metformin treatment also improved hyperleptinemia, whereas pioglitazone was ineffective. These results indicate that metformin reduces body weight gain and improves glucose intolerance in HFD-induced obese diabetic B6 mice.

  12. High-fat diet reduces local myostatin-1 paralog expression and alters skeletal muscle lipid content in rainbow trout, Oncorhynchus mykiss.

    PubMed

    Galt, Nicholas J; Froehlich, Jacob Michael; Meyer, Ben M; Barrows, Frederic T; Biga, Peggy R

    2014-06-01

    Muscle growth is an energetically demanding process that is reliant on intramuscular fatty acid depots in most fishes. The complex mechanisms regulating this growth and lipid metabolism are of great interest for human health and aquaculture applications. It is well established that the skeletal muscle chalone, myostatin, plays a role in lipid metabolism and adipogenesis in mammals; however, this function has not been fully assessed in fishes. We therefore examined the interaction between dietary lipid levels and myostatin expression in rainbow trout (Oncorhynchus mykiss). Five weeks of high-fat diet (HFD; 25 % lipid) intake increased white muscle lipid content and decreased circulating glucose levels and hepatosomatic index when compared to low-fat diet (LFD; 10 % lipid) intake. In addition, HFD intake reduced myostatin-1a and myostatin-1b expression in white muscle and myostatin-1b expression in brain tissue. Characterization of the myostatin-1a, myostatin-1b, and myostatin-2a promoters revealed putative binding sites for a subset of transcription factors associated with lipid metabolism. Taken together, these data suggest that HFD may regulate myostatin expression through cis-regulatory elements sensitive to increased lipid intake. Further, these findings provide a framework for future investigations of mechanisms describing the relationships between myostatin and lipid metabolism in fish.

  13. The Eat Smart Study: A randomised controlled trial of a reduced carbohydrate versus a low fat diet for weight loss in obese adolescents

    PubMed Central

    2010-01-01

    Background Despite the recognition of obesity in young people as a key health issue, there is limited evidence to inform health professionals regarding the most appropriate treatment options. The Eat Smart study aims to contribute to the knowledge base of effective dietary strategies for the clinical management of the obese adolescent and examine the cardiometablic effects of a reduced carbohydrate diet versus a low fat diet. Methods and design Eat Smart is a randomised controlled trial and aims to recruit 100 adolescents over a 2 1/2 year period. Families will be invited to participate following referral by their health professional who has recommended weight management. Participants will be overweight as defined by a body mass index (BMI) greater than the 90th percentile, using CDC 2000 growth charts. An accredited 6-week psychological life skills program 'FRIENDS for Life', which is designed to provide behaviour change and coping skills will be undertaken prior to volunteers being randomised to group. The intervention arms include a structured reduced carbohydrate or a structured low fat dietary program based on an individualised energy prescription. The intervention will involve a series of dietetic appointments over 24 weeks. The control group will commence the dietary program of their choice after a 12 week period. Outcome measures will be assessed at baseline, week 12 and week 24. The primary outcome measure will be change in BMI z-score. A range of secondary outcome measures including body composition, lipid fractions, inflammatory markers, social and psychological measures will be measured. Discussion The chronic and difficult nature of treating the obese adolescent is increasingly recognised by clinicians and has highlighted the need for research aimed at providing effective intervention strategies, particularly for use in the tertiary setting. A structured reduced carbohydrate approach may provide a dietary pattern that some families will find more

  14. Paraoxonase1 (PON1) reduces insulin resistance in mice fed a high-fat diet, and promotes GLUT4 overexpression in myocytes, via the IRS-1/Akt pathway.

    PubMed

    Koren-Gluzer, Marie; Aviram, Michael; Hayek, Tony

    2013-07-01

    To analyze Paraoxonase1 (PON1) impact on GLUT4 expression, glucose metabolism, and the insulin signaling pathway in skeletal muscle cells. We analyzed the effect of PON1 in high-fat-diet-induced insulin resistance in C57BL/6J and in PON1KO mice. Mice were fed normal diet (ND) or high Fat Diet (HFD) for 8 weeks. PON1 deficiency caused enhanced insulin resistance in both ND and HFD mice. PON1 deficiency was associated with increased oxidative stress (OS), increased p38MAPK activity and attenuated insulin-mediated tyrosine phosphorylation of muscle insulin receptor substrate-1 (IRS-1), with a corresponding increase in serine phosphorylation. These effects resulted in decreased glucose uptake in whole-body level, as reflected by glucose tolerance test (GTT), by insulin tolerance test (ITT) and by cellular glycogen accumulation in the liver and in the muscles. PON1 addition to cultured C2 muscle cells enhanced GLUT4 mRNA expression, in a time and concentration dependent manner, increased GLUT4 protein and cellular glycogen accumulation. These effects were mediated via inhibition of p38MAPK activity, resulting in reduced IRS-1 serine phosphorylation and in enhanced IRS-1 tyrosine phosphorylation. The ability of PON1 to increase myocytes GLUT4 expression was partially inhibited upon blocking PON1 SH group, and completely abolished upon PON1 mutation in HIS115 of its catalytic site. PON1 plays a beneficial role in glucose regulation and metabolism and may serve as an important tool in diabetes control. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Incremental Replacement of Saturated Fats by n-3 Fatty Acids in High-Fat, High-Cholesterol Diets Reduces Elevated Plasma Lipid Levels and Arterial Lipoprotein Lipase, Macrophages and Atherosclerosis in LDLR−/− Mice

    PubMed Central

    Chang, Chuchun L.; Torrejon, Claudia; Jung, Un Ju; Graf, Kristin; Deckelbaum, Richard J.

    2014-01-01

    Objective Effects of progressive substitution of dietary n-3 fatty acids (FA) for saturated FA (SAT) on modulating risk factors for atherosclerosis have not been fully defined. Our previous reports demonstrate that SAT increased, but n-3 FA decreased, arterial lipoprotein lipase (LpL) levels and arterial LDL-cholesterol deposition early in atherogenesis. We now questioned whether incremental increases in dietary n-3 FA can counteract SAT-induced pro-atherogenic effects in atherosclerosis-prone LDL-receptor knockout (LDLR−/−) mice and have identified contributing mechanisms. Methods and results Mice were fed chow or high-fat diets enriched in SAT, n-3, or a combination of both SAT and n-3 in ratios of 3:1 (S:n-3 3:1) or 1:1 (S:n-3 1:1). Each diet resulted in the expected changes in fatty acid composition in blood and aorta for each feeding group. SAT-fed mice became hyperlipidemic. By contrast, n-3 inclusion decreased plasma lipid levels, especially cholesterol. Arterial LpL and macrophage levels were increased over 2-fold in SAT-fed mice but these were decreased with incremental replacement with n-3 FA. n-3 FA partial inclusion markedly decreased expression of pro-inflammatory markers (CD68, IL-6, and VCAM-1) in aorta. SAT diets accelerated advanced atherosclerotic lesion development, whereas all n-3 FA-containing diets markedly slowed atherosclerotic progression. Conclusion Mechanisms whereby dietary n-3 FA may improve adverse cardiovascular effects of high-SAT, high-fat diets include improving plasma lipid profiles, increasing amounts of n-3 FA in plasma and the arterial wall. Even low levels of replacement of SAT by n-3 FA effectively reduce arterial lipid deposition by decreasing aortic LpL, macrophages and pro-inflammatory markers. PMID:24747115

  16. Incremental replacement of saturated fats by n-3 fatty acids in high-fat, high-cholesterol diets reduces elevated plasma lipid levels and arterial lipoprotein lipase, macrophages and atherosclerosis in LDLR-/- mice.

    PubMed

    Chang, Chuchun L; Torrejon, Claudia; Jung, Un Ju; Graf, Kristin; Deckelbaum, Richard J

    2014-06-01

    Effects of progressive substitution of dietary n-3 fatty acids (FA) for saturated FA (SAT) on modulating risk factors for atherosclerosis have not been fully defined. Our previous reports demonstrate that SAT increased, but n-3 FA decreased, arterial lipoprotein lipase (LpL) levels and arterial LDL-cholesterol deposition early in atherogenesis. We now questioned whether incremental increases in dietary n-3 FA can counteract SAT-induced pro-atherogenic effects in atherosclerosis-prone LDL-receptor knockout (LDLR-/-) mice and have identified contributing mechanisms. Mice were fed chow or high-fat diets enriched in SAT, n-3, or a combination of both SAT and n-3 in ratios of 3:1 (S:n-3 3:1) or 1:1 (S:n-3 1:1). Each diet resulted in the expected changes in fatty acid composition in blood and aorta for each feeding group. SAT-fed mice became hyperlipidemic. By contrast, n-3 inclusion decreased plasma lipid levels, especially cholesterol. Arterial LpL and macrophage levels were increased over 2-fold in SAT-fed mice but these were decreased with incremental replacement with n-3 FA. n-3 FA partial inclusion markedly decreased expression of pro-inflammatory markers (CD68, IL-6, and VCAM-1) in aorta. SAT diets accelerated advanced atherosclerotic lesion development, whereas all n-3 FA-containing diets markedly slowed atherosclerotic progression. Mechanisms whereby dietary n-3 FA may improve adverse cardiovascular effects of high-SAT, high-fat diets include improving plasma lipid profiles, increasing amounts of n-3 FA in plasma and the arterial wall. Even low levels of replacement of SAT by n-3 FA effectively reduce arterial lipid deposition by decreasing aortic LpL, macrophages and pro-inflammatory markers. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Preoperative 4-week low-calorie diet reduces liver volume and intrahepatic fat, and facilitates laparoscopic gastric bypass in morbidly obese.

    PubMed

    Edholm, David; Kullberg, Joel; Haenni, Arvo; Karlsson, F Anders; Ahlström, Anders; Hedberg, Jakob; Ahlström, Håkan; Sundbom, Magnus

    2011-03-01

    The aim of this study was to explore changes in liver volume and intrahepatic fat in morbidly obese patients during 4 weeks of low-calorie diet (LCD) before surgery and to investigate if these changes would facilitate the following laparoscopic gastric bypass. Fifteen female patients (121.3 kg, BMI 42.9) were treated preoperatively in an open study with LCD (800-1,100 kcal/day) during 4 weeks. Liver volume and fat content were assessed by magnetic resonance imaging and spectroscopy before and after the LCD treatment. Liver appearance and the complexity of the surgery were scored at the operation. Eighteen control patients (114.4 kg, BMI 40.8), without LCD were scored similarly. Average weight loss in the LCD group was 7.5 kg, giving a mean weight of 113.9 kg at surgery. Liver volume decreased by 12% (p < 0.001) and intrahepatic fat by 40% (p < 0.001). According to the preoperative scoring, the size of the left liver lobe, sharpness of the liver edge, and exposure of the hiatal region were improved in the LCD group compared to the controls (all p < 0.05). The overall complexity of the surgery was perceived lower in the LCD group (p < 0.05), due to improved exposure and reduced psychological stress (both p < 0.05). Four weeks of preoperative LCD resulted in a significant decrease in liver volume and intrahepatic fat content, and facilitated the subsequent laparoscopic gastric bypass as scored by the surgeon.

  18. Tetrahydro iso-alpha acids from hops improve glucose homeostasis and reduce body weight gain and metabolic endotoxemia in high-fat diet-fed mice.

    PubMed

    Everard, Amandine; Geurts, Lucie; Van Roye, Marie; Delzenne, Nathalie M; Cani, Patrice D

    2012-01-01

    Obesity and related metabolic disorders such as insulin resistance and type 2 diabetes are associated with a low-grade inflammatory state possibly through changes in gut microbiota composition and the development of higher plasma lipopolysaccharide (LPS) levels, i.e. metabolic endotoxemia. Various phytochemical compounds have been investigated as potential tools to regulate these metabolic features. Humulus lupulus L. (hops) contains several classes of compounds with anti-inflammatory potential. Recent evidence suggests that hops-derived compounds positively impact adipocyte metabolism and glucose tolerance in obese and diabetic rodents via undefined mechanisms. In this study, we found that administration of tetrahydro iso-alpha acids (termed META060) to high-fat diet (HFD)-fed obese and diabetic mice for 8 weeks reduced body weight gain, the development of fat mass, glucose intolerance, and fasted hyperinsulinemia, and normalized insulin sensitivity markers. This was associated with reduced portal plasma LPS levels, gut permeability, and higher intestinal tight junction proteins Zonula occludens-1 and occludin. Moreover, META060 treatment increased the plasma level of the anti-inflammatory cytokine interleukin-10 and decreased the plasma level of the pro-inflammatory cytokine granulocyte colony-stimulating factor. In conclusion, this research allows us to decipher a novel mechanism contributing to the positive effects of META060 treatment, and supports the need to investigate such compounds in obese and type 2 diabetic patients.

  19. Tetrahydro iso-Alpha Acids from Hops Improve Glucose Homeostasis and Reduce Body Weight Gain and Metabolic Endotoxemia in High-Fat Diet-Fed Mice

    PubMed Central

    Van Roye, Marie; Delzenne, Nathalie M.; Cani, Patrice D.

    2012-01-01

    Obesity and related metabolic disorders such as insulin resistance and type 2 diabetes are associated with a low-grade inflammatory state possibly through changes in gut microbiota composition and the development of higher plasma lipopolysaccharide (LPS) levels, i.e. metabolic endotoxemia. Various phytochemical compounds have been investigated as potential tools to regulate these metabolic features. Humulus lupulus L. (hops) contains several classes of compounds with anti-inflammatory potential. Recent evidence suggests that hops-derived compounds positively impact adipocyte metabolism and glucose tolerance in obese and diabetic rodents via undefined mechanisms. In this study, we found that administration of tetrahydro iso-alpha acids (termed META060) to high-fat diet (HFD)-fed obese and diabetic mice for 8 weeks reduced body weight gain, the development of fat mass, glucose intolerance, and fasted hyperinsulinemia, and normalized insulin sensitivity markers. This was associated with reduced portal plasma LPS levels, gut permeability, and higher intestinal tight junction proteins Zonula occludens-1 and occludin. Moreover, META060 treatment increased the plasma level of the anti-inflammatory cytokine interleukin-10 and decreased the plasma level of the pro-inflammatory cytokine granulocyte colony-stimulating factor. In conclusion, this research allows us to decipher a novel mechanism contributing to the positive effects of META060 treatment, and supports the need to investigate such compounds in obese and type 2 diabetic patients. PMID:22470484

  20. Inhibition of Gastric Inhibitory Polypeptide Receptor Signaling in Adipose Tissue Reduces Insulin Resistance and Hepatic Steatosis in High-Fat Diet-Fed Mice.

    PubMed

    Joo, Erina; Harada, Norio; Yamane, Shunsuke; Fukushima, Toru; Taura, Daisuke; Iwasaki, Kanako; Sankoda, Akiko; Shibue, Kimitaka; Harada, Takanari; Suzuki, Kazuyo; Hamasaki, Akihiro; Inagaki, Nobuya

    2017-04-01

    Gastric inhibitory polypeptide receptor (GIPR) directly induces energy accumulation in adipose tissue in vitro. However, the importance of the direct effect of GIPR signaling on adipose tissue in vivo remains unclear. In the current study, we generated adipose tissue-specific GIPR knockout (GIPR(adipo-/-)) mice and investigated the direct actions of GIP in adipose tissue. Under high-fat diet (HFD)-fed conditions, GIPR(adipo-/-) mice had significantly lower body weight and lean body mass compared with those in floxed GIPR (GIPR(fl/fl)) mice, although the fat volume was not significantly different between the two groups. Interestingly, insulin resistance, liver weight, and hepatic steatosis were reduced in HFD-fed GIPR(adipo-/-) mice. Plasma levels of interleukin-6 (IL-6), a proinflammatory cytokine that induces insulin resistance, were reduced in HFD-fed GIPR(adipo-/-) mice compared with those in HFD-fed GIPR(fl/fl) mice. Suppressor of cytokine signaling 3 (SOCS3) signaling is located downstream of the IL-6 receptor and is associated with insulin resistance and hepatic steatosis. Expression levels of SOCS3 mRNA were significantly lower in adipose and liver tissues of HFD-fed GIPR(adipo-/-) mice compared with those of HFD-fed GIPR(fl/fl) mice. Thus, GIPR signaling in adipose tissue plays a critical role in HFD-induced insulin resistance and hepatic steatosis in vivo, which may involve IL-6 signaling.

  1. Consumption of vitamin B(6) reduces fecal ratio of lithocholic acid to deoxycholic acid, a risk factor for colon cancer, in rats fed a high-fat diet.

    PubMed

    Okazaki, Yukako; Utama, Zaki; Suidasari, Sofya; Zhang, Peipei; Yanaka, Noriyuki; Tomotake, Hiroyuki; Sakaguchi, Ei; Kato, Norihisa

    2012-01-01

    To examine the effect of supplemental dietary vitamin B(6) on the colonic luminal environment, growing male rats were fed a high-fat diet containing 1, 7, or 35 mg pyridoxine HCl/kg diet for 6 wk. Food intake and growth were unaffected by the dietary treatment. Supplemental dietary vitamin B(6) significantly reduced the production of a fecal secondary bile acid, lithocholic acid (the most toxic secondary bile acid and a risk factor for colon cancer), and markedly reduced the ratio of lithocholic acid to deoxycholic acid (a less toxic secondary bile acid) in feces (p<0.05). Increasing dietary vitamin B(6) increased fecal mucin levels (a marker of intestinal barrier function) in a dose-dependent manner (p<0.05) but did not affect fecal immunoglobulin A levels (an index of intestinal immune function). Cecal levels of organic acids were not significantly affected by supplemental dietary vitamin B(6). These results suggest the possibility that dietary vitamin B(6) affects the colonic luminal environment by altering the production of secondary bile acids and mucins.

  2. The Herbal Medicine KBH-1 Inhibits Fat Accumulation in 3T3-L1 Adipocytes and Reduces High Fat Diet-Induced Obesity through Regulation of the AMPK Pathway

    PubMed Central

    Lee, Ji-Hye; Kim, Taesoo; Lee, Jung-Jin; Lee, Kwang Jin; Kim, Hyun-Kyu; Yun, Bora; Jeon, Jongwook; Kim, Sang Kyum; Ma, Jin Yeul

    2015-01-01

    The aim of this study was to investigate whether a novel formulation of an herbal extract, KBH-1, has an inhibitory effect on obesity. To determine its anti-obesity effects and its underlying mechanism, we performed anti-obesity-related experiments in vitro and in vivo. 3T3-L1 preadipocytes were analyzed for lipid accumulation as well as the protein and gene expression of molecular targets involved in fatty acid synthesis. To determine whether KBH-1 oral administration results in a reduction in high-fat diet (HFD)-induced obesity, we examined five groups (n = 9) of C57BL/6 mice as follows: 10% kcal fat diet-fed mice (ND), 60% kcal fat diet-fed mice (HFD), HFD-fed mice treated with orlistat (tetrahydrolipstatin, marketed under the trade name Xenical), HFD-fed mice treated with 150 mg/kg KBH-1 (KBH-1 150) and HFD-fed mice treated with 300 mg/kg KBH-1 (KBH-1 300). During adipogenesis of 3T3-L1 cells in vitro, KBH-1 significantly reduced lipid accumulation and down-regulated the expression of master adipogenic transcription factors, including CCAAT/enhancer binding protein (C/EBP) β, C/EBP α and peroxisome proliferation-activity receptor (PPAR) γ, which led to the suppression of the expression of several adipocyte-specific genes and proteins. KBH-1 also markedly phosphorylated the adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC). In addition, KBH-1-induced the inhibition effect on lipid accumulation and AMPK-mediated signal activation were decreased by blocking AMPK phosphorylation using AMPK siRNA. Furthermore, daily oral administration of KBH-1 resulted in dose-dependent decreases in body weight, fat pad mass and fat tissue size without systemic toxicity. These results suggest that KBH-1 inhibits lipid accumulation by down-regulating the major transcription factors of the adipogenesis pathway by regulating the AMPK pathway in 3T3-L1 adipocytes and in mice with HFD-induced obesity. These results implicate KBH-1, a safe herbal

  3. Varying protein source and quantity do not significantly improve weight loss, fat loss, or satiety in reduced energy diets among midlife adults.

    PubMed

    Aldrich, Noel D; Reicks, Marla M; Sibley, Shalamar D; Redmon, J Bruce; Thomas, William; Raatz, Susan K

    2011-02-01

    We hypothesized that a whey protein diet would result in greater weight loss and improved body composition compared with standard weight loss diets. Weight change, body composition, and renin-angiotensin aldosterone system activity in midlife adults were compared between diet groups. Eighteen subjects enrolled in a 5-month study of 8-week controlled food intake followed by 12-weeks ad libitum intake. Subjects were randomized to 1 of 3 treatment groups: control diet (CD) (55% carbohydrate/15% protein/30% fat), mixed protein (40% carbohydrate/30% protein/30% fat), or whey protein (WP) (40% carbohydrate/15% mixed protein/15% whey protein/30% fat). Measurements included weight, metabolic measures, body composition by dual-energy x-ray absorptiometry, and resting energy expenditure. No statistically significant differences in total weight loss or total fat loss were observed between treatments; however, a trend toward greater total weight loss (P = .08) and total fat loss (P = .09) was observed in the WP group compared with the CD group. Fat loss in the leg and gynoid regions was greater (P < .05) in the WP group than the CD group. No renin-angiotensin aldosterone system-mediated response was observed, but a decrease in systolic blood pressure was significantly greater (P < .05) in the WP group compared with the CD group. In summary, increased whey protein intake did not result in statistically significant differences in weight loss or in total fat loss, but significant differences in regional fat loss and in decreased blood pressure were observed in the WP group. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Heat Killed Lactobacillus reuteri GMNL-263 Reduces Fibrosis Effects on the Liver and Heart in High Fat Diet-Hamsters via TGF-β Suppression

    PubMed Central

    Ting, Wei-Jen; Kuo, Wei-Wen; Hsieh, Dennis Jine-Yuan; Yeh, Yu-Lan; Day, Cecilia-Hsuan; Chen, Ya-Hui; Chen, Ray-Jade; Padma, Viswanadha Vijaya; Chen, Yi-Hsing; Huang, Chih-Yang

    2015-01-01

    Obesity is one of the major risk factors for nonalcoholic fatty liver disease (NAFLD), and NAFLD is highly associated with an increased risk of cardiovascular disease (CVD). Scholars have suggested that certain probiotics may significantly impact cardiovascular health, particularly certain Lactobacillus species, such as Lactobacillus reuteri GMNL-263 (Lr263) probiotics, which have been shown to reduce obesity and arteriosclerosis in vivo. In the present study, we examined the potential of heat-killed bacteria to attenuate high fat diet (HFD)-induced hepatic and cardiac damages and the possible underlying mechanism of the positive effects of heat-killed Lr263 oral supplements. Heat-killed Lr263 treatments (625 and 3125 mg/kg-hamster/day) were provided as a daily supplement by oral gavage to HFD-fed hamsters for eight weeks. The results show that heat-killed Lr263 treatments reduce fatty liver syndrome. Moreover, heat-killed Lactobacillus reuteri GMNL-263 supplementation in HFD hamsters also reduced fibrosis in the liver and heart by reducing transforming growth factor β (TGF-β) expression levels. In conclusion, heat-killed Lr263 can reduce lipid metabolic stress in HFD hamsters and decrease the risk of fatty liver and cardiovascular disease. PMID:26516851

  5. Low-Fat Nondairy Minidrink Containing Plant Stanol Ester Effectively Reduces LDL Cholesterol in Subjects with Mild to Moderate Hypercholesterolemia as Part of a Western Diet.

    PubMed

    Hallikainen, Maarit; Olsson, Johan; Gylling, Helena

    2013-01-01

    The cholesterol-lowering efficacy of plant stanol ester (STAEST) added to fat- or milk-based products is well documented. However, their efficacy when added to nondairy liquid drinks is less certain. Therefore, we have investigated the cholesterol-lowering efficacy of STAEST added to a soymilk-based minidrink in the hypercholesterolemic subjects. In a randomized, double-blind, placebo-controlled parallel study, the intervention group (n = 27) consumed 2.7 g/d of plant stanols as the ester in soymilk-based minidrink (65 mL/d) with the control group (n = 29) receiving the same drink without added plant stanols once a day with a meal for 4 weeks. Serum total, LDL, and non-HDL cholesterol concentrations were reduced by 8.0, 11.1, and 10.2% compared with controls (P < 0.05 for all). Serum plant sterol concentrations and their ratios to cholesterol declined by 12-25% from baseline in the STAEST group while the ratio of campesterol to cholesterol was increased by 10% in the controls (P < 0.05 for all). Serum precursors of cholesterol remained unchanged in both groups. In conclusion, STAEST-containing soymilk-based low-fat minidrink consumed once a day with a meal lowered LDL and non-HDL cholesterol concentrations without evoking any side effects in subjects consuming normal Western diet. The clinical trial registration number is NCT01716390.

  6. Low-Fat Nondairy Minidrink Containing Plant Stanol Ester Effectively Reduces LDL Cholesterol in Subjects with Mild to Moderate Hypercholesterolemia as Part of a Western Diet

    PubMed Central

    Olsson, Johan

    2013-01-01

    The cholesterol-lowering efficacy of plant stanol ester (STAEST) added to fat- or milk-based products is well documented. However, their efficacy when added to nondairy liquid drinks is less certain. Therefore, we have investigated the cholesterol-lowering efficacy of STAEST added to a soymilk-based minidrink in the hypercholesterolemic subjects. In a randomized, double-blind, placebo-controlled parallel study, the intervention group (n = 27) consumed 2.7 g/d of plant stanols as the ester in soymilk-based minidrink (65 mL/d) with the control group (n = 29) receiving the same drink without added plant stanols once a day with a meal for 4 weeks. Serum total, LDL, and non-HDL cholesterol concentrations were reduced by 8.0, 11.1, and 10.2% compared with controls (P < 0.05 for all). Serum plant sterol concentrations and their ratios to cholesterol declined by 12–25% from baseline in the STAEST group while the ratio of campesterol to cholesterol was increased by 10% in the controls (P < 0.05 for all). Serum precursors of cholesterol remained unchanged in both groups. In conclusion, STAEST-containing soymilk-based low-fat minidrink consumed once a day with a meal lowered LDL and non-HDL cholesterol concentrations without evoking any side effects in subjects consuming normal Western diet. The clinical trial registration number is NCT01716390. PMID:24151550

  7. High-fat diet reduces local myostatin-1 paralog expression and alters skeletal muscle lipid content in rainbow trout, Oncorhynchus mykiss

    PubMed Central

    Galt, Nicholas J.; Froehlich, Jacob Michael; Meyer, Ben M.; Barrows, Frederic T.; Biga, Peggy R.

    2014-01-01

    Muscle growth is an energetically demanding process that is reliant on intramuscular fatty acid depots in most fishes. The complex mechanisms regulating this growth and lipid metabolism are of great interest for human health and aquaculture applications. It is well established that the skeletal muscle chalone, myostatin, plays a role in lipid metabolism and adipogenesis in mammals; however, this function has not been fully assessed in fishes. We therefore examined the interaction between dietary lipid levels and myostatin expression in rainbow trout (Oncorhynchus mykiss). Five-weeks of high-fat (HFD; 25% lipid) dietary intake increased white muscle lipid content, and decreased circulating glucose levels and hepatosomatic index when compared to low-fat diet (LFD; 10% lipid) intake. In addition HFD intake reduced myostatin-1a and -1b expression in white muscle and myostatin-1b expression in brain tissue. Characterization of the myostatin-1a, -1b, and -2a promoters revealed putative binding sites for a subset of transcription factors associated with lipid metabolism. Taken together, these data suggest that HFD may regulate myostatin expression through cis-regulatory elements sensitive to increased lipid intake. Further, these findings provide a framework for future investigations of mechanisms describing the relationships between myostatin and lipid metabolism in fish. PMID:24264425

  8. Berberine reduces methylation of the MTTP promoter and alleviates fatty liver induced by a high-fat diet in rats[S

    PubMed Central

    Chang, XinXia; Yan, HongMei; Fei, Jing; Jiang, MingHong; Zhu, HongGuang; Lu, DaRu; Gao, Xin

    2010-01-01

    High-calorie food leads to nonalcoholic fatty liver disease (NAFLD) through dysregulation of genes involved in lipid metabolism, but the precise mechanism remains unclear. DNA methylation represents one of the mechanisms that contributes to dysregulation of gene expression via interaction with environmental factors. Berberine can alleviate fatty liver in db/db and ob/ob mice. Here, we investigated whether DNA methylation is involved in the pathogenesis of NAFLD induced by a high-fat diet (HFD) and whether berberine improves NAFLD through influencing the methylation status of promoters of key genes. HFD markedly decreased the mRNA levels encoding CPT-1α, MTTP, and LDLR in the liver. In parallel, DNA methylation levels in the MTTP promoter of rats with NAFLD were elevated in the liver. Interestingly, berberine reversed the downregulated expression of these genes and selectively inhibited HFD-induced increase in the methylation of MTTP. Consistently, berberine increased hepatic triglyceride (TG) export and ameliorated HFD-induced fatty liver. Furthermore, a close negative correlation was observed between the MTTP expression and its DNA methylation (at sites −113 and −20). These data indicate that DNA methylation of the MTTP promoter likely contributes to its downregulation during HFD-induced NAFLD and, further, that berberine can partially counteract the HFD-elicited dysregulation of MTTP by reversing the methylation state of its promoter, leading to reduced hepatic fat content. PMID:20567026

  9. Low-fat diets for acquired hypercholesterolaemia.

    PubMed

    Smart, Neil A; Marshall, Belinda J; Daley, Maxine; Boulos, Elie; Windus, Janelle; Baker, Nadine; Kwok, Nigel

    2011-02-16

    Hypercholesterolaemia, characterised by raised blood cholesterol levels, is not a disease itself but a metabolic derangement that often contributes to many diseases, notably cardiovascular disease. In most cases, elevated cholesterol levels are associated with high-fat diet, especially saturated fat, coupled with an inactive lifestyle. Less commonly, raised cholesterol may be related to an inherited disorder, familial hypercholesterolaemia. This systematic review is only concerned with acquired hypercholesterolaemia. To assess the effects of low-fat diets for acquired hypercholesterolaemia and to investigate the incidence of adverse effects from low-fat dietary interventions. We planned to compare the relative effectiveness of low-fat diets with calorie-restricted diets for acquired hypercholesterolaemia. We also wanted to look into the relative effectiveness of low-fat diets and pharmacological interventions for acquired hypercholesterolaemia. Studies were obtained from computerised searches of The Cochrane Library, MEDLINE, EMBASE and databases of ongoing trials. Date of last search was February 2010. Otherwise healthy adults (equal to or greater than 18 years) with acquired (not familial) hypercholesterolaemia. We defined hypercholesterolaemia as either total cholesterol greater than 5.2 mmol/L, LDL-cholesterol greater than 3.0 mmol/L, HDL-cholesterol less than 1.0 mmol/L or a combination thereof, although investigators' definitions were also accepted. We wanted to include any low-fat dietary intervention, like low-fat and low-saturated fat diets, intended to lower serum total and LDL-cholesterol or to raise HDL-cholesterol. A low-fat diet was considered as a fat calorie intake less than 20% of the total calories. The minimum duration of the intervention had to be six months. We excluded studies in unhealthy people. Two authors were planned to independently assess risk of bias and extract data. No study met our inclusion criteria. Well designed, adequately

  10. Green tea extract with polyethylene glycol-3350 reduces body weight and improves glucose tolerance in db/db and high-fat diet mice.

    PubMed

    Park, Jae-Hyung; Choi, Yoon Jung; Kim, Yong Woon; Kim, Sang Pyo; Cho, Ho-Chan; Ahn, Shinbyoung; Bae, Ki-Cheor; Im, Seung-Soon; Bae, Jae-Hoon; Song, Dae-Kyu

    2013-08-01

    Green tea extract (GTE) is regarded to be effective against obesity and type 2 diabetes, but definitive evidences have not been proven. Based on the assumption that the gallated catechins (GCs) in GTE attenuate intestinal glucose and lipid absorption, while enhancing insulin resistance when GCs are present in the circulation through inhibiting cellular glucose uptake in various tissues, this study attempted to block the intestinal absorption of GCs and prolong their residence time in the lumen. We then observed whether GTE containing the nonabsorbable GCs could ameliorate body weight (BW) gain and glucose intolerance in db/db and high-fat diet mice. Inhibition of the intestinal absorption of GCs was accomplished by co-administering the nontoxic polymer polyethylene glycol-3350 (PEG). C57BLKS/J db/db and high-fat diet C57BL/6 mice were treated for 4 weeks with drugs as follows: GTE, PEG, GTE+PEG, voglibose, or pioglitazone. GTE mixed with meals did not have any ameliorating effects on BW gain and glucose intolerance. However, the administration of GTE plus PEG significantly reduced BW gain, insulin resistance, and glucose intolerance, without affecting food intake and appetite. The effect was comparable to the effects of an α-glucosidase inhibitor and a peroxisome proliferator-activated receptor-γ/α agonist. These results indicate that prolonging the action of GCs of GTE in the intestinal lumen and blocking their entry into the circulation may allow GTE to be used as a prevention and treatment for both obesity and obesity-induced type 2 diabetes.

  11. A High-Protein Diet Reduces Weight Gain, Decreases Food Intake, Decreases Liver Fat Deposition, and Improves Markers of Muscle Metabolism in Obese Zucker Rats.

    PubMed

    French, William W; Dridi, Sami; Shouse, Stephanie A; Wu, Hexirui; Hawley, Aubree; Lee, Sun-Ok; Gu, Xuan; Baum, Jamie I

    2017-06-08

    A primary factor in controlling and preventing obesity is through dietary manipulation. Diets higher in protein have been shown to improve body composition and metabolic health during weight loss. The objective of this study was to examine the effects of a high-protein diet versus a moderate-protein diet on muscle, liver and fat metabolism and glucose regulation using the obese Zucker rat. Twelve-week old, male, Zucker (fa/fa) and lean control (Fa/fa) rats were randomly assigned to either a high-protein (40% energy) or moderate-protein (20% energy) diet for 12 weeks, with a total of four groups: lean 20% protein (L20; n = 8), lean 40% protein (L40; n = 10), obese 20% protein (O20; n = 8), and obese 40% protein (O40; n = 10). At the end of 12 weeks, animals were fasted and euthanized. There was no difference in food intake between L20 and L40. O40 rats gained less weight and had lower food intake (p < 0.05) compared to O20. O40 rats had lower liver weight (p < 0.05) compared to O20. However, O40 rats had higher orexin (p < 0.05) levels compared to L20, L40 and O20. Rats in the L40 and O40 groups had less liver and muscle lipid deposition compared to L20 and L40 diet rats, respectively. O40 had decreased skeletal muscle mechanistic target of rapamycin complex 1 (mTORC1) phosphorylation and peroxisome proliferator-activated receptor gamma (PPARγ) mRNA expression compared to O20 (p < 0.05), with no difference in 5' AMP-activated protein kinase (AMPK), eukaryotic translation initiation factor 4E binding protein 1 (4EBP1), protein kinase B (Akt) or p70 ribosomal S6 kinase (p70S6K) phosphorylation. The data suggest that high-protein diets have the potential to reduce weight gain and alter metabolism, possibly through regulation of an mTORC1-dependent pathway in skeletal muscle.

  12. Loss of Ron receptor signaling leads to reduced obesity, diabetic phenotypes and hepatic steatosis in response to high-fat diet in mice.

    PubMed

    Stuart, William D; Brown, Nicholas E; Paluch, Andrew M; Waltz, Susan E

    2015-04-01

    The Ron receptor tyrosine kinase is a heterodimeric, membrane-spanning glycoprotein that participates in divergent processes, including proliferation, motility, and modulation of inflammatory responses. We observed male C57BL/6 mice with a global deletion of the Ron tyrosine kinase signaling domain (TK(-/-)) to be leaner compared with control (TK(+/+)) mice under a standard diet. When fed a high-fat diet (HFD), TK(-/-) mice gained 50% less weight and were more insulin sensitive and glucose tolerant than controls. Livers from HFD TK(-/-) mice were considerably less steatotic and weighed significantly less than TK(+/+) livers. Serum cytokine levels of HFD TK(-/-) mice were also significantly altered compared with TK(+/+) mice. Fewer and smaller adipocytes were present in the TK(-/-) mice on both control and HFD and were accompanied by diminished adiponectin and peroxisome proliferator-activated receptor-γ expression. In vitro adipogenesis experiments suggested reduced differentiation in TK(-/-) embryonic fibroblasts (MEFs) that was rescued by Ron reconstitution. Likewise, signal transducer and activator of transcription (STAT)-3 phosphorylation was diminished in TK(-/-) MEFs but was increased after Ron reconstitution. The adipogenic inhibitors, preadipocyte factor 1 and Sox9, were elevated in TK(-/-) MEFs and increased in both groups after STAT3 silencing. In total, these studies document a previously unknown function for the Ron receptor in mediating HFD-induced obesity and metabolic dysregulation.

  13. One-week high-fat diet leads to reduced toll-like receptor 2 expression and function in young healthy men.

    PubMed

    Wan, Zhongxiao; Durrer, Cody; Mah, Dorrian; Simtchouk, Svetlana; Little, Jonathan P

    2014-12-01

    Toll-like receptor 2 (TLR2) is implicated in inflammatory responses to high-fat diet (HFD)-induced obesity in rodents, but human HFD studies examining TLR2-mediated immune responses are lacking. Our aim was to determine whether HFD affected TLR2 function in humans. We hypothesized that a short-term HFD in humans would impair TLR2-mediated immune function. Fasting blood samples were obtained from healthy young men (N = 9) before and after a 7-day HFD. Toll-like receptor 2 function was assessed in ex vivo whole blood cultures stimulated with the TLR2 agonist N-palmitoyl-S-[2,3-bis[palmitoyloxy]-[2RS]-propyl]-[R]-cysteinyl-[S]-seryl-[S]-lysyl-[S]-lysyl-[S]-lysyl-[S]-lysine (Pam3-Cys-SK4). Peripheral blood mononuclear cells (PBMCs) were isolated to examine TLR2, TLR4, and p47 subunit of nicotinamide adenine dinucleotide phosphate oxidase (p47(phox)) protein expression via Western blotting. Pam3-Cys-SK4-stimulated secretion of interleukin-1β (-35%, P = .005), interleukin-6 (-32%, P = .01), and tumor necrosis factor-α (-33%, P = .06) was reduced following the HFD. High-fat diet resulted in decreased TLR2 (P = .049) and p47(phox) (P = .037) protein expression from PBMCs. To mimic lipid overload ex vivo, follow-up experiments were performed in whole blood cultures exposed to a mixture of free fatty acids for 24 hours; and surface protein expression of TLR2 and TLR4 on CD14+ monocytes was measured by flow cytometry. Free fatty acid exposure for 24 hours ex vivo reduced monocyte TLR2 levels by about 20% (P = .028). A 7-day HFD in young healthy men resulted in impaired TLR2 function. Decreased TLR2 and p47(phox) protein expression in PBMCs, possibly due to excess free fatty acids, may mediate this response. Our current findings indicate that impaired TLR2 response after HFD might be partially responsible for increased risk of infection in diet-induced obesity. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Dietary phytic acid modulates characteristics of the colonic luminal environment and reduces serum levels of proinflammatory cytokines in rats fed a high-fat diet.

    PubMed

    Okazaki, Yukako; Katayama, Tetsuyuki

    2014-12-01

    Dietary phytic acid (PA; myo-inositol [MI] hexaphosphate) is known to inhibit colon carcinogenesis in rodents. Dietary fiber, which is a negative risk factor of colon cancer, improves characteristics of the colonic environment, such as the content of organic acids and microflora. We hypothesized that dietary PA would improve the colonic luminal environment in rats fed a high-fat diet. To test this hypothesis, rats were fed diets containing 30% beef tallow with 2.04% sodium PA, 0.4% MI, or 1.02% sodium PA + 0.2% MI for 3 weeks. Compared with the control diet, the sodium PA diet up-regulated cecal organic acids, including acetate, propionate, and n-butyrate; this effect was especially prominent for cecal butyrate. The sodium PA + MI diet also significantly increased cecal butyrate, although this effect was less pronounced when compared with the sodium PA diet. The cecal ratio of Lactobacillales, cecal and fecal mucins (an index of intestinal barrier function), and fecal β-glucosidase activity were higher in rats fed the sodium PA diet than in those fed the control diet. The sodium PA, MI, and sodium PA + MI diets decreased levels of serum tumor necrosis factor α, which is a proinflammatory cytokine. Another proinflammatory cytokine, serum interleukin-6, was also down-regulated by the sodium PA and sodium PA + MI diets. These data showed that PA may improve the composition of cecal organic acids, microflora, and mucins, and it may decrease the levels of serum proinflammatory cytokines in rats fed a high-fat, mineral-sufficient diet. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. High fat diet-induced obesity reduces bone formation through activation of ppar gamma to suppress wnt/beta-catenin signaling in prepubertal rats

    USDA-ARS?s Scientific Manuscript database

    The effects of a high fat diet (HFD) and of obesity on skeletal development, maturation and remodeling remain largely unclear particularly in children. In this report, we utilized a total enteral nutrition (TEN) model to examine the direct effect of HFD feeding on bone prior to puberty. We chronical...

  16. Decreased beige adipocyte number and mitochondrial respiration coincide with reduced FGF21 gene expression in Sprague Dawley rats fed prenatal low protein and postnatal high fat diets

    USDA-ARS?s Scientific Manuscript database

    We have shown that protein malnutrition during fetal growth followed by postnatal high-fat diets results in a rapid increase in subcutaneous adipose tissue mass in the offspring contributing to development of obesity and insulin resistance. Recent studies have shown that the absence of a key transcr...

  17. A high-fat diet and the threonine-encoding allele (Thr54) polymorphism of fatty acid–binding protein 2 reduce plasma triglyceride–rich lipoproteins

    USDA-ARS?s Scientific Manuscript database

    The Thr54 allele of the fatty acid binding protein 2 (FABP2) DNA polymorphism is associated with increased triglyceride-rich lipoproteins and insulin resistance. We investigated whether the triglyceride-rich lipoprotein response to diets of varied fat content is affected by the fatty acid binding pr...

  18. High fat diet causes rebound weight gain.

    PubMed

    McNay, David E G; Speakman, John R

    2012-01-01

    Obesity is at epidemic proportions but treatment options remain limited. Treatment of obesity by calorie restriction (CR) despite having initial success often fails due to rebound weight gain. One possibility is that this reflects an increased body weight (BW) set-point. Indeed, high fat diets (HFD) reduce adult neurogenesis altering hypothalamic neuroarchitecture. However, it is uncertain if these changes are associated with weight rebound or if long-term weight management is associated with reversing this. Here we show that obese mice have an increased BW set-point and lowering this set-point is associated with rescuing hypothalamic remodelling. Treating obesity by CR using HFD causes weight loss, but not rescued remodelling resulting in rebound weight gain. However, treating obesity by CR using non-HFD causes weight loss, rescued remodelling and attenuates rebound weight gain. We propose that these phenomena may explain why successful short-term weight loss improves obesity in some people but not in others.

  19. The impact of the leucine 7 to proline 7 polymorphism of the neuropeptide Y gene on postprandial lipemia and on the response of serum total and lipoprotein lipids to a reduced fat diet.

    PubMed

    Schwab, U S; Agren, J J; Valve, R; Hallikainen, M A; Sarkkinen, E S; Jauhiainen, M; Karvonen, M K; Pesonen, U; Koulu, M; Uusitupa, M I J; Savolainen, M J

    2002-02-01

    The aim of the study was to examine the impact of the leucine7 to proline7 (Leu7Pro) polymorphism of the NPY gene on postprandial (PP) lipemia, post-heparin plasma lipoprotein lipase (LPL) and hepatic lipase (HL) activities, and the response of serum lipids to a reduced fat diet. Seven middle-aged obese subjects with Leu7Pro genotype were matched with seven subjects with Leu7Leu genotype for gender, age, apolipoprotein E phenotype and BMI. These 14 subjects participated in the oral 8 h fat tolerance test. Sixty-eight slightly obese middle-aged subjects (10 with the Leu7Pro genotype) had participated in intervention studies and consumed a reduced fat diet for 8 weeks. There were no statistically significant differences in PP areas under the curve of plasma total triglycerides (TG), chylomicron TG, VLDL-TG or insulin between the genotype groups. The TG-to-cholesterol (C) ratio in VLDL was significantly lower in the subjects with Leu7Pro genotype compared to those with the Leu7Leu genotype at time points 30 min and 1 h in the fat tolerance test. Heparin-induced activities of LPL or HL or the response of serum total or LDL-C to the reduced fat diet did not differ between the groups. The NPY genotype neither affects the magnitude of postprandial lipemia induced by a fat tolerance test nor the response of serum total lipids or lipids in different lipoprotein classes to the reduced fat diet. However, this preliminary study suggests that there might be compositional differences in the lipoprotein particles between the genotype groups that affect postprandial lipid metabolism. The Council for Health Sciences of the Academy of Finland, Kuopio University Hospital and the National Technology Agency, Finland.

  20. COH-SR4 Reduces Body Weight, Improves Glycemic Control and Prevents Hepatic Steatosis in High Fat Diet-Induced Obese Mice

    PubMed Central

    Figarola, James Lester; Singhal, Preeti; Rahbar, Samuel; Gugiu, Bogdan Gabriel; Awasthi, Sanjay; Singhal, Sharad S.

    2013-01-01

    Obesity is a chronic metabolic disorder caused by imbalance between energy intake and expenditure, and is one of the principal causative factors in the development of metabolic syndrome, diabetes and cancer. COH-SR4 (“SR4”) is a novel investigational compound that has anti-cancer and anti-adipogenic properties. In this study, the effects of SR4 on metabolic alterations in high fat diet (HFD)-induced obese C57BL/J6 mice were investigated. Oral feeding of SR4 (5 mg/kg body weight.) in HFD mice for 6 weeks significantly reduced body weight, prevented hyperlipidemia and improved glycemic control without affecting food intake. These changes were associated with marked decreases in epididymal fat mass, adipocyte hypertrophy, increased plasma adiponectin and reduced leptin levels. SR4 treatment also decreased liver triglycerides, prevented hepatic steatosis, and normalized liver enzymes. Western blots demonstrated increased AMPK activation in liver and adipose tissues of SR4-treated HFD obese mice, while gene analyses by real time PCR showed COH-SR4 significantly suppressed the mRNA expression of lipogenic genes such as sterol regulatory element binding protein-1c (Srebf1), acetyl-Coenzyme A carboxylase (Acaca), peroxisome proliferator-activated receptor gamma (Pparg), fatty acid synthase (Fasn), stearoyl-Coenzyme A desaturase 1 (Scd1), carnitine palmitoyltransferase 1a (Cpt1a) and 3-hydroxy-3-methyl-glutaryl-CoA reductase (Hmgcr), as well as gluconeogenic genes phosphoenolpyruvate carboxykinase 1 (Pck1) and glucose-6-phosphatase (G6pc) in the liver of obese mice. In vitro, SR4 activates AMPK independent of upstream kinases liver kinase B1 (LKB1) and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ). Together, these data suggest that SR4, a novel AMPK activator, may be a promising therapeutic compound for treatment of obesity, fatty liver disease, and related metabolic disorders. PMID:24376752

  1. COH-SR4 reduces body weight, improves glycemic control and prevents hepatic steatosis in high fat diet-induced obese mice.

    PubMed

    Figarola, James Lester; Singhal, Preeti; Rahbar, Samuel; Gugiu, Bogdan Gabriel; Awasthi, Sanjay; Singhal, Sharad S

    2013-01-01

    Obesity is a chronic metabolic disorder caused by imbalance between energy intake and expenditure, and is one of the principal causative factors in the development of metabolic syndrome, diabetes and cancer. COH-SR4 ("SR4") is a novel investigational compound that has anti-cancer and anti-adipogenic properties. In this study, the effects of SR4 on metabolic alterations in high fat diet (HFD)-induced obese C57BL/J6 mice were investigated. Oral feeding of SR4 (5 mg/kg body weight.) in HFD mice for 6 weeks significantly reduced body weight, prevented hyperlipidemia and improved glycemic control without affecting food intake. These changes were associated with marked decreases in epididymal fat mass, adipocyte hypertrophy, increased plasma adiponectin and reduced leptin levels. SR4 treatment also decreased liver triglycerides, prevented hepatic steatosis, and normalized liver enzymes. Western blots demonstrated increased AMPK activation in liver and adipose tissues of SR4-treated HFD obese mice, while gene analyses by real time PCR showed COH-SR4 significantly suppressed the mRNA expression of lipogenic genes such as sterol regulatory element binding protein-1c (Srebf1), acetyl-Coenzyme A carboxylase (Acaca), peroxisome proliferator-activated receptor gamma (Pparg), fatty acid synthase (Fasn), stearoyl-Coenzyme A desaturase 1 (Scd1), carnitine palmitoyltransferase 1a (Cpt1a) and 3-hydroxy-3-methyl-glutaryl-CoA reductase (Hmgcr), as well as gluconeogenic genes phosphoenolpyruvate carboxykinase 1 (Pck1) and glucose-6-phosphatase (G6pc) in the liver of obese mice. In vitro, SR4 activates AMPK independent of upstream kinases liver kinase B1 (LKB1) and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ). Together, these data suggest that SR4, a novel AMPK activator, may be a promising therapeutic compound for treatment of obesity, fatty liver disease, and related metabolic disorders.

  2. Exercise training performed simultaneously to a high-fat diet reduces the degree of insulin resistance and improves adipoR1-2/APPL1 protein levels in mice.

    PubMed

    Farias, J M; Maggi, R M; Tromm, C B; Silva, L A; Luciano, T F; Marques, S O; Lira, F S; de Souza, C T; Pinho, R A

    2012-10-10

    The aim of the present study was to evaluate the protective effect of concurrent exercise in the degree of the insulin resistance in mice fed with a high-fat diet, and assess adiponectin receptors (ADIPOR1 and ADIPOR2) and endosomal adaptor protein APPL1 in different tissues. Twenty-four mice were randomized into four groups (n = 6): chow standard diet and sedentary (C); chow standard diet and simultaneous exercise training (C-T); fed on a high-fat diet and sedentary (DIO); and fed on a high-fat diet and simultaneous exercise training (DIO-T). Simultaneously to starting high-fat diet feeding, the mice were submitted to a swimming exercise training protocol (2 x 30 minutes, with 5 minutes of interval/day), five days per week, for twelve weeks (90 days). Animals were then euthanized 48 hours after the last exercise training session, and adipose, liver, and skeletal muscle tissue were extracted for an immunoblotting analysis. IR, IRs, and Akt phosphorylation decreased in the DIO group in the three analyzed tissues. In addition, the DIO group exhibited ADIPOR1 (skeletal muscle and adipose tissue), ADIPOR2 (liver), and APPL1 reduced when compared with the C group. However, it was reverted when exercise training was simultaneously performed. In parallel, ADIPOR1 and 2 and APPL1 protein levels significantly increase in exercised mice. Our findings demonstrate that exercise training performed concomitantly to a high-fat diet reduces the degree of insulin resistance and improves adipoR1-2/APPL1 protein levels in the hepatic, adipose, and skeletal muscle tissue.

