Sample records for reduced hspro expression

  1. HSPRO Controls Early Nicotiana attenuata Seedling Growth during Interaction with the Fungus Piriformospora indica1[C][W][OA

    PubMed Central

    Schuck, Stefan; Camehl, Iris; Gilardoni, Paola A.; Oelmueller, Ralf; Baldwin, Ian T.; Bonaventure, Gustavo

    2012-01-01

    In a previous study aimed at identifying regulators of Nicotiana attenuata responses against chewing insects, a 26-nucleotide tag matching the HSPRO (ORTHOLOG OF SUGAR BEET Hs1pro-1) gene was found to be strongly induced after simulated herbivory (Gilardoni et al., 2010). Here we characterized the function of HSPRO during biotic interactions in transgenic N. attenuata plants silenced in its expression (ir-hspro). In wild-type plants, HSPRO expression was not only induced during simulated herbivory but also when leaves were inoculated with Pseudomonas syringae pv tomato DC3000 and roots with the growth-promoting fungus Piriformospora indica. Reduced HSPRO expression did not affect the regulation of direct defenses against Manduca sexta herbivory or P. syringae pv tomato DC3000 infection rates. However, reduced HSPRO expression positively influenced early seedling growth during interaction with P. indica; fungus-colonized ir-hspro seedlings increased their fresh biomass by 30% compared with the wild type. Grafting experiments demonstrated that reduced HSPRO expression in roots was sufficient to induce differential growth promotion in both roots and shoots. This effect was accompanied by changes in the expression of 417 genes in colonized roots, most of which were metabolic genes. The lack of major differences in the metabolic profiles of ir-hspro and wild-type colonized roots (as analyzed by liquid chromatography time-of-flight mass spectrometry) suggested that accelerated metabolic rates were involved. We conclude that HSPRO participates in a whole-plant change in growth physiology when seedlings interact with P. indica. PMID:22892352

  2. Resistant and susceptible responses in alfalfa (Medicago sativa) to bacterial stem blight caused by Pseudomonas syringae pv. syringae.

    PubMed

    Nemchinov, Lev G; Shao, Jonathan; Lee, Maya N; Postnikova, Olga A; Samac, Deborah A

    2017-01-01

    Bacterial stem blight caused by Pseudomonas syringae pv. syringae is a common disease of alfalfa (Medicago sativa L). Little is known about host-pathogen interactions and host defense mechanisms. Here, individual resistant and susceptible plants were selected from cultivars Maverick and ZG9830 and used for transcript profiling at 24 and 72 hours after inoculation (hai) with the isolate PssALF3. Bioinformatic analysis revealed a number of differentially expressed genes (DEGs) in resistant and susceptible genotypes. Although resistant plants from each cultivar produced a hypersensitive response, transcriptome analyses indicated that they respond differently at the molecular level. The number of DEGs was higher in resistant plants of ZG9830 at 24 hai than in Maverick, suggesting that ZG9830 plants had a more rapid effector triggered immune response. Unique up-regulated genes in resistant ZG9830 plants included genes encoding putative nematode resistance HSPRO2-like proteins, orthologs for the rice Xa21 and soybean Rpg1-b resistance genes, and TIR-containing R genes lacking both NBS and LRR domains. The suite of R genes up-regulated in resistant Maverick plants had an over-representation of R genes in the CC-NBS-LRR family including two genes for atypical CCR domains and a putative ortholog of the Arabidopsis RPM1 gene. Resistance in both cultivars appears to be mediated primarily by WRKY family transcription factors and expression of genes involved in protein phosphorylation, regulation of transcription, defense response including synthesis of isoflavonoids, and oxidation-reduction processes. These results will further the identification of mechanisms involved in resistance to facilitate selection of parent populations and development of commercial varieties.

  3. Resistant and susceptible responses in alfalfa (Medicago sativa) to bacterial stem blight caused by Pseudomonas syringae pv. syringae

    PubMed Central

    Shao, Jonathan; Lee, Maya N.; Postnikova, Olga A.; Samac, Deborah A.

    2017-01-01

    Bacterial stem blight caused by Pseudomonas syringae pv. syringae is a common disease of alfalfa (Medicago sativa L). Little is known about host-pathogen interactions and host defense mechanisms. Here, individual resistant and susceptible plants were selected from cultivars Maverick and ZG9830 and used for transcript profiling at 24 and 72 hours after inoculation (hai) with the isolate PssALF3. Bioinformatic analysis revealed a number of differentially expressed genes (DEGs) in resistant and susceptible genotypes. Although resistant plants from each cultivar produced a hypersensitive response, transcriptome analyses indicated that they respond differently at the molecular level. The number of DEGs was higher in resistant plants of ZG9830 at 24 hai than in Maverick, suggesting that ZG9830 plants had a more rapid effector triggered immune response. Unique up-regulated genes in resistant ZG9830 plants included genes encoding putative nematode resistance HSPRO2-like proteins, orthologs for the rice Xa21 and soybean Rpg1-b resistance genes, and TIR-containing R genes lacking both NBS and LRR domains. The suite of R genes up-regulated in resistant Maverick plants had an over-representation of R genes in the CC-NBS-LRR family including two genes for atypical CCR domains and a putative ortholog of the Arabidopsis RPM1 gene. Resistance in both cultivars appears to be mediated primarily by WRKY family transcription factors and expression of genes involved in protein phosphorylation, regulation of transcription, defense response including synthesis of isoflavonoids, and oxidation-reduction processes. These results will further the identification of mechanisms involved in resistance to facilitate selection of parent populations and development of commercial varieties. PMID:29244864

  4. Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Jun; Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Texas Heart Institute at St. Luke's Episcopal Hospital, Houston, TX

