Science.gov

Sample records for reduced gravity fields

  1. Bubble Formation and Detachment in Reduced Gravity Under the Influence of Electric Fields

    NASA Technical Reports Server (NTRS)

    Herman, Cila; Iacona, Estelle; Chang, Shinan

    2002-01-01

    The objective of the study is to investigate the behavior of individual air bubbles injected through an orifice into an electrically insulating liquid under the influence of a static electric field. Both uniform and nonuniform electric field configurations were considered. Bubble formation and detachment were recorded and visualized in reduced gravity (corresponding to gravity levels on Mars, on the Moon as well as microgravity) using a high-speed video camera. Bubble volume, dimensions and contact angle at detachment were measured. In addition to the experimental studies, a simple model, predicting bubble characteristics at detachment was developed. The model, based on thermodynamic considerations, accounts for the level of gravity as well as the magnitude of the uniform electric field. Measured data and model predictions show good agreement and indicate that the level of gravity and the electric field magnitude significantly affect bubble shape, volume and dimensions.

  2. An Experimental Study of Boiling in Reduced and Zero Gravity Fields

    NASA Technical Reports Server (NTRS)

    Usiskin, C. M.; Siegel, R.

    1961-01-01

    A pool boiling apparatus was mounted on a counterweighted platform which could be dropped a distance of nine feet. By varying the size of the counterweight, the effective gravity field on the equipment was adjusted between zero and unity. A study of boiling burnout in water indicated that a variation in the critical heat flux according to the one quarter power of gravity was reasonable. A consideration of the transient burnout process was necessary in order to properly interpret the data. A photographic study of nucleate boiling showed how the velocity of freely rising vapor bubbles decreased as gravity was reduced. The bubble diameters at the time of breakoff from the heated surface were found to vary inversely as gravity to the 1/3.5 power. Motion pictures were taken to illustrate both nucleate and film boiling in the low gravity range.

  3. [Research under reduced gravity. Part II: experiments in variable gravitational fields].

    PubMed

    Volkmann, D; Sievers, A

    1992-03-01

    Recently, the reduced gravitational field of space laboratories, rockets, or satellites in Earth orbits offers a gravitational field which is variable from 10(-4) g to 1 g by the use of centrifuges. Especially with plants, data concerning gravisensitivity are based on experiments with clinostats. First experiments in reduced gravitational fields, however, demonstrate the uncertainty of these results. Thus, the main task of gravitational biologists is to test the validity of results obtained with the aid of clinostats. On this basis it should be possible to find a common mechanism to explain the influence of gravity on organisms. Experiments under reduced gravity in sounding rockets provided new knowledge on the perception of the gravity stimulus in plant cells.

  4. Reduced Gravity Walking Simulator

    NASA Technical Reports Server (NTRS)

    1963-01-01

    A test subject being suited up for studies on the Reduced Gravity Walking Simulator located in the hanger at Langley Research Center. The initial version of this simulator was located inside the hanger. Later a larger version would be located at the Lunar Landing Facility. The purpose of this simulator was to study the subject while walking, jumping or running. Researchers conducted studies of various factors such as fatigue limit, energy expenditure, and speed of locomotion. Francis B. Smith wrote in his paper 'Simulators For Manned Space Research,' 'I would like to conclude this talk with a discussion of a device for simulating lunar gravity which is very effective and yet which is so simple that its cost is in the order of a few thousand dollars at most, rather than hundreds of thousands. With a little ingenuity, one could almost build this type simulator in his backyard for children to play on. The principle is ...if a test subject is suspended in a sling so that his body axis makes an angle of 9 1/2 degrees with the horizontal and if he then 'stands' on a platform perpendicular to his body axis, the component of the earth's gravity forcing him toward the platform is one times the sine of 9 1/2 degrees or approximately 1/6 of the earth's normal gravity field. That is, a 180 pound astronaut 'standing' on the platform would exert a force of only 30 pounds - the same as if he were standing upright on the lunar surface.' Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308; Francis B. Smith, 'Simulators For Manned Space Research,' Paper for 1966 IEEE International Convention, New York, NY, March 21-25, 1966.

  5. Demonstrating Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard; Stocker, Dennis; Gotti, Daniel; Urban, David; Ross, Howard; Sours, Thomas

    1996-01-01

    A miniature drop tower, Reduced-Gravity Demonstrator is developed to illustrate the effects of gravity on a variety of phenomena including the way fluids flow, flames burn, and mechanical systems (such as pendulum) behave. A schematic and description of the demonstrator and payloads are given, followed by suggestions for how one can build his (her) own.

  6. Quantitative Velocity Field Measurements in Reduced-Gravity Combustion Science and Fluid Physics Experiments

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Wernet, Mark P.

    1999-01-01

    Systems have been developed and demonstrated for performing quantitative velocity measurements in reduced gravity combustion science and fluid physics investigations. The unique constraints and operational environments inherent to reduced-gravity experimental facilities pose special challenges to the development of hardware and software systems. Both point and planar velocimetric capabilities are described, with particular attention being given to the development of systems to support the International Space Station laboratory. Emphasis has been placed on optical methods, primarily arising from the sensitivity of the phenomena of interest to intrusive probes. Limitations on available power, volume, data storage, and attendant expertise have motivated the use of solid-state sources and detectors, as well as efficient analysis capabilities emphasizing interactive data display and parameter control.

  7. (abstract) Venus Gravity Field

    NASA Technical Reports Server (NTRS)

    Konopliv, A. S.; Sjogren, W. L.

    1995-01-01

    A global gravity field model of Venus to degree and order 75 (5772 spherical harmonic coefficients) has been estimated from Doppler radio tracking of the orbiting spacecraft Pioneer Venus Orbiter (1979-1992) and Magellan (1990-1994). After the successful aerobraking of Magellan, a near circular polar orbit was attained and relatively uniform gravity field resolution (approximately 200 km) was obtained with formal uncertainties of a few milligals. Detailed gravity for several highland features are displayed as gravity contours overlaying colored topography. The positive correlation of typography with gravity is very high being unlike that of the Earth, Moon, and Mars. The amplitudes are Earth-like, but have significantly different gravity-topography ratios for different features. Global gravity, geoid, and isostatic anomaly maps as well as the admittance function are displayed.

  8. Reduced Gravity Zblan Optical Fiber

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.

    2000-01-01

    Two optical fiber pullers have been designed for pulling ZBLAN optical fiber in reduced gravity. One fiber puller was designed, built and flown on board NASA's KC135 reduced gravity aircraft. A second fiber puller has been designed for use on board the International Space Station.

  9. Reduced Gravity Education Flight Program

    NASA Video Gallery

    NASA'€™s Reduced Gravity Education Flight Program gives students and educators the opportunity to design, build and fly an experiment in microgravity and get a look at what it takes to be a NASA en...

  10. ISS Update: Reduced Gravity Education

    NASA Video Gallery

    NASA Public Affairs Officer Dan Huot interviews Veronica Seyl, Acting Manager for Reduced Gravity Education. NASA works with students and educators to design experiments for flight testing aboard t...

  11. Electrohydrodynamic Pool Boiling in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Shaw, Benjamin D.; Stahl, S. L.

    1996-01-01

    This research is concerned with studying the effects of applied electric fields on pool boiling in a reduced-gravity environment. Experiments are conducted at the NASA Lewis 2.2 sec Drop tower using a drop rig constructed at UC Davis. In the experiments, a platinum wire is heated while immersed in saturated liquid refrigerants (FC-72 and FC-87), or water, causing vapor formation at the wire surface. Electric fields are applied between the wire surface and an outer screen electrode that surrounds the wire. Preliminary normal-gravity experiments with water have demonstrated that applied electric fields generated by the rig electronics can influence boiling characteristics. Reduced-gravity experiments will be performed in the summer of 1996. The experiments will provide fundamental data on electric field strengths required to disrupt film boiling (for various wire heat generation input rates) in reduced gravity for a cylindrical geometry. The experiments should also shed light on the roles of characteristic bubble generation times and charge relaxation times in determining the effects of electric fields on pool boiling. Normal-gravity comparison experiments will also be performed.

  12. Feeling Gravity's Pull: Gravity Modeling. The Gravity Field of Mars

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank; Smith, David; Rowlands, David; Zuber, Maria; Neumann, G.; Chinn, Douglas; Pavlis, D.

    2000-01-01

    Most people take the constant presence of gravitys pull for granted. However, the Earth's gravitational strength actually varies from location to location. This variation occurs because mass, which influences an object's gravitational pull, is not evenly distributed within the planet. Changes in topography, such as glacial movement, an earthquake, or a rise in the ocean level, can subtly affect the gravity field. An accurate measurement of the Earth's gravity field helps us understand the distribution of mass beneath the surface. This insight can assist us in locating petroleum, mineral deposits, ground water, and other valuable substances. Gravity mapping can also help notice or verify changes in sea surface height and other ocean characteristics. Such changes may indicate climate change from polar ice melting and other phenomena. In addition, gravity mapping can indicate how land moves under the surface after earthquakes and other plate tectonic processes. Finally, changes in the Earth's gravity field might indicate a shift in water distribution that could affect agriculture, water supplies for population centers, and long-term weather prediction. Scientists can map out the Earth's gravity field by watching satellite orbits. When a satellite shifts in vertical position, it might be passing over an area where gravity changes in strength. Gravity is only one factor that may shape a satellite's orbital path. To derive a gravity measurement from satellite movement, scientists must remove other factors that might affect a satellite's position: 1. Drag from atmospheric friction. 2. Pressure from solar radiation as it heads toward Earth and. as it is reflected off the surface of the Earth 3. Gravitational pull from the Sun, the Moon, and other planets in the Solar System. 4. The effect of tides. 5. Relativistic effects. Scientists must also correct for the satellite tracking process. For example, the tracking signal must be corrected for refraction through the

  13. Gravity Field Characterization around Small Bodies

    NASA Astrophysics Data System (ADS)

    Takahashi, Yu

    A small body rendezvous mission requires accurate gravity field characterization for safe, accurate navigation purposes. However, the current techniques of gravity field modeling around small bodies are not achieved to the level of satisfaction. This thesis will address how the process of current gravity field characterization can be made more robust for future small body missions. First we perform the covariance analysis around small bodies via multiple slow flybys. Flyby characterization requires less laborious scheduling than its orbit counterpart, simultaneously reducing the risk of impact into the asteroid's surface. It will be shown that the level of initial characterization that can occur with this approach is no less than the orbit approach. Next, we apply the same technique of gravity field characterization to estimate the spin state of 4179 Touatis, which is a near-Earth asteroid in close to 4:1 resonance with the Earth. The data accumulated from 1992-2008 are processed in a least-squares filter to predict Toutatis' orientation during the 2012 apparition. The center-of-mass offset and the moments of inertia estimated thereof can be used to constrain the internal density distribution within the body. Then, the spin state estimation is developed to a generalized method to estimate the internal density distribution within a small body. The density distribution is estimated from the orbit determination solution of the gravitational coefficients. It will be shown that the surface gravity field reconstructed from the estimated density distribution yields higher accuracy than the conventional gravity field models. Finally, we will investigate two types of relatively unknown gravity fields, namely the interior gravity field and interior spherical Bessel gravity field, in order to investigate how accurately the surface gravity field can be mapped out for proximity operations purposes. It will be shown that these formulations compute the surface gravity field with

  14. Escherichia coli growth under modeled reduced gravity

    NASA Technical Reports Server (NTRS)

    Baker, Paul W.; Meyer, Michelle L.; Leff, Laura G.

    2004-01-01

    Bacteria exhibit varying responses to modeled reduced gravity that can be simulated by clino-rotation. When Escherichia coli was subjected to different rotation speeds during clino-rotation, significant differences between modeled reduced gravity and normal gravity controls were observed only at higher speeds (30-50 rpm). There was no apparent affect of removing samples on the results obtained. When E. coli was grown in minimal medium (at 40 rpm), cell size was not affected by modeled reduced gravity and there were few differences in cell numbers. However, in higher nutrient conditions (i.e., dilute nutrient broth), total cell numbers were higher and cells were smaller under reduced gravity compared to normal gravity controls. Overall, the responses to modeled reduced gravity varied with nutrient conditions; larger surface to volume ratios may help compensate for the zone of nutrient depletion around the cells under modeled reduced gravity.

  15. A reduced gravity fiber pulling apparatus

    NASA Technical Reports Server (NTRS)

    Tucker, D. S.

    1992-01-01

    A reduced gravity fiber pulling apparatus (FPA) was constructed in order to study the effects of gravity on glass fiber formation. The apparatus was specifically designed and built for use on NASA's KC-135 aircraft. To date, four flights have been completed during which E-glass fiber was successfully produced in simulated lunar gravity.

  16. Thermosyphon Flooding in Reduced Gravity Environments

    NASA Technical Reports Server (NTRS)

    Gibson, Marc Andrew

    2013-01-01

    An innovative experiment to study the thermosyphon flooding limits was designed and flown on aparabolic flight campaign to achieve the Reduced Gravity Environments (RGE) needed to obtainempirical data for analysis. Current correlation models of Faghri and Tien and Chung do not agreewith the data. A new model is presented that predicts the flooding limits for thermosyphons inearths gravity and lunar gravity with a 95 confidence level of +- 5W.

  17. Heavy fields and gravity

    NASA Astrophysics Data System (ADS)

    Goon, Garrett

    2017-01-01

    We study the effects of heavy fields on 4D spacetimes with flat, de Sitter and anti-de Sitter asymptotics. At low energies, matter generates specific, calculable higher derivative corrections to the GR action which perturbatively alter the Schwarzschild-( A) dS family of solutions. The effects of massive scalars, Dirac spinors and gauge fields are each considered. The six-derivative operators they produce, such as ˜ R 3 terms, generate the leading corrections. The induced changes to horizon radii, Hawking temperatures and entropies are found. Modifications to the energy of large AdS black holes are derived by imposing the first law. An explicit demonstration of the replica trick is provided, as it is used to derive black hole and cosmological horizon entropies. Considering entropy bounds, it's found that scalars and fermions increase the entropy one can store inside a region bounded by a sphere of fixed size, but vectors lead to a decrease, oddly. We also demonstrate, however, that many of the corrections fall below the resolving power of the effective field theory and are therefore untrustworthy. Defining properties of black holes, such as the horizon area and Hawking temperature, prove to be remarkably robust against higher derivative gravitational corrections.

  18. Reduced gravity - A new biomedical research environment

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S.

    1989-01-01

    Experiment programs for continuous flow electrophoresis and protein crystal growth are described to demonstrate the utility of the reduced gravity environment for scientific research. The advantages of the reduced gravity environment are outlined. The results of experiments on the Space Shuttle using the Continuous Flow Electrophoresis System and crystal growth experiments on Spacelab-1 and the Space Shuttle are examined, noting the importance of microgravity research.

  19. Progress in the Determination of the Earth's Gravity Field

    NASA Technical Reports Server (NTRS)

    Rapp, Richard H. (Editor)

    1989-01-01

    Topics addressed include: global gravity model development; methods for approximation of the gravity field; gravity field measuring techniques; global gravity field applications and requirements in geophysics and oceanography; and future gravity missions.

  20. Human Performance in Simulated Reduced Gravity Environments

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew; Harvill, Lauren; Rajulu, Sudhakar

    2014-01-01

    NASA is currently designing a new space suit capable of working in deep space and on Mars. Designing a suit is very difficult and often requires trade-offs between performance, cost, mass, and system complexity. Our current understanding of human performance in reduced gravity in a planetary environment (the moon or Mars) is limited to lunar observations, studies from the Apollo program, and recent suit tests conducted at JSC using reduced gravity simulators. This study will look at our most recent reduced gravity simulations performed on the new Active Response Gravity Offload System (ARGOS) compared to the C-9 reduced gravity plane. Methods: Subjects ambulated in reduced gravity analogs to obtain a baseline for human performance. Subjects were tested in lunar gravity (1.6 m/sq s) and Earth gravity (9.8 m/sq s) in shirt-sleeves. Subjects ambulated over ground at prescribed speeds on the ARGOS, but ambulated at a self-selected speed on the C-9 due to time limitations. Subjects on the ARGOS were given over 3 minutes to acclimate to the different conditions before data was collected. Nine healthy subjects were tested in the ARGOS (6 males, 3 females, 79.5 +/- 15.7 kg), while six subjects were tested on the C-9 (6 males, 78.8 +/- 11.2 kg). Data was collected with an optical motion capture system (Vicon, Oxford, UK) and was analyzed using customized analysis scripts in BodyBuilder (Vicon, Oxford, UK) and MATLAB (MathWorks, Natick, MA, USA). Results: In all offloaded conditions, variation between subjects increased compared to 1-g. Kinematics in the ARGOS at lunar gravity resembled earth gravity ambulation more closely than the C-9 ambulation. Toe-off occurred 10% earlier in both reduced gravity environments compared to earth gravity, shortening the stance phase. Likewise, ankle, knee, and hip angles remained consistently flexed and had reduced peaks compared to earth gravity. Ground reaction forces in lunar gravity (normalized to Earth body weight) were 0.4 +/- 0.2 on

  1. Short Duration Reduced Gravity Drop Tower Design and Development

    NASA Astrophysics Data System (ADS)

    Osborne, B.; Welch, C.

    The industrial and commercial development of space-related activities is intimately linked to the ability to conduct reduced gravity research. Reduced gravity experimentation is important to many diverse fields of research in the understanding of fundamental and applied aspects of physical phenomena. Both terrestrial and extra-terrestrial experimental facilities are currently available to allow researchers access to reduced gravity environments. This paper discusses two drop tower designs, a 2.0 second facility built in Australia and a proposed 2.2 second facility in the United Kingdom. Both drop towers utilise a drag shield for isolating the falling experiment from the drag forces of the air during the test. The design and development of The University of Queensland's (Australia) 2.0 second drop tower, including its specifications and operational procedures is discussed first. Sensitive aspects of the design process are examined. Future plans are then presented for a new short duration (2.2 sec) ground-based reduced gravity drop tower. The new drop tower has been designed for Kingston University (United Kingdom) to support teaching and research in the field of reduced gravity physics. The design has been informed by the previous UQ drop tower design process and utilises a catapult mechanism to increase test time and also incorporates features to allow participants for a variety of backgrounds (from high school students through to university researchers) to learn and experiment in reduced gravity. Operational performance expectations for this new facility are also discussed.

  2. Gravity quantized: Loop quantum gravity with a scalar field

    SciTech Connect

    Domagala, Marcin; Kaminski, Wojciech; Giesel, Kristina; Lewandowski, Jerzy

    2010-11-15

    ...''but we do not have quantum gravity.'' This phrase is often used when analysis of a physical problem enters the regime in which quantum gravity effects should be taken into account. In fact, there are several models of the gravitational field coupled to (scalar) fields for which the quantization procedure can be completed using loop quantum gravity techniques. The model we present in this paper consists of the gravitational field coupled to a scalar field. The result has similar structure to the loop quantum cosmology models, except that it involves all the local degrees of freedom of the gravitational field because no symmetry reduction has been performed at the classical level.

  3. Prediction of physical workload in reduced gravity.

    PubMed

    Goldberg, J H; Alred, J W

    1988-12-01

    As we plan for long-term living and working in low-gravity environments, a system to predict mission support requirements, such as food and water, becomes critical. Such a system must consider the workload imposed by physical tasks for efficient estimation of these supplies. An accurate estimate of human energy expenditure on a space station or lunar base is also necessary to allocate personnel to tasks, and to assign work-rest schedules. An elemental analysis approach for predicting one's energy expenditure in industrial jobs was applied to low-gravity conditions in this paper. This was achieved by a reduction of input body and load weights in a well-accepted model, in proportion to lowered gravity, such as on the moon. Validation was achieved by applying the model to Apollo-era energy expenditure data. These data were from simulated lunar gravity walking studies, observed Apollo 14 walking, simulated lunar gravity upper body torquing, and simulated lunar gravity cart pulling. The energy expenditure model generally underpredicted high energy expenditures, and overpredicted low to medium energy expenditures. The predictions for low to medium workloads were, however, within 15-30% of actual values. Future developmental work will be necessary to include the effects of traction changes, as well as other nonlinear expenditure changes in reduced gravity environments.

  4. Simulation of sediment settling in reduced gravity

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus; Kuhn, Brigitte; Rüegg, Hans-Rudolf; Gartmann, Andres

    2015-04-01

    Gravity has a non-linear effect on the settling velocity of sediment particles in liquids and gases due to the interdependence of settling velocity, drag and friction. However, Stokes' Law or similar empirical models, the common way of estimating the terminal velocity of a particle settling in a gas or liquid, carry the notion of a drag as a property of a particle, rather than a force generated by the flow around the particle. For terrestrial applications, this simplifying assumption is not relevant, but it may strongly influence the terminal velocity achieved by settling particles on other planetary bodies. False estimates of these settling velocities will, in turn, affect the interpretation of particle sizes observed in sedimentary rocks, e.g. on Mars and the search for traces of life. Simulating sediment settling velocities on other planets based on a numeric simulation using Navier-Stokes equations and Computational Fluid Dynamics requires a prohibitive amount of time and lacks measurements to test the quality of the results. The aim of the experiments presented in this study was therefore to quantify the error incurred by using settling velocity models calibrated on Earth at reduced gravities, such as those on the Moon and Mars. In principle, the effect of lower gravity on settling velocity can be achieved by reducing the difference in density between particle and liquid. However, the use of such analogues creates other problems because the properties (i.e. viscosity) and interaction of the liquids and sediment (i.e. flow around the boundary layer between liquid and particle) differ from those of water and mineral particles. An alternative for measuring the actual settling velocities of particles under reduced gravity, on Earth, is offered by placing a settling tube on a reduced gravity flight and conduct settling velocity measurements within the 20 to 25 seconds of Martian gravity that can be simulated during such a flight. In this presentation, the results

  5. Teaching Physics from a Reduced Gravity Environment

    NASA Astrophysics Data System (ADS)

    Benge, Raymond D.; Young, C.; Davis, S.; Worley, A.; Smith, L.; Gell, A.

    2010-01-01

    This poster reports on an educational experiment flown in January 2009 as part of NASA's Microgravity University program. The experiment flown was an investigation into the properties of harmonic oscillators in reduced gravity. Harmonic oscillators are studied in every introductory physics class. The equation for the period of a harmonic oscillator does not include the acceleration due to gravity, so the period should be independent of gravity. However, the equation for the period of a pendulum does include the acceleration due to gravity, so the period of a pendulum should appear longer under reduced gravity (such as lunar or Martian gravity) and shorter under hyper-gravity. Typical homework problems for introductory physics classes ask questions such as "What would be the period of oscillation if this experiment were performed on the Moon or Mars?” This gives students a chance to actually see the effects predicted by the equations. These environments can be simulated aboard an aircraft. Video of the experiments being performed aboard the aircraft is to be used in introductory physics classes. Students will be able to record information from watching the experiment performed aboard the aircraft in a similar manner to how they collect data in the laboratory. They can then determine if the experiment matches theory. Video and an experimental procedure are being prepared based upon this flight, and these materials will be available for download by faculty anywhere with access to the internet who wish to use the experiment in their own classrooms in both college and high school physics classes.

  6. Generating a Reduced Gravity Environment on Earth

    NASA Technical Reports Server (NTRS)

    Dungan, L. K.; Valle, P.; Shy, C.

    2015-01-01

    The Active Response Gravity Offload System (ARGOS) is designed to simulate reduced gravity environments, such as Lunar, Martian, or microgravity using a vertical lifting hoist and horizontal motion system. Three directions of motion are provided over a 41 ft x 24 ft x 25 ft tall area. ARGOS supplies a continuous offload of a portion of a person's weight during dynamic motions such as walking, running, and jumping. The ARGOS system tracks the person's motion in the horizontal directions to maintain a vertical offload force directly above the person or payload by measuring the deflection of the cable and adjusting accordingly.

  7. Gait transitions in simulated reduced gravity.

    PubMed

    Ivanenko, Yuri P; Labini, Francesca Sylos; Cappellini, Germana; Macellari, Velio; McIntyre, Joseph; Lacquaniti, Francesco

    2011-03-01

    Gravity has a strong effect on gait and the speed of gait transitions. A gait has been defined as a pattern of locomotion that changes discontinuously at the transition to another gait. On Earth, during gradual speed changes, humans exhibit a sudden discontinuous switch from walking to running at a specific speed. To study the effects of altered gravity on both the stance and swing legs, we developed a novel unloading exoskeleton that allows a person to step in simulated reduced gravity by tilting the body relative to the vertical. Using different simulation techniques, we confirmed that at lower gravity levels the transition speed is slower (in accordance with the previously reported Froude number ∼0.5). Surprisingly, however, we found that at lower levels of simulated gravity the transition between walking and running was generally gradual, without any noticeable abrupt change in gait parameters. This was associated with a significant prolongation of the swing phase, whose duration became virtually equal to that of stance in the vicinity of the walk-run transition speed, and with a gradual shift from inverted-pendulum gait (walking) to bouncing gait (running).

  8. Improving Realism in Reduced Gravity Simulators

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew; Harvil, Lauren; Clowers, Kurt; Clark, Timothy; Rajulu, Sudhakar

    2010-01-01

    Since man was first determined to walk on the moon, simulating the lunar environment became a priority. Providing an accurate reduced gravity environment is crucial for astronaut training and hardware testing. This presentation will follow the development of reduced gravity simulators to a final comparison of environments between the currently used systems. During the Apollo program era, multiple systems were built and tested, with several NASA centers having their own unique device. These systems ranged from marionette-like suspension devices where the subject laid on his side, to pneumatically driven offloading harnesses, to parabolic flights. However, only token comparisons, if any, were made between systems. Parabolic flight allows the entire body to fall at the same rate, giving an excellent simulation of reduced gravity as far as the biomechanics and physical perceptions are concerned. While the effects are accurate, there is limited workspace, limited time, and high cost associated with these tests. With all mechanical offload systems only the parts of the body that are actively offloaded feel any reduced gravity effects. The rest of the body still feels the full effect of gravity. The Partial Gravity System (Pogo) is the current ground-based offload system used to training and testing at the NASA Johnson Space Center. The Pogo is a pneumatic type system that allows for offloaded motion in the z-axis and free movement in the x-axis, but has limited motion in the y-axis. The pneumatic system itself is limited by cylinder stroke length and response time. The Active Response Gravity Offload System (ARGOS) is a next generation groundbased offload system, currently in development, that is based on modern robotic manufacturing lines. This system is projected to provide more z-axis travel and full freedom in both the x and y-axes. Current characterization tests are underway to determine how the ground-based offloading systems perform, how they compare to parabolic

  9. Thermosyphon Flooding Limits in Reduced Gravity Environments

    NASA Technical Reports Server (NTRS)

    Gibson, Marc A.; Jaworske, Donald A.; Sanzi, James L.; Ljubanovic, Damir

    2012-01-01

    Fission Power Systems have long been recognized as potential multi-kilowatt power solutions for lunar, Martian, and extended planetary surface missions. Current heat rejection technology associated with fission surface power systems has focused on titanium water thermosyphons embedded in carbon composite radiator panels. The thermosyphons, or wickless heat pipes, are used as a redundant and efficient way to spread the waste heat from the power conversion unit(s) over the radiator surface area where it can be rejected to space. It is well known that thermosyphon performance is reliant on gravitational forces to keep the evaporator wetted with the working fluid. One of the performance limits that can be encountered, if not understood, is the phenomenon of condenser flooding, otherwise known as evaporator dry out. This occurs when the gravity forces acting on the condensed fluid cannot overcome the shear forces created by the vapor escaping the evaporator throat. When this occurs, the heat transfer process is stalled and may not re-stabilize to effective levels without corrective control actions. The flooding limit in earth's gravity environment is well understood as experimentation is readily accessible, but when the environment and gravity change relative to other planetary bodies, experimentation becomes difficult. An innovative experiment was designed and flown on a parabolic flight campaign to achieve the Reduced Gravity Environments (RGE) needed to obtain empirical data for analysis. The test data is compared to current correlation models for validation and accuracy.

  10. Flow Boiling Critical Heat Flux in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Mudawar, Issam; Zhang, Hui; Hasan, Mohammad M.

    2004-01-01

    This study provides systematic method for reducing power consumption in reduced gravity systems by adopting minimum velocity required to provide adequate CHF and preclude detrimental effects of reduced gravity . This study proves it is possible to use existing 1 ge flow boiling and CHF correlations and models to design reduced gravity systems provided minimum velocity criteria are met

  11. Accuracy of mapping the Earth's gravity field fine structure with a spaceborne gravity gradiometer mission

    NASA Technical Reports Server (NTRS)

    Kahn, W. D.

    1984-01-01

    The spaceborne gravity gradiometer is a potential sensor for mapping the fine structure of the Earth's gravity field. Error analyses were performed to investigate the accuracy of the determination of the Earth's gravity field from a gravity field satellite mission. The orbital height of the spacecraft is the dominating parameter as far as gravity field resolution and accuracies are concerned.

  12. Organizing Questions for Reduced-Gravity Flammability

    NASA Technical Reports Server (NTRS)

    Miller, Fletcher

    2004-01-01

    A team consisting of of the Microgravity Flight Project Scientists for solid flammability experiments has been reviewing and prioritizing a set of organizing questions for fire prevention (material flammability).In particular the team has been charged with determining:What experiments must be conducted to best answer these questions, and can some of the quest ions be answered using existing/planned hardware or experimental concepts?Is the NASA STD 6001, Test 1 configuration conservative or non-conservative in assessing material flammability in reduced gravity?NASA ST D 6001, Test 1 is an upward flammability test, considered the most stringent test in normal gravity. A material that passes this test would most likely not burn in a quiescent microgravity environment.A forced ignition and spread test is described.

  13. Gravity field of the Western Weddell Sea: Comparison of airborne gravity and Geosat derived gravity

    NASA Technical Reports Server (NTRS)

    Bell, R. E.; Brozena, J. M.; Haxby, W. F.; Labrecque, J. L.

    1989-01-01

    Marine gravity surveying in polar regions was typically difficult and costly, requiring expensive long range research vessels and ice-breakers. Satellite altimetry can recover the gravity field in these regions where it is feasible to survey with a surface vessel. Unfortunately, the data collected by the first global altimetry mission, Seasat, was collected only during the austral winter, producing a very poor quality gravitational filed for the southern oceans, particularly in the circum-Antarctic regions. The advent of high quality airborne gravity (Brozena, 1984; Brozena and Peters, 1988; Bell, 1988) and the availability of satellite altimetry data during the austral summer (Sandwell and McAdoo, 1988) has allowed the recovery of a free air gravity field for most of the Weddell Sea. The derivation of the gravity field from both aircraft and satellite measurements are briefly reviewed, before presenting along track comparisons and shaded relief maps of the Weddell Sea gravity field based on these two data sets.

  14. Regional gravity field modelling from GOCE observables

    NASA Astrophysics Data System (ADS)

    Pitoňák, Martin; Šprlák, Michal; Novák, Pavel; Tenzer, Robert

    2017-01-01

    In this article we discuss a regional recovery of gravity disturbances at the mean geocentric sphere approximating the Earth over the area of Central Europe from satellite gravitational gradients. For this purpose, we derive integral formulas which allow converting the gravity disturbances onto the disturbing gravitational gradients in the local north-oriented frame (LNOF). The derived formulas are free of singularities in case of r ≠ R . We then investigate three numerical approaches for solving their inverses. In the initial approach, the integral formulas are firstly modified for solving individually the near- and distant-zone contributions. While the effect of the near-zone gravitational gradients is solved as an inverse problem, the effect of the distant-zone gravitational gradients is computed by numerical integration from the global gravitational model (GGM) TIM-r4. In the second approach, we further elaborate the first scenario by reducing measured gravitational gradients for gravitational effects of topographic masses. In the third approach, we apply additional modification by reducing gravitational gradients for the reference GGM. In all approaches we determine the gravity disturbances from each of the four accurately measured gravitational gradients separately as well as from their combination. Our regional gravitational field solutions are based on the GOCE EGG_TRF_2 gravitational gradients collected within the period from November 1 2009 until January 11 2010. Obtained results are compared with EGM2008, DIR-r1, TIM-r1 and SPW-r1. The best fit, in terms of RMS (2.9 mGal), is achieved for EGM2008 while using the third approach which combine all four well-measured gravitational gradients. This is explained by the fact that a-priori information about the Earth's gravitational field up to the degree and order 180 was used.

  15. Electric fields in micro-gravity can replace gravity

    NASA Astrophysics Data System (ADS)

    Gorgolewski, S.

    The influence of the world-wide atmospheric electric field on the growth of plants seems to have been neglected. The confirmation of the existence of electrotropism shows effects on some plants similar to gravity. I propose space ex eriments withp plants that grow in microgravity but are exposed to different electric field configurations with various field strengths and polarity. The electric field in terrestrial environment shows strong effects on some plants that can be regarded as due to phototropism. In microgravity we have full control of light and electric field, and thus we can practically eliminate the effects of gravity and we can study to what degree the electric field can replace the gravitational effects on plants. In this way we can create a new habitat for some plants and study its role in the rate of growth as well as in the sensing of free space for growth of plants in absence of gravity. By varying the strength and direction of illumination of plants we can also study the relative role of phototropism and electrotropism on different plants. This should enable us to select the most suitable plants for Advanced Life Support systems (ALS) for long-duration missions in microgravity environment. Some simple space experiments for verification of these assumptions are described that should answer the basic questions how should we design the ALS for the future high performance space stations and long duration manned space flights. The selection of the suitable plants for such ALS may go along two approaches: the self supporting electrotropic plants using the optimal electric field strength and its range of variation, non electrotropic plants that creep along the "ground" or other supporting plants or special structures. Ground based fitotron experiments have shown that several kV/m electric fields overwhelm the gravity better than clinostats can do. It happens in case of electrotropic plants but also after several days for non-electrotropic plants

  16. Skeletal Structural Consequences of Reduced Gravity Environments

    NASA Technical Reports Server (NTRS)

    Ruff, Christropher B.

    1999-01-01

    The overall goal of this project is to provide structurally meaningful data on bone loss after exposure to reduced gravity environments so that more precise estimates of fracture risk and the effectiveness of countermeasures in reducing fracture risk can be developed. The project has three major components: (1) measure structural changes in the limb bones of rats subjected to complete and partial nonweightbearing, with and without treatment with ibandronate and periodic full weightbearing; (2) measure structural changes in the limb bones of human bedrest subjects, with and without treatment with alendronate and resistive exercise, and Russian cosmonauts flying on the Mir Space Station; and (3) validate and extend the 2-dimensional structural analyses currently possible in the second project component (bedrest and Mir subjects) using 3-dimensional finite element modeling techniques, and determine actual fracture-producing loads on earth and in space.

  17. Toward a gauge field theory of gravity.

    NASA Astrophysics Data System (ADS)

    Yilmaz, H.

    Joint use of two differential identities (Bianchi and Freud) permits a gauge field theory of gravity in which the gravitational energy is localizable. The theory is compatible with quantum mechanics and is experimentally viable.

  18. Nucleate Boiling Heat Transfer Studied Under Reduced-Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Chao, David F.; Hasan, Mohammad M.

    2000-01-01

    Boiling is known to be a very efficient mode of heat transfer, and as such, it is employed in component cooling and in various energy-conversion systems. In space, boiling heat transfer may be used in thermal management, fluid handling and control, power systems, and on-orbit storage and supply systems for cryogenic propellants and life-support fluids. Recent interest in the exploration of Mars and other planets and in the concept of in situ resource utilization on the Martian and Lunar surfaces highlights the need to understand how gravity levels varying from the Earth's gravity to microgravity (1g = or > g/g(sub e) = or > 10(exp -6)g) affect boiling heat transfer. Because of the complex nature of the boiling process, no generalized prediction or procedure has been developed to describe the boiling heat transfer coefficient, particularly at reduced gravity levels. Recently, Professor Vijay K. Dhir of the University of California at Los Angeles proposed a novel building-block approach to investigate the boiling phenomena in low-gravity to microgravity environments. This approach experimentally investigates the complete process of bubble inception, growth, and departure for single bubbles formed at a well-defined and controllable nucleation site. Principal investigator Professor Vijay K. Dhir, with support from researchers from the NASA Glenn Research Center at Lewis Field, is performing a series of pool boiling experiments in the low-gravity environments of the KC 135 microgravity aircraft s parabolic flight to investigate the inception, growth, departure, and merger of bubbles from single- and multiple-nucleation sites as a function of the wall superheat and the liquid subcooling. Silicon wafers with single and multiple cavities of known characteristics are being used as test surfaces. Water and PF5060 (an inert liquid) were chosen as test liquids so that the role of surface wettability and the magnitude of the effect of interfacial tension on boiling in reduced

  19. Solid Surface Combustion at Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Altenkirch, R. A.

    1985-01-01

    The spread of a flame in the gas over the surface of a solid combustible involves in an essential way the transfer of heat from the flame to the solid fuel immediately ahead of it. This heat transfer is affected by the character of the gas phase flame, and so the phenomenon of flame spreading under reduced gravity, in which the flow is generated by gasification of the solid combustible, is apt to be different from what occurs under the Earth's normal gravitational acceleration where the flow is largely buoyancy driven. An experiment is being designed for the Middeck of the Space Shuttle to aid us in understanding the process of flame spreading in the absence of a buoyancy driven flow. A chamber approximately 0.35 cu.m. in volume is to contain either a thin sample of a cellulosic material or a thick sample of polymethyl-methacrylate and an oxidizing environment of O2 and N2. Samples will be ignited at one end, and the ensuing flame spread will be filmed. The spread rate can be determined from the films, and surface and gas-phase temperatures just above the surface will also be recorded. These data will help to clarify the mechanism of forward heat transfer in the low gravity flames.

  20. Salt-finger convection under reduced gravity

    NASA Technical Reports Server (NTRS)

    Chen, C. F.

    1990-01-01

    Salt-finger convection in a double-diffusive system is a motion driven by the release of gravitational potential due to differential diffusion rates. Because of the fact that the destabilizing effect of the concentration gradient is amplified by the Lewis number (the ratio of thermal diffusivity to solute diffusivity) salt-finger convection can be generated at very much reduced gravity levels. This effect may be of importance in the directional solidification of binary alloys carried out in space. The transport of solute and heat by salt-finger convection at microgravity conditions is considered; instability arising from surface tension gradients, the Marangoni instability, is discussed, and the possible consequences of combined salt-finger and Marangoni instability are considered.

  1. Convection phenomena at reduced gravity of importance for materials processing

    NASA Technical Reports Server (NTRS)

    Ostrach, S.

    1976-01-01

    The basic aspects of convection processes are delineated. It is shown that even in weak gravitational fields buoyancy can induce fluid motions. Furthermore, at reduced gravity other nongravity forces such as surface or interfacial tensions, g-jitter, therma-volume expansions, density differences due to phase changes, and magnetic and electric fields can induce fluid motions. The various types of flow possible with these various driving forces are described and criteria for determining the extent and nature of the resulting flows and heat transfer are presented. The various physical mechanisms that can occur separately and in combination are indicated and the present state of knowledge of each of the phenomena is outlined.

  2. Robot dynamics in reduced gravity environment

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Grisham, Tollie; Hinman, Elaine; Coker, Cindy

    1990-01-01

    Robot dynamics and control will become an important issue for productive platforms in space. Robotic operations will be necessary for both man tended stations and for the efficient performance of routine operations in a manned platform. The current constraints on the use of robotic devices in a microgravity environment appears to be due to safety concerns and an anticipated increase in acceleration levels due to manipulator motion. The robot used for the initial studies was a UMI RTX robot, which was adapted to operate in a materials processing workcell to simulate sample changing in a microgravity environment. The robotic cell was flown several times on the KC-135 aircraft at Ellington Field. The primary objective of the initial flights was to determine operating characteristics of both the robot and the operator in the variable gravity of the KC-135 during parabolic maneuvers. It was demonstrated that the KC-135 aircraft can be used for observing dynamics of robotic manipulators. The difficulties associated with humans performing teleoperation tasks during varying G levels were also observed and can provide insight into some areas in which the use of artificial techniques would provide improved system performance. Additionally a graphic simulation of the workcell was developed on a Silicon Graphics Workstation using the IGRIP simulation language from Deneb Robotics. The simulation is intended to be used for predictive displays of the robot operating on the aircraft. It is also anticipated that this simulation can be useful for off-line programming of tasks in the future.

  3. Reducing Errors by Use of Redundancy in Gravity Measurements

    NASA Technical Reports Server (NTRS)

    Kulikov, Igor; Zak, Michail

    2004-01-01

    A methodology for improving gravity-gradient measurement data exploits the constraints imposed upon the components of the gravity-gradient tensor by the conditions of integrability needed for reconstruction of the gravitational potential. These constraints are derived from the basic equation for the gravitational potential and from mathematical identities that apply to the gravitational potential and its partial derivatives with respect to spatial coordinates. Consider the gravitational potential in a Cartesian coordinate system {x1,x2,x3}. If one measures all the components of the gravity-gradient tensor at all points of interest within a region of space in which one seeks to characterize the gravitational field, one obtains redundant information. One could utilize the constraints to select a minimum (that is, nonredundant) set of measurements from which the gravitational potential could be reconstructed. Alternatively, one could exploit the redundancy to reduce errors from noisy measurements. A convenient example is that of the selection of a minimum set of measurements to characterize the gravitational field at n3 points (where n is an integer) in a cube. Without the benefit of such a selection, it would be necessary to make 9n3 measurements because the gravitygradient tensor has 9 components at each point. The problem of utilizing the redundancy to reduce errors in noisy measurements is an optimization problem: Given a set of noisy values of the components of the gravity-gradient tensor at the measurement points, one seeks a set of corrected values - a set that is optimum in that it minimizes some measure of error (e.g., the sum of squares of the differences between the corrected and noisy measurement values) while taking account of the fact that the constraints must apply to the exact values. The problem as thus posed leads to a vector equation that can be solved to obtain the corrected values.

  4. Granular convection and the Brazil nut effect in reduced gravity

    NASA Astrophysics Data System (ADS)

    Güttler, Carsten; von Borstel, Ingo; Schräpler, Rainer; Blum, Jürgen

    2013-04-01

    We present laboratory experiments of a vertically vibrated granular medium consisting of 1-mm-diameter glass beads with embedded 8-mm-diameter intruder glass beads. The experiments were performed in the laboratory as well as in a parabolic flight under reduced-gravity conditions (on Martian and Lunar gravity levels). We measured the mean rise velocity of the large glass beads and present its dependence on the fill height of the sample containers, the excitation acceleration, and the ambient gravity level. We find that the rise velocity scales in the same manner for all three gravity regimes and roughly linearly with gravity.

  5. Simple Pendulum on a NASA Reduced Gravity Flight

    NASA Astrophysics Data System (ADS)

    Garber, Gary

    2011-11-01

    We experimented with a simple pendulum on a NASA reduced-gravity flight. Your students can measure the period of the pendulum on our flight using accelerometer data from Vernier sensors. We also videotaped the results and image analysis can be used to measure the period. We used both a string pendulum and a rigid rod pendulum. Our data includes results from hyper gravity (2g), Martian gravity, lunar gravity, Earth gravity, and microgravity. Learn how you can access and analyze the data in your classroom.

  6. The earth's gravity field and ocean dynamics

    NASA Technical Reports Server (NTRS)

    Mather, R. S.

    1978-01-01

    An analysis of the signal-to-noise ratio of the best gravity field available shows that a basis exists for the recovery of the dominant parameters of the quasi-stationary sea surface topography. Results obtained from the analysis of GEOS-3 show that it is feasible to recover the quasi-stationary dynamic sea surface topography as a function of wavelength. The gravity field models required for synoptic ocean circulation modeling are less exacting in that constituents affecting radial components of orbital position need not be known through shorter wavelengths.

  7. On the impact of airborne gravity data to fused gravity field models

    NASA Astrophysics Data System (ADS)

    Bolkas, Dimitrios; Fotopoulos, Georgia; Braun, Alexander

    2016-06-01

    In gravity field modeling, fused models that utilize satellite, airborne and terrestrial gravity observations are often employed to deal with erroneous terrestrially derived gravity datasets. These terrestrial datasets may suffer from long-wavelength systematic errors and inhomogeneous data coverage, which are not prevalent in airborne and satellite datasets. Airborne gravity acquisition plays an essential role in gravity field modeling, providing valuable information of the Earth's gravity field at medium and short wavelengths. Thus, assessing the impact of airborne gravity data to fused gravity field models is important for identifying problematic regions. Six study regions that represent different gravity field variability and terrestrial data point-density characteristics are investigated to quantify the impact of airborne gravity data to fused gravity field models. The numerical assessments of these representative regions resulted in predictions of airborne gravity impact for individual states and provinces in the USA and Canada, respectively. Prediction results indicate that, depending on the terrestrial data point-density and gravity field variability, the expected impact of airborne gravity can reach up to 3mGal (in terms of standard deviation) in Canada and Alaska (over areas of 1° × 1°). However, in the mainland US region, small changes are expected (0.2-0.4 mGal over areas of 1° × 1°) due to the availability of high spatial resolution terrestrial data. These results can serve as a guideline for setting airborne gravity data acquisition priorities and for improving future planning of airborne gravity surveys.

  8. Anticipatory postural adjustments in conditions of simulated reduced gravity.

    PubMed

    Li, Xiaoyan; Aruin, Alexander S

    2008-11-01

    The study investigates the role of decreased gravity on anticipatory postural adjustments (APAs). Subjects performed fast bilateral arm-raising movements and load releases while in conditions of normal and reduced gravity. Reduced gravity conditions were simulated by changing the ratio between the body weight and mass. Electromyographic (EMG) activity of dorsal and ventral trunk and leg muscles, as well as ground reaction forces, were recorded and quantified within the time intervals typical of APAs. Anticipatory postural adjustments were seen in normal gravity conditions as well as in simulated reduced gravity conditions. However, in decreased gravity conditions, the magnitudes of the anticipatory integrals of electromyography muscle activity (EMG) were smaller compared to normal gravity. Moreover, there was a linear relation between EMG and simulated decreased gravity and between the displacement of the center of pressure (COP) and simulated gravity. The study provides new data on the effect of gravity in feed-forward postural control and stresses the importance of taking into consideration its role in the control of upright posture.

  9. Compaction of Lunar Regolith Simulants under Reduced Gravity

    NASA Astrophysics Data System (ADS)

    Reiss, P.; Walter, U.

    2013-09-01

    We present the results of experiments conducted on a series of parabolic flights to determine the compaction of lunar regolith samples under the influence of reduced gravity. The two regolith simulants, JSC-1A and NU-LHT-2M, showed decreased compaction in lower gravity. On average the sample volumes expanded up to 108 % under Martian and 114 % under lunar gravity, whereas the expansion of NU-LHT-2M was generally stronger than that of JSC-1A.

  10. Reduced gravity favors columnar crystal growth

    NASA Technical Reports Server (NTRS)

    Kattamis, T. Z.; Papazian, J. M.

    1981-01-01

    In zero gravity, alined columnar microstructures form at expense of equiaxed growth. Preferential crystal growth occurs in solidification chamber consisting of semicylindrical copper chill block brazed to stainless steel top plate. Method is best utilized in castings where directional dependence of physical properties is beneficial, as in turbine blades.

  11. Weak gravity conjecture and effective field theory

    NASA Astrophysics Data System (ADS)

    Saraswat, Prashant

    2017-01-01

    The weak gravity conjecture (WGC) is a proposed constraint on theories with gauge fields and gravity, requiring the existence of light charged particles and/or imposing an upper bound on the field theory cutoff Λ . If taken as a consistency requirement for effective field theories (EFTs), it rules out possibilities for model building including some models of inflation. I demonstrate simple models which satisfy all forms of the WGC, but which through Higgsing of the original gauge fields produce low-energy EFTs with gauge forces that badly violate the WGC. These models illustrate specific loopholes in arguments that motivate the WGC from a bottom-up perspective; for example the arguments based on magnetic monopoles are evaded when the magnetic confinement that occurs in a Higgs phase is accounted for. This indicates that the WGC should not be taken as a veto on EFTs, even if it turns out to be a robust property of UV quantum gravity theories. However, if the latter is true, then parametric violation of the WGC at low energy comes at the cost of nonminimal field content in the UV. I propose that only a very weak constraint is applicable to EFTs, Λ ≲(log 1/g )-1 /2Mpl , where g is the gauge coupling, motivated by entropy bounds. Remarkably, EFTs produced by Higgsing a theory that satisfies the WGC can saturate but not violate this bound.

  12. Burning of liquid pools in reduced gravity

    NASA Technical Reports Server (NTRS)

    Kanury, A. M.

    1977-01-01

    The existing literature on the combustion of liquid fuel pools is reviewed to identify the physical and chemical aspects which require an improved understanding. Among the pre-, trans- and post-ignition processes, a delineation was made of those which seem to uniquely benefit from studies in the essential environment offered by spacelab. The role played by the gravitational constant in analytical and experimental justifications was developed. The analytical justifications were based on hypotheses, models and dimensional analyses whereas the experimental justifications were based on an examination of the range of gravity and gravity-dependent variables possible in the earth-based laboratories. Some preliminary expositions into the questions of feasibility of the proposed spacelab experiment are also reported.

  13. Plant biology in reduced gravity on the Moon and Mars.

    PubMed

    Kiss, J Z

    2014-01-01

    While there have been numerous studies on the effects of microgravity on plant biology since the beginning of the Space Age, our knowledge of the effects of reduced gravity (less than the Earth nominal 1 g) on plant physiology and development is very limited. Since international space agencies have cited manned exploration of Moon/Mars as long-term goals, it is important to understand plant biology at the lunar (0.17 g) and Martian levels of gravity (0.38 g), as plants are likely to be part of bioregenerative life-support systems on these missions. First, the methods to obtain microgravity and reduced gravity such as drop towers, parabolic flights, sounding rockets and orbiting spacecraft are reviewed. Studies on gravitaxis and gravitropism in algae have suggested that the threshold level of gravity sensing is around 0.3 g or less. Recent experiments on the International Space Station (ISS) showed attenuation of phototropism in higher plants occurs at levels ranging from 0.l g to 0.3 g. Taken together, these studies suggest that the reduced gravity level on Mars of 0.38 g may be enough so that the gravity level per se would not be a major problem for plant development. Studies that have directly considered the impact of reduced gravity and microgravity on bioregenerative life-support systems have identified important biophysical changes in the reduced gravity environments that impact the design of these systems. The author suggests that the current ISS laboratory facilities with on-board centrifuges should be used as a test bed in which to explore the effects of reduced gravity on plant biology, including those factors that are directly related to developing life-support systems necessary for Moon and Mars exploration.

  14. An experiment to study fullerene formation under reduced gravity

    NASA Technical Reports Server (NTRS)

    Wdowiak, Thomas J.

    1992-01-01

    The activity of the summer focused on the design and construction of key components of a carbon arc/inert gas reactor for fullerene production, that is suitable for reduced gravity experiments onboard the KC-135 aircraft. The apparatus will be configured for both floor-mount and free-floating operation providing access to reduction to 10(exp -2) and 10(exp -3) of normal respectively. It is planned to incorporate 'seat belt' restraints that will allow a safe transition from reduced gravity free-float to full gravity, at the end of the parabolic.

  15. Particle cloud combustion in reduced gravity

    NASA Technical Reports Server (NTRS)

    Berlad, A. L.

    1988-01-01

    The prinicipal objectives of this microgravity experiment program are to obtain flame propagation rate and flame extinction limit data for several important premixed, quiescent particle cloud combustion systems under near zero-gravity conditions. The data resulting from these experiments are needed for utilization with currently available and tractable flame propagation and extinction theory. These data are also expected to provide standards for the evaluation of fire hazards in particle suspensions in both Earth-based and space-based applications. Both terrestrial and space-based fire safety criteria require the identification of the critical concentrations of particulate fuels and inerts at the flame extinction conditions.

  16. Fixed Packed Bed Reactors in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro; McCready, Mark J.

    2004-01-01

    We present experimental data on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid flow through packed columns in microgravity. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under microgravity conditions compared to 1-g and the widely used Talmor map in 1-g is not applicable for predicting the transition boundaries. A new transition criterion between bubble and pulse flow in microgravity is proposed and tested using the data. Since there is no static head in microgravity, the pressure drop measured is the true frictional pressure drop. The pressure drop data, which has much smaller scatter than most reported 1-g data clearly shows that capillary effects can enhance the pressure drop (especially in the bubble flow regime) as much as 200% compared to that predicted by the single phase Ergun equation. The pressure drop data are correlated in terms of a two-phase friction factor and its dependence on the gas and liquid Reynolds numbers and the Suratman number. The influence of gravity on the pulse amplitude and frequency is also discussed and compared to that under normal gravity conditions. Experimental work is planned to determine the gas-liquid and liquid-solid mass transfer coefficients. Because of enhanced interfacial effects, we expect the gas-liquid transfer coefficients kLa and kGa (where a is the gas-liquid interfacial area) to be higher in microgravity than in normal gravity at the same flow conditions. This will be verified by gas absorption experiments, with and without reaction in the liquid phase, using oxygen, carbon dioxide, water and dilute aqueous amine solutions. The liquid-solid mass transfer coefficient will also be determined in the bubble as well as the pulse flow regimes using solid benzoic acid particles in the packing and measuring their rate of dissolution. The mass transfer coefficients in microgravity will be compared to

  17. Electric field replaces gravity in laboratory

    NASA Astrophysics Data System (ADS)

    Gorgolewski, S.

    For several years experiments in physical laboratories and in the fitotron have shown that one can replace gravitational field with electrical fields for plants. First obvious experiments in strong electrical fields in the MV/m regi on show that any materials and living plants respond immediately to Coulomb forces. Such fields are found in nature during thunderstorms. One has to be very careful in handling such strong fields for safety reasons. The fair weather global electrical field is about 20,000 times weaker. The coulomb forces are proportional to the square of the field strength and are thus 400 milion times weaker for a field of the order of 100 V/m.Yet it was found that some plants respond to such "weak" fields. We must remember that the electrical field is a factor of 10 38 times stronger than gravitational interaction. In plants we have dissociated in water mineral salts and the ions are subject to such ernormous forces. It was shown and published that the positive charges in the air in fields of the order of 3kV/m enhance lettuce growth by a factor of four relative to fields about 30 times weaker (100V/m). Reversal of the field polarity reverses the direction of plant growth and retards the plant's growth. Such fields overpower the gravitropism in the laboratory. More so horizontal electrical field is othogonal to gravity, now the fields do not see each other. Lettuce now growth horizontally ignoring the gravitational field. We can thus select the plants whose electrotropism even in the laboratory overwhelms gravity. This is important for the long space flights that we must grow vegetarian food for the crew. The successful harvesting of wheat in orbit does not contradict our experimental findings because wheat is not electrotropic like all plants from the grass family. The results of fitotron experiments with kV/m electrical fields are richly illustrated with colour digital photographs. We also subjected the candle flame to very strong horizontal

  18. Subduction dynamics: Constraints from gravity field observations

    NASA Technical Reports Server (NTRS)

    Mcadoo, D. C.

    1985-01-01

    Satellite systems do the best job of resolving the long wavelength components of the Earth's gravity field. Over the oceans, satellite-borne radar altimeters such as SEASAT provide the best resolution observations of the intermediate wavelength components. Satellite observations of gravity contributed to the understanding of the dynamics of subduction. Large, long wavelength geoidal highs generally occur over subduction zones. These highs are attributed to the superposition of two effects of subduction: (1) the positive mass anomalies of subducting slabs themselves; and (2) the surface deformations such as the trenches convectively inducted by these slabs as they sink into the mantle. Models of this subduction process suggest that the mantle behaves as a nonNewtonian fluid, its effective viscosity increases significantly with depth, and that large positive mass anomalies may occur beneath the seismically defined Benioff zones.

  19. Cell proliferation inhibition in reduced gravity

    NASA Technical Reports Server (NTRS)

    Moos, P. J.; Fattaey, H. K.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Extended durations of spaceflight have been shown to be deleterious on an organismic level; however, mechanisms underlying cellular sensitivity to the gravitational environment remain to be elucidated. The majority of the gravitational studies to date indicates that cell regulatory pathways may be influenced by their gravitational environment. Still, few cell biology experiments have been performed in space flight and even fewer experiments have been repeated on subsequent flights. With flight opportunities on STS-50, 54, and 57, Sf9 cells were flown in the BioServe Fluids Processing Apparatus and cell proliferation was measured with and without exposure to a cell regulatory sialoglycopeptide (CeReS) inhibitor. Results from these flights indicate that the Sf9 cells grew comparable to ground controls, that the CeReS inhibitor bound to its specific receptor, and that its signal transduction cascade was not gravity sensitive.

  20. Intraspecific differences in bacterial responses to modelled reduced gravity

    NASA Technical Reports Server (NTRS)

    Baker, P. W.; Leff, L. G.

    2005-01-01

    AIMS: Bacteria are important residents of water systems, including those of space stations which feature specific environmental conditions, such as lowered effects of gravity. The purpose of this study was to compare responses with modelled reduced gravity of space station, water system bacterial isolates with other isolates of the same species. METHODS AND RESULTS: Bacterial isolates, Stenotrophomonas paucimobilis and Acinetobacter radioresistens, originally recovered from the water supply aboard the International Space Station (ISS) were grown in nutrient broth under modelled reduced gravity. Their growth was compared with type strains S. paucimobilis ATCC 10829 and A. radioresistens ATCC 49000. Acinetobacter radioresistens ATCC 49000 and the two ISS isolates showed similar growth profiles under modelled reduced gravity compared with normal gravity, whereas S. paucimobilis ATCC 10829 was negatively affected by modelled reduced gravity. CONCLUSIONS: These results suggest that microgravity might have selected for bacteria that were able to thrive under this unusual condition. These responses, coupled with impacts of other features (such as radiation resistance and ability to persist under very oligotrophic conditions), may contribute to the success of these water system bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: Water quality is a significant factor in many environments including the ISS. Efforts to remove microbial contaminants are likely to be complicated by the features of these bacteria which allow them to persist under the extreme conditions of the systems.

  1. Thermosyphon Flooding in Reduced Gravity Environments Test Results

    NASA Technical Reports Server (NTRS)

    Gibson, Marc A.; Jaworske, Donald A.; Sanzi, Jim; Ljubanovic, Damir

    2013-01-01

    The condenser flooding phenomenon associated with gravity aided two-phase thermosyphons was studied using parabolic flights to obtain the desired reduced gravity environment (RGE). The experiment was designed and built to test a total of twelve titanium water thermosyphons in multiple gravity environments with the goal of developing a model that would accurately explain the correlation between gravitational forces and the maximum axial heat transfer limit associated with condenser flooding. Results from laboratory testing and parabolic flights are included in this report as part I of a two part series. The data analysis and correlations are included in a follow on paper.

  2. On the gravity field processing of next generation satellite gravity missions

    NASA Astrophysics Data System (ADS)

    Daras, Ilias; Pail, Roland

    2016-04-01

    Dedicated gravity field missions delivering observations for a period longer than 16 years have drastically contributed in improving our knowledge of mass transport processes in the Earth system. At the same time, they have left a precious heritage for the design of next generation satellite gravity missions to be launched in the mid-term future. Main subject of this study is the gravity field processing of future Low-Low Satellite-to-Satellite Tracking (LL-SST) missions. We perform assessment of the contribution of all error sources and develop methods for reducing their effect at the level of gravity field processing. Advances in metrology of sensors such as the inter-satellite ranging instrument, may raise the demands for processing accuracy. We show that gravity field processing with double precision may be a limiting factor for exploiting the nm-level accuracy of a laser interferometer that future missions are expected to carry. An enhanced numerical precision processing scheme is proposed instead, where double and quadruple precision is used in different parts of the processing chain. It is demonstrated that processing with enhanced precision can efficiently handle laser measurements and take full advantage of their accuracy, while keeping the computational times within reasonable levels (Daras, 2015). However, error sources of considerably larger impact are expected to affect future missions, with the accelerometer instrument noise and temporal aliasing effects being the most significant ones. The effect of time-correlated noise such as the one present in accelerometer measurements can be efficiently handled by frequency dependent data weighting. Residual time series that contain the effect of system errors and propagated accelerometer and laser noise, is considered as a noise realization with stationary stochastic properties. The weight matrix is constructed from the auto-correlation functions of these residuals. Applying the weight matrix to a noise case

  3. Plant Science in Reduced Gravity: Lessons Learned

    NASA Technical Reports Server (NTRS)

    Stutte, Gary W.; Monje, Oscar; Wheeler, Raymond M.

    2012-01-01

    The effect of gravity on the growth and development of plants has been the subject of scientific investigation for over a century. The results obtained in space to test specific hypotheses on gravitropism, gene expression, seed formation, or growth rate are affected by both the primary effect of the microgravity and secondary effects of the spaceflight environment. The secondary effects of the spaceflight environment include physical effects arising from physical changes, such as the absence of buoyancy driven convective mixing, altered behavior of liquids and gases, and the environmental conditions in the spacecraft atmosphere. Thus, the design of biological experiments (e.g. cells, plants, animals, etc.) conducted in microgravity must account for changes in the physical forces, as well as the environmental conditions, imposed by the specific spaceflight vehicle and experimental hardware. In addition, researchers must become familiar with other aspects of spaceflight experiments: payload integration with hardware developers, safety documentation and crew procedures, and the logistics of conducting flight and ground controls. This report reviews the physical and environmental factors that directly and indirectly affect the results of plant science experiments in microgravity and is intended to serve as a guide in the design and implementation plant experiments in space.

  4. Locomotion while load-carrying in reduced gravities.

    PubMed

    Wickman, L A; Luna, B

    1996-10-01

    Supporting the mass of a protective suit and portable life support system (PLSS) will impose an energy requirement on planetary astronauts. To design extravehicular protective equipment for planetary missions, scientists must learn more about human physical capabilities while load-carrying in reduced gravities. In this study, an underwater treadmill and weighting system were used to simulate reduced-gravity locomotion while load-carrying. The test matrix included 3 gravity levels, 6 subjects, 2 locomotion speeds, and a range of load sizes. Energy expenditure, calculated from measured oxygen consumption, is positively correlated with gravity level, speed, and load size. The data are used to project that individuals in average physical condition will be able to walk for 8 h on the Moon while carrying up to 170% of their body mass without undue fatigue, and on Mars with up to 50% of their body mass. These approximate limits, especially for Martian gravity, may prove quite a challenge for designers of advanced protective systems. Requirements for regenerable and non-venting PLSS components have been driving the total projected masses of advanced PLSSs increasingly higher, perhaps beyond what is reasonable to carry. However, the larger mass can be beneficial in maintaining bone mass. Using Whalen's model (1988), the daily planetary walking times required to maintain bone mass were calculated for a range of carried load sizes. The calculated times were unattainably high, suggesting that some combination of loads carrying and supplemental bone maintenance measures will likely be required to maintain bone mass in reduced gravity environments.

  5. Measurement of the gravity-field curvature by atom interferometry.

    PubMed

    Rosi, G; Cacciapuoti, L; Sorrentino, F; Menchetti, M; Prevedelli, M; Tino, G M

    2015-01-09

    We present the first direct measurement of the gravity-field curvature based on three conjugated atom interferometers. Three atomic clouds launched in the vertical direction are simultaneously interrogated by the same atom interferometry sequence and used to probe the gravity field at three equally spaced positions. The vertical component of the gravity-field curvature generated by nearby source masses is measured from the difference between adjacent gravity gradient values. Curvature measurements are of interest in geodesy studies and for the validation of gravitational models of the surrounding environment. The possibility of using such a scheme for a new determination of the Newtonian constant of gravity is also discussed.

  6. The Gravity Fields of the Saturnian Satellites

    NASA Astrophysics Data System (ADS)

    Iess, L.

    2011-12-01

    In its tour of the Saturnian system, begun on July 1st, 2004, the Cassini spacecraft had many close flybys of Saturn's main satellites. However, due to impossibility to carry out simultaneously remote sensing observations and microwave tracking from ground, only a small fraction of those flybys could be exploited for gravity measurements. So far, the quadrupole field has been mapped only for Titan, Rhea and Enceladus, while for Hyperion and Iapetus the mass was the only accessible parameter. For Titan and Enceladus, the only satellites targeted more than once for gravity observations, also a rough geoid to degree and order 3 has been determined. Satellite gravity investigations rely upon accurate measurements of the spacecraft range rate, enabled by coherent, two-way radio links at X and Ka band (8.4 and 32.5 GHz). The use of hydrogen masers frequency standards at the ground station and the consid-erable suppression of plasma noise at X and Ka band frequen-cies provide range rate accuracies of 10-30 micron/s at integra-tion times of 60 s. Thanks to the higher frequency of the radio link, these measurement accuracies are in the average a factor of 10 better than those attained by Galileo in its tour of the Jovian system. However, in order to attain a reliable determination of the low degree field, good measurements must be combined with appropriate flyby geometries and adequate sampling, a condition that necessarily requires multiple flybys. We review the main results obtained so far by Cassini for Titan, Rhea and Enceladus, and discuss the methods of analysis used by the Radio Science Team.

  7. Global gravity field recovery from the ARISTOTELES satellite mission

    NASA Astrophysics Data System (ADS)

    Visser, P. N. A. M.; Wakker, K. F.; Ambrosius, B. A. C.

    1994-02-01

    One of the primary objectives of the future ARISTOTELES satellite mission is to map Earth's gravity field with high resolution and accuracy. In order to achieve this objective, the ARISTOTELES satellite will be equipped with a gravity gradiometer and a Global Positioning System (GPS) receiver. Global gravity field error analyses have been performed for several combinations of gradiometer and GPS observations. These analyses indicated that the bandwidth limitation of the gradiometer prevents a stable high-accuracy, high-resolution gravity solution if no additional information is available. However, with the addition of high-accuracy GPS observations, a stable gravity field solution can be obtained. A combination of the measurements acquired by the high-quality GPS receiver and the bandwidth-limited gradiometer on board ARISTOTELES will yield a global gravity field model with a resolution of less than 100 km and with an accuracy of better than 5 mGal for gravity anomalies and 10 cm for geoid undulations.

  8. Gravity Field Mapping of Mars with MGS

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Zuber, Maria T.; Lemoine, Frank G.

    1998-01-01

    Tracking of the MGS spacecraft in orbit at Mars by the Deep Space Network since last September has provided doppler and range measurements that are being used to improve the model of the Mars gravity field. During most of October 1997, April 1998, and June thru August 1998 high quality tracking data were obtained while the periapse was in the northern hemisphere at altitudes in the 170 to 190 km range. The eccentric orbit had a period of about 11.5 hrs and an inclination of about 96.2 degrees so that low altitude tracking was obtained over most of the northern hemisphere, including the north polar icecap. Data from the earlier Mariner 9 and Viking missions have been added to the MGS data and a series of experimental gravity models developed from the combined datasets. These models have generally been of degree and order 70 and are a significant improvement over earlier models that did not include the MGS data. Gravity anomalies over the north polar cap region of Mars are generally less than 50 to 100 mgals and show no obvious correlation with the topography. Successive MGS orbits derived using these new models are showing agreement at the 100 meter level, and this has been confirmed with the laser altimeter (MOLA) on MGS These comparisons are expected to improve significantly as more tracking data get included in the solution and the MGS orbit becomes more circular giving a more balanced geographical distribution of data at low altitude. This will happen early in 1999 as the orbit approaches the mapping configuration of a circular orbit at about 400 Km.

  9. Lubrication system with tolerance for reduced gravity

    NASA Technical Reports Server (NTRS)

    Portlock, Lawrence E. (Inventor); McCune, Michael E. (Inventor); Dobek, Louis J. (Inventor)

    2012-01-01

    A lubrication system includes an auxiliary lubricant tank 48, a supply conduit 58 extending from a source of lubricant 26 to the auxiliary lubricant tank. A reduced-G bypass line 108 branches from the conduit and enters the auxiliary tank at a first elevation E.sub.1. The system also includes an auxiliary tank discharge conduit 116, a portion of which resides within the tank. The resident portion has an opening 122 at least partially at a second elevation E.sub.2 higher than the first elevation.

  10. Lubrication System with Tolerance for Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Portlock, Lawrence E. (Inventor); McCune, Michael E. (Inventor); Dobek, Louis J. (Inventor)

    2013-01-01

    A lubrication system includes an auxiliary lubricant tank 48, a supply conduit 58 extending from a source of lubricant 26 to the auxiliary lubricant tank. A reduced-G bypass line 108 branches from the conduit and enters the auxiliary tank at a first elevation E.sub.1. The system also includes an auxiliary tank discharge conduit 116, a portion of which resides within the tank. The resident portion has an opening 122 at least partially at a second elevation E.sub.2 higher than the first elevation.

  11. Applications of satellite technology to gravity field determination

    NASA Technical Reports Server (NTRS)

    Argentiero, P.; Lowrey, B. E.

    1975-01-01

    Various techniques for using satellite technology to determine the earth's gravity field are analyzed and compared. A high-low configuration satellite to satellite tracking mission is recommended for the determination of the long wavelength portion of the gravity field. Satellite altimetry and satellite gradiometry experiments are recommended for determination of the short wavelength portion of the gravity field. The recently developed least squares collocation method for estimating the gravity field from satellite derived data is analyzed and its equivalence to conventional methods is demonstrated.

  12. An analytical study of reduced-gravity flow dynamics

    NASA Technical Reports Server (NTRS)

    Bradshaw, R. D.; Kramer, J. L.; Zich, J. L.

    1976-01-01

    Addition of surface tension forces to a marker-and-cell code and the performance of four incompressible fluid simulations in reduced gravity, were studied. This marker-and-cell code has a variable grid capability with arbitrary curved boundaries and time dependent acceleration fields. The surface tension logic includes a spline fit of surface marker particles as well as contact angle logic for straight and curved wall boundaries. Three types of flow motion were simulated with the improved code: impulsive settling in a model Centaur LH2 tank, continuous settling in a model and full scale Centaur LO2 tank and mixing in a Centaur LH2 tank. The impulsive settling case confirmed a drop tower analysis which indicated more orderly fluid collection flow patterns with this method providing a potential savings in settling propellants. In the LO2 tank, fluid collection and flow simulation into the thrust barrel were achieved. The mixing simulation produced good results indicating both the development of the flow field and fluid interface behavior.

  13. Ensemble prediction and intercomparison analysis of GRACE time-variable gravity field models

    NASA Astrophysics Data System (ADS)

    Sakumura, C.; Bettadpur, S.; Bruinsma, S.

    2014-03-01

    Precise measurements of the Earth's time-varying gravitational field from the NASA/Deutsches Zentrum für Luft- und Raumfahrt Gravity Recovery and Climate Experiment (GRACE) mission allow unprecedented tracking of the transport of mass across and underneath the surface of the Earth and give insight into secular, seasonal, and subseasonal variations in the global water supply. Several groups produce these estimates, and while the various gravity fields are similar, differences in processing strategies and tuning parameters result in solutions with regionally specific variations and error patterns. This study examined the spatial, temporal, and spectral variations between the different gravity field products and developed an ensemble gravity field solution from the products of four such analysis centers. The solutions were found to lie within a certain analysis scatter regardless of the local relative water height variation, and the ensemble model is clearly seen to reduce the noise in the gravity field solutions within the available scatter of the solutions.

