Sample records for reduced gravity program

  1. Users Guide for NASA Lewis Research Center DC-9 Reduced-Gravity Aircraft Program

    NASA Technical Reports Server (NTRS)

    Yaniec, John S.

    1995-01-01

    The document provides guidelines and information for users of the DC-9 Reduced-Gravity Aircraft Program. It describes the facilities, requirements for test personnel, equipment design and installation, mission preparation, and in-flight procedures. Those who have used the KC-135 reduced-gravity aircraft will recognize that many of the procedures and guidelines are the same, to ensure a commonality between the DC-9 and KC-135 programs.

  2. Microgravity science and applications projects and payloads

    NASA Technical Reports Server (NTRS)

    Crouch, R. K.

    1987-01-01

    An overview of work conducted by the Microgravity Science and Applications Division of NASA is presented. The goals of the program are the development and implementation of a reduced-gravity research, science and applications program, exploitation of space for human benefits, and the application of reduced gravity research for the development of advanced technologies. Space research of fluid dynamics and mass transport phenomena is discussed and the facilities available for reduced gravity experiments are presented. A program for improving communication with the science and applications communities and the potential use of the Space Station for microgravity research are also examined.

  3. JSC reduced gravity program and 1992 highlights

    NASA Technical Reports Server (NTRS)

    Williams, R. K.; Billica, L. W.

    1993-01-01

    A review is presented of the aircraft parabolic flight program in the U.S. including the USAF and NASA participation from 1957 to the present. The parabolic flight profile to achieve microgravity levels and intermediate g-levels is discussed. The NASA reduced gravity aircraft is described including the service provisions for this reimbursable project.

  4. Flight Mechanics Experiment Onboard NASA's Zero Gravity Aircraft

    ERIC Educational Resources Information Center

    Matthews, Kyle R.; Motiwala, Samira A.; Edberg, Donald L.; García-Llama, Eduardo

    2012-01-01

    This paper presents a method to promote STEM (Science, Technology, Engineering, and Mathematics) education through participation in a reduced gravity program with NASA (National Aeronautics and Space Administration). Microgravity programs with NASA provide students with a unique opportunity to conduct scientific research with innovative and…

  5. Study of Critical Heat Flux and Two-Phase Pressure Drop Under Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Abdollahian, Davood; Quintal, Joseph; Barez, Fred; Zahm, Jennifer; Lohr, Victor

    1996-01-01

    The design of the two-phase flow systems which are anticipated to be utilized in future spacecraft thermal management systems requires a knowledge of two-phase flow and heat transfer phenomena in reduced gravities. This program was funded by NASA headquarters in response to NRA-91-OSSA-17 and was managed by Lewis Research Center. The main objective of this program was to design and construct a two-phase test loop, and perform a series of normal gravity and aircraft trajectory experiments to study the effect of gravity on the Critical Heat Flux (CHF) and onset of instability. The test loop was packaged on two aircraft racks and was also instrumented to generate data for two-phase pressure drop. The normal gravity tests were performed with vertical up and downflow configurations to bound the effect of gravity on the test parameters. One set of aircraft trajectory tests was performed aboard the NASA DC-9 aircraft. These tests were mainly intended to evaluate the test loop and its operational performance under actual reduced gravity conditions, and to produce preliminary data for the test parameters. The test results were used to demonstrate the applicability of the normal gravity models for prediction of the two-phase friction pressure drop. It was shown that the two-phase friction multipliers for vertical upflow and reduced gravity conditions can be successfully predicted by the appropriate normal gravity models. Limited critical heat flux data showed that the measured CHF under reduced gravities are of the same order of magnitude as the test results with vertical upflow configuration. A simplified correlation was only successful in predicting the measured CHF for low flow rates. Instability tests with vertical upflow showed that flow becomes unstable and critical heat flux occurs at smaller powers when a parallel flow path exists. However, downflow tests and a single reduced gravity instability experiment indicated that the system actually became more stable with a parallel single-phase flow path. Several design modifications have been identified which will improve the system performance for generating reduced gravity data. The modified test loop can provide two-phase flow data for a range of operating conditions and can serve as a test bed for component evaluation.

  6. Space truss zero gravity dynamics

    NASA Technical Reports Server (NTRS)

    Swanson, Andy

    1989-01-01

    The Structural Dynamics Branch of the Air Force Flight Dynamics Laboratory in cooperation with the Reduced Gravity Office of the NASA Lyndon B. Johnson Space Center (JSC) plans to perform zero-gravity dynamic tests of a 12-meter truss structure. This presentation describes the program and presents all results obtained to date.

  7. Gsolve, a Python computer program with a graphical user interface to transform relative gravity survey measurements to absolute gravity values and gravity anomalies

    NASA Astrophysics Data System (ADS)

    McCubbine, Jack; Tontini, Fabio Caratori; Stagpoole, Vaughan; Smith, Euan; O'Brien, Grant

    2018-01-01

    A Python program (Gsolve) with a graphical user interface has been developed to assist with routine data processing of relative gravity measurements. Gsolve calculates the gravity at each measurement site of a relative gravity survey, which is referenced to at least one known gravity value. The tidal effects of the sun and moon, gravimeter drift and tares in the data are all accounted for during the processing of the survey measurements. The calculation is based on a least squares formulation where the difference between the absolute gravity at each surveyed location and parameters relating to the dynamics of the gravimeter are minimized with respect to the relative gravity observations, and some supplied gravity reference site values. The program additionally allows the user to compute free air gravity anomalies, with respect to the GRS80 and GRS67 reference ellipsoids, from the determined gravity values and calculate terrain corrections at each of the surveyed sites using a prism formula and a user supplied digital elevation model. This paper reviews the mathematical framework used to reduce relative gravimeter survey observations to gravity values. It then goes on to detail how the processing steps can be implemented using the software.

  8. Burning of solids in oxygen-rich environments in normal and reduced gravity. [combustion of cellulose acetates

    NASA Technical Reports Server (NTRS)

    Andracchio, C. R.; Cochran, T. H.

    1974-01-01

    An experimental program was conducted to investigate the combustion characteristics of solids burning in a weightless environment. The combustion characteristics of thin cellulose acetate material were obtained from specimens burned in supercritical as well as in low pressure oxygen atmospheres. Flame spread rates were measured and found to depend on material thickness and pressure in both normal gravity (1-g) and reduced gravity (0-g). A gravity effect on the burning process was also observed; the ratio of 1-g to 0-g flame spread rate becomes larger with increasing material thickness. Qualitative results on the combustion characteristics of metal screens (stainless steel, Inconel, copper, and aluminum) burning in supercritical oxygen and normal gravity are also presented. Stainless steel (300 sq mesh) was successfully ignited in reduced gravity; no apparent difference in the flame spread pattern was observed between 1-g and 0-g.

  9. A Preliminary Assessment of Phase Separator Ground-Based and Reduced-Gravity Testing for ALS Systems

    NASA Technical Reports Server (NTRS)

    Hall, Nancy Rabel

    2006-01-01

    A viewgraph presentation of phase separator ground-based and reduced-gravity testing for Advanced Life Support (ALS) systems is shown. The topics include: 1) Multiphase Flow Technology Program; 2) Types of Separators; 3) MOBI Phase Separators; 4) Experiment set-up; and 5) Preliminary comparison/results.

  10. Bubble behavior in molten glass in a temperature gradient. [in reduced gravity rocket experiment

    NASA Technical Reports Server (NTRS)

    Meyyappan, M.; Subramanian, R. S.; Wilcox, W. R.; Smith, H.

    1982-01-01

    Gas bubble motion in a temperature gradient was observed in a sodium borate melt in a reduced gravity rocket experiment under the NASA SPAR program. Large bubbles tended to move faster than smaller ones, as predicted by theory. When the bubbles contacted a heated platinum strip, motion virtually ceased because the melt only imperfectly wets platinum. In some cases bubble diameter increased noticeably with time.

  11. Microgravity

    NASA Image and Video Library

    2004-04-15

    The Reduced-Gravity Program provides the unique weightless or zero-g environment of space flight for testing and training of human and hardware reactions. The reduced-gravity environment is obtained with a specially modified KC-135A turbojet transport which flies parabolic arcs to produce weightless periods of 20 to 25 seconds. KC-135A cargo bay test area is approximately 60 feet long, 10 feet wide, and 7 feet high. The image shows KC-135A in flight.

  12. Second Microgravity Fluid Physics Conference

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The conference's purpose was to inform the fluid physics community of research opportunities in reduced-gravity fluid physics, present the status of the existing and planned reduced gravity fluid physics research programs, and inform participants of the upcoming NASA Research Announcement in this area. The plenary sessions provided an overview of the Microgravity Fluid Physics Program information on NASA's ground-based and space-based flight research facilities. An international forum offered participants an opportunity to hear from French, German, and Russian speakers about the microgravity research programs in their respective countries. Two keynote speakers provided broad technical overviews on multiphase flow and complex fluids research. Presenters briefed their peers on the scientific results of their ground-based and flight research. Fifty-eight of the sixty-two technical papers are included here.

  13. Soldering Tested in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Pettegrew, Richard D.; Watson, J. Kevin; Down, Robert S.; Haylett, Daniel R.

    2005-01-01

    Whether used occasionally for contingency repair or routinely in nominal repair operations, soldering will become increasingly important to the success of future long-duration human space missions. As a result, it will be critical to have a thorough understanding of the service characteristics of solder joints produced in reduced-gravity environments. The National Center for Space Exploration Research (via the Research for Design program), the NASA Glenn Research Center, and the NASA Johnson Space Center are conducting an experimental program to explore the influence of reduced gravity environments on the soldering process. Solder joint characteristics that are being considered include solder fillet geometry, porosity, and microstructural features. Both through-hole (see the drawing and image on the preceding figure) and surface-mounted devices are being investigated. This effort (the low-gravity portion being conducted on NASA s KC-135 research aircraft) uses the soldering hardware currently available on the International Space Station. The experiment involves manual soldering by a contingent of test operators, including both highly skilled technicians and less skilled individuals to provide a skill mix that might be encountered in space mission crews. The experiment uses both flux-cored solder and solid-core solder with an externally applied flux. Other experimental parameters include the type of flux, gravitational level (nominally zero,

  14. Microgravity research in NASA ground-based facilities

    NASA Technical Reports Server (NTRS)

    Lekan, Jack

    1989-01-01

    An overview of reduced gravity research performed in NASA ground-based facilities sponsored by the Microgravity Science and Applications Program of the NASA Office of Space Science and Applications is presented. A brief description and summary of the operations and capabilities of each of these facilities along with an overview of the historical usage of them is included. The goals and program elements of the Microgravity Science and Applications programs are described and the specific programs that utilize the low gravity facilities are identified. Results from two particular investigations in combustion (flame spread over solid fuels) and fluid physics (gas-liquid flows at microgravity conditions) are presented.

  15. Human Performance in Simulated Reduced Gravity Environments

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew; Harvill, Lauren; Rajulu, Sudhakar

    2014-01-01

    NASA is currently designing a new space suit capable of working in deep space and on Mars. Designing a suit is very difficult and often requires trade-offs between performance, cost, mass, and system complexity. Our current understanding of human performance in reduced gravity in a planetary environment (the moon or Mars) is limited to lunar observations, studies from the Apollo program, and recent suit tests conducted at JSC using reduced gravity simulators. This study will look at our most recent reduced gravity simulations performed on the new Active Response Gravity Offload System (ARGOS) compared to the C-9 reduced gravity plane. Methods: Subjects ambulated in reduced gravity analogs to obtain a baseline for human performance. Subjects were tested in lunar gravity (1.6 m/sq s) and Earth gravity (9.8 m/sq s) in shirt-sleeves. Subjects ambulated over ground at prescribed speeds on the ARGOS, but ambulated at a self-selected speed on the C-9 due to time limitations. Subjects on the ARGOS were given over 3 minutes to acclimate to the different conditions before data was collected. Nine healthy subjects were tested in the ARGOS (6 males, 3 females, 79.5 +/- 15.7 kg), while six subjects were tested on the C-9 (6 males, 78.8 +/- 11.2 kg). Data was collected with an optical motion capture system (Vicon, Oxford, UK) and was analyzed using customized analysis scripts in BodyBuilder (Vicon, Oxford, UK) and MATLAB (MathWorks, Natick, MA, USA). Results: In all offloaded conditions, variation between subjects increased compared to 1-g. Kinematics in the ARGOS at lunar gravity resembled earth gravity ambulation more closely than the C-9 ambulation. Toe-off occurred 10% earlier in both reduced gravity environments compared to earth gravity, shortening the stance phase. Likewise, ankle, knee, and hip angles remained consistently flexed and had reduced peaks compared to earth gravity. Ground reaction forces in lunar gravity (normalized to Earth body weight) were 0.4 +/- 0.2 on the ARGOS, but only 0.2 +/- 0.1 on the C-9. Discussion: Gait analysis showed differences in joint kinematics and temporal-spatial parameters between the reduced gravity simulators and with respect to earth gravity. Although most of the subjects chose a somewhat unique ambulation style as a result of learning to ambulate in a new environment, all but two were consistent with keeping an Earth-like gait. Learning how reduced gravity affects ambulation will help NASA to determine optimal suit designs, influence mission planning, help train crew, and may shed light on the underlying methods the body uses to optimize gait for energetic efficiency. Conclusion: Kinematic and kinetic analysis demonstrated noteworthy differences between an offloaded environment and 1-g, as would be expected. The analysis showed a trend to change the ambulation style in an offloaded environment to a rolling-loping walk (resembling crosscountry skiing) with increased swing time. This ambulation modification, particularly in the ARGOS, indicated that the relative kinetic energy of the subject was increased, on average, per the static body weight compared to the 1-g condition. How much of this was influenced by the active offloading of the ARGOS system is unknown.

  16. High pressure droplet burning experiments in reduced gravity

    NASA Technical Reports Server (NTRS)

    Chauveau, Christian; Goekalp, Iskender

    1995-01-01

    A parametric investigation of single droplet gasification regimes is helpful in providing the necessary physical ideas for sub-grid models used in spray combustion numerical prediction codes. A research program has been initiated at the LCSR to explore the vaporization regimes of single and interacting hydrocarbon and liquid oxygen droplets under high pressure conditions. This paper summarizes the status of the LCSR program on the high pressure burning of single fuel droplets; recent results obtained under normal and reduced gravity conditions with suspended droplets are presented. In the work described here, parabolic flights of the CNES Caravelle is used to create a reduced gravity environment of the order of 10(exp -2) g(sub O). For all the droplet burning experiments reported here, the suspended droplet initial diameters are scattered around 1.5 mm; and the ambient air temperature is 300 K. The ambient pressure is varied between 0.1 MPa and 12 MPa. Four fuels are investigated: methanol (Pc = 7.9 MPa), n-heptane (Pc = 2.74 MPa), n-hexane (Pc = 3.01 MPa) and n-octane (Pc = 2.48 MPa).

  17. Ionospheric effects of magneto-acoustic-gravity waves: Dispersion relation

    NASA Astrophysics Data System (ADS)

    Jones, R. Michael; Ostrovsky, Lev A.; Bedard, Alfred J.

    2017-06-01

    There is extensive evidence for ionospheric effects associated with earthquake-related atmospheric disturbances. Although the existence of earthquake precursors is controversial, one suggested method of detecting possible earthquake precursors and tsunamis is by observing possible ionospheric effects of atmospheric waves generated by such events. To study magneto-acoustic-gravity waves in the atmosphere, we have derived a general dispersion relation including the effects of the Earth's magnetic field. This dispersion relation can be used in a general atmospheric ray tracing program to calculate the propagation of magneto-acoustic-gravity waves from the ground to the ionosphere. The presence of the Earth's magnetic field in the ionosphere can radically change the dispersion properties of the wave. The general dispersion relation obtained here reduces to the known dispersion relations for magnetoacoustic waves and acoustic-gravity waves in the corresponding particular cases. The work described here is the first step in achieving a generalized ray tracing program permitting propagation studies of magneto-acoustic-gravity waves.

  18. Teaching Physics from a Reduced Gravity Environment

    NASA Astrophysics Data System (ADS)

    Benge, Raymond D.; Young, C.; Davis, S.; Worley, A.; Smith, L.; Gell, A.

    2010-01-01

    This poster reports on an educational experiment flown in January 2009 as part of NASA's Microgravity University program. The experiment flown was an investigation into the properties of harmonic oscillators in reduced gravity. Harmonic oscillators are studied in every introductory physics class. The equation for the period of a harmonic oscillator does not include the acceleration due to gravity, so the period should be independent of gravity. However, the equation for the period of a pendulum does include the acceleration due to gravity, so the period of a pendulum should appear longer under reduced gravity (such as lunar or Martian gravity) and shorter under hyper-gravity. Typical homework problems for introductory physics classes ask questions such as "What would be the period of oscillation if this experiment were performed on the Moon or Mars?” This gives students a chance to actually see the effects predicted by the equations. These environments can be simulated aboard an aircraft. Video of the experiments being performed aboard the aircraft is to be used in introductory physics classes. Students will be able to record information from watching the experiment performed aboard the aircraft in a similar manner to how they collect data in the laboratory. They can then determine if the experiment matches theory. Video and an experimental procedure are being prepared based upon this flight, and these materials will be available for download by faculty anywhere with access to the internet who wish to use the experiment in their own classrooms in both college and high school physics classes.

  19. Teaching from a Microgravity Environment: Harmonic Oscillator and Pendulum

    NASA Astrophysics Data System (ADS)

    Benge, Raymond; Young, Charlotte; Davis, Shirley; Worley, Alan; Smith, Linda; Gell, Amber

    2009-04-01

    This presentation reports on an educational experiment flown in January 2009 as part of NASA's Microgravity University program. The experiment flown was an investigation into the properties of harmonic oscillators in reduced gravity. Harmonic oscillators are studied in every introductory physics class. The equation for the period of a harmonic oscillator does not include the acceleration due to gravity, so the period should be independent of gravity. However, the equation for the period of a pendulum does include the acceleration due to gravity, so the period of a pendulum should appear longer under reduced gravity (such as lunar or Martian gravity) and shorter under hyper-gravity. These environments can be simulated aboard an aircraft. Video of the experiments being performed aboard the aircraft is to be used in introductory physics classes. Students will be able to record information from watching the experiment performed aboard the aircraft in a similar manner to how they collect data in the laboratory. They can then determine if the experiment matches theory. Video and an experimental procedure are being prepared based upon this flight, and these materials will be available for download by faculty anywhere with access to the internet who wish to use the experiment in their own classrooms.

  20. Fluid Physics and Transport Phenomena in a Simulated Reduced Gravity Environment

    NASA Technical Reports Server (NTRS)

    Lipa, J.

    2004-01-01

    We describe a ground-based apparatus that allows the cancellation of gravity on a fluid using magnetic forces. The present system was designed for liquid oxygen studies over the range 0.001 - 5 g s. This fluid is an essential component of any flight mission using substantial amounts of liquid propellant, especially manned missions. The apparatus has been used to reduce the hydrostatic compression near the oxygen critical point and to demonstrate inverted phase separation. It could also be used to study pool boiling and two-phase heat transfer in Martian, Lunar or near-zero gravity, as well as phenomena such as Marangoni flow and convective instabilities. These studies would contribute directly to the reliability and optimization of the Moon and Mars flight programs.

  1. Gravity and magnetic anomaly data analysis

    NASA Technical Reports Server (NTRS)

    Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator)

    1982-01-01

    Progress on the analysis MAGSAT data is reported. The MAGSAT data from 40 deg S to 70 deg N latitude and 30 deg W to 60 E longitude was reduced to radial polarization. In addition, gravity anomaly data from this area were processed and a variety of filtered maps were prepared for combined interpretation of the gravity and magnetic data in conjunction with structural and tectonic maps of the area. The VERSATEC listings and cross-reference maps of variable and array names for the spherical Earth analysis programs NVERTSM, SMFLD, NVERTG, and GFLD were also prepared.

  2. Electric Field Effects in Self-Propagating High-Temperature Synthesis under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Unuvar, C.; Frederick, D. M.; Shaw, B. D.; Munir, Z. A.

    2003-01-01

    Self-propagating high-temperature synthesis (SHS) has been used to form many materials. SHS generally involves mixing reactants together (e.g., metal powders) and igniting the mixture such that a combustion (deflagration) wave passes though the mixture. The imposition of an electric field (AC or DC) across SHS reactants has been shown to have a marked effect on the dynamics of wave propagation and on the nature, composition, and homogeneity of the product . The use of an electric field with SHS has been termed "field-assisted SHS". Combustion wave velocities and temperatures are directly affected by the field, which is typically perpendicular to the average wave velocity. The degree of activation by the field (e.g., combustion rate) is related to the current density distribution within the sample, and is therefore related to the temperature-dependent spatial distribution of the effective electrical conductivity of reactants and products. Furthermore, the field can influence other important SHS-related phenomena including capillary flow, mass-transport in porous media, and Marangoni flows. These phenomena are influenced by gravity in conventional SHS processes (i.e., without electric fields). As a result the influence of the field on SHS under reduced gravity is expected to be different than under normal gravity. It is also known that heat loss rates from samples, which can depend significantly on gravity, can influence final products in SHS. This research program is focused on studying field-assisted SHS under reduced gravity conditions. The broad objective of this research program is to understand the role of an electric field in SHS reactions under conditions where gravity-related effects are suppressed. The research will allow increased understanding of fundamental aspects of field-assisted SHS processes as well as synthesis of materials that cannot be formed in normal gravity.

  3. An overview of the cosmic dust analogue material production in reduced gravity: the STARDUST experience

    NASA Technical Reports Server (NTRS)

    Ferguson, F.; Lilleleht, L. U.; Nuth, J.; Stephens, J. R.; Bussoletti, E.; Colangeli, L.; Mennella, V.; Dell'Aversana, P.; Mirra, C.

    1993-01-01

    The formation, properties and chemical dynamics of microparticles are important in a wide variety of technical and scientific fields including synthesis of semiconductor crystals from the vapour, heterogeneous chemistry in the stratosphere and the formation of cosmic dust surrounding the stars. Gravitational effects on particle formation from vapors include gas convection and buoyancy and particle sedimentation. These processes can be significantly reduced by studying condensation and agglomeration of particles in microgravity. In addition, to accurately simulate particle formation near stars, which takes place under low gravity conditions, studies in microgravity are desired. We report here the STARDUST experience, a recent collaborative effort that brings together a successful American program of microgravity experiments on particle formation aboard NASA KC-135 Reduced Gravity Research Aircraft and several Italian research groups with expertise in microgravity research and astrophysical dust formation. The program goal is to study the formation and properties of high temperature particles and gases that are of interest in astrophysics and planetary science. To do so we are developing techniques that are generally applicable to study particle formation and properties, taking advantage of the microgravity environment to allow accurate control of system parameters.

  4. An overview of the cosmic dust analogue material production in reduced gravity: the STARDUST experience.

    PubMed

    Ferguson, F; Lilleleht, L U; Nuth, J; Stephens, J R; Bussoletti, E; Colangeli, L; Mennella, V; Dell'Aversana, P; Mirra, C

    1993-01-01

    The formation, properties and chemical dynamics of microparticles are important in a wide variety of technical and scientific fields including synthesis of semiconductor crystals from the vapour, heterogeneous chemistry in the stratosphere and the formation of cosmic dust surrounding the stars. Gravitational effects on particle formation from vapors include gas convection and buoyancy and particle sedimentation. These processes can be significantly reduced by studying condensation and agglomeration of particles in microgravity. In addition, to accurately simulate particle formation near stars, which takes place under low gravity conditions, studies in microgravity are desired. We report here the STARDUST experience, a recent collaborative effort that brings together a successful American program of microgravity experiments on particle formation aboard NASA KC-135 Reduced Gravity Research Aircraft and several Italian research groups with expertise in microgravity research and astrophysical dust formation. The program goal is to study the formation and properties of high temperature particles and gases that are of interest in astrophysics and planetary science. To do so we are developing techniques that are generally applicable to study particle formation and properties, taking advantage of the microgravity environment to allow accurate control of system parameters.

  5. Laboratory outreach: student assessment of flow cytometer fluidics in zero gravity.

    PubMed

    Crucian, B; Norman, J; Brentz, J; Pietrzyk, R; Sams, C

    2000-10-01

    Due to the the clinical utility of the flow cytometer, the National Aeronautics and Space Administration (NASA) is interested in the design of a space flight-compatible cytometer for use on long-duration space missions. Because fluid behavior is altered dramatically during space flight, it was deemed necessary to validate the principles of hydrodynamic focusing and laminar flow (cytometer fluidics) in a true microgravity environment. An experiment to validate these properties was conducted by 12 students from Sweetwater High School (Sweetwater, TX) participating in the NASA Reduced Gravity Student Flight Opportunity, Class of 2000. This program allows high school students to gain scientific experience by conducting an experiment on the NASA KC-135 zero gravity laboratory aircraft. The KC-135 creates actual zero-gravity conditions in 30-second intervals by flying a highly inclined parabolic flight path. The experiment was designed by their mentor in the program, the Johnson Space Center's flow cytometrist Brian Crucian, PhD, MT(ASCP). The students performed the experiment, with the mentor, onboard the NASA zero-gravity research aircraft in April 2000.

  6. Complete Bouguer gravity anomaly map of the state of Colorado

    USGS Publications Warehouse

    Abrams, Gerda A.

    1993-01-01

    The Bouguer gravity anomaly map is part of a folio of maps of Colorado cosponsored by the National Mineral Resources Assessment Program (NAMRAP) and the National Geologic Mapping Program (COGEOMAP) and was produced to assist in studies of the mineral resource potential and tectonic setting of the State. Previous compilations of about 12,000 gravity stations by Behrendt and Bajwa (1974a,b) are updated by this map. The data was reduced at a 2.67 g/cm3 and the grid contoured at 3 mGal intervals. This map will aid in the mineral resource assessment by indicating buried intrusive complexes, volcanic fields, major faults and shear zones, and sedimentary basins; helping to identify concealed geologic units; and identifying localities that might be hydrothermically altered or mineralized.

  7. Cryogenic Pressure Control Modeling for Ellipsoidal Space Tanks in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Hedayat, Ali; Lopez, Alfredo; Grayson, Gary D.; Chandler, Frank O.; Hastings, Leon J.

    2008-01-01

    A computational fluid dynamics (CFD) model is developed to simulate pressure control of an ellipsoidal-shaped liquid hydrogen tank under external heating in low gravity. Pressure control is provided by an axial jet thermodynamic vent system (TVS) centered within the vessel that injects cooler liquid into the tank, mixing the contents and reducing tank pressure. The two-phase cryogenic tank model considers liquid hydrogen in its own vapor with liquid density varying with temperature only and a fully compressible ullage. The axisymmetric model is developed using a custom version of the commercially available FLOW-3D software and simulates low gravity extrapolations of engineering checkout tests performed at Marshall Space Flight Center in 1999 in support of the Solar Thermal Upper Stage Technology Demonstrator (STUSTD) program. Model results illustrate that stable low gravity liquid-gas interfaces are maintained during all phases of the pressure control cycle. Steady and relatively smooth ullage pressurization rates are predicted. This work advances current low gravity CFD modeling capabilities for cryogenic pressure control and aids the development of a low cost CFD-based design process for space hardware.

  8. Flow Effects on the Flammability Diagrams of Solid Fuels: Microgravity Influence on Ignition Delay

    NASA Technical Reports Server (NTRS)

    Cordova, J. L.; Walther, D. C.; Fernandez-Pello, A. C.; Steinhaus, T.; Torero, J. L.; Quintere, J. G.; Ross, H. D.

    1999-01-01

    The possibility of an accidental fire in space-based facilities is a primary concern of space exploration programs. Spacecraft environments generally present low velocity air currents produced by ventilation and heating systems (of the order of 0.1 m/s), and fluctuating oxygen concentrations around that of air due to CO2 removal systems. Recent experiments of flame spread in microgravity show the spread rate to be faster and the limiting oxygen concentration lower than in normal-gravity. To date, there is not a material flammability-testing protocol that specifically addresses issues related to microgravity conditions. The present project (FIST) aims to establish a testing methodology that is suitable for the specific conditions of reduced gravity. The concepts underlying the operation of the LIFT apparatus, ASTM-E 1321-93, have been used to develop the Forced-flow Ignition and flame-Spread Test (FIST). As in the LIFT, the FIST is used to obtain the flammability diagrams of the material, i.e., graphs of ignition delay time and flame spread rate as a function of the externally applied radiant flux, but under forced flow rather than natural convection conditions, and for different oxygen concentrations. Although the flammability diagrams are similar, the flammability properties obtained with the FIST are found to depend on the flow characteristics. A research program is currently underway with the purpose of implementing the FIST as a protocol to characterize the flammability performance of solid materials to be used in microgravity facilities. To this point, tests have been performed with the FIST apparatus in both normal-gravity and microgravity conditions to determine the effects of oxidizer flow characteristics on the flammability diagrams of polymethylmethacrylate (PMMA) fuel samples. The experiments are conducted at reduced gravity in a KC- 135 aircraft following a parabolic flight trajectory that provides up to 25 seconds of low gravity. The objective of the experiments is to obtain data of ignition delay and flame spread rate at low flow velocities (0.1 to 0.2 m/s), which cannot be obtained under normal gravity because of the natural convection induced flows (approx. 0.5 m/s). Due to the limited reduced gravity time, the data can only be obtained for high radiant fluxes, and are consequently limited in scope. These tests do, however, provide insight into the flammability diagram characteristics at low velocity and reduced gravity, and also into the implications of the flow-dependence of the flammability properties under environments similar to those encountered in space facilities.

  9. Improving Realism in Reduced Gravity Simulators

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew; Harvil, Lauren; Clowers, Kurt; Clark, Timothy; Rajulu, Sudhakar

    2010-01-01

    Since man was first determined to walk on the moon, simulating the lunar environment became a priority. Providing an accurate reduced gravity environment is crucial for astronaut training and hardware testing. This presentation will follow the development of reduced gravity simulators to a final comparison of environments between the currently used systems. During the Apollo program era, multiple systems were built and tested, with several NASA centers having their own unique device. These systems ranged from marionette-like suspension devices where the subject laid on his side, to pneumatically driven offloading harnesses, to parabolic flights. However, only token comparisons, if any, were made between systems. Parabolic flight allows the entire body to fall at the same rate, giving an excellent simulation of reduced gravity as far as the biomechanics and physical perceptions are concerned. While the effects are accurate, there is limited workspace, limited time, and high cost associated with these tests. With all mechanical offload systems only the parts of the body that are actively offloaded feel any reduced gravity effects. The rest of the body still feels the full effect of gravity. The Partial Gravity System (Pogo) is the current ground-based offload system used to training and testing at the NASA Johnson Space Center. The Pogo is a pneumatic type system that allows for offloaded motion in the z-axis and free movement in the x-axis, but has limited motion in the y-axis. The pneumatic system itself is limited by cylinder stroke length and response time. The Active Response Gravity Offload System (ARGOS) is a next generation groundbased offload system, currently in development, that is based on modern robotic manufacturing lines. This system is projected to provide more z-axis travel and full freedom in both the x and y-axes. Current characterization tests are underway to determine how the ground-based offloading systems perform, how they compare to parabolic flights, and which of the systems is preferable for specific uses. These tests were conducted with six degree of freedom robots and manual inputs. Initial results show a definitive difference in abilities of the two offload systems.

  10. Third Microgravity Fluid Physics Conference

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The conference's purpose was to inform the fluid physics community of research opportunities in reduced-gravity fluid physics, present the status of the existing and planned reduced gravity fluid physics research programs, and inform participants of the upcoming NASA Research Announcement in this area. The plenary sessions provided an overview of the Microgravity Fluid Physics Program, present and future areas of emphasis, information on NASA's ground-based and space-based flight research facilities-especially use of the International Space Station, and the process by which future investigators enter the program. An international forum offered participants an opportunity to hear from Russian speakers about their microgravity research programs. Three keynote speakers provided broad technical overviews on the history and future development of the moon and on multiphase flow and complex fluids research. One keynote paper and an extended abstract are included in the proceedings. One hundred and thirty-two technical papers were presented in 28 sessions. Presenters briefed their peers on the scientific results of their ground-based and flight research. One hundred and twenty-two papers are included here.

  11. Escherichia coli growth under modeled reduced gravity

    NASA Technical Reports Server (NTRS)

    Baker, Paul W.; Meyer, Michelle L.; Leff, Laura G.

    2004-01-01

    Bacteria exhibit varying responses to modeled reduced gravity that can be simulated by clino-rotation. When Escherichia coli was subjected to different rotation speeds during clino-rotation, significant differences between modeled reduced gravity and normal gravity controls were observed only at higher speeds (30-50 rpm). There was no apparent affect of removing samples on the results obtained. When E. coli was grown in minimal medium (at 40 rpm), cell size was not affected by modeled reduced gravity and there were few differences in cell numbers. However, in higher nutrient conditions (i.e., dilute nutrient broth), total cell numbers were higher and cells were smaller under reduced gravity compared to normal gravity controls. Overall, the responses to modeled reduced gravity varied with nutrient conditions; larger surface to volume ratios may help compensate for the zone of nutrient depletion around the cells under modeled reduced gravity.

  12. Ground Reaction Forces During Reduced Gravity Running in Parabolic Flight.

    PubMed

    Cavanagh, Peter; Rice, Andrea; Glauberman, Molly; Sudduth, Amanda; Cherones, Arien; Davis, Shane; Lewis, Michael; Hanson, Andrea; Wilt, Grier

    2017-08-01

    Treadmills have been employed as both a form of exercise and a countermeasure to prevent changes in the musculoskeletal system on almost all NASA missions and many Russian missions since the early Space Shuttle flights. It is possible that treadmills may also be part of exercise programs on future Mars missions and that they may be a component of exercise facilities in lunar or Martian habitats. In order to determine if the ambient gravity on these destinations will provide osteogenic effects while performing exercise on a treadmill, ground reactions forces (GRFs) were measured on eight subjects (six women and two men) running at 6 mph during parabolic flight in Martian and lunar gravity conditions. On average, stride length increased as gravity decreased. The first and second peaks of the GRFs decreased by 0.156 and 0.196 bodyweights, respectively, per 1/10 g change in ambient gravity. Based on comparisons with previously measured GRF during loaded treadmill running on the International Space Station, we conclude that unloaded treadmill running under lunar and Martian conditions during exploration missions is not likely to be an osteo-protective exercise.Cavanagh P, Rice A, Glauberman M, Sudduth A, Cherones A, Davis S, Lewis M, Hanson A, Wilt G. Ground reaction forces during reduced gravity running in parabolic flight. Aerosp Med Hum Perform. 2017; 88(8):730-736.

  13. Laser Light Scattering, from an Advanced Technology Development Program to Experiments in a Reduced Gravity Environment

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Tscharnuter, Walther W.; Macgregor, Andrew D.; Dautet, Henri; Deschamps, Pierre; Boucher, Francois; Zuh, Jixiang; Tin, Padetha; Rogers, Richard B.; Ansari, Rafat R.

    1994-01-01

    Recent advancements in laser light scattering hardware are described. These include intelligent single card correlators; active quench/active reset avalanche photodiodes; laser diodes; and fiber optics which were used by or developed for a NASA advanced technology development program. A space shuttle experiment which will employ aspects of these hardware developments is previewed.

  14. Flow Boiling Critical Heat Flux in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Mudawar, Issam; Zhang, Hui; Hasan, Mohammad M.

    2004-01-01

    This study provides systematic method for reducing power consumption in reduced gravity systems by adopting minimum velocity required to provide adequate CHF and preclude detrimental effects of reduced gravity . This study proves it is possible to use existing 1 ge flow boiling and CHF correlations and models to design reduced gravity systems provided minimum velocity criteria are met

  15. Effects of Gravity on Processing Heavy Metal Fluoride Fibers

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.

    1997-01-01

    The effects of gravity on the crystal nucleation of heavy metal fluoride fibers have been studied in preliminary experiments utilizing NASA's KC-135 reduced gravity aircraft and a microgravity sounding rocket flight. Commercially produced fibers were heated to the crystallization temperature in normal and reduced gravity. The fibers processed in normal gravity showed complete crystallization while the fibers processed in reduced gravity did not show signs of crystallization.

  16. Two-phase reduced gravity experiments for a space reactor design

    NASA Technical Reports Server (NTRS)

    Antoniak, Zenen I.

    1987-01-01

    Future space missions researchers envision using large nuclear reactors with either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. New flow regime maps, models, and correlations are required if the codes are to be successfully applied to reduced-gravity flow and heat transfer. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from two-phase alkali-metal experiments. Because these reduced-gravity experiments will be very basic, and will employ small test loops of simple geometry, a large measure of commonality exists between them and experiments planned by other organizations. It is recommended that a committee be formed to coordinate all ongoing and planned reduced gravity flow experiments.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serpa, L.F.; Cook, K.L.

    Aeromagnetic and gravity surveys were conducted during 1978 in the Black Rock Desert, Utah over an area of about 2400 km/sup 2/ between the north-trending Pavant and Cricket Mountains. The surveys assisted in evaluating the geothermal resources in the Meadow-Hatton Known Geothermal Resource Area (KGRA) and vicinity by delineating geophysical characteristics of the subsurface. The gravity measurements from approximately 700 new stations were reduced to complete Bouguer gravity anomaly values with the aid of a computerized terrain-correction program and contoured at an interval of 1 milligal. The aeromagnetic survey was drape flown at an altitude of 305 m (1000 ft)more » and a total intensity residual aeromagnetic map with a contour interval of 20 gammas was produced. Two gravity and aeromagnetic east-west profiles and one north-south profile were modeled using a simultaneous 2 1/2-dimensional modeling technique to provide a single model satisfying both types of geophysical data.« less

  18. jsc2014e078835_alt

    NASA Image and Video Library

    2014-08-18

    Group photo representating past and present Multi-Media Services (MMS) photographer and videographers that have supported Zero-G Reduced Gravity Office operations throughout the year prior to the programs final flight on August 29, 2014. Photo Date: August 18, 2014. Location: Ellington Field - Hangar 990. Photographer: Robert Markowitz

  19. Reducing gravity takes the bounce out of running.

    PubMed

    Polet, Delyle T; Schroeder, Ryan T; Bertram, John E A

    2018-02-13

    In gravity below Earth-normal, a person should be able to take higher leaps in running. We asked 10 subjects to run on a treadmill in five levels of simulated reduced gravity and optically tracked centre-of-mass kinematics. Subjects consistently reduced ballistic height compared with running in normal gravity. We explain this trend by considering the vertical take-off velocity (defined as maximum vertical velocity). Energetically optimal gaits should balance the energetic costs of ground-contact collisions (favouring lower take-off velocity), and step frequency penalties such as leg swing work (favouring higher take-off velocity, but less so in reduced gravity). Measured vertical take-off velocity scaled with the square root of gravitational acceleration, following energetic optimality predictions and explaining why ballistic height decreases in lower gravity. The success of work-based costs in predicting this behaviour challenges the notion that gait adaptation in reduced gravity results from an unloading of the stance phase. Only the relationship between take-off velocity and swing cost changes in reduced gravity; the energetic cost of the down-to-up transition for a given vertical take-off velocity does not change with gravity. Because lower gravity allows an elongated swing phase for a given take-off velocity, the motor control system can relax the vertical momentum change in the stance phase, thus reducing ballistic height, without great energetic penalty to leg swing work. Although it may seem counterintuitive, using less 'bouncy' gaits in reduced gravity is a strategy to reduce energetic costs, to which humans seem extremely sensitive. © 2018. Published by The Company of Biologists Ltd.

  20. Fire Detection Organizing Questions

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Verified models of fire precursor transport in low and partial gravity: a. Development of models for large-scale transport in reduced gravity. b. Validated CFD simulations of transport of fire precursors. c. Evaluation of the effect of scale on transport and reduced gravity fires. Advanced fire detection system for gaseous and particulate pre-fire and fire signaturesa: a. Quantification of pre-fire pyrolysis products in microgravity. b. Suite of gas and particulate sensors. c. Reduced gravity evaluation of candidate detector technologies. d. Reduced gravity verification of advanced fire detection system. e. Validated database of fire and pre-fire signatures in low and partial gravity.

  1. Results and Lessons Learned from Performance Testing of Humans in Spacesuits in Simulated Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Chappell, Steven P.; Norcross, Jason R.; Gernhardt, Michael L.

    2009-01-01

    NASA's Constellation Program has plans to return to the Moon within the next 10 years. Although reaching the Moon during the Apollo Program was a remarkable human engineering achievement, fewer than 20 extravehicular activities (EVAs) were performed. Current projections indicate that the next lunar exploration program will require thousands of EVAs, which will require spacesuits that are better optimized for human performance. Limited mobility and dexterity, and the position of the center of gravity (CG) are a few of many features of the Apollo suit that required significant crew compensation to accomplish the objectives. Development of a new EVA suit system will ideally result in performance close to or better than that in shirtsleeves at 1 G, i.e., in "a suit that is a pleasure to work in, one that you would want to go out and explore in on your day off." Unlike the Shuttle program, in which only a fraction of the crew perform EVA, the Constellation program will require that all crewmembers be able to perform EVA. As a result, suits must be built to accommodate and optimize performance for a larger range of crew anthropometry, strength, and endurance. To address these concerns, NASA has begun a series of tests to better understand the factors affecting human performance and how to utilize various lunar gravity simulation environments available for testing.

  2. Macromolecular assemblies in reduced gravity environments

    NASA Technical Reports Server (NTRS)

    Moos, Philip J.; Hayes, James W.; Stodieck, Louis S.; Luttges, Marvin W.

    1990-01-01

    The assembly of protein macro molecules into structures commonly produced within biological systems was achieved using in vitro techniques carried out in nominal as well as reduced gravity environments. Appropriate hardware was designed and fabricated to support such studies. Experimental protocols were matched to the available reduced gravity test opportunities. In evaluations of tubulin, fibrin and collagen assembly products the influence of differing gravity test conditions are apparent. Product homogeneity and organization were characteristic enhancements documented in reduced gravity samples. These differences can be related to the fluid flow conditions that exist during in vitro product formation. Reduced gravity environments may provide a robust opportunity for directing the products formed in a variety of bioprocessing applications.

  3. Marangoni Effects in the Boiling of Binary Fluid Mixtures

    NASA Technical Reports Server (NTRS)

    Ahmed, Sayeed; Carey, Van P.; Motil, Brian

    1996-01-01

    Results of very recent experimental studies indicate that during nucleate boiling in some binary mixture, Marangoni effects augment the gravity driven flow of liquid towards the heated surface. With gravity present, it is impossible to separate the two effects. The reduced gravity environment gives an unique opportunity to explore th role of Marangoni effects on the boiling mechanisms free of gravitational body forces that obscure the role of such effects. However, recent experimental results suggest that under reduced gravity conditions, Marangoni effects is the dominant mechanism of vapor-liquid exchange at the surface for some binary mixture. To further explore such effects, experiments have been conducted with water/2-propanol mixtures at three different concentrations under normal gravity with different orientations of the heater surface and under reduce gravity aboard the DC-9 aircraft at NASA Lewis Research Center. The system pressure was sub atmospheric (approx. 8 kP at 1g(n)) and the bulk liquid temperature varied from low subcooling to near saturation. The molar concentrations of 2-propanol tested were 0.015, 0.025, and 0.1. Boiling curves were obtained both for high gravity (approx. 2g(n)) and reduce gravity (approx. 0.01g(n)). For each concentration of 2-propanol, the critical heat flux has been determined in the flight experiments only for reduced gravity conditions. Comparison of boiling curves and CHF obtained under l-g(n) an reduced gravity indicates that boiling mechanism in this mixtures is nearly independent of gravity. The results also indicate that the Marangoni mechanism is strong enough in these mixtures to sustain the boiling under reduced gravity conditions.

  4. A study of two-phase flow in a reduced gravity environment

    NASA Technical Reports Server (NTRS)

    Hill, D.; Downing, Robert S.

    1987-01-01

    A test loop was designed and fabricated for observing and measuring pressure drops of two-phase flow in reduced gravity. The portable flow test loop was then tested aboard the NASA-JSC KC135 reduced gravity aircraft. The test loop employed the Sundstrand Two-Phase Thermal Management System (TPTMS) concept which was specially fitted with a clear two-phase return line and condenser cover for flow observation. A two-phase (liquid/vapor) mixture was produced by pumping nearly saturated liquid through an evaporator and adding heat via electric heaters. The quality of the two-phase flow was varied by changing the evaporator heat load. The test loop was operated on the ground before and after the KC135 flight tests to create a one-gravity data base. The ground testing included all the test points run during the reduced gravity testing. Two days of reduced gravity tests aboard the KC135 were performed. During the flight tests, reduced-gravity, one-gravity, and nearly two-gravity accelerations were experienced. Data was taken during the entire flight which provided flow regime and pressure drop data for the three operating conditions. The test results show that two-phase pressure drops and flow regimes can be accurately predicted in zero-gravity.

  5. Formation of a xerogel in reduced gravity using the acid catalysed silica sol-gel reaction

    NASA Astrophysics Data System (ADS)

    Pienaar, Christine L.; Steinberg, Theodore A.

    2006-01-01

    An acid catalysed silica sol-gel reaction was used to create a xerogel in reduced gravity. Samples were formed in a special apparatus which utilised vacuum and heating to speed up the gelation process. Testing was conducted aboard NASA's KC-135 aircraft which flies a parabolic trajectory, producing a series of 25 second reduced gravity periods. The samples formed in reduced gravity were compared against a control sample formed in normal gravity. 29Si NMR and nitrogen adsorption/desorption techniques yielded information on the molecular and physical structure of the xerogels. The microstructure of the reduced gravity samples contained more Q 4 groups and less Q 3 and Q2 groups than the control sample. The pore size of the reduced gravity samples was also larger than the control sample. This indicated that in a reduced gravity environment, where convection is lessened due to the removal of buoyancy forces, the microstructure formed through cyclisation reactions rather than bimolecularisation reactions. The latter requires the movement of molecules for reactions to occur whereas cyclisation only requires a favourable configuration. Q 4 groups are stabilised when contained in a ring structure and are unlikely to undergo repolymerisation. Thus reduced gravity favoured the formation of a xerogel through cyclisation, producing a structure with more highly coordinated Q groups. The xerogel formed in normal gravity contained both chain and ring structures as bimolecularisation reactions were able to effectively compete with cyclisation.

  6. High temperature aircraft research furnace facilities

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.; Cashon, John L.

    1992-01-01

    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  7. Gravity and magnetic anomaly modeling and correlation using the SPHERE program and Magsat data

    NASA Technical Reports Server (NTRS)

    Braile, L. W.; Hinze, W. J. (Principal Investigator); Vonfrese, R. R. B.

    1980-01-01

    The spherical Earth inversion, modeling, and contouring software were tested and modified for processing data in the Southern Hemisphere. Preliminary geologic/tectonic maps and selected cross sections for South and Central America and the Caribbean region are being compiled and as well as gravity and magnetic models for the major geological features of the area. A preliminary gravity model of the Andeas Beniff Zone was constructed so that the density columns east and west of the subducted plates are in approximate isostatic equilibrium. The magnetic anomaly for the corresponding magnetic model of the zone is being computed with the SPHERE program. A test tape containing global magnetic measurements was converted to a tape compatible with Purdue's CDC system. NOO data were screened for periods of high diurnal activity and reduced to anomaly form using the IGS-75 model. Magnetic intensity anomaly profiles were plotted on the conterminous U.S. map using the track lines as the anomaly base level. The transcontinental magnetic high seen in POGO and MAGSAT data is also represented in the NOO data.

  8. Large-Scale Liquid Hydrogen Tank Rapid Chill and Fill Testing for the Advanced Shuttle Upper Stage Concept

    NASA Technical Reports Server (NTRS)

    Flachbart, R. H.; Hedayat, A.; Holt, K. A.; Sims, J.; Johnson, E. F.; Hastings, L. J.; Lak, T.

    2013-01-01

    Cryogenic upper stages in the Space Shuttle program were prohibited primarily due to a safety risk of a 'return to launch site' abort. An upper stage concept addressed this concern by proposing that the stage be launched empty and filled using shuttle external tank residuals after the atmospheric pressure could no longer sustain an explosion. However, only about 5 minutes was allowed for tank fill. Liquid hydrogen testing was conducted within a near-ambient environment using the multipurpose hydrogen test bed 638.5 ft3 (18m3) cylindrical tank with a spray bar mounted longitudinally inside. Although the tank was filled within 5 minutes, chilldown of the tank structure was incomplete, and excessive tank pressures occurred upon vent valve closure. Elevated tank wall temperatures below the liquid level were clearly characteristic of film boiling. The test results have substantial implications for on-orbit cryogen transfer since the formation of a vapor film would be much less inhibited due to the reduced gravity. However, the heavy tank walls could become an asset in normal gravity testing for on-orbit transfer, i.e., if film boiling in a nonflight weight tank can be inhibited in normal gravity, then analytical modeling anchored with the data could be applied to reduced gravity environments with increased confidence.

  9. An experiment in vision based autonomous grasping within a reduced gravity environment

    NASA Technical Reports Server (NTRS)

    Grimm, K. A.; Erickson, J. D.; Anderson, G.; Chien, C. H.; Hewgill, L.; Littlefield, M.; Norsworthy, R.

    1992-01-01

    The National Aeronautics and Space Administration's Reduced Gravity Program (RGP) offers opportunities for experimentation in gravities of less than one-g. The Extravehicular Activity Helper/Retriever (EVAHR) robot project of the Automation and Robotics Division at the Lyndon B. Johnson Space Center in Houston, Texas, is undertaking a task that will culminate in a series of tests in simulated zero-g using this facility. A subset of the final robot hardware consisting of a three-dimensional laser mapper, a Robotics Research 807 arm, a Jameson JH-5 hand, and the appropriate interconnect hardware/software will be used. This equipment will be flown on the RGP's KC-135 aircraft. This aircraft will fly a series of parabolas creating the effect of zero-g. During the periods of zero-g, a number of objects will be released in front of the fixed base robot hardware in both static and dynamic configurations. The system will then inspect the object, determine the objects pose, plan a grasp strategy, and execute the grasp. This must all be accomplished in the approximately 27 seconds of zero-g.

  10. Zero-gravity cloud physics laboratory: Experiment program definition and preliminary laboratory concept studies

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.; Greco, E. V.

    1973-01-01

    The experiment program definition and preliminary laboratory concept studies on the zero G cloud physics laboratory are reported. This program involves the definition and development of an atmospheric cloud physics laboratory and the selection and delineations of a set of candidate experiments that must utilize the unique environment of zero gravity or near zero gravity.

  11. PDEPTH—A computer program for the geophysical interpretation of magnetic and gravity profiles through Fourier filtering, source-depth analysis, and forward modeling

    USGS Publications Warehouse

    Phillips, Jeffrey D.

    2018-01-10

    PDEPTH is an interactive, graphical computer program used to construct interpreted geological source models for observed potential-field geophysical profile data. The current version of PDEPTH has been adapted to the Windows platform from an earlier DOS-based version. The input total-field magnetic anomaly and vertical gravity anomaly profiles can be filtered to produce derivative products such as reduced-to-pole magnetic profiles, pseudogravity profiles, pseudomagnetic profiles, and upward-or-downward-continued profiles. A variety of source-location methods can be applied to the original and filtered profiles to estimate (and display on a cross section) the locations and physical properties of contacts, sheet edges, horizontal line sources, point sources, and interface surfaces. Two-and-a-half-dimensional source bodies having polygonal cross sections can be constructed using a mouse and keyboard. These bodies can then be adjusted until the calculated gravity and magnetic fields of the source bodies are close to the observed profiles. Auxiliary information such as the topographic surface, bathymetric surface, seismic basement, and geologic contact locations can be displayed on the cross section using optional input files. Test data files, used to demonstrate the source location methods in the report, and several utility programs are included.

  12. The Value of Biomedical Simulation Environments to Future Human Space Flight Missions

    NASA Technical Reports Server (NTRS)

    Mulugeta,Lealem; Myers, Jerry G.; Lewandowski, Beth; Platts, Steven H.

    2011-01-01

    Mars and NEO missions will expose astronaut to extended durations of reduced reduced gravity, isolation and higher radiation. These new operation conditions pose health risks that are not well understood and perhaps unanticipated. Advanced computational simulation environments can beneficially augment research to predict, assess and mitigate potential hazards to astronaut health. The NASA Digital Astronaut Project (DAP), within the NASA Human Research Program, strives to achieve this goal.

  13. Reduced Gravity Zblan Optical Fiber

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.

    2000-01-01

    Two optical fiber pullers have been designed for pulling ZBLAN optical fiber in reduced gravity. One fiber puller was designed, built and flown on board NASA's KC135 reduced gravity aircraft. A second fiber puller has been designed for use on board the International Space Station.

  14. An initial study of void formation during solidification of aluminum in normal and reduced-gravity

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis P.; Foerster, George; Gotti, Daniel J.; Neumann, Eric S.; Johnston, J. C.; De Witt, Kenneth J.

    1992-01-01

    Void formation due to volumetric shrinkage during aluminum solidification was observed in real time using a radiographic viewing system in normal and reduced gravity. An end chill directional solidification furnace with water quench was developed to solidify aluminum samples during the approximately 16 seconds of reduced gravity (+/- 0.02g) achieved by flying an aircraft through a parabolic trajectory. Void formation was recorded for two cases: first a nonwetting system; and second, a wetting system where wetting occurs between the aluminum and crucible lid. The void formation in the nonwetting case is similar in normal and reduced gravity, with a single vapor cavity forming at the top of the crucible. In the wetting case in reduced gravity, surface tension causes two voids to form in the top corners of the crucible, but in normal gravity only one large voids forms across the top.

  15. The effect of reduced gravity on cryogenic nitrogen boiling and pipe chilldown.

    PubMed

    Darr, Samuel; Dong, Jun; Glikin, Neil; Hartwig, Jason; Majumdar, Alok; Leclair, Andre; Chung, Jacob

    2016-01-01

    Manned deep space exploration will require cryogenic in-space propulsion. Yet, accurate prediction of cryogenic pipe flow boiling heat transfer is lacking, due to the absence of a cohesive reduced gravity data set covering the expected flow and thermodynamic parameter ranges needed to validate cryogenic two-phase heat transfer models. This work provides a wide range of cryogenic chilldown data aboard an aircraft flying parabolic trajectories to simulate reduced gravity. Liquid nitrogen is used to quench a 1.27 cm diameter tube from room temperature. The pressure, temperature, flow rate, and inlet conditions are reported from 10 tests covering liquid Reynolds number from 2,000 to 80,000 and pressures from 80 to 810 kPa. Corresponding terrestrial gravity tests were performed in upward, downward, and horizontal flow configurations to identify gravity and flow direction effects on chilldown. Film boiling heat transfer was lessened by up to 25% in reduced gravity, resulting in longer time and more liquid to quench the pipe to liquid temperatures. Heat transfer was enhanced by increasing the flow rate, and differences between reduced and terrestrial gravity diminished at high flow rates. The new data set will enable the development of accurate and robust heat transfer models of cryogenic pipe chilldown in reduced gravity.

  16. The effect of reduced gravity on cryogenic nitrogen boiling and pipe chilldown

    PubMed Central

    Darr, Samuel; Dong, Jun; Glikin, Neil; Hartwig, Jason; Majumdar, Alok; Leclair, Andre; Chung, Jacob

    2016-01-01

    Manned deep space exploration will require cryogenic in-space propulsion. Yet, accurate prediction of cryogenic pipe flow boiling heat transfer is lacking, due to the absence of a cohesive reduced gravity data set covering the expected flow and thermodynamic parameter ranges needed to validate cryogenic two-phase heat transfer models. This work provides a wide range of cryogenic chilldown data aboard an aircraft flying parabolic trajectories to simulate reduced gravity. Liquid nitrogen is used to quench a 1.27 cm diameter tube from room temperature. The pressure, temperature, flow rate, and inlet conditions are reported from 10 tests covering liquid Reynolds number from 2,000 to 80,000 and pressures from 80 to 810 kPa. Corresponding terrestrial gravity tests were performed in upward, downward, and horizontal flow configurations to identify gravity and flow direction effects on chilldown. Film boiling heat transfer was lessened by up to 25% in reduced gravity, resulting in longer time and more liquid to quench the pipe to liquid temperatures. Heat transfer was enhanced by increasing the flow rate, and differences between reduced and terrestrial gravity diminished at high flow rates. The new data set will enable the development of accurate and robust heat transfer models of cryogenic pipe chilldown in reduced gravity. PMID:28725740

  17. NASA Space Biology Program. Eighth annual symposium's program and abstracts

    NASA Technical Reports Server (NTRS)

    Halstead, T. W. (Editor)

    1984-01-01

    The activities included five half days of presentations by space biology principal investigators, an evening of poster session presentations by research associates, and an afternoon session devoted to the Flight Experiments Program. Areas of discussion included the following: gravity receptor mechanisms; physiological effects of gravity, structural mass; fluid dynamics and metabolism; mechanisms of plant response; and the role of gravity in development.

  18. Microgravity Science and Applications Program tasks, 1986 revision

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Microgravity Science and Applications (MSA) program is directed toward research in the science and technology of processing materials under conditions of low gravity to provide a detailed examination of the constraints imposed by gravitational forces on Earth. The program is expected to lead to the development of new materials and processes in commercial applications adding to this nation's technological base. The research studies emphasize the selected materials and processes that will best elucidate the limitations due to gravity and demonstrate the enhanced sensitivity of control of processes that may be provided by the weightless environment of space. Primary effort is devoted to a study of the specific areas of research which reveals potential value in the initial investigations of the previous decades. Examples of previous process research include crystal growth and directional solidification of metals; containerless processing of reactive materials; synthesis and separation of biological materials; etc. Additional efforts will be devoted to identifying the special requirements which drive the design of hardware to reduce risk in future developments.

  19. Space tug geosynchronous mission simulation

    NASA Technical Reports Server (NTRS)

    Lang, T. J.

    1973-01-01

    Near-optimal three dimensional trajectories from a low earth park orbit inclined at 28.5 deg to a synchronous-equatorial mission orbit were developed for both the storable (thrust = 28,912 N (6,500 lbs), I sub sp = 339 sec) and cryogenic (thrust = 44,480 N (10,000 lbs), I sub sp = 470 sec) space tug using the iterative cost function minimization technique contained within the modularized vehicle simulation (MVS) program. The finite burn times, due to low thrust-to-weight ratios, and the associated gravity losses are accounted for in the trajectory simulation and optimization. The use of an ascent phasing orbit to achieve burnout in synchronous orbit at any longitude is investigated. The ascent phasing orbit is found to offer the additional advantage of significantly reducing the overall delta velocity by splitting the low altitude burn into two parts and thereby reducing gravity losses.

  20. Bi-Component Droplet Combustion in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Shaw, Benjamin D.

    2004-01-01

    This research deals with reduced-gravity combustion of bi-component droplets initially in the mm size range or larger. The primary objectives of the research are to study the effects of droplet internal flows, thermal and solutal Marangoni stresses, and species volatility differences on liquid species transport and overall combustion phenomena (e.g., gas-phase unsteadiness, burning rates, sooting, radiation, and extinction). The research program utilizes a reduced gravity environment so that buoyancy effects are rendered negligible. Use of large droplets also facilitates visualization of droplet internal flows, which is important for this research. In the experiments, droplets composed of low- and high-volatility species are burned. The low-volatility components are initially present in small amounts. As combustion of a droplet proceeds, the liquid surface mass fraction of the low-volatility component will increase with time, resulting in a sudden and temporary decrease in droplet burning rates as the droplet rapidly heats to temperatures close to the boiling point of the low-volatility component. This decrease in burning rates causes a sudden and temporary contraction of the flame. The decrease in burning rates and the flame contraction can be observed experimentally. Measurements of burning rates as well as the onset time for flame contraction allow effective liquid-phase species diffusivities to be calculated, e.g., using asymptotic theory. It is planned that droplet internal flows will be visualized in flight and ground-based experiments. In this way, effective liquid species diffusivities can be related to droplet internal flow characteristics. This program is a continuation of extensive ground-based experimental and theoretical research on bi-component droplet combustion that has been ongoing for several years. The focal point of this program is a flight experiment (Bi-Component Droplet Combustion Experiment, BCDCE). This flight experiment is under development. However, supporting ground-based studies have been performed. Some of the most recent ground-based research is summarized.

  1. Bi-Component Droplet Combustion in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Shaw, B. D.

    2001-01-01

    This research deals with reduced-gravity combustion of bi-component droplets initially in the mm size range or larger. The primary objectives of the research are to study the effects of droplet internal flows, thermal and solutal Marangoni stresses, and species volatility differences on liquid species transport and overall combustion phenomena (e.g., gas-phase unsteadiness, burning rates, sooting, radiation, and extinction). The research program utilizes a reduced-gravity environment so that buoyancy effects are rendered negligible. Use of large droplets also facilitates visualization of droplet internal flows, which is important for this research. In the experiments, droplets composed of low- and high-volatility species are burned. The low-volatility components are initially present in small amounts. As combustion of a droplet proceeds, the liquid surface mass fraction of the low-volatility component will increase with time, resulting in a sudden and temporary decrease in droplet burning rates as the droplet rapidly heats to temperatures close to the boiling point of the low-volatility component. This decrease in burning rates causes a sudden and temporary contraction of the flame. The decrease in burning rates and the flame contraction can be observed experimentally. Measurements of burning rates as well as the onset time for flame contraction allow effective liquid-phase species diffusivities to be calculated, e.g., using asymptotic theory. It is planned that droplet internal flows will be visualized in future flight and ground-based experiments. In this way, effective liquid species diffusivities can be related to droplet internal flow characteristics. This program is a continuation of extensive ground based experimental and theoretical research on bi-component droplet combustion that has been ongoing for several years. The focal point of this program is a flight experiment (Bi-Component Droplet Combustion Experiment, BCDCE). This flight experiment is under development. However, supporting studies have been performed. Because of space limitations, only some of the research performed over the last two years (since the 5th Microgravity Combustion Workshop) is summarized here.

  2. a method of gravity and seismic sequential inversion and its GPU implementation

    NASA Astrophysics Data System (ADS)

    Liu, G.; Meng, X.

    2011-12-01

    In this abstract, we introduce a gravity and seismic sequential inversion method to invert for density and velocity together. For the gravity inversion, we use an iterative method based on correlation imaging algorithm; for the seismic inversion, we use the full waveform inversion. The link between the density and velocity is an empirical formula called Gardner equation, for large volumes of data, we use the GPU to accelerate the computation. For the gravity inversion method , we introduce a method based on correlation imaging algorithm,it is also a interative method, first we calculate the correlation imaging of the observed gravity anomaly, it is some value between -1 and +1, then we multiply this value with a little density ,this value become the initial density model. We get a forward reuslt with this initial model and also calculate the correaltion imaging of the misfit of observed data and the forward data, also multiply the correaltion imaging result a little density and add it to the initial model, then do the same procedure above , at last ,we can get a inversion density model. For the seismic inveron method ,we use a mothod base on the linearity of acoustic wave equation written in the frequency domain,with a intial velociy model, we can get a good velocity result. In the sequential inversion of gravity and seismic , we need a link formula to convert between density and velocity ,in our method , we use the Gardner equation. Driven by the insatiable market demand for real time, high-definition 3D images, the programmable NVIDIA Graphic Processing Unit (GPU) as co-processor of CPU has been developed for high performance computing. Compute Unified Device Architecture (CUDA) is a parallel programming model and software environment provided by NVIDIA designed to overcome the challenge of using traditional general purpose GPU while maintaining a low learn curve for programmers familiar with standard programming languages such as C. In our inversion processing, we use the GPU to accelerate our gravity and seismic inversion. Taking the gravity inversion as an example, its kernels are gravity forward simulation and correlation imaging, after the parallelization in GPU, in 3D case,the inversion module, the original five CPU loops are reduced to three,the forward module the original five CPU loops are reduced to two. Acknowledgments We acknowledge the financial support of Sinoprobe project (201011039 and 201011049-03), the Fundamental Research Funds for the Central Universities (2010ZY26 and 2011PY0183), the National Natural Science Foundation of China (41074095) and the Open Project of State Key Laboratory of Geological Processes and Mineral Resources (GPMR0945).

  3. Candidate space processing techniques for biomaterials other than preparative electrophoresis

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.

    1976-01-01

    The advantages of performing the partition and countercurrent distribution (CCD) of cells in phase separated aqueous polymer systems under reduced gravity were assessed. Other possible applications considered for the space processing program include the freezing front separation of cells, adsorption of cells at the air-water interface, and the macrophage electrophoretic mobility test for cancer.

  4. Study of two-phase flows in reduced gravity

    NASA Astrophysics Data System (ADS)

    Roy, Tirthankar

    Study of gas-liquid two-phase flows under reduced gravity conditions is extremely important. One of the major applications of gas-liquid two-phase flows under reduced gravity conditions is in the design of active thermal control systems for future space applications. Previous space crafts were characterized by low heat generation within the spacecraft which needed to be redistributed within the craft or rejected to space. This task could easily have been accomplished by pumped single-phase loops or passive systems such as heat pipes and so on. However with increase in heat generation within the space craft as predicted for future missions, pumped boiling two-phase flows are being considered. This is because of higher heat transfer co-efficients associated with boiling heat transfer among other advantages. Two-phase flows under reduced gravity conditions also find important applications in space propulsion as in space nuclear power reactors as well as in many other life support systems of space crafts. Two-fluid model along with Interfacial Area Transport Equation (IATE) is a useful tool available to predict the behavior of gas-liquid two-phase flows under reduced gravity conditions. It should be noted that considerable differences exist between two-phase flows under reduced and normal gravity conditions especially for low inertia flows. This is because due to suppression of the gravity field the gas-liquid two-phase flows take a considerable time to develop under reduced gravity conditions as compared to normal gravity conditions. Hence other common methods of analysis applicable for fully developed gas-liquid two-phase flows under normal gravity conditions, like flow regimes and flow regime transition criteria, will not be applicable to gas-liquid two-phase flows under reduced gravity conditions. However the two-fluid model and the IATE need to be evaluated first against detailed experimental data obtained under reduced gravity conditions. Although lot of studies have been done in the past to understand the global structure of gas-liquid two-phase flows under reduced gravity conditions, using experimental setups aboard drop towers or aircrafts flying parabolic flights, detailed data on local structure of such two-phase flows are extremely rare. Hence experiments were carried out in a 304 mm inner diameter (ID) test facility on earth. Keeping in mind the detailed experimental data base that needs to be generated to evaluate two-fluid model along with IATE, ground based simulations provide the only economic path. Here the reduced gravity condition is simulated using two-liquids of similar densities (water and Therminol 59 RTM in the present case). Only adiabatic two-phase flows were concentrated on at this initial stage. Such a large diameter test section was chosen to study the development of drops to their full extent (it is to be noted that under reduced gravity conditions the stable bubble size in gas-liquid two-phase flows is much larger than that at normal gravity conditions). Twelve flow conditions were chosen around predicted bubbly flow to cap-bubbly flow transition region. Detailed local data was obtained at ten radial locations for each of three axial locations using state-of-the art multi-sensor conductivity probes. The results are presented and discussed. Also one-group as well as two-group, steady state, one-dimensional IATE was evaluated against data obtained here and by other researchers, and the results presented and discussed.

  5. BOILING HEAT TRANSFER IN ZERO GRAVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zara, E.A.

    1964-01-01

    The preliminary results of a research program to determine the effects of zero and near zero gravity on boiling heat transfer are presented. Zero gravity conditions were obtained on the ASD KC-135 zero gravity test aircraft, capable of providing 30-seconds of zero gravity. Results of the program to date indicate that nucleate (bubble) boiling heat transfer rates are not greatly affected by the absence of gravity forces. However, radical pressure increases were observed that will dictate special design considerations to space vehicle systems utilizing pool boiling processes, such as cryogenic or other fluid storage vessels where thermal input to themore » fluid is used for vessel pressurization. (auth)« less

  6. Development of experimental facilities for processing metallic crystals in orbit

    NASA Technical Reports Server (NTRS)

    Duncan, Bill J.

    1990-01-01

    This paper discusses the evolution, current status, and planning for facilities to exploit the microgravity environment of earth orbit in applied metallic materials science. Space-Shuttle based facilities and some precursor flight programs are reviewed. Current facility development programs and planned Space Station furnace capabilities are described. The reduced gravity levels available in earth orbit allow the processing of metallic materials without the disturbing influence of gravitationally induced thermal convection, stratification due to density differences in sample components, or the effects of hydrostatic pressure.

  7. Effects of Gravity on ZBLAN Glass Crystallization

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Ethridge, Edwin C.; Smith, G. A.; Workman, G.

    2003-01-01

    The effects of gravity on the crystallization of ZrF4-BaF2-LaF3-AlF3- NaF glasses have been studied utilizing NASA's KC135 and a sounding rocket, Fibers and cylinders of ZBLAN glass were heated to the crystallization temperature in unit and reduced gravity. When processed in unit gravity the glass crystallized, but when processed in reduced gravity, crystallization was suppressed. A possible explanation involving shear thinning is presented to explain these results.

  8. Effects of Gravity on ZBLAN Glass Crystallization

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Ethridge, Edwin C.; Smith, Guy A.; Workman, Gary

    2004-01-01

    The effects of gravity on the crystallization of ZrF(4)-BaF(2)-LaF(3)-AIF(3)-NaF glasses have been studied using the NASA KC-135 and a sounding rocket. Fibers and cylinders of ZBLAN glass were heated to the crystallization temperature in unit and reduced gravity. When processed in unit gravity the glass crystallized, but when processed in reduced gravity, crystallization was suppressed. A possible explanation involving shear thinning is presented to explain these results.

  9. Program Update for GRAV-D (Gravity for the Redefinition of the American Vertical Datum): Recent Airborne Surveys

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Diehl, T. M.; Roman, D. R.; Smith, D. A.