    2010-02-26

    Objective: The accumulation of lipids in macrophages contributes to the development of atherosclerosis. Strategies to reduce lipid accumulation in macrophages may have therapeutic potential for preventing and treating atherosclerosis and cardiovascular complications. The antidiabetic drug metformin has been reported to reduce lipid accumulation in adipocytes. In this study, we examined the effects of metformin on lipid accumulation in macrophages and investigated the mechanisms involved. Methods and results: We observed that metformin significantly reduced palmitic acid (PA)-induced intracellular lipid accumulation in macrophages. Metformin promoted the expression of carnitine palmitoyltransferase I (CPT-1), while reduced the expression of fatty acid-binding protein 4 (FABP4)more » which was involved in PA-induced lipid accumulation. Quantitative real-time PCR showed that metformin regulates FABP4 expression at the transcriptional level. We identified forkhead transcription factor FOXO1 as a positive regulator of FABP4 expression. Inhibiting FOXO1 expression with FOXO1 siRNA significantly reduced basal and PA-induced FABP4 expression. Overexpression of wild-type FOXO1 and constitutively active FOXO1 significantly increased FABP4 expression, whereas dominant negative FOXO1 dramatically decreased FABP4 expression. Metformin reduced FABP4 expression by promoting FOXO1 nuclear exclusion and subsequently inhibiting its activity. Conclusions: Taken together, these results suggest that metformin reduces lipid accumulation in macrophages by repressing FOXO1-mediated FABP4 transcription. Thus, metformin may have a protective effect against lipid accumulation in macrophages and may serve as a therapeutic agent for preventing and treating atherosclerosis in metabolic syndrome.« less

  5. Type 1 Deiodinase Regulates ApoA-I Gene Expression and ApoA-I Synthesis Independent of Thyroid Hormone Signaling

    PubMed Central

    Liu, Jing; Hernandez-Ono, Antonio; Graham, Mark J.; Galton, Valerie Anne; Ginsberg, Henry N.

    2016-01-01

    Objective Plasma levels of high density lipoprotein cholesterol (HDLC) and apolipoprotein A-I (ApoA-I) are reduced in individuals with defective insulin signaling. Initial studies using liver-specific insulin receptor (InsR) knockout mice (LIRKO) identified reduced expression of Type 1 Deiodinase (Dio1) as a potentially novel link between defective hepatic insulin signaling and reduced expression of the ApoA-I gene. Our objective was to examine the regulation of ApoA-I expression by Dio1. Approach and Results Acute inactivation of InsR by adenoviral delivery of Cre recombinase to InsR floxed mice reduced HDLC and expression of both ApoA-I and Dio1. Overexpression of Dio1 in LIRKO restored HDLC and ApoA-I levels and increased the expression of ApoA-I. Dio1 knockout (D1KO) mice had very low expression of ApoA-I and reduced serum levels of HDLC and ApoA-I. Treatment of C57BL/6J mice with anti-sense to Dio1 reduced ApoA-I mRNA, HDLC, and serum ApoA-I. Hepatic 3,5,3′-triiodothyronine (T3) content was normal or elevated in LIRKO or D1KO mice. Knockdown of either InsR or Dio1 by siRNA in HepG2 cells decreased expression of ApoA-I as well as ApoA-I synthesis and secretion. siRNA knockdown of InsR or Dio1 decreased activity of a region of the ApoA-I promoter lacking thyroid hormone response elements (TREs) (Region B). Electrophoretic mobility shift assay demonstrated that reduced Dio1 expression decreased the binding of nuclear proteins to Region B. Conclusions Reductions in Dio1 expression reduce expression of ApoA-I in a T3/TRE independent manner. PMID:27150392

  6. Type 1 Deiodinase Regulates ApoA-I Gene Expression and ApoA-I Synthesis Independent of Thyroid Hormone Signaling.

    PubMed

    Liu, Jing; Hernandez-Ono, Antonio; Graham, Mark J; Galton, Valerie Anne; Ginsberg, Henry N

    2016-07-01

    Plasma levels of high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-I (ApoA-I) are reduced in individuals with defective insulin signaling. Initial studies using liver-specific insulin receptor (InsR) knockout mice identified reduced expression of type 1 deiodinase (Dio1) as a potentially novel link between defective hepatic insulin signaling and reduced expression of the ApoA-I gene. Our objective was to examine the regulation of ApoA-I expression by Dio1. Acute inactivation of InsR by adenoviral delivery of Cre recombinase to InsR floxed mice reduced HDL-C and expression of both ApoA-I and Dio1. Overexpression of Dio1 in InsR knockout mice restored HDL-C and ApoA-I levels and increased the expression of ApoA-I. Dio1 knockout mice had low expression of ApoA-I and reduced serum levels of HDL-C and ApoA-I. Treatment of C57BL/6J mice with antisense to Dio1 reduced ApoA-I mRNA, HDL-C, and serum ApoA-I. Hepatic 3,5,3'-triiodothyronine content was normal or elevated in InsR knockout mice or Dio1 knockout mice. Knockdown of either InsR or Dio1 by siRNA in HepG2 cells decreased the expression of ApoA-I and ApoA-I synthesis and secretion. siRNA knockdown of InsR or Dio1 decreased activity of a region of the ApoA-I promoter lacking thyroid hormone response elements (region B). Electrophoretic mobility shift assay demonstrated that reduced Dio1 expression decreased the binding of nuclear proteins to region B. Reductions in Dio1 expression reduce the expression of ApoA-I in a 3,5,3'-triiodothyronine-/thyroid hormone response element-independent manner. © 2016 American Heart Association, Inc.