  3. Physiogenomic comparison of human fat loss in response to diets restrictive of carbohydrate or fat

    PubMed Central

    Seip, Richard L; Volek, Jeff S; Windemuth, Andreas; Kocherla, Mohan; Fernandez, Maria Luz; Kraemer, William J; Ruaño, Gualberto

    2008-01-01

    Background Genetic factors that predict responses to diet may ultimately be used to individualize dietary recommendations. We used physiogenomics to explore associations among polymorphisms in candidate genes and changes in relative body fat (Δ%BF) to low fat and low carbohydrate diets. Methods We assessed Δ%BF using dual energy X-ray absorptiometry (DXA) in 93 healthy adults who consumed a low carbohydrate diet (carbohydrate ~12% total energy) (LC diet) and in 70, a low fat diet (fat ~25% total energy) (LF diet). Fifty-three single nucleotide polymorphisms (SNPs) selected from 28 candidate genes involved in food intake, energy homeostasis, and adipocyte regulation were ranked according to probability of association with the change in %BF using multiple linear regression. Results Dieting reduced %BF by 3.0 ± 2.6% (absolute units) for LC and 1.9 ± 1.6% for LF (p < 0.01). SNPs in nine genes were significantly associated with Δ%BF, with four significant after correction for multiple statistical testing: rs322695 near the retinoic acid receptor beta (RARB) (p < 0.005), rs2838549 in the hepatic phosphofructokinase (PFKL), and rs3100722 in the histamine N-methyl transferase (HNMT) genes (both p < 0.041) due to LF; and the rs5950584 SNP in the angiotensin receptor Type II (AGTR2) gene due to LC (p < 0.021). Conclusion Fat loss under LC and LF diet regimes appears to have distinct mechanisms, with PFKL and HNMT and RARB involved in fat restriction; and AGTR2 involved in carbohydrate restriction. These discoveries could provide clues to important physiologic mechanisms underlying the Δ%BF to low carbohydrate and low fat diets. PMID:18254975

  4. Four-Week Consumption of Malaysian Honey Reduces Excess Weight Gain and Improves Obesity-Related Parameters in High Fat Diet Induced Obese Rats

    PubMed Central

    Kanyan Enchang, Francis; Nor Hussein, Fuzina

    2017-01-01

    Many studies revealed the potential of honey consumption in controlling obesity. However, no study has been conducted using Malaysian honey. In this study, we investigated the efficacy of two local Malaysian honey types: Gelam and Acacia honey in reducing excess weight gain and other parameters related to obesity. The quality of both honey types was determined through physicochemical analysis and contents of phenolic and flavonoid. Male Sprague-Dawley rats were induced to become obese using high fat diet (HFD) prior to introduction with/without honey or orlistat for four weeks. Significant reductions in excess weight gain and adiposity index were observed in rats fed with Gelam honey compared to HFD rats. Moreover, levels of plasma glucose, triglycerides, and cholesterol, plasma leptin and resistin, liver enzymes, renal function test, and relative organ weight in Gelam and Acacia honey treated groups were reduced significantly when compared to rats fed with HFD only. Similar results were also displayed in rats treated with orlistat, but with hepatotoxicity effects. In conclusion, consumption of honey can be used to control obesity by regulating lipid metabolism and appears to be more effective than orlistat. PMID:28246535

  5. Four-Week Consumption of Malaysian Honey Reduces Excess Weight Gain and Improves Obesity-Related Parameters in High Fat Diet Induced Obese Rats.

    PubMed

    Samat, Suhana; Kanyan Enchang, Francis; Nor Hussein, Fuzina; Wan Ismail, Wan Iryani

    2017-01-01

    Many studies revealed the potential of honey consumption in controlling obesity. However, no study has been conducted using Malaysian honey. In this study, we investigated the efficacy of two local Malaysian honey types: Gelam and Acacia honey in reducing excess weight gain and other parameters related to obesity. The quality of both honey types was determined through physicochemical analysis and contents of phenolic and flavonoid. Male Sprague-Dawley rats were induced to become obese using high fat diet (HFD) prior to introduction with/without honey or orlistat for four weeks. Significant reductions in excess weight gain and adiposity index were observed in rats fed with Gelam honey compared to HFD rats. Moreover, levels of plasma glucose, triglycerides, and cholesterol, plasma leptin and resistin, liver enzymes, renal function test, and relative organ weight in Gelam and Acacia honey treated groups were reduced significantly when compared to rats fed with HFD only. Similar results were also displayed in rats treated with orlistat, but with hepatotoxicity effects. In conclusion, consumption of honey can be used to control obesity by regulating lipid metabolism and appears to be more effective than orlistat.

  6. Bifidobacterium pseudocatenulatum CECT 7765 Reduces Obesity-Associated Inflammation by Restoring the Lymphocyte-Macrophage Balance and Gut Microbiota Structure in High-Fat Diet-Fed Mice

    PubMed Central

    Moya-Pérez, Angela; Neef, Alexander; Sanz, Yolanda

    2015-01-01

    Background/Objectives The role of intestinal dysbiosis in obesity-associated systemic inflammation via the cross-talk with peripheral tissues is under debate. Our objective was to decipher the mechanisms by which intervention in the gut ecosystem with a specific Bifidobacterium strain reduces systemic inflammation and improves metabolic dysfunction in obese high-fat diet (HFD) fed mice. Methods Adult male wild-type C57BL-6 mice were fed either a standard or HFD, supplemented with placebo or Bifidobacterium pseudocatenulatum CECT 7765, for 14 weeks. Lymphocytes, macrophages and cytokine/chemokine concentrations were quantified in blood, gut, liver and adipose tissue using bead-based multiplex assays. Biochemical parameters in serum were determined by ELISA and enzymatic assays. Histology was assessed by hematoxylin-eosin staining. Microbiota was analyzed by 16S rRNA gene pyrosequencing and quantitative PCR. Results B. pseudocatenulatum CECT 7765 reduced obesity-associated systemic inflammation by restoring the balance between regulatory T cells (Tregs) and B lymphocytes and reducing pro-inflammatory cytokines of adaptive (IL-17A) and innate (TNF-α) immunity and endotoxemia. In the gut, the bifidobacterial administration partially restored the HFD-induced alterations in microbiota, reducing abundances of Firmicutes and of LPS-producing Proteobacteria, paralleled to reductions in B cells, macrophages, and cytokines (IL-6, MCP-1, TNF-α, IL-17A), which could contribute to systemic effects. In adipose tissue, bifidobacterial administration reduced B cells whereas in liver the treatment increased Tregs and shifted different cytokines (MCP-1 plus ILP-10 in adipose tissue and INF-γ plus IL-1β in liver). In both tissues, the bifidobacteria reduced pro-inflammatory macrophages and, TNF-α and IL-17A concentrations. These effects were accompanied by reductions in body weight gain and in serum cholesterol, triglyceride, glucose and insulin levels and improved oral glucose

  7. Silicon Alleviates Nonalcoholic Steatohepatitis by Reducing Apoptosis in Aged Wistar Rats Fed a High-Saturated Fat, High-Cholesterol Diet.

    PubMed

    Garcimartín, Alba; López-Oliva, M Elvira; Sántos-López, Jorge A; García-Fernández, Rosa A; Macho-González, Adrián; Bastida, Sara; Benedí, Juana; Sánchez-Muniz, Francisco J

    2017-06-01

    Background: Lipoapoptosis has been identified as a key event in the progression of nonalcoholic fatty liver disease (NAFLD), and hence, antiapoptotic agents have been recommended as a possible effective treatment for nonalcoholic steatohepatitis (NASH). Silicon, included in meat as a functional ingredient, improves lipoprotein profiles and liver antioxidant defenses in aged rats fed a high-saturated fat, high-cholesterol diet (HSHCD). However, to our knowledge, the antiapoptotic effect of this potential functional meat on the liver has never been tested.Objective: This study was designed to evaluate the effect of silicon on NASH development and the potential antiapoptotic properties of silicon in aged rats.Methods: One-year-old male Wistar rats weighing ∼500 g were fed 3 experimental diets containing restructured pork (RP) for 8 wk: 1) a high-saturated fat diet, as an NAFLD control, with 16.9% total fat, 0.14 g cholesterol/kg diet, and 46.8 mg SiO2/kg (control); 2) the HSHCD as a model of NASH, with 16.6% total fat, 16.3 g cholesterol/kg diet, and 46.8 mg SiO2/kg [high-cholesterol diet (Chol-C)]; and 3) the HSHCD with silicon-supplemented RP with amounts of fat and cholesterol identical to those in the Chol-C diet, but with 750 mg SiO2/kg (Chol-Si). Detailed histopathological assessments were performed, and the NAFLD activity score (NAS) was calculated. Liver apoptosis and damage markers were evaluated by Western blotting and immunohistochemical staining.Results: Chol-C rats had a higher mean NAS (7.4) than did control rats (1.9; P < 0.001). The score in Chol-Si rats (5.4) was intermediate and different from that in both other groups (P < 0.05). Several liver apoptosis markers-including hepatocyte terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate (dUTP) nick end labeling, cytosolic cytochrome c, apoptosis-inducing factor, caspases 9 and 3, and the mitochondrial Bcl-2-associated X protein (BAX)-to-B-cell lymphoma 2 (BCL2) ratio-were 9-45% lower

  8. Lychee pulp phenolics ameliorate hepatic lipid accumulation by reducing miR-33 and miR-122 expression in mice fed a high-fat diet.

    PubMed

    Su, Dongxiao; Zhang, Ruifen; Hou, Fangli; Chi, Jianwei; Huang, Fei; Yan, Shijuan; Liu, Lei; Deng, Yuanyuan; Wei, Zhencheng; Zhang, Mingwei

    2017-02-22

    Dietary phenolics exhibit hypolipidemic activity by changing lipid metabolism-related microRNA (miRNA) expression. Quercetin 3-O-rutinoside-7-O-α-l-rhamnosidase (quercetin 3-rut-7-rha), rutin and (-)-epicatechin are the main phenolics in lychee (Litchi chinensis Sonn.) pulp. A previous study reported that quercetin 3-rut-7-rha and rutin had hypolipidemic effects. To elucidate these effects and the underlying molecular mechanisms of lychee pulp phenolics (LPPs), the hepatic mRNA and protein expression of lipid metabolism-related genes and their associated miRNAs were measured after ten weeks of treatment with a high-fat diet (HFD) alone or in combination with LPPs. The administration of LPPs significantly reduced the HFD-induced increase in serum total cholesterol and triglyceride levels but increased the HDL-c content. The mRNA and protein expression levels of hepatic adenosine triphosphate-binding cassette transporter A1 (ABCA1) and carnitine palmitoyltransferase 1a (CPT1a) were upregulated, while fatty acid synthase (FAS) mRNA and the corresponding protein expression levels were downregulated by LPPs. Furthermore, the expression levels of miR-33, which directly modulates ABCA1 and CPT1a, and miR-122, which indirectly regulates FAS, were downregulated in mouse hepatocytes. The repression of miR-33 and miR-122 is a possible molecular mechanism of the hypolipidemic effects of LPPs in the liver. Our results suggest a novel hypolipidemic mechanism of LPPs.

  9. Food Supplement Reduces Fat, Improves Flavor

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Diversified Services Corporation, seeking to develop a new nutritional fat replacement and flavor enhancement product, took advantage of the NASA Glenn Garrett Morgan Commercialization Initiative (GMCI) for technology acquisition and development and introductions to potential customers and strategic partners. Having developed and commercialized the product, named Nurtigras, the company is now marketing it through its subsidiary, H.F. Food Technologies Inc. The Nutrigras fat substitute is available in liquid, gel, or dry form and can be easily customized to the specific needs of the food manufacturer. It is primarily intended for use as a partial replacement for animal fat in beef patties and other normally high-fat meat products, and can also be used in soups, sauces, bakery items, and desserts. In addition to the nutritional benefits, the fat replacement costs less than the food it replaces, and as such can help manufacturers reduce material costs. In precooked products, Nutrigras can increase moisture content and thereby increase product yield. The company has been able to repay the help provided by NASA by contributing to the Space Agency's astronaut diet-the Nutrigras fat substitute can be used as a flavor enhancer and shelf-life extender for food on the ISS.

  10. Marie Ménard apples with high polyphenol content and a low-fat diet reduce 1,2-dimethylhydrazine-induced colon carcinogenesis in rats: effects on inflammation and apoptosis.

    PubMed

    Femia, Angelo Pietro; Luceri, Cristina; Bianchini, Francesca; Salvadori, Maddalena; Salvianti, Francesca; Pinzani, Pamela; Dolara, Piero; Calorini, Lido; Caderni, Giovanna

    2012-08-01

    Inflammation may increase cancer risk, therefore, we studied whether polyphenol-rich Marie Ménard (MM) apples with reported anti-inflammatory activity prevent 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis in rats and, likewise whether high-fat (HF) diet promoting carcinogenesis, may affect inflammation. DMH-induced rats were fed for 15 weeks with: an HF diet (23% corn oil w/w); an HF diet containing 7.6% w/w lyophilized MM (apple diet (AD)); a low-fat (LF) diet and an HF diet containing piroxicam (PXC) (0.01% w/w) as control. Mucin depleted foci (MDF), precancerous lesions in the colon, were dramatically reduced in the AD, LF, and PXC groups compared with the HF. Peritoneal macrophage activation, an index of systemic inflammation, was significantly decreased in the AD, LF, and PXC groups. TNF-α, iNOS, IL-1β, IL-6 m-RNA expression in the colon, as well as CD68 cells and plasmatic PGE2 were lower in the AD, but not in the LF group. Apoptosis in the MDF of both the AD and LF-fed rats was significantly higher than in HF rats. In conclusion, AD has a strong chemopreventive effect, reducing inflammation, and increasing apoptosis, while the chemopreventive effect of the LF diet seems mediated mainly by increased apoptosis in MDF.

  11. Blueberry Peel Extracts Inhibit Adipogenesis in 3T3-L1 Cells and Reduce High-Fat Diet-Induced Obesity

    PubMed Central

    Jang, Sun-Hee; Lee, Soo-Jung; Ko, Yeoung-Gyu; Kim, Gon-Sup; Cho, Jae-Hyeon

    2013-01-01

    This study examined the anti-obesity effect and mechanism of action of blueberry peel extracts (BPE) in 3T3-L1 cells and high-fat diet (HFD)-induced obese rats. The levels of lipid accumulation were measured, along with the changes in the expression of genes and proteins associated with adipocyte differentiation in 3T3-L1 cells. Evidenced by Oil-red O staining and triglyceride assay, BPE dose-dependently inhibited lipid accumulation at concentrations of 0, 50, and 200 µg/ml. BPE decreased the expression of the key adipocyte differentiation regulator C/EBPβ, as well as the C/EBPα and PPARγ genes, during the differentiation of preadipocytes into adipocytes. Moreover, BPE down-regulated adipocyte-specific genes such as aP2 and FAS compared with control adipocytes. The specific mechanism mediating the effects of BP revealed that insulin-stimulated phosphorylation of Akt was strongly decreased, and its downstream substrate, phospho-GSK3β, was downregulated by BPE treatment in 3T3-L1 cells. Together, these data indicated that BP exerted anti-adipogenic activity by inhibiting the expression of PPARγ and C/EBPβ and the Akt signaling pathway in 3T3-L1 adipocytes. Next, we investigated whether BP extracts attenuated HFD-induced obesity in rats. Oral administration of BPE reduced HFD-induced body weight gain significantly without affecting food intake. The epididymal or perirenal adipose tissue weights were lower in rats on an HFD plus BPE compared with the tissue weights of HFD-induced obese rats. Total cholesterol and triglyceride levels in the rats fed BPE were modestly reduced, and the HDL-cholesterol level was significantly increased in HFD plus BP-fed rats compared with those of HFD-fed rats. Taken together, these results demonstrated an inhibitory effect of BP on adipogenesis through the down-regulation of C/EBPβ, C/EBPα, and PPARγ and the reduction of the phospho-Akt adipogenic factor in 3T3-L1 cells. Moreover, BPE reduced body weight gain and inhibited fat

  12. Hematopoietic cell-restricted deletion of CD36 reduces high-fat diet-induced macrophage infiltration and improves insulin signaling in adipose tissue.

    PubMed

    Nicholls, Hayley T; Kowalski, Greg; Kennedy, David J; Risis, Steve; Zaffino, Lee A; Watson, Nadine; Kanellakis, Peter; Watt, Matthew J; Bobik, Alex; Bonen, Arend; Febbraio, Maria; Lancaster, Graeme I; Febbraio, Mark A

    2011-04-01

    The fatty acid translocase and scavenger receptor CD36 is important in the recognition and uptake of lipids. Accordingly, we hypothesized that it plays a role in saturated fatty acid-induced macrophage lipid accumulation and proinflammatory activation. In vitro, the effect of CD36 inhibition and deletion in lipid-induced macrophage inflammation was assessed using the putative CD36 inhibitor, sulfosuccinimidyl oleate (SSO), and bone marrow-derived macrophages from mice with (CD36KO) or without (wild-type) global deletion of CD36. To investigate whether deletion of macrophage CD36 would improve insulin sensitivity in vivo, wild-type mice were transplanted with bone marrow from CD36KO or wild-type mice and then fed a standard or high-fat diet (HFD) for 20 weeks. SSO treatment markedly reduced saturated fatty acid-induced lipid accumulation and inflammation in RAW264.7 macrophages. Mice harboring CD36-specific deletion in hematopoietic-derived cells (HSC CD36KO) fed an HFD displayed improved insulin signaling and reduced macrophage infiltration in adipose tissue compared with wild-type mice, but this did not translate into protection against HFD-induced whole-body insulin resistance. Contrary to our hypothesis and our results using SSO in RAW264.7 macrophages, neither saturated fatty acid-induced lipid accumulation nor inflammation was reduced when comparing CD36KO with wild-type bone marrow-derived macrophages. Although CD36 does not appear important in saturated fatty acid-induced macrophage lipid accumulation, our study uncovers a novel role for CD36 in the migration of proinflammatory phagocytes to adipose tissue in obesity, with a concomitant improvement in insulin action.

  13. Reduced adiponectin expression after high-fat diet is associated with selective up-regulation of ALDH1A1 and further retinoic acid receptor signaling in adipose tissue.

    PubMed

    Landrier, Jean-Francois; Kasiri, Elnaz; Karkeni, Esma; Mihály, Johanna; Béke, Gabriella; Weiss, Kathrin; Lucas, Renata; Aydemir, Gamze; Salles, Jérome; Walrand, Stéphane; de Lera, Angel R; Rühl, Ralph

    2017-01-01

    Adiponectin is an adipocyte-derived adipokine with potent antidiabetic, anti-inflammatory, and antiatherogenic activity. Long-term, high-fat diet results in gain of body weight, adiposity, further inflammatory-based cardiovascular diseases, and reduced adiponectin secretion. Vitamin A derivatives/retinoids are involved in several of these processes, which mainly take place in white adipose tissue (WAT). In this study, we examined adiponectin expression as a function of dietary high-fat and high-vitamin A conditions in mice. A decrease of adiponectin expression in addition to an up-regulation of aldehyde dehydrogenase A1 (ALDH1A1), retinoid signaling, and retinoic acid response element signaling was selectively observed in WAT of mice fed a normal-vitamin A, high-fat diet. Reduced adiponectin expression in WAT was also observed in mice fed a high-vitamin A diet. Adipocyte cell culture revealed that endogenous and synthetic retinoic acid receptor (RAR)α- and RARγ-selective agonists, as well as a synthetic retinoid X receptor agonist, efficiently reduced adiponectin expression, whereas ALDH1A1 expression only increased with RAR agonists. We conclude that reduced adiponectin expression under high-fat dietary conditions is dependent on 1) increased ALDH1A1 expression in adipocytes, which does not increase all-trans-retinoic acid levels; 2) further RAR ligand-induced, WAT-selective, increased retinoic acid response element-mediated signaling; and 3) RAR ligand-dependent reduction of adiponectin expression.-Landrier, J.-F., Kasiri, E., Karkeni, E., Mihály, J., Béke, G., Weiss, K., Lucas, R., Aydemir, G., Salles, J., Walrand, S., de Lera, A. R., Rühl, R. Reduced adiponectin expression after high-fat diet is associated with selective up-regulation of ALDH1A1 and further retinoic acid receptor signaling in adipose tissue. © The Author(s).

  14. Reduced adiponectin expression after high-fat diet is associated with selective up-regulation of ALDH1A1 and further retinoic acid receptor signaling in adipose tissue

    PubMed Central

    Landrier, Jean-Francois; Kasiri, Elnaz; Karkeni, Esma; Mihály, Johanna; Béke, Gabriella; Weiss, Kathrin; Lucas, Renata; Aydemir, Gamze; Salles, Jérome; Walrand, Stéphane; de Lera, Angel R.; Rühl, Ralph

    2017-01-01

    Adiponectin is an adipocyte-derived adipokine with potent antidiabetic, anti-inflammatory, and antiatherogenic activity. Long-term, high-fat diet results in gain of body weight, adiposity, further inflammatory-based cardiovascular diseases, and reduced adiponectin secretion. Vitamin A derivatives/retinoids are involved in several of these processes, which mainly take place in white adipose tissue (WAT). In this study, we examined adiponectin expression as a function of dietary high-fat and high–vitamin A conditions in mice. A decrease of adiponectin expression in addition to an up-regulation of aldehyde dehydrogenase A1 (ALDH1A1), retinoid signaling, and retinoic acid response element signaling was selectively observed in WAT of mice fed a normal–vitamin A, high-fat diet. Reduced adiponectin expression in WAT was also observed in mice fed a high–vitamin A diet. Adipocyte cell culture revealed that endogenous and synthetic retinoic acid receptor (RAR)α- and RARγ-selective agonists, as well as a synthetic retinoid X receptor agonist, efficiently reduced adiponectin expression, whereas ALDH1A1 expression only increased with RAR agonists. We conclude that reduced adiponectin expression under high-fat dietary conditions is dependent on 1) increased ALDH1A1 expression in adipocytes, which does not increase all-trans-retinoic acid levels; 2) further RAR ligand–induced, WAT-selective, increased retinoic acid response element–mediated signaling; and 3) RAR ligand–dependent reduction of adiponectin expression.—Landrier, J.-F., Kasiri, E., Karkeni, E., Mihály, J., Béke, G., Weiss, K., Lucas, R., Aydemir, G., Salles, J., Walrand, S., de Lera, A. R., Rühl, R. Reduced adiponectin expression after high-fat diet is associated with selective up-regulation of ALDH1A1 and further retinoic acid receptor signaling in adipose tissue. PMID:27729412

  15. Bardoxolone Methyl Prevents Mesenteric Fat Deposition and Inflammation in High-Fat Diet Mice

    PubMed Central

    Dinh, Chi H. L.; Szabo, Alexander; Yu, Yinghua; Camer, Danielle; Wang, Hongqin; Huang, Xu-Feng

    2015-01-01

    Mesenteric fat belongs to visceral fat. An increased deposition of mesenteric fat contributes to obesity associated complications such as type 2 diabetes and cardiovascular diseases. We have investigated the therapeutic effects of bardoxolone methyl (BARD) on mesenteric adipose tissue of mice fed a high-fat diet (HFD). Male C57BL/6J mice were administered oral BARD during HFD feeding (HFD/BARD), only fed a high-fat diet (HFD), or fed low-fat diet (LFD) for 21 weeks. Histology and immunohistochemistry were used to analyse mesenteric morphology and macrophages, while Western blot was used to assess the expression of inflammatory, oxidative stress, and energy expenditure proteins. Supplementation of drinking water with BARD prevented mesenteric fat deposition, as determined by a reduction in large adipocytes. BARD prevented inflammation as there were fewer inflammatory macrophages and reduced proinflammatory cytokines (interleukin-1 beta and tumour necrosis factor alpha). BARD reduced the activation of extracellular signal-regulated kinase (ERK) and Akt, suggesting an antioxidative stress effect. BARD upregulates energy expenditure proteins, judged by the increased activity of tyrosine hydroxylase (TH) and AMP-activated protein kinase (AMPK) and increased peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and uncoupling protein 2 (UCP2) proteins. Overall, BARD induces preventive effect in HFD mice through regulation of mesenteric adipose tissue. PMID:26618193

  16. Planning to change diet: a controlled trial of an implementation intentions training intervention to reduce saturated fat intake among patients after myocardial infarction.

    PubMed

    Luszczynska, Aleksandra; Scholz, Urte; Sutton, Stephen

    2007-11-01

    This article investigates the effects of a brief psychological intervention-implementation intentions training-on the reduction of saturated fat intake among patients after myocardial infarction (MI). One hundred fourteen patients who had experienced a first uncomplicated MI took part in the study. Data were collected at approximately 1 week after MI, 2 weeks after short-term Phase 2 cardiac rehabilitation (approximately 2 months after MI), and 6 months after rehabilitation (8 months after MI). After data collection at 2 weeks after rehabilitation, patients were randomly assigned to the control group or the intervention group (an individually delivered implementation intentions training). Daily saturated fat intake was used as the primary outcome; total fat intake and percentage of calories from fat were secondary outcomes. Repeated-measures analysis of variance showed a significant TimexGroup interaction: Compared to time before MI, patients in both groups reported a decrease in saturated fat intake at 2 weeks after rehabilitation. Those who participated in the implementation intentions intervention were able to further decrease saturated fat intake from 22.88 g at 2 months after MI to 19.71 g at 8 months after MI. Patients from the control group maintained the same level of saturated fat intake at 2 months after MI (mean=22.30) and 6 months later (mean=22.47). An individually delivered implementation intentions intervention may reduce saturated fat intake among patients after MI.

  17. Fad diets and obesity--Part IV: Low-carbohydrate vs. low-fat diets.

    PubMed

    Moyad, Mark A

    2005-02-01

    The first three parts of this series of articles covered the basics of some of the more popular low-carbohydrate diets, and the theories behind them. In the fourth and final part of this series, some of the more popular low-fat and low-calorie diets, such as the Ornish diet and Weight Watchers, are covered briefly. Recently, several clinical trials of longer duration that compared low-carbohydrate versus low-fat diets have been published. These studies demonstrate that some of the low-carbohydrate diets result in reduced weight in the short-term, but their ability to reduce weight long-term any better than low-fat or other diets has been questioned. Most popular or fad diets have some positive messages contained within them and some preliminary positive short-term results, but overall the compliance rates with any fad diet are very poor over the long-term. The decision to go on any diet should be made with a health professional who can monitor the patient closely.

  18. The saponin-rich fraction of a Gymnema sylvestre R. Br. aqueous leaf extract reduces cafeteria and high-fat diet-induced obesity.

    PubMed

    Reddy, Rama Manohar I; Latha, Pushpa B; Vijaya, Tartte; Rao, Dattatreya S

    2012-01-01

    We examined the antiobesity effect of a saponin-rich fraction of a Gymnema sylvestre R. Br. aqueous leaf extract (SGE) using cafeteria and high-fat diet-induced obese rats for a period of eight weeks. SGE was orally administered at a dose of 100 mg/kg body weight once a day to the treatment group. It significantly decreased the body weight, food consumption, visceral organs weight, and the levels of triglycerides, total cholesterol, low-density lipoproteins, very low-density lipoproteins, atherogenic index, glucose, and increased the levels of high-density lipoproteins. There was no significant difference with respect to all parameters of the study in case of normal (N) diet and N diet + SGE rats. In vitro, SGE inhibited the pancreatic lipase activity. The present study gave clear evidence that the SGE has a significant antiobese action, supporting its use in traditional medicine, and can be used as a substitute for synthetic drugs.

  19. Long-term intake of a high prebiotic fiber diet but not high protein reduces metabolic risk after a high fat challenge and uniquely alters gut microbiota and hepatic gene expression.

    PubMed

    Saha, Dolan C; Reimer, Raylene A

    2014-09-01

    A mismatch between early developmental diet and adulthood may increase obesity risk. Our objective was to determine the effects of re-matching rats to their weaning diets high in protein or fiber after transient high-fat/high-sucrose challenge in adulthood. We hypothesize that a long-term high fiber diet will be associated with a gut microbiota and hepatic gene expression reflective of reduced adiposity. Wistar rat pups were fed a control (C), high prebiotic fiber (HF), or high protein (HP) diet from 3-15 weeks of age; a high-fat/high-sucrose diet from 15-21 weeks; their respective C, HF, or HP diets from 21-25 weeks. Gut microbiota of cecal contents and hepatic gene expression were measured when rats were terminated at 25 weeks of age. HF rats had higher total bacteria, bifidobacteria and Bacteroides/Prevotella spp than C and HP at 25 weeks (P < 0.05). Firmicutes, especially Clostridium leptum, decreased in HF compared to C and HP (P < .05). The ratio of Firmicutes:Bacteroidetes was markedly lower in HF versus C and HP at 25 weeks (P < .05). HF decreased hepatic cholesterol content compared to HP and C at 25 weeks. HF and HP increased 3-hydroxy-3-methylglutaryl-CoA reductase mRNA and decreased lecithin-cholesterol acyltransferase mRNA compared to C (P < .05). In conclusion, re-matching rats to a HF but not HP diet attenuated the typical increase in Firmicutes:Bacteroidetes ratio associated with consumption of a high fat diet. Lower hepatic cholesterol with long-term HF diet intake may be related to alterations in gut microbiota and hepatic lipid metabolism. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Chronic benzylamine administration in the drinking water improves glucose tolerance, reduces body weight gain and circulating cholesterol in high-fat diet-fed mice.

    PubMed

    Iffiú-Soltész, Zsuzsa; Wanecq, Estelle; Lomba, Almudena; Portillo, Maria P; Pellati, Federica; Szöko, Eva; Bour, Sandy; Woodley, John; Milagro, Fermin I; Alfredo Martinez, J; Valet, Philippe; Carpéné, Christian

    2010-04-01

    Benzylamine is found in Moringa oleifera, a plant used to treat diabetes in traditional medicine. In mammals, benzylamine is metabolized by semicarbazide-sensitive amine oxidase (SSAO) to benzaldehyde and hydrogen peroxide. This latter product has insulin-mimicking action, and is involved in the effects of benzylamine on human adipocytes: stimulation of glucose transport and inhibition of lipolysis. This study examined whether chronic, oral administration of benzylamine could improve glucose tolerance and the circulating lipid profile without increasing oxidative stress in overweight and pre-diabetic mice. The benzylamine diffusion across the intestine was verified using everted gut sacs. Then, glucose handling and metabolic markers were measured in mice rendered insulin-resistant when fed a high-fat diet (HFD) and receiving or not benzylamine in their drinking water (3600micromol/(kgday)) for 17 weeks. HFD-benzylamine mice showed lower body weight gain, fasting blood glucose, total plasma cholesterol and hyperglycaemic response to glucose load when compared to HFD control. In adipocytes, insulin-induced activation of glucose transport and inhibition of lipolysis remained unchanged. In aorta, benzylamine treatment partially restored the nitrite levels that were reduced by HFD. In liver, lipid peroxidation markers were reduced. Resistin and uric acid, surrogate plasma markers of metabolic syndrome, were decreased. In spite of the putative deleterious nature of the hydrogen peroxide generated during amine oxidation, and in agreement with its in vitro insulin-like actions found on adipocytes, the SSAO-substrate benzylamine could be considered as a potential oral agent to treat metabolic syndrome.

  1. Exercise Improves Glucose Disposal and Insulin Signaling in Pregnant Mice Fed a High Fat Diet

    PubMed Central

    Carter, Lindsay G; Ngo Tenlep, Sara Y; Woollett, Laura A; Pearson, Kevin J

    2016-01-01

    Objective Physical activity has been suggested as a non-pharmacological intervention that can be used to improve glucose homeostasis in women with gestational diabetes mellitus. The purpose of this study was to determine the effects of voluntary exercise on glucose tolerance and body composition in pregnant high fat diet fed mice. Methods Female mice were put on a standard diet or high fat diet for two weeks. The mice were then split into 4 groups; control standard diet fed, exercise standard diet fed, control high fat diet fed, and exercise high fat diet fed. Exercise mice had voluntary access to a running wheel in their home cage one week prior to mating, during mating, and throughout pregnancy. Glucose tolerance and body composition were measured during pregnancy. Akt levels were quantified in skeletal muscle and adipose tissue isolated from saline or insulin injected pregnant dams as a marker for insulin signaling. Results Consumption of the high fat diet led to significantly increased body weight, fat mass, and impaired glucose tolerance in control mice. However, voluntary running in the high fat diet fed dams significantly reduced weight gain and fat mass and ultimately improved glucose tolerance compared to control high fat diet fed dams. Further, body weight, fat mass, and glucose disposal in exercise high fat diet dams were indistinguishable from control dams fed the standard diet. High fat diet fed exercise dams also had significantly increased insulin stimulated phosphorylated Akt expression in adipose tissue, but not skeletal muscle, compared to control dams on high fat diet. Conclusion The use of voluntary exercise improves glucose homeostasis and body composition in pregnant female mice. Thus, future studies could investigate potential long-term health benefits in offspring born to obese exercising dams. PMID:26966635

  2. Long-term effect of maternal obesity on pancreatic beta cells of offspring: reduced beta cell adaptation to high glucose and high-fat diet challenges in adult female mouse offspring.

    PubMed

    Han, J; Xu, J; Epstein, P N; Liu, Y Qi

    2005-09-01

    Obesity is a global problem with high risks of cardiovascular diseases, stroke and type 2 diabetes. It is well known that maternal obesity affects offspring by inducing malformation, functional abnormalities in many organs and cells, and by increased risk of obesity and type 2 diabetes. However, little is known about abnormalities induced by maternal obesity in pancreatic beta cells of offspring. We used mouse mothers with the Agouti yellow modification on a C57BL/6 background as a maternal model of normoglycaemic obesity, and produced Agouti-negative offspring. Half of the offspring were fed a high-fat diet. Offspring glucose tolerance was tested at different ages, and animals were killed at 50 weeks of age for islet function analysis. Maternal obesity impaired glucose tolerance in female offspring fed a high-fat diet, and significantly reduced insulin secretion at 50 weeks of age in female offspring that had been fed a normal diet and high-fat diet. Insulin secretion and glucose potentiation from these islets were significantly reduced. Islet protein, DNA and insulin contents were increased while glyceraldehyde-3-phosphate dehydrogenase and transketolase activities were reduced in female offspring. Our results indicate that maternal obesity has a long-term effect on the beta cells of female, but not of male, offspring, and leads to increased risk of gestational diabetes and type 2 diabetes in the offspring's later lives.

  3. Potential impact of sugar and fat substitutes in American diet.

    PubMed

    Foreyt, J P; Goodrick, G K

    1992-01-01

    Nonnutritive sweeteners and fat substitutes have achieved rapid consumer acceptance. This is largely due to the perception held by the public that these products are helpful in weight control and diet improvement. The cognitive component in human eating behavior makes it difficult to generalize from animal research. The effectiveness of these products in weight control has yet to be demonstrated conclusively in human research. Currently these products appear to add palatibility to reduced-calorie diets and may be helpful to weight-loss efforts as part of an overall balanced, nutritious diet and healthy life-style that includes exercise.

  4. A high-fat diet reduces ceramide synthesis by decreasing adiponectin levels and decreases lipid content by modulating HMG-CoA reductase and CPT-1 mRNA expression in the skin.

    PubMed

    Yamane, Takumi; Kobayashi-Hattori, Kazuo; Oishi, Yuichi

    2011-09-01

    Molecules involved in skin function are greatly affected by nutritional conditions. However, the mechanism linking high-fat (HF) diets with these alterations is not well understood. This study aimed to investigate the molecular changes in skin function that result from HF diets. Sprague-Dawley rats were fed HF diets for 28 days. The skin levels of ceramide, lipids and mRNAs involved in lipid metabolism were evaluated using TLC, oil red O staining and quantitative PCR, respectively. The serum adiponectin concentration was determined by ELISA. HF diets led to reduced ceramide levels and lowered skin lipid content. They also decreased mRNA levels of serine palmitoyltransferase (SPT) and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase in the skin and those of peroxisome proliferator-activated receptor-α -PPAR-α), which upregulates SPT and HMG-CoA reductase expression. The HF diets reduced the serum concentration of adiponectin, which acts upstream of PPAR-α. Finally, these diets led to increased mRNA levels of carnitine palmitoyltransferase-1, the rate-limiting enzyme that acts in β-oxidation. Our study suggests that HF diets reduce ceramide and lipid synthesis in the skin by reducing levels of SPT and HMG-CoA reductase through lowered adiponectin and PPAR-α activity. Additionally, they decrease lipid content by enhancing β-oxidation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A saturated-fat diet aggravates the outcome of traumatic brain injury on hippocampal plasticity and cognitive function by reducing brain-derived neurotrophic factor.

    PubMed

    Wu, A; Molteni, R; Ying, Z; Gomez-Pinilla, F

    2003-01-01

    We have conducted studies to determine the potential of dietary factors to affect the capacity of the brain to compensate for insult. Rats were fed with a high-fat sucrose (HFS) diet, a popularly consumed diet in industrialized western societies, for 4 weeks before a mild fluid percussion injury (FPI) or sham surgery was performed. FPI impaired spatial learning capacity in the Morris water maze, and these effects were aggravated by previous exposure of the rats to the action of the HFS diet. Learning performance decreased according to levels of brain-derived neurotrophic factor (BDNF) in individual rats, such that rats with the worst learning efficacy showed the lowest levels of BDNF in the hippocampus. BDNF immunohistochemistry localized the decreases in BDNF to the CA3 and dentate gyrus of the hippocampal formation. BDNF has a strong effect on synaptic plasticity via the action of synapsin I and cAMP-response element-binding protein (CREB), therefore, we assessed changes in synapsin I and CREB in conjunction with BDNF. Levels of synapsin I and CREB decreased in relation to decreases in BDNF levels. The combination of FPI and the HFS diet had more dramatic effects on the active state (phosphorylated) of synapsin I and CREB. There were no signs of neurodegeneration in the hippocampus of any rat group assessed with Fluoro-Jade B staining. The results suggest that FPI and diet impose a risk factor to the molecular machinery in charge of maintaining neuronal function under homeostatic and challenging situations.

  6. Comparison of reducing epicardial fat by exercise, diet or bariatric surgery weight loss strategies: a systematic review and meta-analysis.

    PubMed

    Rabkin, S W; Campbell, H

    2015-05-01

    The objectives were to determine whether epicardial fat (EAT) is subject to modification, and whether various strategies accomplish this end point and the relationship between weight loss and EAT. A systematic review of the literature following meta-analysis guidelines was conducted using the search strategy 'epicardial fat' OR 'epicardial adipose tissue' AND 'diet' OR 'exercise' OR 'bariatric surgery (BS)' OR 'change in body weight' limited to humans. Eleven articles were identified with 12 intervention approaches of which eight studies showed a statistically significant reduction in EAT. A random-effects meta-analysis suggests an overall significant reduction of 1.12 standardized units (95% CI = [-1.71, -0.54], P value < 0.01). While there is a large amount of heterogeneity across study groups, a substantial amount of this variability can be accounted for by considering intervention type and change in body mass index (BMI). These variables were incorporated into a random-effects meta-regression model. Using this analysis, significant EAT reduction occurred with diet and BS but not with exercise. BMI reductions correlated significantly with EAT reductions for diet-based interventions, i.e. for some but not all interventions. In conclusion, EAT, a factor that is significantly associated with coronary artery disease, can be modified. The type of intervention, in addition to the amount of weight loss achieved, is predictive of the amount of EAT reduction.

  7. Better dietary adherence and weight maintenance achieved by a long-term moderate-fat diet.

    PubMed

    Azadbakht, Leila; Mirmiran, Parvin; Esmaillzadeh, Ahmad; Azizi, Fereidoun

    2007-02-01

    The objective of the present study was to determine the effects of a long-term moderate-fat diet (30 % energy from fat) v. a low-fat one (20 % energy from fat) on metabolic risks. The study was a randomised, prospective 14-month trial on overweight and obese patients (eighty-nine overweight and obese men and women). The intervention was a moderate-fat diet (30 % energy) or a low-fat diet (20 % energy). The main outcome measurements were change in body weight, waist circumference, LDL-cholesterol, HDL-cholesterol, total cholesterol, TAG, and systolic and diastolic blood pressure. Forty-five subjects on the moderate-fat diet and forty-four subjects on the low-fat one were studied. Characteristics of all randomised participants were similar in both groups. After 7 months, the moderate- and low-fat diets had similar effects on cardiovascular risks. The moderate-fat diet was more successful after 14 months in reducing weight ( -5.0 (SD 2.5) kg in the moderate-fat group v. -1.2 (SD 1.1) kg in the low-fat one; P < 0.0001), waist circumference (-5.5 (SD 2.4) cm in the moderate-fat group v. - 2.3 (SD 1.3) cm in the low-fat one; P < 0.0001), and other cardiovascular risk factors as well (LDL, TAG, total cholesterol and systolic blood pressure). In conclusion, a moderate-fat energy-restricted diet in the long term might have more beneficial effects on weight maintenance and cardiovascular risk factors compared with a low-fat diet. Better dietary adherence with the moderate-fat diet may be the reason for its successful effects.

  8. Partially hydrolyzed guar gum supplement reduces high-fat diet increased blood lipids and oxidative stress and ameliorates FeCl3-induced acute arterial injury in hamsters

    PubMed Central

    Kuo, Dar-Chih; Hsu, Shih-Ping; Chien, Chiang-Ting

    2009-01-01

    Increased reactive oxygen species (ROS) and hyperlipidemia can promote arterial thrombus. We evaluated the potential of a partially hydrolyzed guar gum (PHGG) as dietary fiber on lipid profiles and FeCl3-induced arterial thrombosis in the high fat-diet fed hamsters. Our in vitro results found that PHGG is efficient to scavenge O2-•, H2O2, and HOCl. High fat-diet increased plasma triglyceride, total cholesterol, LDL, VLDL, methylguanidine and dityrosine level and accelerated FeCl3-induced arterial thrombosis formation (from 463 ± 51 to 303 ± 45 sec). Low dose PHGG supplement significantly decreased the total cholesterol, LDL, methylguanidine and dityrosine level and delayed the time for arterial thrombosis formation (528 ± 75 sec). High dose PHGG supplement decreased the level in triglyceride, total cholesterol, LDL and VLDL and further delayed the time for arterial thrombus (671 ± 36 sec). The increased Bax protein and decreased Bcl-2 and HSP-70 protein expression was found in the carotid and femoral arteries of high fat-diet hamsters. Low and high dose of PHGG supplement decreased Bax expression and increased Bcl-2 and HSP-70 protein expression. We found that FeCl3 significantly enhanced intercellular adhesion molecule-1 and 4-hydroxynonenal expression in the endothelial site of damaged artery after 150-sec FeCl3 stimulation. PHGG supplement decreased the endothelial ICAM-1 and 4-hydroxynonenal expression after 150-sec FeCl3 stimulation. Based on these results, we conclude that PHGG supplement can increase antioxidant protein expression and thus decrease oxidative stress induced arterial injury. PMID:19272178

  9. Partially hydrolyzed guar gum supplement reduces high-fat diet increased blood lipids and oxidative stress and ameliorates FeCl3-induced acute arterial injury in hamsters.

    PubMed

    Kuo, Dar-Chih; Hsu, Shih-Ping; Chien, Chiang-Ting

    2009-02-02

    Increased reactive oxygen species (ROS) and hyperlipidemia can promote arterial thrombus. We evaluated the potential of a partially hydrolyzed guar gum (PHGG) as dietary fiber on lipid profiles and FeCl3-induced arterial thrombosis in the high fat-diet fed hamsters. Our in vitro results found that PHGG is efficient to scavenge O2-*, H2O2, and HOCl. High fat-diet increased plasma triglyceride, total cholesterol, LDL, VLDL, methylguanidine and dityrosine level and accelerated FeCl3-induced arterial thrombosis formation (from 463 +/- 51 to 303 +/- 45 sec). Low dose PHGG supplement significantly decreased the total cholesterol, LDL, methylguanidine and dityrosine level and delayed the time for arterial thrombosis formation (528 +/- 75 sec). High dose PHGG supplement decreased the level in triglyceride, total cholesterol, LDL and VLDL and further delayed the time for arterial thrombus (671 +/- 36 sec). The increased Bax protein and decreased Bcl-2 and HSP-70 protein expression was found in the carotid and femoral arteries of high fat-diet hamsters. Low and high dose of PHGG supplement decreased Bax expression and increased Bcl-2 and HSP-70 protein expression. We found that FeCl3 significantly enhanced intercellular adhesion molecule-1 and 4-hydroxynonenal expression in the endothelial site of damaged artery after 150-sec FeCl3 stimulation. PHGG supplement decreased the endothelial ICAM-1 and 4-hydroxynonenal expression after 150-sec FeCl3 stimulation. Based on these results, we conclude that PHGG supplement can increase antioxidant protein expression and thus decrease oxidative stress induced arterial injury.

  10. Protonated nanostructured aluminosilicate (NSAS) reduces plasma cholesterol concentrations and atherosclerotic lesions in Apolipoprotein E deficient mice fed a high cholesterol and high fat diet

    PubMed Central

    Sivak, Olena; Darlington, Jerry; Gershkovich, Pavel; Constantinides, Panayiotis P; Wasan, Kishor M

    2009-01-01

    The aim of this work was to assess the effect of chronic administration of protonated nanostructured aluminosilicate (NSAS) on the plasma cholesterol levels and development of atherosclerotic lesions in Apolipoprotein (ApoE) deficient mice fed a high cholesterol and high fat diet. Apolipoprotein E (ApoE) deficient mice were divided into the following treatment groups: protonated NSAS 1.4% (w/w), untreated control and 2% (w/w) stigmastanol mixed with high-cholesterol/high-fat diet. Animals were treated for 12 weeks, blood samples were withdrawn every 4 weeks for determination of plasma cholesterol and triglyceride levels. At the end of the study the aortic roots were harvested for assessment of atherosclerotic lesions. NSAS at 1.4% (w/w) and stigmastanol at 2% (w/w) treatment groups showed significant decreases in plasma cholesterol concentrations at all time points relative to the control animals. The lesion sum area in 1.4% (w/w) NSAS and 2% (w/w) stigmastanol groups were significantly less from the control animals. In conclusion, in this study, the effectiveness of chronic administration of protonated NSAS material in the reduction of plasma cholesterol levels and decrease in development of atherosclerotic lesions was demonstrated in Apo-E deficient mice model. PMID:19638223

  11. Health significance of fat quality in the diet.

    PubMed

    Nettleton, Joyce A; Villalpando, Salvador; Cassani, Roberta Soares Lara; Elmadfa, Ibrahim

    2013-01-01

    This paper summarizes three presentations on the global and Latin American perspectives on the health significance of fat quality in the diet given at the 16th Congress of the Society of Latin American Nutrition in Havana, Cuba, November 11-16, 2012. Dietary fat quality contributes to the risk of the leading chronic diseases and is more important than fat quantity in reducing the risk of chronic disease mortality, especially from cardiovascular disease (CVD). In many countries, the consumption of saturated fats exceeds the recommended limit of 10% energy (%E) and intakes of polyunsaturated fats (PUFAs) are often below the recommended range of 6-11%E. Consumption of long-chain ω-3 PUFAs is especially low. In many Latin American countries, high consumption of carbohydrates, especially sugars, contributes to obesity, diabetes, hypertension and CVD, while intakes of total fat and PUFAs may be low. Thus, dietary fat recommendations must consider the dietary fat patterns of each country. Nutrition counseling can be effective in teaching individuals and families to modify their food intake patterns and control the major risk factors for chronic disease.

  12. A novel benzenediamine derivative FC98 reduces insulin resistance in high fat diet-induced obese mice by suppression of metaflammation.

    PubMed

    Chen, Changmai; Zhang, Wei; Shi, Hengfei; Zhuo, Yujie; Yang, Guang; Zhang, Aihua; Hou, Yayi; Xiang Tan, Ren; Li, Erguang

    2015-08-15

    Chronic low-grade metabolic inflammation (metaflammation) is a hallmark of metabolic diseases. The aim of this study was to determine the effectiveness of a newly identified benzenediamine derivative (FC98, PubChem CID: 14989837) against metaflammation and insulin resistance using a high fat diet-induced obesity (DIO) murine model. LPS and free fatty acids (FFAs)-induced gene expression and signaling was determined in cell culture systems. Inflammasome activation was determined by measuring IL-1β release with ELISA. The in vivo activity was assayed in C57BL/6J mice fed with a high fat diet (HFD) by measuring body weight gains, glucose tolerance and insulin sensitivity. The effect was also evaluated by H&E and IHC staining, by measuring gene expression and cytokine production, and by analysis of F4/80(+)CD11b(+) macrophage infiltration. FC98 exhibited anti-inflammatory activity against LPS- and FFAs-induced IL-1β, IL-6, and TNF-α gene expression and JNK and p38 activation. The IC50 for FC98 to inhibit NO production was determined at 6.8μM. FC98 also dose-dependently inhibited IL-1β secretion. In DIO mice, FC98 at 10 and 20mg/kg significantly improved metabolic parameters, including body weight, fat mass, glucose disposal and insulin sensitivity. The reduction in adipocyte area, F4/80(+)CD11b(+) macrophage infiltration, proinflammatory gene expression, along with JNK activation, was also significant in those groups. Additionally, FC98-treated animals had increased AKT phosphorylation in response to insulin stimulation. FC98 inhibits metaflammation and ameliorates insulin resistance mainly by inhibiting signaling pathways of proinflammatory response in DIO animals. This study highlights the significance of targeting metaflammation for obesity-attributive metabolic syndrome. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Resveratrol improves adipose insulin signaling and reduces the inflammatory response in adipose tissue of rhesus monkeys on high-fat, high-sugar diet.

    PubMed

    Jimenez-Gomez, Yolanda; Mattison, Julie A; Pearson, Kevin J; Martin-Montalvo, Alejandro; Palacios, Hector H; Sossong, Alex M; Ward, Theresa M; Younts, Caitlin M; Lewis, Kaitlyn; Allard, Joanne S; Longo, Dan L; Belman, Jonathan P; Malagon, Maria M; Navas, Placido; Sanghvi, Mitesh; Moaddel, Ruin; Tilmont, Edward M; Herbert, Richard L; Morrell, Christopher H; Egan, Josephine M; Baur, Joseph A; Ferrucci, Luigi; Bogan, Jonathan S; Bernier, Michel; de Cabo, Rafael

    2013-10-01

    Obesity is associated with a chronic, low-grade, systemic inflammation that may contribute to the development of insulin resistance and type 2 diabetes. Resveratrol, a natural compound with anti-inflammatory properties, is shown to improve glucose tolerance and insulin sensitivity in obese mice and humans. Here, we tested the effect of a 2-year resveratrol administration on proinflammatory profile and insulin resistance caused by a high-fat, high-sugar (HFS) diet in white adipose tissue (WAT) from rhesus monkeys. Resveratrol supplementation (80 and 480 mg/day for the first and second year, respectively) decreased adipocyte size, increased sirtuin 1 expression, decreased NF-κB activation, and improved insulin sensitivity in visceral, but not subcutaneous, WAT from HFS-fed animals. These effects were reproduced in 3T3-L1 adipocytes cultured in media supplemented with serum from monkeys fed HFS ± resveratrol diets. In conclusion, chronic administration of resveratrol exerts beneficial metabolic and inflammatory adaptations in visceral WAT from diet-induced obese monkeys. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Resveratrol improves adipose insulin signaling and reduces the inflammatory response in adipose tissue of rhesus monkeys on a high-fat, high-sugar diet

    PubMed Central

    Jimenez-Gomez, Yolanda; Mattison, Julie A.; Pearson, Kevin J.; Martin-Montalvo, Alejandro; Palacios, Hector H.; Sossong, Alex M.; Ward, Theresa M.; Younts, Caitlin M.; Lewis, Kaitlyn; Allard, Joanne S.; Longo, Dan L.; Belman, Jonathan P.; Malagon, Maria M.; Navas, Placido; Sanghvi, Mitesh; Moaddel, Ruin; Tilmont, Edward M.; Herbert, Richard L.; Morrell, Christopher H.; Egan, Josephine M.; Baur, Joseph A.; Ferrucci, Luigi; Bogan, Jonathan S.; Bernier, Michel; de Cabo, Rafael

    2013-01-01

    SUMMARY Obesity is associated with a chronic, low-grade, systemic inflammation that may contribute to the development of insulin resistance and type 2 diabetes. Resveratrol, a natural compound with anti-inflammatory properties, is shown to improve glucose tolerance and insulin sensitivity in obese mice and humans. Here we tested the effect of a 2-year resveratrol administration on pro-inflammatory profile and insulin resistance caused by a high-fat, high-sugar (HFS) diet in white adipose tissue (WAT) from rhesus monkeys. Eighty mg/day of resveratrol for 12-month followed by 480 mg/day for the second year decreased adipocyte size, increased sirtuin 1 expression, decreased NF-κB activation and improved insulin sensitivity in visceral but not subcutaneous WAT from HFS-fed animals. These effects were reproduced in 3T3-L1 adipocytes cultured in media supplemented with serum from monkeys fed HFS +/− resveratrol diets. In conclusion, chronic administration of resveratrol exerts beneficial metabolic and inflammatory adaptations in visceral WAT from diet-induced obese monkeys. PMID:24093677

  15. High fat, low carbohydrate diet limit fear and aggression in Göttingen minipigs.

    PubMed

    Haagensen, Annika Maria Juul; Sørensen, Dorte Bratbo; Sandøe, Peter; Matthews, Lindsay R; Birck, Malene Muusfeldt; Fels, Johannes Josef; Astrup, Arne

    2014-01-01

    High fat, low carbohydrate diets have become popular, as short-term studies show that such diets are effective for reducing body weight, and lowering the risk of diabetes and cardiovascular disease. There is growing evidence from both humans and other animals that diet affects behaviour and intake of fat has been linked, positively and negatively, with traits such as exploration, social interaction, anxiety and fear. Animal models with high translational value can help provide relevant and important information in elucidating potential effects of high fat, low carbohydrate diets on human behaviour. Twenty four young, male Göttingen minipigs were fed either a high fat/cholesterol, low carbohydrate diet or a low fat, high carbohydrate/sucrose diet in contrast to a standard low fat, high carbohydrate minipig diet. Spontaneous behaviour was observed through video recordings of home pens and test-related behaviours were recorded during tests involving animal-human contact and reaction towards a novel object. We showed that the minipigs fed a high fat/cholesterol, low carbohydrate diet were less aggressive, showed more non-agonistic social contact and had fewer and less severe skin lesions and were less fearful of a novel object than minipigs fed low fat, high carbohydrate diets. These results found in a porcine model could have important implications for general health and wellbeing of humans and show the potential for using dietary manipulations to reduce aggression in human society.