    2009-05-01

    The mission of NOAA's National Geodetic Survey (NGS) is to "define, maintain and provide access to the National Spatial Reference System" (NSRS). NAVD 88 (North American Vertical Datum of 1988) provides the vertical reference for the NSRS. However, comparisons of NAVD 88 with the Gravity Recovery and Climate Experiment (GRACE) satellite gravity data have demonstrated significant problems with the vertical reference, with an average difference between the two of 0.98 m and std dev of 0.37m. As repairing NAVD 88 through a massive leveling effort is impractical, our approach will be to establish a gravimetric geoid as the vertical reference. The linchpin in NGS's effort is the Gravity for the Redefinition of the American Vertical Datum (GRAV- D) program, which will ultimately incorporate satellite, airborne and terrestrial gravity data to build the 1-2 cm geoid that the U.S. surveying public is demanding. The program involves both an airborne component, for measuring a "baseline" gravity field, and a relative and absolute terrestrial program, for monitoring time variations of the gravity field. The GRAV-D aerogravity program commenced with a survey based from Anchorage, AK in the summer of 2008, additionally in support of NOAA's Hydropalooza program. Starting in October, the GRAV-D team has undertaken a concerted effort to survey Puerto Rico/US Virgin Islands, and then the Gulf Coast for the US Army Corps of Engineers. Gulf operations were from New Orleans, Lake Charles, and Austin, TX. This survey provides a continuous airborne field measurement at 10 km line spacing from the GA/AL state line to the Mexican border. We will present the results of these data collection efforts and outline the plans for the GRAV- D program during the remainder of 2009.

  10. Low-gravity fluid dynamics and transport phenomena. Progress in Astronautics and Aeronautics. Vol. 130

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koster, J.N.; Sani, R.L.

    1990-01-01

    Various papers on low-gravity fluid dynamics and transport phenomena are presented. Individual topics addressed include: fluid management in low gravity, nucleate pool boiling in variable gravity, application of energy-stability theory to problems in crystal growth, thermosolutal convection in liquid HgCdTe near the liquidus temperature, capillary surfaces in microgravity, thermohydrodynamic instabilities and capillary flows, interfacial oscillators, effects of gravity jitter on typical fluid science experiments and on natural convection in a vertical cylinder. Also discussed are: double-diffusive convection and its effects under reduced gravity, segregation and convection in dendritic alloys, fluid flow and microstructure development, analysis of convective situations with themore » Soret effect, complex natural convection in low Prandtl number metals, separation physics, phase partitioning in reduced gravity, separation of binary alloys with miscibility gap in the melt, Ostwald ripening in liquids, particle cloud combustion in reduced gravity, opposed-flow flame spread with implications for combustion at microgravity.« less

  11. Plant biology in reduced gravity on the Moon and Mars.

    PubMed

    Kiss, J Z

    2014-01-01

    While there have been numerous studies on the effects of microgravity on plant biology since the beginning of the Space Age, our knowledge of the effects of reduced gravity (less than the Earth nominal 1 g) on plant physiology and development is very limited. Since international space agencies have cited manned exploration of Moon/Mars as long-term goals, it is important to understand plant biology at the lunar (0.17 g) and Martian levels of gravity (0.38 g), as plants are likely to be part of bioregenerative life-support systems on these missions. First, the methods to obtain microgravity and reduced gravity such as drop towers, parabolic flights, sounding rockets and orbiting spacecraft are reviewed. Studies on gravitaxis and gravitropism in algae have suggested that the threshold level of gravity sensing is around 0.3 g or less. Recent experiments on the International Space Station (ISS) showed attenuation of phototropism in higher plants occurs at levels ranging from 0.l g to 0.3 g. Taken together, these studies suggest that the reduced gravity level on Mars of 0.38 g may be enough so that the gravity level per se would not be a major problem for plant development. Studies that have directly considered the impact of reduced gravity and microgravity on bioregenerative life-support systems have identified important biophysical changes in the reduced gravity environments that impact the design of these systems. The author suggests that the current ISS laboratory facilities with on-board centrifuges should be used as a test bed in which to explore the effects of reduced gravity on plant biology, including those factors that are directly related to developing life-support systems necessary for Moon and Mars exploration. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  12. Global Marine Gravity and Bathymetry at 1-Minute Resolution

    NASA Astrophysics Data System (ADS)

    Sandwell, D. T.; Smith, W. H.

    2008-12-01

    We have developed global gravity and bathymetry grids at 1-minute resolution. Three approaches are used to reduce the error in the satellite-derived marine gravity anomalies. First, we have retracked the raw waveforms from the ERS-1 and Geosat/GM missions resulting in improvements in range precision of 40% and 27%, respectively. Second, we have used the recently published EGM2008 global gravity model as a reference field to provide a seamless gravity transition from land to ocean. Third we have used a biharmonic spline interpolation method to construct residual vertical deflection grids. Comparisons between shipboard gravity and the global gravity grid show errors ranging from 2.0 mGal in the Gulf of Mexico to 4.0 mGal in areas with rugged seafloor topography. The largest errors occur on the crests of narrow large seamounts. The bathymetry grid is based on prediction from satellite gravity and available ship soundings. Global soundings were assembled from a wide variety of sources including NGDC/GEODAS, NOAA Coastal Relief, CCOM, IFREMER, JAMSTEC, NSF Polar Programs, UKHO, LDEO, HIG, SIO and numerous miscellaneous contributions. The National Geospatial-intelligence Agency and other volunteering hydrographic offices within the International Hydrographic Organization provided global significant shallow water (< 300 m) soundings derived from their nautical charts. All soundings were converted to a common format and were hand-edited in relation to a smooth bathymetric model. Land elevations and shoreline location are based on a combination SRTM30, GTOPO30, and ICESAT data. A new feature of the bathymetry grid is a matching grid of source identification number that enables one to establish the origin of the depth estimate in each grid cell. Both the gravity and bathymetry grids are freely available.

  13. Effects of geophysical extra-terrestrial and terrestrial physical stimuli on living organisms - Effects of gravity fields on living organisms

    NASA Technical Reports Server (NTRS)

    Saunders, R. J. F.

    1972-01-01

    The biologic effects of greatly reduced gravity resulting from space flight are examined. Aspects of U.S. space biology during the period from 1960 to 1972 are discussed, giving attention to the Discoverer satellites, the Gemini series, the OV1-4 satellite, the biosatellite project, the orbiting frog otolith experiment, and the Apollo program. Other studies considered are related to the effects of galactic particles on nonproliferating cells, a recoverable tissue culture experiment, cell cycle maintenance in human lung cells, and effects of space flight on circadian rhythms. Viking will land on the planet Mars in 1975 in search for life forms.

  14. Thermosyphon Flooding in Reduced Gravity Environments

    NASA Technical Reports Server (NTRS)

    Gibson, Marc Andrew

    2013-01-01

    An innovative experiment to study the thermosyphon flooding limits was designed and flown on aparabolic flight campaign to achieve the Reduced Gravity Environments (RGE) needed to obtainempirical data for analysis. Current correlation models of Faghri and Tien and Chung do not agreewith the data. A new model is presented that predicts the flooding limits for thermosyphons inearths gravity and lunar gravity with a 95 confidence level of +- 5W.

  15. Short Duration Reduced Gravity Drop Tower Design and Development

    NASA Astrophysics Data System (ADS)

    Osborne, B.; Welch, C.

    The industrial and commercial development of space-related activities is intimately linked to the ability to conduct reduced gravity research. Reduced gravity experimentation is important to many diverse fields of research in the understanding of fundamental and applied aspects of physical phenomena. Both terrestrial and extra-terrestrial experimental facilities are currently available to allow researchers access to reduced gravity environments. This paper discusses two drop tower designs, a 2.0 second facility built in Australia and a proposed 2.2 second facility in the United Kingdom. Both drop towers utilise a drag shield for isolating the falling experiment from the drag forces of the air during the test. The design and development of The University of Queensland's (Australia) 2.0 second drop tower, including its specifications and operational procedures is discussed first. Sensitive aspects of the design process are examined. Future plans are then presented for a new short duration (2.2 sec) ground-based reduced gravity drop tower. The new drop tower has been designed for Kingston University (United Kingdom) to support teaching and research in the field of reduced gravity physics. The design has been informed by the previous UQ drop tower design process and utilises a catapult mechanism to increase test time and also incorporates features to allow participants for a variety of backgrounds (from high school students through to university researchers) to learn and experiment in reduced gravity. Operational performance expectations for this new facility are also discussed.

  16. Soot and Radiation Measurements in Microgravity Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Ku, Jerry C.

    1996-01-01

    The subject of soot formation and radiation heat transfer in microgravity jet diffusion flames is important not only for the understanding of fundamental transport processes involved but also for providing findings relevant to spacecraft fire safety and soot emissions and radiant heat loads of combustors used in air-breathing propulsion systems. Our objectives are to measure and model soot volume fraction, temperature, and radiative heat fluxes in microgravity jet diffusion flames. For this four-year project, we have successfully completed three tasks, which have resulted in new research methodologies and original results. First is the implementation of a thermophoretic soot sampling technique for measuring particle size and aggregate morphology in drop-tower and other reduced gravity experiments. In those laminar flames studied, we found that microgravity soot aggregates typically consist of more primary particles and primary particles are larger in size than those under normal gravity. Comparisons based on data obtained from limited samples show that the soot aggregate's fractal dimension varies within +/- 20% of its typical value of 1.75, with no clear trends between normal and reduced gravity conditions. Second is the development and implementation of a new imaging absorption technique. By properly expanding and spatially-filtering the laser beam to image the flame absorption on a CCD camera and applying numerical smoothing procedures, this technique is capable of measuring instantaneous full-field soot volume fractions. Results from this technique have shown the significant differences in local soot volume fraction, smoking point, and flame shape between normal and reduced gravity flames. We observed that some laminar flames become open-tipped and smoking under microgravity. The third task we completed is the development of a computer program which integrates and couples flame structure, soot formation, and flame radiation analyses together. We found good agreements between model predictions and experimental data for laminar and turbulent flames under both normal and reduced gravity. We have also tested in the laboratory the techniques of rapid-insertion fine-wire thermocouples and emission pyrometry for temperature measurements. These techniques as well as laser Doppler velocimetry and spectral radiative intensity measurement have been proposed to provide valuable data and improve the modeling analyses.

  17. Field estimates of gravity terrain corrections and Y2K-compatible method to convert from gravity readings with multiple base stations to tide- and long-term drift-corrected observations

    USGS Publications Warehouse

    Plouff, Donald

    2000-01-01

    Gravity observations are directly made or are obtained from other sources by the U.S. Geological Survey in order to prepare maps of the anomalous gravity field and consequently to interpret the subsurface distribution of rock densities and associated lithologic or geologic units. Observations are made in the field with gravity meters at new locations and at reoccupations of previously established gravity "stations." This report illustrates an interactively-prompted series of steps needed to convert gravity "readings" to values that are tied to established gravity datums and includes computer programs to implement those steps. Inasmuch as individual gravity readings have small variations, gravity-meter (instrument) drift may not be smoothly variable, and acommodations may be needed for ties to previously established stations, the reduction process is iterative. Decision-making by the program user is prompted by lists of best values and graphical displays. Notes about irregularities of topography, which affect the value of observed gravity but are not shown in sufficient detail on topographic maps, must be recorded in the field. This report illustrates ways to record field notes (distances, heights, and slope angles) and includes computer programs to convert field notes to gravity terrain corrections. This report includes approaches that may serve as models for other applications, for example: portrayal of system flow; style of quality control to document and validate computer applications; lack of dependence on proprietary software except source code compilation; method of file-searching with a dwindling list; interactive prompting; computer code to write directly in the PostScript (Adobe Systems Incorporated) printer language; and high-lighting the four-digit year on the first line of time-dependent data sets for assured Y2K compatibility. Computer source codes provided are written in the Fortran scientific language. In order for the programs to operate, they first must be converted (compiled) into an executable form on the user's computer. Although program testing was done in a UNIX (tradename of American Telephone and Telegraph Company) computer environment, it is anticipated that only a system-dependent date-and-time function may need to be changed for adaptation to other computer platforms that accept standard Fortran code.d del iliscipit volorer sequi ting etue feum zzriliquatum zzriustrud esenibh ex esto esequat.

  18. An Overview of NASA's In-Space Cryogenic Propellant Management Technologies

    NASA Technical Reports Server (NTRS)

    Tucker, Stephen; Hastings, Leon; Haynes, Davy (Technical Monitor)

    2001-01-01

    Future mission planning within NASA continues to include cryogenic propellants for in space transportation, with mission durations ranging from days to years. Between 1995 and the present, NASA has pursued a diversified program of ground-based testing to prepare the various technologies associated with in-space cryogenic fluid management (CFM) for implementation. CFM technology areas being addressed include passive insulation, zero gravity pressure control, zero gravity mass gauging, capillary liquid acquisition devices, and zero boiloff storage. NASA CFM technologies are planned, coordinated, and implemented through the Cryogenic Technology Working Group which is comprised of representatives from the various NASA Centers as well as the National Institute of Standards and Technologies (NIST) and, on selected occasions, the Air Force. An overview of the NASA program and Marshall Space Flight Center (MSFC) roles, accomplishments, and near-term activities are presented herein. Basic CFM technology areas being addressed include passive insulation, zero gravity pressure control, zero gravity mass gauging, capillary liquid acquisition devices, and zero boiloff storage. Recent MSFC accomplishments include: the large scale demonstration of a high performance variable density multilayer insulation (MLI) that reduced the boiloff by about half that of standard MLI; utilization of a foam substrate under MLI to eliminate the need for a helium purge bag system; demonstrations of both spray-bar and axial-jet mixer concepts for zero gravity pressure control; and sub-scale testing that verified an optical sensor concept for measuring liquid hydrogen mass in zero gravity. In response to missions requiring cryogenic propellant storage durations on the order of years, a cooperative effort by NASA's Ames Research Center, Glenn Research Center, and MSFC has been implemented to develop and demonstrate zero boiloff concepts for in-space storage of cryogenic propellants. An MSFC contribution to this cooperative effort is a large-scale demonstration of the integrated operation of passive insulation, destratification/pressure control, and cryocooler (commercial unit) subsystems to achieve zero boiloff storage of liquid hydrogen. Testing is expected during the Summer of 2001.

  19. NASA Space Biology Program: 9th Annual Symposium

    NASA Technical Reports Server (NTRS)

    Halstead, T. W.

    1985-01-01

    Topics covered include plant and animal gravity receptors and transduction; the role of gravity in growth and development of plants and animals; biological support structures and the role of calcium; mechanisms and responses of gravity sensitive systems; and mechanisms of plant responses to gravity.

  20. GTOOLS: an Interactive Computer Program to Process Gravity Data for High-Resolution Applications

    NASA Astrophysics Data System (ADS)

    Battaglia, M.; Poland, M. P.; Kauahikaua, J. P.

    2012-12-01

    An interactive computer program, GTOOLS, has been developed to process gravity data acquired by the Scintrex CG-5 and LaCoste & Romberg EG, G and D gravity meters. The aim of GTOOLS is to provide a validated methodology for computing relative gravity values in a consistent way accounting for as many environmental factors as possible (e.g., tides, ocean loading, solar constraints, etc.), as well as instrument drift. The program has a modular architecture. Each processing step is implemented in a tool (function) that can be either run independently or within an automated task. The tools allow the user to (a) read the gravity data acquired during field surveys completed using different types of gravity meters; (b) compute Earth tides using an improved version of Longman's (1959) model; (c) compute ocean loading using the HARDISP code by Petit and Luzum (2010) and ocean loading harmonics from the TPXO7.2 ocean tide model; (d) estimate the instrument drift using linear functions as appropriate; and (e) compute the weighted least-square-adjusted gravity values and their errors. The corrections are performed up to microGal ( μGal) precision, in accordance with the specifications of high-resolution surveys. The program has the ability to incorporate calibration factors that allow for surveys done using different gravimeters to be compared. Two additional tools (functions) allow the user to (1) estimate the instrument calibration factor by processing data collected by a gravimeter on a calibration range; (2) plot gravity time-series at a chosen benchmark. The interactive procedures and the program output (jpeg plots and text files) have been designed to ease data handling and archiving, to provide useful information for future data interpretation or modeling, and facilitate comparison of gravity surveys conducted at different times. All formulas have been checked for typographical errors in the original reference. GTOOLS, developed using Matlab, is open source and machine independent. We will demonstrate program use and utility with data from multiple microgravity surveys at Kilauea volcano, Hawai'i.

  1. Generating a Reduced Gravity Environment on Earth

    NASA Technical Reports Server (NTRS)

    Dungan, Larry K.; Cunningham, Tom; Poncia, Dina

    2010-01-01

    Since the 1950s several reduced gravity simulators have been designed and utilized in preparing humans for spaceflight and in reduced gravity system development. The Active Response Gravity Offload System (ARGOS) is the newest and most realistic gravity offload simulator. ARGOS provides three degrees of motion within the test area and is scalable for full building deployment. The inertia of the overhead system is eliminated by an active motor and control system. This presentation will discuss what ARGOS is, how it functions, and the unique challenges of interfacing to the human. Test data and video for human and robotic systems will be presented. A major variable in the human machine interaction is the interface of ARGOS to the human. These challenges along with design solutions will be discussed.

  2. Effect of reduced gravity on the preferred walk-run transition speed

    NASA Technical Reports Server (NTRS)

    Kram, R.; Domingo, A.; Ferris, D. P.

    1997-01-01

    We investigated the effect of reduced gravity on the human walk-run gait transition speed and interpreted the results using an inverted-pendulum mechanical model. We simulated reduced gravity using an apparatus that applied a nearly constant upward force at the center of mass, and the subjects walked and ran on a motorized treadmill. In the inverted pendulum model for walking, gravity provides the centripetal force needed to keep the pendulum in contact with the ground. The ratio of the centripetal and gravitational forces (mv2/L)/(mg) reduces to the dimensionless Froude number (v2/gL). Applying this model to a walking human, m is body mass, v is forward velocity, L is leg length and g is gravity. In normal gravity, humans and other bipeds with different leg lengths all choose to switch from a walk to a run at different absolute speeds but at approximately the same Froude number (0.5). We found that, at lower levels of gravity, the walk-run transition occurred at progressively slower absolute speeds but at approximately the same Froude number. This supports the hypothesis that the walk-run transition is triggered by the dynamics of an inverted-pendulum system.

  3. Failures in sand in reduced gravity environments

    NASA Astrophysics Data System (ADS)

    Marshall, Jason P.; Hurley, Ryan C.; Arthur, Dan; Vlahinic, Ivan; Senatore, Carmine; Iagnemma, Karl; Trease, Brian; Andrade, José E.

    2018-04-01

    The strength of granular materials, specifically sand is important for understanding physical phenomena on other celestial bodies. However, relatively few experiments have been conducted to determine the dependence of strength properties on gravity. In this work, we experimentally investigated relative values of strength (the peak friction angle, the residual friction angle, the angle of repose, and the peak dilatancy angle) in Earth, Martian, Lunar, and near-zero gravity. The various angles were captured in a classical passive Earth pressure experiment conducted on board a reduced gravity flight and analyzed using digital image correlation. The data showed essentially no dependence of the peak friction angle on gravity, a decrease in the residual friction angle between Martian and Lunar gravity, no dependence of the angle of repose on gravity, and an increase in the dilation angle between Martian and Lunar gravity. Additionally, multiple flow surfaces were seen in near-zero gravity. These results highlight the importance of understanding strength and deformation mechanisms of granular materials at different levels of gravity.

  4. NASA/ASEE Summer Faculty Fellowship Program, 1990, Volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1990-01-01

    The 1990 Johnson Space Center (JSC) NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston-University Park and JSC. A compilation of the final reports on the research projects are presented. The topics covered include: the Space Station; the Space Shuttle; exobiology; cell biology; culture techniques; control systems design; laser induced fluorescence; spacecraft reliability analysis; reduced gravity; biotechnology; microgravity applications; regenerative life support systems; imaging techniques; cardiovascular system; physiological effects; extravehicular mobility units; mathematical models; bioreactors; computerized simulation; microgravity simulation; and dynamic structural analysis.

  5. Technology Overview for Advanced Aircraft Armament System Program.

    DTIC Science & Technology

    1981-05-01

    availability of methods or systems for improving stores and armament safety. Of particular importance are aspects of safety involving hazards analysis ...flutter virtually insensitive to inertia and center-of- gravity location of store - Simplifies and reduces analysis and testing required to flutter- clear...status. Nearly every existing reliability analysis and discipline that prom- ised a positive return on reliability performance was drawn out, dusted

  6. Physical and Chemical Aspects of Fire Suppression in Extraterrestrial Environments

    NASA Technical Reports Server (NTRS)

    Takahashi, F.; Linteris, G. T.; Katta, V. R.

    2001-01-01

    A fire, whether in a spacecraft or in occupied spaces on extraterrestrial bases, can lead to mission termination or loss of life. While the fire-safety record of US space missions has been excellent, the advent of longer duration missions to Mars, the moon, or aboard the International Space Station (ISS) increases the likelihood of fire events, with more limited mission termination options. The fire safety program of NASA's manned space flight program is based largely upon the principles of controlling the flammability of on-board materials and greatly eliminating sources of ignition. As a result, very little research has been conducted on fire suppression in the microgravity or reduced-gravity environment. The objectives of this study are: to obtain fundamental knowledge of physical and chemical processes of fire suppression, using gravity and oxygen concentration as independent variables to simulate various extraterrestrial environments, including spacecraft and surface bases in Mars and moon missions; to provide rigorous testing of analytical models, which include comprehensive descriptions of combustion and suppression chemistry; and to provide basic research results useful for technological advances in fire safety, including the development of new fire-extinguishing agents and approaches, in the microgravity environment associated with ISS and in the partial-gravity Martian and lunar environments.

  7. 3D Simulation: Microgravity Environments and Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Steve L.; Dischinger, Charles; Estes, Samantha; Parker, Nelson C. (Technical Monitor)

    2001-01-01

    Most, if not all, 3-D and Virtual Reality (VR) software programs are designed for one-G gravity applications. Space environments simulations require gravity effects of one one-thousandth to one one-million of that of the Earth's surface (10(exp -3) - 10(exp -6) G), thus one must be able to generate simulations that replicate those microgravity effects upon simulated astronauts. Unfortunately, the software programs utilized by the National Aeronautical and Space Administration does not have the ability to readily neutralize the one-G gravity effect. This pre-programmed situation causes the engineer or analysis difficulty during micro-gravity simulations. Therefore, microgravity simulations require special techniques or additional code in order to apply the power of 3D graphic simulation to space related applications. This paper discusses the problem and possible solutions to allow microgravity 3-D/VR simulations to be completed successfully without program code modifications.

  8. The ANGWIN Antarctic Research Program: First Results on Coordinated Trans-Antarctic Gravity Wave Measurements

    NASA Astrophysics Data System (ADS)

    Taylor, M. J.; Pautet, P. D.; Zhao, Y.; Nakamura, T.; Ejiri, M. K.; Murphy, D. J.; Moffat-Griffin, T.; Kavanagh, A. J.; Takahashi, H.; Wrasse, C. M.

    2014-12-01

    ANGWIN (ANrctic Gravity Wave Instrument Network) is a new "scientist driven" research program designed to develop and utilize a network of Antarctic atmospheric gravity wave observatories, operated by different nations working together in a spirit of close scientific collaboration. Our research plan has brought together colleagues from several international institutions, all with a common goal to better understand the large "continental-scale" characteristics and impacts of gravity waves on the Mesosphere and Lower Thermosphere (MLT) environment over Antarctica. ANGWIN combines complementary measurements obtained using new and existing aeronomy instrumentation with new modeling capabilities. To date, our activities have focused on developing coordinated airglow image data of gravity waves in the MLT region at the following sites: McMurdo (US), Syowa (Japan), Davis (Australia), Halley (UK), Rothera (UK), and Comandante Ferraz (Brazil). These are all well-established international research stations that are uniformly distributed around the continental perimeter, and together with ongoing measurements at South Pole Station they provide unprecedented coverage of the Antarctic gravity wave field and its variability during the extended polar winter season. This presentation introduces the ANGWIN program and research goals, and presents first results on trans-Antarctic wave propagation using coordinated measurements during the winter season 2011. We also discuss future plans for the development of this exciting program for Antarctic research.

  9. Intraspecific differences in bacterial responses to modelled reduced gravity

    NASA Technical Reports Server (NTRS)

    Baker, P. W.; Leff, L. G.

    2005-01-01

    AIMS: Bacteria are important residents of water systems, including those of space stations which feature specific environmental conditions, such as lowered effects of gravity. The purpose of this study was to compare responses with modelled reduced gravity of space station, water system bacterial isolates with other isolates of the same species. METHODS AND RESULTS: Bacterial isolates, Stenotrophomonas paucimobilis and Acinetobacter radioresistens, originally recovered from the water supply aboard the International Space Station (ISS) were grown in nutrient broth under modelled reduced gravity. Their growth was compared with type strains S. paucimobilis ATCC 10829 and A. radioresistens ATCC 49000. Acinetobacter radioresistens ATCC 49000 and the two ISS isolates showed similar growth profiles under modelled reduced gravity compared with normal gravity, whereas S. paucimobilis ATCC 10829 was negatively affected by modelled reduced gravity. CONCLUSIONS: These results suggest that microgravity might have selected for bacteria that were able to thrive under this unusual condition. These responses, coupled with impacts of other features (such as radiation resistance and ability to persist under very oligotrophic conditions), may contribute to the success of these water system bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: Water quality is a significant factor in many environments including the ISS. Efforts to remove microbial contaminants are likely to be complicated by the features of these bacteria which allow them to persist under the extreme conditions of the systems.

  10. 30 CFR 250.912 - What plans must I submit under the Platform Verification Program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and major members of concrete-gravity and steel-gravity structures; (2) For jacket and floating... Platforms and Structures Platform Verification Program § 250.912 What plans must I submit under the Platform Verification Program? If your platform, associated structure, or major modification meets the criteria in § 250...

  11. 30 CFR 250.912 - What plans must I submit under the Platform Verification Program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and major members of concrete-gravity and steel-gravity structures; (2) For jacket and floating... Platforms and Structures Platform Verification Program § 250.912 What plans must I submit under the Platform Verification Program? If your platform, associated structure, or major modification meets the criteria in § 250...

  12. 30 CFR 250.912 - What plans must I submit under the Platform Verification Program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and major members of concrete-gravity and steel-gravity structures; (2) For jacket and floating... Platforms and Structures Platform Verification Program § 250.912 What plans must I submit under the Platform Verification Program? If your platform, associated structure, or major modification meets the criteria in § 250...

  13. Simulated microgravity, Mars gravity, and 2g hypergravity affect cell cycle regulation, ribosome biogenesis, and epigenetics in Arabidopsis cell cultures.

    PubMed

    Kamal, Khaled Y; Herranz, Raúl; van Loon, Jack J W A; Medina, F Javier

    2018-04-23

    Gravity is the only component of Earth environment that remained constant throughout the entire process of biological evolution. However, it is still unclear how gravity affects plant growth and development. In this study, an in vitro cell culture of Arabidopsis thaliana was exposed to different altered gravity conditions, namely simulated reduced gravity (simulated microgravity, simulated Mars gravity) and hypergravity (2g), to study changes in cell proliferation, cell growth, and epigenetics. The effects after 3, 14, and 24-hours of exposure were evaluated. The most relevant alterations were found in the 24-hour treatment, being more significant for simulated reduced gravity than hypergravity. Cell proliferation and growth were uncoupled under simulated reduced gravity, similarly, as found in meristematic cells from seedlings grown in real or simulated microgravity. The distribution of cell cycle phases was changed, as well as the levels and gene transcription of the tested cell cycle regulators. Ribosome biogenesis was decreased, according to levels and gene transcription of nucleolar proteins and the number of inactive nucleoli. Furthermore, we found alterations in the epigenetic modifications of chromatin. These results show that altered gravity effects include a serious disturbance of cell proliferation and growth, which are cellular functions essential for normal plant development.

  14. Animals and spaceflight: from survival to understanding.

    PubMed

    Morey-Holton, E R; Hill, E L; Souza, K A

    2007-01-01

    Animals have been a critical component of the spaceflight program since its inception. The Russians orbited a dog one month after the Sputnik satellite was launched. The dog mission spurred U.S. interest in animal flights. The animal missions proved that individuals aboard a spacecraft not only could survive, but also could carry out tasks during launch, near-weightlessness, and re-entry; humans were launched into space only after the early animal flights demonstrated that spaceflight was safe and survivable. After these humble beginnings when animals preceded humans in space as pioneers, a dynamic research program was begun using animals as human surrogates aboard manned and unmanned space platforms to understand how the unique environment of space alters life. In this review article, the following questions have been addressed: How did animal research in space evolve? What happened to animal development when gravity decreased? How have animal experiments in space contributed to our understanding of musculoskeletal changes and fracture repair during exposure to reduced gravity?

  15. [Research under reduced gravity. Part II: experiments in variable gravitational fields].

    PubMed

    Volkmann, D; Sievers, A

    1992-03-01

    Recently, the reduced gravitational field of space laboratories, rockets, or satellites in Earth orbits offers a gravitational field which is variable from 10(-4) g to 1 g by the use of centrifuges. Especially with plants, data concerning gravisensitivity are based on experiments with clinostats. First experiments in reduced gravitational fields, however, demonstrate the uncertainty of these results. Thus, the main task of gravitational biologists is to test the validity of results obtained with the aid of clinostats. On this basis it should be possible to find a common mechanism to explain the influence of gravity on organisms. Experiments under reduced gravity in sounding rockets provided new knowledge on the perception of the gravity stimulus in plant cells.

  16. Performance of Thermal Mass Flow Meters in a Variable Gravitational Environment

    NASA Technical Reports Server (NTRS)

    Brooker, John E.; Ruff, Gary A.

    2004-01-01

    The performance of five thermal mass flow meters, MKS Instruments 179A and 258C, Unit Instruments UFM-8100, Sierra Instruments 830L, and Hastings Instruments HFM-200, were tested on the KC-135 Reduced Gravity Aircraft in orthogonal, coparallel, and counterparallel orientations relative to gravity. Data was taken throughout the parabolic trajectory where the g-level varied from 0.01 to 1.8 times normal gravity. Each meter was calibrated in normal gravity in the orthogonal position prior to flight followed by ground testing at seven different flow conditions to establish a baseline operation. During the tests, the actual flow rate was measured independently using choked-flow orifices. Gravitational acceleration and attitude had a unique effect on the performance of each meter. All meters operated within acceptable limits at all gravity levels in the calibrated orthogonal position. However, when operated in other orientations, the deviations from the reference flow became substantial for several of the flow meters. Data analysis indicated that the greatest source of error was the effect of orientation, followed by the gravity level. This work emphasized that when operating thermal flow meters in a variable gravity environment, it is critical to orient the meter in the same direction relative to gravity in which it was calibrated. Unfortunately, there was no test in normal gravity that could predict the performance of a meter in reduced gravity. When operating in reduced gravity, all meters indicated within 5 percent of the full scale reading at all flow conditions and orientations.

  17. Terrestrial gravity data analysis for interim gravity model improvement

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This is the first status report for the Interim Gravity Model research effort that was started on June 30, 1986. The basic theme of this study is to develop appropriate models and adjustment procedures for estimating potential coefficients from terrestrial gravity data. The plan is to use the latest gravity data sets to produce coefficient estimates as well as to provide normal equations to NASA for use in the TOPEX/POSEIDON gravity field modeling program.

  18. Report of the panel on geopotential fields: Gravity field, section 8

    NASA Technical Reports Server (NTRS)

    Anderson, Allen Joel; Kaula, William M.; Lazarewics, Andrew R.; Lefebvre, Michel; Phillips, Roger J.; Rapp, Richard H.; Rummel, Reinhard F.; Smith, David E.; Tapley, Byron D.; Zlotnick, Victor

    1991-01-01

    The objective of the Geopotential Panel was to develop a program of data acquisition and model development for the Earth's gravity and magnetic fields that meet the basic science requirements of the solid Earth and ocean studies. Presented here are the requirements for gravity information and models through the end of the century, the present status of our knowledge, data acquisition techniques, and an outline of a program to meet the requirements.

  19. An IBM-compatible program for interactive three-dimensional gravity modeling

    NASA Astrophysics Data System (ADS)

    Broome, John

    1992-04-01

    G3D is a 3-D interactive gravity modeling program for IBM-compatible microcomputers. The program allows a model to be created interactively by defining multiple tabular bodies with horizontal tops and bottoms. The resulting anomaly is calculated using Plouff's algorithm at up to 2000 predefined random or regularly located points. In order to display the anomaly as a color image, the point data are interpolated onto a regular grid and quantized into discrete intervals. Observed and residual gravity field images also can be generated. Adjustments to the model are made using a graphics cursor to move, insert, and delete body points or whole bodies. To facilitate model changes, planview body outlines can be overlain on any of the gravity field images during editing. The model's geometry can be displayed in planview or along a user-defined vertical section. G3D is written in Microsoft® FORTRAN and utilizes the Halo-Professional® (or Halo-88®) graphics subroutine library. The program is written for use on an IBM-compatible microcomputer equipped with hard disk, numeric coprocessor, and VGA, Number Nine Revolution (Halo-88® only), or TIGA® compatible graphics cards. A mouse or digitizing tablet is recommended for cursor positioning. Program source code, a user's guide, and sample data are available as Geological Survey of Canada Open File (G3D: A Three-dimensional Gravity Modeling Program for IBM-compatible Microcomputers).

  20. Simulation of sediment settling in reduced gravity

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus; Kuhn, Brigitte; Rüegg, Hans-Rudolf; Gartmann, Andres

    2015-04-01

    Gravity has a non-linear effect on the settling velocity of sediment particles in liquids and gases due to the interdependence of settling velocity, drag and friction. However, Stokes' Law or similar empirical models, the common way of estimating the terminal velocity of a particle settling in a gas or liquid, carry the notion of a drag as a property of a particle, rather than a force generated by the flow around the particle. For terrestrial applications, this simplifying assumption is not relevant, but it may strongly influence the terminal velocity achieved by settling particles on other planetary bodies. False estimates of these settling velocities will, in turn, affect the interpretation of particle sizes observed in sedimentary rocks, e.g. on Mars and the search for traces of life. Simulating sediment settling velocities on other planets based on a numeric simulation using Navier-Stokes equations and Computational Fluid Dynamics requires a prohibitive amount of time and lacks measurements to test the quality of the results. The aim of the experiments presented in this study was therefore to quantify the error incurred by using settling velocity models calibrated on Earth at reduced gravities, such as those on the Moon and Mars. In principle, the effect of lower gravity on settling velocity can be achieved by reducing the difference in density between particle and liquid. However, the use of such analogues creates other problems because the properties (i.e. viscosity) and interaction of the liquids and sediment (i.e. flow around the boundary layer between liquid and particle) differ from those of water and mineral particles. An alternative for measuring the actual settling velocities of particles under reduced gravity, on Earth, is offered by placing a settling tube on a reduced gravity flight and conduct settling velocity measurements within the 20 to 25 seconds of Martian gravity that can be simulated during such a flight. In this presentation, the results of the during the MarsSedEx I and II reduced gravity flights are reported, focusing both on the feasibility of experiments in reduced gravity as well as the error incurred when using terrestrial drag coefficients to calculate sediment settling on another planet.

  1. Cool Flames in Propane-Oxygen Premixtures at Low and Intermediate Temperatures at Reduced-Gravity

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard; Foster, Michael; Karabacak, Devrez

    2003-01-01

    The Cool Flame Experiment aims to address the role of diffusive transport on the structure and the stability of gas-phase, non-isothermal, hydrocarbon oxidation reactions, cool flames and auto-ignition fronts in an unstirred, static reactor. These reactions cannot be studied on Earth where natural convection due to self-heating during the course of slow reaction dominates diffusive transport and produces spatio-temporal variations in the thermal and thus species concentration profiles. On Earth, reactions with associated Rayleigh numbers (Ra) less than the critical Ra for onset of convection (Ra(sub cr) approx. 600) cannot be achieved in laboratory-scale vessels for conditions representative of nearly all low-temperature reactions. In fact, the Ra at 1g ranges from 10(exp 4) - 10(exp 5) (or larger), while at reduced-gravity, these values can be reduced two to six orders of magnitude (below Ra(sub cr)), depending on the reduced-gravity test facility. Currently, laboratory (1g) and NASA s KC-135 reduced-gravity (g) aircraft studies are being conducted in parallel with the development of a detailed chemical kinetic model that includes thermal and species diffusion. Select experiments have also been conducted at partial gravity (Martian, 0.3gearth) aboard the KC-135 aircraft. This paper discusses these preliminary results for propane-oxygen premixtures in the low to intermediate temperature range (310- 350 C) at reduced-gravity.

  2. The Experiment CPLM (Comportamiento De Puentes Líquidos En Microgravedad) On Board MINISAT 01

    NASA Astrophysics Data System (ADS)

    Sanz-Andrés, Angel; Rodríguez-De-Francisco, Pablo; Santiago-Prowald, Julián

    2001-03-01

    The Universidad Politécnica de Madrid participates in the MINISAT 01 program as the experiment CPLM responsible. This experiment aims at the study of the fluid behaviour in reduced gravity conditions. The interest of this study is and has been widely recognised by the scientific community and has potential applications in the pharmaceutical and microelectronic technologies (crystal growth), among others. The scientific team which has developed the CPLM experiment has a wide experience in this field and had participate in the performance of a large number of experiments on the fluid behaviour in reduced gravity conditions in flight (Spacelab missions, TEXUS sounding rockets, KC-135 and Caravelle aeroplanes, drop towers, as well as on earth labs (neutral buoyancy and small scale simulations). The experimental equipment used in CPLMis a version of the payload developed for experimentation on drop towers and on board microsatellites as the UPM-Sat 1, adapted to fly on board MINISAT 01.

  3. Physical and digital simulations for IVA robotics

    NASA Technical Reports Server (NTRS)

    Hinman, Elaine; Workman, Gary L.

    1992-01-01

    Space based materials processing experiments can be enhanced through the use of IVA robotic systems. A program to determine requirements for the implementation of robotic systems in a microgravity environment and to develop some preliminary concepts for acceleration control of small, lightweight arms has been initiated with the development of physical and digital simulation capabilities. The physical simulation facilities incorporate a robotic workcell containing a Zymark Zymate II robot instrumented for acceleration measurements, which is able to perform materials transfer functions while flying on NASA's KC-135 aircraft during parabolic manuevers to simulate reduced gravity. Measurements of accelerations occurring during the reduced gravity periods will be used to characterize impacts of robotic accelerations in a microgravity environment in space. Digital simulations are being performed with TREETOPS, a NASA developed software package which is used for the dynamic analysis of systems with a tree topology. Extensive use of both simulation tools will enable the design of robotic systems with enhanced acceleration control for use in the space manufacturing environment.

  4. Qualitative and quantitative imaging in microgravity combustion

    NASA Technical Reports Server (NTRS)

    Weiland, Karen J.

    1995-01-01

    An overview of the imaging techniques implemented by researchers in the microgravity combustion program shows that for almost any system, imaging of the flame may be accomplished in a variety of ways. Standard and intensified video, high speed, and infrared cameras and fluorescence, laser schlieren, rainbow schlieren, soot volume fraction, and soot temperature imaging have all been used in the laboratory and many in reduced gravity to make the necessary experimental measurements.

  5. An analytical study of reduced-gravity liquid reorientation using a simplified marker and cell technique

    NASA Technical Reports Server (NTRS)

    Betts, W. S., Jr.

    1972-01-01

    A computer program called HOPI was developed to predict reorientation flow dynamics, wherein liquids move from one end of a closed, partially filled, rigid container to the other end under the influence of container acceleration. The program uses the simplified marker and cell numerical technique and, using explicit finite-differencing, solves the Navier-Stokes equations for an incompressible viscous fluid. The effects of turbulence are also simulated in the program. HOPI can consider curved as well as straight walled boundaries. Both free-surface and confined flows can be calculated. The program was used to simulate five liquid reorientation cases. Three of these cases simulated actual NASA LeRC drop tower test conditions while two cases simulated full-scale Centaur tank conditions. It was concluded that while HOPI can be used to analytically determine the fluid motion in a typical settling problem, there is a current need to optimize HOPI. This includes both reducing the computer usage time and also reducing the core storage required for a given size problem.

  6. MarsSedEx I: feasibility test for sediment settling experiments under Martian gravity

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.

    2013-04-01

    Gravity has a non-linear effect on the settling velocity of sediment particles in liquids and gases. However, StokeśLaw, the common way of estimating the terminal velocity of a particle moving in a gas of liquid assumes a linear relationship between terminal velocity and gravity. For terrestrial applications, this "error" is not relevant, but it may strongly influence the terminal velocity achieved by settling particles in the Martian atmosphere or water bodies. In principle, the effect of gravity on settling velocity can also be achieved by reducing the difference in density between particle and gas or liquid. However, the use of analogues simulating the lower gravity on Mars on Earth is difficult because the properties and interaction of the liquids and materials differ from those of water and sediment, .i.e. the viscosity of the liquid or the interaction between charges surfaces and liquid molecules. An alternative for measuring the actual settling velocities of particles under Martian gravity, on Earth, is offered by placing a settling tube on a reduced gravity flight and conduct settling tests within the 20 to 25 seconds of Martian gravity that can be simulated during such a flight. In this presentation we report on the feasibility of such a test based on an experiment conducted during a reduced gravity flight in November 2012.

  7. Unit operations for gas-liquid mass transfer in reduced gravity environments

    NASA Technical Reports Server (NTRS)

    Pettit, Donald R.; Allen, David T.

    1992-01-01

    Basic scaling rules are derived for converting Earth-based designs of mass transfer equipment into designs for a reduced gravity environment. Three types of gas-liquid mass transfer operations are considered: bubble columns, spray towers, and packed columns. Application of the scaling rules reveals that the height of a bubble column in lunar- and Mars-based operations would be lower than terrestrial designs by factors of 0.64 and 0.79 respectively. The reduced gravity columns would have greater cross-sectional areas, however, by factors of 2.4 and 1.6 for lunar and Martian settings. Similar results were obtained for spray towers. In contract, packed column height was found to be nearly independent of gravity.

  8. Experimental study of void formation during aluminum solidification in reduced gravity. Ph.D. Thesis - Toledo Univ.

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis Paul, III

    1993-01-01

    Void formation due to volumetric shrinkage and liquid/vapor reorientation during aluminum solidification was observed in real time by using a radiographic viewing system in normal and reduced gravity. An end-chill directional solidification furnace with water quench was designed and constructed to solidify aluminum samples during the approximately 16 sec of reduced gravity (+/-0.02g) achieved by flying an aircraft through a parabolic trajectory. In the first series of tests the aluminum was contained in a vacuum sealed, pyrolytic boron nitride crucible. An ullage space was present during each test. Void formation was recorded for two cases: a nonwetting system, and a wetting system where wetting occurred between the aluminum and the crucible lid. The void formation in the nonwetting case was similar in normal and reduced gravity, with a single vapor cavity forming at the top of the crucible. In the wetting case during reduced gravity surface tension caused two voids to form in the top corners of the crucible, but during normal gravity only one large void formed across the top. In the second series of tests the aluminum was contained in a pyrolytic boron nitride crucible that was placed in a stainless steel container and sealed in an environment of argon plus 4 percent hydrogen. An ullage space was present during each test. Void formation was recorded for two cases: a nonwetting system, and a wetting system where wetting occurred between the aluminum and one side wall and the lid. The void for nation in the nonwetting case was similar in normal and reduced gravity, with a single vapor cavity forming at the top of the crucible, although the meniscus became more convex in reduced gravity. In the wetting case the aluminum did not climb up the corners in 1g, and one large symmetric void resulted at the top when the aluminum had solidified. In the wetting case during reduced gravity the molten aluminum was drawn up the wetted wall and partially across the lid by a capillary underpressure; however, on the nonwetting wall the aluminum moved down. One void resulted along the nonwetting side of the container continuing to the top on the same side.

  9. Effects of Gravity on Cocurrent Two-Phase Gas-Liquid Flows Through Packed Columns

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro

    2001-01-01

    This work presents the experimental results of research on the influence of gravity on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid two-phase flow through packed columns. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under reduced gravity conditions compared to normal gravity cocurrent down-flow. This is illustrated by comparing the flow regime transitions found in reduced gravity with the transitions predicted by Talmor. Next, the effect of gravity on the total pressure drop in a packed column is shown to depend on the flow regime. The difference is roughly equivalent to the liquid static head for bubbly flow but begins to decrease at the onset of pulse flow. As the spray flow regime is approached by increasing the gas to liquid ratio, the effect of gravity on pressure drop becomes negligible. Finally, gravity tends to suppress the amplitude of each pressure pulse. An example of this phenomenon is presented.

  10. Lignocellulosic ethanol production at high-gravity: challenges and perspectives.

    PubMed

    Koppram, Rakesh; Tomás-Pejó, Elia; Xiros, Charilaos; Olsson, Lisbeth

    2014-01-01

    In brewing and ethanol-based biofuel industries, high-gravity fermentation produces 10-15% (v/v) ethanol, resulting in improved overall productivity, reduced capital cost, and reduced energy input compared to processing at normal gravity. High-gravity technology ensures a successful implementation of cellulose to ethanol conversion as a cost-competitive process. Implementation of such technologies is possible if all process steps can be performed at high biomass concentrations. This review focuses on challenges and technological efforts in processing at high-gravity conditions and how these conditions influence the physiology and metabolism of fermenting microorganisms, the action of enzymes, and other process-related factors. Lignocellulosic materials add challenges compared to implemented processes due to high inhibitors content and the physical properties of these materials at high gravity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Full three-body problem in effective-field-theory models of gravity

    NASA Astrophysics Data System (ADS)

    Battista, Emmanuele; Esposito, Giampiero

    2014-10-01

    Recent work in the literature has studied the restricted three-body problem within the framework of effective-field-theory models of gravity. This paper extends such a program by considering the full three-body problem, when the Newtonian potential is replaced by a more general central potential which depends on the mutual separations of the three bodies. The general form of the equations of motion is written down, and they are studied when the interaction potential reduces to the quantum-corrected central potential considered recently in the literature. A recursive algorithm is found for solving the associated variational equations, which describe small departures from given periodic solutions of the equations of motion. Our scheme involves repeated application of a 2×2 matrix of first-order linear differential operators.

  12. Parabolic Flight Evaluation of Bacterial Adhesion on Multiple Antimicrobial Surface Treatments

    NASA Technical Reports Server (NTRS)

    Birmele, Michele

    2011-01-01

    This report describes the development of a test method and the evaluation of the effectiveness of antimicrobial technologies in reduced gravity based on parabolic flight experiments. Microbial growth is a common occurrence on fully immersed wetted surfaces in spacecraft environmental control and life support systems despite the use of chemical and/or physical \\disinfection. Many materials and surface treatments with antimicrobial properties are commercially available but none have been vetted for spaceflight applications. Herein a test method is explained that included ground and reduced gravity parabolic flight experiments with a standard microorganism recovered from spacecraft, Pseudomonas aeruginosa, added at a concentration of 1 x 10(exp 5) cells per milliliter (mL) onto challenge material coupon surfaces. Several experimental materials were observed to slightly reduce microbial attachment in reduced gravity flight experiments, but none were capable of eliminating all challenge bacteria. Lunar gravity had an increased antimicrobial effect in 28 out of 36 test coupons compared to microgravity when provided otherwise identical conditions for growth, suggesting trace .amounts of gravity may be required for maximum antimicrobial performance. Bacterial cells exposed to variable gravity had more than twice as ,much intracellular adenosine triphosphate (ATP) when compared to control cells exposed only to Earth gravity due to a short duration response to environmental stress. An ATP luminescence assay was the method most amenable to development of an in-flight microbial monitoring assay

  13. Capabilities and constraints of NASA's ground-based reduced gravity facilities

    NASA Technical Reports Server (NTRS)

    Lekan, Jack; Neumann, Eric S.; Sotos, Raymond G.

    1993-01-01

    The ground-based reduced gravity facilities of NASA have been utilized to support numerous investigations addressing various processes and phenomina in several disciplines for the past 30 years. These facilities, which include drop towers, drop tubes, aircraft, and sounding rockets are able to provide a low gravity environment (gravitational levels that range from 10(exp -2)g to 10(exp -6)g) by creating a free fall or semi-free fall condition where the force of gravity on an experiment is offset by its linear acceleration during the 'fall' (drop or parabola). The low gravity condition obtained on the ground is the same as that of an orbiting spacecraft which is in a state of perpetual free fall. The gravitational levels and associated duration times associated with the full spectrum of reduced gravity facilities including spaced-based facilities are summarized. Even though ground-based facilities offer a relatively short experiment time, this available test time has been found to be sufficient to advance the scientific understanding of many phenomena and to provide meaningful hardware tests during the flight experiment development process. Also, since experiments can be quickly repeated in these facilities, multistep phenomena that have longer characteristic times associated with them can sometimes be examined in a step-by-step process. There is a large body of literature which has reported the study results achieved through using reduced-gravity data obtained from the facilities.

  14. Drop Tower and Aircraft Capabilities

    NASA Technical Reports Server (NTRS)

    Urban, David L.

    2015-01-01

    This presentation is a brief introduction to existing capabilities in drop towers and low-gravity aircraft that will be presented as part of a Symposium: Microgravity Platforms Other Than the ISS, From Users to Suppliers which will be a half day program to bring together the international community of gravity-dependent scientists, program officials and technologists with the suppliers of low gravity platforms (current and future) to focus on the future requirements and use of platforms other than the International Space Station (ISS).

  15. Middle Atmosphere Program. Handbook for MAP, volume 20

    NASA Technical Reports Server (NTRS)

    Bowhill, S. A. (Editor); Edwards, B. (Editor)

    1986-01-01

    Various topics related to investigations of the middle atmosphere are discussed. Numerical weather prediction, performance characteristics of weather profiling radars, determination of gravity wave and turbulence parameters, case studies of gravity-wave propagation, turbulence and diffusion due to gravity waves, the climatology of gravity waves, mesosphere-stratosphere-troposphere radar, antenna arrays, and data management techniques are among the topics discussed.

  16. Development of a sensitive superconducting gravity gradiometer for geological and navigational applications

    NASA Technical Reports Server (NTRS)

    Paik, H. J.; Richard, J. P.

    1986-01-01

    A sensitive and stable gravity gradiometer would provide high resolution gravity measurements from space. The instrument could also provide precision tests of fundamental laws of physics and be applied to inertial guidance systems of the future. This report describes research on the superconducting gravity gradiometer program at the University of Maryland from July 1980 to July 1985. The report describes the theoretical and experimental work on a prototype superconducting gravity gradiometer. The design of an advanced three-axis superconducting gravity gradiometer is also discussed.

  17. The Influence of Reduced Gravity on the Crystal Growth of Electronic Materials

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Gillies, D. C.; Szofran, F. R.; Watring, D. A.; Lehoczky, S. L.

    1996-01-01

    The imperfections in the grown crystals of electronic materials, such as compositional nonuniformity, dopant segregation and crystalline structural defects, are detrimental to the performance of the opto-electronic devices. Some of these imperfections can be attributed to effects caused by Earth gravity during crystal growth process and four areas have been identified as the uniqueness of material processing in reduced gravity environment. The significant results of early flight experiments, i.e. prior to space shuttle era, are briefly reviewed followed by an elaborated review on the recent flight experiments conducted on shuttle missions. The results are presented for two major growth methods of electronic materials: melt and vapor growth. The use of an applied magnetic field in the melt growth of electrically conductive melts on Earth to simulate the conditions of reduced gravity has been investigated and it is believed that the superimposed effect of moderate magnetic fields and the reduced gravity environment of space can result in reduction of convective intensities to the extent unreachable by the exclusive use of magnet on Earth or space processing. In the Discussions section each of the significant results of the flight experiments is attributed to one of the four effects of reduced gravity and the unresolved problems on the measured mass fluxes in some of the vapor transport flight experiments are discussed.

  18. Zero-gravity quantity gaging system

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Zero-Gravity Quantity Gaging System program is a technology development effort funded by NASA-LeRC and contracted by NASA-JSC to develop and evaluate zero-gravity quantity gaging system concepts suitable for application to large, on-orbit cryogenic oxygen and hydrogen tankage. The contract effective date was 28 May 1985. During performance of the program, 18 potential quantity gaging approaches were investigated for their merit and suitability for gaging two-phase cryogenic oxygen and hydrogen in zero-gravity conditions. These approaches were subjected to a comprehensive trade study and selection process, which found that the RF modal quantity gaging approach was the most suitable for both liquid oxygen and liquid hydrogen applications. This selection was made with NASA-JSC concurrence.

  19. Wernher von Braun

    NASA Image and Video Library

    1968-10-01

    Dr. von Braun inside the KC-135 in flight. The KC-135 provide NASA's Reduced-Gravity Program the unique weightlessness or zero-g environment of space flight for testing and training of human and hardware reactions. The recent version, KC-135A, is a specially modified turbojet transport which flies parabolic arcs to produce weightlessness periods of 20 to 25 seconds and its cargo bay test area is approximately 60 feet long, 10 feet wide, and 7 feet high.

  20. Technical accomplishments of the NASA Lewis Research Center, 1989

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Topics addressed include: high-temperature composite materials; structural mechanics; fatigue life prediction for composite materials; internal computational fluid mechanics; instrumentation and controls; electronics; stirling engines; aeropropulsion and space propulsion programs, including a study of slush hydrogen; space power for use in the space station, in the Mars rover, and other applications; thermal management; plasma and radiation; cryogenic fluid management in space; microgravity physics; combustion in reduced gravity; test facilities and resources.

  1. Neuronal Activity in the Subthalamic Cerebrovasodilator Area under Partial-Gravity Conditions in Rats

    PubMed Central

    Zeredo, Jorge L.; Toda, Kazuo; Kumei, Yasuhiro

    2014-01-01

    The reduced-gravity environment in space is known to cause an upward shift in body fluids and thus require cardiovascular adaptations in astronauts. In this study, we recorded in rats the neuronal activity in the subthalamic cerebrovasodilator area (SVA), a key area that controls cerebral blood flow (CBF), in response to partial gravity. “Partial gravity” is the term that defines the reduced-gravity levels between 1 g (the unit gravity acceleration on Earth) and 0 g (complete weightlessness in space). Neuronal activity was recorded telemetrically through chronically implanted microelectrodes in freely moving rats. Graded levels of partial gravity from 0.4 g to 0.01 g were generated by customized parabolic-flight maneuvers. Electrophysiological signals in each partial-gravity phase were compared to those of the preceding 1 g level-flight. As a result, SVA neuronal activity was significantly inhibited by the partial-gravity levels of 0.15 g and lower, but not by 0.2 g and higher. Gravity levels between 0.2–0.15 g could represent a critical threshold for the inhibition of neurons in the rat SVA. The lunar gravity (0.16 g) might thus trigger neurogenic mechanisms of CBF control. This is the first study to examine brain electrophysiology with partial gravity as an experimental parameter. PMID:25370031

  2. Impact of Nasser Lake on gravity reduction and geoidal heights for Egypt

    NASA Astrophysics Data System (ADS)

    Abd-Elmotaal, Hussein A.; Makhloof, Atef; Hassan, Ayman; Ashry, Mostafa

    2018-06-01

    In the course of the IAG African Geoid Project, it is needed to study the impact of the lakes on the gravity reduction and geoidal heights. The aim of this paper is to study the impact of the water in Nasser Lake on gravity reduction and geoidal heights for Egypt. The determination of the gravimetric geoid is based on the well-known remove-restore technique. The problem of the lakes occurs because the popular programs widely used in practice (e.g., TC-program (Forsberg, 1984)) assume that all positive elevations are filled with rock topography, and all negative elevations are filled with ocean water. This is, however, not true for the case of Nasser Lake, which lies completely above sea level, at about 180 m elevation, with a water depth of about 20 m. The paper presents an approach on estimating the impact of Nasser Lake on gravity reduction and geoidal heights using TC-program with some tricky cases. The results show that the impact of Nasser Lake on both gravity anomalies and geoid undulation is limited to the area of the lake. The impact of Nasser Lake on the gravity anomalies is in the order of sub mgal, while the impact of Nasser lake on the geoid undulation is significant and reaches few centimeters.

  3. Solution to the spectral filter problem of residual terrain modelling (RTM)

    NASA Astrophysics Data System (ADS)

    Rexer, Moritz; Hirt, Christian; Bucha, Blažej; Holmes, Simon

    2018-06-01

    In physical geodesy, the residual terrain modelling (RTM) technique is frequently used for high-frequency gravity forward modelling. In the RTM technique, a detailed elevation model is high-pass-filtered in the topography domain, which is not equivalent to filtering in the gravity domain. This in-equivalence, denoted as spectral filter problem of the RTM technique, gives rise to two imperfections (errors). The first imperfection is unwanted low-frequency (LF) gravity signals, and the second imperfection is missing high-frequency (HF) signals in the forward-modelled RTM gravity signal. This paper presents new solutions to the RTM spectral filter problem. Our solutions are based on explicit modelling of the two imperfections via corrections. The HF correction is computed using spectral domain gravity forward modelling that delivers the HF gravity signal generated by the long-wavelength RTM reference topography. The LF correction is obtained from pre-computed global RTM gravity grids that are low-pass-filtered using surface or solid spherical harmonics. A numerical case study reveals maximum absolute signal strengths of ˜ 44 mGal (0.5 mGal RMS) for the HF correction and ˜ 33 mGal (0.6 mGal RMS) for the LF correction w.r.t. a degree-2160 reference topography within the data coverage of the SRTM topography model (56°S ≤ φ ≤ 60°N). Application of the LF and HF corrections to pre-computed global gravity models (here the GGMplus gravity maps) demonstrates the efficiency of the new corrections over topographically rugged terrain. Over Switzerland, consideration of the HF and LF corrections reduced the RMS of the residuals between GGMplus and ground-truth gravity from 4.41 to 3.27 mGal, which translates into ˜ 26% improvement. Over a second test area (Canada), our corrections reduced the RMS of the residuals between GGMplus and ground-truth gravity from 5.65 to 5.30 mGal (˜ 6% improvement). Particularly over Switzerland, geophysical signals (associated, e.g. with valley fillings) were found to stand out more clearly in the RTM-reduced gravity measurements when the HF and LF correction are taken into account. In summary, the new RTM filter corrections can be easily computed and applied to improve the spectral filter characteristics of the popular RTM approach. Benefits are expected, e.g. in the context of the development of future ultra-high-resolution global gravity models, smoothing of observed gravity data in mountainous terrain and geophysical interpretations of RTM-reduced gravity measurements.

  4. Gravity data of Nevada

    USGS Publications Warehouse

    Ponce, David A.

    1997-01-01

    Gravity data for the entire state of Nevada and adjacent parts of California, Utah, and Arizona are available on this CD-ROM. About 80,000 gravity stations were compiled primarily from the National Geophysical Data Center and the U.S. Geological Survey. Gravity data was reduced to the Geodetic Reference System of 1967 and adjusted to the Gravity Standardization Net 1971 gravity datum. Data were processed to complete Bouguer and isostatic gravity anomalies by applying standard gravity corrections including terrain and isostatic corrections. Selected principal fact references and a list of sources for data from the National Geophysical Data Center are included.

  5. The Effects of Gravity on the Crystallization Behavior of Heavy Metal Fluoride Glasses

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Smith, Guy A.

    2004-01-01

    Heavy metal fluoride glasses are used in such applications as fiber lasers and laser amplifiers. ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) is one of the more commonly used heavy metal fluoride glasses. ZBLAN is an infrared transmitter and has a theoretical attenuation coefficient of 0.002 db/km. However, due to impurities and small crystallites this attenuation coefficient has not been achieved to date. ZBLAN is a fragile glass which can lead to rapid crystallization, if the glass is not cooled rapidly to below the glass transition temperature or if the glass is reheated near the crystallization temperature for any period of time. Studies carried on at Marshall Space Flight Center and the University of Alabama in Huntsville since 1993 have shown that heating ZBLAN glass at the crystallization temperature in reduced gravity results in a suppression of crystallization when compared to ZBLAN processed in unit gravity. These studies utilized NASA's KC-135 aircraft and the Conquest sounding rocket. In the first series of experiments, short lengths of ZBLAN fiber were heated to the crystallization temperature in reduced gravity on board the KC- 135 and the Conquest sounding rocket and compared with fibers heated in unit gravity. The fibers processed in reduced gravity showed no evidence of crystallization when studied with x-ray diffraction and scanning electron microscopy. However, the fibers processed in unit gravity were completely crystallized. Subsequent experiments included heating small pieces of ZBLAN glass at the crystallization temperature while viewing with a video camera to follow the crystallization phenomenon. In this experiment crystallization was observed in reduced gravity, however, it was suppressed when compared to heating in unit gravity. In the most recent experiment on board the KC-135, rapid thermal analysis of ZBLAN was performed. A mechanism to explain the observations has been proposed. This mechanism is based on shear thinning whereby, the glass undergoes a reduction in viscosity in the 10(exp 5) - 10(exp 7) poise range, allowing more rapid diffusion and thus crystallization. It is proposed that this mechanism is suppressed in reduced gravity. An experiment is presently being conducted to test this theory. With increased knowledge of ZBLAN behavior in reduced gravity, three low earth orbit tiber drawing facilities have been designed. One would be suitable for use on the International Space Station, another while aboard the Space Shuttle and the third system is a fully automated facility which would operate independently of the ISS or Shuttle in a free float mode. The primary benefits of free floating a facility in LEO includes a higher quality of microgravity and reduced safety concerns since it is not in a manned environment.

  6. NASA Microgravity Combustion Science Program

    NASA Technical Reports Server (NTRS)

    King, Merrill K.

    1999-01-01

    Combustion has been a subject of increasingly vigorous scientific research for over a century, not surprising considering that combustion accounts for approximately 85% of the world's energy production and is a key element of many critical technologies used by contemporary society. Although combustion technology is vital to our standard of living, it also poses great challenges to maintaining a habitable environment. A major goal of combustion research is production of fundamental (foundational) knowledge that can be used in developing accurate simulations of complex combustion processes, replacing current "cut-and-try" approaches and allowing developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion. With full understanding of the physics and chemistry involved in a given combustion process, including details of the unit processes and their interactions, physically accurate models which can then be used for parametric exploration of new combustion domains via computer simulation can be developed, with possible resultant definition of radically different approaches to accomplishment of various combustion goals. Effects of gravitational forces on earth impede combustion studies more than they impede most other areas of science. The effects of buoyancy are so ubiquitous that we often do not appreciate the enormous negative impact that they have had on the rational development of combustion science. Microgravity offers potential for major gains in combustion science understanding in that it offers unique capability to establish the flow environment rather than having it dominated by uncontrollable (under normal gravity) buoyancy effects and, through this control, to extend the range of test conditions that can be studied. It cannot be emphasized too strongly that our program is dedicated to taking advantage of microgravity to untangle complications caused by gravity, allowing major strides in our understanding of combustion processes and in subsequent development of improved combustion devices leading to improved quality of life on Earth. Fire and/or explosion events aboard spacecraft could be devastating to international efforts to expand the human presence in space. Testing to date has shown that ignition and flame spread on fuel surfaces (e.g., paper, wire insulation) behave quite differently under partial gravity and microgravity conditions. In addition, fire signatures-i.e., heat release, smoke production, flame visibility, and radiation-are now known to be quite different in reduced gravity environments; this research has provided data to improve the effectiveness of fire prevention practices, smoke and fire detectors, and fire extinguishment systems. The more we can apply our scientific and technological understanding to potential fire behavior in microgravity and partial gravity, the more assurance can be given to those people whose lives depend on the environment aboard spacecraft or eventually on habitats on the Moon or Mars.

  7. Thermosyphon Flooding in Reduced Gravity Environments Test Results

    NASA Technical Reports Server (NTRS)

    Gibson, Marc A.; Jaworske, Donald A.; Sanzi, Jim; Ljubanovic, Damir

    2013-01-01

    The condenser flooding phenomenon associated with gravity aided two-phase thermosyphons was studied using parabolic flights to obtain the desired reduced gravity environment (RGE). The experiment was designed and built to test a total of twelve titanium water thermosyphons in multiple gravity environments with the goal of developing a model that would accurately explain the correlation between gravitational forces and the maximum axial heat transfer limit associated with condenser flooding. Results from laboratory testing and parabolic flights are included in this report as part I of a two part series. The data analysis and correlations are included in a follow on paper.

  8. A New Method for Interfacing Unsuited Subjects to Overhead Suspension Partial Gravity Simulators

    NASA Technical Reports Server (NTRS)

    Norcross, Jason R.; Chappell, Steve; Cowley, Matthew S.; Harvill, Lauren; Gernhardt, Michael L.

    2010-01-01

    The purpose of performing unsuited testing as part of a reduced gravity extravehicular (EVA) suited human performance research program is to define baseline performance. These results are then coupled with suited test results to evaluate how the suit system affects human performance at reduced gravity. The primary drawback to this approach is that previous studies used notably different systems to interface suited and unsuited subjects to overhead-suspension, partial-gravity simulators. A spreader bar (SB) assembly previously used for unsuited tests allowed limited pitch and roll of the subject, whereas the gimbal for suited tests allowed more pitch and roll, although the mass distribution led to large moments of inertia in the yaw axis. It is hypothesized that use of the same methods for offload of both unsuited and suited subjects is needed to make meaningful comparisons. A new gimbal (GIM) was designed with the idea that it could function with both suited and unsuited subjects. GIM was designed to minimize mass and moments of inertia and to be adjustable to co-locate the 3 axes of rotation with the subject s center of gravity. OBJECTIVE: To evaluate human performance differences between SB and GIM. METHODS: Ten unsuited subjects were off-loaded to 1/6-g using both interfaces. Subjects completed tasks including overground and treadmill ambulation, picking up objects, shoveling, postural stability, range of motion testing, and recovery from the kneeling and prone positions. Metabolic, biomechanical, and/or subjective data were collected based on task. RESULTS: Initial analyses suggest that subjects completed all tasks with lower levels of compensation and a more terrestrial approach to movement when suspended via GIM. With SB, subjects were not able to fall or get into a prone position and had increased difficulty both retrieving objects off the floor and with overground ambulation, especially at gait initiation, because they were unable to bend their torso. GIM shows promise as a new method.

  9. A New Method for Interfacing Unsuited Subjects to Overhead Suspension Partial Gravity Simulators

    NASA Technical Reports Server (NTRS)

    Norcross, Jason; Gernhardt, Michael; Chappell, Steve; Cowley, Matt

    2011-01-01

    The purpose of performing unsuited testing as part of a reduced gravity extravehicular (EVA) suited human performance research program is to define baseline performance. These results are then coupled with suited test results to evaluate how the suit system affects human performance at reduced gravity. The primary drawback to this approach is that previous studies used notably different systems to interface suited and unsuited subjects to overhead-suspension, partial-gravity simulators. A spreader bar (SB) assembly previously used for unsuited tests allowed limited pitch and roll of the subject, whereas the gimbal for suited tests allowed more pitch and roll, although the mass distribution led to large moments of inertia in the yaw axis. It is hypothesized that use of the same methods for offload of both unsuited and suited subjects is needed to make meaningful comparisons. A new gimbal (GIM) was designed with the idea that it could function with both suited and unsuited subjects. GIM was designed to minimize mass and moments of inertia and to be adjustable to co-locate the 3 axes of rotation with the subject s center of gravity. OBJECTIVE: To evaluate human performance differences between SB and GIM. METHODS: Ten unsuited subjects were offloaded to 1/6-g using both interfaces. Subjects completed tasks including overground and treadmill ambulation, picking up objects, shoveling, postural stability, range of motion testing, and recovery from the kneeling and prone positions. Metabolic, biomechanical, and/or subjective data were collected based on task. RESULTS: Initial analyses suggest that subjects completed all tasks with lower levels of compensation and a more terrestrial approach to movement when suspended via GIM. With SB, subjects were not able to fall or get into a prone position and had increased difficulty both retrieving objects off the floor and with overground ambulation, especially at gait initiation, because they were unable to bend their torso. GIM shows promise as a new method.

  10. Visual gravity cues in the interpretation of biological movements: neural correlates in humans.

    PubMed

    Maffei, Vincenzo; Indovina, Iole; Macaluso, Emiliano; Ivanenko, Yuri P; A Orban, Guy; Lacquaniti, Francesco

    2015-01-01

    Our visual system takes into account the effects of Earth gravity to interpret biological motion (BM), but the neural substrates of this process remain unclear. Here we measured functional magnetic resonance (fMRI) signals while participants viewed intact or scrambled stick-figure animations of walking, running, hopping, and skipping recorded at normal or reduced gravity. We found that regions sensitive to BM configuration in the occipito-temporal cortex (OTC) were more active for reduced than normal gravity but with intact stimuli only. Effective connectivity analysis suggests that predictive coding of gravity effects underlies BM interpretation. This process might be implemented by a family of snapshot neurons involved in action monitoring. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Gravity Effects in Condensing and Evaporating Films

    NASA Technical Reports Server (NTRS)

    Hermanson, J. C.; Som, S. M.; Allen, J. S.; Pedersen, P. C.

    2004-01-01

    A general overview of gravity effects in condensing and evaporating films is presented. The topics include: 1) Research Overview; 2) NASA Recognizes Critical Need for Condensation & Evaporation Research to Enable Human Exploration of Space; 3) Condensation and Evaporation Research in Reduced Gravity is Enabling for AHST Technology Needs; 4) Differing Role of Surface Tension on Condensing/Evaporating Film Stability; 5) Fluid Mechanisms in Condensing and Evaporating Films in Reduced Gravity; 6) Research Plan; 7) Experimental Configurations for Condensing Films; 8) Laboratory Condensation Test Cell; 9) Aircraft Experiment; 10) Condensation Study Current Test Conditions; 11) Diagnostics; 12) Shadowgraph Images of Condensing n- pentane Film in Unstable (-1g) Configuration; 13) Condensing n-Pentane Film in Normal Gravity (-1g) at Constant Pressure; 14) Condensing n-Pentane Film in Normal Gravity (-1g) with Cyclic Pressure; 15) Non-condensing Pumped Film in Normal Gravity (-1g); 16) Heat Transfer Coefficient in Developing, Unstable Condensing Film in Normal Gravity; 17) Heat Transfer for Unsteady Condensing Film (-1g); 18) Ultrasound Measurement of Film Thickness N-pentane Film, Stable (+1g) Configuration; and 19) Ultrasound Measurement of Film Thickness N-pentane Film, Unstable (-1g) Configuration.