  14. Reducing errors in the GRACE gravity solutions using regularization

    NASA Astrophysics Data System (ADS)

    Save, Himanshu; Bettadpur, Srinivas; Tapley, Byron D.

    2012-09-01

    The nature of the gravity field inverse problem amplifies the noise in the GRACE data, which creeps into the mid and high degree and order harmonic coefficients of the Earth's monthly gravity fields provided by GRACE. Due to the use of imperfect background models and data noise, these errors are manifested as north-south striping in the monthly global maps of equivalent water heights. In order to reduce these errors, this study investigates the use of the L-curve method with Tikhonov regularization. L-curve is a popular aid for determining a suitable value of the regularization parameter when solving linear discrete ill-posed problems using Tikhonov regularization. However, the computational effort required to determine the L-curve is prohibitively high for a large-scale problem like GRACE. This study implements a parameter-choice method, using Lanczos bidiagonalization which is a computationally inexpensive approximation to L-curve. Lanczos bidiagonalization is implemented with orthogonal transformation in a parallel computing environment and projects a large estimation problem on a problem of the size of about 2 orders of magnitude smaller for computing the regularization parameter. Errors in the GRACE solution time series have certain characteristics that vary depending on the ground track coverage of the solutions. These errors increase with increasing degree and order. In addition, certain resonant and near-resonant harmonic coefficients have higher errors as compared with the other coefficients. Using the knowledge of these characteristics, this study designs a regularization matrix that provides a constraint on the geopotential coefficients as a function of its degree and order. This regularization matrix is then used to compute the appropriate regularization parameter for each monthly solution. A 7-year time-series of the candidate regularized solutions (Mar 2003-Feb 2010) show markedly reduced error stripes compared with the unconstrained GRACE release 4

  15. Global gravity field modeling based on GOCE and complementary gravity data

    NASA Astrophysics Data System (ADS)

    Fecher, Thomas; Pail, Roland; Gruber, Thomas

    2015-03-01

    A combined high-resolution global gravity field model up to degree/order (d/o) 720, including error estimates in terms of a full variance-covariance matrix, is determined from GOCE (Gravity field and steady-state Ocean Circulation Explorer) and complementary gravity field data. GOCE observations, highly accurate in the low to medium wavelength part (∼d/o 40-220), are supplemented by GRACE (Gravity Recovery and Climate Experiment) with high accuracy in the low wavelength part (∼d/o 2-150), and altimetric and terrestrial gravity field observations to enhance the spectral resolution of the combined gravity field model. The theory of combining different data sets by least-squares techniques, applying optimum weighting strategies, is illustrated. Full normal equation systems are used to enable stochastic modeling of all individual observations. High performance computing techniques are applied in order to handle normal equations of enormous size (about 2 TB). The quality of the resulting gravity field solution is analyzed by comparisons with independent gravity field models and GPS/leveling observations, and also in the frame of the computation of a mean dynamic topography. The validation shows that the new combined model TUM2013C achieves the quality level of established high-resolution models. Compared to EGM2008, the improvements due to the inclusion of GOCE are clearly visible.

  16. Containment of a silicone fluid free surface in reduced gravity

    NASA Technical Reports Server (NTRS)

    Pline, A.; Jacobson, T.

    1988-01-01

    In support of the surface tension driven convection experiment planned for flight aboard the Space Shuttle, tests were conducted under reduced gravity in the 2.2-sec drop tower and the 5.0-sec Zero-G facility at the Lewis Research Center. The dynamics of controlling the test fluid, a 10-centistoke viscosity silicone fluid, in a low-gravity environment were investigated using different container designs and barrier coatings. Three container edge designs were tested without a barrier coating: a square edge, a sharp edge with a 45-deg slope, and a saw-tooth edge. All three edge designs were successful in containing the fluid below the edge.

  17. Bubble Formation at a Submerged Orifice in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Buyevich, Yu A.; Webbon, Bruce W.

    1994-01-01

    The dynamic regime of gas injection through a circular plate orifice into an ideally wetting liquid is considered, when successively detached bubbles may be regarded as separate identities. In normal gravity and at relatively low gas flow rates, a growing bubble is modeled as a spherical segment touching the orifice perimeter during the whole time of its evolution. If the flow rate exceeds a certain threshold value, another stage of the detachment process takes place in which an almost spherical gas envelope is connected with the orifice by a nearly cylindrical stem that lengthens as the bubble rises above the plate. The bubble shape resembles then that of a mushroom and the upper envelope continues to grow until the gas supply through the stem is completely cut off. Such a stage is always present under conditions of sufficiently low gravity, irrespective of the flow rate. Two major reasons make for bubble detachment: the buoyancy force and the force due to the momentum inflow into the bubble with the injected gas. The former force dominates the process at normal gravity whereas the second one plays a key role under negligible gravity conditions. It is precisely this fundamental factor that conditions the drastic influence on bubble growth and detachment that changes in gravity are able to cause. The frequency of bubble formation is proportional to and the volume of detached bubbles is independent of the gas flow rate in sufficiently low gravity, while at normal and moderately reduced gravity conditions the first variable slightly decreases and the second one almost linearly increases as the flow rate grows. Effects of other parameters, such as the orifice radius, gas and liquid densities, and surface tension are discussed.

  18. Braneworld gravity: influence of the moduli fields

    NASA Astrophysics Data System (ADS)

    Barceló, Carlos; Visser, Matt

    2000-10-01

    We consider the case of a generic braneworld geometry in the presence of one or more moduli fields (e.g. the dilaton) that vary throughout the bulk spacetime. Working in an arbitrary conformal frame, using the generalized junction conditions of gr-qc/0008008 and the Gauss-Codazzi equations, we derive the effective ``induced'' on-brane gravitational equations. As usual in braneworld scenarios, these equations do not form a closed system in that the bulk can exchange both information and stress-energy with the braneworld. We work with an arbitrary number of moduli fields described by an arbitrary sigma model, with arbitrary curvature couplings, arbitrary self interactions, and arbitrary dimension for the bulk. (The braneworld is always codimension one.) Among the novelties we encounter are modifications of the on-brane stress-energy conservation law, anomalous couplings between on-brane gravity and the trace of the on-brane stress-energy tensor, and additional possibilities for modifying the on-brane effective cosmological constant. After obtaining the general stress-energy ``conservation'' law and the ``induced Einstein equations'' we particularize the discussion to two particularly attractive cases: for a (n-2)-brane in ([n-1] + 1) dimensions we discuss both the effect of (1) generic variable moduli fields in the Einstein frame, and (2) the effect of a varying dilaton in the string frame.

  19. Fluid Interfaces of Triangular Containers in Reduced Gravity Environments

    NASA Technical Reports Server (NTRS)

    Guttromson, Jayleen; Manning, Robert; Collicott, Steven H.

    2002-01-01

    Capillary dominated fluid dynamics will be examined in a reduced-gravity environment onboard the KC-135; in particular, the behavior of the lower portion of the meniscus in triangular tank geometries. Seven clear acrylic tanks were constructed to view seven angles of the four geometries. Silicon oil with two different viscosities, 2cs and 5cs silicon oil, were used on different days of the flight. Six tanks and one control tank are filled with a certain viscosity fluid for each flight day. During each parabola, three tanks are tested at time. The experimental tanks are exchanged between parabola sets on the KC-135. The 60deg -60deg -60deg control tank is viewed throughout the flight. To gather data, two digital video cameras and one digital still camera are placed perpendicular the viewing surface. To provide a greater contrast in the meniscus, an EL backlighting sheet was used to backlight the tanks. These images and video are then digitized, passed through NASA's mini-tracker software, and compared to a theory published my M. M. Weislogel, "Fluid Interface Phenomena in a Low-Gravity Environment: Recent Results from Drop Tower Experimentation." By focusing on a lower portion of the meniscus and using longer periods of reduced gravity, this experiment may confirm that a stationary point exists on the fluid surface. This information will enable better designing of propellant management devices, especially satellite propellant refilling and gas venting. Also, biological and material processing systems in reduced gravity environments will benefit from this data.

  20. Human Locomotion under Reduced Gravity Conditions: Biomechanical and Neurophysiological Considerations

    PubMed Central

    Sylos-Labini, Francesca; Ivanenko, Yuri P.

    2014-01-01

    Reduced gravity offers unique opportunities to study motor behavior. This paper aims at providing a review on current issues of the known tools and techniques used for hypogravity simulation and their effects on human locomotion. Walking and running rely on the limb oscillatory mechanics, and one way to change its dynamic properties is to modify the level of gravity. Gravity has a strong effect on the optimal rate of limb oscillations, optimal walking speed, and muscle activity patterns, and gait transitions occur smoothly and at slower speeds at lower gravity levels. Altered center of mass movements and interplay between stance and swing leg dynamics may challenge new forms of locomotion in a heterogravity environment. Furthermore, observations in the lack of gravity effects help to reveal the intrinsic properties of locomotor pattern generators and make evident facilitation of nonvoluntary limb stepping. In view of that, space neurosciences research has participated in the development of new technologies that can be used as an effective tool for gait rehabilitation. PMID:25247179

  1. Sleep on manned space flights: Zero gravity reduces sleep duration.

    PubMed

    Gonfalone, Alain

    2016-12-01

    The success of a manned space mission depends on the well-being of the crew. Sleep in space has been the concern of researchers from the earliest days of manned space flight. In the new frontier of space exploration one of the great problems to be solved relates to sleep. Although many reports indicate that sleep in space differs only in minor ways from terrestrial sleep, such as being somewhat less comfortable, a consistent finding has been that sleep duration in space is shorter than that on the ground. This review considers the accumulating evidence that the main reason for the shorter duration of sleep in space is the absence of gravity. This evidence shows that, similar to the effect of many other environmental variables like light, sound and cold, gravity has a measurable impact on sleep structure. As opposed to ground, in zero gravity conditions the innate, permanent, and almost unconscious effort to maintain posture and equilibrium is reduced while simultaneously the vigilance against gravity or "the fear of falling" diminishes. These phenomena may potentially explain research findings that REM sleep latency and duration are shorter in space. This assumption also implies that sleep on ground is due in part to the effort to compensate for the presence of gravity and its effects on the posture and motion of the human body: an ignored and unsuspected contribution to sleep.

  2. Humans Running in Place on Water at Simulated Reduced Gravity

    PubMed Central

    Minetti, Alberto E.; Ivanenko, Yuri P.; Cappellini, Germana; Dominici, Nadia; Lacquaniti, Francesco

    2012-01-01

    Background On Earth only a few legged species, such as water strider insects, some aquatic birds and lizards, can run on water. For most other species, including humans, this is precluded by body size and proportions, lack of appropriate appendages, and limited muscle power. However, if gravity is reduced to less than Earth’s gravity, running on water should require less muscle power. Here we use a hydrodynamic model to predict the gravity levels at which humans should be able to run on water. We test these predictions in the laboratory using a reduced gravity simulator. Methodology/Principal Findings We adapted a model equation, previously used by Glasheen and McMahon to explain the dynamics of Basilisk lizard, to predict the body mass, stride frequency and gravity necessary for a person to run on water. Progressive body-weight unloading of a person running in place on a wading pool confirmed the theoretical predictions that a person could run on water, at lunar (or lower) gravity levels using relatively small rigid fins. Three-dimensional motion capture of reflective markers on major joint centers showed that humans, similarly to the Basilisk Lizard and to the Western Grebe, keep the head-trunk segment at a nearly constant height, despite the high stride frequency and the intensive locomotor effort. Trunk stabilization at a nearly constant height differentiates running on water from other, more usual human gaits. Conclusions/Significance The results showed that a hydrodynamic model of lizards running on water can also be applied to humans, despite the enormous difference in body size and morphology. PMID:22815681

  3. The Influence of Reduced Gravity on the Crystal Growth of Electronic Materials

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Gillies, D. C.; Szofran, F. R.; Watring, D. A.; Lehoczky, S. L.

    1996-01-01

    The imperfections in the grown crystals of electronic materials, such as compositional nonuniformity, dopant segregation and crystalline structural defects, are detrimental to the performance of the opto-electronic devices. Some of these imperfections can be attributed to effects caused by Earth gravity during crystal growth process and four areas have been identified as the uniqueness of material processing in reduced gravity environment. The significant results of early flight experiments, i.e. prior to space shuttle era, are briefly reviewed followed by an elaborated review on the recent flight experiments conducted on shuttle missions. The results are presented for two major growth methods of electronic materials: melt and vapor growth. The use of an applied magnetic field in the melt growth of electrically conductive melts on Earth to simulate the conditions of reduced gravity has been investigated and it is believed that the superimposed effect of moderate magnetic fields and the reduced gravity environment of space can result in reduction of convective intensities to the extent unreachable by the exclusive use of magnet on Earth or space processing. In the Discussions section each of the significant results of the flight experiments is attributed to one of the four effects of reduced gravity and the unresolved problems on the measured mass fluxes in some of the vapor transport flight experiments are discussed.

  4. Altimeter measurements for the determination of the Earth's gravity field

    NASA Technical Reports Server (NTRS)

    Tapley, B. D.; Schutz, B. E.; Shum, C. K.

    1986-01-01

    Progress in the following areas is described: refining altimeter and altimeter crossover measurement models for precise orbit determination and for the solution of the earth's gravity field; performing experiments using altimeter data for the improvement of precise satellite ephemerides; and analyzing an optimal relative data weighting algorithm to combine various data types in the solution of the gravity field.

  5. GRACE gravity field modeling with an investigation on correlation between nuisance parameters and gravity field coefficients

    NASA Astrophysics Data System (ADS)

    Zhao, Qile; Guo, Jing; Hu, Zhigang; Shi, Chuang; Liu, Jingnan; Cai, Hua; Liu, Xianglin

    2011-05-01

    The GRACE (Gravity Recovery And Climate Experiment) monthly gravity models have been independently produced and published by several research institutions, such as Center for Space Research (CSR), GeoForschungsZentrum (GFZ), Jet Propulsion Laboratory (JPL), Centre National d’Etudes Spatiales (CNES) and Delft Institute of Earth Observation and Space Systems (DEOS). According to their processing standards, above institutions use the traditional variational approach except that the DEOS exploits the acceleration approach. The background force models employed are rather similar. The produced gravity field models generally agree with one another in the spatial pattern. However, there are some discrepancies in the gravity signal amplitude between solutions produced by different institutions. In particular, 10%-30% signal amplitude differences in some river basins can be observed. In this paper, we implemented a variant of the traditional variational approach and computed two sets of monthly gravity field solutions using the data from January 2005 to December 2006. The input data are K-band range-rates (KBRR) and kinematic orbits of GRACE satellites. The main difference in the production of our two types of models is how to deal with nuisance parameters. This type of parameters is necessary to absorb low-frequency errors in the data, which are mainly the aliasing and instrument errors. One way is to remove the nuisance parameters before estimating the geopotential coefficients, called NPARB approach in the paper. The other way is to estimate the nuisance parameters and geopotential coefficients simultaneously, called NPESS approach. These two types of solutions mainly differ in geopotential coefficients from degree 2 to 5. This can be explained by the fact that the nuisance parameters and the gravity field coefficients are highly correlated, particularly at low degrees. We compare these solutions with the official and published ones by means of spectral analysis. It is

  6. An improved JPL Mars gravity field and orientation from Mars orbiter and lander tracking data

    NASA Astrophysics Data System (ADS)

    Konopliv, Alex S.; Park, Ryan S.; Folkner, William M.

    2016-08-01

    The Mars gravity field resolution is mostly determined by the lower altitude Mars Reconnaissance Orbiter (MRO) tracking data. With nearly four years of additional MRO and Mars Odyssey tracking data since the last JPL released gravity field MRO110C and lander tracking from the MER Opportunity Rover, the gravity field and orientation of Mars have been improved. The new field, MRO120D, extends the maximum spherical harmonic degree slightly to 120, improves the determination of the higher degree coefficients as demonstrated by improved correlation with topography and reduces the uncertainty in the corresponding Mars orientation parameters by up to a factor of two versus previously combined gravity and orientation solutions. The new precession solution is ψ˙ = - 7608.3 ± 2.1 mas / yr and is consistent with previous results but with a reduced uncertainty by 40%. The Love number solution, k2 = 0.169 ± 0.006, also shows a similar result to previous studies.

  7. Experimental Observations of PMMA Spheres Burning at Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Yang, Ji-Ann C.; Hamins, Anthony; Glover, Michael; King, Michelle D.

    1997-01-01

    Polymer combustion is a very complicated process which involves the coupling of gas-phase combustion, melting, pyrolysis, and possible charring of the condensed phase. Although only a few studies on the combustion of a spherically shaped polymer have been conducted, there is renewed interest in the subject. At the Third International Microgravity Combustion Workshop, we presented a preliminary experimental plan and proposed an apparatus to study the combustion of a PolyMethylMethAcrylate (PMMA) sphere at reduced gravity. In this paper, we describe the experimental hardware in detail, summarize our observations since the last workshop, and describe future studies. The main objective is to determine the burning rate of PMMA spheres at reduced gravity under different ambient oxygen concentrations and total pressures. The dependence of the burning rate on the initial sphere diameter will be examined. It is anticipated that the simple spherical geometry in conjunction with reduced gravity will facilitate an assessment of the effect of condensed phase behavior on polymer burning processes and can be used as a means to test polymer combustion models.

  8. Bubble Detachment in Variable Gravity Under the Influence of Electric Fields

    NASA Technical Reports Server (NTRS)

    Herman, Cila; Chang, Shinan; Iacona, Estelle

    2002-01-01

    The objective of the research is to investigate the behavior of individual air bubbles injected through an orifice into an electrically insulating liquid under the influence of a static electric field. Situations were considered with both uniform and nonuniform electric fields. Bubble formation and detachment were visualized in terrestrial gravity as well as for several levels of reduced gravity (lunar, martian and microgravity) using a high-speed video camera. Bubble volume, dimensions and contact angles at detachment were measured. In addition to the experimental studies, a simple model, predicting bubble characteristics at detachment in an initially uniform electric field was developed. The model, based on thermodynamic considerations, accounts for the level of gravity as well as the magnitude of the uniform electric field. The results of the study indicate that the level of gravity and the electric field magnitude significantly affect bubble behavior as well as shape, volume and dimensions.

  9. Effect of gravity and electric field on shape and surface tension of drops

    NASA Astrophysics Data System (ADS)

    Bateni, A.; Ababneh, A.; Elliott, J. A. W.; Neumann, A. W.; Amirfazli, A.

    Experimental work was performed in reduced gravity conditions using a novel methodology to investigate the effect of external forces, i.e., gravity and electric field, on shape and surface tension of drops. The new methodology, called axisymmetric drop-shape analysis - electric fields (ADSA-EF), can generate numerical drop profiles as a function of surface tension, at any given gravity and/or electric field. When an image of an experimental drop is available, ADSA-EF can calculate the true value of the surface tension by matching the numerical profiles with the shape of the experimental drop, taking the surface tension as an adjustable parameter. ADSA-EF is a novel technique, which can be employed to predict and simulate drop shapes in the electric field, determine the effect of external fields on surface tensions, or measure surface tensions in reduced gravity conditions, where other drop-shape techniques are not applicable. The results of the reduced gravity experiment suggested that the electric field significantly increases the surface tension of water. No significant effect of gravity on surface tension was detected.

  10. Gravity Fields and Interiors of the Saturnian Satellites

    NASA Technical Reports Server (NTRS)

    Rappaport, N. J.; Armstrong, J. W.; Asmar, Sami W.; Iess, L.; Tortora, P.; Somenzi, L.; Zingoni, F.

    2006-01-01

    This viewgraph presentation reviews the Gravity Science Objectives and accomplishments of the Cassini Radio Science Team: (1) Mass and density of icy satellites (2) Quadrupole field of Titan and Rhea (3) Dynamic Love number of Titan (4) Moment of inertia of Titan (in collaboration with the Radar Team) (5) Gravity field of Saturn. The proposed measurements for the extended tour are: (1) Quadrupole field of Enceladus (2) More accurate measurement of Titan k2 (3) Local gravity/topography correlations for Iapetus (4) Verification/disproof of "Pioneer anomaly".

  11. Simulation of Jet-Induced Geysers in Reduced Gravity

    NASA Astrophysics Data System (ADS)

    Marchetta, Jeffrey G.; Benedetti, Robert H.

    2010-02-01

    Control of cryogenic propellant tank pressure during tank refueling and expulsion in low gravity is an important technical challenge to overcome for future long duration missions in space. One method proposed to control tank pressurization involves the use of jet-induced geysers. Two-dimensional computational models have been developed and used with limited success in previous efforts to predict geyser heights in microgravity. A three-dimensional flow simulation is used to model jet-induced geysers in reduced gravity. Geyser flows are commonly characterized by the presence of turbulent jets, transient flow, deforming free surfaces, and surface tension effects. As is the case for many turbulent flow applications, accuracy in simulating complex turbulent flows is critically dependent on the selection of a suitable turbulence model. The sensitivity of the simulation geyser predictions to a suite of popular turbulence models is assessed. Simulation results are compared to available experiment results. By expanding upon the work already completed, the model is used to simulate a broad range of cases within the experiment test matrix. Simulation results suggest the two dimensional simulation using the k- ɛ turbulence model provides the most accurate results for jet-induced geysers in reduced gravity when compared to available experiment data.

  12. Gravitational collapse of massless scalar field in f (R ) gravity

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng-Yong; Tang, Zi-Yu; Wang, Bin

    2016-11-01

    We study the spherically symmetric gravitational collapse of massless scalar matter field in asymptotic flat spacetime in the Starobinsky R2 gravity, one specific model in the f (R ) gravity. In the Einstein frame of f (R ) gravity, an additional scalar field arises due to the conformal transformation. We find that in addition to the usual competition between gravitational energy and kinetic energy in the process of gravitational collapse, the new scalar field brought by the conformal transformation adds one more competing force in the dynamical system. The dynamical competition can be controlled by tuning the amplitudes of the initial perturbations of the new scalar field and the matter field. To understand the physical reasons behind these phenomena, we analyze the gravitational potential behavior and calculate the Ricci scalar at center with the change of initial amplitudes of perturbations. We find rich physics on the formation of black holes through gravitational collapse in f (R ) gravity.

  13. Developments in Lunar Gravity Field Recovery Within the Project GRAZIL

    NASA Astrophysics Data System (ADS)

    Wirnsberger, Harald; Klinger, Beate; Krauss, Sandro; Mayer-Gürr, Torsten

    2016-10-01

    The project GRAZIL addresses the highly accurate recovery of the lunar gravity field using intersatellite Ka-band ranging (KBR) measurements collected by the Lunar Gravity Ranging System (LGRS) of the Gravity Recovery And Interior Laboratory (GRAIL) mission. Dynamic precise orbit determination is an indispensable task in order to recover the lunar gravity field based on LGRS measurements. The concept of variational equations is adopted to determine the orbit of the two GRAIL satellites based on radio science data. In this contribution we focus on the S-band two-way Doppler data collected by the Deep Space Network.As far as lunar gravity field recovery is concerned, we apply an integral equation approach using short orbital arcs. In this contribution we demonstrate the progress of Graz lunar gravity field models (GrazLGM) from the beginning, till the end of the projet GRAZIL. For the latest GrazLGM version special attention is given to the refinement of our processing strategy in conjunction with an increase of the spectral resolution. Furthermore, we present the first GrazLGM based on KBR observations during the primary and the extended mission phase. Our results are validated against state of the art lunar gravity field models computed at NASA-GSFC and NASA-JPL.

  14. Gravity field models derived from Swarm GPS data

    NASA Astrophysics Data System (ADS)

    Teixeira da Encarnação, João; Arnold, Daniel; Bezděk, Aleš; Dahle, Christoph; Doornbos, Eelco; van den IJssel, Jose; Jäggi, Adrian; Mayer-Gürr, Torsten; Sebera, Josef; Visser, Pieter; Zehentner, Norbert

    2016-07-01

    It is of great interest to numerous geophysical studies that the time series of global gravity field models derived from Gravity Recovery and Climate Experiment (GRACE) data remains uninterrupted after the end of this mission. With this in mind, some institutes have been spending efforts to estimate gravity field models from alternative sources of gravimetric data. This study focuses on the gravity field solutions estimated from Swarm global positioning system (GPS) data, produced by the Astronomical Institute of the University of Bern, the Astronomical Institute (ASU, Czech Academy of Sciences) and Institute of Geodesy (IfG, Graz University of Technology). The three sets of solutions are based on different approaches, namely the celestial mechanics approach, the acceleration approach and the short-arc approach, respectively. We derive the maximum spatial resolution of the time-varying gravity signal in the Swarm gravity field models to be degree 12, in comparison with the more accurate models obtained from K-band ranging data of GRACE. We demonstrate that the combination of the GPS-driven models produced with the three different approaches improves the accuracy in all analysed monthly solutions, with respect to any of them. In other words, the combined gravity field model consistently benefits from the individual strengths of each separate solution. The improved accuracy of the combined model is expected to bring benefits to the geophysical studies during the period when no dedicated gravimetric mission is operational.

  15. Nucleate pool boiling: High gravity to reduced gravity; liquid metals to cryogens

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1988-01-01

    Requirements for the proper functioning of equipment and personnel in reduced gravity associated with space platforms and future space station modules introduce unique problems in temperature control; power generation; energy dissipation; the storage, transfer, control and conditioning of fluids; and liquid-vapor separation. The phase change of boiling is significant in all of these. Although both pool and flow boiling would be involved, research results to date include only pool boiling because buoyancy effects are maximized for this case. The effective application of forced convection boiling heat transfer in the microgravity of space will require a well grounded and cogent understanding of the mechanisms involved. Experimental results are presented for pool boiling from a single geometrical configuration, a flat surface, covering a wide range of body forces from a/g = 20 to 1 to a/g = 0 to -1 for a cryogenic liquid, and from a/g = 20 to 1 for water and a liquid metal. Similarities in behavior are noted for these three fluids at the higher gravity levels, and may reasonably be expected to continue at reduced gravity levels.

  16. The gravity field of topography buried by sediments

    NASA Technical Reports Server (NTRS)

    Sandwell, D. T.; Liu, C. S.

    1985-01-01

    The gravity field over topography in the northern Indian Ocean that was completely buried by sediments of the Bengal Fan was investigated to understand the effect of sedimentation on the continental gravity field. An isopach map made from the seismic reflection and refraction in the Bay of Bengal shows two prominent N-S trending features in the basement topography. The northernmost portion of the Ninetyeast Ridge is totally buried by sediments north of 10 deg N. The other buried ridge trends roughly N-S for 1400 km at 85 deg E to the latitude of Sri Lanka and then curves toward the west. It has basement relief up to 6 km. Two free air gravity anomaly profiles across the region show a strong gravity low over the 85 deg E ridge, while the Ninetyeast Ridge shows a gravity high.

  17. BF gravity with Immirzi parameter and matter fields

    NASA Astrophysics Data System (ADS)

    Montesinos, Merced; Velázquez, Mercedes

    2012-03-01

    We perform the coupling of the scalar, Maxwell, and Yang-Mills fields as well as the cosmological constant to BF gravity with Immirzi parameter. The proposed action principles employ auxiliary fields in order to keep a polynomial dependence on the B fields. By handling the equations of motion for the B field and for the auxiliary fields, these latter can be expressed in terms of the physical fields and by substituting these expressions into the original action principles we recover the first-order (Holst) and second-order actions for gravity coupled to the physical matter fields. We consider these results a relevant step towards the understanding of the coupling of matter fields to gravity in the theoretical framework of BF theory.

  18. Interfacial area transport for reduced-gravity two-phase flows

    NASA Astrophysics Data System (ADS)

    Vasavada, Shilp

    An extensive experimental and theoretical study of two-phase flow behavior in reduced-gravity conditions has been performed as part of the current research and the results of the same are presented in this thesis. The research was undertaken to understand the behavior of two-phase flows in an environment where the gravity field is reduced as compared to that on earth. The goal of the study was to develop a model capable of predicting the flow behavior. An experimental program was developed and accomplished which simulated reduced-gravity conditions on earth by using two liquids of similar density, thereby decreasing the body force effect akin to actual reduced-gravity conditions. The justification and validation of this approach has been provided based on physical arguments as well as comparison of acquired data with that obtained aboard parabolic flights by previous researchers. The experimental program produced an extensive dataset of local and averaged two-phase flow parameters using state-of-the-art instrumentation. Such data were acquired for a wide range of flow conditions at different radial and axial locations in a 25 mm inner diameter test facility. The current dataset is, in the author's opinion, the most extensive and detailed dataset available for such conditions at present. Analysis of the data revealed important differences between two-phase flows in normal and reduced-gravity conditions. The data analysis also highlighted key interaction mechanisms between the fluid particles and physical phenomena occurring in two-phase flows under reduced-gravity conditions. The interfacial area transport equation (IATE) for reduced-gravity conditions has been developed by considering two groups of bubbles/drops and mechanistically modeling the interaction mechanisms. The developed model has been benchmarked against the acquired data and the predictions of the model compared favorably against the experimental data. This signifies the success achieved in modeling

  19. Multi-scale gravity field modeling in space and time

    NASA Astrophysics Data System (ADS)

    Wang, Shuo; Panet, Isabelle; Ramillien, Guillaume; Guilloux, Frédéric

    2016-04-01

    The Earth constantly deforms as it undergoes dynamic phenomena, such as earthquakes, post-glacial rebound and water displacement in its fluid envelopes. These processes have different spatial and temporal scales and are accompanied by mass displacements, which create temporal variations of the gravity field. Since 2002, the GRACE satellite missions provide an unprecedented view of the gravity field spatial and temporal variations. Gravity models built from these satellite data are essential to study the Earth's dynamic processes (Tapley et al., 2004). Up to present, time variations of the gravity field are often modelled using spatial spherical harmonics functions averaged over a fixed period, as 10 days or 1 month. This approach is well suited for modeling global phenomena. To better estimate gravity related to local and/or transient processes, such as earthquakes or floods, and adapt the temporal resolution of the model to its spatial resolution, we propose to model the gravity field using localized functions in space and time. For that, we build a model of the gravity field in space and time with a four-dimensional wavelet basis, well localized in space and time. First we design the 4D basis, then, we study the inverse problem to model the gravity field from the potential differences between the twin GRACE satellites, and its regularization using prior knowledge on the water cycle. Our demonstration of surface water mass signals decomposition in time and space is based on the use of synthetic along-track gravitational potential data. We test the developed approach on one year of 4D gravity modeling and compare the reconstructed water heights to those of the input hydrological model. Perspectives of this work is to apply the approach on real GRACE data, addressing the challenge of a realistic noise, to better describe and understand physical processus with high temporal resolution/low spatial resolution or the contrary.

  20. Torus Approach in Gravity Field Determination from Simulated GOCE Gravity Gradients

    NASA Astrophysics Data System (ADS)

    Liu, Huanling; Wen, Hanjiang; Xu, Xinyu; Zhu, Guangbin

    2016-08-01

    In Torus approach, observations are projected to the nominal orbits with constant radius and inclination, lumped coefficients provides a linear relationship between observations and spherical harmonic coefficients. Based on the relationship, two-dimensional FFT and block-diagonal least-squares adjustment are used to recover Earth's gravity field model. The Earth's gravity field model complete to degree and order 200 is recovered using simulated satellite gravity gradients on a torus grid, and the degree median error is smaller than 10-18, which shows the effectiveness of Torus approach. EGM2008 is employed as a reference model and the gravity field model is resolved using the simulated observations without noise given on GOCE orbits of 61 days. The error from reduction and interpolation can be mitigated by iterations. Due to polar gap, the precision of low-order coefficients is lower. Without considering these coefficients the maximum geoid degree error and cumulative error are 0.022mm and 0.099mm, respectively. The Earth's gravity field model is also recovered from simulated observations with white noise 5mE/Hz1/2, which is compared to that from direct method. In conclusion, it is demonstrated that Torus approach is a valid method for processing massive amount of GOCE gravity gradients.

  1. Evaluation of recent Earth's global gravity field models with terrestrial gravity data

    NASA Astrophysics Data System (ADS)

    Karpik, Alexander P.; Kanushin, Vadim F.; Ganagina, Irina G.; Goldobin, Denis N.; Kosarev, Nikolay S.; Kosareva, Alexandra M.

    2016-03-01

    In the context of the rapid development of environmental research technologies and techniques to solve scientific and practical problems in different fields of knowledge including geosciences, the study of Earth's gravity field models is still important today. The results of gravity anomaly modelling calculated by the current geopotential models data were compared with the independent terrestrial gravity data for the two territories located in West Siberia and Kazakhstan. Statistical characteristics of comparison results for the models under study were obtained. The results of investigations show that about 70% of the differences between the gravity anomaly values calculated by recent global geopotential models and those observed at the points in flat areas are within ±10 mGal, in mountainous areas are within ±20 mGal.

  2. A system for conducting igneous petrology experiments under controlled redox conditions in reduced gravity

    NASA Technical Reports Server (NTRS)

    Williams, R. J.

    1986-01-01

    The Space Shuttle and the planned Space Station will permit experimentation under conditions of reduced gravitational acceleration offering experimental petrologists the opportunity to study crystal growth, element distribution, and phase chemistry. In particular the confounding effects of macro and micro scale buoyancy-induced convection and crystal settling or floatation can be greatly reduced over those observed in experiments in the terrestrial laboratory. Also, for experiments in which detailed replication of the environment is important, the access to reduced gravity will permit a more complete simulation of processes that may have occurred on asteroids or in free space. A technique that was developed to control, measure, and manipulate oxygen fugacites with small quantities of gas which are recirculated over the sample is described. This system should be adaptable to reduced gravity space experiments requiring redox control. Experiments done conventionally and those done using this technique yield identical results done in a 1-g field.

  3. High pressure droplet burning experiments in reduced gravity

    NASA Technical Reports Server (NTRS)

    Chauveau, Christian; Goekalp, Iskender

    1995-01-01

    A parametric investigation of single droplet gasification regimes is helpful in providing the necessary physical ideas for sub-grid models used in spray combustion numerical prediction codes. A research program has been initiated at the LCSR to explore the vaporization regimes of single and interacting hydrocarbon and liquid oxygen droplets under high pressure conditions. This paper summarizes the status of the LCSR program on the high pressure burning of single fuel droplets; recent results obtained under normal and reduced gravity conditions with suspended droplets are presented. In the work described here, parabolic flights of the CNES Caravelle is used to create a reduced gravity environment of the order of 10(exp -2) g(sub O). For all the droplet burning experiments reported here, the suspended droplet initial diameters are scattered around 1.5 mm; and the ambient air temperature is 300 K. The ambient pressure is varied between 0.1 MPa and 12 MPa. Four fuels are investigated: methanol (Pc = 7.9 MPa), n-heptane (Pc = 2.74 MPa), n-hexane (Pc = 3.01 MPa) and n-octane (Pc = 2.48 MPa).

  4. A comparison of satellite systems for gravity field measurements

    NASA Technical Reports Server (NTRS)

    Argentiero, P. D.; Lowrey, B. E.

    1977-01-01

    A detailed and accurate earth gravity field model is important to the understanding of the structure and composition of the earth's crust and upper mantle. Various satellite-based techniques for providing more accurate models of the gravity field are analyzed and compared. A high-low configuration satellite-to-satellite tracking mission is recommended for the determination of both the long wavelength and short wavelength portions of the field. Satellite altimetry and satellite gradiometry missions are recommended for determination of the short wavelength portion of the field.

  5. Combustion of Metals in Reduced-Gravity and Extraterrestrial Environment

    NASA Technical Reports Server (NTRS)

    Abbud-Madrid, A.; Omaly, P.; Branch, M. C.; Daily, J. W.

    1999-01-01

    As a result of the ongoing exploration of Mars and the several unmanned and manned missions planned for the future, increased attention has been given to the use of the natural resources of the planet for rocket propellant production and energy generation. Since the atmosphere of Mars consists of approximately 95% carbon dioxide (CO2), this gas is the resource of choice to be employed for these purposes. Unfortunately, CO2 is also a final product in most combustion reactions, requiring further processing to extract useful reactants such as carbon monoxide (CO), oxygen (O2), and hydrocarbons. An exception is the use Of CO2 as an oxidizer reacting directly with metal fuel. Since many metals burn vigorously with CO2, these may be used as an energy source and as propellants for an ascent/descent vehicle in sample-collection missions on Mars. In response to NASA's Human Exploration and Development of Space (HEDS) Enterprise to search for appropriate in-situ resource utilization techniques, this investigation will study the burning characteristics of promising metal/CO2 combinations. The use of reduced gravity is essential to eliminate the intrusive buoyant flows that plague the high-temperature metal reactions, to remove the destructive effect of gravity on the shape of molten metal samples, and to study the influence of radiative heat transfer from solid oxides undisturbed by natural convection. In studies with large metal specimens, the burning process is invariably influenced by strong convective currents that accelerate the reaction and shorten the burning times. Although these currents are nearly absent from small burning particles, the high emissivity of the flames, rapid reaction, small length scales, and intermittent explosions make the gathering of any useful information on burning rates and flame structure very difficult. This investigation has the ultimate goal of providing a careful probing of flame structure and dynamics by taking advantage of large, free

  6. Scaled Jump in Gravity-Reduced Virtual Environments.

    PubMed

    Kim, MyoungGon; Cho, Sunglk; Tran, Tanh Quang; Kim, Seong-Pil; Kwon, Ohung; Han, JungHyun

    2017-04-01

    The reduced gravity experienced in lunar or Martian surfaces can be simulated on the earth using a cable-driven system, where the cable lifts a person to reduce his or her weight. This paper presents a novel cable-driven system designed for the purpose. It is integrated with a head-mounted display and a motion capture system. Focusing on jump motion within the system, this paper proposes to scale the jump and reports the experiments made for quantifying the extent to which a jump can be scaled without the discrepancy between physical and virtual jumps being noticed by the user. With the tolerable range of scaling computed from these experiments, an application named retargeted jump is developed, where a user can jump up onto virtual objects while physically jumping in the real-world flat floor. The core techniques presented in this paper can be extended to develop extreme-sport simulators such as parasailing and skydiving.

  7. Containerless Processing in Reduced Gravity Using the TEMPUS Facility

    NASA Technical Reports Server (NTRS)

    Roger, Jan R.; Robinson, Michael B.

    1996-01-01

    Containerless processing provides a high purity environment for the study of high-temperature, very reactive materials. It is an important method which provides access to the metastable state of an undercooled melt. In the absence of container walls, the nucleation rate is greatly reduced and undercooling up to (Tm-Tn)/Tm approx. 0.2 can be obtained, where Tm and Tn are the melting and nucleation temperatures, respectively. Electromagnetic levitation represents a method particularly well-suited for the study of metallic melts. The TEMPUS facility is a research instrument designed to perform electromagnetic levitation studies in reduced gravity. It provides temperatures up to 2600 C, levitation of several grams of material and access to the undercooled state for an extended period of time (up to hours).

  8. A spaceborne superconducting gravity gradiometer for mapping the earth's gravity field

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1981-01-01

    The principles of a satellite gravity gradiometer system which measures all five independent components of the gravity gradient tensor with a sensitivity of 0.001 E/Hz to the 1/2 power or better, are analyzed, and the status of development of the system is reviewed. The superconducting gravity gradiometer uses sensitive superconducting accelerometers, each of which are composed of a weakly suspended superconducting proof mass, a superconducting magnetic transducer, and a low-noise superconducting magnetometer. The magnetic field produced by the transducer coils is modulated by the motion of the proof mass and detected by the magnetometer. A combination of two or four of such accelerometers with proper relative orientation of sensitive axes results in an in-line or a cross component gravity gradiometer.

  9. Gravity Effects of Solar Eclipse and Inducted Gravitational Field

    NASA Astrophysics Data System (ADS)

    Tang, K.; Wang, Q.; Zhang, H.; Hua, C.; Peng, F.; Hu, K.

    2003-12-01

    During solar eclipses in recent decades, gravity anomalies were observed and difficult to be explained by Newton's gravitational theory. During the solar eclipse of 1995, India scientists Mishra et al. recorded a gravity valley in amplitude of 12 μ Gal; they interpreted that qualitatively as atmospheric effects. During the total solar eclipse of March 1997, we conducted a comprehensive geophysical observation at Mohe geophysical observatory of China (with latitude of 53.490 N and longitude of 122.340 E. From the data we recorded, we found two valleys about 5 to 7 μ Gal. Unnikrishnan et al. inferred this gravity anomaly was caused by the environment changes. We know that the observation had been conducting in a room inside a small building with a stable coal heating system; the temperature variation inside the experimental room was less 10C during the eclipse. Moreover, the measured atmospheric pressure change was less 1hPa during the eclipse. It is reasonable to believe that surrounding environment of the observatory excluded the significant gravity variations caused by temperature, pressure variation and local moving of persons and vehicles. To further study the gravity effects related to solar eclipses, our scientific team took more observations during Zambia total solar eclipse of June 2001 and Australia total solar eclipse of December 2002. After data corrections, we found respectively two gravity anomalies, with 3 to 4μ Gal for Zambia eclipse and 1.5μ Gal for Australia eclipse. As many scientists have pointed out that pressure-gravity factor is lower than 0.3μ Gal/hPa, it means that any gravity anomaly great than 0.5μ Gal could not be inferred as the results of atmospheric pressure change. The two more gravity anomalies recorded during the solar eclipses provided us strong evidences that some gravity anomalies could not simply be inferred as atmospheric pressure change. We have tried to explain those anomalies by the induced gravitational field.

  10. Soldering in a Reduced Gravity Environment (SoRGE)

    NASA Technical Reports Server (NTRS)

    Easton, John W.; Struk, Peter M.

    2012-01-01

    Future long-duration human exploration missions will be challenged by constraints on mass and volume allocations available for spare parts. Addressing this challenge will be critical to the success of these missions. As a result, it is necessary to consider new approaches to spacecraft maintenance and repair that reduce the need for large replacement components. Currently, crew members on the International Space Station (ISS) recover from faults by removing and replacing, using backup systems, or living without the function of Orbital Replacement Units (ORUs). These ORUs are returned to a depot where the root cause of the failure is determined and the ORU is repaired. The crew has some limited repair capability with the Modulation/DeModulation (MDM) ORU, where circuit cards are removed and replace in faulty units. The next step to reducing the size of the items being replaced would be to implement component-level repair. This mode of repair has been implemented by the U.S. Navy in an operational environment and is now part of their standard approach for maintenance. It is appropriate to consider whether this approach can be adapted for future spaceflight operations. To this end, the Soldering in a Reduced Gravity Environment (SoRGE) experiment studied the effect of gravity on the formation of solder joints on electronic circuit boards. This document describes the SoRGE experiment, the analysis methods, and results to date. This document will also contain comments from the crew regarding their experience conducting the SoRGE experiment as well as recommendations for future improvements. Finally, this document will discuss the plans for the SoRGE samples which remain on ISS.

  11. The Effect of Gravity Fields on Cellular Gene Expression

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, Millie

    1999-01-01

    Early theoretical analysis predicted that microgravity effects on the isolated cell would be minuscule at the subcellular level; however, these speculations have not proven true in the real world. Astronauts experience a significant bone and muscle loss in as little as 2 weeks of spaceflight and changes are seen at the cellular level soon after exposure to microgravity. Changes in biological systems may be primarily due to the lack of gravity and the resulting loss of mechanical stress on tissues and cells. Recent ground and flight studies examining the effects of gravity or mechanical stress on cells demonstrate marked changes in gene expression when relatively small changes in mechanical forces or gravity fields were made. Several immediate early genes (IEG) like c-fos and c-myc are induced by mechanical stimulation within minutes. In contrast, several investigators report that the absence of mechanical forces during space flight result in decreased sera response element (SRE) activity and attenuation of expression of IEGs such as c-fos, c-jun and cox-2 mRNAs. Clearly, these early changes in gene expression may have long term consequences on mechanically sensitive cells. In our early studies on STS-56, we reported four major changes in the osteoblast; 1) prostaglandin synthesis in flight, 2) changes in cellular morphology, 3) altered actin cytoskeleton and 4) reduced osteoblast growth after four days exposure to microgravity. Initially, it was believed that changes in fibronectin (FN) RNA, FN protein synthesis or subsequent FN matrix formation might account for the changes in cytoskeleton and/ or reduction of growth. However our recent studies on Biorack (STS-76, STS-81 and STS-84), using ground and in-flight 1-G controls, demonstrated that fibronectin synthesis and matrix formation were normal in microgravity. In addition, in our most recent Biorack paper, our laboratory has documented that relative protein synthesis and mRNA synthesis are not changed after 24

  12. Gravity field models derived from Swarm GPS data

    NASA Astrophysics Data System (ADS)

    de Teixeira da Encarnação, João; Arnold, Daniel; Bezděk, Aleš; Dahle, Christoph; Doornbos, Eelco; van den IJssel, Jose; Jäggi, Adrian; Mayer-Gürr, Torsten; Sebera, Josef; Visser, Pieter; Zehentner, Norbert

    2016-04-01

    The GPS instruments on-board the three Earth's Magnetic Field and Environment Explorer (Swarm) satellites provide the opportunity to measure the gravity field model at basin-wide spatial scales. In spite of being a geo-magnetic satellite mission, Swarm's GPS receiver collects highly accurate hl-SST data (van den IJssel et al., 2015), which has been exploited to produce gravity field models at a number of institutes, namely at the Astronomical Institute (ASU) of the Czech Academy of Sciences (Bezděk et al., 2014), the Astronomical Institute of the University of Bern (AIUB, Jäggi et al., 2015) and the Institute of Geodesy (IfG) of the Graz University of Technology (Zehentner et al., 2015). With the help of GRACE gravity field models, which are derived from much more accurate ll-SST data, we investigate the best combination strategy for producing a superior model on the basis of the solutions produced by the three institutes, similarly to the approach taken by the European Gravity Service for Improved Emergency Management project (http://egsiem.eu). We demonstrate that the Swarm-derived gravity field models are able to resolve monthly solutions with 1666km spatial resolutions (roughly up to degree 12). We illustrate how these monthly solutions correlate with GRACE-derived monthly solutions, for the period of 2014 - 2015, as well as indicate which geographical areas are measured more or less accurately.

  13. Interior Models and Gravity Field of Jupiter's Moon Amalthea

    NASA Astrophysics Data System (ADS)

    Weinwurm, G.; Weber, R.

    2003-12-01

    Before its final plunge into Jupiter in September 2003, GALILEO made a last visit to Jupiters moon Amalthea. This final flyby of the spacecrafts successful mission occurred on November 5, 2002. In order to analyse the spacecraft data with respect to Amaltheas gravity field, interior models of the moon had to be provided. The method used for this approach is based on the numerical integration of infinitesimal volume elements, which are calculated by the scale factors of a three-axial ellipsoid (elliptic coordinates). To derive the gravity field coefficients of the body, the second method of Neumann was applied. Based on the spacecraft trajectory data provided by the Jet Propulsion Laboratory, GALILEOs velocity perturbations at closest approach could be calculated. We have derived the harmonic coefficients of Amaltheas gravity field up to degree and order six, for both homogeneous and reasonable heterogeneous cases. Based on these numbers we calculated the impact on the trajectory of GALILEO and compared it to existing Doppler data. Although no two-way Doppler-data was available during the flyby and the harmonic coefficients of the gravity field are buried in the one-way Doppler-noise, the calculated gravity field models of Amalthea can be a basis for further exploration of the Jupiter system. Furthermore, the model approach can be used for any planetary body.

  14. Cartan gravity, matter fields, and the gauge principle

    SciTech Connect

    Westman, Hans F.; Zlosnik, Tom G.

    2013-07-15

    Gravity is commonly thought of as one of the four force fields in nature. However, in standard formulations its mathematical structure is rather different from the Yang–Mills fields of particle physics that govern the electromagnetic, weak, and strong interactions. This paper explores this dissonance with particular focus on how gravity couples to matter from the perspective of the Cartan-geometric formulation of gravity. There the gravitational field is represented by a pair of variables: (1) a ‘contact vector’ V{sup A} which is geometrically visualized as the contact point between the spacetime manifold and a model spacetime being ‘rolled’ on top of it, and (2) a gauge connection A{sub μ}{sup AB}, here taken to be valued in the Lie algebra of SO(2,3) or SO(1,4), which mathematically determines how much the model spacetime is rotated when rolled. By insisting on two principles, the gauge principle and polynomial simplicity, we shall show how one can reformulate matter field actions in a way that is harmonious with Cartan’s geometric construction. This yields a formulation of all matter fields in terms of first order partial differential equations. We show in detail how the standard second order formulation can be recovered. In particular, the Hodge dual, which characterizes the structure of bosonic field equations, pops up automatically. Furthermore, the energy–momentum and spin-density three-forms are naturally combined into a single object here denoted the spin-energy–momentum three-form. Finally, we highlight a peculiarity in the mathematical structure of our first-order formulation of Yang–Mills fields. This suggests a way to unify a U(1) gauge field with gravity into a SO(1,5)-valued gauge field using a natural generalization of Cartan geometry in which the larger symmetry group is spontaneously broken down to SO(1,3)×U(1). The coupling of this unified theory to matter fields and possible extensions to non-Abelian gauge fields are left as

  15. Super-Planckian spatial field variations and quantum gravity

    NASA Astrophysics Data System (ADS)

    Klaewer, Daniel; Palti, Eran

    2017-01-01

    We study scenarios where a scalar field has a spatially varying vacuum expectation value such that the total field variation is super-Planckian. We focus on the case where the scalar field controls the coupling of a U(1) gauge field, which allows us to apply the Weak Gravity Conjecture to such configurations. We show that this leads to evidence for a conjectured property of quantum gravity that as a scalar field variation in field space asymptotes to infinity there must exist an infinite tower of states whose mass decreases as an exponential function of the scalar field variation. We determine the rate at which the mass of the states reaches this exponential behaviour showing that it occurs quickly after the field variation passes the Planck scale.

  16. Near real-time GRACE gravity field solutions for hydrological monitoring applications

    NASA Astrophysics Data System (ADS)

    Kvas, Andreas; Gouweleeuw, Ben; Mayer-Gürr, Torsten; Güntner, Andreas

    2016-04-01

    Within the EGSIEM (European Gravity Service for Improved Emergency Management) project, a demonstrator for a near real-time (NRT) gravity field service which provides daily GRACE gravity field solutions will be established. Compared to the official GRACE gravity products, these NRT solutions will increase the temporal resolution from one month to one day and reduce the latency from currently two months to five days. This fast availability allows the monitoring of total water storage variations and of hydrological extreme events as they occur, in contrast to a 'confirmation after occurrence' as is the situation today. The service will be jointly run by GFZ (German Research Centre for Geosciences) and Graz University of Technology, with each analysis center providing an independent solution. A Kalman filter framework, in which GRACE data is combined with prior information, serves as basis for the gravity field recovery in order to increase the redundancy of the gravity field estimates. The on-line nature of the NRT service necessitates a tailored smoothing algorithm as opposed to post-processing applications, where forward-backward smoothing can be applied. This contribution gives an overview on the near real-time processing chain and highlights differences between the computed NRT solutions and the standard GRACE products. We discuss the special characteristics of the Kalman filtered gravity field models as well as derived products and give an estimate of the expected error levels. Additionally, we show the added value of the NRT solutions through comparison of the first results of the pre-operational phase with in-situ data and monthly GRACE gravity field models.

  17. 3D quantum gravity and effective noncommutative quantum field theory.

    PubMed

    Freidel, Laurent; Livine, Etera R

    2006-06-09

    We show that the effective dynamics of matter fields coupled to 3D quantum gravity is described after integration over the gravitational degrees of freedom by a braided noncommutative quantum field theory symmetric under a kappa deformation of the Poincaré group.

  18. Isothermal gas-liquid flow at reduced gravity

    NASA Technical Reports Server (NTRS)

    Dukler, A. E.

    1990-01-01

    Research on adiabatic gas-liquid flows under reduced gravity condition is presented together with experimental data obtained using a NASA-Lewis RC 100-ft drop tower and in a LeRC Learjet. It is found that flow patterns and characteristics remain unchanged after the first 1.5 s into microgravity conditions and that the calculated time for a continuity wave to traverse the test section is less than 1.2 s. It is also found that the dispersed bubbles move at the same velocity as that of the front of the slug and that the transition between bubbly and slug flow is insensitive to diameter. Both the bubbly and the slug flows are suggested to represent a continuum of the same physical process. The characteristics of annular, slug, and bubbly flows are compared.

  19. Fluid mechanics of directional solidification at reduced gravity

    NASA Technical Reports Server (NTRS)

    Chen, C. F.

    1992-01-01

    The primary objective of the proposed research is to provide additional groundbased support for the flight experiment 'Casting and Solidification Technology' (CAST). This experiment is to be performed in the International Microgravity Laboratory-1 (IML-1) scheduled to be flown on a space shuttle mission scheduled for 1992. In particular, we will provide data on the convective motion and freckle formation during directional solidification of NH4Cl from its aqueous solution at simulated parameter ranges equivalent to reducing the gravity from the sea-level value down to 0.1 g or lower. The secondary objectives of the proposed research are to examine the stability phenomena associated with the onset of freckles and the mechanisms for their subsequent growth and decline (to eventual demise of some) by state-of-the-art imaging techniques and to formulate mathematical models for the prediction of the observed phenomena.

  20. Combustion of Han-Based Monopropellant Droplets in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Shaw, B. D.

    1999-01-01

    The objective of this research is to study combustion of monopropellant droplets and monopropellant droplet components in reduced-gravity environments so that spherical symmetry is strongly promoted. The experiments will use hydroxylammonium nitrate (HAN, chemical formula NH3OHNO3) based monopropellants. This class of monopropellant is selected for study because of its current relevance and also because it is relatively benign and safe to work with. The experimental studies will allow for accurate determination of fundamental data on deflagration rates, gas-phase temperature profiles, transient gas-phase flame behaviors, the onset of bubbling in droplets at lower pressures, and the low-pressure deflagration limit. The theoretical studies will provide rational models of deflagration mechanisms of HAN-based liquid propellants. Besides advancing fundamental knowledge, the proposed research should aid in applications (e.g., spacecraft thrusters and liquid propellant guns) of this unique class of monopropellants.

  1. Finite field-dependent symmetries in perturbative quantum gravity

    SciTech Connect

    Upadhyay, Sudhaker

    2014-01-15

    In this paper we discuss the absolutely anticommuting nilpotent symmetries for perturbative quantum gravity in general curved spacetime in linear and non-linear gauges. Further, we analyze the finite field-dependent BRST (FFBRST) transformation for perturbative quantum gravity in general curved spacetime. The FFBRST transformation changes the gauge-fixing and ghost parts of the perturbative quantum gravity within functional integration. However, the operation of such symmetry transformation on the generating functional of perturbative quantum gravity does not affect the theory on physical ground. The FFBRST transformation with appropriate choices of finite BRST parameter connects non-linear Curci–Ferrari and Landau gauges of perturbative quantum gravity. The validity of the results is also established at quantum level using Batalin–Vilkovisky (BV) formulation. -- Highlights: •The perturbative quantum gravity is treated as gauge theory. •BRST and anti-BRST transformations are developed in linear and non-linear gauges. •BRST transformation is generalized by making it finite and field dependent. •Connection between linear and non-linear gauges is established. •Using BV formulation the results are established at quantum level also.

  2. Lessons Learned from Performance Testing of Humans in Spacesuits in Simulated Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Norcross, Jason R.; Chappell, Steven P.; Gernhardt, Michael L.

    2010-01-01

    Introduction: The overarching objective of the Integrated Suit Test (IST) series is to evaluate suited human performance using reduced-gravity analogs and learn what aspects of an EVA suit system affect human performance. For this objective to be successfully achieved, the testing methodology should be valid and reproducible, and the partial-gravity simulations must be as accurate and realistic as possible. Objectives: To highlight some of the key lessons learned about partial-gravity analogs and testing methodology, and to suggest considerations for optimizing the effectiveness and quality of results of future tests. Methods: Performance testing of suited and unsuited subjects was undertaken in different reduced-gravity analogs including the Space Vehicle Mockup Facility s Partial Gravity Simulator (POGO), parabolic flight on the C-9 aircraft, underwater environments including NASA s Extreme Environment Mission Operations (NEEMO) and the Neutral Buoyancy Lab (NBL), and in field analogs including Desert Research and Technology Studies (RATS), the Haughton Mars Project (HMP), and the JSC Rock Pile. Subjects performed level walking, incline/decline walking, running, shoveling, picking up and transferring rocks, kneeling/standing, and task boards. Lessons Learned Analogs: No single analog will properly simulate all aspects of the true partial-gravity environment. The POGO is an ideal environment from the standpoint that there are no time limits or significant volumetric constraints, but it does have several limitations. It allows only 2 translational degrees of freedom (DOF) and applies true partial-gravity offload only through the subject s center of gravity (CG). Also, when a subject is doing non-stationary tasks, significant overhead inertia from the lift column seems to have a negative impact on performance. Parabolic flight allows full translational and rotational DOF and applies offload to all parts of the body, but the simulation lasts less than 30 seconds

  3. Shear waves in inhomogeneous, compressible fluids in a gravity field.

    PubMed

    Godin, Oleg A

    2014-03-01

    While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.

  4. Bi-Component Droplet Combustion in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Shaw, B. D.

    2003-01-01

    This research deals with reduced-gravity combustion of bi-component droplets initially in the mm size range or larger. The primary objectives of the research are to study the effects of droplet internal flows, thermal and solutal Marangoni stresses, and species volatility differences on liquid species transport and overall combustion phenomena (e.g., gas-phase unsteadiness, burning rates, sooting, radiation, and extinction). The research program utilizes a reduced-gravity environment so that buoyancy effects are rendered negligible. Use of large droplets also facilitates visualization of droplet internal flows, which is important for this research. In the experiments, droplets composed of low- and high-volatility species are burned. The low-volatility components are initially present in small amounts. As combustion of a droplet proceeds, the liquid surface mass fraction of the low-volatility component will increase with time, resulting in a sudden and temporary decrease in droplet burning rates as the droplet rapidly heats to temperatures close to the boiling point of the low-volatility component. This decrease in burning rates causes a sudden and temporary contraction of the flame. The decrease in burning rates and the flame contraction can be observed experimentally. Measurements of burning rates as well as the onset time for flame contraction allow effective liquid-phase species diffusivities to be calculated, e.g., using asymptotic theory. It is planned that droplet internal flows will be visualized in flight and ground-based experiments. In this way, effective liquid species diffusivities can be related to droplet internal flow characteristics. This program is a continuation of extensive ground based experimental and theoretical research on bi-component droplet combustion that has been ongoing for several years. The focal point of this program is a flight experiment (Bi-Component Droplet Combustion Experiment, BCDCE). This flight experiment is under

  5. Mutualism in a Reduced Gravity Environment (MuRGE)

    NASA Technical Reports Server (NTRS)

    Haire, Timothy C.

    2010-01-01

    Mutualism in a Reduced Gravity Environment (MuRGE) is a ground research study to determine the feasibility of assessing fungi-plant (Piriformospora indica-Arabidopsis thaliana) interactions in microgravity. Seeds from the plant Arabiddospsis thaliana (At) will be grown in the presence of Piriformospora indica (Pi) an endophytic Sebacinacae family fungus. Pi is capable of colonizing the roots of a wide variety of plant species, including non-mycorrhizal hosts like At, and promoting plant growth similarly to AMF (arbusuclar mychorrizal fungi) unlike most AMF, Pi is not an obligate plant symbiont and can be grown in the absence of a host. In the presence of a suitable plant host, Pi can attach to and colonize root tips. Interaction visualization is accomplished with strong autofluorescence in the roots, followed by root colonization via fungal hyphae, and chlamydospore production. Increased root growth can be observed even before root colonization is detectable. In addition, Pi chlamydospores generated from axenic culture in microgravity will be used to inoculate roots of At grown in 1g to determine the effect of microgravity upon the inherent virulence or beneficial effects. Based on recent reports of increased virulence of S. typhimurium, P. aeruginosa, and S. Pneumoniae in reduced gravity, differences in microbial pathogenic responses and host plant systemic acquired resistance are expected. The focus of this project within MuRGE involved the development P. indica culture media evaluation and microscopy protocol development. High, clean spore harvest yields for the detection of fungi-plant interactions microscopically was the immediate goal of this experiment.

  6. Bi-Component Droplet Combustion in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Shaw, Benjamin D.

    2004-01-01

    This research deals with reduced-gravity combustion of bi-component droplets initially in the mm size range or larger. The primary objectives of the research are to study the effects of droplet internal flows, thermal and solutal Marangoni stresses, and species volatility differences on liquid species transport and overall combustion phenomena (e.g., gas-phase unsteadiness, burning rates, sooting, radiation, and extinction). The research program utilizes a reduced gravity environment so that buoyancy effects are rendered negligible. Use of large droplets also facilitates visualization of droplet internal flows, which is important for this research. In the experiments, droplets composed of low- and high-volatility species are burned. The low-volatility components are initially present in small amounts. As combustion of a droplet proceeds, the liquid surface mass fraction of the low-volatility component will increase with time, resulting in a sudden and temporary decrease in droplet burning rates as the droplet rapidly heats to temperatures close to the boiling point of the low-volatility component. This decrease in burning rates causes a sudden and temporary contraction of the flame. The decrease in burning rates and the flame contraction can be observed experimentally. Measurements of burning rates as well as the onset time for flame contraction allow effective liquid-phase species diffusivities to be calculated, e.g., using asymptotic theory. It is planned that droplet internal flows will be visualized in flight and ground-based experiments. In this way, effective liquid species diffusivities can be related to droplet internal flow characteristics. This program is a continuation of extensive ground-based experimental and theoretical research on bi-component droplet combustion that has been ongoing for several years. The focal point of this program is a flight experiment (Bi-Component Droplet Combustion Experiment, BCDCE). This flight experiment is under

  7. An improved model for the Earth's gravity field

    NASA Technical Reports Server (NTRS)

    Tapley, B. D.; Shum, C. K.; Yuan, D. N.; Ries, J. C.; Schutz, B. E.

    1989-01-01

    An improved model for the Earth's gravity field, TEG-1, was determined using data sets from fourteen satellites, spanning the inclination ranges from 15 to 115 deg, and global surface gravity anomaly data. The satellite measurements include laser ranging data, Doppler range-rate data, and satellite-to-ocean radar altimeter data measurements, which include the direct height measurement and the differenced measurements at ground track crossings (crossover measurements). Also determined was another gravity field model, TEG-1S, which included all the data sets in TEG-1 with the exception of direct altimeter data. The effort has included an intense scrutiny of the gravity field solution methodology. The estimated parameters included geopotential coefficients complete to degree and order 50 with selected higher order coefficients, ocean and solid Earth tide parameters, Doppler tracking station coordinates and the quasi-stationary sea surface topography. Extensive error analysis and calibration of the formal covariance matrix indicate that the gravity field model is a significant improvement over previous models and can be used for general applications in geodesy.

  8. High-resolution regional gravity field modelling in a mountainous area from terrestrial gravity data

    NASA Astrophysics Data System (ADS)

    Bucha, Blažej; Janák, Juraj; Papčo, Juraj; Bezděk, Aleš

    2016-11-01

    We develop a high-resolution regional gravity field model by a combination of spherical harmonics, band-limited spherical radial basis functions (SRBFs) and the residual terrain model (RTM) technique. As the main input data set, we employ a dense terrestrial gravity database (3-6 stations km-2), which enables gravity field modelling up to very short spatial scales. The approach is based on the remove-compute-restore methodology in which all the parts of the signal that can be modelled are removed prior to the least-squares adjustment in order to smooth the input gravity data. To this end, we utilize degree-2159 spherical harmonic models and the RTM technique using topographic models at 2 arcsec resolution. The residual short-scale gravity signal is modelled via the band-limited Shannon SRBF expanded up to degree 21 600, which corresponds to a spatial resolution of 30 arcsec. The combined model is validated against GNSS/levelling-based height anomalies, independent surface gravity data, deflections of the vertical and terrestrial vertical gravity gradients achieving an accuracy of 2.7 cm, 0.53 mGal, 0.39 arcsec and 279 E in terms of the RMS error, respectively. A key aspect of the combined approach, especially in mountainous areas, is the quality of the RTM. We therefore compare the performance of two RTM techniques within the innermost zone, the tesseroids and the polyhedron. It is shown that the polyhedron-based approach should be preferred in rugged terrain if a high-quality RTM is required. In addition, we deal with the RTM computations at points located below the reference surface of the residual terrain which is known to be a rather delicate issue.

  9. High-Resolution Gravity and Time-Varying Gravity Field Recovery using GRACE and CHAMP

    NASA Technical Reports Server (NTRS)

    Shum, C. K.

    2002-01-01

    This progress report summarizes the research work conducted under NASA's Solid Earth and Natural Hazards Program 1998 (SENH98) entitled High Resolution Gravity and Time Varying Gravity Field Recovery Using GRACE (Gravity Recovery and Climate Experiment) and CHAMP (Challenging Mini-satellite Package for Geophysical Research and Applications), which included a no-cost extension time period. The investigation has conducted pilot studies to use the simulated GRACE and CHAMP data and other in situ and space geodetic observable, satellite altimeter data, and ocean mass variation data to study the dynamic processes of the Earth which affect climate change. Results from this investigation include: (1) a new method to use the energy approach for expressing gravity mission data as in situ measurements with the possibility to enhance the spatial resolution of the gravity signal; (2) the method was tested using CHAMP and validated with the development of a mean gravity field model using CHAMP data, (3) elaborate simulation to quantify errors of tides and atmosphere and to recover hydrological and oceanic signals using GRACE, results show that there are significant aliasing effect and errors being amplified in the GRACE resonant geopotential and it is not trivial to remove these errors, and (4) quantification of oceanic and ice sheet mass changes in a geophysical constraint study to assess their contributions to global sea level change, while the results improved significant over the use of previous studies using only the SLR (Satellite Laser Ranging)-determined zonal gravity change data, the constraint could be further improved with additional information on mantle rheology, PGR (Post-Glacial Rebound) and ice loading history. A list of relevant presentations and publications is attached, along with a summary of the SENH investigation generated in 2000.

  10. Validation of the EGSIEM combined monthly GRACE gravity fields

    NASA Astrophysics Data System (ADS)

    Li, Zhao; van Dam, Tonie; Chen, Qiang; Weigelt, Matthias; Güntner, Andreas; Jäggi, Adrian; Meyer, Ulrich; Jean, Yoomin; Altamimi, Zuheir; Rebischung, Paul

    2016-04-01

    Observations indicate that global warming is affecting the water cycle. Here in Europe predictions are for more frequent high precipitation events, wetter winters, and longer and dryer summers. The consequences of these changes include the decreasing availability of fresh water resources in some regions as well as flooding and erosion of coastal and low-lying areas in other regions. These weather related effects impose heavy costs on society and the economy. We cannot stop the immediate effects global warming on the water cycle. But there may be measures that we can take to mitigate the costs to society. The Horizon2020 supported project, European Gravity Service for Improved Emergency Management (EGSIEM), will add value to EO observations of variations in the Earth's gravity field. In particular, the EGSIEM project will interpret the observations of gravity field changes in terms of changes in continental water storage. The project team will develop tools to alert the public water storage conditions could indicate the onset of regional flooding or drought. As part of the EGSIEM project, a combined GRACE gravity product is generated, using various monthly GRACE solutions from associated processing centers (ACs). Since each AC follows a set of common processing standards but applies its own independent analysis method, the quality, robustness, and reliability of the monthly combined gravity fields should be significantly improved as compared to any individual solution. In this study, we present detailed and updated comparisons of the combined EGSIEM GRACE gravity product with GPS position time series, hydrological models, and existing GRACE gravity fields. The GPS residuals are latest REPRO2 station position residuals, obtained by rigorously stacking the IGS Repro 2 , daily solutions, estimating, and then restoring the annual and semi-annual signals.

  11. Status of Next Generation GRACE Gravity Field Data Products

    NASA Astrophysics Data System (ADS)

    Bettadpur, S.; Team, L.

    2006-12-01

    The Gravity Recovery And Climate Experiment was launched on Mar 17, 2002 in order to measure mass flux within the Earth system through its effects on Earth's gravity field. Since that time, using the inter-satellite tracking data between the twin GRACE satellites, monthly gravity field estimates for more than 4 years have been delivered to the user community, and these fields have shown clear evidence of hydrological, oceanographic & glaciological phenomena. The GRACE Science Data System is in the midst of a re-processing activity, focusing on improvements to the background models and processing methodology. This paper describes the status of the new results from the re-processing, including changes to the background models, improvement in the processing, and the resulting error characteristics.

  12. Phobos interior structure from its gravity field

    NASA Astrophysics Data System (ADS)

    Le Maistre, S.; Rosenblatt, P.; Rivoldini, A.

    2015-10-01

    Phobos origin remains mysterious. It could be a captured asteroid, or an in-situ object co-accreted with Mars or formed by accretion from a disk of impact ejecta.Although it is not straightforward to relate its interior properties to its origin, it is easy to agree that the interior properties of any body has to be accounted for to explain its life's history. What event could explain such an internal structure? Where should this object formed to present such interior characteristics and composition? We perform here numerical simulations to assess the ability of a gravity experiment to constrain the interior structure of the martian moon Phobos, which could in turn allow distinguishing among the competing scenarios for the moon's origin.

  13. Gradio - Earth gravity field measurement on Aristoteles

    NASA Astrophysics Data System (ADS)

    Pawlak, D.; Meyer, Ph.; Bernard, A.; Touboul, P.

    1991-10-01

    The design and operation of Gradio, the instrument that was specifically designed for precise gradiometry measurements during the Aristoteles mission, are described. The Gradio is based on simultaneous measurements by four three-axis ultrasensitive accelerometers performed in several locations on a rigid stable structure, called gradio plate, which are then used to compute g gradients. The operational phase of Gradio will last 6 months; the orbit will be circular, near polar, and heliosynchronous, at an altitude of 200 km. It is estimated that Gradio will measure the two main components T(yy) and T(zz) of the gravity gradient tensor in the (0.005, 0.125) Hz frequency bandwidth with an accuracy of 0.01 E.U.

  14. Mars gravity field derived from Viking-1 and Viking-2 - The navigation result

    NASA Technical Reports Server (NTRS)

    Christensen, E. J.; Williams, B. G.