  16. Glucosamine enhances body weight gain and reduces insulin response in mice fed chow diet but mitigates obesity, insulin resistance and impaired glucose tolerance in mice high-fat diet.

    PubMed

    Hwang, Ji-Sun; Park, Ji-Won; Nam, Moon-Suk; Cho, Hyeongjin; Han, Inn-Oc

    2015-03-01

    This study investigated the potential of glucosamine (GlcN) to affect body weight gain and insulin sensitivity in mice normal and at risk for developing diabetes. Male C57BL/6J mice were fed either chow diet (CD) or a high fat diet (HFD) and the half of mice from CD and HFD provided with a solution of 10% (w/v) GlcN. Total cholesterol and nonesterified free fatty acid levels were determined. Glucose tolerance test and insulin tolerance test were performed. HepG2 human hepatoma cells or differentiated 3T3-L1 adipocytes were stimulated with insulin under normal (5 mM) or high glucose (25 mM) conditions. Effect of GlcN on 2-deoxyglucose (2-DG) uptake was determined. JNK and Akt phosphorylation and nucleocytoplasmic protein O-GlcNAcylation were assayed by Western blotting. GlcN administration stimulated body weight gain (6.58±0.82 g vs. 11.1±0.42 g), increased white adipose tissue fat mass (percentage of bodyweight, 3.7±0.32 g vs. 5.61±0.34 g), and impaired the insulin response in livers of mice fed CD. However, GlcN treatment in mice fed HFD led to reduction of body weight gain (18.02±0.66 g vs. 16.22±0.96 g) and liver weight (2.27±0.1 vs. 1.85±0.12 g). Furthermore, obesity-induced insulin resistance and impaired Akt insulin signaling in the liver were alleviated by GlcN administration. GlcN inhibited the insulin response under low (5 mM) glucose conditions, whereas it restored the insulin response for Akt phosphorylation under high (25 mM) glucose conditions in HepG2 and 3T3-L1 cells. Uptake of 2-DG increased upon GlcN treatment under 5 mM glucose compared to control, whereas insulin-stimulated 2-DG uptake decreased under 5 mM and increased under 25 mM glucose in differentiated 3T3-L1 cells. Our results show that GlcN increased body weight gain and reduced the insulin response for glucose maintenance when fed to normal CD mice, whereas it alleviated body weight gain and insulin resistance in HFD mice. Therefore, the current data support the integrative

  17. Varying protein source and quantity does not significantly improve weight loss, fat loss, or satiety in reduced energy diets among midlife adults

    USDA-ARS?s Scientific Manuscript database

    This pilot study tested whether varying protein source and quantity in a reduced energy diet would result in significant differences in weight, body composition, and renin angiotensin aldosterone system activity in midlife adults. Eighteen subjects enrolled in a 5 month weight reduction study, invol...

  18. A dairy-based high calcium diet improves glucose homeostasis and reduces further weight gain in high fat fed mice in the context of pre-existing obesity

    USDA-ARS?s Scientific Manuscript database

    Background: High dietary calcium (Ca) in the context of a dairy food matrix has been shown to reduce obesity development and associated inflammation in diet-induced obese (DIO) mice. However, the influence of Ca and dairy on these phenotypes in the context of pre-existing obesity is not known. Met...

  19. Possibility of fat addition in the rabbit diets.

    PubMed

    Abdelhamid, A M

    1989-01-01

    Baladi rabbits were fed on five-similar-experimental diets, except the replacement for starch in the 1st diet, cattle tallow in the 2nd, cotton seed oil in the 3rd, and hydrogenated palm oil in the 4th instead of 2% more wheat bran in the 5th (control) diet. All other husbandry conditions were the same for all groups of animals during the experimental period of 7 weeks. The cattle tallow in the second diet caused significant increase of feed intake, growth rate, relative weights of kidneys, lungs and heart and calcium of the tibia bone. This diet had tendency to diminish significantly blood contents of total nitrogen and cholesterol as well as vitamin A in the liver and tibia contents of silica, phosphorus and magnesium. Diet number 3 included cottonseed oil lowered blood contents of glucose, phosphorus, cholesterol and enzyme activity of glutamate oxaloacetate transaminase in the serum and specific gravity of tibia bone. On the other hand, it elevated significantly (P less than or equal to 0.01) stored vitamin A in the liver than on all other experimental diets. Feeding rabbits on diet including hydrogenated palm oil subsided liver contents of dry matter, ash and vitamin A and raised ether extract of the liver significantly. It reduced also dry matter content of the femoral muscle. Substitution for starch (instead of 2% of the diet fats or bran) increased blood content of haemoglobin and haematocrit (insignificant) but values of glucose and phosphorus as well as liver content of dry matter, content of femoral muscle of dry matter and ether extract and content of tibia bone of silica and phosphorus were significantly higher than the other experimental diets. It decreased relative weights of different organs (significantly) and liver contents of ether extract and vitamin A (insignificantly) than on control diet. It could be said that the addition of cattle tallow and cottonseed oil would be recommended to be included in rabbit diets after more studies to determine

  20. Long-term, calorie-restricted intake of a high-fat diet in rats reduces impulse control and ventral striatal D2 receptor signalling - two markers of addiction vulnerability.

    PubMed

    Adams, Wendy K; Sussman, Jacob L; Kaur, Sukhbir; D'souza, Anna M; Kieffer, Timothy J; Winstanley, Catharine A

    2015-12-01

    High impulsivity, mediated through ventral striatal dopamine signalling, represents an established risk factor for substance abuse, and may likewise confer vulnerability to pathological overeating. Mechanistically, the assumption is that trait impulsivity facilitates the initiation of maladaptive eating styles or choices. However, whether consumption of appetitive macronutrients themselves causes deficits in impulse control and striatal signalling, thereby contributing to cognitive changes permissive of overeating behaviour, has yet to be considered. We examined the effects of chronic maintenance on restricted equicaloric, but high-fat or high-sugar, diets (48 kcal/day; 60 kcal% fat or sucrose) on rats' performance in the five-choice serial reaction time task, indexing impulsivity and attention. Markers of dopamine signalling in the dorsal and ventral striatum, and plasma insulin and leptin levels, were also assessed. Rats maintained on the high-fat diet (HFD) were more impulsive, whereas the high-sugar diet (HSD) did not alter task performance. Importantly, body weight and hormone levels were similar between groups when behavioural changes were observed. Maintenance on HFD, but not on HSD, reduced the levels of dopamine D2 receptor (D2 R), cAMP response element-binding protein (CREB) and phosphophorylated CREB (Ser133) proteins in the ventral, but not dorsal, striatum. D2 R expression in the ventral striatum also negatively correlated with impulsive responding, independently of diet. These data indicate that chronic exposure to even limited amounts of high-fat foods may weaken impulse control and alter neural signalling in a manner associated with vulnerability to addictions - findings that have serious implications for the propagation of uncontrolled eating behaviour in obesity and binge-eating disorder.

  1. Reduced neurotrophic factor level is the early event before the functional neuronal deficiency in high-fat diet induced obese mice.

    PubMed

    Wang, Huanhuan; Wang, Bing; Yin, Hongping; Zhang, Guoqing; Yu, Liping; Kong, Xiangmin; Yuan, Haiying; Fang, Xingyue; Liu, Qibing; Liu, Cuiqing; Shi, Liyun

    2017-02-01

    Neurodegeneration is considered one of the possible complications of high fat diet (HFD) induced obesity. Much evidence has shown the close relationship between HFD and dementia at comparatively later stage of neuronal injury. It is so far not clear that the initial events of neuronal injury resulting from HFD and obesity. In the present research, obese mouse model achieved by 3-month HFD was applied for the investigation of the possible neuronal deficiency before the obvious cognitive decline. We found that 3-month HFD has already increased the average level of body weight of mice. But almost no obvious cognitive defect was observed. At such time point, we detected the cleavage of amyloid precursor protein (APP), including the expression and maturation level of α- and β-secretase and proteolytic fragment soluble APP. Results showed similar readout between HFD and normal diet (ND) mice. Besides, neuronal inflammation and brain-blood barrier permeability were also detected. No obvious changes could be observed between HFD and ND mice. Surprisingly, the first detectable neuronal changes was showed to be the downregulation of some neurotrpic factors, like neuronal growth factor β and brain derived neurotrophic factor, together with the activity of specific receptors, like Trk receptor phosphorylation. All the data piled up indicated that the early neuronal change in HFD induced obese mice was the downregulation of some neurotrophic factors. The results may provide the potential clue to therapeutic and preventive strategy for HFD induced cognitive decline.

  2. Perinatal Exposure to a High-Fat Diet Is Associated with Reduced Hepatic Sympathetic Innervation in One-Year Old Male Japanese Macaques

    PubMed Central

    Grant, Wilmon F.; Nicol, Lindsey E.; Thorn, Stephanie R.; Grove, Kevin L.; Friedman, Jacob E.; Marks, Daniel L.

    2012-01-01

    Our group recently demonstrated that maternal high-fat diet (HFD) consumption is associated with non-alcoholic fatty liver disease, increased apoptosis, and changes in gluconeogenic gene expression and chromatin structure in fetal nonhuman primate (NHP) liver. However, little is known about the long-term effects that a HFD has on hepatic nervous system development in offspring, a system that plays an important role in regulating hepatic metabolism. Utilizing immunohistochemistry and Real-Time PCR, we quantified sympathetic nerve fiber density, apoptosis, inflammation, and other autonomic components in the livers of fetal and one-year old Japanese macaques chronically exposed to a HFD. We found that HFD exposure in-utero and throughout the postnatal period (HFD/HFD), when compared to animals receiving a CTR diet for the same developmental period (CTR/CTR), is associated with a 1.7 fold decrease in periportal sympathetic innervation, a 5 fold decrease in parenchymal sympathetic innervation, and a 2.5 fold increase in hepatic apoptosis in the livers of one-year old male animals. Additionally, we observed an increase in hepatic inflammation and a decrease in a key component of the cholinergic anti-inflammatory pathway in one-year old HFD/HFD offspring. Taken together, these findings reinforce the impact that continuous exposure to a HFD has in the development of long-term hepatic pathologies in offspring and highlights a potential neuroanatomical basis for hepatic metabolic dysfunction. PMID:23118937

  3. Bardoxolone methyl prevents fat deposition and inflammation in the visceral fat of mice fed a high-fat diet.

    PubMed

    Dinh, Chi H L; Szabo, Alexander; Camer, Danielle; Yu, Yinghua; Wang, Hongqin; Huang, Xu-Feng

    2015-03-05

    Key features of diet-induced obesity are visceral fat deposition, macrophage infiltration and inflammation that can lead to metabolic disorders. This study examined the effects of bardoxolone methyl (BARD) in preventing obesity and inflammation in the visceral fat of mice fed high-fat diet. Male C57BL/6J mice were fed a high-fat diet (HFD), a low-fat diet (LFD, i.e., lab chow diet) or a high-fat diet supplemented with BARD (HFD/BARD) for 21weeks. BARD at a dosage of 10mg/kg body weight was administered orally in drinking water. Histology, immunohistochemistry and Western blot were used for the analysis of epididymal adipose tissue. Morphological results demonstrated that HFD fed mice treated with BARD had smaller adipocytes and fewer macrophages present in epididymal adipose tissue than the HFD group. Furthermore, BARD administration reduced the inflammatory profile in this tissue by increasing the expression of nuclear factor of kappa-light-polypeptide gene enhancer in B-cells inhibitor, alpha (IκB-α) protein and decreasing the protein expression of tumour necrosis factor alpha (TNF-α). BARD also prevented oxidative stress reflected by a reduction in stress activated proteins, including signal transducer and activator of transcription 3 (STAT3), protein kinase B (Akt), extracellular-signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). BARD administration activated the sympathetic nervous system in epididymal adipose tissue assessed by the increased synthesis of tyrosine hydroxylase (TH) and uncoupling protein 2 (UCP2). The expression of inflammatory and sympathetic nervous system proteins in BARD mice fed a HFD was equivalent to that of the LFD control mice, indicating the anti-inflammatory and anti-obesity properties of this drug. In conclusion, the oral administration of BARD in HFD mice prevented fat deposition, inflammation and oxidative stress, and improved sympathetic activity in visceral fat. This study suggests a potential therapeutic role

  4. Fat substitutes promote weight gain in rats consuming high-fat diets

    PubMed Central

    Swithers, Susan E.; Ogden, Sean B.; Davidson, Terry L.

    2011-01-01

    The use of food products designed to mimic the sensory properties of sweet and fat while providing fewer calories has been promoted as a method for reducing food intake and body weight. However, such products may interfere with one mechanism that animals use to regulate energy balance, a learned relationship between the sensory properites of food and the caloric consequences of consuming those foods. Consistent with this hypothesis, previous data have shown that providing rats with sweet tastes that are not associated with the delivery of calories using high-intensity sweeteners results in increased food intake, body weight and adiposity, but only if the diet on which they are maintained also tastes sweet. In the present experiment, we examined whether use of the fat substitute, olestra, would have similar consequences by comparing the effects of consuming high-fat, high-calorie potato chips to the effects of consuming potato chips that sometimes signalled high calories (using high-fat potato chips) and that sometimes signalled lower calories (using non-fat potato chips manufactured with the fat substitute olestra). The results demonstrated that food intake, body weight gain and adiposity were greater for rats that consumed both the high-calorie chips and the low-calorie chips with olestra compared to rats that consumed consuming only the high-calorie chips, but only if animals were also consuming a chow diet that was high in fat and calories. When animals were maintained on a low-fat chow diet, intake, weight gain, and adiposity did not differ significantly based on chip type. However, rats previously exposed to both the low-calorie chips with olestra and the high-calorie chips exhibited increased body weight gain, food intake and adiposity when they were provided with a high fat, high calorie chow diet, even though the potato chips were no longer available. This suggests that the experience with the chips containing olestra affected the ability to predict high

  5. Syzygium aromaticum ethanol extract reduces high-fat diet-induced obesity in mice through downregulation of adipogenic and lipogenic gene expression.

    PubMed

    Jung, Chang Hwa; Ahn, Jiyun; Jeon, Tae-Il; Kim, Tae Wan; Ha, Tae Youl

    2012-09-01

    Numerous medicinal plants and their derivatives have been reported to prevent obesity and related diseases. Although Syzygium aromaticum has traditionally been used as an anodyne, carminative and anthelmintic in Asian countries, its potential in the prevention and treatment of obesity has not yet been explored. Therefore, the present study investigated the anti-obesity effect of S. aromaticum ethanol extract (SAE) both in vitro and in vivo. To evaluate the anti-obesity potential of SAE in vitro, the effect of SAE treatment on adipocyte differentiation in 3T3-L1 cells was investigated. To evaluate its potential in vivo, mice were assigned to three groups: a group fed the American Institute of Nutrition AIN-76A diet (normal group), an experimental group fed a high-fat diet (HFD group) and an experimental group fed an HFD supplemented with 0.5% (w/w) SAE (HFD + SAE group). After 9 weeks of feeding, the body weight; white adipose tissue (WAT) mass; serum triglyceride (TG), total cholesterol (TC), high-density lipoprotein (HDL) cholesterol, glucose, insulin and leptin; hepatic lipid accumulation; and levels of lipid metabolism-related genes in the liver and WAT were measured. In vitro investigation of the effect of SAE treatment on 3T3-L1 cells revealed that it had efficiently inhibited the conversion of cells into adipocytes in a dose-dependent manner. In vivo investigation revealed that SAE supplementation had significantly decreased HFD-induced increases in the body weight, liver weight, WAT mass, and serum TG, TC, lipid, glucose, insulin and leptin levels. Consistent with its effects on liver weight and WAT mass, SAE supplementation was found to have suppressed the expression of lipid metabolism-related proteins, including SREBP-1, FAS, CD36 and PPARγ in the liver and WAT, in addition to downregulating mRNA levels of transcription factors including Srebp and Pparg. SAE inhibits fat accumulation in HFD-fed mice via the suppression of transcription factors integral

  6. High-Fat-Diet-Induced Deficits in Dopamine Terminal Function Are Reversed by Restoring Insulin Signaling.

    PubMed

    Fordahl, Steve C; Jones, Sara R

    2017-02-15

    Systemically released insulin crosses the blood-brain barrier and binds to insulin receptors on several neural cell types, including dopaminergic neurons. Insulin has been shown to decrease dopamine neuron firing in the ventral tegmental area (VTA), but potentiate release and reuptake at dopamine terminals in the nucleus accumbens (NAc). Here we show that prolonged consumption of a high fat diet blocks insulin's effects in the NAc, but insulin's effects are restored by inhibiting protein tyrosine phosphatase 1B, which supports insulin receptor signaling. Mice fed a high fat diet (60% kcals from fat) displayed significantly higher fasting blood glucose 160 mg/dL, compared to 101 mg/dL for control-diet-fed mice, and high-fat-diet-fed mice showed reduced blood glucose clearance after an intraperitoneal glucose tolerance test. Using fast scan cyclic voltammetry to measure electrically evoked dopamine in brain slices containing the NAc core, high-fat-diet-fed mice exhibited slower dopamine reuptake compared to control-diet-fed mice (2.2 ± 0.1 and 2.67 ± 0.15 μM/s, respectively). Moreover, glucose clearance rate was negatively correlated with Vmax. Insulin (10 nM to 1 μM) dose dependently increased reuptake rates in control-diet-fed mice compared with in the high-fat-diet group; however, the small molecule insulin receptor sensitizing agent, TCS 401 (300 nM), restored reuptake in high-fat-diet-fed mice to control-diet levels, and a small molecule inhibitor of the insulin receptor, BMS 536924 (300 nM), attenuated reuptake, similar to high-fat-diet-fed mice. These data show that a high-fat diet impairs dopamine reuptake by attenuating insulin signaling at dopamine terminals.

  7. Dairy calcium intake modifies responsiveness of fat metabolism and blood lipids to a high-fat diet.

    PubMed

    Lorenzen, Janne K; Astrup, Arne

    2011-06-28

    Intervention studies have demonstrated that saturated fat increases total and LDL-cholesterol concentrations, and it is therefore recommended that the intake of high-fat dairy products be limited. However, observational studies have found an inverse relationship between the intake of dairy products and incidence of CVD. We aimed to study whether the Ca content of dairy products influences the effect of dairy fat on the lipid profile. The study had a randomised cross-over design. Subjects (n 9) were randomised to one of the sequence of four isoenergetic 10 d diets: low Ca and low fat (LC/LF: approximately 700 mg Ca/d, 25 % of energy (fat); high Ca and LF (HC/LF: approximately 2800 mg Ca/d, 25 % of energy fat); LC and high fat (LC/HF: approximately 700 mg Ca/d, 49 E% fat); or HC and HF (approximately 2800 mg Ca/d, 49 E% fat). Blood variables were measured before and after each diet period, and faeces and urine were collected at the end of each diet period. A two-way ANOVA was used to examine the effect of Ca and fat intake. Independent of Ca intake, the HF diet increased the concentrations of total (9 %; P < 0·0001), LDL (14 %; P < 0·0001)- and HDL (13 %; P = 0·0002)-cholesterol compared with the LF diet. However, independent of fat intake, the HC diet decreased the concentrations of total (4 %; P = 0·0051) and LDL-cholesterol (10 %; P < 0·0001) but not HDL-cholesterol compared with the LC diet. In addition, total:HDL-cholesterol was decreased (5 %; P = 0·0299), and HDL:LDL was increased (12 %; P = 0·0097) by the HC diet compared with the LC diet. Faecal fat excretion was increased by both the HC (P < 0·0001) and HF (P = 0·0052) diets. In conclusion, we observed that dairy Ca seems to partly counteract the raising effect of dairy fat on total and LDL-cholesterol, without reducing HDL-cholesterol.

  8. Epigallocatechin gallate prevents inflammation by reducing macrophage infiltration and inhibiting tumor necrosis factor-α signaling in the pancreas of rats on a high-fat diet.

    PubMed

    Cao, Yanli; Bao, Suqing; Yang, Wanli; Zhang, Jin; Li, Lin; Shan, Zhongyan; Teng, Weiping

    2014-12-01

    In this study, we hypothesized that epigallocatechin gallate (EGCG) would suppress inflammation in the pancreas, and thus, we investigated the effects that EGCG administration had in the pancreas of rats fed a high-fat diet (HFD). To test our hypothesis, 30 male Sprague-Dawley rats were divided into 2 groups: normal diet (control) group and HFD group. When there was a significant difference in body weight between the 2 groups (P < .05), the HFD group was further divided into 2 subgroups: the HFD group (HFD, n = 10, 16 weeks) and the EGCG group (HFD + 3.2 g/kg EGCG, n = 10, 16 weeks). Metabolite levels and the expression of inflammatory markers (tumor necrosis factor alpha [TNF-α], interleukin 6 [IL-6], and toll-like receptor 4) were measured using standard biochemical techniques. Insulin secretion and pancreatic histology were also evaluated. Epigallocatechin gallate significantly decreased fasting insulin levels as well as the homeostasis model assessment-insulin resistance index. In the HFD group, the average glucose infusion rate and the TNF-α and IL-6 levels increased, whereas toll-like receptor 4 and TNF receptor-associated factor-6 did not. A pathologic analysis of pancreatic tissue revealed an increase in inflammatory TNF-α and infiltrating CD68+ macrophages in the islets of the HFD rats, but rarely is this observed in the in the HFD + EGCG rats. Overall, these data suggest that EGCG suppresses inflammation, partially reverses metabolic abnormalities, and ultimately increases insulin sensitivity in the pancreas of HFD rats.

  9. Betaine attenuates hepatic steatosis by reducing methylation of the MTTP promoter and elevating genomic methylation in mice fed a high-fat diet.

    PubMed

    Wang, Li-jun; Zhang, Hong-wei; Zhou, Jing-ya; Liu, Yan; Yang, Yang; Chen, Xiao-ling; Zhu, Cui-hong; Zheng, Rui-dan; Ling, Wen-hua; Zhu, Hui-lian

    2014-03-01

    Aberrant DNA methylation contributes to the abnormality of hepatic gene expression, one of the main factors in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Betaine is a methyl donor and has been considered to be a lipotropic agent. However, whether betaine supplementation improves NAFLD via its effect on the DNA methylation of specific genes and the genome has not been explored. Male C57BL/6 mice were fed either a control diet or high-fat diet (HFD) supplemented with 0%, 1% and 2% betaine in water (wt/vol) for 12 weeks. Betaine supplementation ameliorated HFD-induced hepatic steatosis in a dose-dependent manner. HFD up-regulated FAS and ACOX messenger RNA (mRNA) expression and down-regulated PPARα, ApoB and MTTP mRNA expression; however, these alterations were reversed by betaine supplementation, except ApoB. MTTP mRNA expression was negatively correlated with the DNA methylation of its CpG sites at -184, -156, -63 and -60. Methylation of these CpG sites was lower in both the 1% and 2% betaine-supplemented groups than in the HFD group (averages; 25.55% and 14.33% vs. 30.13%). In addition, both 1% and 2% betaine supplementation significantly restored the methylation capacity [S-adenosylmethionine (SAM) concentration and SAM/S-adenosylhomocysteine ratios] and genomic methylation level, which had been decreased by HFD (0.37% and 0.47% vs. 0.25%). These results suggest that the regulation of aberrant DNA methylation by betaine might be a possible mechanism of the improvements in NAFLD upon betaine supplementation.

  10. Reducing the dietary omega-6:omega-3 utilizing α-linolenic acid; not a sufficient therapy for attenuating high-fat-diet-induced obesity development nor related detrimental metabolic and adipose tissue inflammatory outcomes.

    PubMed

    Enos, Reilly T; Velázquez, Kandy T; McClellan, Jamie L; Cranford, Taryn L; Walla, Michael D; Murphy, E Angela

    2014-01-01

    To examine the effect of manipulating the omega-6:omega-3 (1∶1, 5∶1, 10∶1, and 20∶1) utilizing only α-linolenic and linoleic acid within a clinically-relevant high-fat diet (HFD) composed of up to seven sources of fat and designed to be similar to the standard American diet (MUFA∶PUFA of 2∶1, 12% and 40% of calories from saturated and total fat, respectively) on body composition, macrophage polarization, inflammation, and metabolic dysfunction in mice. Diets were administered for 20 weeks. Body composition and metabolism (HOMA index and lipid profile) were examined monthly. GC-MS was utilized to determine the eicosapentaenoic acid (EPA):arachidonic acid (AA) and the docosahexaenoic acid (DHA):AA in AT phospholipids. Adipose tissue (AT) mRNA expression of chemokines (MCP-1, Fetuin-A, CXCL14), marker genes for M1 and M2 macrophages (CD11c and CD206, respectively) and inflammatory markers (TNF-α, IL-6, IL-1β, TLR-2, TLR-4, IL-10, GPR120) were measured along with activation of NFκB, JNK, and STAT-3. Macrophage infiltration into AT was examined using F4/80 immunohistochemistry. Any therapeutic benefit produced by reducing the omega-6:omega-3 was evident only when comparing the 1∶1 to 20∶1 HFD; the 1∶1 HFD resulted in a lower TC:HDL-C and decreased AT CXCL14 gene expression and AT macrophage infiltration, which was linked to a higher EPA:AA and DHA:AA in AT phospholipids. However, despite these effects, and independent of the omega-6:omega-3, all HFDs, in general, led to similar levels of adiposity, insulin resistance, and AT inflammation. Reducing the omega-6:omega-3 using α-linolenic acid is not an effective therapy for attenuating obesity and type II diabetes mellitus development.

  11. Telmisartan prevents high-fat diet-induced hypertension and decreases perirenal fat in rats

    PubMed Central

    Wang, Yaping; Song, Yan; Suo, Meng; Jin, Xin; Tian, Gang

    2012-01-01

    We sought to investigate the effects of telmisartan on high-fat diet-induced hypertension and to explore the possible underlying mechanisms. Rats receiving high-fat diet were randomly divided into two groups, the telmisartan group (n = 9) and the high-fat diet group (n = 10). The control group consisted of age-matched rats on a regular diet (n = 10). At the end of the treatment, the body weight, blood pressure, insulin sensitivity and serum adiponectin levels of all rats were examined, and their visceral fat was extracted and weighed. Our results showed that telmisartan improved insulin resistance and dyslipidemia and increased serum adiponectin levels. Telmisartan also lowered both systolic blood pressure and diastolic blood pressure, and decreased the accumulation of perirenal fat associated with high-fat diet. Furthermore, telmisartan increased adiponectin mRNA expression in the perirenal fat. Correlation analysis showed that both systolic blood pressure and diastolic blood pressure were positively correlated with perirenal fat. These effects of telmisartan may be mediated through decreases in perirenal fat and contributed to the improvement of perirenal fat function. Our findings suggested a strong link between perirenal fat and high-fat diet-induced hypertension, and identified telmisartan as a potential drug for the treatment of obesity-related hypertension. PMID:23554752

  12. Fats & fatty acids in Indian diets: Time for serious introspection.

    PubMed

    Mani, Indu; Kurpad, Anura V

    2016-10-01

    Recommended dietary allowances for fat and fatty acid (FA) intakes are set on global standards aimed at prevention of lifestyle diseases. Yet, the fat composition of a diet is both ethnic/region specific as well as income dependent. Indian diets are predominantly vegetarian and relatively low in fat. Furthermore, the main sources of fat are of plant origin rather than animal origin. This results in a diet that is relatively low in saturated FA, high in n-6 polyunsaturated fatty acids (PUFA), and very low in n-3 PUFA. Though this appears as a good dietary composition as per global standards, the undeniable increase in the incidence of obesity, diabetes and cardiovascular diseases in India begs for an explanation. In this context, the current article is aimed at reopening the debate on fat intakes in Indian diets, with a focus on a balance between fats, carbohydrates and proteins, rather than an emphasis on individual macronutrients.

  13. Fats & fatty acids in Indian diets: Time for serious introspection

    PubMed Central

    Mani, Indu; Kurpad, Anura V.

    2016-01-01

    Recommended dietary allowances for fat and fatty acid (FA) intakes are set on global standards aimed at prevention of lifestyle diseases. Yet, the fat composition of a diet is both ethnic/region specific as well as income dependent. Indian diets are predominantly vegetarian and relatively low in fat. Furthermore, the main sources of fat are of plant origin rather than animal origin. This results in a diet that is relatively low in saturated FA, high in n-6 polyunsaturated fatty acids (PUFA), and very low in n-3 PUFA. Though this appears as a good dietary composition as per global standards, the undeniable increase in the incidence of obesity, diabetes and cardiovascular diseases in India begs for an explanation. In this context, the current article is aimed at reopening the debate on fat intakes in Indian diets, with a focus on a balance between fats, carbohydrates and proteins, rather than an emphasis on individual macronutrients. PMID:28256458

  14. Effects of low-carbohydrate, high-fat diets on apparent digestibility of minerals and trace elements in rats.

    PubMed

    Frommelt, Lena; Bielohuby, Maximilian; Stoehr, Barbara J M; Menhofer, Dominik; Bidlingmaier, Martin; Kienzle, Ellen

    2014-01-01

    Ketogenic low-carbohydrate, high-fat (LCHF) diets reduce growth and bone mineral density in children with epilepsy and in rats. Part of this effect might be due to a reduced availability of calcium in high-fat diets. The aim of this study was to determine mineral digestibility by total collection method in LCHF diets compared with a chow diet and a standard high-fat diet (HFD, high in fat and carbohydrates). Twelve-wk-old male Wistar rats were pair-fed isoenergetic amounts of either six different LCHF diets based on tallow and casein (crude fat 75%-50%, crude protein 10%-35%), with chow or with a HFD diet. Mineral-to-energy ratio was matched in all diets. Circulating parathyroid hormone was measured by immunoassay. The apparent digestibility of calcium was reduced in all HFDs (high-fat diets, LCHF diets and the HFD diet) by at least 30% compared with the chow diet (P < 0.001). Fecal calcium excretion correlated positively with fecal fat excretion, presumably because of formation of calcium soaps. Apparent digestibility of phosphorous was higher in all HFDs. This resulted in a decrease of the ratio of apparently digested calcium to apparently digested phosphorous in all HFDs below a ratio of 1:1. Plasma parathyroid hormone was not affected by any diet. The alteration of apparent calcium and phosphorus digestibility may affect the impact of HFDs on bone metabolism. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Estradiol prevents fat accumulation and overcomes leptin resistance in female high-fat diet mice.

    PubMed

    Litwak, Sara A; Wilson, Jenny L; Chen, Weiyi; Garcia-Rudaz, Cecilia; Khaksari, Mohammad; Cowley, Michael A; Enriori, Pablo J

    2014-11-01

    In premenopausal and menopausal women in particular, suboptimal estrogens have been linked to the development of the metabolic syndrome as major contributors to fat accumulation. At the same time, estrogens have been described to have a role in regulating body metabolic status. We evaluated how endogenous or administered estrogens impact on the changes associated with high-fat diet (HFD) consumption in 2 different paradigms; ovarian-intact and in ovariectomized mice. When estradiol (E2) was cyclically administered to ovarian-intact HFD-fed mice for 12 weeks, animals gained significantly less weight than ovarian-intact vehicle controls (P < .01). This difference was mainly due to a reduced caloric intake but not to an increase in energy expenditure or locomotor activity. This E2 treatment regime to mice exposed to HFD was overall able to avoid the increase of visceral fat content to levels of those found in mice fed a regular chow diet. In the ovariectomized model, the main body weight and fat content reducing action of E2 was not only through decreasing food intake but also by increasing the whole-body energy expenditure, locomotor activity, and by inducing fat oxidation. Importantly, these animals became responsive to the anorexigenic effects of leptin in contrast to the vehicle-treated and the pair-fed control groups (P < .01). Further, in vitro hypothalamic secretion experiments revealed that treatment of obese mice with E2 is able to modulate the secretion of appetite-regulating neuropeptides; namely, E2 increased the secretion of the anorectic neuropeptide α-melanocyte-stimulating hormone and decreased the secretion of the orexigenic neuropetides neuropeptide Y and Agouti-related peptide. In conclusion, differences in response to E2 treatment of HFD-fed animals depend on their endogenous estrogenic status. Overall, E2 administration overcomes arcuate leptin resistance and partially prevents fat accumulation on these mice.

  16. Dairy foods in a moderate energy restricted diet do not enhance central fat, weight & intra-abdominal adipose tissue loss or reduce adipocyte size & inflammatory markers in overweight & obese adults; Controlled feeding study

    USDA-ARS?s Scientific Manuscript database

    Background: Research on the role of dairy foods to enhance weight and fat loss when incorporated into a modest weight loss diet has had mixed results. Objective: A 15 week controlled feeding study to answer the question: do dairy foods enhance central fat and weight loss when incorporated in a mode...

  17. Fucoidan prevents high-fat diet-induced obesity in animals by suppression of fat accumulation.

    PubMed

    Kim, Mi-Ja; Jeon, Joseph; Lee, Jin-Sil

    2014-01-01

    This study examines the antiobesity effects of fucoidan in an animal model of diet-induced obesity. Mice were fed a standard diet or high-fat diet (HFD) for 5 weeks. After that, the mice were divided into four experimental groups, with 10 mice per group, including a standard diet group, HFD group, HFD containing 1% fucoidan (HFD + FUCO 1%) group and HFD containing 2% fucoidan (HFD + FUCO 2%) group. The fucoidan supplementation group had significantly decreased body-weight gain, food efficiency ratio and relative liver and epididymal fat mass compared with the HFD group. The mice supplemented with fucoidan showed significantly reduced triglyceride, total cholesterol and low-density lipoprotein levels in the plasma. Liver steatosis induced by the HFD improved in the fucoidan-supplemented group. Furthermore, fucoidan affected the down-regulation expression patterns of epididymal adipose tissue genes such as peroxisome proliferator-activated receptor γ, adipose-specific fatty acid binding protein and acetyl CoA carboxylase. Therefore, fucoidan may be considered for use in improving obesity.

  18. High dietary protein decreases fat deposition induced by high-fat and high-sucrose diet in rats.

    PubMed

    Chaumontet, Catherine; Even, Patrick C; Schwarz, Jessica; Simonin-Foucault, Angélique; Piedcoq, Julien; Fromentin, Gilles; Azzout-Marniche, Dalila; Tomé, Daniel

    2015-10-28

    High-protein diets are known to reduce adiposity in the context of high carbohydrate and Western diets. However, few studies have investigated the specific high-protein effect on lipogenesis induced by a high-sucrose (HS) diet or fat deposition induced by high-fat feeding. We aimed to determine the effects of high protein intake on the development of fat deposition and partitioning in response to high-fat and/or HS feeding. A total of thirty adult male Wistar rats were assigned to one of the six dietary regimens with low and high protein, sucrose and fat contents for 5 weeks. Body weight (BW) and food intake were measured weekly. Oral glucose tolerance tests and meal tolerance tests were performed after 4th and 5th weeks of the regimen, respectively. At the end of the study, the rats were killed 2 h after ingestion of a calibrated meal. Blood, tissues and organs were collected for analysis of circulating metabolites and hormones, body composition and mRNA expression in the liver and adipose tissues. No changes were observed in cumulative energy intake and BW gain after 5 weeks of dietary treatment. However, high-protein diets reduced by 20 % the adiposity gain induced by HS and high-sucrose high-fat (HS-HF) diets. Gene expression and transcriptomic analysis suggested that high protein intake reduced liver capacity for lipogenesis by reducing mRNA expressions of fatty acid synthase (fasn), acetyl-CoA carboxylase a and b (Acaca and Acacb) and sterol regulatory element binding transcription factor 1c (Srebf-1c). Moreover, ketogenesis, as indicated by plasma β-hydroxybutyrate levels, was higher in HS-HF-fed mice that were also fed high protein levels. Taken together, these results suggest that high-protein diets may reduce adiposity by inhibiting lipogenesis and stimulating ketogenesis in the liver.

  19. The effect of diet fat on rat adipocyte glucose transport.

    PubMed

    Ip, C; Tepperman, H M; De Witt, J; Tepperman, J

    1977-05-01

    Rats were fed either a high fat diet (67% of calories as lard) or high glucose diet (67% of calories as glucose) for 7-8 days. Basal and insulin stimulated net uptake of D glucose (D-L) and 2 deoxy D glucose uptake by free fat cells of fat rats were depressed. Net transport of D glucose (D-L) by purified adipocyte plasma membranes of fat red rats was also diminished. Incubation of fat cells from glucose fed rats with insulin before homogenization for membrane preparation increased net D glucose transport by subsequently purified membranes in two experiments to a greater extent than in similar preparations from rat fed rats. These experiments suggest that fat feeding modifies the plasma membranes of fat cells so that both glucose transport and the stimulatory effect of insulin on the process are decreased.

  20. Pubertal high fat diet: effects on mammary cancer development

    PubMed Central

    2013-01-01

    Introduction Epidemiological studies linking dietary fat intake and obesity to breast cancer risk have produced inconsistent results. This may be due to the difficulty of dissociating fat intake from obesity, and/or the lack of defined periods of exposure in these studies. The pubertal mammary gland is highly sensitive to cancer-causing agents. We assessed how high fat diet (HFD) affects inflammation, proliferative, and developmental events in the pubertal gland, since dysregulation of these can promote mammary tumorigenesis. To test the effect of HFD initiated during puberty on tumorigenesis, we utilized BALB/c mice, for which HFD neither induces obesity nor metabolic syndrome, allowing dissociation of HFD effects from other conditions associated with HFD. Methods Pubertal BALB/c mice were fed a low fat diet (12% kcal fat) or a HFD (60% kcal fat), and subjected to carcinogen 7,12-dimethylbenz[a]anthracene (DMBA)-induced tumorigenesis. Results HFD elevated mammary gland expression of inflammatory and growth factor genes at 3 and 4 weeks of diet. Receptor activator of nuclear factor kappa-B ligand (RANKL), robustly induced at 4 weeks, has direct mitogenic activity in mammary epithelial cells and, as a potent inducer of NF-κB activity, may induce inflammatory genes. Three weeks of HFD induced a transient influx of eosinophils into the mammary gland, consistent with elevated inflammatory factors. At 10 weeks, prior to the appearance of palpable tumors, there were increased numbers of abnormal mammary epithelial lesions, enhanced cellular proliferation, increased growth factors, chemokines associated with immune-suppressive regulatory T cells, increased vascularization, and elevated M2 macrophages. HFD dramatically reduced tumor latency. Early developing tumors were more proliferative and were associated with increased levels of tumor-related growth factors, including increased plasma levels of HGF in tumor-bearing animals. Early HFD tumors also had increased

  1. Mango modulates body fat and plasma glucose and lipids in mice fed a high-fat diet.

    PubMed

    Lucas, Edralin A; Li, Wenjia; Peterson, Sandra K; Brown, Angela; Kuvibidila, Solo; Perkins-Veazie, Penny; Clarke, Stephen L; Smith, Brenda J

    2011-11-01

    Consumption of fruits and vegetables has been investigated for their role in the prevention of many chronic conditions. Among the fruits, mango provides numerous bioactive compounds such as carotenoids, vitamin C and phenolic compounds, which have been shown to have antioxidant and anti-inflammatory properties. The present study examined the effects of dietary supplementation of freeze-dried mango pulp, in comparison with the hypolipidaemic drug, fenofibrate, and the hypoglycaemic drug, rosiglitazone, in reducing adiposity and alterations in glucose metabolism and lipid profile in mice fed a high-fat (HF) diet. Male C57BL/6J mice were randomly divided into six treatment groups (eight to nine/group): control (10 % energy from fat); HF (60 % energy from fat); HF+1 or 10 % freeze-dried mango (w/w); HF+fenofibrate (500 mg/kg diet); HF+rosiglitazone (50 mg/kg diet). After 8 weeks of treatment, mice receiving the HF diet had a higher percentage body fat (P = 0·0205) and epididymal fat mass (P = 0·0037) compared with the other treatment groups. Both doses of freeze-dried mango, similar to fenofibrate and rosiglitazone, prevented the increase in epididymal fat mass and the percentage of body fat. Freeze-dried mango supplementation at the 1 % dose improved glucose tolerance as shown by approximately 35 % lower blood glucose area under the curve compared with the HF group. Moreover, freeze-dried mango lowered insulin resistance, as indicated by the homeostasis model assessment of insulin resistance, to a similar extent as rosiglitazone and modulated NEFA. The present findings demonstrate that incorporation of freeze-dried mango in the diet of mice improved glucose tolerance and lipid profile and reduced adiposity associated with a HF diet.

  2. Gut carbohydrate metabolism instead of fat metabolism regulated by gut microbes mediates high-fat diet-induced obesity.

    PubMed

    Li, M; Gu, D; Xu, N; Lei, F; Du, L; Zhang, Y; Xie, W

    2014-09-01

    The aim of this study was to investigate the mechanisms underlying the involvement of gut microbes in body weight gain of high-fat diet-fed obesity-prone (obese) and obesity-resistant (lean) mice. C57BL/6 mice were grouped into an obese group, a lean group and a normal control group. Both obese and lean mice were fed a high-fat diet while normal control mice were fed a normal diet; they were observed for six weeks. The results showed that lean mice had lower serum lipid levels, body fat and weight gain than obese mice. The ATPase, succinate dehydrogenase and malate dehydrogenase activities in liver as well as oxygen expenditure and rectal temperature of lean mice were significantly lower than in obese mice. As compared with obese mice, the absorption of intestinal carbohydrates but not of fats or proteins was significantly attenuated in lean mice. Furthermore, 16S rRNA abundances of faecal Firmicutes and Bacteroidetes were significantly reduced in lean mice. In addition, faecal β-D-galactosidase activity and short chain fatty acid levels were significantly decreased in lean mice. Expressions of peroxisome proliferator-activated receptor gamma 2 and CCAAT/enhancer binding protein-β in visceral adipose tissues were significantly downregulated in lean mice as compared with obese mice. Resistance to dyslipidaemia and high-fat diet-induced obesity was mediated by ineffective absorption of intestinal carbohydrates but not of fats or proteins, probably through reducing gut Bacteroidetes and Firmicutes contents and lowering of gut carbohydrate metabolism. The regulation of intestinal carbohydrates instead of fat absorption by gut microbes might be a potential treatment strategy for high-fat diet-induced obesity.

  3. Effects of adrenalectomy on energy balance in obese (ob/ob) mice fed high carbohydrate or high fat diets.

    PubMed

    Grogan, C K; Kim, H K; Romsos, D R

    1987-06-01

    We reported previously that adrenalectomy reduced the energy density of body weight gain (an indicator of proportional gain in lean and fat tissue) and the efficiency of energy retention in obese (ob/ob) mice to values approximating those in lean mice, but that adrenalectomy had much less influence on these parameters in ob/ob mice fed a purified high fat diet. To determine if fat was the exclusive factor in the purified high fat diet that negated effects of adrenalectomy, ob/ob mice were fed a purified high carbohydrate (glucose) diet identical in composition to the high fat diet, except for the fat/carbohydrate ratio. Responses of adrenalectomized ob/ob mice fed the purified high glucose diet from 4 to 7 wk of age mimicked those of mice fed the purified high fat diet, not those of mice fed the high carbohydrate nonpurified diet. Plasma glucose responses to a glucose load in adrenalectomized ob/ob mice paralleled the diet-dependent changes in energy balance. These results demonstrate that diet composition interacts with adrenal secretions to influence energy and glucose metabolism in ob/ob mice; consumption of either a purified high glucose or high fat diet negates the beneficial effects of adrenalectomy on energy and glucose metabolism observed when adrenalectomized ob/ob mice consume a nonpurified diet.

  4. Alternate day fasting (ADF) with a high-fat diet produces similar weight loss and cardio-protection as ADF with a low-fat diet.

    PubMed

    Klempel, Monica C; Kroeger, Cynthia M; Varady, Krista A

    2013-01-01

    Alternate day fasting (ADF) with a low-fat (LF) diet is effective for weight loss and cardio-protection. However, the applicability of these findings is questionable as the majority of Americans consume a high-fat (HF) diet. The goal of this study was to determine if these beneficial changes in body weight and coronary heart disease (CHD) risk can be reproduced if an HF background diet is used in place of an LF diet during ADF. Thirty-two obese subjects were randomized to an ADF-HF (45% fat) or ADF-LF diet (25% fat), which consisted of two phases: 1) a 2-week baseline weight maintenance period, and 2) an 8-week ADF weight loss period. All food was provided during the study. Body weight was reduced (P<0.0001) by ADF-HF (4.8%±1.1%) and by ADF-LF (4.2%±0.8%). Fat mass decreased (P<0.0001) by ADF-HF (5.4±1.5 kg) and ADF-LF (4.2±0.6 kg). Fat free mass remained unchanged. Waist circumference decreased (P<0.001) by ADF-HF (7.2±1.5 cm) and ADF-LF (7.3±0.9 cm). LDL cholesterol and triacylglycerol concentrations were reduced (P<0.001) by both interventions (ADF-HF: 18.3%±4.6%, 13.7%±4.8%; and ADF-LF: 24.8%±2.6%, 14.3%±4.4%). HDL cholesterol, blood pressure, and heart rate remained unchanged. There were no between-group differences for any parameter. These findings suggest that an ADF-HF diet is equally as effective as an ADF-LF diet in helping obese subjects lose weight and improve CHD risk factors. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Prevention and reversal of diet-induced leptin resistance with a sugar-free diet despite high fat content.

    PubMed

    Shapiro, Alexandra; Tümer, Nihal; Gao, Yongxin; Cheng, Kit-Yan; Scarpace, Philip J

    2011-08-01

    Chronic consumption of a Western-type diet, containing both elevated sugar and fat, results in leptin resistance. We hypothesised that fructose, as part of the sugar component of Western-type diets, is one causative ingredient in the development of leptin resistance and that removal of this component will prevent leptin resistance despite high fat (HF) content. We fed rats a sugar-free (SF), 30 % HF (SF/HF) diet or a 40 % high-fructose (HFr), 30 % HF (HFr/HF) diet for 134 d. The HFr/HF diet resulted in impaired anorexic and body-weight responses to both peripherally (0·6 mg/kg, assessed on day 65 of the diet) and centrally (1·5 μg/d, assessed on days 129-134) administered leptin, whereas SF/HF-fed rats were fully leptin responsive. At day 70, half the HFr/HF-fed animals were switched to the SF/HF diet, reversing the leptin resistance (assessed 18 d after the diet switch). The HFr/HF diet elevated serum leptin and reduced adiponectin, and levels were restored abruptly at day 3 after switching to the SF/HF diet. These data demonstrate that a diet containing both HFr and fat leads to leptin resistance, while an isoenergetic SF/HF diet does not. Moreover, removal of fructose from this diet reverses the leptin resistance and the elevated leptin, suggesting a cause-and-effect relationship. These data suggest that fructose is the bioactive component of a HF/high-sugar diet that is essential for the induction of leptin resistance.

  6. The fat:carbohydrate energy ratio of the weaning diet programs later susceptibility to obesity in male sprague dawley rats.

    PubMed

    Shahkhalili, Yasaman; Macé, Katherine; Moulin, Julie; Zbinden, Irene; Acheson, Kevin J

    2011-01-01

    Dietary fat intake, which is high during suckling, is markedly reduced when food and drinks are introduced into the diet. We investigated whether alterations in the fat:carbohydrate (CHO) content of the weaning diet influenced the later development of adiposity and insulin sensitivity. Three groups of male rats (24/group) were fed from age 16-37 d (phase I) with weaning diets varying in their fat:CHO energy (E) ratios, 10:70 low-fat, high-CHO (LFHC); 30:50 medium-fat, medium-CHO (MFMC), and 60:30 high-fat, high-CHO (HFLC), on an isocaloric basis. Then, all groups consumed ad libitum first a low-fat diet (13% fat E) for 30 wk (phase II) and subsequently a high-fat diet (45% fat E) for another 18 wk (phase III). At the end of phase I, the group fed the HFLC diet demonstrated higher plasma glucose and insulin responses to an oral glucose tolerance test (P < 0.05), but this effect was transient and did not persist into adulthood (phases II and III). By contrast, when challenged with a high-fat diet later in life (age 35.3-53.3 wk), the LFHC group had greater gains in weight (as percent initial weight) and body fat (as absolute and percent body weight) than the other 2 groups that had been weaned with diets higher in fat (P < 0.04 for all). These results provide evidence that metabolic programming by altering the dietary fat:CHO ratio can occur during the weaning period and emphasizes the importance of the fat:CHO ratio of the complementary diet and its relation to the susceptibility to develop adiposity later in life.

  7. Gestational exercise protects adult male offspring from high-fat diet induced hepatic steatosis

    PubMed Central

    Sheldon, Ryan D.; Blaize, A. Nicole; Fletcher, Justin A.; Pearson, Kevin J.; Donkin, Shawn; Newcomer, Sean C.; Rector, R. Scott

    2015-01-01

    Background & Aims Mounting evidence indicates that maternal exercise confers protection to adult offspring against various diseases. Here we hypothesized that maternal exercise during gestation would reduce high fat diet (HFD) induced hepatic steatosis in adult rat offspring. Methods Following conception, pregnant dams were divided into either voluntary wheel running exercise (GE) or wheel-locked sedentary (GS) groups throughout gestation (days 4-21). Post-weaning, offspring received either normal chow diet (ND; 10% fat, 70% carbohydrate, 20% protein) or high-fat diet (HFD; 45% fat, 35% carbohydrate, and 20% protein) until sacrifice at 4-or 8-months of age. Results GE did not affect offspring birth weight or litter size. HFD feeding in offspring increased weight gain, % body fat, and glucose tolerance test area under the curve (GTT-AUC). Male offspring from GE dams had reduced % body fat across all ages (p < 0.05). In addition, 8-mo male offspring from GE dams were protected against HFD-induced hepatic steatosis, which was associated with increased markers of hepatic mitochondrial biogenesis (PGC-1α and TFAM), autophagic potential (ATG12:ATG5 conjugation) and hepatic triacylglycerol secretion (MTTP). Conclusions The current study provides the first evidence that gestational exercise can reduce susceptibility to high fat diet induced hepatic steatosis in adult male offspring. PMID:26325536

  8. The N-reductive system composed of mitochondrial amidoxime reducing component (mARC), cytochrome b5 (CYB5B) and cytochrome b5 reductase (CYB5R) is regulated by fasting and high fat diet in mice.

    PubMed

    Jakobs, Heyka H; Mikula, Michal; Havemeyer, Antje; Strzalkowska, Adriana; Borowa-Chmielak, Monika; Dzwonek, Artur; Gajewska, Marta; Hennig, Ewa E; Ostrowski, Jerzy; Clement, Bernd

    2014-01-01

    The mitochondrial amidoxime reducing component mARC is the fourth mammalian molybdenum enzyme. The protein is capable of reducing N-oxygenated structures, but requires cytochrome b5 and cytochrome b5 reductase for electron transfer to catalyze such reactions. It is well accepted that the enzyme is involved in N-reductive drug metabolism such as the activation of amidoxime prodrugs. However, the endogenous function of the protein is not fully understood. Among other functions, an involvement in lipogenesis is discussed. To study the potential involvement of the protein in energy metabolism, we tested whether the mARC protein and its partners are regulated due to fasting and high fat diet in mice. We used qRT-PCR for expression studies, Western Blot analysis to study protein levels and an N-reductive biotransformation assay to gain activity data. Indeed all proteins of the N-reductive system are regulated by fasting and its activity decreases. To study the potential impact of these changes on prodrug activation in vivo, another mice experiment was conducted. Model compound benzamidoxime was injected to mice that underwent fasting and the resulting metabolite of the N-reductive reaction, benzamidine, was determined. Albeit altered in vitro activity, no changes in the metabolite concentration in vivo were detectable and we can dispel concerns that fasting alters prodrug activation in animal models. With respect to high fat diet, changes in the mARC proteins occur that result in increased N-reductive activity. With this study we provide further evidence that the endogenous function of the mARC protein is linked with lipid metabolism.