  12. Numerical study of gravity effects on phase separation in a swirl chamber.

    PubMed

    Hsiao, Chao-Tsung; Ma, Jingsen; Chahine, Georges L

    2016-01-01

    The effects of gravity on a phase separator are studied numerically using an Eulerian/Lagrangian two-phase flow approach. The separator utilizes high intensity swirl to separate bubbles from the liquid. The two-phase flow enters tangentially a cylindrical swirl chamber and rotate around the cylinder axis. On earth, as the bubbles are captured by the vortex formed inside the swirl chamber due to the centripetal force, they also experience the buoyancy force due to gravity. In a reduced or zero gravity environment buoyancy is reduced or inexistent and capture of the bubbles by the vortex is modified. The present numerical simulations enable study of the relative importance of the acceleration of gravity on the bubble capture by the swirl flow in the separator. In absence of gravity, the bubbles get stratified depending on their sizes, with the larger bubbles entering the core region earlier than the smaller ones. However, in presence of gravity, stratification is more complex as the two acceleration fields - due to gravity and to rotation - compete or combine during the bubble capture.

  13. Erythrocyte deformability and aggregation responses to intermittent and continuous artificial gravity exposure

    NASA Astrophysics Data System (ADS)

    Marijke, Grau; Vera, Abeln; Tobias, Vogt; Wilhelm, Bloch; Stefan, Schneider

    2017-02-01

    Artificial gravity protocols are used to improve g-tolerance of aviators and discussed as countermeasure during prolonged space flight. Little is known about the impact of artificial gravity on the red blood cells (RBC). The purpose of the study was to test how artificial gravity affects RBC deformability and aggregation, which are important determinants of microcirculation. Nine male subjects were exposed to two hypergravity protocols using a short arm human centrifuge: a continuous (CONT) protocol with constant +2 Gz for 30 min and an intermittent (INTER) protocol with repeated intervals of +2 Gz and rest. Blood was sampled pre and post interventions to measure basal blood parameters, RBC nitrite, RBC deformability, aggregation, and to determine the shear rate balancing aggregation and disaggregation (γ at dIsc min). To test for orthostasis effects, five male subjects were asked to stay for 46 min, corresponding to the length of the centrifuge protocols, with blood sampling pre and post intervention. Artificial gravity programs did not affect basal blood parameters or RBC nitrite levels; a marker for RBC deformability influencing nitric oxide. The INTER program did not affect any of the tested parameters. The CONT program did not remarkably affect RBC deformability or γ at dIsc min but significantly aggravated aggregation. Orthostasis effects were thus excluded. The results indicate that continuous artificial gravity, especially with higher g-forces applied, may negatively affect the RBC system and that for a prolonged space flight intermittent but not continuous artificial gravity might represent an appropriate countermeasure.

  14. Reduced-gravity environment hardware demonstrations of a prototype miniaturized flow cytometer and companion microfluidic mixing technology.

    PubMed

    Phipps, William S; Yin, Zhizhong; Bae, Candice; Sharpe, Julia Z; Bishara, Andrew M; Nelson, Emily S; Weaver, Aaron S; Brown, Daniel; McKay, Terri L; Griffin, DeVon; Chan, Eugene Y

    2014-11-13

    Until recently, astronaut blood samples were collected in-flight, transported to earth on the Space Shuttle, and analyzed in terrestrial laboratories. If humans are to travel beyond low Earth orbit, a transition towards space-ready, point-of-care (POC) testing is required. Such testing needs to be comprehensive, easy to perform in a reduced-gravity environment, and unaffected by the stresses of launch and spaceflight. Countless POC devices have been developed to mimic laboratory scale counterparts, but most have narrow applications and few have demonstrable use in an in-flight, reduced-gravity environment. In fact, demonstrations of biomedical diagnostics in reduced gravity are limited altogether, making component choice and certain logistical challenges difficult to approach when seeking to test new technology. To help fill the void, we are presenting a modular method for the construction and operation of a prototype blood diagnostic device and its associated parabolic flight test rig that meet the standards for flight-testing onboard a parabolic flight, reduced-gravity aircraft. The method first focuses on rig assembly for in-flight, reduced-gravity testing of a flow cytometer and a companion microfluidic mixing chip. Components are adaptable to other designs and some custom components, such as a microvolume sample loader and the micromixer may be of particular interest. The method then shifts focus to flight preparation, by offering guidelines and suggestions to prepare for a successful flight test with regard to user training, development of a standard operating procedure (SOP), and other issues. Finally, in-flight experimental procedures specific to our demonstrations are described.

  15. Reduced-gravity Environment Hardware Demonstrations of a Prototype Miniaturized Flow Cytometer and Companion Microfluidic Mixing Technology

    PubMed Central

    Bae, Candice; Sharpe, Julia Z.; Bishara, Andrew M.; Nelson, Emily S.; Weaver, Aaron S.; Brown, Daniel; McKay, Terri L.; Griffin, DeVon; Chan, Eugene Y.

    2014-01-01

    Until recently, astronaut blood samples were collected in-flight, transported to earth on the Space Shuttle, and analyzed in terrestrial laboratories. If humans are to travel beyond low Earth orbit, a transition towards space-ready, point-of-care (POC) testing is required. Such testing needs to be comprehensive, easy to perform in a reduced-gravity environment, and unaffected by the stresses of launch and spaceflight. Countless POC devices have been developed to mimic laboratory scale counterparts, but most have narrow applications and few have demonstrable use in an in-flight, reduced-gravity environment. In fact, demonstrations of biomedical diagnostics in reduced gravity are limited altogether, making component choice and certain logistical challenges difficult to approach when seeking to test new technology. To help fill the void, we are presenting a modular method for the construction and operation of a prototype blood diagnostic device and its associated parabolic flight test rig that meet the standards for flight-testing onboard a parabolic flight, reduced-gravity aircraft. The method first focuses on rig assembly for in-flight, reduced-gravity testing of a flow cytometer and a companion microfluidic mixing chip. Components are adaptable to other designs and some custom components, such as a microvolume sample loader and the micromixer may be of particular interest. The method then shifts focus to flight preparation, by offering guidelines and suggestions to prepare for a successful flight test with regard to user training, development of a standard operating procedure (SOP), and other issues. Finally, in-flight experimental procedures specific to our demonstrations are described. PMID:25490614

  16. Proceedings of an ESA-NASA Workshop on a Joint Solid Earth Program

    NASA Technical Reports Server (NTRS)

    Guyenne, T. Duc (Editor); Hunt, James J. (Editor)

    1987-01-01

    The NASA geodynamics program; spaceborne magnetometry; spaceborne gravity gradiometry (characterizing the data type); terrestrial gravity data and comparisons with satellite data; GRADIO three-axis electrostatic accelerometers; gradiometer accommodation on board a drag-free satellite; gradiometer mission spectral analysis and simulation studies; and an opto-electronic accelerometer system were discussed.

  17. Research Informed Science Enrichment Programs at the Gravity Discovery Centre

    ERIC Educational Resources Information Center

    Venville, Grady; Blair, David; Coward, David; Deshon, Fred; Gargano, Mark; Gondwe, Mzamose; Heary, Auriol; Longnecker, Nancy; Pitts, Marina; Zadnik, Marjan

    2012-01-01

    Excursions to museums and science centres generally are great fun for students and teachers. The potential educational benefits beyond enjoyment, however, are rarely realised or analysed for their efficacy. The purpose of this paper is to describe four educational enrichment programs delivered at the Gravity Discovery Centre (GDC), near Gingin,…

  18. The NASA Space Biology Program

    NASA Technical Reports Server (NTRS)

    Halstead, T. W.

    1982-01-01

    A discussion is presented of the research conducted under the auspices of the NASA Space Biology Program. The objectives of this Program include the determination of how gravity affects and how it has shaped life on earth, the use of gravity as a tool to investigate relevant biological questions, and obtaining an understanding of how near-weightlessness affects both plants and animals in order to enhance the capability to use and explore space. Several areas of current developmental research are discussed and the future focus of the Program is considered.

  19. An Experimental Study of Boiling in Reduced and Zero Gravity Fields

    NASA Technical Reports Server (NTRS)

    Usiskin, C. M.; Siegel, R.

    1961-01-01

    A pool boiling apparatus was mounted on a counterweighted platform which could be dropped a distance of nine feet. By varying the size of the counterweight, the effective gravity field on the equipment was adjusted between zero and unity. A study of boiling burnout in water indicated that a variation in the critical heat flux according to the one quarter power of gravity was reasonable. A consideration of the transient burnout process was necessary in order to properly interpret the data. A photographic study of nucleate boiling showed how the velocity of freely rising vapor bubbles decreased as gravity was reduced. The bubble diameters at the time of breakoff from the heated surface were found to vary inversely as gravity to the 1/3.5 power. Motion pictures were taken to illustrate both nucleate and film boiling in the low gravity range.

  20. Heart Rate and Blood Pressure Variability under Moon, Mars and Zero Gravity Conditions During Parabolic Flights

    NASA Astrophysics Data System (ADS)

    Aerts, Wouter; Joosen, Pieter; Widjaja, Devy; Varon, Carolina; Vandeput, Steven; Van Huffel, Sabine; Aubert, Andre E.

    2013-02-01

    Gravity changes during partial-G parabolic flights (0g -0.16g - 0.38g) lead to changes in modulation of the autonomic nervous system (ANS), studied via the heart rate variability (HRV) and blood pressure variability (BPV). HRV and BPV were assessed via classical time and frequency domain measures. Mean systolic and diastolic blood pressure show both increasing trends towards higher gravity levels. The parasympathetic and sympathetic modulation show both an increasing trend with decreasing gravity, although the modulation is sympathetic predominant during reduced gravity. For the mean heart rate, a non-monotonic relation was found, which can be explained by the increased influence of stress on the heart rate. This study shows that there is a relation between changes in gravity and modulations in the ANS. With this in mind, countermeasures can be developed to reduce postflight orthostatic intolerance.

  1. MX Siting Investigation. Gravity Survey - Southern Snake Valley (Ferguson Desert), Utah.

    DTIC Science & Technology

    1980-03-28

    Topographic Center (DMAHTC), head- quartered in Cheyenne, Wyoming. DMAHTC reduces the data to Simple Bouguer Anomaly (see Section A1.4, Appendix Al.0...Valley, Utah . . . . . ......... . . . . . 3 3 Complete Bouguer Anomaly Contours 4 Interpreted Gravity Profile SE-3,4 5 Interpreted Gravity Profile SE...observations and reduced them to Simple Bouguer Anomalies (SBA) for each station as described in Appendix Al.0. Up to three levels of terrain corrections were

  2. Study of Effects of Gravity on Crystallization

    NASA Technical Reports Server (NTRS)

    Smith, Guy A.; Workman, Gary L.; OBrian, Susan

    1996-01-01

    The effect of gravity on the crystallization behavior of fluoride fibers is being investigated by performing fiber annealing experiments on NASA's KC-135 using commercial grade fibers donated by industrial partners. The successful observations of reduced formation of microcrystallites in reduced gravity of the parabolic flights will be repeated to confirm earlier results. The design and implementation of an automated sting assembly for use in space fiber drawing experiments will also be emphasized in this study.

  3. Handbook of human engineering design data for reduced gravity conditions

    NASA Technical Reports Server (NTRS)

    Marton, T.; Rudek, F. P.; Miller, R. A.; Norman, D. G.

    1971-01-01

    A Handbook is presented for the use of engineers, designers, and human factors specialists during the developmental and detailed design phases of manned spacecraft programs. Detailed and diverse quantified data on man's capabilities and tolerances for survival and productive effort in the extraterrestrial environment are provided. Quantified data and information on the space environment as well as the characteristics of the vehicular or residential environment required to support man in outer space are also given.

  4. NASA's Microgravity Fluid Physics Program: Tolerability to Residual Accelerations

    NASA Technical Reports Server (NTRS)

    Skarda, J. Raymond

    1998-01-01

    An overview of the NASA microgravity fluid physics program is presented. The necessary quality of a reduced-gravity environment in terms of tolerable residual acceleration or g levels is a concern that is inevitably raised for each new microgravity experiment. Methodologies have been reported in the literature that provide guidance in obtaining reasonable estimates of residual acceleration sensitivity for a broad range of fluid physics phenomena. Furthermore, a relatively large and growing database of microgravity experiments that have successfully been performed in terrestrial reduced gravity facilities and orbiting platforms exists. Similarity of experimental conditions and hardware, in some cases, lead to new experiments adopting prior experiments g-requirements. Rationale applied to other experiments can, in principle, be a valuable guide to assist new Principal Investigators, PIs, in determining the residual acceleration tolerability of their flight experiments. The availability of g-requirements rationale from prior (mu)g experiments is discussed. An example of establishing g tolerability requirements is demonstrated, using a current microgravity fluid physics flight experiment. The Fluids and Combustion Facility (FCF) which is currently manifested on the US Laboratory of the International Space Station (ISS) will provide opportunities for fluid physics and combustion experiments throughout the life of the ISS. Although the FCF is not intended to accommodate all fluid physics experiments, it is expected to meet the science requirements of approximately 80% of the new PIs that enter the microgravity fluid physics program. The residual acceleration requirements for the FCF fluid physics experiments are based on a set of fourteen reference fluid physics experiments which are discussed.

  5. Gravity Wave Predictability and Dynamics in Deepwave

    NASA Astrophysics Data System (ADS)

    Doyle, J. D.; Fritts, D. C.; Smith, R. B.; Eckermann, S. D.; Taylor, M. J.; Dörnbrack, A.; Uddstrom, M.; Reynolds, C. A.; Reinecke, A.; Jiang, Q.

    2015-12-01

    The DEEP propagating gravity WAVE program (DEEPWAVE) is a comprehensive, airborne and ground-based measurement and modeling program centered on New Zealand and focused on providing a new understanding of gravity wave dynamics and impacts from the troposphere through the mesosphere and lower thermosphere (MLT). This program employed the NSF/NCAR GV (NGV) research aircraft from a base in New Zealand in a 6-week field measurement campaign in June-July 2014. During the field phase, the NGV was equipped with new lidar and airglow instruments, as well as dropwindsondes and a full suite of flight level instruments including the microwave temperature profiler (MTP), providing temperatures and vertical winds spanning altitudes from immediately above the NGV flight altitude (~13 km) to ~100 km. The region near New Zealand was chosen since all the relevant GW sources (e.g., mountains, cyclones, jet streams) occur strongly here, and upper-level winds in austral winter permit gravity waves to propagate to very high altitudes. The COAMPS adjoint modeling system provided forecast sensitivity in real time during the six-week DEEPWAVE field phase. Five missions were conducted using the NGV to observe regions of high forecast sensitivity, as diagnosed using the COAMPS adjoint model. In this presentation, we provide a summary of the sensitivity characteristics and explore the implications for predictability of low-level winds crucial for gravity wave launching, as well as predictability of gravity wave characteristics in the stratosphere. In general, the sensitive regions were characterized by localized strong dynamics, often involving intense baroclinic systems with deep convection. The results of the adjoint modeling system suggest that gravity wave launching and the characteristics of the gravity waves can be linked to these sensitive regions near frontal zones within baroclinic systems. The predictability links between the tropospheric fronts, cyclones, jet regions, and gravity waves that vertically propagate upward through the stratosphere will be addressed further in the presentation. We examine RF23 during DEEPWAVE, which sampled deep propagating gravity waves over Auckland and Macquarie Islands. We provide insight into the gravity wave dynamics through applying the COAMPS and its adjoint at high resolution.

  6. Design of a Low Gravity Simulator for Performing Non-Equilibrium Investigations near the Lambda Transition of ^4He

    NASA Technical Reports Server (NTRS)

    Israelsson, U. E.; Duncan, R. V.

    1993-01-01

    A design is presented of a low gravity simulator where a magnetic field gradient is employed to oppose the hydrostatic pressure effects of gravity. It appears feasible to reduce the effective gravity environment of the helium in the cell by about two orders of magnitude. The corresponding shift in transition temperature with vertical height would be reduced to 12.7 nK/cm. Methods for instrumenting the simulator to perform high resolution investigations of non-equilibrium phenomena near the lambda point are presented. The advantages of using a low gravity simulator in searching for the predicted change in character of the superfluid transition from continuous to first order in the presence of a heat current are also discussed.

  7. Experimental Methods in Reduced-gravity Soldering Research

    NASA Technical Reports Server (NTRS)

    Pettegrew, Richard D.; Struk, Peter M.; Watson, John K.; Haylett, Daniel R.

    2002-01-01

    The National Center for Microgravity Research, NASA Glenn Research Center, and NASA Johnson Space Center are conducting an experimental program to explore the influence of reduced gravity environments on the soldering process. An improved understanding of the effects of the acceleration environment is important to application of soldering during current and future human space missions. Solder joint characteristics that are being considered include solder fillet geometry, porosity, and microstructural features. Both through-hole and surface mounted devices are being investigated. This paper focuses on the experimental methodology employed in this project and the results of macroscopic sample examination. The specific soldering process, sample configurations, materials, and equipment were selected to be consistent with those currently on-orbit. Other apparatus was incorporated to meet requirements imposed by operation onboard NASA's KC-135 research aircraft and instrumentation was provided to monitor both the atmospheric and acceleration environments. The contingent of test operators was selected to include both highly skilled technicians and less skilled individuals to provide a population cross-section that would be representative of the skill mix that might be encountered in space mission crews.

  8. Recognizing and optimizing flight opportunities with hardware and life sciences limitations.

    PubMed

    Luttges, M W

    1992-01-01

    The availability of orbital space flight opportunities to conduct life sciences research has been limited. It is possible to use parabolic flight and sounding rocket programs to conduct some kinds of experiments during short episodes (seconds to minutes) of reduced gravity, but there are constraints and limitations to these programs. Orbital flight opportunities are major undertakings, and the potential science achievable is often a function of the flight hardware available. A variety of generic types of flight hardware have been developed and tested, and show great promise for use during NSTS flights. One such payload configuration is described which has already flown.

  9. Biostereometric Analysis Of Therapeutic Results In The Treatment Of Chronic, Progressive, Decompensating Postural Back Strain

    NASA Astrophysics Data System (ADS)

    Johnson, David M.

    1980-07-01

    A two year pilot program for biostereometric analysis of treatment effectiveness in five patients with chronic decompensating back strain has been completed. The patients came from the investigators family practice of osteopathic medicine. They all manifested objective signs of ligamentous and muscular strain of their postural biomechanics due to the combined effects of prior injury to the musculoskeletal system, gravity strain and the passage of time. Two of the patients were treated with osteopathic manipulative treatment plus a pelvic leverage treatment device developed by Martin Jungman, M.D. Two patients received osteopathic treatment alone and the fifth individual switched from control to full program status in the middle of the study after the second stereophotography recording. Signs and symptoms of all patients' gravity strain syndrome changed during the program. Those patients who had the full combination of treatment modalities showed the most positive and significant postural changes as demonstrated by the biostereometric technique developed and performed by the Department of Biostereometrics, Texas Institute of Rehabilitation and Research, Baylor College of Medicine, Houston, Texas. Improvement was clearly demonstrated more quickly than with the prior radiographic measuring methods. X-ray and other studies have also been done on this group. All of the data has not been processed yet in this program. The test patients have improved posture, muscle mass and tone, more stamina and reduced pain.

  10. Impact cratering in reduced-gravity environments: Early experiments on the NASA KC-135 aircraft

    NASA Technical Reports Server (NTRS)

    Cintala, Mark J.; Hoerz, F.; See, T. H.

    1987-01-01

    Impact experimentation on the NASA KC-135 Reduced-Gravity Aircraft was shown to be possible, practical, and of considerable potential use in examining the role of gravity on various impact phenomena. With a minimal facility, crater dimensional and growth-times were measured, and have demonstrated both agreement and disagreement with predictions. A larger facility with vacuum capability and a high-velocity gun would permit a much wider range of experimentation.

  11. Bubble Formation from Wall Orifice in Liquid Cross-Flow Under Low Gravity

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Kamotani, Y.

    2000-01-01

    Two-phase flows present a wide variety of applications for spacecraft thermal control systems design. Bubble formation and detachment is an integral part of the two phase flow science. The objective of the present work is to experimentally investigate the effects of liquid cross-flow velocity, gas flow rate, and orifice diameter on bubble formation in a wall-bubble injection configuration. Data were taken mainly under reduced gravity conditions but some data were taken in normal gravity for comparison. The reduced gravity experiment was conducted aboard the NASA DC-9 Reduced Gravity Aircraft. The results show that the process of bubble formation and detachment depends on gravity, the orifice diameter, the gas flow rate, and the liquid cross-flow velocity. The data are analyzed based on a force balance, and two different detachment mechanisms are identified. When the gas momentum is large, the bubble detaches from the injection orifice as the gas momentum overcomes the attaching effects of liquid drag and inertia. The surface tension force is much reduced because a large part of the bubble pinning edge at the orifice is lost as the bubble axis is tilted by the liquid flow. When the gas momentum is small, the force balance in the liquid flow direction is important, and the bubble detaches when the bubble axis inclination exceeds a certain angle.

  12. Helium 2 slosh in low gravity

    NASA Technical Reports Server (NTRS)

    Ross, Graham O.

    1994-01-01

    This paper describes the status and plans for the work being performed under NASA NRA contract NASW-4803 so that members of the Microgravity Fluid Dynamics Discipline Working Group are aware of this program. The contract is a cross-disciplinary research program and is administered under the Low Temperature Microgravity Research Program at the Jet Propulsion Laboratory. The purpose of the project is to perform low-gravity verification experiments on the slosh behavior of He II to use in the development of a CFD model that incorporates the two-fluid physics of He II. The two-fluid code predicts a different fluid motion response in low-gravity environment from that predicted by a single-fluid model, while the 1g response is identical for the both types of model.

  13. Calculation of gravity and magnetic anomalies along profiles with end corrections and inverse solutions for density and magnetization

    USGS Publications Warehouse

    Cady, John W.

    1977-01-01

    A computer program is presented which performs, for one or more bodies, along a profile perpendicular to strike, both forward calculations for the magnetic and gravity anomaly fields and independent gravity and magnetic inverse calculations for density and susceptibility or remanent magnetization.

  14. Industrial processes influenced by gravity

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon

    1988-01-01

    In considering new directions for low gravity research with particular regard to broadening the number and types of industrial involvements, it is noted that transport phenomena play a vital role in diverse processes in the chemical, pharmaceutical, food, and biotech industries. Relatively little attention has been given to the role of gravity in such processes. Accordingly, numerous industrial processes and phenomena are identified which involve gravity and/or surface tension forces. Phase separations and mixing are examples that will be significantly different in low gravity conditions. A basis is presented for expanding the scope of the low gravity research program and the potential benefits of such research is indicated.

  15. Effect of gravity on terminal particle settling velocity on Moon, Mars and Earth

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.

    2013-04-01

    Gravity has a non-linear effect on the settling velocity of sediment particles in liquids and gases due to the interdependence of settling velocity, drag and friction. However, StokeśLaw, the common way of estimating the terminal velocity of a particle moving in a gas of liquid assumes a linear relationship between terminal velocity and gravity. For terrestrial applications, this "error" is not relevant, but it may strongly influence the terminal velocity achieved by settling particles on Mars. False estimates of these settling velocities will, in turn, affect the interpretation of particle sizes observed in sedimentary rocks on Mars. Wrong interpretations may occur, for example, when the texture of sedimentary rocks is linked to the amount and hydraulics of runoff and thus ultimately the environmental conditions on Mars at the time of their formation. A good understanding of particle behaviour in liquids on Mars is therefore essential. In principle, the effect of lower gravity on settling velocity can also be achieved by reducing the difference in density between particle and gas or liquid. However, the use of such analogues simulating the lower gravity on Mars on Earth is creates other problems because the properties (i.e. viscosity) and interaction of the liquids and sediment (i.e. flow around the boundary layer between liquid and particle) differ from those of water and mineral particles. An alternative for measuring the actual settling velocities of particles under Martian gravity, on Earth, is offered by placing a settling tube on a reduced gravity flight and conduct settling tests within the 20 to 25 seconds of Martian gravity that can be simulated during such a flight. In this presentation we report the results of such a test conducted during a reduced gravity flight in November 2012. The results explore the strength of the non-linearity in the gravity-settling velocity relationship for terrestrial, lunar and Martian gravity.

  16. The Effect of Center of Gravity and Anthropometrics on Human Performance in Simulated Lunar Gravity

    NASA Technical Reports Server (NTRS)

    Mulugeta, Lealem; Chappell, Steven P.; Skytland, Nicholas G.

    2009-01-01

    NASA EVA Physiology, Systems and Performance (EPSP) Project at JSC has been investigating the effects of Center of Gravity and other factors on astronaut performance in reduced gravity. A subset of the studies have been performed with the water immersion technique. Study results show correlation between Center of Gravity location and performance. However, data variability observed between subjects for prescribed Center of Gravity configurations. The hypothesis is that Anthropometric differences between test subjects could be a source of the performance variability.

  17. Human Biomechanical and Cardiopulmonary Responses to Partial Gravity - A Systematic Review.

    PubMed

    Richter, Charlotte; Braunstein, Bjoern; Winnard, Andrew; Nasser, Mona; Weber, Tobias

    2017-01-01

    The European Space Agency has recently announced to progress from low Earth orbit missions on the International Space Station to other mission scenarios such as exploration of the Moon or Mars. Therefore, the Moon is considered to be the next likely target for European human space explorations. Compared to microgravity (μg), only very little is known about the physiological effects of exposure to partial gravity (μg < partial gravity <1 g). However, previous research studies and experiences made during the Apollo missions comprise a valuable source of information that should be taken into account when planning human space explorations to reduced gravity environments. This systematic review summarizes the different effects of partial gravity (0.1-0.4 g) on the human musculoskeletal, cardiovascular and respiratory systems using data collected during the Apollo missions as well as outcomes from terrestrial models of reduced gravity with either 1 g or microgravity as a control. The evidence-based findings seek to facilitate decision making concerning the best medical and exercise support to maintain astronauts' health during future missions in partial gravity. The initial search generated 1,323 publication hits. Out of these 1,323 publications, 43 studies were included into the present analysis and relevant data were extracted. None of the 43 included studies investigated long-term effects. Studies investigating the immediate effects of partial gravity exposure reveal that cardiopulmonary parameters such as heart rate, oxygen consumption, metabolic rate, and cost of transport are reduced compared to 1 g, whereas stroke volume seems to increase with decreasing gravity levels. Biomechanical studies reveal that ground reaction forces, mechanical work, stance phase duration, stride frequency, duty factor and preferred walk-to-run transition speed are reduced compared to 1 g. Partial gravity exposure below 0.4 g seems to be insufficient to maintain musculoskeletal and cardiopulmonary properties in the long-term. To compensate for the anticipated lack of mechanical and metabolic stimuli some form of exercise countermeasure appears to be necessary in order to maintain reasonable astronauts' health, and thus ensure both sufficient work performance and mission safety.

  18. Human Biomechanical and Cardiopulmonary Responses to Partial Gravity – A Systematic Review

    PubMed Central

    Richter, Charlotte; Braunstein, Bjoern; Winnard, Andrew; Nasser, Mona; Weber, Tobias

    2017-01-01

    The European Space Agency has recently announced to progress from low Earth orbit missions on the International Space Station to other mission scenarios such as exploration of the Moon or Mars. Therefore, the Moon is considered to be the next likely target for European human space explorations. Compared to microgravity (μg), only very little is known about the physiological effects of exposure to partial gravity (μg < partial gravity <1 g). However, previous research studies and experiences made during the Apollo missions comprise a valuable source of information that should be taken into account when planning human space explorations to reduced gravity environments. This systematic review summarizes the different effects of partial gravity (0.1–0.4 g) on the human musculoskeletal, cardiovascular and respiratory systems using data collected during the Apollo missions as well as outcomes from terrestrial models of reduced gravity with either 1 g or microgravity as a control. The evidence-based findings seek to facilitate decision making concerning the best medical and exercise support to maintain astronauts' health during future missions in partial gravity. The initial search generated 1,323 publication hits. Out of these 1,323 publications, 43 studies were included into the present analysis and relevant data were extracted. None of the 43 included studies investigated long-term effects. Studies investigating the immediate effects of partial gravity exposure reveal that cardiopulmonary parameters such as heart rate, oxygen consumption, metabolic rate, and cost of transport are reduced compared to 1 g, whereas stroke volume seems to increase with decreasing gravity levels. Biomechanical studies reveal that ground reaction forces, mechanical work, stance phase duration, stride frequency, duty factor and preferred walk-to-run transition speed are reduced compared to 1 g. Partial gravity exposure below 0.4 g seems to be insufficient to maintain musculoskeletal and cardiopulmonary properties in the long-term. To compensate for the anticipated lack of mechanical and metabolic stimuli some form of exercise countermeasure appears to be necessary in order to maintain reasonable astronauts' health, and thus ensure both sufficient work performance and mission safety. PMID:28860998

  19. Interactions between gravitropism and phototropism in plants

    NASA Technical Reports Server (NTRS)

    Correll, Melanie J.; Kiss, John Z.

    2002-01-01

    To receive adequate light and nutrients for survival, plants orient stems and stem-like organs toward light and away from the gravity vector and, conversely, orient roots into the soil, away from light toward the direction of gravity. Therefore, both gravity and light can influence the differential growth of plant organs. To add to the complexity of the interactions between gravity and light, each stimulus can enhance or reduce the effectiveness of the other. On earth, the constant presence of gravity makes it difficult to determine whether plant growth and development is influenced by gravity or light alone or the combination of the two stimuli. In the past decade, our understanding of the gravity and light transduction pathways has advanced through the use of mutants in either gravitropic or phototropic responses and the use of innovative techniques that reduce the effects of one stimulus on the other. Thus, both unique and common elements in the transduction pathways of the gravitropic and phototropic responses have been isolated. This article is focused on the interactions between the light- and gravity-transduction pathways and describes methods used to separate the influences of these two environmental stimuli.

  20. Interactions between gravitropism and phototropism in plants.

    PubMed

    Correll, Melanie J; Kiss, John Z

    2002-06-01

    To receive adequate light and nutrients for survival, plants orient stems and stem-like organs toward light and away from the gravity vector and, conversely, orient roots into the soil, away from light toward the direction of gravity. Therefore, both gravity and light can influence the differential growth of plant organs. To add to the complexity of the interactions between gravity and light, each stimulus can enhance or reduce the effectiveness of the other. On earth, the constant presence of gravity makes it difficult to determine whether plant growth and development is influenced by gravity or light alone or the combination of the two stimuli. In the past decade, our understanding of the gravity and light transduction pathways has advanced through the use of mutants in either gravitropic or phototropic responses and the use of innovative techniques that reduce the effects of one stimulus on the other. Thus, both unique and common elements in the transduction pathways of the gravitropic and phototropic responses have been isolated. This article is focused on the interactions between the light- and gravity-transduction pathways and describes methods used to separate the influences of these two environmental stimuli.

  1. pyGrav, a Python-based program for handling and processing relative gravity data

    NASA Astrophysics Data System (ADS)

    Hector, Basile; Hinderer, Jacques

    2016-06-01

    pyGrav is a Python-based open-source software dedicated to the complete processing of relative-gravity data. It is particularly suited for time-lapse gravity surveys where high precision is sought. Its purpose is to bind together single-task processing codes in a user-friendly interface for handy and fast treatment of raw gravity data from many stations of a network. The intuitive object-based implementation allows to easily integrate additional functions (reading/writing routines, processing schemes, data plots) related to the appropriate object (a station, a loop, or a survey). This makes pyGrav an evolving tool. Raw data can be corrected for tides and air pressure effects. The data selection step features a double table-plot graphical window with either manual or automatic selection according to specific thresholds on data channels (tilts, gravity values, gravity standard deviation, duration of measurements, etc.). Instrumental drifts and gravity residuals are obtained by least square analysis of the dataset. This first step leads to the gravity simple differences between a reference point and any point of the network. When different repetitions of the network are done, the software computes then the gravity double differences and associated errors. The program has been tested on two specific case studies: a large dataset acquired for the study of water storage changes on a small catchment in West Africa, and a dataset operated and processed by several different users for geothermal studies in northern Alsace, France. In both cases, pyGrav proved to be an efficient and easy-to-use solution for the effective processing of relative-gravity data.

  2. MX Siting Investigation, Gravity Survey - Delamar Valley, Nevada.

    DTIC Science & Technology

    1981-07-20

    reduces the data to Simple Bouguer Anomaly (see Section A1.4, Appendix A1.0). The Defense Mapping Agency Aerospace Center (DMAAC), St. Louis, Missouri...DRAWINGS Drawing Number 1 Complete Bouguer Anomaly Contours 2 Depth to Rock -Interpreted from In Pocket at Gravity Data End of Report iv E-TR-33-DM...ErtPX E-TR-3 3-DM 6 2.0 GRAVITY DATA REDUCTION DMAHTC/GSS obtained the basic observations for the new stations and reduced them to Simple Bouguer

  3. Proceedings of the Annual Gravity Gradiometer Conference (17th) Held in Hanscom AFB, Massachusetts on 12-13 October 1989

    DTIC Science & Technology

    1990-03-28

    D’IC FILE COpY G---90-0067 ENVIRONMENTAL RESEARCH PAPERS , NO. 1059 AD-A223 568 PROCEEDINGS OF THE SEVENTEENTH ANNUAL GRAVITY GRADIOICET CONFERENCE 12...AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for Public Release; Distribution Unlimited 13. ABSTRACT (Maximu&m 200 words)/ Fourteen papers were...instrumentation * and applications. The technical papers covered test program results, applications to gravity field mapping, gravity signal processing

  4. Principal facts of gravity stations with gravity and magnetic profiles from the Southwest Nevada Test Site, Nye County, Nevada, as of January, 1982

    USGS Publications Warehouse

    Jansma, P.E.; Snyder, D.B.; Ponce, David A.

    1983-01-01

    Three gravity profiles and principal facts of 2,604 gravity stations in the southwest quadrant of the Nevada Test Site are documented in this data report. The residual gravity profiles show the gravity measurements and the smoothed curves derived from these points that were used in geophysical interpretations. The principal facts include station label, latitude, longitude, elevation, observed gravity value, and terrain correction for each station as well as the derived complete Bouguer and isostatic anomalies, reduced at 2.67 g/cm 3. Accuracy codes, where available, further document the data.

  5. A novel variable-gravity simulation method: potential for astronaut training.

    PubMed

    Sussingham, J C; Cocks, F H

    1995-11-01

    Zero gravity conditions for astronaut training have traditionally used neutral buoyancy tanks, and with such tanks hypogravity conditions are produced by the use of supplemental weights. This technique does not allow for the influence of water viscosity on any reduced gravity exercise regime. With a water-foam fluid produced by using a microbubble air flow together with surface active agents to prevent bubble agglomeration, it has been found possible to simulate a range of gravity conditions without the need for supplemental weights and additionally with a substantial reduction in the resulting fluid viscosity. This new technique appears to have application in improving the simulation environment for astronaut training under the reduced gravity conditions to be found on the moon or on Mars, and may have terrestrial applications in patient rehabilitation and exercise as well.

  6. The path to an experiment in space (from concept to flight)

    NASA Technical Reports Server (NTRS)

    Salzman, Jack A.

    1994-01-01

    The following are discussed in this viewgraph presentation on developing flight experiments for NASA's Microgravity Science and Applications Program: time from flight PI selection to launch; key flight experiment phases and schedule drivers; microgravity experiment definition/development process; definition and engineering development phase; ground-based reduced gravity research facilities; project organization; responsibilities and duties of principle investigator/co-investigators, project scientist, and project manager; the science requirements document; flight development phase; experiment cost and schedule; and keys to experiment success.

  7. Human Locomotion under Reduced Gravity Conditions: Biomechanical and Neurophysiological Considerations

    PubMed Central

    Sylos-Labini, Francesca; Ivanenko, Yuri P.

    2014-01-01

    Reduced gravity offers unique opportunities to study motor behavior. This paper aims at providing a review on current issues of the known tools and techniques used for hypogravity simulation and their effects on human locomotion. Walking and running rely on the limb oscillatory mechanics, and one way to change its dynamic properties is to modify the level of gravity. Gravity has a strong effect on the optimal rate of limb oscillations, optimal walking speed, and muscle activity patterns, and gait transitions occur smoothly and at slower speeds at lower gravity levels. Altered center of mass movements and interplay between stance and swing leg dynamics may challenge new forms of locomotion in a heterogravity environment. Furthermore, observations in the lack of gravity effects help to reveal the intrinsic properties of locomotor pattern generators and make evident facilitation of nonvoluntary limb stepping. In view of that, space neurosciences research has participated in the development of new technologies that can be used as an effective tool for gait rehabilitation. PMID:25247179

  8. On the Hamiltonian formalism of the tetrad-gravity with fermions

    NASA Astrophysics Data System (ADS)

    Lagraa, M. H.; Lagraa, M.

    2018-06-01

    We extend the analysis of the Hamiltonian formalism of the d-dimensional tetrad-connection gravity to the fermionic field by fixing the non-dynamic part of the spatial connection to zero (Lagraa et al. in Class Quantum Gravity 34:115010, 2017). Although the reduced phase space is equipped with complicated Dirac brackets, the first-class constraints which generate the diffeomorphisms and the Lorentz transformations satisfy a closed algebra with structural constants analogous to that of the pure gravity. We also show the existence of a canonical transformation leading to a new reduced phase space equipped with Dirac brackets having a canonical form leading to the same algebra of the first-class constraints.

  9. Gravity measured at the apollo 14 lading site.

    PubMed

    Nance, R L

    1971-12-03

    The gravity at the Apollo 14 landing site has been determined from the accelerometer data that were telemetered from the lunar module. The values for the lunar gravity measured at the Apollo 11, 12, and 14 sites were reduced to a common elevation and were then compared between sites. A theoretical gravity, based on the assumption of a spherical moon, was computed for each landing site and compared with the observed value. The observed gravity was also used to compute the lunar radius at each landing site.

  10. Mass transport phenomena between bubbles and dissolved gases in liquids under reduced gravity conditions

    NASA Technical Reports Server (NTRS)

    Dewitt, Kenneth J.; Brockwell, Jonathan L.; Yung, Chain-Nan; Chai, An-Ti; Mcquillen, John B.; Sotos, Raymond G.; Neumann, Eric S.

    1988-01-01

    The experimental and analytical work that was done to establish justification and feasibility for a shuttle middeck experiment involving mass transfer between a gas bubble and a liquid is described. The experiment involves the observation and measurement of the dissolution of an isolated immobile gas bubble of specified size and composition in a thermostatted solvent liquid of known concentration in the reduced gravity environment of earth orbit. Methods to generate and deploy the bubble were successful both in normal gravity using mutually buoyant fluids and under reduced gravity conditions in the NASA Lear Jet. Initialization of the experiment with a bubble of a prescribed size and composition in a liquid of known concentration was accomplished using the concept of unstable equilibrium. Subsequent bubble dissolution or growth is obtained by a step increase or decrease in the liquid pressure. A numerical model was developed which simulates the bubble dynamics and can be used to determine molecular parameters by comparison with the experimental data. The primary objective of the experiment is the elimination of convective effects that occur in normal gravity.

  11. Nucleate pool boiling: High gravity to reduced gravity; liquid metals to cryogens

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1988-01-01

    Requirements for the proper functioning of equipment and personnel in reduced gravity associated with space platforms and future space station modules introduce unique problems in temperature control; power generation; energy dissipation; the storage, transfer, control and conditioning of fluids; and liquid-vapor separation. The phase change of boiling is significant in all of these. Although both pool and flow boiling would be involved, research results to date include only pool boiling because buoyancy effects are maximized for this case. The effective application of forced convection boiling heat transfer in the microgravity of space will require a well grounded and cogent understanding of the mechanisms involved. Experimental results are presented for pool boiling from a single geometrical configuration, a flat surface, covering a wide range of body forces from a/g = 20 to 1 to a/g = 0 to -1 for a cryogenic liquid, and from a/g = 20 to 1 for water and a liquid metal. Similarities in behavior are noted for these three fluids at the higher gravity levels, and may reasonably be expected to continue at reduced gravity levels.

  12. Particle nonuniformity effects on particle cloud flames in low gravity

    NASA Technical Reports Server (NTRS)

    Berlad, A. L.; Tangirala, V.; Seshadri, K.; Facca, L. T.; Ogrin, J.; Ross, H.

    1991-01-01

    Experimental and analytical studies of particle cloud combustion at reduced gravity reveal the substantial roles that particle cloud nonuniformities may play in particle cloud combustion. Macroscopically uniform, quiescent particle cloud systems (at very low gravitational levels and above) sustain processes which can render them nonuniform on both macroscopic and microscopic scales. It is found that a given macroscopically uniform, quiescent particle cloud flame system can display a range of microscopically nonuniform features which lead to a range of combustion features. Microscopically nonuniform particle cloud distributions are difficult experimentally to detect and characterize. A uniformly distributed lycopodium cloud of particle-enriched microscopic nonuniformities in reduced gravity displays a range of burning velocities for any given overall stoichiometry. The range of observed and calculated burning velocities corresponds to the range of particle enriched concentrations within a characteristic microscopic nonuniformity. Sedimentation effects (even in reduced gravity) are also examined.

  13. Rheological measurements in reduced gravity

    NASA Astrophysics Data System (ADS)

    Bakhtiyarov, Sayavur I.; Overfelt, Ruel A.

    1999-01-01

    Rheology of fluidized beds and settling suspensions were studied experimentally in a series of reduced gravity parabolic flights aboard NASA's KC-135 aircraft. Silica sands of two different size distributions were fluidized by air. The slurries were made using silica sand and Glycerol solution. The experimental set up incorporated instrumentation to measure the air flow rate, the pressure drop and the apparent viscosity of the fluidized sand and sand suspensions at a wide range of the shear rates. The fluidization chamber and container had transparent walls to allow visualization of the structure changes involved in fluidization and in Couette flow in reduced gravity. Experiments were performed over a broad range of gravitational accelerations including microgravity and double gravity conditions. The results of the flight and ground experiments reveal significant differences in overall void fraction and hence in the apparent viscosity of fluidized sand and sand suspensions under microgravity as compared to one-g conditions.

  14. Suggestions for Improvement of User Access to GOCE L2 Data

    NASA Astrophysics Data System (ADS)

    Tscherning, C. C.

    2011-07-01

    ESA's has required that most GOCE L2 products are delivered in XML format. This creates difficulties for the users because a Parser written in Perl is needed to convert the files to files without XML tags. However several products, such as the coefficients of spherical harmonic coefficients are made available on standard form through the International Center for Global Gravity Field Models. The variance-covariance information for the gravity field models is only available without XML tags. It is suggested that all XML products are made available in the Virtual Data Archive as files without tags. This will besides making the data directly usable by a FORTRAN program also reduce the size (storage requirements) of the product to about 30 %. A further reduction of used storage should be made by tuning the number of digits for the individual quantities in the products, so that it corresponds to the actual number of significant digits.

  15. Reduced-Gravity Experiments Conducted to Help Bioreactor Development

    NASA Technical Reports Server (NTRS)

    Niederhaus, Charles E.; Nahra, Henry K.; Kizito, John P.

    2004-01-01

    The NASA Glenn Research Center and the NASA Johnson Space Center are collaborating on fluid dynamic investigations for a future cell science bioreactor to fly on the International Space Station (ISS). Project Manager Steven Gonda from the Cellular Biotechnology Program at Johnson is leading the development of the Hydrodynamic Focusing Bioreactor--Space (HFB-S) for use on the ISS to study tissue growth in microgravity. Glenn is providing microgravity fluid physics expertise to help with the design and evaluation of the HFB-S. These bioreactors are used for three-dimensional tissue culture, which cannot be done in ground-based labs in normal gravity. The bioreactors provide a continual supply of oxygen for cell growth, as well as periodic replacement of cell culture media with nutrients. The bioreactor must provide a uniform distribution of oxygen and nutrients while minimizing the shear stresses on the tissue culture.

  16. A system for conducting igneous petrology experiments under controlled redox conditions in reduced gravity

    NASA Technical Reports Server (NTRS)

    Williams, Richard J.

    1987-01-01

    The Space Shuttle and the planned Space Station will permit experimentation under conditions of reduced gravitational acceleration offering experimental petrologists the opportunity to study crystal growth, element distribution, and phase chemistry. In particular the confounding effects of macro and micro scale buoyancy-induced convection and crystal settling or flotation can be greatly reduced over those observed in experiments in the terrestrial laboratory. Also, for experiments in which detailed replication of the environment is important, the access to reduced gravity will permit a more complete simulation of processes that may have occurred on asteroids or in free space. A technique that was developed to control, measure, and manipulate oxygen fugacities with small quantities of gas which are recirculated over the sample. This system could be adaptable to reduced gravity space experiments requiring redox control.

  17. Gravity-Dependent Transport in Industrial Processes

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon; Kamotani, Yasuhiro

    1996-01-01

    Gravity dependent transport phenomena in various industrial processes are investigated in order to indicate new directions for micro-gravity research that enhance the commercial success of the space program. The present article describes the commercialization possibilities of such topics associated with physicochemical transport phenomena. The topics are: coating flow, rotating electrochemical system, and convection in low Plandtl number fluids. The present study is directed to understand these phenomena, and to develop a knowledge base for their applications with emphasis to a micro-gravity environment.

  18. Separating biological cells

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.

    1979-01-01

    Technique utilizing electric field to promote biological cell separation from suspending medium in zero gravity increases speed, reduces sedimentation, and improves efficiency of separation in normal gravity.

  19. Effects-based strategy development through center of gravity and target system analysis

    NASA Astrophysics Data System (ADS)

    White, Christopher M.; Prendergast, Michael; Pioch, Nicholas; Jones, Eric K.; Graham, Stephen

    2003-09-01

    This paper describes an approach to effects-based planning in which a strategic-theater-level mission is refined into operational-level and ultimately tactical-level tasks and desired effects, informed by models of the expected enemy response at each level of abstraction. We describe a strategy development system that implements this approach and supports human-in-the-loop development of an effects-based plan. This system consists of plan authoring tools tightly integrated with a suite of center of gravity (COG) and target system analysis tools. A human planner employs the plan authoring tools to develop a hierarchy of tasks and desired effects. Upon invocation, the target system analysis tools use reduced-order models of enemy centers of gravity to select appropriate target set options for the achievement of desired effects, together with associated indicators for each option. The COG analysis tools also provide explicit models of the causal mechanisms linking tasks and desired effects to one another, and suggest appropriate observable indicators to guide ISR planning, execution monitoring, and campaign assessment. We are currently implementing the system described here as part of the AFRL-sponsored Effects Based Operations program.

  20. Bubble Formation and Detachment in Reduced Gravity Under the Influence of Electric Fields

    NASA Technical Reports Server (NTRS)

    Herman, Cila; Iacona, Estelle; Chang, Shinan

    2002-01-01

    The objective of the study is to investigate the behavior of individual air bubbles injected through an orifice into an electrically insulating liquid under the influence of a static electric field. Both uniform and nonuniform electric field configurations were considered. Bubble formation and detachment were recorded and visualized in reduced gravity (corresponding to gravity levels on Mars, on the Moon as well as microgravity) using a high-speed video camera. Bubble volume, dimensions and contact angle at detachment were measured. In addition to the experimental studies, a simple model, predicting bubble characteristics at detachment was developed. The model, based on thermodynamic considerations, accounts for the level of gravity as well as the magnitude of the uniform electric field. Measured data and model predictions show good agreement and indicate that the level of gravity and the electric field magnitude significantly affect bubble shape, volume and dimensions.

  1. Active Response Gravity Offload and Method

    NASA Technical Reports Server (NTRS)

    Dungan, Larry K. (Inventor); Lieberman, Asher P. (Inventor); Shy, Cecil (Inventor); Bankieris, Derek R. (Inventor); Valle, Paul S. (Inventor); Redden, Lee (Inventor)

    2015-01-01

    A variable gravity field simulator can be utilized to provide three dimensional simulations for simulated gravity fields selectively ranging from Moon, Mars, and micro-gravity environments and/or other selectable gravity fields. The gravity field simulator utilizes a horizontally moveable carriage with a cable extending from a hoist. The cable can be attached to a load which experiences the effects of the simulated gravity environment. The load can be a human being or robot that makes movements that induce swinging of the cable whereby a horizontal control system reduces swinging energy. A vertical control system uses a non-linear feedback filter to remove noise from a load sensor that is in the same frequency range as signals from the load sensor.

  2. Evaluating Material Flammability in Microgravity and Martian Gravity Compared to the NASA Standard Normal Gravity Test

    NASA Technical Reports Server (NTRS)

    Oslon, Sandra. L.; Ferkul, Paul

    2012-01-01

    Drop tower tests are conducted at Martian gravity to determine the flammability of three materials compared to previous tests in other normal gravity and reduced gravity environments. The comparison is made with consideration of a modified NASA standard test protocol. Material flammability limits in the different gravity and flow environments are tabulated to determine the factor of safety associated with normal gravity flammability screening. Previous testing at microgravity and Lunar gravity indicated that some materials burned to lower oxygen concentrations in low gravity than in normal gravity, although the low g extinction limit criteria are not the same as 1g due to time constraints in drop testing. Similarly, the data presented in this paper for Martian gravity suggest that there is a gravity level below Earth s at which materials burn more readily than on Earth. If proven for more materials, this may indicate the need to include a factor of safety on 1g flammability limits.

  3. High-precision gravimetric survey in support of lunar laser ranging at Haleakala, Maui, 1976 - 1978

    NASA Technical Reports Server (NTRS)

    Schenck, B. E.; Laurila, S. H.

    1978-01-01

    The planning, observations and adjustment of high-precision gravity survey networks established on the islands of Maui and Oahu as part of the geodetic-geophysical program in support of lunar laser ranging at Haleakala, Maui, Hawaii are described. The gravity survey networks include 43 independently measured gravity differences along the gravity calibration line from Kahului Airport to the summit of Mt. Haleakala, together with some key points close to tidal gauges on Maui, and 40 gravity differences within metropolitan Honolulu. The results of the 1976-1978 survey are compared with surveys made in 1961 and in 1964-1965. All final gravity values are given in the system of the international gravity standardization net 1971 (IGSN 71); values are obtained by subtracting 14.57 mgal from the Potsdam value at the gravity base station at the Hickam Air Force Base, Honolulu.

  4. Ultrafine particle and fiber production in micro-gravity

    NASA Technical Reports Server (NTRS)

    Webb, George W.

    1987-01-01

    The technique of evaporation and condensation of material in an inert gas is investigated for the purpose of preparing ultrafine particles (of order 10 nm in diameter) with a narrow distribution of sizes. Gravity-driven convection increases the rate of coalescence of the particles, leading to larger sizes and a broader distribution. Analysis and experimental efforts to investigate coalescence of particles are presented. The possibility of reducing coalescence in microgravity is discussed. An experimental test in reduced gravity to be performed in a KC135 aircraft is described briefly.

  5. U.S. perspective on technology demonstration experiments for adaptive structures

    NASA Technical Reports Server (NTRS)

    Aswani, Mohan; Wada, Ben K.; Garba, John A.

    1991-01-01

    Evaluation of design concepts for adaptive structures is being performed in support of several focused research programs. These include programs such as Precision Segmented Reflector (PSR), Control Structure Interaction (CSI), and the Advanced Space Structures Technology Research Experiment (ASTREX). Although not specifically designed for adaptive structure technology validation, relevant experiments can be performed using the Passive and Active Control of Space Structures (PACOSS) testbed, the Space Integrated Controls Experiment (SPICE), the CSI Evolutionary Model (CEM), and the Dynamic Scale Model Test (DSMT) Hybrid Scale. In addition to the ground test experiments, several space flight experiments have been planned, including a reduced gravity experiment aboard the KC-135 aircraft, shuttle middeck experiments, and the Inexpensive Flight Experiment (INFLEX).

  6. ^4He experiments near T_λ with a heat current and reduced gravity in a low-gravity simulator

    NASA Astrophysics Data System (ADS)

    Liu, Yuanming; Larson, Melora; Israelsson, Ulf

    1998-03-01

    Conventional ground-based helium experiments experience limitations due to a variation of the superfluid transition temperature (T_λ) caused by the gravity-induced hydrostatic pressure in a ^4He sample cell. A low-gravity simulator consisting a high field superconducting magnet has been built in our laboratory and the preliminary measurements demonstrated a reduction of gravity in the sample cell. (Melora Larson, Feng-Chuan Liu, and Ulf Israelsson, Czech. J. of Phys. 46, 179 (1996).) We report our latest improvements on the simulator and measurements with a new sample cell which had copper end plates, Vepsel sidewalls, and sidewall probes. The measurements showed that gravity can be canceled with a field-field gradient product of 20.7 T^2/cm (or B=15.5 Tesla), in excellent agreement with the theoretical prediction. The measurements also revealed that the boundary resistance between the thermometers and liquid helium increased from 1.6 cm^2 K/W at zero field to 2.0 cm^2 K/W at B=13.8 Tesla. The preliminary dynamic measurements near T_λ with a heat current and reduced gravity will also be presented. This research was supported by NASA.

  7. Computer Programs to Display and Modify Data in Geographic Coordinates and Methods to Transfer Positions to and from Maps, with Applications to Gravity Data Processing, Global Positioning Systems, and 30-Meter Digital Elevation Models

    USGS Publications Warehouse

    Plouff, Donald

    1998-01-01

    Computer programs were written in the Fortran language to process and display gravity data with locations expressed in geographic coordinates. The programs and associated processes have been tested for gravity data in an area of about 125,000 square kilometers in northwest Nevada, southeast Oregon, and northeast California. This report discusses the geographic aspects of data processing. Utilization of the programs begins with application of a template (printed in PostScript format) to transfer locations obtained with Global Positioning Systems to and from field maps and includes a 5-digit geographic-based map naming convention for field maps. Computer programs, with source codes that can be copied, are used to display data values (printed in PostScript format) and data coverage, insert data into files, extract data from files, shift locations, test for redundancy, and organize data by map quadrangles. It is suggested that 30-meter Digital Elevation Models needed for gravity terrain corrections and other applications should be accessed in a file search by using the USGS 7.5-minute map name as a file name, for example, file '40117_B8.DEM' contains elevation data for the map with a southeast corner at lat 40? 07' 30' N. and lon 117? 52' 30' W.

  8. Casting And Solidification Technology (CAST): Directional solidification phenomena in a metal model at reduced gravity

    NASA Technical Reports Server (NTRS)

    Mccay, M. H.

    1988-01-01

    The Casting and Solidification Technology (CAST) experiment will study the phenomena that occur during directional solidification of an alloy, e.g., constitutional supercooling, freckling, and dendrite coarsening. The reduced gravity environment of space will permit the individual phenomena to be examined with minimum complication from buoyancy driven flows.

  9. Artificial gravity - The evolution of variable gravity research

    NASA Technical Reports Server (NTRS)

    Fuller, Charles A.; Sulzman, Frank M.; Keefe, J. Richard

    1987-01-01

    The development of a space life science research program based on the use of rotational facilities is described. In-flight and ground centrifuges can be used as artificial gravity environments to study the following: nongravitational biological factors; the effects of 0, 1, and hyper G on man; counter measures for deconditioning astronauts in weightlessness; and the development of suitable artificial gravity for long-term residence in space. The use of inertial fields as a substitute for gravity, and the relations between the radius of the centrifuge and rotation rate and specimen height and rotation radius are examined. An example of a centrifuge study involving squirrel monkeys is presented.

  10. Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth

    NASA Technical Reports Server (NTRS)

    Rashotte, A. M.; DeLong, A.; Muday, G. K.; Brown, C. S. (Principal Investigator)

    2001-01-01

    Auxin transport is required for important growth and developmental processes in plants, including gravity response and lateral root growth. Several lines of evidence suggest that reversible protein phosphorylation regulates auxin transport. Arabidopsis rcn1 mutant seedlings exhibit reduced protein phosphatase 2A activity and defects in differential cell elongation. Here we report that reduced phosphatase activity alters auxin transport and dependent physiological processes in the seedling root. Root basipetal transport was increased in rcn1 or phosphatase inhibitor-treated seedlings but showed normal sensitivity to the auxin transport inhibitor naphthylphthalamic acid (NPA). Phosphatase inhibition reduced root gravity response and delayed the establishment of differential auxin-induced gene expression across a gravity-stimulated root tip. An NPA treatment that reduced basipetal transport in rcn1 and cantharidin-treated wild-type plants also restored a normal gravity response and asymmetric auxin-induced gene expression, indicating that increased basipetal auxin transport impedes gravitropism. Increased auxin transport in rcn1 or phosphatase inhibitor-treated seedlings did not require the AGR1/EIR1/PIN2/WAV6 or AUX1 gene products. In contrast to basipetal transport, root acropetal transport was normal in phosphatase-inhibited seedlings in the absence of NPA, although it showed reduced NPA sensitivity. Lateral root growth also exhibited reduced NPA sensitivity in rcn1 seedlings, consistent with acropetal transport controlling lateral root growth. These results support the role of protein phosphorylation in regulating auxin transport and suggest that the acropetal and basipetal auxin transport streams are differentially regulated.

  11. Combination of GRACE monthly gravity field solutions from different processing strategies

    NASA Astrophysics Data System (ADS)

    Jean, Yoomin; Meyer, Ulrich; Jäggi, Adrian

    2018-02-01

    We combine the publicly available GRACE monthly gravity field time series to produce gravity fields with reduced systematic errors. We first compare the monthly gravity fields in the spatial domain in terms of signal and noise. Then, we combine the individual gravity fields with comparable signal content, but diverse noise characteristics. We test five different weighting schemes: equal weights, non-iterative coefficient-wise, order-wise, or field-wise weights, and iterative field-wise weights applying variance component estimation (VCE). The combined solutions are evaluated in terms of signal and noise in the spectral and spatial domains. Compared to the individual contributions, they in general show lower noise. In case the noise characteristics of the individual solutions differ significantly, the weighted means are less noisy, compared to the arithmetic mean: The non-seasonal variability over the oceans is reduced by up to 7.7% and the root mean square (RMS) of the residuals of mass change estimates within Antarctic drainage basins is reduced by 18.1% on average. The field-wise weighting schemes in general show better performance, compared to the order- or coefficient-wise weighting schemes. The combination of the full set of considered time series results in lower noise levels, compared to the combination of a subset consisting of the official GRACE Science Data System gravity fields only: The RMS of coefficient-wise anomalies is smaller by up to 22.4% and the non-seasonal variability over the oceans by 25.4%. This study was performed in the frame of the European Gravity Service for Improved Emergency Management (EGSIEM; http://www.egsiem.eu) project. The gravity fields provided by the EGSIEM scientific combination service (ftp://ftp.aiub.unibe.ch/EGSIEM/) are combined, based on the weights derived by VCE as described in this article.

  12. A system for conducting igneous petrology experiments under controlled redox conditions in reduced gravity

    NASA Technical Reports Server (NTRS)

    Williams, R. J.

    1986-01-01

    The Space Shuttle and the planned Space Station will permit experimentation under conditions of reduced gravitational acceleration offering experimental petrologists the opportunity to study crystal growth, element distribution, and phase chemistry. In particular the confounding effects of macro and micro scale buoyancy-induced convection and crystal settling or floatation can be greatly reduced over those observed in experiments in the terrestrial laboratory. Also, for experiments in which detailed replication of the environment is important, the access to reduced gravity will permit a more complete simulation of processes that may have occurred on asteroids or in free space. A technique that was developed to control, measure, and manipulate oxygen fugacites with small quantities of gas which are recirculated over the sample is described. This system should be adaptable to reduced gravity space experiments requiring redox control. Experiments done conventionally and those done using this technique yield identical results done in a 1-g field.

  13. 2006 Compilation of Alaska Gravity Data and Historical Reports

    USGS Publications Warehouse

    Saltus, Richard W.; Brown, Philip J.; Morin, Robert L.; Hill, Patricia L.

    2008-01-01

    Gravity anomalies provide fundamental geophysical information about Earth structure and dynamics. To increase geologic and geodynamic understanding of Alaska, the U.S. Geological Survey (USGS) has collected and processed Alaska gravity data for the past 50 years. This report introduces and describes an integrated, State-wide gravity database and provides accompanying gravity calculation tools to assist in its application. Additional information includes gravity base station descriptions and digital scans of historical USGS reports. The gravity calculation tools enable the user to reduce new gravity data in a consistent manner for combination with the existing database. This database has sufficient resolution to define the regional gravity anomalies of Alaska. Interpretation of regional gravity anomalies in parts of the State are hampered by the lack of local isostatic compensation in both southern and northern Alaska. However, when filtered appropriately, the Alaska gravity data show regional features having geologic significance. These features include gravity lows caused by low-density rocks of Cenozoic basins, flysch belts, and felsic intrusions, as well as many gravity highs associated with high-density mafic and ultramafic complexes.

  14. Gravity Waves in the Presence of Shear during DEEPWAVE

    NASA Astrophysics Data System (ADS)

    Doyle, J. D.; Jiang, Q.; Reinecke, P. A.; Reynolds, C. A.; Eckermann, S. D.; Fritts, D. C.; Smith, R. B.; Taylor, M. J.; Dörnbrack, A.

    2016-12-01

    The DEEP propagating gravity WAVE program (DEEPWAVE) is a comprehensive, airborne and ground-based measurement and modeling program centered on New Zealand and focused on providing a new understanding of gravity wave dynamics and impacts from the troposphere through the mesosphere and lower thermosphere. This program employed the NSF/NCAR GV (NGV) research aircraft from a base in New Zealand in a 6-week field measurement campaign in June-July 2014. During the field phase, the NGV was equipped with new Rayleigh and sodium resonance lidars and an advanced mesospheric temperature mapper (AMTM), a microwave temperature profiler (MTP), as well as dropwindsondes and flight level instruments providing measurements spanning altitudes from immediately above the NGV flight altitude ( 13 km) to 100 km. In this study, we utilize the DEEPWAVE observations and the nonhydrostatic COAMPS configured at high resolution (2 km) with a deep domain (60-80 km) to explore the effects of horizontal wind shear on gravity wave propagation and wave characteristics. Real-data simulations have been conducted for several DEEPWAVE cases. The results suggest that horizontal shear associated with the stratospheric polar night jet refracts the gravity waves and leads to propagation of waves significantly downwind of the South Island. These waves have been referred to as "trailing gravity waves", since they are found predominantly downwind of the orography of the South Island and the wave crests rotate nearly normal to the mountain crest. Observations from the G-V, remote sensing instruments, and the AIRS satellite confirm the presence of gravity waves downwind of the orography in numerous events. The horizontal propagation in the stratosphere can be explained by group velocity arguments for gravity waves in which the wave energy is advected downwind by the component of the flow normal to the horizontal wavevector. We explore the impact of the shear on gravity wave propagation in COAMPS configured in an idealized mode initialized with a zonally balanced stratospheric jet. The idealized results confirm the importance of horizontal wind shear for the refraction of the waves. The zonal momentum flux minimum is shown to bend or refract into the jet in the stratosphere as a consequence of the wind shear.

  15. PHOS Experiment: Thermal Response of a Large Diameter Pulsating Heat Pipe on Board REXUS-18 Rocket

    NASA Astrophysics Data System (ADS)

    Creatini, F.; Guidi, G. M.; Belfi, F.; Cicero, G.; Fioriti, D.; Di Prizio, D.; Piacquadio, S.; Becatti, G.; Orlandini, G.; Frigerio, A.; Fontanesi, S.; Nannipieri, P.; Rognini, M.; Morganti, N.; Filippeschi, S.; Di Marco, P.; Fanucci, L.; Baronti, F.; Mameli, M.; Marengo, M.; Manzoni, M.

    2015-09-01

    In the present work, the results of two Closed Loop Pulsating Heat Pipes (CLPHPs) tested on board REXUS-1 8 sounding rocket in order to get experimental data over a relatively broad reduced gravity period (about 90 s) are thoroughly discussed. The CLPHPs are partially filled with refrigerant FC-72 and have, respectively, an inner tube diameter larger (3 .0 mm) and slightly smaller (1 .6 mm) than a critical diameter defined on Earth gravity conditions. On ground, the small diameter CLPHP works as a real Pulsating Heat Pipe (PHP): the typical capillary slug flow pattern forms inside the device and the heat exchange is triggered by self-sustained thermally driven oscillations of the working fluid. Conversely, the large diameter CLPHP behaves like a two-phase thermosyphon in vertical position while does not operate in horizontal position as the working fluid stratifies within the tube and surface tension is not able to balance buoyancy. Then, the idea to test the CLPHPs under reduced gravity conditions: as soon as gravity reduces, buoyancy becomes less intense and the typical capillary slug flow pattern can also forms within a tube with a larger diameter. Moreover, this allows to increase the heat transfer rate and, consequently, to decrease the overall thermal resistance. Even though it was not possible to experience the expected reduced gravity conditions due to a failure of the yo-yo de-spin system, the thermal response to the peculiar acceleration field (hyper-gravity) experienced on board are thoroughly described.

  16. A computer system for the storage and retrieval of gravity data, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Godson, Richard H.; Andreasen, Gordon H.

    1974-01-01

    A computer system has been developed for the systematic storage and retrieval of gravity data. All pertinent facts relating to gravity station measurements and computed Bouguer values may be retrieved either by project name or by geographical coordinates. Features of the system include visual display in the form of printer listings of gravity data and printer plots of station locations. The retrieved data format interfaces with the format of GEOPAC, a system of computer programs designed for the analysis of geophysical data.

  17. Ignition and combustion of bulk metals at normal, elevated and reduced gravity

    NASA Technical Reports Server (NTRS)

    Branch, Melvyn C.; Daily, John W.; Abbud-Madrid, Angel

    1995-01-01

    Knowledge of the oxidation, ignition, and combustion of bulk metals is important for fire safety in the production, management, and utilization of liquid and gaseous oxygen for ground based and space applications. This proposal outlines studies in continuation of research initiated earlier under NASA support to investigate the ignition and combustion characteristics of bulk metals under varying gravity conditions. Metal ignition and combustion have not been studied previously under these conditions and the results are important not only for improved fire safety but also to increase knowledge of basic ignition and combustion mechanisms. The studies completed to date have led to the development of a clean and reproducible ignition source and diagnostic techniques for combustion measurements and have provided normal, elevated, and reduced gravity combustion data on a variety of different pure metals. The research conducted under this grant will use the apparatus and techniques developed earlier to continue the elevated and low gravity experiments, and to develop the overall modeling of the ignition and combustion process. Metal specimens are to be ignited using a xenon short-arc lamp and measurements are to be made of the ignition energy, surface temperature history, burning rates, spectroscopy of surface and gas products, and surface morphology and chemistry. Elevated gravity will be provided by the University of Colorado Geotechnical Centrifuge and microgravity will be obtained in NASA's DC-9 Reduced Gravity aircraft.

  18. The ITSG-Grace2014 Gravity Field Model

    NASA Astrophysics Data System (ADS)

    Kvas, Andreas; Mayer-Gürr, Torsten; Zehenter, Norbert; Klinger, Beate

    2015-04-01

    The ITSG-Grace2014 GRACE-only gravity field model consists of a high resolution unconstrained static model (up to degree 200) with trend and annual signal, monthly unconstrained solutions with different spatial resolutions as well as daily snapshots derived by using a Kalman smoother. Apart from the estimated spherical harmonic coefficients, full variance-covariance matrices for the monthly solutions and the static gravity field component are provided. Compared to the previous release, multiple improvements in the processing chain are implemented: updated background models, better ionospheric modeling for GPS observations, an improved satellite attitude by combination of star camera and angular accelerations, estimation of K-band antenna center variations within the gravity field recovery process as well as error covariance function determination. Furthermore, daily gravity field variations have been modeled in the adjustment process to reduce errors caused by temporal leakage. This combined estimation of daily gravity variations field variations together with the static gravity field component represents a computational challenge due to the significantly increased parameter count. The modeling of daily variations up to a spherical harmonic degree of 40 for the whole GRACE observation period results in a system of linear equations with over 6 million unknown gravity field parameters. A least squares adjustment of this size is not solvable in a sensible time frame, therefore measures to reduce the problem size have to be taken. The ITSG-Grace2014 release is presented and selected parts of the processing chain and their effect on the estimated gravity field solutions are discussed.

  19. Evaluation of an ATP Assay to Quantify Bacterial Attachment to Surfaces in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Birmele, Michele N.; Roberson, Luke B.; Roberts, Michael S.

    2010-01-01

    Aim: To develop an assay to quantify the biomass of attached cells and biofilm formed on wetted surfaces in variable-gravity environments. Methods and Results: Liquid cultures of Pseudomonas aeruginosa were exposed to 30-35 brief cycles of hypergravity (< 2-g) followed by free fall (i.e., reduced gravity) equivalent to either lunar-g (i.e., 0.17 normal Earth gravity) or micro-g (i.e., < 0.001 normal Earth gravity) in an aircraft flying a series of parabolas. Over the course of two days of parabolic flight testing, 504 polymer or metal coupons were exposed to a stationary-phase population of P. aeruginosa strain ERC1 at a concentration of 1.0 x 10(exp 5) cells per milliliter. After the final parabola on each flight test day, half of the material coupon samples were treated with either 400 micro-g/L ionic silver fluoride (microgravity-exposed cultures) or 1% formalin (lunar-gravity-exposed cultures). The remaining sample coupons from each flight test day were not treated with a fixative. All samples were returned to the laboratory for analysis within 2 hours of landing, and all biochemical assays were completed within 8 hours of exposure to variable gravity. The intracellular ATP luminescent assay accurately reflected cell physiology compared to both cultivation-based and direct-count microscopy analyses. Cells exposed to variable gravity had more than twice as much intracellular ATP as control cells exposed only to normal Earth gravity.