  7. Regulation of SFRP-1 expression in the rat dental follicle.

    PubMed

    Liu, Dawen; Yao, Shaomian; Wise, Gary E

    2012-01-01

    Tooth eruption requires osteoclastogenesis and subsequent bone resorption. Secreted frizzled-related protein-1 (SFRP-1) negatively regulates osteoclastogenesis. Our previous studies indicated that SFRP-1 is expressed in the rat dental follicle (DF), with reduced expression at days 3 and 9 close to the times for the major and minor bursts of osteoclastogenesis, respectively; but it remains unclear as to what molecules contribute to its reduced expression at these critical times. Thus, it was the aim of this study to determine which molecules regulate the expression of SFRP-1 in the DF. To that end, the DF cells were treated with cytokines that are maximally expressed at days 3 or 9, and SFRP-1 expression was determined. Our study indicated that colony-stimulating factor-1 (CSF-1), a molecule maximally expressed in the DF at day 3, down-regulated SFRP-1 expression. As to endothelial monocyte-activating polypeptide II (EMAP-II), a highly expressed molecule in the DF at day 3, it had no effect on the expression of SFRP-1. However, when EMAP-II was knocked down by siRNA, the expression of SFRP-1 was elevated, and this elevated SFRP-1 expression could be reduced by adding recombinant EMAP-II protein. This suggests that EMAP-II maintained a lower level of SFRP-1 in the DF. TNF-α is a molecule maximally expressed at day 9, and this study indicated that it also down-regulated the expression of SFRP-1 in the DF cells. In conclusion, CSF-1 and EMAP-II may contribute to the reduced SFRP-1 expression seen on day 3, while TNF-α may contribute to the reduced SFRP-1 expression at day 9.

  8. Reduced MUC4 expression is a late event in breast carcinogenesis and is correlated with increased infiltration of immune cells as well as promoter hypermethylation in invasive breast carcinoma.

    PubMed

    Cho, Jin Seong; Park, Min Ho; Lee, Ji Shin; Yoon, Jung Han

    2015-01-01

    Altered expression of MUC4 is associated with tumor progression and immune surveillance, but the potential involvement of MUC4 in breast carcinogenesis has not been rigorously assessed. Immunohistochemical staining with anti-MUC4 antibody was performed in a total of 324 patients with 26 normal breasts, 25 usual ductal hyperplasia, 76 ductal carcinoma in situ, and 198 invasive breast carcinoma (IBC) using tissue microarray. Immunohistochemical staining for CD8, CD57, and CD1a and methylation-specific polymerase chain reaction were also performed in IBC. Reduced MUC4 expression in IBC was significantly higher than in usual ductal hyperplasia and ductal carcinoma in situ (P<0.001 and P<0.01, respectively). Reduced MUC4 expression in IBC was significantly correlated with promoter hypermethylation (P<0.05). No association between MUC4 expression and patient outcomes was identified. Intratumoral CD8 T cells and stromal CD57 natural killer cells were significantly increased in the reduced MUC4 expression group compared with those in the normal expression group (P<0.01 and P<0.05, respectively). Our results suggest that tumor progression in breast epithelium is accompanied by reduced MUC4 protein expression. Reduced MUC4 expression correlates with increased tumor-infiltrating CD8 T and NK cells as well as promoter hypermethylation in IBC.

  9. Adjustable under-expression of yeast mating pathway proteins in Saccharomyces cerevisiae using a programmed ribosomal frameshift.

    PubMed

    Choi, Min-Yeon; Park, Sang-Hyun

    2016-06-01

    Experimental research in molecular biology frequently relies on the promotion or suppression of gene expression, an important tool in the study of its functions. Although yeast is among the most studied model systems with the ease of maintenance and manipulation, current experimental methods are mostly limited to gene deletion, suppression or overexpression of genes. Therefore, the ability to reduce protein expressions and then observing the effects would promote a better understanding of the exact functions and their interactions. Reducing protein expression is mainly limited by the difficulties associated with controlling the reduction level, and in some cases, the initial endogenous abundance is too low. For the under-expression to be useful as an experimental tool, repeatability and stability of reduced expression is important. We found that cis-elements in programmed -1 ribosomal frameshifting (-1RFS) of beet western yellow virus (BWYV) could be utilized to reduced protein expression in Saccharomyces cerevisiae. The two main advantages of using -1RFS are adjustable reduction rates and ease of use. To demonstrate the utility of this under-expression system, examples of reduced protein abundance were shown using yeast mating pathway components. The abundance of MAP kinase Fus3 was reduced to approximately 28-75 % of the wild-type value. Other MAP kinase mating pathway components, including Ste5, Ste11, and Ste7, were also under-expressed to verify that the -1RFS system works with different proteins. Furthermore, reduced Fus3 abundance altered the overall signal transduction outcome of the mating pathway, demonstrating the potential for further studies of signal transduction adjustment via under-expression.

  10. Pioglitazone inhibits LOX-1 expression in human coronary artery endothelial cells by reducing intracellular superoxide radical generation.