  9. Tissue Specific Expression Of Sprouty1 In Mice Protects Against High Fat Diet Induced Fat Accumulation, Bone Loss, And Metabolic Dysfunction

    PubMed Central

    Urs, Sumithra; Henderson, Terry; Le, Phuong; Rosen, Clifford J.; Liaw, Lucy

    2012-01-01

    We recently characterized Sprouty1 (Spry1), a growth factor signaling inhibitor as a regulator of marrow progenitor cells promoting osteoblast differentiation at the expense of adipocytes. Adipose tissue specific Spry1 expression in mice resulted in increased bone mass and reduced body fat while conditional knockout of Spry1 had the opposite effect with decreased bone and increased body fat. Because Spry1 suppresses normal fat development, we tested the hypothesis that Spry1 expression prevents high fat diet-induced obesity, bone loss, and associated lipid abnormalities and demonstrate that Spry1 has a long-term protective effect on mice fed a high caloric diet. We studied diet-induced obesity in mice with fatty acid binding promoter (aP2)-driven expression or conditional knockout of Spry1 in adipocytes. Phenotyping was performed by whole body dual-energy X-ray absorptiometry, microCT, histology and blood analysis. In conditional Spry1 null mice, high fat diet increased body fat by 40%, impaired glucose regulation, and led to liver steatosis. However, over-expression of Spry1 led to 35% lower body fat, reduced bone loss, and normal metabolic function compared to single transgenics. This protective phenotype was associated with decreased circulating insulin (70%) and leptin (54%) compared to controls on a high fat diet. Additionally, Spry1 expression decreased adipose tissue inflammation by 45%. We show that conditional Spry1 expression in adipose tissue protects against high fat diet-induced obesity and associated bone loss. PMID:22142492

  10. Effects of preoperative exposure to a high-fat versus a low-fat diet on ingestive behavior after gastric bypass surgery in rats.

    PubMed

    Seyfried, Florian; Miras, Alexander D; Bueter, Marco; Prechtl, Christina G; Spector, Alan C; le Roux, Carel W

    2013-11-01

    The consumption of high fat and sugar diets is decreased after gastric bypass surgery (GB). The mechanisms remain unclear, with tests of motivated behavior toward fat and sugar producing conflicting results in a rat model. These discrepancies may be due to differences in presurgical maintenance diets. The authors used their GB rat model to determine whether the fat content of preoperative maintenance diets affects weight loss, calorie intake, and macronutrient selection after surgery. Male Wistar rats were either low-fat diet fed (LFDF) with normal chow or high-fat diet fed (HFDF) before randomization to GB or sham surgery. In food preference test 1, the animals were offered the choice of a vegetable drink (V8) or a high-calorie liquid (Ensure), and in food preference test 2, they could choose normal chow or a solid high-fat diet. The GB groups did not differ significantly in terms of body weight loss or caloric intake. In food preference test 1, both groups responded similarly by reducing their preference for Ensure and increasing their preference for V8. In food preference test 2, the HFDF-GB rats reduced their preference for a solid high-fat diet gradually compared with the immediate reduction observed in the LFDF-GB rats. The consumption of presurgical maintenance diets with different fat contents did not affect postoperative weight loss outcomes. Both the LFDF-GB and HFDF-GB rats exhibited behaviors consistent with the possible expression of a conditioned taste aversion to a high-fat stimulus. These results suggest that for some physiologic parameters, low-fat-induced obesity models can be used for the study of changes after GB and have relevance to many obese humans who consume high-calorie but low-fat diets.

  11. Reduced or modified dietary fat for preventing cardiovascular disease

    PubMed Central

    Hooper, Lee; Summerbell, Carolyn D; Thompson, Rachel; Sills, Deirdre; Roberts, Felicia G; Moore, Helen; Smith, George Davey

    2014-01-01

    .98, 95% CI 0.93 to 1.04, 71,790 participants) or cardiovascular mortality (RR 0.94, 95% CI 0.85 to 1.04, 65,978 participants). This did not alter with sub-grouping or sensitivity analysis. Few studies compared reduced with modified fat diets, so direct comparison was not possible. Authors’ conclusions The findings are suggestive of a small but potentially important reduction in cardiovascular risk on modification of dietary fat, but not reduction of total fat, in longer trials. Lifestyle advice to all those at risk of cardiovascular disease and to lower risk population groups, should continue to include permanent reduction of dietary saturated fat and partial replacement by unsaturates. The ideal type of unsaturated fat is unclear. PMID:21735388

  12. Reduced or modified dietary fat for preventing cardiovascular disease.

    PubMed

    Hooper, Lee; Summerbell, Carolyn D; Thompson, Rachel; Sills, Deirdre; Roberts, Felicia G; Moore, Helen J; Smith, George Davey

    2016-04-01

    1.04, 65,978 participants). This did not alter with sub-grouping or sensitivity analysis. Few studies compared reduced with modified fat diets, so direct comparison was not possible. The findings are suggestive of a small but potentially important reduction in cardiovascular risk on modification of dietary fat, but not reduction of total fat, in longer trials. Lifestyle advice to all those at risk of cardiovascular disease and to lower risk population groups, should continue to include permanent reduction of dietary saturated fat and partial replacement by unsaturates. The ideal type of unsaturated fat is unclear.

  13. Reduced or modified dietary fat for preventing cardiovascular disease.

    PubMed

    Hooper, Lee; Summerbell, Carolyn D; Thompson, Rachel; Sills, Deirdre; Roberts, Felicia G; Moore, Helen; Davey Smith, George

    2011-07-06

    .85 to 1.04, 65,978 participants). This did not alter with sub-grouping or sensitivity analysis.Few studies compared reduced with modified fat diets, so direct comparison was not possible. The findings are suggestive of a small but potentially important reduction in cardiovascular risk on modification of dietary fat, but not reduction of total fat, in longer trials. Lifestyle advice to all those at risk of cardiovascular disease and to lower risk population groups, should continue to include permanent reduction of dietary saturated fat and partial replacement by unsaturates. The ideal type of unsaturated fat is unclear.

  14. Reduced or modified dietary fat for preventing cardiovascular disease.

    PubMed

    Hooper, Lee; Summerbell, Carolyn D; Thompson, Rachel; Sills, Deirdre; Roberts, Felicia G; Moore, Helen J; Davey Smith, George

    2012-05-16

    .85 to 1.04, 65,978 participants). This did not alter with sub-grouping or sensitivity analysis.Few studies compared reduced with modified fat diets, so direct comparison was not possible. The findings are suggestive of a small but potentially important reduction in cardiovascular risk on modification of dietary fat, but not reduction of total fat, in longer trials. Lifestyle advice to all those at risk of cardiovascular disease and to lower risk population groups, should continue to include permanent reduction of dietary saturated fat and partial replacement by unsaturates. The ideal type of unsaturated fat is unclear.

  15. High Fat Diet-induced Obesity Enhances Allograft Rejection

    PubMed Central

    Molinero, Luciana L; Yin, Dengping; Lei, Kevin; Chen, Luqiu; Wang, Ying; Chong, Anita S; Alegre, Maria-Luisa

    2016-01-01

    Background Obesity promotes a state of low-grade inflammation that exacerbates chronic inflammatory diseases such as asthma and inflammatory bowel disease. In transplantation, the survival of organs transplanted into obese patients is reduced compared to allografts in lean recipients. However, whether this is due to increased alloimmunity remains to be addressed conclusively. Methods We used a mouse model of high fat diet (HFD)-induced obesity and assessed immune responses to allogeneic stimulation in vitro, allogeneic splenocyte immunization in vivo, and allogeneic heart transplantation. Results Our results indicate that HFD altered the composition and phenotype of splenic antigen-presenting cells (APCs) that led to their enhanced capacity to stimulate T cells. Immunization with allogeneic splenocytes in vivo resulted in increased alloreactivity, as determined by IFNγ production. Moreover, cardiac allograft rejection in HFD mice was modestly accelerated compared to aged-matched control animals fed a low fat diet (LFD), correlating with enhanced alloreactive T cell function. Conclusions Our results highlight the increased alloresponse triggered by HFD-induced obesity and its negative impact on transplant outcome. PMID:27007226

  16. High-Fat Diet-Induced Obesity Enhances Allograft Rejection.

    PubMed

    Molinero, Luciana L; Yin, Dengping; Lei, Yuk Man; Chen, Luqiu; Wang, Ying; Chong, Anita S; Alegre, Maria-Luisa

    2016-05-01

    Obesity promotes a state of low-grade inflammation that exacerbates chronic inflammatory diseases, such as asthma and inflammatory bowel disease. In transplantation, the survival of organs transplanted into obese patients is reduced compared with allografts in lean recipients. However, whether this is due to increased alloimmunity remains to be addressed conclusively. We used a mouse model of high-fat diet (HFD)-induced obesity and assessed immune responses to allogeneic stimulation in vitro, allogeneic splenocyte immunization in vivo, and allogeneic heart transplantation. Our results indicate that HFD altered the composition and phenotype of splenic antigen-presenting cells that led to their enhanced capacity to stimulate T cells. Immunization with allogeneic splenocytes in vivo resulted in increased alloreactivity, as determined by IFNγ production. Moreover, cardiac allograft rejection in HFD mice was modestly accelerated compared to aged-matched control animals fed a low-fat diet, correlating with enhanced alloreactive T cell function. Our results highlight the increased alloresponse triggered by HFD-induced obesity and its negative impact on transplant outcome.

  17. Dietary intake of cod and scallop reduces atherosclerotic burden in female apolipoprotein E-deficient mice fed a Western-type high fat diet for 13 weeks.

    PubMed

    Jensen, Ida-Johanne; Walquist, Mari; Liaset, Bjørn; Elvevoll, Edel O; Eilertsen, Karl-Erik

    2016-01-01

    It is now increasingly recognized that the beneficial effects of seafood consumption is not limited to lipids and fatty acid, but that the protein part, i.e., peptides and amino acids, together with vitamins and even unknown bioactive constituents also are important for disease prevention. This study was designed to evaluate the putative anti-atherogenic effects of different protein sources (a lean seafood and a nonseafood) in apolipoprotein E-deficient (apoE(-/-)) mice. Twenty-four 5-week-old female apoE(-/-) mice were fed Western type diets containing chicken or a combination of cod and scallops as dietary protein sources for 13 weeks. Atherosclerotic plaque burden, weight, serum levels of leptin, glucose and LDL cholesterol as well as gene expressions from liver and heart were evaluated. Statistical analyses were performed using SPSS. Differences between the variables were evaluated using independent t-test or Mann-Whitney U test for normally and non-normally distributed variables, respectively. Normality was defined by the Shapiro-Wilk test. The mice fed cod-scallop had a 24 % (p < 0.05) reduced total aorta atherosclerotic plaque burden compared to the chicken fed group, whereas the reduction in plaque in the less lesion prone thoracic and abdominal parts of the descending aorta were 46 % (p < 0.05) and 56 % (p < 0.05), respectively. In addition, mice fed cod-scallop gained less weight, and had lower serum levels of leptin, glucose and LDL cholesterol, compared to those fed chicken. Analysis of expression of the genes from liver and heart showed that hepatic endogenous antioxidant paraoxonase 2 (Pon2 gene) and the vascular cell adhesion molecule VCAM-1 (Vcam1 gene) were down regulated in mice fed cod-scallop compared to mice fed chicken. The present study revealed a metabolic beneficial effect of lean seafood compared to chicken, as atherosclerotic plaque burden, serum glucose, leptin and LDL cholesterol levels were reduced in mice fed cod-scallop.

  18. Effects of Diet and Exercise on Metabolic Disturbances in High Fat Diet-Fed Mice

    PubMed Central

    Vieira, Victoria J.; Valentine, Rudy J.; Wilund, Kenneth R.; Woods, Jeffrey A.

    2009-01-01

    Consumption of a high-fat diet (HFD) is associated with white adipose tissue (WAT) inflammation, which contributes to key components of the metabolic syndrome, including insulin resistance (IR) and hepatic steatosis (HS). To determine the differential effects of exercise training (EX), low-fat diet (LFD), and their combination on WAT inflammation, Balb/cByJ male mice (n=34) were fed an HFD for 12 wks before they were randomized into one of 4 intervention groups: HFD-EX, LFD-EX, HFD-sedentary (SED), or LFD-SED. EX mice performed 12 wks of exercise training on a motorized treadmill (1hr/d, 5d/wk, 12m/min, 5% grade, ∼65%VO2 max), while SED mice remained sedentary in their home cages. WAT gene expression of adipokines was assessed using rt-PCR. IR was measured using HOMA-IR, and HS via hepatic triglyceride content. EX significantly reduced (53%) WAT gene expression of MCP-1, and LFD significantly reduced (50%) WAT gene expression of the macrophage specific marker, F4/80 as well as the adipocytokine IL-1ra (25%). EX independently improved IR, while both EX and LFD improved HS. These findings suggest that both diet and exercise have unique beneficial effects on WAT inflammatory markers and the mechanism by which each treatment improves metabolic complications associated with chronic consumption of an HFD may be different. PMID:19362852

  19. Visceral adiposity and metabolic syndrome after very high-fat and low-fat isocaloric diets: a randomized controlled trial.

    PubMed

    Veum, Vivian L; Laupsa-Borge, Johnny; Eng, Øyvin; Rostrup, Espen; Larsen, Terje H; Nordrehaug, Jan Erik; Nygård, Ottar K; Sagen, Jørn V; Gudbrandsen, Oddrun A; Dankel, Simon N; Mellgren, Gunnar

    2017-01-01

    Different aspects of dietary pattern, including macronutrient and food profiles, may affect visceral fat mass and metabolic syndrome. We hypothesized that consuming energy primarily from carbohydrate or fat in diets with similar food profiles would differentially affect the ability to reverse visceral adiposity and metabolic syndrome. Forty-six men (aged 30-50 y) with body mass index (in kg/m(2)) >29 and waist circumference >98 cm were randomly assigned to a very high-fat, low-carbohydrate (VHFLC; 73% of energy fat and 10% of energy carbohydrate) or low-fat, high-carbohydrate (LFHC; 30% of energy fat and 53% of energy carbohydrate) diet for 12 wk. The diets were equal in energy (8750 kJ/d), protein (17% of energy), and food profile, emphasizing low-processed, lower-glycemic foods. Fat mass was quantified with computed tomography imaging. Recorded intake of carbohydrate and total and saturated fat in the LFHC and VHFLC groups were 51% and 11% of energy, 29% and 71% of energy, and 12% and 34% of energy, respectively, with no difference in protein and polyunsaturated fatty acids. Mean energy intake decreased by 22% and 14% in the LFHC and VHFLC groups. The diets similarly reduced waist circumference (11-13 cm), abdominal subcutaneous fat mass (1650-1850 cm(3)), visceral fat mass (1350-1650 cm(3)), and total body weight (11-12 kg). Both groups improved dyslipidemia, with reduced circulating triglycerides, but showed differential responses in total and low-density lipoprotein cholesterol (decreased in LFHC group only), and high-density lipoprotein cholesterol (increased in VHFLC group only). The groups showed similar reductions in insulin, insulin C-peptide, glycated hemoglobin, and homeostasis model assessment of insulin resistance. Notably, improvements in circulating metabolic markers in the VHFLC group mainly were observed first after 8 wk, in contrast to more acute and gradual effects in the LFHC group. Consuming energy primarily as carbohydrate or fat for 3 mo did

  20. Dairy Foods in a Moderate Energy Restricted Diet Do Not Enhance Central Fat, Weight, and Intra-Abdominal Adipose Tissue Losses nor Reduce Adipocyte Size or Inflammatory Markers in Overweight and Obese Adults: A Controlled Feeding Study.

    PubMed

    Van Loan, Marta D; Keim, Nancy L; Adams, Sean H; Souza, Elaine; Woodhouse, Leslie R; Thomas, Anthony; Witbracht, Megan; Gertz, Erik R; Piccolo, Brian; Bremer, Andrew A; Spurlock, Michael

    2011-01-01

    Background. Research on dairy foods to enhance weight and fat loss when incorporated into a modest weight loss diet has had mixed results. Objective. A 15-week controlled feeding study to determine if dairy foods enhance central fat and weight loss when incorporated in a modest energy restricted diet of overweight and obese adults. Design. A 3-week run-in to establish energy needs; a 12-week 500 kcal/d energy reduction with 71 low-dairy-consuming overweight and obese adults randomly assigned to diets: ≤1 serving dairy/d (low dairy, LD) or ≤4 servings dairy/d (adequate dairy, AD). All foods were weighed and provided by the metabolic kitchen. Weight, fat, intra-abdominal adipose tissue (IAAT), subcutaneous adipose tissue (SAT) macrophage number, SAT inflammatory gene expression, and circulating cytokines were measured. Results. No diet differences were observed in weight, fat, or IAAT loss; nor SAT mRNA expression of inflammation, circulating cytokines, fasting lipids, glucose, or insulin. There was a significant increase (P = 0.02) in serum 25-hydroxyvitamin D in the AD group. Conclusion. Whether increased dairy intake during weight loss results in greater weight and fat loss for individuals with metabolic syndrome deserves investigation. Assessment of appetite, hunger, and satiety with followup on weight regain should be considered.

  1. Dairy Foods in a Moderate Energy Restricted Diet Do Not Enhance Central Fat, Weight, and Intra-Abdominal Adipose Tissue Losses nor Reduce Adipocyte Size or Inflammatory Markers in Overweight and Obese Adults: A Controlled Feeding Study

    PubMed Central

    Van Loan, Marta D.; Keim, Nancy L.; Adams, Sean H.; Souza, Elaine; Woodhouse, Leslie R.; Thomas, Anthony; Witbracht, Megan; Gertz, Erik R.; Piccolo, Brian; Bremer, Andrew A.; Spurlock, Michael

    2011-01-01

    Background. Research on dairy foods to enhance weight and fat loss when incorporated into a modest weight loss diet has had mixed results. Objective. A 15-week controlled feeding study to determine if dairy foods enhance central fat and weight loss when incorporated in a modest energy restricted diet of overweight and obese adults. Design. A 3-week run-in to establish energy needs; a 12-week 500 kcal/d energy reduction with 71 low-dairy-consuming overweight and obese adults randomly assigned to diets: ≤1 serving dairy/d (low dairy, LD) or ≤4 servings dairy/d (adequate dairy, AD). All foods were weighed and provided by the metabolic kitchen. Weight, fat, intra-abdominal adipose tissue (IAAT), subcutaneous adipose tissue (SAT) macrophage number, SAT inflammatory gene expression, and circulating cytokines were measured. Results. No diet differences were observed in weight, fat, or IAAT loss; nor SAT mRNA expression of inflammation, circulating cytokines, fasting lipids, glucose, or insulin. There was a significant increase (P = 0.02) in serum 25-hydroxyvitamin D in the AD group. Conclusion. Whether increased dairy intake during weight loss results in greater weight and fat loss for individuals with metabolic syndrome deserves investigation. Assessment of appetite, hunger, and satiety with followup on weight regain should be considered. PMID:21941636

  2. A maternal high-protein diet predisposes female offspring to increased fat mass in adulthood whereas a prebiotic fibre diet decreases fat mass in rats.

    PubMed

    Hallam, Megan C; Reimer, Raylene A

    2013-11-14

    The negative effects of malnourishment in utero have been widely explored; the effects of increased maternal macronutrient intake are not known in relation to high fibre, and have been inconclusive with regard to high protein. In the present study, virgin Wistar dams were fed either a control (C), high-protein (40 %, w/w; HP) or high-prebiotic fibre (21·6 %, w/w; HF) diet throughout pregnancy and lactation. Pups consumed the C diet from 3 to 14·5 weeks of age, and then switched to a high-fat/sucrose diet for 8 weeks. A dual-energy X-ray absorptiometry scan and an oral glucose tolerance test were performed and plasma satiety hormones measured. The final body weight and the percentage of body fat were significantly affected by the interaction between maternal diet and offspring sex: weight and fat mass were higher in the female offspring of the HP v. HF dams. No differences in body weight or fat mass were seen in the male offspring. There was a significant sex effect for fasting and total AUC for ghrelin and fasting GIP, with females having higher levels than males. Liver TAG content and plasma NEFA were lower in the offspring of high-prebiotic fibre dams (HF1) than in those of high-protein dams (HP1) and control dams (C1). Intestinal expression of GLUT2 was decreased in HF1 and HP1 v. C1. The maternal HP and HF diets had lasting effects on body fat and hepatic TAG accumulation in the offspring, particularly in females. Whereas the HP diet predisposes to an obese phenotype, the maternal HF diet appears to reduce the susceptibility to obesity following a high-energy diet challenge in adulthood.

  3. Effectiveness of a low-fat vegetarian diet in altering serum lipids in healthy premenopausal women.

    PubMed

    Barnard, N D; Scialli, A R; Bertron, P; Hurlock, D; Edmonds, K; Talev, L

    2000-04-15

    Few controlled trials have studied cholesterol-lowering diets in premenopausal women. None has examined the cholesterol-lowering effect of a low-fat vegetarian diet, which, in other population groups, leads to marked reductions in serum cholesterol concentrations and, in combination with other life-style changes, a regression of atherosclerosis. We tested the hypothesis that a low-fat, vegetarian diet significantly reduces serum total and low-density lipoprotein (LDL) cholesterol concentrations in premenopausal women. In a crossover design, 35 women, aged 22 to 48, followed a low-fat vegetarian diet deriving approximately 10% of energy from fat for 2 menstrual cycles. For 2 additional cycles, they followed their customary diet while also taking a "supplement" (placebo) pill. Serum lipid concentrations were assessed at baseline and during each intervention phase. Mean serum LDL, high-density lipoprotein (HDL), and total cholesterol concentrations decreased 16. 9%, 16.5%, and 13.2%, respectively, from baseline to the intervention diet phase (p<0.001), whereas mean serum triacylglycerol concentration increased 18.7% (p<0.01). LDL/HDL ratio remained unchanged. Thus, in healthy premenopausal women, a low-fat vegetarian diet led to rapid and sizable reductions in serum total, LDL, and HDL cholesterol concentrations.

  4. Adipokine production in mice fed high-fat diets containing different types of dietary fats

    USDA-ARS?s Scientific Manuscript database

    The present study compared high-fat diets containing different types of dietary fats with various levels of linoleic acid (18:2n6, LA) and a-linolenic acid (18:3n3, ALA) on adipokine production in male C57BL/6 mice. Three-week old mice were fed AIN93G diet (15% of energy from corn oil, control) or ...

  5. Purple Sweet Potato Attenuate Weight Gain in High Fat Diet Induced Obese Mice.

    PubMed

    Ju, Ronghui; Zheng, Shujuan; Luo, Hongxia; Wang, Changgang; Duan, Lili; Sheng, Yao; Zhao, Changhui; Xu, Wentao; Huang, Kunlun

    2017-03-01

    Purple sweet potato (PSP) is widely grown in Asia and considered as a healthy vegetable. The objective of the current study was to determine the anti-obesity effect of the PSP on high fat diet induced obese C57BL/6J mice. The mice were administrated with high fat diet supplemented with the sweet potato (SP) or PSP at the concentration of 15% and 30% for 12 wk, respectively. The results showed that the supplementation of SP or PSP at 30% significantly ameliorated high fat diet induced obesity and its associated risk factors, including reduction of body weight and fat accumulation, improvement of lipid profile and modulation of energy expenditure. Moreover, PSP also posed beneficial effect on the liver and kidney functions. These results indicate that PSP and SP have anti-obesity effect and are effective to reduce the metabolic risk.

  6. Odontella aurita-enriched diet prevents high fat diet-induced liver insulin resistance.

    PubMed

    Amine, Hamza; Benomar, Yacir; Haimeur, Adil; Messaouri, Hafida; Meskini, Nadia; Taouis, Mohammed

    2016-01-01

    The beneficial effect of polyunsaturated omega-3 fatty acid (w-3 FA) consumption regarding cardiovascular diseases, insulin resistance and inflammation has been widely reported. Fish oil is considered as the main source of commercialized w-3 FAs, and other alternative sources have been reported such as linseed or microalgae. However, despite numerous reports, the underlying mechanisms of action of w-3 FAs on insulin resistance are still not clearly established, especially those from microalgae. Here, we report that Odontella aurita, a microalga rich in w-3 FAs eicosapentaenoic acid, prevents high fat diet-induced insulin resistance and inflammation in the liver of Wistar rats. Indeed, a high fat diet (HFD) increased plasma insulin levels associated with the impairment of insulin receptor signaling and the up-regulation of toll-like receptor 4 (TLR4) expressions. Importantly, Odontella aurita-enriched HFD (HFOA) reduces body weight and plasma insulin levels and maintains normal insulin receptor expression and responsiveness. Furthermore, HFOA decreased TLR4 expression, JNK/p38 phosphorylation and pro-inflammatory factors. In conclusion, we demonstrate for the first time, to our knowledge, that diet supplementation with whole Ondontella aurita overcomes HFD-induced insulin resistance through the inhibition of TLR4/JNK/p38 MAP kinase signaling pathways.

  7. High-fat diet changes the temporal profile of GLP-1 receptor-mediated hypophagia in rats

    PubMed Central

    Mul, Joram D.; Begg, Denovan P.; Barrera, Jason G.; Li, Bailing; Matter, Emily K.; D'Alessio, David A.; Woods, Stephen C.; Seeley, Randy J.

    2013-01-01

    Overconsumption of a high-fat diet promotes weight gain that can result in obesity and associated comorbidities, including Type 2 diabetes mellitus. Consumption of a high-fat diet also alters gut-brain communication. Glucagon-like peptide 1 (GLP-1) is an important gastrointestinal signal that modulates both short- and long-term energy balance and is integral in maintenance of glucose homeostasis. In the current study, we investigated whether high-fat diets (40% or 81% kcal from fat) modulated the ability of the GLP-1 receptor (GLP-1r) agonists exendin-4 (Ex4) and liraglutide to reduce food intake and body weight. We observed that rats maintained on high-fat diets had a delayed acute anorexic response to peripheral administration of Ex4 or liraglutide compared with low-fat diet-fed rats (17% kcal from fat). However, once suppression of food intake in response to Ex4 or liraglutide started, the effect persisted for a longer time in the high-fat diet-fed rats compared with low-fat diet-fed rats. In contrast, centrally administered Ex4 suppressed food intake similarly between high-fat diet-fed and low-fat diet-fed rats. Chronic consumption of a high-fat diet did not change the pharmacokinetics of Ex4 but increased intestinal Glp1r expression and decreased hindbrain Glp1r expression. Taken together, these findings demonstrate that dietary composition alters the temporal profile of the anorectic response to exogenous GLP-1r agonists. PMID:23616105

  8. High-fat diet changes the temporal profile of GLP-1 receptor-mediated hypophagia in rats.

    PubMed

    Mul, Joram D; Begg, Denovan P; Barrera, Jason G; Li, Bailing; Matter, Emily K; D'Alessio, David A; Woods, Stephen C; Seeley, Randy J; Sandoval, Darleen A

    2013-07-01

    Overconsumption of a high-fat diet promotes weight gain that can result in obesity and associated comorbidities, including Type 2 diabetes mellitus. Consumption of a high-fat diet also alters gut-brain communication. Glucagon-like peptide 1 (GLP-1) is an important gastrointestinal signal that modulates both short- and long-term energy balance and is integral in maintenance of glucose homeostasis. In the current study, we investigated whether high-fat diets (40% or 81% kcal from fat) modulated the ability of the GLP-1 receptor (GLP-1r) agonists exendin-4 (Ex4) and liraglutide to reduce food intake and body weight. We observed that rats maintained on high-fat diets had a delayed acute anorexic response to peripheral administration of Ex4 or liraglutide compared with low-fat diet-fed rats (17% kcal from fat). However, once suppression of food intake in response to Ex4 or liraglutide started, the effect persisted for a longer time in the high-fat diet-fed rats compared with low-fat diet-fed rats. In contrast, centrally administered Ex4 suppressed food intake similarly between high-fat diet-fed and low-fat diet-fed rats. Chronic consumption of a high-fat diet did not change the pharmacokinetics of Ex4 but increased intestinal Glp1r expression and decreased hindbrain Glp1r expression. Taken together, these findings demonstrate that dietary composition alters the temporal profile of the anorectic response to exogenous GLP-1r agonists.

  9. Effect of a low-fat diet on the incidence of actinic keratosis.

    PubMed

    Black, H S; Herd, J A; Goldberg, L H; Wolf, J E; Thornby, J I; Rosen, T; Bruce, S; Tschen, J A; Foreyt, J P; Scott, L W

    1994-05-05

    Actinic keratoses are premalignant lesions and are a sensitive and important manifestation of sun-induced skin damage. Studies in animals have shown that dietary fat influences the incidence of sun-induced skin cancer, but the effect of diet on the incidence of actinic keratosis in humans is not known. We randomly assigned 76 patients with nonmelanoma skin cancer either to continue their usual diet (control group) or to eat a diet with 20 percent of total caloric intake as fat (dietary-intervention group). For 24 months, the patients were examined for the presence of new actinic keratoses by physicians unaware of their assigned diets. At base line, the mean (+/- SD) percentage of caloric intake as fat was 40 +/- 4 percent in the control group and 39 +/- 3 percent in the dietary-intervention group. After 4 months of dietary therapy the percentage of calories as fat had decreased to 21 percent in the dietary-intervention group, and it remained below this level throughout the 24-month study period. The percentage of calories as fat in the control group did not fall below 36 percent at any time. The cumulative number of new actinic keratoses per patient from months 4 through 24 was 10 +/- 13 in the control group and 3 +/- 7 in the dietary-intervention group (P = 0.001). In patients with a history of nonmelanoma skin cancer, a low-fat diet reduces the incidence of actinic keratosis.

  10. Effect of very high-fat diets on body weight, lipoproteins, and glycemic status in the obese.

    PubMed

    Samaha, Frederick F

    2005-11-01

    Given the increased prevalence of obesity in the United States, despite reduced fat intake, there has been increasing interest in the effect of dietary fat on body weight, lipoproteins, and glycemic status. Despite predictions from epidemiologic and physiologic studies, recent prospective trials have demonstrated equivalent weight loss on high-fat versus low-fat diets. Nevertheless, the type of dietary fat consumed has substantially different effects on lipoproteins. Saturated fat raises high-density lipoprotein cholesterol but has unfavorable effects on total cholesterol, and has been associated with increased cardiovascular events. In contrast, unsaturated fats, and particularly omega-3 fatty acids, have the combined benefits of lowering serum cholesterol and raising high-density lipoprotein, as well as favorable effects on insulin resistance and inflammation; they also lower cardiovascular events in high-risk patients. Although current national guidelines modestly liberalize unsaturated fat consumption, important questions still remain about the optimal percentage of unsaturated fats in the diet.

  11. Effects of whole cottonseed, cottonseed oil or animal fat on digestibility of wheat straw diets by steers.

    PubMed

    Moore, J A; Swingle, R S; Hale, W H

    1986-10-01

    Two completely random digestion trials were conducted, each with 12 beef steers (325 kg initial weight), to measure changes in digestibilities of fat and of forage components when fat was added to diets containing 62 to 76% wheat straw. Trial 1 diets contained either no added fat or 6.3% added fat from whole cottonseed (30% of the diet), cottonseed oil or animal fat; diets were formulated to contain equal levels of cottonseed hulls and cottonseed meal. Trial 2 diets contained 0, 2, 4 or 8% added animal fat. In all forms and at all levels, added fat increased apparent digestibility of dietary lipid (P less than .05). However, estimated true digestibility of lipid decreased (from 94 to 71%) as added fat was increased from 0 to 8% (P less than .05). Up to 6.3% added fat increased digestible energy (DE) content of the diet. Fat additions of 2 and 4% increased daily DE intake (P less than .05) and did not depress digestibility of diet components (P greater than .05). Fat additions of 6.3% or greater, either as free fats or as whole cottonseed, reduced (P less than .05) mean acid detergent fiber digestibility from 40 to 28%. In addition to depressing fiber digestibility, 8% added fat reduced (P less than .05) digestibilities of dry matter (from 54 to 47%), organic matter (60 to 52%) and gross energy (60 to 51%). Oil fed as whole cottonseed caused digestibility depressions similar to free fat addition at the same level.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Modification of high saturated fat diet with n-3 polyunsaturated fat improves glucose intolerance and vascular dysfunction.

    PubMed

    Lamping, K G; Nuno, D W; Coppey, L J; Holmes, A J; Hu, S; Oltman, C L; Norris, A W; Yorek, M A

    2013-02-01

    The ability of dietary enrichment with monounsaturated fatty acid (MUFA), n-3 or n-6 polyunsaturated fatty acids (PUFAs) to reverse glucose intolerance and vascular dysfunction resulting from excessive dietary saturated fatty acids is not resolved. We hypothesized that partial replacement of dietary saturated fats with n-3 PUFA-enriched menhaden oil (MO) would provide greater improvement in glucose tolerance and vascular function compared to n-6 enriched safflower oil (SO) or MUFA-enriched olive oil (OO). We fed mice a high saturated fat diet (HF) (60% kcal from lard) for 12 weeks before substituting half the lard with MO, SO or OO for an additional 4 weeks. At the end of 4 weeks, we assessed glucose tolerance, insulin signalling and reactivity of isolated pressurized gracilis arteries. After 12 weeks of saturated fat diet, body weights were elevated and glucose tolerance was abnormal compared to mice on control diet (13% kcal lard). Diet substituted with MO restored basal glucose levels, glucose tolerance and indices of insulin signalling (phosphorylated Akt) to normal, whereas restoration was limited for SO and OO substitutions. Although dilation to acetylcholine was reduced in arteries from mice on HF, OO and SO diets compared to normal diet, dilation to acetylcholine was fully restored and constriction to phenylephrine was reduced in MO-fed mice compared to normal. We conclude that short-term enrichment of an ongoing high fat diet with n-3 PUFA rich MO, but not MUFA rich OO or n-6 PUFA rich SO, reverses glucose tolerance, insulin signalling and vascular dysfunction. © 2012 Blackwell Publishing Ltd.

  13. Reduction of weight loss and tumour size in a cachexia model by a high fat diet.

    PubMed Central

    Tisdale, M. J.; Brennan, R. A.; Fearon, K. C.

    1987-01-01

    An attempt has been made to reverse cachexia and to selectively deprive the tumour of metabolic substrates for energy production by feeding a ketogenic regime, since ketone bodies are considered important in maintaining homeostasis during starvation. As a model we have used a transplantable mouse adenocarcinoma of the colon (MAC 16) which produces extensive weight loss without a reduction in food intake. When mice bearing the MAC16 tumour were fed on diets in which up to 80% of the energy was supplied as medium chain triglycerides (MCT) with or without arginine 3-hydroxybutyrate host weight loss was reduced in proportion to the fat content of the diet, and there was also a reduction in the percentage contribution of the tumour to the final body weight. The increase in carcass weight in tumour-bearing mice fed high levels of MCT was attributable to an increase in both the fat and the non-fat carcass mass. Blood levels of free fatty acids (FFA) were significantly reduced by MCT addition. The levels of both acetoacetate and 3-hydroxybutyrate were elevated in mice fed the high fat diets, and tumour-bearing mice fed the normal diet did not show increased plasma levels of ketone bodies over the non-tumour-bearing group despite the loss of carcass lipids. Both blood glucose and plasma insulin levels were reduced in mice bearing the MAC16 tumour and this was not significantly altered by feeding the high fat diets. The elevation in ketone bodies may account for the retention of both the fat and the non-fat carcass mass. This is the first example of an attempt to reverse cachexia by a diet based on metabolic differences between tumour and host tissues, which aims to selectively feed the host at the expense of the tumour. PMID:3620317

  14. Comparison of the DASH (Dietary Approaches to Stop Hypertension) diet and a higher-fat DASH diet on blood pressure and lipids and lipoproteins: a randomized controlled trial.

    PubMed

    Chiu, Sally; Bergeron, Nathalie; Williams, Paul T; Bray, George A; Sutherland, Barbara; Krauss, Ronald M

    2016-02-01

    The DASH (Dietary Approaches to Stop Hypertension) dietary pattern, which is high in fruit, vegetables, and low-fat dairy foods, significantly lowers blood pressure as well as low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol. The study was designed to test the effects of substituting full-fat for low-fat dairy foods in the DASH diet, with a corresponding increase in fat and a reduction in sugar intake, on blood pressure and plasma lipids and lipoproteins. This was a 3-period randomized crossover trial in free-living healthy individuals who consumed in random order a control diet, a standard DASH diet, and a higher-fat, lower-carbohydrate modification of the DASH diet (HF-DASH diet) for 3 wk each, separated by 2-wk washout periods. Laboratory measurements, which included lipoprotein particle concentrations determined by ion mobility, were made at the end of each experimental diet. Thirty-six participants completed all 3 dietary periods. Blood pressure was reduced similarly with the DASH and HF-DASH diets compared with the control diet. The HF-DASH diet significantly reduced triglycerides and large and medium very-low-density lipoprotein (VLDL) particle concentrations and increased LDL peak particle diameter compared with the DASH diet. The DASH diet, but not the HF-DASH diet, significantly reduced LDL cholesterol, HDL cholesterol, apolipoprotein A-I, intermediate-density lipoprotein and large LDL particles, and LDL peak diameter compared with the control diet. The HF-DASH diet lowered blood pressure to the same extent as the DASH diet but also reduced plasma triglyceride and VLDL concentrations without significantly increasing LDL cholesterol. This trial was registered at clinicaltrials.gov as NCT01404897. © 2016 American Society for Nutrition.

  15. Blueberry supplementation improves memory in middle-aged mice fed a high-fat diet.

    PubMed

    Carey, Amanda N; Gomes, Stacey M; Shukitt-Hale, Barbara

    2014-05-07

    Consuming a high-fat diet may result in behavioral deficits similar to those observed in aging animals. It has been demonstrated that blueberry supplementation can allay age-related behavioral deficits. To determine if supplementation of a high-fat diet with blueberries offers protection against putative high-fat diet-related declines, 9-month-old C57Bl/6 mice were maintained on low-fat (10% fat calories) or high-fat (60% fat calories) diets with and without 4% freeze-dried blueberry powder. Novel object recognition memory was impaired by the high-fat diet; after 4 months on the high-fat diet, mice spent 50% of their time on the novel object in the testing trial, performing no greater than chance performance. Blueberry supplementation prevented recognition memory deficits after 4 months on the diets, as mice on this diet spent 67% of their time on the novel object. After 5 months on the diets, mice consuming the high-fat diet passed through the platform location less often than mice on low-fat diets during probe trials on days 2 and 3 of Morris water maze testing, whereas mice consuming the high-fat blueberry diet passed through the platform location as often as mice on the low-fat diets. This study is a first step in determining if incorporating more nutrient-dense foods into a high-fat diet can allay cognitive dysfunction.

  16. Nutrient adequacy of a very low-fat vegan diet.

    PubMed

    Dunn-Emke, Stacey R; Weidner, Gerdi; Pettengill, Elaine B; Marlin, Ruth O; Chi, Christine; Ornish, Dean M

    2005-09-01

    This study assessed the nutrient adequacy of a very low-fat vegan diet. Thirty-nine men (mean age=65 years) with early stage prostate cancer who chose the "watchful waiting" approach to disease management, were instructed by a registered dietitian and a chef on following a very low-fat (10%) vegan diet with the addition of a fortified soy protein powdered beverage. Three-day food diaries, excluding vitamin and mineral supplements, were analyzed and nutrient values were compared against Dietary Reference Intakes (DRI). Mean dietary intake met the recommended DRIs. On the basis of the Adequate Intake standard, a less than adequate intake was observed for vitamin D. This demonstrates that a very low-fat vegan diet with comprehensive nutrition education emphasizing nutrient-fortified plant foods is nutritionally adequate, with the exception of vitamin D. Vitamin D supplementation, especially for those with limited sun exposure, can help assure nutritional adequacy.

  17. Adherence to low-carbohydrate and low-fat diets in relation to weight loss and cardiovascular risk factors.

    PubMed

    Hu, Tian; Yao, Lu; Reynolds, Kristi; Niu, Tianhua; Li, Shengxu; Whelton, Paul K; He, Jiang; Steffen, Lyn M; Bazzano, Lydia A

    2016-03-01

    A low-carbohydrate diet can reduce body weight and some cardiovascular disease (CVD) risk factors more than a low-fat diet, but differential adherence may play a role in these effects. Data were used from 148 adults who participated in a 12-month clinical trial examining the effect of a low-carbohydrate diet (<40 g/day) and a low-fat diet (<30% fat, <7% saturated fat) on weight and CVD risk factors. We compared attendance at counseling sessions, deviation from nutrient goals, urinary ketone presence, and composite scores representing the overall adherence based on the distribution of these individual indicators between two interventions. Composite scores were similar between the two groups. A one-interquartile-range increase in composite score representing better adherence to a low-carbohydrate diet was associated with 2.2 kg or 2.3 % greater weight loss, 1.1 greater reduction in percent fat mass, and 1.3 greater increase in proportion of lean mass. Indicators of adherence to a low-fat diet was not associated with changes in weight, fat mass or lean mass. Despite comparable adherence between groups, a low-carbohydrate diet was associated with greater reductions in body weight and improvement in body composition, while a low-fat diet was not associated with weight loss.

  18. Adherence to low‐carbohydrate and low‐fat diets in relation to weight loss and cardiovascular risk factors

    PubMed Central

    Yao, L.; Reynolds, K.; Niu, T.; Li, S.; Whelton, P. K.; He, J.; Steffen, L. M.; Bazzano, L. A.

    2016-01-01

    Summary Objective A low‐carbohydrate diet can reduce body weight and some cardiovascular disease risk factors more than a low‐fat diet, but differential adherence may play a role in these effects. Methods Data were used from 148 adults who participated in a 12‐month clinical trial examining the effect of a low‐carbohydrate diet (<40 g d−1) and a low‐fat diet (<30% fat and <7% saturated fat) on weight and cardiovascular disease risk factors. We compared attendance at counselling sessions, deviation from nutrient goals, urinary ketone presence and composite scores representing the overall adherence based on the distribution of these individual indicators between two interventions. Results Composite scores were similar between the two groups. A one‐interquartile‐range increase in composite score representing better adherence to a low‐carbohydrate diet was associated with 2.2 kg or 2.3% greater weight loss, 1.1 greater reduction in percent fat mass and 1.3 greater increase in proportion of lean mass. Indicators of adherence to a low‐fat diet were not associated with changes in weight, fat mass or lean mass. Conclusions Despite comparable adherence between groups, a low‐carbohydrate diet was associated with greater reductions in body weight and improvement in body composition, while a low‐fat diet was not associated with weight loss. PMID:27114827

  19. Luteolin protects against high fat diet-induced cognitive deficits in obesity mice.

    PubMed

    Liu, Yi; Fu, Xiaobin; Lan, Nuo; Li, Sai; Zhang, Jingzheng; Wang, Shuaishuai; Li, Cheng; Shang, Yanguo; Huang, Tonghui; Zhang, Ling

    2014-07-01

    The epidemic and experimental studies have confirmed that the obesity can lead to neuroinflammation, neurodegenerative diseases and adversely affect cognition. Despite the numerous elucidations on the impact of obesity on cognition decline, the contributors to the impairments in obesity remain unclear. Male C57BL/6J mice were fed either a control or high-fat diet (HFD) for 16 weeks and then randomized into four groups treated with their respective diets for 4 weeks including control diet (CD); control diet+luteolin (CDL); high-fat diet (HFD), high-fat diet+luteolin (HFDL). The dose of luteolin was 10mg/kg, oral. We showed that adding luteolin in high-fat diet can significantly reduce body weight gain, food intake and plasma cytokines as well as improving glucose metabolism of mice on HFD. Importantly, we showed that luteolin treatment had the effects of alleviating neuroinflammation, oxidative stress and neuronal insulin resistance in the mouse brain, restored blood adipocytokines level to normal. Furthermore, luteolin increased the level of brain-derived neurotrophic factor (BDNF), the action of synapsin I (SYP) and postsynaptic density protein 95 (PSD-95) in the cortex and hippocampus as to that the behavioral performance in Morris water maze (MWM) and step-through task were significantly improved. These results indicate a previously unrecognized potential of luteolin in alleviating obesity-induced cognitive impairment for type-2 diabetes mellitus and Alzheimer disease (AD). Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Maternal and postweaning high-fat diets disturb hippocampal gene expression, learning, and memory function.

    PubMed

    Page, Kathleen C; Jones, Elizabeth K; Anday, Endla K

    2014-04-15

    We tested the hypothesis that excess saturated fat consumption during pregnancy, lactation, and/or postweaning alters the expression of genes mediating hippocampal synaptic efficacy and impairs spatial learning and memory in adulthood. Dams were fed control chow or a diet high in saturated fat before mating, during pregnancy, and into lactation. Offspring were weaned to either standard chow or a diet high in saturated fat. The Morris Water Maze was used to evaluate spatial learning and memory. Open field testing was used to evaluate motor activity. Hippocampal gene expression in adult males was measured using RT-PCR and ELISA. Offspring from high fat-fed dams took longer, swam farther, and faster to try and find the hidden platform during the 5-day learning period. Control offspring consuming standard chow spent the most time in memory quadrant during the probe test. Offspring from high fat-fed dams consuming excess saturated fat spent the least. The levels of mRNA and protein for brain-derived neurotrophic factor and activity-regulated cytoskeletal-associated protein were significantly decreased by maternal diet effects. Nerve growth factor mRNA and protein levels were significantly reduced in response to both maternal and postweaning high-fat diets. Expression levels for the N-methyl-d-aspartate receptor (NMDA) receptor subunit NR2B as well as synaptophysin were significantly decreased in response to both maternal and postweaning diets. Synaptotagmin was significantly increased in offspring from high fat-fed dams. These data support the hypothesis that exposure to excess saturated fat during hippocampal development is associated with complex patterns of gene expression and deficits in learning and memory.

  1. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates.

    PubMed

    Sacks, Frank M; Bray, George A; Carey, Vincent J; Smith, Steven R; Ryan, Donna H; Anton, Stephen D; McManus, Katherine; Champagne, Catherine M; Bishop, Louise M; Laranjo, Nancy; Leboff, Meryl S; Rood, Jennifer C; de Jonge, Lilian; Greenway, Frank L; Loria, Catherine M; Obarzanek, Eva; Williamson, Donald A

    2009-02-26

    The possible advantage for weight loss of a diet that emphasizes protein, fat, or carbohydrates has not been established, and there are few studies that extend beyond 1 year. We randomly assigned 811 overweight adults to one of four diets; the targeted percentages of energy derived from fat, protein, and carbohydrates in the four diets were 20, 15, and 65%; 20, 25, and 55%; 40, 15, and 45%; and 40, 25, and 35%. The diets consisted of similar foods and met guidelines for cardiovascular health. The participants were offered group and individual instructional sessions for 2 years. The primary outcome was the change in body weight after 2 years in two-by-two factorial comparisons of low fat versus high fat and average protein versus high protein and in the comparison of highest and lowest carbohydrate content. At 6 months, participants assigned to each diet had lost an average of 6 kg, which represented 7% of their initial weight; they began to regain weight after 12 months. By 2 years, weight loss remained similar in those who were assigned to a diet with 15% protein and those assigned to a diet with 25% protein (3.0 and 3.6 kg, respectively); in those assigned to a diet with 20% fat and those assigned to a diet with 40% fat (3.3 kg for both groups); and in those assigned to a diet with 65% carbohydrates and those assigned to a diet with 35% carbohydrates (2.9 and 3.4 kg, respectively) (P>0.20 for all comparisons). Among the 80% of participants who completed the trial, the average weight loss was 4 kg; 14 to 15% of the participants had a reduction of at least 10% of their initial body weight. Satiety, hunger, satisfaction with the diet, and attendance at group sessions were similar for all diets; attendance was strongly associated with weight loss (0.2 kg per session attended). The diets improved lipid-related risk factors and fasting insulin levels. Reduced-calorie diets result in clinically meaningful weight loss regardless of which macronutrients they emphasize

  2. Comparison of Weight-Loss Diets with Different Compositions of Fat, Protein, and Carbohydrates

    PubMed Central

    Sacks, Frank M.; Bray, George A.; Carey, Vincent J.; Smith, Steven R.; Ryan, Donna H.; Anton, Stephen D.; McManus, Katherine; Champagne, Catherine M.; Bishop, Louise M.; Laranjo, Nancy; Leboff, Meryl S.; Rood, Jennifer C.; de Jonge, Lilian; Greenway, Frank L.; Loria, Catherine M.; Obarzanek, Eva; Williamson, Donald A.

    2009-01-01

    BACKGROUND The possible advantage for weight loss of a diet that emphasizes protein, fat, or carbohydrates has not been established, and there are few studies that extend beyond 1 year. METHODS We randomly assigned 811 overweight adults to one of four diets; the targeted percentages of energy derived from fat, protein, and carbohydrates in the four diets were 20, 15, and 65%; 20, 25, and 55%; 40, 15, and 45%; and 40, 25, and 35%. The diets consisted of similar foods and met guidelines for cardiovascular health. The participants were offered group and individual instructional sessions for 2 years. The primary outcome was the change in body weight after 2 years in two-by-two factorial comparisons of low fat versus high fat and average protein versus high protein and in the comparison of highest and lowest carbohydrate content. RESULTS At 6 months, participants assigned to each diet had lost an average of 6 kg, which represented 7% of their initial weight; they began to regain weight after 12 months. By 2 years, weight loss remained similar in those who were assigned to a diet with 15% protein and those assigned to a diet with 25% protein (3.0 and 3.6 kg, respectively); in those assigned to a diet with 20% fat and those assigned to a diet with 40% fat (3.3 kg for both groups); and in those assigned to a diet with 65% carbohydrates and those assigned to a diet with 35% carbohydrates (2.9 and 3.4 kg, respectively) (P>0.20 for all comparisons). Among the 80% of participants who completed the trial, the average weight loss was 4 kg; 14 to 15% of the participants had a reduction of at least 10% of their initial body weight. Satiety, hunger, satisfaction with the diet, and attendance at group sessions were similar for all diets; attendance was strongly associated with weight loss (0.2 kg per session attended). The diets improved lipid-related risk factors and fasting insulin levels. CONCLUSIONS Reduced-calorie diets result in clinically meaningful weight loss regardless of

  3. Kefir prevented excess fat accumulation in diet-induced obese mice.

    PubMed

    Choi, Jae-Woo; Kang, Hye Won; Lim, Won-Chul; Kim, Mi-Kyoung; Lee, In-Young; Cho, Hong-Yon

    2017-05-01

    Excessive body fat accumulation can result in obesity, which is a serious health concern. Kefir, a probiotic, has recently shown possible health benefits in fighting obesity. This study investigated the inhibitory effects of 0.1 and 0.2% kefir powder on fat accumulation in adipose and liver tissues of high-fat diet (HFD)-induced obese mice. Kefir reduced body weight and epididymal fat pad weight and decreased adipocyte diameters in HFD-induced obese mice. This was supported by decreased expression of genes related to adipogenesis and lipogenesis as well as reduced proinflammatory marker levels in epididymal fat. Along with reduced hepatic triacylglycerol concentrations and serum alanine transaminase and aspartate transaminase activities, genes related to lipogenesis and fatty acid oxidation were downregulated and upregulated, respectively, in liver tissue. Kefir also decreased serum triacylglycerol, total cholesterol, and low-density lipoprotein-cholesterol concentrations. Overall, kefir has the potential to prevent obesity.

  4. Influence of muscle fiber type composition on early fat accumulation under high-fat diet challenge.

    PubMed

    Hua, Ning; Takahashi, Hirokazu; Yee, Grace M; Kitajima, Yoichiro; Katagiri, Sayaka; Kojima, Motoyasu; Anzai, Keizo; Eguchi, Yuichiro; Hamilton, James A

    2017-01-01

    To investigate whether differences in muscle fiber types affect early-stage fat accumulation, under high fat diet challenge in mice. Twelve healthy male C57BL/6 mice experienced with short-term (6 weeks) diet treatment for the evaluation of early pattern changes in muscular fat. The mice were randomly divided into two groups: high fat diet (n = 8) and normal control diet (n = 4). Extra- and intra-myocellular lipid (EMCL and IMCL) in lumbar muscles (type I fiber predominant) and tibialis anterior (TA) muscle (type II fiber predominant) were determined using magnetic resonance spectroscopy (MRS). Correlation of EMCL, IMCL and their ratio between TA and lumbar muscles was evaluated. EMCL increased greatly in both muscle types after high fat diet. IMCL in TA and lumbar muscles increased to a much lower extent, with a slightly greater increase in TA muscles. EMCLs in the 2 muscles were positively correlated (r = 0.84, p = 0.01), but IMCLs showed a negative relationship (r = -0.84, p = 0.01). In lumbar muscles, high fat diet significantly decreased type I fiber while it increased type II fiber (all p≤0.001). In TA muscle, there was no significant fiber type shifting (p>0.05). Under short-time high fat diet challenge, lipid tends to initially accumulate extra-cellularly. In addition, compared to type II dominant muscle, Type I dominant muscle was less susceptible to IMCL accumulation but more to fiber type shifting. These phenomena might reflect compensative responses of skeletal muscle to dietary lipid overload in order to regulate metabolic homeostasis.