    1978-01-01

    Viking-1 and Viking-2 Doppler tracking data taken during orbit phases characterized by 1500 km subperiapse altitudes have provided a basis for a determination of the Martian gravity field. Navigation results show that the linear combination of short-arc gravity estimates is an acceptable technique for obtaining gravity models over multiple data arcs. An ensemble field composed of Viking data and Mariner-9 a priori retains the inherent local accuracy of its constituent fields. At the same time, the model can be made to be valid globally by careful weighting of a priori Mariner-9 data. The sixth degree and order model presented reduces the error concerning the change in period by more than an order of magnitude during the high altitude (1500 km) phases of the Viking mission. The resulting areoid deviates by no more than 150 m from the areoid produced by the a priori Mariner-9 field.

  15. Gravity field estimation from future space missions - TOPEX/POSEIDON, Gravity Probe B, and ARISTOTELES

    NASA Technical Reports Server (NTRS)

    Pavlis, Erricos C.

    1992-01-01

    Accurate knowledge of the gravity field is a firm requirement in any study of Planet Earth. Space techniques have so far demonstrated their superiority in the global mapping of the gravity field based on ground tracking and altimeter data mostly. Numerical and analytical simulation studies of the upcoming geophysically relevant missions that will most likely carry GPS receivers, indicate significant improvements in the accuracy as well as the resolution of the gravity field. TOPEX will improve by some two orders of magnitude the long wavelength part (to degree about 20), while GP-B will contribute in the long as well as medium wavelength part of the spectrum (up to degree about 60). The gradiometer measurements on ARISTOTELES will contribute in the medium and short wavelength regions (from degree 30 up); GPS tracking of the spacecraft though will provide additional information for the long wavelength gravity and will help resolve it to accuracies comparable to those obtained from GP-B. With the mean rms coefficient error per degree kept below 10 exp -10, geophysical signals such as the post-glacial rebound, tidal variations, and secular and periodic variations of the zonal field rise above the noise level and become readily observable processes.

  16. Gravity field estimation from future space missions - TOPEX/POSEIDON, Gravity Probe B, and ARISTOTELES

    NASA Astrophysics Data System (ADS)

    Pavlis, Erricos C.

    Accurate knowledge of the gravity field is a firm requirement in any study of Planet Earth. Space techniques have so far demonstrated their superiority in the global mapping of the gravity field based on ground tracking and altimeter data mostly. Numerical and analytical simulation studies of the upcoming geophysically relevant missions that will most likely carry GPS receivers, indicate significant improvements in the accuracy as well as the resolution of the gravity field. TOPEX will improve by some two orders of magnitude the long wavelength part (to degree about 20), while GP-B will contribute in the long as well as medium wavelength part of the spectrum (up to degree about 60). The gradiometer measurements on ARISTOTELES will contribute in the medium and short wavelength regions (from degree 30 up); GPS tracking of the spacecraft though will provide additional information for the long wavelength gravity and will help resolve it to accuracies comparable to those obtained from GP-B. With the mean rms coefficient error per degree kept below 10 exp -10, geophysical signals such as the post-glacial rebound, tidal variations, and secular and periodic variations of the zonal field rise above the noise level and become readily observable processes.

  17. Dark energy cosmology with tachyon field in teleparallel gravity

    NASA Astrophysics Data System (ADS)

    Motavalli, H.; Akbarieh, A. Rezaei; Nasiry, M.

    2016-07-01

    We construct a tachyon teleparallel dark energy model for a homogeneous and isotropic flat universe in which a tachyon as a non-canonical scalar field is non-minimally coupled to gravity in the framework of teleparallel gravity. The explicit form of potential and coupling functions are obtained under the assumption that the Lagrangian admits the Noether symmetry approach. The dynamical behavior of the basic cosmological observables is compared to recent observational data, which implies that the tachyon field may serve as a candidate for dark energy.

  18. Earth's gravity field mapping requirements and concept. [using a supercooled gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Vonbun, F. O.; Kahn, W. D.

    1981-01-01

    A future sensor is considered for mapping the Earth's gravity field to meet future scientific and practical requirements for earth and oceanic dynamics. These are approximately + or - 0.1 to 10 mgal over a block size of about 50 km and over land and an ocean geoid to 1 to 2 cm over a distance of about 50 km. To achieve these values requires a gravity gradiometer with a sensitivity of approximately 10 to the -4 power EU in a circular polar orbiting spacecraft with an orbital altitude ranging 160 km to 180 km.

  19. Comustion of HAN-Based Monopropellant Droplets in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Shaw, B. D.

    2001-01-01

    Hydroxylammonium nitrate (HAN) is a major constituent in a class of liquid monopropellants that have many attractive characteristics and which display phenomena that differ significantly from other liquid monopropellants. They are composed primarily of HAN, H2O and a fuel species, often triethanolammonium nitrate (TEAN). HAN-based propellants have attracted attention as liquid gun propellants, and are attractive for NASA spacecraft propulsion applications. A representative propellant is XM46. This mixture is 60.8% HAN, 19.2% TEAN and 20% H2O by weight. Other HAN-based propellant mixtures are also of interest. For example, methanol and glycine have been investigated as potential fuel species for HAN-based monopropellants for thruster applications. In the present research, experimental and theoretical studies are performed on combustion of HAN-based monopropellant droplets. The fuel species considered are TEAN, methanol and glycine. Droplets initially in the mm size range are studied at pressures up to 30 atm. These pressures are applicable to spacecraft thruster applications. The droplets are placed in environments with various amounts of Ar, N2, O2, NO2 and N2O. Reduced gravity is employed to enable observations of burning rates and flame structures to be made without the complicating effects of buoyant and forced convection. Normal gravity experiments are also performed in this research program. The experiment goals are to provide accurate fundamental data on deflagration rates, gasphase temperature profiles, transient gas-phase flame behaviors, the onset of bubbling in droplets at lower pressures, and the low-pressure deflagration limit. Theoretical studies are performed to provide rational models of deflagration mechanisms of HAN-based liquid propellants. Besides advancing fundamental knowledge, this research should aid in applications (e.g., spacecraft thrusters and liquid propellant guns) of this unique class of monopropellants.

  20. Combined Gravity Gradient and Jitter Accelerations Acting on Liquid-Vapor Interface Oscillations in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.

    1995-01-01

    The dynamical behavior of fluids affected by the asymmetric combined gravity gradient and jitter accelerations, in particular the effect of surface tension on partially-filled rotating fluids applicable to a full-scale Gravity Probe-B Spacecraft dewar tank, have been investigated. Three different cases of accelerations, one gravity gradient-dominated, one equally weighted between gravity gradient and jitter, and the others gravity jitter-dominated are studied. Results of slosh wave excitation along the liquid-vapor interface induced by gravity gradient-dominated acceleration indicate that the gravity gradient-dominated acceleration is equivalent to the combined effect of a twisting force and torsional moment acting on the spacecraft. Results of the slosh wave excitation along the liquid vapor interface induced by gravity jitter-dominated acceleration indicate that the gravity jitter-dominated acceleration is equivalent to time-dependent oscillatory forces which push the bubble in the combined directions of down-and-up and sideward -and-middleward as the bubble is rotating with respect to rotating dewar axis. This study discloses the slosh wave excitation along the liquid-vapor interface driven by the combined effects of gravity gradient and jitter accelerations which are two major driving forces affecting the stability of the fluid system in microgravity.

  1. Gravity field fine structure estimation techniques for a spaceborne gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Kahn, W. D.; Englar, T. S., Jr.

    1987-01-01

    Use of standard estimation techniques to recover geopotential fine structure from gradiometer data requires the adjustment of small subsets of parameters while constraining others to their a priori values in order to minimize the computational load. Here, gravitational anomalies are selected as a parametrization of the gravity field which permits such an approach. Techniques coupled with numerical results for a spaceborne gravity gradiometer mission simulation are described which demonstrate that if a satellite is in a polar/circular orbit at an altitude of 160 km, 1 deg mean free air gravity anomalies can be recovered to an accuracy of 0.4 mgal, where 1 mgal = 0.001 cm/sq s.

  2. Higher derivative gravity: Field equation as the equation of state

    NASA Astrophysics Data System (ADS)

    Dey, Ramit; Liberati, Stefano; Mohd, Arif

    2016-08-01

    One of the striking features of general relativity is that the Einstein equation is implied by the Clausius relation imposed on a small patch of locally constructed causal horizon. The extension of this thermodynamic derivation of the field equation to more general theories of gravity has been attempted many times in the last two decades. In particular, equations of motion for minimally coupled higher-curvature theories of gravity, but without the derivatives of curvature, have previously been derived using a thermodynamic reasoning. In that derivation the horizon slices were endowed with an entropy density whose form resembles that of the Noether charge for diffeomorphisms, and was dubbed the Noetheresque entropy. In this paper, we propose a new entropy density, closely related to the Noetheresque form, such that the field equation of any diffeomorphism-invariant metric theory of gravity can be derived by imposing the Clausius relation on a small patch of local causal horizon.

  3. Gravity field and internal structure of Mercury from MESSENGER.

    PubMed

    Smith, David E; Zuber, Maria T; Phillips, Roger J; Solomon, Sean C; Hauck, Steven A; Lemoine, Frank G; Mazarico, Erwan; Neumann, Gregory A; Peale, Stanton J; Margot, Jean-Luc; Johnson, Catherine L; Torrence, Mark H; Perry, Mark E; Rowlands, David D; Goossens, Sander; Head, James W; Taylor, Anthony H

    2012-04-13

    Radio tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury's northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/MR(2) = 0.353 ± 0.017, where M and R are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of C(m)/C = 0.452 ± 0.035. A model for Mercury's radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core.

  4. A dynamic model of Venus's gravity field

    NASA Technical Reports Server (NTRS)

    Kiefer, W. S.; Richards, M. A.; Hager, B. H.; Bills, B. G.

    1984-01-01

    Unlike Earth, long wavelength gravity anomalies and topography correlate well on Venus. Venus's admittance curve from spherical harmonic degree 2 to 18 is inconsistent with either Airy or Pratt isostasy, but is consistent with dynamic support from mantle convection. A model using whole mantle flow and a high viscosity near surface layer overlying a constant viscosity mantle reproduces this admittance curve. On Earth, the effective viscosity deduced from geoid modeling increases by a factor of 300 from the asthenosphere to the lower mantle. These viscosity estimates may be biased by the neglect of lateral variations in mantle viscosity associated with hot plumes and cold subducted slabs. The different effective viscosity profiles for Earth and Venus may reflect their convective styles, with tectonism and mantle heat transport dominated by hot plumes on Venus and by subducted slabs on Earth. Convection at degree 2 appears much stronger on Earth than on Venus. A degree 2 convective structure may be unstable on Venus, but may have been stabilized on Earth by the insulating effects of the Pangean supercontinental assemblage.

  5. Brane structure from a scalar field in general covariant Horava-Lifshitz gravity

    NASA Astrophysics Data System (ADS)

    Bazeia, D.; Brito, F. A.; Costa, F. G.

    2015-02-01

    In this paper we have considered the structure of the nonprojectable Horava-Melby-Thompson gravity to find braneworld scenarios. A relativistic scalar field is considered in the matter sector and we have shown how to reduce the equations of motion to first-order differential equations. In particular, we have studied thick brane solutions of both the dilatonic and Randall-Sundrum types.

  6. Transition from Pool to Flow Boiling: The Effect of Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Dhir, Vijay K.

    2004-01-01

    Applications of boiling heat transfer in space can be found in the areas of thermal management, fluid handling and control, power systems, on-orbit storage and supply systems for cryogenic propellants and life support fluids, and for cooling of electronic packages for power systems associated with various instrumentation and control systems. Recent interest in exploration of Mars and other planets, and the concepts of in-situ resource utiliLation on Mars highlights the need to understand the effect of gravity on boiling heat transfer at gravity levels varying from 1>= g/g(sub e) >=10(exp -6). The objective of the proposed work was to develop a mechanistic understanding of nucleate boiling and critical heat flux under low and micro-gravity conditions when the velocity of the imposed flow is small. For pool boiling, the effect of reduced gravity is to stretch both the length scale as well as the time scale for the boiling process. At high flow velocities, the inertia of the liquid determines the time and the length scales and as such the gravitational acceleration plays little role. However, at low velocities and at low gravity levels both liquid inertia and buoyancy are of equal importance. At present, we have little understanding of the interacting roles of gravity and liquid inertia on the nucleate boiling process. Little data that has been reported in the literature does not have much practical value in that it can not serve as a basis for design of heat exchange components to be used in space. Both experimental and complete numerical simulations of the low velocity, low-gravity nucleate boiling process were carried out. A building block type of approach was used in that first the growth and detachment process of a single bubble and flow and heat transfer associated with the sliding motion of the bubble over the heater surface after detachment was studied. Liquid subcooling and flow velocity were varied parametrically. The experiments were conducted at 1 g(sub e

  7. Bi-Component Droplet Combustion in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Shaw, B. D.

    2001-01-01

    This research deals with reduced-gravity combustion of bi-component droplets initially in the mm size range or larger. The primary objectives of the research are to study the effects of droplet internal flows, thermal and solutal Marangoni stresses, and species volatility differences on liquid species transport and overall combustion phenomena (e.g., gas-phase unsteadiness, burning rates, sooting, radiation, and extinction). The research program utilizes a reduced-gravity environment so that buoyancy effects are rendered negligible. Use of large droplets also facilitates visualization of droplet internal flows, which is important for this research. In the experiments, droplets composed of low- and high-volatility species are burned. The low-volatility components are initially present in small amounts. As combustion of a droplet proceeds, the liquid surface mass fraction of the low-volatility component will increase with time, resulting in a sudden and temporary decrease in droplet burning rates as the droplet rapidly heats to temperatures close to the boiling point of the low-volatility component. This decrease in burning rates causes a sudden and temporary contraction of the flame. The decrease in burning rates and the flame contraction can be observed experimentally. Measurements of burning rates as well as the onset time for flame contraction allow effective liquid-phase species diffusivities to be calculated, e.g., using asymptotic theory. It is planned that droplet internal flows will be visualized in future flight and ground-based experiments. In this way, effective liquid species diffusivities can be related to droplet internal flow characteristics. This program is a continuation of extensive ground based experimental and theoretical research on bi-component droplet combustion that has been ongoing for several years. The focal point of this program is a flight experiment (Bi-Component Droplet Combustion Experiment, BCDCE). This flight experiment is under

  8. Earth's gravity field modelling based on satellite accelerations derived from onboard GPS phase measurements

    NASA Astrophysics Data System (ADS)

    Guo, X.; Ditmar, P.; Zhao, Q.; Klees, R.; Farahani, H. H.

    2017-02-01

    GPS data collected by satellite gravity missions can be used for extracting the long-wavelength part of the Earth's gravity field. We propose a new data processing method which makes use of the `average acceleration' approach to gravity field modelling. In this method, satellite accelerations are directly derived from GPS carrier phase measurements with an epoch-differenced scheme. As a result, no ambiguity solutions are needed and the systematic errors that do not change much from epoch to epoch are largely eliminated. The GPS data collected by the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite mission are used to demonstrate the added value of the proposed method. An analysis of the residual accelerations shows that accelerations derived in this way are more precise, with noise being reduced by about 20 and 5% at the cross-track component and the other two components, respectively, as compared to those based on kinematic orbits. The accelerations obtained in this way allow the recovery of the gravity field to a slightly higher maximum degree compared to the solution based on kinematic orbits. Furthermore, the gravity field solution has an overall better performance. Errors in spherical harmonic coefficients are smaller, especially at low degrees. The cumulative geoid height error is reduced by about 15 and 5% up to degree 50 and 150, respectively. An analysis in the spatial domain shows that large errors along the geomagnetic equator, which are caused by a high electron density coupled with large short-term variations, are substantially reduced. Finally, the new method allows for a better observation of mass transport signals. In particular, sufficiently realistic signatures of regional mass anomalies in North America and south-west Africa are obtained.

  9. Arctic Ocean Gravity Field Derived From ERS-1 Satellite Altimetry.

    PubMed

    Laxon, S; McAdoo, D

    1994-07-29

    The derivation of a marine gravity field from satellite altimetry over permanently ice-covered regions of the Arctic Ocean provides much new geophysical information about the structure and development of the Arctic sea floor. The Arctic Ocean, because of its remote location and perpetual ice cover, remains from a tectonic point of view the most poorly understood ocean basin on Earth. A gravity field has been derived with data from the ERS-1 radar altimeter, including permanently ice-covered regions. The gravity field described here clearly delineates sections of the Arctic Basin margin along with the tips of the Lomonosov and Arctic mid-ocean ridges. Several important tectonic features of the Amerasia Basin are clearly expressed in this gravity field. These include the Mendeleev Ridge; the Northwind Ridge; details of the Chukchi Borderland; and a north-south trending, linear feature in the middle of the Canada Basin that apparently represents an extinct spreading center that "died" in the Mesozoic. Some tectonic models of the Canada Basin have proposed such a failed spreading center, but its actual existence and location were heretofore unknown.

  10. Collapse of charged scalar field in dilaton gravity

    SciTech Connect

    Borkowska, Anna; Rogatko, Marek; Moderski, Rafal

    2011-04-15

    We elaborated the gravitational collapse of a self-gravitating complex charged scalar field in the context of the low-energy limit of the string theory, the so-called dilaton gravity. We begin with the regular spacetime and follow the evolution through the formation of an apparent horizon and the final central singularity.

  11. Rhea gravity field and interior modeling from Cassini data analysis

    NASA Astrophysics Data System (ADS)

    Tortora, Paolo; Zannoni, Marco; Hemingway, Doug; Nimmo, Francis; Jacobson, Robert A.; Iess, Luciano; Parisi, Marzia

    2016-01-01

    During its tour of the Saturn system, Cassini performed two close flybys of Rhea dedicated to gravity investigations, the first in November 2005 and the second in March 2013. This paper presents an estimation of Rhea's fully unconstrained quadrupole gravity field obtained from a joint multi-arc analysis of the two Cassini flybys. Our best estimates of the main gravity quadrupole unnormalized coefficients are J2 × 106 = 946.0 ± 13.9, C22 × 106 = 242.1 ± 4.0 (uncertainties are 1-σ). Their resulting ratio is J2/C22 = 3.91 ± 0.10, statistically not compatible (at a 5-σ level) with the theoretical value of 10/3, predicted for a hydrostatic satellite in slow, synchronous rotation around a planet. Therefore, it is not possible to infer the moment of inertia factor directly using the Radau-Darwin approximation. The observed excess J2 (gravity oblateness) was investigated using a combined analysis of gravity and topography, under different plausible geophysical assumptions. The observed gravity is consistent with that generated by the observed shape for an undifferentiated (uniform density) body. However, because the surface is more likely to be water ice, a two-layer model may be a better approximation. In this case, and assuming a mantle density of 920 kg/m3, some 1-3 km of excess core oblateness is consistent with the observed gravity. A wide range of moments of inertia is allowed, but models with low moments of inertia (i.e., more differentiation) require greater magnitudes of excess core topography to satisfy the observations.

  12. A study of forced convection boiling under reduced gravity

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1992-01-01

    This report presents the results of activities conducted over the period 1/2/85-12/31/90, in which the study of forced convection boiling under reduced gravity was initiated. The study seeks to improve the understanding of the basic processes that constitute forced convection boiling by removing the buoyancy effects which may mask other phenomena. Specific objectives may also be expressed in terms of the following questions: (1) what effects, if any, will the removal of body forces to the lowest possible levels have on the forced convection boiling heat transfer processes in well-defined and meaningful circumstances? (this includes those effects and processes associated with the nucleation or onset of boiling during the transient increase in heater surface temperature, as well as the heat transfer and vapor bubble behaviors with established or steady-state conditions); and (2) if such effects are present, what are the boundaries of the relevant parameters such as heat flux, heater surface superheat, fluid velocity, bulk subcooling, and geometric/orientation relationships within which such effects will be produced?

  13. [Mutualism in a Reduced Gravity Environment (MuRGE)

    NASA Technical Reports Server (NTRS)

    Patel, Karishma

    2010-01-01

    MuRGE (Mutualism in a Reduced Gravity Environment) is a NASA flight-research experiment to investigate the microgravity effects associated with cell-cell communication and beneficial microbe-host interactions using a plant-fungal model system. This investigation will use a clinostat, an instrument that slowly rotates the plants to negate the effects of gravitational pull on plant growth (gravitropism) and development, to simulate microgravity. I will be using the endophytic fungus Piriformospora indica (Pi) and the model plant species Arabidopsis thaliana (At). P. indica has been shown to colonize roots of various plant species, including A. thaliana, and to increase plant growth and resistance to stress. The fungus has the ability to grow from spores or in axenic cultures without the presence of a host. P. indica spores and P. indica extract will be used to inoculate Arabidopsis seeds germinated on a clinostat in order to determine if simulated microgravity affects the interaction between the fungus and its plant host.

  14. Mutualism in a Reduced Gravity Environment (MuRGE)

    NASA Technical Reports Server (NTRS)

    Patel, Karishma K.

    2010-01-01

    MuRGE (Mutualism in a Reduced Gravity Environment) is a NASA flight-research experiment to investigate the microgravity effects associated with cell-cell communication and beneficial microbe-host interactions using a plant-fungal model system. This investigation will use a clinostat, an instrument that slowly rotates the plants to negate the effects of gravitational pull on plant growth (gravitropism) and development, to simulate microgravity. I will be using the endophytic fungus Piriformospora indica (Pi) and the model plant species Arabidopsis thaliana (At). P. indica has been shown to colonize roots of various plant species, including A. thaliana, and to increase plant growth and resistance to stress. The fungus has the ability to grow from spores or in axenic cultures without the presence of a host. P. indica spores and P. indica extract will be used to inoculate Arabidopsis seeds germinated on a clinostat in order to determine if simulated microgravity affects the interaction between the fungus and its plant host.

  15. Experimental Methods in Reduced-gravity Soldering Research

    NASA Technical Reports Server (NTRS)

    Pettegrew, Richard D.; Struk, Peter M.; Watson, John K.; Haylett, Daniel R.

    2002-01-01

    The National Center for Microgravity Research, NASA Glenn Research Center, and NASA Johnson Space Center are conducting an experimental program to explore the influence of reduced gravity environments on the soldering process. An improved understanding of the effects of the acceleration environment is important to application of soldering during current and future human space missions. Solder joint characteristics that are being considered include solder fillet geometry, porosity, and microstructural features. Both through-hole and surface mounted devices are being investigated. This paper focuses on the experimental methodology employed in this project and the results of macroscopic sample examination. The specific soldering process, sample configurations, materials, and equipment were selected to be consistent with those currently on-orbit. Other apparatus was incorporated to meet requirements imposed by operation onboard NASA's KC-135 research aircraft and instrumentation was provided to monitor both the atmospheric and acceleration environments. The contingent of test operators was selected to include both highly skilled technicians and less skilled individuals to provide a population cross-section that would be representative of the skill mix that might be encountered in space mission crews.

  16. Perturbative quantum gravity in double field theory

    NASA Astrophysics Data System (ADS)

    Boels, Rutger H.; Horst, Christoph

    2016-04-01

    We study perturbative general relativity with a two-form and a dilaton using the double field theory formulation which features explicit index factorisation at the Lagrangian level. Explicit checks to known tree level results are performed. In a natural covariant gauge a ghost-like scalar which contributes even at tree level is shown to decouple consistently as required by perturbative unitarity. In addition, a lightcone gauge is explored which bypasses the problem altogether. Using this gauge to study BCFW on-shell recursion, we can show that most of the D-dimensional tree level S-matrix of the theory, including all pure graviton scattering amplitudes, is reproduced by the double field theory. More generally, we argue that the integrand may be reconstructed from its single cuts and provide limited evidence for off-shell cancellations in the Feynman graphs. As a straightforward application of the developed technology double field theory-like expressions for four field string corrections are derived.

  17. Barbero-Immirzi field in canonical formalism of pure gravity

    NASA Astrophysics Data System (ADS)

    Calcagni, Gianluca; Mercuri, Simone

    2009-04-01

    The Barbero-Immirzi (BI) parameter is promoted to a field and a canonical analysis is performed when it is coupled with a Nieh-Yan topological invariant. It is shown that, in the effective theory, the BI field is a canonical pseudoscalar minimally coupled with gravity. This framework is argued to be more natural than the one of the usual Holst action. Potential consequences in relation with inflation and the quantum theory are briefly discussed.

  18. Dirac fields in loop quantum gravity and big bang nucleosynthesis

    SciTech Connect

    Bojowald, Martin; Das, Rupam; Scherrer, Robert J.

    2008-04-15

    Big bang nucleosynthesis requires a fine balance between equations of state for photons and relativistic fermions. Several corrections to equation of state parameters arise from classical and quantum physics, which are derived here from a canonical perspective. In particular, loop quantum gravity allows one to compute quantum gravity corrections for Maxwell and Dirac fields. Although the classical actions are very different, quantum corrections to the equation of state are remarkably similar. To lowest order, these corrections take the form of an overall expansion-dependent multiplicative factor in the total density. We use these results, along with the predictions of big bang nucleosynthesis, to place bounds on these corrections and especially the patch size of discrete quantum gravity states.

  19. The Martian: Examining Human Physical Judgments across Virtual Gravity Fields.

    PubMed

    Ye, Tian; Qi, Siyuan; Kubricht, James; Zhu, Yixin; Lu, Hongjing; Zhu, Song-Chun

    2017-04-01

    This paper examines how humans adapt to novel physical situations with unknown gravitational acceleration in immersive virtual environments. We designed four virtual reality experiments with different tasks for participants to complete: strike a ball to hit a target, trigger a ball to hit a target, predict the landing location of a projectile, and estimate the flight duration of a projectile. The first two experiments compared human behavior in the virtual environment with real-world performance reported in the literature. The last two experiments aimed to test the human ability to adapt to novel gravity fields by measuring their performance in trajectory prediction and time estimation tasks. The experiment results show that: 1) based on brief observation of a projectile's initial trajectory, humans are accurate at predicting the landing location even under novel gravity fields, and 2) humans' time estimation in a familiar earth environment fluctuates around the ground truth flight duration, although the time estimation in unknown gravity fields indicates a bias toward earth's gravity.

  20. Combustion of Metals in Reduced-Gravity and Extraterrestrial Environments

    NASA Technical Reports Server (NTRS)

    Branch, M. C.; Abbud-Madrid, A.; Daily, J. W.

    2001-01-01

    As a result of the ongoing exploration of Mars and the several unmanned and possibly manned missions planned for the near future, increased attention has been given to the use of the natural resources of the planet for rocket propellant production and energy generation. Since the atmosphere of Mars consists of approximately 95% carbon dioxide (CO2), this gas is the resource of choice to be employed for these purposes. Since many metals burn vigorously with CO2, these may be used as an energy source or as propellants for a research vehicle on the surface of Mars. Shafirovich and Goldshleger conducted experiments with spherical particles up to 2.5 mm in diameter and found that the burning process was controlled by diffusion and that the particles exhibited pulsating combustion due to superheating of the Mg vapor trapped inside a protective oxide shell. They also proposed a reaction mechanism based on the gas-phase reaction, Mg + CO2 yields MgO + CO and the heterogeneous reaction Mg + CO yields MgO + C occurring on the sample surface. In all the above studies with large Mg particles, the burning process is invariably influenced by strong convective currents that accelerate the combustion reaction and shorten the burning times. Although these currents are nearly absent in the burning of small particles, the high emissivity of the flames, rapid reaction, and small length scales make the gathering of any useful information on burning rates and flame structure very difficult. The goal of this investigation is to provide a detailed study of flame structure by taking advantage of large, free-floating spherical metal samples and their corresponding long burning times available in a weightless environment. The use of reduced gravity is essential to eliminate the intrusive buoyant flows that plague high temperature metal reactions, to remove the destructive effect of gravity on the shape of molten metal samples, and to study the combustion behavior of metals in the presence of

  1. The negative gravity field over the 85 deg E ridge

    NASA Technical Reports Server (NTRS)

    Liu, C.-S.; Curray, J. R.; Sandwell, D. T.

    1982-01-01

    Two north-south ridges in the basement topography of the Bay of Bengal may be observed on an isopach map at 85 and at 90 deg E. Free-air gravity anomaly profiles across the region show a strong gravity low (about -60 mGal) over the 85 deg E ridge, and a gravity high over the other. Using a simple two-stage loading model, the negative gravity anomaly over the 85 deg E ridge is explained as a direct consequence of sediment loading, and the flexural rigidity of the lithosphere when the ridge was formed is estimated to have been about 180 times less than the flexural rigidity during the sediment loading. An approximate relationship between flexural rigidity and crustal age shows that the 85 deg E ridge was formed on relatively young lithosphere, 5-15 million years old, and that it was buried when the lithosphere was 40-80 million years old. The alteration of the gravity field by a thick layer of sediments may occur in other large sedimentary basins or along continental margins.

  2. Properties of the gravity fields of terrestrial planets

    NASA Technical Reports Server (NTRS)

    Kaula, William M.

    1992-01-01

    The properties of the gravity fields of the earth, Mars, and Venus, as expressed by spherical harmonic coefficients, are examined, using the harmonic expansions of the respective planetary topographies reported by Balmino et al. (1973), Bills and Ferrari (1978), and Bills and Kobrick (1985). The items examined include the spectral magnitudes and slopes of the gravity coefficients; the correlations between gravity and topography; and the correlations among different gravity harmonics, expressed by axiality and angularity. It was found that Venus differs from the other two planets in its great apparent depths of compensation, indicating a tectonics dominated by a stiff upper mantle. In addition, Venus has less activity deep in the mantle than do earth or Mars. Mars is marked by large gravity irregularities, as well as by their axial symmetry on a global scale. Although earth is probably the most peculiar planet, spherical harmonics do not bring out its varied characteristics. It is clearly a more active planet than Venus, with activity deep in the mantle. The lower magnitude of its higher harmonics is considered to be due to water recycled to the upper mantle.

  3. Gravitational constant in multiple field gravity

    SciTech Connect

    Abedi, Habib; Abbassi, Amir M. E-mail: amabasi@khayam.ut.ac.ir

    2015-05-01

    In the present study, we consider general form of the Lagrangian  f(R, φ{sup I}, X) , that is a function of the Ricci scalar, multiple scalar fields and non-canonical kinetic terms. We obtain the effective Newton's constant deep inside the Hubble radius. We use Jordan and Einstein frames, and study the conservation of energy-momentum tensor.

  4. Gravity field of the Orientale basin from the Gravity Recovery and Interior Laboratory Mission.

    PubMed

    Zuber, Maria T; Smith, David E; Neumann, Gregory A; Goossens, Sander; Andrews-Hanna, Jeffrey C; Head, James W; Kiefer, Walter S; Asmar, Sami W; Konopliv, Alexander S; Lemoine, Frank G; Matsuyama, Isamu; Melosh, H Jay; McGovern, Patrick J; Nimmo, Francis; Phillips, Roger J; Solomon, Sean C; Taylor, G Jeffrey; Watkins, Michael M; Wieczorek, Mark A; Williams, James G; Jansen, Johanna C; Johnson, Brandon C; Keane, James T; Mazarico, Erwan; Miljković, Katarina; Park, Ryan S; Soderblom, Jason M; Yuan, Dah-Ning

    2016-10-28

    The Orientale basin is the youngest and best-preserved major impact structure on the Moon. We used the Gravity Recovery and Interior Laboratory (GRAIL) spacecraft to investigate the gravitational field of Orientale at 3- to 5-kilometer (km) horizontal resolution. A volume of at least (3.4 ± 0.2) × 10(6) km(3) of crustal material was removed and redistributed during basin formation. There is no preserved evidence of the transient crater that would reveal the basin's maximum volume, but its diameter may now be inferred to be between 320 and 460 km. The gravity field resolves distinctive structures of Orientale's three rings and suggests the presence of faults associated with the outer two that penetrate to the mantle. The crustal structure of Orientale provides constraints on the formation of multiring basins.

  5. Gravity field of the Orientale basin from the Gravity Recovery and Interior Laboratory Mission

    NASA Astrophysics Data System (ADS)

    Zuber, Maria T.; Smith, David E.; Neumann, Gregory A.; Goossens, Sander; Andrews-Hanna, Jeffrey C.; Head, James W.; Kiefer, Walter S.; Asmar, Sami W.; Konopliv, Alexander S.; Lemoine, Frank G.; Matsuyama, Isamu; Melosh, H. Jay; McGovern, Patrick J.; Nimmo, Francis; Phillips, Roger J.; Solomon, Sean C.; Taylor, G. Jeffrey; Watkins, Michael M.; Wieczorek, Mark A.; Williams, James G.; Jansen, Johanna C.; Johnson, Brandon C.; Keane, James T.; Mazarico, Erwan; Miljković, Katarina; Park, Ryan S.; Soderblom, Jason M.; Yuan, Dah-Ning

    2016-10-01

    The Orientale basin is the youngest and best-preserved major impact structure on the Moon. We used the Gravity Recovery and Interior Laboratory (GRAIL) spacecraft to investigate the gravitational field of Orientale at 3- to 5-kilometer (km) horizontal resolution. A volume of at least (3.4 ± 0.2) × 106 km3 of crustal material was removed and redistributed during basin formation. There is no preserved evidence of the transient crater that would reveal the basin’s maximum volume, but its diameter may now be inferred to be between 320 and 460 km. The gravity field resolves distinctive structures of Orientale’s three rings and suggests the presence of faults associated with the outer two that penetrate to the mantle. The crustal structure of Orientale provides constraints on the formation of multiring basins.

  6. Gravity Field of the Orientale Basin from the Gravity Recovery and Interior Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T.; Smith, David E.; Neumann, Gregory A.; Goossens, Sander; Andrews-Hanna, Jeffrey C.; Head, James W.; Kiefer, Walter S.; Asmar, Sami W.; Konopliv, Alexander S.; Lemoine, Frank G.; Matsuyama, Isamu; Melosh, H. Jay; McGovern, Patrick J.; Nimmo, Francis; Phillips, Roger J.; Solomon, Sean C.; Taylor, G. Jeffrey; Watkins, Michael M.; Wieczorek, Mark A.; Williams, James G.; Jansen, Johanna C.; Johnson, Brandon C.; Keane, James T.; Mazarico, Erwan; Miljkovic, Katarina; Park, Ryan S.; Soderblom, Jason M.; Yuan, Dah-Ning

    2016-01-01

    The Orientale basin is the youngest and best-preserved major impact structure on the Moon. We used the Gravity Recovery and Interior Laboratory (GRAIL) spacecraft to investigate the gravitational field of Orientale at 3- to 5-kilometer (km) horizontal resolution. A volume of at least (3.4 +/- 0.2) × 10(exp 6) cu km of crustal material was removed and redistributed during basin formation. There is no preserved evidence of the transient crater that would reveal the basin's maximum volume, but its diameter may now be inferred to be between 320 and 460 km. The gravity field resolves distinctive structures of Orientale's three rings and suggests the presence of faults associated with the outer two that penetrate to the mantle. The crustal structure of Orientale provides constraints on the formation of multiring basins.

  7. Dynamic crystallization experiments on chondrule melts in reduced gravity

    NASA Technical Reports Server (NTRS)

    Lofgren, Gary; Williams, R. J.

    1987-01-01

    Chondrules crystallized during the earliest formational history of the solar system; and, if crystal settling and flotation are indicators of crystallization in the presence of gravity, they formed without the influence of gravity. In fact, attempts to duplicate the crystallization history of chondrules in the laboratory have met with limited success, because of the difficulty of comparing objects formed under the influence of gravity with objects that did not. These comparisons are difficult because there are several recognized features introduced by the presence of gravity and no doubt some which are not yet recognized. As a result there are several microscale and macroscale aspects of chondrule petrology which are difficult to understand quantitatively. Most of the features relate to the settling or flotation of early formed crystals. The proposed experiments are briefly described.

  8. Tunable Superconducting Gravity Gradiometer for Mars Climate, Atmosphere, and Gravity Field Investigation

    NASA Technical Reports Server (NTRS)

    Griggs, C. E.; Paik, H. J.; Moody, M. V.; Han, S.-C.; Rowlands, D. D.; Lemoine, F. G.; Shirron, P. J.

    2015-01-01

    We are developing a compact tensor superconducting gravity gradiometer (SGG) for obtaining gravimetric measurements from planetary orbits. A new and innovative design gives a potential sensitivity of approximately 10(sup -4) E Hz(sup - 1/2)( 1 E = 10(sup -9 S(sup -2) in the measurement band up to 0.1 Hz (suitale for short wavelength static gravity) and of approximately 10(sup -4) E Hz(sup - 1/2) in the frequency band less than 1 mHz (for long wavelength time-variable gravity) from the same device with a baseline just over 10 cm. The measurement band and sensitiy can be optimally tuned in-flight during the mission by changing resonance frequencies, which allows meaurements of both static and time-variable gravity fields from the same mission. Significant advances in the technologies needed for space-based cryogenic instruments have been made in the last decade. In particular, the use of cryocoolers will alleviate the previously severe constraint on mission lifetime imposed by the use of liquid helium, enabling mission durations in the 5 - 10 year range.

  9. Modeling of jet-induced geyser formation in a reduced gravity environment

    NASA Technical Reports Server (NTRS)

    Wendl, M. C.; Hochstein, J. I.; Sasmal, G. P.

    1991-01-01

    Flow patterns predicted by a computational model of jet-induced geyser formation in a reduced gravity environment are presented and comparison is made to patterns predicted by experimentally based correlations. The configuration studied is an idealization of a forthcoming flight experiment to examine cryogenic propellant management issues. A transitional version of the ECLIPSE code used as a computational tool for the analyses is described. It is shown that computationally predicted flow patterns are in qualitative agreement with the correlation-based predictions, and some details of the predicted flow fields are given.

  10. Satellite laser ranging and gravity field modeling accuracy

    NASA Technical Reports Server (NTRS)

    Rosborough, George W.

    1990-01-01

    Gravitational field mismodeling procedures errors in the estimated orbital motion of near Earth satellites. This effect is studied using a linear perturbation approach following the analysis of Kaula. The perturbations in the orbital position as defined by either orbital elements or Cartesian components are determined. From these perturbations it is possible to ascertain the expected signal due to gravitational mismodeling that would be present in station-to-satellite laser ranging measurements. This expected signal has been estimated for the case of the Lageos satellite and using the predicted uncertainties of the GEM-T1 and GEM-T2 gravity field models. The results indicate that observable signal still exists in the laser range residuals given the current accuracy of the range measurements and the accuracy of the gravity field models.

  11. A study of two-phase flow in a reduced gravity environment

    NASA Technical Reports Server (NTRS)

    Hill, D.; Downing, Robert S.

    1987-01-01

    A test loop was designed and fabricated for observing and measuring pressure drops of two-phase flow in reduced gravity. The portable flow test loop was then tested aboard the NASA-JSC KC135 reduced gravity aircraft. The test loop employed the Sundstrand Two-Phase Thermal Management System (TPTMS) concept which was specially fitted with a clear two-phase return line and condenser cover for flow observation. A two-phase (liquid/vapor) mixture was produced by pumping nearly saturated liquid through an evaporator and adding heat via electric heaters. The quality of the two-phase flow was varied by changing the evaporator heat load. The test loop was operated on the ground before and after the KC135 flight tests to create a one-gravity data base. The ground testing included all the test points run during the reduced gravity testing. Two days of reduced gravity tests aboard the KC135 were performed. During the flight tests, reduced-gravity, one-gravity, and nearly two-gravity accelerations were experienced. Data was taken during the entire flight which provided flow regime and pressure drop data for the three operating conditions. The test results show that two-phase pressure drops and flow regimes can be accurately predicted in zero-gravity.

  12. Simulation and preparation of surface EVA in reduced gravity at the Marseilles Bay subsea analogue sites

    NASA Astrophysics Data System (ADS)

    Weiss, P.; Gardette, B.; Chirié, B.; Collina-Girard, J.; Delauze, H. G.

    2012-12-01

    Extravehicular activity (EVA) of astronauts during space missions is simulated nowadays underwater in neutral buoyancy facilities. Certain aspects of weightlessness can be reproduced underwater by adding buoyancy to a diver-astronaut, therefore exposing the subject to the difficulties of working without gravity. Such tests were done at the COMEX' test pool in Marseilles in the 1980s to train for a French-Russian mission to the MIR station, for the development of the European HERMES shuttle and the COLUMBUS laboratory. However, space agencies are currently studying missions to other destinations than the International Space Station in orbit, such as the return to the Moon, NEO (near-Earth objects) or Mars. All these objects expose different gravities: Moon has one sixth of Earth's gravity, Mars has a third of Earth's gravity and asteroids have virtually no surface gravity; the astronaut "floats" above the ground. The preparation of such missions calls for a new concept in neutral buoyancy training, not on man-made structures, but on natural terrain, underwater, to simulate EVA operations such as sampling, locomotion or even anchoring in low gravity. Underwater sites can be used not only to simulate the reduced gravity that astronauts will experience during their field trips, also human factors like stress are more realistically reproduced in such environment. The Bay of Marseille hosts several underwater sites that can be used to simulate various geologic morphologies, such as sink-holes which can be used to simulate astronaut descends into craters, caves where explorations of lava tubes can be trained or monolithic rock structures that can be used to test anchoring devices (e.g., near Earth objects). Marseilles with its aerospace and maritime/offshore heritage hosts the necessary logistics and expertise that is needed to perform such simulations underwater in a safe manner (training of astronaut-divers in local test pools, research vessels, subsea robots and

  13. New standards for reducing gravity data: The North American gravity database

    USGS Publications Warehouse

    Hinze, W. J.; Aiken, C.; Brozena, J.; Coakley, B.; Dater, D.; Flanagan, G.; Forsberg, R.; Hildenbrand, T.; Keller, Gordon R.; Kellogg, J.; Kucks, R.; Li, X.; Mainville, A.; Morin, R.; Pilkington, M.; Plouff, D.; Ravat, D.; Roman, D.; Urrutia-Fucugauchi, J.; Veronneau, M.; Webring, M.; Winester, D.

    2005-01-01

    The North American gravity database as well as databases from Canada, Mexico, and the United States are being revised to improve their coverage, versatility, and accuracy. An important part of this effort is revising procedures for calculating gravity anomalies, taking into account our enhanced computational power, improved terrain databases and datums, and increased interest in more accurately defining long-wavelength anomaly components. Users of the databases may note minor differences between previous and revised database values as a result of these procedures. Generally, the differences do not impact the interpretation of local anomalies but do improve regional anomaly studies. The most striking revision is the use of the internationally accepted terrestrial ellipsoid for the height datum of gravity stations rather than the conventionally used geoid or sea level. Principal facts of gravity observations and anomalies based on both revised and previous procedures together with germane metadata will be available on an interactive Web-based data system as well as from national agencies and data centers. The use of the revised procedures is encouraged for gravity data reduction because of the widespread use of the global positioning system in gravity fieldwork and the need for increased accuracy and precision of anomalies and consistency with North American and national databases. Anomalies based on the revised standards should be preceded by the adjective "ellipsoidal" to differentiate anomalies calculated using heights with respect to the ellipsoid from those based on conventional elevations referenced to the geoid. ?? 2005 Society of Exploration Geophysicists. All rights reserved.

  14. Stable magnetic field gradient levitation of Xenopus laevis: toward low-gravity simulation.

    PubMed

    Valles, J M; Lin, K; Denegre, J M; Mowry, K L

    1997-08-01

    We have levitated, for the first time, living biological specimens, embryos of the frog Xenopus laevis, using a large inhomogeneous magnetic field. The magnetic field/field gradient product required for levitation was 1430 kG2/cm, consistent with the embryo's susceptibility being dominated by the diamagnetism of water and protein. We show that unlike any other earth-based technique, magnetic field gradient levitation of embryos reduces the body forces and gravity-induced stresses on them. We discuss the use of large inhomogeneous magnetic fields as a probe for gravitationally sensitive phenomena in biological specimens.

  15. From Mars to Greenland: Charting gravity with space and airborne instruments - Fields, tides, methods, results

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L. (Editor)

    1992-01-01

    This symposium on space and airborne techniques for measuring gravity fields, and related theory, contains papers on gravity modeling of Mars and Venus at NASA/GSFC, an integrated laser Doppler method for measuring planetary gravity fields, observed temporal variations in the earth's gravity field from 16-year Starlette orbit analysis, high-resolution gravity models combining terrestrial and satellite data, the effect of water vapor corrections for satellite altimeter measurements of the geoid, and laboratory demonstrations of superconducting gravity and inertial sensors for space and airborne gravity measurements. Other papers are on airborne gravity measurements over the Kelvin Seamount; the accuracy of GPS-derived acceleration from moving platform tests; airborne gravimetry, altimetry, and GPS navigation errors; controlling common mode stabilization errors in airborne gravity gradiometry, GPS/INS gravity measurements in space and on a balloon, and Walsh-Fourier series expansion of the earth's gravitational potential.

  16. Combustion of Metals in Reduced-Gravity and Extra Terrestrial Environments

    NASA Technical Reports Server (NTRS)

    Branch, M.C.; Abbud-Madrid, A.; Daily, J. W.

    1999-01-01

    The combustion of metals is a field with important practical applications in rocket propellants, high-temperature flames, and material synthesis. Also, the safe operation of metal containers in high-pressure oxygen systems and with cryogenic fuels and oxidizers remains an important concern in industry. The increasing use of metallic components in spacecraft and space structures has also raised concerns about their flammability properties and fire suppression mechanisms. In addition, recent efforts to embark on unmanned and manned planetary exploration, such as on Mars, have also renewed the interest in metal/carbon-dioxide combustion as an effective in situ resource utilization technology. In spite of these practical applications, the understanding of the combustion properties of metals remains far behind that of the most commonly used fuels such as hydrocarbons. The lack of understanding is due to the many problems unique to metal- oxidizer reactions such as: low-temperature surface oxidation prior to ignition, heterogeneous reactions, very high combustion temperatures, product condensation, high emissivity of products, and multi-phase interactions. Very few analytical models (all neglecting the influence of gravity) have been developed to predict the burning characteristics and the flame structure details. Several experimental studies attempting to validate these models have used small metal particles to recreate gravity-free conditions. The high emissivity of the flames, rapid reaction, and intermittent explosions experienced by these particles have made the gathering of any useful information on burning rates and flame structure very difficult. The use of a reduced gravity environment is needed to clarify some of the complex interactions among the phenomena described above. First, the elimination of the intrusive buoyant flows that plague all combustion phenomena is of paramount importance in metal reactions due to the much higher temperatures reached during

  17. Investigating High Field Gravity using Astrophysical Techniques

    SciTech Connect

    Bloom, Elliott D.; /SLAC

    2008-02-01

    The purpose of these lectures is to introduce particle physicists to astrophysical techniques. These techniques can help us understand certain phenomena important to particle physics that are currently impossible to address using standard particle physics experimental techniques. As the subject matter is vast, compromises are necessary in order to convey the central ideas to the reader. Many general references are included for those who want to learn more. The paragraphs below elaborate on the structure of these lectures. I hope this discussion will clarify my motivation and make the lectures easier to follow. The lectures begin with a brief review of more theoretical ideas. First, elements of general relativity are reviewed, concentrating on those aspects that are needed to understand compact stellar objects (white dwarf stars, neutron stars, and black holes). I then review the equations of state of these objects, concentrating on the simplest standard models from astrophysics. After these mathematical preliminaries, Sec. 2(c) discusses 'The End State of Stars'. Most of this section also uses the simplest standard models. However, as these lectures are for particle physicists, I also discuss some of the more recent approaches to the equation of state of very dense compact objects. These particle-physics-motivated equations of state can dramatically change how we view the formation of black holes. Section 3 focuses on the properties of the objects that we want to characterize and measure. X-ray binary systems and Active Galactic Nuclei (AGN) are stressed because the lectures center on understanding very dense stellar objects, black hole candidates (BHCs), and their accompanying high gravitational fields. The use of x-ray timing and gamma-ray experiments is also introduced in this section. Sections 4 and 5 review information from x-ray and gamma-ray experiments. These sections also discuss the current state of the art in x-ray and gamma-ray satellite experiments and

  18. Gravity field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) mission.

    PubMed

    Zuber, Maria T; Smith, David E; Watkins, Michael M; Asmar, Sami W; Konopliv, Alexander S; Lemoine, Frank G; Melosh, H Jay; Neumann, Gregory A; Phillips, Roger J; Solomon, Sean C; Wieczorek, Mark A; Williams, James G; Goossens, Sander J; Kruizinga, Gerhard; Mazarico, Erwan; Park, Ryan S; Yuan, Dah-Ning

    2013-02-08

    Spacecraft-to-spacecraft tracking observations from the Gravity Recovery and Interior Laboratory (GRAIL) have been used to construct a gravitational field of the Moon to spherical harmonic degree and order 420. The GRAIL field reveals features not previously resolved, including tectonic structures, volcanic landforms, basin rings, crater central peaks, and numerous simple craters. From degrees 80 through 300, over 98% of the gravitational signature is associated with topography, a result that reflects the preservation of crater relief in highly fractured crust. The remaining 2% represents fine details of subsurface structure not previously resolved. GRAIL elucidates the role of impact bombardment in homogenizing the distribution of shallow density anomalies on terrestrial planetary bodies.

  19. Aristoteles - An ESA mission to study the earth's gravity field

    NASA Astrophysics Data System (ADS)

    Lambeck, K.

    In preparing for its first Solid-Earth Program, ESA has studied a satellite concept for a mission dedicated to the precise determination of the earth's geopotential (gravitational and magnetic) fields. Data from such a mission are expected to make substantial contributions to a number of research and applications fields in solid-earth geophysics, oceanography and global-change monitoring. The impact of a high-resolution gravity-field mission on studies of the various earth-science problems is assessed. The current state of our knowledge in this area is discussed and the ability of low-orbit satellite gradiometry to contribute to their solution is demonstrated.

  20. The power of weak-field GR gravity

    NASA Astrophysics Data System (ADS)

    Cooperstock, F. I.

    2016-10-01

    While general relativity (GR) is our premier theory of gravity, galactic dynamics from the outset has been studied with Newtonian gravity (NG), guided by the long-held belief in the idea of the “Newtonian-limit” of GR. This maintains that when the gravitational field is weak and the velocities are nonrelativistic, NG is the appropriate theory, apart from small corrections at best (such as in GPS tracking). However, there are simple examples of phenomena where there is no NG counterpart. We present a particularly simple new example of the stark difference that NG and weak-field GR exhibit for a modified van Stockum source, which speaks to the flat galactic rotation curve problem. We note that the linear GR compatibility equation in the literature is incomplete. Its completion is vital for our case, leading to a stark contrast between GR and NG for totally flat van Stockum rotation curves.

  1. An initial study of void formation during solidification of aluminum in normal and reduced-gravity

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis P.; Foerster, George; Gotti, Daniel J.; Neumann, Eric S.; Johnston, J. C.; De Witt, Kenneth J.

    1992-01-01

    Void formation due to volumetric shrinkage during aluminum solidification was observed in real time using a radiographic viewing system in normal and reduced gravity. An end chill directional solidification furnace with water quench was developed to solidify aluminum samples during the approximately 16 seconds of reduced gravity (+/- 0.02g) achieved by flying an aircraft through a parabolic trajectory. Void formation was recorded for two cases: first a nonwetting system; and second, a wetting system where wetting occurs between the aluminum and crucible lid. The void formation in the nonwetting case is similar in normal and reduced gravity, with a single vapor cavity forming at the top of the crucible. In the wetting case in reduced gravity, surface tension causes two voids to form in the top corners of the crucible, but in normal gravity only one large voids forms across the top.

  2. Aerosol Deposition in the Human Lung in Reduced Gravity

    PubMed Central

    2014-01-01

    Abstract The deposition of aerosol in the human lung occurs mainly through a combination of inertial impaction, gravitational sedimentation, and diffusion. For 0.5- to 5-μm-diameter particles and resting breathing conditions, the primary mechanism of deposition in the intrathoracic airways is sedimentation, and therefore the fate of these particles is markedly affected by gravity. Studies of aerosol deposition in altered gravity have mostly been performed in humans during parabolic flights in both microgravity (μG) and hypergravity (∼1.6G), where both total deposition during continuous aerosol mouth breathing and regional deposition using aerosol bolus inhalations were performed with 0.5- to 3-μm particles. Although total deposition increased with increasing gravity level, only peripheral deposition as measured by aerosol bolus inhalations was strongly dependent on gravity, with central deposition (lung depth<200 mL) being similar between gravity levels. More recently, the spatial distribution of coarse particles (mass median aerodynamic diameter≈5 μm) deposited in the human lung was assessed using planar gamma scintigraphy. The absence of gravity caused a smaller portion of 5-μm particles to deposit in the lung periphery than in the central region, where deposition occurred mainly in the airways. Indeed, 5-μm-diameter particles deposit either by inertial impaction, a mechanism most efficient in the large and medium-sized airways, or by gravitational sedimentation, which is most efficient in the distal lung. On the contrary, for fine particles (∼1 μm), both aerosol bolus inhalations and studies in small animals suggest that particles deposit more peripherally in μG than in 1G, beyond the reach of the mucociliary clearance system. PMID:24870702

  3. Chaos in Non-Abelian Gauge Fields, Gravity and Cosmology

    NASA Astrophysics Data System (ADS)

    Matinyan, S. G.

    2002-12-01

    This talk describes the evolution of studies of chaos in Yang-Mills fields, gravity, and cosmology. The main subject is a BKL regime near the singularity t = 0 and its survival in higher dimensions and in string theory. We also describe the recent progress in the search for particle-like solutions of the Einstein-Yang-Mills system (monopoles and dyons), colored black holes and the problem of their stability.

  4. Computation of the gravity field and its gradient: Some applications

    NASA Astrophysics Data System (ADS)

    Dubey, C. P.; Tiwari, V. M.

    2016-03-01

    New measuring instruments of Earth's gravity gradient tensors (GGT) have offered a fresh impetus to gravimetry and its application in subsurface exploration. Several efforts have been made to provide a thorough understanding of the complex properties of the gravity gradient tensor and its mathematical formulations to compute GGT. However, there is not much open source software available. Understanding of the tensor properties leads to important guidelines in the development of real three dimensional geological models. We present a MATLAB computational algorithm to calculate the gravity field and full gravity gradient tensor for an undulated surface followed by regular geometries like an infinite horizontal slab, a vertical sheet, a solid sphere, a vertical cylinder, a normal fault model and a rectangular lamina or conglomerations of such bodies and the results are compared with responses using professional software based on different computational schemes. Real subsurface geometries of complex geological structures of interest are approximated through arrangements of vertical rectangular laminas. The geological application of this algorithm is demonstrated over a horst-type structure of Oklahoma Aulacogen, USA and Vredefort Dome, South Africa, where measured GGT data are available.

  5. High-resolution gravity field modeling using GRAIL mission data

    NASA Astrophysics Data System (ADS)

    Lemoine, F. G.; Goossens, S. J.; Sabaka, T. J.; Nicholas, J. B.; Mazarico, E.; Rowlands, D. D.; Neumann, G. A.; Loomis, B.; Chinn, D. S.; Smith, D. E.; Zuber, M. T.

    2015-12-01

    The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft were designed to map the structure of the Moon through high-precision global gravity mapping. The mission consisted of two spacecraft with Ka-band inter-satellite tracking complemented by tracking from Earth. The mission had two phases: a primary mapping mission from March 1 until May 29, 2012 at an average altitude of 50 km, and an extended mission from August 30 until December 14, 2012, with an average altitude of 23 km before November 18, and 20 and 11 km after. High-resolution gravity field models using both these data sets have been estimated, with the current resolution being degree and order 1080 in spherical harmonics. Here, we focus on aspects of the analysis of the GRAIL data: we investigate eclipse modeling, the influence of empirical accelerations on the results, and we discuss the inversion of large-scale systems. In addition to global models we also estimated local gravity adjustments in areas of particular interest such as Mare Orientale, the south pole area, and the farside. We investigate the use of Ka-band Range Rate (KBRR) data versus numerical derivatives of KBRR data, and show that the latter have the capability to locally improve correlations with topography.

  6. AIUB-RL02: an improved time-series of monthly gravity fields from GRACE data

    NASA Astrophysics Data System (ADS)

    Meyer, U.; Jäggi, A.; Jean, Y.; Beutler, G.

    2016-05-01

    The new release AIUB-RL02 of monthly gravity models from GRACE GPS and K-Band range-rate data is based on reprocessed satellite orbits referring to the reference frame IGb08. The release is consistent with the IERS2010 conventions. Improvements with respect to its predecessor AIUB-RL01 include the use of reprocessed (RL02) GRACE observations, new atmosphere and ocean dealiasing products (RL05), an upgraded ocean tide model (EOT11A), and the interpolation of shallow ocean tides (admittances). The stochastic parametrization of AIUB-RL02 was adapted to include daily accelerometer scale factors, which drastically reduces spurious signal at the 161 d period in C20 and at other low degree and order gravity field coefficients. Moreover, the correlation between the noise in the monthly gravity models and solar activity is considerably reduced in the new release. The signal and the noise content of the new AIUB-RL02 monthly gravity fields are studied and calibrated errors are derived from their non-secular and non-seasonal variability. The short-period time-variable signal over the oceans, mostly representing noise, is reduced by 50 per cent with respect to AIUB-RL01. Compared to the official GFZ-RL05a and CSR-RL05 monthly models, the AIUB-RL02 stands out by its low noise at high degrees, a fact emerging from the estimation of seasonal variations for selected river basins and of mass trends in polar regions. Two versions of the monthly AIUB-RL02 gravity models, with spherical harmonics resolution of degree and order 60 and 90, respectively, are available for the time period from March 2003 to March 2014 at the International Center for Global Earth Models or from ftp://ftp.unibe.ch/aiub/GRAVITY/GRACE (last accessed 22 March 2016).

  7. The gravity field of the Saturnian satellites Enceladus and Dione

    NASA Astrophysics Data System (ADS)

    Iess, L.; Jacobson, R.; Ducci, M.; Stevenson, D. J.; Lunine, J. I.; Armstrong, J. W.; Asmar, S.; Racioppa, P.; Rappaport, N. J.; Tortora, P.

    2012-12-01

    Enceladus and Dione are the innermost moons of the Saturnian system visited by the spacecraft Cassini for gravity investigations. The small surface gravity (0.11 and 0.23 m/s2 respectively for Enceladus and Dione), the short duration of the gravitational interaction and the small number of available flybys (three for Enceladus and just one for Dione) make the determination of their gravity field particularly challenging. In spite of these limitations, we have measured the low degree gravity field of both satellites with sufficient accuracy to draw preliminary geophysical conclusions. The estimation relied primarily on precise range rate data, whose accuracy reached 10 micron/s at 60 s integration times under favorable conditions. In order to disentangle the effects of the spacecraft orbit, the satellite orbit and the satellite gravity, tracking coverage is required not only across closest approach, but also days before and after the flyby. The dynamical model used for the fits includes all relevant gravitational perturbations and the main non-gravitational accelerations (Cassini RTG's anisotropic thermal emission, solar radiation pressure). In addition to the gravity field coefficients a correction to the orbit of the spacecraft and the satellites was also estimated. The first and so far only Dione's flyby with tracking at closest approach occurred on December 12, 2011, at an altitude of 99 km. (A second gravity flyby is scheduled in 2015.) Although the low solar elongation angle caused a significant increase of the plasma noise in Doppler data, the low spacecraft altitude at closest approach and the otherwise favorable geometry allowed an estimation of the harmonic coefficients J2 and C22 to a relative accuracy below 2%. We have produced, in addition to an unconstrained estimate, a second solution where the quadrupole field is constrained by the requirement of hydrostaticity. Doppler residuals are unbiased and consistent with the expected noise in both cases. When

  8. Production of Gas Bubbles in Reduced Gravity Environments

    NASA Technical Reports Server (NTRS)

    Oguz, Hasan N.; Takagi, Shu; Misawa, Masaki

    1996-01-01

    In a wide variety of applications such as waste water treatment, biological reactors, gas-liquid reactors, blood oxygenation, purification of liquids, etc., it is necessary to produce small bubbles in liquids. Since gravity plays an essential role in currently available techniques, the adaptation of these applications to space requires the development of new tools. Under normal gravity, bubbles are typically generated by forcing gas through an orifice in a liquid. When a growing bubble becomes large enough, the buoyancy dominates the surface tension force causing it to detach from the orifice. In space, the process is quite different and the bubble may remain attached to the orifice indefinitely. The most practical approach to simulating gravity seems to be imposing an ambient flow to force bubbles out of the orifice. In this paper, we are interested in the effect of an imposed flow in 0 and 1 g. Specifically, we investigate the process of bubble formation subject to a parallel and a cross flow. In the case of parallel flow, we have a hypodermic needle in a tube from which bubbles can be produced. On the other hand, the cross flow condition is established by forcing bubbles through an orifice on a wall in a shear flow. The first series of experiments have been performed under normal gravity conditions and the working fluid was water. A high quality microgravity facility has been used for the second type and silicone oil is used as the host liquid.

  9. Consolidated science requirements for a next generation gravity field mission

    NASA Astrophysics Data System (ADS)

    Pail, Roland; Bingham, Rory; Braitenberg, Carla; Eicker, Annette; Floberghagen, Rune; Haagmans, Roger; Horwath, Martin; LaBrecque, John; Longuevergne, Laurent; Panet, Isabelle; Rolstad-Denby, Cecile; Wouters, Bert

    2014-05-01

    As a joint initiative of the IAG (International Association of Geodesy) Sub-Commissions 2.3 and 2.6, the GGOS (Global Geodetic Observing System) Working Group on Satellite Missions, and the IUGG (International Union of Geodesy and Geophysics), science requirements for a next generation gravity field mission (beyond GRACE-FO) shall be defined and consolidated. A consolidation of the user requirements is required, because several future gravity field studies have resulted in quite different performance numbers as a target for a future gravity mission (2025+). For this purpose, the science requirements shall be accorded by the different user groups, i.e. hydrology, ocean, cryosphere, solid Earth and atmosphere, under the boundary condition of the technical feasibility of the mission concepts and before the background of double- and multi-pair formations. This initiative shall mainly concentrate on the consolidation of the science requirements, and should result in a document that can be used as a solid basis for further programmatic and technological developments. Based on limited number of realistic mission scenarios, a consolidated view on the science requirements within the international user communities shall be derived, research fields that could not be tackled by current gravity missions shall be identified, and the added value (qualitatively and quantitatively) of these scenarios with respect to science return shall be evaluated. The final science requirements shall be agreed upon during a workshop which will be held in September 2014. In this contribution, the mission scenarios will be discussed and first results of the consolidation process will be presented.

  10. Combination of monthly gravity field solutions from different processing centers

    NASA Astrophysics Data System (ADS)

    Jean, Yoomin; Meyer, Ulrich; Jäggi, Adrian

    2015-04-01

    Currently, the official GRACE Science Data System (SDS) monthly gravity field solutions are generated independently by the Centre for Space Research (CSR) and the German Research Centre for Geosciences (GFZ). Additional GRACE SDS monthly fields are provided by the Jet Propulsion Laboratory (JPL) for validation and outside the SDS by a number of other institutions worldwide. Although the adopted background models and processing standards have been harmonized more and more by the various processing centers during the past years, notable differences still exist and the users are more or less left alone with a decision which model to choose for their individual applications. Combinations are well-established in the area of other space geodetic techniques, such as the Global Navigation Satellite Systems (GNSS), Satellite Laser Ranging (SLR), and Very Long Baseline Interferometry (VLBI), where regular comparisons and combinations of space-geodetic products have tremendously increased the usefulness of the products in a wide range of disciplines and scientific applications. In the frame of the recently started Horizon 2020 project European Gravity Service for Improved Emergency Management (EGSIEM), a scientific combination service shall therefore be established to deliver the best gravity products for applications in Earth and environmental science research based on the unified knowledge of the European GRACE community. In a first step the large variety of available monthly GRACE gravity field solutions shall be mutually compared spatially and spectrally. We assess the noise of the raw as well as filtered solutions and compare the secular and seasonal periodic variations fitted to the monthly solutions. In a second step we will explore ways to generate combined solutions, e.g., based on a weighted average of the individual solutions using empirical weights derived from pair-wise comparisons. We will also assess the quality of such a combined solution and discuss the

  11. Reducing Non-Uniqueness in Satellite Gravity Inversion using 3D Object Oriented Image Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Fadel, I.; van der Meijde, M.; Kerle, N.

    2013-12-01

    Non-uniqueness of satellite gravity interpretation has been usually reduced by using a priori information from various sources, e.g. seismic tomography models. The reduction in non-uniqueness has been based on velocity-density conversion formulas or user interpretation for 3D subsurface structures (objects) in seismic tomography models. However, these processes introduce additional uncertainty through the conversion relations due to the dependency on the other physical parameters such as temperature and pressure, or through the bias in the interpretation due to user choices and experience. In this research, a new methodology is introduced to extract the 3D subsurface structures from 3D geophysical data using a state-of-art 3D Object Oriented Image Analysis (OOA) technique. 3D OOA is tested using a set of synthetic models that simulate the real situation in the study area of this research. Then, 3D OOA is used to extract 3D subsurface objects from a real 3D seismic tomography model. The extracted 3D objects are used to reconstruct a forward model and its response is compared with the measured satellite gravity. Finally, the result of the forward modelling, based on the extracted 3D objects, is used to constrain the inversion process of satellite gravity data. Through this work, a new object-based approach is introduced to interpret and extract the 3D subsurface objects from 3D geophysical data. This can be used to constrain modelling and inversion of potential field data using the extracted 3D subsurface structures from other methods. In summary, a new approach is introduced to constrain inversion of satellite gravity measurements and enhance interpretation capabilities.

  12. Influence of a reduced gravity on the volume fraction of a monolayer of spherical grains.

    PubMed

    Dorbolo, S; Scheller, T; Ludewig, F; Lumay, G; Vandewalle, N

    2011-10-01

    Centrifuge force is used to study granular materials in low gravity conditions. We consider a monolayer of noncohesive spherical grains placed on a plate. Reduced gravity conditions can be simulated in the plane by tilting or by rotating the plate. We compare both approaches experimentally. The volume fraction is found to increase with the apparent gravity and saturates. A model based on the exponential distribution of the Voronoi cell areas has been built and is in excellent agreement with the experimental data by extrapolating the fits of the data. Moreover, numerical simulations exhibit that more arches can be maintained at low apparent gravities than at high.

  13. Wormholes, emergent gauge fields, and the weak gravity conjecture

    SciTech Connect

    Harlow, Daniel

    2016-01-20

    This paper revisits the question of reconstructing bulk gauge fields as boundary operators in AdS/CFT. In the presence of the ormhole dual to the thermo field double state of two CFTs, the existence of bulk gauge fields is in some tension with the microscopic tensor factorization of the Hilbert space. Here, I explain how this tension can be resolved by splitting the gauge field into charged constituents, and I argue that this leads to a new argument for the "principle of completeness", which states that the charge lattice of a gauge theory coupled to gravity must be fully populated. I also claim that it leads to a new motivation for (and a clarification of) the "weak gravity conjecture", which I interpret as a strengthening of this principle. This setup gives a simple example of a situation where describing low-energy bulk physics in CFT language requires knowledge of high-energy bulk physics. Furthermore, this contradicts to some extent the notion of "effective conformal field theory", but in fact is an expected feature of the resolution of the black hole information problem. An analogous factorization issue exists also for the gravitational field, and I comment on several of its implications for reconstructing black hole interiors and the emergence of spacetime more generally.

  14. Wormholes, emergent gauge fields, and the weak gravity conjecture

    DOE PAGES

    Harlow, Daniel

    2016-01-20

    This paper revisits the question of reconstructing bulk gauge fields as boundary operators in AdS/CFT. In the presence of the ormhole dual to the thermo field double state of two CFTs, the existence of bulk gauge fields is in some tension with the microscopic tensor factorization of the Hilbert space. Here, I explain how this tension can be resolved by splitting the gauge field into charged constituents, and I argue that this leads to a new argument for the "principle of completeness", which states that the charge lattice of a gauge theory coupled to gravity must be fully populated. Imore » also claim that it leads to a new motivation for (and a clarification of) the "weak gravity conjecture", which I interpret as a strengthening of this principle. This setup gives a simple example of a situation where describing low-energy bulk physics in CFT language requires knowledge of high-energy bulk physics. Furthermore, this contradicts to some extent the notion of "effective conformal field theory", but in fact is an expected feature of the resolution of the black hole information problem. An analogous factorization issue exists also for the gravitational field, and I comment on several of its implications for reconstructing black hole interiors and the emergence of spacetime more generally.« less

  15. The Gravity Field of Titan From Four Cassini Flybys

    NASA Astrophysics Data System (ADS)

    Rappaport, N. J.; Jacobson, R. A.; Iess, L.; Racioppa, P.; Armstrong, J. W.; Asmar, S. W.; Stevenson, D. J.; Tortora, P.; di Benedetto, M.; Graziani, A.; Meriggiola, R.

    2008-12-01

    Doppler tracking of the Cassini spacecraft across four flybys has been used for a preliminary determination of Titan's gravity field. The flybys occurred on February 27, 2006, December 28, 2006, June 29, 2007 and July 31, 2008, with closest approach altitudes between 1300 and 2100 km. X- and Ka-band Doppler data from each flyby have been combined in a multi-arc solution for the Stokes coefficients up to degree-3. The dynamical models employed in the data fit were limited to the static component of the gravity field and did not include eccentricity tides. Tidal variations of the quadrupole coefficients are expected at a level of a few percents if the surface hides an internal ocean, and are therefore accessible to Cassini measurements. As the flybys were evenly distributed about pericenter and apocenter of Titan's orbit, the current analysis provides a good representation of the static component of the quadrupole field. In one setup, Titan's ephemerides were also updated, leading to improved determination of the satellite's orbit and gravitational parameter (GM). The measured gravity field is dominated by a large, nearly hydrostatic, quadrupole component, consistent with an equilibrium response to the perturbations due to rotation and Saturn gravity gradient. The magnitude of the degree-3 coefficients accounts for about 1-3% of the overall field, with significant gravity disturbances (at a level of 2-5 mgal) over broad regions of the surface. The corresponding peak-to-peak geoid height variations amount to a few tens of meters. The ellipsoidal reference surface shows variations among the axes of a few hundred meters. The near hydrostaticity of Titan justifies the application of Radau-Darwin equilibrium theory, which provides the fluid Love number and the average moment of inertia. The latter is consistent with a partial, but not full, differentiation of the interior. This work was partly conducted at the Jet Propulsion Laboratory, California Institute of Technology

  16. Noncommutative scalar field minimally coupled to nonsymmetric gravity

    SciTech Connect

    Kouadik, S.; Sefai, D.

    2012-06-27

    We construct a non-commutative non symmetric gravity minimally coupled model (the star product only couples matter). We introduce the action for the system considered namely a non-commutative scalar field propagating in a nontrivial gravitational background. We expand the action in powers of the anti-symmetric field and the graviton to second order adopting the assumption that the scalar is weekly coupled to the graviton. We compute the one loop radiative corrections to the self-energy of a scalar particle.

  17. Mars gravity field based on a short-arc technique

    NASA Technical Reports Server (NTRS)

    Sjogren, W. L.; Lorell, J.; Wong, L.; Downs, W.