    PubMed

    Mehta, Jawahar L; Hu, Bo; Chen, Jiawei; Li, Dayuan

    2003-12-01

    LOX-1, a novel lectin-like receptor for oxidized LDL (ox-LDL), is expressed in response to ox-LDL, angiotensin II (Ang II), tumor necrosis factor (TNF)-alpha, and other stress stimuli. It is highly expressed in atherosclerotic tissues. Peroxisome proliferator-activated receptor (PPAR)-gamma ligands, such as pioglitazone, exert antiatherosclerotic effects. This study examined the regulation of LOX-1 expression in human coronary artery endothelial cells (HCAECs) by pioglitazone. Fourth generation HCAECs were treated with ox-LDL, Ang II, or TNF-alpha with or without pioglitazone pretreatment. All 3 stimuli upregulated LOX-1 expression (mRNA and protein). Pioglitazone, in a concentration-dependent manner, reduced LOX-1 expression (P<0.01 versus ox-LDL, Ang II, or TNF-alpha alone). Ox-LDL, Ang II, and TNF-alpha each enhanced intracellular superoxide radical generation, and pioglitazone pretreatment reduced superoxide generation (P<0.01 versus ox-LDL, Ang II, or TNF-alpha). Furthermore, all 3 stimuli upregulated the expression of the transcription factors nuclear factor-kappaB and activator protein-1 (determined by electrophoretic mobility shift assay), and pioglitazone pretreatment reduced this expression (P<0.01 versus ox-LDL, Ang II, or TNF-alpha). To determine the biological significance of pioglitazone-mediated downregulation of LOX-1, we studied monocyte adhesion to ox-LDL-treated HCAECs. Pioglitazone reduced the adhesion of monocytes to activated HCAECs in a fashion similar to that produced by antisense to LOX-1 mRNA. These observations suggest that the PPAR-gamma ligand pioglitazone reduces intracellular superoxide radical generation and subsequently reduces the expression of transcription factors, expression of the LOX-1 gene, and monocyte adhesion to activated endothelium. The salutary effect of PPAR-gamma ligands in atherogenesis may involve the inhibition of LOX-1 and the adhesion of monocytes to endothelium.

  11. Reduced Pms2 expression in non-neoplastic flat mucosa from patients with colon cancer correlates with reduced apoptosis competence.

    PubMed

    Bernstein, Harris; Prasad, Anil; Holubec, Hana; Bernstein, Carol; Payne, Claire M; Ramsey, Lois; Dvorakova, Katerina; Wilson, Megan; Warneke, James A; Garewal, Harinder

    2006-06-01

    Pms2 protein is a component of the DNA mismatch repair complex responsible both for post-replication correction of DNA nucleotide mispairs and for early steps in apoptosis. Germline mutations in DNA mismatch repair genes give rise to hereditary non-polyposis colon cancer, which accounts for about 4% of colon cancers. However, little is known about the expression of mismatch repair proteins in relation to sporadic colon cancer, which accounts for the great majority of colon cancers. Multiple samples were taken from the non-neoplastic flat mucosa of colon resections from patients with no colonic neoplasia, a tubulovillous adenoma, or an adenocarcinoma. Expression of Pms2 was assessed using semiquantitative immunohistochemistry. Apoptosis was assessed in polychrome-stained epoxy sections using morphologic criteria. Samples from patients without colonic neoplasia had moderate to strong staining for Pms2 in cell nuclei at the base of crypts, while samples from 2 of the 3 colons with a tubulovillous adenoma, and from 6 of the 10 colons with adenocarcinomas, showed reduced Pms2 expression. Samples from patients with an adenocarcinoma that had reduced Pms2 expression also exhibited reduced apoptosis capability in nearby tissue samples, evidenced when this paired tissue was stressed ex vivo with bile acid. Reduced Pms2 expression in the colonic mucosa may be an early step in progression to colon cancer. This reduction may cause decreased mismatch repair, increased genetic instability, and/or reduced apoptotic capability. Immunohistochemical determination of reduced Pms2 expression, upon further testing, may prove to be a promising early biomarker of risk of progression to malignancy.

  12. Enhanced expression of the urokinase-type plasminogen activator gene and reduced colony formation in soft agar by ectopic expression of PU.1 in HT1080 human fibrosarcoma cells.

    PubMed Central

    Kondoh, N.; Yamada, T.; Kihara-Negishi, F.; Yamamoto, M.; Oikawa, T.

    1998-01-01

    To investigate the cell biological function of PU.1, a member of the Ets family of transcription factors, a vector capable of expressing the protein was transfected into HT1080 human fibrosarcoma cells. Exogenous expression of PU.1 in HT1080 cells reduced colony-forming efficiency but stimulated cell migration in soft agar, although it did not affect cell growth in adherent culture. Expression of the urokinase-type plasminogen activator (uPA) mRNA, which is known to be correlated with cell migration and invasion, was enhanced in PU.1 transfectants compared with mock transfectants. Run-on analysis demonstrated that uPA transcription was unaffected by PU.1, suggesting that this enhancement mainly occurs at a post-transcriptional level. On the other hand, treatment of HT1080 cells with the synthetic glucocorticoid dexamethasone (DEX; 10(-7) M) significantly reduced uPA gene expression at a transcriptional level. Furthermore, DEX inhibited cell migration in soft agar without affecting cell growth. These negative effects of DEX on uPA expression and cell migration were alleviated by the expression of PU.1 in HT1080 cells, whereas expression of the N-ras oncogene, which is responsible for maintenance of the transformed phenotypes in HT1080 cells, was unaffected by PU.1 expression or DEX treatment in the cells. Our results suggest that expression of PU.1 can stimulate uPA gene expression at the post-transcriptional level, which may subsequently lead to activation of cell motility and/or reduced cell-cell adhesion, but reduces anchorage-independent growth of HT1080 cells. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9743289