  5. A gestational diet high in fat-soluble vitamins alters expression of genes in brain pathways and reduces sucrose preference, but not food intake, in Wistar male rat offspring.

    PubMed

    Sanchez-Hernandez, Diana; Poon, Abraham N; Kubant, Ruslan; Kim, Hwanki; Huot, Pedro S P; Cho, Clara E; Pannia, Emanuela; Pausova, Zdenka; Anderson, G Harvey

    2015-04-01

    High intakes of multivitamins (HV) during pregnancy by Wistar rats increase food intake, body weight, and characteristics of the metabolic syndrome in male offspring. In this study, high-fat soluble vitamins were fed in combination during gestation to test the hypothesis that they partially account for the effects of the HV diet. Pregnant Wistar rats (14-16/group) were fed a recommended multivitamin diet (1-fold all vitamins) or high-fat soluble vitamin diet (HFS; 10-fold vitamins A, D, E, and K) during pregnancy. Offspring body weight, food intake, and preference as well as expression of selected genes in the hypothalamus and hippocampus were evaluated at birth, weaning, and 14 weeks postweaning. Body weight and food intake were not affected but sucrose preference decreased by 4% in those born to dams fed the HFS gestational diet. Gene expressions of the hypothalamic anorexogenic pro-opiomelanocortin (Pomc) and orexogenic neuropeptide Y (Npy) (∼30% p = 0.008, ∼40% p = 0.007) were increased in weaning and adult rats, respectively. Hippocampal dopaminergic genes (35%-50% p < 0.05) were upregulated at birth and 14 weeks postweaning. DNA hypermethylation (2% p = 0.006) was observed in the dopamine receptor 1 (Drd1) promoter region. We conclude that a gestational diet high in vitamins A, D, E, and K does not show the effects of the HV diet on body weight or food intake but may affect the development of higher hedonic regulatory pathways associated with food preference.

  6. Gene Expression Patterns Are Altered in Athymic Mice and Metabolic Syndrome Factors Are Reduced in C57BL/6J Mice Fed High-Fat Diets Supplemented with Soy Isoflavones.

    PubMed

    Luo, Ting; Snyder, Sarah M; Zhao, Bingxin; Sullivan, Debra K; Hamilton-Reeves, Jill; Guthrie, Gregory; Ricketts, Marie-Louise; Shiverick, Kathleen T; Shay, Neil

    2016-10-12

    Soy isoflavones exert beneficial health effects; however, their potential to ameliorate conditions associated with the metabolic syndrome (MetS) has not been studied in detail. In vitro and in vivo models were used to determine the effect of isoflavones on lipid metabolism, inflammation, and oxidative stress. In nude mice, consumption of Novasoy (NS) increased cholesterol and lipid metabolism gene expression, including Scd-1 (27.7-fold), Cyp4a14 (35.2-fold), and Cyp4a10 (9.5-fold), and reduced anti-inflammatory genes, including Cebpd (16.4-fold). A high-fat (HF) diet containing 0.4% (w/w) NS for 10 weeks significantly reduced percent weight gain (74.6 ± 2.5 vs 68.6 ± 3.5%) and hepatic lipid accumulation (20 ± 1.2 vs 27 ± 1.5%), compared to HF alone (p < 0.05) in C57BL/6J mice. NS also increased lipid oxidation and antioxidant gene expression while decreasing inflammatory cytokines. In vitro analysis in HepG2 cells revealed that genistein dose-dependently decreases oleic acid-induced lipid accumulation. Soy isoflavones may ameliorate symptoms associated with MetS via anti-inflammatory, antioxidant, and hypolipidemic modulation.

  7. Zinc's role in rat preference for a low-fat diet in a two-choice diet program of low- and high-fat diets.

    PubMed

    Nakashima, Yoko

    2011-01-01

    To investigate the change in preference for a low-fat diet (LFD) and a high-fat diet (HFD) under disorders induced by a zinc (Zn)-deficiency, two groups of 4-wk-old male rats were fed a two-choice diet of Zn-deficient (ZnD; 0.75 mg/kg) and Zn-adequate (ZnA; 30.75 mg/kg) LFD and HFD. After 21 d, 10 rats in each of the two groups were sacrificed. The remaining ZnD rats were switched to ZnA diets for 7 d. Intakes of the LFD and the HFD were measured to determine the diet preferences of the ZnD, the ZnA and the Zn-recovered groups. Energy intake of the ZnD group was significantly lower than that of the ZnA group and showed cyclical 3- to 4-d patterns of decrease. In the ZnD group, although the LFD intake decreased parallel to the reduction in the energy intake, the HFD intake did not show the cyclical pattern of decrease. The reduced intake of the LFD in the ZnD rats was accompanied by a low carbohydrate intake and a low plasma insulin concentration. When the ZnD group recovered sufficient amounts of Zn, the energy intake was restored to normal levels and the difference in the LFD intake and the plasma insulin concentration disappeared between the ZnD and the ZnA groups. It was supposed that the specific change in the LFD intake patterns during development and recovery from Zn-deficiency might be related to Zn-mediated changes in impaired synthesis and the release of insulin from the pancreas.

  8. Effects of fermented pepper powder on body fat accumulation in mice fed a high-fat diet.

    PubMed

    Yeon, Su-Jung; Kim, Soo-Ki; Kim, Jong Moon; Lee, Si-Kyung; Lee, Chi-Ho

    2013-01-01

    We investigated the effects of non-pungent pepper powder fermented by Bacillus licheniformis SK1230 on the fat accumulation in mice. Four weeks of feeding a high-fat diet with fermented pepper powder resulted in a significantly decreased hepatic total-lipid level and increased serum HDL-cholesterol, and tended to lower the fat weight. These results suggest that fermented pepper powder inhibited fat accumulation and improved lipid metabolism in mice fed the high-fat diet.

  9. Switching from high-fat to low-fat diet normalizes glucose metabolism and improves glucose-stimulated insulin secretion and insulin sensitivity but not body weight in C57BL/6J mice.

    PubMed

    Agardh, Carl-David; Ahrén, Bo

    2012-03-01

    Environmental factors such as a high-fat diet contribute to type 2 diabetes and obesity. This study examined glycemia, insulin sensitivity, and β-cell function after switching from a high-fat diet to a low-fat diet in mice. C57BL/6J mice were fed a high-fat diet or low-fat diet for 18 months, after which mice on the high-fat diet either maintained this diet or switched to a low-fat diet for 4 weeks. Body weight and glucose and insulin responses to intraperitoneal glucose were determined. Insulin secretion (insulinogenic index: the 10-minute insulin response divided by the 10-minute glucose level) and insulin sensitivity (1 divided by basal insulin) were determined. After 18 months on a high-fat diet, mice had glucose intolerance, marked hyperinsulinemia, and increased body weight compared to mice on a low-fat diet (P < 0.001). Switching from a high-fat diet to low-fat diet normalized glucose tolerance, reduced but not normalized body weight (P < 0.001), increased insulin secretion (248 ± 39 vs 141 ± 46 pmol/mmol; P = 0.028) and improved but not normalized insulin sensitivity (3.2 ± 0.1 vs 1.0 ± 0.1 [pmol/L]; P = 0.012). Switching from a high-fat diet to low-fat diet normalizes glucose tolerance and improves but not normalizes insulin secretion and insulin sensitivity. These effects are more pronounced than the reduced body weight.

  10. High-fat diet alters gut microbiota physiology in mice

    PubMed Central

    Daniel, Hannelore; Gholami, Amin Moghaddas; Berry, David; Desmarchelier, Charles; Hahne, Hannes; Loh, Gunnar; Mondot, Stanislas; Lepage, Patricia; Rothballer, Michael; Walker, Alesia; Böhm, Christoph; Wenning, Mareike; Wagner, Michael; Blaut, Michael; Schmitt-Kopplin, Philippe; Kuster, Bernhard; Haller, Dirk; Clavel, Thomas

    2014-01-01

    The intestinal microbiota is known to regulate host energy homeostasis and can be influenced by high-calorie diets. However, changes affecting the ecosystem at the functional level are still not well characterized. We measured shifts in cecal bacterial communities in mice fed a carbohydrate or high-fat (HF) diet for 12 weeks at the level of the following: (i) diversity and taxa distribution by high-throughput 16S ribosomal RNA gene sequencing; (ii) bulk and single-cell chemical composition by Fourier-transform infrared- (FT-IR) and Raman micro-spectroscopy and (iii) metaproteome and metabolome via high-resolution mass spectrometry. High-fat diet caused shifts in the diversity of dominant gut bacteria and altered the proportion of Ruminococcaceae (decrease) and Rikenellaceae (increase). FT-IR spectroscopy revealed that the impact of the diet on cecal chemical fingerprints is greater than the impact of microbiota composition. Diet-driven changes in biochemical fingerprints of members of the Bacteroidales and Lachnospiraceae were also observed at the level of single cells, indicating that there were distinct differences in cellular composition of dominant phylotypes under different diets. Metaproteome and metabolome analyses based on the occurrence of 1760 bacterial proteins and 86 annotated metabolites revealed distinct HF diet-specific profiles. Alteration of hormonal and anti-microbial networks, bile acid and bilirubin metabolism and shifts towards amino acid and simple sugars metabolism were observed. We conclude that a HF diet markedly affects the gut bacterial ecosystem at the functional level. PMID:24030595

  11. High-fat diet alters gut microbiota physiology in mice.

    PubMed

    Daniel, Hannelore; Gholami, Amin Moghaddas; Berry, David; Desmarchelier, Charles; Hahne, Hannes; Loh, Gunnar; Mondot, Stanislas; Lepage, Patricia; Rothballer, Michael; Walker, Alesia; Böhm, Christoph; Wenning, Mareike; Wagner, Michael; Blaut, Michael; Schmitt-Kopplin, Philippe; Kuster, Bernhard; Haller, Dirk; Clavel, Thomas

    2014-02-01

    The intestinal microbiota is known to regulate host energy homeostasis and can be influenced by high-calorie diets. However, changes affecting the ecosystem at the functional level are still not well characterized. We measured shifts in cecal bacterial communities in mice fed a carbohydrate or high-fat (HF) diet for 12 weeks at the level of the following: (i) diversity and taxa distribution by high-throughput 16S ribosomal RNA gene sequencing; (ii) bulk and single-cell chemical composition by Fourier-transform infrared- (FT-IR) and Raman micro-spectroscopy and (iii) metaproteome and metabolome via high-resolution mass spectrometry. High-fat diet caused shifts in the diversity of dominant gut bacteria and altered the proportion of Ruminococcaceae (decrease) and Rikenellaceae (increase). FT-IR spectroscopy revealed that the impact of the diet on cecal chemical fingerprints is greater than the impact of microbiota composition. Diet-driven changes in biochemical fingerprints of members of the Bacteroidales and Lachnospiraceae were also observed at the level of single cells, indicating that there were distinct differences in cellular composition of dominant phylotypes under different diets. Metaproteome and metabolome analyses based on the occurrence of 1760 bacterial proteins and 86 annotated metabolites revealed distinct HF diet-specific profiles. Alteration of hormonal and anti-microbial networks, bile acid and bilirubin metabolism and shifts towards amino acid and simple sugars metabolism were observed. We conclude that a HF diet markedly affects the gut bacterial ecosystem at the functional level.

  12. Intestinal absorption of dietary fat from a liquid diet perfused in rats at a submaximum level.

    PubMed

    Simko, V; Kelley, R E

    1988-02-01

    The small intestine of rats was perfused in vivo for 2 h with a nutritionally complete liquid diet (68% calories from fat as corn oil). As the perfusion increased from 106 mg/2 h, the intestinal disappearance of the 14C-triolein marker remained proportional to the load up to 2,359 mg fat/2 h. Despite a decrease in absorption from 70 to 17%, this represents a very large fat intake. Fat absorption improved when medium-chain triglycerides or octanoic acid replaced corn oil (both p less than 0.01). Linoleic acid was absorbed from the diet less than corn oil (p less than 0.01). Dry ox bile reduced fat absorption (p less than 0.05); lipase and an antacid had no effect. Corn oil perfused alone was absorbed better than from the diet (p less than 0.01). Data with 14C-triolein was confirmed by dry-weight disappearance of the diet and by net intestinal water balance. Usual feeding underutilizes a large reserve for fat absorption. This reserve should be considered in therapeutic nutrition.

  13. Intestinal absorption of dietary fat from a liquid diet perfused in rats at a submaximum level

    SciTech Connect

    Simko, V.; Kelley, R.E.

    1988-02-01

    The small intestine of rats was perfused in vivo for 2 h with a nutritionally complete liquid diet (68% calories from fat as corn oil). As the perfusion increased from 106 mg/2 h, the intestinal disappearance of the /sup 14/C-triolein marker remained proportional to the load up to 2359 mg fat/2 h. Despite a decrease in absorption from 70 to 17%, this represents a very large fat intake. Fat absorption improved when medium-chain triglycerides or octanoic acid replaced corn oil (both p less than 0.01). Linoleic acid was absorbed from the diet less than corn oil (p less than 0.01). Dry ox bile reduced fat absorption (p less than 0.05); lipase and an antacid had no effect. Corn oil perfused alone was absorbed better than from the diet (p less than 0.01). Data with /sup 14/C-triolein was confirmed by dry-weight disappearance of the diet and by net intestinal water balance. Usual feeding underutilizes a large reserve for fat absorption. This reserve should be considered in therapeutic nutrition.

  14. Acute exposure to a high-fat diet alters meal patterns and body composition

    PubMed Central

    Melhorn, Susan J; Krause, Eric G; Scott, Karen A; Mooney, Marie R; Johnson, Jeffrey D; Woods, Stephen C; Sakai, Randall R

    2009-01-01

    Weight gain and adiposity are often attributed to the overconsumption of unbalanced, high-fat diets however, the pattern of consumption can also contribute to associated body weight and compositional changes. The present study explored the rapid alterations in meal patterns of normal-weight rats given continuous access to high-fat diet and examined body weight and composition changes compared to chow fed controls. Ten Long-Evans rats were implanted with subcutaneous microchips for meal pattern analysis. Animals were body weight-matched and separated into two groups: high-fat or chow fed. Each group was maintained on their assigned diet for nine days and monitored for 22-hours each day for meal pattern behavior. Body weight was evaluated every other day, and body composition measures were taken prior and following diet exposure. High-fat fed animals gained more weight and adipose tissue than chow fed controls and displayed a reduced meal frequency and increased meal size. Furthermore, meal size was significantly correlated with the gain of adipose tissue. Together, these results suggest that consumption of a high-fat diet can rapidly alter meal patterns, which in turn contribute to the development of adiposity. PMID:19835896

  15. Maternal low protein diet and postnatal high fat diet increases adipose imprinted gene expression

    USDA-ARS?s Scientific Manuscript database

    Maternal and postnatal diet can alter Igf2 gene expression and DNA methylation. To test whether maternal low protein and postnatal high fat (HF) diet result in alteration in Igf2 expression and obesity, we fed obese-prone Sprague-Dawley rats 8% (LP) or 20% (NP) protein for 3 wk prior to breeding and...

  16. Ameliorating Effect of Mycoleptodonoides aitchisonii on High-fat Diet-induced Obese Mice

    PubMed Central

    Lee, Mi Ra; Begum, Shahnaz; Oh, Deuk Sil; Wee, An Jin; Yun, Byung Sun; Sung, Chang Keun

    2014-01-01

    The present study investigated the anti-obesity effects of Mycoleptodonoides aitchisonii (MA) in mice fed a high-fat (HF) diet. Two groups were fed either a normal control diet or an HF (45% kcal fat) diet for 12 weeks and three groups were fed an HF diet supplemented with powdered MA (MAP, 1%, 3%, and 5%) for 12 weeks. The anti-obesity effects of MAP supplementation on body weight, fat mass development, and lipid-related markers were assessed. Consumption of an HF diet resulted in increased body weight, serum lipids, relative adipose tissues weight, and liver fat accumulation. However, administration of MAP significantly decreased body weight gain, food intake, food efficiency ratio, hepatic cholesterol level, and adipose tissue weight in a dose-dependent manner. In addition, treatment with MAP significantly reduced the occurrence of fatty liver deposits and steatosis, and inhibited an HF diet-induced increase in adipocyte size. These results suggest that dietary supplementation with MAP exerts anti-obesity effects and indicate that MAP could be used as a functional food to control obesity. PMID:25054104

  17. 6-Paradol and 6-Shogaol, the Pungent Compounds of Ginger, Promote Glucose Utilization in Adipocytes and Myotubes, and 6-Paradol Reduces Blood Glucose in High-Fat Diet-Fed Mice

    PubMed Central

    Wei, Chien-Kei; Tsai, Yi-Hong; Korinek, Michal; Hung, Pei-Hsuan; El-Shazly, Mohamed; Cheng, Yuan-Bin; Wu, Yang-Chang; Hsieh, Tusty-Jiuan; Chang, Fang-Rong

    2017-01-01

    The anti-diabetic activity of ginger powder (Zingiber officinale) has been recently promoted, with the recommendation to be included as one of the dietary supplements for diabetic patients. However, previous studies presented different results, which may be caused by degradation and metabolic changes of ginger components, gingerols, shogaols and paradols. Therefore, we prepared 10 ginger active components, namely 6-, 8-, 10-paradols, 6-, 8-, 10-shogaols, 6-, 8-, 10-gingerols and zingerone, and evaluated their anti-hyperglycemic activity. Among the tested compounds, 6-paradol and 6-shogaol showed potent activity in stimulating glucose utilization by 3T3-L1 adipocytes and C2C12 myotubes. The effects were attributed to the increase in 5′ adenosine monophosphate-activated protein kinase (AMPK) phosphorylation in 3T3-L1 adipocytes. 6-Paradol, the major metabolite of 6-shogaol, was utilized in an in vivo assay and significantly reduced blood glucose, cholesterol and body weight in high-fat diet-fed mice. PMID:28106738

  18. Persistent Chromatin Modifications Induced by High Fat Diet.

    PubMed

    Leung, Amy; Trac, Candi; Du, Juan; Natarajan, Rama; Schones, Dustin E

    2016-05-13

    Obesity is a highly heritable complex disease that results from the interaction of multiple genetic and environmental factors. Formerly obese individuals are susceptible to metabolic disorders later in life, even after lifestyle changes are made to mitigate the obese state. This is reminiscent of the metabolic memory phenomenon originally observed for persistent complications in diabetic patients, despite subsequent glycemic control. Epigenetic modifications represent a potential mediator of this observed memory. We previously demonstrated that a high fat diet leads to changes in chromatin accessibility in the mouse liver. The regions of greatest chromatin changes in accessibility are largely strain-dependent, indicating a genetic component in diet-induced chromatin alterations. We have now examined the persistence of diet-induced chromatin accessibility changes upon diet reversal in two strains of mice. We find that a substantial fraction of loci that undergo chromatin accessibility changes with a high fat diet remains in the remodeled state after diet reversal in C57BL/6J mice. In contrast, the vast majority of diet-induced chromatin accessibility changes in A/J mice are transient. Our data also indicate that the persistent chromatin accessibility changes observed in C57BL/6J mice are associated with specific transcription factors and histone post-translational modifications. The persistent loci identified here are likely to be contributing to the overall phenotype and are attractive targets for therapeutic intervention.

  19. Feeding behavior and body weight development: lessons from rats subjected to gastric bypass surgery or high-fat diet.

    PubMed

    Furnes, M W; Zhao, C-M; Stenstrom, B; Arum, C-J; Tommeras, K; Kulseng, B; Chen, D

    2009-12-01

    Weight loss treatments include diets, drugs, physical training, and surgery, namely bariatric or obesity surgery. The current standard for bariatric surgery is gastric bypass. There are common beliefs that gastric bypass induces body weight loss because of a reduced food intake and that high-fat diet induces overweight and obesity because of overnutrition. The principal aim of the studies on rats summarized herein was to better understand the physiological mechanisms by which gastric bypass achieves body weight loss and by which high-fat diet induces obesity. The results indicated that gastric bypass efficiently reduced body weight, particularly the fat compartment, which was unlikely to be caused by early satiety, reduced food intake or malabsorption, and that large meal size, but not overnutrition, was mainly responsible for high-fat diet-induced obesity. It was unclear whether gastric ghrelin, obestatin and/or amine in the A-like cells were involved in this context.

  20. Abdominal fat deposition and fatty acid synthesis are lower and beta-oxidation is higher in broiler chickens fed diets containing unsaturated rather than saturated fat.

    PubMed

    Sanz, M; Lopez-Bote, C J; Menoyo, D; Bautista, J M

    2000-12-01

    We evaluated the effects of dietary fat type on fat metabolism and deposition in broiler chickens. Birds were fed diets containing either 8 g dietary saturated (beef tallow) or polyunsaturated fat (sunflower oil)/100 g for 32 d. The abdominal fat deposition of chickens fed the sunflower oil-enriched diet was significantly lower than that of chickens fed the tallow-enriched diet (2.63 +/- 0.47 versus 3.03 +/- 0.44 g/100 g live wt.; P = 0.033). The specific activities of heart carnitine palmitoyltransferase I and L-3-hydroxyacyl-CoA dehydrogenase were higher (P < or = 0.03) in chickens fed the sunflower oil-enriched diets, indicating a greater rate of beta-oxidation. Liver fatty acid synthetase activity was lower (P = 0.01) in chickens fed the sunflower oil-enriched diet, suggesting reduced hepatic lipogenesis in this group. Postprandial plasma triglyceride levels were significantly lower (P < 0.05) in birds fed the sunflower oil-enriched diet, indicating a higher rate of dietary lipid clearance from the bloodstream to tissues. In conclusion, the lower fat deposition observed in broilers fed sunflower oil-enriched diets appears to be the net result of an increased rate of lipid catabolism and lower rate of fatty acid synthesis despite higher dietary fat absorption.

  1. Gastric bypass reduces fat intake and preference.

    PubMed

    le Roux, Carel W; Bueter, Marco; Theis, Nadine; Werling, Malin; Ashrafian, Hutan; Löwenstein, Christian; Athanasiou, Thanos; Bloom, Stephen R; Spector, Alan C; Olbers, Torsten; Lutz, Thomas A

    2011-10-01

    Roux-en-Y gastric bypass is the most effective therapy for morbid obesity. This study investigated how gastric bypass affects intake of and preference for high-fat food in an experimental (rat) study and within a trial setting (human). Proportion of dietary fat in gastric bypass patients was significantly lower 6 yr after surgery compared with patients after vertical-banded gastroplasty (P = 0.046). Gastric bypass reduced total fat and caloric intake (P < 0.001) and increased standard low-fat chow consumption compared with sham controls (P < 0.001) in rats. Compared with sham-operated rats, gastric bypass rats displayed much lower preferences for Intralipid concentrations > 0.5% in an ascending concentration series (0.005%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 5%) of two-bottle preference tests (P = 0.005). This effect was demonstrated 10 and 200 days after surgery. However, there was no difference in appetitive or consummatory behavior in the brief access test between the two groups (P = 0.71) using similar Intralipid concentrations (0.005% through 5%). Levels of glucagon-like peptide-1 (GLP-1) were increased after gastric bypass as expected. An oral gavage of 1 ml corn oil after saccharin ingestion in gastric bypass rats induced a conditioned taste aversion. These findings suggest that changes in fat preference may contribute to long-term maintained weight loss after gastric bypass. Postingestive effects of high-fat nutrients resulting in conditioned taste aversion may partially explain this observation; the role of GLP-1 in mediating postprandial responses after gastric bypass requires further investigation.

  2. Gastric bypass reduces fat intake and preference

    PubMed Central

    Bueter, Marco; Theis, Nadine; Werling, Malin; Ashrafian, Hutan; Löwenstein, Christian; Athanasiou, Thanos; Bloom, Stephen R.; Spector, Alan C.; Olbers, Torsten; Lutz, Thomas A.

    2011-01-01

    Roux-en-Y gastric bypass is the most effective therapy for morbid obesity. This study investigated how gastric bypass affects intake of and preference for high-fat food in an experimental (rat) study and within a trial setting (human). Proportion of dietary fat in gastric bypass patients was significantly lower 6 yr after surgery compared with patients after vertical-banded gastroplasty (P = 0.046). Gastric bypass reduced total fat and caloric intake (P < 0.001) and increased standard low-fat chow consumption compared with sham controls (P < 0.001) in rats. Compared with sham-operated rats, gastric bypass rats displayed much lower preferences for Intralipid concentrations > 0.5% in an ascending concentration series (0.005%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 5%) of two-bottle preference tests (P = 0.005). This effect was demonstrated 10 and 200 days after surgery. However, there was no difference in appetitive or consummatory behavior in the brief access test between the two groups (P = 0.71) using similar Intralipid concentrations (0.005% through 5%). Levels of glucagon-like peptide-1 (GLP-1) were increased after gastric bypass as expected. An oral gavage of 1 ml corn oil after saccharin ingestion in gastric bypass rats induced a conditioned taste aversion. These findings suggest that changes in fat preference may contribute to long-term maintained weight loss after gastric bypass. Postingestive effects of high-fat nutrients resulting in conditioned taste aversion may partially explain this observation; the role of GLP-1 in mediating postprandial responses after gastric bypass requires further investigation. PMID:21734019

  3. Curcumin ameliorates high-fat diet-induced spermatogenesis dysfunction

    PubMed Central

    Mu, Yang; Yan, Wen-Jie; Yin, Tai-Lang; Yang, Jing

    2016-01-01

    Curcumin, a type of natural active ingredient, is derived from rhizoma of Curcuma, which possesses antioxidant, antitumorigenic and anti-inflammatory activities. The present study aimed to investigate whether treatment with curcumin reduced high-fat diet (HFD)-induced spermatogenesis dysfunction. Sprague-Dawley rats fed a HFD were treated with or without curcumin for 8 weeks. The testis/body weight, histological analysis and serum hormone levels were used to evaluate the effects of curcumin treatment on spermatogenesis dysfunction induced by the HFD. In addition, the expression levels of apoptosis associated proteins, Fas, B-cell lymphoma (Bcl)-xl, Bcl-associated X protein (Bax) and cleaved-caspase 3, were determined in the testis. The results of the present study suggested that curcumin treatment attenuated decreased testis/body weight and abnormal hormone levels. Morphological changes induced by a HFD were characterized as atrophied seminiferous tubules, decreased spermatogenetic cells and interstitial cells were improved by curcumin treatment. In addition, curcumin treatment reduced apoptosis in the testis, and decreased expression of Fas, Bax and cleaved-caspase 3, as well as increased expression of Bcl-xl. In conclusion, the present study revealed that curcumin treatment reduced HFD-induced spermatogenesis dysfunction in male rats. PMID:27600729

  4. Histopathological changes in rat pancreas and skeletal muscle associated with high fat diet induced insulin resistance.

    PubMed

    Ickin Gulen, M; Guven Bagla, A; Yavuz, O; Hismiogullari, A A

    2015-01-01

    The effects of a high fat diet on the development of diabetes mellitus, insulin resistance and secretion have been widely investigated. We investigated the effects of a high fat diet on the pancreas and skeletal muscle of normal rats to explore diet-induced insulin resistance mechanisms. Forty-four male Wistar rats were divided into six groups: a control group fed standard chow, a group fed a 45% fat diet and a group fed a 60% fat diet for 3 weeks to measure acute effects; an additional three groups were fed the same diet regimens for 8 weeks to measure chronic effects. The morphological effects of the two high fat diets were examined by light microscopy. Insulin in pancreatic islets was detected using immunohistochemistry. The homeostasis model assessment of insulin resistance index and insulin staining intensity in islets increased significantly with acute administration of high fat diets, whereas staining intensity decreased with chronic administration of the 45% fat diet. Islet areas increased significantly with chronic administration. High fat diet administration led to islet degeneration, interlobular adipocyte accumulation and vacuolization in the pancreatic tissue, as well as degeneration and lipid droplet accumulation in the skeletal muscle tissue. Vacuolization in the pancreas and lipid droplets in skeletal muscle tissue increased significantly with chronic high fat diet administration. We suggest that the glucolipotoxic effects of high fat diet administration depend on the ratio of saturated to unsaturated fatty acid content in the diet and to the total fat content of the diet.

  5. The beneficial effect of propolis on fat accumulation and lipid metabolism in rats fed a high-fat diet.

    PubMed

    Ichi, I; Hori, H; Takashima, Y; Adachi, N; Kataoka, R; Okihara, K; Hashimoto, K; Kojo, S

    2009-06-01

    This study examined whether propolis, which had many biological activities, affected body fat and lipid metabolism. Four-week-old Wistar rats were fed a control or propolis diet for 8 wk. The control group was fed a high-fat diet, the low and the high group were fed a high-fat diet supplemented with 0.5% (w/w) and 0.05% (w/w) propolis, respectively. The weight of total white adipose tissue of the high group was lower than that of the control group. The level of PPARgamma protein in the adipose tissues of the high group was significantly lower than that of the control group. In plasma and the liver, the high group showed a significantly reduced level of cholesterol and triglyceride compared to the control group. The liver PPARalpha protein level of the high group was significantly higher than that of the control group. The liver HMG-CoA reductase protein in the high group was also significantly lower than that in the control group. Results from rats on an olive oil loading test were used to investigate whether propolis inhibited triglyceride absorption. The serum triglyceride level of the group, which received propolis corresponding to the daily dose of the high group, was significantly lower than that of the control group. It is possible that the administration of propolis improves the accumulation of body fat and dyslipidemia via the change of the expression of proteins involved in adipose depot and lipid metabolism.

  6. Transgenic MSH overexpression attenuates the metabolic effects of a high-fat diet.

    PubMed

    Lee, Michelle; Kim, Andrea; Chua, Streamson C; Obici, Silvana; Wardlaw, Sharon L

    2007-07-01

    To determine whether long-term melanocortinergic activation can attenuate the metabolic effects of a high fat diet, mice overexpressing an NH(2)-terminal POMC transgene that includes alpha- and gamma(3)-MSH were studied on either a 10% low-fat diet (LFD) or 45% high-fat diet (HFD). Weight gain was modestly reduced in transgenic (Tg-MSH) male and female mice vs. wild type (WT) on HFD (P < 0.05) but not LFD. Substantial reductions in body fat percentage were found in both male and female Tg-MSH mice on LFD (P < 0.05) and were more pronounced on HFD (P < 0.001). These changes occurred in the absence of significant feeding differences in most groups, consistent with effects of Tg-MSH on energy expenditure and partitioning. This is supported by indirect calorimetry studies demonstrating higher resting oxygen consumption and lower RQ in Tg-MSH mice on the HFD. Tg-MSH mice had lower fasting insulin levels and improved glucose tolerance on both diets. Histological and biochemical analyses revealed that hepatic fat accumulation was markedly reduced in Tg-MSH mice on the HFD. Tg-MSH also attenuated the increase in corticosterone induced by the HFD. Higher levels of Agrp mRNA, which might counteract effects of the transgene, were measured in Tg-MSH mice on LFD (P = 0.02) but not HFD. These data show that long-term melanocortin activation reduces body weight, adiposity, and hepatic fat accumulation and improves glucose metabolism, particularly in the setting of diet-induced obesity. Our results suggest that long-term melanocortinergic activation could serve as a potential strategy for the treatment of obesity and its deleterious metabolic consequences.

  7. A polyphenolic extract from green tea leaves activates fat browning in high-fat-diet-induced obese mice.

    PubMed

    Neyrinck, Audrey M; Bindels, Laure B; Geurts, Lucie; Van Hul, Matthias; Cani, Patrice D; Delzenne, Nathalie M

    2017-07-24

    Fat browning has emerged as an attractive target for the treatment of obesity and related metabolic disorders. Its activation leads to increased energy expenditure and reduced adiposity, thus contributing to a better energy homeostasis. Green tea extracts (GTEs) were shown to attenuate obesity and low-grade inflammation and to induce the lipolytic pathway in the white adipose tissue (WAT) of mice fed a high-fat diet. The aim of the present study was to determine whether the antiobesity effect of an extract from green tea leaves was associated with the activation of browning in the WAT and/or the inhibition of whitening in the brown adipose tissue (BAT) in HF-diet induced obese mice. Mice were fed a control diet or an HF diet supplemented with or without 0.5% polyphenolic GTE for 8 weeks. GTE supplementation significantly reduced HF-induced adiposity (WAT and BAT) and HF-induced inflammation in WAT. Histological analysis revealed that GTE reduced the adipocyte size in the WAT and the lipid droplet size in the BAT. Markers of browning were induced in the WAT upon GTE treatment, whereas markers of HF-induced whitening were reduced in the BAT. These results suggest that browning activation in the WAT and whitening reduction in the BAT by the GTE could participate to the improvement of metabolic and inflammatory disorders mediated by GTE upon HF diet. Our study emphasizes the importance of using GTE as a nutritional tool to activate browning and to decrease fat storage in all adipose tissues, which attenuate obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Green tea (-)-epigallocatechin-3-gallate counteracts daytime overeating induced by high-fat diet in mice.

    PubMed

    Li, Hongyu; Kek, Huiling Calvina; Lim, Joy; Gelling, Richard Wayne; Han, Weiping

    2016-12-01

    High-fat diet (HFD) induces overeating and obesity. Green tea (-)-epigallocatechin-3-gallate (EGCG) reduces HFD-induced body weight and body fat gain mainly through increased lipid metabolism and fat oxidation. However, little is known about its effect on HFD-induced alterations in feeding behavior. Three diet groups of wildtype C57B/6j male mice at 5 months old were fed on normal chow diet, 1 week of HFD (60% of energy) and 3 months of HFD (diet-induced obesity (DIO)) prior to EGCG supplement in respective diet. EGCG had no effect on feeding behavior in normal chow diet group. Increased daytime feeding induced by HFD was selectively corrected by EGCG treatment in HFD groups, including reversed food intake, feeding frequency and meal size in HFD + EGCG group, and reduced food intake and feeding frequency in DIO + EGCG group. Moreover, EGCG treatment altered diurnally oscillating expression pattern of key appetite-regulating genes, including AGRP, POMC, and CART, and key circadian genes Clock and Bmal1 in hypothalamus of DIO mice, indicating its central effect on feeding regulation. Our study demonstrates that EGCG supplement specifically counteracts daytime overeating induced by HFD in mice, suggesting its central role in regulating feeding behavior and energy homeostasis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Citrus flavanones prevent systemic inflammation and ameliorate oxidative stress in C57BL/6J mice fed high fat diet

    USDA-ARS?s Scientific Manuscript database

    It was investigated the preventive effects of the flavanones hesperidin, eriocitrin and eriodictyol on the oxidative stress and systemic inflammation induced by high-fat diet in C57BL/6J mice. The mice received a standard diet (9.5% kcal from fat), high-fat diet (45% kcal from fat) or high fat diet ...

  10. Effects of troglitazone and voluntary running on insulin resistance induced high fat diet in the rat.

    PubMed

    Kitakoshi, K; Oshida, Y; Nakai, N; Han, Y Q; Sato, Y

    2001-06-01

    It is well known that troglitazone and voluntary running have the capacity to improve insulin resistance. The purpose of this study was to evaluate the combination effect of troglitazone and voluntary running on insulin action. Female rats aged 7 weeks were divided into high-fat diet (HF), high-fat diet + troglitazone (0.3% in diet; Tg), high-fat diet + voluntary running (for 3 wks; Tr), high-fat diet + troglitazone + voluntary running (Tg-Tr), and control (C) groups. A sequential euglycemic clamp experiment with two different insulin infusion rates of 3.0 (L-clamp) and 30.0 mU/kg BW/min (H-clamp) was performed on these rats after an overnight fast. Blood glucose concentrations were kept at fasting levels by periodic adjustment of the intravenous glucose infusion rate during the clamp experiment. Glucose infusion rates (GIRs) calculated from 60 to 90, 150 to 180 min were regarded as an index of whole body insulin action. After the clamp experiment, we determined the amount of glycogen content in the gastrocnemius muscle. Fat feeding markedly reduced GIRs in both L- and H- clamp experiments compared with C. Troglitazone treatment did not improve high-fat induced insulin resistance. In both L- and H-clamp experiments, GIRs were increased by voluntary running compared with HF, and reached the same levels as in C. GIRs of Tg-Tr were not greater than those of Tr. Glycogen content in gastrocnemius muscle showed the same trend as the results for GIRs. Therefore, the combination effect of troglitazone and voluntary running on insulin action was not found, but the effect of voluntary running was shown in fat-induced insulin resistance.

  11. Antioxidant effects of fucoxanthin rich powder in rats fed with high fat diet

    PubMed Central

    Ha, Ae Wha; Na, Se Jung

    2013-01-01

    The purpose of this study was to determine the antioxidant effect of fucoxanthin. After rats were fed a normal fat diet (NF), high fat diet (HF), and high fat with 0.2% fucoxanthin diet (HF + Fxn) for 4 weeks, the markers of oxidative stress and antioxidant capacity like lipid peroxidation, plasma total antioxidant capacity (TAC), and activities of antioxidant enzymes (catalase, superoxide dismutase (SOD), and gluthathione peroxidase (GSH-Px)) were determined. mRNA expression of transcription factor, nuclear erythroid factor like 2 (Nrf2), and its target genes such as NAD(P)H quinone oxidoreductase1 (NQO1) and heme oxygenase-1 (HO-1) were also determined. Mean weight gain in the HF + Fxn group was lower, without statistical significance, and the total food intake in the HF + Fxn group was lower than that in the HF group (P < 0.05). The activity of GSH-Px (P < 0.05) in plasma was significantly higher in the HF + Fxn group than those in the HF group (P < 0.05). In the liver, the activities of catalase (P < 0.05) and GSH-Px (P < 0.05) in the HF + Fxn group were significantly higher than those in the HF group. Plasma TAC level was significantly higher in the HF + Fxn group than that in the HF group (P < 0.05). Lipid peroxidation in plasma tended to be lower without statistical significance. Fucoxanthin supplements were shown to have higher mRNA expression of Nrf2 and NQO1 than those in the high fat diet only group (P < 0.05). In conclusion, supplementation of fucoxanthin improved the antioxidant capacity, depleted by high fat diet, by activating the Nrf2 pathway and its downstream target gene NQO1. Therefore, supplementation of fucoxanthin, especially for those who consume high fat in their diet, may benefit from reduced risk of oxidative stress. PMID:24353833

  12. Triticale Bran Alkylresorcinols Enhance Resistance to Oxidative Stress in Mice Fed a High-Fat Diet

    PubMed Central

    Agil, Rania; Patterson, Zachary R.; Mackay, Harry; Abizaid, Alfonso; Hosseinian, Farah

    2016-01-01

    Triticale (× Triticosecale Whitm.) is a cereal grain with high levels of alkyresorcinols (AR) concentrated in the bran. These phenolic lipids have been shown to reduce or inhibit triglyceride accumulation and protect against oxidation; however, their biological effects have yet to be evaluated in vivo. The purpose of this study was to determine the effects of ARs extracted from triticale bran (TB) added to a high–fat diet on the development of obesity and oxidative stress. CF-1 mice were fed a standard low-fat (LF) diet, a 60% high-fat diet (HF) and HF diets containing either 0.5% AR extract (HF-AR), 10% TB (HF-TB), or 0.5% vitamin E (HF-VE). Energy intake, weight gain, glucose tolerance, fasting blood glucose (FBG) levels, and body composition were determined. Oxygen radical absorbance capacity (ORAC), superoxide dismutase (SOD) activity, and glutathione (GSH) assays were performed on mice liver and heart tissues. The findings suggest that ARs may serve as a preventative measure against risks of oxidative damage associated with high-fat diets and obesity through their application as functional foods and neutraceuticals. Future studies aim to identify the in vivo mechanisms of action of ARs and the individual homologs involved in their favorable biological effects. PMID:28231100

  13. Impaired glucose tolerance in rats fed low-carbohydrate, high-fat diets.

    PubMed

    Bielohuby, Maximilian; Sisley, Stephanie; Sandoval, Darleen; Herbach, Nadja; Zengin, Ayse; Fischereder, Michael; Menhofer, Dominik; Stoehr, Barbara J M; Stemmer, Kerstin; Wanke, Rüdiger; Tschöp, Matthias H; Seeley, Randy J; Bidlingmaier, Martin

    2013-11-01

    Moderate low-carbohydrate/high-fat (LC-HF) diets are widely used to induce weight loss in overweight subjects, whereas extreme ketogenic LC-HF diets are used to treat neurological disorders like pediatric epilepsy. Usage of LC-HF diets for improvement of glucose metabolism is highly controversial; some studies suggest that LC-HF diets ameliorate glucose tolerance, whereas other investigations could not identify positive effects of these diets or reported impaired insulin sensitivity. Here, we investigate the effects of LC-HF diets on glucose and insulin metabolism in a well-characterized animal model. Male rats were fed isoenergetic or hypocaloric amounts of standard control diet, a high-protein "Atkins-style" LC-HF diet, or a low-protein, ketogenic, LC-HF diet. Both LC-HF diets induced lower fasting glucose and insulin levels associated with lower pancreatic β-cell volumes. However, dynamic challenge tests (oral and intraperitoneal glucose tolerance tests, insulin-tolerance tests, and hyperinsulinemic euglycemic clamps) revealed that LC-HF pair-fed rats exhibited impaired glucose tolerance and impaired hepatic and peripheral tissue insulin sensitivity, the latter potentially being mediated by elevated intramyocellular lipids. Adjusting visceral fat mass in LC-HF groups to that of controls by reducing the intake of LC-HF diets to 80% of the pair-fed groups did not prevent glucose intolerance. Taken together, these data show that lack of dietary carbohydrates leads to glucose intolerance and insulin resistance in rats despite causing a reduction in fasting glucose and insulin concentrations. Our results argue against a beneficial effect of LC-HF diets on glucose and insulin metabolism, at least under physiological conditions. Therefore, use of LC-HF diets for weight loss or other therapeutic purposes should be balanced against potentially harmful metabolic side effects.

  14. Effects of 4 weight-loss diets differing in fat, protein, and carbohydrate on fat mass, lean mass, visceral adipose tissue, and hepatic fat: results from the POUNDS LOST trial123

    PubMed Central

    de Souza, Russell J; Carey, Vincent J; Hall, Kevin D; LeBoff, Meryl S; Loria, Catherine M; Laranjo, Nancy M; Sacks, Frank M; Smith, Steven R

    2012-01-01

    Background: Weight loss reduces body fat and lean mass, but whether these changes are influenced by macronutrient composition of the diet is unclear. Objective: We determined whether energy-reduced diets that emphasize fat, protein, or carbohydrate differentially reduce total, visceral, or hepatic fat or preserve lean mass. Design: In a subset of participants in a randomized trial of 4 weight-loss diets, body fat and lean mass (n = 424; by using dual-energy X-ray absorptiometry) and abdominal and hepatic fat (n = 165; by using computed tomography) were measured after 6 mo and 2 y. Changes from baseline were compared between assigned amounts of protein (25% compared with 15%) and fat (40% compared with 20%) and across 4 carbohydrate amounts (35% through 65%). Results: At 6 mo, participants lost a mean (±SEM) of 4.2 ± 0.3 kg (12.4%) fat and 2.1 ± 0.3 kg (3.5%) lean mass (both P < 0.0001 compared with baseline values), with no differences between 25% and 15% protein (P ≥ 0.10), 40% and 20% fat (P ≥ 0.34), or 65% and 35% carbohydrate (P ≥ 0.27). Participants lost 2.3 ± 0.2 kg (13.8%) abdominal fat: 1.5 ± 0.2 kg (13.6%) subcutaneous fat and 0.9 ± 0.1 kg (16.1%) visceral fat (all P < 0.0001 compared with baseline values), with no differences between the diets (P ≥ 0.29). Women lost more visceral fat than did men relative to total-body fat loss. Participants regained ∼40% of these losses by 2 y, with no differences between diets (P ≥ 0.23). Weight loss reduced hepatic fat, but there were no differences between groups (P ≥ 0.28). Dietary goals were not fully met; self-reported contrasts were closer to 2% protein, 8% fat, and 14% carbohydrate at 6 mo and 1%, 7%, and 10%, respectively, at 2 y. Conclusion: Participants lost more fat than lean mass after consumption of all diets, with no differences in changes in body composition, abdominal fat, or hepatic fat between assigned macronutrient amounts. This trial was registered at clinicaltrials.gov as NCT

  15. Effects of 4 weight-loss diets differing in fat, protein, and carbohydrate on fat mass, lean mass, visceral adipose tissue, and hepatic fat: results from the POUNDS LOST trial.

    PubMed

    de Souza, Russell J; Bray, George A; Carey, Vincent J; Hall, Kevin D; LeBoff, Meryl S; Loria, Catherine M; Laranjo, Nancy M; Sacks, Frank M; Smith, Steven R

    2012-03-01

    Weight loss reduces body fat and lean mass, but whether these changes are influenced by macronutrient composition of the diet is unclear. We determined whether energy-reduced diets that emphasize fat, protein, or carbohydrate differentially reduce total, visceral, or hepatic fat or preserve lean mass. In a subset of participants in a randomized trial of 4 weight-loss diets, body fat and lean mass (n = 424; by using dual-energy X-ray absorptiometry) and abdominal and hepatic fat (n = 165; by using computed tomography) were measured after 6 mo and 2 y. Changes from baseline were compared between assigned amounts of protein (25% compared with 15%) and fat (40% compared with 20%) and across 4 carbohydrate amounts (35% through 65%). At 6 mo, participants lost a mean (±SEM) of 4.2 ± 0.3 kg (12.4%) fat and 2.1 ± 0.3 kg (3.5%) lean mass (both P < 0.0001 compared with baseline values), with no differences between 25% and 15% protein (P ≥ 0.10), 40% and 20% fat (P ≥ 0.34), or 65% and 35% carbohydrate (P ≥ 0.27). Participants lost 2.3 ± 0.2 kg (13.8%) abdominal fat: 1.5 ± 0.2 kg (13.6%) subcutaneous fat and 0.9 ± 0.1 kg (16.1%) visceral fat (all P < 0.0001 compared with baseline values), with no differences between the diets (P ≥ 0.29). Women lost more visceral fat than did men relative to total-body fat loss. Participants regained ~40% of these losses by 2 y, with no differences between diets (P ≥ 0.23). Weight loss reduced hepatic fat, but there were no differences between groups (P ≥ 0.28). Dietary goals were not fully met; self-reported contrasts were closer to 2% protein, 8% fat, and 14% carbohydrate at 6 mo and 1%, 7%, and 10%, respectively, at 2 y. Participants lost more fat than lean mass after consumption of all diets, with no differences in changes in body composition, abdominal fat, or hepatic fat between assigned macronutrient amounts. This trial was registered at clinicaltrials.gov as NCT00072995.

  16. Modulation of cAMP levels by high fat diet and curcumin and regulatory effects on CD36/FAT scavenger receptor/fatty acids transporter gene expression

    USDA-ARS?s Scientific Manuscript database

    Curcumin, a polyphenol from turmeric (Curcuma longa), reduces inflammation, atherosclerosis, and obesity in several animal studies. In Ldlr-/- mice fed a high-fat diet (HFD), curcumin reduces plasma lipid levels, therefore contributing to a lower accumulation of lipids and to reduced expression of f...

  17. Effects of pectin lyase-modified red ginseng extracts in high-fat diet-fed obese mice

    PubMed Central

    Lee, Hak-Yong; Park, Kwang-Hyun; Park, Young-Mi; Moon, Dae-In; Oh, Hong-Geun; Kwon, Dae-Young; Yang, Hye-Jeong; Kim, Okjin; Kim, Dong-Woo; Yoo, Ji-Hyun; Hong, Se-Chul; Lee, Kun-Hee; Seol, Su-Yeon; Park, Yong-Sik; Park, Jong-Dae

    2014-01-01

    Red ginseng and its extracts have been used as traditional medicines and functional foods in countries worldwide. The aim of this study was to examine the bioavailability of pectin lyase-modified red ginseng extracts (GS-E3D), and the effects of GS-E3D on adipogenesis of 3T3-L1 adipocytes, as well as on metabolic disorders such as hyperglycemia, dyslipidemia, and fatty liver in high-fat diet fed obese C57BL/6 mice. Mice were divided into 5 groups: normal diet group, high fat diet-vehicle group, high fat diet + 0.1 g/kg GS-E3D (0.1-GS-E3D), high fat diet + 0.3 g/kg (0.3-GS-E3D), high fat diet + 1.0 g/kg (1.0-GS-E3D). Treatment of GS-E3D reduced differentiation of 3T3-L1 adipocytes with low cytotoxicity. In the animal model, compared to the high fat diet control, serum glucose, total cholesterol, LDL-cholesterol, HDL-cholesterol, TG, and leptin level were reduced in treatment animals in a dose-dependent manner. In addition, we found that GS-E3D could decrease total hepatic lipid droplets. These results suggest that GS-E3D, as a dietary supplement, has beneficial effects on obesity and may have useful effects in health-care products. PMID:25628725

  18. Tissue-specific expression of Sprouty1 in mice protects against high-fat diet-induced fat accumulation, bone loss and metabolic dysfunction.

    PubMed

    Urs, Sumithra; Henderson, Terry; Le, Phuong; Rosen, Clifford J; Liaw, Lucy

    2012-09-28

    We recently characterised Sprouty1 (Spry1), a growth factor signalling inhibitor as a regulator of marrow progenitor cells promoting osteoblast differentiation at the expense of adipocytes. Adipose tissue-specific Spry1 expression in mice resulted in increased bone mass and reduced body fat, while conditional knockout of Spry1 had the opposite effect with decreased bone mass and increased body fat. Because Spry1 suppresses normal fat development, we tested the hypothesis that Spry1 expression prevents high-fat diet-induced obesity, bone loss and associated lipid abnormalities, and demonstrate that Spry1 has a long-term protective effect on mice fed a high-energy diet. We studied diet-induced obesity in mice with fatty acid binding promoter-driven expression or conditional knockout of Spry1 in adipocytes. Phenotyping was performed by whole-body dual-energy X-ray absorptiometry, microCT, histology and blood analysis. In conditional Spry1-null mice, a high-fat diet increased body fat by 40 %, impaired glucose regulation and led to liver steatosis. However, overexpression of Spry1 led to 35 % (P < 0·05) lower body fat, reduced bone loss and normal metabolic function compared with single transgenics. This protective phenotype was associated with decreased circulating insulin (70 %) and leptin (54 %; P < 0·005) compared with controls on a high-fat diet. Additionally, Spry1 expression decreased adipose tissue inflammation by 45 %. We show that conditional Spry1 expression in adipose tissue protects against high-fat diet-induced obesity and associated bone loss.

  19. Moderate ethanol administration accentuates cardiomyocyte contractile dysfunction and mitochondrial injury in high fat diet-induced obesity.