  20. Interactions between Artificial Gravity, the Affected Physiological Systems, and Nutrition

    NASA Technical Reports Server (NTRS)

    Heer, Martina; Baecker, Nathalie; Zwart, Sara; Smith, Scott

    2006-01-01

    Malnutrition, either by insufficient supply of some nutrients or by overfeeding, has a profound effect on the health of an organism. Therefore, optimal nutrition is a necessity in normal gravity on Earth, in microgravity, and when applying artificial gravity to the human system. Reduced physical activity, such as observed in microgravity or bed rest, has an effect on many physiological systems, such as the cardiovascular, musculoskeletal, immune, and body fluids regulation systems. There is currently no countermeasure that is effective to counteract both the cardiovascular and musculoskeletal deconditioning when applied for a short duration (see Chapter 1). Artificial gravity therefore seems the simplest physiological approach to keep these systems intact. The application of intermittent daily dose of artificial gravity by means of centrifugation has often been proposed as a potential countermeasure against the physiological deconditioning induced by spaceflight. However, neither the optimal gravity level, nor its optimal duration of exposure have been enough studied to recommend a validated, effective, and efficient artificial gravity application. As discussed in previous chapters, artificial gravity has a very high potential to counteract any changes caused by reduced physical activity. The nutrient supply, which ideally should match the actual needs, will interact with these changes and therefore has also to be taken into account. This chapter reviews the potential interactions between these nutrients (energy intake, vitamins, minerals) and the other physiological systems affected by artificial gravity generated by an on-board short-radius centrifuge.

  1. Moving base Gravity Gradiometer Survey System (GGSS) program

    NASA Astrophysics Data System (ADS)

    Pfohl, Louis; Rusnak, Walter; Jircitano, Albert; Grierson, Andrew

    1988-04-01

    The GGSS program began in early 1983 with the objective of delivering a landmobile and airborne system capable of fast, accurate, and economical gravity gradient surveys of large areas anywhere in the world. The objective included the development and use of post-mission data reduction software to process the survey data into solutions for the gravity disturbance vector components (north, east and vertical). This document describes the GGSS equipment hardware and software, integration and lab test procedures and results, and airborne and land survey procedures and results. Included are discussions on test strategies, post-mission data reduction algorithms, and the data reduction processing experience. Perspectives and conclusions are drawn from the results.

  2. International Multidisciplinary Artificial Gravity (IMAG) Project

    NASA Technical Reports Server (NTRS)

    Laurini, Kathy

    2007-01-01

    This viewgraph presentation reviews the efforts of the International Multidisciplinary Artificial Gravity Project. Specifically it reviews the NASA Exploration Planning Status, NASA Exploration Roadmap, Status of Planning for the Moon, Mars Planning, Reference health maintenance scenario, and The Human Research Program.

  3. 30 CFR 250.912 - What plans must I submit under the Platform Verification Program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and major members of concrete-gravity and steel-gravity structures; (2) For jacket and floating structures, all the primary load-bearing members included in the space-frame analysis; and (3) A summary...

  4. New NASA Mission to Reveal Moon Internal Structure and Evolution Artist Concept

    NASA Image and Video Library

    2007-12-11

    The Gravity Recovery and Interior Laboratory, or GRAIL, mission will fly twin spacecraft in tandem orbits around the moon to measure its gravity field in unprecedented detail. GRAIL is a part of NASA Discovery Program.

  5. Experimental Investigation of Solder Joint Defect Formation and Mitigation in Reduced-Gravity Environments

    NASA Technical Reports Server (NTRS)

    Watson, J. Kevin; Struk, Peter M.; Pettegrew, RIchard D.; Downs, Robert S.

    2006-01-01

    This paper documents a research effort on reduced gravity soldering of plated through hole joints which was conducted jointly by the National Center for Space Exploration Research, NASA Glenn Research Center, and NASA Johnson Space Center. Significant increases in joint porosity and changes in external geometry were observed in joints produced in reduced gravity as compared to normal gravity. Multiple techniques for mitigating the observed increase in porosity were tried, including several combinations of flux and solder application techniques, and demoisturizing the circuit board prior to soldering. Results were consistent with the hypothesis that the source of the porosity is a combination of both trapped moisture in the circuit board itself, as well as vaporized flux that is trapped in the molten solder. Other topics investigated include correlation of visual inspection results with joint porosity, pore size measurements, limited pressure effects (0.08 MPa - 0.1 MPa) on the size and number of pores, and joint cooling rate.

  6. Gravity-induced anomalies in interphase spacing reported for binary eutectics.

    PubMed

    Smith, Reginald W

    2002-10-01

    It has been reasoned that desirable microstructural refinement in binary eutectics could result from freezing in reduced-gravity. It is recognized that the interphase spacing in a binary eutectic is controlled by solute transport and that, on Earth, buoyancy-driven convection may enhance this. Hence, it has been presumed that the interphase spacing ought to decrease when a eutectic alloy is frozen under conditions of much-reduced gravity, where such buoyancy effects would be largely absent. The result of such speculation has been that many workers have frozen various eutectics under reduced gravity and have reported that, although some eutectics became finer, others showed no change, and some even became coarser. This reported varied behavior will be reviewed in the light of long term studies by the author at Queen's University, including recent microgravity studies in which samples of two eutectic alloy systems, MnBi-Bi and MnSb-Sb, were frozen under very stable conditions and showed no change in interphase spacing.

  7. Imaging and Analysis of Void-defects in Solder Joints Formed in Reduced Gravity using High-Resolution Computed Tomography

    NASA Technical Reports Server (NTRS)

    Easton, John W.; Struk, Peter M.; Rotella, Anthony

    2008-01-01

    As a part of efforts to develop an electronics repair capability for long duration space missions, techniques and materials for soldering components on a circuit board in reduced gravity must be developed. This paper presents results from testing solder joint formation in low gravity on a NASA Reduced Gravity Research Aircraft. The results presented include joints formed using eutectic tin-lead solder and one of the following fluxes: (1) a no-clean flux core, (2) a rosin flux core, and (3) a solid solder wire with external liquid no-clean flux. The solder joints are analyzed with a computed tomography (CT) technique which imaged the interior of the entire solder joint. This replaced an earlier technique that required the solder joint to be destructively ground down revealing a single plane which was subsequently analyzed. The CT analysis technique is described and results presented with implications for future testing as well as implications for the overall electronics repair effort discussed.

  8. Humans running in place on water at simulated reduced gravity.

    PubMed

    Minetti, Alberto E; Ivanenko, Yuri P; Cappellini, Germana; Dominici, Nadia; Lacquaniti, Francesco

    2012-01-01

    On Earth only a few legged species, such as water strider insects, some aquatic birds and lizards, can run on water. For most other species, including humans, this is precluded by body size and proportions, lack of appropriate appendages, and limited muscle power. However, if gravity is reduced to less than Earth's gravity, running on water should require less muscle power. Here we use a hydrodynamic model to predict the gravity levels at which humans should be able to run on water. We test these predictions in the laboratory using a reduced gravity simulator. We adapted a model equation, previously used by Glasheen and McMahon to explain the dynamics of Basilisk lizard, to predict the body mass, stride frequency and gravity necessary for a person to run on water. Progressive body-weight unloading of a person running in place on a wading pool confirmed the theoretical predictions that a person could run on water, at lunar (or lower) gravity levels using relatively small rigid fins. Three-dimensional motion capture of reflective markers on major joint centers showed that humans, similarly to the Basilisk Lizard and to the Western Grebe, keep the head-trunk segment at a nearly constant height, despite the high stride frequency and the intensive locomotor effort. Trunk stabilization at a nearly constant height differentiates running on water from other, more usual human gaits. The results showed that a hydrodynamic model of lizards running on water can also be applied to humans, despite the enormous difference in body size and morphology.

  9. Existence of global weak solution for a reduced gravity two and a half layer model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Zhenhua, E-mail: zhenhua.guo.math@gmail.com; Li, Zilai, E-mail: lizilai0917@163.com; Yao, Lei, E-mail: yaolei1056@hotmail.com

    2013-12-15

    We investigate the existence of global weak solution to a reduced gravity two and a half layer model in one-dimensional bounded spatial domain or periodic domain. Also, we show that any possible vacuum state has to vanish within finite time, then the weak solution becomes a unique strong one.

  10. Quantitative Velocity Field Measurements in Reduced-Gravity Combustion Science and Fluid Physics Experiments

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Wernet, Mark P.

    1999-01-01

    Systems have been developed and demonstrated for performing quantitative velocity measurements in reduced gravity combustion science and fluid physics investigations. The unique constraints and operational environments inherent to reduced-gravity experimental facilities pose special challenges to the development of hardware and software systems. Both point and planar velocimetric capabilities are described, with particular attention being given to the development of systems to support the International Space Station laboratory. Emphasis has been placed on optical methods, primarily arising from the sensitivity of the phenomena of interest to intrusive probes. Limitations on available power, volume, data storage, and attendant expertise have motivated the use of solid-state sources and detectors, as well as efficient analysis capabilities emphasizing interactive data display and parameter control.

  11. Generating a Reduced Gravity Environment on Earth

    NASA Technical Reports Server (NTRS)

    Dungan, L. K.; Valle, P.; Shy, C.

    2015-01-01

    The Active Response Gravity Offload System (ARGOS) is designed to simulate reduced gravity environments, such as Lunar, Martian, or microgravity using a vertical lifting hoist and horizontal motion system. Three directions of motion are provided over a 41 ft x 24 ft x 25 ft tall area. ARGOS supplies a continuous offload of a portion of a person's weight during dynamic motions such as walking, running, and jumping. The ARGOS system tracks the person's motion in the horizontal directions to maintain a vertical offload force directly above the person or payload by measuring the deflection of the cable and adjusting accordingly.

  12. Forced and natural convection in laminar-jet diffusion flames. [normal-gravity, inverted-gravity and zero-gravity flames

    NASA Technical Reports Server (NTRS)

    Haggard, J. B., Jr.

    1981-01-01

    An experimental investigation was conducted on methane, laminar-jet, diffusion flames with coaxial, forced-air flow to examine flame shapes in zero-gravity and in situations where buoyancy aids (normal-gravity flames) or hinders (inverted-gravity flames) the flow velocities. Fuel nozzles ranged in size from 0.051 to 0.305 cm inside radius, while the coaxial, convergent, air nozzle had a 1.4 cm inside radius at the fuel exit plane. Fuel flows ranged from 1.55 to 10.3 cu cm/sec and air flows from 0 to 597 cu cm/sec. A computer program developed under a previous government contract was used to calculate the characteristic dimensions of normal and zero-gravity flames only. The results include a comparison between the experimental data and the computed axial flame lengths for normal gravity and zero gravity which showed good agreement. Inverted-gravity flame width was correlated with the ratio of fuel nozzle radius to average fuel velocity. Flame extinguishment upon entry into weightlessness was studied, and it was found that relatively low forced-air velocities (approximately 10 cm/sec) are sufficient to sustain methane flame combustion in zero gravity. Flame color is also discussed.

  13. Detection of Directions of Gravity by Organisms and Contributions to SmaggIce

    NASA Technical Reports Server (NTRS)

    Dill, Loren H.

    2003-01-01

    Research covers the following: In the Microgravity Environment and Telescience Branch, a study wasI extended thar focused upon a flagellated alga or other swimming microbe and the effect of gravity upon its swimming direction. It has long been known that many organisms tend to swim up or down on Earth. How organisms detect the direction of gravity is a question not fully resolved. The response of such organisms to reduced gravity or the absence of gravity is also of interest, particularly because the expected modified behavior may affect the health of astronauts.

  14. NBS (National Bureau of Standards): Materials measurements

    NASA Technical Reports Server (NTRS)

    Manning, J. R.

    1984-01-01

    Work in support of NASA's Microgravity Science and Applications Program is described. The results of the following three tasks are given in detail: (1) surface tensions and their variations with temperature and impurities; (2) convection during unidirectional solidification; and (3) measurement of high temperature thermophysical properties. Tasks 1 and 2 were directed toward determining how the reduced gravity obtained in space flight can affect convection and solidification processes. Emphasis in task 3 was on development of levitation and containerless processing techniques which can be applied in space flight to provide thermodynamic measurements of reactive materials.

  15. KC-135 and Other Microgravity Simulations

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This document represents a summary of medical and scientific evaluations conducted aboard the KC-135 from June 23, 2004 to June 27, 2005. Included is a general overview of KC-135 activities manifested and coordinated by the Human Adaptation and Countermeasures Office. A collection of brief reports that describe tests conducted aboard the KC-135 follows the overview. Principal investigators and test engineers contributed significantly to the content of the report describing their particular experiment or hardware evaluation. This document concludes with an appendix that provides background information concerning the KC-135 and the Reduced-Gravity Program.

  16. Canonical methods in classical and quantum gravity: An invitation to canonical LQG

    NASA Astrophysics Data System (ADS)

    Reyes, Juan D.

    2018-04-01

    Loop Quantum Gravity (LQG) is a candidate quantum theory of gravity still under construction. LQG was originally conceived as a background independent canonical quantization of Einstein’s general relativity theory. This contribution provides some physical motivations and an overview of some mathematical tools employed in canonical Loop Quantum Gravity. First, Hamiltonian classical methods are reviewed from a geometric perspective. Canonical Dirac quantization of general gauge systems is sketched next. The Hamiltonian formultation of gravity in geometric ADM and connection-triad variables is then presented to finally lay down the canonical loop quantization program. The presentation is geared toward advanced undergradute or graduate students in physics and/or non-specialists curious about LQG.

  17. Upward Flame Spread Over Thin Solids in Partial Gravity

    NASA Technical Reports Server (NTRS)

    Feier, I. I.; Shih, H. Y.; Sacksteder, K. R.; Tien, J. S.

    2001-01-01

    The effects of partial-gravity, reduced pressure, and sample width on upward flame spread over a thin cellulose fuel were studied experimentally and the results were compared to a numerical flame spread simulation. Fuel samples 1-cm, 2-cm, and 4-cm wide were burned in air at reduced pressures of 0.2 to 0.4 atmospheres in simulated gravity environments of 0.1-G, 0.16-G (Lunar), and 0.38-G (Martian) onboard the NASA KC-135 aircraft and in normal-gravity tests. Observed steady flame propagation speeds and pyrolysis lengths were approximately proportional to the gravity level. Flames spread more quickly and were longer with the wider samples and the variations with gravity and pressure increased with sample width. A numerical simulation of upward flame spread was developed including three-dimensional Navier-Stokes equations, one-step Arrhenius kinetics for the gas phase flame and for the solid surface decomposition, and a fuel-surface radiative loss. The model provides detailed structure of flame temperatures, the flow field interactions with the flame, and the solid fuel mass disappearance. The simulation agrees with experimental flame spread rates and their dependence on gravity level but predicts a wider flammable region than found by experiment. Some unique three-dimensional flame features are demonstrated in the model results.

  18. Near-Infrared Spectroscopic Measurements of Calf Muscle during Walking at Simulated Reduced Gravity - Preliminary Results

    NASA Technical Reports Server (NTRS)

    Ellerby, Gwenn E. C.; Lee, Stuart M. C.; Stroud, Leah; Norcross, Jason; Gernhardt, Michael; Soller, Babs R.

    2008-01-01

    Consideration for lunar and planetary exploration space suit design can be enhanced by investigating the physiologic responses of individual muscles during locomotion in reduced gravity. Near-infrared spectroscopy (NIRS) provides a non-invasive method to study the physiology of individual muscles in ambulatory subjects during reduced gravity simulations. PURPOSE: To investigate calf muscle oxygen saturation (SmO2) and pH during reduced gravity walking at varying treadmill inclines and added mass conditions using NIRS. METHODS: Four male subjects aged 42.3 +/- 1.7 years (mean +/- SE) and weighing 77.9 +/- 2.4 kg walked at a moderate speed (3.2 +/- 0.2 km/h) on a treadmill at inclines of 0, 10, 20, and 30%. Unsuited subjects were attached to a partial gravity simulator which unloaded the subject to simulate body weight plus the additional weight of a space suit (121 kg) in lunar gravity (0.17G). Masses of 0, 11, 23, and 34 kg were added to the subject and then unloaded to maintain constant weight. Spectra were collected from the lateral gastrocnemius (LG), and SmO2 and pH were calculated using previously published methods (Yang et al. 2007 Optics Express ; Soller et al. 2008 J Appl Physiol). The effects of incline and added mass on SmO2 and pH were analyzed through repeated measures ANOVA. RESULTS: SmO2 and pH were both unchanged by added mass (p>0.05), so data from trials at the same incline were averaged. LG SmO2 decreased significantly with increasing incline (p=0.003) from 61.1 +/- 2.0% at 0% incline to 48.7 +/- 2.6% at 30% incline, while pH was unchanged by incline (p=0.12). CONCLUSION: Increasing the incline (and thus work performed) during walking causes the LG to extract more oxygen from the blood supply, presumably to support the increased metabolic cost of uphill walking. The lack of an effect of incline on pH may indicate that, while the intensity of exercise has increased, the LG has not reached a level of work above the anaerobic threshold. In these preliminary studies, 30% incline walking at reduced gravity may not require anaerobic LG activity due to the low exercise intensity (42.8 +/- 1.6% of VO(sub 2max)). It is also possible that at reduced gravity additional work is being done by muscle groups other than the calf.

  19. Somigliana-Pizzetti gravity: the international gravity formula accurate to the sub-nanoGal level

    NASA Astrophysics Data System (ADS)

    Ardalan, A. A.; Grafarend, E. W.

    2001-09-01

    The Somigliana-Pizzetti gravity field (the International gravity formula), namely the gravity field of the level ellipsoid (the International Reference Ellipsoid), is derived to the sub-nanoGal accuracy level in order to fulfil the demands of modern gravimetry (absolute gravimeters, super conducting gravimeters, atomic gravimeters). Equations (53), (54) and (59) summarise Somigliana-Pizzetti gravity o({,u) as a function of Jacobi spheroidal latitude { and height u to the order ™(10m10 Gal), and o(B,H) as a function of Gauss (surface normal) ellipsoidal latitude B and height H to the order ™(10m10 Gal) as determined by GPS (`global problem solver'). Within the test area of the state of Baden-Württemberg, Somigliana-Pizzetti gravity disturbances of an average of 25.452 mGal were produced. Computer programs for an operational application of the new international gravity formula with (L,B,H) or (u,{,u) coordinate inputs to a sub-nanoGal level of accuracy are available on the Internet.

  20. Lessons Learned from Performance Testing of Humans in Spacesuits in Simulated Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Norcross, Jason R.; Chappell, Steven P.; Gernhardt, Michael L.

    2010-01-01

    Introduction: The overarching objective of the Integrated Suit Test (IST) series is to evaluate suited human performance using reduced-gravity analogs and learn what aspects of an EVA suit system affect human performance. For this objective to be successfully achieved, the testing methodology should be valid and reproducible, and the partial-gravity simulations must be as accurate and realistic as possible. Objectives: To highlight some of the key lessons learned about partial-gravity analogs and testing methodology, and to suggest considerations for optimizing the effectiveness and quality of results of future tests. Methods: Performance testing of suited and unsuited subjects was undertaken in different reduced-gravity analogs including the Space Vehicle Mockup Facility s Partial Gravity Simulator (POGO), parabolic flight on the C-9 aircraft, underwater environments including NASA s Extreme Environment Mission Operations (NEEMO) and the Neutral Buoyancy Lab (NBL), and in field analogs including Desert Research and Technology Studies (RATS), the Haughton Mars Project (HMP), and the JSC Rock Pile. Subjects performed level walking, incline/decline walking, running, shoveling, picking up and transferring rocks, kneeling/standing, and task boards. Lessons Learned Analogs: No single analog will properly simulate all aspects of the true partial-gravity environment. The POGO is an ideal environment from the standpoint that there are no time limits or significant volumetric constraints, but it does have several limitations. It allows only 2 translational degrees of freedom (DOF) and applies true partial-gravity offload only through the subject s center of gravity (CG). Also, when a subject is doing non-stationary tasks, significant overhead inertia from the lift column seems to have a negative impact on performance. Parabolic flight allows full translational and rotational DOF and applies offload to all parts of the body, but the simulation lasts less than 30 seconds. When this is coupled with the volumetric constraints of the plane, both task selection and data collection options are significantly limited. The underwater environments also allow all 6 DOF and allow off-loading to be applied throughout the body, but the data collection capabilities are limited to little more than subjective ratings. In addition, water drag negatively affects performance of tasks requiring dynamic motion. Field analogs provide the ability to simulate lunar terrain and more realistic mission-like objectives, but all of them operate at 1-g, so suited human performance testing generally must utilize a reduced-mass or "mockup" suit, depending on study objectives. In general, the ground-based overhead-suspension partial-gravity analogs like POGO allow the most diverse data collection methods possible while still simulating partial gravity. However, as currently designed, the POGO has significant limitations. Design of the Active Response Gravity Offload System (ARGOS) has begun and is focusing on adding full x,y,z translational DOF, improved offload accuracy, increased lift capacity, and active control of the x and y axes to minimize offload system inertia. Additionally, a new gimbal is being designed to reduce mass and inertia and to be able to work with different suits, as the current gimbal only supports suited testing with the Mark III Technology Demonstrator Suit (MKIII).

  1. Ignition and Combustion of Bulk Metals in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Branch, M. C.; Daily, J. W.; Abbud-Madrid, A.

    1996-01-01

    This annual report summarizes the latest results obtained in a NASA-supported project to investigate the effect of gravity on the ignition and combustion of bulk metals. The experimental arrangement used for this purpose consists of a 1000-W xenon lamp that irradiates the top surface of cylindrical titanium and magnesium specimens, 4 mm in diameter and 4 mm in height, in a quiescent, pure-oxygen environment at 1 atm. Reduced gravity is obtained from the NASA LeRC DC-9 aircraft flying parabolic trajectories. Values of critical and ignition temperatures are obtained from thermocouple records. Qualitative observations and propagation rates are extracted from high-speed cinematography. Emission spectra of gas-phase reactions are obtained with an imaging spectrograph/diode array system. It was found that high applied heating rates and large internal conduction losses generate critical and ignition temperatures that are several hundred degrees above the values obtained from isothermal experiments. Because of high conduction and radiation heat losses, no appreciable effect on ignition temperatures with reduced convection in low gravity is detected. Lower propagation rates of the molten interface on titanium and of ignition waves on magnesium are obtained at reduced gravity. These rates are compared to theoretical results from heat conduction analyses with a diffusion/convection controlled reaction. The close agreement found between experimental and theoretical values indicates the importance of the influence of natural convection-enhanced oxygen transport on combustion rates. Lower oxygen flux and lack of oxide product removal in the absence of convective currents appear to be responsible for longer burning times of magnesium diffusion flames at reduced gravity. The accumulation of condensed oxide particles in the flame front at low gravity produces a previously unreported unsteady explosion phenomenon in bulk magnesium flames. This spherically symmetric explosion phenomenon seems to be driven by increased radiation heat transfer from the flame front to an evaporating metal core covered by a porous, flexible oxide coating. These important results have revealed the significant role of gravity on the burning of metals, and are now being used as the database for future experiments to be conducted with different metals at various pressures, oxygen concentrations and gravity levels.

  2. Development of Flow Boiling and Condensation Experiment on the International Space Station- Normal and Low Gravity Flow Boiling Experiment Development and Test Results

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Hall, Nancy R.; Hasan, Mohammad M.; Wagner, James D.; May, Rochelle L.; Mackey, Jeffrey R.; Kolacz, John S.; Butcher, Robert L.; Frankenfield, Bruce J.; Mudawar, Issam; hide

    2013-01-01

    Flow boiling and condensation have been identified as two key mechanisms for heat transport that are vital for achieving weight and volume reduction as well as performance enhancement in future space systems. Since inertia driven flows are demanding on power usage, lower flows are desirable. However, in microgravity, lower flows are dominated by forces other than inertia (like the capillary force). It is of paramount interest to investigate limits of low flows beyond which the flow is inertial enough to be gravity independent. One of the objectives of the Flow Boiling and Condensation Flight Experiment sets to investigate these limits for flow boiling and condensation. A two-phase flow loop consisting of a Flow Boiling Module and two Condensation Modules has been developed to experimentally study flow boiling condensation heat transfer in the reduced gravity environment provided by the reduced gravity platform. This effort supports the development of a flow boiling and condensation facility for the International Space Station (ISS). The closed loop test facility is designed to deliver the test fluid, FC-72 to the inlet of any one of the test modules at specified thermodynamic and flow conditions. The zero-g-aircraft tests will provide subcooled and saturated flow boiling critical heat flux and flow condensation heat transfer data over wide range of flow velocities. Additionally, these tests will verify the performance of all gravity sensitive components, such as evaporator, condenser and accumulator associated with the two-phase flow loop. We will present in this paper the breadboard development and testing results which consist of detailed performance evaluation of the heater and condenser combination in reduced and normal gravity. We will also present the design of the reduced gravity aircraft rack and the results of the ground flow boiling heat transfer testing performed with the Flow Boiling Module that is designed to investigate flow boiling heat transfer and Critical Heat Flux (CHF) phenomena.

  3. A Combined Gravity Compensation Method for INS Using the Simplified Gravity Model and Gravity Database.

    PubMed

    Zhou, Xiao; Yang, Gongliu; Wang, Jing; Wen, Zeyang

    2018-05-14

    In recent decades, gravity compensation has become an important way to reduce the position error of an inertial navigation system (INS), especially for a high-precision INS, because of the extensive application of high precision inertial sensors (accelerometers and gyros). This paper first deducts the INS's solution error considering gravity disturbance and simulates the results. Meanwhile, this paper proposes a combined gravity compensation method using a simplified gravity model and gravity database. This new combined method consists of two steps all together. Step 1 subtracts the normal gravity using a simplified gravity model. Step 2 first obtains the gravity disturbance on the trajectory of the carrier with the help of ELM training based on the measured gravity data (provided by Institute of Geodesy and Geophysics; Chinese Academy of sciences), and then compensates it into the error equations of the INS, considering the gravity disturbance, to further improve the navigation accuracy. The effectiveness and feasibility of this new gravity compensation method for the INS are verified through vehicle tests in two different regions; one is in flat terrain with mild gravity variation and the other is in complex terrain with fierce gravity variation. During 2 h vehicle tests, the positioning accuracy of two tests can improve by 20% and 38% respectively, after the gravity is compensated by the proposed method.

  4. A Combined Gravity Compensation Method for INS Using the Simplified Gravity Model and Gravity Database

    PubMed Central

    Zhou, Xiao; Yang, Gongliu; Wang, Jing; Wen, Zeyang

    2018-01-01

    In recent decades, gravity compensation has become an important way to reduce the position error of an inertial navigation system (INS), especially for a high-precision INS, because of the extensive application of high precision inertial sensors (accelerometers and gyros). This paper first deducts the INS’s solution error considering gravity disturbance and simulates the results. Meanwhile, this paper proposes a combined gravity compensation method using a simplified gravity model and gravity database. This new combined method consists of two steps all together. Step 1 subtracts the normal gravity using a simplified gravity model. Step 2 first obtains the gravity disturbance on the trajectory of the carrier with the help of ELM training based on the measured gravity data (provided by Institute of Geodesy and Geophysics; Chinese Academy of sciences), and then compensates it into the error equations of the INS, considering the gravity disturbance, to further improve the navigation accuracy. The effectiveness and feasibility of this new gravity compensation method for the INS are verified through vehicle tests in two different regions; one is in flat terrain with mild gravity variation and the other is in complex terrain with fierce gravity variation. During 2 h vehicle tests, the positioning accuracy of two tests can improve by 20% and 38% respectively, after the gravity is compensated by the proposed method. PMID:29757983

  5. Short Term Microgravity Effect on Isometric Hand Grip and Precision Pinch Force with Visual and Propioceptive Feedback

    NASA Astrophysics Data System (ADS)

    Pastacaldi, P.; Bracciaferri, F.; Neri, G.; Porciani, M.; Zolesi, V.

    Experiments executed on the upper limb are assuming increasing significance in the frame of the Human Physiology in space, for at least two reasons: -the upper limb is the principal means of locomotion for the subject living in aspace station -fatigue can have a significant effect the hand, for the ordinary work on board,and in particular for the extra-vehicular activities. The degradation of the performances affecting the muscular-skeletal apparatus can be easily recognized on the upper limb, by exerting specific scientific protocols, to be repeated through the permanence of the subject in weightlessness conditions. Also, the effectiveness of adequate counter-measures aimed to the reduction of calcium and muscular mass need to be verified, by means of specific assessments on the upper limb. Another aspect relevant to the effect of microgravity on the upper limb is associated with the alteration of the motor control programs due to the different gravity factor, affecting not only the bio-mechanics of the subject, but in general all his/her psycho- physical conditions, induced by the totally different environment. Specific protocols on the upper limb can facilitate the studies on learning mechanisms for the motor control. The results of such experiments can be transferred to the Earth, useful for treatment of subjects with local traumas or diseases of the Central Nervous System.In the frame of the mission of the Italian astronaut Roberto Vittori on board the International Space Station (ISS), the Italian Space Agency (ASI) has promoted the program "Marco Polo", with a number of experiments devoted to the study of the effect of microgravity on the human body. The experiment CHIRO ("Crew's Health: Investigation on Reduced Operability) is a part of the program. Its purpose is the determination of the influence of the altered gravity on the control of the grip force exerted by the hand or by a group of fingers and the adaptive behavior of this control through the permanence of the subject in the reduced gravity. The instrumentation has been lifted on board the International Space Station (ISS) on 24 March 2002. The experiment will be exe cuted by the astronaut during his permanence on board the ISS, from the 25t h April 2002.

  6. Gravity Compensation Using EGM2008 for High-Precision Long-Term Inertial Navigation Systems

    PubMed Central

    Wu, Ruonan; Wu, Qiuping; Han, Fengtian; Liu, Tianyi; Hu, Peida; Li, Haixia

    2016-01-01

    The gravity disturbance vector is one of the major error sources in high-precision and long-term inertial navigation applications. Specific to the inertial navigation systems (INSs) with high-order horizontal damping networks, analyses of the error propagation show that the gravity-induced errors exist almost exclusively in the horizontal channels and are mostly caused by deflections of the vertical (DOV). Low-frequency components of the DOV propagate into the latitude and longitude errors at a ratio of 1:1 and time-varying fluctuations in the DOV excite Schuler oscillation. This paper presents two gravity compensation methods using the Earth Gravitational Model 2008 (EGM2008), namely, interpolation from the off-line database and computing gravity vectors directly using the spherical harmonic model. Particular attention is given to the error contribution of the gravity update interval and computing time delay. It is recommended for the marine navigation that a gravity vector should be calculated within 1 s and updated every 100 s at most. To meet this demand, the time duration of calculating the current gravity vector using EGM2008 has been reduced to less than 1 s by optimizing the calculation procedure. A few off-line experiments were conducted using the data of a shipborne INS collected during an actual sea test. With the aid of EGM2008, most of the low-frequency components of the position errors caused by the gravity disturbance vector have been removed and the Schuler oscillation has been attenuated effectively. In the rugged terrain, the horizontal position error could be reduced at best 48.85% of its regional maximum. The experimental results match with the theoretical analysis and indicate that EGM2008 is suitable for gravity compensation of the high-precision and long-term INSs. PMID:27999351

  7. Gravity Compensation Using EGM2008 for High-Precision Long-Term Inertial Navigation Systems.

    PubMed

    Wu, Ruonan; Wu, Qiuping; Han, Fengtian; Liu, Tianyi; Hu, Peida; Li, Haixia

    2016-12-18

    The gravity disturbance vector is one of the major error sources in high-precision and long-term inertial navigation applications. Specific to the inertial navigation systems (INSs) with high-order horizontal damping networks, analyses of the error propagation show that the gravity-induced errors exist almost exclusively in the horizontal channels and are mostly caused by deflections of the vertical (DOV). Low-frequency components of the DOV propagate into the latitude and longitude errors at a ratio of 1:1 and time-varying fluctuations in the DOV excite Schuler oscillation. This paper presents two gravity compensation methods using the Earth Gravitational Model 2008 (EGM2008), namely, interpolation from the off-line database and computing gravity vectors directly using the spherical harmonic model. Particular attention is given to the error contribution of the gravity update interval and computing time delay. It is recommended for the marine navigation that a gravity vector should be calculated within 1 s and updated every 100 s at most. To meet this demand, the time duration of calculating the current gravity vector using EGM2008 has been reduced to less than 1 s by optimizing the calculation procedure. A few off-line experiments were conducted using the data of a shipborne INS collected during an actual sea test. With the aid of EGM2008, most of the low-frequency components of the position errors caused by the gravity disturbance vector have been removed and the Schuler oscillation has been attenuated effectively. In the rugged terrain, the horizontal position error could be reduced at best 48.85% of its regional maximum. The experimental results match with the theoretical analysis and indicate that EGM2008 is suitable for gravity compensation of the high-precision and long-term INSs.

  8. An Experiment Investigation of Fully-Modulated, Turbulent Diffusion Flames in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Hermanson, J. C.; Johari, H.; Usowicz, J. E.; Stocker, D. P.; Nagashima, T.; Obata, S.

    1999-01-01

    Pulsed combustion appears to have the potential to provide for rapid fuel/air mixing, compact and economical combustors, and reduced exhaust emissions. The ultimate objective of this program is to increase the fundamental understanding of the fuel/air mixing and combustion behavior of pulsed, turbulent diffusion flames by conducting experiments in microgravity. In this research the fuel jet is fully-modulated (i.e., completely shut off between pulses) by an externally controlled valve system. This can give rise to drastic modification of the combustion and flow characteristics of flames, leading to enhanced fuel/air mixing mechanisms not operative for the case of acoustically excited or partially-modulated jets. In addition, the fully-modulated injection approach avoids the strong acoustic forcing present in pulsed combustion devices, significantly simplifying the mixing and combustion processes. Relatively little is known of the behavior of turbulent flames in reduced-gravity conditions, even in the absence of pulsing. The goal of this Flight-Definition experiment (PUFF, for PUlsed-Fully Flames) is to establish the behavior of fully-modulated, turbulent diffusion flames under microgravity conditions. Fundamental issues to be addressed in this experiment include the mechanisms responsible for the flame length decrease for fully-modulated, turbulent diffusion flames compared with steady flames, the impact of buoyancy on the mixing and combustion characteristics of these flames, and the characteristics of turbulent flame puffs under fully momentum-dominated conditions.

  9. A Study of Blood Flow and of Aggregation of Blood Cells Under Conditions of Zero Gravity: Its Relevance to the Occlusive Diseases and Cancer

    NASA Technical Reports Server (NTRS)

    Dintenfass, L.

    1985-01-01

    The objectives of this program are: (1) to determine whether the size of red cell aggregates, kinetics and morphology of these aggregates are influenced by near-zero gravity; (2) whether viscosity, especially at low shear rate, is afflicted by near-zero gravity (the latter preventing sedimentation of red cells); (3) whether the actual shape of red cells changes; and (4) whether blood samples obtained from different donors (normal and patients suffering from different disorders) react in the same manner to near-zero gravity.

  10. Extravehicular Activity (EVA) 101: Constellation EVA Systems

    NASA Technical Reports Server (NTRS)

    Jordan, Nicole C.

    2007-01-01

    A viewgraph presentation on Extravehicular Activity (EVA) Systems is shown. The topics include: 1) Why do we need space suits? 2) Protection From the Environment; 3) Primary Life Support System (PLSS); 4) Thermal Control; 5) Communications; 6) Helmet and Extravehicular Visor Assy; 7) Hard Upper Torso (HUT) and Arm Assy; 8) Display and Controls Module (DCM); 9) Gloves; 10) Lower Torso Assembly (LTA); 11) What Size Do You Need?; 12) Boot and Sizing Insert; 13) Boot Heel Clip and Foot Restraint; 14) Advanced and Crew Escape Suit; 15) Nominal & Off-Nominal Landing; 16) Gemini Program (mid-1960s); 17) Apollo EVA on Service Module; 18) A Bold Vision for Space Exploration, Authorized by Congress; 19) EVA System Missions; 20) Configurations; 21) Reduced Gravity Program; and 22) Other Opportunities.

  11. Constellation Space Suit System Development Status

    NASA Technical Reports Server (NTRS)

    Ross, Amy; Aitchison, Lindsay; Daniel, Brian

    2007-01-01

    The Constellation Program has initiated the first new flight suit development project since the Extravehicular Mobility Unit (EMU) was developed for the Space Shuttle Program in the 1970s. The Constellation suit system represents a significant challenge to designers in that the system is required to address all space suit functions needed through all missions and mission phases. This is in marked contrast to the EMU, which was designed specifically for micro-gravity space walks. The Constellation suit system must serve in all of the following scenarios: launch, entry and abort crew survival; micro-gravity extravehicular activity (EVA); and lunar (1/6th-gravity) surface EVA. This paper discusses technical efforts performed from May 2006 through February 2007 for the Constellation space suit system pressure garment.

  12. Procedures and results related to the direct determination of gravity anomalies from satellite and terrestrial gravity data

    NASA Technical Reports Server (NTRS)

    Rapp, R. H.

    1974-01-01

    The equations needed for the incorporation of gravity anomalies as unknown parameters in an orbit determination program are described. These equations were implemented in the Geodyn computer program which was used to process optical satellite observations. The arc dependent parameter unknowns, 184 unknown 15 deg and coordinates of 7 tracking stations were considered. Up to 39 arcs (5 to 7 days) involving 10 different satellites, were processed. An anomaly solution from the satellite data and a combination solution with 15 deg terrestrial anomalies were made. The limited data samples indicate that the method works. The 15 deg anomalies from various solutions and the potential coefficients implied by the different solutions are reported.

  13. The vibro-acoustic mapping of low gravity trajectories on a Learjet aircraft

    NASA Technical Reports Server (NTRS)

    Grodsinsky, C. M.; Sutliff, T. J.

    1990-01-01

    Terrestrial low gravity research techniques have been employed to gain a more thorough understanding of basic science and technology concepts. One technique frequently used involves flying parabolic trajectories aboard the NASA Lewis Research Center Learjet aircraft. A measurement program was developed to support an isolation system conceptual design. This program primarily was intended to measure time correlated high frequency accelerations (up to 100 Hz) present at various locations throughout the Learjet during a series of trajectories and flights. As suspected, the measurements obtained revealed that the environment aboard such an aircraft can not simply be described in terms of the static level low gravity g vector obtained, but that it also must account for both rigid body and high frequency vibro-acoustic dynamics.

  14. Computer program for determining mass properties of a rigid structure

    NASA Technical Reports Server (NTRS)

    Hull, R. A.; Gilbert, J. L.; Klich, P. J.

    1978-01-01

    A computer program was developed for the rapid computation of the mass properties of complex structural systems. The program uses rigid body analyses and permits differences in structural material throughout the total system. It is based on the premise that complex systems can be adequately described by a combination of basic elemental shapes. Simple geometric data describing size and location of each element and the respective material density or weight of each element were the only required input data. From this minimum input, the program yields system weight, center of gravity, moments of inertia and products of inertia with respect to mutually perpendicular axes through the system center of gravity. The program also yields mass properties of the individual shapes relative to component axes.

  15. High-resolution local gravity model of the south pole of the Moon from GRAIL extended mission data.

    PubMed

    Goossens, Sander; Sabaka, Terence J; Nicholas, Joseph B; Lemoine, Frank G; Rowlands, David D; Mazarico, Erwan; Neumann, Gregory A; Smith, David E; Zuber, Maria T

    2014-05-28

    We estimated a high-resolution local gravity field model over the south pole of the Moon using data from the Gravity Recovery and Interior Laboratory's extended mission. Our solution consists of adjustments with respect to a global model expressed in spherical harmonics. The adjustments are expressed as gridded gravity anomalies with a resolution of 1/6° by 1/6° (equivalent to that of a degree and order 1080 model in spherical harmonics), covering a cap over the south pole with a radius of 40°. The gravity anomalies have been estimated from a short-arc analysis using only Ka-band range-rate (KBRR) data over the area of interest. We apply a neighbor-smoothing constraint to our solution. Our local model removes striping present in the global model; it reduces the misfit to the KBRR data and improves correlations with topography to higher degrees than current global models. We present a high-resolution gravity model of the south pole of the Moon Improved correlations with topography to higher degrees than global models Improved fits to the data and reduced striping that is present in global models.

  16. High-resolution local gravity model of the south pole of the Moon from GRAIL extended mission data

    PubMed Central

    Goossens, Sander; Sabaka, Terence J; Nicholas, Joseph B; Lemoine, Frank G; Rowlands, David D; Mazarico, Erwan; Neumann, Gregory A; Smith, David E; Zuber, Maria T

    2014-01-01

    We estimated a high-resolution local gravity field model over the south pole of the Moon using data from the Gravity Recovery and Interior Laboratory's extended mission. Our solution consists of adjustments with respect to a global model expressed in spherical harmonics. The adjustments are expressed as gridded gravity anomalies with a resolution of 1/6° by 1/6° (equivalent to that of a degree and order 1080 model in spherical harmonics), covering a cap over the south pole with a radius of 40°. The gravity anomalies have been estimated from a short-arc analysis using only Ka-band range-rate (KBRR) data over the area of interest. We apply a neighbor-smoothing constraint to our solution. Our local model removes striping present in the global model; it reduces the misfit to the KBRR data and improves correlations with topography to higher degrees than current global models. Key Points We present a high-resolution gravity model of the south pole of the Moon Improved correlations with topography to higher degrees than global models Improved fits to the data and reduced striping that is present in global models PMID:26074637

  17. Simulation gravity modeling to spacecraft-tracking data - Analysis and application

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Sjogren, W. L.; Abbott, E. A.; Zisk, S. H.

    1978-01-01

    It is proposed that line-of-sight gravity measurements derived from spacecraft-tracking data can be used for quantitative subsurface density modeling by suitable orbit simulation procedures. Such an approach avoids complex dynamic reductions and is analogous to the modeling of conventional surface gravity data. This procedure utilizes the vector calculations of a given gravity model in a simplified trajectory integration program that simulates the line-of-sight gravity. Solutions from an orbit simulation inversion and a dynamic inversion on Doppler observables compare well (within 1% in mass and size), and the error sources in the simulation approximation are shown to be quite small. An application of this technique is made to lunar crater gravity anomalies by simulating the complete Bouguer correction to several large young lunar craters. It is shown that the craters all have negative Bouguer anomalies.

  18. Cryogenic liquid resettlement activated by impulsive thrust in space-based propulsion system

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Shyu, K. L.

    1991-01-01

    The purpose of present study is to investigate most efficient technique for propellant resettling through the minimization of propellant usage and weight penalties. Comparison between the constant reverse gravity acceleration and impulsive reverse gravity acceleration to be used for the activation of propellant resettlement, it shows that impulsive reverse gravity thrust is superior to constant reverse gravity thrust for liquid reorientation in a reduced gravity environment. Comparison among impulsive reverse gravity thrust with 0.1, 1.0 and 10 Hz frequencies for liquid filled level in the range between 30 to 80 percent, it shows that the selection of 1.0 Hz frequency impulsive thrust over the other frequency ranges of impulsive thrust is most proper based on the present study.

  19. Cryogenic liquid resettlement activated by impulsive thrust in space-based propulsion system

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Shyu, K. L.

    1991-01-01

    The purpose of present study is to investigate the most efficient technique for propellant resettling through the minimization of propellant usage and weight penalties. Comparison between the constant reverse gravity acceleration and impulsive reverse gravity acceleration to be used for the activation of propellant resettlement shows that impulsive reverse gravity thrust is superior to constant reverse gravity thrust for liquid reorientation in a reduced gravity environment. Comparison among impulsive reverse gravity thrust with 0.1, 1.0, and 10 Hz frequencies for liquid-filled level in the range between 30 to 80 percent shows that the selection of a medium frequency of 1.0 Hz impulsive thrust over the other frequency ranges of impulsive thrust is the most proper.

  20. A computational study of radiation and gravity effect on temperature and soot formation in a methane air co-flow diffusion flame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhowal, Arup Jyoti, E-mail: arupjyoti.bhowal@heritageit.edu; Mandal, Bijan Kumar, E-mail: bkm375@yahoo.co.in

    An effort has been made for a quantitative assessment of the soot formed under steady state in a methane air co flow diffusion flame by a numerical simulation at normal gravity and at lower gravity levels of 0.5 G, 0.1 G and 0.0001 G (microgravity). The peak temperature at microgravity is reduced by about 50 K than that at normal gravity level. There is an augmentation of soot formation at lower gravity levels. Peak value at microgravity multiplies by a factor of ∼7 of that at normal gravity. However, if radiation is not considered, soot formation is found to bemore » much more.« less

  1. Fluid Interfaces of Triangular Containers in Reduced Gravity Environments

    NASA Technical Reports Server (NTRS)

    Guttromson, Jayleen; Manning, Robert; Collicott, Steven H.

    2002-01-01

    Capillary dominated fluid dynamics will be examined in a reduced-gravity environment onboard the KC-135; in particular, the behavior of the lower portion of the meniscus in triangular tank geometries. Seven clear acrylic tanks were constructed to view seven angles of the four geometries. Silicon oil with two different viscosities, 2cs and 5cs silicon oil, were used on different days of the flight. Six tanks and one control tank are filled with a certain viscosity fluid for each flight day. During each parabola, three tanks are tested at time. The experimental tanks are exchanged between parabola sets on the KC-135. The 60deg -60deg -60deg control tank is viewed throughout the flight. To gather data, two digital video cameras and one digital still camera are placed perpendicular the viewing surface. To provide a greater contrast in the meniscus, an EL backlighting sheet was used to backlight the tanks. These images and video are then digitized, passed through NASA's mini-tracker software, and compared to a theory published my M. M. Weislogel, "Fluid Interface Phenomena in a Low-Gravity Environment: Recent Results from Drop Tower Experimentation." By focusing on a lower portion of the meniscus and using longer periods of reduced gravity, this experiment may confirm that a stationary point exists on the fluid surface. This information will enable better designing of propellant management devices, especially satellite propellant refilling and gas venting. Also, biological and material processing systems in reduced gravity environments will benefit from this data.

  2. Bone loss and human adaptation to lunar gravity

    NASA Technical Reports Server (NTRS)

    Keller, T. S.; Strauss, A. M.

    1992-01-01

    Long-duration space missions and establishment of permanently manned bases on the Moon and Mars are currently being planned. The weightless environment of space and the low-gravity environments of the Moon and Mars pose an unknown challenge to human habitability and survivability. Of particular concern in the medical research community today is the effect of less than Earth gravity on the human skeleton, since the limits, if any, of human endurance in low-gravity environments are unknown. This paper provides theoretical predictions on bone loss and skeletal adaptation to lunar and other nonterrestrial-gravity environments based upon the experimentally derived relationship, density approximately (mass x gravity)(exp 1/8). The predictions are compared to skeletal changes reported during bed rest, immobilization, certrifugation, and spaceflight. Countermeasures to reduce bone losses in fractional gravity are also discussed.

  3. The Two-Phase Flow Separator Experiment Breadboard Model: Reduced Gravity Aircraft Results

    NASA Technical Reports Server (NTRS)

    Rame, E; Sharp, L. M.; Chahine, G.; Kamotani, Y.; Gotti, D.; Owens, J.; Gilkey, K.; Pham, N.

    2015-01-01

    Life support systems in space depend on the ability to effectively separate gas from liquid. Passive cyclonic phase separators use the centripetal acceleration of a rotating gas-liquid mixture to carry out phase separation. The gas migrates to the center, while gas-free liquid may be withdrawn from one of the end plates. We have designed, constructed and tested a breadboard that accommodates the test sections of two independent principal investigators and satisfies their respective requirements, including flow rates, pressure and video diagnostics. The breadboard was flown in the NASA low-gravity airplane in order to test the system performance and design under reduced gravity conditions.

  4. Association between gravitational force and tissue metabolism in periparturient rats

    NASA Technical Reports Server (NTRS)

    Zakrzewska, E. I.; Maple, R.; Lintault, L.; Wade, C.; Baer, L.; Ronca, A.; Plaut, K.

    2004-01-01

    Recently, interest in mammalian reproduction and offspring survival in altered gravity has been growing. Because successful lactation is critical for mammalian neonate survival, we have been studying the effect of gravity metabolism. We have shown an exponential relationship between glucose metabolic rate in mammary tissue of periparturient rats and an increase in gravity load. In this study we showed that changes in mammary metabolic rate due to gravity force were accompanied by a decrease in glucose metabolism in adipose tissue and by a reduced size of adipocytes. We assume that these changes are likely due to changes in prolactin or leptin levels related to altered gravity load.

  5. Determination of the natural convection coefficient in low-gravity

    NASA Technical Reports Server (NTRS)

    Goldmeer, J.; Motevalli, V.; Haghdoust, M.; Jumper, G.

    1992-01-01

    Fire safety is an important issue in the current space program; ignition in low-g needs to be studied. The reduction in the gravitational acceleration causes changes in the ignition process. This paper examines the effect of gravity on natural convection, which is one of the important parameters in the ignition process. The NASA-Lewis 2.2 Second Drop Tower provided the low-gravity environment for the experiments. A series of experiments was conducted to measure the temperature of a small copper plate which was heated by a high intensity lamp. These experiments verified that in low-gravity the plate temperature increased faster than in the corresponding 1-g cases, and that the natural convection coefficient rapidly decreased in the low-gravity environment.

  6. Superconducting tensor gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1981-01-01

    The employment of superconductivity and other material properties at cryogenic temperatures to fabricate sensitive, low-drift, gravity gradiometer is described. The device yields a reduction of noise of four orders of magnitude over room temperature gradiometers, and direct summation and subtraction of signals from accelerometers in varying orientations are possible with superconducting circuitry. Additional circuits permit determination of the linear and angular acceleration vectors independent of the measurement of the gravity gradient tensor. A dewar flask capable of maintaining helium in a liquid state for a year's duration is under development by NASA, and a superconducting tensor gravity gradiometer for the NASA Geodynamics Program is intended for a LEO polar trajectory to measure the harmonic expansion coefficients of the earth's gravity field up to order 300.

  7. Human Research Program Human Health Countermeasures Element: Evidence Report - Artificial Gravity

    NASA Technical Reports Server (NTRS)

    Clement, Gilles

    2015-01-01

    The most serious risks of long-duration flight involve radiation, behavioral stresses, and physiological deconditioning. Artificial gravity (AG), by substituting for the missing gravitational cues and loading in space, has the potential to mitigate the last of these risks by preventing the adaptive responses from occurring. The rotation of a Mars-bound spacecraft or an embarked human centrifuge offers significant promise as an effective, efficient multi-system countermeasure against the physiological deconditioning associated with prolonged weightlessness. Virtually all of the identified risks associated with bone loss, muscle weakening, cardiovascular deconditioning, and sensorimotor disturbances might be alleviated by the appropriate application of AG. However, experience with AG in space has been limited and a human-rated centrifuge is currently not available on board the ISS. A complete R&D program aimed at determining the requirements for gravity level, gravity gradient, rotation rate, frequency, and duration of AG exposure is warranted before making a decision for implementing AG in a human spacecraft.

  8. Differential results integrated with continuous and discrete gravity measurements between nearby stations

    NASA Astrophysics Data System (ADS)

    Xu, Weimin; Chen, Shi; Lu, Hongyan

    2016-04-01

    Integrated gravity is an efficient way in studying spatial and temporal characteristics of the dynamics and tectonics. Differential measurements based on the continuous and discrete gravity observations shows highly competitive in terms of both efficiency and precision with single result. The differential continuous gravity variation between the nearby stations, which is based on the observation of Scintrex g-Phone relative gravimeters in every single station. It is combined with the repeated mobile relative measurements or absolute results to study the regional integrated gravity changes. Firstly we preprocess the continuous records by Tsoft software, and calculate the theoretical earth tides and ocean tides by "MT80TW" program through high precision tidal parameters from "WPARICET". The atmospheric loading effects and complex drift are strictly considered in the procedure. Through above steps we get the continuous gravity in every station and we can calculate the continuous gravity variation between nearby stations, which is called the differential continuous gravity changes. Then the differential results between related stations is calculated based on the repeated gravity measurements, which are carried out once or twice every year surrounding the gravity stations. Hence we get the discrete gravity results between the nearby stations. Finally, the continuous and discrete gravity results are combined in the same related stations, including the absolute gravity results if necessary, to get the regional integrated gravity changes. This differential gravity results is more accurate and effective in dynamical monitoring, regional hydrologic effects studying, tectonic activity and other geodynamical researches. The time-frequency characteristics of continuous gravity results are discussed to insure the accuracy and efficiency in the procedure.

  9. Bed topography of Jakobshavn Isbræ, Greenland from high-resolution gravity data

    NASA Astrophysics Data System (ADS)

    An, L.; Rignot, E. J.; Morlighem, M.; Paden, J. D.; Holland, D. M.

    2015-12-01

    Jakobshavn Isbræ (JKS) is one of the largest marine terminating outlet glaciers in Greenland, feeding a fjord about 800 m deep in the west coast. JKS sped up more than twofold since 2002 and contributed nearly 1 mm of global sea level rise during the period from 2000 to 2011. Holland et al. (2008) posit that these changes coincided with a change in ocean conditions beneath the former ice tongue, yet little is known about the depth of the glacier at its grounding line and upstream of the grounding line and the sea floor depth of the fjord is not well known either. Here, we present a new approach to infer the glacier bed topography, ice thickness and sea floor bathymetry near the grounding line of JKS using high-resolution airborne gravity data from AirGRAV. AirGRAV data were collected in August 2012 from a helicopter platform. The data combined with radio echo sounding data, discrete point soundings in the fjord and the mass conservation approach on land ice. AirGRAV acquired a 500m spacing grid of free-air gravity data at 50 knots with sub-milligal accuracy, i.e. much higher than NASA Operation IceBridge (OIB)'s 5.2km resolution at 290 knots. We use a 3D inversion of the gravity data combining our observations and a forward modeling of the surrounding gravity field, and constrained at the boundary by radar echo soundings and point bathymetry. We reconstruct seamless bed topography at the grounding line that matches interior data and the sea floor bathymetry. The results reveal the true depth at the elbow of the terminal valley and the bed reversal in the proximity of the current grounding line. The analysis provides guidelines for future gravity survey of narrow fjords in terms of spatial resolution and gravity precision. The results also demonstrate the practicality of using high resolution gravity survey to resolve bed topography near glacier snouts, in places where radar sounding has been significantly challenged in the past. The inversion results are critical to re-interpret the recent evolution of JKS and reduce uncertainties in projecting its future contribution to sea level. This work was conducted at UCI and at Caltech's Jet Propulsion Laboratory under a contract with the Gordon and Betty More Foundation and with NASA's Cryospheric Science Program.

  10. Astronaut Owen Garriott - Test Subject - Human Vestibular Function Experiment

    NASA Image and Video Library

    1973-08-09

    S73-34171 (9 Aug. 1973) --- Scientist-astronaut Owen K. Garriott, Skylab 3 science pilot, serves as test subject for the Skylab ?Human Vestibular Function? M131 Experiment, as seen in this photographic reproduction taken from a television transmission made by a color TV camera aboard the Skylab space station in Earth orbit. The objectives of the Skylab M131 experiment are to obtain data pertinent to establishing the validity of measurements of specific behavioral/physiological responses influenced by vestibular activity under one-g and zero-g conditions; to determine man?s adaptability to unusual vestibular conditions and predict habitability of future spacecraft conditions involving reduced gravity and Coriollis forces; and to measure the accuracy and variability in man?s judgment of spatial coordinates based on atypical gravity receptor cues and inadequate visual cures. Dr. Garriott is seated in the experiment?s litter chair which can rotate the test subject at predetermined rotational velocity or programmed acceleration/decelerational profile. Photo credit: NASA

  11. On a Continuum Limit for Loop Quantum Cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corichi, Alejandro; Center for Fundamental Theory, Institute for Gravitation and the Cosmos, Pennsylvania State University, University Park PA 16802; Vukasinac, Tatjana

    2008-03-06

    The use of non-regular representations of the Heisenberg-Weyl commutation relations has proved to be useful for studying conceptual and technical issues in quantum gravity. Of particular relevance is the study of Loop Quantum Cosmology (LQC), symmetry reduced theory that is related to Loop Quantum Gravity, and that is based on a non-regular, polymeric representation. Recently, a soluble model was used by Ashtekar, Corichi and Singh to study the relation between Loop Quantum Cosmology and the standard Wheeler-DeWitt theory and, in particular, the passage to the limit in which the auxiliary parameter (interpreted as ''quantum geometry discreetness'') is sent to zeromore » in hope to get rid of this 'regulator' that dictates the LQC dynamics at each 'scale'. In this note we outline the first steps toward reformulating this question within the program developed by the authors for studying the continuum limit of polymeric theories, which was successfully applied to simple systems such as a Simple Harmonic Oscillator.« less

  12. Medical Issues for a Human Mission to Mars and Martian Surface Expeditions

    NASA Astrophysics Data System (ADS)

    Jones, J. A.; Barratt, M.; Effenhauser, R.; Cockell, C. S.; Lee, P.

    The medical issues for an exploratory class mission to Mars are myriad and challenging. They include hazards from the space environment, such as space vacuum and radiation; hazards on the planetary surface such as micrometeoroids and Martian dust, and constitutional medical hazards, like appendicitis and tooth abscess. They include hazards in the transit vehicle like foreign bodies and toxic atmospheres, and hazards in the habitat like decompression and combustion events. They also include human physiological adaptation to variable conditions of reduced gravity and prolonged isolation and confinement. The health maintenance program for a Mars mission will employ strategies of disease prevention, early detection, and contingency management, to mitigate the risks of spaceflight and exploration. Countermeasures for altered gravity conditions will allow crewmembers to maintain high levels of performance and nominal physiologic functioning. Despite all of these issues, given sufficient redundancy in on-board life support systems, there are no medical show-stoppers for the first human exploratory class missions.

  13. Growth of mercuric iodide (HgI2) for nuclear radiation detectors

    NASA Technical Reports Server (NTRS)

    Vandenberg, L.; Schnepple, W. F.

    1988-01-01

    Mercuric iodide is a material used for the fabrication of the sensing element in solid state X-ray and gamma ray detecting instruments. The operation of the devices is determined to a large degree by the density of structural defects in the single crystalline material used in the sensing element. Since there were strong indications that the quality of the material was degraded by the effects of gravity during the growth process, a research and engineering program was initiated to grow one or more crystals of mercuric iodide in the reduced gravity environment of space. A special furnace assembly was designed which could be accommodated in a Spacelab rack, and at the same time made it possible to use the same growth procedures and controls used when growing a crystal on the ground. The space crystal, after the flight, was subjected to the same evaluation methods used for earth-grown crystals, so that comparisons could be made.

  14. Analysis of target wavefront error for secondary mirror of a spaceborne telescope

    NASA Astrophysics Data System (ADS)

    Chang, Shenq-Tsong; Lin, Wei-Cheng; Kuo, Ching-Hsiang; Chan, Chia-Yen; Lin, Yu-Chuan; Huang, Ting-Ming

    2014-09-01

    During the fabrication of an aspherical mirror, the inspection of the residual wavefront error is critical. In the program of a spaceborne telescope development, primary mirror is made of ZERODUR with clear aperture of 450 mm. The mass is 10 kg after lightweighting. Deformation of mirror due to gravity is expected; hence uniform supporting measured by load cells has been applied to reduce the gravity effect. Inspection has been taken to determine the residual wavefront error at the configuration of mirror face upwards. Correction polishing has been performed according to the measurement. However, after comparing with the data measured by bench test while the primary mirror is at a configuration of mirror face horizontal, deviations have been found for the two measurements. Optical system that is not able to meet the requirement is predicted according to the measured wavefront error by bench test. A target wavefront error of secondary mirror is therefore analyzed to correct that of primary mirror. Optical performance accordingly is presented.

  15. Photonic Doppler velocimetry probe designed with stereo imaging

    NASA Astrophysics Data System (ADS)

    Malone, Robert M.; Cata, Brian M.; Daykin, Edward P.; Esquibel, David L.; Frogget, Brent C.; Holtkamp, David B.; Kaufman, Morris I.; McGillivray, Kevin D.; Palagi, Martin J.; Pazuchanics, Peter; Romero, Vincent T.; Sorenson, Danny S.

    2014-09-01

    During the fabrication of an aspherical mirror, the inspection of the residual wavefront error is critical. In the program of a spaceborne telescope development, primary mirror is made of ZERODUR with clear aperture of 450 mm. The mass is 10 kg after lightweighting. Deformation of mirror due to gravity is expected; hence uniform supporting measured by load cells has been applied to reduce the gravity effect. Inspection has been taken to determine the residual wavefront error at the configuration of mirror face upwards. Correction polishing has been performed according to the measurement. However, after comparing with the data measured by bench test while the primary mirror is at a configuration of mirror face horizontal, deviations have been found for the two measurements. Optical system that is not able to meet the requirement is predicted according to the measured wavefront error by bench test. A target wavefront error of secondary mirror is therefore analyzed to correct that of primary mirror. Optical performance accordingly is presented.

  16. Observation and Modeling of Tsunami-Generated Gravity Waves in the Earth’s Upper Atmosphere

    DTIC Science & Technology

    2015-10-08

    Observation and modeling of tsunami -generated gravity waves in the earth’s upper atmosphere 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...ABSTRACT Build a compatible set of models which 1) calculate the spectrum of atmospheric GWs excited by a tsunami (using ocean model data as input...for public release; distribution is unlimited. Observation and modeling of tsunami -generated gravity waves in the earth’s upper atmosphere Sharon

  17. Orbiting Frog Otolith experiment (OFO-A): Data reduction and control experimentation

    NASA Technical Reports Server (NTRS)

    Gualtierotti, T.; Bracchi, F.; Rocca, E.

    1972-01-01

    The OFO-A mission was prepared as a part of a special program of vestibular physiology with the purpose of studying in which way the lack of the gravity pull will affect the functioning of that part of the labyrinth which controls balance. The gravitational components corresponded to the different head positions, namely, the gravity sensitive or positioning receptors. It is evident that in weightlessness the gravity sensitive receptors are deprived of their primary input.

  18. FAST TRACK COMMUNICATION: Born-Infeld extension of new massive gravity

    NASA Astrophysics Data System (ADS)

    Güllü, İbrahim; Çaǧri Şişman, Tahsin; Tekin, Bayram

    2010-08-01

    We present a three-dimensional gravitational Born-Infeld theory which reduces to the recently found new massive gravity (NMG) at the quadratic level in the small curvature expansion and at the cubic order reproduces the deformation of NMG obtained from AdS/CFT. Our action provides a remarkable extension of NMG to all orders in the curvature and might define a consistent quantum gravity.

  19. Exact RG flow equations and quantum gravity

    NASA Astrophysics Data System (ADS)

    de Alwis, S. P.

    2018-03-01

    We discuss the different forms of the functional RG equation and their relation to each other. In particular we suggest a generalized background field version that is close in spirit to the Polchinski equation as an alternative to the Wetterich equation to study Weinberg's asymptotic safety program for defining quantum gravity, and argue that the former is better suited for this purpose. Using the heat kernel expansion and proper time regularization we find evidence in support of this program in agreement with previous work.

  20. Magnetic and gravity anomalies in the Americas

    NASA Technical Reports Server (NTRS)

    Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator)

    1981-01-01

    The cleaning and magnetic tape storage of spherical Earth processing programs are reported. These programs include: NVERTSM which inverts total or vector magnetic anomaly data on a distribution of point dipoles in spherical coordinates; SMFLD which utilizes output from NVERTSM to compute total or vector magnetic anomaly fields for a distribution of point dipoles in spherical coordinates; NVERTG; and GFLD. Abstracts are presented for papers dealing with the mapping and modeling of magnetic and gravity anomalies, and with the verification of crustal components in satellite data.

  1. Experimental and Numerical Investigation of Reduced Gravity Fluid Slosh Dynamics for the Characterization of Cryogenic Launch and Space Vehicle Propellants

    NASA Technical Reports Server (NTRS)

    Walls, Laurie K.; Kirk, Daniel; deLuis, Kavier; Haberbusch, Mark S.

    2011-01-01

    As space programs increasingly investigate various options for long duration space missions the accurate prediction of propellant behavior over long periods of time in microgravity environment has become increasingly imperative. This has driven the development of a detailed, physics-based understanding of slosh behavior of cryogenic propellants over a range of conditions and environments that are relevant for rocket and space storage applications. Recent advancements in computational fluid dynamics (CFD) models and hardware capabilities have enabled the modeling of complex fluid behavior in microgravity environment. Historically, launch vehicles with moderate duration upper stage coast periods have contained very limited instrumentation to quantify propellant stratification and boil-off in these environments, thus the ability to benchmark these complex computational models is of great consequence. To benchmark enhanced CFD models, recent work focuses on establishing an extensive experimental database of liquid slosh under a wide range of relevant conditions. In addition, a mass gauging system specifically designed to provide high fidelity measurements for both liquid stratification and liquid/ullage position in a micro-gravity environment has been developed. This pUblication will summarize the various experimental programs established to produce this comprehensive database and unique flight measurement techniques.

  2. Extravehicular Activity Testing in Analog Environments: Evaluating the Effects of Center of Gravity and Environment on Human Performance

    NASA Technical Reports Server (NTRS)

    Gernhardt, M.L.; Chappell, S.P.

    2009-01-01

    The EVA Physiology, Systems and Performance (EPSP) Project is performing tests in different analog environments to understand human performance during Extravehicular Activity (EVA) with the aim of developing more safe and efficient systems for lunar exploration missions and the Constellation Program. The project is characterizing human EVA performance in studies using several test beds, including the underwater NASA Extreme Environment Mission Operations (NEEMO) and Neutral Buoyancy Laboratory (NBL) facilities, JSC fs Partial Gravity Simulator (POGO), and the NASA Reduced Gravity Office (RGO) parabolic flight aircraft. Using these varied testing environments, NASA can gain a more complete understanding of human performance issues related to EVA and the limitations of each testing environment. Tests are focused on identifying and understanding the EVA system factors that affect human performance such as center of gravity (CG), inertial mass, ground reaction forces (GRF), suit weight, and suit pressure. The test results will lead to the development of lunar EVA systems operations concepts and design requirements that optimize human performance and exploration capabilities. METHODS: Tests were conducted in the NBL and during NEEMO missions in the NOAA Aquarius Habitat. A reconfigurable back pack with repositionable mass was used to simulate Perfect, Low, Forward, High, Aft and NASA Baseline CG locations. Subjects performed simulated exploration tasks that included ambulation, kneel and recovery, rock pick-up, and shoveling. Testing using POGO, that simulates partial gravity via pneumatic weight offload system and a similar reconfigurable rig, is underway for a subset of the same tasks. Additionally, test trials are being performed on the RGO parabolic flight aircraft. Subject performance was assessed using a modified Cooper-Harper scale to assess operator compensation required to achieve desired performance. All CG locations are based on the assumption of a standardized 6 ft 180 lb subject. RESULTS: The modified Cooper-Harper Scale assesses desired task performance described as performance in a reduced gravity environment as compared to a 1G environment. Modified Cooper-Harper ratings of . 3 indicate no improvements are needed, ratings of 4-6 indicate improvements are desirable, and ratings . 7 indicate improvements are mandatory. DISCUSSION: Differences were noted in suited CH results based on environment at the same CG and suit pressure. Additionally, results suggest that CG location affects unsuited human performance. Subjects preferred locations near their natural CG over those that are high, aft, or a combination of high and aft. Further testing and analyses are planned to compare these unsuited results to suited performance.

  3. Acquisition of Long-Duration, Low-Gravity Slosh Data Utilizing Existing ISS Equipment (SPHERES) for Calibration of CFD Models of Coupled Fluid-Vehicle Behavior

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Roth, Jacob; Marsell, Brandon; Kirk, Daniel; Gutierrez, Hector; Saenz-Otero, Alvar; Dorney, Daniel; Moder, Jeffrey

    2013-01-01

    Accurate prediction of coupled fluid slosh and launch vehicle or spacecraft dynamics (e.g., nutation/precessional movement about various axes, attitude changes, ect.) requires Computational Fluid Dynamics (CFD) models calibrated with low-gravity, long duration slosh data. Recently completed investigations of reduced gravity slosh behavior have demonstrated the limitations of utilizing parabolic flights on specialized aircraft with respect to the specific objectives of the experiments. Although valuable data was collected, the benefits of longer duration low-gravity environments were clearly established. The proposed research provides the first data set from long duration tests in zero gravity that can be directly used to benchmark CFD models, including the interaction between the sloshing fluid and the tank/vehicle dynamics. To explore the coupling of liquid slosh with the motion of an unconstrained tank in microgravity, NASA's Kennedy Space Center, Launch Services Program has teamed up with the Florida Institute of Technology (FIT), Massachusetts Institute of Technology (MIT) and the NASA Game Changing Development Program (GCD) to perform a series of slosh dynamics experiments on the International Space Station using the SPHERES platform. The Synchronized Position Hold Engage Reorient Experimental Satellites (SPHERES) testbed provides a unique, free-floating instrumented platform on ISS that can be utilized in a manner that would solve many of the limitations of the current knowledge related to propellant slosh dynamics on launch vehicle and spacecraft fuel tanks. The six degree of freedom (6-DOF) motion of the SPHERES free-flyer is controlled by an array of cold-flow C02 thrusters, supplied from a built-in liquid C02 tank. These SPHERES can independently navigate and re-orient themselves within the ISS. The intent of this project is to design an externally mounted tank to be driven inside the ISS by a set of two SPHERES devices (Figure 1). The tank geometry simulates a launch vehicle upper stage propellant tank and the maneuvers replicate those of real vehicles. The design includes inertial sensors, data acquisition, image capture and data storage interfaces to the SPHERES VERTIGO computer system on board the flight article assembly. The design also includes mechanical and electronic interfaces to the existing SPHERES hardware, which include self-contained packages that can operate in conjunction with the existing SPHERES electronics

  4. The estimation of the Earth's gravity field

    NASA Astrophysics Data System (ADS)

    Szabo, Bela

    1986-06-01

    The various methods for the description of the Earth's gravity field from direct and/or indirect observations are reviewed. Geopotential models produced by various organizations and in use during the past 15 years are discussed in detail. Recent and future programs for the improvement of global gravity fields are reviewed and the expected improvements from new observation and data processing techniques are estimated. The regional and local gravity field is also reviewed. The various data types and their spectral properties, the sensitivities of the different gravimetric quantities to datatypes are discussed. The techniques for the estimation of gravimetric quantities and the achievable accuracies are presented (e.g., integral formulae, collocation). The results of recent works in this area by prominent authors are reviewed. The prediction of gravity outside the earth from surface data is discussed in two forms: a) prediction of gravity disturbance at high altitudes and b) upward continuation of gravity anomalies. The achievable improvements of the high frequency field by airborne gradiometry are summarized utilizing recent investigations.