  13. Cyclosporin A reduces expression of adhesion molecules in the kidney of rats with chronic serum sickness

    PubMed Central

    Rincón, J; Parra, G; Quiroz, Y; Benatuil, L; Rodríguez-Iturbe, B

    2000-01-01

    Treatment with cyclosporin A (CsA) improves proteinuria and reduces renal cellular infiltration in chronic serum sickness (CSS). We examined if these effects were associated with a reduced renal expression of CD54 and its ligands, interferon-gamma (IFN-γ), tumour necrosis factor-alpha (TNF-α) and MHC class II molecules. We studied two groups of rats in which CSS was induced by daily injections of ovalbumin (OVA): a group treated with CsA (OVA.CsA group, n = 11) and a group that received no treatment (OVA.CSS group, n = 11). An additional group of five rats (control group) received only phosphate buffer. Immunostaining techniques were used to follow CSS and to study the expression of CD54, CD18, CD11b/c, IFN-γ, TNF-α and MHC class molecules. Proteinuria (mg/24 h) was reduced from 248·2 ± 73·1 (OVA.CCS group) to 14·5 ± 13·1 with CsA treatment (P < 0·0001). The renal expression of CD54 and its ligands (CD18 and CD11b/c) was reduced by 50% to 75%. Correspondingly, there was a 60% to 85% reduction in the number of infiltrating leucocytes. The number of cells expressing TNF-α, IFN-γ and MHC II molecules was also reduced. CsA reduces expression of CD54 and its ligands. This effect is associated with a reduction of cellular infiltration, IFN-γ, TNF-α-producing cells and with MHC II expression in the kidney. These findings suggest that expression of adhesion molecules plays a critical role in CSS and underline the importance of cellular immunity in this experimental model. PMID:10931158

  14. A Splice Variant of the Human Ion Channel TRPM2 Modulates Neuroblastoma Tumor Growth through Hypoxia-inducible Factor (HIF)-1/2α*

    PubMed Central

    Chen, Shu-jen; Hoffman, Nicholas E.; Shanmughapriya, Santhanam; Bao, Lei; Keefer, Kerry; Conrad, Kathleen; Merali, Salim; Takahashi, Yoshinori; Abraham, Thomas; Hirschler-Laszkiewicz, Iwona; Wang, JuFang; Zhang, Xue-Qian; Song, Jianliang; Barrero, Carlos; Shi, Yuguang; Kawasawa, Yuka Imamura; Bayerl, Michael; Sun, Tianyu; Barbour, Mustafa; Wang, Hong-Gang; Madesh, Muniswamy; Cheung, Joseph Y.; Miller, Barbara A.

    2014-01-01

    The calcium-permeable ion channel TRPM2 is highly expressed in a number of cancers. In neuroblastoma, full-length TRPM2 (TRPM2-L) protected cells from moderate oxidative stress through increased levels of forkhead box transcription factor 3a (FOXO3a) and superoxide dismutase 2. Cells expressing the dominant negative short isoform (TRPM2-S) had reduced FOXO3a and superoxide dismutase 2 levels, reduced calcium influx in response to oxidative stress, and enhanced reactive oxygen species, leading to decreased cell viability. Here, in xenografts generated with SH-SY5Y neuroblastoma cells stably expressing TRPM2 isoforms, growth of tumors expressing TRPM2-S was significantly reduced compared with tumors expressing TRPM2-L. Expression of hypoxia-inducible factor (HIF)-1/2α was significantly reduced in TRPM2-S-expressing tumor cells as was expression of target proteins regulated by HIF-1/2α including those involved in glycolysis (lactate dehydrogenase A and enolase 2), oxidant stress (FOXO3a), angiogenesis (VEGF), mitophagy and mitochondrial function (BNIP3 and NDUFA4L2), and mitochondrial electron transport chain activity (cytochrome oxidase 4.1/4.2 in complex IV). The reduction in HIF-1/2α was mediated through both significantly reduced HIF-1/2α mRNA levels and increased levels of von Hippel-Lindau E3 ligase in TRPM2-S-expressing cells. Inhibition of TRPM2-L by pretreatment with clotrimazole or expression of TRPM2-S significantly increased sensitivity of cells to doxorubicin. Reduced survival of TRPM2-S-expressing cells after doxorubicin treatment was rescued by gain of HIF-1 or -2α function. These data suggest that TRPM2 activity is important for tumor growth and for cell viability and survival following doxorubicin treatment and that interference with TRPM2-L function may be a novel approach to reduce tumor growth through modulation of HIF-1/2α, mitochondrial function, and mitophagy. PMID:25391657

  15. Reduced COX-2 expression in aged mice is associated with impaired fracture healing.

    PubMed

    Naik, Amish A; Xie, Chao; Zuscik, Michael J; Kingsley, Paul; Schwarz, Edward M; Awad, Hani; Guldberg, Robert; Drissi, Hicham; Puzas, J Edward; Boyce, Brendan; Zhang, Xinping; O'Keefe, Regis J

    2009-02-01

    The cellular and molecular events responsible for reduced fracture healing with aging are unknown. Cyclooxygenase 2 (COX-2), the inducible regulator of prostaglandin E(2) (PGE(2)) synthesis, is critical for normal bone repair. A femoral fracture repair model was used in mice at either 7-9 or 52-56 wk of age, and healing was evaluated by imaging, histology, and gene expression studies. Aging was associated with a decreased rate of chondrogenesis, decreased bone formation, reduced callus vascularization, delayed remodeling, and altered expression of genes involved in repair and remodeling. COX-2 expression in young mice peaked at 5 days, coinciding with the transition of mesenchymal progenitors to cartilage and the onset of expression of early cartilage markers. In situ hybridization and immunohistochemistry showed that COX-2 is expressed primarily in early cartilage precursors that co-express col-2. COX-2 expression was reduced by 75% and 65% in fractures from aged mice compared with young mice on days 5 and 7, respectively. Local administration of an EP4 agonist to the fracture repair site in aged mice enhanced the rate of chondrogenesis and bone formation to levels observed in young mice, suggesting that the expression of COX-2 during the early inflammatory phase of repair regulates critical subsequent events including chondrogenesis, bone formation, and remodeling. The findings suggest that COX-2/EP4 agonists may compensate for deficient molecular signals that result in the reduced fracture healing associated with aging.

  16. Mindfulness-Based Stress Reduction training reduces loneliness and pro-inflammatory gene expression in older adults: a small randomized controlled trial.