    PubMed

    Yuan, Fang; Lei, Yonghong; Wang, Qiurong; Esberg, Lucy B; Huang, Zaixing; Scott, Glenda I; Li, Xue; Ren, Jun

    2015-03-18

    Light to moderate drinking confers cardioprotection although it remains unclear with regards to the role of moderate drinking on cardiac function in obesity. This study was designed to examine the impact of moderate ethanol intake on myocardial function in high fat diet intake-induced obesity and the mechanism(s) involved with a focus on mitochondrial integrity. C57BL/6 mice were fed low or high fat diet for 16 weeks prior to ethanol challenge (1g/kg/d for 3 days). Cardiac contractile function, intracellular Ca(2+) homeostasis, myocardial histology, and mitochondrial integrity [aconitase activity and the mitochondrial proteins SOD1, UCP-2 and PPARγ coactivator 1α (PGC-1α)] were assessed 24h after the final ethanol challenge. Fat diet intake compromised cardiomyocyte contractile and intracellular Ca(2+) properties (depressed peak shortening and maximal velocities of shortening/relengthening, prolonged duration of relengthening, dampened intracellular Ca(2+) rise and clearance without affecting duration of shortening). Although moderate ethanol challenge failed to alter cardiomyocyte mechanical property under low fat diet intake, it accentuated high fat diet intake-induced changes in cardiomyocyte contractile function and intracellular Ca(2+) handling. Moderate ethanol challenge failed to affect fat diet intake-induced cardiac hypertrophy as evidenced by H&E staining. High fat diet intake reduced myocardial aconitase activity, downregulated levels of mitochondrial protein UCP-2, PGC-1α, SOD1 and interrupted intracellular Ca(2+) regulatory proteins, the effect of which was augmented by moderate ethanol challenge. Neither high fat diet intake nor moderate ethanol challenge affected protein or mRNA levels as well as phosphorylation of Akt and GSK3β in mouse hearts. Taken together, our data revealed that moderate ethanol challenge accentuated high fat diet-induced cardiac contractile and intracellular Ca(2+) anomalies as well as mitochondrial injury. Copyright

  20. Effects of low-carbohydrate and low-fat diets: a randomized trial.

    PubMed

    Bazzano, Lydia A; Hu, Tian; Reynolds, Kristi; Yao, Lu; Bunol, Calynn; Liu, Yanxi; Chen, Chung-Shiuan; Klag, Michael J; Whelton, Paul K; He, Jiang

    2014-09-02

    Low-carbohydrate diets are popular for weight loss, but their cardiovascular effects have not been well-studied, particularly in diverse populations. To examine the effects of a low-carbohydrate diet compared with a low-fat diet on body weight and cardiovascular risk factors. A randomized, parallel-group trial. (ClinicalTrials.gov: NCT00609271). A large academic medical center. 148 men and women without clinical cardiovascular disease and diabetes. A low-carbohydrate (<40 g/d) or low-fat (<30% of daily energy intake from total fat [<7% saturated fat]) diet. Both groups received dietary counseling at regular intervals throughout the trial. Data on weight, cardiovascular risk factors, and dietary composition were collected at 0, 3, 6, and 12 months. Sixty participants (82%) in the low-fat group and 59 (79%) in the low-carbohydrate group completed the intervention. At 12 months, participants on the low-carbohydrate diet had greater decreases in weight (mean difference in change, -3.5 kg [95% CI, -5.6 to -1.4 kg]; P = 0.002), fat mass (mean difference in change, -1.5% [CI, -2.6% to -0.4%]; P = 0.011), ratio of total-high-density lipoprotein (HDL) cholesterol (mean difference in change, -0.44 [CI, -0.71 to -0.16]; P = 0.002), and triglyceride level (mean difference in change, -0.16 mmol/L [-14.1 mg/dL] [CI, -0.31 to -0.01 mmol/L {-27.4 to -0.8 mg/dL}]; P = 0.038) and greater increases in HDL cholesterol level (mean difference in change, 0.18 mmol/L [7.0 mg/dL] [CI, 0.08 to 0.28 mmol/L {3.0 to 11.0 mg/dL}]; P < 0.001) than those on the low-fat diet. Lack of clinical cardiovascular disease end points. The low-carbohydrate diet was more effective for weight loss and cardiovascular risk factor reduction than the low-fat diet. Restricting carbohydrate may be an option for persons seeking to lose weight and reduce cardiovascular risk factors. National Institutes of Health.

  1. Dietary polyunsaturated fats of the W-6 and W-3 series reduce postprandial lipoprotein levels. Chronic and acute effects of fat saturation on postprandial lipoprotein metabolism.

    PubMed Central

    Weintraub, M S; Zechner, R; Brown, A; Eisenberg, S; Breslow, J L

    1988-01-01

    The chronic and acute effects of different types of dietary fat on postprandial lipoprotein metabolism were studied in eight normolipidemic subjects. Each person was placed for 25 d on each of three isocaloric diets: a saturated fat (SFA), a w-6 polyunsaturated fat (w-6 PUFA) and a w-3 polyunsaturated fat (w-3 PUFA) diet. Two vitamin A-fat loading tests were done on each diet. The concentrations in total plasma and chylomicron (Sf greater than 1,000) and nonchylomicron (Sf less than 1,000) fractions of retinyl palmitate (RP) were measured for 12 h postprandially. Compared with the SFA diet, the w-6 PUFA diet reduced chylomicron and nonchylomicron RP levels 56 and 38%, respectively, and the w-3 PUFA diet reduced these levels 67 and 53%, respectively. On further analysis, the main determinant of postprandial lipoprotein levels was the type of fat that was chronically fed, which appeared to mediate its effect by changing the concentration of the endogenous competitor for the system that catabolizes triglyeride-rich lipoproteins. However, there was a significant effect of the acute dietary fat load, which appeared to be due to a differential susceptibility to lipolysis of chylomicrons produced by SFA as opposed to PUFA fat loads. The levels of postprandial lipoproteins are determined by the interaction of these chronic and acute effects. PMID:3058748

  2. Effects of moderate-fat (from monounsaturated fat) and low-fat weight-loss diets on the serum lipid profile in overweight and obese men and women.

    PubMed

    Pelkman, Christine L; Fishell, Valerie K; Maddox, Deborah H; Pearson, Thomas A; Mauger, David T; Kris-Etherton, Penny M

    2004-02-01

    Little evidence of the effects of moderate-fat (from monounsaturated fat) weight-loss diets on risk factors for cardiovascular disease exists because low-fat diets are typically recommended. Previous studies in weight-stable persons showed that a moderate-fat diet results in a more favorable lipid and lipoprotein profile (ie, lower serum triacylglycerol and higher HDL cholesterol) than does a low-fat diet. We evaluated the effects of energy-controlled, low-fat and moderate-fat diets on changes in lipids and lipoproteins during weight loss and subsequent weight maintenance. We conducted a parallel-arm study design in overweight and obese [body mass index (in kg/m(2)): 29.8 +/- 2.4] healthy men and women (n = 53) assigned to consume a low-fat (18% of energy) or moderate-fat (33% of energy) diet for 6 wk to achieve weight loss, which was followed by 4 wk of weight maintenance. All foods were provided and body weight was monitored to ensure equal weight loss between groups. The moderate-fat diet elicited favorable changes in the lipoprotein profile. Compared with baseline, HDL cholesterol was unchanged, whereas triacylglycerol and the ratios of total and non-HDL cholesterol to HDL cholesterol were lower at the end of the weight-maintenance period in the moderate-fat diet group. Despite similar weight loss, triacylglycerol rebounded, HDL cholesterol decreased, and the ratios of total and non-HDL cholesterol to HDL cholesterol did not change during the 10-wk interval in the low-fat diet group. A moderate-fat weight-loss and weight-maintenance diet improves the cardiovascular disease risk profile on the basis of favorable changes in lipids and lipoproteins. There is merit in recommending a moderate-fat weight-loss diet.

  3. Folic acid supplementation during high-fat diet feeding restores AMPK activation via an AMP-LKB1-dependent mechanism

    PubMed Central

    Sid, Victoria; Wu, Nan; Sarna, Lindsei K.; Siow, Yaw L.; House, James D.

    2015-01-01

    AMPK is an endogenous energy sensor that regulates lipid and carbohydrate metabolism. Nonalcoholic fatty liver disease (NAFLD) is regarded as a hepatic manifestation of metabolic syndrome with impaired lipid and glucose metabolism and increased oxidative stress. Our recent study showed that folic acid supplementation attenuated hepatic oxidative stress and lipid accumulation in high-fat diet-fed mice. The aim of the present study was to investigate the effect of folic acid on hepatic AMPK during high-fat diet feeding and the mechanisms involved. Male C57BL/6J mice were fed a control diet (10% kcal fat), a high-fat diet (60% kcal fat), or a high-fat diet supplemented with folic acid (26 mg/kg diet) for 5 wk. Mice fed a high-fat diet exhibited hyperglycemia, hepatic cholesterol accumulation, and reduced hepatic AMPK phosphorylation. Folic acid supplementation restored AMPK phosphorylation (activation) and reduced blood glucose and hepatic cholesterol levels. Activation of AMPK by folic acid was mediated through an elevation of its allosteric activator AMP and activation of its upstream kinase, namely, liver kinase B1 (LKB1) in the liver. Consistent with in vivo findings, 5-methyltetrahydrofolate (bioactive form of folate) restored phosphorylation (activation) of both AMPK and LKB1 in palmitic acid-treated HepG2 cells. Activation of AMPK by folic acid might be responsible for AMPK-dependent phosphorylation of HMG-CoA reductase, leading to reduced hepatic cholesterol synthesis during high-fat diet feeding. These results suggest that folic acid supplementation may improve cholesterol and glucose metabolism by restoration of AMPK activation in the liver. PMID:26400185

  4. Folic acid supplementation during high-fat diet feeding restores AMPK activation via an AMP-LKB1-dependent mechanism.

    PubMed

    Sid, Victoria; Wu, Nan; Sarna, Lindsei K; Siow, Yaw L; House, James D; O, Karmin

    2015-11-15

    AMPK is an endogenous energy sensor that regulates lipid and carbohydrate metabolism. Nonalcoholic fatty liver disease (NAFLD) is regarded as a hepatic manifestation of metabolic syndrome with impaired lipid and glucose metabolism and increased oxidative stress. Our recent study showed that folic acid supplementation attenuated hepatic oxidative stress and lipid accumulation in high-fat diet-fed mice. The aim of the present study was to investigate the effect of folic acid on hepatic AMPK during high-fat diet feeding and the mechanisms involved. Male C57BL/6J mice were fed a control diet (10% kcal fat), a high-fat diet (60% kcal fat), or a high-fat diet supplemented with folic acid (26 mg/kg diet) for 5 wk. Mice fed a high-fat diet exhibited hyperglycemia, hepatic cholesterol accumulation, and reduced hepatic AMPK phosphorylation. Folic acid supplementation restored AMPK phosphorylation (activation) and reduced blood glucose and hepatic cholesterol levels. Activation of AMPK by folic acid was mediated through an elevation of its allosteric activator AMP and activation of its upstream kinase, namely, liver kinase B1 (LKB1) in the liver. Consistent with in vivo findings, 5-methyltetrahydrofolate (bioactive form of folate) restored phosphorylation (activation) of both AMPK and LKB1 in palmitic acid-treated HepG2 cells. Activation of AMPK by folic acid might be responsible for AMPK-dependent phosphorylation of HMG-CoA reductase, leading to reduced hepatic cholesterol synthesis during high-fat diet feeding. These results suggest that folic acid supplementation may improve cholesterol and glucose metabolism by restoration of AMPK activation in the liver.

  5. Antioxidative Diet Supplementation Reverses High-Fat Diet-Induced Increases of Cardiovascular Risk Factors in Mice

    PubMed Central

    Vargas-Robles, Hilda; Rios, Amelia; Arellano-Mendoza, Monica; Escalante, Bruno A.; Schnoor, Michael

    2015-01-01

    Obesity is a worldwide epidemic that is characterized not only by excessive fat deposition but also by systemic microinflammation, high oxidative stress, and increased cardiovascular risk factors. While diets enriched in natural antioxidants showed beneficial effects on oxidative stress, blood pressure, and serum lipid composition, diet supplementation with synthetic antioxidants showed contradictive results. Thus, we tested in C57Bl/6 mice whether a daily dosage of an antioxidative mixture consisting of vitamin C, vitamin E, L-arginine, eicosapentaenoic acid, and docosahexaenoic acid (corabion) would affect cardiovascular risk factors associated with obesity. Obese mice showed increased serum triglyceride and glucose levels and hypertension after eight weeks of being fed a high-fat diet (HFD). Importantly, corabion ameliorated all of these symptoms significantly. Oxidative stress and early signs of systemic microinflammation already developed after two weeks of high-fat diet and were significantly reduced by daily doses of corabion. Of note, the beneficial effects of corabion could not be observed when applying its single antioxidative components suggesting that a combination of various nutrients is required to counteract HFD-induced cardiovascular risk factors. Thus, daily consumption of corabion may be beneficial for the management of obesity-related cardiovascular complications. PMID:25922641

  6. High-fat and ketogenic diets in amyotrophic lateral sclerosis.

    PubMed

    Paganoni, Sabrina; Wills, Anne-Marie

    2013-08-01

    Amyotrophic lateral sclerosis is a fatal neurodegenerative disease. Epidemiologic data suggest that malnutrition is a common feature in amyotrophic lateral sclerosis and being overweight or obese confers a survival advantage in this patient population. In amyotrophic lateral sclerosis mouse models, a high-fat diet has been shown to lead to weight gain and prolonged survival. However, little research has been conducted to test whether nutritional interventions might ameliorate the disease course in humans. Here we review the currently available evidence supporting the potential role of dietary interventions as a therapeutic tool for amyotrophic lateral sclerosis. Ultimately, determining whether a high-fat or ketogenic diet could be beneficial in amyotrophic lateral sclerosis will require large randomized, placebo-controlled clinical trials.

  7. Low density lipoprotein subclasses and response to a low-fat diet in healthy men

    SciTech Connect

    Krauss, R.M.; Dreon, D.M.

    1994-11-01

    Lipid and lipoprotein response to reduced dietary fat intake was investigated in relation to differences in distribution of LDL subclasses among 105 healthy men consuming high-fat (46%) and low-fat (24%) diets in random order for six weeks each. On high-fat, 87 subjects had predominantly large, buoyant LDL as measured by gradient gel electrophoresis and confirmed by analytic ultracentrifugation (pattern A), while the remainder had primarily smaller, denser LDL (pattern B). On low-fat, 36 men changed from pattern A to B. Compared with the 51 men in the stable A group, men in the stable B group (n = 18) had a three-fold greater reduction in LDL cholesterol and significantly greater reductions in plasma apoB and mass of intermediate (LDL II) and small (LDL III) LDL subtractions measured by analytic ultracentrifugation. In both stable A and change groups, reductions in LDL-cholesterol were not accompanied by reduced plasma apoB, consistent with the observation of a shift in LDL particle mass from larger, lipid-enriched (LDL I and II) to smaller, lipid-depleted (LDL III and IV) subfractions, without significant change in particle number. Genetic and environmental factors influencing LDL subclass distributions thus may also contribute substantially to interindividual variation in response to a low-fat diet.

  8. Antihyperlipidemic activity of adenosine triphosphate in rabbits fed a high-fat diet and hyperlipidemic patients.

    PubMed

    Zhang, Lianshan; Liang, Libin; Tong, Tong; Qin, Yuguo; Xu, Yanping; Tong, Xinglong

    2016-10-01

    Context Recently, adenosine triphosphate (ATP) was occasionally found to decrease the triglyceride (TG) levels in several hyperlipidemic patients in our clinical practice. Objective The study investigates the anti-hyperlipidemic effects of ATP in a high-fat fed rabbit model and hyperlipidemic patients. Materials and methods Twenty-four rabbits were randomly divided into three groups of eight animals each as follows: normal diet, high-fat diet and high-fat diet + ATP group. ATP supplementation (40 mg/day) was started at the 20th day and lasted for 10 days. Serum concentrations of total cholesterol (TC), TG, LDL-C, HDL-C were measured on the 20th day and 30th day. Heart, liver and aorta were subjected histopathological examination. Twenty outpatients diagnosed primary hyperlipidemia took ATP at a dose of 60 mg twice a day for 1 week. Results Feeding rabbits with a high-fat diet resulted in a significant elevation of lipid parameters including TC, TG, LDL-C, VLDL-C compared to the normal diet group (p < 0.01). ATP treatment significantly decreased serum TG level (p < 0.01), whilst other parameters remained statistically unaltered. Meanwhile, ATP significantly reduced the thickness of fat layer in cardiac epicardium (p < 0.05) and pathological gradation of ballooning degeneration in hepatocytes (p < 0.05). After taking ATP for 1 week, hyperlipidemia patients exhibited a significant decrease of TG (p < 0.01), but other lipid parameters had no significant change. Discussion and conclusion The study indicates that ATP selectively decreases serum TG levels in high-fat diet rabbits and hyperlipidemic patients. Therefore, ATP supplementation may provide an effective approach to control TG level.

  9. Endurance capacity and high-intensity exercise performance responses to a high fat diet.

    PubMed

    Fleming, Jesse; Sharman, Matthew J; Avery, Neva G; Love, Dawn M; Gómez, Ana L; Scheett, Timothy P; Kraemer, William J; Volek, Jeff S

    2003-12-01

    The effects of adaptation to a high-fat diet on endurance performance are equivocal, and there is little data regarding the effects on high-intensity exercise performance. This study examined the effects of a high-fat/moderate protein diet on submaximal, maximal, and supramaximal performance. Twenty non-highly trained men were assigned to either a high-fat/moderate protein (HFMP; 61% fat diet) (n = 12) or a control (C; 25% fat) group (n = 8). A maximal oxygen consumption test, two 30-s Wingate anaerobic tests, and a 45-min timed ride were performed before and after 6 weeks of diet and training. Body mass decreased significantly (-2.2 kg; p < or = .05) in HFMP subjects. Maximal oxygen consumption significantly decreased in the HFMP group (3.5 +/- 0.14 to 3.27 +/- 0.09 L x min(-1)) but was unaffected when corrected for body mass. Perceived exertion was significantly higher during this test in the HFMP group. Main time effects indicated that peak and mean power decreased significantly during bout 1 of the Wingate sprints in the HFMP (-10 and -20%, respectively) group but not the C (-8 and -16%, respectively) group. Only peak power was lower during bout 1 in the HFMP group when corrected for body mass. Despite significantly reduced RER values in the HFMP group during the 45-min cycling bout, work output was significantly decreased (-18%). Adaptation to a 6-week HFMP diet in non-highly trained men resulted in increased fat oxidation during exercise and small decrements in peak power output and endurance performance. These deleterious effects on exercise performance may be accounted for in part by a reduction in body mass and/or increased ratings of perceived exertion.

  10. Evolution of the diabetic diet: Fats and fallacies.

    PubMed

    Campbell, L V

    2000-09-01

    The Diabetes Control and Complications Trial and United Kingdom Prospective Diabetes Study (UKPDS) trials have provided evidence for the pivotal importance of optimizing glycaemic control to prevent complications in type 1 and 2 diabetes mellitus. Both patients and diabetes professionals consider lifestyle change and appropriate medication as cornerstones for achieving good glycaemic control. The frequent reversals in the recommended diabetic diet in the past century warn that in the nutritional area the hypotheses are many, but the proofs are few. In type 1 diabetes, the patient is still advised to spread out carbohyrate foods during the day with three short-acting insulin injections at meal times to minimize postprandial hyperglycaemia. In type 2 diabetes, weight loss is the major target, because 80% of patients are overweight or obese. However, it is salutory to note that in the UKPDS trial, no modality of treatment delayed the relentless deterioration of glycaemic control in type 2 diabetes, the extent of which was predicted by the insulin secretion. Controversy still exists regarding whether lowering the dietary fat enhances weight loss of itself and whether dietary carbohydrate, fat and fibre influence insulin sensitivity and glycaemia. The American Diabetes Association's evidence-based recommendations currently offer a choice between a high carbohyrate and modified fat diet, with monounsaturated fat replacing the saturated fat instead of carbohydrate. The role of omega-3 fatty acids in man is not resolved. The reason for the surprising lack of definitive evidence lies in the limitations of nutritional research. Under-reporting of diet is common and dietary assessment tools are often inaccurate. Sustained weight loss is unattainable by the majority of patients, perhaps because of the strongly genetic nature of obesity and the sedentary lifestyle. Compliance may be improved by suggesting small, sustained dietary changes, setting small weight loss targets and

  11. Differential effect of weight loss with low-fat diet or high-fat diet restriction on inflammation in the liver and adipose tissue of mice with diet-induced obesity

    USDA-ARS?s Scientific Manuscript database

    We studied the effects of weight loss induced by either a low-fat normal diet or restriction of high-fat diet on hepatic steatosis, inflammation in the liver and adipose tissue, and blood monocytes of obese mice. In mice with high-fat diet-induced obesity, weight loss was achieved by switching from ...

  12. Effects of konjac glucomannan on putative risk factors for colon carcinogenesis in rats fed a high-fat diet.

    PubMed

    Wu, Wen-Tzu; Chen, Hsiao-Ling

    2011-02-09

    The aim of this study was to determine effects of konjac glucomannan (KGM) in a high fat corn oil diet on risk factors of colon carcinogenesis, that is, fecal β-glucuronidase, mucinase, and bile acids, and on preventive factors, that is, fecal microflora and cecal short-chain fatty acids (SCFAs). Sprague-Dawley rats (n = 8 animals per group) were fed a normal-fat fiber-free (5% corn oil, w/w) or high-fat (25% corn oil, w/w) diet containing no fiber, KGM (5%, w/w), or inulin (5%, w/w, as a prebiotic control) for 4 weeks. Results indicated that the high-fat fiber-free diet significantly elevated the fecal β-glucuronidase and mucinase activities and total bile acid concentration and decreased cecal SCFA contents, as compared with its normal-fat counterpart. The incorporation of KGM, as well as inulin, into the high-fat fiber-free diet beneficially reduced the fecal β-glucuronidase and mucinase activities and lithocholic acid (secondary bile acid) concentration. Although KGM elevated the daily fecal total bile acid excretion, the change was due to the primary, instead of the secondary, bile acids. In addition, KGM beneficially promoted the daily fecal excretion of bifidobacteria and lactobacilli and cecal SCFA contents, as compared with the high-fat fiber-free diet. Therefore, the present study suggests that KGM potentially attenuated the high fat-induced risk in colon carcinogenesis.

  13. Effect of low-fat, high-carbohydrate, high-fiber diet on fecal bile acids and neutral sterols.

    PubMed

    Reddy, B S; Engle, A; Simi, B; O'Brien, L T; Barnard, R J; Pritikin, N; Wynder, E L

    1988-07-01

    The effect of a diet low in total fat and high in complex carbohydrates on the excretion of bile acids and neutral sterols and on serum lipids was studied in women, 46-47 years old, who were consuming a mixed Western diet. Participants kept an initial 3-day food record while consuming their normal diet (pre-diet period). During the dietary intervention period (experimental diet) which lasted for 26 days, all volunteers consumed a low-calorie, low-fat (less than 10% of total calories), high-fiber (37 g/day, high-carbohydrate diet. At the 1-year follow-up, the participants completed another 3-day food record, which indicates that these volunteers maintained their caloric and fat intake at levels slightly higher than the experimental diet, but lower than the pre-diet period. Individual 24-hr fecal samples for 2 days and blood samples were collected from the volunteers during each dietary period. Fecal samples were analyzed for neutral sterols and bile acids, and blood samples were analyzed to ascertain cholesterol and triglyceride levels. There were no significant differences in the excretion of neutral sterols between the dietary periods. Fecal secondary bile acids were significantly lower during the experimental and follow-up diet periods compared with the pre-test diet period. Serum cholesterol levels were significantly lower during the experimental and follow-up diet periods than during the pre-test diet period. These results suggest that switching from a high-fat, low-fiber diet to a low-fat, high-fiber diet can reduce the excretion of bile acids which are thought to be involved in the promotion of colon cancer.

  14. The effects of two Lactobacillus plantarum strains on rat lipid metabolism receiving a high fat diet.

    PubMed

    Salaj, Rastislav; Stofilová, Jana; Soltesová, Alena; Hertelyová, Zdenka; Hijová, Emília; Bertková, Izabela; Strojný, Ladislav; Kružliak, Peter; Bomba, Alojz

    2013-01-01

    The aim of our study was to evaluate the effects of the different probiotic strains, Lactobacillus plantarum LS/07 and Lactobacillus plantarum Biocenol LP96, on lipid metabolism and body weight in rats fed a high fat diet. Compared with the high fat diet group, the results showed that Lactobacillus plantarum LS/07 reduced serum cholesterol and LDL cholesterol, but Lactobacillus plantarum Biocenol LP96 decreased triglycerides and VLDL, while there was no change in the serum HDL level and liver lipids. Both probiotic strains lowered total bile acids in serum. Our strains have no significant change in body weight, gain weight, and body fat. These findings indicate that the effect of lactobacilli on lipid metabolism may differ among strains and that the Lactobacillus plantarum LS/07 and Lactobacillus plantarum Biocenol LP96 can be used to improve lipid profile and can contribute to a healthier bowel microbial balance.

  15. The Effects of Two Lactobacillus plantarum Strains on Rat Lipid Metabolism Receiving a High Fat Diet

    PubMed Central

    Salaj, Rastislav; Štofilová, Jana; Šoltesová, Alena; Hertelyová, Zdenka; Hijová, Emília; Bertková, Izabela; Strojný, Ladislav; Kružliak, Peter

    2013-01-01

    The aim of our study was to evaluate the effects of the different probiotic strains, Lactobacillus plantarum LS/07 and Lactobacillus plantarum Biocenol LP96, on lipid metabolism and body weight in rats fed a high fat diet. Compared with the high fat diet group, the results showed that Lactobacillus plantarum LS/07 reduced serum cholesterol and LDL cholesterol, but Lactobacillus plantarum Biocenol LP96 decreased triglycerides and VLDL, while there was no change in the serum HDL level and liver lipids. Both probiotic strains lowered total bile acids in serum. Our strains have no significant change in body weight, gain weight, and body fat. These findings indicate that the effect of lactobacilli on lipid metabolism may differ among strains and that the Lactobacillus plantarum LS/07 and Lactobacillus plantarum Biocenol LP96 can be used to improve lipid profile and can contribute to a healthier bowel microbial balance. PMID:24470789

  16. Effects of overfeeding and high-fat diet on cardiosomatic parameters and cardiac structures in young and adult zebrafish.

    PubMed

    Vargas, Rafael; Vásquez, Isabel Cristina

    2017-08-25

    Obesity is a complex global health problem because it is a risk factor for multiple chronic pathologies such as cardiovascular, endocrine, metabolic, and neoplastic diseases. It is considered a multicausal disease, and one of the determining factors is nutritional imbalances, which include high-fat diets. In this paper, we use the zebrafish model to assess the impact of overfeeding and a high-fat diet in somatic and cardiac parameters in young and adult zebrafish. The results show that fish receiving a high-fat diet showed greater weight gain compared to fish receiving a standard fat diet. Additionally, changes in the heart, including increases in size, a change in the triangular shape of the ventricle to a globular shape, and an increase in the thickness of the trabeculae of the spongy myocardium were observed. These changes could be indicators of cardiovascular overload. The results show that there is a direct relationship between the intake of a high-fat diet and obesity, which in turn can induce cardiac changes, supporting the hypothesis of the relationship between high-fat diets and cardiovascular risk factors. Given the genetic similarity between zebrafish and humans, these results could be extrapolated to human beings, and the findings similarly highlight the importance of incorporating a balanced diet from the early life stages to reduce the risk of cardiovascular disease.

  17. Red Cabbage Microgreens Lower Circulating Low-Density Lipoprotein (LDL), Liver Cholesterol, and Inflammatory Cytokines in Mice Fed a High-Fat Diet.

    PubMed

    Huang, Haiqiu; Jiang, Xiaojing; Xiao, Zhenlei; Yu, Lu; Pham, Quynhchi; Sun, Jianghao; Chen, Pei; Yokoyama, Wallace; Yu, Liangli Lucy; Luo, Yaguang Sunny; Wang, Thomas T Y

    2016-12-07

    Cardiovascular disease (CVD) is the leading cause of death in the United States, and hypercholesterolemia is a major risk factor. Population studies, as well as animal and intervention studies, support the consumption of a variety of vegetables as a means to reduce CVD risk through modulation of hypercholesterolemia. Microgreens of a variety of vegetables and herbs have been reported to be more nutrient dense compared to their mature counterparts. However, little is known about the effectiveness of microgreens in affecting lipid and cholesterol levels. The present study used a rodent diet-induced obesity (DIO) model to address this question. C57BL/6NCr mice (n = 60, male, 5 weeks old) were randomly assigned to six feeding groups: (1) low-fat diet; (2) high-fat diet; (3) low-fat diet + 1.09% red cabbage microgreens; (4) low-fat diet + 1.66% mature red cabbage; (5) high-fat diet + 1.09% red cabbage microgreens; (6) high-fat diet + 1.66% mature red cabbage. The animals were on their respective diets for 8 weeks. We found microgreen supplementation attenuated high-fat diet induced weight gain. Moreover, supplementation with microgreens significantly lowered circulating LDL levels in animals fed the high-fat diet and reduced hepatic cholesterol ester, triacylglycerol levels, and expression of inflammatory cytokines in the liver. These data suggest that microgreens can modulate weight gain and cholesterol metabolism and may protect against CVD by preventing hypercholesterolemia.

  18. High-fat diets rich in saturated fat protect against azoxymethane/dextran sulfate sodium-induced colon cancer.

    PubMed

    Enos, Reilly T; Velázquez, Kandy T; McClellan, Jamie L; Cranford, Taryn L; Nagarkatti, Mitzi; Nagarkatti, Prakash S; Davis, J Mark; Murphy, E Angela

    2016-06-01

    High-fat-diet (HFD) consumption is associated with colon cancer risk. However, little is known about how the lipid composition of a HFD can influence prooncogenic processes. We examined the effects of three HFDs differing in the percentage of total calories from saturated fat (SF) (6, 12, and 24% of total caloric intake), but identical in total fat (40%), and a commercially available Western diet (26 and 41% saturated and total fat, respectively) on colon cancer development using the azoxymethane (AOM)/dextran sulfate sodium (DSS) murine model. A second dose-response experiment was performed using diets supplemented with the saturated-fatty-acid (SFA)-rich coconut oil. In experiment 1, we found an inverse association between SF content and tumor burden. Furthermore, increased SF content was associated with reduced inflammation, increased apoptosis, and decreased proliferation. The second dose-response experiment was performed to test whether this effect may be attributed to the SF content of the diets. Consistent with the initial experiment, we found that high SF content was protective, at least in male mice; there was a decrease in mortality in mice consuming the highest concentration of SFAs. To explore a potential mechanism for these findings, we examined colonic mucin 2 (Muc2) protein content and found that the HFDs with the highest SF content had the greatest concentration of Muc2. Our data suggest that high dietary SF is protective in the AOM/DSS model of colon cancer, which may be due, at least in part, to the ability of SF to maintain intestinal barrier integrity through increased colonic Muc2.

  19. Effects of diet macronutrient composition on body composition and fat distribution during weight maintenance and weight loss.

    PubMed

    Goss, Amy M; Goree, Laura Lee; Ellis, Amy C; Chandler-Laney, Paula C; Casazza, Krista; Lockhart, Mark E; Gower, Barbara A

    2013-06-01

    Qualitative aspects of diet may affect body composition and propensity for weight gain or loss. We tested the hypothesis that consumption of a relatively low glycemic load (GL) diet would reduce total and visceral adipose tissue under both eucaloric and hypocaloric conditions. Participants were 69 healthy overweight men and women. Body composition was assessed by DXA and fat distribution by CT scan at baseline, after 8 weeks of a eucaloric diet intervention, and after 8 weeks of a hypocaloric (1000 kcal/day deficit) diet intervention. Participants were provided all food for both phases, and randomized to either a low GL diet (<45 points per 1000 kcal; n = 40) or high GL diet (>75 points per 1000 kcal, n = 29). After the eucaloric phase, participants who consumed the low GL diet had 11% less intra-abdominal fat (IAAT) than those who consumed the high GL diet (P < 0.05, adjusted for total fat mass and baseline IAAT). Participants lost an average of 5.8 kg during the hypocaloric phase, with no differences in the amount of weight loss with diet assignment (P = 0.39). Following weight loss, participants who consumed the low GL diet had 4.4% less total fat mass than those who consumed the high GL diet (P < 0.05, adjusted for lean mass and baseline fat mass). Consumption of a relatively low GL diet may affect energy partitioning, both inducing reduction in IAAT independent of weight change, and enhancing loss of fat relative to lean mass during weight loss. Copyright © 2012 The Obesity Society.

  20. Effects of diet macronutrient composition on body composition and fat distribution during weight maintenance and weight loss

    PubMed Central

    Goss, Amy M.; Goree, Laura Lee; Ellis, Amy C.; Chandler-Laney, Paula C.; Casazza, Krista; Lockhart, Mark E.; Gower, Barbara A.

    2012-01-01

    Qualitative aspects of diet may affect body composition and propensity for weight gain or loss. We tested the hypothesis that consumption of a relatively low glycemic load (GL) diet would reduce total and visceral adipose tissue under both eucaloric and hypocaloric conditions. Participants were 69 healthy overweight men and women. Body composition was assessed by DXA and fat distribution by CT scan at baseline, after 8 weeks of a eucaloric diet intervention, and after 8 weeks of a hypocaloric (1000 kcal/d deficit) diet intervention. Participants were provided all food for both phases, and randomized to either a low GL diet (≤45 points per 1000 kcal; n=40) or high GL diet (>75 points per 1000 kcal, n=29). After the eucaloric phase, participants who consumed the low GL diet had 11% less intra-abdominal fat (IAAT) than those who consumed the high GL diet (P<0.05, adjusted for total fat mass and baseline IAAT). Participants lost an average of 5.8 kg during the hypocaloric phase, with no differences in the amount of weight loss with diet assignment (P=0.39). Following weight loss, participants who consumed the low GL diet had 4.4% less total fat mass than those who consumed the high GL diet (P<0.05, adjusted for lean mass and baseline fat mass). Consumption of a relatively low GL diet may affect energy partitioning, both inducing reduction in IAAT independent of weight change, and enhancing loss of fat relative to lean mass during weight loss. PMID:23671029

  1. Effects of a Saturated Fat and High Cholesterol Diet on Memory and Hippocampal Morphology in the Middle-Aged Rat

    PubMed Central

    Granholm, Ann-Charlotte; Bimonte-Nelson, Heather A.; Moore, Alfred B.; Nelson, Matthew E.; Freeman, Linnea R.; Sambamurti, Kumar

    2009-01-01

    Diets rich in cholesterol and/or saturated fats have been shown to be detrimental to cognitive performance. Therefore, we fed a cholesterol (2%) and saturated fat (hydrogenated coconut oil, Sat Fat 10%) diet to 16-month old rats for 8 weeks to explore the effects on the working memory performance of middle-aged rats. Lipid profiles revealed elevated plasma triglycerides, total cholesterol, HDL, and LDL for the Sat-Fat group as compared to an iso-caloric control diet (12% soybean oil). Weight gain and food consumption were similar in both groups. Sat-Fat treated rats committed more working memory errors in the water radial arm maze, especially at higher memory loads. Cholesterol, amyloid-β peptide of 40 (Aβ40) or 42 (Aβ42) residues, and nerve growth factor in cortical regions was unaffected, but hippocampal Map-2 staining was reduced in rats fed a Sat-Fat diet, indicating a loss of dendritic integrity. Map-2 reduction correlated with memory errors. Microglial activation, indicating inflammation and/or gliosis, was also observed in the hippocampus of Sat-Fat fed rats. These data suggest that saturated fat, hydrogenated fat and cholesterol can profoundly impair memory and hippocampal morphology. PMID:18560126

  2. Soy protein isolate inhibits hepatic tumor promotion in mice fed a high-fat liquid diet.

    PubMed

    Mercer, Kelly E; Pulliam, Casey F; Pedersen, Kim B; Hennings, Leah; Ronis, Martin Jj

    2017-03-01

    Alcoholic and nonalcoholic fatty liver diseases are risk factors for development of hepatocellular carcinoma, but the underlying mechanisms are poorly understood. On the other hand, ingestion of soy-containing diets may oppose the development of certain cancers. We previously reported that replacing casein with a soy protein isolate reduced tumor promotion in the livers of mice with alcoholic liver disease after feeding a high fat ethanol liquid diet following initiation with diethylnitrosamine. Feeding soy protein isolate inhibited processes that may contribute to tumor promotion including inflammation, sphingolipid signaling, and Wnt/β-catenin signaling. We have extended these studies to characterize liver tumor promotion in a model of nonalcoholic fatty liver disease produced by chronic feeding of high-fat liquid diets in the absence of ethanol. Mice treated with diethylnitrosamine on postnatal day 14 were fed a high-fat liquid diet made with casein or SPI as the sole protein source for 16 weeks in adulthood. Relative to mice fed normal chow, a high fat/casein diet led to increased tumor promotion, hepatocyte proliferation, steatosis, and inflammation. Replacing casein with soy protein isolate counteracted these effects. The high fat diets also resulted in a general increase in transcripts for Wnt/β-catenin pathway components, which may be an important mechanism, whereby hepatic tumorigenesis is promoted. However, soy protein isolate did not block Wnt signaling in this nonalcoholic fatty liver disease model. We conclude that replacing casein with soy protein isolate blocks development of steatosis, inflammation, and tumor promotion in diethylnitrosamine-treated mice fed high fat diets. Impact statement The impact of dietary components on cancer is a topic of great interest for both the general public and the scientific community. Liver cancer is currently the second leading form of cancer deaths worldwide. Our study has addressed the effect of the protein

  3. Hepatic mitochondrial energetics during catch-up fat with high-fat diets rich in lard or safflower oil.

    PubMed

    Crescenzo, Raffaella; Bianco, Francesca; Falcone, Italia; Tsalouhidou, Sofia; Yepuri, Gayathri; Mougios, Vassilis; Dulloo, Abdul G; Liverini, Giovanna; Iossa, Susanna

    2012-09-01

    We have investigated whether altered hepatic mitochondrial energetics could explain the differential effects of high-fat diets with low or high ω6 polyunsaturated fatty acid content (lard vs. safflower oil) on the efficiency of body fat recovery (catch-up fat) during refeeding after caloric restriction. After 2 weeks of caloric restriction, rats were isocalorically refed with a low-fat diet (LF) or high-fat diets made from either lard or safflower oil for 1 week, and energy balance and body composition changes were assessed. Hepatic mitochondrial energetics were determined from measurements of liver mitochondrial mass, respiratory capacities, and proton leak. Compared to rats refed the LF, the groups refed high-fat diets showed lower energy expenditure and increased efficiency of fat gain; these differences were less marked with high-safflower oil than with high-lard diet. The increase in efficiency of catch-up fat by the high-fat diets could not be attributed to differences in liver mitochondrial activity. By contrast, the lower fat gain with high-safflower oil than with high-lard diet is accompanied by higher mitochondrial proton leak and increased proportion of arachidonic acid in mitochondrial membranes. In conclusion, the higher efficiency for catch-up fat on high-lard diet than on LF cannot be explained by altered hepatic mitochondrial energetics. By contrast, the ability of the high-safflower oil diet to produce a less pronounced increase in the efficiency of catch-up fat may partly reside in increased incorporation of arachidonic acid in hepatic mitochondrial membranes, leading to enhanced proton leak and mitochondrial uncoupling.

  4. Probiotic supplementation attenuates increases in body mass and fat mass during high-fat diet in healthy young adults.

    PubMed

    Osterberg, Kristin L; Boutagy, Nabil E; McMillan, Ryan P; Stevens, Joseph R; Frisard, Madlyn I; Kavanaugh, John W; Davy, Brenda M; Davy, Kevin P; Hulver, Matthew W

    2015-12-01

    The objective was to determine the effects of the probiotic, VSL#3, on body and fat mass, insulin sensitivity, and skeletal muscle substrate oxidation following 4 weeks of a high-fat diet. Twenty non-obese males (18-30 years) participated in the study. Following a 2-week eucaloric control diet, participants underwent dual X-ray absorptiometry to determine body composition, an intravenous glucose tolerance test to determine insulin sensitivity, and a skeletal muscle biopsy for measurement of in vitro substrate oxidation. Subsequently, participants were randomized to receive either VSL#3 or placebo daily during 4 weeks of consuming a High-fat (55% fat), hypercaloric diet (+1,000 kcal day(-1) ). Participants repeated all measurements following the intervention. Body mass (1.42 ± 0.42 kg vs. 2.30 ± 0.28 kg) and fat mass (0.63 ± 0.09 kg vs. 1.29 ± 0.27 kg) increased less following the High-fat diet in the VSL#3 group compared with placebo. However, there were no significant changes in insulin sensitivity or in vitro skeletal muscle pyruvate and fat oxidation with the High-fat diet or VSL#3. VSL#3 supplementation appears to have provided some protection from body mass gain and fat accumulation in healthy young men consuming a High-fat and high-energy diet. © 2015 The Obesity Society.

  5. High fat-diet and saturated fatty acid palmitate inhibits IGF-1 function in chondrocytes.

    PubMed

    Nazli, S A; Loeser, R F; Chubinskaya, S; Willey, J S; Yammani, R R

    2017-09-01

    Insulin-like growth factor-1 (IGF-1) promotes matrix synthesis and cell survival in cartilage. Chondrocytes from aged and osteoarthritic cartilage have a reduced response to IGF-1. The purpose of this study was to determine the effect of free fatty acids (FFA) present in a high-fat diet on IGF-1 function in cartilage and the role of endoplasmic reticulum (ER) stress. C57BL/6 male mice were maintained on either a high-fat (60% kcal from fat) or a low-fat (10% kcal from fat) diet for 4 months. Mice were then sacrificed; femoral head cartilage caps were collected and treated with IGF-1 to measure proteoglycan (PG) synthesis. Cultured human chondrocytes were treated with 500 μM FFA palmitate or oleate, followed by stimulation with (100 ng/ml) IGF-1 overnight to measure CHOP (a protein marker for ER stress) and PG synthesis. Human chondrocytes were pre-treated with palmitate or 1 mM 4-phenyl butyric acid (PBA) or 1 μM C-Jun N terminal Kinase (JNK) inhibitor, and IGF-1 function (PG synthesis and signaling) was measured. Cartilage explants from mice on the high fat-diet showed reduced IGF-1 mediated PG synthesis compared to a low-fat group. Treatment of human chondrocytes with palmitate induced expression of CHOP, activated JNK and inhibited IGF-1 function. PBA, a small molecule chemical chaperone that alleviates ER stress rescued IGF-1 function and a JNK inhibitor rescued IGF-1 signaling. Palmitate-induced ER stress inhibited IGF-1 function in chondrocytes/cartilage via activating the mitogen-activated protein (MAP) kinase JNK. This is the first study to demonstrate that ER stress is metabolic factor that regulates IGF-1 function in chondrocytes. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  6. A low-carbohydrate, ketogenic diet versus a low-fat diet to treat obesity and hyperlipidemia: a randomized, controlled trial.

    PubMed

    Yancy, William S; Olsen, Maren K; Guyton, John R; Bakst, Ronna P; Westman, Eric C

    2004-05-18

    Low-carbohydrate diets remain popular despite a paucity of scientific evidence on their effectiveness. To compare the effects of a low-carbohydrate, ketogenic diet program with those of a low-fat, low-cholesterol, reduced-calorie diet. Randomized, controlled trial. Outpatient research clinic. 120 overweight, hyperlipidemic volunteers from the community. Low-carbohydrate diet (initially, <20 g of carbohydrate daily) plus nutritional supplementation, exercise recommendation, and group meetings, or low-fat diet (<30% energy from fat, <300 mg of cholesterol daily, and deficit of 500 to 1000 kcal/d) plus exercise recommendation and group meetings. Body weight, body composition, fasting serum lipid levels, and tolerability. A greater proportion of the low-carbohydrate diet group than the low-fat diet group completed the study (76% vs. 57%; P = 0.02). At 24 weeks, weight loss was greater in the low-carbohydrate diet group than in the low-fat diet group (mean change, -12.9% vs. -6.7%; P < 0.001). Patients in both groups lost substantially more fat mass (change, -9.4 kg with the low-carbohydrate diet vs. -4.8 kg with the low-fat diet) than fat-free mass (change, -3.3 kg vs. -2.4 kg, respectively). Compared with recipients of the low-fat diet, recipients of the low-carbohydrate diet had greater decreases in serum triglyceride levels (change, -0.84 mmol/L vs. -0.31 mmol/L [-74.2 mg/dL vs. -27.9 mg/dL]; P = 0.004) and greater increases in high-density lipoprotein cholesterol levels (0.14 mmol/L vs. -0.04 mmol/L [5.5 mg/dL vs. -1.6 mg/dL]; P < 0.001). Changes in low-density lipoprotein cholesterol level did not differ statistically (0.04 mmol/L [1.6 mg/dL] with the low-carbohydrate diet and -0.19 mmol/L [-7.4 mg/dL] with the low-fat diet; P = 0.2). Minor adverse effects were more frequent in the low-carbohydrate diet group. We could not definitively distinguish effects of the low-carbohydrate diet and those of the nutritional supplements provided only to that group. In addition

  7. Impact of high-fat diet and voluntary running on body weight and endothelial function in LDL receptor knockout mice.

    PubMed

    Langbein, Heike; Hofmann, Anja; Brunssen, Coy; Goettsch, Winfried; Morawietz, Henning

    2015-05-01

    Obesity and physical inactivity are important cardiovascular risk factors. Regular physical exercise has been shown to mediate beneficial effects in the prevention of cardiovascular diseases. However, the impact of physical exercise on endothelial function in proatherosclerotic low-density lipoprotein receptor deficient (LDLR(-/-)) mice has not been studied so far. Six-week-old male LDLR(-/-) mice were fed a standard diet or a high-fat diet (39 kcal% fat diet) for 20 weeks. The impact of high-fat diet and voluntary running on body weight and amount of white adipose tissue was monitored. Basal tone and endothelial function was investigated in aortic rings using a Mulvany myograph. LDLR(-/-) mice on high-fat diet had increased cumulative food energy intake, but also higher physical activity compared to mice on control diet. Body weight and amount of visceral and retroperitoneal white adipose tissue of LDLR(-/-) mice were significantly increased by high-fat diet and partially reduced by voluntary running. Endothelial function in aortae of LDLR(-/-) mice was impaired after 20 weeks on standard and high-fat diet and could not be improved by voluntary running. Basal tone showed a trend to be increased by high-fat diet. Voluntary running reduced body weight and amount of white adipose tissue in LDLR(-/-) mice. Endothelial dysfunction in LDLR(-/-) mice could not be improved by voluntary running. In a clinical context, physical exercise alone might not have an influence on functional parameters and LDL-C levels in patients with familial hypercholesterolemia. However, physical activity in these patients may be in general beneficial and should be performed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Plasma carnosine, but not muscle carnosine, attenuates high-fat diet-induced metabolic stress.

    PubMed

    Stegen, Sanne; Stegen, Bram; Aldini, Giancarlo; Altomare, Alessandra; Cannizzaro, Luca; Orioli, Marica; Gerlo, Sarah; Deldicque, Louise; Ramaekers, Monique; Hespel, Peter; Derave, Wim

    2015-09-01

    There is growing in vivo evidence that the dipeptide carnosine has protective effects in metabolic diseases. A critical unanswered question is whether its site of action is tissues or plasma. This was investigated using oral carnosine versus β-alanine supplementation in a high-fat diet rat model. Thirty-six male Sprague-Dawley rats received a control diet (CON), a high-fat diet (HF; 60% of energy from fat), the HF diet with 1.8% carnosine (HFcar), or the HF diet with 1% β-alanine (HFba), as β-alanine can increase muscle carnosine without increasing plasma carnosine. Insulin sensitivity, inflammatory signaling, and lipoxidative stress were determined in skeletal muscle and blood. In a pilot study, urine was collected. The 3 HF groups were significantly heavier than the CON group. Muscle carnosine concentrations increased equally in the HFcar and HFba groups, while elevated plasma carnosine levels and carnosine-4-hydroxy-2-nonenal adducts were detected only in the HFcar group. Elevated plasma and urine N(ε)-(carboxymethyl)lysine in HF rats was reduced by ∼50% in the HFcar group but not in the HFba group. Likewise, inducible nitric oxide synthase mRNA was decreased by 47% (p < 0.05) in the HFcar group, but not in the HFba group, compared with HF rats. We conclude that plasma carnosine, but not muscle carnosine, is involved in preventing early-stage lipoxidation in the circulation and inflammatory signaling in the muscle of rats.

  9. High-fat Diet Enhances and Plasminogen Activator Inhibitor-1 Deficiency Attenuates Bone Loss in Mice with Lewis Lung Carcinoma.

    PubMed

    Yan, Lin; Nielsen, Forrest H; Sundaram, Sneha; Cao, Jay

    2015-07-01

    This study determined the effects of a high-fat diet and plasminogen activator inhibitor-1 deficiency (Pai1(-/-)) on the bone structure in male C57BL/6 mice bearing Lewis lung carcinoma (LLC) in lungs. Significant reduction in bone volume fraction (BV/TV), trabecular number (Tb.N) and bone mineral density (BMD) in femurs and vertebrae were found in LLC-bearing mice compared to non-tumor-bearing mice. In LLC-bearing mice, the high-fat diet compared to the AIN93G control diet significantly reduced BV/TV, Tb.N and BMD in femurs and BV/TV in vertebrae. The high-fat diet significantly reduced BMD in vertebrae in wild-type mice but not in Pai1(-/-) mice. Compared to wild-type mice, PAI1 deficiency significantly increased BV/TV and Tb.N in femurs. The plasma concentration of osteocalcin was significantly lower and that of tartrate-resistant acid phosphatase 5b (TRAP5b) was significantly higher in LLC-bearing mice. The high-fat diet significantly reduced plasma osteocalcin and increased TRAP5b. Deficiency in PAI1 prevented the high-fat diet-induced increases in plasma TRAP5b. These findings demonstrate that a high-fat diet enhances, whereas PAI1 deficiency, attenuates metastasis-associated bone loss, indicating that a high-fat diet and PAI1 contribute to metastasis-associated bone deterioration. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. JTT-130, a novel intestine-specific inhibitor of microsomal triglyceride transfer protein, reduces food preference for fat.

    PubMed

    Mera, Yasuko; Hata, Takahiro; Ishii, Yukihito; Tomimoto, Daisuke; Kawai, Takashi; Ohta, Takeshi; Kakutani, Makoto

    2014-01-01

    Microsomal triglyceride transfer protein (MTP) is involved in the assembly and secretion of triglyceride-rich lipoproteins from enterocytes and hepatocytes. JTT-130 is a novel intestine-specific MTP inhibitor, which has been shown to be useful in the prevention and treatment of dyslipidemia, obesity, and diabetes. JTT-130 has also been shown to suppress food intake in a dietary fat-dependent manner in rats. However, whether JTT-130 enables changes in food preference and nutrient consumption remains to be determined. Therefore, the aim of the present study was to investigate the effects of JTT-130 on food preference in rat under free access to two different diets containing 3.3% fat (low-fat diet, LF diet) and 35% fat (high-fat diet, HF diet). JTT-130 decreased HF diet intake and increased LF diet intake, resulting in a change in ratio of caloric intake from LF and HF diets to total caloric intake. In addition, macronutrient analysis revealed that JTT-130 did not affect carbohydrate consumption but significantly decreased fat consumption (P < 0.01). These findings suggest that JTT-130 not only inhibits fat absorption, but also suppresses food intake and specifically reduces food preference for fat. Therefore, JTT-130 is expected to provide a new option for the prevention and treatment of obesity and obesity-related metabolic disorders.