    1975-01-01

    The magnitudes of 92 surface mass points at designated locations were estimated from the radio tracking data of the Mariner Mars 1971 (M9) orbiter. This result is the first mass point model of a global field. The derived surface mass distribution correlates positively with the visible topography. The Hellas basin contains a mass deficiency, in contrast to some of the lunar basins which contain mass excesses. The Mars gravity field represented by the four parameters of an optimally located mass point (superimposed on an oblate spheroid) has third- and fourth-degree harmonics comparable to those of the complete model.

  18. Recovery of the Earth's gravity field from formation-flying satellites: Temporal aliasing issues

    NASA Astrophysics Data System (ADS)

    Elsaka, Basem; Kusche, Juergen; Ilk, Karl-Heinz

    2012-12-01

    are able to significantly reduce the aliasing errors appearing in the temporal GRACE gravity field monthly solutions. Following this, we suggest to fly a future mission in pendulum configuration.

  19. Gravity Field and Internal Structure of Mercury from MESSENGER

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Zuber, Maria T.; Phillips, Roger J.; Solomon, Sean C.; Hauck, Steven A., II; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Peale, Stanton J.; Margot, Jean-Luc; Johnson, Catherine L.; Torrence, Mark H.; Perry, Mark E.; Rowlands, David D.; Goossens, Sander; Head, James W.; Taylor, Anthony H.

    2012-01-01

    Radio tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury's northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/M(R(exp 2) = 0.353 +/- 0.017, where M and R are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of C(sub m)/C = 0.452 +/- 0.035. A model for Mercury s radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core.

  20. Inversion of Gravity and Magnetic Field Data for Tyrrhena Patera

    NASA Technical Reports Server (NTRS)

    Milbury, C.; Schubert, G.; Raymond, C. A.; Smrekar, S. E.

    2011-01-01

    Tyrrhena Patera is located to the southeast/northeast of the Isidis/Hellas impact basin. It was geologically active into the Late Amazonian, although the main edifice was formed in the Noachian(approximately 3.7-4.0 Ga). Tyrrhena Patera and the surrounding area contain gravity and magnetic anomalies that appear to be correlated. The results presented here are for the anomalies 1a and 1b (closest to Tyrrhena Patera), however other anomalies in this region have been modeled and will be presented at the conference.The Mars Global Surveyor (MGS) free-air gravity signature of Tyrrhena Patera has been studied by Kiefer, who inferred the existence of an extinct magma chamber below it. The magnetic signature has been mapped by Lillis R. J. et al., who compared electron reflectometer data, analogous to the total magnetic field, for Syrtis Major and Tyrrhena Patera and argued for demagnetization of both volcanoes.

  1. Gravitomagnetic effects in quadratic gravity with a scalar field

    NASA Astrophysics Data System (ADS)

    Finch, Andrew; Said, Jackson Levi

    2016-10-01

    The two gravitomagnetic effects which influence bodies orbiting around a gravitational source are the geodetic effect and the Lense-Thirring effect. The former describes the precession angle of the axis of a spinning gyroscope while in orbit around a nonrotating gravitational source whereas the latter provides a correction for this angle in the case of a spinning source. In this paper we derive the relevant equations in quadratic gravity and relate them to their equivalents in general relativity. Starting with an investigation into Kepler's third law in quadratic gravity with a scalar field, the effects of an axisymmetric and rotating gravitational source on an orbiting body in a circular, equatorial orbit are introduced.

  2. Action and entanglement in gravity and field theory.

    PubMed

    Neiman, Yasha

    2013-12-27

    In nongravitational quantum field theory, the entanglement entropy across a surface depends on the short-distance regularization. Quantum gravity should not require such regularization, and it has been conjectured that the entanglement entropy there is always given by the black hole entropy formula evaluated on the entangling surface. We show that these statements have precise classical counterparts at the level of the action. Specifically, we point out that the action can have a nonadditive imaginary part. In gravity, the latter is fixed by the black hole entropy formula, while in nongravitating theories it is arbitrary. From these classical facts, the entanglement entropy conjecture follows by heuristically applying the relation between actions and wave functions.

  3. The gravity field of Mars: results from Mars Global Surveyor.

    PubMed

    Smith, D E; Sjogren, W L; Tyler, G L; Balmino, G; Lemoine, F G; Konopliv, A S

    1999-10-01

    Observations of the gravity field of Mars reveal a planet that has responded differently in its northern and southern hemispheres to major impacts and volcanic processes. The rough, elevated southern hemisphere has a relatively featureless gravitational signature indicating a state of near-isostatic compensation, whereas the smooth, low northern plains display a wider range of gravitational anomalies that indicates a thinner but stronger surface layer than in the south. The northern hemisphere shows evidence for buried impact basins, although none large enough to explain the hemispheric elevation difference. The gravitational potential signature of Tharsis is approximately axisymmetric and contains the Tharsis Montes but not the Olympus Mons or Alba Patera volcanoes. The gravity signature of Valles Marineris extends into Chryse and provides an estimate of material removed by early fluvial activity.

  4. Wormholes, emergent gauge fields, and the weak gravity conjecture

    NASA Astrophysics Data System (ADS)

    Harlow, Daniel

    2016-01-01

    This paper revisits the question of reconstructing bulk gauge fields as boundary operators in AdS/CFT. In the presence of the wormhole dual to the thermofield double state of two CFTs, the existence of bulk gauge fields is in some tension with the microscopic tensor factorization of the Hilbert space. I explain how this tension can be resolved by splitting the gauge field into charged constituents, and I argue that this leads to a new argument for the "principle of completeness", which states that the charge lattice of a gauge theory coupled to gravity must be fully populated. I also claim that it leads to a new motivation for (and a clarification of) the "weak gravity conjecture", which I interpret as a strengthening of this principle. This setup gives a simple example of a situation where describing low-energy bulk physics in CFT language requires knowledge of high-energy bulk physics. This contradicts to some extent the notion of "effective conformal field theory", but in fact is an expected feature of the resolution of the black hole information problem. An analogous factorization issue exists also for the gravitational field, and I comment on several of its implications for reconstructing black hole interiors and the emergence of spacetime more generally.

  5. Relative equilibria for general gravity fields in the sphere-restricted full two-body problem.

    PubMed

    Scheeres, D J

    2005-12-01

    Equilibrium conditions for a mutually attracting general mass distribution and point mass are stated. The equilibrium conditions can be reduced to six equations in six unknowns, plus the existence of integrals of motion consisting of the total angular momentum and energy of the system. The equilibrium conditions are further reduced to two independent equations, and their theoretical properties are studied. We state a set of necessary and sufficient conditions for an equilibrium that is well suited to the computation of certain classes of equilibria. These equations are solved for nonsymmetric gravity fields of interest, using a real asteroid shape model for the general gravity fields. The stability of the resulting equilibria are also noted.

  6. Prediction of physical workload in reduced gravity environments

    NASA Technical Reports Server (NTRS)

    Goldberg, Joseph H.

    1987-01-01

    The background, development, and application of a methodology to predict human energy expenditure and physical workload in low gravity environments, such as a Lunar or Martian base, is described. Based on a validated model to predict energy expenditures in Earth-based industrial jobs, the model relies on an elemental analysis of the proposed job. Because the job itself need not physically exist, many alternative job designs may be compared in their physical workload. The feasibility of using the model for prediction of low gravity work was evaluated by lowering body and load weights, while maintaining basal energy expenditure. Comparison of model results was made both with simulated low gravity energy expenditure studies and with reported Apollo 14 Lunar EVA expenditure. Prediction accuracy was very good for walking and for cart pulling on slopes less than 15 deg, but the model underpredicted the most difficult work conditions. This model was applied to example core sampling and facility construction jobs, as presently conceptualized for a Lunar or Martian base. Resultant energy expenditures and suggested work-rest cycles were well within the range of moderate work difficulty. Future model development requirements were also discussed.

  7. A New Glocal Mean Gravity Field Model From The Combination Of Satellite Mission And Altimetry/Gravimetry Surface Gravity Data

    NASA Astrophysics Data System (ADS)

    Rothacher, M.; Reigber, C.; Schmidt, R.; Foerste, C.; Koenig, R.; Flechtner, F.; Meyer, U.; Stubenvoll, R.; Barthelmes, F.; Neumayer, K. H.; Biancale, R.; Bruinsma, S.; Lemoine, J.

    2005-12-01

    High-resolution global mean gravity field models can be derived from the combination of satellite tracking and surface data. With the CHAMP and GRACE satellite missions, a new generation of such global gravity field models became available. Here the latest results of the processing of GRACE, CHAMP and SLR satellite tracking are presented and compared with outcomes of former analyses. The gravity field parameters obtained are the result of a substantial satellite data reprocessing, based on recently improved processing standards and models. On the other hand, surface gravity data derived from altimetry and gravimetry are globally available, providing a higher resolution than pure satellite data but lacking the high precision in the long-wavelength part. In an optimal approach the satellite-based data are combined with latest, partially newly processed surface gravity data sets to derive a global high-resolution gravity field model combining the high precision and homogeneity in the long- to medium-wavelength part from the satellite data with the short-wavelength resolution of the surface data. The obtained Earth gravity field model is an update of former EIGEN models of a resolution corresponding to a wavelength of 100 km and degree/order 360, respectively.

  8. Gravity, Topography, and Magnetic Field of Mercury from Messenger

    NASA Technical Reports Server (NTRS)

    Neumann, Gregory A.; Solomon, Sean C.; Zuber, Maria T.; Phillips, Roger J.; Barnouin, Olivier; Ernst, Carolyn; Goosens, Sander; Hauck, Steven A., II; Head, James W., III; Johnson, Catherine L.; Lemoine, Frank G.; Margot, Jean-Luc; McNutt, Ralph; Mazarico, Erwan M.; Oberst, Jurgen; Peale, Stanley J.; Perry, Mark; Purucker, Michael E.; Rowlands, David D.; Torrence, Mark H.

    2012-01-01

    On 18 March 2011, the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft was inserted into a 12-hour, near-polar orbit around Mercury, with an initial periapsis altitude of 200 km, initial periapse latitude of 60 deg N, and apoapsis at approximately 15,200 km altitude in the southern hemisphere. This orbit has permitted the mapping of regional gravitational structure in the northern hemisphere, and laser altimetry from the MESSENGER spacecraft has yielded a geodetically controlled elevation model for the same hemisphere. The shape of a planet combined with gravity provides fundamental information regarding its internal structure and geologic and thermal evolution. Elevations in the northern hemisphere exhibit a unimodal distribution with a dynamic range of 9.63 km, less than that of the Moon (19.9 km), but consistent with Mercury's higher surface gravitational acceleration. After one Earth-year in orbit, refined models of gravity and topography have revealed several large positive gravity anomalies that coincide with major impact basins. These candidate mascons have anomalies that exceed 100 mGal and indicate substantial crustal thinning and superisostatic uplift of underlying mantle. An additional uncompensated 1000-km-diameter gravity and topographic high at 68 deg N, 33 deg E lies within Mercury's northern volcanic plains. Mercury's northern hemisphere crust is generally thicker at low latitudes than in the polar region. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/MR2 = 0.353 +/- 0.017, where M=3.30 x 10(exp 23) kg and R=2440 km are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of Cm/C = 0.452 +/- 0.035. One proposed model for Mercury's radial density distribution consistent with these results includes silicate crust and mantle layers overlying a dense solid (possibly Fe-S) layer, a liquid Fe

  9. Report of the panel on geopotential fields: Gravity field, section 8

    NASA Technical Reports Server (NTRS)

    Anderson, Allen Joel; Kaula, William M.; Lazarewics, Andrew R.; Lefebvre, Michel; Phillips, Roger J.; Rapp, Richard H.; Rummel, Reinhard F.; Smith, David E.; Tapley, Byron D.; Zlotnick, Victor

    1991-01-01

    The objective of the Geopotential Panel was to develop a program of data acquisition and model development for the Earth's gravity and magnetic fields that meet the basic science requirements of the solid Earth and ocean studies. Presented here are the requirements for gravity information and models through the end of the century, the present status of our knowledge, data acquisition techniques, and an outline of a program to meet the requirements.

  10. The role of topography in geodetic gravity field modelling

    NASA Technical Reports Server (NTRS)

    Forsberg, R.; Sideris, M. G.

    1989-01-01

    Masses associated with the topography, bathymetry, and its isostatic compensation are a dominant source of gravity field variations, especially at shorter wavelengths. On global scales the topographic/isostatic effects are also significant, except for the lowest harmonics. In practice, though, global effects need not be taken into account as such effects are included in the coefficients of the geopotential reference fields. On local scales, the short-wavelength gravity variations due to the topography may, in rugged terrain, be an order of magnitude larger than other effects. In such cases, explicit or implicit terrain reduction procedures are mandatory in order to obtain good prediction results. Such effects may be computed by space-domain integration or by fast Fourier transformation (FFT) methods. Numerical examples are given for areas of the Canadian Rockies. In principle, good knowledge of the topographic densities is required to produce the smoothest residual field. Densities may be determined from sample measurements or by gravimetric means, but both are somewhat troublesome methods in practice. The use of a standard density, e.g., 2.67 g/cu cm, may often yield satisfactory results and may be put within a consistent theoretical framework. The independence of density assumptions is the key point of the classical Molodensky approach to the geodetic boundary value problem. The Molodensky solutions take into account that land gravity field observations are done on a non-level surface. Molodensky's problem may be solved by integral expansions or more effective FFT methods, but the solution should not be intermixed with the use of terrain reductions. The methods are actually complimentary and may both be required in order to obtain the smoothest possible signal, least prone to aliasing and other effects coming from sparse data coverage, typical of rugged topography.

  11. An overview of the cosmic dust analogue material production in reduced gravity: the STARDUST experience

    NASA Technical Reports Server (NTRS)

    Ferguson, F.; Lilleleht, L. U.; Nuth, J.; Stephens, J. R.; Bussoletti, E.; Colangeli, L.; Mennella, V.; Dell'Aversana, P.; Mirra, C.

    1993-01-01

    The formation, properties and chemical dynamics of microparticles are important in a wide variety of technical and scientific fields including synthesis of semiconductor crystals from the vapour, heterogeneous chemistry in the stratosphere and the formation of cosmic dust surrounding the stars. Gravitational effects on particle formation from vapors include gas convection and buoyancy and particle sedimentation. These processes can be significantly reduced by studying condensation and agglomeration of particles in microgravity. In addition, to accurately simulate particle formation near stars, which takes place under low gravity conditions, studies in microgravity are desired. We report here the STARDUST experience, a recent collaborative effort that brings together a successful American program of microgravity experiments on particle formation aboard NASA KC-135 Reduced Gravity Research Aircraft and several Italian research groups with expertise in microgravity research and astrophysical dust formation. The program goal is to study the formation and properties of high temperature particles and gases that are of interest in astrophysics and planetary science. To do so we are developing techniques that are generally applicable to study particle formation and properties, taking advantage of the microgravity environment to allow accurate control of system parameters.

  12. New Results in Two-Phase Pressure Drop Calculations at Reduced Gravity Conditions

    NASA Astrophysics Data System (ADS)

    Braisted, Jon; Kurwitz, Cable; Best, Frederick

    2004-02-01

    The mass, power, and volume energy savings of two-phase systems for future spacecraft creates many advantages over current single-phase systems. Current models of two-phase phenomena such as pressure drop, void fraction, and flow regime prediction are still not well defined for space applications. Commercially available two-phase modeling software has been developed for a large range of acceleration fields including reduced-gravity conditions. Recently, a two-phase experiment has been flown to expand the two-phase database. A model of the experiment was created in the software to determine how well the software could predict the pressure drop observed in the experiment. Of the simulations conducted, the computer model shows good agreement of the pressure drop in the experiment to within 30%. However, the software does begin to over-predict pressure drop in certain regions of a flow regime map indicating that some models used in the software package for reduced-gravity modeling need improvement.

  13. Quantum field theory and gravity in causal sets

    NASA Astrophysics Data System (ADS)

    Sverdlov, Roman M.

    Causal set is a model of space time that allows to reconcile discreteness and manifest relativistic invariance. This is done by viewing space time as finite, partially ordered set. The elements of the set are viewed as points of space time, or events; the partial ordering between them is viewed as causal relations. It has been shown that, in discrete scenario, the information about causal relations between events can, indeed, approximate the metric. The goal of this thesis is to introduce matter fields and their Lagrangians into causal set context. This is a two step process. The first step is to re-define gauge fields, gravity, and distances in such a way that no reference to Lorentz index is made. This is done by defining gauge fields as two-point real valued functions, and gravitational field as causal structure itself. Once the above is done, Lagrangians have to be defined in a way that they don't refer to Lorentzian indices either. This is done by introducing a notion of type 1 and type 2 Lagrangian generators, coupled with respective machinery that "translates" each generator into corresponding Lagrangian. The fields that are subject to these generators are, respectively, defined as type 1 and type 2. The main difference between two kinds of fields is the prediction of different behavior in different dimensions of type 2 fields. However, despite our inability to travel to different dimensions, gravity was shown to be type 2 based on the erroneous predictions of its 4-dimensional behavior if it was viewed as type 1. However, no erroneous predictions are made if non-gravitational fields are viewed as either type 1 or type 2, thus the nature of the latter is still an open question. Finally, an attempt was made to provide interpretation of quantum mechanics that would allow to limit fluctuations of causal structure to allow some topological background. However, due to its controversial nature, it is placed in the Appendix.

  14. Opportunity to test non-Newtonian gravity using interferometric sensors with dynamic gravity field generators

    SciTech Connect

    Raffai, Peter; Szeifert, Gabor; Matone, Luca; Bartos, Imre; Marka, Zsuzsa; Aso, Yoichi; Ricci, Fulvio; Marka, Szabolcs

    2011-10-15

    We present an experimental opportunity for the future to measure possible violations to Newton's 1/r{sup 2} law in the 0.1-10 m range using dynamic gravity field generators (DFG) and taking advantage of the exceptional sensitivity of modern interferometric techniques. The placement of a DFG in proximity to one of the interferometer's suspended test masses generates a change in the local gravitational field that can be measured at a high signal to noise ratio. The use of multiple DFGs in a null-experiment configuration allows us to test composition-independent non-Newtonian gravity significantly beyond the present limits. Advanced and third-generation gravitational-wave detectors are representing the state-of-the-art in interferometric distance measurement today, therefore, we illustrate the method through their sensitivity to emphasize the possible scientific reach. Nevertheless, it is expected that due to the technical details of gravitational-wave detectors, DFGs shall likely require dedicated custom-configured interferometry. However, the sensitivity measure we derive is a solid baseline indicating that it is feasible to consider probing orders of magnitude into the pristine parameter well beyond the present experimental limits significantly cutting into the theoretical parameter space.

  15. Using Clocks and Atomic Interferometry for Gravity Field Observations

    NASA Astrophysics Data System (ADS)

    Müller, Jürgen

    2016-07-01

    New technology developed in the frame of fundamental physics may lead to enhanced capabilities for geodetic applications such as refined observations of the Earth's gravity field. Here, we will present new sensor measurement concepts that apply atomic interferometry for gravimetry and clock measurements for observing potential values. In the first case, gravity anomalies can be determined by observing free-falling atoms (quantum gravimetry). In the second case, highly precise optical clocks can be used to measure differences of the gravity potential over long distances (relativistic geodesy). Principally, also inter-satellite ranging between test masses in space with nanometer accuracy belongs to these novel developments. We will show, how the new measurement concepts are connected to classical geodetic concepts, e.g. geopotential numbers and clock readings. We will illustrate the application of these new methods and their benefit for geodesy, where local and global mass variations can be observed with unforeseen accuracy and resolution, mass variations that reflect processes in the Earth system. We will present a few examples where geodesy will potentially benefit from these developments. Thus, the novel technologies might be applied for defining and realizing height systems in a new way, but also for fast local gravimetric surveys and exploration.

  16. Users Guide for NASA Lewis Research Center DC-9 Reduced-Gravity Aircraft Program

    NASA Technical Reports Server (NTRS)

    Yaniec, John S.

    1995-01-01

    The document provides guidelines and information for users of the DC-9 Reduced-Gravity Aircraft Program. It describes the facilities, requirements for test personnel, equipment design and installation, mission preparation, and in-flight procedures. Those who have used the KC-135 reduced-gravity aircraft will recognize that many of the procedures and guidelines are the same, to ensure a commonality between the DC-9 and KC-135 programs.

  17. Reduce phase space quantization of Ashtekar's gravity on de Sitter background

    SciTech Connect

    I. Grigentch; D.V. Vassilevich

    1994-05-01

    The authors solve perturbative constraints and eliminate gauge freedom for Ashtekar's gravity on de Sitter background. They show that the reduced phase space consists of transverse, traceless, symmetric, fluctuations of the triad and of transverse, traceless, symmetric fluctuations of the connection. A part of gauge freedom corresponding to the conformal Killing vectors of the three-manifold can be fixed only by imposing conditions on Lagrange multiplier. The reduced phase space is equivalent to that of ADM gravity on the same background.

  18. Gravity Field, Topography, and Interior Structure of Amalthea

    NASA Astrophysics Data System (ADS)

    Anderson, J. D.; Anabtawi, A.; Jacobson, R. A.; Johnson, T. V.; Lau, E. L.; Moore, W. B.; Schubert, G.; Taylor, A. H.; Thomas, P. C.; Weinwurm, G.

    2002-12-01

    A close Galileo flyby of Jupiter's inner moon Amalthea (JV) occurred on 5 November 2002. The final aimpoint was selected by the Galileo Radio Science Team on 5 July 2002. The closest approach distance for the selected aimpoint was 221 km from the center of mass, the latitude was - 45.23 Deg and the west longitude was 266.41 Deg (IAU/IAG/COSPAR cartographic coordinate system). In order to achieve an acceptable impact probability (0.15%), and yet fly close to Amalthea, the trajectory was selected from a class of trajectories running parallel to Amalthea's long axis. The Deep Space Network (DSN) had the capability to generate continuous coherent radio Doppler data during the flyby. Such data can be inverted to obtain information on Amalthea's gravity field. Amalthea is irregular and neither a triaxial ellipsoid nor an equilibrium body. It has a volume of about 2.4 x 106 km3, and its best-fit ellipsoid has dimensions 131x73x67 km. Its mass can be determined from the 2002 flyby, and in combination with the volume, a density can be obtained accurate to about 5%, where the error is dominated by the volume uncertainty. Similarly, gravity coefficients (Cnm Snm) can be detected up to fourth degree and order, and the second degree field (quadrupole) can be measured. Topography data are available from Voyager imaging and from images taken with Galileo's solid state imaging system at various times between February and June 1997. By combining the gravity and topography data, new information can be obtained on Amalthea's interior. For example if the gravity coefficients agree with those calculated from the topography, assuming constant density, we can conclude that Amalthea is homogeneous. On the other hand, if the gravity coefficients are smaller than predicted from topography, we can conclude that there is a concentration of mass toward Amalthea's center. We are presenting preliminary pre-publication results at the Fall meeting. This work was sponsored by the Galileo Project

  19. The determination of Dione's gravity field after four Cassini flybys

    NASA Astrophysics Data System (ADS)

    Zannoni, Marco; Tortora, Paolo; Iess, Luciano; Jacobson, Robert A.; Armstrong, John W.; Asmar, Sami W.

    2015-04-01

    We present the expected accuracy in the determination of Dione's gravity field obtained through numerical simulations of all radio science flybys currently planned in the entire Cassini mission. During its tour of the Saturn system, Cassini already performed two flybys of Dione dedicated to the determination of its mass and gravity field, in October 2005 and December 2011, respectively. Two additional radio science flybys are planned in June 2015 and August 2015. The analysis of the Doppler data acquired during the closest approach of the second flyby allowed the first estimation of Dione's J2 and C22 but, given the limited amount of data, their estimation has a large correlation and cannot be considered fully reliable. Here we infer the expected final accuracy in the determination of Dione's J2 and C22 by combining the available results from the already performed experiments with numerical simulations of future flybys. The main observables considered in the analysis are two-way and three-way Doppler data obtained from the frequency shift of a highly stable microwave carrier between the spacecraft and the stations of NASA's Deep Space Network. White Gaussian noise was added to the simulated data, with a constant standard deviation for each tracking pass, obtained from an accurate noise budget of the Cassini mission. For the two flybys to be carried out in 2015, we consider a continuous coverage during +/-18 hours around the closest approach, plus one tracking pass 36 hours before and after it. The data analysis is carried out using a global, multi-arc fit, and comparing the independent solutions obtained from each flyby and different multi-arc solutions. The analysis of all four flybys is expected to provide the best, unconstrained, reliable estimation of the full quadrupole gravity field of Dione.

  20. Paramagnetic Liquid Bridge in a Gravity-Compensating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mahajan, Milind P.; Tsige, Mesfin; Taylor, P. L.; Rosenblatt, Charles

    1999-01-01

    Magnetic levitation was used to stabilize cylindrical columns of a paramagnetic liquid in air between two solid supports. The maximum achievable length to diameter ratio R(sub max) was approx. (3.10 +/- 0.07), very close to the Rayleigh-Plateau limit of pi. For smaller R, the stability of the column was measured as a function of the Bond number, which could be continuously varied by adjusting the strength of the magnetic field. Liquid bridges supported by two solid surfaces have been attracting scientific attention since the time of Rayleigh and Plateau. For a cylindrical bridge of length L and diameter d, it was shown theoretically that in zero gravity the maximum slenderness ratio R (identically = L/d) is pi. The stability and ultimate collapse of such bridges is of interest because of their importance in a number of industrial processes and their potential for low gravity applications. In the presence of gravity, however, the cylindrical shape of an axisymmetric bridge tends to deform, limiting its stability and decreasing the maximum achievable value of R. Theoretical studies have discussed the stability and possible shapes of axisymmetric bridges. Experiments typically are performed in either a Plateau tank, in which the bridge is surrounded by a density-matched immiscible fluid, or in a space-borne microgravity environment. It has been shown, for example, that the stability limit R can be pushed beyond pi by using flow stabilization, by acoustic radiation pressure, or by forming columns in the presence of an axial electric field. In this work, magnetic levitation was used to simulate a low gravity environment and create quasi-cylindrical liquid columns in air. Use of a magnetic field permits us to continuously vary the Bond number B identically equal to (g)(rho)d(exp 2)/4(sigma), where g is the gravitational acceleration, rho is the density of the liquid, and sigma is the surface tension of the liquid in air. The dimensionless Bond number represents the

  1. Gravity field data products from the ARISTOTELES mission.

    NASA Astrophysics Data System (ADS)

    Balmino, G.

    1991-12-01

    The ARISTOTELES mission will bring a wealth of homogeneous information about the Earth gravity field enabling new direct and inverse modeling of geophysical structures at various scales, yielding a reference geoid surface of great quality for oceanographic studies, leading to global models of high resolution for versatile applications and in particular precise orbit determination of artificial satellites. The author's purpose is to review the different types of measurements involved in these investigations, the various levels of processing and how they can be phased with the scientific activities, and the expected products. Also, some general schemes are proposed along which the different tasks can be undertaken.

  2. Mercury's Gravity Field from BepiColombo MORE experiment

    NASA Astrophysics Data System (ADS)

    Marabucci, M.; Genova, A.; Iess, L.

    2012-04-01

    The Mercury Orbiter Radioscience Experiment (MORE) is one of the main instruments on board the BepiColombo Mercury Planetary Orbiter (MPO), designed to provide an accurate estimation of Mercury's gravity field by means of highly stable, multi-frequency radio links in X and Ka band. The state-of-the-art microwave equipment enables simultaneous two-way links in X/X (7.2 GHz uplink/8.4 GHz downlink), X/Ka (7.2/32.5 GHz) and Ka/Ka band (34/32.5 GHz), providing range rate accuracies of 3 micron/s (at 1000 s integration time) at nearly all elongation angles. Range observables accurate to 20 cm (two-way) will be attained using a novel, wideband (24 Mcps) ranging system, based upon a pseudo-noise modulation scheme. The multifrequency link, adopted for the first time by the Cassini mission to Saturn [1,2], allows a nearly complete cancellation of the plasma noise both in Doppler and range measurements and hence an accurate determination of Mercury's gravity field and ephemerides. The orbit determination of spacecraft in deep space is generally carried out by means of batch filters, for recovering the trajectory and the model parameters (i.e. gravity field coefficients). The complexity of Mercury's environment penalizes strongly the accuracy of the orbit determination because of the non-gravitational perturbations, such as the solar radiation pressure. Although the non-gravitational accelerations of the MPO will be measured by a highly sensitive accelerometer (the Italian Spring Accelerometer, ISA), a classical, global batch filter proved to be inadequate for precise orbit propagation due to numerical instabilities. Therefore, a different approach has been devised, where the information accumulated previously is exploited in a batch-sequential filter. This paper reports on a new set of numerical simulations carried out with this strategy. The simulation setup takes into account the latest changes in the spacecraft design, the mission profile and the tracking system. We

  3. Electromagnetic field and cylindrical compact objects in modified gravity

    NASA Astrophysics Data System (ADS)

    Yousaf, Z.; Bhatti, M. Zaeem ul Haq

    2016-05-01

    In this paper, we have investigated the role of different fluid parameters particularly electromagnetic field and f(R) corrections on the evolution of cylindrical compact object. We have explored the modified field equations, kinematical quantities and dynamical equations. An expression for the mass function has been found in comparison with the Misner-Sharp formalism in modified gravity, after which different mass-radius diagrams are drawn. The coupled dynamical transport equation have been formulated to discuss the role of thermoinertial effects on the inertial mass density of the cylindrical relativistic interior. Finally, we have presented a framework, according to which all possible solutions of the metric f(R)-Maxwell field equations coupled with static fluid can be written through set of scalar functions. It is found that modified gravity induced by Lagrangians f(R) = αR2, f(R) = αR2 - βR and f(R)=α R^2-β R/1+γ R are likely to host more massive cylindrical compact objects with smaller radii as compared to general relativity.

  4. Laminar dust flames in a reduced-gravity environment

    NASA Astrophysics Data System (ADS)

    Goroshin, Samuel; Tang, Francois-David; Higgins, Andrew J.; Lee, John H. S.

    2011-04-01

    The propagation of laminar dust flames in suspensions of iron in gaseous oxidizers was studied in a low-gravity environment onboard a parabolic flight aircraft. The reduction of buoyancy-induced convective flows and particle settling permitted the measurement of fundamental combustion parameters, such as the burning velocity and the flame quenching distance over a wide range of particle sizes and in different gaseous mixtures. Experimentally measured flame speeds and quenching distances were found in good agreement with theoretical predictions of a simplified analytical model that assumes particles burning in a diffusive mode. However, the comparison of flame speeds in oxygen-argon and oxygen-helium iron suspensions indicates the possibility that fine micron-sized particles burn in the kinetic mode. Furthermore, when the particle spacing is large compared to the scale of the reaction zone, a theoretical analysis suggests the existence of a new so-called discrete flame propagation regime. Discrete flames are strongly dependent on particle density fluctuations and demonstrate directed percolation behavior near flame propagation limits. The experimental observation of discrete flames in particle suspensions will require low levels of gravity over extended periods available only on orbital platforms.

  5. Linear connections with a propagating spin-3 field in gravity

    SciTech Connect

    Baekler, Peter; Boulanger, Nicolas; Hehl, Friedrich W.

    2006-12-15

    We show that Fronsdal's Lagrangian for a free massless spin-3 gauge field in Minkowski spacetime is contained in a general Yang-Mills-like Lagrangian of metric-affine gravity (MAG), the gauge theory of the general affine group in the presence of a metric. Because of the geometric character of MAG, this can best be seen by using Vasiliev's frame formalism for higher-spin gauge fields in which the spin-3 frame is identified with the tracefree nonmetricity one-form associated with the shear generators of GL(n,R). Furthermore, for specific gravitational gauge models in the framework of full nonlinear MAG, exact solutions are constructed, featuring propagating massless and massive spin-3 fields.

  6. Fugacity and concentration gradients in a gravity field

    NASA Astrophysics Data System (ADS)

    May, C. E.

    1986-07-01

    Equations are reviewed which show that at equilibrium fugacity and concentration gradients can exist in gravitational fields. At equilibrium, the logarithm of the ratio of the fugacities of a species at two different locations in a gravitational field is proportional to the difference in the heights of the two locations and the molecular weight of the species. An analogous relation holds for the concentration ratios in a multicomponent system. The ratio is calculated for a variety of examples. The kinetics for the general process are derived, and the time required to approach equilibrium is calculated for several systems. The following special topics are discussed: ionic solutions, polymers, multiphase systems, hydrostatic pressure, osmotic pressure, and solubility gradients in a gravity field.

  7. Fugacity and concentration gradients in a gravity field

    NASA Technical Reports Server (NTRS)

    May, C. E.

    1986-01-01

    Equations are reviewed which show that at equilibrium fugacity and concentration gradients can exist in gravitational fields. At equilibrium, the logarithm of the ratio of the fugacities of a species at two different locations in a gravitational field is proportional to the difference in the heights of the two locations and the molecular weight of the species. An analogous relation holds for the concentration ratios in a multicomponent system. The ratio is calculated for a variety of examples. The kinetics for the general process are derived, and the time required to approach equilibrium is calculated for several systems. The following special topics are discussed: ionic solutions, polymers, multiphase systems, hydrostatic pressure, osmotic pressure, and solubility gradients in a gravity field.

  8. Reduced-gravity two-phase flow experiments in the NASA KC-135

    NASA Technical Reports Server (NTRS)

    Cuta, Judith M.; Michener, Thomas E.; Best, Frederick R.; Kachnik, Leo J.

    1988-01-01

    An adequate understanding is sought of flow and heat transfer behavior in reduced and zero gravity conditions. Microgravity thermal-hydraulic analysis capabilities were developed for application to space nuclear power systems. A series of reduced gravity two phase flow experiments using the NASA KC-135 were performed. The objective was to supply basic thermal hydraulic information that could be used in development of analytical tools for design of space power systems. The experiments are described. Two main conclusions were drawn. First, the tests demonstrate that the KC-135 is a suitable test environment for obtaining two phase flow and heat transfer data in reduced gravity conditions. Second, the behavior of two phase flow in low gravity is sufficiently different from that obtained in 1 g to warrant intensive investigation of the phenomenon if adequate analytical tools are to be developed for microgravity conditions.

  9. Study of Critical Heat Flux and Two-Phase Pressure Drop Under Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Abdollahian, Davood; Quintal, Joseph; Barez, Fred; Zahm, Jennifer; Lohr, Victor

    1996-01-01

    The design of the two-phase flow systems which are anticipated to be utilized in future spacecraft thermal management systems requires a knowledge of two-phase flow and heat transfer phenomena in reduced gravities. This program was funded by NASA headquarters in response to NRA-91-OSSA-17 and was managed by Lewis Research Center. The main objective of this program was to design and construct a two-phase test loop, and perform a series of normal gravity and aircraft trajectory experiments to study the effect of gravity on the Critical Heat Flux (CHF) and onset of instability. The test loop was packaged on two aircraft racks and was also instrumented to generate data for two-phase pressure drop. The normal gravity tests were performed with vertical up and downflow configurations to bound the effect of gravity on the test parameters. One set of aircraft trajectory tests was performed aboard the NASA DC-9 aircraft. These tests were mainly intended to evaluate the test loop and its operational performance under actual reduced gravity conditions, and to produce preliminary data for the test parameters. The test results were used to demonstrate the applicability of the normal gravity models for prediction of the two-phase friction pressure drop. It was shown that the two-phase friction multipliers for vertical upflow and reduced gravity conditions can be successfully predicted by the appropriate normal gravity models. Limited critical heat flux data showed that the measured CHF under reduced gravities are of the same order of magnitude as the test results with vertical upflow configuration. A simplified correlation was only successful in predicting the measured CHF for low flow rates. Instability tests with vertical upflow showed that flow becomes unstable and critical heat flux occurs at smaller powers when a parallel flow path exists. However, downflow tests and a single reduced gravity instability experiment indicated that the system actually became more stable with a

  10. Study of fluid behaviour under gravity compensated by a magnetic field

    NASA Astrophysics Data System (ADS)

    Chatain, D.; Beysens, D.; Madet, K.; Nikolayev, V.; Mailfert, A.

    2006-09-01

    Fluids, and especially cryogenic fluids like hydrogen and oxygen, are widely used in space technology for propulsion and cooling. The knowledge of fluid behaviour during the acceleration variation and under reduced gravity is necessary for an efficient management of fluids in space. Such a management also rises fundamental questions about thermo-hydrodynamics and phase change once buoyancy forces are cancelled. For security reasons, it is nearly impossible to use the classical microgravity means to experiment with such cryofluids. However, it is possible to counterbalance gravity by using the paramagnetic (O2) or diamagnetic (H2) properties of fluids. By applying a magnetic field gradient on these materials, a volume force is created that is able to impose to the fluid a varying effective gravity, including microgravity. We have set up a magnetic levitation facility for H2 in which numerous experiments have been performed. A new facility for O2 is under construction. It will enable fast change in the effective gravity by quenching down the magnetic field. The facilities and some particularly representative experimental results are presented.

  11. Determination of Enceladus' gravity field from Cassini radio science data

    NASA Astrophysics Data System (ADS)

    Parisi, Marzia; Iess, Luciano; Ducci, Marco

    2014-05-01

    In May 2012 the Cassini spacecraft completed its last gravity flyby of Saturn's moon Enceladus (identified as E19 in the sequence), following E9 in April 2010 and E12 in November 2010. The multiarc analysis of the gravity data collected during these low-altitude encounters has produced a stable solution for the gravity field of Enceladus, leading to compelling inferences and implications on the interior structure, but also raising new questions on the evolution of this small but yet fascinating icy body. The gravitational signature of the satellite was detected by means of precise Doppler tracking of the Cassini spacecraft around closest approach (±3h) of the three flybys. Cassini tracking system exploits both X/X and X/Ka links, with accuracies that range between 0.02 - 0.09 mm/s at 60 s integration time. Range-rate measurements were processed into a multi-arc least square filter so as to attain a solution for the quadrupole field of Enceladus and its degree-3 zonal harmonic J3, the most important indication of hemispherical asymmetries. In addition to these crucial parameters, corrections to the estimated orbits of Cassini and Enceladus were applied. The inclusion in the dynamical model of the neutral particle drag exerted by Enceladus south polar plumes (1) is essential for a satisfactory orbital fit. The results of the analysis show that Enceladus is indeed characterized by a predominant quadrupole term, with its J2/C22 ratio being that of a body not in hydrostatic equilibrium. The estimate of tesseral degree-2 coefficients (C21, S21 and C22), being statistically close to 0 (at a 3-σ level), imply that the adopted rotational model for the satellite is consistent with the observed gravity field. Furthermore, the estimated value for J3 turned out to be statistically significant (although only about 1/50 of J2) and pointing at a significant hemispherical asymmetry that is consistent with the presence of a regional sea at depth. References (1) C.C. Porco et al

  12. Evaluation of an ATP Assay to Quantify Bacterial Attachment to Surfaces in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Birmele, Michele N.; Roberson, Luke B.; Roberts, Michael S.

    2010-01-01

    Aim: To develop an assay to quantify the biomass of attached cells and biofilm formed on wetted surfaces in variable-gravity environments. Methods and Results: Liquid cultures of Pseudomonas aeruginosa were exposed to 30-35 brief cycles of hypergravity (< 2-g) followed by free fall (i.e., reduced gravity) equivalent to either lunar-g (i.e., 0.17 normal Earth gravity) or micro-g (i.e., < 0.001 normal Earth gravity) in an aircraft flying a series of parabolas. Over the course of two days of parabolic flight testing, 504 polymer or metal coupons were exposed to a stationary-phase population of P. aeruginosa strain ERC1 at a concentration of 1.0 x 10(exp 5) cells per milliliter. After the final parabola on each flight test day, half of the material coupon samples were treated with either 400 micro-g/L ionic silver fluoride (microgravity-exposed cultures) or 1% formalin (lunar-gravity-exposed cultures). The remaining sample coupons from each flight test day were not treated with a fixative. All samples were returned to the laboratory for analysis within 2 hours of landing, and all biochemical assays were completed within 8 hours of exposure to variable gravity. The intracellular ATP luminescent assay accurately reflected cell physiology compared to both cultivation-based and direct-count microscopy analyses. Cells exposed to variable gravity had more than twice as much intracellular ATP as control cells exposed only to normal Earth gravity.

  13. Modeling of zero gravity venting: Studies of two-phase heat transfer under reduced gravity

    NASA Technical Reports Server (NTRS)

    Merte, H., Jr.

    1986-01-01

    The objective is to predict the pressure response of a saturated liquid-vapor system when undergoing a venting or depressurization process in zero gravity at low vent rates. An experimental investigation of the venting of cylindrical containers partially filled with initially saturated liquids was previously conducted under zero-gravity conditions and compared with an analytical model which incorporated the effect of interfacial mass transfer on the ullage pressure response during venting. A new model is presented to improve the estimation of the interfacial mass transfer. Duhammel's superposition integral is incorporated to approximate the transient temperature response of the interface, treating the liquid as a semi-infinite solid with conduction heat transfer. Account is also taken of the condensation taking place within the bulk of a saturated vapor as isentropic expansion takes place. Computational results are presented for the venting of R-11 from a given vessel and initial state for five different venting rates over a period of three seconds, and compared to prior NASA experiments. An improvement in the prediction of the final pressure takes place, but is still considerably below the measurements.

  14. Reduced-Gravity Experiments Conducted to Help Bioreactor Development

    NASA Technical Reports Server (NTRS)

    Niederhaus, Charles E.; Nahra, Henry K.; Kizito, John P.

    2004-01-01

    The NASA Glenn Research Center and the NASA Johnson Space Center are collaborating on fluid dynamic investigations for a future cell science bioreactor to fly on the International Space Station (ISS). Project Manager Steven Gonda from the Cellular Biotechnology Program at Johnson is leading the development of the Hydrodynamic Focusing Bioreactor--Space (HFB-S) for use on the ISS to study tissue growth in microgravity. Glenn is providing microgravity fluid physics expertise to help with the design and evaluation of the HFB-S. These bioreactors are used for three-dimensional tissue culture, which cannot be done in ground-based labs in normal gravity. The bioreactors provide a continual supply of oxygen for cell growth, as well as periodic replacement of cell culture media with nutrients. The bioreactor must provide a uniform distribution of oxygen and nutrients while minimizing the shear stresses on the tissue culture.

  15. From conformal field theory spectra to CMB multipoles in quantum gravity cosmology

    SciTech Connect

    Hamada, Ken-ji; Horata, Shinichi; Yukawa, Tetsuyuki

    2010-04-15

    We study the inflation process of the Universe based on the renormalizable quantum gravity formulated as a conformal field theory. We show that the power-law conformal field theory spectrum approaches that of the Harrison-Zel'dovich-Peebles-type as the amplitude of gravitational potential gradually reduces during the inflation. The non-Gaussanity parameter is preserved within an order of unity due to the diffeomorphism invariance. Sharp falloff of the angular power spectrum of cosmic microwave background at large scale is understood as a consequence of the existence of dynamical scale of the quantum gravity {Lambda}{sub QG}({approx_equal}10{sup 17} GeV). The angular power spectra are computed and compared with the WMAP5 and ACBAR data with a quality of {chi}{sup 2}/dof{approx_equal}1.1.

  16. Ernst formulation of axisymmetric fields in f (R ) gravity: Applications to neutron stars and gravitational waves

    NASA Astrophysics Data System (ADS)

    Suvorov, Arthur George; Melatos, Andrew

    2016-08-01

    The Ernst formulation of the Einstein equations is generalized to accommodate f (R ) theories of gravity. It is shown that, as in general relativity, the axisymmetric f (R ) field equations for a vacuum spacetime that is either stationary or cylindrically symmetric reduce to a single, nonlinear differential equation for a complex-valued scalar function. As a worked example, we apply the generalized Ernst equations to derive a f (R ) generalization of the Zipoy-Voorhees metric, which may be used to describe the gravitational field outside of an ellipsoidal neutron star. We also apply the theory to investigate the phase speed of large-amplitude gravitational waves in f (R ) gravity in the context of solitonlike solutions that display shock-wave behavior across the causal boundary.

  17. A Revolution in Mars Topography and Gravity and Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Smith, David E.

    2002-01-01

    Since the arrival of the Mars Global Surveyor (MGS) at Mars in September 1997 and the subsequent beginning of observations of the planet there has been a constant stream of surprises and puzzling observations that have kept scientists looking at new 'out of the box' explanations. Observations of the shape and topography have shown a planet with one hemisphere, the southern, several kilometers higher than the north and a northern hemisphere that is so flat and smooth in places that it's difficult to imagine it was not once the bottom of an ocean. And yet the ocean idea presents some enormous difficulties. The measurements of gravity derived from the tracking of MGS have shown that several Mars volcanoes are enormous positive gravity anomalies much larger than we see on Earth and revealed small errors in the orbit of Mars and or Earth. And the magnetic field is found to be composed of a number of extremely large crustal anomalies; but as far as can be ascertained there is no main dipole field such as we have on Earth. Understanding these diverse observations and placing them in the sequence of the evolution of the planet will be a long, challenging but rewarding task.

  18. Application of a novel colour imaging technique to thermal convection under reduced gravity

    NASA Astrophysics Data System (ADS)

    Heiland, H. G.; Wozniak, G.

    2010-12-01

    The quantitative measurement performance and the robustness of a novel high-speed imaging system using a liquid crystal tunable filter have been verified by a fluid dynamic experiment in a reduced gravity environment. This new type of diagnostic tool is a combination of a monochrome high-speed CCD camera with fast ferroelectric liquid crystal control. The filter can be tuned to red, green and blue colour planes (RGB filter), which provides real colour images without loss of resolution. The scientific application was the investigation of the influence of buoyancy on the surface tension-driven flow around a bubble on heated wall. The flow velocity and temperature patterns were observed in gravity and microgravity environments. The measuring technique is based on particle image velocimetry and thermometry (PIV/T). The principle of this optical full-field technique relies on seeded thermochromic liquid crystals (TLCs) as signal particles, which change colour depending on their temperature. The experimental results of the flow investigations under 1-g and μ-g conditions are discussed and compared with one another.

  19. The use of high-resolution terrain data in gravity field prediction

    NASA Technical Reports Server (NTRS)

    Groten, E.; Becker, M.; Euler, H.-J.; Hausch, W.; Kling, TH.

    1989-01-01

    Different types of gravity prediction methods for local and regional gravity evaluation are developed, tested, and compared. Four different test areas were particularly selected in view of different prediction requirements. Also different parts of the spectrum of the gravity field were considered.

  20. Behavior in normal and reduced gravity of an enclosed liquid/gas system with nonuniform heating from above

    NASA Technical Reports Server (NTRS)

    Ross, H. D.; Schiller, D. N.; Disimile, P.; Sirignano, W. A.

    1989-01-01

    The temperature and velocity fields have been investigated for a single-phase gas system and a two-layer gas-and-liquid system enclosed in a circular cylinder being heated suddenly and nonuniformly from above. The transient response of the gas, liquid, and container walls was modelled numerically in normal and reduced gravity (10 to the -5 g). Verification of the model was accomplished via flow visualization experiments in 10 cm high by 10 cm diameter plexiglass cylinders.

  1. The gravity field and orientation of Mercury after the MESSENGER mission

    NASA Astrophysics Data System (ADS)

    Mazarico, E.; Genova, A.; Goossens, S. J.; Lemoine, F. G.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.; Solomon, S. C.

    2015-12-01

    After more than four years in orbit about Mercury, the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft impacted the planet's surface north of Shakespeare crater (54.44° N, 210.12° E,) on 30 April 2015. One of the main goals of the mission was to determine the gravity field of Mercury in order to learn about Mercury's interior. Together with ground-based radar measurements of the obliquity and forced librations, MESSENGER-derived gravity models helped revise models of Mercury's interior. Nevertheless, the refinement of Mercury's orientation with the latest data from MESSENGER can further improve the interior modeling of the planet. The last eight months of the mission provided a special opportunity to conduct low-altitude measurements, with extensive radio tracking coverage below 200 km altitude north of ~30°N. MESSENGER's Mercury Laser Altimeter (MLA) mapped the topography of Mercury's northern hemisphere with a sub-meter vertical precision, an along-track sampling of ~500 m, and a longitudinal resolution (~0.1°) limited by the number of spacecraft orbits (~4,000). The combination of gravity and topography helps determine crustal thickness and interior properties. Altimetric ranges provide geodetic constraints to improve the spacecraft orbit determination, and thus the gravity field model. In particular, whereas the MESSENGER spacecraft was not tracked at each periapsis passage, MLA operated nearly continuously (outside of thermally challenging periods). From an analysis of the entire radiometric and altimetric datasets acquired by MESSENGER, a new gravity field to degree and order 100 has been obtained, resolving features down to ~75 km horizontal scale. The altimetric data help reduce the uncertainties in the determination of the pole position. A reanalysis of the Mercury flybys also constrains the spin rate over the longest available time span.

  2. Entropy of Egypt's virtual water trade gravity field

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Georgios; Bierbach, Sandra

    2016-04-01

    's 20 trading partner countries, for a time frame from 1995 to 2013. The calculations -implemented for each country and each crop- display a network that illustrates the gravity of virtual water trade. It is then possible for us to model the entropy of Egypt's virtual water trade gravity field, via the statistical examination of its spatial fragmentation or continuity for each traded crop and for each water footprint type. Hence, with the distribution's entropy we may conduct a targeted analysis on the comparative advantages of the Egyptian agriculture. Keywords: entropy, virtual water trade, gravity model, agricultural trade, water footprint, water subsidies, comparative advantage References 1. Antonelli, Marta and Martina Sartori (2014), Unfolding the potential of the Virtual Water concept. What is still under debate?, MPRA Paper No. 60501, http://mpra.ub.uni-muenchen.de/60501/ 2. Fracasso, Andrea (2014), A gravity model of virtual water trade, Ecological Economics, Vol. 108, p. 215-228 3. Fracasso, Andrea; Martina Sartori and Stefano Schiavo (2014), Determinants of virtual water flows in the Mediterranean, MPRA Paper No. 60500, https://mpra.ub.uni-muenchen.de/60500/ 4. Yang, H. et al. (2006), Virtual water trade: An assessment of water use efficiency in the international food trade, Hydrology and Earth System Sciences 10, p. 443-454

  3. Vector field models of modified gravity and the dark sector

    SciTech Connect

    Zuntz, J.; Ferreira, P. G.; Zlosnik, T. G; Bourliot, F.; Starkman, G. D.

    2010-05-15

    We present a comprehensive investigation of cosmological constraints on the class of vector field formulations of modified gravity called generalized Einstein-aether models. Using linear perturbation theory we generate cosmic microwave background and large-scale structure spectra for general parameters of the theory, and then constrain them in various ways. We investigate two parameter regimes: a dark matter candidate where the vector field sources structure formation, and a dark energy candidate where it causes late-time acceleration. We find that the dark matter candidate does not fit the data, and identify five physical problems that can restrict this and other theories of dark matter. The dark energy candidate does fit the data, and we constrain its fundamental parameters; most notably we find that the theory's kinetic index parameter n{sub ae} can differ significantly from its {Lambda}CDM value.

  4. Antarctic marine gravity field from high-density satellite altimetry

    NASA Technical Reports Server (NTRS)

    Sandwell, David T.

    1992-01-01

    High-density (about 2-km profile spacing) Geosat/GM altimetry profiles were obtained for Antarctic waters (6-deg S to 72 deg S) and converted to vertical gravity gradient, using Laplace's equation to directly calculate gravity gradient from vertical deflection grids and Fourier analysis to construct gravity anomalies from two vertical deflection grids. The resultant gravity grids have resolution and accuracy comparable to shipboard gravity profiles. The obtained gravity maps display many interesting and previously uncharted features, such as a propagating rift wake and a large 'leaky transform' along the Pacific-Antarctic Rise.

  5. Modified f( R, T) gravity theory and scalar field cosmology

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Singh, C. P.

    2015-03-01

    In this paper, we explore the behaviors of scalar field in modified f( R, T) gravity theory within the framework of a flat Friedmann-Robertson-Walker cosmological model. The universe is assumed to be filled with two non-interacting matter sources, scalar field (normal or phantom) with scalar potential and matter contribution due to f( R, T) action. We first explore a model where the potential is a constant, and the universe evolves as a de Sitter type. This model is compatible with phantom scalar field only which gives fine tuning with the recent observations. The model exhibits a wide variety of early time physical phenomena that eventually behaves like a cosmological constant at late times. The model shows transition from decelerated to accelerated expansion of the universe. We also explore a model where the scalar field potential and the scale factor evolve exponentially as a scalar field. This model is compatible with normal scalar field only and describes transition from inflationary to the decelerated phase at early times and quintessence to phantom phase at late times. We constraint our results with the recent observational data and find that some values of parameters are consistent with SNe Ia and H( z)+SNe Ia data to describe accelerated expansion only whereas some one give decelerated and accelerated expansions with H( z), WMAP7 and WMAP7+BAO+ H( z) observational data.

  6. Cardiopulmonary Resuscitation in Lunar and Martian Gravity Fields

    NASA Technical Reports Server (NTRS)

    Sarkar, Subhajit

    2004-01-01

    Cardiopulmonary resuscitation is required training for all astronauts. No studies thus far have investigated how chest compressions may be affected in lunar and Martian gravities. Therefore a theoretical quantitative study was performed. The maximum downward force an unrestrained person can apply is mg N (g(sub Earth) = 9.78 ms(sup -2), g(sub moon) = 1.63 ms(sup -2), g(sub Mars) = 3.69 ms(sup -2). Tsitlik et a1 (Critical Care Medicine, 1983) described the human sternal elastic force-displacement relationship (compliance) by: F = betaD(sub s) + gammaD(sub s)(sup 2) (beta = 54.9 plus or minus 29.4 Ncm(sup -1) and gamma = 10.8 plus or minus 4.1 Ncm(sup -2)). Maximum forces in the 3 gravitational fields produced by 76 kg (US population mean), 41 kg and 93 kg (masses derived from the limits for astronaut height), produced solutions for compression depth using Tsitlik equations for chests of: mean compliance (beta = 54.9, gamma = 10.8), low compliance (beta = 84.3, gamma = 14.9) and high compliance (beta = 25.5, gamma = 6.7). The mass for minimum adequate adult compression, 3.8 cm (AHA guidelines), was also calculated. 76 kg compresses the mean compliance chest by: Earth, 6.1 cm, Mars, 3.2 cm, Moon, 1.7 cm. In lunar gravity, the high compliance chest is compressed only 3.2 cm by 93 kg, 120 kg being required for 3.8 cm. In Martian gravity, on the mean chest, 93 kg compresses 3.6 cm; 99 kg is required for 3.8 cm. On Mars, the high compliance chest is compressed 4.8 cm with 76 kg, 5.5 cm with 93 kg, with 52 kg required for 3.8 cm.

  7. Singular boundary method for global gravity field modelling

    NASA Astrophysics Data System (ADS)

    Cunderlik, Robert

    2014-05-01

    The singular boundary method (SBM) and method of fundamental solutions (MFS) are meshless boundary collocation techniques that use the fundamental solution of a governing partial differential equation (e.g. the Laplace equation) as their basis functions. They have been developed to avoid singular numerical integration as well as mesh generation in the traditional boundary element method (BEM). SBM have been proposed to overcome a main drawback of MFS - its controversial fictitious boundary outside the domain. The key idea of SBM is to introduce a concept of the origin intensity factors that isolate singularities of the fundamental solution and its derivatives using some appropriate regularization techniques. Consequently, the source points can be placed directly on the real boundary and coincide with the collocation nodes. In this study we deal with SBM applied for high-resolution global gravity field modelling. The first numerical experiment presents a numerical solution to the fixed gravimetric boundary value problem. The achieved results are compared with the numerical solutions obtained by MFS or the direct BEM indicating efficiency of all methods. In the second numerical experiments, SBM is used to derive the geopotential and its first derivatives from the Tzz components of the gravity disturbing tensor observed by the GOCE satellite mission. A determination of the origin intensity factors allows to evaluate the disturbing potential and gravity disturbances directly on the Earth's surface where the source points are located. To achieve high-resolution numerical solutions, the large-scale parallel computations are performed on the cluster with 1TB of the distributed memory and an iterative elimination of far zones' contributions is applied.

  8. Cold Atom Interferometers Used in Space (CAIUS) for Measuring the Earth's Gravity Field

    NASA Astrophysics Data System (ADS)

    Carraz, Olivier; Siemes, Christian; Massotti, Luca; Haagmans, Roger; Silvestrin, Pierluigi

    2016-08-01

    The scope of the paper is to propose different concepts for future space gravity missions using Cold Atom Interferometers (CAI) for measuring the diagonal elements of the gravity gradient tensor, the spacecraft angular velocity and the spacecraft acceleration. The aim is to achieve better performance than previous space gravity missions due to a very low white noise spectral behaviour of the CAI instrument and a very high common mode rejection, with the ultimate goals of determining the fine structures of the gravity field with higher accuracy than GOCE and detecting time-variable signals in the gravity field.

  9. GRAIL - A Microwave Ranging Instrument to Map Out the Lunar Gravity Field

    NASA Technical Reports Server (NTRS)

    Enzer, Daphna G.; Wang, Rabi T.; Klipstein, William M.

    2010-01-01

    Gravity Recovery and Interior Laboratory, or GRAIL, is a NASA mission to map out the gravity field of the moon to an unprecedented level of detail. The instrument for this mission is based on GRACE (Gravity Recovery and Climate Experiment), an earth-orbiting mission currently mapping out the gravity field of the earth. This paper will describe the similarities and differences between these two instruments with a focus on the microwave ranging measurements used to determine the gravity parameters and the testbed built at Jet Propulsion Laboratory to demonstrate micron level ranging capability. The onboard ultrastable oscillator and RF instruments will be described and noise contributions discussed.

  10. Next Generation Gravity Mission: a Step Forward in the Earth's Gravity Field Determination

    NASA Astrophysics Data System (ADS)

    Silvestrin, P.; Aguirre, M.; Massotti, L.; Cesare, S.

    2009-04-01

    This paper concerns with the "System Support to Laser Interferometry Tracking Technology Development for Gravity Field Monitoring" study of the European Space Agency, a mission study for monitoring the variations of Earth's gravity field at high resolution (up to harmonic degree 200) over a long time period (>5 years). The mission exploits the use of a heterodyne laser interferometer for the high-resolution measurement of the displacement between two satellites flying at low altitude (around 325 km). More in details, employing a formation of two co-orbiting satellites at 10 km relative distance, a resolution of about 1 nm rms is needed in the inter-satellite distance measurement, and the non gravitational accelerations must be measured with a resolution of about 10-10 m/s2 rms to achieve geoid height variation rate error equal to 0.1 mm/year at degree 200. Starting from the geophysical phenomena to be investigated, a detailed derivation of the mission requirements on the orbit, satellite formation and control, measurement instruments (laser interferometer and accelerometer) was performed using analytical models and numerical simulations, and the satellite GNC (Guidance, Navigation & Control) was approached through different techniques. A possible solution for the optical metrology suitable for the realization of a Next-Generation Gravimetric Mission has been identified, designed, breadboarded and tested to a level of detail sufficient to assess its feasibility. The main elements of this optical metrology are: 1) a Michelson-type heterodyne laser interferometer for measuring the distance variation between the retro-reflectors installed on two satellites. The innovative feature of the interferometer consists in chopping the laser beam with a frequency related to the satellite distance. This enables its proper functioning with a retro-reflector placed at large distances (around 10 km) from the source; 2) an optical device consisting of three small telescopes endowed

  11. Capabilities and constraints of NASA's ground-based reduced gravity facilities

    NASA Technical Reports Server (NTRS)

    Lekan, Jack; Neumann, Eric S.; Sotos, Raymond G.

    1993-01-01

    The ground-based reduced gravity facilities of NASA have been utilized to support numerous investigations addressing various processes and phenomina in several disciplines for the past 30 years. These facilities, which include drop towers, drop tubes, aircraft, and sounding rockets are able to provide a low gravity environment (gravitational levels that range from 10(exp -2)g to 10(exp -6)g) by creating a free fall or semi-free fall condition where the force of gravity on an experiment is offset by its linear acceleration during the 'fall' (drop or parabola). The low gravity condition obtained on the ground is the same as that of an orbiting spacecraft which is in a state of perpetual free fall. The gravitational levels and associated duration times associated with the full spectrum of reduced gravity facilities including spaced-based facilities are summarized. Even though ground-based facilities offer a relatively short experiment time, this available test time has been found to be sufficient to advance the scientific understanding of many phenomena and to provide meaningful hardware tests during the flight experiment development process. Also, since experiments can be quickly repeated in these facilities, multistep phenomena that have longer characteristic times associated with them can sometimes be examined in a step-by-step process. There is a large body of literature which has reported the study results achieved through using reduced-gravity data obtained from the facilities.

  12. Effect of reduced gravity on the preferred walk-run transition speed

    NASA Technical Reports Server (NTRS)

    Kram, R.; Domingo, A.; Ferris, D. P.

    1997-01-01

    We investigated the effect of reduced gravity on the human walk-run gait transition speed and interpreted the results using an inverted-pendulum mechanical model. We simulated reduced gravity using an apparatus that applied a nearly constant upward force at the center of mass, and the subjects walked and ran on a motorized treadmill. In the inverted pendulum model for walking, gravity provides the centripetal force needed to keep the pendulum in contact with the ground. The ratio of the centripetal and gravitational forces (mv2/L)/(mg) reduces to the dimensionless Froude number (v2/gL). Applying this model to a walking human, m is body mass, v is forward velocity, L is leg length and g is gravity. In normal gravity, humans and other bipeds with different leg lengths all choose to switch from a walk to a run at different absolute speeds but at approximately the same Froude number (0.5). We found that, at lower levels of gravity, the walk-run transition occurred at progressively slower absolute speeds but at approximately the same Froude number. This supports the hypothesis that the walk-run transition is triggered by the dynamics of an inverted-pendulum system.

  13. Effect of reduced gravity on the preferred walk-run transition speed.

    PubMed

    Kram, R; Domingo, A; Ferris, D P

    1997-02-01

    We investigated the effect of reduced gravity on the human walk-run gait transition speed and interpreted the results using an inverted-pendulum mechanical model. We simulated reduced gravity using an apparatus that applied a nearly constant upward force at the center of mass, and the subjects walked and ran on a motorized treadmill. In the inverted pendulum model for walking, gravity provides the centripetal force needed to keep the pendulum in contact with the ground. The ratio of the centripetal and gravitational forces (mv2/L)/(mg) reduces to the dimensionless Froude number (v2/gL). Applying this model to a walking human, m is body mass, v is forward velocity, L is leg length and g is gravity. In normal gravity, humans and other bipeds with different leg lengths all choose to switch from a walk to a run at different absolute speeds but at approximately the same Froude number (0.5). We found that, at lower levels of gravity, the walk-run transition occurred at progressively slower absolute speeds but at approximately the same Froude number. This supports the hypothesis that the walk-run transition is triggered by the dynamics of an inverted-pendulum system.

  14. Generation of magnetic fields in Einstein-aether gravity

    NASA Astrophysics Data System (ADS)

    Saga, Shohei; Shiraishi, Maresuke; Ichiki, Kiyotomo; Sugiyama, Naoshi

    2013-05-01

    Recently the lower bounds of the intergalactic magnetic fields 10-16˜10-20G are set by gamma-ray observations while it is unlikely to generate such large scale magnetic fields through astrophysical processes. It is known that large scale magnetic fields could be generated if there exist cosmological vector-mode perturbations in the primordial plasma. The vector mode, however, has only a decaying solution in general relativity if the plasma consists of perfect fluids. In order to investigate a possible mechanism of magnetogenesis in the primordial plasma, here we consider cosmological perturbations in the Einstein-aether gravity model, in which the aether field can act as a new source of vector metric perturbations. The vector metric perturbations induce the velocity difference between baryons and photons which then generate magnetic fields. This velocity difference arises from effects at the second order in the tight-coupling approximation. We estimate the angular power spectra of temperature and B-mode polarization of the cosmic microwave background anisotropies in this model and put a rough constraint on the aether field parameters from latest observations. We then estimate the power spectrum of associated magnetic fields around the recombination epoch within this limit. It is found that the spectrum has a characteristic peak at k=0.1hMpc-1, and at that scale the amplitude can be as large as B˜10-22G where the upper bound comes from cosmic microwave background temperature anisotropies. The magnetic fields with this amplitude can be seeds of large scale magnetic fields observed today if the sufficient dynamo mechanism takes place. Analytic interpretation for the power spectra is also given.

  15. Performance of FFT methods in local gravity field modelling

    NASA Technical Reports Server (NTRS)

    Forsberg, Rene; Solheim, Dag

    1989-01-01

    Fast Fourier transform (FFT) methods provide a fast and efficient means of processing large amounts of gravity or geoid data in local gravity field modelling. The FFT methods, however, has a number of theoretical and practical limitations, especially the use of flat-earth approximation, and the requirements for gridded data. In spite of this the method often yields excellent results in practice when compared to other more rigorous (and computationally expensive) methods, such as least-squares collocation. The good performance of the FFT methods illustrate that the theoretical approximations are offset by the capability of taking into account more data in larger areas, especially important for geoid predictions. For best results good data gridding algorithms are essential. In practice truncated collocation approaches may be used. For large areas at high latitudes the gridding must be done using suitable map projections such as UTM, to avoid trivial errors caused by the meridian convergence. The FFT methods are compared to ground truth data in New Mexico (xi, eta from delta g), Scandinavia (N from delta g, the geoid fits to 15 cm over 2000 km), and areas of the Atlantic (delta g from satellite altimetry using Wiener filtering). In all cases the FFT methods yields results comparable or superior to other methods.

  16. Dark energy or modified gravity? An effective field theory approach

    SciTech Connect

    Bloomfield, Jolyon; Flanagan, Éanna É.; Park, Minjoon; Watson, Scott E-mail: eef3@cornell.edu E-mail: gswatson@syr.edu

    2013-08-01

    We take an Effective Field Theory (EFT) approach to unifying existing proposals for the origin of cosmic acceleration and its connection to cosmological observations. Building on earlier work where EFT methods were used with observations to constrain the background evolution, we extend this program to the level of the EFT of the cosmological perturbations — following the example from the EFT of Inflation. Within this framework, we construct the general theory around an assumed background which will typically be chosen to mimic ΛCDM, and identify the parameters of interest for constraining dark energy and modified gravity models with observations. We discuss the similarities to the EFT of Inflation, but we also identify a number of subtleties including the relationship between the scalar perturbations and the Goldstone boson of the spontaneously broken time translations. We present formulae that relate the parameters of the fundamental Lagrangian to the speed of sound, anisotropic shear stress, effective Newtonian constant, and Caldwell's varpi parameter, emphasizing the connection to observations. It is anticipated that this framework will be of use in constraining individual models, as well as for placing model-independent constraints on dark energy and modified gravity model building.

  17. Gravity field recovery in the framework of a Geodesy and Time Reference in Space (GETRIS)

    NASA Astrophysics Data System (ADS)

    Hauk, Markus; Schlicht, Anja; Pail, Roland; Murböck, Michael

    2017-04-01

    The study ;Geodesy and Time Reference in Space; (GETRIS), funded by European Space Agency (ESA), evaluates the potential and opportunities coming along with a global space-borne infrastructure for data transfer, clock synchronization and ranging. Gravity field recovery could be one of the first beneficiary applications of such an infrastructure. This paper analyzes and evaluates the two-way high-low satellite-to-satellite-tracking as a novel method and as a long-term perspective for the determination of the Earth's gravitational field, using it as a synergy of one-way high-low combined with low-low satellite-to-satellite-tracking, in order to generate adequate de-aliasing products. First planned as a constellation of geostationary satellites, it turned out, that an integration of European Union Global Navigation Satellite System (Galileo) satellites (equipped with inter-Galileo links) into a Geostationary Earth Orbit (GEO) constellation would extend the capability of such a mission constellation remarkably. We report about simulations of different Galileo and Low Earth Orbiter (LEO) satellite constellations, computed using time variable geophysical background models, to determine temporal changes in the Earth's gravitational field. Our work aims at an error analysis of this new satellite/instrument scenario by investigating the impact of different error sources. Compared to a low-low satellite-to-satellite-tracking mission, results show reduced temporal aliasing errors due to a more isotropic error behavior caused by an improved observation geometry, predominantly in near-radial direction within the inter-satellite-links, as well as the potential of an improved gravity recovery with higher spatial and temporal resolution. The major error contributors of temporal gravity retrieval are aliasing errors due to undersampling of high frequency signals (mainly atmosphere, ocean and ocean tides). In this context, we investigate adequate methods to reduce these errors. We

  18. Cool Flames in Propane-Oxygen Premixtures at Low and Intermediate Temperatures at Reduced-Gravity

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard; Foster, Michael; Karabacak, Devrez

    2003-01-01

    The Cool Flame Experiment aims to address the role of diffusive transport on the structure and the stability of gas-phase, non-isothermal, hydrocarbon oxidation reactions, cool flames and auto-ignition fronts in an unstirred, static reactor. These reactions cannot be studied on Earth where natural convection due to self-heating during the course of slow reaction dominates diffusive transport and produces spatio-temporal variations in the thermal and thus species concentration profiles. On Earth, reactions with associated Rayleigh numbers (Ra) less than the critical Ra for onset of convection (Ra(sub cr) approx. 600) cannot be achieved in laboratory-scale vessels for conditions representative of nearly all low-temperature reactions. In fact, the Ra at 1g ranges from 10(exp 4) - 10(exp 5) (or larger), while at reduced-gravity, these values can be reduced two to six orders of magnitude (below Ra(sub cr)), depending on the reduced-gravity test facility. Currently, laboratory (1g) and NASA s KC-135 reduced-gravity (g) aircraft studies are being conducted in parallel with the development of a detailed chemical kinetic model that includes thermal and species diffusion. Select experiments have also been conducted at partial gravity (Martian, 0.3gearth) aboard the KC-135 aircraft. This paper discusses these preliminary results for propane-oxygen premixtures in the low to intermediate temperature range (310- 350 C) at reduced-gravity.