  5. Zero Gravity Aircraft Testing of a Prototype Portable Fire Extinguisher for Use in Spacecraft

    NASA Astrophysics Data System (ADS)

    Butz, J.; Carriere, T.; Abbud-Madrid, A.; Easton, J.

    2012-01-01

    For the past five years ADA Technologies has been developing a portable fire extinguisher (PFE) for use in microgravity environments. This technology uses fine water mist (FWM) to effectively and efficiently extinguish fires representative of spacecraft hazards. Recently the FWM PFE was flown on a Zero-G (reduced gravity) aircraft to validate the performance of the technology in a microgravity environment. Test results demonstrated that droplet size distributions generated in the reduced gravity environment were in the same size range as data collected during normal gravity (1-g) discharges from the prototype PFE. Data taken in an obscured test configuration showed that the mist behind the obstacle was more dense in the low-g environment when compared to 1-g discharges. The mist behind the obstacle tended to smaller droplet sizes in both the low-g and 1-g test conditions.

  6. Soot formation and radiation in turbulent jet diffusion flames under normal and reduced gravity conditions

    NASA Technical Reports Server (NTRS)

    Ku, Jerry C.; Tong, LI; Sun, Jun; Greenberg, Paul S.; Griffin, Devon W.

    1993-01-01

    Most practical combustion processes, as well as fires and explosions, exhibit some characteristics of turbulent diffusion flames. For hydrocarbon fuels, the presence of soot particles significantly increases the level of radiative heat transfer from flames. In some cases, flame radiation can reach up to 75 percent of the heat release by combustion. Laminar diffusion flame results show that radiation becomes stronger under reduced gravity conditions. Therefore, detailed soot formation and radiation must be included in the flame structure analysis. A study of sooting turbulent diffusion flames under reduced-gravity conditions will not only provide necessary information for such practical issues as spacecraft fire safety, but also develop better understanding of fundamentals for diffusion combustion. In this paper, a summary of the work to date and of future plans is reported.

  7. A Rationale for System-Dependent Advantages and Disadvantages of Solution Crystal Growth at Low Gravity

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Vekilov, Peter G.; Lin, Hong; Alexander, J. Iwan D.

    1997-01-01

    Protein crystallization experiments at reduced gravity have yielded crystals that, depending on the specific material, are either superior or inferior in their structural perfection compared to counterparts grown at normal gravity. A reduction of the crystals' quality due to their growth at low gravity cannot be understood from existing models. Our experimental investigations of the ground-based crystallization of the protein lysozyme have revealed pronounced unsteady growth layer dynamics and associated defect formation under steady external conditions. Through scaling analysis and numerical simulations we show that the observed fluctuations originate from the coupling of bulk transport with non-linear interface kinetics under mixed kinetics-transport control of the growth rate. The amplitude of the fluctuations is smallest when either transport or interfacial kinetics dominate the control of the crystallization process. Thus, depending on the specific system, crystal quality may be improved by either enhancing or suppressing the transport in the solution. These considerations provide, for the first time, a material-dependent rationale for the advantages, as well as the disadvantages, of reduced gravity for (protein) crystallization.

  8. Review study and evaluation of possible flight experiments relating to cloud physics experiments in space

    NASA Technical Reports Server (NTRS)

    Hunt, R. J.; Wu, S. T.

    1976-01-01

    The general objectives of the Zero-Gravity Atmospheric Cloud Physics Laboratory Program are to improve the level of knowledge in atmospheric cloud research by placing at the disposal of the terrestrial-bound atmospheric cloud physicist a laboratory that can be operated in the environment of zero-gravity or near zero-gravity. This laboratory will allow studies to be performed without mechanical, aerodynamic, electrical, or other techniques to support the object under study. The inhouse analysis of the Skylab 3 and 4 experiments in dynamics of oscillations, rotations, collisions and coalescence of water droplets under low gravity-environment is presented.

  9. 3D Gravity Inversion using Tikhonov Regularization

    NASA Astrophysics Data System (ADS)

    Toushmalani, Reza; Saibi, Hakim

    2015-08-01

    Subsalt exploration for oil and gas is attractive in regions where 3D seismic depth-migration to recover the geometry of a salt base is difficult. Additional information to reduce the ambiguity in seismic images would be beneficial. Gravity data often serve these purposes in the petroleum industry. In this paper, the authors present an algorithm for a gravity inversion based on Tikhonov regularization and an automatically regularized solution process. They examined the 3D Euler deconvolution to extract the best anomaly source depth as a priori information to invert the gravity data and provided a synthetic example. Finally, they applied the gravity inversion to recently obtained gravity data from the Bandar Charak (Hormozgan, Iran) to identify its subsurface density structure. Their model showed the 3D shape of salt dome in this region.

  10. Global correlation of topographic heights and gravity anomalies

    NASA Technical Reports Server (NTRS)

    Roufosse, M. C.

    1977-01-01

    The short wavelength features were obtained by subtracting a calculated 24th-degree-and-order field from observed data written in 1 deg x 1 deg squares. The correlation between the two residual fields was examined by a program of linear regression. When run on a worldwide scale over oceans and continents separately, the program did not exhibit any correlation; this can be explained by the fact that the worldwide autocorrelation function for residual gravity anomalies falls off much faster as a function of distance than does that for residual topographic heights. The situation was different when the program was used in restricted areas, of the order of 5 deg x 5 deg square. For 30% of the world,fair-to-good correlations were observed, mostly over continents. The slopes of the regression lines are proportional to apparent densities, which offer a large spectrum of values that are being interpreted in terms of features in the upper mantle consistent with available heat-flow, gravity, and seismic data.

  11. Microgravity strategic plan, 1990

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The mission of the NASA Microgravity program is to utilize the unique characteristics of the space environment, primarily the near absence of gravity, to understand the role of gravity in materials processing, and to demonstrate the feasibility of space production of improved materials that have high technological, and possible commercial, utility. The following five goals for the Microgravity Program are discussed: (1) Develop a comprehensive research program in fundamental sciences, materials science, and biotechnology for the purpose of attaining a structured understanding of gravity dependent physical phenomena in both Earth and non-Earth environments; (2) Foster the growth of interdisciplinary research community to conduct research in the space environment; (3) Encourage international cooperation for the purpose of conducting research in the space environment; (4) Utilize a permanently manned, multi-facility national microgravity laboratory in low-Earth orbit to provide a long-duration, stable microgravity environment; (5) Promote industrial applications of space research for the development of new, commercially viable products, services, and markets resulting from research in the space environment.

  12. NASA's Space Launch System (SLS) Program: Mars Program Utilization

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.

    2012-01-01

    NASA's Space Launch System is being designed for safe, affordable, and sustainable human and scientific exploration missions beyond Earth's orbit (BEO), as directed by the NASA Authorization Act of 2010 and NASA's 2011 Strategic Plan. This paper describes how the SLS can dramatically change the Mars program's science and human exploration capabilities and objectives. Specifically, through its high-velocity change (delta V) and payload capabilities, SLS enables Mars science missions of unprecedented size and scope. By providing direct trajectories to Mars, SLS eliminates the need for complicated gravity-assist missions around other bodies in the solar system, reducing mission time, complexity, and cost. SLS's large payload capacity also allows for larger, more capable spacecraft or landers with more instruments, which can eliminate the need for complex packaging or "folding" mechanisms. By offering this capability, SLS can enable more science to be done more quickly than would be possible through other delivery mechanisms using longer mission times.

  13. High Energy Astrophysics Mission

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.; Ormes, Jonathan F. (Technical Monitor)

    2000-01-01

    The nature of gravity and its relationship to the other three forces and to quantum theory is one of the major challenges facing us as we begin the new century. In order to make progress we must challenge the current theories by observing the effects of gravity under the most extreme conditions possible. Black holes represent one extreme, where the laws of physics as we understand them break down. The Universe as whole is another extreme, where its evolution and fate is dominated by the gravitational influence of dark matter and the nature of the Cosmological constant. The early universe represents a third extreme, where it is thought that gravity may somehow be unified with the other forces. NASA's "Cosmic Journeys" program is part of a NASA/NSF/DoE tri-agency initiative designed to observe the extremes of gravity throughout the universe. This program will probe the nature of black holes, ultimately obtaining a direct image of the event horizon. It will investigate the large scale structure of the Universe to constrain the location and nature of dark matter and the nature of the cosmological constant. Finally it will search for and study the highest energy processes, that approach those found in the early universe. I will outline the High Energy Astrophysics part of this program.

  14. Research study on materials processing in space Skylab experiment M553 - sphere forming

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.; Peters, E. T.; Wechsler, A. E.

    1973-01-01

    A research program was conducted to study the solidification of metals in the form of small spheres both in the one gravity environment of the earth laboratory and the low gravity environment of KC-135 trajectory flights and the Skylab 1/2 mission. The program had three phases. The details of the results of this program are contained in interim reports prepared at the conclusion of each of the three phases. This final report is intended to summarize the efforts and results described in detail in each of these interim reports, with particular emphasis on the differences observed between the ground-based and Skylab flight specimens.

  15. ASTEROSEISMIC-BASED ESTIMATION OF THE SURFACE GRAVITY FOR THE LAMOST GIANT STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chao; Wu, Yue; Deng, Li-Cai

    2015-07-01

    Asteroseismology is one of the most accurate approaches to estimate the surface gravity of a star. However, most of the data from the current spectroscopic surveys do not have asteroseismic measurements, which is very expensive and time consuming. In order to improve the spectroscopic surface gravity estimates for a large amount of survey data with the help of the small subset of the data with seismic measurements, we set up a support vector regression (SVR) model for the estimation of the surface gravity supervised by 1374 Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) giant stars with Kepler seismic surfacemore » gravity. The new approach can reduce the uncertainty of the estimates down to about 0.1 dex, which is better than the LAMOST pipeline by at least a factor of 2, for the spectra with signal-to-noise ratio higher than 20. Compared with the log g estimated from the LAMOST pipeline, the revised log g values provide a significantly improved match to the expected distribution of red clump and red giant branch stars from stellar isochrones. Moreover, even the red bump stars, which extend to only about 0.1 dex in log g, can be discriminated from the new estimated surface gravity. The method is then applied to about 350,000 LAMOST metal-rich giant stars to provide improved surface gravity estimates. In general, the uncertainty of the distance estimate based on the SVR surface gravity can be reduced to about 12% for the LAMOST data.« less

  16. An Overview of the Materials Science Research at the Marshall Space Flight Center Electrostatic Levitator Facility and Recent CDDF Efforts

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Containerless processing is an important tool for materials research. The freedom from a crucible allows processing of liquid materials in a metastable undercooled state, as well as allowing processing of high temperature and highly reactive melts. Electrostatic levitation (ESL) is a containerless method which provides a number of unique advantages, including the ability to process non-conducting materials, the ability to operate in ultra-high vacuum or at moderate gas pressure (approx. = 5 atm), and the decoupling of positioning force from sample heating. ESL also has the potential to reduce internal flow velocities below those possible with electromagnetic, acoustic, or aero-acoustic techniques. In electrostatic levitation, the acceleration of gravity (or residual acceleration in reduced gravity) is opposed by the action of an applied electric field on a charged sample. Microgravity allows electrostatic levitation to work even more effectively. The ESL facility at NASA s Marshall Space Flight Center is in use for materials research and thermophysical property measurement by a number of different internal and external investigators. Results from the recent CDDF studies on the high energy X-ray beamline at the Advanced Photon Source of Argonne National Laboratory will be presented. The Microgravity Research Program supports the facility.

  17. Fiber pulling apparatus modification

    NASA Technical Reports Server (NTRS)

    Smith, Guy A.; Workman, Gary L.

    1992-01-01

    A reduced gravity fiber pulling apparatus (FPA) was constructed in order to study the effects of gravity on glass fiber formation. The apparatus was specifically designed and built for use on NASA's KC-135 aircraft. Four flights have been completed to date during which E-glass fiber was successfully produced in simulated zero, high, and lunar gravity environments. In addition simulated lunar soil samples were tested for their fiber producing properties using the FPA.

  18. Basipetal auxin transport is required for gravitropism in roots of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Rashotte, A. M.; Brady, S. R.; Reed, R. C.; Ante, S. J.; Muday, G. K.; Davies, E. (Principal Investigator)

    2000-01-01

    Auxin transport has been reported to occur in two distinct polarities, acropetally and basipetally, in two different root tissues. The goals of this study were to determine whether both polarities of indole-3-acetic acid (IAA) transport occur in roots of Arabidopsis and to determine which polarity controls the gravity response. Global application of the auxin transport inhibitor naphthylphthalamic acid (NPA) to roots blocked the gravity response, root waving, and root elongation. Immediately after the application of NPA, the root gravity response was completely blocked, as measured by an automated video digitizer. Basipetal [(3)H]IAA transport in Arabidopsis roots was inhibited by NPA, whereas the movement of [(14)C]benzoic acid was not affected. Inhibition of basipetal IAA transport by local application of NPA blocked the gravity response. Inhibition of acropetal IAA transport by application of NPA at the root-shoot junction only partially reduced the gravity response at high NPA concentrations. Excised root tips, which do not receive auxin from the shoot, exhibited a normal response to gravity. The Arabidopsis mutant eir1, which has agravitropic roots, exhibited reduced basipetal IAA transport but wild-type levels of acropetal IAA transport. These results support the hypothesis that basipetally transported IAA controls root gravitropism in Arabidopsis.

  19. Magnetic levitation-based Martian and Lunar gravity simulator

    NASA Technical Reports Server (NTRS)

    Valles, J. M. Jr; Maris, H. J.; Seidel, G. M.; Tang, J.; Yao, W.

    2005-01-01

    Missions to Mars will subject living specimens to a range of low gravity environments. Deleterious biological effects of prolonged exposure to Martian gravity (0.38 g), Lunar gravity (0.17 g), and microgravity are expected, but the mechanisms involved and potential for remedies are unknown. We are proposing the development of a facility that provides a simulated Martian and Lunar gravity environment for experiments on biological systems in a well controlled laboratory setting. The magnetic adjustable gravity simulator will employ intense, inhomogeneous magnetic fields to exert magnetic body forces on a specimen that oppose the body force of gravity. By adjusting the magnetic field, it is possible to continuously adjust the total body force acting on a specimen. The simulator system considered consists of a superconducting solenoid with a room temperature bore sufficiently large to accommodate small whole organisms, cell cultures, and gravity sensitive bio-molecular solutions. It will have good optical access so that the organisms can be viewed in situ. This facility will be valuable for experimental observations and public demonstrations of systems in simulated reduced gravity. c2005 Published by Elsevier Ltd on behalf of COSPAR.

  20. Magnetic levitation-based Martian and Lunar gravity simulator.

    PubMed

    Valles, J M; Maris, H J; Seidel, G M; Tang, J; Yao, W

    2005-01-01

    Missions to Mars will subject living specimens to a range of low gravity environments. Deleterious biological effects of prolonged exposure to Martian gravity (0.38 g), Lunar gravity (0.17 g), and microgravity are expected, but the mechanisms involved and potential for remedies are unknown. We are proposing the development of a facility that provides a simulated Martian and Lunar gravity environment for experiments on biological systems in a well controlled laboratory setting. The magnetic adjustable gravity simulator will employ intense, inhomogeneous magnetic fields to exert magnetic body forces on a specimen that oppose the body force of gravity. By adjusting the magnetic field, it is possible to continuously adjust the total body force acting on a specimen. The simulator system considered consists of a superconducting solenoid with a room temperature bore sufficiently large to accommodate small whole organisms, cell cultures, and gravity sensitive bio-molecular solutions. It will have good optical access so that the organisms can be viewed in situ. This facility will be valuable for experimental observations and public demonstrations of systems in simulated reduced gravity. c2005 Published by Elsevier Ltd on behalf of COSPAR.

  1. Altered gravitropic response, amyloplast sedimentation and circumnutation in the Arabidopsis shoot gravitropism 5 mutant are associated with reduced starch levels.

    PubMed

    Tanimoto, Mimi; Tremblay, Reynald; Colasanti, Joseph

    2008-05-01

    Plants have developed sophisticated gravity sensing mechanisms to interpret environmental signals that are vital for optimum plant growth. Loss of SHOOT GRAVITROPISM 5 (SGR5) gene function has been shown to affect the gravitropic response of Arabidopsis inflorescence stems. SGR5 is a member of the INDETERMINATE DOMAIN (IDD) zinc finger protein family of putative transcription factors. As part of an ongoing functional analysis of Arabidopsis IDD genes (AtIDD) we have extended the characterisation of SGR5, and show that gravity sensing amyloplasts in the shoot endodermis of sgr5 mutants sediment more slowly than wild type, suggesting a defect in gravity perception. This is correlated with lower amyloplast starch levels, which may account for the reduced gravitropic sensitivity in sgr5. Further, we find that sgr5 mutants have a severely attenuated stem circumnutation movement typified by a reduced amplitude and an decreased periodicity. adg1-1 and sex1-1 mutants, which contain no starch or increased starch, respectively, also show alterations in the amplitude and period of circumnutation. Together these results suggest that plant growth movement may depend on starch levels and/or gravity sensing. Overall, we propose that loss of SGR5 regulatory activity affects starch accumulation in Arabidopsis shoot tissues and causes decreased sensitivity to gravity and diminished circumnutational movements.

  2. Compatibility of the Space Station Freedom life sciences research centrifuge with microgravity requirements

    NASA Technical Reports Server (NTRS)

    Hasha, Martin D.

    1990-01-01

    NASA is developing a Life Sciences Centrifuge Facility for Space Station Freedom. In includes a 2.5-meter artificial gravity Bioresearch Centrifuge (BC), which is perhaps the most critical single element in the life sciences space research program. It rotates continuously at precise selectable rates, and utilizes advanced reliable technologies to reduce vibrations. Three disturbance types are analyzed using a current Space Station Freedom dynamic model in the 0.0 to 5.0 Hz range: sinusoidal, random, and transient. Results show that with proper selection of proven design techniques, BC vibrations are compatible with requirements.

  3. Comustion of HAN-Based Monopropellant Droplets in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Shaw, B. D.

    2001-01-01

    Hydroxylammonium nitrate (HAN) is a major constituent in a class of liquid monopropellants that have many attractive characteristics and which display phenomena that differ significantly from other liquid monopropellants. They are composed primarily of HAN, H2O and a fuel species, often triethanolammonium nitrate (TEAN). HAN-based propellants have attracted attention as liquid gun propellants, and are attractive for NASA spacecraft propulsion applications. A representative propellant is XM46. This mixture is 60.8% HAN, 19.2% TEAN and 20% H2O by weight. Other HAN-based propellant mixtures are also of interest. For example, methanol and glycine have been investigated as potential fuel species for HAN-based monopropellants for thruster applications. In the present research, experimental and theoretical studies are performed on combustion of HAN-based monopropellant droplets. The fuel species considered are TEAN, methanol and glycine. Droplets initially in the mm size range are studied at pressures up to 30 atm. These pressures are applicable to spacecraft thruster applications. The droplets are placed in environments with various amounts of Ar, N2, O2, NO2 and N2O. Reduced gravity is employed to enable observations of burning rates and flame structures to be made without the complicating effects of buoyant and forced convection. Normal gravity experiments are also performed in this research program. The experiment goals are to provide accurate fundamental data on deflagration rates, gasphase temperature profiles, transient gas-phase flame behaviors, the onset of bubbling in droplets at lower pressures, and the low-pressure deflagration limit. Theoretical studies are performed to provide rational models of deflagration mechanisms of HAN-based liquid propellants. Besides advancing fundamental knowledge, this research should aid in applications (e.g., spacecraft thrusters and liquid propellant guns) of this unique class of monopropellants.

  4. Development of Large-Scale Spacecraft Fire Safety Experiments

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.; Urban, David; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; Cowlard, Adam J.; hide

    2013-01-01

    The status is presented of a spacecraft fire safety research project that is under development to reduce the uncertainty and risk in the design of spacecraft fire safety systems by testing at nearly full scale in low-gravity. Future crewed missions are expected to be more complex and longer in duration than previous exploration missions outside of low-earth orbit. This will increase the challenge of ensuring a fire-safe environment for the crew throughout the mission. Based on our fundamental uncertainty of the behavior of fires in low-gravity, the need for realistic scale testing at reduced gravity has been demonstrated. To address this gap in knowledge, a project has been established under the NASA Advanced Exploration Systems Program under the Human Exploration and Operations Mission directorate with the goal of substantially advancing our understanding of the spacecraft fire safety risk. Associated with the project is an international topical team of fire experts from other space agencies who conduct research that is integrated into the overall experiment design. The experiments are under development to be conducted in an Orbital Science Corporation Cygnus vehicle after it has undocked from the ISS. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. The tests will be fully automated with the data downlinked at the conclusion of the test before the Cygnus vehicle reenters the atmosphere. A computer modeling effort will complement the experimental effort. The international topical team is collaborating with the NASA team in the definition of the experiment requirements and performing supporting analysis, experimentation and technology development. The status of the overall experiment and the associated international technology development efforts are summarized.

  5. Selecting Tasks for Evaluating Human Performance as a Function of Gravity

    NASA Technical Reports Server (NTRS)

    Norcross, J. R.; Gernhardt, M. L.

    2010-01-01

    A challenge in understanding human performance as a function of gravity is determining which tasks to research. Initial studies began with treadmill walking, which was easy to quantify and control. However, with the development of pressurized rovers, it is less important to optimize human performance for ambulation as rovers will likely perform gross translation for them. Future crews are likely to spend much of their extravehicular activity (EVA) performing geology, construction and maintenance type tasks, for which it is difficult to measure steady-state-workloads. To evaluate human performance in reduced gravity, we have collected metabolic, biomechanical and subjective data for different tasks at varied gravity levels. Methods: Ten subjects completed 5 different tasks including weight transfer, shoveling, treadmill walking, treadmill running and treadmill incline walking. All tasks were performed shirt-sleeved at 1-g, 3/8-g and 1/6-g. Off-loaded conditions were achieved via the Active Response Gravity Offload System. Treadmill tasks were performed for 3 minutes with reported oxygen consumption (VO2) averaged over the last 2 minutes. Shoveling was performed for 3 minutes with metabolic cost reported as ml O2 consumed per kg material shoveled. Weight transfer reports metabolic cost as liters O2 consumed to complete the task. Statistical analysis was performed via repeated measures ANOVA. Results: Statistically significant metabolic differences were noted between all 3 gravity levels for treadmill running and incline walking. For the other 3 tasks, there were significant differences between 1-g and each reduced gravity, but not between 1/6-g and 3/8-g. For weight transfer, significant differences were seen between gravities in both trial-average VO2 and time-to-completion with noted differences in strategy for task completion. Conclusion: To determine if gravity has a metabolic effect on human performance, this research may indicate that tasks should be selected that require the subject to work vertically against the force of gravity.

  6. Contributions of microgravity test results to the design of spacecraft fire-safety systems

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Urban, David L.

    1993-01-01

    Experiments conducted in spacecraft and drop towers show that thin-sheet materials have reduced flammability ranges and flame-spread rates under quiescent low-gravity environments (microgravity) compared to normal gravity. Furthermore, low-gravity flames may be suppressed more easily by atmospheric dilution or decreasing atmospheric total pressure than their normal-gravity counterparts. The addition of a ventilating air flow to the low-gravity flame zone, however, can greatly enhance the flammability range and flame spread. These results, along with observations of flame and smoke characteristics useful for microgravity fire-detection 'signatures', promise to be of considerable value to spacecraft fire-safety designs. The paper summarizes the fire detection and suppression techniques proposed for the Space Station Freedom and discusses both the application of low-gravity combustion knowledge to improve fire protection and the critical needs for further research.

  7. Aquatic Invertebrate Development Working Group

    NASA Technical Reports Server (NTRS)

    Meyers, D.

    1985-01-01

    Little definitive evidence exists to show that gravity plays a major role in embyrogenesis of aquatic invertebrates. Two reasons for this may be: (1) few studies have been done that emphasize the role of gravity; and (2) there simply may not be any gravity effect. The buoyant nature of the aquatic environment could have obscured any evolutionary effect of gravity. The small size of most eggs and their apparent lack of orientation suggests reduced gravitational influence. Therefore, it is recommended that the term development, as applied to aquatic invertebrates, be loosely defined to encompass behavioral and morphological parameters for which baseline data already exist.

  8. Studies of Two-Phase Flow Dynamics and Heat Transfer at Reduced Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Witte, Larry C.; Bousman, W. Scott; Fore, Larry B.

    1996-01-01

    The ability to predict gas-liquid flow patterns is crucial to the design and operation of two-phase flow systems in the microgravity environment. Flow pattern maps have been developed in this study which show the occurrence of flow patterns as a function of gas and liquid superficial velocities as well as tube diameter, liquid viscosity and surface tension. The results have demonstrated that the location of the bubble-slug transition is affected by the tube diameter for air-water systems and by surface tension, suggesting that turbulence-induced bubble fluctuations and coalescence mechanisms play a role in this transition. The location of the slug-annular transition on the flow pattern maps is largely unaffected by tube diameter, liquid viscosity or surface tension in the ranges tested. Void fraction-based transition criteria were developed which separate the flow patterns on the flow pattern maps with reasonable accuracy. Weber number transition criteria also show promise but further work is needed to improve these models. For annular gas-liquid flows of air-water and air- 50 percent glycerine under reduced gravity conditions, the pressure gradient agrees fairly well with a version of the Lockhart-Martinelli correlation but the measured film thickness deviates from published correlations at lower Reynolds numbers. Nusselt numbers, based on a film thickness obtained from standard normal-gravity correlations, follow the relation, Nu = A Re(sup n) Pr(exp l/3), but more experimental data in a reduced gravity environment are needed to increase the confidence in the estimated constants, A and n. In the slug flow regime, experimental pressure gradient does not correlate well with either the Lockhart-Martinelli or a homogeneous formulation, but does correlate nicely with a formulation based on a two-phase Reynolds number. Comparison with ground-based correlations implies that the heat transfer coefficients are lower at reduced gravity than at normal gravity under the same flow conditions. Nusselt numbers can be correlated in a fashion similar to Chu and Jones.

  9. Boiling heat transfer to LN2 and LH2 - Influence of surface orientation and reduced body forces

    NASA Technical Reports Server (NTRS)

    Merte, H., Jr.; Oker, E.; Littles, J. W.

    1973-01-01

    The quantitative determination of the influence of heater surface orientation and gravity on nucleate pool boiling of liquid nitrogen and liquid hydrogen is described. A transient calorimeter technique, well suited for obtaining pool boiling data under reduced gravity and used earlier by Clark and Merte (1963), was employed after being adapted to flat a surface whose orientation could be varied. The obtained determination results are reviewed.

  10. Simulating reduced gravity: a review of biomechanical issues pertaining to human locomotion.

    PubMed

    Davis, B L; Cavanagh, P R

    1993-06-01

    In the decade preceding Apollo missions to the Moon, extensive studies were conducted on human locomotion in reduced gravity. These investigations focused primarily on issues of maneuverability and energy expenditure and not on musculoskeletal loading, which is of more interest to planners of long-duration space missions. The techniques have included water immersion, parabolic aircraft flights, supine and erect cable suspension and centrifugal methods. The practical implications of the findings from these studies are: 1) the present shuttle treadmill running surface would not suffice if one wanted to run with a natural style at levels greater than 0.6 G; 2) in terms of attempting to replicate typical ground reaction force profiles during locomotor exercise at reduced gravity levels, it appears as though it is easier to match the peak rates of change of force (maxDFDT) than it is to match values for the peak force magnitudes (maxGRF).

  11. Active member vibration control experiment in a KC-135 reduced gravity environment

    NASA Technical Reports Server (NTRS)

    Lawrence, C. R.; Lurie, B. J.; Chen, G.-S.; Swanson, A. D.

    1991-01-01

    An active member vibration control experiment in a KC-135 reduced gravity environment was carried out by the Air Force Flight Dynamics Laboratory and the Jet Propulsion Laboratory. Two active members, consisting of piezoelectric actuators, displacement sensors, and load cells, were incorporated into a 12-meter, 104 kg box-type test structure. The active member control design involved the use of bridge (compound) feedback concept, in which the collocated force and velocity signals are feedback locally. An impact-type test was designed to accommodate the extremely short duration of the reduced gravity testing window in each parabolic flight. The moving block analysis technique was used to estimate the modal frequencies and dampings from the free-decay responses. A broadband damping performance was demonstrated up to the ninth mode of 40 Hz. The best damping performance achieved in the flight test was about 5 percent in the fourth mode of the test structure.

  12. Parabolic Flights with Single-Engine Aerobatic Aircraft: Flight Profile and a Computer Simulator for its Optimization

    NASA Astrophysics Data System (ADS)

    Brigos, Miguel; Perez-Poch, Antoni; Alpiste, Francesc; Torner, Jordi; González Alonso, Daniel Ventura

    2014-11-01

    We report the results of residual acceleration obtained from initial tests of parabolic flights (more than 100 hours) performed with a small single-engine aerobatic aircraft (CAP10B), and propose a method that improves these figures. Such aircraft have proved capable of providing researchers with periods of up to 8 seconds of reduced gravity in the cockpit, with a gravity quality in the range of 0.1 g 0, where g 0 is the gravitational acceleration of the Earth. Such parabolas may be of interest to experimenters in the reduced gravity field, when this range of reduced gravity is acceptable for the experiment undertaken. They have also proven to be useful for motivational and educational campaigns. Furthermore, these flights may be of interest to researchers as a test-bed for obtaining a proof-of-concept for subsequent access to parabolic flights with larger aircraft or other microgravity platforms. The limited cost of the operations with these small aircraft allows us to perform them as part of a non-commercial joint venture between the Universitat Politècnica de Catalunya - BarcelonaTech (UPC), the Barcelona cluster BAIE and the Aeroclub Barcelona-Sabadell. Any improvements in the length and quality of reduced gravity would increase the capabilities of these small aircraft. To that end, we have developed a method based on a simulator for training aerobatic pilots. The simulation is performed with the CAD software for mechanical design Solidworks Motion{circledR }, which is widely distributed in industry and in universities. It specifically simulates the parabolic flight manoeuvre for our small aircraft and enables us to improve different aspects of the manoeuvre. The simulator is first validated with experimental data from the test flights. We have conducted an initial intensive period of specific pilot training with the aid of the simulator output. After such initial simulation-aided training, results show that the reduced gravity quality has significantly improved from 0.1 g 0 to 0.05 g 0. We conclude that single-engine aerobatic aircraft are capable of conducting small hypogravity experiments with the limitations described in the paper.

  13. Results and Lessons Learned from Performance Testing of Humans in Spacesuits in Simulated Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Chappell, Steven P.; Norcross, Jason R.; Gernhardt, Michael L.

    2010-01-01

    The Apollo lunar EVA experience revealed challenges with suit stability and control-likely a combination of mass, mobility, and center of gravity (CG) factors. The EVA Physiology, Systems and Performence (EPSP) Project is systematically working with other NASA projects, labs, and facilities to lead a series of studies to understand the role of suit mass, weight, CG, and other parameters on astronaut performance in partial gravity environments.

  14. Utilizing Commercial Hardware and Open Source Computer Vision Software to Perform Motion Capture for Reduced Gravity Flight

    NASA Technical Reports Server (NTRS)

    Humphreys, Brad; Bellisario, Brian; Gallo, Christopher; Thompson, William K.; Lewandowski, Beth

    2016-01-01

    Long duration space travel to Mars or to an asteroid will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited. Therefore, compact resistance exercise device prototypes are being developed. The NASA Digital Astronaut Project (DAP) is supporting the Advanced Exercise Concepts (AEC) Project, Exercise Physiology and Countermeasures (ExPC) project and the National Space Biomedical Research Institute (NSBRI) funded researchers by developing computational models of exercising with these new advanced exercise device concepts. To perform validation of these models and to support the Advanced Exercise Concepts Project, several candidate devices have been flown onboard NASAs Reduced Gravity Aircraft. In terrestrial laboratories, researchers typically have available to them motion capture systems for the measurement of subject kinematics. Onboard the parabolic flight aircraft it is not practical to utilize the traditional motion capture systems due to the large working volume they require and their relatively high replacement cost if damaged. To support measuring kinematics on board parabolic aircraft, a motion capture system is being developed utilizing open source computer vision code with commercial off the shelf (COTS) video camera hardware. While the systems accuracy is lower than lab setups, it provides a means to produce quantitative comparison motion capture kinematic data. Additionally, data such as required exercise volume for small spaces such as the Orion capsule can be determined. METHODS: OpenCV is an open source computer vision library that provides the ability to perform multi-camera 3 dimensional reconstruction. Utilizing OpenCV, via the Python programming language, a set of tools has been developed to perform motion capture in confined spaces using commercial cameras. Four Sony Video Cameras were intrinsically calibrated prior to flight. Intrinsic calibration provides a set of camera specific parameters to remove geometric distortion of the lens and sensor (specific to each individual camera). A set of high contrast markers were placed on the exercising subject (safety also necessitated that they be soft in case they become detached during parabolic flight); small yarn balls were used. Extrinsic calibration, the determination of camera location and orientation parameters, is performed using fixed landmark markers shared by the camera scenes. Additionally a wand calibration, the sweeping of the camera scenes simultaneously, was also performed. Techniques have been developed to perform intrinsic calibration, extrinsic calibration, isolation of the markers in the scene, calculation of marker 2D centroids, and 3D reconstruction from multiple cameras. These methods have been tested in the laboratory side-by-side comparison to a traditional motion capture system and also on a parabolic flight.

  15. Installation Restoration Program Records Search for Des Moines Air National Guard Installation, Iowa

    DTIC Science & Technology

    1983-09-01

    installation. Low-lying drainageways on the site are underlain by soils of the Gravity series and of the Wabash -Gravity-Nodaway complex. These soils...Shop The electric shop is located in Facility No. 100. Wastes generated from this area include nickel- -- ’ cadmium batteries (24/year) and sulfuric

  16. NASA space biology accomplishments, 1983-84

    NASA Technical Reports Server (NTRS)

    Halstead, T. W.; Dutcher, F. R.; Pleasant, L. G.

    1984-01-01

    Approximately 42 project summaries from NASA's Space Biology Program are presented. Emphasis is placed on gravitational effects on plant and animal life. The identification of gravity perception; the effects of weightlessness on genetic integrity, cellular differentiation, reproduction, development, growth, maturation, and senescence; and how gravity affects and controls physiology, morphology, and behavior of organisms are studied.

  17. Study of toluene rotary fluid management device and shear flow condenser performance for a space-based organic Rankine power system

    NASA Technical Reports Server (NTRS)

    Havens, Vance; Ragaller, Dana

    1988-01-01

    Management of two-phase fluid and control of the heat transfer process in microgravity is a technical challenge that must be addressed for an orbital Organic Rankine Cycle (ORC) application. A test program was performed in 1-g that satisfactorily demonstrated the two-phase management capability of the rotating fluid management device (RFMD) and shear-flow condenser. Operational tests of the RFMD and shear flow condenser in adverse gravity orientations, confirmed that the centrifugal forces in the RFMD and the shear forces in the condenser were capable of overcoming gravity forces. In a microgravity environment, these same forces would not have to compete against gravity and would therefore be dominant. The specific test program covered the required operating range of the Space Station Solar Dynamic Rankine Cycle power system. Review of the test data verified that: fluid was pumped from the RFMD in all attitudes; subcooled states in the condenser were achieved; condensate was pushed uphill against gravity; and noncondensible gases were swept through the condenser.

  18. Context-Aware Based Efficient Training System Using Augmented Reality and Gravity Sensor for Healthcare Services

    NASA Astrophysics Data System (ADS)

    Kim, Seoksoo; Jung, Sungmo; Song, Jae-Gu; Kang, Byong-Ho

    As augmented reality and a gravity sensor is of growing interest, siginificant developement is being made on related technology, which allows application of the technology in a variety of areas with greater expectations. In applying Context-aware to augmented reality, it can make useful programs. A traning system suggested in this study helps a user to understand an effcienct training method using augmented reality and make sure if his exercise is being done propery based on the data collected by a gravity sensor. Therefore, this research aims to suggest an efficient training environment that can enhance previous training methods by applying augmented reality and a gravity sensor.

  19. Development of a Transportable Gravity Gradiometer Based on Atom Interferometry

    NASA Astrophysics Data System (ADS)

    Yu, N.; Kohel, J. M.; Aveline, D. C.; Kellogg, J. R.; Thompson, R. J.; Maleki, L.

    2007-12-01

    JPL is developing a transportable gravity gradiometer based on light-pulse atom interferometers for NASA's Earth Science Technology Office's Instrument Incubator Program. The inertial sensors in this instrument employ a quantum interference measurement technique, analogous to the precise phase measurements in atomic clocks, which offers increased sensitivity and improved long-term stability over traditional mechanical devices. We report on the implementation of this technique in JPL's gravity gradiometer, and on the current performance of the mobile instrument. We also discuss the prospects for satellite-based gravity field mapping, including high-resolution monitoring of time-varying fields from a single satellite platform and multi-component measurements of the gravitational gradient tensor, using atom interferometer-based instruments.

  20. Zero-Gravity Atmospheric Cloud Physics Experiment Laboratory engineering concepts/design tradeoffs. Volume 1: Study results

    NASA Technical Reports Server (NTRS)

    Greco, R. V.; Eaton, L. R.; Wilkinson, H. C.

    1974-01-01

    The work is summarized which was accomplished from January 1974 to October 1974 for the Zero-Gravity Atmospheric Cloud Physics Laboratory. The definition and development of an atmospheric cloud physics laboratory and the selection and delineation of candidate experiments that require the unique environment of zero gravity or near zero gravity are reported. The experiment program and the laboratory concept for a Spacelab payload to perform cloud microphysics research are defined. This multimission laboratory is planned to be available to the entire scientific community to utilize in furthering the basic understanding of cloud microphysical processes and phenomenon, thereby contributing to improved weather prediction and ultimately to provide beneficial weather control and modification.

  1. Combined Effects of Gravity, Bending Moment, Bearing Clearance, and Input Torque on Wind Turbine Planetary Gear Load Sharing: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Y.; Keller, J.; LaCava, W.

    2012-09-01

    This computational work investigates planetary gear load sharing of three-mount suspension wind turbine gearboxes. A three dimensional multibody dynamic model is established, including gravity, bending moments, fluctuating mesh stiffness, nonlinear tooth contact, and bearing clearance. A flexible main shaft, planetary carrier, housing, and gear shafts are modeled using reduced degrees-of-freedom through modal compensation. This drivetrain model is validated against the experimental data of Gearbox Reliability Collaborative for gearbox internal loads. Planet load sharing is a combined effect of gravity, bending moment, bearing clearance, and input torque. Influences of each of these parameters and their combined effects on the resulting planetmore » load sharing are investigated. Bending moments and gravity induce fundamental excitations in the rotating carrier frame, which can increase gearbox internal loads and disturb load sharing. Clearance in carrier bearings reduces the bearing load carrying capacity and thus the bending moment from the rotor can be transmitted into gear meshes. With bearing clearance, the bending moment can cause tooth micropitting and can induce planet bearing fatigue, leading to reduced gearbox life. Planet bearings are susceptible to skidding at low input torque.« less

  2. Oregon Magnetic and Gravity Maps and Data: A Web Site for Distribution of Data

    USGS Publications Warehouse

    Roberts, Carter W.; Kucks, Robert P.; Hill, Patricia L.

    2008-01-01

    This web site gives the results of a USGS project to acquire the best available, public-domain, aeromagnetic and gravity data in the United States and merge these data into uniform, composite grids for each State. The results for the State of Oregon are presented here on this site. Files of aeromagnetic and gravity grids and images are available for these States for downloading. In Oregon, 49 magnetic surveys have been knit together to form a single digital grid and map. Also, a complete Bouguer gravity anomaly grid and map was generated from 40,665 gravity station measurements in and adjacent to Oregon. In addition, a map shows the location of the aeromagnetic surveys, color-coded to the survey flight-line spacing. This project was supported by the Mineral Resource Program of the USGS.

  3. Nucleate Boiling Heat Transfer Studied Under Reduced-Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Chao, David F.; Hasan, Mohammad M.

    2000-01-01

    Boiling is known to be a very efficient mode of heat transfer, and as such, it is employed in component cooling and in various energy-conversion systems. In space, boiling heat transfer may be used in thermal management, fluid handling and control, power systems, and on-orbit storage and supply systems for cryogenic propellants and life-support fluids. Recent interest in the exploration of Mars and other planets and in the concept of in situ resource utilization on the Martian and Lunar surfaces highlights the need to understand how gravity levels varying from the Earth's gravity to microgravity (1g = or > g/g(sub e) = or > 10(exp -6)g) affect boiling heat transfer. Because of the complex nature of the boiling process, no generalized prediction or procedure has been developed to describe the boiling heat transfer coefficient, particularly at reduced gravity levels. Recently, Professor Vijay K. Dhir of the University of California at Los Angeles proposed a novel building-block approach to investigate the boiling phenomena in low-gravity to microgravity environments. This approach experimentally investigates the complete process of bubble inception, growth, and departure for single bubbles formed at a well-defined and controllable nucleation site. Principal investigator Professor Vijay K. Dhir, with support from researchers from the NASA Glenn Research Center at Lewis Field, is performing a series of pool boiling experiments in the low-gravity environments of the KC 135 microgravity aircraft s parabolic flight to investigate the inception, growth, departure, and merger of bubbles from single- and multiple-nucleation sites as a function of the wall superheat and the liquid subcooling. Silicon wafers with single and multiple cavities of known characteristics are being used as test surfaces. Water and PF5060 (an inert liquid) were chosen as test liquids so that the role of surface wettability and the magnitude of the effect of interfacial tension on boiling in reduced gravity can be investigated.

  4. Low-gravity Orbiting Research Laboratory Environment Potential Impact on Space Biology Research

    NASA Technical Reports Server (NTRS)

    Jules, Kenol

    2006-01-01

    One of the major objectives of any orbital space research platform is to provide a quiescent low gravity, preferably a zero gravity environment, to perform fundamental as well as applied research. However, small disturbances exist onboard any low earth orbital research platform. The impact of these disturbances must be taken into account by space research scientists during their research planning, design and data analysis in order to avoid confounding factors in their science results. The reduced gravity environment of an orbiting research platform in low earth orbit is a complex phenomenon. Many factors, among others, such as experiment operations, equipment operation, life support systems and crew activity (if it is a crewed platform), aerodynamic drag, gravity gradient, rotational effects as well as the vehicle structural resonance frequencies (structural modes) contribute to form the overall reduced gravity environment in which space research is performed. The contribution of these small disturbances or accelerations is precisely why the environment is NOT a zero gravity environment, but a reduced acceleration environment. This paper does not discuss other factors such as radiation, electromagnetic interference, thermal and pressure gradient changes, acoustic and CO2 build-up to name a few that affect the space research environment as well, but it focuses solely on the magnitude of the acceleration level found on orbiting research laboratory used by research scientists to conduct space research. For ease of analysis this paper divides the frequency spectrum relevant to most of the space research disciplines into three regimes: a) quasi-steady, b) vibratory and c) transient. The International Space Station is used as an example to illustrate the point. The paper discusses the impact of these three regimes on space biology research and results from space flown experiments are used to illustrate the potential negative impact of these disturbances (accelerations) on space biology research.

  5. Soleus H-reflex gain in humans walking and running under simulated reduced gravity

    NASA Technical Reports Server (NTRS)

    Ferris, D. P.; Aagaard, P.; Simonsen, E. B.; Farley, C. T.; Dyhre-Poulsen, P.

    2001-01-01

    The Hoffmann (H-) reflex is an electrical analogue of the monosynaptic stretch reflex, elicited by bypassing the muscle spindle and directly stimulating the afferent nerve. Studying H-reflex modulation provides insight into how the nervous system centrally modulates stretch reflex responses.A common measure of H-reflex gain is the slope of the relationship between H-reflex amplitude and EMG amplitude. To examine soleus H-reflex gain across a range of EMG levels during human locomotion, we used simulated reduced gravity to reduce muscle activity. We hypothesised that H-reflex gain would be independent of gravity level.We recorded EMG from eight subjects walking (1.25 m s-1) and running (3.0 m s-1) at four gravity levels (1.0, 0.75, 0.5 and 0.25 G (Earth gravity)). We normalised the stimulus M-wave and resulting H-reflex to the maximal M-wave amplitude (Mmax) elicited throughout the stride to correct for movement of stimulus and recording electrodes relative to nerve and muscle fibres. Peak soleus EMG amplitude decreased by 30% for walking and for running over the fourfold change in gravity. As hypothesised, slopes of linear regressions fitted to H-reflex versus EMG data were independent of gravity for walking and running (ANOVA, P > 0.8). The slopes were also independent of gait (P > 0.6), contrary to previous studies. Walking had a greater y-intercept (19.9% Mmax) than running (-2.5% Mmax; P < 0.001). At all levels of EMG, walking H-reflex amplitudes were higher than running H-reflex amplitudes by a constant amount. We conclude that the nervous system adjusts H-reflex threshold but not H-reflex gain between walking and running. These findings provide insight into potential neural mechanisms responsible for spinal modulation of the stretch reflex during human locomotion.

  6. Soleus H-reflex gain in humans walking and running under simulated reduced gravity

    PubMed Central

    Ferris, Daniel P; Aagaard, Per; Simonsen, Erik B; Farley, Claire T; Dyhre-Poulsen, Poul

    2001-01-01

    The Hoffmann (H-) reflex is an electrical analogue of the monosynaptic stretch reflex, elicited by bypassing the muscle spindle and directly stimulating the afferent nerve. Studying H-reflex modulation provides insight into how the nervous system centrally modulates stretch reflex responses. A common measure of H-reflex gain is the slope of the relationship between H-reflex amplitude and EMG amplitude. To examine soleus H-reflex gain across a range of EMG levels during human locomotion, we used simulated reduced gravity to reduce muscle activity. We hypothesised that H-reflex gain would be independent of gravity level. We recorded EMG from eight subjects walking (1.25 m s−1) and running (3.0 m s−1) at four gravity levels (1.0, 0.75, 0.5 and 0.25 G (Earth gravity)). We normalised the stimulus M-wave and resulting H-reflex to the maximal M-wave amplitude (Mmax) elicited throughout the stride to correct for movement of stimulus and recording electrodes relative to nerve and muscle fibres. Peak soleus EMG amplitude decreased by ≈30% for walking and for running over the fourfold change in gravity. As hypothesised, slopes of linear regressions fitted to H-reflex versus EMG data were independent of gravity for walking and running (ANOVA, P > 0.8). The slopes were also independent of gait (P > 0.6), contrary to previous studies. Walking had a greater y-intercept (19.9%Mmax) than running (-2.5%Mmax; P < 0.001). At all levels of EMG, walking H-reflex amplitudes were higher than running H-reflex amplitudes by a constant amount. We conclude that the nervous system adjusts H-reflex threshold but not H-reflex gain between walking and running. These findings provide insight into potential neural mechanisms responsible for spinal modulation of the stretch reflex during human locomotion. PMID:11136869

  7. AIUB-RL02: an improved time-series of monthly gravity fields from GRACE data

    NASA Astrophysics Data System (ADS)

    Meyer, U.; Jäggi, A.; Jean, Y.; Beutler, G.

    2016-05-01

    The new release AIUB-RL02 of monthly gravity models from GRACE GPS and K-Band range-rate data is based on reprocessed satellite orbits referring to the reference frame IGb08. The release is consistent with the IERS2010 conventions. Improvements with respect to its predecessor AIUB-RL01 include the use of reprocessed (RL02) GRACE observations, new atmosphere and ocean dealiasing products (RL05), an upgraded ocean tide model (EOT11A), and the interpolation of shallow ocean tides (admittances). The stochastic parametrization of AIUB-RL02 was adapted to include daily accelerometer scale factors, which drastically reduces spurious signal at the 161 d period in C20 and at other low degree and order gravity field coefficients. Moreover, the correlation between the noise in the monthly gravity models and solar activity is considerably reduced in the new release. The signal and the noise content of the new AIUB-RL02 monthly gravity fields are studied and calibrated errors are derived from their non-secular and non-seasonal variability. The short-period time-variable signal over the oceans, mostly representing noise, is reduced by 50 per cent with respect to AIUB-RL01. Compared to the official GFZ-RL05a and CSR-RL05 monthly models, the AIUB-RL02 stands out by its low noise at high degrees, a fact emerging from the estimation of seasonal variations for selected river basins and of mass trends in polar regions. Two versions of the monthly AIUB-RL02 gravity models, with spherical harmonics resolution of degree and order 60 and 90, respectively, are available for the time period from March 2003 to March 2014 at the International Center for Global Earth Models or from ftp://ftp.unibe.ch/aiub/GRAVITY/GRACE (last accessed 22 March 2016).

  8. Experimental investigation of gravity effects on sediment sorting on Mars

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.; Kuhn, Brigitte; Gartmann, Andres

    2016-04-01

    Introduction: Sorting of sedimentary rocks is a proxy for the environmental conditions at the time of deposition, in particular the runoff that moved and deposited the material forming the rocks. Settling of sediment in water is strongly influenced by the gravity of a planetary body. As a consequence, sorting of a sedimentary rock varies with gravity for a given depth and velocity of surface runoff. Theoretical considerations for spheres indicate that sorting is more uniform on Mars than on Earth for runoff of identical depth. In reality, such considerations have to be applied with great caution because the shape of a particle strongly influences drag. Drag itself can only be calculated directly for an irregularly shaped particle with great computational effort, if at all. Therefore, even for terrestrial applications, sediment settling velocities are often determined directly, e.g. by measurements using settling tubes. Experiments: In this study the results of settling tube tests conducted under reduced gravity during three Mars Sedimentation Experiment (MarsSedEx I, II and III) flights, conducted between 2012 and 2015, are presented. Ten types of sediment, ranging in size, shape and density were tested in custom-designed settling tubes during parabolas of Martian gravity lasting 20 to 25 seconds. Results: The experiments conducted during the MarsSedEx reduced gravity experiments showed that the violation of fluid dynamics caused by using empirical models and parameter values developed for sediment transport on Earth lead to significant miscalculations for Mars, specifically an underetsimation of settling velcoity because of an overestimation of turbulant drag. The error is caused by the flawed representation of particle drag on Mars. Drag coefficients are not a property of a sediment particle, but a property of the flow around the particle, and thus strongly affected by gravity. Conlcusions: The observed errors in settling velocity when using terrestrial models and parameter values on Mars have implications for sediment movement and sorting, in particular for sandstones and conglomerates, and thus analogies drawn between Earth and Mars. Most significantly, sorting on Mars is less pronounced for given flow conditions than on Earth. References: [1] Kuhn N. J. (2014) Experiments in Reduced Gravity - Sediment Settling on Mars, Elsevier.

  9. A novel blue-light phototropic response is revealed in roots of Arabidopsis thaliana in microgravity.

    PubMed

    Vandenbrink, Joshua P; Herranz, Raul; Medina, F Javier; Edelmann, Richard E; Kiss, John Z

    2016-12-01

    Blue-light positive phototropism in roots is masked by gravity and revealed in conditions of microgravity. In addition, the magnitude of red-light positive phototropic curvature is correlated to the magnitude of gravity. Due to their sessile nature, plants utilize environmental cues to grow and respond to their surroundings. Two of these cues, light and gravity, play a substantial role in plant orientation and directed growth movements (tropisms). However, very little is currently known about the interaction between light- (phototropic) and gravity (gravitropic)-mediated growth responses. Utilizing the European Modular Cultivation System on board the International Space Station, we investigated the interaction between phototropic and gravitropic responses in three Arabidopsis thaliana genotypes, Landsberg wild type, as well as mutants of phytochrome A and phytochrome B. Onboard centrifuges were used to create a fractional gravity gradient ranging from reduced gravity up to 1g. A novel positive blue-light phototropic response of roots was observed during conditions of microgravity, and this response was attenuated at 0.1g. In addition, a red-light pretreatment of plants enhanced the magnitude of positive phototropic curvature of roots in response to blue illumination. In addition, a positive phototropic response of roots was observed when exposed to red light, and a decrease in response was gradual and correlated with the increase in gravity. The positive red-light phototropic curvature of hypocotyls when exposed to red light was also confirmed. Both red-light and blue-light phototropic responses were also shown to be affected by directional light intensity. To our knowledge, this is the first characterization of a positive blue-light phototropic response in Arabidopsis roots, as well as the first description of the relationship between these phototropic responses in fractional or reduced gravities.

  10. MarsSedEx I and II: Experimental investigation of gravity effects on sedimentation on Mars

    NASA Astrophysics Data System (ADS)

    Kuhn, N. J.; Kuhn, B.; Gartmann, A.

    2014-12-01

    Sorting of sedimentary rocks is a proxy for the environmental conditions at the time of deposition, in particular the runoff that moved and deposited the material forming the rocks. Settling of sediment is strongly influenced by the gravity of a planetary body. As a consequence, sorting of a sedimentary rock varies with gravity for a given depth and velocity of surface runoff. Theoretical considerations for spheres indicate that sorting is less uniform on Mars than on Earth for runoff of identical depth. The effects of gravity on flow hydraulics limit the use of common, semi-empirical models developed to simulate particle settling in terrestrial environments, on Mars. Assessing sedimentation patterns on Mars, aimed at identifying strata potentially hosting traces of life, is potentially affected by such uncertainties. Using first-principle approaches, e.g. through Computational Fluid Dynamics, for calculating settling velocities on other planetary bodies requires a large effort and is limited by the values of boundary conditions, e.g. the shape of the particle. The degree of uncertainty resulting from the differences in gravity on Earth and Mars was therefore tested during three reduced-gravity flights, the MarsSedEx I and II missions, conducted in November 2012 and 2013. Nine types of sediment, ranging in size, shape and density were tested in custom-designed settling tubes during parabolas of Martian gravity lasting 20 to 25 seconds. Based on the observed settling velocities, the uncertainties of empirical relationships developed on Earth to assess particle settling on Mars are discussed. In addition, the potential effects of reduced gravity on patterns of erosion, transport and sorting of sediment, including the implications for identifying strata bearing traces of past life on are examined.

  11. Bubble Formation at a Submerged Orifice in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Buyevich, Yu A.; Webbon, Bruce W.

    1994-01-01

    The dynamic regime of gas injection through a circular plate orifice into an ideally wetting liquid is considered, when successively detached bubbles may be regarded as separate identities. In normal gravity and at relatively low gas flow rates, a growing bubble is modeled as a spherical segment touching the orifice perimeter during the whole time of its evolution. If the flow rate exceeds a certain threshold value, another stage of the detachment process takes place in which an almost spherical gas envelope is connected with the orifice by a nearly cylindrical stem that lengthens as the bubble rises above the plate. The bubble shape resembles then that of a mushroom and the upper envelope continues to grow until the gas supply through the stem is completely cut off. Such a stage is always present under conditions of sufficiently low gravity, irrespective of the flow rate. Two major reasons make for bubble detachment: the buoyancy force and the force due to the momentum inflow into the bubble with the injected gas. The former force dominates the process at normal gravity whereas the second one plays a key role under negligible gravity conditions. It is precisely this fundamental factor that conditions the drastic influence on bubble growth and detachment that changes in gravity are able to cause. The frequency of bubble formation is proportional to and the volume of detached bubbles is independent of the gas flow rate in sufficiently low gravity, while at normal and moderately reduced gravity conditions the first variable slightly decreases and the second one almost linearly increases as the flow rate grows. Effects of other parameters, such as the orifice radius, gas and liquid densities, and surface tension are discussed.

  12. A novel blue-light phototropic response is revealed in roots of Arabidopsis thaliana in microgravity

    PubMed Central

    Vandenbrink, Joshua P.; Herranz, Raul; Medina, F. Javier; Edelmann, Richard E.

    2017-01-01

    Main conclusion Blue-light positive phototropism in roots is masked by gravity and revealed in conditions of microgravity. In addition, the magnitude of red-light positive phototropic curvature is correlated to the magnitude of gravity. Due to their sessile nature, plants utilize environmental cues to grow and respond to their surroundings. Two of these cues, light and gravity, play a substantial role in plant orientation and directed growth movements (tropisms). However, very little is currently known about the interaction between light- (phototropic) and gravity (gravitropic)-mediated growth responses. Utilizing the European Modular Cultivation System on board the International Space Station, we investigated the interaction between phototropic and gravitropic responses in three Arabidopsis thaliana genotypes, Landsberg wild type, as well as mutants of phytochrome A and phytochrome B. Onboard centrifuges were used to create a fractional gravity gradient ranging from reduced gravity up to 1g. A novel positive blue-light phototropic response of roots was observed during conditions of microgravity, and this response was attenuated at 0.1g. In addition, a red-light pretreatment of plants enhanced the magnitude of positive phototropic curvature of roots in response to blue illumination. In addition, a positive phototropic response of roots was observed when exposed to red light, and a decrease in response was gradual and correlated with the increase in gravity. The positive red-light phototropic curvature of hypocotyls when exposed to red light was also confirmed. Both red-light and blue-light phototropic responses were also shown to be affected by directional light intensity. To our knowledge, this is the first characterization of a positive blue-light phototropic response in Arabidopsis roots, as well as the first description of the relationship between these phototropic responses in fractional or reduced gravities. PMID:27507239

  13. Development of Gravity-Sensing Organs in Altered Gravity

    NASA Technical Reports Server (NTRS)

    Wiederhold, M. L.; Gao, W. Y.; Harrison, J. L.; Hejl, R.

    1996-01-01

    Experiments are described in which the development of the gravity-sensing organs was studied in newt larvae reared in micro-g on the IML-2 mission and in Aplysia embryos and larvae reared on a centrifuge at 1 to 5 g. In Aplysia embryos, the statolith (single dense mass on which gravity and linear acceleration act) was reduced in size in a graded fashion at increasing g. In early post-metamorphic Aplysia or even in isolated statocysts from such animals, the number of statoconia produced is reduced at high gravity Newt larvae launched before any of the otoconia were formed and reared for 15 days in micro-gravity had nearly adult labyrinths at the end of the IML-2 mission. The otoliths of the saccule and utricle were the same size in flight and ground-reared larvae. However, the system of aragonitic otoconia produced in the endolymphatic sac in amphibians was much larger and developed earlier in the flight-reared larvae. At later developmental stages, the aragonitic otoconia enter and fill the saccule. One flight-reared larva was maintained for nine months post-flight and the size of the saccular otolith, as well as the volume of otoconia within the endolymphatic sac, were considerably larger than in age-matched, ground-reared newts. This suggests that rearing in micro-gravity initiates a process that continues for several months after introduction to 1-g, which greatly increases the volume of otoconia. The flight-reared animal had abnormal posture, pointing its head upward, whereas normal ground-reared newts always keep their head horizontal. This suggests that rearing for even a short period in micro-gravity can have lasting functional consequences in an animal subsequently reared in 1-g conditions on Earth.

  14. Microgravity vibration isolation technology: Development to demonstration. Ph.D. Thesis - Case Western Reserve Univ.

    NASA Technical Reports Server (NTRS)

    Grodsinsky, Carlos M.

    1993-01-01

    The low gravity environment provided by space flight has afforded the science community a unique area for the study of fundamental and technological sciences. However, the dynamic environment observed on space shuttle flights and predicted for Space Station Freedom has complicated the analysis of prior 'microgravity' experiments and prompted concern for the viability of proposed space experiments requiring long term, low gravity environments. Thus, isolation systems capable of providing significant improvements to this random environment have been developed. This dissertation deals with the design constraints imposed by acceleration sensitive, microgravity experiment payloads in the unique environment of space. A theoretical background for the inertial feedback and feedforward isolation of a payload was developed giving the basis for two experimental active inertial isolation systems developed for the demonstration of these advanced active isolation techniques. A prototype six degree of freedom digital active isolation system was designed and developed for the ground based testing of an actively isolated payload in three horizontal degrees of freedom. A second functionally equivalent system was built for the multi-dimensional testing of an active inertial isolation system in a reduced gravity environment during low gravity aircraft trajectories. These multi-input multi-output control systems are discussed in detail with estimates on acceleration noise floor performance as well as the actual performance acceleration data. The attenuation performance is also given for both systems demonstrating the advantages between inertial and non-inertial control of a payload for both the ground base environment and the low gravity aircraft acceleration environment. A future goal for this area of research is to validate the technical approaches developed to the 0.01 Hz regime by demonstrating a functional active inertial feedforward/feedback isolation system during orbital flight. A NASA IN-STEP flight experiment has been proposed to accomplish this goal, and the expected selection for the IN-STEP program has been set for Jul. of 1993.

  15. Science Requirements for a Space Flight Experiment Entitled Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    Berg, Robert F.; Moldover, Michael R.

    1993-01-01

    We propose to measure in low gravity the viscosity of xenon close to its critical point. The accuracy will be sufficient to eliminate uncertainties currently associated with the analysis of l-g experiments. The measurements will provide the first direct observation of the predicted power-law divergence of viscosity in a pure fluid. The measurements will also strengthen Zeno's test of mode coupling theory by greatly increasing the reliability of the extrapolation of viscosity to low reduced temperatures. Our scientific objectives are described in more detail in one of the attached reports. The low-gravity experiment will be the final stage of a program whose completed ground-based stages are: (1) theoretical studies by one of the principal investigators (MRM) and coworkers, (2) critical viscosity measurements of binary liquid mixtures, (3) critical viscosity measurements of pure fluids in l-g, and development of a suitable vibration-insensitive viscometer. Our technical approach is described in the draft Science Requirements Document. One of us (MRM) has reviewed opportunities for critical phenomena research in low gravity. Both of us were co-principal investigators in the Thermal Equilibration Experiment in the Critical Point Facility, flown on IML-1 in 1992. From this experience, and from the technical maturity of our ground-based work, we believe our critical point viscometer is ready for development as a flight experiment.

  16. The Microgravity Research Experiments (MICREX) Data Base. Volume 2

    NASA Technical Reports Server (NTRS)

    Winter, C. A.; Jones, J. C.

    1996-01-01

    An electronic data base identifying over 800 fluids and materials processing experiments performed in a low-gravity environment has been created at NASA Marshall Space Flight Center. The compilation, called MICREX (MICrogravity Research Experiments), was designed to document all such experimental efforts performed (1) on U.S. manned space vehicles, (2) on payloads deployed from U.S. manned space vehicles, and (3) on all domestic and international sounding rockets (excluding those of China and the former U.S.S.R.). Data available on most experiments include (1) principal and co-investigators (2) low-gravity mission, (3) processing facility, (4) experimental objectives and results, (5) identifying key words, (6) sample materials, (7) applications of the processed materials/research area, (8) experiment descriptive publications, and (9) contacts for more information concerning the experiment. This technical memorandum (1) summarizes the historical interest in reduced-gravity fluid dynamics, (2) describes the experimental facilities employed to examine reduced gravity fluid flow, (3) discusses the importance of a low-gravity fluids and materials processing data base, (4) describes the MICREX data base format and computational World Wide Web access procedures, and (5) documents (in hard-copy form) the descriptions of the first 600 fluids and materials processing experiments entered into MICREX.

  17. The Microgravity Research Experiments (MICREX) Data Base. Volume 1

    NASA Technical Reports Server (NTRS)

    Winter, C. A.; Jones, J.C.

    1996-01-01

    An electronic data base identifying over 800 fluids and materials processing experiments performed in a low-gravity environment has been created at NASA Marshall Space Flight Center. The compilation, called MICREX (MICrogravity Research Experiments), was designed to document all such experimental efforts performed (1) on U.S. manned space vehicles, (2) on payloads deployed from U.S. manned space vehicles, and (3) on all domestic and international sounding rockets (excluding those of China and the former U.S.S.R.). Data available on most experiments include (1) principal and co-investigators, (2) low-gravity mission, (3) processing facility, (4) experimental objectives and results, (5) identifying key words, (6) sample materials, (7) applications of the processed materials/research area, (8) experiment descriptive publications, and (9) contacts for more information concerning the experiment. This technical memorandum (1) summarizes the historical interest in reduced-gravity fluid dynamics, (2) describes the experimental facilities employed to examine reduced gravity fluid flow, (3) discusses the importance of a low-gravity fluids and materials processing data base, (4) describes the MICREX data base format and computational World Wide Web access procedures, and (5) documents (in hard-copy form) the descriptions of the first 600 fluids and materials processing experiments entered into MICREX.

  18. Design, fabrication and acceptance testing of a zero gravity whole body shower

    NASA Technical Reports Server (NTRS)

    Schumacher, E. A.; Lenda, J. A.

    1974-01-01

    Recent research and development programs have established the ability of the zero gravity whole body shower to maintain a comfortable environment in which the crewman can safely cleanse and dry the body. The purpose of this program was to further advance the technology of whole body bathing and to demonstrate technological readiness including in-flight maintenance by component replacement for flight applications. Three task efforts of this program are discussed. Conceptual designs and system tradeoffs were accomplished in task 1. Task 2 involved the formulation of preliminary and final designs for the shower, while task 3 included the fabrication and test of the shower assembly. Particular attention is paid to the evaluation and correction of test anomalies during the final phase of the program.

  19. Time-dependent gravity in Southern California, May 1974 to April 1979

    NASA Technical Reports Server (NTRS)

    Whitcomb, J. H.; Franzen, W. O.; Given, J. W.; Pechmann, J. C.; Ruff, L. J.

    1980-01-01

    The Southern California gravity survey, begun in May 1974 to obtain high spatial and temporal density gravity measurements to be coordinated with long-baseline three dimensional geodetic measurements of the Astronomical Radio Interferometric Earth Surveying project, is presented. Gravity data was obtained from 28 stations located in and near the seismically active San Gabriel section of the Southern California Transverse Ranges and adjoining San Andreas Fault at intervals of one to two months using gravity meters relative to a base station standard meter. A single-reading standard deviation of 11 microGal is obtained which leads to a relative deviation of 16 microGal between stations, with data averaging reducing the standard error to 2 to 3 microGal. The largest gravity variations observed are found to correlate with nearby well water variations and smoothed rainfall levels, indicating the importance of ground water variations to gravity measurements. The largest earthquake to occur during the survey, which extended to April, 1979, is found to be accompanied in the station closest to the earthquake by the largest measured gravity changes that cannot be related to factors other than tectonic distortion.

  20. The perception of verticality in lunar and Martian gravity conditions.

    PubMed

    de Winkel, Ksander N; Clément, Gilles; Groen, Eric L; Werkhoven, Peter J

    2012-10-31

    Although the mechanisms of neural adaptation to weightlessness and re-adaptation to Earth-gravity have received a lot of attention since the first human space flight, there is as yet little knowledge about how spatial orientation is affected by partial gravity, such as lunar gravity of 0.16 g or Martian gravity of 0.38 g. Up to now twelve astronauts have spent a cumulated time of approximately 80 h on the lunar surface, but no psychophysical experiments were conducted to investigate their perception of verticality. We investigated how the subjective vertical (SV) was affected by reduced gravity levels during the first European Parabolic Flight Campaign of Partial Gravity. In normal and hypergravity, subjects accurately aligned their SV with the gravitational vertical. However, when gravity was below a certain threshold, subjects aligned their SV with their body longitudinal axis. The value of the threshold varied considerably between subjects, ranging from 0.03 to 0.57 g. Despite the small number of subjects, there was a significant positive correlation of the threshold with subject age, which calls for further investigation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Gravity data inversion to determine 3D topographycal density contrast of Banten area, Indonesia based on fast Fourier transform

    NASA Astrophysics Data System (ADS)

    Windhari, Ayuty; Handayani, Gunawan

    2015-04-01

    The 3D inversion gravity anomaly to estimate topographical density using a matlab source code from gridded data provided by Parker Oldenburg algorithm based on fast Fourier transform was computed. We extend and improved the source code of 3DINVERT.M invented by Gomez Ortiz and Agarwal (2005) using the relationship between Fourier transform of the gravity anomaly and the sum of the Fourier transform from the topography density. We gave density contrast between the two media to apply the inversion. FFT routine was implemented to construct amplitude spectrum to the given mean depth. The results were presented as new graphics of inverted topography density, the gravity anomaly due to the inverted topography and the difference between the input gravity data and the computed ones. It terminates when the RMS error is lower than pre-assigned value used as convergence criterion or until maximum of iterations is reached. As an example, we used the matlab program on gravity data of Banten region, Indonesia.

  2. Quantum self-gravitating collapsing matter in a quantum geometry

    NASA Astrophysics Data System (ADS)

    Campiglia, Miguel; Gambini, Rodolfo; Olmedo, Javier; Pullin, Jorge

    2016-09-01

    The problem of how space-time responds to gravitating quantum matter in full quantum gravity has been one of the main questions that any program of quantization of gravity should address. Here we analyze this issue by considering the quantization of a collapsing null shell coupled to spherically symmetric loop quantum gravity. We show that the constraint algebra of canonical gravity is Abelian both classically and when quantized using loop quantum gravity techniques. The Hamiltonian constraint is well defined and suitable Dirac observables characterizing the problem were identified at the quantum level. We can write the metric as a parameterized Dirac observable at the quantum level and study the physics of the collapsing shell and black hole formation. We show how the singularity inside the black hole is eliminated by loop quantum gravity and how the shell can traverse it. The construction is compatible with a scenario in which the shell tunnels into a baby universe inside the black hole or one in which it could emerge through a white hole.