    PubMed

    Creswell, J David; Irwin, Michael R; Burklund, Lisa J; Lieberman, Matthew D; Arevalo, Jesusa M G; Ma, Jeffrey; Breen, Elizabeth Crabb; Cole, Steven W

    2012-10-01

    Lonely older adults have increased expression of pro-inflammatory genes as well as increased risk for morbidity and mortality. Previous behavioral treatments have attempted to reduce loneliness and its concomitant health risks, but have had limited success. The present study tested whether the 8-week Mindfulness-Based Stress Reduction (MBSR) program (compared to a Wait-List control group) reduces loneliness and downregulates loneliness-related pro-inflammatory gene expression in older adults (N = 40). Consistent with study predictions, mixed effect linear models indicated that the MBSR program reduced loneliness, compared to small increases in loneliness in the control group (treatment condition × time interaction: F(1,35) = 7.86, p = .008). Moreover, at baseline, there was an association between reported loneliness and upregulated pro-inflammatory NF-κB-related gene expression in circulating leukocytes, and MBSR downregulated this NF-κB-associated gene expression profile at post-treatment. Finally, there was a trend for MBSR to reduce C Reactive Protein (treatment condition × time interaction: (F(1,33) = 3.39, p = .075). This work provides an initial indication that MBSR may be a novel treatment approach for reducing loneliness and related pro-inflammatory gene expression in older adults. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Mindfulness-Based Stress Reduction Training Reduces Loneliness and Pro-Inflammatory Gene Expression in Older Adults: A Small Randomized Controlled Trial

    PubMed Central

    Creswell, J. David; Irwin, Michael R.; Burklund, Lisa J.; Lieberman, Matthew D.; Arevalo, Jesusa M. G.; Ma, Jeffrey; Breen, Elizabeth Crabb; Cole, Steven W.

    2013-01-01

    Lonely older adults have increased expression of pro-inflammatory genes as well as increased risk for morbidity and mortality. Previous behavioral treatments have attempted to reduce loneliness and its concomitant health risks, but have had limited success. The present study tested whether the 8-week Mindfulness-Based Stress Reduction (MBSR) program (compared to a Wait-List control group) reduces loneliness and downregulates loneliness-related pro-inflammatory gene expression in older adults (N=40). Consistent with study predictions, mixed effect linear models indicated that the MBSR program reduced loneliness, compared to small increases in loneliness in the control group (treatment condition × time interaction: F(1,35)=7.86, p=.008). Moreover, at baseline, there was an association between reported loneliness and upregulated pro-inflammatory NF-κB-related gene expression in circulating leukocytes, and MBSR downregulated this NF-κB-associated gene expression profile at post-treatment. Finally, there was a trend for MBSR to reduce C Reactive Protein (treatment condition × time interaction: (F(1,33)=3.39, p=.075). This work provides an initial indication that MBSR may be a novel treatment approach for reducing loneliness and related pro-inflammatory gene expression in older adults. PMID:22820409

  18. Inhibition of STAT3 phosphorylation by sulforaphane reduces adhesion molecule expression in vascular endothelial cell.

    PubMed

    Cho, Young S; Kim, Chan H; Ha, Tae S; Ahn, Hee Y

    2015-11-18

    Intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) play key roles in the initiation of vascular inflammation. In this study, we explored whether sulforaphane, a dietary phytochemical, can inhibit the expression of ICAM-1 and VCAM-1 in human umbilical vein endothelial cells (HUVEC) stimulated with lipopolysaccharide (LPS), and the mechanisms involved. Sulforaphane prevented the LPS-mediated increase in ICAM-1 and VCAM-1 expression, (P < 0.01) in HUVEC. Sulforaphane also prevented the LPS-mediated increase in the phosphorylation of signal transducer and activator of transcription 3 (STAT3) (P < 0.01). Stattic, a STAT3 inhibitor, reduced the LPS-induced expression of ICAM-1 and VCAM-1, and STAT3 phosphorylation (P < 0.01). STAT3 small interfering RNA treatment reduced the LPS-induced expression of ICAM-1, VCAM-1, and STAT3 (P < 0.01). Sulforaphane reduced LPS-mediated THP-1 monocyte adhesion to HUVEC (P < 0.01). In C57BL/6 mice, injection of LPS increased aortic ICAM-1 and VCAM-1 expression, and this effect was prevented by sulforaphane. These data provide insight into the mechanism through which sulforaphane partly reduces the expression of ICAM-1 and VCAM-1 on the vascular wall by inhibiting STAT3 phosphorylation.

  19. Modulation of Mcl-1 expression reduces age-related cochlear degeneration

    PubMed Central

    Yang, Wei Ping; Xu, Yang; Guo, Wei Wei; Liu, Hui Zhan; Hu, Bo Hua

    2013-01-01

    Mcl-1 is an anti-apoptotic member of the Bcl-2 family that modulates apoptosis-related signaling pathways and promotes cell survival. We have previously demonstrated a reduction of Mcl-1 expression in aging cochleae. To investigate whether restoring Mcl-1 expression would reduce aging-related cochlear degeneration, we developed a rat model of Mcl-1 overexpression. A plasmid encoding human Mcl-1/enhanced green fluorescent protein was applied to the round window of the cochlea. This in vivo treatment transfected both the sensory and supporting cells of the cochlear sensory epithelium and enhanced Mcl-1 expression at both the mRNA and the protein level. The upregulation of Mcl-1 expression reduced the progression of age-related cochlear dysfunction and sensory cell death. Furthermore, the transfection of Mcl-1 exerted its protective effect by suppressing cochlear apoptosis at the mitochondrial level. This study demonstrates that the genetic modulation of Mcl-1 expression reduces the progression of age-related cochlear degeneration. PMID:23790646