  19. Changes in Gene Expression of E. coli under Conditions of Modeled Reduced Gravity

    NASA Astrophysics Data System (ADS)

    Vukanti, Raja; Mintz, Eric; Leff, Laura

    2008-06-01

    Relatively few studies have examined bacterial responses to the reduced gravity conditions that are experienced by bacteria grown in space. In this study, whole genome expression of Escherichia coli K12 under clinorotation (which models some of the conditions found under reduced gravity) was analyzed. We hypothesized that phenotypic differences at cellular and population levels under clinorotation (hereafter referred to as modeled reduced gravity) are directly coupled to changes in gene expression. Further, we hypothesized that these responses may be due to indirect effects of these environmental conditions on nutrient accessibility for bacteria. Overall, 430 genes were identified as significantly different between modeled reduced gravity conditions and controls. Up-regulated genes included those involved in the starvation response ( csiD, cspD, ygaF, gabDTP, ygiG, fliY, cysK) and redirecting metabolism under starvation ( ddpX, acs, actP, gdhA); responses to multiple stresses, such as acid stress ( asr, yhiW), osmotic stress ( yehZYW), oxidative stress ( katE, btuDE); biofilm formation ( lldR, lamB, yneA, fadB, ydeY); curli biosynthesis ( csgDEF), and lipid biosynthesis ( yfbEFG). Our results support the previously proposed hypothesis that under conditions of modeled reduced gravity, zones of nutrient depletion develop around bacteria eliciting responses similar to entrance into stationary phase which is generally characterized by expression of starvation inducible genes and genes associated with multiple stress responses.

  20. Validation of EGSIEM gravity field products with globally distributed in situ ocean bottom pressure observations

    NASA Astrophysics Data System (ADS)

    Poropat, Lea; Bergmann-Wolf, Inga; Flechtner, Frank; Dobslaw, Henryk

    2016-04-01

    Time variable global gravity field models that are processed by different research institutions all across Europe are currently compared and subsequently combined within the "European Gravity Field Service for Improved Emergency Management (EGSIEM)" project funded by the European Union. To objectively assess differences between the results from different groups, and also to evaluate the impact of changes in the data processing at an individual institution in preparation of a new data release, a validation of the final GRACE gravity fields against independent observations is required. 
For such a validation, we apply data from a set of globally distributed ocean bottom pressure sensors. The in situ observations have been thoroughly revised for outliers, instrumental drift and jumps, and were additionally reduced for tides. GRACE monthly mean solutions are then validated with the monthly resampled in situ observations. The validation typically concentrates on seasonal to interannual signals, but in case of GRACE-based series with daily sampling available from, e.g., Kalman Smoother Solutions, also sub-monthly signal variability can be assessed.

  1. New space missions for mapping the Earth's gravity field

    NASA Astrophysics Data System (ADS)

    Balmino, Georges

    The knowledge of the gravity field of the Earth and of an associated reference surface of altitudes (the geoid) is necessary for geodesy, for improving theories of the physics of the planet interior and for modeling the ocean circulation in absolute. This knowledge comes from several observing techniques but, although it benefited from the artificial satellite approach, it remains incomplete and erroneous in places. Within a reasonable future, a substantial improvement can only come from new space techniques. Thanks to the intense lobbying by the concerned geoscientists, the coming decade will see the advent of three techniques already proposed in the seventies and to be implemented by different space agencies; these are the CHAMP, GRACE and GOCE missions.

  2. Gravity field, shape, and moment of inertia of Titan.

    PubMed

    Iess, Luciano; Rappaport, Nicole J; Jacobson, Robert A; Racioppa, Paolo; Stevenson, David J; Tortora, Paolo; Armstrong, John W; Asmar, Sami W

    2010-03-12

    Precise radio tracking of the spacecraft Cassini has provided a determination of Titan's mass and gravity harmonics to degree 3. The quadrupole field is consistent with a hydrostatically relaxed body shaped by tidal and rotational effects. The inferred moment of inertia factor is about 0.34, implying incomplete differentiation, either in the sense of imperfect separation of rock from ice or a core in which a large amount of water remains chemically bound in silicates. The equilibrium figure is a triaxial ellipsoid whose semi-axes a, b, and c differ by 410 meters (a-c) and 103 meters (b-c). The nonhydrostatic geoid height variations (up to 19 meters) are small compared to the observed topographic anomalies of hundreds of meters, suggesting a high degree of compensation appropriate to a body that has warm ice at depth.

  3. Cosmology from group field theory formalism for quantum gravity.

    PubMed

    Gielen, Steffen; Oriti, Daniele; Sindoni, Lorenzo

    2013-07-19

    We identify a class of condensate states in the group field theory (GFT) formulation of quantum gravity that can be interpreted as macroscopic homogeneous spatial geometries. We then extract the dynamics of such condensate states directly from the fundamental quantum GFT dynamics, following the procedure used in ordinary quantum fluids. The effective dynamics is a nonlinear and nonlocal extension of quantum cosmology. We also show that any GFT model with a kinetic term of Laplacian type gives rise, in a semiclassical (WKB) approximation and in the isotropic case, to a modified Friedmann equation. This is the first concrete, general procedure for extracting an effective cosmological dynamics directly from a fundamental theory of quantum geometry.

  4. Mars Gravity Field: Combined Viking and Mariner 9 Results

    NASA Technical Reports Server (NTRS)

    Gapcynski, J. P.; Tolson, R. H.; Michael, W. H., Jr.

    1977-01-01

    A Martian gravity field of sixth degree and order has been determined from an analysis of a combination of Viking and Mariner 9 spacecraft Doppler tracking data. A short-arc technique utilizing approximately 4 hours of data centered at periapsis was used, and the data covered 16 arcs from Mariner 9 and 17 arcs from the Viking orbiters. The data were selected so as to obtain a uniform distribution of periapsis longitudes over the surface of Mars, and both S band and X band data were used where possible to eliminate charged particle effects. Inclusion of the Viking data arcs altered the Martian geoid features, as defined by previous short-arc analysis techniques of Mariner 9 data, by about 80 m in the southern hemisphere and about 140 m in the northern hemisphere.

  5. An Empirical Method for Determining the Lunar Gravity Field. Ph.D. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Ferrari, A. J.

    1971-01-01

    A method has been devised to determine the spherical harmonic coefficients of the lunar gravity field. This method consists of a two-step data reduction and estimation process. In the first step, a weighted least-squares empirical orbit determination scheme is applied to Doppler tracking data from lunar orbits to estimate long-period Kepler elements and rates. Each of the Kepler elements is represented by an independent function of time. The long-period perturbing effects of the earth, sun, and solar radiation are explicitly modeled in this scheme. Kepler element variations estimated by this empirical processor are ascribed to the non-central lunar gravitation features. Doppler data are reduced in this manner for as many orbits as are available. In the second step, the Kepler element rates are used as input to a second least-squares processor that estimates lunar gravity coefficients using the long-period Lagrange perturbation equations.

  6. Gravity field improvement using GPS data from Topex/Poseidon - A covariance analysis

    NASA Technical Reports Server (NTRS)

    Bertiger, Willy I.; Wu, J. T.; Wu, Sien C.

    1990-01-01

    A covariance analysis is performed using a realistic scenario for processing 10 days of GPS data, to obtain the expected improvement to the GEM-T2 gravity field. The gravity bin technique has been refined to compute the covariance matrix associated with the spherical harmonic gravity field. It is shown that the GPS data from one ten-day arc of Topex/Poseidon with no a priori can improve medium degree and order (3-26) sigmas for the parameters in the GEM-T2 gravity field by more than an order of magnitude.

  7. Kalman Filtered Daily GRACE Gravity Field Solutions in Near Real-Time- First Steps

    NASA Astrophysics Data System (ADS)

    Kvas, Andreas; Mayer-Gurr, Torsten

    2016-08-01

    As part of the EGSIEM (European Gravity Service for Improved Emergency Management) project, a technology demonstrator for a near real-time (NRT) gravity field service will be established. In preparation of the operational phase, several aspects of the daily gravity field processing chain at Graz University of Technology have been inspected in order to improve the gravity field solutions and move towards NRT. The effect of these adaptions is investigated by comparison with post-processing and forward-only filtered solutions and evaluated using in-situ data.

  8. The use of satellites in gravity field determination and model adjustment

    NASA Astrophysics Data System (ADS)

    Visser, Petrus Nicolaas Anna Maria

    1992-06-01

    Methods to improve gravity field models of the Earth with available data from satellite observations are proposed and discussed. In principle, all types of satellite observations mentioned give information of the satellite orbit perturbations and in conjunction the Earth's gravity field, because the satellite orbits are affected most by the Earth's gravity field. Therefore, two subjects are addressed: representation forms of the gravity field of the Earth and the theory of satellite orbit perturbations. An analytical orbit perturbation theory is presented and shown to be sufficiently accurate for describing satellite orbit perturbations if certain conditions are fulfilled. Gravity field adjustment experiments using the analytical orbit perturbation theory are discussed using real satellite observations. These observations consisted of Seasat laser range measurements and crossover differences, and of Geosat altimeter measurements and crossover differences. A look into the future, particularly relating to the ARISTOTELES (Applications and Research Involving Space Techniques for the Observation of the Earth's field from Low Earth Orbit Spacecraft) mission, is given.

  9. ^4He Crystals in Reduced Gravity Obtained by Parabolic Flights of a Jet Plane

    NASA Astrophysics Data System (ADS)

    Takahashi, Takuya; Nomura, Ryuji; Okuda, Yuichi

    2016-11-01

    ^4He crystals usually sink to the bottom of the container in a superfluid and are deformed into a flat shape by gravity when their size is much larger than the capillary length of 1 mm. When gravity is reduced to zero, the capillary length diverges and the gravity-flattened crystals are expected to relax into an equilibrium crystal shape determined by the interfacial free energy at low enough temperatures where the relaxation time is very short. We performed a reduced gravity experiment on ^4He crystals at ultralow temperatures by developing a specially designed ^3He-^4He dilution refrigerator compatible with the experimental restrictions in a small jet plane. ^4He crystals relaxed to the equilibrium crystal shape below 600 mK during a reduced gravity period of 20 s produced by a parabolic flight. The equilibrium crystal shape, however, was metastable in most cases, governed by the boundary conditions imposed by the wall. Utilizing acoustic radiation pressure, we deformed the crystal enough to allow it to escape from the metastable shape below 150 mK. After this large deformation, the crystal relaxed to a shape completely different from its initial shape, showing three types of facets, viz., c-, a-, and s-facets, which was concluded to be the lowest energy equilibrium shape.

  10. Repetitive precision gravity studies at the Cerro Prieto and Heber geothermal fields

    SciTech Connect

    Grannell, R.B.

    1982-09-01

    To study subsidence and mass removal, a precise gravity network was established on 60 permanent monuments in the Cerro Prieto geothermal field in early 1978, and repeated annually through early 1981; the survey was tied to two bedrock sites outside the limits of the current production zone. The looping technique of station occupation was utilized, in which occupation of the base was followed by occupation of several stations, followed by a return to the base. Use of two LaCoste and Romberg gravity meters, and replication of values within loops as well as entire loops, enhanced precision such that the median standard deviations of the base-to-station differences, reduced to observed gravity values, ranged from 7 to 15 microgals for individual surveys. The smaller values were obtained as field and data reduction techniques were improved and experience was gained. A similar survey was initiated in the Heber area just north of the Mexican border in early 1980. It too was established on permanent monuments, was tied to bedrock stations outside the geothermal area, and used multiple repetitions of values with two meters to achieve high precision.

  11. An experimental study of low-velocity impacts into granular material in reduced gravity

    NASA Astrophysics Data System (ADS)

    Murdoch, Naomi; Avila Martinez, Iris; Sunday, Cecily; Zenou, Emmanuel; Cherrier, Olivier; Cadu, Alexandre; Gourinat, Yves

    2017-01-01

    In order to improve our understanding of landing on small bodies and of asteroid evolution, we use our novel drop tower facility (Sunday et al. 2016) to perform low-velocity (2 - 40 cm/s), shallow impact experiments of a 10 cm diameter aluminum sphere into quartz sand in low effective gravities (˜0.2 - 1 m/s2). Using in-situ accelerometers we measure the acceleration profile during the impacts and determine the peak accelerations, collision durations and maximum penetration depth. We find that the penetration depth scales linearly with the collision velocity but is independent of the effective gravity for the experimental range tested, and that the collision duration is independent of both the effective gravity and the collision velocity. No rebounds are observed in any of the experiments. Our low-gravity experimental results indicate that the transition from the quasi-static regime to the inertial regime occurs for impact energies two orders of magnitude smaller than in similar impact experiments under terrestrial gravity. The lower energy regime change may be due to the increased hydrodynamic drag of the surface material in our experiments, but may also support the notion that the quasi-static regime reduces as the effective gravity becomes lower.

  12. Towards strong field tests of beyond Horndeski gravity theories

    NASA Astrophysics Data System (ADS)

    Sakstein, Jeremy; Babichev, Eugeny; Koyama, Kazuya; Langlois, David; Saito, Ryo

    2017-03-01

    Theories of gravity in the beyond Horndeski class encompass a wide range of scalar-tensor theories that will be tested on cosmological scales over the coming decade. In this work, we investigate the possibility of testing them in the strong field regime by looking at the properties of compact objects—neutron, hyperon, and quark stars—embedded in an asymptotically de Sitter space-time, for a specific subclass of theories. We extend previous works to include slow rotation and find a relation between the dimensionless moment of inertia (I ¯ =I c2/GNM3 ) and the compactness C =GNM /R c2 (an I ¯-C relation), independent of the equation of state, that is reminiscent of but distinct from the general relativity prediction. Several of our equations of state contain hyperons and free quarks, allowing us to revisit the hyperon puzzle. We find that the maximum mass of hyperon stars can be larger than 2 M⊙ for small values of the beyond Horndeski parameter, thus providing a resolution of the hyperon puzzle based on modified gravity. Moreover, stable quark stars exist when hyperonic stars are unstable, which means that the phase transition from hyperon to quark stars is predicted just as in general relativity (GR), albeit with larger quark star masses. Two important and potentially observable consequences of some of the theories we consider are the existence of neutron stars in a range of masses significantly higher than in GR and I ¯-C relations that differ from their GR counterparts. In the former case, we find objects that, if observed, could not be accounted for in GR because they violate the usual GR causality condition. We end by discussing several difficult technical issues that remain to be addressed in order to reach more realistic predictions that may be tested using gravitational wave searches or neutron star observations.

  13. An Exact Solution of Einstein-Maxwell Gravity Coupled to a Scalar Field

    NASA Technical Reports Server (NTRS)

    Turyshev, S. G.

    1995-01-01

    The general solution to low-energy string theory representing static spherically symmetric solution of the Einstein-Maxwell gravity with a massless scalar field has been found. Some of the partial cases appear to coincide with known solutions to black holes, naked singularities, and gravity and electromagnetic fields.

  14. Computational characterization of fracture healing under reduced gravity loading conditions.

    PubMed

    Gadomski, Benjamin C; Lerner, Zachary F; Browning, Raymond C; Easley, Jeremiah T; Palmer, Ross H; Puttlitz, Christian M

    2016-07-01

    The literature is deficient with regard to how the localized mechanical environment of skeletal tissue is altered during reduced gravitational loading and how these alterations affect fracture healing. Thus, a finite element model of the ovine hindlimb was created to characterize the local mechanical environment responsible for the inhibited fracture healing observed under experimental simulated hypogravity conditions. Following convergence and verification studies, hydrostatic pressure and strain within a diaphyseal fracture of the metatarsus were evaluated for models under both 1 and 0.25 g loading environments and compared to results of a related in vivo study. Results of the study suggest that reductions in hydrostatic pressure and strain of the healing fracture for animals exposed to reduced gravitational loading conditions contributed to an inhibited healing process, with animals exposed to the simulated hypogravity environment subsequently initiating an intramembranous bone formation process rather than the typical endochondral ossification healing process experienced by animals healing in a 1 g gravitational environment. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1206-1215, 2016.

  15. Unit operations for gas-liquid mass transfer in reduced gravity environments

    NASA Technical Reports Server (NTRS)

    Pettit, Donald R.; Allen, David T.

    1992-01-01

    Basic scaling rules are derived for converting Earth-based designs of mass transfer equipment into designs for a reduced gravity environment. Three types of gas-liquid mass transfer operations are considered: bubble columns, spray towers, and packed columns. Application of the scaling rules reveals that the height of a bubble column in lunar- and Mars-based operations would be lower than terrestrial designs by factors of 0.64 and 0.79 respectively. The reduced gravity columns would have greater cross-sectional areas, however, by factors of 2.4 and 1.6 for lunar and Martian settings. Similar results were obtained for spray towers. In contract, packed column height was found to be nearly independent of gravity.

  16. Experimental Investigation of Solder Joint Defect Formation and Mitigation in Reduced-Gravity Environments

    NASA Technical Reports Server (NTRS)

    Watson, J. Kevin; Struk, Peter M.; Pettegrew, RIchard D.; Downs, Robert S.

    2006-01-01

    This paper documents a research effort on reduced gravity soldering of plated through hole joints which was conducted jointly by the National Center for Space Exploration Research, NASA Glenn Research Center, and NASA Johnson Space Center. Significant increases in joint porosity and changes in external geometry were observed in joints produced in reduced gravity as compared to normal gravity. Multiple techniques for mitigating the observed increase in porosity were tried, including several combinations of flux and solder application techniques, and demoisturizing the circuit board prior to soldering. Results were consistent with the hypothesis that the source of the porosity is a combination of both trapped moisture in the circuit board itself, as well as vaporized flux that is trapped in the molten solder. Other topics investigated include correlation of visual inspection results with joint porosity, pore size measurements, limited pressure effects (0.08 MPa - 0.1 MPa) on the size and number of pores, and joint cooling rate.

  17. Study of two-phase flow and heat transfer in reduced gravities

    NASA Technical Reports Server (NTRS)

    Abdollahian, Davood; Barez, Fred

    1994-01-01

    Design of the two-phase systems which are anticipated to be utilized in future spacecraft thermal management systems requires a knowledge of two-phase flow and heat transfer parameters in reduced gravities. A program has been initiated by NASA to design a two-phase test loop and perform a series of experiments to generate the data for the Critical Heat Flux (CHF) and onset of instability under reduced gravities. In addition to low gravity airplane trajectory testing, the experimental program consists of a set of laboratory tests with vertical upflow and downflow configurations. Modularity is considered in the design of this experiment and the test loop in instrumented to provide data for two-phase pressure drop and flow regime behavior. Since the program is in the final stages of the design and construction task, this article is intended to discuss the phenomena, design approach, and the description of the test loop.

  18. Mars gravity field via the short data arcs

    NASA Technical Reports Server (NTRS)

    Sjogren, W. L.; Lorell, J.; Reinbold, S. J.; Wimberly, R. N.

    1973-01-01

    Short arc reduction of satellite Mars tracking data shows that: (1) There is one large gravity high covering the region of Nix Olympica and the three peaks to the east (about 110 deg longitude). It has an amplitude of 50 milligals at 2200-km altitude and implies a surface mass anomaly times greater than any on earth; (2) there are no large negative gravity anomalies comparable to the positive; and (3) the large 3000-km canyon seems to originate in a gravity high and end in a gravity low.

  19. The delineation and interpretation of the earth's gravity field

    NASA Technical Reports Server (NTRS)

    Marsh, Bruce D.

    1988-01-01

    A series of fluid dynamical experiments in variable viscosity fluid have been made and are in progress to study: (1) the onset of small scale convection relative to lithosphere growth rate; (2) the influence of paired fracture zones in modulating the horizontal scale of small scale convection; (3) the influence of the mantle vertical viscosity structure on determing the mode of small scale convection; and (4) the 3-D and temporal evolution of flows beneath a high viscosity lid. These experiments extend and amplify the present experimental work that has produced small scale convection beneath a downward-moving solidification front. Rapid growth of a high viscosity lid stifles the early onset of convection such that convection only begins once the lithosphere is older than a certain minimum age. The interplay of this convection with both the structure of the lithosphere and mantle provide a fertile field of investigation into the origin of geoid, gravity, and topographic anomalies in the central Pacific. These highly correlated fields of intermediate wavelength (approximately 200 to 2000 km), but not the larger wavelengths. It is the ultimate, dynamic origin of this class of anomalies that is sought in this investigation.

  20. Unification of gravity and quantum field theory from extended noncommutative geometry

    NASA Astrophysics Data System (ADS)

    Yu, Hefu; Ma, Bo-Qiang

    2017-02-01

    We make biframe and quaternion extensions on the noncommutative geometry, and construct the biframe spacetime for the unification of gravity and quantum field theory (QFT). The extended geometry distinguishes between the ordinary spacetime based on the frame bundle and an extra non-coordinate spacetime based on the biframe bundle constructed by our extensions. The ordinary spacetime frame is globally flat and plays the role as the spacetime frame in which the fields of the Standard Model are defined. The non-coordinate frame is locally flat and is the gravity spacetime frame. The field defined in both frames of such “flat” biframe spacetime can be quantized and plays the role as the gravity field which couples with all the fields to connect the gravity effect with the Standard Model. Thus, we provide a geometric paradigm in which gravity and QFT can be unified.

  1. Clear and Measurable Signature of Modified Gravity in the Galaxy Velocity Field

    NASA Astrophysics Data System (ADS)

    Hellwing, Wojciech A.; Barreira, Alexandre; Frenk, Carlos S.; Li, Baojiu; Cole, Shaun

    2014-06-01

    The velocity field of dark matter and galaxies reflects the continued action of gravity throughout cosmic history. We show that the low-order moments of the pairwise velocity distribution v12 are a powerful diagnostic of the laws of gravity on cosmological scales. In particular, the projected line-of-sight galaxy pairwise velocity dispersion σ12(r) is very sensitive to the presence of modified gravity. Using a set of high-resolution N-body simulations, we compute the pairwise velocity distribution and its projected line-of-sight dispersion for a class of modified gravity theories: the chameleon f(R) gravity and Galileon gravity (cubic and quartic). The velocities of dark matter halos with a wide range of masses would exhibit deviations from general relativity at the (5-10)σ level. We examine strategies for detecting these deviations in galaxy redshift and peculiar velocity surveys. If detected, this signature would be a "smoking gun" for modified gravity.

  2. Combustion of Metals in Carbon Dioxide and Reduced-Gravity Environments

    NASA Technical Reports Server (NTRS)

    Branch, M. C.; Abbud-Madrid, A.; Modak, A.; Dreyer, C. B.; Daily, J. W.

    2001-01-01

    Ongoing exploration and future mission2001110444 s to Mars have given impetus to research on the use of natural resources of the planet. Since carbon dioxide (CO2) constitutes approximately 95% of the Mars atmosphere and since it reacts directly and vigorously with several metals, this investigation focuses on metal-CO2 reactions as a possible combination for rocket-propellant production and energy generation. Magnesium (Mg) has been initially selected as the metal fuel owing to its low ignition temperature and high specific impulse and burning rate in CO2. Our studies in this field started with low gravity (g) combustion tests of Mg in O2, CO2, and CO. Reduced gravity provided a clear picture of the burning phenomena by eliminating the intrusive buoyant flows in high-temperature metal reactions and by removing the destructive effect of gravity on the shape of molten metal samples. Suspended cylindrical metal samples of 2, 3, and 4-mm in diameter and length were radiatively ignited in low-g to generate free-floating samples exhibiting a spherically symmetric flame with increasing metal-oxide accumulation in an outer shell. For the Mg-CO2 combination, burning times twice as long as in normal-g and five times longer than in Mg-O2 flames were observed, revealing a diffusion-controlled reaction. The burning time is proportional to the square of the sample diameter. In tests conducted with pure CO, combustion was not possible without constant heating of the sample due to the formation of a thick carbon-containing coating around the Mg sample generated by surface reactions. The following work presents two new studies that attempt to explain some of the low-g experimental observations. First, a simplified one-dimensional, quasi-steady numerical model is developed to obtain temperature, species concentrations, and burning rates of the spherically symmetric diffusion flame around the Mg sample burning in O2 and CO2. Second, a Planar Laser Induced Fluorescence (PLIF

  3. Ignition and combustion of bulk metals at normal, elevated and reduced gravity

    NASA Technical Reports Server (NTRS)

    Branch, Melvyn C.; Daily, John W.; Abbud-Madrid, Angel

    1995-01-01

    Knowledge of the oxidation, ignition, and combustion of bulk metals is important for fire safety in the production, management, and utilization of liquid and gaseous oxygen for ground based and space applications. This proposal outlines studies in continuation of research initiated earlier under NASA support to investigate the ignition and combustion characteristics of bulk metals under varying gravity conditions. Metal ignition and combustion have not been studied previously under these conditions and the results are important not only for improved fire safety but also to increase knowledge of basic ignition and combustion mechanisms. The studies completed to date have led to the development of a clean and reproducible ignition source and diagnostic techniques for combustion measurements and have provided normal, elevated, and reduced gravity combustion data on a variety of different pure metals. The research conducted under this grant will use the apparatus and techniques developed earlier to continue the elevated and low gravity experiments, and to develop the overall modeling of the ignition and combustion process. Metal specimens are to be ignited using a xenon short-arc lamp and measurements are to be made of the ignition energy, surface temperature history, burning rates, spectroscopy of surface and gas products, and surface morphology and chemistry. Elevated gravity will be provided by the University of Colorado Geotechnical Centrifuge and microgravity will be obtained in NASA's DC-9 Reduced Gravity aircraft.

  4. Moon Exploration from "apollo" Magnetic and Gravity Field Data

    NASA Astrophysics Data System (ADS)

    Kharitonov, Andrey

    Recently, the great value is given to various researches of the Moon, as nearest nature satellite of the Earth, because there is preparation for forthcoming starts on the Moon of the American, European, Russian, Chinese, Indian new Orbiters and Landers. Designing of International Lu-nar bases is planned also. Therefore, in the near future the series of the questions connected with placing of International Lunar bases which coordinates substantially should to be connected with heterogeneity of the internal structure of the Moon can become especially interesting. If in the Moon it will be possible to find large congestions of water ice and those chemical elements which stocks in the Earth are limited this area of the Moon can become perspective for Inter-national Lunar bases. To solve a question of research of the deep structure of the Moon in the locations of International Lunar bases, competently, without excessive expenses for start new various under the form of the Lunar orbit of automatic space vehicles (polar, equatorial, inclined to the rotation axis) and their altitude of flight, which also not always were connected with investigation programs of measured fields (video observation, radio-frequency sounding, mag-netic, gravity), is possible if already from the available information of space vehicles APOLLO, SMART1, KAGUYA, LCROSS, LRO, CHANDRAYAAN-1, CHANG'E-1 it will be possible to analyse simultaneously some various fields, at different altitudes of measuring over the surface (20-300 km) of the Moon. The experimental data of the radial component magnetic field and gravity field the Moon measured at different altitudes, in its equatorial part have been analysed for the research of the deep structure of the Moon. This data has been received as a result of start of space vehicles -APOLLO-15 and APOLLO-16 (USA), and also the Russian space vehicles "LUNOHOD". Authors had been used the data of a magnetic field of the Moon at flight altitude 160, 100, 75, 30, 0 km

  5. Existence of global weak solution for a reduced gravity two and a half layer model

    SciTech Connect

    Guo, Zhenhua Li, Zilai Yao, Lei

    2013-12-15

    We investigate the existence of global weak solution to a reduced gravity two and a half layer model in one-dimensional bounded spatial domain or periodic domain. Also, we show that any possible vacuum state has to vanish within finite time, then the weak solution becomes a unique strong one.

  6. Casting And Solidification Technology (CAST): Directional solidification phenomena in a metal model at reduced gravity

    NASA Technical Reports Server (NTRS)

    Mccay, M. H.

    1988-01-01

    The Casting and Solidification Technology (CAST) experiment will study the phenomena that occur during directional solidification of an alloy, e.g., constitutional supercooling, freckling, and dendrite coarsening. The reduced gravity environment of space will permit the individual phenomena to be examined with minimum complication from buoyancy driven flows.

  7. The Two-Phase Flow Separator Experiment Breadboard Model: Reduced Gravity Aircraft Results

    NASA Technical Reports Server (NTRS)

    Rame, E; Sharp, L. M.; Chahine, G.; Kamotani, Y.; Gotti, D.; Owens, J.; Gilkey, K.; Pham, N.

    2015-01-01

    Life support systems in space depend on the ability to effectively separate gas from liquid. Passive cyclonic phase separators use the centripetal acceleration of a rotating gas-liquid mixture to carry out phase separation. The gas migrates to the center, while gas-free liquid may be withdrawn from one of the end plates. We have designed, constructed and tested a breadboard that accommodates the test sections of two independent principal investigators and satisfies their respective requirements, including flow rates, pressure and video diagnostics. The breadboard was flown in the NASA low-gravity airplane in order to test the system performance and design under reduced gravity conditions.

  8. The gravity field, orientation, and ephemeris of Mercury from MESSENGER observations after three years in orbit

    NASA Astrophysics Data System (ADS)

    Mazarico, Erwan; Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.; Solomon, Sean C.

    2014-12-01

    We have analyzed 3 years of radio tracking data from the MESSENGER spacecraft in orbit around Mercury and determined the gravity field, planetary orientation, and ephemeris of the innermost planet. With improvements in spatial coverage, force modeling, and data weighting, we refined an earlier global gravity field both in quality and resolution, and we present here a spherical harmonic solution to degree and order 50. In this field, termed HgM005, uncertainties in low-degree coefficients are reduced by an order of magnitude relative to earlier global fields, and we obtained a preliminary value of the tidal Love number k2 of 0.451 ± 0.014. We also estimated Mercury's pole position, and we obtained an obliquity value of 2.06 ± 0.16 arcmin, in good agreement with analysis of Earth-based radar observations. From our updated rotation period (58.646146 ± 0.000011 days) and Mercury ephemeris, we verified experimentally the planet's 3:2 spin-orbit resonance to greater accuracy than previously possible. We present a detailed analysis of the HgM005 covariance matrix, and we describe some near-circular frozen orbits around Mercury that could be advantageous for future exploration.

  9. The Gravity Field, Orientation, and Ephemeris of Mercury from MESSENGER Observations After Three Years in Orbit

    NASA Technical Reports Server (NTRS)

    Mazarico, Erwan M.; Genova, Antonio; Goossens, Sander; Lemoine, Gregory; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.; Solomon, Sean C.

    2014-01-01

    We have analyzed three years of radio tracking data from the MESSENGER spacecraft in orbit around Mercury and determined the gravity field, planetary orientation, and ephemeris of the innermost planet. With improvements in spatial coverage, force modeling, and data weighting, we refined an earlier global gravity field both in quality and resolution, and we present here a spherical harmonic solution to degree and order 50. In this field, termed HgM005, uncertainties in low-degree coefficients are reduced by an order of magnitude relative to the earlier global field, and we obtained a preliminary value of the tidal Love number k(sub 2) of 0.451+/-0.014. We also estimated Mercury's pole position, and we obtained an obliquity value of 2.06 +/- 0.16 arcmin, in good agreement with analysis of Earth-based radar observations. From our updated rotation period (58.646146 +/- 0.000011 days) and Mercury ephemeris, we verified experimentally the planet's 3: 2 spin-orbit resonance to greater accuracy than previously possible. We present a detailed analysis of the HgM005 covariance matrix, and we describe some near-circular frozen orbits around Mercury that could be advantageous for future exploration.

  10. Killing vector fields in three dimensions: a method to solve massive gravity field equations

    NASA Astrophysics Data System (ADS)

    Gürses, Metin

    2010-10-01

    Killing vector fields in three dimensions play an important role in the construction of the related spacetime geometry. In this work we show that when a three-dimensional geometry admits a Killing vector field then the Ricci tensor of the geometry is determined in terms of the Killing vector field and its scalars. In this way we can generate all products and covariant derivatives at any order of the Ricci tensor. Using this property we give ways to solve the field equations of topologically massive gravity (TMG) and new massive gravity (NMG) introduced recently. In particular when the scalars of the Killing vector field (timelike, spacelike and null cases) are constants then all three-dimensional symmetric tensors of the geometry, the Ricci and Einstein tensors, their covariant derivatives at all orders, and their products of all orders are completely determined by the Killing vector field and the metric. Hence, the corresponding three-dimensional metrics are strong candidates for solving all higher derivative gravitational field equations in three dimensions.

  11. Recent results on modelling the spatial and temporal structure of the Earth's gravity field.

    PubMed

    Moore, P; Zhang, Q; Alothman, A

    2006-04-15

    The Earth's gravity field plays a central role in sea-level change. In the simplest application a precise gravity field will enable oceanographers to capitalize fully on the altimetric datasets collected over the past decade or more by providing a geoid from which absolute sea-level topography can be recovered. However, the concept of a static gravity field is now redundant as we can observe temporal variability in the geoid due to mass redistribution in or on the total Earth system. Temporal variability, associated with interactions between the land, oceans and atmosphere, can be investigated through mass redistributions with, for example, flow of water from the land being balanced by an increase in ocean mass. Furthermore, as ocean transport is an important contributor to the mass redistribution the time varying gravity field can also be used to validate Global Ocean Circulation models. This paper will review the recent history of static and temporal gravity field recovery, from the 1980s to the present day. In particular, mention will be made of the role of satellite laser ranging and other space tracking techniques, satellite altimetry and in situ gravity which formed the basis of gravity field determination until the last few years. With the launch of Challenging Microsatellite Payload and Gravity and Circulation Experiment (GRACE) our knowledge of the spatial distribution of the Earth's gravity field is taking a leap forward. Furthermore, GRACE is now providing insight into temporal variability through 'monthly' gravity field solutions. Prior to this data we relied on satellite tracking, Global Positioning System and geophysical models to give us insight into the temporal variability. We will consider results from these methodologies and compare them to preliminary results from the GRACE mission.

  12. A system for conducting igneous petrology experiments under controlled redox conditions in reduced gravity

    NASA Technical Reports Server (NTRS)

    Williams, Richard J.

    1987-01-01

    The Space Shuttle and the planned Space Station will permit experimentation under conditions of reduced gravitational acceleration offering experimental petrologists the opportunity to study crystal growth, element distribution, and phase chemistry. In particular the confounding effects of macro and micro scale buoyancy-induced convection and crystal settling or flotation can be greatly reduced over those observed in experiments in the terrestrial laboratory. Also, for experiments in which detailed replication of the environment is important, the access to reduced gravity will permit a more complete simulation of processes that may have occurred on asteroids or in free space. A technique that was developed to control, measure, and manipulate oxygen fugacities with small quantities of gas which are recirculated over the sample. This system could be adaptable to reduced gravity space experiments requiring redox control.

  13. AIUB-CHAMP02S: The influence of GNSS model changes on gravity field recovery using spaceborne GPS

    NASA Astrophysics Data System (ADS)

    Prange, L.; Jäggi, A.; Dach, R.; Bock, H.; Beutler, G.; Mervart, L.

    2010-01-01

    The gravity field model AIUB-CHAMP02S, which is based on six years of CHAMP GPS data, is presented here. The gravity field parameters were derived using a two step procedure: In a first step a kinematic trajectory of a low Earth orbiting (LEO) satellite is computed using the GPS data from the on-board receiver. In this step the orbits and clock corrections of the GPS satellites as well as the Earth rotation parameters (ERPs) are introduced as known. In the second step this kinematic orbit is represented by a gravitational force model and orbit parameters. In order to ensure full model consistency the GPS satellite orbits and clock corrections, which have been used for the generation of the kinematic LEO trajectories, were taken from the Center for Orbit Determination in Europe (CODE), located at AIUB (Dach et al., 2009). In recent years many changes have taken place in the processing chain of global navigation satellite system (GNSS) data, e.g., the implementation of absolute antenna phase center modeling. Therefore a reprocessing of the GPS data to obtain state-of-the-art GPS satellite orbits and clock corrections was performed. From these updated GPS products new kinematic orbits of the CHAMP satellite were derived for the years 2002-2007. From the updated CHAMP trajectories spherical harmonic (SH) coefficients of the Earth’s gravity field were determined in exactly the same way as from the original LEO orbit. This allowed us to study the impact of the improved LEO orbits on the derived gravity field parameters and the generation of the multi-year gravity field model AIUB-CHAMP02S. The change of the IGS standards creates an inconsistency to existing global gravity field models, which mainly affects the zonal coefficients of low even degrees. The inconsistency is caused by the change to the absolute antenna phase center model and can be reduced by estimating the phase center variation of the CHAMP GPS antenna.

  14. Closed-loop, estimator-based model of human posture following reduced gravity exposure.

    PubMed

    Newman, D J; Schultz, K U; Rochlis, J L

    1996-01-01

    A computational and experimental method is employed to provide an understanding of a critical human space flight problem, posture control following reduced gravity exposure. In the case of an emergency egress, astronauts' postural stability could be life saving. It is hypothesized that muscular gains are lowered during reduced gravity exposure, causing a feeling of heavy legs, or a perceived feeling of muscular weakness, upon return to Earth's 1 g environment. We developed an estimator-based model that is verified by replicating spatial and temporal characteristics of human posture and incorporates an inverted pendulum plant in series with a Hill-type muscle model, two feedback pathways, a central nervous system estimator, and variable gains. Results obtained by lowering the variable muscle gain in the model support the hypothesis. Experimentally, subjects were exposed to partial gravity (3/8 g) simulation on a suspension apparatus, then performed exercises postulated to expedite recovery and alleviate the heavy legs phenomenon. Results show that the rms position of the center of pressure increases significantly after reduced gravity exposure. Closed-loop system behavior is revealed, and posture is divided into a short-term period that exhibits higher stochastic activity and persistent trends and a long-term period that shows relatively low stochastic activity and antipersistent trends.

  15. Teleparallel conformal Killing vector fields of LRS Bianchi type V spacetimes in teleparallel gravity

    NASA Astrophysics Data System (ADS)

    Khan, Suhail; Hussain, Tahir; Khan, Gulzar Ali

    The aim of this paper is to explore teleparallel conformal Killing vector fields (CKVFs) of locally rotationally symmetric (LRS) Bianchi type V spacetimes in the context of teleparallel gravity and compare the obtained results with those of general relativity (GR). The general solution of teleparallel conformal Killing's equations is found in terms of some unknown functions of t and x, along with a set of integrability conditions. The integrability conditions are solved in some particular cases to get the final form of teleparallel CKVFs. It is observed that the LRS Bianchi type V spacetimes admit proper teleparallel CKVF in only one case, while in remaining cases the teleparallel CKVFs reduce to teleparallel Killing vector fields (KVFs). Moreover, it is shown that the LRS Bianchi type V spacetimes do not admit any proper teleparallel homothetic vector field (HVF).

  16. Electric Current Activated Combustion Synthesis and Chemical Ovens Under Terrestrial and Reduced Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Unuvar, C.; Fredrick, D.; Anselmi-Tamburini, U.; Manerbino, A.; Guigne, J. Y.; Munir, Z. A.; Shaw, B. D.

    2004-01-01

    Combustion synthesis (CS) generally involves mixing reactants together (e.g., metal powders) and igniting the mixture. Typically, a reaction wave will pass through the sample. In field activated combustion synthesis (FACS), the addition of an electric field has a marked effect on the dynamics of wave propagation and on the nature, composition, and homogeneity of the product as well as capillary flow, mass-transport in porous media, and Marangoni flows, which are influenced by gravity. The objective is to understand the role of an electric field in CS reactions under conditions where gravity-related effects are suppressed or altered. The systems being studied are Ti+Al and Ti+3Al. Two different ignition orientations have been used to observe effects of gravity when one of the reactants becomes molten. This consequentially influences the position and concentration of the electric current, which in turn influences the entire process. Experiments have also been performed in microgravity conditions. This process has been named Microgravity Field Activated Combustion Synthesis (MFACS). Effects of gravity have been demonstrated, where the reaction wave temperature and velocity demonstrate considerable differences besides the changes of combustion mechanisms with the different high currents applied. Also the threshold for the formation of a stable reaction wave is increased under zero gravity conditions. Electric current was also utilized with a chemical oven technique, where inserts of aluminum with minute amounts of tungsten and tantalum were used to allow observation of effects of settling of the higher density solid particles in liquid aluminum at the present temperature profile and wave velocity of the reaction.

  17. Soleus H-reflex gain in humans walking and running under simulated reduced gravity

    NASA Technical Reports Server (NTRS)

    Ferris, D. P.; Aagaard, P.; Simonsen, E. B.; Farley, C. T.; Dyhre-Poulsen, P.

    2001-01-01

    The Hoffmann (H-) reflex is an electrical analogue of the monosynaptic stretch reflex, elicited by bypassing the muscle spindle and directly stimulating the afferent nerve. Studying H-reflex modulation provides insight into how the nervous system centrally modulates stretch reflex responses.A common measure of H-reflex gain is the slope of the relationship between H-reflex amplitude and EMG amplitude. To examine soleus H-reflex gain across a range of EMG levels during human locomotion, we used simulated reduced gravity to reduce muscle activity. We hypothesised that H-reflex gain would be independent of gravity level.We recorded EMG from eight subjects walking (1.25 m s-1) and running (3.0 m s-1) at four gravity levels (1.0, 0.75, 0.5 and 0.25 G (Earth gravity)). We normalised the stimulus M-wave and resulting H-reflex to the maximal M-wave amplitude (Mmax) elicited throughout the stride to correct for movement of stimulus and recording electrodes relative to nerve and muscle fibres. Peak soleus EMG amplitude decreased by 30% for walking and for running over the fourfold change in gravity. As hypothesised, slopes of linear regressions fitted to H-reflex versus EMG data were independent of gravity for walking and running (ANOVA, P > 0.8). The slopes were also independent of gait (P > 0.6), contrary to previous studies. Walking had a greater y-intercept (19.9% Mmax) than running (-2.5% Mmax; P < 0.001). At all levels of EMG, walking H-reflex amplitudes were higher than running H-reflex amplitudes by a constant amount. We conclude that the nervous system adjusts H-reflex threshold but not H-reflex gain between walking and running. These findings provide insight into potential neural mechanisms responsible for spinal modulation of the stretch reflex during human locomotion.

  18. The delineation and interpretation of the earth's gravity field

    NASA Technical Reports Server (NTRS)

    Marsh, Bruce D.

    1989-01-01

    In an attempt to understand the mechanical interaction of a growing lithosphere containing fracture zones with small and large scale mantle convection, which gives rise to geoid anomalies in oceanic regions, a series of fluid dynamical experiments is in progress to investigate: (1) the influence of lithosphere structure, fluid depth and viscosity field on the onset, scale, and evolution of sublithospheric convection; (2) the role of this convection in determining the rate of growth of lithosphere, especially in light of the flattening of the lithosphere bathymetry and heat flow at late times; and (3) combining the results of both numerical and laboratory experiments to decide the dominate factors in producing geoid anomalies in oceanic regions through the thermo-mechanical interaction of the lithosphere and subjacent mantle. The clear existence of small scale convection associated with a downward propagating solidification front (i.e., the lithosphere) and a larger scale flow associated with a discontinuous upward heat flux (i.e., a fracture zone) has been shown. The flows exist simultaneously and each may have a significant role in deciding the thermal evolution of the lithosphere and in understanding the relation of shallow mantle convection to deep mantle convection. This overall process is reflected in the geoid, gravity, and topographic anomalies in the north-central Pacific. These highly correlated fields of intermediate wavelength (approx. 200 to 2000 km) show isostatic compensation by a thin lithosphere for shorter (less than or equal to approx. 500 km), but not the longer, wavelengths. The ultimate, dynamic origin of this class of anomalies is being investigated.

  19. Near-Infrared Spectroscopic Measurements of Calf Muscle during Walking at Simulated Reduced Gravity - Preliminary Results

    NASA Technical Reports Server (NTRS)

    Ellerby, Gwenn E. C.; Lee, Stuart M. C.; Stroud, Leah; Norcross, Jason; Gernhardt, Michael; Soller, Babs R.

    2008-01-01

    Consideration for lunar and planetary exploration space suit design can be enhanced by investigating the physiologic responses of individual muscles during locomotion in reduced gravity. Near-infrared spectroscopy (NIRS) provides a non-invasive method to study the physiology of individual muscles in ambulatory subjects during reduced gravity simulations. PURPOSE: To investigate calf muscle oxygen saturation (SmO2) and pH during reduced gravity walking at varying treadmill inclines and added mass conditions using NIRS. METHODS: Four male subjects aged 42.3 +/- 1.7 years (mean +/- SE) and weighing 77.9 +/- 2.4 kg walked at a moderate speed (3.2 +/- 0.2 km/h) on a treadmill at inclines of 0, 10, 20, and 30%. Unsuited subjects were attached to a partial gravity simulator which unloaded the subject to simulate body weight plus the additional weight of a space suit (121 kg) in lunar gravity (0.17G). Masses of 0, 11, 23, and 34 kg were added to the subject and then unloaded to maintain constant weight. Spectra were collected from the lateral gastrocnemius (LG), and SmO2 and pH were calculated using previously published methods (Yang et al. 2007 Optics Express ; Soller et al. 2008 J Appl Physiol). The effects of incline and added mass on SmO2 and pH were analyzed through repeated measures ANOVA. RESULTS: SmO2 and pH were both unchanged by added mass (p>0.05), so data from trials at the same incline were averaged. LG SmO2 decreased significantly with increasing incline (p=0.003) from 61.1 +/- 2.0% at 0% incline to 48.7 +/- 2.6% at 30% incline, while pH was unchanged by incline (p=0.12). CONCLUSION: Increasing the incline (and thus work performed) during walking causes the LG to extract more oxygen from the blood supply, presumably to support the increased metabolic cost of uphill walking. The lack of an effect of incline on pH may indicate that, while the intensity of exercise has increased, the LG has not reached a level of work above the anaerobic threshold. In these

  20. Gravity Field Recovery from the Cartwheel Formation by the Semi-analytical Approach

    NASA Astrophysics Data System (ADS)

    Li, Huishu; Reubelt, Tilo; Antoni, Markus; Sneeuw, Nico; Zhong, Min; Zhou, Zebing

    2016-04-01

    Past and current gravimetric satellite missions have contributed drastically to our knowledge of the Earth's gravity field. Nevertheless, several geoscience disciplines push for even higher requirements on accuracy, homogeneity and time- and space-resolution of the Earth's gravity field. Apart from better instruments or new observables, alternative satellite formations could improve the signal and error structure. With respect to other methods, one significant advantage of the semi-analytical approach is its effective pre-mission error assessment for gravity field missions. The semi-analytical approach builds a linear analytical relationship between the Fourier spectrum of the observables and the spherical harmonic spectrum of the gravity field. The spectral link between observables and gravity field parameters is given by the transfer coefficients, which constitutes the observation model. In connection with a stochastic model, it can be used for pre-mission error assessment of gravity field mission. The cartwheel formation is formed by two satellites on elliptic orbits in the same plane. The time dependent ranging will be considered in the transfer coefficients via convolution including the series expansion of the eccentricity functions. The transfer coefficients are applied to assess the error patterns, which are caused by different orientation of the cartwheel for range-rate and range acceleration. This work will present the isotropy and magnitude of the formal errors of the gravity field coefficients, for different orientations of the cartwheel.

  1. The effects of prolonged weightlessness and reduced gravity environments on human survival.

    PubMed

    Taylor, R L

    1993-03-01

    The manned exploration of the solar system and the surfaces of some of the smaller planets and larger satellites requires that we are able to keep the adverse human physiological response to long term exposure to near zero and greatly reduced gravity environments within acceptable limits consistent with metabolic function. This paper examines the physiological changes associated with microgravity conditions with particular reference to the weightless demineralizatoin of bone (WDB). It is suggested that many of these changes are the result of physical/mechanical processes and are not primarily a medical problem. There are thus two immediately obvious and workable, if relatively costly, solutions to the problem of weightlessness. The provision of a near 1 g field during prolonged space flights, and/or the development of rapid transit spacecraft capable of significant acceleration and short flight times. Although these developments could remove or greatly ameliorate the effects of weightlessness during long-distance space flights there remains a problem relating to the long term colonization of the surfaces of Mars, the Moon, and other small solar system bodies. It is not yet known whether or not there is a critical threshold value of 'g' below which viable human physiological function cannot be sustained. If such a threshold exists permanent colonization may only be possible if the threshold value of 'g' is less than that at the surface of the planet on which we wish to settle.

  2. Barbero-Immirzi parameter as a scalar field: K-inflation from loop quantum gravity?

    NASA Astrophysics Data System (ADS)

    Taveras, Victor; Yunes, Nicolás

    2008-09-01

    We consider a loop-quantum gravity inspired modification of general relativity, where the Holst action is generalized by making the Barbero-Immirzi (BI) parameter a scalar field, whose value could be dynamically determined. The modified theory leads to a nonzero torsion tensor that corrects the field equations through quadratic first derivatives of the BI field. Such a correction is equivalent to general relativity in the presence of a scalar field with nontrivial kinetic energy. This stress energy of this field is automatically covariantly conserved by its own dynamical equations of motion, thus satisfying the strong equivalence principle. Every general relativistic solution remains a solution to the modified theory for any constant value of the BI field. For arbitrary time-varying BI fields, a study of cosmological solutions reduces the scalar-field stress energy to that of a pressureless perfect fluid in a comoving reference frame, forcing the scale-factor dynamics to be equivalent to those of a stiff equation of state. Upon ultraviolet completion, this model could provide a natural mechanism for k inflation, where the role of the inflaton is played by the BI field and inflation is driven by its nontrivial kinetic energy instead of a potential.

  3. Spray combustion at normal and reduced gravity in counterflow and co-flow configurations

    NASA Technical Reports Server (NTRS)

    Gomez, Alessandro; Chen, Gung

    1995-01-01

    Liquid fuel dispersion in practical systems is typically achieved by spraying the fuel into a polydisperse distribution of droplets evaporating and burning in a turbulent gaseous environment In view of the nearly insurmountable difficulties of this two-phase flow, a systematic study of spray evaporation and burning in configurations of gradually increasing levels of complexity, starting from laminar sprays to fully turbulent ones, would be useful. A few years ago we proposed to use an electrostatic spray of charged droplets for this type of combustion experiments under well-defined conditions. In the simplest configuration, a liquid is fed into a small metal tube maintained at several kilovolts relative to a ground electrode few centimeters away. Under the action of the electric field, the liquid meniscus at the outlet of the capillary takes a conical shape, with a thin jet emerging from the cone tip (cone-jet mode). This jet breaks up farther downstream into a spray of charged droplets - the so-called ElectroSpray (ES). Several advantages distinguish the electrospray from alternative atomization techniques: (1) it can produce quasi-monodisperse droplets over a phenomenal size range; (2) the atomization, that is strictly electrostatic, is decoupled from gas flow processes, which provides some flexibility in the selection and control of the experimental conditions; (3) the Coulombic repulsion of homopolarly charged droplets induces spray self-dispersion and prevents droplet coalescence; (4) the ES provides the opportunity of studying regimes of slip between droplets and host gas without compromising the control of the spray properties; and (5) the compactness and potential controllability of this spray generation system makes it appealing for studies in reduced-gravity environments aimed at isolating the spray behavior from natural convection complications. With these premises, in March 1991 we initiated a series of experiments under NASA sponsorship (NAG3-1259 and

  4. Gravity fields of the terrestrial planets - Long-wavelength anomalies and tectonics

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Lambeck, K.

    1980-01-01

    The paper discusses the gravity and topography data available for four terrestrial planets (earth, moon, Mars, and Venus), with particular emphasis on drawing inferences regarding the relationship of long-wavelength anomalies to tectonics. The discussion covers statistical analyses of global planetary gravity fields, relationship of gravity anomalies to elastic and viscoelastic models, relationship of gravity anomalies to convection models, finite strength, and isostasy (or the state of isostatic compensation). The cases of the earth and the moon are discussed in some detail. A summary of comparative planetology is presented.

  5. A 10 km-resolution synthetic Venus gravity field model based on topography

    NASA Astrophysics Data System (ADS)

    Li, Fei; Yan, Jianguo; Xu, Luyuan; Jin, Shuanggen; Rodriguez, J. Alexis P.; Dohm, James H.

    2015-02-01

    A high resolution gravity field model is extremely important in the exploration of Venus. In this paper, we present a 3-dimensional Venus gravity field VGM2014 constructed by using the latest gravity and topography models, residual terrain model (RTM) and the Airy-Heiskanen isostatic compensation model. The VGM2014 is the first 10 km scale Venus gravity field model; the final results are representations of the 3-dimensional surface gravity accelerations and gravity disturbances for Venus. We found that the optimal global compensation depth of Venus is about 60 km, and the crustal density is potentially less than the commonly accepted value of 2700-2900 kg m-3. This model will be potentially beneficial for the precise orbit determination and landing navigation of spacecraft around Venus, and may be utilized as a priori model for Venus gravity field simulation and inversion studies. The VGM2014 does not incorporate direct gravity information beyond degree 70 and it is not recommended for small-scale geophysical interpretation.

  6. An Analysis of Gravity-Field Estimation Based on Intersatellite Dual-1-Way Biased Ranging

    NASA Technical Reports Server (NTRS)

    Thomas, J. B.

    1999-01-01

    The GRACE (Gravity Recovery And Climate Experiment) mission is designed to make global, highly accurate measurements of the Earth's gravity field with high spatial resolution. Ancillary GPS occultation measurements are also to be carried out for atmospheric monitoring. In the dual-1-way biased ranging of this mission, the range between two satellites separated by 100 to 200 km in nearly polar, coplanar, circular orbits, is measured to very high precision, to within an additive constant, through the exchange of K- and Ka-band sinusoidal signals. Such biased ranging data, along with GPS L-band range and phase data, can be processed and fit over successive multiday intervals to obtain accurate estimates of the Earth's gravity field. This report approximately models and analyzes this process, from the generation of the RF signals at the two satellites through the extraction of the geopotential. The steps include generation of the transmitted signals, processing the received signals to extract high-rate baseband phase, carrying out a dual-1-way combination of baseband phase to extract high-rate biased range for each band, combining K- and Ka-band ranges to correct for the ionosphere effect, and processing the resulting high-rate biased range values to extract three types of reduced-rate observables: biased range, range rate and range acceleration. The version of dual-1-way biased ranging developed by this report improves upon previous versions in a number of ways: highly accurate satellite-timetag corrections derived from concurrent GPS data, better baseband phase extraction using highly digital processing, highly accurate USO-rate calibration derived from concurrent GPS data, an improved method for extracting high-rate biased range from baseband phase, improved filtering for extracting reduced- rate observables from high-rate biased range, and parallel extraction of three observable types.

  7. The Earth's gravity field from satellite geodesy - a 30 year adventure.

    NASA Astrophysics Data System (ADS)

    Rapp, R. H.

    1991-12-01

    The first information on the Earth's gravitational field from artificial satellite observations was published in 1958. The next years have seen a dramatic improvement in the resolution and accuracy of the series representation of the Earth's gravity field. The improvements have taken place slowly taking advantage of improved measurement accuracy and the increasing number of satellites. The proposed ARISTOTELES mission would provide the opportunity to take a significant leap in improving our knowledge of the Earth's gravity field.

  8. Estimation of local planetary gravity fields using line of sight gravity data and an integral operator

    NASA Technical Reports Server (NTRS)

    Barriot, J. P.; Balmino, G.

    1992-01-01

    A novel method is presented for mapping line-of-sight gravity data (LOSGD) joining planetary probes and observers during Doppler tracking operations, with a view to geodetic and geophysical applications. LOSGD are in this case mapped as gravity anomalies along a radial direction, at constant altitude, using an inversion procedure in conjunction with a Tikhonov-Arsenine regularization method. The application of different regularization-parameter choices to a synthetic case is followed by application to the real case of Pioneer-Venus orbiter data for Venus' Gula Mons.

  9. Estimation of local planetary gravity fields using line of sight gravity data and an integral operator

    NASA Astrophysics Data System (ADS)

    Barriot, J. P.; Balmino, G.

    1992-09-01

    A novel method is presented for mapping line-of-sight gravity data (LOSGD) joining planetary probes and observers during Doppler tracking operations, with a view to geodetic and geophysical applications. LOSGD are in this case mapped as gravity anomalies along a radial direction, at constant altitude, using an inversion procedure in conjunction with a Tikhonov-Arsenine regularization method. The application of different regularization-parameter choices to a synthetic case is followed by application to the real case of Pioneer-Venus orbiter data for Venus' Gula Mons.

  10. Mass transport phenomena between bubbles and dissolved gases in liquids under reduced gravity conditions

    NASA Technical Reports Server (NTRS)

    Dewitt, Kenneth J.; Brockwell, Jonathan L.; Yung, Chain-Nan; Chai, An-Ti; Mcquillen, John B.; Sotos, Raymond G.; Neumann, Eric S.

    1988-01-01

    The experimental and analytical work that was done to establish justification and feasibility for a shuttle middeck experiment involving mass transfer between a gas bubble and a liquid is described. The experiment involves the observation and measurement of the dissolution of an isolated immobile gas bubble of specified size and composition in a thermostatted solvent liquid of known concentration in the reduced gravity environment of earth orbit. Methods to generate and deploy the bubble were successful both in normal gravity using mutually buoyant fluids and under reduced gravity conditions in the NASA Lear Jet. Initialization of the experiment with a bubble of a prescribed size and composition in a liquid of known concentration was accomplished using the concept of unstable equilibrium. Subsequent bubble dissolution or growth is obtained by a step increase or decrease in the liquid pressure. A numerical model was developed which simulates the bubble dynamics and can be used to determine molecular parameters by comparison with the experimental data. The primary objective of the experiment is the elimination of convective effects that occur in normal gravity.

  11. Mass transport phenomena between bubbles and dissolved gases in liquids under reduced gravity conditions

    NASA Technical Reports Server (NTRS)

    Dewitt, Kenneth J.; Brockwell, Jonathan L.; Yung, Chain-Nan; Chai, An-Ti; Mcquillen, John B.; Sotos, Raymond G.; Neumann, Eric S.

    1988-01-01

    This paper will describe the experimental and analytical work that has been done to establish justification and feasibility for a Shuttle mid-deck experiment involving mass transfer between a gas bubble and a liquid. The experiment involves the observation and measurement of the dissolution of an isolated, immobile gas bubble of specified size and composition in a thermostatted solvent liquid of known concentration in the reduced gravity environment of earth orbit. Methods to generate and deploy the bubble have been successful both in normal gravity using mutually buoyant fluids and under reduced gravity conditions in the NASA Lear Jet. Initialization of the experiment with a bubble of a prescribed size and composition in a liquid of known concentration has been accomplished using the concept of unstable equilibrium. Subsequent bubble dissolution or growth is obtained by a step increase or decrease in the liquid pressure. A numerical model has been developed which simulates the bubble dynamics and can be used to determine molecular parameters by comparison with the experimental data. The primary objective of the experiment is the elimination of convective effects that occur in normal gravity. The results will yield information on transport under conditions of pure diffusion.

  12. Static and dynamic angles of repose in loose granular materials under reduced gravity

    NASA Astrophysics Data System (ADS)

    Kleinhans, M. G.; Markies, H.; de Vet, S. J.; in't Veld, A. C.; Postema, F. N.

    2011-11-01

    Granular materials avalanche when a static angle of repose is exceeded and freeze at a dynamic angle of repose. Such avalanches occur subaerially on steep hillslopes and wind dunes and subaqueously at the lee side of deltas. Until now it has been assumed that the angles of repose are independent of gravitational acceleration. The objective of this work is to experimentally determine whether the angles of repose depend on gravity. In 33 parabolic flights in a well-controlled research aircraft we recorded avalanching granular materials in rotating drums at effective gravitational accelerations of 0.1, 0.38 and 1.0 times the terrestrial value. The granular materials varied in particle size and rounding and had air or water as interstitial fluid. Materials with angular grains had time-averaged angles of about 40° and with rounded grains about 25° for all effective gravitational accelerations, except the finest glass beads in air, which was explained by static electricity. For all materials, the static angle of repose increases about 5° with reduced gravity, whereas the dynamic angle decreases with about 10°. Consequently, the avalanche size increases with reduced gravity. The experimental results suggest that relatively low slopes of granular material on Mars may have formed by dry flows without a lubricating fluid. On asteroids even lower slopes are expected. The dependence on gravity of angle of repose may require reanalysis of models for many phenomena involving sediment, also at much lower slope angles.

  13. Dipole magnetic field of neutron stars in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Bakirova, Elizat; Folomeev, Vladimir

    2016-10-01

    The structure of an interior dipole magnetic field of neutron stars in f( R) gravity is considered. For this purpose, the perturbative approaches are used when both the deviations from general relativity and the deformations of spherically symmetric configurations associated with the presence of the magnetic field are assumed to be small. Solutions are constructed which describe relativistic, spherically symmetric configurations consisting of a gravitating magnetized perfect fluid modeled by a realistic equation of state. Comparing configurations from general relativity and modified gravity, we reveal possible differences in the structure of the magnetic field which occur in considering neutron stars in modified gravity.

  14. Ignition and combustion of bulk metals under elevated, normal and reduced gravity conditions

    NASA Technical Reports Server (NTRS)

    Abbud-Madrid, Angel; Branch, Melvyn C.; Daily, John W.

    1995-01-01

    This research effort is aimed at providing further insight into this multi-variable dependent phenomena by looking at the effects of gravity on the ignition and combustion behavior of metals. Since spacecraft are subjected to higher-than-1g gravity loads during launch and reentry and to zero-gravity environments while in orbit, the study of ignition and combustion of bulk metals at different gravitational potentials is of great practical concern. From the scientific standpoint, studies conducted under microgravity conditions provide simplified boundary conditions since buoyancy is removed, and make possible the identification of fundamental ignition mechanisms. The effect of microgravity on the combustion of bulk metals has been investigated by Steinberg, et al. on a drop tower simulator. However, no detailed quantitative work has been done on ignition phenomena of bulk metals at lower or higher-than-normal gravitational fields or on the combustion characteristics of metals at elevated gravity. The primary objective of this investigation is the development of an experimental system capable of providing fundamental physical and chemical information on the ignition of bulk metals under different gravity levels. The metals used in the study, iron (Fe), titanium (Ti), zirconium (Zr), magnesium (Mg), zinc (Zn), and copper (Cu) were selected because of their importance as elements of structural metals and their simple chemical composition (pure metals instead of multi-component alloys to avoid complication in morphology and spectroscopic studies). These samples were also chosen to study the two different combustion modes experienced by metals: heterogeneous or surface oxidation, and homogeneous or gas-phase reaction. The experimental approach provides surface temperature profiles, spectroscopic measurements, surface morphology, x-ray spectrometry of metals specimens and their combustion products, and high-speed cinematography of the heating, ignition and combustion

  15. Source Parameter Inversion for Recent Great Earthquakes from a Decade-long Observation of Global Gravity Fields

    NASA Technical Reports Server (NTRS)

    Han, Shin-Chan; Riva, Ricccardo; Sauber, Jeanne; Okal, Emile

    2013-01-01

    We quantify gravity changes after great earthquakes present within the 10 year long time series of monthly Gravity Recovery and Climate Experiment (GRACE) gravity fields. Using spherical harmonic normal-mode formulation, the respective source parameters of moment tensor and double-couple were estimated. For the 2004 Sumatra-Andaman earthquake, the gravity data indicate a composite moment of 1.2x10(exp 23)Nm with a dip of 10deg, in agreement with the estimate obtained at ultralong seismic periods. For the 2010 Maule earthquake, the GRACE solutions range from 2.0 to 2.7x10(exp 22)Nm for dips of 12deg-24deg and centroid depths within the lower crust. For the 2011 Tohoku-Oki earthquake, the estimated scalar moments range from 4.1 to 6.1x10(exp 22)Nm, with dips of 9deg-19deg and centroid depths within the lower crust. For the 2012 Indian Ocean strike-slip earthquakes, the gravity data delineate a composite moment of 1.9x10(exp 22)Nm regardless of the centroid depth, comparing favorably with the total moment of the main ruptures and aftershocks. The smallest event we successfully analyzed with GRACE was the 2007 Bengkulu earthquake with M(sub 0) approx. 5.0x10(exp 21)Nm. We found that the gravity data constrain the focal mechanism with the centroid only within the upper and lower crustal layers for thrust events. Deeper sources (i.e., in the upper mantle) could not reproduce the gravity observation as the larger rigidity and bulk modulus at mantle depths inhibit the interior from changing its volume, thus reducing the negative gravity component. Focal mechanisms and seismic moments obtained in this study represent the behavior of the sources on temporal and spatial scales exceeding the seismic and geodetic spectrum.

  16. Effective field theory of gravity for extended objects

    SciTech Connect

    Goldberger, Walter D.; Rothstein, Ira Z.

    2006-05-15

    Using effective field theory (EFT) methods we present a Lagrangian formalism which describes the dynamics of nonrelativistic extended objects coupled to gravity. The formalism is relevant to understanding the gravitational radiation power spectra emitted by binary star systems, an important class of candidate signals for gravitational wave observatories such as LIGO or VIRGO. The EFT allows for a clean separation of the three relevant scales: r{sub s}, the size of the compact objects, r, the orbital radius, and r/v, the wavelength of the physical radiation (where the velocity v is the expansion parameter). In the EFT, radiation is systematically included in the v expansion without the need to separate integrals into near zones and radiation zones. Using the EFT, we show that the renormalization of ultraviolet divergences which arise at v{sup 6} in post-Newtonian (PN) calculations requires the presence of two nonminimal worldline gravitational couplings linear in the Ricci curvature. However, these operators can be removed by a redefinition of the metric tensor, so that the divergences arising at v{sup 6} have no physically observable effect. Because in the EFT finite size features are encoded in the coefficients of nonminimal couplings, this implies a simple proof of the decoupling of internal structure for spinless objects to at least order v{sup 6}. Neglecting absorptive effects, we find that the power counting rules of the EFT indicate that the next set of short distance operators, which are quadratic in the curvature and are associated with tidal deformations, does not play a role until order v{sup 10}. These operators, which encapsulate finite size properties of the sources, have coefficients that can be fixed by a matching calculation. By including the most general set of such operators, the EFT allows one to work within a point-particle theory to arbitrary orders in v.

  17. Comparing seven candidate mission configurations for temporal gravity field retrieval through full-scale numerical simulation

    NASA Astrophysics Data System (ADS)

    Elsaka, Basem; Raimondo, Jean-Claude; Brieden, Phillip; Reubelt, Tilo; Kusche, Jürgen; Flechtner, Frank; Iran Pour, Siavash; Sneeuw, Nico; Müller, Jürgen

    2014-01-01

    The goal of this contribution is to focus on improving the quality of gravity field models in the form of spherical harmonic representation via alternative configuration scenarios applied in future gravimetric satellite missions. We performed full-scale simulations of various mission scenarios within the frame work of the German joint research project "Concepts for future gravity field satellite missions" as part of the Geotechnologies Program, funded by the German Federal Ministry of Education and Research and the German Research Foundation. In contrast to most previous simulation studies including our own previous work, we extended the simulated time span from one to three consecutive months to improve the robustness of the assessed performance. New is that we performed simulations for seven dedicated satellite configurations in addition to the GRACE scenario, serving as a reference baseline. These scenarios include a "GRACE Follow-on" mission (with some modifications to the currently implemented GRACE-FO mission), and an in-line "Bender" mission, in addition to five mission scenarios that include additional cross-track and radial information. Our results clearly confirm the benefit of radial and cross-track measurement information compared to the GRACE along-track observable: the gravity fields recovered from the related alternative mission scenarios are superior in terms of error level and error isotropy. In fact, one of our main findings is that although the noise levels achievable with the particular configurations do vary between the simulated months, their order of performance remains the same. Our findings show also that the advanced pendulums provide the best performance of the investigated single formations, however an accuracy reduced by about 2-4 times in the important long-wavelength part of the spectrum (for spherical harmonic degrees ), compared to the Bender mission, can be observed. Concerning state-of-the-art mission constraints, in particular

  18. Spherical harmonic representation of the gravity field from dynamic satellite data

    NASA Astrophysics Data System (ADS)

    Klosko, S. M.; Wagner, C. A.

    1982-01-01

    Gravitational constraint equations (lumped harmonics) were derived for the analysis of longitude-dependent gravity effects. These equations follow from elementary perturbation theory and show that all such lumped coefficients are harmonic in the argument of perigee. This approach makes it possible to reduce comprehensive field models to the lumped coefficients for orbits or orbital arcs used in their solutions. These reduced data may be easily combined to determine the resonant and low order geopotential to as high degree as feasible without reintegration of orbits or reprocessing of the original tracking data. An improved set of 13th order harmonics has been computed solely from diverse 13th order resonant constraint information to demonstrate this application.

  19. Reduced gravity boiling and condensing experiments simulated with the COBRA/TRAC computer code

    SciTech Connect

    Cuta, J.M.; Krotiuk, W.J.

    1988-02-01

    It is being recognized that there does not currently exist an adequate understanding of flow and heat transfer behavior in reduced- and zero-gravity. There is not a sufficient experimental fluid-thermal data base to develop design correlations for two-phase pressure losses, heat transfer coefficients, and critical heat flux limits in systems proposed for advanced power sources, propulsion, and other thermal management systems in space. Pacific Northwest Laboratory (PNL), is the lead laboratory for thermal hydraulics in the Department of Energy's Multimegawatt Space Power Program, and has the responsibility of developing microgravity thermal-hydraulic analysis capabilities for application to space nuclear power systems. In support of this program, PNL has performed a series of reduced-gravity two-phase flow experiments in the NASA KC-135 aircraft. The objective of the experiment was to supply basic thermal-hydraulic information that could be used in development of analytical design tools. 6 refs., 23 figs., 4 tabs.

  20. Dynamic characteristic prediction of inverted pendulum under the reduced-gravity space environments

    NASA Astrophysics Data System (ADS)

    Li, Guohui; Liu, Xue

    2010-09-01

    A new multi-local linear model based on the Tkakgi-Sugeno approach is presented to carry out controlling of a nonlinear unsteady system and to make a design of inverted pendulum fuzzy controller. Nonlinear multi-variance behaviors are transformed to a multi-local linear model using a fuzzy approximation method, which is used to implement control steadily and rapidly for the global system. Detailed investigations on dynamic behaviors of inverted pendulum under reduced-gravity space environments are performed using Simulink simulations. Results showed that stabilization of an inverted pendulum is greatly affected by reduced-gravity conditions and effects of θ angle variation are the largest. When θ is greater than 1.571 rad threshold value, balances will be lost under earth, lunar and microgravity conditions. Furthermore, microgravity is favorable for keeping balance status. An appropriate compensation controlling provided by the presented fuzzy controller can keep a better balance for inverted pendulum.

  1. Soot formation and radiation in turbulent jet diffusion flames under normal and reduced gravity conditions

    NASA Technical Reports Server (NTRS)

    Ku, Jerry C.; Tong, LI; Sun, Jun; Greenberg, Paul S.; Griffin, Devon W.

    1993-01-01

    Most practical combustion processes, as well as fires and explosions, exhibit some characteristics of turbulent diffusion flames. For hydrocarbon fuels, the presence of soot particles significantly increases the level of radiative heat transfer from flames. In some cases, flame radiation can reach up to 75 percent of the heat release by combustion. Laminar diffusion flame results show that radiation becomes stronger under reduced gravity conditions. Therefore, detailed soot formation and radiation must be included in the flame structure analysis. A study of sooting turbulent diffusion flames under reduced-gravity conditions will not only provide necessary information for such practical issues as spacecraft fire safety, but also develop better understanding of fundamentals for diffusion combustion. In this paper, a summary of the work to date and of future plans is reported.