  3. Plant Growth Biophysics: the Basis for Growth Asymmetry Induced by Gravity

    NASA Technical Reports Server (NTRS)

    Cosgrove, D.

    1985-01-01

    The identification and quantification of the physical properties altered by gravity when plant stems grow upward was studied. Growth of the stem in vertical and horizontal positions was recorded by time lapse photography. A computer program that uses a cubic spline fitting algorithm was used to calculate the growth rate and curvature of the stem as a function of time. Plant stems were tested to ascertain whether cell osmotic pressure was altered by gravity. A technique for measuring the yielding properties of the cell wall was developed.

  4. Application of precise altimetry to the study of precise leveling of the sea surface, the Earth's gravity field, and the rotation of the Earth

    NASA Technical Reports Server (NTRS)

    Segawa, J.; Ganeko, Y.; Sasaki, M.; Mori, T.; Ooe, M.; Nakagawa, I.; Ishii, H.; Hagiwara, Y.

    1991-01-01

    Our program includes five research items: (1) determination of a precision geoid and gravity anomaly field; (2) precise leveling and detection of tidal changes of the sea surface and study of the role of the tide in the global energy exchange; (3) oceanic effect on the Earth's rotation and polar motion; (4) geological and geophysical interpretation of the altimetry gravity field; and (5) evaluation of the effectiveness of local tracking of TOPEX/POSEIDON by use of a laser tracker.

  5. MX Siting Investigation Gravity Survey - Ralston Valley, Nevada.

    DTIC Science & Technology

    1981-08-20

    Center (DMAHTC), headquartered in Cheyenne. Wyoming. DMAHTC reduces the data to Simple Bouguer Anomaly (see Section A1.4, Appendix Al.0). The Defense...LIST OF DRAWINGS Drawing Number 1 Complete Bouguer Anomaly Contours In Pocket at 2 Depth to Rock - Interpreted from End of Report Gravity Data iv, I I...REDUCTION DMAHTC obtained the basic observations for the new stations and reduced them to Simple Bouguer Anomalies (SBA) as described in Appendix A1.0

  6. Current Space Station Experiments Investigating Component Level Electronics Repair

    NASA Technical Reports Server (NTRS)

    Easton, John W.; Struk, Peter M.

    2010-01-01

    The Soldering in a Reduced Gravity Experiment (SoRGE) and Component Repair Experiment (CRE)-1 are tests performed on the International Space Station to determine the techniques, tools, and training necessary to allow future crews to perform manual electronics repairs at the component level. SoRGE provides information on the formation and internal structure of through-hole solder joints, illustrating the challenges and implications of soldering in reduced gravity. SoRGE showed a significant increase in internal void defects for joints formed in low gravity compared to normal gravity. Methods for mitigating these void defects were evaluated using a modified soldering process. CRE-1 demonstrated the removal, cleaning, and replacement of electronics components by manual means on functional circuit boards. The majority of components successful passed a post-repair functional test demonstrating the feasibility of component-level repair within the confines of a spacecraft. Together, these tasks provide information to recommend material and tool improvements, training improvements, and future work to help enable electronics repairs in future space missions.

  7. New Methods for Assessing and Reducing Uncertainty in Microgravity Studies

    NASA Astrophysics Data System (ADS)

    Giniaux, J. M.; Hooper, A. J.; Bagnardi, M.

    2017-12-01

    Microgravity surveying, also known as dynamic or 4D gravimetry is a time-dependent geophysical method used to detect mass fluctuations within the shallow crust, by analysing temporal changes in relative gravity measurements. We present here a detailed uncertainty analysis of temporal gravity measurements, considering for the first time all possible error sources, including tilt, error in drift estimations and timing errors. We find that some error sources that are actually ignored, can have a significant impact on the total error budget and it is therefore likely that some gravity signals may have been misinterpreted in previous studies. Our analysis leads to new methods for reducing some of the uncertainties associated with residual gravity estimation. In particular, we propose different approaches for drift estimation and free air correction depending on the survey set up. We also provide formulae to recalculate uncertainties for past studies and lay out a framework for best practice in future studies. We demonstrate our new approach on volcanic case studies, which include Kilauea in Hawaii and Askja in Iceland.

  8. Using the Moon as a high-fidelity analogue environment to study biological and behavioral effects of long-duration space exploration

    NASA Astrophysics Data System (ADS)

    Goswami, Nandu; Roma, Peter G.; De Boever, Patrick; Clément, Gilles; Hargens, Alan R.; Loeppky, Jack A.; Evans, Joyce M.; Peter Stein, T.; Blaber, Andrew P.; Van Loon, Jack J. W. A.; Mano, Tadaaki; Iwase, Satoshi; Reitz, Guenther; Hinghofer-Szalkay, Helmut G.

    2012-12-01

    Due to its proximity to Earth, the Moon is a promising candidate for the location of an extra-terrestrial human colony. In addition to being a high-fidelity platform for research on reduced gravity, radiation risk, and circadian disruption, the Moon qualifies as an isolated, confined, and extreme (ICE) environment suitable as an analog for studying the psychosocial effects of long-duration human space exploration missions and understanding these processes. In contrast, the various Antarctic research outposts such as Concordia and McMurdo serve as valuable platforms for studying biobehavioral adaptations to ICE environments, but are still Earth-bound, and thus lack the low-gravity and radiation risks of space. The International Space Station (ISS), itself now considered an analog environment for long-duration missions, better approximates the habitable infrastructure limitations of a lunar colony than most Antarctic settlements in an altered gravity setting. However, the ISS is still protected against cosmic radiation by the Earth magnetic field, which prevents high exposures due to solar particle events and reduces exposures to galactic cosmic radiation. On Moon the ICE environments are strengthened, radiations of all energies are present capable of inducing performance degradation, as well as reduced gravity and lunar dust. The interaction of reduced gravity, radiation exposure, and ICE conditions may affect biology and behavior - and ultimately mission success - in ways the scientific and operational communities have yet to appreciate, therefore a long-term or permanent human presence on the Moon would ultimately provide invaluable high-fidelity opportunities for integrated multidisciplinary research and for preparations of a manned mission to Mars.

  9. UPC BarcelonaTech Platform. Innovative aerobatic parabolic flights for life sciences experiments.

    NASA Astrophysics Data System (ADS)

    Perez-Poch, Antoni; Gonzalez, Daniel

    We present an innovative method of performing parabolic flights with aerobatic single-engine planes. A parabolic platform has been established in Sabadell Airport (Barcelona, Spain) to provide an infraestructure ready to allow Life Sciences reduced gravity experiments to be conducted in parabolic flights. Test flights have demonstrated that up to 8 seconds of reduced gravity can be achieved by using a two-seat CAP10B aircraft, with a gravity range between 0.1 and 0.01g in the three axis. A parabolic flight campaign may be implemented with a significant reduction in budget compared to conventional parabolic flight campaigns, and with a very short time-to-access to the platform. Operational skills and proficiency of the pilot controling the aircraft during the maneuvre, sensitivity to wind gusts, and aircraft balance are the key issues that make a parabola successful. Efforts are focused on improving the total “zero-g” time and the quality of reduced gravity achieved, as well as providing more space for experiments. We report results of test flights that have been conducted in order to optimize the quality and total microgravity time. A computer sofware has been developed and implemented to help the pilot optimize his or her performance. Finally, we summarize the life science experiments that have been conducted in this platform. Specific focus is given to the very successful 'Barcelona ZeroG Challenge', this year in its third edition. This educational contest gives undergraduate and graduate students worldwide the opportunity to design their research within our platform and test it on flight, thus becoming real researchers. We conclude that aerobatic parabolic flights have proven to be a safe, unexpensive and reliable way to conduct life sciences reduced gravity experiments.

  10. First independent lunar gravity field solution in the framework of project GRAZIL

    NASA Astrophysics Data System (ADS)

    Wirnsberger, Harald; Krauss, Sandro; Klinger, Beate; Mayer-Gürr, Torsten

    2017-04-01

    The twin satellite mission Gravity Recovery and Interior Laboratory (GRAIL) aims to recovering the lunar gravity field by means of intersatellite Ka-band ranging (KBR) observations. In order to exploit the potential of KBR data, absolute position information of the two probes is required. Hitherto, the Graz lunar gravity field models (GrazLGM) relies on the official orbit products provided by NASA. In this contribution, we present for the first time a completely independent Graz lunar gravity field model to spherical harmonic degree and order 420. The reduced dynamic orbits of the two probes are determined using variational equations following a batch least squares differential adjustment process. These orbits are based on S-band radiometric tracking data collected by the Deep Space Network and are used for the independent GRAIL gravity field recovery. To reveal a highly accurate lunar gravity field, an integral equation approach using short orbital arcs is adopted to process the KBR data. A comparison to state-of-the-art lunar gravity models computed at NASA-GSFC, NASA-JPL and AIUB demonstrate the progress of Graz lunar gravity field models derived within the project GRAZIL.

  11. The preferred walk to run transition speed in actual lunar gravity.

    PubMed

    De Witt, John K; Edwards, W Brent; Scott-Pandorf, Melissa M; Norcross, Jason R; Gernhardt, Michael L

    2014-09-15

    Quantifying the preferred transition speed (PTS) from walking to running has provided insight into the underlying mechanics of locomotion. The dynamic similarity hypothesis suggests that the PTS should occur at the same Froude number across gravitational environments. In normal Earth gravity, the PTS occurs at a Froude number of 0.5 in adult humans, but previous reports found the PTS occurred at Froude numbers greater than 0.5 in simulated lunar gravity. Our purpose was to (1) determine the Froude number at the PTS in actual lunar gravity during parabolic flight and (2) compare it with the Froude number at the PTS in simulated lunar gravity during overhead suspension. We observed that Froude numbers at the PTS in actual lunar gravity (1.39±0.45) and simulated lunar gravity (1.11±0.26) were much greater than 0.5. Froude numbers at the PTS above 1.0 suggest that the use of the inverted pendulum model may not necessarily be valid in actual lunar gravity and that earlier findings in simulated reduced gravity are more accurate than previously thought. © 2014. Published by The Company of Biologists Ltd.

  12. Initiation of geyser during the resettlement of cryogenic liquid under impulsive reverse gravity acceleration in microgravity environment

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Shyu, K. L.

    1991-01-01

    The requirement to settle or to position liquid fluid over the outlet end of spacecraft propellant tank prior to main engine restart poses a microgravity fluid behavior problem. Resettlement or reorientation of liquid propellant can be accomplished by providing optimal acceleration to the spacecraft such that the propellant is reoriented over the tank outlet without any vapor entrainment, any excessive geysering, or any other undesirable fluid motion for the space fluid management under microgravity environment. The purpose of present study is to investigate most efficient technique for propellant resettling through the minimization of propellant usage and weight penalties. Comparison between the constant reverse gravity acceleration and impulsive reverse gravity acceleration to be used for the activation of propellant resettlement, it shows that impulsive reverse gravity thrust is superior to constant reverse gravity thrust for liquid reorientation in a reduced gravity environment.

  13. Energetics and mechanics for partial gravity locomotion.

    PubMed

    Newman, D J; Alexander, H L; Webbon, B W

    1994-09-01

    The role of gravitational acceleration on human locomotion is not clearly understood. It is hypothesized that the mechanics and energetics of locomotion depend upon the prevailing gravity level. A unique human-rated underwater treadmill and an adjustable ballasting harness were used to stimulate partial gravity environments. This study has two research aspects, biomechanics and energetics. Vertical forces which are exerted by subjects on the treadmill-mounted, split-plate force platform show that peak vertical force and stride frequency significantly decrease (p < 0.05) as the gravity level is reduced, while ground contact time is independent of gravity level. A loping gait is employed over a wide range of speeds (approximately 1.5 m/s to approximately 2.3 m/s) suggesting a change in the mechanics for lunar (1/6 G) and Martian (3/8 G) locomotion. As theory predicts, locomotion energy requirements for partial gravity levels are significantly less than at 1 G (p < 0.05).

  14. Why do we need detailed gravity over continents: Some Australian examples

    NASA Technical Reports Server (NTRS)

    Lambeck, K.

    1985-01-01

    Geophysical quantities available over a continent are gravity and components of the magnetic field. Direct inferences on crustal structure are difficult to make and strongly dependent on mechanical assumptions the isostatic state. The data for Australia represents one of the best continental scale gravity surveys. The gravity anomalies are generally bland over the continent which confirms that stress relaxation and erosion and rebound were instrumental in reducing nonhydrostatic stresses. In central Australia very large gravity anomalies occur and the region is out of isostatic equilibrium despite the fact that tectonic activity ceased 300 ma ago. The isostatic response functions points to a substantial horizontal compression in the crust. Similar conclusions are drawn for the large anomalies in western Australia. The tectonic implications of these anomalies are examined. In eastern Australia the gravity anomalies are explained in terms of a model of erosion of the highlands and concomitant regional isostatic rebound.

  15. Contributions of Microgravity Test Results to the Design of Spacecraft Fire Safety Systems

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Urban, David L.

    1993-01-01

    Experiments conducted in spacecraft and drop towers show that thin-sheet materials have reduced flammability ranges and flame-spread rates under quiescent low-gravity environments (microgravity) as compared to normal gravity. Furthermore, low-gravity flames may be suppressed more easily by atmospheric dilution or decreasing atmospheric total pressure than their normal-gravity counterparts. The addition of a ventilating air flow to the low-gravity flame zone, however, can greatly enhance the flammability range and flame spread. These results, along with observations of flame and smoke characteristics useful for microgravity fire-detection 'signatures', promise to be of considerable value to spacecraft fire-safety designs. The paper summarizes the fire detection and suppression techniques proposed for the Space Station Freedom and discusses both the application of low-gravity combustion knowledge to improve fire protection and the critical needs for further research.

  16. Thin-shell wormholes in rainbow gravity

    NASA Astrophysics Data System (ADS)

    Amirabi, Z.; Halilsoy, M.; Mazharimousavi, S. Habib

    2018-03-01

    At the Planck scale of length ˜10‑35 m where the energy is comparable with the Planck energy, the quantum gravity corrections to the classical background spacetime results in gravity’s rainbow or rainbow gravity. In this modified theory of gravity, geometry depends on the energy of the test particle used to probe the spacetime, such that in the low energy limit, it yields the standard general relativity. In this work, we study the thin-shell wormholes in the spherically symmetric rainbow gravity. We find the corresponding properties in terms of the rainbow functions which are essential in the rainbow gravity and the stability of such thin-shell wormholes are investigated. Particularly, it will be shown that there are exact solutions in which high energy particles crossing the throat will encounter less amount of total exotic matter. This may be used as an advantage over general relativity to reduce the amount of exotic matter.

  17. Rapid Separation of Copper Phase and Iron-Rich Phase From Copper Slag at Low Temperature in a Super-Gravity Field

    NASA Astrophysics Data System (ADS)

    Lan, Xi; Gao, Jintao; Huang, Zili; Guo, Zhancheng

    2018-03-01

    A novel approach for quickly separating a metal copper phase and iron-rich phase from copper slag at low temperature is proposed based on a super-gravity method. The morphology and mineral evolution of the copper slag with increasing temperature were studied using in situ high-temperature confocal laser scanning microscopy and ex situ scanning electron microscopy and X-ray diffraction methods. Fe3O4 particles dispersed among the copper slag were transformed into FeO by adding an appropriate amount of carbon as a reducing agent, forming the slag melt with SiO2 at low temperature and assisting separation of the copper phase from the slag. Consequently, in a super-gravity field, the metallic copper and copper matte were concentrated as the copper phase along the super-gravity direction, whereas the iron-rich slag migrated in the opposite direction and was quickly separated from the copper phase. Increasing the gravity coefficient (G) significantly enhanced the separation efficiency. After super-gravity separation at G = 1000 and 1473 K (1200 °C) for 3 minutes, the mass fraction of Cu in the separated copper phase reached 86.11 wt pct, while that in the separated iron-rich phase was reduced to 0.105 wt pct. The recovery ratio of Cu in the copper phase was as high as up to 97.47 pct.

  18. High-accuracy 3D Fourier forward modeling of gravity field based on the Gauss-FFT technique

    NASA Astrophysics Data System (ADS)

    Zhao, Guangdong; Chen, Bo; Chen, Longwei; Liu, Jianxin; Ren, Zhengyong

    2018-03-01

    The 3D Fourier forward modeling of 3D density sources is capable of providing 3D gravity anomalies coincided with the meshed density distribution within the whole source region. This paper firstly derives a set of analytical expressions through employing 3D Fourier transforms for calculating the gravity anomalies of a 3D density source approximated by right rectangular prisms. To reduce the errors due to aliasing and imposed periodicity as well as edge effects in the Fourier domain modeling, we develop the 3D Gauss-FFT technique to the 3D gravity anomalies forward modeling. The capability and adaptability of this scheme are tested by simple synthetic models. The results show that the accuracy of the Fourier forward methods using the Gauss-FFT with 4 Gaussian-nodes (or more) is comparable to that of the spatial modeling. In addition, the "ghost" source effects in the 3D Fourier forward gravity field due to imposed periodicity of the standard FFT algorithm are remarkably depressed by the application of the 3D Gauss-FFT algorithm. More importantly, the execution times of the 4 nodes Gauss-FFT modeling are reduced by two orders of magnitude compared with the spatial forward method. It demonstrates that the improved Fourier method is an efficient and accurate forward modeling tool for the gravity field.

  19. Rapid Separation of Copper Phase and Iron-Rich Phase From Copper Slag at Low Temperature in a Super-Gravity Field

    NASA Astrophysics Data System (ADS)

    Lan, Xi; Gao, Jintao; Huang, Zili; Guo, Zhancheng

    2018-06-01

    A novel approach for quickly separating a metal copper phase and iron-rich phase from copper slag at low temperature is proposed based on a super-gravity method. The morphology and mineral evolution of the copper slag with increasing temperature were studied using in situ high-temperature confocal laser scanning microscopy and ex situ scanning electron microscopy and X-ray diffraction methods. Fe3O4 particles dispersed among the copper slag were transformed into FeO by adding an appropriate amount of carbon as a reducing agent, forming the slag melt with SiO2 at low temperature and assisting separation of the copper phase from the slag. Consequently, in a super-gravity field, the metallic copper and copper matte were concentrated as the copper phase along the super-gravity direction, whereas the iron-rich slag migrated in the opposite direction and was quickly separated from the copper phase. Increasing the gravity coefficient (G) significantly enhanced the separation efficiency. After super-gravity separation at G = 1000 and 1473 K (1200 °C) for 3 minutes, the mass fraction of Cu in the separated copper phase reached 86.11 wt pct, while that in the separated iron-rich phase was reduced to 0.105 wt pct. The recovery ratio of Cu in the copper phase was as high as up to 97.47 pct.

  20. Large-Scale Spacecraft Fire Safety Experiments in ISS Resupply Vehicles

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.; Urban, David

    2013-01-01

    Our understanding of the fire safety risk in manned spacecraft has been limited by the small scale of the testing we have been able to conduct in low-gravity. Fire growth and spread cannot be expected to scale linearly with sample size so we cannot make accurate predictions of the behavior of realistic scale fires in spacecraft based on the limited low-g testing to date. As a result, spacecraft fire safety protocols are necessarily very conservative and costly. Future crewed missions are expected to be longer in duration than previous exploration missions outside of low-earth orbit and accordingly, more complex in terms of operations, logistics, and safety. This will increase the challenge of ensuring a fire-safe environment for the crew throughout the mission. Based on our fundamental uncertainty of the behavior of fires in low-gravity, the need for realistic scale testing at reduced gravity has been demonstrated. To address this concern, a spacecraft fire safety research project is underway to reduce the uncertainty and risk in the design of spacecraft fire safety systems by testing at nearly full scale in low-gravity. This project is supported by the NASA Advanced Exploration Systems Program Office in the Human Exploration and Operations Mission Directorate. The activity of this project is supported by an international topical team of fire experts from other space agencies to maximize the utility of the data and to ensure the widest possible scrutiny of the concept. The large-scale space flight experiment will be conducted on three missions; each in an Orbital Sciences Corporation Cygnus vehicle after it has deberthed from the ISS. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew allows the fire products to be released into the cabin. The tests will be fully automated with the data downlinked at the conclusion of the test before the Cygnus vehicle reenters the atmosphere. The international topical team is collaborating with the NASA team in the definition of the experiment requirements and performing supporting analysis, experimentation and technology development.

  1. Buoyancy and Pressure Effects on Bulk Metal-Oxygen Reactions

    NASA Technical Reports Server (NTRS)

    Abbud-Madrid, A.; McKnight, C.; Branch, M. C.; Daily, J. W.; Friedman, R. (Technical Monitor)

    1998-01-01

    The combustion behavior of metal-oxygen reactions if a weakly buoyant environment is studied to understand the rate-controlling mechanisms in the homogeneous and heterogeneous combustion of bulk metals. Cylindrical titanium and magnesium specimens are ignited in pure-oxygen at pressures ranging from 0.1 to 4.0 atm. Reduced gravity is obtained from an aircraft flying parabolic trajectories. A weakly buoyant environment is generated at low pressures under normal gravity and also at 1 atm under reduced gravity (0.01g). The similarity between these two experimental conditions comes from the p(exp 2)g buoyancy scale extracted from the Grashof number. Lower propagation rates of the molten interface on titanium samples are found at progressively lower pressures at 1 g. These rates are compared to theoretical results from heat conduction analyses with a diffusion/convection controlled reaction. The close agreement found between experimental and theoretical values indicate the importance values indicate the importance of natural convection enhanced oxygen transport on combustion rates. For magnesium, progressively longer burning times are experienced at lower pressures and 1 g. Under reduced gravity conditions at 1 atm, a burning time twice as long as in 1 g is exhibited. However, in this case, the validity of the p(exp 2)g buoyancy scale remains untested due to the inability to obtain steady gas-phase burning of the magnesium sample at 0.1 atm. Nevertheless, longer burning times and larger flame standoff distance at low pressures and at low gravity points to a diffusion/convection controlled reaction.

  2. Influence of Internal Waves on Transport by a Gravity Current

    NASA Astrophysics Data System (ADS)

    Koseff, Jeffrey; Hogg, Charlie; Ouillon, Raphael; Ouellette, Nicholas; Meiburg, Eckart

    2017-11-01

    Gravity currents moving along the continental slope can be influenced by internal waves shoaling on the slope resulting in mixing between the gravity current and the ambient fluid. Whilst some observations of the potential influence of internal waves on gravity currents have been made, the process has not been studied systematically. We present laboratory experiments, and some initial numerical simulations, in which a gravity current descends down a sloped boundary through a pycnocline at the same time as an internal wave at the pycnocline shoals on the slope. Measurements of the downslope mass flux of the gravity current fluid in cases with different amplitudes of the incident internal wave will be discussed. For the parameter regime considered, the mass flux in the head of the gravity current was found to reduce with increasingly larger incident amplitude waves. This reduction was effectively caused by a ``decapitation'' process whereby the breaking internal wave captures and moves fluid from the head of the gravity current back up the slope. The significance of the impact of the internal waves on gravity current transport, strongly suggests that the local internal wave climate may need to be considered when calculating gravity current transport. The Bob and Norma Street Environmental Fluid Mechanics Laboratory.

  3. Fiber-optic extrinsic Fabry-Perot vibration-isolated interferometer for use in absolute gravity meters.

    PubMed

    Canuteson, E L; Zumberge, M

    1996-07-01

    In an absolute gravity meter, a laser interferometer measures the position of a test mass that is falling ina vacuum. The calculated value of gravity is the average acceleration of the mass during a set ofdrops. Since systematic accelerations of the optical system will bias the measured value of gravity,various interferometer geometries have been implemented in the past to isolate the optical system fromground motion. We have developed and tested a low-finesse fiber-optic extrinsic Fabry-Perotinterferometer that is fixed to the mass of a critically damped seismometer in which the effects ofsystematic ground motion and acoustic vibrations are reduced.

  4. ORBSIM- ESTIMATING GEOPHYSICAL MODEL PARAMETERS FROM PLANETARY GRAVITY DATA

    NASA Technical Reports Server (NTRS)

    Sjogren, W. L.

    1994-01-01

    The ORBSIM program was developed for the accurate extraction of geophysical model parameters from Doppler radio tracking data acquired from orbiting planetary spacecraft. The model of the proposed planetary structure is used in a numerical integration of the spacecraft along simulated trajectories around the primary body. Using line of sight (LOS) Doppler residuals, ORBSIM applies fast and efficient modelling and optimization procedures which avoid the traditional complex dynamic reduction of data. ORBSIM produces quantitative geophysical results such as size, depth, and mass. ORBSIM has been used extensively to investigate topographic features on the Moon, Mars, and Venus. The program has proven particulary suitable for modelling gravitational anomalies and mascons. The basic observable for spacecraft-based gravity data is the Doppler frequency shift of a transponded radio signal. The time derivative of this signal carries information regarding the gravity field acting on the spacecraft in the LOS direction (the LOS direction being the path between the spacecraft and the receiving station, either Earth or another satellite). There are many dynamic factors taken into account: earth rotation, solar radiation, acceleration from planetary bodies, tracking station time and location adjustments, etc. The actual trajectories of the spacecraft are simulated using least squares fitted to conic motion. The theoretical Doppler readings from the simulated orbits are compared to actual Doppler observations and another least squares adjustment is made. ORBSIM has three modes of operation: trajectory simulation, optimization, and gravity modelling. In all cases, an initial gravity model of curved and/or flat disks, harmonics, and/or a force table are required input. ORBSIM is written in FORTRAN 77 for batch execution and has been implemented on a DEC VAX 11/780 computer operating under VMS. This program was released in 1985.

  5. Gravity gradiometry developments at Lockheed Martin

    NASA Astrophysics Data System (ADS)

    Difrancesco, D.

    2003-04-01

    Lockheed Martin has developed and fielded multiple configurations of the rotating accelerometer gravity gradiometer instrument. Applications for both static and moving-base measurements have been demonstrated for a variety of scenarios, including vehicle navigation, hydrocarbon exploration, mineral exploration, reservoir monitoring, underground void detection and treaty monitoring and compliance. The most recent systems built by Lockheed Martin extend the performance range of the early 4-accelerometer gradiometers by adding a second complement of four accelerometers. This achieves the benefit of lower instrument noise and improved frequency response (wider bandwidth) for stringent application scenarios. A summary of the gradiometer development history, functional concepts, instrument and system operation, and demonstrated performance will be presented. Development Background The U. S. Air Force Geophysics Laboratory (AFGL; now AFRL) instituted a program in 1982 to develop and field a moving base gradiometer system that could be used both on land and in the air. The result was the Gravity Gradiometer Survey System (GGSS) which first demonstrated the ability to make airborne gravity gradient measurements in 1987 (Jekeli, 1988). At the same time, the U.S. Navy began development of the Gravity Sensors System (GSS) for use on the Fleet Ballistic Submarine Trident II navigation subsystem. This military background paved the way for commercial uses of gravity gradiometry. Both the GSS and GGSS employed a first generation gravity gradiometer instrument (GGI), which was comprised of four accelerometers mounted on a rotating disk. The details of the GGI operation are further described in the work by Gerber and Hofmeyer (Gerber, 1978 and Hofmeyer, 1994). Recent Advancements in Gradiometer Instrumentation With the instrumentation experience gained through such programs as GSS and GGSS, Lockheed Martin embarked upon an ambitious effort in the early 1990's to further improve the performance of the rotating accelerometer gradiometer design. Under funding from the Defense Threat Reduction Agency (DTRA), a "next generation" gradiometer was developed for the specific purpose of identifying treaty-limited items in arms control inspection scenarios. The result was the Arms Control Verification Gravity Gradiometer (ACVGG), which comprised two complements of four accelerometers to provide for lower noise and improved frequency response. Following the advancements made with the ACVGG, Lockheed Martin began development of an airborne gradiometer to be used for mineral exploration. The Airborne Gravity Gradiometer (AGG) is installed into an inertially stabilized platform for use in a geophysical survey aircraft. The AGG has been successfully deployed in the BHP Billiton Falcon™ system (van Leeuwen, 2000) for detection and identification of mineral targets. The most recent gradiometer development by Lockheed Martin is the Land Gradiometer System for time-lapse measurement (4D), designed and tested in 2000. In this configuration, the gradiometer is employed in a static mode, without a stabilized platform. The system positions the gradiometer at unique heading and tilt combinations to reduce the influence of bias drift and the coupling of horizontal gradients into the measurement (Feldman, 2000). The gradiometer is used to make measurements at discrete points in time (typically months apart) to monitor the time-varying signal associated with such processes as steam flooding, water flooding or gas injection for enhanced oil recovery (Talwani, 2001). The system also has been deployed to make 3D surveys over targets of interest. Conclusions Significant advancements in gradiometer instrumentation have been realized in recent years. Instrument and system performance has improved by nearly two orders of magnitude and new applications have emerged that span a broad range of geophysical interest. References (1)Jekeli, C., 1988, "The Gravity Gradiometer Survey System (GGSS)", EOS, 69, 105 and 116-117 (2)Gerber, M.A., 1978, "Gravity gradiometry - something new in inertial navigation", Astronautics &Aeronautics, 18-26. (3)Hofmeyer, G.M. and Affleck, C.A., 1994, "Rotating Accelerometer Gradiometer", US Patent 5,357,802. (4)Van Leeuwen, E.H., 2000, "BHP develops world's first airborne gravity gradiometer for mineral exploration", Preview 86, 28-30. (5)Feldman, W.K., et al, 2000, "System and Process for Optimizing Gravity Gradiometer Measurements", US Patent 6,125,698. (6)Talwani, M., et al, 2001, "System enables time lapse gradiometry", American Oil &Gas Reporter 44, 101-108

  6. Gravity at sea--A memoir of a marine geophysicist.

    PubMed

    Tomoda, Yoshibumi

    2010-01-01

    A history of studies on the gravity measurements at sea in Japan is reviewed with an emphasis on the contribution of the author. The first successful measurements at sea were made in 1923 by Vening Meinesz in the Netherlands using the pendulum apparatus installed in a submarine. However, the gravity measurements using a submarine are not convenient because the access to a submarine is limited. Professor Chuji Tsuboi made a number of unsuccessful attempts at developing a gravity meter that can be operated on a normal surface ship by reducing the noise by minimizing the motion of the gravity meter through a mechanical design. I have chosen a new approach toward the measurements of gravity on a surface ship by simplifying the mechanical part using a string gravity meter that was installed directly on a vertical gyroscope in combination with the numerical and/or electronic reduction of noises. With this gravity meter TSSG (Tokyo Surface Ship Gravity Meter), we firstly succeeded in measuring gravity at sea onboard a surface ship in July 1961 and the measurements have been extended to the northwestern Pacific and beyond. The results reveal the fine structures of gravity field in and around trenches that provide important clues as to a number of geodynamic issues including the nature of the trench-trench interaction and the interaction of trenches with seamounts.

  7. Gravity at sea —A memoir of a marine geophysicist—

    PubMed Central

    TOMODA, Yoshibumi

    2010-01-01

    A history of studies on the gravity measurements at sea in Japan is reviewed with an emphasis on the contribution of the author. The first successful measurements at sea were made in 1923 by Vening Meinesz in the Netherlands using the pendulum apparatus installed in a submarine. However, the gravity measurements using a submarine are not convenient because the access to a submarine is limited. Professor Chuji Tsuboi made a number of unsuccessful attempts at developing a gravity meter that can be operated on a normal surface ship by reducing the noise by minimizing the motion of the gravity meter through a mechanical design. I have chosen a new approach toward the measurements of gravity on a surface ship by simplifying the mechanical part using a string gravity meter that was installed directly on a vertical gyroscope in combination with the numerical and/or electronic reduction of noises. With this gravity meter TSSG (Tokyo Surface Ship Gravity Meter), we firstly succeeded in measuring gravity at sea onboard a surface ship in July 1961 and the measurements have been extended to the northwestern Pacific and beyond. The results reveal the fine structures of gravity field in and around trenches that provide important clues as to a number of geodynamic issues including the nature of the trench-trench interaction and the interaction of trenches with seamounts. PMID:20948173

  8. Physics of Regolith Impacts in Microgravity Experiment (PRIME)

    NASA Technical Reports Server (NTRS)

    Motil, Brian (Technical Monitor); Colwell, Joshua; Sture, S.

    2003-01-01

    Collisions between planetary ring particles and in some protoplanetary disk environments occur at low impact velocities (v less than 1 m/s) . In some regions of Saturn s rings, for example, the typical collision velocity inferred from observations by the Voyager spacecraft and dynamical modeling is a fraction of a centimeter per second. Although no direct observations of an individual ring particle exist, the abundance of dust in planetary rings and protoplanetary disks suggests that larger ring and disk particles are coated with a layer of smaller particles and dust - the "regolith". Because the ring particles and proto-planetesimals are small (cm to m-sized), the regolith is only weakly bound to the surface by gravity. Similarly, secondary impacts on asteroids by large blocks of ejecta from high velocity cratering events result in low velocity impacts into the asteroid regolith, which is also weakly bound by the asteroid s gravity. At the current epoch and throughout their history, low velocity collisions have played an important role in sculpting planetary systems. In a one-Earth-gravity environment, it is not possible to experimentally determine the behavior of impact eject from such low velocity collisions. Impacts typically occur at speeds exceeding the mutual escape velocity of the two bodies. Thus, impacts at speeds on the order of 10 m/sec or less involve objects that are tens of meters across, or smaller. This research program is an experimental study of such low velocity collisions in a microgravity environment. The experimental work builds on the Collisions Into Dust Experiment (COLLIDE), which has flown twice on the space shuttle. The PRIME experimental apparatus is a new apparatus designed specifically for the environment provided on the NASA KC- 135 reduced gravity aircraft.

  9. The dynamical simulation of transient three-dimensional cryogenic liquid sloshing oscillations under low-gravity and microgravity

    NASA Astrophysics Data System (ADS)

    Chi, Yong Mann

    A numerical simulation model has been developed for the dynamical behavior of spacecraft propellant, both during the draining and the closing of the tank outlet at the onset of suction dip affected by the asymmetric combined gravity gradient and gravity jitter accelerations. In particular the effect of the surface tension of the fluids in the partially filled dewar (applicable to the Gravity Probe-B spacecraft dewar tank and fuel tanks for a liquid rocket) with rotation has been simulated and investigated. Two different cases of accelerations, one with gravity jitter dominated and the other equally weighted between gravity gradient and gravity jitter accelerations, are studied. In the development of this numerical simulation model, the NASA-VOF3D has been used as a supplement to the numerical program of this dissertation. The NASA-VOF3D code has been used for performing the three-dimensional incompressible flows with free surface. This is also used for controlling liquid sloshing inside the tank when the spacecraft is orbiting. To keep track of the location of the liquid, the fractional volume of fluid (VOF) technique was used. The VOF is based on the indicator function of the region occupied by the liquid with an Eulerian approach to solve the free surface phenomena between liquid and gas phases. For the calculation of surface tension force, the VOF model is also used. The newly developed simulation model is used to investigate the characteristics of liquid hydrogen draining in terms of the residual amount of trapped liquid at the onset of the suction dip and residual liquid volume at the time the dip of the liquid-vapor interface formed. This investigation simulates the characteristics of liquid oscillations due to liquid container outlet shut-off at the onset of suction dip. These phenomena checked how these mechanisms affected the excitation of slosh waves during the course of liquid draining and after shut-off tank outlet. In the present study, the dynamical evolution of sloshing dynamics excited by fluid stress forces, fluid stress moments, and the arm of fluid moment exerted on the dewar container, is considered. This excitation was driven by the combined gravity gradient and gravity jitter acceleration inside the tank during the draining process and closing the tank outlet. The time evolution of the liquid-vapor interface profiles and the bubble mass center fluctuation, as well as liquid mass center and fluctuations of angular momentum caused by slosh wave excitations with 0.1 rpm in a reduced gravity, are also investigated and simulated. Force, angular momentum, and torque vector time histories and Power Spectral Density (PSD) are also plotted and discussed. The results of this investigation may be applied to determine the magnitude and nature of control forces and torques needed to minimize influence of slosh on the dynamics of liquid fueled vehicles in near earth orbit. Results show that induced fluid forces (or angular momentum) exerted on the container wall along x and y-axes, which are non-existent at the beginning, are introduced by the slosh waves excited by asymmetric gravity gradient and the gravity jitter acceleration.

  10. Apparatus For Making Glass Fibers Without The Aid Of Gravity

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis; Smith, Guy A.; Workman, Gary

    1995-01-01

    Report describes apparatus for making optical fibers in microgravity. Includes sting that makes initial contact with softened glass to start drawing fiber. Absence of gravity helps to suppress nucleation of crystallites, which increase scattering of light and thus reduce transmission of light along fiber.

  11. Illinois, Indiana, and Ohio Magnetic and Gravity Maps and Data: A Website for Distribution of Data

    USGS Publications Warehouse

    Daniels, David L.; Kucks, Robert P.; Hill, Patricia L.

    2008-01-01

    This web site gives the results of a USGS project to acquire the best available, public-domain, aeromagnetic and gravity data in the United States and merge these data into uniform, composite grids for each state. The results for the three states, Illinois, Indiana, and Ohio are presented here in one site. Files of aeromagnetic and gravity grids and images are available for these states for downloading. In Illinois, Indiana, and Ohio, 19 magnetic surveys have been knit together to form a single digital grid and map. And, a complete Bouguer gravity anomaly grid and map was generated from 128,227 gravity station measurements in and adjacent to Illinois, Indiana, and Ohio. In addition, a map shows the location of the aeromagnetic surveys, color-coded to the survey flight-line spacing. This project was supported by the Mineral Resource Program of the USGS.

  12. Low-gravity fluid physics: A program overview

    NASA Technical Reports Server (NTRS)

    1990-01-01

    An overview is presented of the microgravity fluid physics program at Lewis Research Center. One of the main reasons for conducting low gravity research in fluid physics is to study phenomena such as surface tension, interfacial contact angles, and diffusion independent of such gravitationally induced effects as buoyant convection. Fluid physics is at the heart of many space-based technologies including power systems, thermal control systems, and life support systems. Fundamental understanding of fluid physics is a key ingredient to successful space systems design. In addition to describing ground-based and space-based low-gravity facilities, selected experiments are presented which highlight Lewis work in fluid physics. These experiments can be categorized into five theme areas which summarize the work being conducted at Lewis for OSSA: (1) isothermal/iso-solutal capillary phenomena; (2) capillary phenomena with thermal/solutal gradients; (3) thermal-solutal convection; (4) first- and second-order phase transitions in a static fluid; and (5) multiphase flow.

  13. Low Stretch PMMA Burning in Microgravity: Status of the Ground-Based Program and New ISS Glovebox Experiment SALSA

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; T'ien, J. S.; Armstrong, J. B.

    2001-01-01

    The objective of this ground-based program is to study low stretch diffusion flames burning PMMA as the solid fuel to determine the relationship between buoyant low stretch burning in normal gravity and forced flow low stretch burning in microgravity. The low stretch is generated in normal gravity by using the buoyant convection induced by burning the bottom of a large radius of curvature sample. Low stretch is also generated using the Combustion Tunnel drop tower rig (2.2 and 5.2 second facilities), which provides a forced convective low velocity flow past smaller radius of curvature samples. Lastly, an ISS glovebox investigation is being developed to study low stretch burning of PMMA spheres to obtain long duration testing needed to accurately assess the flammability and burning characteristics of the material in microgravity. A comparison of microgravity experiment results with normal gravity test results allows us to establish a direct link between a material's burning characteristics in normal gravity (easily measured) with its burning characteristics in extraterrestrial environments, including microgravity forced convective environments. Theoretical predictions and recent experimental results indicate that it should be possible to understand a material's burning characteristics in the low stretch environment of spacecraft (non-buoyant air movement induced by fans and crew disturbances) by understanding its burning characteristics in an equivalent Earth-based low stretch environment (induced by normal gravity buoyancy). Similarly, Earth-based stretch environments can be made equivalent to those in Lunar- and Martian-surface stretch environments (which would induce partial-gravity buoyancy).

  14. An experimental study of ultrasonic vibration and the penetration of granular material

    PubMed Central

    Firstbrook, David; Worrall, Kevin; Timoney, Ryan; Suñol, Francesc; Gao, Yang

    2017-01-01

    This work investigates the potential use of direct ultrasonic vibration as an aid to penetration of granular material. Compared with non-ultrasonic penetration, required forces have been observed to reduce by an order of magnitude. Similarly, total consumed power can be reduced by up to 27%, depending on the substrate and ultrasonic amplitude used. Tests were also carried out in high-gravity conditions, displaying a trend that suggests these benefits could be leveraged in lower gravity regimes. PMID:28293134

  15. Neuromuscular Development and Regulation of Myosin Expression

    NASA Technical Reports Server (NTRS)

    Bodine, Sue

    1997-01-01

    The proposed experiments were designed to determine whether the absence of gravity during embryogenesis influences the postnatal development of the neuromuscular system. Further, we examined the effects of reduced gravity on hindlimb muscles of the pregnant rats. Microgravity may have short and long-term effects on the development of muscle fiber type differentiation and force producing capabilities. Microgravity will reduce muscle fiber size and cause a shift in myosin heavy chain expression from slow to fast in hindlimb muscles of the adult pregnant rats.

  16. Behavior in normal and reduced gravity of an enclosed liquid/gas system with nonuniform heating from above

    NASA Technical Reports Server (NTRS)

    Ross, H. D.; Schiller, D. N.; Disimile, P.; Sirignano, W. A.

    1989-01-01

    The temperature and velocity fields have been investigated for a single-phase gas system and a two-layer gas-and-liquid system enclosed in a circular cylinder being heated suddenly and nonuniformly from above. The transient response of the gas, liquid, and container walls was modelled numerically in normal and reduced gravity (10 to the -5 g). Verification of the model was accomplished via flow visualization experiments in 10 cm high by 10 cm diameter plexiglass cylinders.

  17. A preliminary analysis of the data from experiment 77-13 and final report on glass fining experiments in zero gravity

    NASA Technical Reports Server (NTRS)

    Wilcox, W. R.; Subramanian, R. S.; Meyyappan, M.; Smith, H. D.; Mattox, D. M.; Partlow, D. P.

    1981-01-01

    Thermal fining, thermal migration of bubbles under reduced gravity conditions, and data to verify current theoretical models of bubble location and temperatures as a function of time are discussed. A sample, sodium borate glass, was tested during 5 to 6 minutes of zero gravity during rocket flight. The test cell contained a heater strip; thermocouples were in the sample. At present quantitative data are insufficient to confirm results of theoretical calculations.

  18. Cautionary tales for reduced-gravity particle research

    NASA Technical Reports Server (NTRS)

    Marshall, John R.; Greeley, Ronald; Tucker, D. W.

    1987-01-01

    Failure of experiments conducted on the KC-135 aircraft in zero gravity are discussed. Tests that were a total failure are reported. Why the failure occurred and the sort of questions that potential researchers should ask in order to avoid the appearance of abstracts such as this are discussed. Many types of aggregation studies were proposed for the Space Station, and it is hoped that the following synopsis of events will add a touch of reality to experimentation proposed for this zero-gravity environment.

  19. Load Variation Influences on Joint Work During Squat Exercise in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    DeWitt, John K.; Fincke, Renita S.; Logan, Rachel L.; Guilliams, Mark E.; Ploutz-Snyder, Lori L.

    2011-01-01

    Resistance exercises that load the axial skeleton, such as the parallel squat, are incorporated as a critical component of a space exercise program designed to maximize the stimuli for bone remodeling and muscle loading. Astronauts on the International Space Station perform regular resistance exercise using the Advanced Resistive Exercise Device (ARED). Squat exercises on Earth entail moving a portion of the body weight plus the added bar load, whereas in microgravity the body weight is 0, so all load must be applied via the bar. Crewmembers exercising in microgravity currently add approx.70% of their body weight to the bar load as compensation for the absence of the body weight. This level of body weight replacement (BWR) was determined by crewmember feedback and personal experience without any quantitative data. The purpose of this evaluation was to utilize computational simulation to determine the appropriate level of BWR in microgravity necessary to replicate lower extremity joint work during squat exercise in normal gravity based on joint work. We hypothesized that joint work would be positively related to BWR load.

  20. An engineering approach to miogravity syndrome.

    PubMed

    Sieving, D L

    1997-04-01

    The human species is rapidly expanding. Barring global catastrophe and unnatural constraints, it will, in a brief time on the scale of natural history, fill the uttermost reaches of the solar system. The beachhead established by President Kennedy's lunar program will lead to lunar, Martian and free space settlements in the next century. In a single generation of those who call them home, the constant 9.81 m.s-2 pull of Earth's gravity, which has influenced the evolution and development of terrestrial life forms for billions of years, will fade from common experience. Miogravity syndrome, a prognosticated complex arising in reduced gravity environments such as the surfaces of the Moon and Mars and principally encompassing muscle atrophy, cardiovascular deconditioning and bone demineralization, stands to replace physics and rocketry as the fundamental challenge of interplanetary astronautics. Mirroring our past few million years of changing climate and resources, the mobility of humans between diverse gravitational environments on the high frontier will critically depend on our ability to adapt. Tomorrow, as ever, a mushrooming penchant for toolmaking will spearhead the human career.

  1. Multimode Acoustic Research

    NASA Technical Reports Server (NTRS)

    Barmatz, M.

    1985-01-01

    There is a need for high temperature containerless processing facilities that can efficiently position and manipulate molten samples in the reduced gravity environment of space. The goal of the research is to develop sophisticated high temperature manipulation capabilities such as selection of arbitrary axes rotation and rapid sample cooling. This program will investigate new classes of acoustic levitation in rectangular, cylindrical and spherical geometries. The program tasks include calculating theoretical expressions of the acoustic forces in these geometries for the excitation of up to three acoustic modes (multimodes). These calculations are used to: (1) determine those acoustic modes that produce stable levitation, (2) isolate the levitation and rotation capabilities to produce more than one axis of rotation, and (3) develop methods to translate samples down long tube cylindrical chambers. Experimental levitators will then be constructed to verify the stable levitation and rotation predictions of the models.

  2. Proton Exchange Membrane (PEM) fuel Cell for Space Shuttle

    NASA Technical Reports Server (NTRS)

    Hoffman, William C., III; Vasquez, Arturo; Lazaroff, Scott M.; Downey, Michael G.

    1999-01-01

    Development of a PEM fuel cell powerplant (PFCP) for use in the Space Shuttle offers multiple benefits to NASA. A PFCP with a longer design life than is delivered currently from the alkaline fuel will reduce Space Shuttle Program maintenance costs. A PFCP compatible with zero-gravity can be adapted for future NASA transportation and exploration programs. Also, the commercial PEM fuel cell industry ensures a competitive environment for select powerplant components. Conceptual designs of the Space Shuttle PFCP have resulted in identification of key technical areas requiring resolution prior to development of a flight system. Those technical areas include characterization of PEM fuel cell stack durability under operational conditions and water management both within and external to the stack. Resolution of the above issues is necessary to adequately control development, production, and maintenance costs for a PFCP.

  3. Microgravity Fluid Separation Physics: Experimental and Analytical Results

    NASA Technical Reports Server (NTRS)

    Shoemaker, J. Michael; Schrage, Dean S.

    1997-01-01

    Effective, low power, two-phase separation systems are vital for the cost-effective study and utilization of two-phase flow systems and flow physics of two-phase flows. The study of microgravity flows have the potential to reveal significant insight into the controlling mechanisms for the behavior of flows in both normal and reduced gravity environments. The microgravity environment results in a reduction in gravity induced buoyancy forces acting on the discrete phases. Thus, surface tension, viscous, and inertial forces exert an increased influence on the behavior of the flow as demonstrated by the axisymmetric flow patterns. Several space technology and operations groups have studied the flow behavior in reduced gravity since gas-liquid flows are encountered in several systems such as cabin humidity control, wastewater treatment, thermal management, and Rankine power systems.

  4. Computational Modeling Using OpenSim to Simulate a Squat Exercise Motion

    NASA Technical Reports Server (NTRS)

    Gallo, C. A.; Thompson, W. K.; Lewandowski, B. E.; Humphreys, B. T.; Funk, J. H.; Funk, N. H.; Weaver, A. S.; Perusek, G. P.; Sheehan, C. C.; Mulugeta, L.

    2015-01-01

    Long duration space travel to destinations such as Mars or an asteroid will expose astronauts to extended periods of reduced gravity. Astronauts will use an exercise regime for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Since the area available in the spacecraft for an exercise device is limited and gravity is not present to aid loading, compact resistance exercise device prototypes are being developed. Since it is difficult to rigorously test these proposed devices in space flight, computational modeling provides an estimation of the muscle forces, joint torques and joint loads during exercise to gain insight on the efficacy to protect the musculoskeletal health of astronauts.

  5. Development of the Two Phase Flow Separator Experiment for a Reduced Gravity Aircraft Flight

    NASA Technical Reports Server (NTRS)

    Golliher, Eric; Gotti, Daniel; Owens, Jay; Gilkey, Kelly; Pham, Nang; Stehno, Philip

    2016-01-01

    The recent hardware development and testing of a reduced gravity aircraft flight experiment has provided valuable insights for the future design of the Two Phase Flow Separator Experiment (TPFSE). The TPFSE is scheduled to fly within the Fluids Integration Rack (FIR) aboard the International Space Station (ISS) in 2020. The TPFSE studies the operational limits of gas and liquid separation of passive cyclonic separators. A passive cyclonic separator utilizes only the inertia of the incoming flow to accomplish the liquid-gas separation. Efficient phase separation is critical for environmental control and life support systems, such as recovery of clean water from bioreactors, for long duration human spaceflight missions. The final low gravity aircraft flight took place in December 2015 aboard NASA's C9 airplane.

  6. Lunar Landing Walking Simulator

    NASA Image and Video Library

    1965-09-03

    Lunar Landing Walking Simulator: Researchers at Langley study the ability of astronauts to walk, run and perform other tasks required during lunar exploration. The Reduced Gravity Simulator gave researchers the opportunity to look at the effects of one-sixth normal gravity on self-locomotion. Several Apollo astronauts practiced lunar waling at the facility.

  7. Evaluation and Comparison of the Processing Methods of Airborne Gravimetry Concerning the Errors Effects on Downward Continuation Results: Case Studies in Louisiana (USA) and the Tibetan Plateau (China).

    PubMed

    Zhao, Qilong; Strykowski, Gabriel; Li, Jiancheng; Pan, Xiong; Xu, Xinyu

    2017-05-25

    Gravity data gaps in mountainous areas are nowadays often filled in with the data from airborne gravity surveys. Because of the errors caused by the airborne gravimeter sensors, and because of rough flight conditions, such errors cannot be completely eliminated. The precision of the gravity disturbances generated by the airborne gravimetry is around 3-5 mgal. A major obstacle in using airborne gravimetry are the errors caused by the downward continuation. In order to improve the results the external high-accuracy gravity information e.g., from the surface data can be used for high frequency correction, while satellite information can be applying for low frequency correction. Surface data may be used to reduce the systematic errors, while regularization methods can reduce the random errors in downward continuation. Airborne gravity surveys are sometimes conducted in mountainous areas and the most extreme area of the world for this type of survey is the Tibetan Plateau. Since there are no high-accuracy surface gravity data available for this area, the above error minimization method involving the external gravity data cannot be used. We propose a semi-parametric downward continuation method in combination with regularization to suppress the systematic error effect and the random error effect in the Tibetan Plateau; i.e., without the use of the external high-accuracy gravity data. We use a Louisiana airborne gravity dataset from the USA National Oceanic and Atmospheric Administration (NOAA) to demonstrate that the new method works effectively. Furthermore, and for the Tibetan Plateau we show that the numerical experiment is also successfully conducted using the synthetic Earth Gravitational Model 2008 (EGM08)-derived gravity data contaminated with the synthetic errors. The estimated systematic errors generated by the method are close to the simulated values. In addition, we study the relationship between the downward continuation altitudes and the error effect. The analysis results show that the proposed semi-parametric method combined with regularization is efficient to address such modelling problems.

  8. Evaluation and Comparison of the Processing Methods of Airborne Gravimetry Concerning the Errors Effects on Downward Continuation Results: Case Studies in Louisiana (USA) and the Tibetan Plateau (China)

    PubMed Central

    Zhao, Qilong; Strykowski, Gabriel; Li, Jiancheng; Pan, Xiong; Xu, Xinyu

    2017-01-01

    Gravity data gaps in mountainous areas are nowadays often filled in with the data from airborne gravity surveys. Because of the errors caused by the airborne gravimeter sensors, and because of rough flight conditions, such errors cannot be completely eliminated. The precision of the gravity disturbances generated by the airborne gravimetry is around 3–5 mgal. A major obstacle in using airborne gravimetry are the errors caused by the downward continuation. In order to improve the results the external high-accuracy gravity information e.g., from the surface data can be used for high frequency correction, while satellite information can be applying for low frequency correction. Surface data may be used to reduce the systematic errors, while regularization methods can reduce the random errors in downward continuation. Airborne gravity surveys are sometimes conducted in mountainous areas and the most extreme area of the world for this type of survey is the Tibetan Plateau. Since there are no high-accuracy surface gravity data available for this area, the above error minimization method involving the external gravity data cannot be used. We propose a semi-parametric downward continuation method in combination with regularization to suppress the systematic error effect and the random error effect in the Tibetan Plateau; i.e., without the use of the external high-accuracy gravity data. We use a Louisiana airborne gravity dataset from the USA National Oceanic and Atmospheric Administration (NOAA) to demonstrate that the new method works effectively. Furthermore, and for the Tibetan Plateau we show that the numerical experiment is also successfully conducted using the synthetic Earth Gravitational Model 2008 (EGM08)-derived gravity data contaminated with the synthetic errors. The estimated systematic errors generated by the method are close to the simulated values. In addition, we study the relationship between the downward continuation altitudes and the error effect. The analysis results show that the proposed semi-parametric method combined with regularization is efficient to address such modelling problems. PMID:28587086

  9. Evaluation and Comparison of the Processing Methods of Airborne Gravimetry Concerning the Errors Effects on Downward Continuation Results: Case Studies in Louisiana (USA) and the Tibetan Plateau (China)

    NASA Astrophysics Data System (ADS)

    Zhao, Q.

    2017-12-01

    Gravity data gaps in mountainous areas are nowadays often filled in with the data from airborne gravity surveys. Because of the errors caused by the airborne gravimeter sensors, and because of rough flight conditions, such errors cannot be completely eliminated. The precision of the gravity disturbances generated by the airborne gravimetry is around 3-5 mgal. A major obstacle in using airborne gravimetry are the errors caused by the downward continuation. In order to improve the results the external high-accuracy gravity information e.g., from the surface data can be used for high frequency correction, while satellite information can be applying for low frequency correction. Surface data may be used to reduce the systematic errors, while regularization methods can reduce the random errors in downward continuation. Airborne gravity surveys are sometimes conducted in mountainous areas and the most extreme area of the world for this type of survey is the Tibetan Plateau. Since there are no high-accuracy surface gravity data available for this area, the above error minimization method involving the external gravity data cannot be used. We propose a semi-parametric downward continuation method in combination with regularization to suppress the systematic error effect and the random error effect in the Tibetan Plateau; i.e., without the use of the external high-accuracy gravity data. We use a Louisiana airborne gravity dataset from the USA National Oceanic and Atmospheric Administration (NOAA) to demonstrate that the new method works effectively. Furthermore, and for the Tibetan Plateau we show that the numerical experiment is also successfully conducted using the synthetic Earth Gravitational Model 2008 (EGM08)-derived gravity data contaminated with the synthetic errors. The estimated systematic errors generated by the method are close to the simulated values. In addition, we study the relationship between the downward continuation altitudes and the error effect. The analysis results show that the proposed semi-parametric method combined with regularization is efficient to address such modelling problems.

  10. Analyzing and modeling gravity and magnetic anomalies using the SPHERE program and Magsat data

    NASA Technical Reports Server (NTRS)

    Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator)

    1981-01-01

    Computer codes were completed, tested, and documented for analyzing magnetic anomaly vector components by equivalent point dipole inversion. The codes are intended for use in inverting the magnetic anomaly due to a spherical prism in a horizontal geomagnetic field and for recomputing the anomaly in a vertical geomagnetic field. Modeling of potential fields at satellite elevations that are derived from three dimensional sources by program SPHERE was made significantly more efficient by improving the input routines. A preliminary model of the Andean subduction zone was used to compute the anomaly at satellite elevations using both actual geomagnetic parameters and vertical polarization. Program SPHERE is also being used to calculate satellite level magnetic and gravity anomalies from the Amazon River Aulacogen.

  11. NASA Workshop on Animal Gravity-Sensing Systems

    NASA Technical Reports Server (NTRS)

    Corcoran, M. L. (Editor)

    1986-01-01

    The opportunity for space flight has brought about the need for well-planned research programs that recognize the significance of space flight as a scientific research tool for advancing knowledge of life on Earth, and that utilize each flight opportunity to its fullest. For the first time in history, gravity can be almost completely eliminated. Thus, studies can be undertaken that will help to elucidate the importance of gravity to the normal functioning of living organisms, and to determine the effects microgravity may have on an organism. This workshop was convened to organize a plan for space research on animal gravity-sensing systems and the role that gravity plays in the development and normal functioning of these systems. Scientists working in the field of animal gravity-sensing systems use a wide variety of organisms in their research. The workshop presentations dealt with topics which ranged from the indirect gravity receptor of the water flea, Daphnia (whose antennal setae apparently act as current-sensing receptors as the animal moves up and down in water), through specialized statocyst structures found in jellyfish and gastropods, to the more complex vestibular systems that are characteristic of amphibians, avians, and mammals.

  12. Installation Restoration Program Records Search for 132 Tactical Fighter Wing, Iowa Air National Guard, Des Moines Municipal Airport.

    DTIC Science & Technology

    1983-09-01

    underlain by soils of the Gravity series and " of the Wabash -Gravity-Nodaway complex. These soils, primarily silty clay loams, are formed in fine...Electric Shop The electric shop is located in Facility No. 100. Wastes generated from this area include nickel- S cadmium batteries (24/year) and sulfuric

  13. Microgravity Apparatus And Ground-Based Study Of The Flame Propagation And Quenching In Metal Dust Suspensions

    NASA Technical Reports Server (NTRS)

    Goroshin, Sam; Kolbe, Massimilliano; Bellerose, Julie; Lee, John

    2003-01-01

    Due to particle sedimentation and relatively low laminar flame speeds in dust suspensions, microgravity environment is essential for the observation of laminar dust flames in a wide range of particle sizes and fuel concentrations [1]. The capability of a reduced-gravity environment to facilitate study of dust combustion was realized by researchers long before current microgravity programs were established by the various national Space Agencies. Thus, several experimentalists even built their own, albeit very short-duration, drop tower facilities to study flames in particle and droplet suspensions [2,3]. About ten years ago, authors of the present paper started their dust combustion reduced gravity research with the investigation of the constant volume dust flames in a spherical-bomb on board a parabolic flight aircraft [4]. However it was soon realized that direct observation of the constant-pressure flame might be more beneficial. Thus, microgravity apparatus, permitting examination of the freely propagating flames in open-end tubes, was tested in parabolic flights three years later [5]. The improved design of the newlyconstructed apparatus for the experiments on board the NASA KC-135 aircraft is also based on the observation of the dust flame propagating in semi-opened tubes with free expansion of the combustion products that are continuously vented overboard. The apparatus design and results of its extensive ground-based testing are presented below.

  14. Crystal nucleation and glass formation in metallic alloy melts

    NASA Technical Reports Server (NTRS)

    Spaepen, F.

    1984-01-01

    Homogeneous nucleation, containerless solidification, and bulk formation of metallic glasses are discussed. Homogeneous nucleation is not a limiting factor for metallic glass formation at slow cooling rates if the reduced glass transition temperature is high enough. Such glasses can be made in bulk if heterogeneous nucleants are removed. Containerless processing eleminates potential sources of nucleants, but as drop tube experiments on the Pd-Si alloys show, the free surface may still be a very effective heterogeneous nucleant. Combination of etching and heating in vacuum or fluxing can be effective for cleaning fairly large ingots of nucleants. Reduced gravity processing has a potentially useful role in the fluxing technique, for example to keep large metallic ingots surrounded by a low density, low fluidity flux if this proved difficult under ground conditions. For systems where heterogeneous nucleants in the bulk of the ingot need gravity to segregate to the flux-metal interface, reduced gravity processing may not be appropriate for bulk glass formation.

  15. A modified oxic-settling-anaerobic activated sludge process using gravity thickening for excess sludge reduction

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Li, Shi-Yu; Jiang, Feng; Wu, Ke; Liu, Guang-Li; Lu, Hui; Chen, Guang-Hao

    2015-09-01

    Oxic-settling-anaerobic process (OSA) was known as a cost-effective way to reduce the excess sludge production with simple upgrade of conventional activated sludge process (CAS). A low oxidation-reduction potential (ORP) level was the key factor to sludge decay and lysis in the sludge holding tank of the OSA process. However, the ORP control with nitrogen purge or chemical dosing in the OSA process would induce extra expense and complicate the operation. Hence, in this study, a sludge holding tank using gravity thickening was applied to OSA process to reduce the excess sludge production without any ORP control. Results showed that the modified OSA process not only reduced the excess sludge production effectively but also improved the sludge settleability without affected the treatment capacity. The reduction of the excess sludge production in the modified OSA process resulted from interactions among lots of factors. The key element of the process was the gravity thickening sludge holding tank.

  16. Separation of Non-metallic Inclusions from a Fe-Al-O Melt Using a Super-Gravity Field

    NASA Astrophysics Data System (ADS)

    Song, Gaoyang; Song, Bo; Guo, Zhancheng; Yang, Yuhou; Song, Mingming

    2018-02-01

    An innovative method for separating non-metallic inclusions from a high temperature melt using super gravity was systematically investigated. To explore the separation behavior of inclusion particles with densities less than that of metal liquid under a super-gravity field, a Fe-Al-O melt containing Al2O3 particles was treated with different gravity coefficients. Al2O3 particles migrated rapidly towards the reverse direction of the super gravity and gathered in the upper region of the sample. It was hard to find any inclusion particles with sizes greater than 2 μm in the middle and bottom areas. Additionally, the oxygen content in the middle region of the sample could be reduced to 0.0022 mass pct and the maximum removal rate of the oxygen content reached 61.4 pct. The convection in the melt along the direction of the super gravity was not generated by the super-gravity field, and the fluid velocity in the molten melt consisted only of the rotating tangential velocity. Moreover, the motion behavior of the Al2O3 particles was approximatively determined by Stokes' law along the direction of super gravity.

  17. Zero-Gravity Research Facility Drop Test (2/4)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physcis, and combustion and processing systems. Payloads up to 1 meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 2 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  18. Zero-Gravity Research Facility Drop Test (1/4)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to 1 meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No.1 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  19. Zero-Gravity Research Facility Drop Test (3/4)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    An experiment vehicle plunges into the deceleration at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to one-meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 3 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  20. Zero-Gravity Research Facility Drop Test (4/4)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to one meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 4 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  1. Bubble Generation in a Continuous Liquid Flow Under Reduced Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Pais, Salvatore Cezar

    1999-01-01

    The present work reports a study of bubble generation under reduced gravity conditions for both co-flow and cross-flow configurations. Experiments were performed aboard the DC-9 Reduced Gravity Aircraft at NASA Glenn Research Center, using an air-water system. Three different flow tube diameters were used: 1.27, 1.9, and 2.54 cm. Two different ratios of air injection nozzle to tube diameters were considered: 0.1 and 0.2. Gas and liquid volumetric flow rates were varied from 10 to 200 ml/s. It was experimentally observed that with increasing superficial liquid velocity, the bubbles generated decreased in size. The bubble diameter was shown to increase with increasing air injection nozzle diameters. As the tube diameter was increased, the size of the detached bubbles increased. Likewise, as the superficial liquid velocity was increased, the frequency of bubble formation increased and thus the time to detach forming bubbles decreased. Independent of the flow configuration (for either single nozzle or multiple nozzle gas injection), void fraction and hence flow regime transition can be controlled in a somewhat precise manner by solely varying the gas and liquid volumetric flow rates. On the other hand, it is observed that uniformity of bubble size can be controlled more accurately by using single nozzle gas injection than by using multiple port injection, since this latter system gives rise to unpredictable coalescence of adjacent bubbles. A theoretical model, based on an overall force balance, is employed to study single bubble generation in the dynamic and bubbly flow regime. Under conditions of reduced gravity, the gas momentum flux enhances bubble detachment; however, the surface tension forces at the nozzle tip inhibits bubble detachment. Liquid drag and inertia can act either as attaching or detaching force, depending on the relative velocity of the bubble with respect to the surrounding liquid. Predictions of the theoretical model compare well with performed experiments. However, at higher superficial,liquid velocities, the bubble neck length begins to significantly deviate from the value of the air injection nozzle diameter and thus the theory no longer predicts the experiment behavior. Effects of fluid properties, injection geometry and flow conditions on generated bubble size are investigated using the theoretical model. It is shown that bubble diameter is larger in a reduced gravity environment than in a normal gravity environment at similar flow condition and flow geometry.

  2. Effect of Gravity on the Mammalian Cell Deformation

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Tsao, Y.; Gonda, Steven

    1995-01-01

    The effect of human cell immersed in culture liquid under a micro-gravity environment has been investigated. The study is based on the numerical simulation of the configuration of human cell affected by the time dependent variation of gravity acceleration ranging from 10(exp -3) to 2 g(sub o) (g(sub o) = 9.81 m/s(exp 2)) in 15 seconds. Both the free floating cell and the cell contacted to the upper and lower inclined walls imposed by the time-dependent reduced gravity acceleration are considered in this study. The results show that the cell configuration changes from spherical to horizontally elongated ellipsoid for both the free floating cell and the cell sitting on the lower inclined wall while the cell configuration varies from spherical to vertically elongated ellipsoid for the cell hanging to the upper inclined wall when the gravity acceleration increases. Experimental observations, carried out of human cells exposed to the variation of gravity levels, show that the results of experimental observations agree exactly with the theoretical model computation described in this paper. These results sre significant for humans exposed to the micro-gravity environment.

  3. Extinguishment of a Diffusion Flame Over a PMMA Cylinder by Depressurization in Reduced-Gravity

    NASA Technical Reports Server (NTRS)

    Goldmeer, Jeffrey Scott

    1996-01-01

    Extinction of a diffusion flame burning over horizontal PMMA (Polymethyl methacrylate) cylinders in low-gravity was examined experimentally and via numerical simulations. Low-gravity conditions were obtained using the NASA Lewis Research Center's reduced-gravity aircraft. The effects of velocity and pressure on the visible flame were examined. The flammability of the burning solid was examined as a function of pressure and the solid-phase centerline temperature. As the solid temperature increased, the extinction pressure decreased, and with a centerline temperature of 525 K, the flame was sustained to 0.1 atmospheres before extinguishing. The numerical simulation iteratively coupled a two-dimensional quasi-steady, gas-phase model with a transient solid-phase model which included conductive heat transfer and surface regression. This model employed an energy balance at the gas/solid interface that included the energy conducted by the gas-phase to the gas/solid interface, Arrhenius pyrolysis kinetics, surface radiation, and the energy conducted into the solid. The ratio of the solid and gas-phase conductive fluxes Phi was a boundary condition for the gas-phase model at the solid-surface. Initial simulations modeled conditions similar to the low-gravity experiments and predicted low-pressure extinction limits consistent with the experimental limits. Other simulations examined the effects of velocity, depressurization rate and Phi on extinction.

  4. Suboptimal evolutionary novel environments promote singular altered gravity responses of transcriptome during Drosophila metamorphosis

    PubMed Central

    2013-01-01

    Background Previous experiments have shown that the reduced gravity aboard the International Space Station (ISS) causes important alterations in Drosophila gene expression. These changes were shown to be intimately linked to environmental space-flight related constraints. Results Here, we use an array of different techniques for ground-based simulation of microgravity effects to assess the effect of suboptimal environmental conditions on the gene expression of Drosophila in reduced gravity. A global and integrative analysis, using “gene expression dynamics inspector” (GEDI) self-organizing maps, reveals different degrees in the responses of the transcriptome when using different environmental conditions or microgravity/hypergravity simulation devices. Although the genes that are affected are different in each simulation technique, we find that the same gene ontology groups, including at least one large multigene family related with behavior, stress response or organogenesis, are over represented in each case. Conclusions These results suggest that the transcriptome as a whole can be finely tuned to gravity force. In optimum environmental conditions, the alteration of gravity has only mild effects on gene expression but when environmental conditions are far from optimal, the gene expression must be tuned greatly and effects become more robust, probably linked to the lack of experience of organisms exposed to evolutionary novel environments such as a gravitational free one. PMID:23806134

  5. Experimental investigation of gravity effects on sediment sorting on Mars

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.; Kuhn, Brigitte; Gartmann, Andres

    2014-05-01

    Sorting of sedimentary rocks is a proxy for the environmental conditions at the time of deposition, in particular the runoff that moved and deposited the material forming the rocks. Settling of sediment is strongly influenced by the gravity of a planetary body. As a consequence, sorting of a sedimentary rock varies with gravity for a given depth and velocity of surface runoff. Theoretical considerations for spheres indicate that sorting is more uniform on Mars than on Earth for runoff of identical depth. In reality, such considerations have to be applied with great caution because the shape of a particle strongly influences drag. Drag itself can only be calculated directly for an irregularly shaped particle with great computational effort, if at all. Therefore, even for terrestrial applications, sediment settling velocities are often determined directly, e.g. by measurements using settling tubes. In this study the results of settling tube tests conducted under reduced gravity during three experimental flights conducted in November 2012 and 2013 are presented. Nine types of sediment, ranging in size, shape and density were tested in custom-designed settling tubes during parabolas of Martian gravity lasting 20 to 25 seconds. Based on the observed settling velocities, the applicability of empirical relationships developed on Earth to assess particle settling on Mars are discussed. In addition, the potential effects of reduced gravity on the sorting of sedimentary rocks and their use as a proxy for runoff and thus environmental conditions on Mars are examined.