  11. Tocotrienols Reverse Cardiovascular, Metabolic and Liver Changes in High Carbohydrate, High Fat Diet-Fed Rats

    PubMed Central

    Wong, Weng-Yew; Poudyal, Hemant; Ward, Leigh C.; Brown, Lindsay

    2012-01-01

    Tocotrienols have been reported to improve lipid profiles, reduce atherosclerotic lesions, decrease blood glucose and glycated haemoglobin concentrations, normalise blood pressure in vivo and inhibit adipogenesis in vitro, yet their role in the metabolic syndrome has not been investigated. In this study, we investigated the effects of palm tocotrienol-rich fraction (TRF) on high carbohydrate, high fat diet-induced metabolic, cardiovascular and liver dysfunction in rats. Rats fed a high carbohydrate, high fat diet for 16 weeks developed abdominal obesity, hypertension, impaired glucose and insulin tolerance with increased ventricular stiffness, lower systolic function and reduced liver function. TRF treatment improved ventricular function, attenuated cardiac stiffness and hypertension, and improved glucose and insulin tolerance, with reduced left ventricular collagen deposition and inflammatory cell infiltration. TRF improved liver structure and function with reduced plasma liver enzymes, inflammatory cell infiltration, fat vacuoles and balloon hepatocytes. TRF reduced plasma free fatty acid and triglyceride concentrations but only omental fat deposition was decreased in the abdomen. These results suggest that tocotrienols protect the heart and liver, and improve plasma glucose and lipid profiles with minimal changes in abdominal obesity in this model of human metabolic syndrome. PMID:23201770

  12. Ezetimibe prevents hepatic steatosis induced by a high-fat but not a high-fructose diet.

    PubMed

    Ushio, Masateru; Nishio, Yoshihiko; Sekine, Osamu; Nagai, Yoshio; Maeno, Yasuhiro; Ugi, Satoshi; Yoshizaki, Takeshi; Morino, Katsutaro; Kume, Shinji; Kashiwagi, Atsunori; Maegawa, Hiroshi

    2013-07-15

    Nonalcoholic fatty liver disease is the most frequent liver disease. Ezetimibe, an inhibitor of intestinal cholesterol absorption, has been reported to ameliorate hepatic steatosis in human and animal models. To explore how ezetimibe reduces hepatic steatosis, we investigated the effects of ezetimibe on the expression of lipogenic enzymes and intestinal lipid metabolism in mice fed a high-fat or a high-fructose diet. CBA/JN mice were fed a high-fat diet or a high-fructose diet for 8 wk with or without ezetimibe. High-fat diet induced hepatic steatosis accompanied by hyperinsulinemia. Treatment with ezetimibe reduced hepatic steatosis, insulin levels, and glucose production from pyruvate in mice fed the high-fat diet, suggesting a reduction of insulin resistance in the liver. In the intestinal analysis, ezetimibe reduced the expression of fatty acid transfer protein-4 and apoB-48 in mice fed the high-fat diet. However, treatment with ezetimibe did not prevent hepatic steatosis, hyperinsulinemia, and intestinal apoB-48 expression in mice fed the high-fructose diet. Ezetimibe decreased liver X receptor-α binding to the sterol regulatory element-binding protein-1c promoter but not expression of carbohydrate response element-binding protein and fatty acid synthase in mice fed the high-fructose diet, suggesting that ezetimibe did not reduce hepatic lipogenesis induced by the high-fructose diet. Elevation of hepatic and intestinal lipogenesis in mice fed a high-fructose diet may partly explain the differences in the effect of ezetimibe.

  13. Effect of diet fermentability and unsaturated fatty acid concentration on recovery from diet-induced milk fat depression.

    PubMed

    Rico, D E; Holloway, A W; Harvatine, K J

    2015-11-01

    Diet-induced milk fat depression is caused by highly fermentable and high-unsaturated fatty acid (FA) diets, and results in reduced milk fat concentration and yield, reduced de novo FA, and increased trans isomers of the alternate biohydrogenation pathways. The hypothesis of the current experiment was that a diet higher in fermentability and lower in unsaturated FA (UFA) would accelerate recovery compared with a high-UFA and lower-fermentability diet. Eight ruminally cannulated and 9 noncannulated multiparous Holstein cows were randomly assigned to treatment sequences in a replicated Latin square design. During each period milk fat depression was induced for 10 d by feeding a low-fiber, high-UFA diet [25.9% neutral detergent fiber (NDF) and 3.3% C18:2]. Following the induction phase, cows were switched to recovery treatments for 18 d designed to correct dietary fermentability, UFA, or both fermentability and UFA concentration. Treatments during recovery were (1) correction of fiber and UFA diet [control; 31.8% NDF and 1.65% C18:2], (2) a diet predominantly correcting fiber, but not UFA [high oil (HO); 31.3% NDF and 2.99% C18:2], and (3) a diet predominantly correcting UFA, but not fiber concentration [low fiber (LF); 28.4% NDF and 1.71% C18:2]. Milk and milk component yield, milk FA profile, ruminal pH, and 11 rumen microbial taxa were measured every third day during recovery. Milk yield decreased progressively in HO and control, whereas it was maintained in the LF diet. Milk fat concentration increased progressively during recovery in all treatments, but was on average 9% lower in LF than control from d 12 to 18. Milk fat yield increased progressively in all treatments and was not different between control and LF at any time point, but was lower in HO than control on d 15. Milk trans-10 C18:1 and trans-10,cis-12 conjugated linoleic acid decreased progressively in all treatments, but was higher in HO than control from d 3 to 18 [136 ± 50 and 188 ± 57% (mean ± SD

  14. Antioxidant effect of Triticum aestivium (wheat grass) in high-fat diet-induced oxidative stress in rabbits.

    PubMed

    Sethi, J; Yadav, M; Dahiya, K; Sood, S; Singh, V; Bhattacharya, S B

    2010-05-01

    Wheat grass is used as a general health tonic and is reported to be effective against several medical disorders, although detailed literature is not available. Besides drug therapy, a number of medicinal plants are effective in treating hyperlipidemia. This study examined the effects of wheat grass on high-fat diet-induced hyperlipidemia in rabbits. Thirty rabbits were divided into 3 groups of 10 rabbits each, group I receiving a control diet, group II a high-fat diet and group III a high-fat diet together with wheat grass over a period of 10 weeks. Fasting serum samples from the animals were analyzed for total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), malondialdehyde (MDA), reduced glutathione (GSH) and vitamin C, and the results were compared. The high-fat diet resulted in hyperlipidemia and an increase in oxidative stress, indicated by a significant rise in MDA levels, whereas antioxidant levels of GSH and vitamin C were significantly reduced. Wheat grass supplementation with a high-fat diet resulted in improved lipid levels (decreased total cholesterol and increased HDL-C) together with significantly reduced MDA levels and increased GSH and vitamin C levels. These results indicate the beneficial role of wheat grass in ameliorating hyperlipidemia and the associated oxidative stress. Copyright 2010 Prous Science, S.A.U. or its licensors. All rights reserved.

  15. Cognitive Impairment Following High Fat Diet Consumption is Associated with Brain Inflammation

    PubMed Central

    Pistell, Paul J.; Morrison, Christopher D.; Gupta, Sunita; Knight, Alecia G.; Keller, Jeffrey N.; Ingram, Donald K.; Bruce-Keller, Annadora J.

    2009-01-01

    C57Bl/6 mice were administered a high fat, Western diet (WD, 41% fat) or a very high fat lard diet (HFL, 60% fat), and evaluated for cognitive ability using the Stone T-maze and for biochemical markers of brain inflammation. WD consumption resulted in significantly increased body weight and astrocyte reactivity, but not impaired cognition, microglial reactivity, or heightened cytokine levels. HFL increased body weight, and impaired cognition, increased brain inflammation, and decreased BDNF. Collectively, these data suggest that while different diet formulations can increase body weight, the ability of high fat diets to disrupt cognition is linked to brain inflammation. PMID:20004026

  16. Reducing Sugar in Children's Diets: Why? How?

    ERIC Educational Resources Information Center

    Rogers, Cosby S.; Morris, Sandra S.

    1986-01-01

    Maintains that sugar intake should be reduced in young children's diets because of its link to dental cavities, poor nutrition, and obesity. Reducing the focus on sweetness, limiting sugar consumption, and using natural sources of sweetness and other treats are ways to help reduce sugar intake. (BB)

  17. Reducing Sugar in Children's Diets: Why? How?

    ERIC Educational Resources Information Center

    Rogers, Cosby S.; Morris, Sandra S.

    1986-01-01

    Maintains that sugar intake should be reduced in young children's diets because of its link to dental cavities, poor nutrition, and obesity. Reducing the focus on sweetness, limiting sugar consumption, and using natural sources of sweetness and other treats are ways to help reduce sugar intake. (BB)

  18. Weight loss enhances hepatic antioxidant status in a NAFLD model induced by high fat diet.

    PubMed

    Mendes, Iara Karise Santos; Matsuura, Cristiane; Aguila, Marcia Barbosa; Daleprane, Julio Beltrame; Martins, Marcela Anjos; Mury, Wanda Vianna; Brunini, Tatiana Marlowe Cunha

    2017-08-23

    Nonalcoholic fatty liver disease (NAFLD) is a benign condition that can progress to more severe liver damage in a process mediated, in part, by disturbances in redox balance. Additionally, some argue that it is set to become the main cause of end-stage liver disease in the near future. Here, we investigated whether a diet-induced weight loss is able to reverse hepatic lipid accumulation and to reduce oxidative stress in liver from C57BL/6 mice fed a high-fat (HF) diet. Male C57BL/6 mice were divided into four groups: SC (standard chow, 10% energy from fat, 16 wk); HF (high fat diet, 50% energy from fat, 16 wk); SC-HF (SC 8 wk followed by HF 8 wk); and HF-SC (HF 8 wk followed by SC 8 wk). The HF diet during 8 (SC-HF) and 16 weeks (HF) downregulated mRNA levels and protein expression of Nrf2 and endogenous antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase) in the liver, caused liver steatosis, affected liver function markers, increased intra-abdominal and subcutaneous adipose tissue, and induced glucose intolerance and hypercholesterolemia compared to controls (SC). Diet-induced weight loss significantly reduced the intrahepatic lipid accumulation, improved glucose tolerance, and restored both gene and protein expression of the antioxidant enzymes. Our findings suggest that a dietary intervention aimed to induce weight loss may exert protective effects in NAFLD as it can reduce hepatic oxidative stress and intrahepatic lipid accumulation, which can hinder the progression of this condition to more severe states.

  19. A high fat diet-induced impaired glucose metabolism in mice with targeted deletion of calpain in osteoblasts.

    PubMed

    Kashiwagi, Aki; Fein, Mikaela J; Shimada, Masako

    2011-06-03

    The ubiquitously expressed Calpains 1 and 2 belong to a family of calcium-dependent intracellular cysteine proteases. Both calpains are heterodimers consisting of a large subunit and a small regulatory subunit encoded by the gene Capns1. To investigate a role for the calpain small subunit in cells of the osteoblast lineage in vivo, we previously generated osteoblast-specific Capns1 knockout mice and characterized their bone phenotype. In this study, we further examined effects of low calcium and high fat diets on their bone, fat, and glucose homeostasis. Osteoblast-specific Capns1 knockout mice showed significantly reduced serum levels of total and uncarboxylated osteocalcin, and this was presumably due to their impaired bone formation and bone resorption. The reduced bone resorptive function of the mutant mice was also significant under a low calcium diet. Thus, these results suggest that reduced uncarboxylated osteocalcin levels of mutant mice were, at least in part, due to their osteoporotic bone with impaired bone resorptive function. Interestingly, unlike osteocalcin knockout mice, mutant mice on a normal chow diet were leaner than control littermates; this was likely due to their reduced food intake and overall lower energy homeostasis. To test this hypothesis, we next provided mutant mice with a high fat diet and further examined an effect of their reduced uncarboxylated osteocalcin levels on body composition and glucose metabolism. The average mean body weight of mutant mice became indistinguishable with that of controls after 2 weeks on a high fat diet, and continued to show an upward trend, at least, up to 6weeks. Moreover, mutant mice on a high fat diet exhibited a significant increase in serum levels of leptin and resistin, adipocyte-specific adipokines, and developed impaired glucose tolerance. Collectively, mice with osteoporosis and reduced bone resorptive function showed reduced serum uncarboxylated osteocalcin levels and were susceptible to

  20. Effects of Persian leek (Allium ampeloprasum) on hepatic lipids and the expression of proinflammatory gene in hamsters fed a high-fat/ high-cholesterol diet.

    PubMed

    Fatoorechi, Vahideh; Rismanchi, Marjan; Nasrollahzadeh, Javad

    2016-01-01

    Persian leek is one of the most widely used herbal foods among Iranians. In this study, effects of oral administration of Persian leek on plasma and liver lipids were examined in hamster. Male Syrian hamsters were randomly divided into three groups: control (standard diet), high fat control (high-fat/high-cholesterol diet), Persian leek (high-fat/high-cholesterol diet + 1% per weight of diet from dried powdered Persian leek) for 14 weeks. High fat diet increased plasma and liver lipids as compared to standard diet. Adding Persian leek to the high-fat/high-cholesterol diet resulted in no significant changes in the concentration of the plasma lipids or liver cholesterol. However, liver triglycerides (TG), plasma Alanine aminotransferase and gene expression of tumor necrosis factor- α were decreased in hamsters fed high-fat diet containing Persian leek as compared to high-fat diet only. Persian leek might be considered as a herbal food that can reduce liver TG accumulation induced by high fat diets.

  1. Effects of Persian leek (Allium ampeloprasum) on hepatic lipids and the expression of proinflammatory gene in hamsters fed a high-fat/ high-cholesterol diet

    PubMed Central

    Fatoorechi, Vahideh; Rismanchi, Marjan; Nasrollahzadeh, Javad

    2016-01-01

    Objective: Persian leek is one of the most widely used herbal foods among Iranians. In this study, effects of oral administration of Persian leek on plasma and liver lipids were examined in hamster. Materials and Methods: Male Syrian hamsters were randomly divided into three groups: control (standard diet), high fat control (high-fat/high-cholesterol diet), Persian leek (high-fat/high-cholesterol diet + 1% per weight of diet from dried powdered Persian leek) for 14 weeks. Results: High fat diet increased plasma and liver lipids as compared to standard diet. Adding Persian leek to the high-fat/high-cholesterol diet resulted in no significant changes in the concentration of the plasma lipids or liver cholesterol. However, liver triglycerides (TG), plasma Alanine aminotransferase and gene expression of tumor necrosis factor- α were decreased in hamsters fed high-fat diet containing Persian leek as compared to high-fat diet only. Conclusion: Persian leek might be considered as a herbal food that can reduce liver TG accumulation induced by high fat diets. PMID:27516982

  2. Anti-obesity effects of Rapha diet® preparation in mice fed a high-fat diet.

    PubMed

    Kim, Jihyun; Kyung, Jangbeen; Kim, Dajeong; Choi, Ehn-Kyoung; Bang, Paul; Park, Dongsun; Kim, Yun-Bae

    2012-12-01

    The anti-obesity activities of Rapha diet® preparation containing silkworm pupa peptide, Garcinia cambogia, white bean extract, mango extract, raspberry extract, cocoa extract, and green tea extract were investigated in mice with dietary obesity. Male C57BL/6 mice were fed a high-fat diet (HFD) containing 3% Rapha diet® preparation for 8 weeks, and blood and tissue parameters of obesity were analyzed. The HFD markedly enhanced body weight gain by increasing the weights of epididymal, perirenal, and mesenteric adipose tissues. The increased body weight gain induced by HFD was significantly reduced by feeding Rapha diet® preparation, in which decreases in the weight of abdominal adipose tissue and the size of abdominal adipocytes were confirmed by microscopic examination. Long-term feeding of HFD increased blood triglycerides and cholesterol levels, leading to hepatic lipid accumulation. However, Rapha diet® preparation not only reversed the blood lipid levels, but also attenuated hepatic steatosis. The results indicate that Rapha diet® preparation could improve HFD-induced obesity by reducing both lipid accumulation and the size of adipocytes.

  3. Impact of chromium histidinate on high fat diet induced obesity in rats

    PubMed Central

    2011-01-01

    Background Chromium (Cr) is an essential trace element that has garnered interest for use as a weight loss aid, but its molecular mechanism in obesity is not clear. In this study, an attempt has been made to investigate the effects of chromium histidinate (CrHis) on glucose transporter-2 (GLUT-2), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), nuclear factor-kappa B (NF-κB p65) and the oxidative stress marker 4-hydroxynonenal adducts (HNE) expressions in liver of rats fed high fat diet (HFD). Methods Male Wistar rats (n = 40, 8 wk-old) were divided into four groups. Group I was fed a standard diet (12% of calories as fat); Group II was fed a standard diet and supplemented with 110 μg CrHis/kg BW/d; Group III was fed a HFD (40% of calories as fat); Group IV was fed HFD and supplemented with 110 μg CrHis/kg BW/d. Results Rats fed HFD possessed greater serum insulin (40 vs.33 pmol/L) and glucose (158 vs. 143 mg/dL) concentration and less liver Cr (44 vs.82 μg/g) concentration than rats fed the control diet. However, rats supplemented with CrHis had greater liver Cr and serum insulin and lower glucose concentration in rats fed HFD (P < 0.05). The hepatic nuclear factor-kappa B (NF-κB p65) and HNE were increased in high fat group compared to control group, but reduced by the CrHis administration (P < 0.05). The levels of hepatic Nrf2 and HO-1 were increased by supplementation of CrHis (P < 0.05). Conclusion These findings demonstrate that supplementation of CrHis is protective against obesity, at least in part, through Nrf2-mediated induction of HO-1 in rats fed high fat diet. PMID:21539728

  4. Influence of dietary fatty acid composition and exercise on changes in fat oxidation from a high-fat diet.

    PubMed

    Cooper, J A; Watras, A C; Shriver, T; Adams, A K; Schoeller, D A

    2010-10-01

    Acute high-fat (HF) diets can lead to short-term positive fat balances until the body increases fat oxidation to match intake. The purpose of this study was to examine the effects of a HF diet, rich in either mono-unsaturated or saturated fatty acids (FAs) and exercise, on the rate at which the body adapts to a HF diet.(13)C-labeled oleate and (2)H-labeled palmitate were also given to determine the contribution of exogenous vs. global fat oxidation. Eight healthy men (age of 18-45 yr; body mass index of 22 ± 3 kg/m(2)) were randomized in a 2 × 2 crossover design. The four treatments were a high saturated fat diet with exercise (SE) or sedentary (SS) conditions and a high monounsaturated fat diet with exercise (UE) or sedentary (US) conditions. Subjects stayed for 5 days in a metabolic chamber. All meals were provided. On day 1, 30% of energy intake was from fat, whereas days 2-5 had 50% of energy as fat. Subjects exercised on a stationary cycle at 45% of maximal oxygen uptake for 2 h each day. Respiratory gases and urinary nitrogen were collected to calculate fat oxidation. Change from day 1 to day 5 showed both exercise treatments increased fat oxidation (SE: 76 ± 30 g, P = 0.001; UE: 118 ± 31 g, P < 0.001), whereas neither sedentary condition changed fat oxidation (SS: -10 ± 33 g, P = not significant; US: 41 ± 14 g, P = 0.07). No differences for dietary FA composition were found. Exercise led to a faster adaptation to a HF diet by increasing fat oxidation and achieving fat balance by day 5. Dietary FA composition did not differentially affect 24-h fat oxidation.

  5. The effect of high-fat--high-fructose diet on skeletal muscle mitochondrial energetics in adult rats.

    PubMed

    Crescenzo, Raffaella; Bianco, Francesca; Coppola, Paola; Mazzoli, Arianna; Cigliano, Luisa; Liverini, Giovanna; Iossa, Susanna

    2015-03-01

    To study the effect of isoenergetic administration to adult rats of high-fat or high-fat--high-fructose diet for 2 weeks on skeletal muscle mitochondrial energetic. Body and skeletal muscle composition, energy balance, plasma lipid profile and glucose tolerance were measured, together with mitochondrial functionality, oxidative stress and antioxidant defense. Rats fed high-fat--high-fructose diet exhibited significantly higher plasma triglycerides and non-esterified fatty acids, together with significantly higher plasma glucose and insulin response to glucose load. Skeletal muscle triglycerides and ceramide were significantly higher in rats fed high-fat--high-fructose diet. Skeletal muscle mitochondrial energetic efficiency and uncoupling protein 3 content were significantly higher, while adenine nucleotide translocase content was significantly lower, in rats fed high-fat or high-fat--high-fructose diet. The results suggest that a high-fat--high-fructose diet even without hyperphagia is able to increase lipid flow to skeletal muscle and mitochondrial energetic efficiency, with two detrimental effects: (a) energy sparing that contributes to the early onset of obesity and (b) reduced oxidation of fatty acids and lipid accumulation in skeletal muscle, which could generate insulin resistance.

  6. Acute and perinatal programming effects of a fat-rich diet on rat muscle mitochondrial function and hepatic lipid accumulation.

    PubMed

    Hellgren, Lars I; Jensen, Runa I; Waterstradt, Michelle S G; Quistorff, Bjørn; Lauritzen, Lotte

    2014-11-01

    Maternal high-fat intake during pregnancy may have long-term consequences in the offspring. Since this might relate to the capacity of mitochondrial metabolic adaptation and hepatic lipid metabolism, we investigated how maternal high-fat intake affected mitochondrial function and hepatic steatosis in the offspring. Sprague-Dawley rats were fed a high-fat (20% w/w) or a control diet (chow, C) from 10 days before pregnancy and throughout lactation. At weaning the litters were split into two groups; one was continued on the maternal diet and the other was fed low-fat chow. Skeletal muscle mitochondria and liver lipids. Mitochondrial respiration and hepatic lipid content were determined during and after weaning, on days 20 and 70 postpartum. Mitochondrial function and hepatic lipids. At 20 days, maternal high-fat diet caused increased Vo2max with pyruvate as substrate (p=0.047), at 70 days, pups born by C-dams, but not those born by high-fat-dams, showed increased oxidation of palmitoylcarnitine in the absence of ADP (p=0.018). Rates of ADP-stimulated oxygen consumption, maximal respiratory capacity and mitochondrial respiratory control ratio with pyruvate, increased post weaning (p<0.001), whereas respiratory control ratio with palmitoylcarnitine decreased (p=0.013). The increase in respiratory control ratio was most pronounced in pups from C-dams (p=0.05). The high-fat-diet caused pronounced hepatic steatosis in pups at weaning (p<0.001), without concomitant ceramide accumulation, while high-fat-feeding after weaning induced triacylglycerol and ceramide accumulation (p<0.01), regardless of maternal diet. Intake of a fat-rich diet during pregnancy and lactation reduced the age-induced increases in un-coupled fat oxidation. © 2014 Nordic Federation of Societies of Obstetrics and Gynecology.

  7. Liver protein expression in young pigs in response to a high-fat diet and diet restriction.

    PubMed

    Sejersen, H; Sørensen, M T; Larsen, T; Bendixen, E; Ingvartsen, K L

    2013-01-01

    We investigated the liver response in young pigs to a high-fat diet (containing 25% animal fat) and diet restriction (equivalent to 60% of maintenance) using differential proteome analysis. The objective was to investigate whether young pigs can be used to model the liver response in adolescents to a high-fat diet and diet restriction-induced BW loss. The high-fat diet increased (P<0.05) the subcutaneous and visceral fat deposition by 45 and 56%, respectively. However, the young pigs on the high-fat diet had normal glucose tolerance and liver lipid content despite a general increase (P<0.05) in plasma lipids (i.e., NEFA, triglycerides, phospholipids, total cholesterol, and lipoproteins). In addition, diet restriction in young pigs induced a modest BW loss (0.7 kg/d; P<0.01) through increased fat mobilization whereas the concentrations of plasma phospholipids, total cholesterol, and low-density lipoprotein decreased (P<0.05) by 37, 36, and 38%, respectively. Data from the proteome analysis indicate that the liver response to a high-fat diet in young pigs is similar to that of humans in terms of increased fatty acid oxidation whereas the liver response to diet restriction is similar to humans in terms of increased gluconeogenesis and glycogenolysis and decreased urea synthesis. Our results suggest that 5 liver proteins, namely acyl-CoA synthetase long-chain 1, sterol carrier protein 2, apolipoprotein C-III, liver fatty acid binding protein, and acyl-CoA-binding protein, play a role in intracellular lipid transport and export in young pigs. In contrast to humans, our results indicate that young pigs are resistant to fat-induced liver lipid accumulation whereas diet restriction decreases fatty acid oxidation and the subsequent ketogenesis in the liver. Consequently, the liver response in adolescents to a high fat diet and diet restriction-induced BW loss cannot reliably be reproduced in young pigs.

  8. A low fat diet enhances polyunsaturated fatty acid desaturation and elongation independent of n3 enrichment

    USDA-ARS?s Scientific Manuscript database

    Low fat diets are associated with risk reduction for chronic metabolic diseases compared to high fat diets. To evaluate effects of varied fat and fatty acid intake on lipid metabolism, phospholipid fatty acids (PLFA) were measured and delta 5 and 6 desaturase activities (D5D, D6D) were calculated in...

  9. What causes high fat diet-induced postprandial inflammation: endotoxin or free fatty acids?

    USDA-ARS?s Scientific Manuscript database

    Introduction High fat (saturated fat) diet has been generally used to induce tissue inflammation, insulin resistance and obesity in animal models. High fat diet can also induce postprandial inflammation in humans. Importantly, postprandial inflammation is linked to elevated cardiovascular and metabo...

  10. Adaptation to a fat-rich diet: effects on endurance performance in humans.

    PubMed

    Helge, J W

    2000-11-01

    The focus of this review is on studies where dietary fat content was manipulated to investigate the potential ergogenic effect of fat loading on endurance exercise performance. Adaptation to a fat-rich diet is influenced by several factors, of which the duration of the adaptation period, the exercise intensity of the performance test and the content of fat and carbohydrate in the experimental diet are the most important. Evidence is presented that short term adaptation, < 6 days, to a fat-rich diet is detrimental to exercise performance. When adaptation to a fat-rich diet was performed over longer periods, studies where performance was tested at moderate intensity, 60 to 80% of maximal oxygen uptake, demonstrate either no difference or an attenuated performance after consumption of a fat-rich compared with a carbohydrate-rich diet. When performance was measured at high intensity after a longer period of adaptation, it was at best maintained, but in most cases attenuated, compared with consuming a carbohydrate-rich diet. Furthermore, evidence is presented that adaptation to a fat-rich diet leads to an increased capacity of the fat oxidative system and an enhancement of the fat supply and subsequently the amount of fat oxidised during exercise. However, in most cases muscle glycogen storage is compromised, and although muscle glycogen breakdown is diminished to a certain extent, this is probably part of the explanation for the lack of performance enhancement after adaptation to a fat-rich diet.

  11. EPA prevents fat mass expansion and metabolic disturbances in mice fed with a Western diet.

    PubMed

    Pinel, Alexandre; Pitois, Elodie; Rigaudiere, Jean-Paul; Jouve, Chrystele; De Saint-Vincent, Sarah; Laillet, Brigitte; Montaurier, Christophe; Huertas, Alain; Morio, Beatrice; Capel, Frederic

    2016-08-01

    The impact of alpha linolenic acid (ALA), EPA, and DHA on obesity and metabolic complications was studied in mice fed a high-fat, high-sucrose (HF) diet. HF diets were supplemented with ALA, EPA, or DHA (1% w/w) and given to C57BL/6J mice for 16 weeks and to Ob/Ob mice for 6 weeks. In C57BL/6J mice, EPA reduced plasma cholesterol (-20%), limited fat mass accumulation (-23%) and adipose cell hypertrophy (-50%), and reduced plasma leptin concentration (-60%) compared with HF-fed mice. Furthermore, mice supplemented with EPA exhibited a higher insulin sensitivity (+24%) and glucose tolerance (+20%) compared with HF-fed mice. Similar effects were observed in EPA-supplemented Ob/Ob mice, although fat mass accumulation was not prevented. By contrast, in comparison with HF-fed mice, DHA did not prevent fat mass accumulation, increased plasma leptin concentration (+128%) in C57BL/6J mice, and did not improve glucose homeostasis in C57BL/6J and Ob/Ob mice. In 3T3-L1 adipocytes, DHA stimulated leptin expression whereas EPA induced adiponectin expression, suggesting that improved leptin/adiponectin balance may contribute to the protective effect of EPA. In conclusion, supplementation with EPA, but not ALA and DHA, could preserve glucose homeostasis in an obesogenic environment and limit fat mass accumulation in the early stage of weight gain.

  12. Effect of food deprivation and maintenance diet composition on fat preference and acceptance in rats.

    PubMed

    Warwick, Z S; Synowski, S J

    High-fat diets typically elicit greater kcal intake and/or weight gain than low-fat diets. Palatability, caloric density, and the unique postingestive effects of fat have each been shown to contribute to high-fat diet hyperphagia. Because long-term intake reflects the sum of many individual eating episodes (meals), it is important to investigate factors that may modulate fat intake at a meal. The present studies used high-fat (hi-fat) and high-carbohydrate (hi-carb) liquid diets (both 2.3 kcal/mL) to assess the effect of hunger level (0 versus 24-h food deprivation) and fat content of the maintenance diet (12 versus 48%) on fat preference (when a choice among foods is offered in a two-bottle test), and acceptance (only one food offered) in male rats. Preference for hi-fat relative to hi-carb (two-bottle test) was enhanced by 24-h food deprivation, and by a high-fat maintenance diet. In contrast, neither deprivation nor maintenance diet composition influenced relative meal size (one-bottle test) of hi-fat and hi-carb: irrespective of test conditions, meal size of hi-fat was bigger than meal size of hi-carb.

  13. Acceptability of a low-fat vegan diet compares favorably to a step II diet in a randomized, controlled trial.

    PubMed

    Barnard, Neal D; Scialli, Anthony R; Turner-McGrievy, Gabrielle; Lanou, Amy J

    2004-01-01

    This study aimed to assess the acceptability of a low-fat vegan diet, as compared with a more typical fat-modified diet, among overweight and obese adults. Through newspaper advertisements, 64 overweight, postmenopausal women were recruited, 59 of whom completed the study. The participants were assigned randomly to a low-fat vegan diet or, for comparison, to a National Cholesterol Education Program Step II (NCEP) diet. At baseline and 14 weeks later, dietary intake, dietary restraint, disinhibition, and hunger, as well as the acceptability and perceived benefits and adverse effects of each diet were assessed. Dietary restraint increased in the NCEP group (P <.001), indicating a greater subjective sense of constraint with regard to diet requirements, but was unchanged in the vegan group. Disinhibition and hunger scores fell in each group (P <.001 and P <.01, respectively). The acceptability of both diets was high, although the vegan group participants rated their diet as less easy to prepare than their usual diets (P <.05) and the NCEP participants foresaw continuation of their assigned diet to be more difficult than continuation of their baseline diets (P <.05). There were no between-group differences on any acceptability measures. The acceptability of a low-fat vegan diet is high and not demonstrably different from that of a more moderate low-fat diet among well-educated, postmenopausal women in a research environment.

  14. Epigallocatechin gallate attenuates diet-induced obesity in mice by decreasing energy absorption and increasing fat oxidation.

    PubMed

    Klaus, S; Pültz, S; Thöne-Reineke, C; Wolfram, S

    2005-06-01

    To examine the antiobesity effect of epigallocatechin gallate (EGCG), a green tea bioactive polyphenol in a mouse model of diet-induced obesity. Obesity was induced in male New Zealand black mice by feeding of a high-fat diet. EGCG purified from green tea (TEAVIGO) was supplemented in the diet (0.5 and 1%). Body composition (quantitative magnetic resonance), food intake, and food digestibility were recorded over a 4-week period. Animals were killed and mRNA levels of uncoupling proteins (UCP1-3), leptin, malic enzyme (ME), stearoyl-CoA desaturase-1 (SCD1), glucokinase (GK), and pyruvate kinase (PK) were analysed in different tissues. Also investigated were acute effects of orally administered EGCG (500 mg/kg) on body temperature, activity (transponders), and energy expenditure (indirect calorimetry). Dietary supplementation of EGCG resulted in a dose-dependent attenuation of body fat accumulation. Food intake was not affected but faeces energy content was slightly increased by EGCG, indicating a reduced food digestibility and thus reduced long-term energy absorption. Leptin and SCD1 gene expression in white fat was reduced but SCD1 and UCP1 expression in brown fat was not changed. In liver, gene expression of SCD1, ME, and GK was reduced and that of UCP2 increased. Acute oral administration of EGCG over 3 days had no effect on body temperature, activity, and energy expenditure, whereas respiratory quotient during night (activity phase) was decreased, supportive of a decreased lipogenesis and increased fat oxidation. Dietary EGCG attenuated diet-induced body fat accretion in mice. EGCG apparently promoted fat oxidation, but its fat-reducing effect could be entirely explained by its effect in reducing diet digestibility.

  15. Effects of dietary carbohydrate replaced with wild rice (Zizania latifolia (Griseb) Turcz) on insulin resistance in rats fed with a high-fat/cholesterol diet.

    PubMed

    Han, Shufen; Zhang, Hong; Qin, Liqiang; Zhai, Chengkai

    2013-02-15

    Wild rice (WR) is a very nutritious grain that has been used to treat diabetes in Chinese medicinal practice. City diet (CD) is based on the diet consumed by Asian area residents in modern society, which is rich in saturated fats, cholesterol and carbohydrates. The present study was aimed at evaluating the effects of replacing white rice and processed wheat starch of CD with WR as the chief source of dietary carbohydrates on insulin resistance in rats fed with a high-fat/cholesterol diet. Except the rats of the low-fat (LF) diet group, the rats of the other three groups, including to high-fat/cholesterol (HFC) diet, CD and WR diet, were fed with high-fat/cholesterol diets for eight weeks. The rats fed with CD exhibited higher weight gain and lower insulin sensitivity compared to the rats consuming a HFC diet. However, WR suppressed high-fat/cholesterol diet-induced insulin resistance. WR decreased liver homogenate triglyceride and free fatty acids levels, raised serum adiponectin concentration and reduced serum lipocalin-2 and visfatin concentrations. In addition, the WR diet potently augmented the relative expressions of adiponectin receptor 2, peroxisome proliferator-activated receptors, alpha and gamma, and abated relative expressions of leptin and lipocalin-2 in the tissues of interest. These findings indicate that WR is effective in ameliorating abnormal glucose metabolism and insulin resistance in rats, even when the diet consumed is high in fat and cholesterol.

  16. A healthy approach to dietary fats: understanding the science and taking action to reduce consumer confusion.

    PubMed

    Liu, Ann G; Ford, Nikki A; Hu, Frank B; Zelman, Kathleen M; Mozaffarian, Dariush; Kris-Etherton, Penny M

    2017-08-30

    Consumers are often confused about nutrition research findings and recommendations. As content experts, it is essential that nutrition scientists communicate effectively. A case-study of the history of dietary fat science and recommendations is presented, summarizing presentations from an Experimental Biology Symposium that addressed techniques for effective scientific communication and used the scientific discourse of public understanding of dietary fats and health as an example of challenges in scientific communication. Decades of dietary recommendations have focused on balancing calorie intake and energy expenditure and decreasing fat. Reducing saturated fat has been a cornerstone of dietary recommendations for cardiovascular disease (CVD) risk reduction. However, evidence from observational studies and randomized clinical trials demonstrates that replacing saturated fat with carbohydrates, specifically refined, has no benefit on CVD risk, while substituting polyunsaturated fats for either saturated fat or carbohydrate reduces risk. A significant body of research supports the unique health benefits of dietary patterns and foods that contain plant and marine sources of unsaturated fats. Yet, after decades of focus on low-fat diets, many consumers, food manufacturers, and restauranteurs remain confused about the role of dietary fats on disease risk and sources of healthy fats. Shifting dietary recommendations to focus on food-based dietary patterns would facilitate translation to the public and potentially remedy widespread misperceptions about what constitutes a healthful dietary pattern.

  17. [SHORT TERM EFFECTS ON LIPID PROFILE AND GLYCAEMIA OF A LOW-FAT VEGETARIAN DIET].

    PubMed

    Quiles, Laura; Portolés, Olga; Sorlí, José Vicente; Corella, Dolores

    2015-07-01

    vegetarian diets have been associated with lower risk of cardiovascular disease and a more favourable lipid profile in vegetarians who follow these diets for a long term period in observational studies, but the short-term effects of vegetarian diets are less known. our objective was to analyze the short-term effects of a low-fat vegetarian diet on lipid profile and fasting glucose in previously non-vegetarian subjects from a Mediterranean population. we carried out a nutritional intervention study in 159 volunteers (42 men and 117 women). A whole lacto-vegetarian diet low in fat (20%) was administered. A full daily menu was provided for 15 days under strict interned conditions. Fasting blood samples were obtained before and after dietary intervention and total cholesterol, HDL-C, LDL-C, triglycerides and fasting glucose were determined. Multivariate models for repeated measures were used. after dietary intervention, we detected statistically significant reductions in total cholesterol (-17.54 ± 37.14 mg/dl), LDL-C (-9.33 ± 34.29 mg/dl), HDL-C (-5.32 ± 12.16 mg/dl), and triglycerides (-18.92 ± 50.50 mg/dl). These reductions remained statistically significant after adjustment for sex and age. Significant weight changes were also detected. The additional adjustment for changes in body mass index (BMI) attenued the significance of the decrease in triglycerides (P = 0.067). a lacto-vegetarian diet low in fat, produces favourable and significant decreases in total cholesterol, LDL-C (independent of weight loss) and triglycerides (mediated by weight loss). This intervention also produced an expected decrease in HDL-C due to its reduced fat content. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  18. Effects of low fat and babassu fat diets on nutritional status in obstructive cholestasis in young rats.

    PubMed

    Santos, Analícia Rocha; Coelho, Kunie Labuki Rabello; Coelho, Cláudio Antonio Rabello

    2008-01-01

    To test the effects of a low fat diet compared with a babassu fat diet on nutritional status in obstructive cholestasis in young rats. We submitted 40 rats in 4 groups of 10 animals each from P21 (21st postnatal day) to P49 to two of the following treatments: bile duct ligation or sham operation and low fat diet (corn oil supplying 4.5% of the total amount of energy) or babassu fat diet (this fat supplying 32.7% and corn oil supplying 1.7% of the total amount of energy). Weight gain from P25 to P49 every 4 days was measured. The Verhulst's growth function was fitted to these values of weight gain. Growth velocity and acceleration at each moment were estimated using the same equation. Total food and energy intake from P21 to P49, energy utilization rate (EUR) from P25 to P49 and fat absorption rate (FAR) and nitrogen balance (NB) from P42 to P49 were measured. Two Way ANOVA and the S.N.K. test for multiple paired comparisons were employed to study the effects of cholestasis and those of the diets and their interaction (p<0.05) on those variables. In cholestatic animals, a higher growth velocity at P45, a higher growth acceleration at P41 and P45, a greater EUR, a greater FAR and a greater NB, were found with the low fat diet as compared with the babassu fat diet. A low fat diet lessens the growth restriction brought about by cholestasis and allows for an improved dietary energy utilization and a better protein balance than the babassu fat diet.

  19. Isoenergetic Feeding of Low Carbohydrate-High Fat Diets Does Not Increase Brown Adipose Tissue Thermogenic Capacity in Rats

    PubMed Central

    Mauracher, Brigitte; Abplanalp, William; Müller, Hans-Helge; Pieper, Korbinian; Ramisch, Juliane; Tschöp, Matthias H.; Beuschlein, Felix; Bidlingmaier, Martin; Slawik, Marc

    2012-01-01

    Low-carbohydrate, high-fat (LC-HF) diets are popular for inducing weight loss in overweighed adults. Adaptive thermogenesis increased by specific effects of macronutrients on energy expenditure has been postulated to induce this weight loss. We studied brown adipose tissue (BAT) morphology and function following exposure to different LC-HF diets. Methods Male Wistar rats were fed a standard control diet ad libitum or pair-fed isoenergetic amounts of three experimental diets for 4 weeks. The diets had the following macronutrient composition (% metabolizable energy: carbohydrates, fat, protein): control (64.3/16.7/19), LC-HF-low protein (LC-HF-LP, 1.7/92.8/5.5), LC-HF-normal-protein (LC-HF-NP, 2.2/78.7/19.1), and a high fat diet with carbohydrates (“high fat”, 19.4/61.9/18.7). Results Body weight gain was reduced in all pair-fed experimental groups as compared to rats fed the control diet, with more pronounced effect in rats on LC-HF diets than on the high fat diet with carbohydrates. High fat diets increased expression of PGC1α and ADRB3 in BAT indicating higher SNS outflow. However, UCP1 mRNA expression and expression of UCP1 assessed by immunohistochemistry was not different between diet groups. In accordance, analysis of mitochondrial function in-vitro by extracellular flux analyser (Seahorse Bioscience) and measurement of inducible thermogenesis in vivo (primary endpoint), explored by indirect calorimetry following norepinephrine injection, did not show significant differences between groups. Histology of BAT revealed increased lipid droplet size in rats fed the high-fat diet and both LC-HF diets. Conclusion All experimental diets upregulated expression of genes which are indicative for increased BAT activity. However, the functional measurements in vivo revealed no increase of inducible BAT thermogenesis. This indicates that lower body weight gain with LC-HF diets and a high fat diet in a pair-feeding setting is not caused by increased adaptive

  20. Reduced Fat Food Emulsions: Physicochemical, Sensory, and Biological Aspects.

    PubMed

    Chung, Cheryl; Smith, Gordon; Degner, Brian; McClements, David Julian

    2016-01-01

    Fat plays multiple important roles in imparting desirable sensory attributes to emulsion-based food products, such as sauces, dressings, soups, beverages, and desserts. However, there is concern that over consumption of fats leads to increased incidences of chronic diseases, such as obesity, coronary heart disease, and diabetes. Consequently, there is a need to develop reduced fat products with desirable sensory profiles that match those of their full-fat counterparts. The successful design of high quality reduced-fat products requires an understanding of the many roles that fat plays in determining the sensory attributes of food emulsions, and of appropriate strategies to replace some or all of these attributes. This paper reviews our current understanding of the influence of fat on the physicochemical and physiological attributes of food emulsions, and highlights some of the main approaches that can be used to create high quality emulsion-based food products with reduced fat contents.

  1. Castration influences intestinal microflora and induces abdominal obesity in high-fat diet-fed mice

    PubMed Central

    Harada, Naoki; Hanaoka, Ryo; Horiuchi, Hiroko; Kitakaze, Tomoya; Mitani, Takakazu; Inui, Hiroshi; Yamaji, Ryoichi

    2016-01-01

    Late-onset hypogonadism (i.e. androgen deficiency) raises the risk for abdominal obesity in men. The mechanism for this obesity is unclear. Here, we demonstrated that hypogonadism after castration caused abdominal obesity in high-fat diet (HFD)-fed, but not in standard diet (SD)-fed, C57BL/6J mice. Furthermore, the phenotype was not induced in mice treated with antibiotics that disrupt the intestinal microflora. In HFD-fed mice, castration increased feed efficiency and decreased fecal weight per food intake. Castration also induced in an increase of visceral fat mass only in the absence of antibiotics in HFD-fed mice, whereas subcutaneous fat mass was increased by castration irrespective of antibiotics. Castration reduced the expression in the mesenteric fat of both adipose triglyceride lipase and hormone-sensitive lipase in HFD-fed mice, which was not observed in the presence of antibiotics. Castration decreased thigh muscle (i.e. quadriceps and hamstrings) mass, elevated fasting blood glucose levels, and increased liver triglyceride levels in a HFD-dependent manner, whereas these changes were not observed in castrated mice treated with antibiotics. The Firmicutes/Bacteroidetes ratio and Lactobacillus species increased in the feces of HFD-fed castrated mice. These results show that androgen (e.g. testosterone) deficiency can alter the intestinal microbiome and induce abdominal obesity in a diet-dependent manner. PMID:26961573

  2. Effects of Low-Carbohydrate Diets Versus Low-Fat Diets on Metabolic Risk Factors: A Meta-Analysis of Randomized Controlled Clinical Trials

    PubMed Central

    Hu, Tian; Mills, Katherine T.; Yao, Lu; Demanelis, Kathryn; Eloustaz, Mohamed; Yancy, William S.; Kelly, Tanika N.; He, Jiang; Bazzano, Lydia A.

    2012-01-01

    The effects of low-carbohydrate diets (≤45% of energy from carbohydrates) versus low-fat diets (≤30% of energy from fat) on metabolic risk factors were compared in a meta-analysis of randomized controlled trials. Twenty-three trials from multiple countries with a total of 2,788 participants met the predetermined eligibility criteria (from January 1, 1966 to June 20, 2011) and were included in the analyses. Data abstraction was conducted in duplicate by independent investigators. Both low-carbohydrate and low-fat diets lowered weight and improved metabolic risk factors. Compared with participants on low-fat diets, persons on low-carbohydrate diets experienced a slightly but statistically significantly lower reduction in total cholesterol (2.7 mg/dL; 95% confidence interval: 0.8, 4.6), and low density lipoprotein cholesterol (3.7 mg/dL; 95% confidence interval: 1.0, 6.4), but a greater increase in high density lipoprotein cholesterol (3.3 mg/dL; 95% confidence interval: 1.9, 4.7) and a greater decrease in triglycerides (−14.0 mg/dL; 95% confidence interval: −19.4, −8.7). Reductions in body weight, waist circumference and other metabolic risk factors were not significantly different between the 2 diets. These findings suggest that low-carbohydrate diets are at least as effective as low-fat diets at reducing weight and improving metabolic risk factors. Low-carbohydrate diets could be recommended to obese persons with abnormal metabolic risk factors for the purpose of weight loss. Studies demonstrating long-term effects of low-carbohydrate diets on cardiovascular events were warranted. PMID:23035144

  3. Swimming training induces liver adaptations to oxidative stress and insulin sensitivity in rats submitted to high-fat diet.

    PubMed

    Zacarias, Aline Cruz; Barbosa, Maria Andrea; Guerra-Sá, Renata; De Castro, Uberdan Guilherme Mendes; Bezerra, Frank Silva; de Lima, Wanderson Geraldo; Cardoso, Leonardo M; Santos, Robson Augusto Souza Dos; Campagnole-Santos, Maria José; Alzamora, Andréia Carvalho

    2017-11-01

    Oxidative stress, physical inactivity and high-fat (FAT) diets are associated with hepatic disorders such as metabolic syndrome (MS). The therapeutic effects of physical training (PT) were evaluated in rats with MS induced by FAT diet for 13 weeks, on oxidative stress and insulin signaling in the liver, during the last 6 weeks. FAT-sedentary (SED) rats increased body mass, retroperitoneal fat, mean arterial pressure (MAP) and heart rate (HR), and total cholesterol, serum alanine aminotransferase, glucose and insulin. Livers of FAT-SED rats increased superoxide dismutase activity, thiobarbituric acid-reactive substances, protein carbonyl and oxidized glutathione (GSSG); and decreased catalase activity, reduced glutathione/GSSG ratio, and the mRNA expression of insulin receptor substrate 1 (IRS-1) and serine/threonine kinase 2. FAT-PT rats improved in fitness and reduced their body mass, retroperitoneal fat, and glucose, insulin, total cholesterol, MAP and HR; and their livers increased superoxide dismutase and catalase activities, the reduced glutathione/GSSG ratio and the expression of peroxisome proliferator-activated receptor gamma and insulin receptor compared to FAT-SED rats. These findings indicated adaptive responses to PT by restoring the oxidative balance and insulin signaling in the liver and certain biometric and biochemical parameters as well as MAP in MS rats.

  4. Centrally administered urocortin 2 decreases gorging on high-fat diet in in both diet induced obesity-prone and -resistant rats

    PubMed Central

    Cottone, Pietro; Sabino, Valentina; Nagy, Tim R.; Coscina, Donald V.; Levin, Barry E.; Zorrilla, Eric P.

    2013-01-01

    Objective Obesity is a costly, deadly public health problem for which new treatments are needed. Individual differences in meal pattern have been proposed to play a role in obesity risk. The present study tested the hypothesis that i) the microstructure of chronic high-fat diet intake differs between genetically selected Diet-Induced Obesity (DIO) and Diet Resistant (DR) rats, and ii) central administration of urocortin 2 (Ucn 2), a corticotropin-releasing factor type 2 (CRF2) agonist, decreases high-fat diet intake not only in lean DR rats, but also in obese DIO rats. Design Male, selectively bred DIO and DR rats (n=10/genotype) were chronically fed a high-fat diet. Food and water intake as well as ingestion microstructure were then compared under baseline conditions and following third intracerebroventricular injection of Ucn 2 (0, 0.1, 0.3, 1, 3 µg). Results Irrespective of genotype, Ucn 2 reduced nocturnal food intake with a minimum effective dose of 0.3 µg, suppressing high-fat diet intake by ~40% at the 3 µg dose. Ucn 2 also made rats of both genotypes eat smaller and briefer meals, including at doses that did not reduce drinking. Obese DIO rats ate fewer but larger meals than DR rats, which they ate more quickly and consumed with 2/3rd less water. Conclusions Unlike leptin and insulin, Ucn 2 retains its full central anorectic efficacy to reduce high-fat diet intake even in obese, genetically-prone DIO rats, which otherwise show a “gorging” meal pattern. These results open new opportunities of investigation towards treating some forms of diet-induced obesity. PMID:23478425

  5. Changes in gene expression and sensitivity of cocaine reward produced by a continuous fat diet.

    PubMed

    Blanco-Gandía, M Carmen; Aracil-Fernández, Auxiliadora; Montagud-Romero, Sandra; Aguilar, Maria A; Manzanares, Jorge; Miñarro, José; Rodríguez-Arias, Marta

    2017-08-01

    Preclinical studies report that free access to a high-fat diet (HFD) alters the response to psychostimulants. The aim of the present study was to examine how HFD exposure during adolescence modifies cocaine effects. Gene expression of CB1 and mu-opioid receptors (MOr) in the nucleus accumbens (N Acc) and prefrontal cortex (PFC) and ghrelin receptor (GHSR) in the ventral tegmental area (VTA) were assessed. Mice were allowed continuous access to fat from PND 29, and the locomotor (10 mg/kg) and reinforcing effects of cocaine (1 and 6 mg/kg) on conditioned place preference (CPP) were evaluated on PND 69. Another group of mice was exposed to a standard diet until the day of post-conditioning, on which free access to the HFD began. HFD induced an increase of MOr gene expression in the N Acc, but decreased CB1 receptor in the N Acc and PFC. After fat withdrawal, the reduction of CB1 receptor in the N Acc was maintained. Gene expression of GHSR in the VTA decreased during the HFD and increased after withdrawal. Following fat discontinuation, mice exhibited increased anxiety, augmented locomotor response to cocaine, and developed CPP for 1 mg/kg cocaine. HFD reduced the number of sessions required to extinguish the preference and decreased sensitivity to drug priming-induced reinstatement. Our results suggest that consumption of a HFD during adolescence induces neurobiochemical changes that increased sensitivity to cocaine when fat is withdrawn, acting as an alternative reward.

  6. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia.

    PubMed

    Moreira, Ana Paula Boroni; Texeira, Tatiana Fiche Salles; Ferreira, Alessandra Barbosa; Peluzio, Maria do Carmo Gouveia; Alfenas, Rita de Cássia Gonçalves

    2012-09-01

    Lipopolysaccharide (LPS) may play an important role in chronic diseases through the activation of inflammatory responses. The type of diet consumed is of major concern for the prevention and treatment of these diseases. Evidence from animal and human studies has shown that LPS can diffuse from the gut to the circulatory system in response to the intake of high amounts of fat. The method by which LPS move into the circulatory system is either through direct diffusion due to intestinal paracellular permeability or through absorption by enterocytes during chylomicron secretion. Considering the impact of metabolic diseases on public health and the association between these diseases and the levels of LPS in the circulatory system, this review will mainly discuss the current knowledge about high-fat diets and subclinical inflammation. It will also describe the new evidence that correlates gut microbiota, intestinal permeability and alkaline phosphatase activity with increased blood LPS levels and the biological effects of this increase, such as insulin resistance. Although the majority of the studies published so far have assessed the effects of dietary fat, additional studies are necessary to deepen the understanding of how the amount, the quality and the structure of the fat may affect endotoxaemia. The potential of food combinations to reduce the negative effects of fat intake should also be considered in future studies. In these studies, the effects of flavonoids, prebiotics and probiotics on endotoxaemia should be investigated. Thus, it is essential to identify dietetic strategies capable of minimising endotoxaemia and its postprandial inflammatory effects.

  7. Adults with type 1 diabetes eat a high-fat atherogenic diet that is associated with coronary artery calcium.

    PubMed

    Snell-Bergeon, J K; Chartier-Logan, C; Maahs, D M; Ogden, L G; Hokanson, J E; Kinney, G L; Eckel, R H; Ehrlich, J; Rewers, M

    2009-05-01

    Coronary heart disease is the leading cause of mortality among people with type 1 diabetes. Diet is an important lifestyle factor that relates to risk of CHD. The aim of this study was to examine how diet and adherence to dietary guidelines differ between adults with and without type 1 diabetes, and their correlation with CHD risk factors and coronary artery calcium (CAC). The study involved 571 people with type 1 diabetes and 696 controls, aged 19 to 56 years, who were asymptomatic for CHD. CAC was measured by electron-beam computed tomography. Compared with the controls, adults with type 1 diabetes reported a diet higher in fat, saturated fat and protein but lower in carbohydrates. Fewer than half of those with type 1 diabetes met dietary guidelines for fat and carbohydrate intake, and only 16% restricted saturated fat to less than 10% of daily energy intake. Adults with type 1 diabetes were significantly less likely to meet dietary guidelines than controls. Fat and saturated fat intakes were positively correlated, but carbohydrate intake was negatively correlated with CHD risk factors and HbA(1c). A high-fat diet and higher intake of protein were associated with greater odds of CAC, while higher carbohydrate intake was associated with reduced odds of CAC. Adults with type 1 diabetes reported consuming higher than recommended levels of fat and saturated fat. High fat intake was associated with increased CHD risk factors, worse glycaemic control and CAC. An atherogenic diet may contribute to the risk of CHD in adults with type 1 diabetes.