  2. Active member vibration control experiment in a KC-135 reduced gravity environment

    NASA Technical Reports Server (NTRS)

    Lawrence, C. R.; Lurie, B. J.; Chen, G.-S.; Swanson, A. D.

    1991-01-01

    An active member vibration control experiment in a KC-135 reduced gravity environment was carried out by the Air Force Flight Dynamics Laboratory and the Jet Propulsion Laboratory. Two active members, consisting of piezoelectric actuators, displacement sensors, and load cells, were incorporated into a 12-meter, 104 kg box-type test structure. The active member control design involved the use of bridge (compound) feedback concept, in which the collocated force and velocity signals are feedback locally. An impact-type test was designed to accommodate the extremely short duration of the reduced gravity testing window in each parabolic flight. The moving block analysis technique was used to estimate the modal frequencies and dampings from the free-decay responses. A broadband damping performance was demonstrated up to the ninth mode of 40 Hz. The best damping performance achieved in the flight test was about 5 percent in the fourth mode of the test structure.

  3. Cryogenic Pressure Control Modeling for Ellipsoidal Space Tanks in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Hedayat, Ali; Lopez, Alfredo; Grayson, Gary D.; Chandler, Frank O.; Hastings, Leon J.

    2008-01-01

    A computational fluid dynamics (CFD) model is developed to simulate pressure control of an ellipsoidal-shaped liquid hydrogen tank under external heating in low gravity. Pressure control is provided by an axial jet thermodynamic vent system (TVS) centered within the vessel that injects cooler liquid into the tank, mixing the contents and reducing tank pressure. The two-phase cryogenic tank model considers liquid hydrogen in its own vapor with liquid density varying with temperature only and a fully compressible ullage. The axisymmetric model is developed using a custom version of the commercially available FLOW-3D software and simulates low gravity extrapolations of engineering checkout tests performed at Marshall Space Flight Center in 1999 in support of the Solar Thermal Upper Stage Technology Demonstrator (STUSTD) program. Model results illustrate that stable low gravity liquid-gas interfaces are maintained during all phases of the pressure control cycle. Steady and relatively smooth ullage pressurization rates are predicted. This work advances current low gravity CFD modeling capabilities for cryogenic pressure control and aids the development of a low cost CFD-based design process for space hardware.

  4. Extinguishment of a Diffusion Flame Over a PMMA Cylinder by Depressurization in Reduced-Gravity

    NASA Technical Reports Server (NTRS)

    Goldmeer, Jeffrey Scott

    1996-01-01

    Extinction of a diffusion flame burning over horizontal PMMA (Polymethyl methacrylate) cylinders in low-gravity was examined experimentally and via numerical simulations. Low-gravity conditions were obtained using the NASA Lewis Research Center's reduced-gravity aircraft. The effects of velocity and pressure on the visible flame were examined. The flammability of the burning solid was examined as a function of pressure and the solid-phase centerline temperature. As the solid temperature increased, the extinction pressure decreased, and with a centerline temperature of 525 K, the flame was sustained to 0.1 atmospheres before extinguishing. The numerical simulation iteratively coupled a two-dimensional quasi-steady, gas-phase model with a transient solid-phase model which included conductive heat transfer and surface regression. This model employed an energy balance at the gas/solid interface that included the energy conducted by the gas-phase to the gas/solid interface, Arrhenius pyrolysis kinetics, surface radiation, and the energy conducted into the solid. The ratio of the solid and gas-phase conductive fluxes Phi was a boundary condition for the gas-phase model at the solid-surface. Initial simulations modeled conditions similar to the low-gravity experiments and predicted low-pressure extinction limits consistent with the experimental limits. Other simulations examined the effects of velocity, depressurization rate and Phi on extinction.

  5. Bubble behavior in molten glass in a temperature gradient. [in reduced gravity rocket experiment

    NASA Technical Reports Server (NTRS)

    Meyyappan, M.; Subramanian, R. S.; Wilcox, W. R.; Smith, H.

    1982-01-01

    Gas bubble motion in a temperature gradient was observed in a sodium borate melt in a reduced gravity rocket experiment under the NASA SPAR program. Large bubbles tended to move faster than smaller ones, as predicted by theory. When the bubbles contacted a heated platinum strip, motion virtually ceased because the melt only imperfectly wets platinum. In some cases bubble diameter increased noticeably with time.

  6. Symmetry reduced loop quantum gravity: A bird’s eye view

    NASA Astrophysics Data System (ADS)

    Ashtekar, Abhay

    2016-06-01

    This is a brief overview of the current status of symmetry reduced models in Loop Quantum Gravity. The goal is to provide an introduction to other more specialized and detailed reviews that follow. Since most of this work is motivated by the physics of the very early universe, I will focus primarily on Loop Quantum Cosmology and discuss quantum aspects of black holes only briefly.

  7. Convection due to surface-tension gradients. [in reduced gravity spacecraft environments

    NASA Technical Reports Server (NTRS)

    Ostrach, S.

    1978-01-01

    The use of dimensionless parameters to study fluid motions that could occur in a reduced-gravity environment is discussed. The significance of the Marangoni instability is considered, and the use of dimensionless parameters to investigate problems such as thermo and diffusocapillary flows is described. Characteristics of fluid flow in space are described, and the relation and interaction of motions due to capillarity and buoyancy is examined.

  8. On the compactness of the reduced-gravity two-and-a-half layer equations

    NASA Astrophysics Data System (ADS)

    Duan, Ran; Zhou, Chunhui

    We consider the reduced-gravity two-and-a-half model in oceanic fluid dynamics, and prove the stability of weak solutions in periodic domain Ω=T. The proof is based on the uniform a priori estimates and the method of weak convergence, and the limit is carried out with the help of a new higher regularity estimate of the velocity, which is derived by constructing a special test function.

  9. On axionic field ranges, loopholes and the weak gravity conjecture

    DOE PAGES

    Brown, Jon; Cottrell, William; Shiu, Gary; ...

    2016-04-05

    Here, we clarify some aspects of the impact that the Weak Gravity Conjecture has on models of (generalized) natural inflation. In particular we address certain technical and conceptual concerns recently raised regarding the stringent constraints and conclusions found in our previous work. We also point out the difficulties faced by attempts to evade these constraints. Furthermore, these new considerations improve the understanding of the quantum gravity constraints we found and further support the conclusion that it remains challenging for axions to drive natural inflation.

  10. Reducing blood viscosity with magnetic fields

    NASA Astrophysics Data System (ADS)

    Tao, R.; Huang, K.

    2011-07-01

    Blood viscosity is a major factor in heart disease. When blood viscosity increases, it damages blood vessels and increases the risk of heart attacks. Currently, the only method of treatment is to take drugs such as aspirin, which has, however, several unwanted side effects. Here we report our finding that blood viscosity can be reduced with magnetic fields of 1 T or above in the blood flow direction. One magnetic field pulse of 1.3 T lasting ˜1 min can reduce the blood viscosity by 20%-30%. After the exposure, in the absence of magnetic field, the blood viscosity slowly moves up, but takes a couple of hours to return to the original value. The process is repeatable. Reapplying the magnetic field reduces the blood viscosity again. By selecting the magnetic field strength and duration, we can keep the blood viscosity within the normal range. In addition, such viscosity reduction does not affect the red blood cells’ normal function. This technology has much potential for physical therapy.

  11. Gravity Driven Universe: Energy from a Unified Field

    NASA Astrophysics Data System (ADS)

    Masters, Roy

    2012-10-01

    One way or another, whether push or pull, we know for sure that gravity is omnidirectional with identical mathematics. With PULL, gravity can be seen as as a property of matter. If so something is wrong. The Moon, lifting the tides twice-daily, should have fallen into orbital decay, with Earth having pulled it down eons ago. It is puzzling that physicists are not troubled by the fact that the Moon not only insists on forever lifting the tides, but, adding insult to injury, keeps moving it about 4 cm further away from Earth each year. Now if instead, we consider gravity as driven by an omnidirectional pressure--a PUSH force, another possibility arises. We can consider that it is mysteriously infusing energy into the Earth-Moon system, sustaining the Moon's orbit with the appearance of raising the tides and actually pushing it away from Earth. Here we can show push and pull, while being identical in their mathematics, have different outcomes. With push, gravity is a property of the universe. If this is true, then gravitation is flowing from an everlasting source, and the Earth/Moon system is one example of many other vacuum energy machines in the universe.

  12. The JPL Mars gravity field, Mars50c, based upon Viking and Mariner 9 Doppler tracking data

    NASA Technical Reports Server (NTRS)

    Konopliv, Alexander S.; Sjogren, William L.

    1995-01-01

    This report summarizes the current JPL efforts of generating a Mars gravity field from Viking 1 and 2 and Mariner 9 Doppler tracking data. The Mars 50c solution is a complete gravity field to degree and order 50 with solutions as well for the gravitational mass of Mars, Phobos, and Deimos. The constants and models used to obtain the solution are given and the method for determining the gravity field is presented. The gravity field is compared to the best current gravity GMM1 of Goddard Space Flight Center.

  13. Gravity wave forcing in the middle atmosphere due to reduced ozone heating during a solar eclipse

    NASA Technical Reports Server (NTRS)

    Fritts, David C.; Luo, Zhangai

    1993-01-01

    We present an analysis of the gravity wave structure and the associated forcing of the middle atmosphere induced by the screening of the ozone layer from solar heating during a solar eclipse. Fourier integral techniques and numerical evaluation of the integral solutions were used to assess the wave field structure and to compute the gravity wave forcing of the atmosphere at greater heights. Our solutions reveal dominant periods of a few hours, characteristic horizontal and vertical scales of about 5000 to 10,000 km and 200 km, respectively, and an integrated momentum flux in the direction of eclipse motion of about 5.6 x 10 exp 8 N at each height above the forcing level. These results suggest that responses to solar eclipses may be difficult to detect above background gravity wave and tidal fluctuations until well into the thermosphere. Conversely, the induced body forces may penetrate to considerable heights because of the large wave scales and will have significant effects at levels where the wave field is dissipated.

  14. Duality and integrability: Electromagnetism, linearized gravity, and massless higher spin gauge fields as bi-Hamiltonian systems

    SciTech Connect

    Barnich, Glenn; Troessaert, Cedric

    2009-04-15

    In the reduced phase space of electromagnetism, the generator of duality rotations in the usual Poisson bracket is shown to generate Maxwell's equations in a second, much simpler Poisson bracket. This gives rise to a hierarchy of bi-Hamiltonian evolution equations in the standard way. The result can be extended to linearized Yang-Mills theory, linearized gravity, and massless higher spin gauge fields.

  15. ARISTOTELES: A European approach for an Earth gravity field recovery mission

    NASA Astrophysics Data System (ADS)

    Benz, R.; Faulks, H.; Langemann, M.

    1989-06-01

    Under contract of the European Space Agency a system study for a spaceborne gravity field recovery mission was performed, covering as a secondary mission objective geodetic point positioning in the cm range as well. It was demonstrated that under the given programmatic constraints including dual launch and a very tight development schedule, a six months gravity field mission in a 200 km near polar, dawn-dusk orbit is adequate to determine gravity anomalies to better than 5 mgal with a spatial resolution of 100 x 100 km half wavelength. This will enable scientists to determine improved spherical harmonic coefficients of the Earth gravity field equation to the order and degree of 180 or better.

  16. ARISTOTELES: A European approach for an Earth gravity field recovery mission

    NASA Technical Reports Server (NTRS)

    Benz, R.; Faulks, H.; Langemann, M.

    1989-01-01

    Under contract of the European Space Agency a system study for a spaceborne gravity field recovery mission was performed, covering as a secondary mission objective geodetic point positioning in the cm range as well. It was demonstrated that under the given programmatic constraints including dual launch and a very tight development schedule, a six months gravity field mission in a 200 km near polar, dawn-dusk orbit is adequate to determine gravity anomalies to better than 5 mgal with a spatial resolution of 100 x 100 km half wavelength. This will enable scientists to determine improved spherical harmonic coefficients of the Earth gravity field equation to the order and degree of 180 or better.

  17. Gravity survey of marine field: Case study for Silurian reef exploration

    SciTech Connect

    Heigold, P.C.; Whitaker, S.T. )

    1989-08-01

    A gravity survey conducted over and around Marine field in southwestern Illinois has been used as an example to show how measurement of the local gravity field can aid in the search for Silurian reefs in the Illinois basin. Acquisition parameters for gravity surveys over Silurian reefs should be calculated beforehand from simple models of the reef based on estimates of density contrasts, depths, and size. Residual and derivative mapping techniques generally enhance gravity anomalies and enable more accurate portrayals of the structural relief on buried reefs. The second vertical derivative map of the residual Bouguer gravity anomaly surface at Marine field compares very well with the structure of the reef as mapped from subsurface data. This study indicates that similar mapping techniques could be effective on other reefs throughout the Illinois basin. Although gravity mapping methods are potentially powerful exploration tools in themselves, the writers believe that their proper role is as a part of a more comprehensive exploration approach. Gravity surveys can be used effectively as an initial exploration method in reef-prone areas to define smaller, prospect-size areas in which more intensive exploration techniques can subsequently be focused.

  18. Solid-state combustion synthesis of ceramics and alloys in reduced gravity

    NASA Technical Reports Server (NTRS)

    Valone, S. M.; Behrens, R. G.

    1988-01-01

    Possible microgravity effects are explored in the combustion synthesis of ceramics and alloys from their constituent elements. Molten intermediates are typically present during the combustion process, thereby offering the chance for natural convection to take place. Numerical simulations suggest that the combustion front in concert with gravity may act as a partial zone-refinement mechanism which is attempting to sweep out porosity in the sample. Contrary to suggestions by dimensional analysis, no effects on the combustion rate are seen. An analytical model of the combustion velocity as a function of the gravitational field and the spreading rate of molten material gives the correct order of magnitude of the gravity effect as measured by centrifuge experiments.

  19. Influence of Melt Convection on Solid-Liquid Interface Under Terrestrial and Reduced Gravity Environments

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.

    1985-01-01

    Solidification and crystal growth processes involve thermal and solutal gradients within a molten phase. In the presence of gravity, such gradients result in convective flows which interact with diffusion fields at the solid-liquid interface. Dendritic growth kinetics was studied in transparent model systems which freeze similarily to most metals. Succinonitrile shows a strong influence of convection at supercoolings below about 1K. Fluid flows adjacent to solid-liquid interfaces and the behavior of shear flows in vertical annular geometries are studied. Novel low-frequency eigenstates were discovered and classified as coupled modes, for their involvement with interfacial deformation coupled to the fluid flow, and are unknown in systems without deformable interfaces. The dependence of coupled convection modes on interfacial geometry, gravity, fluid properties, and transformation characteristics studied for several annual flow arrangements with nominally pure solid-liquid systems.

  20. Heat Transfer Characteristics of Liquid-Driven Swirl Boiling Liquid/Gas Separator under Reduced Gravity

    NASA Astrophysics Data System (ADS)

    Oinuma, Ryoji; Nguyen, Ngoc; Dickes, Neil; Kurwitz, Richard C.; Best, Frederick R.

    2009-03-01

    Under reduced gravity conditions, conventional gravity-assisted steam generators do not function properly and shear-driven or swirl type of devices must be used. Once-through boilers with special inserts such as twisted-tapes or swirl devices and rotating boilers have been previously studied. The once-through boiler requires a liquid-vapor phase separator due to the inability to vaporize all liquid completely to avoid burn-out. These devices also encounter instabilities due to the sudden formation or collapse of vapor. The rotating boiler requires a large power input to operate and has less reliability due to moving parts and dynamic seals at high temperature. A liquid-driven vortex boiling separator is categorized as a shear-driven boiler, but creates centripetal-driven buoyancy forces to form a gas-liquid vortex by injecting liquid tangentially along the inner wall of the cylinder rather than rotating the body itself. The vortex boiling separator eliminates the disadvantages of devices mentioned above, having a low pressure drop, no moving parts and generating dry vapor at its outlet. Texas A&M University carried out a reduced gravity flight experiment on the NASA C-9 aircraft to investigate the heat transfer characteristics and performance based on similar devices developed at Texas A&M.

  1. GRAIL Gravity Field Determination Using the Celestial Mechanics Approach - Status Report

    NASA Astrophysics Data System (ADS)

    Bertone, S.; Arnold, D.; Jaeggi, A.; Beutler, G.; Bock, H.; Meyer, U.; Mervart, L.

    2014-12-01

    The NASA mission GRAIL (Gravity Recovery And Interior Laboratory) inherits its concept from the GRACE (Gravity Recovery And Climate Experiment) mission to determine the gravity field of the Moon. The use of inter-satellite Ka-band range-rate (KBRR) observations enables data aquisition even when the spacecraft are not tracked from the Earth. The data allows for a highly accurate estimation of the lunar gravity field on both sides of the Moon, which is crucial to improve the understanding of its internal structure and thermal evolution. In this presentation we discuss GRAIL-based lunar gravity fields generated with the Celestial Mechanics Approach using the Bernese Software. Currently KBRR observations and position data (GNI1B products) are used to solve for the lunar gravity field parameters in a generalized orbit determination problem. Apart from normalized spherical harmonic coefficients up to degree n = 200, also arc-specific parameters like initial state vectors and empirical parameters (pseudo-stochastic pulses or piecewise constant accelerations) are set up as common parameters for all measurement types. The latter shall compensate for imperfect models of non-gravitational accelerations, e.g., caused by solar radiation pressure. We compare our results from the nominal and from the extended mission phase with the official level 4 gravity field models released in April 2014. As a further extension of our processing the GNI1B positions are replaced by the original Doppler observations of the Deep Space Network (DSN) to allow for a completely independent determination of the lunar gravity field using the Celestial Mechanics Approach and we present the currently achieved status of the DSN data modeling in the Bernese Software.

  2. Synopsis of early field test results from the gravity gradiometer survey system

    NASA Technical Reports Server (NTRS)

    Brzezowski, S.; Gleason, D.; Goldstein, J.; Heller, W.; Jekeli, Christopher; White, J.

    1989-01-01

    Although the amount of data yielded by the initial airborne and surface tests was modest, it was sufficient to demonstrate that the full gravity gradient tensor was successfully measured from moving platforms both in the air and on the surface. The measurements were effectively continuous with spatial along-track resolution limited only by choice of integration lengths taken to reduce noise. The airborne data were less noisy (800 E squared/Hz typical) than were the Gravity Gradiometer Survey System (GGSS) measurements taken at the surface (5000 E squared/Hz typical). Single tracks of surface gravity disturbances recovered from airborne data were accurate to 3 to 4 mgal in each component of gravity when compared to 5 x 5 mean gravity anomalies over a 90 km track. Multitrack processing yielded 2 to 3 mgal when compared to 5 x 5 mean anomalies. Deflection of the vertical recovery over a distance of 150 km was about one arcsecond.

  3. Mass Transport Phenomena Between Bubbles and Dissolved Gases in Liquids Under Reduced Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Dewitt, K. J.; Brockwell, J. L.

    1985-01-01

    The long term objective of the experiment is to observe the dissolution of isolated, immobile gas bubbles of specified size and composition in a solvent liquid of known concentration in the reduced gravity environment of earth orbit. Preliminary bubble dissolution experiment conducted both in the NASA Lewis 2.2 sec drop tower and in normal gravity using SO2 - Toluene system were not completely successful in their objective. The method of gas injection and lack of bubble interface stabiliy experienced due to the extreme solubility of SO in Toluene has the effects of changing the problem from that of bubble dissolution to one of bubble formation stability and subsequent dissolution in a liquid of unknown initial solute concentration. Current work involves further experimentation in order to refine the bubble injection system and to investigate the concept of having a bubble with a critical radius in a state of unstable equilibrium.

  4. Development of the Two Phase Flow Separator Experiment for a Reduced Gravity Aircraft Flight

    NASA Technical Reports Server (NTRS)

    Golliher, Eric; Gotti, Daniel; Owens, Jay; Gilkey, Kelly; Pham, Nang; Stehno, Philip

    2016-01-01

    The recent hardware development and testing of a reduced gravity aircraft flight experiment has provided valuable insights for the future design of the Two Phase Flow Separator Experiment (TPFSE). The TPFSE is scheduled to fly within the Fluids Integration Rack (FIR) aboard the International Space Station (ISS) in 2020. The TPFSE studies the operational limits of gas and liquid separation of passive cyclonic separators. A passive cyclonic separator utilizes only the inertia of the incoming flow to accomplish the liquid-gas separation. Efficient phase separation is critical for environmental control and life support systems, such as recovery of clean water from bioreactors, for long duration human spaceflight missions. The final low gravity aircraft flight took place in December 2015 aboard NASA's C9 airplane.

  5. Fluid Physics and Transport Phenomena in a Simulated Reduced Gravity Environment

    NASA Technical Reports Server (NTRS)

    Lipa, J.

    2004-01-01

    We describe a ground-based apparatus that allows the cancellation of gravity on a fluid using magnetic forces. The present system was designed for liquid oxygen studies over the range 0.001 - 5 g s. This fluid is an essential component of any flight mission using substantial amounts of liquid propellant, especially manned missions. The apparatus has been used to reduce the hydrostatic compression near the oxygen critical point and to demonstrate inverted phase separation. It could also be used to study pool boiling and two-phase heat transfer in Martian, Lunar or near-zero gravity, as well as phenomena such as Marangoni flow and convective instabilities. These studies would contribute directly to the reliability and optimization of the Moon and Mars flight programs.

  6. The Vesta gravity field, spin pole and rotation period, landmark positions, and ephemeris from the Dawn tracking and optical data

    NASA Astrophysics Data System (ADS)

    Konopliv, A. S.; Asmar, S. W.; Park, R. S.; Bills, B. G.; Centinello, F.; Chamberlin, A. B.; Ermakov, A.; Gaskell, R. W.; Rambaux, N.; Raymond, C. A.; Russell, C. T.; Smith, D. E.; Tricarico, P.; Zuber, M. T.

    2014-09-01

    The Vesta gravity field and related physical parameters have been precisely measured using 10-months of radiometric Doppler and range data and optical landmark tracking from the Dawn spacecraft. The gravity field, orientation parameters, landmark locations, and Vesta’s orbit are jointly estimated. The resulting spherical harmonic gravity field has a half-wavelength resolution of 42 km (degree 20). The gravitational mass uncertainty is nearly 1 part in 106. The inertial spin pole location is determined to better than 0.0001° and the uncertainty in the rotation period has been reduced by nearly a factor of 100. The combined precession and nutation of the pole of Vesta has been detected with angular rates about 70% of expected values, but not well enough to constrain the moment of inertia. The optical landmark position estimates reduce the uncertainty in the center-of-mass and center-of-figure offset to 10 m. The Vesta ephemeris uncertainty during the Dawn stay was reduced from 20 km to better than 10 m in the Earth-Vesta direction.

  7. Bubble Generation in a Continuous Liquid Flow Under Reduced Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Pais, Salvatore Cezar

    1999-01-01

    The present work reports a study of bubble generation under reduced gravity conditions for both co-flow and cross-flow configurations. Experiments were performed aboard the DC-9 Reduced Gravity Aircraft at NASA Glenn Research Center, using an air-water system. Three different flow tube diameters were used: 1.27, 1.9, and 2.54 cm. Two different ratios of air injection nozzle to tube diameters were considered: 0.1 and 0.2. Gas and liquid volumetric flow rates were varied from 10 to 200 ml/s. It was experimentally observed that with increasing superficial liquid velocity, the bubbles generated decreased in size. The bubble diameter was shown to increase with increasing air injection nozzle diameters. As the tube diameter was increased, the size of the detached bubbles increased. Likewise, as the superficial liquid velocity was increased, the frequency of bubble formation increased and thus the time to detach forming bubbles decreased. Independent of the flow configuration (for either single nozzle or multiple nozzle gas injection), void fraction and hence flow regime transition can be controlled in a somewhat precise manner by solely varying the gas and liquid volumetric flow rates. On the other hand, it is observed that uniformity of bubble size can be controlled more accurately by using single nozzle gas injection than by using multiple port injection, since this latter system gives rise to unpredictable coalescence of adjacent bubbles. A theoretical model, based on an overall force balance, is employed to study single bubble generation in the dynamic and bubbly flow regime. Under conditions of reduced gravity, the gas momentum flux enhances bubble detachment; however, the surface tension forces at the nozzle tip inhibits bubble detachment. Liquid drag and inertia can act either as attaching or detaching force, depending on the relative velocity of the bubble with respect to the surrounding liquid. Predictions of the theoretical model compare well with performed

  8. Reducing Field Distortion in Magnetic Resonance Imaging

    NASA Technical Reports Server (NTRS)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  9. Time-variable and static gravity field of Mars from MGS, Mars Odyssey, and MRO

    NASA Astrophysics Data System (ADS)

    Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2016-04-01

    The Mars Global Surveyor (MGS), Mars Odyssey (ODY), and Mars Reconnaissance Orbiter (MRO) missions have significantly contributed to the determination of global high-resolution global gravity fields of Mars for the last 16 years. All three spacecraft were located in sun-synchronous, near-circular polar mapping orbits for their primary mission phases at different altitudes and Local Solar Time (LST). X-Band tracking data have been acquired from the NASA Deep Space Network (DSN) providing information on the time-variable and static gravity field of Mars. MGS operated between 1999 and 2006 at 390 km altitude. ODY and MRO are still orbiting Mars with periapsis altitudes of 400 km and 255 km, respectively. Before entering these mapping phases, all three spacecraft collected radio tracking data at lower altitudes (˜170-200 km) that help improve the resolution of the gravity field of Mars in specific regions. We analyzed the entire MGS radio tracking data set, and ODY and MRO radio data until 2015. These observations were processed using a batch least-squares filter through the NASA GSFC GEODYN II software. We combined all 2- and 3-way range rate data to estimate the global gravity field of Mars to degree and order 120, the seasonal variations of gravity harmonic coefficients C20, C30, C40 and C50 and the Love number k2. The gravity contribution of Mars atmospheric pressures on the surface of the planet has been discerned from the time-varying and static gravity harmonic coefficients. Surface pressure grids computed using the Mars-GRAM 2010 atmospheric model, with 2.5° x2.5° spatial and 2-h resolution, are converted into gravity spherical harmonic coefficients. Consequently, the estimated gravity and tides provide direct information on the solid planet. We will present the new Goddard Mars Model (GMM-3) of Mars gravity field in spherical harmonics to degree and order 120. The solution includes the Love number k2 and the 3-frequencies (annual, semi-annual, and tri

  10. Repulsive gravity induced by a conformally coupled scalar field implies a bouncing radiation-dominated universe

    NASA Astrophysics Data System (ADS)

    Antunes, V.; Novello, M.

    2017-04-01

    In the present work we revisit a model consisting of a scalar field with a quartic self-interaction potential non-minimally (conformally) coupled to gravity (Novello in Phys Lett 90A:347 1980). When the scalar field vacuum is in a broken symmetry state, an effective gravitational constant emerges which, in certain regimes, can lead to gravitational repulsive effects when only ordinary radiation is coupled to gravity. In this case, a bouncing universe is shown to be the only cosmological solution admissible by the field equations when the scalar field is in such broken symmetry state.

  11. Modeling of the Earth's gravity field using the New Global Earth Model (NEWGEM)

    NASA Technical Reports Server (NTRS)

    Kim, Yeong E.; Braswell, W. Danny

    1989-01-01

    Traditionally, the global gravity field was described by representations based on the spherical harmonics (SH) expansion of the geopotential. The SH expansion coefficients were determined by fitting the Earth's gravity data as measured by many different methods including the use of artificial satellites. As gravity data have accumulated with increasingly better accuracies, more of the higher order SH expansion coefficients were determined. The SH representation is useful for describing the gravity field exterior to the Earth but is theoretically invalid on the Earth's surface and in the Earth's interior. A new global Earth model (NEWGEM) (KIM, 1987 and 1988a) was recently proposed to provide a unified description of the Earth's gravity field inside, on, and outside the Earth's surface using the Earth's mass density profile as deduced from seismic studies, elevation and bathymetric information, and local and global gravity data. Using NEWGEM, it is possible to determine the constraints on the mass distribution of the Earth imposed by gravity, topography, and seismic data. NEWGEM is useful in investigating a variety of geophysical phenomena. It is currently being utilized to develop a geophysical interpretation of Kaula's rule. The zeroth order NEWGEM is being used to numerically integrate spherical harmonic expansion coefficients and simultaneously determine the contribution of each layer in the model to a given coefficient. The numerically determined SH expansion coefficients are also being used to test the validity of SH expansions at the surface of the Earth by comparing the resulting SH expansion gravity model with exact calculations of the gravity at the Earth's surface.

  12. Neutron stars in a perturbative f(R) gravity model with strong magnetic fields

    SciTech Connect

    Cheoun, Myung-Ki; Deliduman, Cemsinan; Güngör, Can; Keleş, Vildan; Ryu, C.Y.; Kajino, Toshitaka; Mathews, Grant J. E-mail: cemsinan@msgsu.edu.tr E-mail: kelesvi@itu.edu.tr E-mail: kajino@nao.ac.jp

    2013-10-01

    In Kaluza-Klein electromagnetism it is natural to associate modified gravity with strong electromagnetic fields. Hence, in this paper we investigate the combined effects of a strong magnetic field and perturbative f(R) gravity on the structure of neutron stars. The effect of an interior strong magnetic field of about 10{sup 17−18} G on the equation of state is derived in the context of a quantum hadrodynamics (QHD) equation of state (EoS) including effects of the magnetic pressure and energy along with occupied Landau levels. Adopting a random orientation of interior field domains, we solve the modified spherically symmetric hydrostatic equilibrium equations derived for a gravity model with f(R) = R+αR{sup 2}. Effects of both the finite magnetic field and the modified gravity are detailed for various values of the magnetic field and the perturbation parameter α along with a discussion of their physical implications. We show that there exists a parameter space of the modified gravity and the magnetic field strength, in which even a soft equation of state can accommodate a large ( > 2 M{sub s}un) maximum neutron star mass.

  13. Burning of solids in oxygen-rich environments in normal and reduced gravity. [combustion of cellulose acetates

    NASA Technical Reports Server (NTRS)

    Andracchio, C. R.; Cochran, T. H.

    1974-01-01

    An experimental program was conducted to investigate the combustion characteristics of solids burning in a weightless environment. The combustion characteristics of thin cellulose acetate material were obtained from specimens burned in supercritical as well as in low pressure oxygen atmospheres. Flame spread rates were measured and found to depend on material thickness and pressure in both normal gravity (1-g) and reduced gravity (0-g). A gravity effect on the burning process was also observed; the ratio of 1-g to 0-g flame spread rate becomes larger with increasing material thickness. Qualitative results on the combustion characteristics of metal screens (stainless steel, Inconel, copper, and aluminum) burning in supercritical oxygen and normal gravity are also presented. Stainless steel (300 sq mesh) was successfully ignited in reduced gravity; no apparent difference in the flame spread pattern was observed between 1-g and 0-g.

  14. Latest developments in lunar gravity field recovery within the project GRAZIL

    NASA Astrophysics Data System (ADS)

    Krauss, Sandro; Wirnsberger, Harald; Klinger, Beate; Mayer-Gürr, Torsten; Baur, Oliver

    2016-04-01

    The project GRAZIL addresses the highly accurate recovery of the lunar gravity field using intersatellite Ka-band ranging (KBR) measurements collected by the Lunar Gravity Ranging System (LGRS) of the Gravity Recovery And Interior Laboratory (GRAIL) mission. Dynamic precise orbit determination is an indispensable task in order to recover the lunar gravity field based on LGRS measurements. The concept of variational equations is adopted to determine the orbit of the two GRAIL satellites based on radio science data. In this contribution we focus on the S-band two-way Doppler data collected by the Deep Space Network. As far as lunar gravity field recovery is concerned, we apply an integral equation approach using short orbital arcs in the order of one hour. In this contribution special attention is given to the refinement of our processing strategy in conjunction with an increase of the spectral resolution. Based on these considerations we present the latest version of a lunar gravity field model developed in Graz which is based on KBR observations during the primary mission phase (March 1 to May 29, 2012). Our results are validated against GRAIL models computed at NASA-GSFC and NASA-JPL.

  15. Studies of Two-Phase Flow Dynamics and Heat Transfer at Reduced Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Witte, Larry C.; Bousman, W. Scott; Fore, Larry B.

    1996-01-01

    The ability to predict gas-liquid flow patterns is crucial to the design and operation of two-phase flow systems in the microgravity environment. Flow pattern maps have been developed in this study which show the occurrence of flow patterns as a function of gas and liquid superficial velocities as well as tube diameter, liquid viscosity and surface tension. The results have demonstrated that the location of the bubble-slug transition is affected by the tube diameter for air-water systems and by surface tension, suggesting that turbulence-induced bubble fluctuations and coalescence mechanisms play a role in this transition. The location of the slug-annular transition on the flow pattern maps is largely unaffected by tube diameter, liquid viscosity or surface tension in the ranges tested. Void fraction-based transition criteria were developed which separate the flow patterns on the flow pattern maps with reasonable accuracy. Weber number transition criteria also show promise but further work is needed to improve these models. For annular gas-liquid flows of air-water and air- 50 percent glycerine under reduced gravity conditions, the pressure gradient agrees fairly well with a version of the Lockhart-Martinelli correlation but the measured film thickness deviates from published correlations at lower Reynolds numbers. Nusselt numbers, based on a film thickness obtained from standard normal-gravity correlations, follow the relation, Nu = A Re(sup n) Pr(exp l/3), but more experimental data in a reduced gravity environment are needed to increase the confidence in the estimated constants, A and n. In the slug flow regime, experimental pressure gradient does not correlate well with either the Lockhart-Martinelli or a homogeneous formulation, but does correlate nicely with a formulation based on a two-phase Reynolds number. Comparison with ground-based correlations implies that the heat transfer coefficients are lower at reduced gravity than at normal gravity under the same

  16. Equivalent water height extracted from GRACE gravity field model with robust independent component analysis

    NASA Astrophysics Data System (ADS)

    Guo, Jinyun; Mu, Dapeng; Liu, Xin; Yan, Haoming; Dai, Honglei

    2014-08-01

    The Level-2 monthly GRACE gravity field models issued by Center for Space Research (CSR), GeoForschungs Zentrum (GFZ), and Jet Propulsion Laboratory (JPL) are treated as observations used to extract the equivalent water height (EWH) with the robust independent component analysis (RICA). The smoothing radii of 300, 400, and 500 km are tested, respectively, in the Gaussian smoothing kernel function to reduce the observation Gaussianity. Three independent components are obtained by RICA in the spatial domain; the first component matches the geophysical signal, and the other two match the north-south strip and the other noises. The first mode is used to estimate EWHs of CSR, JPL, and GFZ, and compared with the classical empirical decorrelation method (EDM). The EWH STDs for 12 months in 2010 extracted by RICA and EDM show the obvious fluctuation. The results indicate that the sharp EWH changes in some areas have an important global effect, like in Amazon, Mekong, and Zambezi basins.

  17. Modeling of Vapor Bubble Growth Under Nucleate Boiling Conditions in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Buyevich, Yu A.; Webbon, Bruce W.

    1995-01-01

    A dynamic model is developed to describe the evolution of a vapor bubble growing at a nucleation site on a superheated surface under arbitrary gravity. The bubble is separated from the surface by a thin microlayer and grows due to the evaporation from the microlayer interface. The average thickness of the microlayer increases as the bubble expands along the surface if the evaporation rate is lower than some critical value. The corresponding threshold value of the surface temperature has to be associated with the burn-out crisis. Two main reasons make for bubble separation, which are the buoyancy force and a force caused by the vapor momentum that comes to the bubble with vapor molecules. The latter force is somewhat diminished if condensation takes place at the upper bubble surface in subcooled liquids. The action of the said forces is opposed by inertia of the additional mass of liquid as the bubble center rises above the surface and by inertia of liquid being expelled by the growing bubble in radial directions. An extra pressure force arises due to the liquid inflow into the microlayer with a finite velocity. The last force helps in holding the bubble close to the surface during an initial stage of bubble evolution. Two limiting regimes with distinctly different properties can be singled out, depending on which of the forces that favor bubble detachment dominates. Under conditions of moderately reduced gravity, the situation is much the same as in normal gravity, although the bubble detachment volume increases as gravity diminishes. In microgravity, the buoyancy force is negligible. Then the bubble is capable of staying near the surface for a long time, with intensive evaporation from the microlayer. It suggests a drastic change in the physical mechanism of heat removal as gravity falls below a certain sufficiently low level. Inferences of the model and conclusions pertaining to effects caused on heat transfer processes by changes in bubble hydrodynamics induced

  18. The metric on field space, functional renormalization, and metric–torsion quantum gravity

    SciTech Connect

    Reuter, Martin Schollmeyer, Gregor M.

    2016-04-15

    Searching for new non-perturbatively renormalizable quantum gravity theories, functional renormalization group (RG) flows are studied on a theory space of action functionals depending on the metric and the torsion tensor, the latter parameterized by three irreducible component fields. A detailed comparison with Quantum Einstein–Cartan Gravity (QECG), Quantum Einstein Gravity (QEG), and “tetrad-only” gravity, all based on different theory spaces, is performed. It is demonstrated that, over a generic theory space, the construction of a functional RG equation (FRGE) for the effective average action requires the specification of a metric on the infinite-dimensional field manifold as an additional input. A modified FRGE is obtained if this metric is scale-dependent, as it happens in the metric–torsion system considered.

  19. Experimental concept for examination of biological effects of magnetic field concealed by gravity.

    PubMed

    Yamashita, M; Tomita-Yokotani, K; Hashimoto, H; Takai, M; Tsushima, M; Nakamura, T

    2004-01-01

    Space is not only a place to study biological effects of gravity, but also provides unique opportunities to examine other environmental factors, where the biological actions are masked by gravity on the ground. Even the earth's magnetic field is steadily acting on living systems, and is known to influence many biological processes. A systematic survey and assessment of its action are difficult to conduct in the presence of dominant factors, such as gravity. Investigation of responses of biological systems against the combined environment of zero-gravity and zero-magnetic field might establish the baseline for the analysis of biological effects of magnetic factors. We propose, in this paper, an experimental concept in this context, together with a practical approach of the experiments, both in orbit and on the ground, with a thin magnetic shielding film. Plant epicotyl growth was taken as an exemplar index to evaluate technical and scientific feasibility of the proposed system concept.

  20. Descendants constructed from matter field in Landau-Ginzburg theories coupled to topological gravity

    NASA Astrophysics Data System (ADS)

    Losev, A.

    1993-05-01

    It is argued that gravitational descendants in the theory of topological gravity coupled to topological Landau-Ginzburg theory (not necessarily conformal) can be constructed from matter fields alone (without metric fields and ghosts). In this sense topological gravity is “induced.” We discuss the mechanism of this effect (that turns out to be connected with K. Saito's higher residue pairing: Ki(σi(Φ1),Φ2)=K0(Φ1,Φ2)), and demonstrate how it works in a simplest nontrivial example: correlator on a sphere with four marked points. We also discuss some results on k-point correlators on a sphere. From the idea of “induced” topological gravity it follows that the theory of “pure” topological gravity (without topological matter) is equivalent to the “trivial” Landau-Ginzburg theory (with quadratic superpotential).

  1. Bubble formation in a coflow configuration in normal and reduced gravity

    SciTech Connect

    Bhunia, A.; Pais, S.C.; Kamotani, Yasuhiro; Kim, I.H.

    1998-07-01

    Situations where a gas and a liquid flow together in a pipe occur in various terrestrial applications, such as gas dissolution in liquid in the chemical and pharmaceutical industries, oil and gas pipelines, nuclear power plants, and two-phase flow heat exchangers, to name a few examples. A study of bubble generation for constant gas-flux condition by single-nozzle injection in a coflowing liquid is reported. Focusing on single-bubble generation in the dynamic and bubbly flow regime, the onset condition for bubble coalescence is investigated. The role of various forces involved in the bubble formation process is studied, and an overall force balance describing bubble dynamics is developed. Gas-momentum flux and buoyancy in normal gravity enhance, while the surface-tension force at the nozzle rim inhibits bubble detachment. On the other hand, liquid drag and inertia can act both as attaching or detaching forces, depending on the relative velocity of the bubble with respect to the surrounding liquid. Predictions of the theoretical model compare well with the present reduced-gravity experiment and available normal-gravity experiments. Effects of the fluid properties, injection geometry, and flow conditions on bubble size are investigated.

  2. The delineation and interpretation of the Earth's gravity field

    NASA Technical Reports Server (NTRS)

    Marsh, B. D.

    1983-01-01

    The observed changes in velocity with time are reduced relative to the well-determined low degree and order GEM field model and accelerations are found by analytical differentiation of the range rates. This new map is essentially identical to the first map and we have produced a composite map by combining all 90 passes of SST data. The resolution of the map is at worst about 5 deg and much better in most places. A comparison of this map with conventional GEM models shows very good agreement. A reduction of the SEASAT altimeter data has also been carried out for an additional comparison. Although the SEASAT geoid contains much more high frequency information, it agrees very well with both the SST and GEM fields. The maps are dominated (especially in the east) by a pattern of roughly east-west anomalies with a transverse wavelength of about 2000 km. A further comparison with regional bathymetric data shows a remarkably close correlation with plate age.

  3. GRM - Observing the terrestrial gravity and magnetic fields in the 1990's

    NASA Technical Reports Server (NTRS)

    Taylor, P. T.; Keating, T.; Kahn, W. D.; Langel, R. A.; Smith, D. E.; Schnetzler, C. C.

    1983-01-01

    NASA is proposing to launch a new geopotential fields exploration system called the Geopotential Research Mission (GRM). Two spacecraft will be placed in a circular polar orbit at 160 km altitude. Distances between these satellites will vary from 100 to 600 km. Both scalar and vector magnetic fields will be measured by magnetometers mounted on a boom positioned in the forward direction on the lead satellite. Gravity data will be computed from the measured change in distance between the two spacecraft. This quantity, called the range-rate, will be determined from the varying frequency (Doppler shift) between transmitter and receiver on each satellite. Expected accuracies (at the one-sigma level) are: gravity field, 1.0 milliGal, 5 cm geoid height; magnetics, scalar field 2 nT, vector to 20 arcsec, both resolved to less than 100 km. With these more accurate and higher resolution data, it will be possible to investigate the earth's structure from the crust (with the shorter wavelength gravity and magnetic anomalies) through the mantle (from the intermediate wavelength gravity field) and into the core (using the longer wavelength gravity and magnetic fields).

  4. Studying low-velocity impacts in reduced gravity: an asteroid landing experiment

    NASA Astrophysics Data System (ADS)

    Murdoch, Naomi; Calandry, Alexis; Sunday, Cecily; Avila Martinez, Iris; Cherrier, Olivier; Cadu, Alexandre; Zenou, Emmanuel; Gourinat, Yves

    2016-10-01

    Several current and future small body missions include lander components e.g., MASCOT and the MINERVA rovers on-board JAXA's Hayabusa-2 mission [1], MASCOT2 and possibly AGEX on board ESA's AIM mission [2,3]. The understanding of surface-lander interactions is important for all such landers as these considerations influence the deployment strategy, the mission design and operations, and even the choice of payload. The dynamics of low-velocity interactions with granular material in reduced gravity are also important for other missions, such as OSIRIS-REx (NASA), that will interact directly with the asteroid's surface in order to retrieve a regolith sample.In our experiment, reduced gravity is simulated by releasing a free-falling projectile into a surface container with a downward acceleration less than that of Earth's gravity. The acceleration of the surface is controlled through the use of an Atwood machine, or a system of pulleys and counterweights. The experiment is built into an existing 5.5 m drop-tower frame and has required the custom design of all components, including the projectiles, surface sample container and release mechanism [4].Previous experiments using similar methods have demonstrated the important role of gravity in the peak accelerations and collision timescales during low velocity granular impacts [5,6]. The design of our experiment accommodates collision velocities and effective accelerations that are lower than in previous experiments (<20 cm/s and ~0.1-1.0 m/s2 respectively), allowing us to come closer to the conditions that may be encountered by current and future small body missions.Here we will present the results of our experimental trials and discuss the implications for small body missions. The unique experimental data obtained in these trials may also be valuable to benchmark different numerical simulation approaches. These simulations can then subsequently be used to extrapolate the results to even lower gravity regimes.[1] Tsuda, Y

  5. Seasonal and static Gravity Field of Mars from MGS, Mars Odyssey and MRO Radio Science

    NASA Technical Reports Server (NTRS)

    Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2016-01-01

    We present a spherical harmonic solution of the static gravity field of Mars to degree and order 120, GMM-3, that has been calculated using the Deep Space Network tracking data of the NASA Mars missions, Mars Global Surveyor (MGS), Mars Odyssey (ODY), and the Mars Reconnaissance Orbiter (MRO). We have also jointly determined spherical harmonic solutions for the static and time-variable gravity field of Mars, and the Mars k(sub 2) Love numbers, exclusive of the gravity contribution of the atmosphere. Consequently, the retrieved time-varying gravity coefficients and the Love number k(sub 2) solely yield seasonal variations in the mass of the polar caps and the solid tides of Mars, respectively. We obtain a Mars Love number k(sub 2) of 0.1697 +/- 0.0027 (3- sigma). The inclusion of MRO tracking data results in improved seasonal gravity field coefficients C(sub 30) and, for the first time, C 50. Refinements of the atmospheric model in our orbit determination program have allowed us to monitor the odd zonal harmonic C(sub 30) for approximately 1.5 solar cycles (16 years). This gravity model shows improved correlations with MOLA topography up to 15% larger at higher harmonics ( l = 60-80) than previous solutions.

  6. Seasonal and Static Gravity Field of Mars from MGS, Mars Odyssey and MRO Radio Science

    NASA Technical Reports Server (NTRS)

    Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2016-01-01

    We present a spherical harmonic solution of the static gravity field of Mars to degree and order 120, GMM-3, that has been calculated using the Deep Space Network tracking data of the NASA Mars missions, Mars Global Surveyor (MGS), Mars Odyssey (ODY), and the Mars Reconnaissance Orbiter (MRO). We have also jointly determined spherical harmonic solutions for the static and time-variable gravity field of Mars, and the Mars k 2 Love numbers, exclusive of the gravity contribution of the atmosphere. Consequently, the retrieved time-varying gravity coefficients and the Love number k 2 solely yield seasonal variations in the mass of the polar caps and the solid tides of Mars, respectively. We obtain a Mars Love number k 2 of 0.1697 +/-0.0027 (3- sigma). The inclusion of MRO tracking data results in improved seasonal gravity field coefficients C 30 and, for the first time, C 50 . Refinements of the atmospheric model in our orbit determination program have allowed us to monitor the odd zonal harmonic C 30 for approx.1.5 solar cycles (16 years). This gravity model shows improved correlations with MOLA topography up to 15% larger at higher harmonics ( l = 60–80) than previous solutions.

  7. Seasonal and static gravity field of Mars from MGS, Mars Odyssey and MRO radio science

    NASA Astrophysics Data System (ADS)

    Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2016-07-01

    We present a spherical harmonic solution of the static gravity field of Mars to degree and order 120, GMM-3, that has been calculated using the Deep Space Network tracking data of the NASA Mars missions, Mars Global Surveyor (MGS), Mars Odyssey (ODY), and the Mars Reconnaissance Orbiter (MRO). We have also jointly determined spherical harmonic solutions for the static and time-variable gravity field of Mars, and the Mars k2 Love numbers, exclusive of the gravity contribution of the atmosphere. Consequently, the retrieved time-varying gravity coefficients and the Love number k2 solely yield seasonal variations in the mass of the polar caps and the solid tides of Mars, respectively. We obtain a Mars Love number k2 of 0.1697 ± 0.0027 (3-σ). The inclusion of MRO tracking data results in improved seasonal gravity field coefficients C30 and, for the first time, C50. Refinements of the atmospheric model in our orbit determination program have allowed us to monitor the odd zonal harmonic C30 for ∼1.5 solar cycles (16 years). This gravity model shows improved correlations with MOLA topography up to 15% larger at higher harmonics (l = 60-80) than previous solutions.

  8. Generation of High-Gravity Field and Application to Materials Science

    NASA Astrophysics Data System (ADS)

    Mashimo, T.

    2008-02-01

    Centrifugation of organic liquids and metals has been widely used in biochemistry field and metallurgy field, respectively. The high-gravity field was recently used for the preprocessing for sintering of composite materials. The sedimentation of atoms was recently realized in alloys and semiconductors under ultra-high gravitational field in 1 million G level. The possibility in use of high gravity has, day by day, increased. In this mini-symposium, the conventional and recent methods for materials processing for functionally graded materials, metastable composite materials, thin film, etc. using high-gravity in gas, liquids, solids and also in vacuum will be treated. In this paper, the history of ultracentrifuges is reviewed, and the applications to materials science is discussed.

  9. Reduced gravity and ground testing of a two-phase thermal management system for large spacecraft

    NASA Technical Reports Server (NTRS)

    Hill, D. G.; Hsu, K.; Parish, R.; Dominick, J.

    1988-01-01

    Experiments were performed aboard the NASA-JSC KC-135 aircraft to study the effect of reduced gravity on two-phase (liquid/vapor) flow and condensation. A prototype two-phase thermal management system for a large spacecraft was tested. Both visual observation and photography of the flow regimes were made. Ground test simulations of the KC-135 flight tests were conducted for comparison purposes. Two-phase pressure drops were predictable by the Heat Transfer Research Institute (HTRI) method, or the Friedel correlation.

  10. Internal Gravity Waves in the Magnetized Solar Atmosphere. I. Magnetic Field Effects

    NASA Astrophysics Data System (ADS)

    Vigeesh, G.; Jackiewicz, J.; Steiner, O.

    2017-02-01

    Observations of the solar atmosphere show that internal gravity waves are generated by overshooting convection, but are suppressed at locations of magnetic flux, which is thought to be the result of mode conversion into magnetoacoustic waves. Here, we present a study of the acoustic-gravity wave spectrum emerging from a realistic, self-consistent simulation of solar (magneto)convection. A magnetic field free, hydrodynamic simulation and a magnetohydrodynamic (MHD) simulation with an initial, vertical, homogeneous field of 50 G flux density were carried out and compared with each other to highlight the effect of magnetic fields on the internal gravity wave propagation in the Sun’s atmosphere. We find that the internal gravity waves are absent or partially reflected back into the lower layers in the presence of magnetic fields and argue that the suppression is due to the coupling of internal gravity waves to slow magnetoacoustic waves still within the high-β region of the upper photosphere. The conversion to Alfvén waves is highly unlikely in our model because there is no strongly inclined magnetic field present. We argue that the suppression of internal waves observed within magnetic flux concentrations may also be due to nonlinear breaking of internal waves due to vortex flows that are ubiquitously present in the upper photosphere and the chromosphere.

  11. On the Inversion for Mass (Re)Distribution from Global (Time-Variable) Gravity Field

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.

    2004-01-01

    The well-known non-uniqueness of the gravitational inverse problem states the following: The external gravity field, even if completely and exactly known, cannot Uniquely determine the density distribution of the body that produces the gravity field. This is an intrinsic property of a field that obeys the Laplace equation, as already treated in mathematical as well as geophysical literature. In this paper we provide conceptual insight by examining the problem in terms of spherical harmonic expansion of the global gravity field. By comparing the multipoles and the moments of the density function, we show that in 3-S the degree of knowledge deficiency in trying to inversely recover the density distribution from external gravity field is (n+l)(n+2)/2 - (2n+l) = n(n-1)/2 for each harmonic degree n. On the other hand, on a 2-D spherical shell we show via a simple relationship that the inverse solution of the surface density distribution is unique. The latter applies quite readily in the inversion of time-variable gravity signals (such as those observed by the GRACE space mission) where the sources over a wide range of the scales largely come from the Earth's Surface.

  12. Gravity field improvement using global positioning system data from TOPEX/Poseidon - A covariance analysis

    NASA Technical Reports Server (NTRS)

    Bertiger, Willy I.; Wu, J. T.; Wu, Sien C.

    1992-01-01

    The TOPEX/Poseidon satellite data can be used to improve the knowledge of the earth's gravitational field. The GPS data are especially useful for improving the gravity field over the world's oceans, where the current tracking data are sparse. Using realistic scenario for processing 10 days of GPS data, a covariance analysis is performed to obtain the expected improvement to the GEM-T2 gravity field. The large amount of GPS data and the large number of parameters (1979 parameters for the gravity field, plus carrier-phase biases, etc.) required special filtering techniques for efficient solution. The gravity-bin technique is used to compute the covariance matrix associated with the spherical harmonic gravity field. The covariance analysis shows that the GPS data from one 10-day arc of TOPEX/Poseidon with no a priori constraints can resolve medium degree and order (3-26) parameters with sigmas (standard deviations) that are an order of magnitude smaller than the corresponding sigmas of GEM-T2. When the information from GEM-T2 is combined with the TOPEX/Poseidon GPS measurements, an order-of-magnitude improvement is observed in low- and medium-degree terms with significant improvements spread over a wide range of degree and order.

  13. Gravity field of Jupiter’s moon Amalthea and the implication on a spacecraft trajectory

    NASA Astrophysics Data System (ADS)

    Weinwurm, Gudrun

    2006-01-01

    Before its final plunge into Jupiter in September 2003, GALILEO made a last 'visit' to one of Jupiter's moons - Amalthea. This final flyby of the spacecraft's successful mission occurred on November 5, 2002. In order to analyse the spacecraft data with respect to Amalthea's gravity field, interior models of the moon had to be provided. The method used for this approach is based on the numerical integration of infinitesimal volume elements of a three-axial ellipsoid in elliptic coordinates. To derive the gravity field coefficients of the body, the second method of Neumann was applied. Based on the spacecraft trajectory data provided by the Jet Propulsion Laboratory, GALILEO's velocity perturbations at closest approach could be calculated. The harmonic coefficients of Amalthea's gravity field have been derived up to degree and order six, for both homogeneous and reasonable heterogeneous cases. Founded on these numbers the impact on the trajectory of GALILEO was calculated and compared to existing Doppler data. Furthermore, predictions for future spacecraft flybys were derived. No two-way Doppler-data was available during the flyby and the harmonic coefficients of the gravity field are buried in the one-way Doppler-noise. Nevertheless, the generated gravity field models reflect the most likely interior structure of the moon and can be a basis for further exploration of the Jovian system.

  14. Aeromagnetic and Gravity Maps of the Central Marysvale Volcanic Field, Southwestern Utah

    USGS Publications Warehouse

    Campbell, David L.; Steven, Thomas A.; Cunningham, Charles G.; Rowley, Peter D.

    1999-01-01

    Gravity and aeromagnetic features in the Marysvale volcanic field result from the composite effects of many factors, including rock composition, style of magmatic emplacement, type and intensity of rock alteration, and effects of structural evolution. Densities and magnetic properties measured on a suite of rock samples from the Marysvale volcanic field differ in systematic ways. Generally, the measured densities, magnetic susceptibilities, and natural remanent magnetizations all increase with mafic index, but decrease with degree of alteration, and for tuffs, with degree of welding. Koenigsberger Q indices show no such systematic trends. The study area is divided into three geophysical domains. The northern domain is dominated by aeromagnetic lows that probably reflect reversed-polarity volcanic flows. There are no intermediate-sized magnetic highs in the northern domain that might reflect plutons. The northern domain has a decreasing-to-the-south gravity gradient that reflects the Pavant Range homocline. The central domain has gravity lows that reflect altered rocks in calderas and low-density plutons of the Marysvale volcanic field. Its aeromagnetic signatures consist of rounded highs that reflect plutons and birdseye patterns that reflect volcanic flows. In many places the birdseyes are attenuated, indicating that the flows there have been hydrothermally altered. We interpret the central domain to reflect an east-trending locus of plutons in the Marysvale volcanic field. The southern domain has intermediate gravity fields, indicating somewhat denser rocks there than in the central domain, and high-amplitude aeromagnetic birdseyes that reflect unaltered volcanic units. The southern domain contains no magnetic signatures that we interpret to reflect plutons. Basin-and-range tectonism has overprinted additional gravity features on the three domains. A deep gravity low follows the Sevier and Marysvale Valleys, reflecting grabens there. The gravity gradient in the

  15. Stability of modulated-gravity-induced thermal convection in magnetic fields.

    PubMed

    Li, B Q

    2001-04-01

    A stability analysis is presented of modulated-gravity-induced thermal convection in a heated fluid layer subject to an applied magnetic field. The nearest correction to the critical Rayleigh number for both single and multiple frequency oscillating-gravity components is obtained by solving the linearized magnetohydrodynamic equations using the small parameter perturbation technique. The correction depends on both the applied magnetic field and the oscillating frequency. In the absence of an applied magnetic field, the correction depends on the Prandtl number only when the exciting frequency is small. However, it asymptotically approaches zero as the frequency increases, with or without the presence of a magnetic field. The heated fluid layer is more stable with gravity modulation than with any type of wall temperature modulation. The difference becomes smaller with decreasing Prandtl number Pr. This finding is of critical importance in that ground-based experiments with appropriate wall temperature modulations may be conducted to simulate the oscillating-gravity effects on the onset of thermal convection in lower-Prandtl-number fluids. For conducting melts considered for microgravity applications, it is possible to apply an external magnetic field to further inhibit the onset of modulated-gravity-induced thermal convection. This effectiveness increases with the Hartmann number Ha. For large Ha, the nearest correction term R02 approximately Ha2 as the magnetic Prandtl number Pm<1. However, R02 approximately Ha(4/3) for Ha>1 and Pm>1, provided that Ha<0.5pi(Pm/Pr(3/2)), which is satisfied by a majority of space melt experiments. Thus, under normal laboratory conditions applied magnetic fields are more effective in stabilizing a conducting fluid subject to an oscillating-gravity field than one subject to a constant field. If Ha>0.5pi(Pm/Pr(3/2)), R02 approximately -Ha2 for Ha>1 and Pm>1 and the magnetic field becomes less effective in stabilizing thermal convection

  16. An experimental study of low velocity impacts into granular material in reduced gravity

    NASA Astrophysics Data System (ADS)

    Murdoch, Naomi; Avila Martinez, Iris; Sunday, Cecily; Cherrier, Olivier; Zenou, Emanuel; Janin, Tristan; Cadu, Alexandre; Gourinat, Yves; Mimoun, David

    2016-04-01

    The granular nature of asteroid surfaces, in combination with the low surface gravity, makes it difficult to predict lander - surface interactions from existing theoretical models. Nonetheless, an understanding of such interactions is particularly important for the deployment of a lander package. This was demonstrated by the Philae lander, which bounced before coming to rest roughly 1 kilometer away from its intended landing site on the surface of comet 67P/Churyumov-Gerasimenko before coming to rest (Biele et al., 2015). In addition to being important for planning the initial deployment, information about the acceleration profile upon impact is also important in the choice of scientific payloads that want to exploit the initial landing to study the asteroid surface mechanical properties (e.g., Murdoch et al., 2016). Using the ISAE-SUPAERO drop tower, we have performed a series of low-velocity collisions into granular material in low gravity. Reduced-gravity is simulated by releasing a free-falling projectile into a surface container with a downward acceleration less than that of Earth's gravity. The acceleration of the surface is controlled through the use an Atwood machine, or a system of pulleys and counterweights. In reducing the effective surface acceleration of the granular material, the confining pressure will be reduced, and the properties of the granular material will become more representative of those on an asteroid's surface. In addition, since both the surface and projectile are falling, the projectile requires a minimum amount of time to catch the surface before the collision begins. This extended free-fall increases the experiment duration, making it easier to use accelerometers and high-speed cameras for data collection. The experiment is built into an existing 5.5 m drop-tower frame and has required the custom design of all components, including the projectile, surface sample container, release mechanism and deceleration system (Sunday et al., 2016

  17. Numerical Simulation of cardiovascular deconditioning in different reduced gravity exposure scenarios. Parabolic flight validation.

    NASA Astrophysics Data System (ADS)

    Perez-Poch, Antoni; Gonzalez, Daniel

    Numerical models and simulations are an emerging area of research in human physiology. As complex numerical models are available, along with high-speed computing technologies, it is possible to produce more accurate predictions of the long-term effects of reduced gravity on the human body. NELME (Numerical Emulation of Long-Term Microgravity Effects) has been developed as an electrical-like control system model of the pysiological changes that may arise when gravity changes are applied to the cardiovascular system. Validation of the model has been carried out in parabolic flights at UPC BarcelonaTech Platform. A number of parabolas of up to 8 seconds were performed at Sabadell Airport with an aerobatic single-engine CAP10B plane capable of performing such maneuvres. Heart rate, arterial pressure, and gravity data was collected and compared to the output obtained from the model in order to optimize its parameters. The model is then able to perform simulations for long-term periods of exposure to microgravity, and then the risk for a major malfunction is evaluated. Vascular resistance is known to be impaired during a long-term mission. This effects are not fully understood, and the model is capable of providing a continuous thread of simulated scenarios, while varying gravity in a nearly-continuous way. Aerobic exercise as countermeasure has been simulated as a periodic perturbation into the simulated physiological system. Results are discussed in terms of the validaty and reliability of the outcomes from the model, that have been found compatible with the available data in the literature. Different gender sensitivities to microgravity exposure are discussed. Also thermal stress along with exercise, as it happens in the case of Extravehicular activity is smulated. Results show that vascular resistance is significantly impared (p<0,05) at gravity levels less than 0,4g, when exposed for a period of time longer than 16 days. This degree of impairement is comparable with

  18. Reduced Gravity Studies of Soret Transport Effects in Liquid Fuel Combustion

    NASA Technical Reports Server (NTRS)

    Shaw, Benjamin D.

    2004-01-01

    Soret transport, which is mass transport driven by thermal gradients, can be important in practical flames as well as laboratory flames by influencing transport of low molecular weight species (e.g., monatomic and diatomic hydrogen). In addition, gas-phase Soret transport of high molecular weight fuel species that are present in practical liquid fuels (e.g., octane or methanol) can be significant in practical flames (Rosner et al., 2000; Dakhlia et al., 2002) and in high pressure droplet evaporation (Curtis and Farrell, 1992), and it has also been shown that Soret transport effects can be important in determining oxygen diffusion rates in certain classes of microgravity droplet combustion experiments (Aharon and Shaw, 1998). It is thus useful to obtain information on flames under conditions where Soret effects can be clearly observed. This research is concerned with investigating effects of Soret transport on combustion of liquid fuels, in particular liquid fuel droplets. Reduced-gravity is employed to provide an ideal (spherically-symmetrical) experimental model with which to investigate effects of Soret transport on combustion. The research will involve performing reduced-gravity experiments on combustion of liquid fuel droplets in environments where Soret effects significantly influence transport of fuel and oxygen to flame zones. Experiments will also be performed where Soret effects are not expected to be important. Droplets initially in the 0.5 to 1 mm size range will be burned. Data will be obtained on influences of Soret transport on combustion characteristics (e.g., droplet burning rates, droplet lifetimes, gas-phase extinction, and transient flame behaviors) under simplified geometrical conditions that are most amenable to theoretical modeling (i.e., spherical symmetry). The experiments will be compared with existing theoretical models as well as new models that will be developed. Normal gravity experiments will also be performed.

  19. High Degree and Order Gravity Fields of the Moon Derived from GRAIL Data

    NASA Technical Reports Server (NTRS)

    Lemoine, F. G.; Goossens, S. J.; Sabaka, T. J.; Nicholas, J. B.; Mazarico, E.; Rowlands, D. D.; Loomis, B. D.; Chinn, D. S.; Caprette, D. S.; McCarthy, J. J.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.

    2012-01-01

    The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft conducted the mapping of the gravity field of the Moon from March 1, 2012 to May 29, 2012. The twin spacecraft acquired highly precise K Band range-rate (KBRR) intersatellite ranging data and Deep Space Network (DSN) data during this prime mission phase from altitudes of 15 to 75 km above the lunar surface over three lunar months. We have processed these data using the NASA GSFC GEODYN orbit determination and geodetic parameter estimation program, and we have determined gravity fields up to degree and order 420 in spherical harmonics. The new gravity solutions show improved correlations with LOLA-derived topography to high degree and order and resolve many lunar features in the geopotential with a resolution of less than 30 km, including for example the central peak of the crater Tycho. We discuss the methodology used for the processing of the GRAIL data, the quality of the orbit determination on the GRAIL satellites and the derivation of the solutions, and their evaluation with independent data, including Lunar Prospector. We show that with these new GRAIL gravity solutions, we can now fit the low altitude, extended mission Lunar Prospector tracking data better than with any previous gravity model that included the LP data.

  20. Gravity field determination using the acceleration approach - Considerations on numerical differentiation

    NASA Astrophysics Data System (ADS)

    Zehentner, N.; Mayer-Gürr, T.; Mayrhofer, R.

    2012-04-01

    One method for gravity field determination is satellite-to-satellite tracking(SST) in high-low mode. Therefore GPS (Global Positioning System) observations are used to estimate precise orbit positions and these are then used to gain the desired information about the earth's gravity field. In this context several approaches exist. One of them is the so called acceleration approach. It is based on newton's second law of motion and relates accelerations of the satellite to the gravity gradient. An important part of this approach is to derive the accelerations from precise satellite positions. This is done by means of numerical differentiation. Different methods for the task of numerical differentiation, like for example polynomial interpolation or Newton-Gregory interpolation, were investigated. In particular the methods were investigated concerning their differing properties and their impacts on the resulting gravity field solutions. These examinations were carried out mostly in the frequency domain, because this can be directly related to the spectral content of a gravity field solution. In the framework of this project several closed-loop simulations were made to find the best suited differentiation scheme. Afterwards the findings were applied to real data of the GOCE satellite. The results of our simulations and of real data applications will be presented.

  1. Release 3 of the GOCE-only Gravity Field Model Applying the Time-wise Method

    NASA Astrophysics Data System (ADS)

    Brockmann, J.; Pail, R.; Mayer-Gürr, T.; Hoeck, E.; Krasbutter, I.; Fecher, T.; Schuh, W.; Mayrhofer, R.

    2011-12-01

    The release 3 of the time-wise global GOCE-only gravity field model, which has been processed as part of the GOCE High-Level Processing Facility, is based on data of the full nominal mission operation phase from November 2009 to April 2011. The time-wise processing strategy is based on the solution of full normal equations, where gravity field information from precise kinematic orbits is combined with the analysis of the gravity gradients. Special emphasis is given to a realistic stochastic modelling of the individual contributions, facilitating the consistent combination. The optimum relative weights are derived from variance component estimation. In this contribution, this new solution is compared with the previous two releases, in order to evaluate the improvements due to a substantially larger amount of input data, as well as with external gravity field information. Additionally, a performance prediction of the achievable final accuracy of GOCE-only gravity field models, provided that the satellite stays healthy in orbit at least until the end of the extended mission phase (December 2012), will be presented, and possible mission scenarios after 2012 and their impact on the performance will be discussed.

  2. High-resolution regional gravity field recovery from Poisson wavelets using heterogeneous observational techniques

    NASA Astrophysics Data System (ADS)

    Wu, Yihao; Luo, Zhicai; Chen, Wu; Chen, Yongqi

    2017-02-01

    We adopt Poisson wavelets for regional gravity field recovery using data acquired from various observational techniques; the method combines data of different spatial resolutions and coverage, and various spectral contents and noise levels. For managing the ill-conditioned system, the performances of the zero- and first-order Tikhonov regularization approaches are investigated. Moreover, a direct approach is proposed to properly combine Global Positioning System (GPS)/leveling data with the gravimetric quasi-geoid/geoid, where GPS/leveling data are treated as an additional observation group to form a new functional model. In this manner, the quasi-geoid/geoid that fits the local leveling system can be computed in one step, and no post-processing (e.g., corrector surface or least squares collocation) procedures are needed. As a case study, we model a new reference surface over Hong Kong. The results show solutions with first-order regularization are better than those obtained from zero-order regularization, which indicates the former may be more preferable for regional gravity field modeling. The numerical results also demonstrate the gravimetric quasi-geoid/geoid and GPS/leveling data can be combined properly using this direct approach, where no systematic errors exist between these two data sets. A comparison with 61 independent GPS/leveling points shows the accuracy of the new geoid, HKGEOID-2016, is around 1.1 cm. Further evaluation demonstrates the new geoid has improved significantly compared to the original model, HKGEOID-2000, and the standard deviation for the differences between the observed and computed geoidal heights at all GPS/leveling points is reduced from 2.4 to 0.6 cm. Finally, we conclude HKGEOID-2016 can be substituted for HKGEOID-2000 for engineering purposes and geophysical investigations in Hong Kong.

  3. Holographic entanglement entropy, field redefinition invariance, and higher derivative gravity theories

    NASA Astrophysics Data System (ADS)

    Mohammadi Mozaffar, M. R.; Mollabashi, A.; Sheikh-Jabbari, M. M.; Vahidinia, M. H.

    2016-08-01

    It is established that physical observables in local quantum field theories should be invariant under invertible field redefinitions. It is then expected that this statement should be true for the entanglement entropy and moreover that, via the gauge/gravity correspondence, the recipe for computing entanglement entropy holographically should also be invariant under local field redefinitions in the gravity side. We use this fact to fix the recipe for computing holographic entanglement entropy (HEE) for f (R ,Rμ ν) theories that could be mapped to Einstein gravity. An outcome of our prescription is that the surfaces that minimize the corresponding HEE functional for f (R ,Rμ ν) theories always have a vanishing trace of extrinsic curvature and that the HEE may be evaluated using the Wald entropy functional. We show that similar results follow from the FPS and Dong HEE functionals, for Einstein manifold backgrounds in f (R ,Rμ ν) theories.

  4. Inversion of Gravity Fields From the Spacecraft Orbital Data Using an Adjoint Operator Approach

    NASA Technical Reports Server (NTRS)

    Ustinov, E. A.

    1999-01-01

    In perturbation approximation, the forward problem of orbital dynamics (equations with initial conditions) is linear with respect to variations of coordinates and/or velocities of the spacecraft and to corresponding variations of the gravity field in the models used. The linear operator adjoint to the linear operator of such forward problem turns out to be instrumental in inversion of differences between observed and predicted coordinates/velocities in terms of the updates of harmonics in the initial gravity field model. Based on this approach, the solution of resulting adjoint problem of orbital dynamics can be used to directly evaluate the matrix of partial derivatives of observable differences with respect to the gravity field harmonics. General discussion of the adjoint problem of orbital dynamics is given and an example of a mathematical formalism for the practical retrieval algorithm is presented.

  5. NASA's Reduced Gravity Student Flight Opportunities Program as an Effective Educational Outreach Platform for Native Americans

    NASA Astrophysics Data System (ADS)

    Ritter, T. M.; Grimsley, M. L.