  6. Ignition and Combustion of Bulk Metals in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Branch, Melvyn C.; Daily, John W.; Abbud-Madrid, Angel

    1999-01-01

    Results of a study of heterogeneous and homogeneous combustion of metals in reduced gravity are presented. Cylindrical titanium and magnesium samples are radiatively ignited in pure-oxygen at 1 atm. Qualitative observations, propagation rates, and burning times are extracted from high-speed cinematography. Time-resolved emission spectra of gas-phase reactions are acquired with an imaging spectrograph. Lower propagation rates of the reacting mass on titanium and of ignition waves on magnesium are obtained at reduced gravity. These rates are compared to theoretical results from fire-spread analyses with a diffusion/convection controlled reaction. The close agreement found between experimental and theoretical propagation rates indicates the strong influence of natural-convection-enhanced oxygen transp6rt on burning rates. Lower oxygen flux and lack of condensed product removal appear to be responsible for longer burning times of magnesium gas-phase diffusion flames in reduced gravity. Spherically symmetric explosions in magnesium flames at reduced gravity (termed radiation-induced metal explosions, or RIME) may be driven by increased radiation heat transfer from accumulated condensed products to an evaporating metal core covered by a porous, flexible oxide coating. In titanium specimens, predominantly heterogeneous burning characterizes the initial steady propagation of the molten mass, while homogeneous gas-phase reactions are detected around particles ejected from the molten mixture. In magnesium specimens, band and line reversal of all the UV spectral systems of Mg and MgO are attributed to the interaction between small oxide particles and the principal gaseous emitters.

  7. Gravitational Effects on Closed-Cellular-Foam Microstructure

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Cronise, Raymond J.; Wessling, Francis C.; McMannus, Samuel P.; Mathews, John; Patel, Darayas

    1996-01-01

    Polyurethane foam has been produced in low gravity for the first time. The cause and distribution of different void or pore sizes are elucidated from direct comparison of unit-gravity and low-gravity samples. Low gravity is found to increase the pore roundness by 17% and reduce the void size by 50%. The standard deviation for pores becomes narrower (a more homogeneous foam is produced) in low gravity. Both a Gaussian and a Weibull model fail to describe the statistical distribution of void areas, and hence the governing dynamics do not combine small voids in either a uniform or a dependent fashion to make larger voids. Instead, the void areas follow an exponential law, which effectively randomizes the production of void sizes in a nondependent fashion consistent more with single nucleation than with multiple or combining events.

  8. Semiconductor Crystal Growth in Static and Rotating Magnetic fields

    NASA Technical Reports Server (NTRS)

    Volz, Martin

    2004-01-01

    Magnetic fields have been applied during the growth of bulk semiconductor crystals to control the convective flow behavior of the melt. A static magnetic field established Lorentz forces which tend to reduce the convective intensity in the melt. At sufficiently high magnetic field strengths, a boundary layer is established ahead of the solid-liquid interface where mass transport is dominated by diffusion. This can have a significant effect on segregation behavior and can eliminate striations in grown crystals resulting from convective instabilities. Experiments on dilute (Ge:Ga) and solid solution (Ge-Si) semiconductor systems show a transition from a completely mixed convective state to a diffusion-controlled state between 0 and 5 Tesla. In HgCdTe, radial segregation approached the diffusion limited regime and the curvature of the solid-liquid interface was reduced by a factor of 3 during growth in magnetic fields in excess of 0.5 Tesla. Convection can also be controlled during growth at reduced gravitational levels. However, the direction of the residual steady-state acceleration vector can compromise this effect if it cannot be controlled. A magnetic field in reduced gravity can suppress disturbances caused by residual transverse accelerations and by random non-steady accelerations. Indeed, a joint program between NASA and the NHMFL resulted in the construction of a prototype spaceflight magnet for crystal growth applications. An alternative to the suppression of convection by static magnetic fields and reduced gravity is the imposition of controlled steady flow generated by rotating magnetic fields (RMF)'s. The potential benefits of an RMF include homogenization of the melt temperature and concentration distribution, and control of the solid-liquid interface shape. Adjusting the strength and frequency of the applied magnetic field allows tailoring of the resultant flow field. A limitation of RMF's is that they introduce deleterious instabilities above a critical magnetic field value. Growth conditions in which static magnetic fields rotational magnetic fields, and reduced gravitational levels can have a beneficial role will be described.

  9. Gravity and Biology

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily R.

    1996-01-01

    Gravity has been the most constant environmental factor throughout the evolution of biological species on Earth. Organisms are rarely exposed to other gravity levels, either increased or decreased, for prolonged periods. Thus, evolution in a constant 1G field has historically prevented us from appreciating the potential biological consequences of a multi-G universe. To answer the question 'Can terrestrial life be sustained and thrive beyond our planet?' we need to understand the importance of gravity on living systems, and we need to develop a multi-G, rather than a 1G, mentality. The science of gravitational biology took a giant step with the advent of the space program, which provided the first opportunity to examine living organisms in gravity environments lower than could be sustained on Earth. Previously, virtually nothing was known about the effects of extremely low gravity on living organisms, and most of the initial expectations were proven wrong. All species that have flown in space survive in microgravity, although no higher organism has ever completed a life cycle in space. It has been found, however, that many systems change, transiently or permanently, as a result of prolonged exposure to microgravity.

  10. Effects of preheated combustion air on laminar coflow diffusion flames under normal and microgravity conditions

    NASA Astrophysics Data System (ADS)

    Ghaderi Yeganeh, Mohammad

    Global energy consumption has been increasing around the world, owing to the rapid growth of industrialization and improvements in the standard of living. As a result, more carbon dioxide and nitrogen oxide are being released into the environment. Therefore, techniques for achieving combustion at reduced carbon dioxide and nitric oxide emission levels have drawn increased attention. Combustion with a highly preheated air and low-oxygen concentration has been shown to provide significant energy savings, reduce pollution and equipment size, and uniform thermal characteristics within the combustion chamber. However, the fundamental understanding of this technique is limited. The motivation of the present study is to identify the effects of preheated combustion air on laminar coflow diffusion flames. Combustion characteristics of laminar coflow diffusion flames are evaluated for the effects of preheated combustion air temperature under normal and low-gravity conditions. Experimental measurements are conducted using direct flame photography, particle image velocimetry (PIV) and optical emission spectroscopy diagnostics. Laminar coflow diffusion flames are examined under four experimental conditions: normal-temperature/normal-gravity (case I), preheated-temperature/normal gravity (case II), normal-temperature/low-gravity (case III), and preheated-temperature/low-gravity (case IV). Comparisons between these four cases yield significant insights. In our studies, increasing the combustion air temperature by 400 K (from 300 K to 700 K), causes a 37.1% reduction in the flame length and about a 25% increase in peak flame temperature. The results also show that a 400 K increase in the preheated air temperature increases CH concentration of the flame by about 83.3% (CH is a marker for the rate of chemical reaction), and also increases the C2 concentration by about 60% (C2 is a marker for the soot precursor). It can therefore be concluded that preheating the combustion air increases the energy release intensity, flame temperature, C2 concentration, and, presumably, NOx production. Our work is the first to consider preheated temperature/low-gravity combustion. The results of our experiments reveal new insights. Where as increasing the temperature of the combustion air reduces the laminar flame width under normal gravity, we find that, in a low-gravity environment, increasing the combustion air temperature causes a significant increase in the flame width.

  11. Preliminary flight prototype waste collection subsystem. [performance of waste disposal system in weightless environment

    NASA Technical Reports Server (NTRS)

    Swider, J. E., Jr.

    1974-01-01

    The zero gravity test program demonstrated the feasibility and practicability of collecting urine from both male and female crew members in a zero gravity environment in an earthlike manner not requiring any manual handling of urine containers. In addition, the testing demonstrated that a seat which is comfortable in both regimes of operation could be designed for use on the ground and in zero-gravity. Further, the tests showed that the vortex liquid/air separator is an effective liquid/air separation method in zero gravity. Visual observations indicate essentially zero liquid carry over. The system also demonstrated its ability to handle post elimination wipes without difficulty. The designs utilized in the WCS were verified as acceptable for usage in the space shuttle or other space vehicles.

  12. An Evaluation of the Vapor Phase Catalytic Ammonia Removal Process for Use in a Mars Transit Vehicle

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Borchers, Bruce

    1998-01-01

    An experimental program has been developed to evaluate the potential of the Vapor Phase Catalytic Ammonia Reduction (VPCAR) technology for use as a Mars Transit Vehicle water purification system. Design modifications which will be required to ensure proper operation of the VPCAR system in reduced gravity are also evaluated. The VPCAR system is an integrated wastewater treatment technology that combines a distillation process with high temperature catalytic oxidation. The distillation portion of the system utilizes a vapor compression distillation process to provide an energy efficient phase change separation. This portion of the system removes any inorganic salts and large molecular weight, organic contaminates, i.e., non-volatile, from the product water stream and concentrates these contaminates into a byproduct stream. To oxidize the volatile organic compounds and ammonia, a vapor phase, high temperature catalytic oxidizer is used. This catalytic system converts these compounds along with the aqueous product into CO2, H2O, and N2O. A secondary catalytic bed can then be used to reduce the N2O to nitrogen and oxygen (although not evaluated in this study). This paper describes the design specification of the VPCAR process, the relative benefits of its utilization in a Mars Transit Vehicle, and the design modification which will be required to ensure its proper operation in reduced gravity. In addition, the results of an experimental evaluation of the processors is presented. This evaluation presents the processors performance based upon product water purity, water recovery rates, and power.

  13. Signal transduction in primary human T lymphocytes in altered gravity during parabolic flight and clinostat experiments.

    PubMed

    Tauber, Svantje; Hauschild, Swantje; Paulsen, Katrin; Gutewort, Annett; Raig, Christiane; Hürlimann, Eva; Biskup, Josefine; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Pantaleo, Antonella; Cogoli, Augusto; Pippia, Proto; Layer, Liliana E; Thiel, Cora S; Ullrich, Oliver

    2015-01-01

    Several limiting factors for human health and performance in microgravity have been clearly identified arising from the immune system, and substantial research activities are required in order to provide the basic information for appropriate integrated risk management. The gravity-sensitive nature of cells of the immune system renders them an ideal biological model in search for general gravity-sensitive mechanisms and to understand how the architecture and function of human cells is related to the gravitational force and therefore adapted to life on Earth. We investigated the influence of altered gravity in parabolic flight and 2D clinostat experiments on key proteins of activation and signaling in primary T lymphocytes. We quantified components of the signaling cascade 1.) in non-activated T lymphocytes to assess the "basal status" of the cascade and 2.) in the process of activation to assess the signal transduction. We found a rapid decrease of CD3 and IL-2R surface expression and reduced p-LAT after 20 seconds of altered gravity in non-activated primary T lymphocytes during parabolic flight. Furthermore, we observed decreased CD3 surface expression, reduced ZAP-70 abundance and increased histone H3-acetylation in activated T lymphocytes after 5 minutes of clinorotation and a transient downregulation of CD3 and stable downregulation of IL-2R during 60 minutes of clinorotation. CD3 and IL-2R are downregulated in primary T lymphocytes in altered gravity. We assume that a gravity condition around 1g is required for the expression of key surface receptors and appropriate regulation of signal molecules in T lymphocytes. © 2015 S. Karger AG, Basel.

  14. Hierarchical clustering in chameleon f(R) gravity

    NASA Astrophysics Data System (ADS)

    Hellwing, Wojciech A.; Li, Baojiu; Frenk, Carlos S.; Cole, Shaun

    2013-11-01

    We use a suite of high-resolution state-of-the-art N-body dark matter simulations of chameleon f(R) gravity to study the higher order volume-averaged correlation functions overline{ξ _n} together with the hierarchical nth-order correlation amplitudes S_n=overline{ξ }_n/overline{ξ }_2^{n-1} and density distribution functions (PDF). We show that under the non-linear modifications of gravity the hierarchical scaling of the reduced cumulants is preserved. This is however characterized by significant changes in the values of both overline{ξ _n} and Sn and their scale dependence with respect to General Relativity gravity (GR). In addition, we measure a significant increase of the non-linear σ8 parameter reaching 14, 5 and 0.5 per cent in excess of the GR value for the three flavours of our f(R) models. We further note that the values of the reduced cumulants up to order n = 9 are significantly increased in f(R) gravity for all our models at small scales R ≲ 30 h-1 Mpc. In contrast, the values of the hierarchical amplitudes, Sn, are smaller in f(R) indicating that the modified gravity density distribution functions are deviating from the GR case. Furthermore, we find that the redshift evolution of relative deviations of the f(R) hierarchical correlation amplitudes is fastest at high and moderate redshifts 1 ≤ z ≤ 4. The growth of these deviations significantly slows down in the low-redshift universe. We also compute the PDFs and show that for scales below ˜20 h-1 Mpc, they are significantly shifted in f(R) gravity towards the low densities. Finally, we discuss the implications of our theoretical predictions for measurements of the hierarchical clustering in galaxy redshift surveys, including the important problems of the galaxy biasing and redshift space distortions.

  15. The Effect of Center of Gravity and Anthropometrics on Human Performance in Simulated Lunar and Mars Gravity

    NASA Technical Reports Server (NTRS)

    Mulugeta, Lealem; Chappell, Steven P.

    2009-01-01

    Drawing from the experiences of the Apollo missions, it is evident that the off nominal center of gravity (CG) induced by the portable life support system (PLSS) had significant impact on the locomotion stability of the crew. This in turn is believed to have been a major contributor to the high numbers of falls and high metabolic rates experienced by the crew, and thus significantly hampered the crew s performance. With this in mind, the EVA Physiology, Systems and Performance (EPSP) group at the NASA Johnson Space Center (JSC) has been conducting tests to assess how spacesuit CG location impacts human performance in simulated lunar and Mars gravity. The results acquired to date show correlations between CG location and performance. However, noticeable variations in the performance data have been observed across subjects for fixed CG configurations. Consequently, it was hypothesized that this variability may be attributed to the anthropometrics of the different test subjects. It was further hypothesized that trunk-to-height ratio (THR) may be directly correlated to performance in reduced gravity; i.e. subjects with increased THR may have increased performance. To test this hypothesis, lunar and Mars gravity test data acquired over three years during NASA Neural Buoyancy Lab (NBL) tests and NASA Extreme Environment Missions Operation (NEEMO) missions were analyzed against THR, height, trunk length, and subject body mass/weight. The results of the study supported the hypothesis relating THR and performance, while the other three anthropometric parameters did not provide consistent correlations with performance. This in turn suggests that human performance in reduced gravity may be more dependent on anthropometric proportions than on body segment lengths and mass/weight.

  16. Probing the Spatio-Temporal Characteristics of Temporal Aliasing Errors and their Impact on Satellite Gravity Retrievals

    NASA Astrophysics Data System (ADS)

    Wiese, D. N.; McCullough, C. M.

    2017-12-01

    Studies have shown that both single pair low-low satellite-to-satellite tracking (LL-SST) and dual-pair LL-SST hypothetical future satellite gravimetry missions utilizing improved onboard measurement systems relative to the Gravity Recovery and Climate Experiment (GRACE) will be limited by temporal aliasing errors; that is, the error introduced through deficiencies in models of high frequency mass variations required for the data processing. Here, we probe the spatio-temporal characteristics of temporal aliasing errors to understand their impact on satellite gravity retrievals using high fidelity numerical simulations. We find that while aliasing errors are dominant at long wavelengths and multi-day timescales, improving knowledge of high frequency mass variations at these resolutions translates into only modest improvements (i.e. spatial resolution/accuracy) in the ability to measure temporal gravity variations at monthly timescales. This result highlights the reliance on accurate models of high frequency mass variations for gravity processing, and the difficult nature of reducing temporal aliasing errors and their impact on satellite gravity retrievals.

  17. A test of Hořava gravity: the dark energy

    NASA Astrophysics Data System (ADS)

    Park, Mu-In

    2010-01-01

    Recently Hořava proposed a renormalizable gravity theory with higher spatial derivatives in four dimensions which reduces to Einstein gravity with a non-vanishing cosmological constant in IR but with improved UV behaviors. Here, I consider a non-trivial test of the new gravity theory in FRW universe by considering an IR modification which breaks ``softly'' the detailed balance condition in the original Hořava model. I separate the dark energy parts from the usual Einstein gravity parts in the Friedman equations and obtain the formula of the equations of state parameter. The IR modified Hořava gravity seems to be consistent with the current observational data but we need some more refined data sets to see whether the theory is really consistent with our universe. From the consistency of our theory, I obtain some constraints on the allowed values of w0 and wa in the Chevallier, Polarski, and Linder's parametrization and this may be tested in the near future, by sharpening the data sets.

  18. Effects of high gravity on amphibian development.

    PubMed

    Kashiwagi, Akihiko; Hanada, Hideki; Kawakami, Satomi; Kubo, Hideo; Shinkai, Tadashi; Fujii, Hirotada; Kashiwagi, Keiko

    2003-10-01

    In order to clarify the possible effects of high gravity environments on eggs and developing embryos, Rana rugosa and Xenopus laevis fertilized eggs and early embryos were raised in 2 G, 5 G, 7 G and 10 G up to the hatched tadpole stage. The results showed that: (1) High gravity significantly retarded the development of eggs and embryos beginning treatment before the blastula stage and induced various abnormalities, including two heads and microcephally suggesting that high gravity is apt to disrupt the animal-vegital axis. On the other hand, embryos beginning treatment after the gastrula stage showed a striking increase in the number of normal-appearing feeding tadpoles. (2) Autopsy revealed that brains, notochords and muscles were reduced in development and differentiation for embryos and tadpoles developed in high gravity. (3) It seems likely that the system for hydrogen peroxide detoxification develops abnormally in high gravity-treated embryos and tadpoles, which probably results in oxidative stress, leading to considerable cell damage.

  19. Saltation under Martian gravity and its influence on the global dust distribution

    NASA Astrophysics Data System (ADS)

    Musiolik, Grzegorz; Kruss, Maximilian; Demirci, Tunahan; Schrinski, Björn; Teiser, Jens; Daerden, Frank; Smith, Michael D.; Neary, Lori; Wurm, Gerhard

    2018-05-01

    Dust and sand motion are a common sight on Mars. Understanding the interaction of atmosphere and Martian soil is fundamental to describe the planet's weather, climate and surface morphology. We set up a wind tunnel to study the lift of a mixture between very fine sand and dust in a Mars simulant soil. The experiments were carried out under Martian gravity in a parabolic flight. The reduced gravity was provided by a centrifuge under external microgravity. The onset of saltation was measured for a fluid threshold shear velocity of 0.82 ± 0.04 m/s. This is considerably lower than found under Earth gravity. In addition to a reduction in weight, this low threshold can be attributed to gravity dependent cohesive forces within the sand bed, which drop by 2/3 under Martian gravity. The new threshold for saltation leads to a simulation of the annual dust cycle with a Mars GCM that is in agreement with observations.

  20. Three-Dimensional Upward Flame Spreading in Partial-Gravity Buoyant Flows

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt R.; Feier, Ioan I.; Shih, Hsin-Yi; T'ien, James S.

    2001-01-01

    Reduced-gravity environments have been used to establish low-speed, purely forced flows for both opposed- and concurrent-flow flame spread studies. Altenkirch's group obtained spacebased experimental results and developed unsteady, two-dimensional numerical simulations of opposed-flow flame spread including gas-phase radiation, primarily away from the flammability limit for thin fuels, but including observations of thick fuel quenching in quiescent environments. T'ien's group contributed some early flame spreading results for thin fuels both in opposed flow and concurrent flow regimes, with more focus on near-limit conditions. T'ien's group also developed two- and three-dimensional numerical simulations of concurrent-flow flame spread incorporating gas-phase radiative models, including predictions of a radiatively-induced quenching limit reached in very low-speed air flows. Radiative quenching has been subsequently observed in other studies of combustion in very low-speed flows including other flame spread investigations, droplet combustion and homogeneous diffusion flames, and is the subject of several contemporary studies reported in this workshop. Using NASA aircraft flying partial-gravity "parabolic" trajectories, flame spreading in purely buoyant, opposed-flow (downward burning) has been studied. These results indicated increases in flame spread rates and enhanced flammability (lower limiting atmospheric oxygen content) as gravity levels were reduced from normal Earth gravity, and were consistent with earlier data obtained by Altenkirch using a centrifuge. In this work, experimental results and a three-dimensional numerical simulation of upward flame spreading in variable partial-gravity environments were obtained including some effects of reduced pressure and variable sample width. The simulation provides physical insight for interpreting the experimental results and shows the intrinsic 3-D nature of buoyant, upward flame spreading. This study is intended to link the evolving understanding of flame spreading in purely-forced flows to the purely-buoyant flow environment, particularly in the concurrent flow regime; provide additional insight into the existence of steady flame spread in concurrent flows; and stimulate direct comparisons between opposed- and concurrent-flow flame spread. Additionally, this effort is intended to provide direct practical understanding applicable to fire protection planning for the habitable facilities in partial gravity environments of anticipated Lunar and Martian explorations.

  1. Intravenous Fluid Mixing in Normal Gravity, Partial Gravity, and Microgravity: Down-Selection of Mixing Methods

    NASA Technical Reports Server (NTRS)

    Niederhaus, Charles E.; Miller, Fletcher J.

    2008-01-01

    The missions envisioned under the Vision for Space Exploration will require development of new methods to handle crew medical care. Medications and intravenous (IV) fluids have been identified as one area needing development. Storing certain medications and solutions as powders or concentrates can both increase the shelf life and reduce the overall mass and volume of medical supplies. The powders or concentrates would then be mixed in an IV bag with Sterile Water for Injection produced in situ from the potable water supply. Fluid handling in microgravity is different than terrestrial settings, and requires special consideration in the design of equipment. This document describes the analyses and down-select activities used to identify the IV mixing method to be developed that is suitable for ISS and exploration missions. The chosen method is compatible with both normal gravity and microgravity, maintains sterility of the solution, and has low mass and power requirements. The method will undergo further development, including reduced gravity aircraft experiments and computations, in order to fully develop the mixing method and associated operational parameters.

  2. Ballistic Mercury orbiter mission via Venus and Mercury gravity assists

    NASA Astrophysics Data System (ADS)

    Yen, Chen-Wan Liu

    1989-09-01

    This paper shows that it is possible to deliver a payload of 600 to 2000 kg to a 300-km circular orbit at Mercury, using the presently available NASA STS and a single-stage bipropellant chemical rocket. This superior payload performance is attained by swingbys of Venus, plus more importantly, the use of the reverse Delta-V/EGA process. In contrast to the familiar Delta-V/EGA process used to boost the launch energy by returning to earth for a gravity assist, the reverse process reduces the Mercury approach energy each time a spacecraft makes a near-resonant return to Mercury for a gravity assist and reduces the orbit-capture Delta-V requirement. The mission sequences for such high-performance missions are described, and example mission opportunities for the years 1990 to 2010 are presented.

  3. Consequences of flight height and line spacing on airborne (helicopter) gravity gradient resolution in the Great Sand Dunes National Park and Preserve, Colorado

    USGS Publications Warehouse

    Kass, M. Andy

    2013-01-01

    Line spacing and flight height are critical parameters in airborne gravity gradient surveys; the optimal trade-off between survey costs and desired resolution, however, is different for every situation. This article investigates the additional benefit of reducing the flight height and line spacing though a study of a survey conducted over the Great Sand Dunes National Park and Preserve, which is the highest-resolution public-domain airborne gravity gradient data set available, with overlapping high- and lower-resolution surveys. By using Fourier analysis and matched filtering, it is shown that while the lower-resolution survey delineates the target body, reducing the flight height from 80 m to 40 m and the line spacing from 100 m to 50 m improves the recoverable resolution even at basement depths.

  4. KSC-08pd2581

    NASA Image and Video Library

    2008-08-29

    CAPE CANAVERAL, Fla. – Experiments are placed inside the FASTRACK Space Experiment Platform viewed in the Life Science Building at NASA's Kennedy Space Center. The space experiment rack is under development for flight aboard NASA's first commercially-provided research flights on Zero Gravity Corporation's reduced gravity aircraft. It is being developed jointly by Kennedy and Space Florida to facilitate NASA and commercial use of reusable U.S. suborbital flight vehicles currently under development. FASTRACK will enable investigators to test experiments, apparatus and analytical techniques in hardware compatible with the International Space Station, and to perform science that can be carried out during the reduced gravity available for brief periods during aircraft parabolas. Flight testing of the FASTRACK will be performed on four consecutive days between September 9-12 from Ellington Field near NASA's Johnson Space Center, Houston. Photo credit: NASA/Troy Cryder

  5. KSC-08pd2580

    NASA Image and Video Library

    2008-08-29

    CAPE CANAVERAL, Fla. – Experiments are placed inside the FASTRACK Space Experiment Platform viewed in the Life Science Building at NASA's Kennedy Space Center. The space experiment rack is under development for flight aboard NASA's first commercially-provided research flights on Zero Gravity Corporation's reduced gravity aircraft. It is being developed jointly by Kennedy and Space Florida to facilitate NASA and commercial use of reusable U.S. suborbital flight vehicles currently under development. FASTRACK will enable investigators to test experiments, apparatus and analytical techniques in hardware compatible with the International Space Station, and to perform science that can be carried out during the reduced gravity available for brief periods during aircraft parabolas. Flight testing of the FASTRACK will be performed on four consecutive days between September 9-12 from Ellington Field near NASA's Johnson Space Center, Houston. Photo credit: NASA/Troy Cryder

  6. Regulation of auxin transport during gravitropism

    NASA Astrophysics Data System (ADS)

    Rashotte, A.; Brady, S.; Kirpalani, N.; Buer, C.; Muday, G.

    Plants respond to changes in the gravity vector by differential growth across the gravity-stimulated organ. The plant hormone auxin, which is normally basipetally transported, changes in direction and auxin redistribution has been suggested to drive this differential growth or gravitropism. The mechanisms by which auxin transport directionality changes in response to a change in gravity vector are largely unknown. Using the model plant, Arabidopsis thaliana, we have been exploring several regulatory mechanisms that may control auxin transport. Mutations that alter protein phosphorylation suggest that auxin transport in arabidopsis roots may be controlled via phosphorylation and this signal may facilitate gravitropic bending. The protein kinase mutant pinoid (pid9) has reduced auxin transport; whereas the protein phosphatase mutant, rcn1, has elevated transport, suggesting reciprocal regulation of auxin transport by reversible protein phosphorylation. In both of these mutants, the auxin transport defects are accompanied by gravitropic defects, linking phosphorylation signaling to gravity-induced changes in auxin transport. Additionally, auxin transport may be regulated during gravity response by changes in an endogenous auxin efflux inhibitor. Flavonoids, such as quercetin and kaempferol, have been implicated in regulation of auxin transport in vivo and in vitro. Mutants that make no flavonoids have reduced root gravitropic bending. Furthermore, changes in auxin-induced gene expression and flavonoid accumulation patterns have been observed during gravity stimulation. Current studies are examining whether there are spatial and temporal changes in flavonoid accumulation that precede gravitropic bending and whether the absence of these changes are the cause of the altered gravity response in plants with mutations that block flavonoid synthesis. These results support the idea that auxin transport may be regulated during gravity response by several mechanisms including phosphorylation of auxin transport proteins as well as synthesis of ligands that control the activity of these proteins. (This work is support by NASA grant NAG2-1507 and the NSCORT in Plant Biology at NCSU.)

  7. Microgravity fluid management in two-phase thermal systems

    NASA Technical Reports Server (NTRS)

    Parish, Richard C.

    1987-01-01

    Initial studies have indicated that in comparison to an all liquid single phase system, a two-phase liquid/vapor thermal control system requires significantly lower pumping power, demonstrates more isothermal control characteristics, and allows greater operational flexibility in heat load placement. As a function of JSC's Work Package responsibility for thermal management of space station equipment external to the pressurized modules, prototype development programs were initiated on the Two-Phase Thermal Bus System (TBS) and the Space Erectable Radiator System (SERS). JSC currently has several programs underway to enhance the understanding of two-phase fluid flow characteristics. The objective of one of these programs (sponsored by the Microgravity Science and Applications Division at NASA-Headquarters) is to design, fabricate, and fly a two-phase flow regime mapping experiment in the Shuttle vehicle mid-deck. Another program, sponsored by OAST, involves the testing of a two-phase thermal transport loop aboard the KC-135 reduced gravity aircraft to identify system implications of pressure drop variation as a function of the flow quality and flow regime present in a representative thermal system.

  8. Impacts of Outer Continental Shelf (OCS) development on recreation and tourism. Volume 5. Program logic manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The final report for the project is presented in five volumes. This volume is the Programmer's Manual. It covers: a system overview, attractiveness component of gravity model, trip-distribution component of gravity model, economic-effects model, and the consumer-surplus model. The project sought to determine the impact of Outer Continental Shelf development on recreation and tourism.

  9. Strong Constraints on Cosmological Gravity from GW170817 and GRB 170817A

    NASA Astrophysics Data System (ADS)

    Baker, T.; Bellini, E.; Ferreira, P. G.; Lagos, M.; Noller, J.; Sawicki, I.

    2017-12-01

    The detection of an electromagnetic counterpart (GRB 170817A) to the gravitational-wave signal (GW170817) from the merger of two neutron stars opens a completely new arena for testing theories of gravity. We show that this measurement allows us to place stringent constraints on general scalar-tensor and vector-tensor theories, while allowing us to place an independent bound on the graviton mass in bimetric theories of gravity. These constraints severely reduce the viable range of cosmological models that have been proposed as alternatives to general relativistic cosmology.

  10. Plumes in the mantle. [free air and isostatic gravity anomalies for geophysical interpretation

    NASA Technical Reports Server (NTRS)

    Khan, M. A.

    1973-01-01

    Free air and isostatic gravity anomalies for the purposes of geophysical interpretation are presented. Evidence for the existance of hotspots in the mantle is reviewed. The prosposed locations of these hotspots are not always associated with positive gravity anomalies. Theoretical analysis based on simplified flow models for the plumes indicates that unless the frictional viscosities are several orders of magnitude smaller than the present estimates of mantle viscosity or alternately, the vertical flows are reduced by about two orders of magnitude, the plume flow will generate implausibly high temperatures.

  11. Dynamical response of the summer MLT to tropospheric global warming: Results from a mechanistic GCM with resolved gravity waves

    NASA Astrophysics Data System (ADS)

    Becker, E.

    2009-04-01

    The sensitivity of the mesosphere and lower thermosphere (MLT) to climate variability of the troposphere is largely controlled by the generation, propagation, and dissipation of gravity waves (GWs). Conventional climate models cannot fully describe this sensitivity since GWs must be parameterized by invoking strong assumptions. Since the Eliassen-Palm flux (EPF) of low-frequency inertia GWs is negligible, the main contribution to the EPF divergence at high latitudes of the MLT is due to mid- and high-frequency GWs with periods of a few hours or less. In order to resolve at least a good portion of these waves in a GCM, a high spatial resolution from the boundary layer to the lower thermosphere is required. Furthermore, both the generation and dissipation of resolved GWs is expected to depend strongly on the details of the parameterization of turbulence. The present study proposes a new formulation of the Kuehlungsborn mechanistic general circulation model (KMCM) with high spatial resolution and Smagorinsky-type horizontal and vertical diffusion coefficients that are both scaled by the Richardson criterion. This model version allows for an explicit and self-consistent simulation of the gravity-wave drag in the MLT. A sensitivity experiment is conducted in which the main changes associated with tropospheric global warming are imposed by the differential heating, i.e., reduced static stability in the lower troposphere along with a reduced equator-to-pole temperature difference and enhanced latent heating in the intertropical convergence zone. These changes result in both a stronger Lorenz energy cycle and enhanced gravity-wave activity in the upper troposphere at middle latitudes. The altered gravity-wave sources result in the following remote effects in the summer MLT: downward shift of the residual circulation, as well as lower temperatures and reduced easterlies below the mesopause. These changes are consistent with enhanced turbulent diffusion and dissipation below the mesopause due to larger gravity-wave amplitudes.

  12. Evaluation of CO2, N2 and He as Fire Suppression Agents in Microgravity

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.; Hicks, Michael; Pettegrew, Richard

    2004-01-01

    The U.S. modules of the International Space Station use gaseous CO2 as the fire extinguishing agent. This was selected as a result of extensive experience with CO2 as a fire suppressant in terrestrial applications, trade studies on various suppressants, and experiments. The selection of fire suppressants and suppression strategies for NASA s Lunar and Martian exploration missions will be based on the same studies and normal-gravity data unless reduced gravity fire suppression data is obtained. In this study, the suppressant agent concentrations required to extinguish a flame in low velocity convective flows within the 20-sec of low gravity on the KC-135 aircraft were investigated. Suppressant gas mixtures of CO2, N2, and He with the balance being oxygen/nitrogen mixtures with either 21% or 25% O2 were used to suppress flames on a 19-mm diameter PMMA cylinder in reduced gravity. For each of the suppressant mixtures, limiting concentrations were established that would extinguish the flame at any velocity. Similarly, concentrations were established that would not extinguish the flame. The limiting concentrations were generally consistent with previous studies but did suggest that geometry had an effect on the limiting conditions. Between the extinction and non-extinction limits, the suppression characteristics depended on the extinguishing agent, flow velocity, and O2 concentration. The limiting velocity data from the CO2, He, and N2 suppressants were well correlated using an effective mixture enthalpy per mole of O2, indicating that all act via O2 displacement and cooling mechanisms. In reduced gravity, the agent concentration required to suppress the flames increased as the velocity increased, up to approximately 10 cm/s (the maximum velocity evaluated in this experiment). The effective enthalpy required to extinguish flames at velocities of 10 cm/s is approximately the same as the concentrations in normal gravity. A computational study is underway to further evaluate these findings.

  13. Separation of Iron Phase and P-Bearing Slag Phase from Gaseous-Reduced, High-Phosphorous Oolitic Iron Ore at 1473 K (1200 °C) by Super Gravity

    NASA Astrophysics Data System (ADS)

    Gao, Jintao; Zhong, Yiwei; Guo, Lei; Guo, Zhancheng

    2016-04-01

    In situ observation on the morphology evolution and phosphorous migration of gaseous-reduced, high-phosphorous oolitic iron ore during the melting process was carried out with a high-temperature confocal scanning laser microscope. The results showed that 1473 K (1200 °C) was a critical temperature at which the gangue minerals started to form into the slag phase while the iron grains remained in a solid state; in addition, the phosphorus remained in the slag phase. Since the separation of iron grains and P-bearing slag was not achieved at the low temperature under the conventional conditions, separate experiments of the iron phase and the P-bearing slag phase from gaseous-reduced, high-phosphorous oolitic iron ore at 1473 K (1200 °C) by super gravity were carried out in this study. Based on the iron-slag separation by super gravity, phosphorus was removed effectively from the iron phase at the temperature below the melting point of iron. Iron grains moved along the super-gravity direction, joined, and concentrated as the iron phase on the filter, whereas the slag phase containing apatite crystals broke through the barriers of the iron grains and went through the filter. Consequently, increasing the gravity coefficient was definitely beneficial for the separation of the P-bearing slag phase from the iron phase. With the gravity coefficient of G = 1200, the mass fractions of separated slag and iron phases were close to their respective theoretical values, and the mass fraction of MFe in the separated iron phase was up to 98.09 wt pct and that of P was decreased to 0.083 wt pct. The recovery of MFe in the iron phase and that of P in the slag phase were up to 99.19 and 95.83 pct, respectively.

  14. BOOK REVIEW: Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Husain, Viqar

    2012-03-01

    Research on quantum gravity from a non-perturbative 'quantization of geometry' perspective has been the focus of much research in the past two decades, due to the Ashtekar-Barbero Hamiltonian formulation of general relativity. This approach provides an SU(2) gauge field as the canonical configuration variable; the analogy with Yang-Mills theory at the kinematical level opened up some research space to reformulate the old Wheeler-DeWitt program into what is now known as loop quantum gravity (LQG). The author is known for his work in the LQG approach to cosmology, which was the first application of this formalism that provided the possibility of exploring physical questions. Therefore the flavour of the book is naturally informed by this history. The book is based on a set of graduate-level lectures designed to impart a working knowledge of the canonical approach to gravitation. It is more of a textbook than a treatise, unlike three other recent books in this area by Kiefer [1], Rovelli [2] and Thiemann [3]. The style and choice of topics of these authors are quite different; Kiefer's book provides a broad overview of the path integral and canonical quantization methods from a historical perspective, whereas Rovelli's book focuses on philosophical and formalistic aspects of the problems of time and observables, and gives a development of spin-foam ideas. Thiemann's is much more a mathematical physics book, focusing entirely on the theory of representing constraint operators on a Hilbert space and charting a mathematical trajectory toward a physical Hilbert space for quantum gravity. The significant difference from these books is that Bojowald covers mainly classical topics until the very last chapter, which contains the only discussion of quantization. In its coverage of classical gravity, the book has some content overlap with Poisson's book [4], and with Ryan and Shepley's older work on relativistic cosmology [5]; for instance the contents of chapter five of the book are also covered in detail, and with more worked examples, in the former book, and the entire focus of the latter is Bianchi models. After a brief introduction outlining the aim of the book, the second chapter provides the canonical theory of homogeneous isotropic cosmology with scalar matter; this covers the basics and linear perturbation theory, and is meant as a first taste of what is to come. The next chapter is a thorough introduction of the canonical formulation of general relativity in both the ADM and Ashtekar-Barbero variables. This chapter contains details useful for graduate students which are either scattered or missing in the literature. Applications of the canonical formalism are in the following chapter. These cover standard material and techniques for obtaining mini(midi)-superspace models, including the Bianchi and Gowdy cosmologies, and spherically symmetric reductions. There is also a brief discussion of the two-dimensional dilaton gravity. The spherically symmetric reduction is presented in detail also in the connection-triad variables. The chapter on global and asymptotic properties gives introductions to geodesic and null congruences, trapped surfaces, a survey of singularity theorems, horizons and asymptotic properties. The chapter ends with a discussion of junction conditions and the Vaidya solution. As already mentioned, this material is covered in detail in Poisson's book. The final chapter on quantization describes and contrasts the Dirac and reduced phase space methods. It also gives an introduction to background independent quantization using the holonomy-flux operators, which forms the basis of the LQG program. The application of this method to cosmology and its affect on the Friedmann equation is covered next, followed by a brief introduction to the effective constraint method, which is another area developed by the author. I think this book is a useful addition to the literature for graduate students, and potentially also for researchers in other areas who wish to learn about the canonical approach to gravity. However, given the brief chapter on quantization, the book would go well with a review paper, or parts of the other three quantum gravity books cited above. References [1] Kiefer C 2006 Quantum Gravity 2nd ed. (Oxford University Press) [2] Rovelli C 2007 Quantum Gravity (Cambridge University Press) [3] Thiemann T 2008 Modern Canonical Quantum Gravity (Cambridge University Press) [4] Posson E 2004 A Relativist's Toolkit: The Mathematics of Black-Hole Mechanics (Cambridge University Press) [5] Ryan M P and Shepley L C 1975 Homogeneous Relativistic Cosmology (Princeton University Press)

  15. Progress Towards a Microgravity CFD Validation Study Using the ISS SPHERES-SLOSH Experiment

    NASA Technical Reports Server (NTRS)

    Storey, Jedediah M.; Kirk, Daniel; Marsell, Brandon (Editor); Schallhorn, Paul (Editor)

    2017-01-01

    Understanding, predicting, and controlling fluid slosh dynamics is critical to safety and improving performance of space missions when a significant percentage of the spacecrafts mass is a liquid. Computational fluid dynamics simulations can be used to predict the dynamics of slosh, but these programs require extensive validation. Many CFD programs have been validated by slosh experiments using various fluids in earth gravity, but prior to the ISS SPHERES-Slosh experiment1, little experimental data for long-duration, zero-gravity slosh existed. This paper presents the current status of an ongoing CFD validation study using the ISS SPHERES-Slosh experimental data.

  16. Progress Towards a Microgravity CFD Validation Study Using the ISS SPHERES-SLOSH Experiment

    NASA Technical Reports Server (NTRS)

    Storey, Jed; Kirk, Daniel (Editor); Marsell, Brandon (Editor); Schallhorn, Paul (Editor)

    2017-01-01

    Understanding, predicting, and controlling fluid slosh dynamics is critical to safety and improving performance of space missions when a significant percentage of the spacecrafts mass is a liquid. Computational fluid dynamics simulations can be used to predict the dynamics of slosh, but these programs require extensive validation. Many CFD programs have been validated by slosh experiments using various fluids in earth gravity, but prior to the ISS SPHERES-Slosh experiment, little experimental data for long-duration, zero-gravity slosh existed. This paper presents the current status of an ongoing CFD validation study using the ISS SPHERES-Slosh experimental data.

  17. Space Research Program on Planarian Schmidtea Mediterranea's Establishment of the Anterior-Posterior Axis in Altered Gravity Conditions

    NASA Astrophysics Data System (ADS)

    Auletta, G.; Adell, T.; Colagè, I.; D'Ambrosio, P.; Salò, E.

    2012-12-01

    Planarians of the species Schmidtea mediterranea are a well-established model for regeneration studies. In this paper, we first recall the morphological characters and the molecular mechanisms involved in the regeneration process, especially focussing on the Wnt pathway and the establishment of the antero-posterior axial polarity. Then, after an assessment of a space-experiment (run in 2006 on the Russian Segment of the International Space Station) on planarians of the species Girardia tigrina, we present our experimental program to ascertain the effects that altered-gravity conditions may have on regeneration processes in S. mediterrnea at the molecular and genetic level.

  18. Explanation of random experiment sheduling and its application to space station analysis

    NASA Technical Reports Server (NTRS)

    Moore, J. E.

    1970-01-01

    The capability of the McDonnell-Douglas Phase B space station concept to complete the Blue Book Experiment program is analyzed and the Random experiment program with Resource Impact (REPRI) which was used to generate the data is described. The results indicate that station manpower and electrical power are the two resources which will constrain the amount of the Blue Book program that the station can complete. The station experiment program and its resource requirements are sensitive to levels of manpower and electrical power 13.5 men and 11 kilowatts. Continuous artificial gravity experiments have much less impact on the experiment program than experiments using separate artificial gravity periods. Station storage volume presently allocated for the FPE's and their supplies (1600 cu ft) is more than adequate. The REPRI program uses the Monte Carlo technique to generate a set of feasible experiment schedules for a space station. The schedules are statistically analyzed to determine the impact of the station experiment program resource requirements on the station concept. Also, the sensitivity of the station concept to one or more resources is assessed.

  19. Major Fault Patterns in Zanjan State of Iran Based of GECO Global Geoid Model

    NASA Astrophysics Data System (ADS)

    Beheshty, Sayyed Amir Hossein; Abrari Vajari, Mohammad; Raoufikelachayeh, SeyedehSusan

    2016-04-01

    A new Earth Gravitational Model (GECO) to degree 2190 has been developed incorporates EGM2008 and the latest GOCE based satellite solutions. Satellite gradiometry data are more sensitive information of the long- and medium- wavelengths of the gravity field than the conventional satellite tracking data. Hence, by utilizing this new technique, more accurate, reliable and higher degrees/orders of the spherical harmonic expansion of the gravity field can be achieved. Gravity gradients can also be useful in geophysical interpretation and prospecting. We have presented the concept of gravity gradients with some simple interpretations. A MATLAB based computer programs were developed and utilized for determining the gravity and gradient components of the gravity field using the GGMs, followed by a case study in Zanjan State of Iran. Our numerical studies show strong (more than 72%) correlations between gravity anomalies and the diagonal elements of the gradient tensor. Also, strong correlations were revealed between the components of the deflection of vertical and the off-diagonal elements as well as between the horizontal gradient and magnitude of the deflection of vertical. We clearly distinguished two big faults in North and South of Zanjan city based on the current information. Also, several minor faults were detected in the study area. Therefore, the same geophysical interpretation can be stated for gravity gradient components too. Our mathematical derivations support some of these correlations.

  20. Gravity and crustal movements: The canadian experience

    NASA Astrophysics Data System (ADS)

    Tanner, J. G.; Lambert, A.

    1987-07-01

    Repeated high precision gravity measurement have already played an important role in the detection of crustal deformation in Canada and elsewhere, but even more useful results can be expected through more widespread use of gravity in combination with other techniques. The crucial element in the process is the development of a good physical model on which the experiment can be based. Otherwise, considerable time and effort can be spent on determining the most appropriate field strategy. New technical developments on the horizon appear to offer enhanced opportunities for gravity studies of crustal processes. The coming availability of the Global Positioning System and transportable absolute gravimeters will open up the possibility of regional studies (i.e., areas of the order of 100 km or perhaps greater) of crustal movements at reasonable cost. Within Africa the development of an African Gravity Standardization Net will be a major first step in any program to provide a better understanding of the neo-tectonic framework of this vast continent.

  1. Microgravity effects of sea urchin fertilization and development

    NASA Technical Reports Server (NTRS)

    Steffen, S.; Simerly, C.; Schatten, H.; Schatten, G.; Fiser, R.

    1992-01-01

    Gravity has been a pervasive influence on all living systems and there is convincing evidence to suggest that it alters fertilization and embryogenesis in several developmental systems. Notwithstanding the global importance of gravity on development, it has only been recently possible to begin to design experiments which might directly investigate the specific effects of this vector. The goal of this research program is to explore and understand the effects of gravity on fertilization and early development using sea urchins as a model system. Sea urchin development has several advantages for this project including the feasibility of maintaining and manipulating these cells during spaceflight, the high percentage of normal fertilization and early development, and the abundant knowledge about molecular, biochemical, and cellular events during embryogenesis which permits detailed insights into the mechanism by which gravity might interfere with development. Furthermore, skeletal calcium is deposited into the embryonic spicules within a day of fertilization permitting studies of the effects of gravity on bone calcium deposition.

  2. Black holes in loop quantum gravity.

    PubMed

    Perez, Alejandro

    2017-12-01

    This is a review of results on black hole physics in the context of loop quantum gravity. The key feature underlying these results is the discreteness of geometric quantities at the Planck scale predicted by this approach to quantum gravity. Quantum discreteness follows directly from the canonical quantization prescription when applied to the action of general relativity that is suitable for the coupling of gravity with gauge fields, and especially with fermions. Planckian discreteness and causal considerations provide the basic structure for the understanding of the thermal properties of black holes close to equilibrium. Discreteness also provides a fresh new look at more (at the moment) speculative issues, such as those concerning the fate of information in black hole evaporation. The hypothesis of discreteness leads, also, to interesting phenomenology with possible observational consequences. The theory of loop quantum gravity is a developing program; this review reports its achievements and open questions in a pedagogical manner, with an emphasis on quantum aspects of black hole physics.

  3. Acceleration display system for aircraft zero-gravity research

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1987-01-01

    The features, design, calibration, and testing of Lewis Research Center's acceleration display system for aircraft zero-gravity research are described. Specific circuit schematics and system specifications are included as well as representative data traces from flown trajectories. Other observations learned from developing and using this system are mentioned where appropriate. The system, now a permanent part of the Lewis Learjet zero-gravity program, provides legible, concise, and necessary guidance information enabling pilots to routinely fly accurate zero-gravity trajectories. Regular use of this system resulted in improvements of the Learjet zero-gravity flight techniques, including a technique to minimize later accelerations. Lewis Gates Learjet trajectory data show that accelerations can be reliably sustained within 0.01 g for 5 consecutive seconds, within 0.02 g for 7 consecutive seconds, and within 0.04 g for up to 20 second. Lewis followed the past practices of acceleration measurement, yet focussed on the acceleration displays. Refinements based on flight experience included evolving the ranges, resolutions, and frequency responses to fit the pilot and the Learjet responses.

  4. Einsteinian cubic gravity

    NASA Astrophysics Data System (ADS)

    Bueno, Pablo; Cano, Pablo A.

    2016-11-01

    We drastically simplify the problem of linearizing a general higher-order theory of gravity. We reduce it to the evaluation of its Lagrangian on a particular Riemann tensor depending on two parameters, and the computation of two derivatives with respect to one of those parameters. We use our method to construct a D -dimensional cubic theory of gravity which satisfies the following properties: (1) it shares the spectrum of Einstein gravity, i.e., it only propagates a transverse and massless graviton on a maximally symmetric background; (2) it is defined in the same way in general dimensions; (3) it is neither trivial nor topological in four dimensions. Up to cubic order in curvature, the only previously known theories satisfying the first two requirements are the Lovelock ones. We show that, up to cubic order, there exists only one additional theory satisfying requirements (1) and (2). Interestingly, this theory is, along with Einstein gravity, the only one which also satisfies (3).

  5. High-resolution Local Gravity Model of the South Pole of the Moon from GRAIL Extended Mission Data

    NASA Technical Reports Server (NTRS)

    Goossens, Sander Johannes; Sabaka, Terence J.; Nicholas, Joseph B.; Lemoine, Frank G.; Rowlands, David D.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2014-01-01

    We estimated a high-resolution local gravity field model over the south pole of the Moon using data from the Gravity Recovery and Interior Laboratory's extended mission. Our solution consists of adjustments with respect to a global model expressed in spherical harmonics. The adjustments are expressed as gridded gravity anomalies with a resolution of 1/6deg by 1/6deg (equivalent to that of a degree and order 1080 model in spherical harmonics), covering a cap over the south pole with a radius of 40deg. The gravity anomalies have been estimated from a short-arc analysis using only Ka-band range-rate (KBRR) data over the area of interest. We apply a neighbor-smoothing constraint to our solution. Our local model removes striping present in the global model; it reduces the misfit to the KBRR data and improves correlations with topography to higher degrees than current global models.

  6. Repair of Electronics for Long Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Pettegrew, Richard D.; Easton, John; Struk, Peter

    2007-01-01

    To reduce mission risk, long duration spaceflight and exploration activities will require greater degrees of self-sufficiency with regards to repair capability than have ever been employed before in space exploration. The current repair paradigm of replacing Orbital Replacement Units (ORUs) of malfunctioning avionics and electronic hardware will be impractical, since carrying all of the spares that could possibly be needed for a long duration mission would require upmass and volume at unprecedented and unacceptable levels. A strategy of component-level repair for electronics, however, could significantly reduce the mass and volume necessary for spares and enhance mission safety via a generic contingency capability. This approach is already used to varying degrees by the U.S. Navy, where vessels at sea experience some similar constraints such as the need for self sufficiency for moderately long time periods, and restrictions on volume of repair spares and infrastructure. The concept of conducting component-level repairs of electronics in spacecraft requires the development of design guidelines for future avionics (to enable repair), development of diagnostic techniques to allow an astronaut to pinpoint the faulty component aboard a vastly complex vehicle, and development of tools and methodologies for dealing with the physical processes of replacing the component. This physical process includes tasks such as conformal coating removal and replacement, component removal, replacement, and alignment--all in the difficulty of a reduced gravity environment. Further, the gravitational effects on the soldering process must be characterized and accounted for to ensure reliability of the newly repaired components. The Component-Level Electronics-Assembly Repair (CLEAR) project under the NASA Supportability program was established to develop and demonstrate the practicality of this repair approach. CLEAR involves collaborative efforts between NASA s Glenn Research Center, Langley Research Center, Johnson Space Center, the National Center for Space Exploration Research, and the U.S. Navy. The project goals are 1) develop and demonstrate a manually-operated electronics repair capability to be conducted in a spacecraft environment; and 2) develop guidelines for designs of electronics that facilitates component-level repair for future space exploration efforts. This multi-faceted program utilizes a cross-disciplinary approach to examine pre- and post-repair diagnostics, conformal coating removal and replacement, component soldering, and electronics design for supportability. These areas are investigated by a combination of trade studies, ground based testing, reduced gravity aircraft testing, and actual spaceflight testing on the International Space Station (ISS) in multiple experiments. This paper details the efforts of this program, with emphasis on early trade study results, ground-based efforts, and two upcoming ISS experiments.

  7. Overload control of artificial gravity facility using spinning tether system for high eccentricity transfer orbits

    NASA Astrophysics Data System (ADS)

    Gou, Xing-wang; Li, Ai-jun; Tian, Hao-chang; Wang, Chang-qing; Lu, Hong-shi

    2018-06-01

    As the major part of space life supporting systems, artificial gravity requires further study before it becomes mature. Spinning tether system is a good alternative solution to provide artificial gravity for the whole spacecraft other than additional devices, and its longer tether length could significantly reduce spinning velocity and thus enhance comfortability. An approximated overload-based feedback method is proposed to provide estimated spinning velocity signals for controller, so that gravity level could be accurately controlled without complicated GPS modules. System behavior in high eccentricity transfer orbits is also studied to give a complete knowledge of the spinning stabilities. The application range of the proposed method is studied in various orbit cases and spinning velocities, indicating that it is accurate and reliable for most of the mission phases especially for the final constant gravity level phase. In order to provide stable gravity level for transfer orbit missions, a sliding mode controller based on estimated angular signals is designed for closed-loop control. Numerical results indicate that the combination of overload-based feedback and sliding mode controller could satisfy most of the long-term artificial gravity missions. It is capable of forming flexible gravity environment in relatively good accuracy even in the lowest possible orbital radiuses and high eccentricity orbits of crewed space missions. The proposed scheme provides an effective tether solution for the artificial gravity construction in interstellar travel.

  8. Development of Urine Receptacle Assembly for the Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Cibuzar, Branelle Rae; Thomas, Evan; Peterson, Laurie; Goforth, Johanna

    2008-01-01

    The Urine Receptacle Assembly (URA) initially was developed for Apollo as a primary means of urine collection. The aluminum housing with stainless steel honeycomb insert provided all male crewmembers with a non-invasive means of micturating into a urine capturing device and then venting to space. The performance of the URA was a substantial improvement over previous devices but its performance was not well understood. The Crew Exploration Vehicle (CEV) program is exploring the URA as a contingency liquid waste management system for the vehicle. URA improvements are required to meet CEV requirements, including: consumables minimization, flow performance, acceptable hygiene standards, crew comfort, and female crewmember capability. This paper presents the results of a historical review of URA performance during the Apollo program, recent URA performance tests on the reduced gravity aircraft flight under varying flow conditions, and a proposed development plan for the URA to meet CEV needs.

  9. Probing hybrid modified gravity by stellar motion around Galactic Center

    NASA Astrophysics Data System (ADS)

    Borka, D.; Capozziello, S.; Jovanović, P.; Borka Jovanović, V.

    2016-06-01

    We consider possible signatures for the so called hybrid gravity within the Galactic Central Parsec. This modified theory of gravity consists of a superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed à la Palatiniand can be easily reduced to an equivalent scalar-tensor theory. Such an approach is introduced in order to cure the shortcomings related to f(R) gravity, in general formulated either in metric or in metric-affine frameworks. Hybrid gravity allows to disentangle the further gravitational degrees of freedom with respect to those of standard General Relativity. The present analysis is based on the S2 star orbital precession around the massive compact dark object at the Galactic Center where the simulated orbits in hybrid modified gravity are compared with astronomical observations. These simulations result with constraints on the range of hybrid gravity interaction parameter ϕ0, showing that in the case of S2 star it is between -0.0009 and -0.0002. At the same time, we are also able to obtain the constraints on the effective mass parameter mϕ, and found that it is between -0.0034 and -0.0025 AU-1 for S2 star. Furthermore, the hybrid gravity potential induces precession of S2 star orbit in the same direction as General Relativity. In previous papers, we considered other types of extended gravities, like metric power law f(R)∝Rn gravity, inducing Yukawa and Sanders-like gravitational potentials, but it seems that hybrid gravity is the best among these models to explain different gravitational phenomena at different astronomical scales.

  10. Hybrid gravity survey to search for submarine ore deposit

    NASA Astrophysics Data System (ADS)

    Araya, A.; Kanazawa, T.; Fujimoto, H.; Shinohara, M.; Yamada, T.; Mochizuki, K.; Iizasa, K.; Ishihara, T.; Omika, S.

    2011-12-01

    Along with seismic surveys, gravity survey is a useful method to profile the underground density structure. We propose a hybrid gravity survey using gravimeters and gravity gradiometers to detect submarine ore deposits as density anomalies by towing the instruments using an AUV (Autonomous Underwater Vehicle) or an ROV (Remotely Operated Vehicle). Gravimeters measure the regional density structure below the seafloor, whereas gravity gradiometers are sensitive to localized mass distribution. A gravity gradiometer comprises two accelerometers arranged with a vertical separation, and a gravity gradient can be obtained from the acceleration difference. Compared to gravimeters, gravity gradiometers are insensitive to common disturbances such as parallel acceleration, thermal drift, and apparent gravity effect (Eötvös effect). We made two accelerometers using astatic pendulums, and obtained common acceleration reduction more than two orders of magnitude. With these pendulums of 500-mm separation, resolution of 7E (=7x10^{-9}(1/s^2)), enough to detect a typical ore deposit buried 50m below the seafloor, was evaluated. During measurements using a submersible mobile object, instrument orientation is required to be controlled to keep verticality and to reduce centrifugal force associated with rotation of the instrument. Using a gyro and a tiltmeter, angular rotation was shown to be controlled within 0.001deg/s which corresponds to 0.3E in effective gravity gradient due to the centrifugal force. In this paper, target of this research, details of the instruments and their performance, and development for the submarine gravity survey using an AUV will be presented.

  11. Volcano deformation and gravity workshop synopsis and outcomes: The 2008 volcano deformation and temporal gravity change workshop

    USGS Publications Warehouse

    Dzurisin, Daniel; Lu, Zhong

    2009-01-01

    A volcano workshop was held in Washington State, near the U.S. Geological Survey (USGS) Cascades Volcano Observatory. The workshop, hosted by the USGS Volcano Hazards Program (VHP), included more than 40 participants from the United States, the European Union, and Canada. Goals were to promote (1) collaboration among scientists working on active volcanoes and (2) development of new tools for studying volcano deformation. The workshop focused on conventional and emerging techniques, including the Global Positioning System (GPS), borehole strain, interferometric synthetic aperture radar (InSAR), gravity, and electromagnetic imaging, and on the roles of aqueous and magmatic fluids.

  12. Quantum Gravity Gradiometer Development for Space

    NASA Technical Reports Server (NTRS)

    Kohel, James M.; Yu, Nan; Kellogg, James R.; Thompson, Robert J.; Aveline, David C.; Maleki, Lute

    2006-01-01

    Funded by the Advanced Technology Component Program, we have completed the development of a laboratory-based quantum gravity gradiometer based on atom interferometer technology. This is our first step towards a new spaceborne gradiometer instrument, which can significantly contribute to global gravity mapping and monitoring important in the understanding of the solid earth, ice and oceans, and dynamic processes. In this paper, we will briefly review the principles and technical benefits of atom-wave interferometer-based inertial sensors in space. We will then describe the technical implementation of the laboratory setup and report its status. We will also discuss our implementation plan for the next generation instrument.

  13. Out-reach in-space technology experiments program: Control of flexible robot manipulators in zero gravity, experiment definition phase

    NASA Technical Reports Server (NTRS)

    Phillips, Warren F.

    1989-01-01

    The results obtained show that it is possible to control light-weight robots with flexible links in a manner that produces good response time and does not induce unacceptable link vibrations. However, deflections induced by gravity cause large static position errors with such a control system. For this reason, it is not possible to use this control system for controlling motion in the direction of gravity. The control system does, on the other hand, have potential for use in space. However, in-space experiments will be needed to verify its applicability to robots moving in three dimensions.

  14. Bouguer gravity map of Indonesia

    NASA Astrophysics Data System (ADS)

    Green, R.; Adkins, J. S.; Harrington, H. J.; Untung, M.

    1981-01-01

    A Bouguer gravity map of Indonesia on Mercator projection at a scale of 1: 5,000,000 and with a contour interval 20 mGal has been prepared over the past few years as part of a joint research program of the Geological Survey of Indonesia and the University of New England, Armidale. A new base station network was set up throughout Indonesia and tied to the IGSN stations at Sydney and Singapore. A discussion of the gravity features and the tectonic implications are given. The map is obtainable, in folded form only, from the Publications Department, University of New England, Armidale, N.S.W., Australia 2351 for $ A 5.- plus postage.

  15. Stability limits and dynamics of nonaxisymmetric liquid bridges

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.; Resnik, Andy; Kaukler, William F.

    1993-01-01

    This program of theoretical and experimental ground-based and low gravity research is focussed on the understanding of the dynamics and stability limits of nonaxisymmetric liquid bridges. There are three basic objectives to the proposed work: (1) to determine the stability limits of nonaxisymmetric liquid bridges held between non-coaxially aligned disks; (2) to examine the dynamics of nonaxisymmetric bridges and nonaxisymmetric oscillations of initially axisymmetric bridges (some of these experiments require a low gravity environment and the ground-based research will culminate in a definitive flight experiment); and (3) to experimentally investigate the vibration sensitivity of liquid bridges under terrestrial and low gravity conditions.

  16. Comparison of undulation difference accuracies using gravity anomalies and gravity disturbances. [for ocean geoid

    NASA Technical Reports Server (NTRS)

    Jekeli, C.

    1980-01-01

    Errors in the outer zone contribution to oceanic undulation differences computed from a finite set of potential coefficients based on satellite measurements of gravity anomalies and gravity disturbances are analyzed. Equations are derived for the truncation errors resulting from the lack of high-degree coefficients and the commission errors arising from errors in the available lower-degree coefficients, and it is assumed that the inner zone (spherical cap) is sufficiently covered by surface gravity measurements in conjunction with altimetry or by gravity anomaly data. Numerical computations of error for various observational conditions reveal undulation difference errors ranging from 13 to 15 cm and from 6 to 36 cm in the cases of gravity anomaly and gravity disturbance data, respectively for a cap radius of 10 deg and mean anomalies accurate to 10 mgal, with a reduction of errors in both cases to less than 10 cm as mean anomaly accuracy is increased to 1 mgal. In the absence of a spherical cap, both cases yield error estimates of 68 cm for an accuracy of 1 mgal and between 93 and 160 cm for the lesser accuracy, which can be reduced to about 110 cm by the introduction of a perfect 30-deg reference field.

  17. Vestibular stimulation interferes with the dynamics of an internal representation of gravity.

    PubMed

    De Sá Teixeira, Nuno Alexandre; Hecht, Heiko; Diaz Artiles, Ana; Seyedmadani, Kimia; Sherwood, David P; Young, Laurence R

    2017-11-01

    The remembered vanishing location of a moving target has been found to be displaced downward in the direction of gravity (representational gravity) and more so with increasing retention intervals, suggesting that the visual spatial updating recruits an internal model of gravity. Despite being consistently linked with gravity, few inquiries have been made about the role of vestibular information in these trends. Previous experiments with static tilting of observers' bodies suggest that under conflicting cues between the idiotropic vector and vestibular signals, the dynamic drift in memory is reduced to a constant displacement along the body's main axis. The present experiment aims to replicate and extend these outcomes while keeping the observers' bodies unchanged in relation to physical gravity by varying the gravito-inertial acceleration using a short-radius centrifuge. Observers were shown, while accelerated to varying degrees, targets moving along several directions and were required to indicate the perceived vanishing location after a variable interval. Increases of the gravito-inertial force (up to 1.4G), orthogonal to the idiotropic vector, did not affect the direction of representational gravity, but significantly disrupted its time course. The role and functioning of an internal model of gravity for spatial perception and orientation are discussed in light of the results.

  18. High Degree and Order Gravity Fields of the Moon Derived from GRAIL Data

    NASA Technical Reports Server (NTRS)

    Lemoine, F. G.; Goossens, S. J.; Sabaka, T. J.; Nicholas, J. B.; Mazarico, E.; Rowlands, D. D.; Loomis, B. D.; Chinn, D. S.; Caprette, D. S.; McCarthy, J. J.; hide

    2012-01-01

    The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft conducted the mapping of the gravity field of the Moon from March 1, 2012 to May 29, 2012. The twin spacecraft acquired highly precise K Band range-rate (KBRR) intersatellite ranging data and Deep Space Network (DSN) data during this prime mission phase from altitudes of 15 to 75 km above the lunar surface over three lunar months. We have processed these data using the NASA GSFC GEODYN orbit determination and geodetic parameter estimation program, and we have determined gravity fields up to degree and order 420 in spherical harmonics. The new gravity solutions show improved correlations with LOLA-derived topography to high degree and order and resolve many lunar features in the geopotential with a resolution of less than 30 km, including for example the central peak of the crater Tycho. We discuss the methodology used for the processing of the GRAIL data, the quality of the orbit determination on the GRAIL satellites and the derivation of the solutions, and their evaluation with independent data, including Lunar Prospector. We show that with these new GRAIL gravity solutions, we can now fit the low altitude, extended mission Lunar Prospector tracking data better than with any previous gravity model that included the LP data.

  19. Seasonal and Static Gravity Field of Mars from MGS, Mars Odyssey and MRO Radio Science

    NASA Technical Reports Server (NTRS)

    Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2016-01-01

    We present a spherical harmonic solution of the static gravity field of Mars to degree and order 120, GMM-3, that has been calculated using the Deep Space Network tracking data of the NASA Mars missions, Mars Global Surveyor (MGS), Mars Odyssey (ODY), and the Mars Reconnaissance Orbiter (MRO). We have also jointly determined spherical harmonic solutions for the static and time-variable gravity field of Mars, and the Mars k 2 Love numbers, exclusive of the gravity contribution of the atmosphere. Consequently, the retrieved time-varying gravity coefficients and the Love number k 2 solely yield seasonal variations in the mass of the polar caps and the solid tides of Mars, respectively. We obtain a Mars Love number k 2 of 0.1697 +/-0.0027 (3- sigma). The inclusion of MRO tracking data results in improved seasonal gravity field coefficients C 30 and, for the first time, C 50 . Refinements of the atmospheric model in our orbit determination program have allowed us to monitor the odd zonal harmonic C 30 for approx.1.5 solar cycles (16 years). This gravity model shows improved correlations with MOLA topography up to 15% larger at higher harmonics ( l = 60–80) than previous solutions.

  20. Seasonal and static Gravity Field of Mars from MGS, Mars Odyssey and MRO Radio Science

    NASA Technical Reports Server (NTRS)

    Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2016-01-01

    We present a spherical harmonic solution of the static gravity field of Mars to degree and order 120, GMM-3, that has been calculated using the Deep Space Network tracking data of the NASA Mars missions, Mars Global Surveyor (MGS), Mars Odyssey (ODY), and the Mars Reconnaissance Orbiter (MRO). We have also jointly determined spherical harmonic solutions for the static and time-variable gravity field of Mars, and the Mars k(sub 2) Love numbers, exclusive of the gravity contribution of the atmosphere. Consequently, the retrieved time-varying gravity coefficients and the Love number k(sub 2) solely yield seasonal variations in the mass of the polar caps and the solid tides of Mars, respectively. We obtain a Mars Love number k(sub 2) of 0.1697 +/- 0.0027 (3- sigma). The inclusion of MRO tracking data results in improved seasonal gravity field coefficients C(sub 30) and, for the first time, C 50. Refinements of the atmospheric model in our orbit determination program have allowed us to monitor the odd zonal harmonic C(sub 30) for approximately 1.5 solar cycles (16 years). This gravity model shows improved correlations with MOLA topography up to 15% larger at higher harmonics ( l = 60-80) than previous solutions.

  1. The Identification of Scientific Programs to Utilize the Space Environment

    NASA Technical Reports Server (NTRS)

    Kulacki, F. A.; Nerem, R. M.

    1976-01-01

    A program to identify and develop ideas for scientific experimentation on the long duration exposure facility (LDEF) was completed. Four research proposals were developed: (1) Ultra pure germanium gamma ray radiation detectors in the space environment, intended to develop and demonstrate an X-ray and gamma-ray spectroscopy system incorporating a temperature cyclable high-purity germanium detector and diode heat pipe cryogenic system for cooling, (2) growth, morphogenesis and metabolism of plant embryos in the zero-gravity environment, to investigate if the space environment induces mutations in the embryogenic cells so that mutants of commercial significance with desirable attributes may be obtained, (3) effect of zero gravity on the growth and pathogenicity of selected zoopathic fungi. It is possible that new kinds of treatment for candidiasis, and tichophytosis could eventuate from the results of the proposed studies, and (4) importance of gravity to survival strategies of small animals. Gravitational effects may be direct or mediate the selection of genetic variants that are preadapted to weightlessness.

  2. Towards causal patch physics in dS/CFT

    NASA Astrophysics Data System (ADS)

    Neiman, Yasha

    2018-01-01

    This contribution is a status report on a research program aimed at obtaining quantum-gravitational physics inside a cosmological horizon through dS/CFT, i.e. through a holographic description at past/future infinity of de Sitter space. The program aims to bring together two main elements. The first is the observation by Anninos, Hartman and Strominger that Vasiliev's higher-spin gravity provides a working model for dS/CFT in 3+1 dimensions. The second is the proposal by Parikh, Savonije and Verlinde that dS/CFT may prove more tractable if one works in so-called "elliptic" de Sitter space - a folded-in-half version of global de Sitter where antipodal points have been identified. We review some relevant progress concerning quantum field theory on elliptic de Sitter space, higher-spin gravity and its holographic duality with a free vector model. We present our reasons for optimism that the approach outlined here will lead to a full holographic description of quantum (higher-spin) gravity in the causal patch of a de Sitter observer.