  20. Prenatal caffeine exposure induced a lower level of fetal blood leptin mainly via placental mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yi-meng; Luo, Han-wen; Kou, Hao

    It's known that blood leptin level is reduced in intrauterine growth retardation (IUGR) fetus, and placental leptin is the major source of fetal blood leptin. This study aimed to investigate the decreased fetal blood leptin level by prenatal caffeine exposure (PCE) and its underlying placental mechanisms. Pregnant Wistar rats were intragastrically administered caffeine (30–120 mg/kg day) from gestational day 9 to 20. The level of fetal serum leptin and the expression of placental leptin-related genes were analyzed. Furthermore, we investigated the molecular mechanism of the reduced placental leptin's expression by treatment with caffeine (0.8–20 μM) in the BeWo cells. Inmore » vivo, PCE significantly decreased fetal serum leptin level in caffeine dose-dependent manner. Meanwhile, placental mRNA expression of adenosine A2a receptor (Adora2a), cAMP-response element binding protein (CREB), a short-type leptin receptor (Ob-Ra) and leptin was reduced in the PCE groups. In vitro, caffeine significantly decreased the mRNA expression of leptin, CREB and ADORA2A in concentration and time-dependent manners. The addition of ADORA2A agonist or adenylyl cyclase (AC) agonist reversed the inhibition of leptin expression induced by caffeine. PCE induced a lower level of fetal blood leptin, which the primary mechanism is that caffeine inhibited antagonized Adora2a and AC activities to decreased cAMP synthesis, thus inhibited the expression of the transcription factor CREB and target gene leptin in the placenta. Meantime, the reduced transportation of maternal leptin by placental Ob-Ra also contributed to the reduced fetal blood leptin. Together, PCE decreased fetal blood leptin mainly via reducing the expression and transportation of leptin in the placenta. - Highlights: • Caffeine reduced fetal blood leptin level. • Caffeine inhibited placental leptin production and transport. • Caffeine down-regulated placental leptin expression via antagonizing ADORA2. • Caffeine inhibited placental leptin transport via decreased OB-Ra expression.« less

  1. Downregulation in GATA4 and Downstream Structural and Contractile Genes in the db/db Mouse Heart

    PubMed Central

    Broderick, Tom L.; Jankowski, Marek; Wang, Donghao; Danalache, Bogdan A.; Parrott, Cassandra R.; Gutkowska, Jolanta

    2012-01-01

    Reduced expression of GATA4, a transcriptional factor for structural and cardioprotective genes, has been proposed as a factor contributing to the development of cardiomyopathy. We investigated whether the reduction of cardiac GATA4 expression reported in diabetes alters the expression of downstream genes, namely, atrial natriuretic peptide (ANP), B-type natriuretic, peptide (BNP), and α- and β-myosin heavy chain (MHC). db/db mice, a model of type 2 diabetes, with lean littermates serving as controls, were studied. db/db mice exhibited obesity, hyperglycemia, and reduced protein expression of cardiac GLUT4 and IRAP (insulin-regulated aminopeptidase), the structural protein cosecreted with GLUT4. Hearts from db/db mice had reduced protein expression of GATA4 (~35%) with accompanying reductions in mRNA expression of ANP (~40%), BNP (~85%), and α-MHC mRNA (~50%) whereas expression of β-MHC mRNA was increased by ~60%. Low GATA4 was not explained by an increased ligase or atrogin1 expression. CHIP protein content was modestly downregulated (27%) in db/db mice whereas mRNA and protein expression of the CHIP cochaperone HSP70 was significantly decreased in db/db hearts. Our results indicate that low GATA4 in db/db mouse heart is accompanied by reduced expression of GATA4-regulated cardioprotective and structural genes, which may explain the development of cardiomyopathy in diabetes. PMID:22474596

  2. Aging impairs transcriptional regulation of vascular endothelial growth factor in human microvascular endothelial cells: implications for angiogenesis and cell survival.

    PubMed

    Ahluwalia, A; Jones, M K; Szabo, S; Tarnawski, A S

    2014-04-01

    In some tissues, aging impairs angiogenesis and reduces expression of vascular endothelial growth factor A (VEGF), a fundamental regulator of angiogenesis. We previously examined angiogenesis in aging and young gastric mucosa in vivo and in vitro and showed that an imbalance between expressions of VEGF (pro-angiogenic factor) and endostatin (anti-angiogenic protein) results in an aging-related impairment of angiogenesis in rats. However, the human relevance of these findings, and whether these mechanisms apply to endothelial cells derived from other tissues, is not clear. Since P-STAT3 and P-CREB are transcription factors that, in association with HIF-1α, can activate VEGF gene expression in some cells (e.g., liver cancer cells, vascular smooth muscle cells), we examined the expression of these two proteins in human dermal microvascular endothelial cells (HMVECs) derived from aging and neonatal individuals. We examined and quantified in vitro angiogenesis, expression of VEGF, P-STAT3, P-CREB and importin-α in HMVECs isolated from neonates (neonatal) and a 66 year old subject (aging). We also examined the effects of treatment with exogenous VEGF and endostatin on in vitro angiogenesis in these cells. Endothelial cells isolated from aging individuals had impaired angiogenesis (vs. neonatal endothelial cells) and reduced expression of VEGF mRNA and protein. Aged HMVECs also had reduced importin-α expression, and reduced expression and nuclear translocation of P-STAT3 and P-CREB. Reduced VEGF gene expression in aged HMVECs strongly correlated with the decreased levels of P-STAT3, P-CREB and importin-α in these cells. Our study clearly demonstrates that endothelial cells from aging individuals have impaired angiogenesis and reduced expression of VEGF likely due to impaired nuclear transport of P-STAT3 and P-CREB transcription factors in these cells.