    2007-03-01

    We present the experiences from a microgravity research and outreach program utilizing the specially converted C-9 aircraft flown by NASA. Over the past four years several multidisciplinary groups of Native American undergraduate students from UNC Pembroke and UNC Charlotte have participated in NASA's Reduced Gravity Student Flight Opportunities Program. All of the experiments and outreach demonstrations performed have investigated the affects of microgravity and hypergravity on fluid related phenomena. The vigorous outreach portion of the project has taken our experiences across the state in order to stimulate an interest in science and math within the Native American communities. Our outreach presentations have been held at various levels of schools, government functions, local and national Native American conferences, and area powwows. Our outreach presentations include both multi media and hands-on involvement by the audience and emphasize a good understanding of the fundamental science. Together, the hands-on experience, discussion, and flight video provide a complete and portable outreach package on NASA and the Reduced Gravity Student Flight Opportunities Program.

  6. Time Lapse Gravity and Seismic Monitoring of CO2 Injection at the West Hastings Field, Texas

    NASA Astrophysics Data System (ADS)

    Ferguson, J. F.; Richards, T.; Klopping, F.; MacQueen, J.; Hosseini, S. A.

    2015-12-01

    Time lapse or 4D gravity and seismic reflection surveys are being conducted at the West Hastings Field near Houston, Texas to monitor the progress of CO2 injection. This Department of Energy supported CO2 sequestration experiment is conducted in conjunction with a Denbury Onshore, LLC tertiary recovery project. The reservoir is at a depth of 1.8 km in the Oligocene Frio sands and has been produced since the 1930s. Goals are an accounting and mapping of the injected CO2 and to determine if migration occurs along intra-reservoir faults. An integrated interpretation of the geophysical surveys will be made together with well logs and engineering data. Gravity monitoring of water versus gas replacement has been very successful, but liquid phase CO2 monitoring is problematic due to the smaller density contrast with respect to oil and water. This reservoir has a small volume to depth ratio and hence only a small gravity difference signal is expected on the surface. New borehole gravity technology introduced by Micro-g-Lacoste can make gravity measurements at near reservoir depths with a much higher signal to noise ratio. This method has been successfully evaluated on a simulation of the Hastings project. Field operations have been conducted for repeated surface and borehole gravity surveys beginning in 2013. The surface survey of 95 stations covers an area of 3 by 5 km and 22 borehole gravity logs are run in the interval above the Frio formation. 4D seismic reflection surveys are being made at 6 month intervals on the surface and in 3 VSP wells. CO2 injection into the targeted portion of the reservoir only began in early 2015 and monitoring will continue into 2017. To date only the baseline reservoir conditions have been assessed. The overall success of the gravity monitoring will not be determined until 2017.

  7. Earth Science interpretations where GOCE improved the gravity field most: North Africa

    NASA Astrophysics Data System (ADS)

    Braitenberg, C.; Li, Y.; Pivetta, T.

    2012-04-01

    Our work is focused on the Solid Earth Science exploitation of the satellite mission GOCE. In Northern Africa the differences between the GOCE observations and the gravity field models that include terrestrial data, as EGM08, are one of the greatest worldwide. The differences are due to errors in, or lack of terrestrial data, and subsequent data infilling based on statistical assumptions. Therefore the analysis of the field in North Africa is particularly important, as the GOCE-observations and the derived third-generation products bring a safe improvement of the field. The usefulness of the gravity field is expressed in the improvement of the density inhomogeneities that are derived from it and by the newness of the conclusions regarding the tectonic or geodynamic interpretation. Beyond the first step of correlating the fields with the geologic lineaments and surface deposits (as e.g. for Africa Braitenberg et al., 2011) comes now the second step of modeling the density variations, starting from what is known already, and to determine what the novelties are which we recover with the GOCE-observations. This requires collecting the known information, assigning densities to the layers, calculating the gravity field and gradients and inverting the residuals formed by the difference between expected field and observations. Not indifferent is the choice of making the calculations at satellite observation height or at topography level, and has consequences on the adequateness of the computational software and lateral and depth extent of the model. We integrate known crustal layers as sediments and seismologic depths of the crust-mantle interface, where available, and determine the gravity residual. We discuss the residual in terms of the principal geological units and proceed to the inversion. The inverse problem of the gravity field being ill-posed, the solution depends on the model situations and constraints we choose to set. We set up the specific inversion

  8. Gravity field of Jupiter's moon Amalthea and the implication on a spacecraft trajectory

    NASA Astrophysics Data System (ADS)

    Weinwurm, G.; Weber, R.

    Before its final plunge into Jupiter in September 2003, GALILEO made a last 'visit' to one of Jupiter's moons - Amalthea. This final flyby of the spacecraft's successful mission occurred on November 5, 2002. In order to analyse the spacecraft data with respect to Amalthea's gravity field, interior models of the moon had to be provided. The method used for this approach is based on the numerical integration of infinitesimal volume elements, which are calculated by the scale factors of a three-axial ellipsoid (elliptic coordinates). Within this routine the shape information of Amalthea can be included as well. To derive the gravity field coefficients of the body, the second method of Neumann was applied. Based on the spacecraft trajectory data provided by the Jet Propulsion Laboratory, GALILEO's velocity perturbations at closest approach could be calculated. We have derived the harmonic coefficients of Amalthea's gravity field up to degree and order six, for both homogeneous and reasonable heterogeneous cases. Founded on these numbers we calculated the impact on the trajectory of GALILEO, compared it to existing Doppler data and made predictions for future spacecraft flybys. Although no two-way Doppler-data was available during the flyby and the harmonic coefficients of the gravity field are buried in the one-way Doppler-noise, the gravity field models of Amalthea show the possible interior structure of the moon and can be a basis for further exploration of the Jovian system. In order to get valuable information about the gravity field of this tiny rocky moon, a much closer flyby than that of GALILEO should be anticipated. The above stated model approach can be used for any planetary body.

  9. Detailed balance condition and ultraviolet stability of scalar field in Horava-Lifshitz gravity

    NASA Astrophysics Data System (ADS)

    Borzou, Ahmad; Lin, Kai; Wang, Anzhong

    2011-05-01

    Detailed balance and projectability conditions are two main assumptions when Horava recently formulated his theory of quantum gravity - the Horava-Lifshitz (HL) theory. While the latter represents an important ingredient, the former often believed needs to be abandoned, in order to obtain an ultraviolet stable scalar field, among other things. In this paper, because of several attractive features of this condition, we revisit it, and show that the scalar field can be stabilized, if the detailed balance condition is allowed to be softly broken. Although this is done explicitly in the non-relativistic general covariant setup of Horava-Melby-Thompson with an arbitrary coupling constant λ, generalized lately by da Silva, it is also true in other versions of the HL theory. With the detailed balance condition softly breaking, the number of independent coupling constants can be still significantly reduced. It is remarkable to note that, unlike other setups, in this da Silva generalization, there exists a master equation for the linear perturbations of the scalar field in the flat Friedmann-Robertson-Walker background.

  10. Earth's gravity field to the eighteenth degree and geocentric coordinates for 104 stations from satellite and terrestrial data

    NASA Technical Reports Server (NTRS)

    Gaposchkin, E. M.

    1973-01-01

    Geodetic parameters describing the earth's gravity field and the positions of satellite-tracking stations in a geocentric reference frame were computed. These parameters were estimated by means of a combination of five different types of data: routine and simultaneous satellite observations, observations of deep-space probes, measurements of terrestrial gravity, and surface-triangulation data. The combination gives better parameters than does any subset of data types. The dynamic solution used precision-reduced Baker-Nunn observations and laser range data of 25 satellites. Data from the 49-station National Oceanic and Atmospheric Administration BC-4 network, the 19-station Smithsonian Astrophysical Observatory Baker-Nunn network, and independent camera stations were employed in the geometrical solution. Data from the tracking of deep-space probes were converted to relative longitudes and distances to the earth's axis of rotation of the tracking stations. Surface-gravity data in the form of 550-km squares were derived from 19,328 1 deg X 1 deg mean gravity anomalies.

  11. The effective field theory treatment of quantum gravity

    SciTech Connect

    Donoghue, John F.

    2012-09-24

    This is a pedagogical introduction to the treatment of quantum general relativity as an effective field theory. It starts with an overview of the methods of effective field theory and includes an explicit example. Quantum general relativity matches this framework and I discuss gravitational examples as well as the limits of the effective field theory. I also discuss the insights from effective field theory on the gravitational effects on running couplings in the perturbative regime.

  12. Protein-Precipitant-Specific Criteria for the Impact of Reduced Gravity on Crystal Perfection

    NASA Technical Reports Server (NTRS)

    Vekilov, Peter G.; Witherow, W. (Technical Monitor)

    2003-01-01

    The objective of this research is to provide quantitative criteria for the impact of reduced or enhanced convective transport on protein crystal perfection. Our earlier work strongly suggests that the magnitude of (lattice defect-inducing) fluctuations in the crystallization rate of proteins arise from the coupling of bulk transport and nonlinear interface kinetics. Hence, we surmised that, depending on the relative weight of bulk transport and interface kinetics in the control of the crystallization process on Earth, these fluctuations can either increase or decrease under reduced gravity conditions. The sign and magnitude of these changes depend on the specific protein-precipitant system. As a consequence, space environments can be either beneficial or detrimental for achieving structural perfection in protein crystals. The task objectives consist in systematic investigations of this hypothesis.

  13. Plasmon-graviton conversion in a magnetic field in TeV-scale gravity

    NASA Astrophysics Data System (ADS)

    Melkumova, E. Yu.

    2012-01-01

    Kaluza-Klein (KK) gravitons emission rates due to plasmon-graviton conversion in magnetic field are computed within the ADD model of TeV-scale gravity. Plasma is described in the kinetic approach as the system of charged particles and Maxwell field both confined on the brane. Interaction with multidimensional gravity living in the bulk with $n$ compact extra dimensions is introduced within the linearized theory. Plasma collective effects enter through the two-point correlation function of the fluctuations of the energy-momentum tensor. The estimate for magnetic stars is presented leading to the lower limit of the D-dimensional Plank mass.

  14. The Earth's gravity field from satellite geodesy: A 30 year adventure

    NASA Astrophysics Data System (ADS)

    Rapp, Richard H.

    1991-12-01

    The history of research in the Earth's gravity field from satellite geodesy is described and limitations of existing geopotential models are indicated. Although current solutions have made outstanding achievements, their limited accuracy restricts their use for some oceanographic applications. An example is discussed where there appears to be an incompatibility of the long wavelength geoid undulation obtained through satellite analysis with independent estimates that have become available. The future Aristoteles mission is seen as providing a significant leap in Earth gravity field knowledge improvement.

  15. Mariner 9 celestial mechanics experiment - Gravity field and pole direction of Mars.

    NASA Technical Reports Server (NTRS)

    Lorell, J.; Born, G. H.; Christensen, E. J.; Jordan, J. F.; Laing, P. A.; Martin, W. L.; Sjogren, W. L.; Shapiro, I. I.; Reasenberg, R. D.; Slater, G. L.

    1972-01-01

    Analysis of the Mariner 9 radio-tracking data shows that the Martian gravity field is rougher than that of earth or the moon, and that the accepted direction of the Mars rotation axis is in error by about 0.5 deg. Contours of equivalent surface heights deduced from a sixth-degree solution for the Martian gravity field are presented. These contours represent the deviations from sphericity of a uniformly dense body with an external potential which is given by the first sixth-degree solution. In addition to Doppler observations, ranging or group-delay measurements have been made regularly since orbit insertion.

  16. Simulation study for the determination of the lunar gravity field from PRARE-L tracking onboard the German LEO mission

    NASA Astrophysics Data System (ADS)

    Flechtner, Frank; Neumayer, Karl Hans; Kusche, Jürgen; Schäfer, Wolfgang; Sohl, Frank

    2008-10-01

    A simulation study has been performed at GFZ Potsdam, which shows the anticipated improvement of the lunar gravity field model with respect to current (LP150Q model) or near-future (SELENE) knowledge in the framework of the planned German Lunar Explorations Orbiter (LEO) mission, based on PRARE-L (Precise Range And Range-rate Equipment - Lunar version) Satellite-to-Satellite (SST) and Satellite-Earth-Satellite (SEST) tracking observations. It is shown that the global mean error of the lunar gravity field can be reduced to less than 0.1 mGal at a spatial resolution of 50 km. In the spectral domain, this means a factor of 10 (long wavelengths) and some 100 (mid to short wavelengths) improvement as compared to predictions for SELENE or a factor of 1000 with respect to LP150Q. Furthermore, a higher spatial resolution of up to 28 km seems feasible and would correspond to a factor of 2-3 improvement of SELENE results. Moreover, PRARE-L is expected to derive the low-degree coefficients of the lunar gravity field with unprecedented accuracy. Considering long mission duration (at least 1 year is planned) this would allow for the first time a precise direct determination of the low-degree tidal Love numbers of the Moon and, in combination with high precision SEST, would provide an experimental basis to study relativistic effects such as the periselenium advance in the Earth-Moon system.

  17. Gravity fields in eastern Halmahera and the Bonin Arc: Implications for ophiolite origin and emplacement

    NASA Astrophysics Data System (ADS)

    Milsom, John; Hall, Robert; Padmawidjaja, Tatang

    1996-02-01

    Classic ophiolites, as exemplified by the Troodos Massif in Cyprus and the Papuan Ultramafic Belt in eastern New Guinea, are large overthrust masses which are generally associated with large positive gravity anomalies. However, similar rocks occurring in extensive fragmented terranes which have also been described as ophiolitic do not produce large gravity effects. The eastern part of the island of Halmahera, in northeastern Indonesia, is an ophiolite of this latter type. On the two eastern arms of the island, a Mesozoic ophiolitic basement is overlain by, and imbricated with, Upper Cretaceous and Paleogene arc volcanic and sedimentary rocks. Bouguer gravity values are generally in the range +50 to +150 mGal and are characterised by steep local gradients indicative of shallow sources. The Bouguer gravity average suggests that the crust is at least 20 km thick, and it must be even thicker if a significant part of the anomalous gravity field is due to the presence of a cold and therefore dense, lithospheric slab within the asthenosphere, associated with the present-day subduction beneath Halmahera. The absence of any exposures of continental basement rocks or of quartzose sediments in eastern Halmahera suggests that these ophiolites have not been overthrust onto continental crust and that the thickening occurred in an intraoceanic island arc. The Paleogene arc was evidently characterised by volcanism occurring over an unusually wide area. In this it resembles the Izu-Bonin volcanic arc, which, like Halmahera, has been situated at the margin of the Philippine Sea Plate throughout its history. The gravity field of the Halmahera ophiolite is comparable with that of the Bonin volcanic arc, but there is no Halmahera parallel to the very high gravity fields recorded over the Bonin Islands forearc ridge. The equivalents of this part of the Paleogene arc may be represented by the ophiolitic complexes now distributed along the northern margin of the orogenic belt in New

  18. Analysis of hydrodynamic (landau) instability in liquid-propellant combustion at normal and reduced gravity

    SciTech Connect

    Margolis, S.B.

    1997-10-01

    The burning of liquid propellants is a fundamental combustion problem that is applicable to various types of propulsion and energetic systems. The deflagration process is often rather complex, with vaporization and pyrolysis occurring at the liquid/gas interface and distributed combustion occurring either in the gas phase or in a spray. Nonetheless, there are realistic limiting cases in which combustion may be approximated by an overall reaction at the liquid/gas interface. In one such limit, distributed combustion occurs in an intrusive regime, the reaction zone lying closer to the liquid/gas interface than the length scale of any disturbance of interest. Such limiting models have recently been formulated thereby significantly generalizing earlier classical models that were originally introduced to study the hydrodynamic stability of a reactive liquid/gas interface. In all of these investigations, gravity appears explicitly and plays a significant role, along with surface tension, viscosity, and, in the more recent models, certain reaction-rate parameters associated with the pressure and temperature sensitivities of the reaction itself. In particular, these parameters determine the stability of the deflagration with respect to not only classical hydrodynamic disturbances, but also with respect to reactive/diffusive influences as well. These instabilities thus lead to a number of interesting phenomena, such as the sloshing type of waves that have been observed in mixtures of HAN and triethanolammonium nitrate (TEAN) with water. Although the Froude number was treated as an O(l) quantity in these studies, the limit of small inverse Froude number corresponding to the microgravity regime is increasingly of interest. In the present work, the author formally exploits this limiting parameter regime to compare some of the features of hydrodynamic instability of liquid-propellant combustion at reduced gravity with the same phenomenon at normal gravity.

  19. Testing the master constraint programme for loop quantum gravity: V. Interacting field theories

    NASA Astrophysics Data System (ADS)

    Dittrich, B.; Thiemann, T.

    2006-02-01

    This is the fifth and final paper in our series of five in which we test the master constraint programme for solving the Hamiltonian constraint in loop quantum gravity. Here we consider interacting quantum field theories, specifically we consider the non-Abelian Gauss constraints of Einstein Yang Mills theory and 2 + 1 gravity. Interestingly, while Yang Mills theory in 4D is not yet rigorously defined as an ordinary (Wightman) quantum field theory on Minkowski space, in background-independent quantum field theories such as loop quantum gravity (LQG) this might become possible by working in a new, background-independent representation. While for the Gauss constraint the master constraint can be solved explicitly, for the 2 + 1 theory we are only able to rigorously define the master constraint operator. We show that the, by other methods known, physical Hilbert is contained in the kernel of the master constraint, however, to systematically derive it by only using spectral methods is as complicated as for 3 + 1 gravity and we therefore leave the complete analysis for 3 + 1 gravity.

  20. Too Fast to Measure: Network Adjustment of Rapidly Changing Gravity Fields

    NASA Astrophysics Data System (ADS)

    Kennedy, J.; Ferre, T. P. A.

    2014-12-01

    Measurements of spatially-variable gravity at the field scale are difficult; measurements of the time-varying field even more so. Every previous gravity survey using relative gravimeters—still the workhorse of gravity studies, despite their nearly 80 year history—has assumed a static gravity field during the course of a survey, which may last days to weeks. With recently-improved instrumentation, however, measurements of fields changing on the order of tens of nm/sec2 per day are now possible. In particular, the A-10 portable absolute gravimeter provides not only absolute control, but also the change in that control during the course of a survey. Using digitally-recording spring-based relative gravimeters (namely, the ZLS Burris meter and the Scintrex CG-5), with their more efficient data collection and lower drift than previous generations, many more data are collected in a day. We demonstrate a method for incorporating in the least-squares network adjustment of relative gravity data a relation between the rate of change of gravity, dg, and distance from an infiltration source, x. This relation accounts for the fact that gravity at stations adjacent to the infiltration source changes more rapidly than stations further away; if all measurements collected over several days are to be included in a single network-adjustment, consideration of this change is required. Two methods are used to simulate the dg(x) relation: a simple model where dg is a linear function of x, and a coupled-hydrogeophysical method where a groundwater flow model predicts the nonlinear spatial variation of dg. Then, the change in gravity between different, independently adjusted surveys is used to parameterize the groundwater model. Data from two recent field examples, an artificial recharge facility near Tucson, Arizona, USA, and from the 2014 Lower Colorado River pulse flow experiment, clearly show the need to account for gravity change during a survey; maximum rates of change for the two

  1. The effect of reduced gravity on the kinematics of human walking: a test of the dynamic similarity hypothesis for locomotion.

    PubMed

    Donelan, J M; Kram, R

    1997-12-01

    To gain insight into the basic principles that govern the biomechanics of locomotion, we investigated the effect of reduced gravity on walking kinematics. We hypothesized that humans walk in a dynamically similar fashion at combinations of speed and simulated gravity that provide equal values of the Froude number, v2/gLleg, where v is forward speed, g is gravitational acceleration and Lleg is leg length. The Froude number has been used to predict the kinematics and kinetics of legged locomotion over a wide range of animal sizes and speeds, and thus provides a potentially unifying theory for the combined effects of speed, size and gravity on locomotion biomechanics. The occurrence of dynamic similarity at equal Froude numbers has been attributed previously to the importance of gravitational forces in determining locomotion mechanics. We simulated reduced gravity using a device that applies a nearly constant upward force to the torso while subjects walked on a treadmill. We found that at equal Froude numbers, under different levels of gravity (0.25g-1.0g), the subjects walked with nearly the same duty factor (ratio of contact time to stride time), but with relative stride lengths (Ls/Lleg, where Ls is stride length) that differed by as much as 67 %, resulting in the rejection of our hypothesis. To understand the separate effects of speed and gravity further, we compared the mechanics of walking at the same absolute speed at different levels of gravity (0.25g-1.0g). In lower gravity, subjects walked with lower duty factors (10 %) and shorter relative stride lengths (16 %). These modest changes in response to the fourfold change in gravity indicate that factors other than gravitational forces are the primary determinants of walking biomechanics.

  2. Antarctic Tectonics: Constraints From an ERS-1 Satellite Marine Gravity Field

    PubMed

    McAdoo; Laxon

    1997-04-25

    A high-resolution gravity field of poorly charted and ice-covered ocean near West Antarctica, from the Ross Sea east to the Weddell Sea, has been derived with the use of satellite altimetry, including ERS-1 geodetic phase, wave-form data. This gravity field reveals regional tectonic fabric, such as gravity lineations, which are the expression of fracture zones left by early (65 to 83 million years ago) Pacific-Antarctic sea-floor spreading that separated the Campbell Plateau and New Zealand continent from West Antarctica. These lineations constrain plate motion history and confirm the hypothesis that Antarctica behaved as two distinct plates, separated from each other by an extensional Bellingshausen plate boundary active in the Amundsen Sea before about 61 million years ago.

  3. Earth's gravity field to the eighteenth degree and geocentric coordinates for 104 stations from satellite and terrestrial data

    NASA Technical Reports Server (NTRS)

    Gaposchkin, E. M.

    1974-01-01

    Geodetic parameters describing the earth's gravity field and the positions of satellite-tracking stations in a geocentric reference frame have been computed. These parameters were estimated by means of a combination of five different types of data: routine and simultaneous satellite observations, observations of deep space probes, measurements of terrestrial gravity, and surface triangulation data. The combination gives better parameters than does any subset of data types. The dynamic solution used precision-reduced Baker-Nunn observations and laser range data of 25 satellites. Data from the 49-station National Oceanic and Atmospheric Administration BC-4 network, the 19-station Smithsonian Astrophysical Observatory Baker-Nunn network, and independent camera stations were employed in the geometrical solution.

  4. On the model structure of the gravity field of Mars

    NASA Astrophysics Data System (ADS)

    Zharkov, V. N.; Gudkova, T. V.

    2016-07-01

    A discussion is presented about the constraints used in constructing a model for the internal structure of Mars. The most important fact is that the Martian chemical model proposed by Wänke and Dreibus (WD) has stood the test of time. This means that the chondritic ratio Fe/Si = 1.71 can be used as a constraint in constructing an interior structure model of the planet. Consideration is given to the constructing of the reference surface of Mars. It is concluded that the effectively hydrostatic-equilibrium model of Mars is well suited for this purpose. The areoid heights and gravity anomalies in the model of Mars are calculated. The results are shown in the figures (maps) and comments made. The results are compared with the similar data for the Earth. Mars deviates much more strongly from the hydrostatic equilibrium than the Earth. It is suggested that the average thickness of the Martian elastic lithosphere should exceed that of the Earth's continental lithosphere.

  5. Containment of a silicone fluid free surface in reduced gravity using barrier coatings

    NASA Technical Reports Server (NTRS)

    Pline, Alexander D.; Jacobson, Thomas P.

    1988-01-01

    In support of the Surface Tension Driven Convection Experiment planned for flight aboard the Space Shuttle, tests were conducted under reduced gravity in the 2.2-sec Drop Tower and the 5.0-sec Zero-G facility at the NASA Lewis Research Center. The dynamics of controlling the test fluid, a 10-cSt viscosity silicone fluid in a low gravity environment were investigated using different container designs and barrier coatings. Three container edge designs were tested without a barrier coating; a square edge, a sharp edge with a 45-deg slope, and a sawtooth edge. All three edge designs were successful in containing the fluid below the edge. G-jitter experiments were made in scaled down containers subjected to horizontal accelerations. The data showed that a barrier coating is effective in containing silicone fluid under g-levels up to 10 sup -1 sub g sub 0. In addition, a second barrier coating was found which has similar anti-wetting characteristics and is also more durable.

  6. MarsSedEx III: linking Computational Fluid Dynamics (CFD) and reduced gravity experiments

    NASA Astrophysics Data System (ADS)

    Kuhn, N. J.; Kuhn, B.; Gartmann, A.

    2015-12-01

    Nikolaus J. Kuhn (1), Brigitte Kuhn (1), and Andres Gartmann (2) (1) University of Basel, Physical Geography, Environmental Sciences, Basel, Switzerland (nikolaus.kuhn@unibas.ch), (2) Meteorology, Climatology, Remote Sensing, Environmental Sciences, University of Basel, Switzerland Experiments conducted during the MarsSedEx I and II reduced gravity experiments showed that using empirical models for sediment transport on Mars developed for Earth violates fluid dynamics. The error is caused by the interaction between runing water and sediment particles, which affect each other in a positive feedback loop. As a consequence, the actual flow conditions around a particle cannot be represented by drag coefficients derived on Earth. This study exmines the implications of such gravity effects on sediment movement on Mars, with special emphasis on the limits of sandstones and conglomerates formed on Earth as analogues for sedimentation on Mars. Furthermore, options for correctiong the errors using a combination of CFD and recent experiments conducted during the MarsSedEx III campaign are presented.

  7. Liquid Droplet Dynamics in Gravity Compensating High Magnetic Field

    NASA Technical Reports Server (NTRS)

    Bojarevics, V.; Easter, S.; Pericleous, K.

    2012-01-01

    Numerical models are used to investigate behavior of liquid droplets suspended in high DC magnetic fields of various configurations providing microgravity-like conditions. Using a DC field it is possible to create conditions with laminar viscosity and heat transfer to measure viscosity, surface tension, electrical and thermal conductivities, and heat capacity of a liquid sample. The oscillations in a high DC magnetic field are quite different for an electrically conducting droplet, like liquid silicon or metal. The droplet behavior in a high magnetic field is the subject of investigation in this paper. At the high values of magnetic field some oscillation modes are damped quickly, while others are modified with a considerable shift of the oscillating droplet frequencies and the damping constants from the non-magnetic case.

  8. Mars gravity field error analysis from simulated radio tracking of Mars Observer

    SciTech Connect

    Smith, D.E.; Lerch, F.J. ); Chan, J.C.; Chinn, D.S.; Iz, H.B.; Mallama, A.; Patel, G.B. )

    1990-08-30

    The Mars Observer (MO) Mission, in a near-polar orbit at 360-410 km altitude for nearly a 2-year observing period, will greatly improve our understanding of the geophysics of Mars, including its gravity field. To assess the expected improvement of the gravity field, the authors have conducted an error analysis based upon the mission plan for the Mars Observer radio tracking data from the Deep Space Network. Their results indicate that it should be possible to obtain a high-resolution model (spherical harmonics complete to degree and order 50 corresponding to a 200-km horizontal resolution) for the gravitational field of the planet. This model, in combination with topography from MO altimetry, should provide for an improved determination of the broad scale density structure and stress state of the Martian crust and upper mantle. The mathematical model for the error analysis is based on the representation of doppler tracking data as a function of the Martian gravity field in spherical harmonics, solar radiation pressure, atmospheric drag, angular momentum desaturation residual acceleration (AMDRA) effects, tracking station biases, and the MO orbit parameters. Two approaches are employed. In the first case, the error covariance matrix of the gravity model is estimated including the effects from all the nongravitational parameters (noise-only case). In the second case, the gravity recovery error is computed as above but includes unmodelled systematic effects from atmospheric drag, AMDRA, and solar radiation pressure (biased case). The error spectrum of gravity shows an order of magnitude of improvement over current knowledge based on doppler data precision from a single station of 0.3 mm s{sup {minus}1} noise for 1-min integration intervals during three 60-day periods.

  9. A Sea Floor Gravity Survey of the Sleipner Field to Monitor CO2 Migration

    SciTech Connect

    Mark Zumberge

    2011-09-30

    Carbon dioxide gas (CO{sub 2}) is a byproduct of many wells that produce natural gas. Frequently the CO{sub 2} separated from the valuable fossil fuel gas is released into the atmosphere. This adds to the growing problem of the climatic consequences of greenhouse gas contamination. In the Sleipner North Sea natural gas production facility, the separated CO{sub 2} is injected into an underground saline aquifer to be forever sequestered. Monitoring the fate of such sequestered material is important - and difficult. Local change in Earth's gravity field over the injected gas is one way to detect the CO{sub 2} and track its migration within the reservoir over time. The density of the injected gas is less than that of the brine that becomes displaced from the pore space of the formation, leading to slight but detectable decrease in gravity observed on the seafloor above the reservoir. Using equipment developed at Scripps Institution of Oceanography, we have been monitoring gravity over the Sleipner CO{sub 2} sequestration reservoir since 2002. We surveyed the field in 2009 in a project jointly funded by a consortium of European oil and gas companies and the US Department of Energy. The value of gravity at some 30 benchmarks on the seafloor, emplaced at the beginning of the monitoring project, was observed in a week-long survey with a remotely operated vehicle. Three gravity meters were deployed on the benchmarks multiple times in a campaign-style survey, and the measured gravity values compared to those collected in earlier surveys. A clear signature in the map of gravity differences is well correlated with repeated seismic surveys.

  10. The effect of reduced gravity on solidification microstructures of NH4Cl-H2O alloys

    NASA Technical Reports Server (NTRS)

    Papazian, J. M.; Kattamis, T. Z.

    1980-01-01

    The effect of gravity on the columnar-to-equiaxed microstructural transition was studied in small samples of NH4Cl-H2O. The behavior of the samples during laboratory (one gravity) experiments was contrasted with their behavior during a (low gravity) sounding rocket flight. In one gravity, the columnar zone accounted for 25 to 100 pct of the structure, depending on the superheat and orientation of the chill. Grain multiplication occurred by showering and by convection induced dendrite arm remelting. Convection was caused by both thermal gradients and solutal gradients. In low gravity, however, completely columnar structures were obtained; all grain multiplication mechanisms were entirely suppressed. Reduced gravity also modified the thermal conditions and caused the liquid to cool more slowly. This resulted in a steeper temperature gradient in the liquid ahead of the solidification interface. 'Big bang' type nucleation occurred in two of the samples, distributing nuclei throughout the liquid. Despite this, an equiaxed zone did not form, indicating that the most significant effect of low gravity on this experiment was modification of the thermal conditions.

  11. Accounting for time- and space-varying changes in the gravity field to improve the network adjustment of relative-gravity data

    NASA Astrophysics Data System (ADS)

    Kennedy, Jeffrey R.; Ferré, Ty P. A.

    2016-02-01

    The relative gravimeter is the primary terrestrial instrument for measuring spatially and temporally varying gravitational fields. The background noise of the instrument-that is, non-linear drift and random tares-typically requires some form of least-squares network adjustment to integrate data collected during a campaign that may take several days to weeks. Here, we present an approach to remove the change in the observed relative-gravity differences caused by hydrologic or other transient processes during a single campaign, so that the adjusted gravity values can be referenced to a single epoch. The conceptual approach is an example of coupled hydrogeophysical inversion, by which a hydrologic model is used to inform and constrain the geophysical forward model. The hydrologic model simulates the spatial variation of the rate of change of gravity as either a linear function of distance from an infiltration source, or using a 3-D numerical groundwater model. The linear function can be included in and solved for as part of the network adjustment. Alternatively, the groundwater model is used to predict the change of gravity at each station through time, from which the accumulated gravity change is calculated and removed from the data prior to the network adjustment. Data from a field experiment conducted at an artificial-recharge facility are used to verify our approach. Maximum gravity change due to hydrology (observed using a superconducting gravimeter) during the relative-gravity field campaigns was up to 2.6 μGal d-1, each campaign was between 4 and 6 d and one month elapsed between campaigns. The maximum absolute difference in the estimated gravity change between two campaigns, two months apart, using the standard network adjustment method and the new approach, was 5.5 μGal. The maximum gravity change between the same two campaigns was 148 μGal, and spatial variation in gravity change revealed zones of preferential infiltration and areas of relatively high

  12. Accounting for time- and space-varying changes in the gravity field to improve the network adjustment of relative-gravity data

    USGS Publications Warehouse

    Kennedy, Jeffrey R.; Ferre, Ty P.A.

    2015-01-01

    The relative gravimeter is the primary terrestrial instrument for measuring spatially and temporally varying gravitational fields. The background noise of the instrument—that is, non-linear drift and random tares—typically requires some form of least-squares network adjustment to integrate data collected during a campaign that may take several days to weeks. Here, we present an approach to remove the change in the observed relative-gravity differences caused by hydrologic or other transient processes during a single campaign, so that the adjusted gravity values can be referenced to a single epoch. The conceptual approach is an example of coupled hydrogeophysical inversion, by which a hydrologic model is used to inform and constrain the geophysical forward model. The hydrologic model simulates the spatial variation of the rate of change of gravity as either a linear function of distance from an infiltration source, or using a 3-D numerical groundwater model. The linear function can be included in and solved for as part of the network adjustment. Alternatively, the groundwater model is used to predict the change of gravity at each station through time, from which the accumulated gravity change is calculated and removed from the data prior to the network adjustment. Data from a field experiment conducted at an artificial-recharge facility are used to verify our approach. Maximum gravity change due to hydrology (observed using a superconducting gravimeter) during the relative-gravity field campaigns was up to 2.6 μGal d−1, each campaign was between 4 and 6 d and one month elapsed between campaigns. The maximum absolute difference in the estimated gravity change between two campaigns, two months apart, using the standard network adjustment method and the new approach, was 5.5 μGal. The maximum gravity change between the same two campaigns was 148 μGal, and spatial variation in gravity change revealed zones of preferential infiltration and areas of relatively

  13. Canonical Higgs fields from higher-dimensional gravity

    NASA Astrophysics Data System (ADS)

    Egeileh, Michel

    2007-03-01

    We consider the dimensional reduction of a gravitational field g in a multidimensional universe endowed with a simple action of a compact Lie group. It is known that when the group preserves g, this dimensional reduction leads in particular to scalar fields that correspond to an invariant metric on each orbit. We show that the action functionals of those fields (obtained from the reduction of Einstein's action) exhibit, in the hyperbolic case, polynomials of several variables having a degree less or equal to 6.

  14. Orbit and Gravity Field Solutions from Swarm GPS Observations - First Result

    NASA Astrophysics Data System (ADS)

    Jaeggi, A.; Dahle, C.; Arnold, D.; Bock, H.; Flechtner, F.

    2014-12-01

    Although ESA's Earth Explorer Mission Swarm is primarily dedicated to measure the Earth's magnetic field, it may also serve as a gravity field mission. Equipped with GPS receivers, accelerometers, star-tracker assemblies and laser retro-reflectors, the three Swarm satellites are potentially capable to be used as a high-low satellite-to-satellite tracking (hl-SST) observing system, following the missions CHAMP (first single-satellite hl-SST mission), GRACE (twin-satellite mission with additional ultra-precise low-low SST and GOCE (single-satellite mission additionally equipped with a gradiometer). GRACE, dedicated to measure the time-variability of the gravity field, is the only mission still in orbit, but its lifetime will likely end before launch of its follow-on mission GRACE-FO in August 2017 primarily due to aging of the onboard batteries after meanwhile more than 12 years of operation. Swarm is probably a good candidate to provide time-variable gravity field solutions and to close a potential gap between GRACE and GRACE-FO. Consisting of three satellites, Swarm also offers to use inter-satellite GPS-derived baselines as additional observations. However, as of today it is not clear if such information will substantially improve the gravity field solutions. Nevertheless, the properties of the Swarm constellation with two lower satellites flying in a pendulum-like orbit and a slightly differently inclined third satellite at higher altitude still represent a unique observing system raising expectations at least compared to CHAMP derived time-variable gravity field solutions. Whatever processing method will be applied for Swarm gravity field recovery, its success strongly depends on the quality of the Swarm Level 1b data as well as the quality of the derived Swarm orbits. With first Level 1b data sets available since mid of May 2014 (excluding accelerometer data), first results for Swarm orbits and baselines, as well as Swarm gravity field solutions are presented

  15. Exposure of biological preparations to radiofrequency electromagnetic fields under low gravity.

    PubMed

    Jacquot, Jean Francois; le Bail, Jean-Luc; Bardet, Michel; Tabony, James

    2010-11-01

    There is interest as to whether the electromagnetic fields used in mobile radiotelephony might affect biological processes. Other weak fields such as gravity intervene in a number of physical and biological processes. Under appropriate in vitro conditions, the macroscopic self-organization of microtubules, a major cellular component, is triggered by gravity. We wished to investigate whether self-organization might also be affected by radiotelephone electromagnetic fields. Detecting a possible effect requires removing the obscuring effects triggered by gravity. A simple manner of doing this is by rotating the sample about the horizontal. However, if the external field does not also rotate with the sample, its possible effect might also be averaged down by rotation. Here, we describe an apparatus in which both the sample and an applied radiofrequency electromagnetic field (1.8 GHz) are stationary with respect to one another while undergoing horizontal rotation. The electromagnetic field profile within the apparatus has been measured and the apparatus tested by reproducing the in vitro behavior of microtubule preparations under conditions of weightlessness. Specific adsorption rates of electromagnetic energy within a sample are measured from the initial temperature rise the incident field causes. The apparatus can be readily adapted to expose samples to various other external fields and factors under conditions of weightlessness.

  16. 3D Gravity Field Modelling of the Lithosphere along the Dead Sea Transform (DESERT 2002)

    NASA Astrophysics Data System (ADS)

    Götze, H.-J.; Ebbing, J.; Schmidt, S.; Rykakov, M.; Hassouneh, M.; Hrahsha, M.; El-Kelani, R.; Desert Group

    2003-04-01

    From March to May 2002 a gravity field campaign has to be conducted in the area of Dead Sea Rift/Dead Sea Transform with regard to the isostatic state, the crustal density structure of the transform and the lithospheric rigidity in the Central Arava Valley (Jordan). Our multi-national and interdisciplinary gravity group with participants from the Geophysical Institute of Israel, the Natural Resources Authority (Jordan), and the An-Najah National University (Palestine), takes part in the interdisciplinary and international DESERT program which is coordinated by the GeoForschungsZentrum (GFZ, Potsdam, Germany). The study area is located about 100 km away from both the basin of the Dead Sea and the Gulf of Elat/Aqaba basin, respectively. Between March and May 2002 some 800 new gravity observations were recorded at a local scale in the Arava valley and at regional scale along the DESERT seismic line. Station spacing in the area of the Arava valley was 100 - 300 m and in the nearest neighbourhood of the fault 50 m only. The survey of detailed observations covered an area of 10 by 10 km and was completed by a likewise dense survey at the western side of the valley in Israel. All gravity data were tied to the IGSN -71 gravity datum and are terrain-corrected as well. The station complete Bouguer gravity field, Free air anomaly and residual isostatic anomalies (based on both Airy and Vening-Meinesz models) were merged with the existing regional gravity data bases of the region. Constraining information for the 3D density models came from recent geophysical field data acquisition and consist of seismic, seismological, electromagnetic studies, and geological mapping which represent the integrated part of the interdisciplinary research program. Novel methods e.g. curvature techniques, and Euler deconvolution of the gravity fields shed new insight into the structure of upper and lower crust and the causing density domains. In particular the "dip-curvature" reveal a clear course

  17. Gravity Field Analysis and 3D Density Modeling of the Lithosphere Along the Dead Sea Transform

    NASA Astrophysics Data System (ADS)

    Goetze, H.; Ebbing, J.; Hese, F.; Kollersberger, T.; Schmidt, S.; Rybakov, M.; Hassouneh, M.; Hrahsha, M.; El Kelani, R.

    2002-12-01

    The gravity field of Dead Sea Rift / Dead Sea Transform was investigated with regard to the isostatic state, the crustal density structure of the orogeny and the rigidity of the lithosphere in the Central Arava Valley. Our multi-national and interdisciplinary gravity group with participants from the Geophysical Institute of Israel, the Natural Resources Authority (Jordan), and the An-Najah National University (Palestine), is aiming to study the crustal density structure, the isostatic state of the lithosphere and mechanical properties of the Dead Sea Rift system under the framework of the international DESERT program which is coordinated by the GeoForschungsZentrum (GFZ, Potsdam, Germany). The study area is located about 100 km away from both the basin of the Dead Sea and the Gulf of Elat/Aqaba basin, respectively. Between March and May 2002 some 800 new gravity observations were recorded at a local (Arava valley) and regional scale (along the DESERT seismic line). Station spacing in the Arava valley was 100 - 300 m and in the nearest neighborhood of the fault 50 m only. The survey of detailed observations covered an area of 10 by 10 km and was completed by a likewise dense survey at the western side of the valley in Israel. All gravity data were tied to the IGSN -71 gravity datum and are terrain-corrected as well. The station complete Bouguer gravity field, Free air anomaly and residual isostatic anomalies (based on both Airy and Vening-Meinesz models) were merged with the existing regional gravity data bases of the region. Constraining information for the 3D density models at regional and local came from recent geophysical field data acquisition and consist of seismic, seismological, electromagnetic, and geologic studies which represent the integrated part of the interdisciplinary research program. Novel methods e.g. curvature techniques, and Euler deconvolution of the gravity fields shed new insight into the structure of upper and lower crust and the causing

  18. Shape, Mean Radius, Gravity Field and Interior Structure of Callisto

    NASA Technical Reports Server (NTRS)

    Anderson, J.; Jacobson, R.; McElrath, T.; Schubert, G.; Moore, W.; Thomas, P.

    2000-01-01

    Radio Doppler data generated by the Deep Space Network (DSN) from five encounters of the Galileo spacecraft with Callisto, Jupiter's outermost Galilean satellite, have been used to determine the quadrupole moments of the satellite's external gravitational field.

  19. Flow-Boiling Critical Heat Flux Experiments Performed in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Hasan, Mohammad M.; Mudawar, Issam

    2005-01-01

    Poor understanding of flow boiling in microgravity has recently emerged as a key obstacle to the development of many types of power generation and advanced life support systems intended for space exploration. The critical heat flux (CHF) is perhaps the most important thermal design parameter for boiling systems involving both heatflux-controlled devices and intense heat removal. Exceeding the CHF limit can lead to permanent damage, including physical burnout of the heat-dissipating device. The importance of the CHF limit creates an urgent need to develop predictive design tools to ensure both the safe and reliable operation of a two-phase thermal management system under the reduced-gravity (like that on the Moon and Mars) and microgravity environments of space. At present, very limited information is available on flow-boiling heat transfer and the CHF under these conditions.

  20. String theory embeddings of nonrelativistic field theories and their holographic Hořava gravity duals.

    PubMed

    Janiszewski, Stefan; Karch, Andreas

    2013-02-22

    We argue that generic nonrelativistic quantum field theories with a holographic description are dual to Hořava gravity. We construct explicit examples of this duality embedded in string theory by starting with relativistic dual pairs and taking a nonrelativistic scaling limit.

  1. The Spatial Resolution of Mass Distributions Required For Forward Gravity Field Modelling

    NASA Astrophysics Data System (ADS)

    Kuhn, M.

    In forward gravity field modelling all parameters can be derived from the Earth's mass distribution using Newton's law of gravitation. Now more and more information on the Earth's mass distribution is available such, as fine digital elevation models, dig- ital density models and models of the crustal thickness. Apart from the theoretical restriction that the Earth's mass distribution will never be completely known, this con- tribution studies the spatial resolution of different mass distributions of the Earth's crust in view of deriving gravity field quantities in a forward model with a given accu- racy. Here the influence of the topographic masses, mass anomalies above the geoid, compensation masses and crustal mass anomalies below the geoid will be studied by the spherical harmonic expansion of their corresponding potential effect. Using New- ton's law, these spherical harmonic expansions can be expressed directly by that of height, depth or density of the corresponding mass distributions. This representation is well suited to study the spectral sensitivity of different mass distributions on gravity field quantities. Numerical results will be presented in order to give an optimal data spacing required to forward model the gravity field of the Earth to a desired accuracy.

  2. Feasibility of reduced gravity experiments involving quiescent, uniform particle cloud combustion

    NASA Technical Reports Server (NTRS)

    Ross, Howard D.; Facca, Lily T.; Berlad, Abraham L.; Tangirala, Venkat

    1989-01-01

    The study of combustible particle clouds is of fundamental scientific interest as well as a practical concern. The principal scientific interests are the characteristic combustion properties, especially flame structure, propagation rates, stability limits, and the effects of stoichiometry, particle type, transport phenomena, and nonadiabatic processes on these properties. The feasibility tests for the particle cloud combustion experiment (PCCE) were performed in reduced gravity in the following stages: (1) fuel particles were mixed into cloud form inside a flammability tube; (2) when the concentration of particles in the cloud was sufficiently uniform, the particle motion was allowed to decay toward quiescence; (3) an igniter was energized which both opened one end of the tube and ignited the suspended particle cloud; and (4) the flame proceeded down the tube length, with its position and characteristic features being photographed by high-speed cameras. Gravitational settling and buoyancy effects were minimized because of the reduced gravity enviroment in the NASA Lewis drop towers and aircraft. Feasibility was shown as quasi-steady flame propagation which was observed for fuel-rich mixtures. Of greatest scientific interest is the finding that for near-stoichiometric mixtures, a new mode of flame propagation was observed, now called a chattering flame. These flames did not propagate steadily through the tube. Chattering modes of flame propagation are not expected to display extinction limits that are the same as those for acoustically undisturbed, uniform, quiescent clouds. A low concentration of fuel particles, uniformly distributed in a volume, may not be flammable but may be made flammable, as was observed, through induced segregation processes. A theory was developed which showed that chattering flame propagation was controlled by radiation from combustion products which heated the successive discrete laminae sufficiently to cause autoignition.

  3. Non-minimally coupled tachyon field in teleparallel gravity

    SciTech Connect

    Fazlpour, Behnaz; Banijamali, Ali E-mail: a.banijamali@nit.ac.ir

    2015-04-01

    We perform a full investigation on dynamics of a new dark energy model in which the four-derivative of a non-canonical scalar field (tachyon) is non-minimally coupled to the vector torsion. Our analysis is done in the framework of teleparallel equivalent of general relativity which is based on torsion instead of curvature. We show that in our model there exists a late-time scaling attractor (point P{sub 4}), corresponding to an accelerating universe with the property that dark energy and dark matter densities are of the same order. Such a point can help to alleviate the cosmological coincidence problem. Existence of this point is the most significant difference between our model and another model in which a canonical scalar field (quintessence) is used instead of tachyon field.

  4. On the equilibrium of a cylindrical plasma supported horizontally by magnetic fields in uniform gravity

    NASA Technical Reports Server (NTRS)

    Lerche, I.; Low, B. C.

    1980-01-01

    The mechanical equilibrium of a cylinder of plasma suspended horizontally by magnetic fields in uniform gravity is examined. A set of exact solutions describing the equilibrium is derived assuming the plasma distribution to be cylindrically symmetric to obtain an exact force balance between plasma pressure, the Lorentz pressure, and gravity in space. The set of solutions considers a case of uniform temperature and cases where the temperature rises from zero at the center of the plasma cylinder to reach a constant asymptotic value outside the cylinder.

  5. On the source of cross-grain lineations in the central Pacific gravity field

    NASA Technical Reports Server (NTRS)

    Mcadoo, David C.; Sandwell, David T.

    1989-01-01

    The source of cross-grain lineations in marine gravity field observed in central Pacific was investigated by comparing multiple collinear gravity profiles from Geosat data with coincident bathymetry profiles, in the Fourier transform domain. Bathymetric data were collected by multibeam sonar systems operating from two research vessels, one in June-August 1985, the other in February and March 1987. The results of this analysis indicate that the lineations are superficial features that appear to result from a combination of subsurface and surface loads supported by a thin (2 km to 5 km) lithosphere.

  6. Azimuthal dependence in the gravity field induced by recent and past cryospheric forcings

    NASA Technical Reports Server (NTRS)

    Yuen, David A.; Gasperini, Paolo; Sabadini, Roberto; Boschi, Enzo

    1987-01-01

    Present-day glacial activities and the current variability of the Antarctic ice volume can cause variations in the long-wavelength gravity field as a consequence of transient viscoelastic responses in the mantle. The azimuthal dependence of the secular variations of the gravitational potential are studied and it is found that the nonaxisymmetric contributions are more important for recent glacial retreats than for Pleistocene deglaciation. Changes in land-based ice covering Antarctica can be detected by monitoring satellite orbits and their sensitivity to variations in gravitational harmonic for degree l greater than 3. Resonances in satellite orbits may be useful for detecting these azimuthally-dependent gravity signals.

  7. Group field theory as the second quantization of loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Oriti, Daniele

    2016-04-01

    We construct a second quantized reformulation of canonical loop quantum gravity (LQG) at both kinematical and dynamical level, in terms of a Fock space of spin networks, and show in full generality that it leads directly to the group field theory (GFT) formalism. In particular, we show the correspondence between canonical LQG dynamics and GFT dynamics leading to a specific GFT model from any definition of quantum canonical dynamics of spin networks. We exemplify the correspondence of dynamics in the specific example of 3d quantum gravity. The correspondence between canonical LQG and covariant spin foam models is obtained via the GFT definition of the latter.

  8. A SEA FLOOR GRAVITY SURVEY OF THE SLEIPNER FIELD TO MONITOR CO2 MIGATION

    SciTech Connect

    Mark Zumberge

    2003-06-13

    At the Sleipner gas field, excess CO{sub 2} is sequestered and injected underground into a porous saline aquifer 1000 m below the seafloor. A high precision micro-gravity survey was carried out on the seafloor to monitor the injected CO{sub 2}. A repeatability of 5 {micro}Gal in the station averages was observed. This is considerably better than pre-survey expectations. These data will serve as the baseline for time-lapse gravity monitoring of the Sleipner CO{sub 2} injection site. Simple modeling of the first year data give inconclusive results, thus a more detailed approach is needed. Work towards this is underway.

  9. Measurement error analysis in determination of small-body gravity fields

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Davis, D. R.; Heppenheimer, T. A.

    1974-01-01

    We consider analytically the use of existing instrumentation in determining asteroid gravity fields from orbiting spacecraft. Asteroids (Eros as an example) are modeled as homogeneous triaxial ellipsoids, with gravitational potential given by a sperical-harmonic expansion. Mass concentrations are modeled as point masses. The character of spacecraft orbits about asteroids is discussed, along with detectibility of gravitational coefficients and of mass concentrations. A Kalman-filtering treatment of the observation process, for Eros as example, shows that using DSN tracking and onboard gravity gradiometry, radar altimetry, and celestial angle measurements, a single orbit yields asteroid mass to 0.03% and coefficients C20 to C44 to 1% accuracies.

  10. Efficient global gravity field determination from satellite-to-satellite tracking

    NASA Astrophysics Data System (ADS)

    Han, Shin-Chan

    By the middle of this decade, measurements from the CHAMP (CHAllenging of Minisatellite Payload) and GRACE (Gravity Recovery And Climate Experiment) gravity mapping satellite missions are expected to provide a significant improvement in our knowledge of the Earth's mean gravity field and its temporal variation. For this research, new observation equations and efficient inversion method were developed and implemented for determination of the Earth's global gravity field using satellite measurements. On the basis of the energy conservation principle, in situ (on-orbit) and along track disturbing potential and potential difference observations were computed using data from accelerometer- and GPS receiver-equipped satellites, such as CHAMP and GRACE. The efficient iterative inversion method provided the exact estimates as well as an approximate, but very accurate error variance-covariance matrix of the least squares system for both satellite missions. The global disturbing potential observable computed using 16-days of CHAMP data was used to determine a 50 x 50 test gravity field solution (OSU02A) by employing a computationally efficient inversion technique based on conjugate gradient. An evaluation of the model using independent GPS/leveling heights and Arctic gravity data, and comparisons with existing gravity models, EGM96 and GRIM5C1, and new models, EIGEN1S and TEG4 which include CHAMP data, indicate that OSU02A is commensurate in geoid accuracy and, like other new models, it yields some improvement (10% better fit) in the polar region at wavelengths longer than 800 km. The annual variation of Earth's gravitational field was estimated from 1.5 years of CHAMP data and compared with other solutions from satellite laser ranging (SLR) analysis. Except the second zonal and third tesseral harmonics, others second and third degree coefficients were comparable to SLR solutions in terms of both phase and magnitude. The annual geoid change of 1 mm would be expected mostly

  11. Reduced gravity causes larger and lower-angle granular avalanches with less stratification

    NASA Astrophysics Data System (ADS)

    de Vet, S. J.; Kleinhans, M. G.; Markies, H.; in't Veld, A. C.; Postema, F. N.

    2010-12-01

    affected the results: subaqueous avalanches were smaller than subaerial but the lubrication did not decrease the angles of repose. The particle size hardly made a difference, ruling out effects of particle momentum, fluid drag and groundwater dynamics. Consequently, granular avalanches and their strata are larger at reduced g. Stratification patterns of the bidisperse materials were reduced and in some cases disappeared completely at lower gravity. The lower dynamic angle of repose is expected to be preserved more often at planetary surfaces following threshold triggering events such as earthquakes and impacts. Furthermore, sediment processing methods on future European and American Mars landers that depend on the mobilization angle should account for the difference between angles of repose in reduced-gravity.

  12. Fractal aggregates in reduced gravity experiments and numerical simulations to characterize cometary material properties.

    NASA Astrophysics Data System (ADS)

    Lasue, Jeremie; Levasseur-Regourd, Anny-Chantal; Hadamcik, Edith; Botet, Robert; Renard, Jean-Baptiste

    In situ missions have shown that cometary dust particles have low densities and are easily fragmenting aggregates [1]. The linear polarization of the solar light scattered by cometary dust corresponds to bell-shaped (with a small negative branch and a maximum below 30%) phase curves with a quasi-linear increase with the wavelength between 30° and 50° phase angle [2]. Such physical properties of the cometary material are reconciled by a fractal model of cometary dust and comet nuclei as formed by aggregation in reduced gravity as studied by laboratory experiments and numerical simulations. Reduced gravity light scattering experiments: The CODAG-LSU experiment (1999) gave the first indication of the light scattering properties transition between single particles and low dimensions fractal aggregates (D 1.3) [3, 4]. Such studies will be pursued on board the ISS with the ICAPS precursor experiment. The PROGRA2 experiment is designed to study the light scattering properties of particles levitated during dedicated microgravity flights or with ground-based configurations [5]. The material properties are chosen so as to be relevant in the context of cosmic dust from cometary and asteroidal origins. It is especially useful to disentangle the effects of varying albedos of constitutive materials [6], shape and size of constitutive grains [7]. Some of the results are interpreted in terms of fractal aggregates growth. Light scattering numerical simulations Based on numerical simulations and in coherence with the experimental results, a model of cometary coma by a mixture of fractal aggregates of up to 256 sub-micron sized spheroidal grains and compact spheroidal particles is shown to reproduce the polarimetric observations of comets such as 1P/Halley or C/1995 O1 Hale-Bopp [8]. Physical parameters of the size distribution of particles (minimum and maximum size, shape of the size distribution and quantity and location of absorbing and non-absorbing particles) can be retrieved

  13. Complete gravity field of an ellipsoidal prism by Gauss-Legendre quadrature

    NASA Astrophysics Data System (ADS)

    Roussel, C.; Verdun, J.; Cali, J.; Masson, F.

    2015-12-01

    The increasing availability of geophysical models of the Earth's lithosphere and mantle has generated renewed interest in computation of theoretical gravity effects at global and regional scales. At the same time, the increasing availability of gravity gradient anomalies derived from satellite measurements, such as those provided by GOCE satellite, requires mathematical methods that directly model the gravity gradient anomalies in the same reference frame as GOCE gravity gradients. Our main purpose is to interpret these anomalies in terms of source and density distribution. Numerical integration methods for calculating gravity gradient values are generally based on a mass discretization obtained by decomposing the Earth's layers into a finite number of elementary solid bodies. In order to take into account the curvature of the Earth, spherical prisms or `tesseroids' have been established unequivocally as accurate computation tools for determining the gravitational effects of large-scale structures. The question which then arises from, is whether gravity calculation methods using spherical prisms remain valid when factoring in the ellipticity of the Earth. In the paper, we outline a comprehensive method to numerically compute the complete gravity field with the help of the Gauss-Legendre quadrature involving ellipsoidal shaped prisms. The assessment of this new method is conducted by comparison between the gravity gradient values of simple sources obtained by means of numerical and analytical calculations, respectively. A comparison of the gravity gradients obtained from PREM and LITHO1.0 models using spherical- and ellipsoidal-prism-based methods is also presented. Numerical results indicate that the error on gravity gradients, caused by the use of the spherical prism instead of its ellipsoidal counterpart to describe an ellipsoidally shaped Earth, is useful for a joint analysis with those deduced from GOCE satellite measurements. Provided that a suitable scaling

  14. B-V quantization and field-anti-field duality for p-form gauge fields, topological field theories and 2D gravity

    NASA Astrophysics Data System (ADS)

    Baulieu, Laurent

    1996-02-01

    We construct a framework which unifies in pairs the fields and anti-fields of the Batalin and Vilkovisky quantization method. We consider gauge theories of p-forms coupled to Yang-Mills fields. Our algorithm generates many topological models of the Chern-Simons type or of the Donaldson-Witten type. Some of these models can undergo a partial breaking of their topological symmetries. We investigate the properties of 2D gravity in the Batalin and Vilkovisky quantization scheme. We find a structure which satisfies the holomorphic factorization and also properties analogous to those existing in the topological theories of forms. New conformal fields are introduced with their invariant action.

  15. Consolidated science and user requirements for a next generation gravity field mission

    NASA Astrophysics Data System (ADS)

    Pail, Roland; Bingham, Rory; Braitenberg, Carla; Eicker, Annette; Horwath, Martin; Longuevergne, Laurent; Panet, Isabelle; Rolstad-Denby, Cecile; Wouters, Bert

    2015-04-01

    In an internationally coordinated initiative among the main user communities of gravity field products the science and user requirements for a future gravity field mission constellation (beyond GRACE-FO) have been reviewed and defined. This activity was realized as a joint initiative of the IAG (International Association of Geodesy) Sub-Commissions 2.3 and 2.6, the GGOS (Global Geodetic Observing System) Working Group on Satellite Missions, and the IUGG (International Union of Geodesy and Geophysics). After about one year of preparation, in a user workshop that was held in September 2014 consensus among the user communities of hydrology, ocean, cryosphere, solid Earth and atmosphere on consolidated science requirements could be achieved. The consolidation of the user requirements became necessary, because several future gravity field studies have resulted in quite different performance numbers as a target for a future gravity mission (2025+). Based on limited number of mission scenarios which took also technical feasibility into account, a consolidated view on the science requirements among the international user communities was derived, research fields that could not be tackled by current gravity missions have been identified, and the added value (qualitatively and quantitatively) of these scenarios with respect to science return has been evaluated. The resulting document shall form the basis for further programmatic and technological developments. In this contribution, the main results of this initiative will be presented. An overview of the specific requirements of the individual user groups, the consensus on consolidated requirements as well as the new research fields that have been identified during this process will be discussed.

  16. A Novel Method Of Gradient Forming and Fluid Manipulation in Reduced Gravity Environments

    NASA Technical Reports Server (NTRS)

    Ramachandran N.; Leslie, F.

    1999-01-01

    The use of magnetic fields to control the motion and position of non-conducting liquids has received growing interest in recent times. The possibility of using the forces exerted by a nonuniform magnetic field on a ferrofluid to not only achieve fluid manipulation but also to actively control fluid motion makes it an attractive candidate for applications such as heat transfer in space systems. Terrestrial heat transfer equipment often relies on the normal gravitational force to hold liquid in a desired position or to provide a buoyant force to enhance the heat transfer rate. The residual gravitational force present in a space environment may no longer serve these useful functions and other forces, such as surface tension, can play a significant role in determining heat transfer rates. Although typically overwhelmed by gravitational forces in terrestrial applications, the body force induced in a ferrofluid by a nonuniform magnetic field can help to achieve these objectives in a microgravity environment. This paper will address the fluid manipulation aspect and will comprise of results from model fluid experiments and numerical modeling of the problem. Results from a novel method of forming concentration gradients that are applicable to low gravity applications will be presented. The ground based experiments are specifically tailored to demonstrate the magnetic manipulation capability of a ferrofluid and show that gravitational effects can be countered in carefully designed systems. The development of governing equations for the system will be presented along with a sampling of numerical results.

  17. A SEA FLOOR GRAVITY SURVEY OF THE SLEIPNER FIELD TO MONITOR CO2 MIGRATION

    SciTech Connect

    Mark Zumberge; Scott Nooner; Glenn Sasagawa

    2004-05-19

    Since 1996, excess CO{sub 2} from the Sleipner natural gas field has been sequestered and injected underground into a porous saline aquifer 1000 m below the seafloor. In 2002, we carried out a high precision micro-gravity survey on the seafloor in order to monitor the injected CO{sub 2}. A repeatability of 5 {micro}Gal in the station averages was observed. This is considerably better than pre-survey expectations. These data will serve as the baseline for time-lapse gravity monitoring of the Sleipner CO{sub 2} injection site. A repeat survey has been scheduled for the summer of 2005. This report covers 9/19/03 to 3/18/04. During this time, significant advancement in the 3-D gravity forward modeling code was made. Testing of the numerical accuracy of the code was undertaken using both a sheet of mass and a frustum of a cone for test cases. These were chosen because of our ability to do an analytic calculation of gravity for comparison. Tests were also done to determine the feasibility of using point mass approximations rather than cuboids for the forward modeling code. After determining that the point mass approximation is sufficient (and over six times faster computationally), several CO{sub 2} models were constructed and the time-lapse gravity signal was calculated from each. From these models, we expect to see a gravity change ranging from 3-16 {micro}Gal/year, depending on reservoir conditions and CO{sub 2} geometry. While more detailed modeling needs to be completed, these initial results show that we may be able to learn a great deal about the state of the CO{sub 2} from the time-lapse gravity results. Also, in December of 2003, we presented at the annual AGU meeting in San Francisco.

  18. Transport properties of droplet clusters in gravity-free fields

    NASA Technical Reports Server (NTRS)

    Brenner, Howard

    1986-01-01

    Clusters of liquid droplets are suspended in an atmosphere of saturated vapor and are subjected to an external force field. This system can be modeled as a continuum whose macroscopic properties may be determined by applying the generalized theory of Taylor dispersion.

  19. On the covariant formalism of the effective field theory of gravity and leading order corrections

    NASA Astrophysics Data System (ADS)

    Codello, Alessandro; Jain, Rajeev Kumar

    2016-11-01

    We construct the covariant effective field theory of gravity as an expansion in inverse powers of the Planck mass, identifying the leading and next-to-leading quantum corrections. We determine the form of the effective action for the cases of pure gravity with cosmological constant as well as gravity coupled to matter. By means of heat kernel methods we renormalize and compute the leading quantum corrections to quadratic order in a curvature expansion. The final effective action in our covariant formalism is generally non-local and can be readily used to understand the phenomenology on different spacetimes. In particular, we point out that on curved backgrounds the observable leading quantum gravitational effects are less suppressed than on Minkowski spacetime.

  20. Satellite orbit determination and gravity field recovery from satellite-to-satellite tracking

    NASA Astrophysics Data System (ADS)

    Wakker, K. F.; Ambrosius, B. A. C.; Leenman, H.

    1989-07-01

    Studies on satellite-to-satellite tracking (SST) with POPSAT (a geodetic satellite concept) and a ERS-class (Earth observation) satellite, a Satellite-to-Satellite Tracking (SST) gravity mission, and precise gravity field determination methods and mission requirements are reported. The first two studies primarily address the application of SST between the high altitude POPSAT and an ERS-class or GRM (Geopotential Research Mission) satellite to the orbit determination of the latter two satellites. Activities focussed on the determination of the tracking coverage of the lower altitude satellite by ground based tracking systems and by POPSAT, orbit determination error analysis and the determination of the surface forces acting on GRM. The third study surveys principles of SST, uncertainties of existing drag models, effects of direct luni-solar attraction and tides on orbit and the gravity gradient observable. Detailed ARISTOTELES (which replaced POPSAT) orbit determination error analyses were performed for various ground based tracking networks.

  1. Towards consolidated science requirements for a next generation gravity field mission

    NASA Astrophysics Data System (ADS)

    Pail, R.; Braitenberg, C. F.; Eicker, A.; Floberghagen, R.; Forsberg, R.; Haagmans, R.; Horwath, M.; Kusche, J.; Labrecque, J. L.; Panet, I.; Rolstad Denby, C.; Schröter, J.; Wouters, B.

    2013-12-01

    As a joint initiative of the IAG (International Association of Geodesy) Sub-Commissions 2.3 and 2.6, the GGOS (Global Geodetic Observing System) Working Group on Satellite Missions, and the IUGG (International Union of Geodesy and Geophysics), we target on the consolidation of science requirements for a next generation gravity field mission (beyond GRACE-FO). Several future gravity field studies have resulted in quite different performance numbers as a target for a future gravity mission (2025+), and a consolidation within the different user groups is required, under the boundary condition of the technical feasibility of the mission concepts and before the background of double- and multi-pair formations. Therefore, this initiative shall concentrate on the consolidation of the science requirements, and should result in a document that can be used as a solid basis for further programmatic and technological developments. Based on limited number of realistic mission scenarios, a consolidated view on the science requirements within the international user communities shall be derived, research fields that could not be tackled by current gravity missions shall be identified, and the added value (qualitatively and quantitatively) of these scenarios with respect to science return shall be evaluated. The final science requirements shall be agreed upon during a workshop which is planned for the second half of 2014. In this contribution, the mission scenarios will be discussed and first results of the consolidation process will be presented.

  2. A Sea Floor Gravity Survey of the Sleipner Field to Monitor CO2 Migration

    SciTech Connect

    Mark Zumberge; Scott Nooner

    2005-12-13

    Since 1996, excess CO{sub 2} from the Sleipner natural gas field has been sequestered and injected underground into a porous saline aquifer 1000 m below the seafloor. In 2002, we carried out a high precision micro-gravity survey on the seafloor in order to monitor the injected CO{sub 2}. A repeatability of 4.3 {micro}Gal in the station averages was observed. This is considerably better than pre-survey expectations. These data will serve as the baseline for time-lapse gravity monitoring of the Sleipner CO{sub 2} injection site. This report covers 3/19/05 to 9/18/05. During this time, gravity and pressure modeling were completed and graduate student Scott Nooner finished his Ph.D. dissertation, of which this work is a major part. Three new ROVDOG (Remotely Operated Vehicle deployable Deep Ocean Gravimeter) instruments were also completed with funding from Statoil. The primary changes are increased instrument precision and increased data sampling rate. A second gravity survey was carried out from August to September of 2005, allowing us to begin examining the time-lapse gravity changes caused by the injection of CO{sub 2} into the underground aquifer, known as the Utsira formation. Preliminary processing indicates a repeatability of 3.6 {micro}Gal, comparable to the baseline survey.

  3. Gravity waves observation of wind field in stratosphere based on a Rayleigh Doppler lidar.

    PubMed

    Zhao, Ruocan; Dou, Xiankang; Sun, Dongsong; Xue, Xianghui; Zheng, Jun; Han, Yuli; Chen, Tingdi; Wang, Guocheng; Zhou, Yingjie

    2016-03-21

    Simultaneous wind and temperature measurements in stratosphere with high time-spatial resolution for gravity waves study are scarce. In this paper we perform wind field gravity waves cases in the stratosphere observed by a mobile Rayleigh Doppler lidar. This lidar system with both wind and temperature measurements were implemented for atmosphere gravity waves research in the altitude region 15-60 km. Observations were carried out for two periods of time: 3 months started from November 4, 2014 in Xinzhou, China (38.425°N,112.729°E) and 2 months started from October 7, 2015 in Jiuquan, China (39.741°N, 98.495°E) . The mesoscale fluctuations of the horizontal wind velocity and the two dimensional spectra analysis of these fluctuations show the presence of dominant oscillatory modes with wavelength of 4-14 km and period of around 10 hours in several cases. The simultaneous temperature observations make it possible to identify gravity wave cases from the relationships between different variables: temperature and horizontal wind. The observed cases demonstrate the Rayleigh Doppler Lidar's capacity to study gravity waves.

  4. Analysis of Hydrodynamic (Landau) Instability in Liquid-Propellant Combustion at Normal and Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Margolis, Stephen B.

    1997-01-01

    which steady, planar burning is unstable to nonsteady, and/or nonplanar (cellular) modes of burning. These instabilities thus lead to a number of interesting phenomena, such as the sloshing type of waves that have been observed in mixtures of HAN and TriEthanolAmmonium Nitrate (TEAN) with water. Although the Froude number was treated as an O(1) quantity in these studies, the limit of small inverse Froude number corresponding to the microgravity regime is increasingly of interest and can be treated explicitly, leading to various limiting forms of the models, the neutral stability boundaries, and, ultimately, the evolution equations that govern the nonlinear dynamics of the propagating reaction front. In the present work, we formally exploit this limiting parameter regime to compare some of the features of hydrodynamic instability of liquid-propellant combustion at reduced gravity with the same phenomenon at normal gravity.

  5. Perturbations of the Richardson number field by gravity waves

    NASA Technical Reports Server (NTRS)

    Wurtele, M. G.; Sharman, R. D.

    1985-01-01

    An analytic solution is presented for a stratified fluid of arbitrary constant Richardson number. By computer aided analysis the perturbation fields, including that of the Richardson number can be calculated. The results of the linear analytic model were compared with nonlinear simulations, leading to the following conclusions: (1) the perturbations in the Richardson number field, when small, are produced primarily by the perturbations of the shear; (2) perturbations of in the Richardson number field, even when small, are not symmetric, the increase being significantly larger than the decrease (the linear analytic solution and the nonlinear simulations both confirm this result); (3) as the perturbations grow, this asymmetry increases, but more so in the nonlinear simulations than in the linear analysis; (4) for large perturbations of the shear flow, the static stability, as represented by N2, is the dominating mechanism, becoming zero or negative, and producing convective overturning; and (5) the convectional measure of linearity in lee wave theory, NH/U, is no longer the critical parameter (it is suggested that (H/u sub 0) (du sub 0/dz) takes on this role in a shearing flow).

  6. Expression of Multiple Stress Response Genes by Escherichia Coli Under Modeled Reduced Gravity

    NASA Astrophysics Data System (ADS)

    Vukanti, Raja; Leff, Laura G.