  3. Pinoid kinase regulates root gravitropism through modulation of PIN2-dependent basipetal auxin transport in Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Muday, Gloria; Sukumar, Poornima; Edwards, Karin; Delong, Alison; Rahman, Abidur

    Reversible protein phosphorylation is a key regulatory mechanism governing polar auxin transport. We tested the hypothesis that PINOID (PID)-mediated phosphorylation and RCN1- regulated dephosphorylation might antagonistically regulate auxin transport and gravity response in seedling roots. Here we show that basipetal IAA transport and gravitropism are reduced in pid mutant seedlings, while acropetal transport and lateral root development are unchanged. Treatment of wild-type seedlings with the protein kinase inhibitor, staurosporine, phenocopied the reduced auxin transport and gravity response of pid-9 and reduced formation of asymmetric DR5-revGFP expression at the root tip after reorientation relative to gravity. Gravitropism and auxin transport in pid are resistant to further inhibition by staurosporine. Gravity response defects of rcn1 and pid-9 are partially rescued by treatment with staurosporine or the phosphatase inhibitor, cantharidin, respectively, and in the pid-9 rcn1 double mutant. Furthermore, the effect of staurosporine is lost in pin2, and a PIN2::GFP fusion protein accumulates in endomembrane compartments after staurosporine treatment. In the pid-9 mutant, immunological techniques find a similar PIN2 localization. These data suggest that staurosporine inhibits gravitropism and basipetal IAA transport by blocking PID action and altering PIN2 localization and support the model that PID and RCN1 reciprocally regulate root gravitropic curvature.

  4. Experimental and Analytical Study of Two-Phase Flow in Zero Gravity.

    DTIC Science & Technology

    1988-03-01

    in Imitated Reduced Gravity Fields," 4th International Heat Transfer Conference, Versailles, France, Vol. 6, 1970. 11. S. S. Papell and 0. C. Faber...K. D. Timmerhaus, ed.) Vol. 9, p 45, Plenum, New York, 1963. 63. S. S. Papell et al., "Buoyancy Effects on Critical Heat Flux of Forced Convective

  5. Fire Accident Testing Evaluation (FATE)

    NASA Technical Reports Server (NTRS)

    Ross, H. D.; Mell, W.; Pettegrew, R.; Hicks, M.; Urban, D.

    2001-01-01

    By performing parametric experiments both in normal gravity and reduced gravity on the KC-135 aircraft, as well as developing and analyzing related modeling, generality of the interpretation of the experimental findings will be pursued along with direct recommendations for fire safety practices and policies for fire safety on spacecraft and in Martian habitats. This is the principal value of the research.

  6. Miniaturized sensors to monitor simulated lunar locomotion.

    PubMed

    Hanson, Andrea M; Gilkey, Kelly M; Perusek, Gail P; Thorndike, David A; Kutnick, Gilead A; Grodsinsky, Carlos M; Rice, Andrea J; Cavanagh, Peter R

    2011-02-01

    Human activity monitoring is a useful tool in medical monitoring, military applications, athletic coaching, and home healthcare. We propose the use of an accelerometer-based system to track crewmember activity during space missions in reduced gravity environments. It is unclear how the partial gravity environment of the Moorn or Mars will affect human locomotion. Here we test a novel analogue of lunar gravity in combination with a custom wireless activity tracking system. A noninvasive wireless accelerometer-based sensor system, the activity tracking device (ATD), was developed. The system has two sensor units; one footwear-mounted and the other waist-mounted near the midlower back. Subjects (N=16) were recruited to test the system in the enhanced Zero Gravity Locomotion Simulator (eZLS) at NASA Glenn Research Center. Data were used to develop an artificial neural network for activity recognition. The eZLS demonstrated the ability to replicate reduced gravity environments. There was a 98% agreement between the ATD and force plate-derived stride times during running (9.7 km x h(-1)) at both 1 g and 1/6 g. A neural network was designed and successfully trained to identify lunar walking, running, hopping, and loping from ATD measurements with 100% accuracy. The eZLS is a suitable tool for examining locomotor activity at simulated lunar gravity. The accelerometer-based ATD system is capable of monitoring human activity and may be suitable for use during remote, long-duration space missions. A neural network has been developed to use data from the ATD to aid in remote activity monitoring.

  7. Effect of Baffle on Gravity-Gradient-Excited Slosh Waves and Spacecraft Moment and Angular-Momentum Fluctuations in Microgravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Lee, C. C.

    1995-01-01

    The dynamical behavior of fluids affected by the asymmetric gravity gradient acceleration has been investigated. In particular, the effects of surface tension on partially filled rotating fluids applicable to a full-scale Gravity Probe-B Spacecraft dewar tank with and without baffles are studied. Results of slosh wave excitation along the liquid-vapor interface induced by gravity gradient acceleration indicate that the gravity gradient acceleration is equivalent to the combined effect of a twisting force and a torsional moment acting on the spacecraft. The results are clearly seen from one-up one-down and one-down one-up oscillations in the cross-section profiles of two bubbles in the vertical (r, z)-plane of the rotating dewar, and from the eccentric contour of the bubble rotating around the axis of the dewar in a horizontal (r, theta)-plane. As the viscous force, between liquid and solid interface, greatly contributes to the damping of slosh wave excitation, a rotating dewar with baffles provides more areas of liquid-solid interface than that of a rotating dewar without baffles. Results show that the damping effect provided by the baffles reduces the amplitude of slosh wave excitation and lowers the degree of asymmetry in liquid-vapor distribution. Fluctuations of angular momentum and fluid moment caused by the slosh wave excited by gravity gradient acceleration with and without baffle boards are also investigated. It is also shown that the damping effect provided by the baffles greatly reduces the amplitudes of angular momentum and fluid moment fluctuations.

  8. Generalization techniques to reduce the number of volume elements for terrain effect calculations in fully analytical gravitational modelling

    NASA Astrophysics Data System (ADS)

    Benedek, Judit; Papp, Gábor; Kalmár, János

    2018-04-01

    Beyond rectangular prism polyhedron, as a discrete volume element, can also be used to model the density distribution inside 3D geological structures. The calculation of the closed formulae given for the gravitational potential and its higher-order derivatives, however, needs twice more runtime than that of the rectangular prism computations. Although the more detailed the better principle is generally accepted it is basically true only for errorless data. As soon as errors are present any forward gravitational calculation from the model is only a possible realization of the true force field on the significance level determined by the errors. So if one really considers the reliability of input data used in the calculations then sometimes the "less" can be equivalent to the "more" in statistical sense. As a consequence the processing time of the related complex formulae can be significantly reduced by the optimization of the number of volume elements based on the accuracy estimates of the input data. New algorithms are proposed to minimize the number of model elements defined both in local and in global coordinate systems. Common gravity field modelling programs generate optimized models for every computation points ( dynamic approach), whereas the static approach provides only one optimized model for all. Based on the static approach two different algorithms were developed. The grid-based algorithm starts with the maximum resolution polyhedral model defined by 3-3 points of each grid cell and generates a new polyhedral surface defined by points selected from the grid. The other algorithm is more general; it works also for irregularly distributed data (scattered points) connected by triangulation. Beyond the description of the optimization schemes some applications of these algorithms in regional and local gravity field modelling are presented too. The efficiency of the static approaches may provide even more than 90% reduction in computation time in favourable situation without the loss of reliability of the calculated gravity field parameters.

  9. The Impact of Reduced Gravity on Free Convective Heat Transfer from a Finite, Flat, Vertical Plate

    NASA Astrophysics Data System (ADS)

    Lotto, Michael A.; Johnson, Kirstyn M.; Nie, Christopher W.; Klaus, David M.

    2017-10-01

    Convective heat transfer is governed by a number of factors including various fluid properties, the presence of a thermal gradient, geometric configuration, flow condition, and gravity. Empirically-derived analytical relationships can be used to estimate convection as a function of these governing parameters. Although it is relatively straightforward to experimentally quantify the contributions of the majority of these variables, it is logistically difficult to assess the influence of reduced-gravity due to practical limitations of establishing this environment. Therefore, in order to explore this regime, a series of tests was conducted to evaluate convection under reduced-gravity conditions averaging 0.45 m/sec2 (0.05 g) achieved aboard a parabolic aircraft. The results showed a reduction in net heat transfer of approximately 61% in flight relative to a 1 g terrestrial baseline using the same setup. The average experimental Nusselt Number of 19.05 ± 1.41 statistically correlated with the predicted value of 18.90 ± 0.63 (N = 13), estimated using the Churchill-Chu correlation for free convective heat transfer from a finite, flat, vertical plate. Extrapolating this to similar performance in true microgravity (10-6 g) indicates that these conditions should yield a Nusselt Number of 1.27, which is 2.6% the magnitude of free convection at 1 g, or a reduction of 97.4%. With advection essentially eliminated, heat transfer becomes limited to diffusion and radiation, which are gravity-independent and nearly equivalent in magnitude in this case. These results offer a general guideline for integrating components that utilize natural (free) convective gas cooling in a spacecraft habitat and properly sizing the thermal control system.

  10. Interactions between Auxin Transport and the Actin Cytoskeleton in Developmental Polarity of Fucus distichus Embryos in Response to Light and Gravity1

    PubMed Central

    Sun, Haiguo; Basu, Swati; Brady, Shari R.; Luciano, Randy L.; Muday, Gloria K.

    2004-01-01

    Land plants orient their growth relative to light and gravity through complex mechanisms that require auxin redistribution. Embryos of brown algae use similar environmental stimuli to orient their developmental polarity. These studies of the brown algae Fucus distichus examined whether auxin and auxin transport are also required during polarization in early embryos and to orient growth in already developed tissues. These embryos polarize with the gravity vector in the absence of a light cue. The auxin, indole-3-acetic acid (IAA), and auxin efflux inhibitors, such as naphthylphthalamic acid (NPA), reduced environmental polarization in response to gravity and light vectors. Young rhizoids are negatively phototropic, and NPA also inhibits rhizoid phototropism. The effect of IAA and NPA on gravity and photopolarization is maximal within 2.5 to 4.5 h after fertilization (AF). Over the first 6 h AF, auxin transport is relatively constant, suggesting that developmentally controlled sensitivity to auxin determines the narrow window during which NPA and IAA reduce environmental polarization. Actin patches were formed during the first hour AF and began to photolocalize within 3 h, coinciding with the time of NPA and IAA action. Treatment with NPA reduced the polar localization of actin patches but not patch formation. Latrunculin B prevented environmental polarization in a time frame that overlaps the formation of actin patches and IAA and NPA action. Latrunculin B also altered auxin transport. Together, these results indicate a role for auxin in the orientation of developmental polarity and suggest interactions between the actin cytoskeleton and auxin transport in F. distichus embryos. PMID:15122028

  11. Preliminary Design of Low-Thrust Interplanetary Missions

    NASA Technical Reports Server (NTRS)

    Sims, Jon A.; Flanagan, Steve N.

    1997-01-01

    For interplanetary missions, highly efficient electric propulsion systems can be used to increase the mass delivered to the destination and/or reduce the trip time over typical chemical propulsion systems. This technology is being demonstrated on the Deep Space 1 mission - part of NASA's New Millennium Program validating technologies which can lower the cost and risk and enhance the performance of future missions. With the successful demonstration on Deep Space 1, future missions can consider electric propulsion as a viable propulsion option. Electric propulsion systems, while highly efficient, produce only a small amount of thrust. As a result, the engines operate during a significant fraction of the trajectory. This characteristic makes it much more difficult to find optimal trajectories. The methods for optimizing low-thrust trajectories are typically categorized as either indirect, or direct. Indirect methods are based on calculus of variations, resulting in a two-point boundary value problem that is solved by satisfying terminal constraints and targeting conditions. These methods are subject to extreme sensitivity to the initial guess of the variables - some of which are not physically intuitive. Adding a gravity assist to the trajectory compounds the sensitivity. Direct methods parameterize the problem and use nonlinear programming techniques to optimize an objective function by adjusting a set of variables. A variety of methods of this type have been examined with varying results. These methods are subject to the limitations of the nonlinear programming techniques. In this paper we present a direct method intended to be used primarily for preliminary design of low-thrust interplanetary trajectories, including those with multiple gravity assists. Preliminary design implies a willingness to accept limited accuracy to achieve an efficient algorithm that executes quickly.

  12. Bubble Detachment in Variable Gravity Under the Influence of a Non-Uniform Electric Field

    NASA Technical Reports Server (NTRS)

    Chang, Shinan; Herman, Cila; Iacona, Estelle

    2002-01-01

    The objective of the study reported in this paper is to investigate the effects of variable, reduced gravity on the formation and detachment behavior of individual air bubbles under the influence of a non-uniform electric field. For this purpose, variable gravity experiments were carried out in parabolic nights. The non-uniform electric field was generated by a spherical electrode and a plate electrode. The effect of the magnitude of the non-uniform electric field and gravity level on bubble formation, development and detachment at an orifice was investigated. An image processing code was developed that allows the measurement of bubble volume, dimensions and contact angle at detachment. The results of this research can be used to explore the possibility of enhancing boiling heat transfer in the variable and low gravity environments by substituting the buoyancy force with a force induced by the electric field. The results of experiments and measurements indicate that the level of gravity significantly affects bubble shape, size and frequency. The electric field magnitude also influences bubble detachment, however, its impact is not as profound as that of variable gravity for the range of electric field magnitudes investigated in the present study.

  13. Satellite gravity gradient grids for geophysics

    PubMed Central

    Bouman, Johannes; Ebbing, Jörg; Fuchs, Martin; Sebera, Josef; Lieb, Verena; Szwillus, Wolfgang; Haagmans, Roger; Novak, Pavel

    2016-01-01

    The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite aimed at determining the Earth’s mean gravity field. GOCE delivered gravity gradients containing directional information, which are complicated to use because of their error characteristics and because they are given in a rotating instrument frame indirectly related to the Earth. We compute gravity gradients in grids at 225 km and 255 km altitude above the reference ellipsoid corresponding to the GOCE nominal and lower orbit phases respectively, and find that the grids may contain additional high-frequency content compared with GOCE-based global models. We discuss the gradient sensitivity for crustal depth slices using a 3D lithospheric model of the North-East Atlantic region, which shows that the depth sensitivity differs from gradient to gradient. In addition, the relative signal power for the individual gradient component changes comparing the 225 km and 255 km grids, implying that using all components at different heights reduces parameter uncertainties in geophysical modelling. Furthermore, since gravity gradients contain complementary information to gravity, we foresee the use of the grids in a wide range of applications from lithospheric modelling to studies on dynamic topography, and glacial isostatic adjustment, to bedrock geometry determination under ice sheets. PMID:26864314

  14. Antibody binding in altered gravity: implications for immunosorbent assay during space flight

    NASA Technical Reports Server (NTRS)

    Maule, Jake; Fogel, Marilyn; Steele, Andrew; Wainwright, Norman; Pierson, Duane L.; McKay, David S.

    2003-01-01

    A single antibody-incubation step of an indirect, enzyme-linked immunosorbent assay (ELISA) was performed during microgravity, Martian gravity (0.38 G) and hypergravity (1.8 G) phases of parabolic flight, onboard the NASA KC-135 aircraft. Antibody-antigen binding occurred within 15 seconds; the level of binding did not differ between microgravity, Martian gravity and 1 G (Earth's gravity) conditions. During hypergravity and 1 G, antibody binding was directly proportional to the fluid volume (per microtiter well) used for incubation; this pattern was not observed during microgravity. These effects in microgravity may be due to "fluid spread" within the chamber (observed during microgravity with digital photography), leading to greater fluid-surface contact and subsequently antibody-antigen contact. In summary, these results demonstrate that: i) ELISA antibody-incubation and washing steps can be successfully performed by human operators during microgravity, Martian gravity and hypergravity; ii) there is no significant difference in antibody binding between microgravity, Martian gravity and 1 G conditions; and iii) a smaller fluid volume/well (and therefore less antibody) was required for a given level of binding during microgravity. These conclusions indicate that reduced gravity would not present a barrier to successful operation of immunosorbent assays during spaceflight.

  15. Thermosyphon Flooding Limits in Reduced Gravity Environments

    NASA Technical Reports Server (NTRS)

    Gibson, Marc A.; Jaworske, Donald A.; Sanzi, James L.; Ljubanovic, Damir

    2012-01-01

    Fission Power Systems have long been recognized as potential multi-kilowatt power solutions for lunar, Martian, and extended planetary surface missions. Current heat rejection technology associated with fission surface power systems has focused on titanium water thermosyphons embedded in carbon composite radiator panels. The thermosyphons, or wickless heat pipes, are used as a redundant and efficient way to spread the waste heat from the power conversion unit(s) over the radiator surface area where it can be rejected to space. It is well known that thermosyphon performance is reliant on gravitational forces to keep the evaporator wetted with the working fluid. One of the performance limits that can be encountered, if not understood, is the phenomenon of condenser flooding, otherwise known as evaporator dry out. This occurs when the gravity forces acting on the condensed fluid cannot overcome the shear forces created by the vapor escaping the evaporator throat. When this occurs, the heat transfer process is stalled and may not re-stabilize to effective levels without corrective control actions. The flooding limit in earth's gravity environment is well understood as experimentation is readily accessible, but when the environment and gravity change relative to other planetary bodies, experimentation becomes difficult. An innovative experiment was designed and flown on a parabolic flight campaign to achieve the Reduced Gravity Environments (RGE) needed to obtain empirical data for analysis. The test data is compared to current correlation models for validation and accuracy.

  16. Precise orbit determination based on raw GPS measurements

    NASA Astrophysics Data System (ADS)

    Zehentner, Norbert; Mayer-Gürr, Torsten

    2016-03-01

    Precise orbit determination is an essential part of the most scientific satellite missions. Highly accurate knowledge of the satellite position is used to geolocate measurements of the onboard sensors. For applications in the field of gravity field research, the position itself can be used as observation. In this context, kinematic orbits of low earth orbiters (LEO) are widely used, because they do not include a priori information about the gravity field. The limiting factor for the achievable accuracy of the gravity field through LEO positions is the orbit accuracy. We make use of raw global positioning system (GPS) observations to estimate the kinematic satellite positions. The method is based on the principles of precise point positioning. Systematic influences are reduced by modeling and correcting for all known error sources. Remaining effects such as the ionospheric influence on the signal propagation are either unknown or not known to a sufficient level of accuracy. These effects are modeled as unknown parameters in the estimation process. The redundancy in the adjustment is reduced; however, an improvement in orbit accuracy leads to a better gravity field estimation. This paper describes our orbit determination approach and its mathematical background. Some examples of real data applications highlight the feasibility of the orbit determination method based on raw GPS measurements. Its suitability for gravity field estimation is presented in a second step.

  17. Gravity and Nonconservative Force Model Tuning for the GEOSAT Follow-On Spacecraft

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Zelensky, Nikita P.; Rowlands, David D.; Luthcke, Scott B.; Chinn, Douglas S.; Marr, Gregory C.; Smith, David E. (Technical Monitor)

    2000-01-01

    The US Navy's GEOSAT Follow-On spacecraft was launched on February 10, 1998 and the primary objective of the mission was to map the oceans using a radar altimeter. Three radar altimeter calibration campaigns have been conducted in 1999 and 2000. The spacecraft is tracked by satellite laser ranging (SLR) and Doppler beacons and a limited amount of data have been obtained from the Global Positioning Receiver (GPS) on board the satellite. Even with EGM96, the predicted radial orbit error due to gravity field mismodelling (to 70x70) remains high at 2.61 cm (compared to 0.88 cm for TOPEX). We report on the preliminary gravity model tuning for GFO using SLR, and altimeter crossover data. Preliminary solutions using SLR and GFO/GFO crossover data from CalVal campaigns I and II in June-August 1999, and January-February 2000 have reduced the predicted radial orbit error to 1.9 cm and further reduction will be possible when additional data are added to the solutions. The gravity model tuning has improved principally the low order m-daily terms and has reduced significantly the geographically correlated error present in this satellite orbit. In addition to gravity field mismodelling, the largest contributor to the orbit error is the non-conservative force mismodelling. We report on further nonconservative force model tuning results using available data from over one cycle in beta prime.

  18. Effect of Hypergravity and Phytohormones on Isoflavonoid Accumulation in Soybean ( Glycine max. L.) Callus

    NASA Astrophysics Data System (ADS)

    Downey, Peter J.; Levine, Lanfang H.; Musgrave, Mary E.; McKeon-Bennett, Michelle; Moane, Siobhán

    2013-02-01

    The objective of this study was to explore the potential interaction between gravity and growth hormones on isoflavonoid accumulation. Soybean callus ( Glycine max (L.) Merr. cv. `Acme') was grown in the dark for 16 days at 22 °C in a growth medium supplemented with four different combinations of phytohormones and subjected to 4- g and 8- g forces simulated in a centrifuge and 1- g in an adjacent stationary control. Isoflavonoid aglycones and their glycoside concentrations (daidzein, genistein, daidzin, 6″-O-malonyl-7-O-glucosyl daidzein, genistin, 6″-O-malonyl-7-O-glucosyl genistein) were determined in the resulting tissues. Although gravity had no significant impact on callus growth, increasing gravity reduced isoflavonoid accumulation in three out of the four phytohormone-supplemented culture media. The ratio of the auxin naphthalene acetic acid (NAA) to the cytokinin benzylaminopurine (BAP) was found to have profound effect on both callus growth and isoflavonoid accumulation. The cytokinin BAP promoted callus tissue growth, but reduced callus isoflavonoid suggesting the isoflavonoid accumulation was not keeping pace with the cell growth in the elevated concentration of BAP. On the other hand, NAA had little or no effect on callus growth, but greatly enhanced isoflavonoid accumulation. Interactive effects of gravity and hormone on isoflavonoid accumulation were evident and its implication to the mechanism by which gravity exerts the effect on plant secondary metabolites is discussed.

  19. Suppression of osteoblastic phenotypes and modulation of pro- and anti-apoptotic features in normal human osteoblastic cells under a vector-averaged gravity condition.

    PubMed

    Nakamura, Hiroshi; Kumei, Yasuhiro; Morita, Sadao; Shimokawa, Hitoyata; Ohya, Keiichi; Shinomiya, Kenichi

    2003-06-01

    Spaceflight and bed rest induce loss of bone mass. A number of in vivo and in vitro studies have been conducted to clarify the mechanisms, however, the results have been conflicting. The purpose of this study was to investigate the effects of gravity unloading on proliferation, phenotypes, and apoptosis of normal human osteoblastic cells in the presence of 1alpha,25-dihydroxyvitamin D3. We used a vector-averaged gravity condition generated by clinostat rotation to simulate gravity unloading. Clinostat rotation did not affect the cell proliferation. On the first day, the mRNA levels for osteocalcin, ALP, CBFA1, VDR, RANKL, and OPG were reduced by clinostat rotation to 21%, 65%, 62%, 52%, 43%, and 54% of control, respectively. ALP activity was decreased to 75% of control. On the second day, the mRNA levels for osteocalcin and RANKL were reduced to 77% and 61% of control, respectively. The decreased VDR mRNA level might be responsible for the reduction for mRNA levels for osteocalcin, RANKL, and OPG. Clinostat rotation increased the pro-apoptotic index (Bax/Bcl-2 ratio) but did not induce apoptosis due to the simultaneous upregulation of the anti-apoptotic XIAP. Reduction of osteoblast responsiveness to 1alpha,25-dihydroxyvitamin D3 might be involved in osteopenia that is induced by gravity unloading.

  20. Affine group formulation of the Standard Model coupled to gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Ching-Yi, E-mail: l2897107@mail.ncku.edu.tw; Ita, Eyo, E-mail: ita@usna.edu; Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw

    In this work we apply the affine group formalism for four dimensional gravity of Lorentzian signature, which is based on Klauder’s affine algebraic program, to the formulation of the Hamiltonian constraint of the interaction of matter and all forces, including gravity with non-vanishing cosmological constant Λ, as an affine Lie algebra. We use the hermitian action of fermions coupled to gravitation and Yang–Mills theory to find the density weight one fermionic super-Hamiltonian constraint. This term, combined with the Yang–Mills and Higgs energy densities, are composed with York’s integrated time functional. The result, when combined with the imaginary part of themore » Chern–Simons functional Q, forms the affine commutation relation with the volume element V(x). Affine algebraic quantization of gravitation and matter on equal footing implies a fundamental uncertainty relation which is predicated upon a non-vanishing cosmological constant. -- Highlights: •Wheeler–DeWitt equation (WDW) quantized as affine algebra, realizing Klauder’s program. •WDW formulated for interaction of matter and all forces, including gravity, as affine algebra. •WDW features Hermitian generators in spite of fermionic content: Standard Model addressed. •Constructed a family of physical states for the full, coupled theory via affine coherent states. •Fundamental uncertainty relation, predicated on non-vanishing cosmological constant.« less

  1. Fast inversion of gravity data using the symmetric successive over-relaxation (SSOR) preconditioned conjugate gradient algorithm

    NASA Astrophysics Data System (ADS)

    Meng, Zhaohai; Li, Fengting; Xu, Xuechun; Huang, Danian; Zhang, Dailei

    2017-02-01

    The subsurface three-dimensional (3D) model of density distribution is obtained by solving an under-determined linear equation that is established by gravity data. Here, we describe a new fast gravity inversion method to recover a 3D density model from gravity data. The subsurface will be divided into a large number of rectangular blocks, each with an unknown constant density. The gravity inversion method introduces a stabiliser model norm with a depth weighting function to produce smooth models. The depth weighting function is combined with the model norm to counteract the skin effect of the gravity potential field. As the numbers of density model parameters is NZ (the number of layers in the vertical subsurface domain) times greater than the observed gravity data parameters, the inverse density parameter is larger than the observed gravity data parameters. Solving the full set of gravity inversion equations is very time-consuming, and applying a new algorithm to estimate gravity inversion can significantly reduce the number of iterations and the computational time. In this paper, a new symmetric successive over-relaxation (SSOR) iterative conjugate gradient (CG) method is shown to be an appropriate algorithm to solve this Tikhonov cost function (gravity inversion equation). The new, faster method is applied on Gaussian noise-contaminated synthetic data to demonstrate its suitability for 3D gravity inversion. To demonstrate the performance of the new algorithm on actual gravity data, we provide a case study that includes ground-based measurement of residual Bouguer gravity anomalies over the Humble salt dome near Houston, Gulf Coast Basin, off the shore of Louisiana. A 3D distribution of salt rock concentration is used to evaluate the inversion results recovered by the new SSOR iterative method. In the test model, the density values in the constructed model coincide with the known location and depth of the salt dome.

  2. Mass Transport Phenomena Between Bubbles and Dissolved Gases in Liquids Under Reduced Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Dewitt, K. J.; Brockwell, J. L.

    1985-01-01

    The long term objective of the experiment is to observe the dissolution of isolated, immobile gas bubbles of specified size and composition in a solvent liquid of known concentration in the reduced gravity environment of earth orbit. Preliminary bubble dissolution experiment conducted both in the NASA Lewis 2.2 sec drop tower and in normal gravity using SO2 - Toluene system were not completely successful in their objective. The method of gas injection and lack of bubble interface stabiliy experienced due to the extreme solubility of SO in Toluene has the effects of changing the problem from that of bubble dissolution to one of bubble formation stability and subsequent dissolution in a liquid of unknown initial solute concentration. Current work involves further experimentation in order to refine the bubble injection system and to investigate the concept of having a bubble with a critical radius in a state of unstable equilibrium.

  3. Some physiological aspects of artificial gravity. [gravitational effects on human orthostatic tolerance and physical fitness

    NASA Technical Reports Server (NTRS)

    Cramer, D. B.; Graybiel, A.

    1973-01-01

    The effects of increasing artificial gravity exposure on four aspects of physiological fitness are examined in four young men who, prior to exposure, were deconditioned with bed rest and water immersion. The four aspects of physiological fitness are orthostatic tolerance, exercise tolerance, forearm endurance, and maximum strength. Orthostatic tolerance was sharply reduced by deconditioning and was substantially improved by walking in simulated lunar gravity (1/6 g) for 2.5 hours daily for 7 days or by walking in 1/2 g and 1 g for 1 hour daily for 3 days. Exercise tolerance was also sharply reduced by deconditioning but did not significantly improve with increasing g-exposure. Walking in 1 g for 1 hour daily for 3 days raised exercise tolerance only a little above the low produced by deconditioning. Forearm endurance and maximum strength were relatively unaffected by deconditioning and subsequent g-exposure.

  4. KSC-08pd2575

    NASA Image and Video Library

    2008-08-29

    CAPE CANAVERAL, Fla. – In the Life Science Building at NASA's Kennedy Space Center, a space experiment rack is under development for flight aboard NASA's first commercially-provided research flights on Zero Gravity Corporation's reduced gravity aircraft. Known as the FASTRACK Space Experiment Platform, the rack is designed to support two standard lockers that fit inside the space shuttle's crew middeck. It is being developed jointly by Kennedy and Space Florida to facilitate NASA and commercial use of reusable U.S. suborbital flight vehicles currently under development. FASTRACK will enable investigators to test experiments, apparatus and analytical techniques in hardware compatible with the International Space Station, and to perform science that can be carried out during the reduced gravity available for brief periods during aircraft parabolas. Flight testing of the FASTRACK will be performed on four consecutive days between September 9-12 from Ellington Field near NASA's Johnson Space Center, Houston. Photo credit: NASA/Troy Cryder

  5. KSC-08pd2579

    NASA Image and Video Library

    2008-08-29

    CAPE CANAVERAL, Fla. – In the Life Science Building at NASA's Kennedy Space Center, this space experiment rack is under development for flight aboard NASA's first commercially-provided research flights on Zero Gravity Corporation's reduced gravity aircraft. Known as the FASTRACK Space Experiment Platform, the rack is designed to support two standard lockers that fit inside the space shuttle's crew middeck. It is being developed jointly by Kennedy and Space Florida to facilitate NASA and commercial use of reusable U.S. suborbital flight vehicles currently under development. FASTRACK will enable investigators to test experiments, apparatus and analytical techniques in hardware compatible with the International Space Station, and to perform science that can be carried out during the reduced gravity available for brief periods during aircraft parabolas. Flight testing of the FASTRACK will be performed on four consecutive days between September 9-12 from Ellington Field near NASA's Johnson Space Center, Houston. Photo credit: NASA/Troy Cryder

  6. Off-shell hydrodynamics from holography

    DOE PAGES

    Crossley, Michael; Glorioso, Paolo; Liu, Hong; ...

    2016-02-18

    In this article, we outline a program for obtaining an action principle for dissipative fluid dynamics by considering the holographic Wilsonian renormalization group applied to systems with a gravity dual. As a first step, in this paper we restrict to systems with a non-dissipative horizon. By integrating out gapped degrees of freedom in the bulk gravitational system between an asymptotic boundary and a horizon, we are led to a formulation of hydrodynamics where the dynamical variables are not standard velocity and temperature fields, but the relative embedding of the boundary and horizon hypersurfaces. At zeroth order, this action reduces tomore » that proposed by Dubovsky et al. as an off-shell formulation of ideal fluid dynamics.« less

  7. KC-135 and Other Microgravity Simulations

    NASA Technical Reports Server (NTRS)

    Skinner, Noel C.

    1999-01-01

    This document represents a summary of medical and scientific evaluations conducted aboard the KC-135 from June 20, 1998 to June 20, 1999. Included is a general overview of KC-135 activities manifested and coordinated by the Life Sciences Research Laboratories. A collection of brief reports that describes tests conducted aboard the KC-135 follows the overview. Principal investigators and test engineers contributed significantly to the content of the report describing their particular experiment or hardware evaluation. Although this document follows general guidelines, each report format may vary to accommodate differences in experiment design and procedures. This document concludes with an appendix that provides background information concerning the KC-135 and the Reduced-Gravity Program.

  8. C-9 and Other Microgravity Simulations

    NASA Technical Reports Server (NTRS)

    Hecht, Sharon (Editor); Reeves, Jacqueline M. (Editor); Spector, Elisabeth (Editor)

    2009-01-01

    This document represents a summary of medical and scientific evaluations conducted aboard the C-9 and other NASA-sponsored aircraft from June 2008 to June 2009. Included is a general overview of investigations manifested and coordinated by the Human Adaptation and Counter-measures Division. A collection of brief reports that describe tests conducted aboard the NASA-sponsored aircraft follows the overview. Principal investigators and test engineers contributed significantly to the content of the report, describing their particular experiment or hardware evaluation. Although this document follows general guidelines, each report format may vary to accommodate differences in experiment design and procedures. This document concludes with an appendix that provides background information concerning the Reduced Gravity Program. Acknowledgments

  9. C-9 and Other Microgravity Simulations

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd; Skinner, Noel

    2007-01-01

    This document represents a summary of medical and scientific evaluations conducted aboard the C-9 or other NASA-sponsored aircraft from June 30, 2006, to June 30, 2007. Included is a general overview of investigations manifested and coordinated by the Human Adaptation and Countermeasures Office. A collection of brief reports that describe tests conducted aboard the NASA-sponsored aircraft follows the overview. Principal investigators and test engineers contributed significantly to the content of the report, describing their particular experiment or hardware evaluation. Although this document follows general guidelines, each report format may vary to accommodate differences in experiment design and procedures. This document concludes with an appendix that provides background information about the Reduced Gravity Program.

  10. KC-135 and Other Microgravity Simulations

    NASA Technical Reports Server (NTRS)

    Skinner, Noel C.; Schlegel, Todd T. (Technical Monitor)

    2001-01-01

    This document represents a summary of medical and scientific evaluations conducted aboard the KC-135 from January to June 15, 2001. Included is a general overview of KC-135 activities manifested and coordinated by the Human Adaptation and Countermeasures Office. A collection of brief reports that describes tests conducted aboard the KC-135 follows the overview. Principal investigators and test engineers contributed significantly to the content of the report describing their particular experiment or hardware evaluation. Although this document follows general guidelines, each report format may vary to accommodate differences in experiment design and procedures. This document concludes with an appendix that provides background information concerning the KC-135 and the Reduced-Gravity Program.

  11. C-9 and Other Microgravity Simulations Summary Report

    NASA Technical Reports Server (NTRS)

    2010-01-01

    This document represents a summary of medical and scientific evaluations conducted aboard the C-9 and other NASA-sponsored aircraft from June 2009 to June 2010. Included is a general overview of investigations manifested and coordinated by the Human Adaptation and Countermeasures Division. A collection of brief reports that describe tests conducted aboard the NASA-sponsored aircraft follows the overview. Principal investigators and test engineers contributed significantly to the content of the report, describing their particular experiment or hardware evaluation. Although this document follows general guidelines, each report format may vary to accommodate differences in experiment design and procedures. This document concludes with an appendix that provides background information concerning the Reduced Gravity Program.

  12. Analytical vacuum force, atmospheric pressure dispute

    NASA Astrophysics Data System (ADS)

    Yongquan, Han

    Typically, the gap gas molecules is 10-9 m, since the center speed of the tornado is over 100 m / sec, it divided by the speed of a tornado, the gap of the gas molecules becomes 10-11m. Equivalent to the gap when there is no tornado that the gas molecules allow radiation to pass through, equivalent to the gap is reduced gas molecules 100 times by a tornado. There is no change in the Earth's radiate, the Earth's radiation is reduced to one percent of the original intensity by the radiation through the tornado periphery into the center of the tornado. According to the APS Division of Nuclear Physics in APS -2013 Fall Meeting - Event - Gravitational radiation theory http://meetings.aps.org/Meeting/DNP13/Session/FB.8, which I published, the gravity will br reduced to the original gravity percentage one. Waterspout by the Earth's gravity to become the original one percent. Cause the external of the tornadoes atmospheric pressure is constant, the height waterspout should support column height atmospheric pressure is 100 times,that height waterspout may reach nearly kilometers.

  13. The alpine Swiss-French airborne gravity survey

    NASA Astrophysics Data System (ADS)

    Verdun, Jérôme; Klingelé, Emile E.; Bayer, Roger; Cocard, Marc; Geiger, Alain; Kahle, Hans-Gert

    2003-01-01

    In February 1998, a regional-scale, airborne gravity survey was carried out over the French Occidental Alps within the framework of the GéoFrance 3-D research program.The survey consisted of 18 NS and 16 EW oriented lines with a spacing of 10 and 20 km respectively, covering the whole of the Western French Alps (total area: 50 000 km2; total distance of lines flown: 10 000 km). The equipment was mounted in a medium-size aircraft (DeHavilland Twin Otter) flowing at a constant altitude of 5100 m a.s.l, and at a mean ground speed of about 280 km h-1. Gravity was measured using a LaCoste & Romberg relative, air/sea gravimeter (type SA) mounted on a laser gyro stabilized platform. Data from 5 GPS antennae located on fuselage and wings and 7 ground-based GPS reference stations were used to determine position and aircraft induced accelerations.The gravimeter passband was derived by comparing the vertical accelerations provided by the gravimeter with those estimated from the GPS positions. This comparison showed that the gravimeter is not sensitive to very short wavelength aircraft accelerations, and therefore a simplified formulation for computing airborne gravity measurements was developed. The intermediate and short wavelength, non-gravitational accelerations were eliminated by means of digital, exponential low-pass filters (cut-off wavelength: 16 km). An important issue in airborne gravimetry is the reliability of the airborne gravity surveys when compared to ground surveys. In our studied area, the differences between the airborne-acquired Bouguer anomaly and the ground upward-continued Bouguer anomaly of the Alps shows a good agreement: the rms of these differences is equal to 7.68 mGal for a spatial resolution of 8 km. However, in some areas with rugged topography, the amplitudes of those differences have a striking correlation with the topography. We then argue that the choice of an appropriate density (reduction by a factor of 10 per cent) for computing the ground topographic corrections over the highest mountains, results in significantly reducing the differences between airborne and ground upward-continued Bouguer anomalies, which shows that some of the misfit stems from errors in the ground data.

  14. SOAR 89: Space Station. Space suit test program

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.; West, Philip; Rouen, Michael

    1990-01-01

    The elements of the test program for the space suit to be used on Space Station Freedom are noted in viewgraph form. Information is given on evaluation objectives, zero gravity evaluation, mobility evaluation, extravehicular activity task evaluation, and shoulder joint evaluation.

  15. Microgravity Science and Applications Flight Programs, January - March 1987, selected papers, volume 1

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A compilation of papers presented at this conference is given. The science dealing with materials and fluids and with fundamental studies in physics and chemistry in a low gravity environment is examined. Program assessments are made along with directions for progress in the future use of the space shuttle program.

  16. 3D fast adaptive correlation imaging for large-scale gravity data based on GPU computation

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Meng, X.; Guo, L.; Liu, G.

    2011-12-01

    In recent years, large scale gravity data sets have been collected and employed to enhance gravity problem-solving abilities of tectonics studies in China. Aiming at the large scale data and the requirement of rapid interpretation, previous authors have carried out a lot of work, including the fast gradient module inversion and Euler deconvolution depth inversion ,3-D physical property inversion using stochastic subspaces and equivalent storage, fast inversion using wavelet transforms and a logarithmic barrier method. So it can be say that 3-D gravity inversion has been greatly improved in the last decade. Many authors added many different kinds of priori information and constraints to deal with nonuniqueness using models composed of a large number of contiguous cells of unknown property and obtained good results. However, due to long computation time, instability and other shortcomings, 3-D physical property inversion has not been widely applied to large-scale data yet. In order to achieve 3-D interpretation with high efficiency and precision for geological and ore bodies and obtain their subsurface distribution, there is an urgent need to find a fast and efficient inversion method for large scale gravity data. As an entirely new geophysical inversion method, 3D correlation has a rapid development thanks to the advantage of requiring no a priori information and demanding small amount of computer memory. This method was proposed to image the distribution of equivalent excess masses of anomalous geological bodies with high resolution both longitudinally and transversely. In order to tranform the equivalence excess masses into real density contrasts, we adopt the adaptive correlation imaging for gravity data. After each 3D correlation imaging, we change the equivalence into density contrasts according to the linear relationship, and then carry out forward gravity calculation for each rectangle cells. Next, we compare the forward gravity data with real data, and comtinue to perform 3D correlation imaging for the redisual gravity data. After several iterations, we can obtain a satisfactoy results. Newly developed general purpose computing technology from Nvidia GPU (Graphics Processing Unit) has been put into practice and received widespread attention in many areas. Based on the GPU programming mode and two parallel levels, five CPU loops for the main computation of 3D correlation imaging are converted into three loops in GPU kernel functions, thus achieving GPU/CPU collaborative computing. The two inner loops are defined as the dimensions of blocks and the three outer loops are defined as the dimensions of threads, thus realizing the double loop block calculation. Theoretical and real gravity data tests show that results are reliable and the computing time is greatly reduced. Acknowledgments We acknowledge the financial support of Sinoprobe project (201011039 and 201011049-03), the Fundamental Research Funds for the Central Universities (2010ZY26 and 2011PY0183), the National Natural Science Foundation of China (41074095) and the Open Project of State Key Laboratory of Geological Processes and Mineral Resources (GPMR0945).

  17. Weighted density fields as improved probes of modified gravity models

    NASA Astrophysics Data System (ADS)

    Llinares, Claudio; McCullagh, Nuala

    2017-11-01

    When it comes to searches for extensions to general relativity, large efforts are being dedicated to accurate predictions for the power spectrum of density perturbations. While this observable is known to be sensitive to the gravitational theory, its efficiency as a diagnostic for gravity is significantly reduced when Solar system constraints are strictly adhered to. We show that this problem can be overcome by studying weighted density fields. We propose a transformation of the density field for which the impact of modified gravity on the power spectrum can be increased by more than a factor of three. The signal is not only amplified, but the modified gravity features are shifted to larger scales that are less affected by baryonic physics. Furthermore, the overall signal-to-noise ratio increases, which in principle makes identifying signatures of modified gravity with future galaxy surveys more feasible. While our analysis is focused on modified gravity, the technique can be applied to other problems in cosmology, such as the detection of neutrinos, the effects of baryons or baryon acoustic oscillations.

  18. The hidden flat like universe. Starobinsky-like inflation induced by f (T) gravity

    NASA Astrophysics Data System (ADS)

    El Hanafy, W.; Nashed, G. G. L.

    2015-06-01

    We study a single-fluid component in a flat like universe (FLU) governed by f( T) gravity theories, where T is the teleparallel torsion scalar. The FLU model, regardless of the value of the spatial curvature k, identifies a special class of f( T) gravity theories. Remarkably, FLU f( T) gravity does not reduce to teleparallel gravity theory. In large Hubble spacetime the theory is consistent with the inflationary universe scenario and respects the conservation principle. The equation of state evolves similarly in all models . We study the case when the torsion tensor consists of a scalar field, which enables to derive a quintessence potential from the obtained f( T) gravity theory. The potential produces Starobinsky-like model naturally without using a conformal transformation, with higher orders continuously interpolate between Starobinsky and quadratic inflation models. The slow-roll analysis shows double solutions, so that for a single value of the scalar tilt (spectral index) the theory can predict double tensor-to-scalar ratios r of E-mode and B-mode polarizations.

  19. A novel Gravity-FREAK feature extraction and Gravity-KLT tracking registration algorithm based on iPhone MEMS mobile sensor in mobile environment

    PubMed Central

    Lin, Fan; Xiao, Bin

    2017-01-01

    Based on the traditional Fast Retina Keypoint (FREAK) feature description algorithm, this paper proposed a Gravity-FREAK feature description algorithm based on Micro-electromechanical Systems (MEMS) sensor to overcome the limited computing performance and memory resources of mobile devices and further improve the reality interaction experience of clients through digital information added to the real world by augmented reality technology. The algorithm takes the gravity projection vector corresponding to the feature point as its feature orientation, which saved the time of calculating the neighborhood gray gradient of each feature point, reduced the cost of calculation and improved the accuracy of feature extraction. In the case of registration method of matching and tracking natural features, the adaptive and generic corner detection based on the Gravity-FREAK matching purification algorithm was used to eliminate abnormal matches, and Gravity Kaneda-Lucas Tracking (KLT) algorithm based on MEMS sensor can be used for the tracking registration of the targets and robustness improvement of tracking registration algorithm under mobile environment. PMID:29088228

  20. A novel Gravity-FREAK feature extraction and Gravity-KLT tracking registration algorithm based on iPhone MEMS mobile sensor in mobile environment.

    PubMed

    Hong, Zhiling; Lin, Fan; Xiao, Bin

    2017-01-01

    Based on the traditional Fast Retina Keypoint (FREAK) feature description algorithm, this paper proposed a Gravity-FREAK feature description algorithm based on Micro-electromechanical Systems (MEMS) sensor to overcome the limited computing performance and memory resources of mobile devices and further improve the reality interaction experience of clients through digital information added to the real world by augmented reality technology. The algorithm takes the gravity projection vector corresponding to the feature point as its feature orientation, which saved the time of calculating the neighborhood gray gradient of each feature point, reduced the cost of calculation and improved the accuracy of feature extraction. In the case of registration method of matching and tracking natural features, the adaptive and generic corner detection based on the Gravity-FREAK matching purification algorithm was used to eliminate abnormal matches, and Gravity Kaneda-Lucas Tracking (KLT) algorithm based on MEMS sensor can be used for the tracking registration of the targets and robustness improvement of tracking registration algorithm under mobile environment.

  1. Influence of long-term altered gravity on the swimming performance of developing cichlid fish: including results from the 2nd German Spacelab Mission D-2

    NASA Astrophysics Data System (ADS)

    Rahmann, H.; Hilbig, R.; Flemming, J.; Slenzka, K.

    This study presents qualitative and quantitative data concerning gravity-dependent changes in the swimming behaviour of developing cichlid fish larvae (Oreochromis mossambicus) after a 9 resp. 10 days exposure to increased acceleration (centrifuge experiments), to reduced gravity (fast-rotating clinostat), changed accelerations (parabolic air craft flights) and to near weightlessness (2nd German Spacelab Mission D-2). Changes of gravity initially cause disturbances of the swimming performance of the fish larvae. With prolonged stay in orbit a step by step normalisation of the swimming behaviour took place in the fish. After return to 1g earth conditions no somersaulting or looping could be detected concerning the fish, but still slow and disorientated movements as compared to controls occurred. The fish larvae adapted to earth gravity within 3-5 days. Fish seem to be in a distinct early developmental stages extreme sensitive and adaptable to altered gravity. However, elder fish either do not react or show compensatory behaviour e.g. escape reactions.

  2. Gravitational Effects on Cellular Flame Structure

    NASA Technical Reports Server (NTRS)

    Dunsky, C. M.; Fernandez-Pello, A. C.

    1991-01-01

    An experimental investigation has been conducted of the effect of gravity on the structure of downwardly propagating, cellular premixed propane-oxygen-nitrogen flames anchored on a water-cooled porous-plug burner. The flame is subjected to microgravity conditions in the NASA Lewis 2.2-second drop tower, and flame characteristics are recorded on high-speed film. These are compared to flames at normal gravity conditions with the same equivalence ratio, dilution index, mixture flow rate, and ambient pressure. The results show that the cellular instability band, which is located in the rich mixture region, changes little under the absence of gravity. Lifted normal-gravity flames near the cellular/lifted limits, however, are observed to become cellular when gravity is reduced. Observations of a transient cell growth period following ignition point to heat loss as being an important mechanism in the overall flame stability, dominating the stabilizing effect of buoyancy for these downwardly-propagating burner-anchored flames. The pulsations that are observed in the plume and diffusion flame generated downstream of the premixed flame in the fuel rich cases disappear in microgravity, verifying that these fluctuations are gravity related.

  3. Spaceborne gravity gradiometry characterizing the data type

    NASA Technical Reports Server (NTRS)

    Sonnabend, D.

    1987-01-01

    Satellite gravity gradiometers, particularly the two stage drag free carrier vehicle are discussed. An inner stage, carrying the tracking antenna(s), measures the relative position of the internal free proof mass, and feeds this to a set of magnetic forcers, acting against the outer or main vehicle. As the external forces on the inner stage are low, and as the position relative to the proof mass is tightly controlled, carrier phase disturbances are greatly reduced. The arrangement lowers instantaneous accelerations. It is stressed that gravity gradiometers do not measure gradients, they measure components of an intrinsic tensor.

  4. On the recovery of gravity anomalies from high precision altimeter data

    NASA Technical Reports Server (NTRS)

    Lelgemann, D.

    1976-01-01

    A model for the recovery of gravity anomalies from high precision altimeter data is derived which consists of small correction terms to the inverse Stokes' formula. The influence of unknown sea surface topography in the case of meandering currents such as the Gulf Stream is discussed. A formula was derived in order to estimate the accuracy of the gravity anomalies from the known accuracy of the altimeter data. It is shown that for the case of known harmonic coefficients of lower order the range of integration in Stokes inverse formula can be reduced very much.

  5. Noether's stars in f (R) gravity

    NASA Astrophysics Data System (ADS)

    De Laurentis, Mariafelicia

    2018-05-01

    The Noether Symmetry Approach can be used to construct spherically symmetric solutions in f (R) gravity. Specifically, the Noether conserved quantity is related to the gravitational mass and a gravitational radius that reduces to the Schwarzschild radius in the limit f (R) → R. We show that it is possible to construct the M- R relation for neutron stars depending on the Noether conserved quantity and the associated gravitational radius. This approach enables the recovery of extreme massive stars that could not be stable in the standard Tolman-Oppenheimer-Volkoff based on General Relativity. Examples are given for some power law f (R) gravity models.

  6. Ocular Blood Flow Measured Noninvasively in Zero Gravity

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Manuel, Francis K.; Geiser, Martial; Moret, Fabrice; Messer, Russell K.; King, James F.; Suh, Kwang I.

    2003-01-01

    In spaceflight or a reduced-gravity environment, bodily fluids shift to the upper extremities of the body. The pressure inside the eye, or intraocular pressure, changes significantly. A significant number of astronauts report changes in visual acuity during orbital flight. To date this remains of unknown etiology. Could choroidal engorgement be the primary mechanism and a change in the curvature or shape of the cornea or lens be the secondary mechanism for this change in visual acuity? Perfused blood flow in the dense meshwork of capillaries of the choroidal tissue (see the preceding illustration) provides necessary nutrients to the outer layers of the retina (photoreceptors) to keep it healthy and maintain good vision. Unlike the vascular system, the choroid has no baroreceptors to autoregulate fluid shifts, so it can remain engorged, pushing the macula forward and causing a hyperopic (farsighted) shift of the eye. Experiments by researchers at the NASA Glenn Research Center could help answer this question and facilitate planning for long-duration missions. We are investigating the effects of zero gravity on the choroidal blood flow of volunteer subjects. This pilot project plans to determine if choroidal blood flow is autoregulated in a reduced-gravity environment.

  7. A novel facility for reduced-gravity testing: A setup for studying low-velocity collisions into granular surfaces

    NASA Astrophysics Data System (ADS)

    Sunday, C.; Murdoch, N.; Cherrier, O.; Morales Serrano, S.; Valeria Nardi, C.; Janin, T.; Avila Martinez, I.; Gourinat, Y.; Mimoun, D.

    2016-08-01

    This work presents an experimental design for studying low-velocity collisions into granular surfaces in low-gravity. In the experiment apparatus, reduced-gravity is simulated by releasing a free-falling projectile into a surface container with a downward acceleration less than that of Earth's gravity. The acceleration of the surface is controlled through the use of an Atwood machine, or a system of pulleys and counterweights. The starting height of the surface container and the initial separation distance between the projectile and surface are variable and chosen to accommodate collision velocities up to 20 cm/s and effective accelerations of ˜0.1 to 1.0 m/s2. Accelerometers, placed on the surface container and inside the projectile, provide acceleration data, while high-speed cameras capture the collision and act as secondary data sources. The experiment is built into an existing 5.5 m drop tower frame and requires the custom design of all components, including the projectile, surface sample container, release mechanism, and deceleration system. Data from calibration tests verify the efficiency of the experiment's deceleration system and provide a quantitative understanding of the performance of the Atwood system.

  8. A novel facility for reduced-gravity testing: A setup for studying low-velocity collisions into granular surfaces.

    PubMed

    Sunday, C; Murdoch, N; Cherrier, O; Morales Serrano, S; Valeria Nardi, C; Janin, T; Avila Martinez, I; Gourinat, Y; Mimoun, D

    2016-08-01

    This work presents an experimental design for studying low-velocity collisions into granular surfaces in low-gravity. In the experiment apparatus, reduced-gravity is simulated by releasing a free-falling projectile into a surface container with a downward acceleration less than that of Earth's gravity. The acceleration of the surface is controlled through the use of an Atwood machine, or a system of pulleys and counterweights. The starting height of the surface container and the initial separation distance between the projectile and surface are variable and chosen to accommodate collision velocities up to 20 cm/s and effective accelerations of ∼0.1 to 1.0 m/s(2). Accelerometers, placed on the surface container and inside the projectile, provide acceleration data, while high-speed cameras capture the collision and act as secondary data sources. The experiment is built into an existing 5.5 m drop tower frame and requires the custom design of all components, including the projectile, surface sample container, release mechanism, and deceleration system. Data from calibration tests verify the efficiency of the experiment's deceleration system and provide a quantitative understanding of the performance of the Atwood system.

  9. The Next Century Astrophysics Program

    NASA Technical Reports Server (NTRS)

    Swanson, Paul N.

    1991-01-01

    The Astrophysics Division within the NASA Office of Space Science and Applications (OSSA) has defined a set of major and moderate missions that are presently under study for flight sometime within the next 20 years. These programs include the: Advanced X Ray Astrophysics Facility; X Ray Schmidt Telescope; Nuclear Astrophysics Experiment; Hard X Ray Imaging Facility; Very High Throughput Facility; Gamma Ray Spectroscopy Observatory; Hubble Space Telescope; Lunar Transit Telescope; Astrometric Interferometer Mission; Next Generation Space Telescope; Imaging Optical Interferometer; Far Ultraviolet Spectroscopic Explorer; Gravity Probe B; Laser Gravity Wave Observatory in Space; Stratospheric Observatory for Infrared Astronomy; Space Infrared Telescope Facility; Submillimeter Intermediate Mission; Large Deployable Reflector; Submillimeter Interferometer; and Next Generation Orbiting Very Long Baseline Interferometer.

  10. Temporal gravity field modeling based on least square collocation with short-arc approach

    NASA Astrophysics Data System (ADS)

    ran, jiangjun; Zhong, Min; Xu, Houze; Liu, Chengshu; Tangdamrongsub, Natthachet

    2014-05-01

    After the launch of the Gravity Recovery And Climate Experiment (GRACE) in 2002, several research centers have attempted to produce the finest gravity model based on different approaches. In this study, we present an alternative approach to derive the Earth's gravity field, and two main objectives are discussed. Firstly, we seek the optimal method to estimate the accelerometer parameters, and secondly, we intend to recover the monthly gravity model based on least square collocation method. The method has been paid less attention compared to the least square adjustment method because of the massive computational resource's requirement. The positions of twin satellites are treated as pseudo-observations and unknown parameters at the same time. The variance covariance matrices of the pseudo-observations and the unknown parameters are valuable information to improve the accuracy of the estimated gravity solutions. Our analyses showed that introducing a drift parameter as an additional accelerometer parameter, compared to using only a bias parameter, leads to a significant improvement of our estimated monthly gravity field. The gravity errors outside the continents are significantly reduced based on the selected set of the accelerometer parameters. We introduced the improved gravity model namely the second version of Institute of Geodesy and Geophysics, Chinese Academy of Sciences (IGG-CAS 02). The accuracy of IGG-CAS 02 model is comparable to the gravity solutions computed from the Geoforschungszentrum (GFZ), the Center for Space Research (CSR) and the NASA Jet Propulsion Laboratory (JPL). In term of the equivalent water height, the correlation coefficients over the study regions (the Yangtze River valley, the Sahara desert, and the Amazon) among four gravity models are greater than 0.80.

  11. Regional models of the gravity field from terrestrial gravity data of heterogeneous quality and density

    NASA Astrophysics Data System (ADS)

    Talvik, Silja; Oja, Tõnis; Ellmann, Artu; Jürgenson, Harli

    2014-05-01

    Gravity field models in a regional scale are needed for a number of applications, for example national geoid computation, processing of precise levelling data and geological modelling. Thus the methods applied for modelling the gravity field from surveyed gravimetric information need to be considered carefully. The influence of using different gridding methods, the inclusion of unit or realistic weights and indirect gridding of free air anomalies (FAA) are investigated in the study. Known gridding methods such as kriging (KRIG), least squares collocation (LSCO), continuous curvature (CCUR) and optimal Delaunay triangulation (ODET) are used for production of gridded gravity field surfaces. As the quality of data collected varies considerably depending on the methods and instruments available or used in surveying it is important to somehow weigh the input data. This puts additional demands on data maintenance as accuracy information needs to be available for each data point participating in the modelling which is complicated by older gravity datasets where the uncertainties of not only gravity values but also supplementary information such as survey point position are not always known very accurately. A number of gravity field applications (e.g. geoid computation) demand foran FAA model, the acquisition of which is also investigated. Instead of direct gridding it could be more appropriate to proceed with indirect FAA modelling using a Bouguer anomaly grid to reduce the effect of topography on the resulting FAA model (e.g. near terraced landforms). The inclusion of different gridding methods, weights and indirect FAA modelling helps to improve gravity field modelling methods. It becomes possible to estimate the impact of varying methodical approaches on the gravity field modelling as statistical output is compared. Such knowledge helps assess the accuracy of gravity field models and their effect on the aforementioned applications.

  12. PREFACE: Conceptual and Technical Challenges for Quantum Gravity 2014 - Parallel session: Noncommutative Geometry and Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Martinetti, P.; Wallet, J.-C.; Amelino-Camelia, G.

    2015-08-01

    The conference Conceptual and Technical Challenges for Quantum Gravity at Sapienza University of Rome, from 8 to 12 September 2014, has provided a beautiful opportunity for an encounter between different approaches and different perspectives on the quantum-gravity problem. It contributed to a higher level of shared knowledge among the quantum-gravity communities pursuing each specific research program. There were plenary talks on many different approaches, including in particular string theory, loop quantum gravity, spacetime noncommutativity, causal dynamical triangulations, asymptotic safety and causal sets. Contributions from the perspective of philosophy of science were also welcomed. In addition several parallel sessions were organized. The present volume collects contributions from the Noncommutative Geometry and Quantum Gravity parallel session4, with additional invited contributions from specialists in the field. Noncommutative geometry in its many incarnations appears at the crossroad of many researches in theoretical and mathematical physics: • from models of quantum space-time (with or without breaking of Lorentz symmetry) to loop gravity and string theory, • from early considerations on UV-divergencies in quantum field theory to recent models of gauge theories on noncommutative spacetime, • from Connes description of the standard model of elementary particles to recent Pati-Salam like extensions. This volume provides an overview of these various topics, interesting for the specialist as well as accessible to the newcomer. 4partially funded by CNRS PEPS /PTI ''Metric aspect of noncommutative geometry: from Monge to Higgs''

  13. Gravisensing, apoptosis, and drug recovery in Taxus cell suspensions

    NASA Technical Reports Server (NTRS)

    Durzan, D. J.

    1999-01-01

    Haploid and diploid cell suspensions of Taxus spp. were examined for their adaptive plasticity in response to simulated microgravity, unit gravity, and hypergravity. Cell suspensions produced the taxane, paclitaxel, (TAXOL (R)), which is useful for the treatment of various cancers. Amyloplasts contributed to taxane ring biosynthesis and to drug release at the cell wall. Drug-producing cells reacted as gravisensing osmotic tensiometers. In stressed cells, amyloplasts docked and fused in clusters to sites on the plasmalemma before taxane discharge into the culture medium. In simulated microgravity and compared to all other treatments, taxane production was reduced nearly 100-fold. The percent paclitaxel of total taxanes remained 3-to 6-fold greater, and biomass doubled. When p53-independent programmed cell death was induced, taxanes were released into the culture medium as free molecules (soluble and insoluble) or bound to membranes, nuclear fragments, xylan residues, and other particulate materials. Unit gravity and especially hypergravity promoted xylogenesis and significant drug overproduction. A model relating families of >touch = (TCH), taxane early response (TER), nuclear cycling, and apoptosis-regulating genes to gravisensing, cell wall modifications, and to taxane recovery accounted for most but not all of the observations.

  14. Internal model of gravity influences configural body processing.

    PubMed

    Barra, Julien; Senot, Patrice; Auclair, Laurent

    2017-01-01

    Human bodies are processed by a configural processing mechanism. Evidence supporting this claim is the body inversion effect, in which inversion impairs recognition of bodies more than other objects. Biomechanical configuration, as well as both visual and embodied expertise, has been demonstrated to play an important role in this effect. Nevertheless, the important factor of body inversion effect may also be linked to gravity orientation since gravity is one of the most fundamental constraints of our biology, behavior, and perception on Earth. The visual presentation of an inverted body in a typical body inversion paradigm turns the observed body upside down but also inverts the implicit direction of visual gravity in the scene. The orientation of visual gravity is then in conflict with the direction of actual gravity and may influence configural processing. To test this hypothesis, we dissociated the orientations of the body and of visual gravity by manipulating body posture. In a pretest we showed that it was possible to turn an avatar upside down (inversion relative to retinal coordinates) without inverting the orientation of visual gravity when the avatar stands on his/her hands. We compared the inversion effect in typical conditions (with gravity conflict when the avatar is upside down) to the inversion effect in conditions with no conflict between visual and physical gravity. The results of our experiment revealed that the inversion effect, as measured by both error rate and reaction time, was strongly reduced when there was no gravity conflict. Our results suggest that when an observed body is upside down (inversion relative to participants' retinal coordinates) but the orientation of visual gravity is not, configural processing of bodies might still be possible. In this paper, we discuss the implications of an internal model of gravity in the configural processing of observed bodies. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Compensation of Gravity-Induced Structural Deformations on a Beam- Waveguide Antenna Using a Deformable Mirror

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.; Moore, M.; Rochblatt, D. J.; Veruttipong, W.

    1995-01-01

    At the NASA Deep Space Network (DSN) Goldstone Complex, a 34-meter- diameter beam-waveguide antenna, DSS-13, was constructed in 1988-1990 and has become an integral part of an advanced systems program and a test bed for technologies being developed to introduce Ka-band (32 GHz) frequencies into the DSN. A method for compensating the gravity- induced structural deformations in this large antenna is presented.

  16. Perimeter Security and Intruder Detection Using Gravity Gradiometry: A Feasibility Study

    DTIC Science & Technology

    2011-03-24

    design, build, and operate, and it is usually not feasible to integrate new technology into an already existing system. So far, however, the...gravitational gradients is not a new concept and has been applied across a variety of industries. The first device for gravity gradient measurement was the...which generates a new simulated GGI reading. The program loops for a set number of iterations, and then ends by calculating algorithm performance

  17. Orion Entry Performance-Based Center-of-Gravity Box

    NASA Technical Reports Server (NTRS)

    Rea, Jeremy R.

    2010-01-01

    The Orion capsule has many performance requirements for its atmospheric entry trajectory. Requirements on landing accuracy, maximum heating rate, total heat load, propellant usage, and sensed acceleration must all be satised. It is desired to define a methodology to translate the many performance requirements for an atmospheric entry trajectory into language easily understood by vehicle designers in terms of an allowable center-of-gravity box. This is possible by noting that most entry performance parameters for a capsule vehicle are mainly determined by the lift-to-drag ratio of the vehicle. However, the lift-to- drag ratio should be considered a probabilistic quantity rather than deterministic, where variations in the lift-to-drag are caused by both aerodynamic and center-of-gravity un- certainties. This paper discusses the technique used by the Orion program to define the allowable dispersions in center-of-gravity to achieve the desired entry performance while accounting for aerodynamic uncertainty.

  18. On High-Frequency Topography-Implied Gravity Signals for a Height System Unification Using GOCE-Based Global Geopotential Models

    NASA Astrophysics Data System (ADS)

    Grombein, Thomas; Seitz, Kurt; Heck, Bernhard

    2017-03-01

    National height reference systems have conventionally been linked to the local mean sea level, observed at individual tide gauges. Due to variations in the sea surface topography, the reference levels of these systems are inconsistent, causing height datum offsets of up to ±1-2 m. For the unification of height systems, a satellite-based method is presented that utilizes global geopotential models (GGMs) derived from ESA's satellite mission Gravity field and steady-state Ocean Circulation Explorer (GOCE). In this context, height datum offsets are estimated within a least squares adjustment by comparing the GGM information with measured GNSS/leveling data. While the GNSS/leveling data comprises the full spectral information, GOCE GGMs are restricted to long wavelengths according to the maximum degree of their spherical harmonic representation. To provide accurate height datum offsets, it is indispensable to account for the remaining signal above this maximum degree, known as the omission error of the GGM. Therefore, a combination of the GOCE information with the high-resolution Earth Gravitational Model 2008 (EGM2008) is performed. The main contribution of this paper is to analyze the benefit, when high-frequency topography-implied gravity signals are additionally used to reduce the remaining omission error of EGM2008. In terms of a spectral extension, a new method is proposed that does not rely on an assumed spectral consistency of topographic heights and implied gravity as is the case for the residual terrain modeling (RTM) technique. In the first step of this new approach, gravity forward modeling based on tesseroid mass bodies is performed according to the Rock-Water-Ice (RWI) approach. In a second step, the resulting full spectral RWI-based topographic potential values are reduced by the effect of the topographic gravity field model RWI_TOPO_2015, thus, removing the long to medium wavelengths. By using the latest GOCE GGMs, the impact of topography-implied gravity signals on the estimation of height datum offsets is analyzed in detail for representative GNSS/leveling data sets in Germany, Austria, and Brazil. Besides considerable changes in the estimated offset of up to 3 cm, the conducted analyses show that significant improvements of 30-40% can be achieved in terms of a reduced standard deviation and range of the least squares adjusted residuals.

  19. Combustion of Metals in Reduced-Gravity and Extra Terrestrial Environments

    NASA Technical Reports Server (NTRS)

    Branch, M.C.; Abbud-Madrid, A.; Daily, J. W.

    1999-01-01

    The combustion of metals is a field with important practical applications in rocket propellants, high-temperature flames, and material synthesis. Also, the safe operation of metal containers in high-pressure oxygen systems and with cryogenic fuels and oxidizers remains an important concern in industry. The increasing use of metallic components in spacecraft and space structures has also raised concerns about their flammability properties and fire suppression mechanisms. In addition, recent efforts to embark on unmanned and manned planetary exploration, such as on Mars, have also renewed the interest in metal/carbon-dioxide combustion as an effective in situ resource utilization technology. In spite of these practical applications, the understanding of the combustion properties of metals remains far behind that of the most commonly used fuels such as hydrocarbons. The lack of understanding is due to the many problems unique to metal- oxidizer reactions such as: low-temperature surface oxidation prior to ignition, heterogeneous reactions, very high combustion temperatures, product condensation, high emissivity of products, and multi-phase interactions. Very few analytical models (all neglecting the influence of gravity) have been developed to predict the burning characteristics and the flame structure details. Several experimental studies attempting to validate these models have used small metal particles to recreate gravity-free conditions. The high emissivity of the flames, rapid reaction, and intermittent explosions experienced by these particles have made the gathering of any useful information on burning rates and flame structure very difficult. The use of a reduced gravity environment is needed to clarify some of the complex interactions among the phenomena described above. First, the elimination of the intrusive buoyant flows that plague all combustion phenomena is of paramount importance in metal reactions due to the much higher temperatures reached during combustion. Second, a low-gravity environment is absolutely essential to remove the destructive effect of gravity on the shape of a molten metal droplet in order to study a spherically symmetric condition with large bulk samples. The larger size of the spherical metal droplet and the longer burning times available in reduced gravity extend the spatial and temporal dimensions to permit careful probing of the flame structure and dynamics. Third, the influence of the radiative heat transfer from the solid oxides can be studied more carefully by generating a stagnant spherical shell of condensed products undisturbed by buoyancy.

  20. Effects of real or simulated microgravity on plant cell growth and proliferation

    NASA Astrophysics Data System (ADS)

    Medina, Francisco Javier; Manzano, Ana Isabel; Herranz, Raul; Dijkstra, Camelia; Larkin, Oliver; Hill, Richard; Carnero-Díaz, Eugénie; van Loon, Jack J. W. A.; Anthony, Paul; Davey, Michael R.; Eaves, Laurence

    Experiments on seed germination and seedling growth performed in real microgravity on the International Space Station and in different facilities for simulating microgravity in Earth-based laboratories (Random Positioning Machine and Magnetic Levitation), have provided evidence that the absence of gravity (or the artificial compensation of the gravity vector) results in the uncoupling of cell growth and proliferation in root meristematic cells. These are two essential cellular functions that support plant growth and development, which are strictly coordinated under normal ground gravity conditions. Under conditions of altered gravity, we observe that cell proliferation is enhanced, whereas cell growth is reduced, according to different morphometric, cytological and immunocytochemical parameters. Since coordination of cell growth and proliferation are major features of meristematic cells, this observed uncoupling represents a major stress condition for these cells, inducing major alterations in the pattern of plant development. Moreover, the expression of the cyclin B1 gene, a regulator of the entry into mitosis and normally used as an indicator of cell proliferation, appears reduced in the smaller and more actively proliferating cells of samples grown under the conditions of our experiments. These results are compatible with an alteration of the regulation of the cell cycle, producing a shorter G2 period. Interestingly, while cyclin B1 expression is depleted in these conditions in root meristematic cells, it is enhanced in cotyledons of the same seedlings, as shown by qPCR and by the expression of the gus reporter gene. It is known that regulation of root growth (including regulation of root meristematic activity) is driven mainly by auxin, whereas cytokinin is the key hormone regulating cotyledon growth. Therefore, our results indicate a major role of auxin in the sensitivity to altered gravity of root meristematic cells. Auxin is crucial in maintaining the coupling of cell growth and proliferation under normal conditions and it should have a decisive influence in the uncoupling of these processes under altered gravity. Experiments to detect auxin distribution in roots under altered gravity produced by diamagnetic levitation have shown that the lateral balanced distribution of the growth regulator in the root cap is altered slightly and that the total concentration of the auxin detected in root tips is somewhat reduced. These effects are independent of the orientation of statoliths in columella cells.

Top