  8. High fat diet promotes achievement of peak bone mass in young rats

    SciTech Connect

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T.; Mittal, Monika; Chattopadhyay, Naibedya; Wani, Mohan R.; Bhat, Manoj Kumar

    2014-12-05

    Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet.

  9. Protective effect of Spirulina platensis against cell damage and apoptosis in hepatic tissue caused by high fat diet.

    PubMed

    Yigit, F; Gurel-Gurevin, E; Isbilen-Basok, B; Esener, O B B; Bilal, T; Keser, O; Altiner, A; Yilmazer, N; Ikitimur-Armutak, E I

    2016-01-01

    Spirulina platensis is a microalga that may be a source of antioxidants that can reduce body fat deposition. Consumption of a high fat diet produces elevated blood lipid levels, inflammation and apoptosis. We investigated the possible effects of S. platensis on the blood lipid profile, and liver inflammation and apoptosis in rats fed a high fat diet. Sixty-four young male rats were divided into eight equal groups. The control group was fed a basic diet. The experimental groups were fed a diet for 60 days that was prepared by mixing variable amounts of 43% vegetable oil and 10% cholesterol with or without 3% S. platensis mixed with the basal diet. Blood and liver tissue samples were collected from each animal. Serum samples were used to analyze lipid parameters, total antioxidant status and total oxidant status. iNOS and eNOS were determined by immunohistochemistry. TUNEL staining was used to detect apoptosis to investigate a possible connection between inflammation and apoptosis in the liver tissue. The relations between fat deposition and liver degeneration were assessed by Sirius red staining and alpha-smooth muscle actin immunostaining. S. platensis reduced serum HDL-C, LDL-C and triglyceride, increased HDL-C levels in rats fed a high fat diet to near control levels, and reduced iNOS levels and increased eNOS levels in the liver tissue compared to vegetable oil and cholesterol treated groups. The apoptotic index was reduced in the groups that were fed a high fat or a basic diet when supplemented with S. platensis.

  10. Exercise, but not quercetin, ameliorates inflammation, mitochondrial biogenesis, and lipid metabolism in skeletal muscle after strenuous exercise by high-fat diet mice.

    PubMed

    Kwon, Soon Mi; Park, Hee Geun; Jun, Jong Kui; Lee, Wang Lok

    2014-03-01

    The purpose of this study was to investigate whether moderate exercise and quercetin intake with a low fat diet contribute to inflammatory cytokine production, mitochondrial biogenesis, and lipid metabolism in skeletal muscle after strenuous exercise by high-fat diet mice. Male C57BL/6 mice were randomly divided into four groups: (1) High-fat for 12 weeks and low-fat diet control (C; n = 6); (2) high-fat diet for 12 weeks and low-fat diet with quercetin (Q; n = 4); (3) high-fat diet for 12 weeks and low-fat diet with exercise (E; n = 4); or (4) high-fat diet for 12 weeks and low-fat diet with exercise and quercetin (EQ; n = 5). Quercetin (10 mg/kg) was administered once per day, 5 day/week for 8 weeks. Exercise training was performed at moderate intensity for 8 weeks, 5 days/week for 30-60 min/day. Mice were subjected to a strenuous exercise bout of 60 min at a speed of 25 m/min (VO2 max 85%) conducted as an exercise-induced fatigue just before sacrifice. As results, body weights were significantly different among the groups. Exercise training significantly reduced inflammatory cytokines after strenuous exercise in skeletal muscle of high-fat diet mice. Exercise training increased Tfam mRNA in the soleus muscle after strenuous exercise. Exercise training significantly decreased lipogenesis markers in skeletal muscle of obese mice after strenuous exercise. Moderate exercise significantly increased lipolysis markers in the tibialis anterior muscle. These findings suggest that exercise training reduced inflammatory cytokine levels and improved mitochondrial biogenesis and lipid metabolism. However quercetin supplementation did not affect these parameters. Thus, long-term moderate exercise training has positive effects on obesity.

  11. A comparison of insulin binding by liver plasma membranes of rats fed a high glucose diet or a high fat diet.

    PubMed

    Sun, J V; Tepperman, H M; Tepperman, J

    1977-07-01

    The interaction of (125)I-labeled insulin with purified liver plasma membrane from rats fed a high fat (L) diet or a high glucose (G) diet was studied with respect to specific binding, insulin degradation, binding site degradation, and rate of hormone association and dissociation. Scatchard analysis suggested the presence of high and low affinity binding sites for membranes of both G and L diet-adapted rats. However, liver plasma membrane from rats fed the high glucose diet bound 50% more insulin than did membrane from rats fed the high fat diet. Diet did not change insulin binding site degradation. The results suggested that an apparently reduced number of insulin binding sites (G = 10.2 +/- 2.45 x 10(-12) mol/mg membrane protein, L = 4.5 +/- 1.73 x 10(-12) mol/mg membrane protein) associated with fat feeding as compared to glucose feeding was responsible for the reduced insulin binding by membrane from rats fed the high fat diet. The effects of concanavalin A (Con A) on insulin binding to liver plasma membranes were also investigated. Con A enhanced the specific binding of insulin to liver plasma membranes from rats fed either diet at concentrations lower than 50 micro g/ml, whereas at concentrations higher than 50 micro g/ml Con A inhibited insulin binding to these membranes. The stimulatory effect of Con A on insulin binding at low concentrations was greater and inhibition of binding at high concentration was less in the case of membrane prepared from L diet-adapted animals. These results suggested that diet can modify the plasma membrane glycoproteins.

  12. The need for multisectoral food chain approaches to reduce trans fat consumption in India.

    PubMed

    Downs, Shauna M; Singh, Archna; Gupta, Vidhu; Lock, Karen; Ghosh-Jerath, Suparna

    2015-07-22

    The World Health Organization (WHO) recommends virtually eliminating trans fat from the global food supply. Although several high-income countries have successfully reduced trans fat levels in foods, low- and middle-income countries such as India face additional challenges to its removal from the food supply. This study provides a systems analysis of the Indian food chain to assess intervention options for reducing trans fat intake in low-income consumers. Data were collected at the manufacturer, retailer and consumer levels. Qualitative interviews were conducted with vanaspati manufacturers (n = 13) and local food vendors (n = 44). Laboratory analyses (n = 39) of street foods/snacks sold by the vendors were also conducted. Trans fat and snack intakes were also examined in low-income consumers in two rural villages (n = 260) and an urban slum (n = 261). Manufacturers of vanaspati described reducing trans fat levels as feasible but identified challenges in using healthier oils. The fat content of sampled oils from street vendors contained high levels of saturated fat (24.7-69.3 % of total fat) and trans fat (0.1-29.9 % of total fat). Households were consuming snacks high in trans fat as part of daily diets (31 % village and 84.3 % of slum households) and 4 % of rural and 13 % of urban households exceeded WHO recommendations for trans fat intakes. A multisectoral food chain approach to reducing trans fat is needed in India and likely in other low- and middle-income countries worldwide. This will require investment in development of competitively priced bakery shortenings and economic incentives for manufacturing foods using healthier oils. Increased production of healthier oils will also be required alongside these investments, which will become increasingly important as more and more countries begin investing in palm oil production.

  13. Grape seed extract (Vitis vinifera) partially reverses high fat diet-induced obesity in C57BL/6J mice

    PubMed Central

    Park, Su-Hui; Park, Tae-Sun

    2008-01-01

    The aim of the present study was to assess the anti-obesity effects of grape seed extract (GSE) supplement in C57BL/6J mice. Thirty mice were divided into three groups; normal diet control group (ND), high fat diet control group (HD) and high fat diet plus grape seed extract supplemented group (HD+GSE). Results were as follows: 1. GSE supplement reduced the weight gain in mice fed high fat diets; epididymal and back fat weights were lower compared to non-supplemented HD group. 2. Blood lipid concentrations were lower in the HD+GSE group than in the HD group. Serum HDL-C concentrations were higher in the HD+GSE group compared with the other groups. 3. The concentrations of acid-insoluble acylcarnitines (AIAC) in serum and liver were higher in the HD+GSE group than in the HD group. 4. GSE supplementation increased mRNA levels of lipolytic genes such as carnitine palmitoyltransferase-1 (CPT-1) and decreased mRNA levels of lipogenic genes such as acetyl CoA carboxylase (ACC). These findings suggest that grape seed extract supplements in high fat diet might normalize body weight, epididymal and back fat weights, lipid concentrations, and carnitine levels through controlling lipid metabolism. PMID:20016723

  14. Arabinoxylan activates lipid catabolism and alleviates liver damage in rats induced by high-fat diet.

    PubMed

    Chen, Hong; Fu, Yuanfang; Jiang, Xiujuan; Li, Dongmei; Qin, Wen; Zhang, Qing; Lin, Derong; Liu, Yaowen; Tan, Cui; Huang, Zhiqing; Liu, Yuntao; Chen, Daiwen

    2017-06-06

    Arabinoxylan was thought to have the potential to change lipid metabolism and redox homeostasis in human and animal. However, the effect of arabinoxylan on the liver damage induced by high-fat diet needs further exploiting. Six-weeks-old 30 male Sprague-Dawley Rats were assigned randomly to three groups (n = 10 per group), i.e. a control diet (CON) group, a high-fat diet (HF) group and a high-fat diet supplemented with arabinoxylan (6% AX, HF-AX) group. Results showed that final body weight and liver weight were similar in CON group and HF-AX group, but higher in the HF group. In serum, the HF-AX group showed lower triglyceride concentrations than did the HF group. In liver, higher lipoprotein lipase, hepatic lipase, total lipase, and acyl-CoA oxidase activities and lower triglyceride and cholesterol level were observed in the HF-AX group than in the HF group. For the redox homeostasis, arabinoxylan supplemented in HF increased T-SOD activity and GSH-PX activity and reduced MDA + 4-HNE level in liver and/or compared with those in the HF group. Lipid droplets and liver cell damage were observed in the HF group compared with the CON and HF-AX groups. Arabinoxylan could improve lipid metabolic disorder and alleviate liver damage in rats induced by high-fat diet via activating lipid catabolism and suppressing lipid peroxidation. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Cocos nucifera water improves metabolic functions in offspring of high fat diet fed Wistar rats.

    PubMed

    Kunle-Alabi, Olufadekemi T; Akindele, Opeyemi O; Raji, Yinusa

    2017-10-09

    Maternal high fat diet has been implicated in the aetiology of metabolic diseases in their offspring. The hypolipidaemic actions of Cocos nucifera water improve metabolic indices of dams consuming a high fat diet during gestation. This study investigated the effects of C. nucifera water on metabolism of offspring of dams exposed to high fat diet during gestation. Four groups of pregnant Wistar rat dams (n=6) were treated orally from Gestation Day (GD) 1 to GD 21 as follows: standard rodent feed+10 mL/kg distilled water (Control), standard rodent feed+10 mL/kg C. nucifera water, high fat feed+10 mL/kg distilled water (high fat diet), and high fat feed+10 mL/kg C. nucifera water (high fat diet+C. nucifera water). The feeds were given ad libitum and all dams received standard rodent feed after parturition. Fasting blood glucose was measured in offspring before being euthanized on Postnatal Day (PND) 120. Serum insulin, leptin, lipid profile and liver enzymes were measured. Serum total cholesterol (TC), insulin, alanine transaminase (ALT) and alkaline phosphatase levels were significantly increased (p<0.05) in high fat diet offspring compared with controls. Similar changes were not observed in high fat diet+C. nucifera water offspring. Results suggest that the adverse effects of maternal high fat diet on offspring's metabolism can be ameliorated by C. nucifera water.

  16. Effect of exercise and caloric restriction on DMBA induced mammary tumorigenesis and plasma lipids in rats fed high fat diets

    SciTech Connect

    Magrane, D. )

    1991-03-15

    Female Sprague-Dawley rats were given a single 10 mg dose of 7, 12-Dimethylbenz(a)anthracene (DMBA) and grouped as follows: (1) low fat-sedentary (LF-SED), (2) low fat-exercised (LF-EX), (3) high fat-sedentary (HF-SED), (4) high fat-exercised (HF-EX), (5) high fat-caloric restricted (HF-RES). Diets were isocaloric and contained 3.9% (LF) and 19.4% (HF) of corn oil. Group 5 was fed a 25% caloric restricted diet but with 24.6% fat content to equalize fat intake to HF-SED. After 12 weeks of diet or treadmill exercise, tumor data and plasma lipid profiles were determined. Results show that rats on HF-EX had more total tumors, % of tumors and tumors per tumor bearing rat than rats on HF-SED. The effect of exercise was also evident in LF-EX rats, when compared to LF-SED. Average tumor size and tumor volumes were not affected. The HF-RES group showed reduced tumor profiles compared to HF-SED. HDL, LDL, triglycerides and total cholesterol were unaffected by HF or LF diets or exercise. These data suggest that tumorigenesis is increased by moderate and constant exercise.

  17. Curcumin modulation of high fat diet-induced atherosclerosis and steatohepatosis in LDL receptor deficient mice.

    PubMed

    Hasan, S T; Zingg, J-M; Kwan, P; Noble, T; Smith, D; Meydani, M

    2014-01-01

    Consuming curcumin may benefit health by modulating lipid metabolism and suppressing atherogenesis. Fatty acid binding proteins (FABP-4/aP2) and CD36 expression are key factors in lipid accumulation in macrophages and foam cell formation in atherogenesis. Our earlier observations suggest that curcumin's suppression of atherogenesis might be mediated through changes in aP2 and CD36 expression in macrophages. Thus, this study aimed to further elucidate the impact of increasing doses of curcumin on modulation of these molecular mediators on high fat diet-induced atherogenesis, inflammation, and steatohepatosis in Ldlr(-/-) mice. Ldlr(-/-) mice were fed low fat (LF) or high fat (HF) diet supplemented with curcumin (500 HF + LC; 1000 HF + MC; 1500 HF + HC mg/kg diet) for 16 wks. Fecal samples were analyzed for total lipid content. Lipids accumulation in THP-1 cells and expression of aP2, CD36 and lipid accumulation in peritoneal macrophages were measured. Fatty streak lesions and expression of IL-6 and MCP-1 in descending aortas were quantified. Aortic root was stained for fatty and fibrotic deposits and for the expression of aP2 and VCAM-1. Total free fatty acids, insulin, glucose, triglycerides, and cholesterol as well as several inflammatory cytokines were measured in plasma. The liver's total lipids, cholesterol, triglycerides, and HDL content were measured, and the presence of fat droplets, peri-portal fibrosis and glycogen was examined histologically. Curcumin dose-dependently reduced uptake of oxLDL in THP-1 cells. Curcumin also reduced body weight gain and body fat without affecting fat distribution. During early intervention, curcumin decreased fecal fat, but at later stages, it increased fat excretion. Curcumin at medium doses of 500-1000 mg/kg diet was effective at reducing fatty streak formation and suppressing aortic expression of IL-6 in the descending aorta and blood levels of several inflammatory cytokines, but at a higher dose (HF + HC, 1500 mg/kg diet

  18. Monocyte chemotactic protein-1 deficiency attenuates and high-fat diet exacerbates bone loss in mice with Lewis lung carcinoma.

    PubMed

    Yan, Lin; Nielsen, Forrest H; Sundaram, Sneha; Cao, Jay

    2017-04-04

    Bone loss occurs in obesity and cancer-associated complications including wasting. This study determined whether a high-fat diet and a deficiency in monocyte chemotactic protein-1 (MCP-1) altered bone structural defects in male C57BL/6 mice with Lewis lung carcinoma (LLC) metastases in lungs. Compared to non-tumor-bearing mice, LLC reduced bone volume fraction, connectivity density, trabecular number, trabecular thickness and bone mineral density and increased trabecular separation in femurs. Similar changes occurred in vertebrae. The high-fat diet compared to the AIN93G diet exacerbated LLC-induced detrimental structural changes; the exacerbation was greater in femurs than in vertebrae. Mice deficient in MCP-1 compared to wild-type mice exhibited increases in bone volume fraction, connectivity density, trabecular number and decreases in trabecular separation in both femurs and vertebrae, and increases in trabecular thickness and bone mineral density and a decrease in structure model index in vertebrae. Lewis lung carcinoma significantly decreased osteocalcin but increased tartrate-resistant acid phosphatase 5b (TRAP 5b) in plasma. In LLC-bearing mice, the high-fat diet increased and MCP-1 deficiency decreased plasma TRAP 5b; neither the high-fat diet nor MCP-1 deficiency resulted in significant changes in plasma concentration of osteocalcin. In conclusion, pulmonary metastasis of LLC is accompanied by detrimental bone structural changes; MCP-1 deficiency attenuates and high-fat diet exacerbates the metastasis-associated bone wasting.

  19. Weight-reducing diets: Are there any differences?

    USDA-ARS?s Scientific Manuscript database

    This paper compares the efficacy of two widely used weight-loss diets differing in macronutrient composition - a low-carbohydrate diet versus a low-fat diet. Although "a calorie is a calorie" under the controlled conditions of a metabolic unit (i.e., only the level of calorie intake matters and not ...

  20. Supplementation of a high-fat diet with chlorogenic acid is associated with insulin resistance and hepatic lipid accumulation in mice.

    PubMed

    Mubarak, Aidilla; Hodgson, Jonathan M; Considine, Michael J; Croft, Kevin D; Matthews, Vance B

    2013-05-08

    The increasing prevalence of the metabolic syndrome requires a greater need for therapeutic and prevention strategies. Higher coffee consumption is consistently associated with a lower risk of type 2 diabetes in population studies. Dietary polyphenols have been linked to benefits on several features of the metabolic syndrome. Chlorogenic acid (CGA), a major component of coffee, is one of the most consumed polyphenols in the diet. In our study, we conducted a controlled dietary intervention over 12 weeks in male mice. There were three dietary groups: (i) normal diet, (ii) high-fat diet, and (iii) high-fat diet + CGA. We assessed the effect of CGA at a physiologically obtainable dose (1 g/kg of diet) on high-fat-diet-induced obesity, glucose intolerance, insulin resistance, and also fatty acid oxidation and insulin signaling in C57BL/6 male mice. Supplementation of CGA in the high-fat diet did not reduce body weight compared to mice fed the high-fat diet alone (p = 0.32). CGA resulted in increased insulin resistance compared to mice fed a high-fat diet only (p < 0.05). CGA resulted in decreased phosphorylation of AMP-activated protein kinase (AMPK) (p < 0.001) and acetyl carboxylase β (ACCβ), a downstream target of AMPK (p < 0.05), in liver. The liver of mice fed a high-fat diet supplemented with CGA had a higher lipid content (p < 0.05) and more steatosis relative to mice fed a high-fat diet only, indicating impaired fatty acid oxidation. This study suggests that CGA supplementation in a high-fat diet does not protect against features of the metabolic syndrome in diet-induced obese mice.

  1. Exercise and a High Fat Diet Synergistically Increase the Pantothenic Acid Requirement in Rats.

    PubMed

    Takahashi, Kei; Fukuwatari, Tsutomu; Shibata, Katsumi

    2015-01-01

    It is thought that both exercise and dietary composition increase the utilization of, and thus the requirement for, certain water-soluble vitamins. However, there have been no studies evaluating the combined impacts of exercise and dietary composition on vitamin utilization. In this experiment, rats were fed a pantothenic acid (PaA)-restricted (0.004 g PaA-Ca/kg diet) diet containing 5% (ordinary amount of dietary fat) or 20% fat (high fat), and were forced to swim until exhaustion every other day for 22 d. PaA status was assessed by urinary excretion, which reflects body stores of water-soluble vitamins. The urinary excretion of PaA in rats fed a 5% fat diet was not affected by swimming (5% fat + non-swimming vs. 5% fat + swim; p>0.05). Excretion of PaA was decreased by the high-fat diet (5% fat + non-swim vs. 20% fat + non-swim; p<0.05) and synergistically decreased by exercise (20% fat + non-swim vs. 20% fat + swim; p<0.05). There was a significant interaction between exercise and a high-fat diet. Plasma PaA concentrations showed changes similar to those seen for urinary excretion. The experiment was then repeated using rats fed a PaA-sufficient (0.016 g PaA-Ca/kg diet) diet, and PaA excretion was again synergistically decreased by the combination of exercise and a high-fat diet (p<0.05). These results suggest that the combination of exercise and a high-fat diet synergistically increases the requirement for PaA.

  2. Comparison between cafeteria and high-fat diets in the induction of metabolic dysfunction in mice.

    PubMed

    Higa, Talita S; Spinola, Acauã V; Fonseca-Alaniz, Miriam H; Evangelista, Fabiana Sant Anna

    2014-01-01

    This study sought to compare the metabolic responses induced by high-fat (HF) diet and cafeteria (CA) diet in mice. Adult male C57BL/6J mice were assigned into groups fed a chow (C, n=13), CA (n=12) or HF (n=11) diet during 12 weeks. Diets did not change body weight, Lee index, inguinal subcutaneous fat, the weight of organs and muscles, resting arterial pressure and heart rate. CA and HF increased visceral fat pad mass compared to C group, but only CA group showed greater adipocyte diameter and food intake compared to the C. Food intake was reduced in HF compared to C group. CA and HF showed hyperglycemia in the 3(rd), 6(th), 9(th) and 12(th) week and all values were higher in CA than HF, except in the 6(th) week. CA group showed glucose intolerance (GI) in the 6(th) week, while HF group did not show GI until the 9(th) week. CA decreased insulin sensitivity compared to C in the 12(th) week (kITT=3.3±0.2%/min vs. 4.2±0.1%/min). CA and HF groups presented higher insulin, leptin, total cholesterol, LDL-C, triglycerides and FFA levels compared to the C group. Total cholesterol and LDL-C in mg/dL were higher in the HF (161.9±7.2 and 57.5±13.4) than the CA (110.5±9.1 and 48.5±11.4), and HDL-C was higher in the HF than in the C and CA groups. In conclusion, the CA diet was more efficient to induce hyperphagia, adipocyte hypertrophy, hyperglycemia, earlier GI and insulin resistance, while the HF diet was more efficient to induce lipid profile changes.

  3. Energy content of reduced-fat dried distillers grains with solubles for lactating dairy cows

    USDA-ARS?s Scientific Manuscript database

    Eight Holstein and 8 Jersey multiparous, lactating cows were used to complete 56 energy balances to determine the energy content of reduced-fat distillers grains and solubles (RFDDGS). A repeated switchback design was used to compare treatments with and without RFDDGS. Diets consisted of 24.2% cor...

  4. A high-fat diet inhibits the progression of diabetes mellitus in type 2 diabetic rats.

    PubMed

    Ishii, Yukihito; Ohta, Takeshi; Sasase, Tomohiko; Morinaga, Hisayo; Hata, Takahiro; Miyajima, Katsuhiro; Katusda, Yoshiaki; Masuyama, Taku; Shinohara, Masami; Kakutani, Makoto; Matsushita, Mutsuyoshi

    2010-07-01

    It is well known that rats and mice, when fed a high-fat diet, develop obesity associated with abnormal glycolipid metabolism. In this study, we investigated the effects of a high-fat diet on a diabetic rat model, Spontaneously Diabetic Torii (SDT), which develops diabetes due to decreased insulin production and secretion with age. We hypothesized that a high-fat diet would accelerate the induction of diabetes in this model. The SDT rats were divided into 2 groups, which were fed a high-fat diet or standard diet for 16 weeks. The group fed a high-fat diet developed obesity, hyperinsulinemia, and hyperlipidemia until 16 weeks of age. Before 16 weeks of age, hyperglycemia accompanied by hypoinsulinemia developed in the group on a standard diet, but serum glucose levels were comparable in both groups. After 16 weeks of age, the group on a standard diet showed an increase in serum glucose levels and a decrease in serum insulin levels. Unexpectedly, in the group on the high-fat diet, we observed a suppressed of the progression of hyperglycemia/hypoinsulinemia. Histopathological observation revealed more pancreatic beta cells in the group on the high-fat diet. This study suggests that feeding SDT rats a high-fat diet induces obesity, hyperinsulinemia, and hyperlipidemia, but not hyperglycemia, until 16 weeks of age. Thereafter, age-dependent progress of hyperglycemia and hypoinsulinemia was delayed by a high-fat diet. The hyperfunction of pancreatic beta cells induced by a high-fat diet before the onset of hyperglycemia appears to suppress development of hyperglycemia/hypoinsulinemia. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Dietary Supplementation of Chinese Ginseng Prevents Obesity and Metabolic Syndrome in High-Fat Diet-Fed Mice

    PubMed Central

    Li, Xiaoxiao; Luo, Jing; Anandh Babu, Pon Velayutham; Zhang, Wei; Gilbert, Elizabeth; Cline, Mark; McMillan, Ryan; Hulver, Matthew; Alkhalidy, Hana; Zhen, Wei; Zhang, Haiyan

    2014-01-01

    Abstract Obesity and diabetes are growing health problems worldwide. In this study, dietary provision of Chinese ginseng (0.5 g/kg diet) prevented body weight gain in high-fat (HF) diet-fed mice. Dietary ginseng supplementation reduced body fat mass gain, improved glucose tolerance and whole body insulin sensitivity, and prevented hypertension in HF diet-induced obese mice. Ginseng consumption led to reduced concentrations of plasma insulin and leptin, but had no effect on plasma adiponectin levels in HF diet-fed mice. Body temperature was higher in mice fed the ginseng-supplemented diet but energy expenditure, respiration rate, and locomotive activity were not significantly altered. Dietary intake of ginseng increased fatty acid oxidation in the liver but not in skeletal muscle. Expression of several transcription factors associated with adipogenesis (C/EBPα and PPARγ) were decreased in the adipose tissue of HF diet-fed mice, effects that were mitigated in mice that consumed the HF diet supplemented with ginseng. Abundance of fatty acid synthase (FASN) mRNA was greater in the adipose tissue of mice that consumed the ginseng-supplemented HF diet as compared with control or un-supplemented HF diet-fed mice. Ginseng treatment had no effect on the expression of genes involved in the regulation of food intake in the hypothalamus. These data suggest that Chinese ginseng can potently prevent the development of obesity and insulin resistance in HF diet-fed mice. PMID:25076190

  6. Centrally administered urocortin 2 decreases gorging on high-fat diet in both diet-induced obesity-prone and -resistant rats.

    PubMed

    Cottone, P; Sabino, V; Nagy, T R; Coscina, D V; Levin, B E; Zorrilla, E P

    2013-12-01

    Obesity is a costly, deadly public health problem for which new treatments are needed. Individual differences in meal pattern have been proposed to have a role in obesity risk. The present study tested the hypothesis that (i) the microstructure of chronic high-fat diet intake differs between genetically selected diet-induced obesity (DIO) and diet-resistant (DR) rats, and (ii) central administration of urocortin 2 (Ucn 2), a corticotropin-releasing factor type 2 agonist, decreases high-fat diet intake not only in lean DR rats, but also in obese DIO rats. Male, selectively bred DIO and DR rats (n=10/genotype) were chronically fed a high-fat diet. Food and water intake as well as ingestion microstructure were then compared under baseline conditions and following third intracerebroventricular injection of Ucn 2 (0, 0.1, 0.3, 1, 3 μg). Irrespective of genotype, Ucn 2 reduced nocturnal food intake with a minimum effective dose of 0.3 μg, suppressing high-fat diet intake by ∼40% at the 3 μg dose. Ucn 2 also made rats of both genotypes eat smaller and briefer meals, including at doses that did not reduce drinking. Obese DIO rats ate fewer but larger meals than DR rats, which they ate more quickly and consumed with two-third less water. Unlike leptin and insulin, Ucn 2 retains its full central anorectic efficacy to reduce high-fat diet intake even in obese, genetically prone DIO rats, which otherwise show a 'gorging' meal pattern. These results open new opportunities of investigation toward treating some forms of DIO.

  7. Hepatic β-Oxidation and Regulation of Carnitine Palmitoyltransferase (CPT) I in Blunt Snout Bream Megalobrama amblycephala Fed a High Fat Diet

    PubMed Central

    Lu, Kang-Le; Xu, Wei-Na; Wang, Li-Na; Zhang, Ding-Dong; Zhang, Chun-Nuan; Liu, Wen-Bin

    2014-01-01

    High-fat diets may promote growth, partly through their protein-sparing effects. However, high-fat diets often lead to excessive fat deposition, which may have a negative impact on fish such as poor growth and suppressive immune. Therefore, this study investigated the effects of a fat-rich diet on the mechanisms of fat deposition in the liver. Three-hundred blunt snout bream (Megalobrama amblycephala) juveniles (initial mass 18.00±0.05 g) were fed with one of two diets (5% or 15% fat) for 8 weeks. β-Oxidation capacity and regulation of rate-limiting enzymes were assessed. Large fat droplets were present in hepatocytes of fish fed the high-fat diet. This observation is thought to be largely owing to the reduced capacity for mitochondrial and peroxisomal β-oxidation in the livers of fish fed the high-fat diet, as well as the decreased activities of carnitine palmitoyltransferase (CPT) I and acyl-CoA oxidase (ACO), which are enzymes involved in fatty-acid metabolism. Study of CPT I kinetics showed that CPT I had a low affinity for its substrates and a low catalytic efficiency in fish fed the high-fat diet. Expression of both CPT I and ACO was significantly down-regulated in fish fed the high-fat diet. Moreover, the fatty-acid composition of the mitochondrial membrane varied between the two groups. In conclusion, the attenuated β-oxidation capacity observed in fish fed a high-fat diet is proposed to be owing to decreased activity and/or catalytic efficiency of the rate-limiting enzymes CPT I and ACO, via both genetic and non-genetic mechanisms. PMID:24676148

  8. Limited effect of dietary saturated fat on plasma saturated fat in the context of a low carbohydrate diet.

    PubMed

    Forsythe, Cassandra E; Phinney, Stephen D; Feinman, Richard D; Volk, Brittanie M; Freidenreich, Daniel; Quann, Erin; Ballard, Kevin; Puglisi, Michael J; Maresh, Carl M; Kraemer, William J; Bibus, Douglas M; Fernandez, Maria Luz; Volek, Jeff S

    2010-10-01

    We recently showed that a hypocaloric carbohydrate restricted diet (CRD) had two striking effects: (1) a reduction in plasma saturated fatty acids (SFA) despite higher intake than a low fat diet, and (2) a decrease in inflammation despite a significant increase in arachidonic acid (ARA). Here we extend these findings in 8 weight stable men who were fed two 6-week CRD (12%en carbohydrate) varying in quality of fat. One CRD emphasized SFA (CRD-SFA, 86 g/d SFA) and the other, unsaturated fat (CRD-UFA, 47 g SFA/d). All foods were provided to subjects. Both CRD decreased serum triacylglycerol (TAG) and insulin, and increased LDL-C particle size. The CRD-UFA significantly decreased plasma TAG SFA (27.48 ± 2.89 mol%) compared to baseline (31.06 ± 4.26 mol%). Plasma TAG SFA, however, remained unchanged in the CRD-SFA (33.14 ± 3.49 mol%) despite a doubling in SFA intake. Both CRD significantly reduced plasma palmitoleic acid (16:1n-7) indicating decreased de novo lipogenesis. CRD-SFA significantly increased plasma phospholipid ARA content, while CRD-UFA significantly increased EPA and DHA. Urine 8-iso PGF(2α), a free radical-catalyzed product of ARA, was significantly lower than baseline following CRD-UFA (-32%). There was a significant inverse correlation between changes in urine 8-iso PGF(2α) and PL ARA on both CRD (r = -0.82 CRD-SFA; r = -0.62 CRD-UFA). These findings are consistent with the concept that dietary saturated fat is efficiently metabolized in the presence of low carbohydrate, and that a CRD results in better preservation of plasma ARA.

  9. Antihyperlipidemic and body fat-lowering effects of silk proteins with different fibroin/sericin compositions in mice fed with high fat diet.

    PubMed

    Seo, Chung-Won; Um, In Chul; Rico, Catherine W; Kang, Mi Young

    2011-04-27

    The effect of silk protein with different fibroin/sericin compositions on body weight and lipid metabolism in high fat-fed mice was investigated. The animals were given experimental diets for 6 weeks: normal control (NC), high fat (HF) and high fat diet supplemented with F100 (pure fibroin, HF-F100), F81 (81:19 fibroin/sericin, w/w, HF-F81) or F50 (50:50 fibroin/sericin, w/w, HF-F50). The silk protein-fed mice showed markedly reduced body weight and enhanced lipid profile relative to the HF group. In general, the amount of body fat, triglyceride and total plasma cholesterol levels, atherogenic index and free fatty acid level tended to decrease, while the HDL-cholesterol level increased, with increased amount of sericin in the diet. This hypolipidemic effect was partly due to increased fecal lipid excretion, inhibition of lipogenesis and regulation of adipokine production. These findings illustrate that silk protein, particularly sericin, may be beneficial in the prevention of high fat diet-induced hyperlipidemia and obesity.

  10. Ethanolic extract of Taheebo attenuates increase in body weight and fatty liver in mice fed a high-fat diet.

    PubMed

    Choi, Won Hee; Um, Min Young; Ahn, Jiyun; Jung, Chang Hwa; Park, Myung Kyu; Ha, Tae Youl

    2014-10-08

    We evaluated whether intake of an ethanolic extract of Taheebo (TBE) from Tabebuia avellanedae protects against body weight increase and fat accumulation in mice with high-fat diet (HFD)-induced obesity. Four-week old male C57BL/6 mice were fed a HFD (25% fat, w/w) for 11 weeks. The diet of control (HFD) mice was supplemented with vehicle (0.5% sodium carboxymethyl cellulose by gavage); the diet of experimental (TBE) mice was supplemented with TBE (150 mg/kg body weight/day by gavage). Mice administered TBE had significantly reduced body weight gain, fat accumulation in the liver, and fat pad weight, compared to HFD mice. Reduced hypertrophy of fat cells was also observed in TBE mice. Mice administered TBE also showed significantly lower serum levels of triglycerides, insulin, and leptin. Lipid profiles and levels of mRNAs and proteins related to lipid metabolism were determined in liver and white adipose tissue of the mice. Expression of mRNA and proteins related to lipogenesis were decreased in TBE-administered mice compared to mice fed HFD alone. These results suggest that TBE inhibits obesity and fat accumulation by regulation of gene expression related to lipid metabolism in HFD-induced obesity in mice.

  11. Combination of high fat diet and chronic stress retracts hippocampal dendrites

    PubMed Central

    Baran, Sarah E.; Campbell, Adam M.; Kleen, Jonathan K.; Foltz, Cainan H.; Wright, Ryan L.; Diamond, David M.; Conrad, Cheryl D.

    2006-01-01

    Adult male rats were fed a low or high fat diet and given psychosocial stress (crowded and unstable housing with daily predator exposure) for 3 weeks. Neither stress nor high fat diet, alone, produced dendritic atrophy; only the group given the combination of stress and high fat diet developed a reduction of the length and number of branch points of apical dendrites of CA3 neurons. These findings indicate that a synergy between high fat diet and stress caused a retraction of CA3 dendrites. The findings are consistent with work on peripheral (e.g., cardiovascular) systems demonstrating a synergy between stress and high fat diet, and are relevant toward understanding how diet and stress interact to adversely a¡ectbrain and memory processing. PMID:15618887

  12. Effects of adding poultry fat in the finishing diet of steers on performance, carcass characteristics, sensory traits, and fatty acid profiles.

    PubMed

    Hutchison, S; Kegley, E B; Apple, J K; Wistuba, T J; Dikeman, M E; Rule, D C

    2006-09-01

    Use of poultry fat in the finishing diets of steers has not been studied as a potential source of added energy. Therefore, 60 Angus crossbred steers were fed 1 of 3 dietary treatments consisting of 1) a corn-soybean meal control diet devoid of added fat; 2) the control diet formulated with 4% tallow; or 3) the control diet formulated with 4% poultry fat. Addition of fat did not (P = 0.17) affect ADG for the 112-d study. The inclusion of tallow in the diet reduced (P < 0.05) ADFI of steers compared with those on the control diet; however, ADFI of steers fed poultry fat did not differ from those fed the control (P = 0.06) or the tallow (P = 0.36) diets. At d 55, steers consuming either fat source had improved (P < 0.05) G:F compared with steers fed the control diet. For the entire 112 d, steers consuming the poultry fat diet gained more efficiently (P < 0.05) than the control steers, and the tallow-fed steers were intermediate and not different from the other groups (P > or = 0.14). The inclusion of fat in the diet did not (P > or = 0.15) affect carcass characteristics. Steaks from the steers consuming diets with added fat were darker (lower L* value; P < 0.05) than the controls; however, dietary treatments did not (P > or = 0.10) affect any other objective color measurements or discoloration scores during retail display. Thiobarbituric acid reactive substances for LM steaks did not differ (P = 0.21) by dietary treatment. The cooked LM steaks from steers fed poultry fat did not (P > or = 0.80) differ in juiciness or flavor intensity from steaks of steers fed the control or tallow diets. There were also no differences (P = 0.18) in off flavors as a result of added dietary fat. In the LM and adipose tissue, percentages of total SFA were increased (P = 0.05) by adding supplemental fat to the diet, regardless of source. In the LM, total MUFA were decreased (P = 0.02) by adding supplemental fat. Conversely, diet did not (P > or = 0.14) affect the proportions of total PUFA

  13. High fat diet enhances stemness and tumorigenicity of intestinal progenitors

    PubMed Central

    Beyaz, Semir; Mana, Miyeko D.; Roper, Jatin; Kedrin, Dmitriy; Saadatpour, Assieh; Hong, Sue-Jean; Bauer-Rowe, Khristian E.; Xifaras, Michael E.; Akkad, Adam; Arias, Erika; Pinello, Luca; Katz, Yarden; Shinagare, Shweta; Abu-Remaileh, Monther; Mihaylova, Maria M.; Lamming, Dudley W.; Dogum, Rizkullah; Guo, Guoji; Bell, George W.; Selig, Martin; Nielsen, G. Petur; Gupta, Nitin; Ferrone, Cristina R.; Deshpande, Vikram; Yuan, Guo-Cheng; Orkin, Stuart H.; Sabatini, David M.; Yilmaz, Ömer H.

    2016-01-01

    Little is known about how pro-obesity diets regulate tissue stem and progenitor cell function. Here we find that high fat diet (HFD)-induced obesity augments the numbers and function of Lgr5+ intestinal stem-cells (ISCs) of the mammalian intestine. Mechanistically, HFD induces a robust peroxisome proliferator-activated receptor delta (PPAR-d) signature in intestinal stem and (non-ISC) progenitor cells, and pharmacologic activation of PPAR-d recapitulates the effects of a HFD on these cells. Like a HFD, ex vivo treatment of intestinal organoid cultures with fatty acid constituents of the HFD enhances the self-renewal potential of these organoid bodies in a PPAR-d dependent manner. Interestingly, HFD- and agonist-activated PPAR-d signaling endow organoid-initiating capacity to progenitors, and enforced PPAR-d signaling permits these progenitors to form in vivo tumors upon loss of the tumor suppressor Apc. These findings highlight how diet-modulated PPAR-d activation alters not only the function of intestinal stem and progenitor cells, but also their capacity to initiate tumors. PMID:26935695

  14. A High-Saturated-Fat, High-Sucrose Diet Aggravates Bone Loss in Ovariectomized Female Rats.

    PubMed

    Dong, Xiao-Li; Li, Chun-Mei; Cao, Si-Si; Zhou, Li-Ping; Wong, Man-Sau

    2016-06-01

    Estrogen deficiency in women and high-saturated fat, high-sucrose (HFS) diets have both been recognized as risk factors for metabolic syndrome. Studies on the combined actions of these 2 detrimental factors on the bone in females are limited. We sought to determine the interactive actions of estrogen deficiency and an HFS diet on bone properties and to investigate the underlying mechanisms. Six-month-old Sprague Dawley sham or ovariectomized (OVX) rats were pair fed the same amount of either a low-saturated-fat, low-sucrose (LFS) diet (13% fat calories; 15% sucrose calories) or an HFS diet (42% fat calories; 30% sucrose calories) for 12 wk. Blood, liver, and bone were collected for correspondent parameters measurement. Ovariectomy decreased bone mineral density in the tibia head (TH) by 62% and the femoral end (FE) by 49% (P < 0.0001). The HFS diet aggravated bone loss in OVX rats by an additional 41% in the TH and 37% in the FE (P < 0.05). Bone loss in the HFS-OVX rats was accompanied by increased urinary deoxypyridinoline concentrations by 28% (P < 0.05). The HFS diet induced cathepsin K by 145% but reduced osteoprotegerin mRNA expression at the FE of the HFS-sham rats by 71% (P < 0.05). Ovariectomy significantly increased peroxisome proliferator-activated receptor γ mRNA expression by 136% and 170% at the FE of the LFS- and HFS-OVX rats, respectively (P < 0.05). The HFS diet aggravated ovariectomy-induced lipid deposition and oxidative stress (OS) in rat livers (P < 0.05). Trabecular bone mineral density at the FE was negatively correlated with rat liver malondialdehyde concentrations (R(2) = 0.39; P < 0.01). The detrimental actions of the HFS diet and ovariectomy on bone properties in rats occurred mainly in cancellous bones and were characterized by a high degree of bone resorption and alterations in OS. © 2016 American Society for Nutrition.

  15. Effects of a low-glycemic load vs low-fat diet in obese young adults: a randomized trial.

    PubMed

    Ebbeling, Cara B; Leidig, Michael M; Feldman, Henry A; Lovesky, Margaret M; Ludwig, David S

    2007-05-16

    concentration improved more on the low-fat diet. Variability in dietary weight loss trials may be partially attributable to differences in hormonal response. Reducing glycemic load may be especially important to achieve weight loss among individuals with high insulin secretion. Regardless of insulin secretion, a low-glycemic load diet has beneficial effects on high-density lipoprotein cholesterol and triglyceride concentrations but not on low-density lipoprotein cholesterol concentration. clinicaltrials.gov Identifier: NCT00130299.

  16. Maternal Deprivation Exacerbates the Response to a High Fat Diet in a Sexually Dimorphic Manner

    PubMed Central

    Mela, Virginia; Llorente-Berzal, Álvaro; Díaz, Francisca; Argente, Jesús; Viveros, María-Paz; Chowen, Julie A.

    2012-01-01

    Maternal deprivation (MD) during neonatal life has diverse long-term effects, including affectation of metabolism. Indeed, MD for 24 hours during the neonatal period reduces body weight throughout life when the animals are maintained on a normal diet. However, little information is available regarding how this early stress affects the response to increased metabolic challenges during postnatal life. We hypothesized that MD modifies the response to a high fat diet (HFD) and that this response differs between males and females. To address this question, both male and female Wistar rats were maternally deprived for 24 hours starting on the morning of postnatal day (PND) 9. Upon weaning on PND22 half of each group received a control diet (CD) and the other half HFD. MD rats of both sexes had significantly reduced accumulated food intake and weight gain compared to controls when raised on the CD. In contrast, when maintained on a HFD energy intake and weight gain did not differ between control and MD rats of either sex. However, high fat intake induced hyperleptinemia in MD rats as early as PND35, but not until PND85 in control males and control females did not become hyperleptinemic on the HFD even at PND102. High fat intake stimulated hypothalamic inflammatory markers in both male and female rats that had been exposed to MD, but not in controls. Reduced insulin sensitivity was observed only in MD males on the HFD. These results indicate that MD modifies the metabolic response to HFD intake, with this response being different between males and females. Thus, the development of obesity and secondary complications in response to high fat intake depends on numerous factors. PMID:23145019

  17. Metabolic adaptations to a high-fat diet in endurance cyclists.

    PubMed

    Goedecke, J H; Christie, C; Wilson, G; Dennis, S C; Noakes, T D; Hopkins, W G; Lambert, E V

    1999-12-01

    We examined the time course of metabolic adaptations to 15 days of a high-fat diet (HFD). Sixteen endurance-trained cyclists were assigned randomly to a control (CON) group, who consumed their habitual diet (30% +/- 8% mJ fat), or a HFD group, who consumed a high-fat isocaloric diet (69% +/- 1% mJ fat). At 5-day intervals, the subjects underwent an oral glucose tolerance test (OGTT); on the next day, they performed a 2.5-hour constant-load ride at 70% peak oxygen consumption (VO2peak), followed by a simulated 40-km cycling time-trial while ingesting a 10% 14C-glucose + 3.44% medium-chain triglyceride (MCT) emulsion at a rate of 600 mL/h. In the OGTT, plasma glucose concentrations at 30 minutes increased significantly after 5 days of the HFD and remained elevated at days 10 and 15 versus the levels measured prior to the HFD (P < .05). The activity of carnitine acyltransferase (CAT) in biopsies of the vastus lateralis muscle also increased from 0.45 to 0.54 micromol/g/min over days 0 to 10 of the HFD (P < .01) without any change in citrate synthase (CS) or 3-hydroxyacyl-coenzyme A dehydrogenase (3-HAD) activities. Changes in glucose tolerance and CAT activity were associated with a shift from carbohydrate (CHO) to fat oxidation during exercise (P < .001), which occurred within 5 to 10 days of the HFD. During the constant-load ride, the calculated oxidation of muscle glycogen was reduced from 1.5 to 1.0 g/min (P < .001) after 15 days of the HFD. Ingestion of a HFD for as little as 5 to 10 days significantly altered substrate utilization during submaximal exercise but did not attenuate the 40-km time-trial performance.

  18. Nicotinic acid supplementation in diet favored intramuscular fat deposition and lipid metabolism in finishing steers

    PubMed Central

    Yang, Zhu-Qing; Bao, Lin-Bin; Zhao, Xiang-Hui; Wang, Can-Yu; Zhou, Shan; Wen, Lu-Hua; Fu, Chuan-Bian; Gong, Jian-Ming

    2016-01-01

    Nicotinic acid (NA) acting as the precursor of NAD+/NADH and NADP+/NADPH, participates in many biochemical processes, e.g. lipid metabolism. The main purpose of this study was to investigate the effects of dietary NA on carcass traits, meat quality, blood metabolites, and fat deposition in Chinese crossbred finishing steers. Sixteen steers with the similar body weight and at the age of 24 months were randomly allocated into control group (feeding basal diet) and NA group (feeding basal diet + 1000 mg/kg NA). All experimental cattle were fed a 90% concentrate diet and 10% forage straw in a 120-day feeding experiment. The results showed that supplemental NA in diet increased longissimus area, intramuscular fat content (17.14% vs. 9.03%), marbling score (8.08 vs. 4.30), redness (a*), and chroma (C*) values of LD muscle, but reduced carcass fat content (not including imtramuscular fat), pH24 h and moisture content of LD muscle, along with no effect on backfat thickness. Besides, NA supplementation increased serum HDL-C concentration, but decreased the serum levels of LDL-C, triglyceride, non-esterified fatty acid, total cholesterol, and glycated serum protein. In addition, NA supplementation increased G6PDH and ICDH activities of LD muscle. These results suggested that NA supplementation in diet improves the carcass characteristics and beef quality, and regulates the compositions of serum metabolites. Based on the above results, NA should be used as the feed additive in cattle industry. PMID:27048556

  19. Taurine Treatment Modulates Circadian Rhythms in Mice Fed A High Fat Diet.

    PubMed

    Figueroa, Ana Lucia C; Figueiredo, Hugo; Rebuffat, Sandra A; Vieira, Elaine; Gomis, Ramon

    2016-11-18

    Close ties have been made among certain nutrients, obesity, type 2 diabetes and circadian clocks. Among nutrients, taurine has been documented as being effective against obesity and type 2 diabetes. However, the impact of taurine on circadian clocks has not been elucidated. We investigated whether taurine can modulate or correct disturbances in daily rhythms caused by a high-fat diet in mice. Male C57BL/6 mice were divided in four groups: control (C), control + taurine (C+T), high-fat diet (HFD) and HFD + taurine (HFD+T). They were administered 2% taurine in their drinking water for 10 weeks. Mice were euthanized at 6:00, 12:00, 18:00, and 24:00. HFD mice increased body weight, visceral fat and food intake, as well as higher levels of glucose, insulin and leptin, throughout the 24 h. Taurine prevented increments in food intake, body weight and visceral fat, improved glucose tolerance and insulin sensitivity and reduced disturbances in the 24 h patterns of plasma insulin and leptin. HFD downregulated the expression of clock genes Rev-erbα, Bmal1, and Per1 in pancreatic islets. Taurine normalized the gene and protein expression of PER1 in beta-cells, which suggests that it could be beneficial for the correction of daily rhythms and the amelioration of obesity and diabetes.

  20. Taurine Treatment Modulates Circadian Rhythms in Mice Fed A High Fat Diet

    PubMed Central

    Figueroa, Ana Lucia C.; Figueiredo, Hugo; Rebuffat, Sandra A.; Vieira, Elaine; Gomis, Ramon

    2016-01-01

    Close ties have been made among certain nutrients, obesity, type 2 diabetes and circadian clocks. Among nutrients, taurine has been documented as being effective against obesity and type 2 diabetes. However, the impact of taurine on circadian clocks has not been elucidated. We investigated whether taurine can modulate or correct disturbances in daily rhythms caused by a high-fat diet in mice. Male C57BL/6 mice were divided in four groups: control (C), control + taurine (C+T), high-fat diet (HFD) and HFD + taurine (HFD+T). They were administered 2% taurine in their drinking water for 10 weeks. Mice were euthanized at 6:00, 12:00, 18:00, and 24:00. HFD mice increased body weight, visceral fat and food intake, as well as higher levels of glucose, insulin and leptin, throughout the 24 h. Taurine prevented increments in food intake, body weight and visceral fat, improved glucose tolerance and insulin sensitivity and reduced disturbances in the 24 h patterns of plasma insulin and leptin. HFD downregulated the expression of clock genes Rev-erbα, Bmal1, and Per1 in pancreatic islets. Taurine normalized the gene and protein expression of PER1 in beta-cells, which suggests that it could be beneficial for the correction of daily rhythms and the amelioration of obesity and diabetes. PMID:27857215

  1. Low Carbohydrate/High Fat Diet Attenuates Pressure Overload Induced Ventricular Remodeling and Dysfunction

    PubMed Central

    Duda, Monika K.; O’Shea, Karen M.; Lei, Biao; Barrows, Brian R.; Azimzadeh, Agnes M.; McElfresh, Tracy E.; Hoit, Brian D.; Kop, Willem J.; Stanley, William C.

    2009-01-01

    Background It is not known how carbohydrate and fat intake impact the development of left ventricular (LV) hypertrophy and contractile dysfunction in response to pressure overload. We hypothesized that a low carbohydrate/high fat diet prevents LV hypertrophy and dysfunction compared to high carbohydrate diets. Methods and Results Rats were fed high carbohydrate diets comprised of either starch or sucrose, or a low carbohydrate/high fat diet, and underwent abdominal aortic banding (AAB) for two months. AAB increased LV mass with all diets. LV end diastolic and systolic volumes, and the ratio of the mRNA for myosin heavy chainβ/α were increased with both high carbohydrate diets, but not with the low carbohydrate/high fat diet. Circulating levels of insulin and leptin, both stimulants for cardiac growth, were lower, and free fatty acids higher, with the low carbohydrate/high fat diet compared to high carbohydrate diets. Among AAB animals LV volumes were positively correlated with insulin, and LV mass correlated with leptin. Conclusion A low carbohydrate/high fat diet attenuated pressure overload-induced LV remodeling compared to high carbohydrate diets. This effect corresponded to lower insulin and leptin concentrations, suggesting they may contribute to the development of LV hypertrophy and dysfunction under conditions of pressure overload. PMID:18474346

  2. Rice bran prevents high-fat diet-induced inflammation and macrophage content in adipose tissue.

    PubMed

    Justo, Maria Luisa; Claro, Carmen; Zeyda, Maximilian; Stulnig, Thomas M; Herrera, María Dolores; Rodríguez-Rodríguez, Rosalía

    2016-09-01

    The inflammatory process associated with obesity mainly arises from white adipose tissue (WAT) alterations. In the last few years, nutritional-based strategies have been positioned as promising alternatives to pharmacological approaches against these pathologies. Our aim was to determine the potential of a rice bran enzymatic extract (RBEE)-supplemented diet in the prevention of metabolic, biochemical and functional adipose tissue and macrophage changes associated with a diet-induced obesity (DIO) in mice. C57BL/6J mice were fed high-fat diet (HF), 1 and 5 % RBEE-supplemented high-fat diet (HF1 % and HF5 %, respectively) and standard