    2012-09-01

    Bacteria, in response to changes in their environment, quickly regulate gene expression; hence, transcriptional profiling has been widely used to characterize bacterial responses to various environmental conditions. In this study, we used clinorotation to grow bacteria under low-sedimentation, -shear, and -turbulence conditions (referred to as modeled reduced gravity, MRG, below) which profoundly impacts bacteria including causing elevated resistance to multiple environmental stresses. To explore potential mechanisms behind the multiple stress resistance response to MRG, we assessed expression levels of E. coli genes, using reverse transcription followed by real-time-PCR, involved in specific stress and general stress responses under MRG and normal gravity (NG) in nutritionally rich and minimal media, and during exponential and stationary phases of growth. In addition, growth rates as well as physico-chemical parameters of culture media were examined. Over-expression of stress response genes (csiD, cstA, katE, otsA, treA) occurred under MRG compared to NG controls, but only during the later stages of growth in rich medium demonstrating that bacterial response to MRG varies with growth-medium and -phase. At stationary phase in rich medium under MRG and NG, E. coli had similar growth rates (based on rRNA-leader abundance) and yields (cell mass and numbers); this coupled, with observations of simultaneous induction of starvation response genes (csiD and cstA) suggests the multiple stress resistance phenotype under MRG could be attributable to microzones of nutrient unavailability around cells. Overall, in rich medium, the response resembled the general stress response (GSR) that E. coli develops during stationary phase of growth. Along these same lines, induction of genes coding for GSR was reversed by improving nutritional conditions under MRG. The reversal of GSR under MRG suggests that the multiple stress response exhibited is not specific to MRG but may result

  7. Gravity and Magnetics in Field and Laboratory Courses of Geophysical Engineering - A View From the Students

    NASA Astrophysics Data System (ADS)

    Santiago, L.; Guzman, A.

    2007-05-01

    We present a summary and comments on the laboratory and field course in potential field methods in Geophysical Engineering at UNAM. The one-semester course and laboratory and field exercises are an integral part of the curricula, and we comment on the education-learning processes from the viewpoint of the students. The field exercises are designed to assist students to gain empirical knowledge about field methodologies. The experience also allows conduct work as a team, permitting a greater understanding of the professional activities in exploration of natural resources. Access to other educational experiences and resources in universities and industry, including international opportunities are thought highly beneficial. The field training area is located in central Mexico in the Altiplano. The study area is characterized by Upper Cretaceous sedimentary formations, mainly limestones and lutites within the unconformity of El Doctor and Soyatal Formations. Area is located north of Cadereyta, State of Queretaro For data acquisition, profiles oriented E-W and N-S were used. In the neighborhood of Agua Salada bridge, Bouguer gravity values increase showing local maxima. Magnetics were used to locate discordant lithological contact. Gravity and magnetic measurements were taken throughout presumed contact so that through data processing a 3-D model could be obtained. Main purpose of exercise is practical, students compare gravity and magnetic responses with geologic situation characterizing this area. On the basis of field-collected data and mapping, processing was made in the laboratory, including interpretation, through standard algorithms of 2-D modeling. Our interpretations correlate well with surface geology, photographs of outcrops, and stratigraphy. Gravity and magnetics give us a 3-D image of the subsurface and stratigraphy of study area, including structural conditions. We could observe the presence of associated magnetic dipoles at unconformity plane

  8. Experimental study of void formation during aluminum solidification in reduced gravity. Ph.D. Thesis - Toledo Univ.

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis Paul, III

    1993-01-01

    Void formation due to volumetric shrinkage and liquid/vapor reorientation during aluminum solidification was observed in real time by using a radiographic viewing system in normal and reduced gravity. An end-chill directional solidification furnace with water quench was designed and constructed to solidify aluminum samples during the approximately 16 sec of reduced gravity (+/-0.02g) achieved by flying an aircraft through a parabolic trajectory. In the first series of tests the aluminum was contained in a vacuum sealed, pyrolytic boron nitride crucible. An ullage space was present during each test. Void formation was recorded for two cases: a nonwetting system, and a wetting system where wetting occurred between the aluminum and the crucible lid. The void formation in the nonwetting case was similar in normal and reduced gravity, with a single vapor cavity forming at the top of the crucible. In the wetting case during reduced gravity surface tension caused two voids to form in the top corners of the crucible, but during normal gravity only one large void formed across the top. In the second series of tests the aluminum was contained in a pyrolytic boron nitride crucible that was placed in a stainless steel container and sealed in an environment of argon plus 4 percent hydrogen. An ullage space was present during each test. Void formation was recorded for two cases: a nonwetting system, and a wetting system where wetting occurred between the aluminum and one side wall and the lid. The void for nation in the nonwetting case was similar in normal and reduced gravity, with a single vapor cavity forming at the top of the crucible, although the meniscus became more convex in reduced gravity. In the wetting case the aluminum did not climb up the corners in 1g, and one large symmetric void resulted at the top when the aluminum had solidified. In the wetting case during reduced gravity the molten aluminum was drawn up the wetted wall and partially across the lid by a

  9. Evaluation of the third- and fourth-generation GOCE Earth gravity field models with Australian terrestrial gravity data in spherical harmonics

    NASA Astrophysics Data System (ADS)

    Rexer, Moritz; Hirt, Christian; Pail, Roland; Claessens, Sten

    2014-04-01

    In March 2013, the fourth generation of European Space Agency's (ESA) global gravity field models, DIR4 (Bruinsma et al. in Proceedings of the ESA living planet symposium, 28 June-2 July, Bergen, ESA, Publication SP-686, 2010b) and TIM4 (Migliaccio et al. in Proceedings of the ESA living planet symposium, 28 June-2 July, Bergen, ESA, Publication SP-686, 2010), generated from the Gravity field and steady-state Ocean Circulation Explorer (GOCE) gravity observation satellite was released. We evaluate the models using an independent ground truth data set of gravity anomalies over Australia. Combined with Gravity Recovery and Climate Experiment (GRACE) satellite gravity, a new gravity model is obtained that is used to perform comparisons with GOCE models in spherical harmonics. Over Australia, the new gravity model proves to have significantly higher accuracy in the degrees below 120 as compared to EGM2008 and seems to be at least comparable to the accuracy of this model between degree 150 and degree 260. Comparisons in terms of residual quasi-geoid heights, gravity disturbances, and radial gravity gradients evaluated on the ellipsoid and at approximate GOCE mean satellite altitude ( km) show both fourth generation models to improve significantly w.r.t. their predecessors. Relatively, we find a root-mean-square improvement of 39 % for the DIR4 and 23 % for TIM4 over the respective third release models at a spatial scale of 100 km (degree 200). In terms of absolute errors, TIM4 is found to perform slightly better in the bands from degree 120 up to degree 160 and DIR4 is found to perform slightly better than TIM4 from degree 170 up to degree 250. Our analyses cannot confirm the DIR4 formal error of 1 cm geoid height (0.35 mGal in terms of gravity) at degree 200. The formal errors of TIM4, with 3.2 cm geoid height (0.9 mGal in terms of gravity) at degree 200, seem to be realistic. Due to combination with GRACE and SLR data, the DIR models, at satellite altitude, clearly

  10. Representation of the Gravity Field of Irregularly Shaped Bodies

    NASA Astrophysics Data System (ADS)

    Reimond, Stefan; Baur, Oliver

    2015-04-01

    Exploratory space missions to small bodies in our solar system have gained importance over the last few decades. The well-renowned mission Rosetta set a milestone in space science history when it successfully lowered its mini-lab Philae onto the surface of Comet 67P/Churyumov-Gerasimenko in November 2014. Knowledge of the gravitational field of a small body, e.g. a comet or asteroid, is crucial in order to study a spacecraft's motion in its environment and to infer geophysical properties. Traditionally, the gravitational field of a body is modeled by means of spherical harmonics. For bodies of near-spherical shape (such as the Earth), this is an adequate method, because the reference figure, i.e. a sphere, snugly fits the body. For irregularly shaped bodies, however, the adoption of spherical harmonics might be a sub-optimal choice. As an alternative, oblate or prolate spheroidal harmonics (OH or PH, reference figure is an ellipsoid of revolution) or ellipsoidal harmonics (EH, reference figure is a tri-axial ellipsoid) should be considered. The latter will in general be the best choice in terms of aptness of the reference figure. The downside of EH, however, lies in the considerably increased (numerical) complexity of the computation of the base functions, i.e., the Lamé functions of the first and second kind. OH or PH represent a promising path down the middle. Elongated bodies (such as Asteroid 433 Eros) are often similarly well approximated by a prolate spheroid as by the corresponding tri-axial ellipsoid. Contracted bodies, on the other hand, can be described accordingly well by means of an oblate spheroid. We compare the SH, OH, PH and EH gravitational field parameterizations for different celestial bodies, including Rosetta's target comet 67P. The tasks are as follows: Based on the polyhedral representation of a body's shape model, the gravitational potential and acceleration vector is computed for evenly or irregularly distributed points inside or outside

  11. Micro-gravity: current distributions creating a uniform force field

    NASA Astrophysics Data System (ADS)

    Vincent-Viry, O.; Mailfert, A.; Colteu, A.; Dael, A.; Gourdin, C.; Quettier, L.

    2001-02-01

    This paper presents two structures of superconducting coils able to give satisfactory solutions to the problem of generation of uniform field of high magnetic forces. The first structure is modeled by the use of purely surface current densities, whereas the second one can be described with volume current densities. Both of these structures proceed from the study of a particular expression of the complex magnetic potential introduced for structures with two-dimensional geometry. This work is carried out in a research collaboration between the GREEN and the DSM-DAPNIA department of the CEA Saclay.

  12. Probing the Interior Dynamics of Jupiter and Saturn with Gravity and Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Cao, H.; Stevenson, D. J.

    2015-12-01

    The inner working of solar system gas giant planets remain elusive after decades of exploration. One lasting debate concerns the nature of east-west zonal flows observed on the cloud level of these planets with amplitude on the order of 100 m/s: an observational fact is yet to be established about whether these flows are shallow atmospheric dynamics or surface expression of deep interior dynamics. There is a good chance that such an observational fact can be established within the next few years, given the upcoming gravity and magnetic field measurements to be carried out by the Juno mission and the Cassini Grand Finale. In this presentation, I will first describe a critical assessment of the applicability of the thermal wind equation (TWE) in calculating the gravity field associated with deep zonal flows. The TWE, which is a local diagnostic relation, captures the local density variations associated with the zonal flows while neglects the global shape change and density variations with non-local origins. Our analysis shows that the global corrections to the high degree gravity moments are small (less than a few tens of percent). Our analysis also shows that the applicability of the TWE in calculating the gravity moments does depend crucially on retaining the non-sphericity of the background density and gravity. Only when the background non-sphericity of the planet is taken into account in the calculation, the thermal wind equation (TWE) makes accurate enough prediction for the high-degree gravity moments associated with deep zonal flows (with errors less than a few tens of percent). I will then turn to the magnetic signals associated with deep zonal flows. Using mean field dynamo theory (MFDT), we show that detectable magnetic signals are expected: in the spatial domain, poloidal magnetic fields spatially correlated with deep zonal flows are expected; in the temporal domain, periodic oscillations of the poloidal magnetic field are expected. The period of the

  13. Imaging and Analysis of Void-defects in Solder Joints Formed in Reduced Gravity using High-Resolution Computed Tomography

    NASA Technical Reports Server (NTRS)

    Easton, John W.; Struk, Peter M.; Rotella, Anthony

    2008-01-01

    As a part of efforts to develop an electronics repair capability for long duration space missions, techniques and materials for soldering components on a circuit board in reduced gravity must be developed. This paper presents results from testing solder joint formation in low gravity on a NASA Reduced Gravity Research Aircraft. The results presented include joints formed using eutectic tin-lead solder and one of the following fluxes: (1) a no-clean flux core, (2) a rosin flux core, and (3) a solid solder wire with external liquid no-clean flux. The solder joints are analyzed with a computed tomography (CT) technique which imaged the interior of the entire solder joint. This replaced an earlier technique that required the solder joint to be destructively ground down revealing a single plane which was subsequently analyzed. The CT analysis technique is described and results presented with implications for future testing as well as implications for the overall electronics repair effort discussed.

  14. The model of a collisionless current sheet in a homogeneous gravity field

    NASA Astrophysics Data System (ADS)

    Veselovsky, Igor S.; Kislov, Roman A.; Malova, Helmi V.; Khabarova, Olga V.

    2016-10-01

    The self-consistent 1D kinetic Harris-like model of a collisionless current sheet is developed for the case of the current sheet experiencing the impact of an external uniform gravity field. The ambipolar Pannekoek-Rosseland electric field appears in the system as a result of the additional drift motion of ions and electrons. This produces separation of charges, which is responsible for corresponding changes of the current sheet form. The presence of gravitation leads to formation of asymmetric distributions of the magnetic field as well as the plasma and the current density changes. Our estimations show that gravity-forced disruptions of the current sheet profile may occur in the Mercurial magnetosphere and, most probable, in the Io plasma torus near the Jupiter. Also, the model can be applied to magnetospheres of exoplanets.

  15. Horizon thermodynamics and gravitational field equations in Horava-Lifshitz gravity

    SciTech Connect

    Cai Ronggen; Ohta, Nobuyoshi

    2010-04-15

    We explore the relationship between the first law of thermodynamics and gravitational field equation at a static, spherically symmetric black hole horizon in Horava-Lifshitz theory with/without detailed balance. It turns out that as in the cases of Einstein gravity and Lovelock gravity, the gravitational field equation can be cast to a form of the first law of thermodynamics at the black hole horizon. This way we obtain the expressions for entropy and mass in terms of black hole horizon, consistent with those from other approaches. We also define a generalized Misner-Sharp energy for static, spherically symmetric spacetimes in Horava-Lifshitz theory. The generalized Misner-Sharp energy is conserved in the case without matter field, and its variation gives the first law of black hole thermodynamics at the black hole horizon.

  16. Incorporation of a priori gravity field information in satellite orbit determination using bin parameters

    NASA Technical Reports Server (NTRS)

    Wu, Jiun-Tsong; Wu, Sien-Chong

    1992-01-01

    A method to determine satellite orbits using tracking data and a priori gravitational field is described. The a priori constraint on the orbit dynamics is determined by the covariance matrix of the spherical harmonic coefficients for the gravity model, so that the optimal combination of the measurements and gravitational field is achieved. A set of bin parameters is introduced to represent the perturbation of the gravitational field on the position of the satellite orbit. The covariance matrix of a conventional gravity model is transformed into that for the bin parameters by the variational partial derivatives. The covariance matrices of the bin parameters and the epoch state are combined to form the covariance matrix of the satellite positions at the measurement times. The combined matrix is used as the a priori information to estimate the satellite positions with measurements.

  17. Nonequilibrium fluctuations from a nematic under a thermal gradient and a gravity field*. II. Rayleigh scattering

    NASA Astrophysics Data System (ADS)

    Camacho, Jorge F.; Rodríguez, Rosalío F.

    2017-02-01

    The fluctuating hydrodynamic treatment developed in the previous article for a nematic liquid crystal under the influence of a thermal gradient α and a uniform gravity field g, is used to calculate its Rayleigh light scattering spectrum. We find that the dissipative thermal gradient force enhances the Rayleigh-line intensity which varies as k -4 with the fluctuations of the wave number k. The Rayleigh line consists of three central Lorentzians, two of which are determined by the visco-heat modes coupling the entropy and director fluctuations, which is a pure non-equilibrium effect. The third Lorentzian is due only to director fluctuations. We find that the former peaks contain the Rayleigh wings owing to the orientational fluctuations of the aniosotropic molecules. It is also shown that the obtained spectrum reduces to the known equilibrium spectrum of a nematic and to that of a simple fluid. For the particular case in which the decay rates are diffusive, we calculate and plot the amplitudes of non-equilibrium fluctuations of the dynamic structure factor as a function of | α|2/ k 4, and also, the intermediate function in the equilibrium and non-equilibrium states.

  18. Nonequilibrium fluctuations from a nematic under a thermal gradient and a gravity field. I. Hydrodynamic modes

    NASA Astrophysics Data System (ADS)

    Camacho, Jorge F.; Rodríguez, Rosalío F.

    2017-02-01

    We use a fluctuating hydrodynamics ( FH) approach to study the fluctuations of the hydrodynamic variables of a thermotropic nematic liquid crystal ( NLC)in a nonequilibrium steady state ( NESS). This NESS is produced by an externally imposed temperature gradient and a uniform gravity field. We calculate analytically the equilibrium and nonequilibrium seven modes of the NLC in this NESS. These modes consist of a pair of sound modes, one orientation mode of the director and two visco-heat modes formed by the coupling of the shear and thermal modes. We find that the nonequilibrium effects produced by the external gradients only affect the longitudinal modes. The analytic expressions for the visco-heat modes show explicitly how the heat and shear modes of the NLC are coupled. We show that they may become propagative, a feature that also occurs in the simple fluid and suggests the realization of new experiments. We show that in equilibrium and in the isotropic limit of the NLC, our modes reduce to well-known results in the literature. For the NESS considered we point out the differences between our our modes and those reported by other authors. We close the paper by proposing the calculation of other physical quantities that lend themselves to a more direct comparison with possible experiments for this system.

  19. New Gravity and Magnetic Maps of the San Juan Volcanic Field, Southwestern Colorado

    NASA Astrophysics Data System (ADS)

    Drenth, B. J.; Keller, G. R.

    2004-12-01

    A very large simple Bouguer anomaly gravity low, about 100 km by 150 km in map view and reaching values less than -350 mGals, lies over the Oligocene San Juan volcanic field in southwestern Colorado. Roughly 15-18 different calderas represent the eruptive sources of the andesitic-rhyolitic rocks of this large volcanic field, and most are located within two swarms: the Silverton-Lake City (western) caldera complex, and the central complex that includes the Creede, Bachelor, and La Garita calderas. The prominent gravity low over the region has been previously interpreted to be due to the presence a low-density granitic batholith that underlies the volcanic field in the upper crust. However, there are complicating issues in this interpretation. First, many of the volcanic rocks are notably less dense than the Bouguer reduction density of 2.67 g/cc used for processing of the gravity data, meaning that those rocks exposed at the surface could account for a significant portion of the gravity low. Second, the extreme topographic relief in the region requires that terrain corrections (always positive algebraically) be applied. To meet these needs, a new complete Bouguer gravity map of the volcanic field has been prepared using the new traditionally terrain corrected U. S. gravity database. Modeling these data show that the caldera fill is a major contributor to the gravity low but that an upper crustal batholith is also required to satisfy the observed data. In addition, a second map is being prepared. It is derived by applying a new complex Bouguer correction that takes geologically reasonable surface densities and digital elevation data into account, and as a result will provide a much clearer picture of the nature of the subsurface batholith. A new aeromagnetic map of the region has also been completed. This represents a significant improvement over previous merging efforts in southwestern Colorado, as numerous and previously under-utilized high-resolution aeromagnetic

  20. An Investigation of Fully Modulated, Turbulent Diffusion Flames in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Hermanson, J. C.; Johari, H.; Usowicz, J. E.; Sangras, R.; Stocker, D. P.; Hegde, U. G.; Nagashima, T.; Obata, S.

    2001-01-01

    Pulsed combustion appears to have the potential to provide for rapid fuel/air mixing, compact and economical combustors, and reduced exhaust emissions. The objective of this Flight-Definition experiment (PuFF, for Pulsed-Fully Flames) is to increase the fundamental understanding of the fuel/air mixing and combustion behavior of pulsed, turbulent diffusion flames by conducting experiments in microgravity. In this research the fuel jet is fully modulated (i.e., completely shut off between pulses) by an externally controlled valve system. This gives rise to drastic modification of the combustion and flow characteristics of flames, leading to enhanced fuel/air mixing mechanisms not operative for the case of acoustically excited or partially-modulated jets. The fully-modulated injection approach also simplifies the combustion process by avoiding the acoustic forcing generally present in pulsed combustors. Relatively little is known about the behavior of turbulent flames in reduced-gravity conditions, even in the absence of pulsing. Fundamental issues addressed in this experiment include the impact of buoyancy on the fuel/air mixing and combustion characteristics of fully-modulated flames. It is also important for the planned space experiments to establish the effects of confinement and oxidizer co-flow on these flames.

  1. Dissolved gas effects on thermocapillary convection during boiling in reduced gravity environments

    NASA Astrophysics Data System (ADS)

    Henry, C. D.; Kim, J.; McQuillen, J.

    2006-08-01

    The mechanisms by which thermocapillary convection arises during boiling of nominally pure fluids in low- g environments are currently not known. It has recently been suggested that small amounts of dissolved gas within the bulk liquid can accumulate within the vapor bubble, forming localized concentration gradients that results in a temperature gradient to form along the liquid-vapor interface that drives thermocapillary convection. This hypothesis was tested by boiling > 99.3% pure n-perfluorohexane with and without noncondensible gas in a low- g environment using a 7.0 × 7.0 mm2 microheater array to measure time and space resolved heat transfer at various wall superheats. The thermocapillary convection around the primary bubble that formed in the gassy fluid was found to be much weaker than in the degassed fluid, and the primary bubble diameter was much larger in the gassy fluid due to the accumulation of noncondensible gas within the bubble. The results suggest that the accumulation of noncondensible gas in the bubble can result in temperature variations along the interface but due to the increased vapor/gas bubble size, the driving thermocapillary temperature gradient along the interface is significantly reduced and result in much weaker thermocapillary flow. The highest CHF values in a reduced gravity environment (19 W/cm2) occurred when the fluid was highly subcooled and degassed.

  2. Effect of Gravity on the Near Field Flow Structure of Helium Jet in Air

    NASA Technical Reports Server (NTRS)

    Agrawal, Ajay K.; Parthasarathy, Ramkumar; Griffin, DeVon

    2002-01-01

    Experiments have shown that a low-density jet injected into a high-density surrounding medium undergoes periodic oscillations in the near field. Although the flow oscillations in these jets at Richardson numbers about unity are attributed to the buoyancy, the direct physical evidence has not been acquired in the experiments. If the instability were indeed caused by buoyancy, the near-field flow structure would undergo drastic changes upon removal of gravity in the microgravity environment. The present study was conducted to investigate this effect by simulating microgravity environment in the 2.2-second drop tower at the NASA Glenn Research Center. The non-intrusive, rainbow schlieren deflectometry technique was used for quantitative measurements of helium concentrations in buoyant and non-buoyant jets. Results in a steady jet show that the radial growth of the jet shear layer in Earth gravity is hindered by the buoyant acceleration. The jet in microgravity was 30 to 70 percent wider than that in Earth gravity. The microgravity jet showed typical growth of a constant density jet shear layer. In case of a self-excited helium jet in Earth gravity, the flow oscillations continued as the jet flow adjusted to microgravity conditions in the drop tower. The flow oscillations were however not present at the end of the drop when steady microgravity conditions were reached.

  3. On the stability conditions for theories of modified gravity in the presence of matter fields

    NASA Astrophysics Data System (ADS)

    De Felice, Antonio; Frusciante, Noemi; Papadomanolakis, Georgios

    2017-03-01

    We present a thorough stability analysis of modified gravity theories in the presence of matter fields. We use the Effective Field Theory framework for Dark Energy and Modified Gravity to retain a general approach for the gravity sector and a Sorkin-Schutz action for the matter one. Then, we work out the proper viability conditions to guarantee in the scalar sector the absence of ghosts, gradient and tachyonic instabilities. The absence of ghosts can be achieved by demanding a positive kinetic matrix, while the lack of a gradient instability is ensured by imposing a positive speed of propagation for all the scalar modes. In case of tachyonic instability, the mass eigenvalues have been studied and we work out the appropriate expressions. For the latter, an instability occurs only when the negative mass eigenvalue is much larger, in absolute value, than the Hubble parameter. We discuss the results for the minimally coupled quintessence model showing for a particular set of parameters two typical behaviours which in turn lead to a stable and an unstable configuration. Moreover, we find that the speeds of propagation of the scalar modes strongly depend on matter densities, for the beyond Horndeski theories. Our findings can be directly employed when testing modified gravity theories as they allow to identify the correct viability space.

  4. The Determination of Jupiter and Saturn Gravity Fields from Radio Tracking of the Juno and Cassini Spacecraft. (Invited)

    NASA Astrophysics Data System (ADS)

    Iess, L.; Finocchiaro, S.; Racioppa, P.

    2013-12-01

    Between 2016 and 2017 the Juno and Cassini spacecraft will be used as test masses to carry out gravity measurements at Jupiter and Saturn. The gravity determinations will provide constraints on the interior structures of the two gas giants, in particular the core masses and depths of the zonal winds. In a remarkable coincidence, this information will be available almost at the same time for the two largest planets of the solar system, thus allowing comparative analyses. Both spacecraft will be inserted into similar, high eccentricity orbits with low pericenter altitudes (about 5000 km for Juno and 4000 km for Cassini). During pericenter passages coherent, 2-way radio links will enable precise measurements of the spacecraft range rate (to about 0.004 mm/s at 60 s integration times for Juno, and a factor of 4-10 worse for Cassini). The better accuracy of Juno's measurements is due to the use of a Ka-band (32.5-34.0 GHz) radio link enabled by an onboard frequency translator (provided as a science payload by the Italian Space Agency). However, the benefits of Juno's better measurement accuracy are limited by the unfavorable (nearly face-on) orientation of the orbital plane. The gravity field recovery has been assessed through extensive and realistic numerical simulations. Using conservative upper limits for the magnitude of tesseral harmonics, our results indicate that the l=12 zonal harmonic coefficient can be retrieved with an accuracy of about 8x10-8 for Juno and 3x10-7 for Cassini. (l=12 is about the degree at which the gravity perturbations from zonal winds become comparable to the estimation uncertainties.) The odd zonal field, especially important for Jupiter, will also be well determined (to 7x10-10 and 3x10-9 for J3, to 3x10-8 and 1x10-7 for J9, respectively for Juno and Cassini). Cassini's estimates suffer from the reduced coverage at pericenter due to ring blockage. Surface gravity (defined as the gravity acceleration at a reference spherical surface) will

  5. modern global models of the earth's gravity field: analysis of their accuracy and resolution

    NASA Astrophysics Data System (ADS)

    Ganagina, Irina; Karpik, Alexander; Kanushin, Vadim; Goldobin, Denis; Kosareva, Alexandra; Kosarev, Nikolay; Mazurova, Elena

    2015-04-01

    Introduction: Accurate knowledge of the fine structure of the Earth's gravity field extends opportunities in geodynamic problem-solving and high-precision navigation. In the course of our investigations have been analyzed the resolution and accuracy of 33 modern global models of the Earth's gravity field and among them 23 combined models and 10 satellite models obtained by the results of GOCE, GRACE, and CHAMP satellite gravity mission. The Earth's geopotential model data in terms of normalized spherical harmonic coefficients were taken from the web-site of the International Centre for Global Earth Models (ICGEM) in Potsdam. Theory: Accuracy and resolution estimation of global Earth's gravity field models is based on the analysis of degree variances of geopotential coefficients and their errors. During investigations for analyzing models were obtained dependences of approximation errors for gravity anomalies on the spherical harmonic expansion of the geopotential, relative errors of geopotential's spherical harmonic coefficients, degree variances for geopotential coefficients, and error variances of potential coefficients obtained from gravity anomalies. Delphi 7-based software developed by authors was used for the analysis of global Earth's gravity field models. Experience: The results of investigations show that spherical harmonic coefficients of all matched. Diagrams of degree variances for spherical harmonic coefficients and their errors bring us to the conclusion that the degree variances of most models equal to their error variances for a degree less than that declared by developers. The accuracy of normalized spherical harmonic coefficients of geopotential models is estimated as 10-9. This value characterizes both inherent errors of models, and the difference of coefficients in various models, as well as a scale poor predicted instability of the geopotential, and resolution. Furthermore, we compared the gravity anomalies computed by models with those

  6. Low-Temperature Oxidation Reactions and Cool Flames at Earth and Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard

    1999-01-01

    Non-isothermal studies of cool flames and low temperature oxidation reactions in unstirred closed vessels are complicated by the perturbing effects of natural convection at earth gravity. Buoyant convection due to self-heating during the course of slow reaction produces spatio-temporal variations in the thermal and thus specie concentration fields due to the Arrhenius temperature dependence of the reaction rates. Such complexities have never been quantitatively modeled and were the primary impetus for the development of CSTR's (continuously stirred tank reactors) 30 years ago. While CSTR's have been widely adopted since they offer the advantage of spatial uniformity in temperature and concentration, all gradients are necessarily destroyed along with any structure that may otherwise develop. Microgravity offers a unique environment where buoyant convection can be effectively minimized and the need for stirring eliminated. Moreover, eliminating buoyancy and the need for stirring eliminates complications associated with the induced hydrodynamic field whose influence on heat transport and hot spot formation, hence explosion limits, is not fully realized. The objective of this research is to quantitatively determine and understand the fundamental mechanisms that control the onset and evolution of low temperature reactions and cool flames in both static and flow reactors. Microgravity experiments will be conducted to obtain benchmark data on the structure (spatio-temporal temperature, concentration, flow fields), the dynamics of the chemical fronts, and the ignition diagrams (pressure vs. temperature). Ground-based experiments will be conducted to ascertain the role of buoyancy. Numerical simulations including detailed kinetics will be conducted and compared to experiment.

  7. A Preliminary Assessment of Phase Separator Ground-Based and Reduced-Gravity Testing for ALS Systems

    NASA Technical Reports Server (NTRS)

    Hall, Nancy Rabel

    2006-01-01

    A viewgraph presentation of phase separator ground-based and reduced-gravity testing for Advanced Life Support (ALS) systems is shown. The topics include: 1) Multiphase Flow Technology Program; 2) Types of Separators; 3) MOBI Phase Separators; 4) Experiment set-up; and 5) Preliminary comparison/results.

  8. Mars Gravity Field and Upper Atmosphere from MGS, Mars Odyssey, and MRO

    NASA Astrophysics Data System (ADS)

    Genova, A.; Goossens, S. J.; Lemoine, F. G.; Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2015-12-01

    The NASA orbital missions Mars Global Surveyor (MGS), Mars Odyssey (ODY), and Mars Reconnaissance Orbiter (MRO) have been exploring and monitoring the planet Mars since 1997. MGS executed its mapping mission between 1999 and 2006 in a frozen sun-synchronous, near-circular, polar orbit with the periapsis altitude at ~370 km and the dayside equatorial crossing at 2 pm Local Solar Time (LST). The spacecraft was equipped with onboard instrumentation to acquire radio science data and to measure spacecraft ranges to the Martian surface (Mars Orbiter Laser Altimeter). These measurements resulted in static and time-varying gravity field and high-resolution global topography of the planet. ODY and MRO are still orbiting about Mars in two different sun-synchronous orbits, providing radio tracking data that indirectly measure both the static and time-varying gravity field and the atmospheric density. The orbit of ODY has its periapsis at ~390 km altitude and descending node at 4-5 pm LST. However, the spacecraft also collected measurements at lower altitudes (~220 km) in 2002 prior to the mapping phase. Since November 2006, MRO is in a low-altitude orbit with a periapsis altitude of 255 km and descending node at 3 pm LST. Radio data from MRO help improve the resolution of the static gravity field and measure the mass distribution of the polar caps, but the atmospheric drag at those altitudes may limit the benefits of these radio tracking observations. We present a combined solution of the Martian gravity field to degree and order 110 and atmospheric density profiles with radio tracking data from MGS, ODY and MRO. The gravity field solution is combined with the MOLA topography yielding an updated map of Mars crustal thickness. We also show our solution of the Love number k2 and time-variable gravity zonal harmonics (C20 and C30, in particular). The recovered atmospheric density profiles may be used in atmospheric models to constrain the long-term variability of the

  9. Detecting small gravity change in field measurement: simulations and experiments of the superconducting gravimeter—iGrav

    NASA Astrophysics Data System (ADS)

    Kao, Ricky; Kabirzadeh, Hojjat; Kim, Jeong Woo; Neumeyer, Juergen; Sideris, Michael G.

    2014-08-01

    In order to detect small gravity changes in field measurements, such as with CO2 storage, we designed simulations and experiments to validate the capabilities of the iGrav superconducting gravimeter. Qualified data processing was important to obtain the residual gravity from the iGrav's raw gravity signals, without the tidal components, atmosphere, polar motion and hydrological effects. Two simulations and four designed experiments are presented in this study. The first simulation detected the gravity change during CO2 injection. The residual gravity of CO2 leakage was targeted with the second simulation from the main storage reservoir to secondary space underground. The designed experiments monitored the situation of gravity anomalies in the iGrav's records. These tests focused on short-term gravity anomalies, such as gravity changes, step functions, repeat observations and gradient measurements from the iGrav, rather than on long-term tidal effects. The four laboratory experiments detected a decrease in gravity of -0.56 ± 0.15 µGal (10-8 m s-2) with a 92.8 kg weight on the top of the iGrav. A step function occurred in the gravity signals, when the tilt control was out of balance. We also used a professional camera dolly with a track to observe repeated horizontal movements and an electric lift table for controlled vertical movements to measure the average gradient of -2.67 ± 0.01 µGal cm-1.

  10. Analysis of gravity anomaly over coral-reef oil field: Wilfred Pool, Sullivan County, Indiana

    SciTech Connect

    Dana, S.W.

    1980-03-01

    To compare the measured and theoretical gravity anomaly of a typical coral-reef oil field, data were collected from the wilfred Pool, Sullivan County, Indiana. Densities of available core samples from the field were determined and the anomaly was calculated, taking into account the lateral and vertical variation of density and the geologic structure known from core studies and drilling-log records of lithologic types penetrated by the wells. Comparison of the theoretical and actual anomalies indicated a rough correspondence except for several sharp negative anomalies on the flanks of the measured gravity anomaly. Further studies indicated that the negative anomalies are possibly due to fluvial erosion that produced, on the surface of the youngest Pennsylvanian sediments, channels which were later filled with glacial till of lower density than the sediments. 13 figures.

  11. Circulation from a joint gravity field solution determination of the general ocean

    NASA Technical Reports Server (NTRS)

    Tapley, B. D.; Nerem, R. S.; Shum, C. K.; Ries, J. C.; Yuan, D. N.

    1988-01-01

    With the development of satellite altimetry, it is possible to infer the geostrophic velocity of the surface ocean currents, if the geoid and the position of the satellite are known accurately. Errors in current geoid models and orbit computations, both due primarily to errors in the earth's gravity field model, have limited the use of altimeter data for this purpose. The objective of this investigation is to demonstrate that altimeter data can be used in a joint solution to simultaneously estimate the quasi-stationary sea surface topography, zeta, and the model for the gravity field. Satellite tracking data from twelve satellites were used along with Seasat altimeter data for the solution. The estimated model of zeta compares well at long wavelengths with the hydrographic model of zeta. Covariance analysis indicates that the geoid is separable from zeta up to degree 9, at which point geoid error is comparable to the signal of zeta.

  12. Boson stars in a theory of complex scalar field coupled to gravity

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjeev; Kulshreshtha, Usha; Kulshreshtha, Daya Shankar

    2015-07-01

    We study boson stars in a theory of complex scalar field coupled to Einstein gravity with the potential: (where and are positive constant parameters). This could be considered either as a theory of massive complex scalar field coupled to gravity in a conical potential or as a theory in the presence of a potential which is an overlap of a parabolic and a conical potential. We study our theory with positive as well as negative values of the cosmological constant . Boson stars are found to come in two types, having either ball-like or shell-like charge density. We have studied the properties of these solutions and have also determined their domains of existence for some specific values of the parameters of the theory. Similar solutions have also been obtained by Hartmann, Kleihaus, Kunz, and Schaffer, in a V-shaped scalar potential.

  13. The Study of Effects of Time Variations in the Earth's Gravity Field on Geodetic Satellites

    NASA Technical Reports Server (NTRS)

    Shum, C. K.

    1998-01-01

    The temporal variations in the Earth's gravity field are the consequences of complex interactions between atmosphere, ocean, solid Earth, hydrosphere and cryosphere. The signal ranges from several hours to 18.6 years to geological time scale. The direct and indirect consequences of these variations are manifested in such phenomena as changes in the global sea level and in the global climate pattern. These signals produce observable geodetic satellites. The primary objectives of the proposed effects on near-Earth orbiting investigation include (1) the improved determination of the time-varying gravity field parameters (scale from a few hour to 18.6 year and secular) using long-term satellite laser rs ranging (SLR) observations to multiple geodetic satellites, and (2) the enhanced understanding of these variations with their associated meteorological and geophysical consequences.

  14. Reduced-gravity Environment Hardware Demonstrations of a Prototype Miniaturized Flow Cytometer and Companion Microfluidic Mixing Technology

    PubMed Central

    Bae, Candice; Sharpe, Julia Z.; Bishara, Andrew M.; Nelson, Emily S.; Weaver, Aaron S.; Brown, Daniel; McKay, Terri L.; Griffin, DeVon; Chan, Eugene Y.

    2014-01-01

    Until recently, astronaut blood samples were collected in-flight, transported to earth on the Space Shuttle, and analyzed in terrestrial laboratories. If humans are to travel beyond low Earth orbit, a transition towards space-ready, point-of-care (POC) testing is required. Such testing needs to be comprehensive, easy to perform in a reduced-gravity environment, and unaffected by the stresses of launch and spaceflight. Countless POC devices have been developed to mimic laboratory scale counterparts, but most have narrow applications and few have demonstrable use in an in-flight, reduced-gravity environment. In fact, demonstrations of biomedical diagnostics in reduced gravity are limited altogether, making component choice and certain logistical challenges difficult to approach when seeking to test new technology. To help fill the void, we are presenting a modular method for the construction and operation of a prototype blood diagnostic device and its associated parabolic flight test rig that meet the standards for flight-testing onboard a parabolic flight, reduced-gravity aircraft. The method first focuses on rig assembly for in-flight, reduced-gravity testing of a flow cytometer and a companion microfluidic mixing chip. Components are adaptable to other designs and some custom components, such as a microvolume sample loader and the micromixer may be of particular interest. The method then shifts focus to flight preparation, by offering guidelines and suggestions to prepare for a successful flight test with regard to user training, development of a standard operating procedure (SOP), and other issues. Finally, in-flight experimental procedures specific to our demonstrations are described. PMID:25490614

  15. Reduced-gravity environment hardware demonstrations of a prototype miniaturized flow cytometer and companion microfluidic mixing technology.

    PubMed

    Phipps, William S; Yin, Zhizhong; Bae, Candice; Sharpe, Julia Z; Bishara, Andrew M; Nelson, Emily S; Weaver, Aaron S; Brown, Daniel; McKay, Terri L; Griffin, DeVon; Chan, Eugene Y

    2014-11-13

    Until recently, astronaut blood samples were collected in-flight, transported to earth on the Space Shuttle, and analyzed in terrestrial laboratories. If humans are to travel beyond low Earth orbit, a transition towards space-ready, point-of-care (POC) testing is required. Such testing needs to be comprehensive, easy to perform in a reduced-gravity environment, and unaffected by the stresses of launch and spaceflight. Countless POC devices have been developed to mimic laboratory scale counterparts, but most have narrow applications and few have demonstrable use in an in-flight, reduced-gravity environment. In fact, demonstrations of biomedical diagnostics in reduced gravity are limited altogether, making component choice and certain logistical challenges difficult to approach when seeking to test new technology. To help fill the void, we are presenting a modular method for the construction and operation of a prototype blood diagnostic device and its associated parabolic flight test rig that meet the standards for flight-testing onboard a parabolic flight, reduced-gravity aircraft. The method first focuses on rig assembly for in-flight, reduced-gravity testing of a flow cytometer and a companion microfluidic mixing chip. Components are adaptable to other designs and some custom components, such as a microvolume sample loader and the micromixer may be of particular interest. The method then shifts focus to flight preparation, by offering guidelines and suggestions to prepare for a successful flight test with regard to user training, development of a standard operating procedure (SOP), and other issues. Finally, in-flight experimental procedures specific to our demonstrations are described.

  16. Two Phase Flow Modeling: Summary of Flow Regimes and Pressure Drop Correlations in Reduced and Partial Gravity

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Rame, E.; Kizito, J.; Kassemi, M.

    2006-01-01

    The purpose of this report is to provide a summary of state-of-the-art predictions for two-phase flows relevant to Advanced Life Support. We strive to pick out the most used and accepted models for pressure drop and flow regime predictions. The main focus is to identify gaps in predictive capabilities in partial gravity for Lunar and Martian applications. Following a summary of flow regimes and pressure drop correlations for terrestrial and zero gravity, we analyze the fully developed annular gas-liquid flow in a straight cylindrical tube. This flow is amenable to analytical closed form solutions for the flow field and heat transfer. These solutions, valid for partial gravity as well, may be used as baselines and guides to compare experimental measurements. The flow regimes likely to be encountered in the water recovery equipment currently under consideration for space applications are provided in an appendix.

  17. Thermocapillary migration of bubbles and drops at moderate values of the Marangoni number in reduced gravity

    NASA Astrophysics Data System (ADS)

    Balasubramaniam, R.; Lacy, Claud E.; Woniak, Günter; Subramanian, R. Shankar

    1996-04-01

    Experiments were performed on the motion of isolated drops and bubbles in a Dow-Corning silicone oil under the action of an applied temperature gradient in a reduced gravity environment aboard the NASA Space Shuttle in orbit. Images of the interior of the test cell during these experiments were recorded on cine film and later analyzed to obtain data on the migration velocity as a function of size and the applied temperature gradient. The data are presented in scaled form. Predictions are available in the case of gas bubbles, and it is found that the scaled velocity decreases with increasing Marangoni number qualitatively as expected even though there are quantitative discrepancies. The scaled velocity also appears to approach a theoretical asymptote predicted in the limit of large values of the Marangoni number for Stokes motion. Finally, sample results from a preliminary experiment on a pair of drops are presented. They display the remarkable feature that a small drop which leads a large drop in a temperature gradient can significantly retard the motion of the large trailing drop while itself moving as though it is virtually unaffected by the presence of the large drop.

  18. Solidification (crystal growth) in the presence of gravitational forces. [indium antimonide melts at reduced gravity

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Witt, A. F.

    1978-01-01

    The surface tension behavior of doped and undoped InSb melts was investigated as well as their temperature and composition dependence. Surface tension in InSb melts was determined using the sessile-drop technique covering the temperature range from 530 C to 880 C. A linear regression of the data obtained shows that the temperature dependence of sigma is 392- (T-530) x (7000) plus or minus 10 dyne/cm. The d sigma/d Tau for intrinsics InSb is less than that previously reported. On the basis of the surface tension data obtained, it is concluded that surface tension induced convective flow velocities in InSb under reduced gravity conditions range from zero to at most 1 cm/sec. Accordingly, no interference with dopant segregation can be expected during growth in space because the momentum boundary layer (at the crystal melt interface) associated with any Marangoni-type convective flows would, at the given growth rate, be significantly larger than the predicted diffusion boundary layer thickness.

  19. Fan Beam Emission Tomography Demonstrated Successfully in the Reduced-Gravity Environment of Drop Towers

    NASA Technical Reports Server (NTRS)

    Feikema, Douglas A.

    2003-01-01

    Fires onboard manned spacecraft and launch vehicles are a particularly feared hazard because one cannot jump ship while in orbit 240 nmi above the Earth at 17 000 mph! Understanding the physical properties of fires in free fall and on orbit is, therefore, a very important endeavor for NASA s Human Exploration and Development of Space (HEDS) enterprise. However, detailed information concerning the structure of microgravity fires remained elusive until recently since robustness, limited power, limited volume, and limited mass place severe constraints on diagnostic equipment for use in space and in NASA Glenn Research Center s reduced-gravity facilities. Under NASA Research Associate funding since 2001, En'Urga, Inc. (Dr. Sivathanu, principal investigator, and Dr. Lim, co-investigator) in collaboration with Glenn (Dr. Feikema, coinvestigator) have successfully demonstrated a new technology for use in microgravity combustion. A midinfrared scanning spectrometer has been developed by En'Urga and tested at Glenn to measure 30 spectra per second at different spatial locations in a flame from 1.8 to 4.8 microns.

  20. An improved GRACE monthly gravity field solution by modeling the non-conservative acceleration and attitude observation errors

    NASA Astrophysics Data System (ADS)

    Chen, Qiujie; Shen, Yunzhong; Chen, Wu; Zhang, Xingfu; Hsu, Houze

    2016-06-01

    The main contribution of this study is to improve the GRACE gravity field solution by taking errors of non-conservative acceleration and attitude observations into account. Unlike previous studies, the errors of the attitude and non-conservative acceleration data, and gravity field parameters, as well as accelerometer biases are estimated by means of weighted least squares adjustment. Then we compute a new time series of monthly gravity field models complete to degree and order 60 covering the period Jan. 2003 to Dec. 2012 from the twin GRACE satellites' data. The derived GRACE solution (called Tongji-GRACE02) is compared in terms of geoid degree variances and temporal mass changes with the other GRACE solutions, namely CSR RL05, GFZ RL05a, and JPL RL05. The results show that (1) the global mass signals of Tongji-GRACE02 are generally consistent with those of CSR RL05, GFZ RL05a, and JPL RL05; (2) compared to CSR RL05, the noise of Tongji-GRACE02 is reduced by about 21 % over ocean when only using 300 km Gaussian smoothing, and 60 % or more over deserts (Australia, Kalahari, Karakum and Thar) without using Gaussian smoothing and decorrelation filtering; and (3) for all examples, the noise reductions are more significant than signal reductions, no matter whether smoothing and filtering are applied or not. The comparison with GLDAS data supports that the signals of Tongji-GRACE02 over St. Lawrence River basin are close to those from CSR RL05, GFZ RL05a and JPL RL05, while the GLDAS result shows the best agreement with the Tongji-GRACE02 result.

  1. GravityCam: wide-field, high-resolution imaging and high-speed photometry instrument

    NASA Astrophysics Data System (ADS)

    MacKay, Craig; Dominik, Martin; Steele, Iain

    2016-08-01

    The limits to the angular resolution achievable with conventional ground-based telescopes are unchanged over 70 years. Atmospheric turbulence limits image quality to typically 1 arcsec in practice. We have developed a new concept of ground-based imaging instrument called GravityCam capable of delivering significantly sharper images from the ground than is normally possible without adaptive optics. The acquisition of visible images at high speed without significant noise penalty has been made possible by advances in optical and near IR imaging technologies. Images are recorded at high speed and then aligned before combination and can yield a 3-5 fold improvement in image resolution. Very wide survey fields are possible with widefield telescope optics. We describe GravityCam and detail its application to accelerate greatly the rate of detection of Earth size planets by gravitational microlensing. GravityCam will also improve substantially the quality of weak shear studies of dark matter distribution in distant clusters of galaxies. The microlensing survey will also provide a vast dataset for asteroseismology studies. In addition, GravityCam promises to generate a unique data set that will help us understand of the population of the Kuiper belt and possibly the Oort cloud.

  2. Thermocapillary Convection in Floating Zones under Simulated Reduced-Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Kou, Sindo

    1997-01-01

    The objective was to study thermocapillary convection in a transparent floating zone. The floating zone process is a unique process for crystal growth in that the melt is free from contamination by a crucible. Microgravity is ideal for the floating zone process because there is no significant gravity to cause the molten zone to collapse as under normal gravity. Since gravity-induced buoyancy convection is suppressed, surface- tension-induced thermocapillary convection dominates in the molten zone. In floating zone crystal growth, thermocapillary convection can be strong enough to cause formation of dopant striations and a convex growth front - both are undesirable in crystal growth.

  3. The impact of common versus separate estimation of orbit parameters on GRACE gravity field solutions

    NASA Astrophysics Data System (ADS)

    Meyer, U.; Jäggi, A.; Beutler, G.; Bock, H.

    2015-07-01

    Gravity field parameters are usually determined from observations of the GRACE satellite mission together with arc-specific parameters in a generalized orbit determination process. When separating the estimation of gravity field parameters from the determination of the satellites' orbits, correlations between orbit parameters and gravity field coefficients are ignored and the latter parameters are biased towards the a priori force model. We are thus confronted with a kind of hidden regularization. To decipher the underlying mechanisms, the Celestial Mechanics Approach is complemented by tools to modify the impact of the pseudo-stochastic arc-specific parameters on the normal equations level and to efficiently generate ensembles of solutions. By introducing a time variable a priori model and solving for hourly pseudo-stochastic accelerations, a significant reduction of noisy striping in the monthly solutions can be achieved. Setting up more frequent pseudo-stochastic parameters results in a further reduction of the noise, but also in a notable damping of the observed geophysical signals. To quantify the effect of the a priori model on the monthly solutions, the process of fixing the orbit parameters is replaced by an equivalent introduction of special pseudo-observations, i.e., by explicit regularization. The contribution of the thereby introduced a priori information is determined by a contribution analysis. The presented mechanism is valid universally. It may be used to separate any subset of parameters by pseudo-observations of a special design and to quantify the damage imposed on the solution.

  4. Gravity field error analysis: Applications of GPS receivers and gradiometers on low orbiting platforms

    NASA Technical Reports Server (NTRS)

    Schrama, E.

    1990-01-01

    The concept of a Global Positioning System (GPS) receiver as a tracking facility and a gradiometer as a separate instrument on a low orbiting platform offers a unique tool to map the Earth's gravitational field with unprecedented accuracies. The former technique allows determination of the spacecraft's ephemeris at any epoch to within 3 to 10 cm, the latter permits the measurement of the tensor of second order derivatives of the gravity field to within 0.01 to 0.0001 Eotvos units depending on the type of gradiometer. First, a variety of error sources in gradiometry where emphasis is placed on the rotational problem pursuing as well a static as a dynamic approach is described. Next, an analytical technique is described and applied for an error analysis of gravity field parameters from gradiometer and GPS observation types. Results are discussed for various configurations proposed on Topex/Poseidon, Gravity Probe-B, and Aristoteles, indicating that GPS only solutions may be computed up to degree and order 35, 55, and 85 respectively, whereas a combined GPS/gradiometer experiment on Aristoteles may result in an acceptable solution up to degree and order 240.

  5. Gravity field error analysis - Applications of Global Positioning System receivers and gradiometers on low orbiting platforms

    NASA Technical Reports Server (NTRS)

    Schrama, Ernst J. O.

    1991-01-01

    The concept of a Global Positioning System (GPS) receiver as a tracking facility and a gradiometer as a separate instrument on a low-orbiting platform offers a unique tool to map the earth's gravitational field with unprecedented accuracies. The former technique allows determination of the spacecraft's ephemeris at any epoch to within 3-10 cm, the latter permits the measurement of the tensor of second order derivatives of the gravity field to within 0.01 to 0.0001 Eotvos units depending on the type of gradiometer. First, a variety of error sources in gradiometry where emphasis is placed on the rotational problem pursuing as well a static as a dynamic approach is described. Next, an analytical technique is described and applied for an error analysis of gravity field parameters from gradiometer and GPS observation types. Results are discussed for various configurations proposed on Topex/Poseidon, Gravity Probe-B, and Aristoteles, indicating that GPS only solutions may be computed up to degree and order 35, 55, and 85, respectively, whereas a combined GPS/gradiometer experiment on Aristoteles may result in an acceptable solution up to degree and order 240.

  6. Gravity field error analysis - Applications of Global Positioning System receivers and gradiometers on low orbiting platforms

    NASA Astrophysics Data System (ADS)

    Schrama, Ernst J. O.

    1991-11-01

    The concept of a Global Positioning System (GPS) receiver as a tracking facility and a gradiometer as a separate instrument on a low-orbiting platform offers a unique tool to map the earth's gravitational field with unprecedented accuracies. The former technique allows determination of the spacecraft's ephemeris at any epoch to within 3-10 cm, the latter permits the measurement of the tensor of second order derivatives of the gravity field to within 0.01 to 0.0001 Eotvos units depending on the type of gradiometer. First, a variety of error sources in gradiometry where emphasis is placed on the rotational problem pursuing as well a static as a dynamic approach is described. Next, an analytical technique is described and applied for an error analysis of gravity field parameters from gradiometer and GPS observation types. Results are discussed for various configurations proposed on Topex/Poseidon, Gravity Probe-B, and Aristoteles, indicating that GPS only solutions may be computed up to degree and order 35, 55, and 85, respectively, whereas a combined GPS/gradiometer experiment on Aristoteles may result in an acceptable solution up to degree and order 240.

  7. Estimating the Earth's gravity field using a multi-satellite SLR solution

    NASA Astrophysics Data System (ADS)

    Bloßfeld, Mathis; Stefka, Vojtech; Müller, Horst; Gerstl, Michael

    2013-04-01

    Satellite Laser Ranging (SLR) is the unique technique to determine station coordinates, Earth Orientation Parameter (EOP) and Stokes coefficients of the Earth's gravity field in one common adjustment. These parameters form the so called "three pillars" (Plag & Pearlman, 2009) of the Global Geodetic Observing System (GGOS). In its function as official analysis center of the International Laser Ranging Service (ILRS), DGFI is developing and maintaining software to process SLR observations called "DGFI Orbit and Geodetic parameter estimation Software" (DOGS). The software is used to analyze SLR observations and to compute multi-satellite solutions. To take benefit of different orbit performances (e.g. inclination and altitude), a solution using ten different spherical satellites (ETALON1/2, LAGEOS1/2, STELLA, STARLETTE, AJISAI, LARETS, LARES, BLITS) covering 12 years of observations is computed. The satellites are relatively weighted using a variance component estimation (VCE). The obtained weights are analyzed w.r.t. the potential of the satellite to monitor changes in the Earths geometry, rotation and gravity field. The estimated parameters (station coordinates and EOP) are validated w.r.t. official time series of the IERS. The obtained Stokes coefficients are compared to recent gravity field solutions and discussed in detail.

  8. Estimating the Earth's geometry, rotation and gravity field using a multi-satellite SLR solution

    NASA Astrophysics Data System (ADS)

    Stefka, V.; Blossfeld, M.; Mueller, H.; Gerstl, M.; Panafidina, N.

    2012-12-01

    Satellite Laser Ranging (SLR) is the unique technique to determine station coordinates, Earth Orientation Parameter (EOP) and Stokes coefficients of the Earth's gravity field in one common adjustment. These parameters form the so called "three pillars" (Plag & Pearlman, 2009) of the Global Geodetic Observing System (GGOS). In its function as official analysis center of the International Laser Ranging Service (ILRS), DGFI is developing and maintaining software to process SLR observations called "DGFI Orbit and Geodetic parameter estimation Software" (DOGS). The software is used to analyze SLR observations and to compute multi-satellite solutions. To take benefit of different orbit performances (e.g. inclination and altitude), a solution using ten different spherical satellites (ETALON1/2, LAGEOS1/2, STELLA, STARLETTE, AJISAI, LARETS, LARES, BLITS) covering the period of 12 years of observations is computed. The satellites are relatively weighted using a variance component estimation (VCE). The obtained weights are analyzed w.r.t. the potential of the satellite to monitor changes in the Earths geometry, rotation and gravity field. The estimated parameters (station coordinates and EOP) are validated w.r.t. official time series of the IERS. The Stokes coefficients are compared to recent gravity field solutions.

  9. Mercury's gravity field from the first six months of MESSENGER data

    NASA Astrophysics Data System (ADS)

    Genova, Antonio; Iess, Luciano; Marabucci, Manuela

    2013-06-01

    The Mercury Surface, Space Environment, GEochemestry, and Ranging (MESSENGER) spacecraft, launched on August 3, 2004, was inserted in a highly elliptical polar orbit around the planet on March 18, 2011. One of the main mission goals is the determination of the interior structure of the planet, enabled by a suite of instruments that includes the radio system and a laser altimeter. Thanks to altimetric and radio observables, the topography and the gravity field of the planet have been retrieved with good accuracy, especially in the north polar region, where the spacecraft altitude is lower. In September, 2011, the radio tracking data of the first 6 months of operations were published with the ancillary information necessary for the MESSENGER orbit determination. This data set offers an excellent opportunity to test the orbit determination procedures developed in view of a similar, but more accurate, experiment hosted onboard BepiColombo, the ESA mission to Mercury. We present here the results of our analysis, which provide the spacecraft orbit, a 20×20 gravity field and a linear update of Mercury's ephemeris. The estimated gravity field is fully compatible with the one published by Smith et al. (2012).

  10. Novel symmetries in Weyl-invariant gravity with massive gauge field

    NASA Astrophysics Data System (ADS)

    Abhinav, K.; Shukla, A.; Panigrahi, P. K.

    2016-11-01

    The background field method is used to linearize the Weyl-invariant scalar-tensor gravity, coupled with a Stückelberg field. For a generic background metric, this action is found not to be invariant, under both a diffeomorphism and generalized Weyl symmetry, the latter being a combination of gauge and Weyl transformations. Interestingly, the quadratic Lagrangian, emerging from a background of Minkowski metric, respects both transformations independently. The Becchi-Rouet-Stora-Tyutin symmetry of scalar-tensor gravity coupled with a Stückelberg-like massive gauge particle, possessing a diffeomorphism and generalized Weyl symmetry, reveals that in both cases negative-norm states with unphysical degrees of freedom do exist. We then show that, by combining diffeomorphism and generalized Weyl symmetries, all the ghost states decouple, thereby removing the unphysical redundancies of the theory. During this process, the scalar field does not represent any dynamic mode, yet modifies the usual harmonic gauge condition through non-minimal coupling with gravity.

  11. Revisiting chameleon gravity: Thin-shell and no-shell fields with appropriate boundary conditions

    SciTech Connect

    Tamaki, Takashi; Tsujikawa, Shinji

    2008-10-15

    We derive analytic solutions of a chameleon scalar field {phi} that couples to a nonrelativistic matter in the weak gravitational background of a spherically symmetric body, paying particular attention to a field mass m{sub A} inside of the body. The standard thin-shell field profile is recovered by taking the limit m{sub A}r{sub c}{yields}{infinity}, where r{sub c} is a radius of the body. We show the existence of 'no-shell' solutions where the field is nearly frozen in the whole interior of the body, which does not necessarily correspond to the 'zero-shell' limit of thin-shell solutions. In the no-shell case, under the condition m{sub A}r{sub c}>>1, the effective coupling of {phi} with matter takes the same asymptotic form as that in the thin-shell case. We study experimental bounds coming from the violation of equivalence principle as well as solar-system tests for a number of models including f(R) gravity and find that the field is in either the thin-shell or the no-shell regime under such constraints, depending on the shape of scalar-field potentials. We also show that, for the consistency with local gravity constraints, the field at the center of the body needs to be extremely close to the value {phi}{sub A} at the extremum of an effective potential induced by the matter coupling.

  12. Mapping M2 Internal Tides Using a Data-Assimilative Reduced Gravity Mode

    NASA Astrophysics Data System (ADS)

    Egbert, G. D.; Erofeeva, S.

    2014-12-01

    We have developed data assimilation methods for mapping low-mode phase-locked internal tides from altimetry data, using a reduced gravity (RG) approach. Dynamical equations are derived following the approach of Griffiths and Grimshaw (2007), with the vertical dependence of pressure and velocities in the linear Boussinesq 3D equations expanded in basis functions derived from local 1D modes for a stratified ocean. This results in a system of coupled 2D PDEs for the coefficients of the modal expansion. Excluding coupling terms between modes (which arise in the presence of variable bottomt opography) the resulting equations for each mode are analogous to the usual shallow water equations for the barotropic tide. With modest changes to the OSU tidal inversion software (OTIS) an assimilation scheme for this linear model is readily implemented. The coupling terms can be used to derive the forcing (by the barotropic tide), and also can be used to quantify the component of model error associated with unmodeled topographic scattering. Because the inversion yields currents as well as elevations, mode energy fluxes can obtained with minimal further calculation. Relatively high spatial resolution (at least 1/30 degree) is required for the RG dynamical model, so the inversion must be done in modest sized overlapping patches, which can then be merged to obtain global maps of phase-locked low-mode internal tides. To obtain reliable results some care with preliminary data processing has proved necessary, including correction for lower frequency SSH variations in areas of strong mesoscale activity, and filtering to reduce Long wavelength error, especially in ERS/Envisat data. Because the assimilation essentially derives dynamically consistent spatio-temporal basis functions for data fitting, the RG scheme may also provide a means to better quantify at least slowly varying incoherent internal tides.

  13. AdS/CFT for 3D higher-spin gravity coupled to matter fields

    NASA Astrophysics Data System (ADS)

    Fujisawa, Ippei; Nakagawa, Kenta; Nakayama, Ryuichi

    2014-03-01

    New holographic prescription for the model of 3d higher-spin gravity coupled to real matter fields Bμν and C, which was introduced in Fujisawa and Nakayama (2014 Class. Quantum Grav. 31 015003), is formulated. By using a local symmetry, two of the components of Bμν are eliminated, and gauge-fixing conditions are imposed such that the non-vanishing component, Bϕρ, satisfies a covariantly-constancy condition in the background of Chern-Simons gauge fields Aμ, \\bar{A}_{\\mu }. In this model, solutions to the classical equations of motion for Aμ and \\bar{A}_{\\mu } are non-flat due to the interactions with matter fields. The solutions for the gauge fields can, however, be split into two parts, flat gauge fields A_{\\mu }, \\bar{A}_{\\mu }, and those terms that depend on the matter fields. The equations for the matter fields then coincide with covariantly-constancy equations in the flat backgrounds A_{\\mu } and \\bar{A}_{\\mu }, which are exactly the same as those in linearized 3d Vasiliev gravity. The two- and three-point correlation functions of the single-trace operators and the higher-spin currents in the boundary CFT are computed by using an on-shell action tr (Bϕρ C). This term does not depend on coordinates due to the matter equations of motion, and it is not necessary to take the near-boundary limit ρ → ∞. Analysis is presented for SL(3,R) × SL(3,R) as well as HS[\\frac{1}{2}] \\times HS[\\frac{1}{2}] higher-spin gravity. In the latter model, scalar operators with scaling dimensions Δ+ = 3/2 and Δ- = 1/2 appear in a single quantization.

  14. Titan’s internal structure inferred from its gravity field, shape, and rotation state

    NASA Astrophysics Data System (ADS)

    Baland, Rose-Marie; Tobie, Gabriel; Lefèvre, Axel; Van Hoolst, Tim

    2014-07-01

    Several quantities measured by the Cassini-Huygens mission provide insight into the interior of Titan: the second-degree gravity field coefficients, the shape, the tidal Love number, the electric field, and the orientation of its rotation axis. The measured obliquity and tides, as well as the electric field, are evidence for the presence of an internal global ocean beneath the icy shell of Titan. Here we use these different observations together to constrain the density profile assuming a four-layer interior model (ice I shell, liquid water ocean, high pressure ice mantle, and rock core). Even though the observed second degree gravity field is consistent with the hydrostatic relation J2=10C22/3, which is a necessary but not sufficient condition for a synchronous satellite to be in hydrostatic equilibrium, the observed shape of the surface as well as the non-zero degree-three gravity signal indicate some departure from hydrostaticity. Therefore, we do not restrain our range of assumed density profiles to those corresponding to the hydrostatic value of the moment of inertia (0.34). From a range of density profiles consistent with the radius and mass of the satellite, we compute the obliquity of the Cassini state and the tidal Love number k2. The obliquity is computed from a Cassini state model for a satellite with an internal liquid layer, each layer having an ellipsoidal shape consistent with the measured surface shape and gravity field. The observed (nearly hydrostatic) gravity field is obtained by an additional deflection of the ocean-ice I shell interface, assuming that the layers have uniform densities. We show that the measured obliquity can be reproduced only for internal models with a dense ocean (between 1275 and 1350 kg m-3) above a differentiated interior with a full separation of rock and ice. We obtain normalized moments of inertia between 0.31 and 0.33, significantly lower than the expected hydrostatic value (0.34). Evolutionary mechanisms leading to a

  15. Measurement and Interpretation of Temporal Variations of the Earths Gravity Field Using GPS and SLR Data

    NASA Technical Reports Server (NTRS)

    Nerem, R. Steven; Leuliette, Eric; Russell, Gary

    2003-01-01

    This investigation has had four main thrusts: 1) The analysis of seasonal variations of the Earth's gravitational field using Lageos 1 and 2 SLR data and comparisons to geophysical models. We have estimated the annual variation of the gravity field via a spherical harmonic expansion complete to degree and order 4. We have also constructed a similar model using models of the annual variation in the gravity field due to atmospheric, hydrologic, and ocean mass redistribution. These three models, when combined together, are in excellent agreement with the variations observed by satellite laser ranging. An article on these results was published in the journal Geophysical Research Letters. 2) The second thrust of our investigation has been to analyze the output of a Global Climate Model (GCM) to determine if the GRACE gravity mission can be expected to detect climate change signals. Working with Gary Russell at the Goddard Institute for Space Studies (GISS), we have determined that there are several large secular signals that GRACE might be able to detect, including secular changes in snow cover, sea ice, polar ice, ocean mass, and other variables. It is possible that some of these signals could be detected with 5 years of GRACE measurements - its hard to judge this because the interannual variability in the GCM, which could mask the climate signals, is unreliable. Certainly a follow-on GRACE mission could detect these signals when compared to the data from the initial GRACE mission.). An article on these results will be published in the journal Journal of Geophysical Research. 3) In the last year of the investigation, we developed a new technique for analyzing temporal gravity variations using "geophysical fingerprints", which was successfully demonstrated on 20 years of satellite laser ranging data [Nerem et al., 20031. 4]. We also participated in a workshop on future satellite gravity measurements, which resulted in paper on measuring ocean mass variations using GRACE

  16. Towards an improved knowledge of the gravity field and geoid in Antarctica utilizing airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Scheinert, M.

    2011-12-01

    For the determination of high-resolution earth's gravity field models (EGM) satellite measurements have to be combined with terrestrial gravity anomalies. In this respect, Antarctica remains one of the largest data gaps in the global coverage of terrestrial gravity data. This is especially critical, since the polar data gap resulting from the orbit inclination of GOCE, the recent and most powerful satellite gravity mission, amounts to a cap of about 1,300 km diameter at the pole. Furthermore, the limitation to a certain harmonic degree of resolution prevent a complete, high resolution data coverage to be obtained from the dedicated gravity missions only. For Antarctica, characterized by a hostile environment and difficult logistic conditions, airborne gravimetry offers the most powerful technique to survey large areas. In the perspective of geodesy, the coordination of activities is in the focus of the "Antarctic Geoid Project" (AntGP), Sub-Commission 2.4f of the International Association of Geodesy (IAG), and of project 3 "Physical Geodesy" within the GIANT program of the Standing Scientific Group on Geosciences (SSG-G) of the Scientific Committee on Antarctic Research (SCAR), both chaired by the author. This contribution will review the progress made realizing gravity surveys in Antarctica. Often initiated by a geophysically focussed rationale a great number of airborne surveys were accomplished during the last years. Furthermore, new plans shall be discussed. In this context, the initiative to make use of the new German "High Altitude and Long Range Research Aircraft" (HALO) for geoscientific applications will be presented. Based on a modified Gulfstream G550 jet it opens unprecedented possibilities for atmospheric and geoscientific research. Being the first geoscientific mission, GEOHALO shall demonstrate the feasibility and performance of the geodetic-geophysical instrumentation to gain airborne gravimetry and magnetometry measurements, GNSS direct, reflected

  17. Monthly gravity field solutions based on GRACE observations generated with the Celestial Mechanics Approach

    NASA Astrophysics Data System (ADS)

    Meyer, Ulrich; Jäggi, Adrian; Beutler, Gerhard

    2012-09-01

    The main objective of the Gravity Recovery And Climate Experiment (GRACE) satellite mission consists of determining the temporal variations of the Earth's gravity field. These variations are captured by time series of gravity field models of limited resolution at, e.g., monthly intervals. We present a new time series of monthly models, which was computed with the so-called Celestial Mechanics Approach (CMA), developed at the Astronomical Institute of the University of Bern (AIUB). The secular and seasonal variations in the monthly models are tested for statistical significance. Calibrated errors are derived from inter-annual variations. The time-variable signal can be extracted at least up to degree 60, but the gravity field coefficients of orders above 45 are heavily contaminated by noise. This is why a series of monthly models is computed up to a maximum degree of 60, but only a maximum order of 45. Spectral analysis of the residual time-variable signal shows a distinctive peak at a period of 160 days, which shows up in particular in the C20 spherical harmonic coefficient. Basic filter- and scaling-techniques are introduced to evaluate the monthly models. For this purpose, the variability over the oceans is investigated, which serves as a measure for the noisiness of the models. The models in selected regions show the expected seasonal and secular variations, which are in good agreement with the monthly models of the Helmholtz Centre Potsdam, German Research Centre for Geosciences (GFZ). The results also reveal a few small outliers, illustrating the necessity for improved data screening. Our monthly models are available at the web page of the International Centre for Global Earth Models (ICGEM).

  18. Internal architecture of the Tuxtla volcanic field, Veracruz, Mexico, inferred from gravity and magnetic data

    NASA Astrophysics Data System (ADS)

    Espindola, Juan Manuel; Lopez-Loera, Hector; Mena, Manuel; Zamora-Camacho, Araceli

    2016-09-01

    The Tuxtla Volcanic Field (TVF) is a basaltic volcanic field emerging from the plains of the western margin of the Gulf of Mexico in the Mexican State of Veracruz. Separated by hundreds of kilometers from the Trans-Mexican Volcanic Belt to the NW and the Chiapanecan Volcanic Arc to the SE, it stands detached not only in location but also in the composition of its rocks, which are predominantly alkaline. These characteristics make its origin somewhat puzzling. Furthermore, one of the large volcanoes of the field, San Martin Tuxtla, underwent an eruptive period in historical times (CE 1793). Such volcanic activity conveys particular importance to the study of the TVF from the perspective of volcanology and hazard assessment. Despite the above circumstances, few investigations about its internal structure have been reported. In this work, we present analyses of gravity and aeromagnetic data obtained from different sources. We present the complete Bouguer anomaly of the area and its separation into regional and residual components. The aeromagnetic data were processed to yield the reduction to the pole, the analytic signal, and the upward continuation to complete the interpretation of the gravity analyses. Three-dimensional density models of the regional and residual anomalies were obtained by inversion of the gravity signal adding the response of rectangular prisms at the nodes of a regular grid. We obtained a body with a somewhat flattened top at 16 km below sea level from the inversion of the regional. Three separate slender bodies with tops 6 km deep were obtained from the inversion of the residual. The gravity and magnetic anomalies, as well as the inferred source bodies that produce those geophysical anomalies, lie between the Sontecomapan and Catemaco faults, which are proposed as flower structures associated with an inferred deep-seated fault termed the Veracruz Fault. These fault systems along with magma intrusion at the lower crust are necessary features to

  19. Results and Lessons Learned from Performance Testing of Humans in Spacesuits in Simulated Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Chappell, Steven P.; Norcross, Jason R.; Gernhardt, Michael L.

    2010-01-01

    The Apollo lunar EVA experience revealed challenges with suit stability and control-likely a combination of mass, mobility, and center of gravity (CG) factors. The EVA Physiology, Systems and Performence (EPSP) Project is systematically working with other NASA projects, labs, and facilities to lead a series of studies to understand the role of suit mass, weight, CG, and other parameters on astronaut performance in partial gravity environments.

  20. Building reliable local models of the Venus gravity field from the cycles 5 and 6 of the Magellan LOS gravity data

    NASA Astrophysics Data System (ADS)

    Barriot, J.-P.; Balmino, G.; Valès, N.

    We present a new way to build reliable local models of the Venus gravity field from the cycles 5 and 6 of the Magellan probe by directly considering the Doppler residual profiles instead of the derived residual acceleration profiles. We give an example over a test area.