  3. [The role of BDNF pathway in lambda-cyhalothrin disrupting the promotion of 17β-Estradiol on Post-synaptic Density 95 protein expression in HT22 cell].

    PubMed

    Li, N; Wang, Q N; Wu, D J; Yang, C W; Luo, B B

    2016-07-20

    Objective: To explore the effect of BDNF pathway on lambda-cyhalothrin interfering estrogen promoting the expression of PSD95 in hippocampus neurons. Methods: HT22 cell line were used to, treating with lambda-cyhalothrin (LCT, 50 μmol/L) , 17β-Estradiol (E2, 10 nmol/L) , LCT (50 μmol/L) +TrkB FC (20 μg/ml) , E2 (10 nmol/L) +TrkB FC (20 μg/ml) , LCT (50 μmol/L) +ICI182 780 (1 μmol/L) , E2 (10 nmol/L) + ICI182 780 (1 μmol/L) , LCT (50 μmol/L) +E2 (10 nmol/L) for 24 h. MTT kit was used to detect cell viability. Post-synaptic Density 95 protein expression was measured by western blot. ELISA assay was used to detect the level of brain derived neurotrophic factor (BDNF) of culture supernatant and cell. Results: Campared to Sham, LCT or E2 could promote the expression of PSD95 LCT+ICI could reduce the expresion of BDNF ( P <0.05) , campared to LCT, LCT+TrkB FC could reduce the expression of PSD95 and LCT+ICI cound reduce the expresion of BDNF ( P <0.05) , campared to E2, E2+TrkB FC could reduce the expression of PSD95 and E 2 +ICI could reduce the expression of BDNF ( P <0.05) , campared to E2, LCT+ E2 could reduce the expression of PSD95 and BDNF ( P <0.05) . Conclusion: BDNF pathway plays a key role in E2 promoting the expression of PSD95 in neural cells. Although LCT alone has a similar effect on E2. LCT could disrupt the promotion of E2 on PSD95 expression via BDNF pathway.

  4. Reduced adiponectin expression after high-fat diet is associated with selective up-regulation of ALDH1A1 and further retinoic acid receptor signaling in adipose tissue

    PubMed Central

    Landrier, Jean-Francois; Kasiri, Elnaz; Karkeni, Esma; Mihály, Johanna; Béke, Gabriella; Weiss, Kathrin; Lucas, Renata; Aydemir, Gamze; Salles, Jérome; Walrand, Stéphane; de Lera, Angel R.; Rühl, Ralph

    2017-01-01

    Adiponectin is an adipocyte-derived adipokine with potent antidiabetic, anti-inflammatory, and antiatherogenic activity. Long-term, high-fat diet results in gain of body weight, adiposity, further inflammatory-based cardiovascular diseases, and reduced adiponectin secretion. Vitamin A derivatives/retinoids are involved in several of these processes, which mainly take place in white adipose tissue (WAT). In this study, we examined adiponectin expression as a function of dietary high-fat and high–vitamin A conditions in mice. A decrease of adiponectin expression in addition to an up-regulation of aldehyde dehydrogenase A1 (ALDH1A1), retinoid signaling, and retinoic acid response element signaling was selectively observed in WAT of mice fed a normal–vitamin A, high-fat diet. Reduced adiponectin expression in WAT was also observed in mice fed a high–vitamin A diet. Adipocyte cell culture revealed that endogenous and synthetic retinoic acid receptor (RAR)α- and RARγ-selective agonists, as well as a synthetic retinoid X receptor agonist, efficiently reduced adiponectin expression, whereas ALDH1A1 expression only increased with RAR agonists. We conclude that reduced adiponectin expression under high-fat dietary conditions is dependent on 1) increased ALDH1A1 expression in adipocytes, which does not increase all-trans-retinoic acid levels; 2) further RAR ligand–induced, WAT-selective, increased retinoic acid response element–mediated signaling; and 3) RAR ligand–dependent reduction of adiponectin expression.—Landrier, J.-F., Kasiri, E., Karkeni, E., Mihály, J., Béke, G., Weiss, K., Lucas, R., Aydemir, G., Salles, J., Walrand, S., de Lera, A. R., Rühl, R. Reduced adiponectin expression after high-fat diet is associated with selective up-regulation of ALDH1A1 and further retinoic acid receptor signaling in adipose tissue. PMID:27729412

  5. Emotional expression recognition and attribution bias among sexual and violent offenders: a signal detection analysis

    PubMed Central

    Gillespie, Steven M.; Rotshtein, Pia; Satherley, Rose-Marie; Beech, Anthony R.; Mitchell, Ian J.

    2015-01-01

    Research with violent offenders has consistently shown impaired recognition of other’s facial expressions of emotion. However, the extent to which similar problems can be observed among sexual offenders remains unknown. Using a computerized task, we presented sexual and violent offenders, and non-offenders, with male and female expressions of anger, disgust, fear, happiness, sadness, and surprise, morphed with neutral expressions at varying levels of intensity (10, 55, and 90% expressive). Based on signal detection theory, we used hit rates and false alarms to calculate the sensitivity index d-prime (d′) and criterion (c) for each emotional expression. Overall, sexual offenders showed reduced sensitivity to emotional expressions across intensity, sex, and type of expression, compared with non-offenders, while both sexual and violent offenders showed particular reduced sensitivity to fearful expressions. We also observed specific effects for high (90%) intensity female faces, with sexual offenders showing reduced sensitivity to anger compared with non-offenders and violent offenders, and reduced sensitivity to disgust compared with non-offenders. Furthermore, both sexual and violent offenders showed impaired sensitivity to high intensity female fearful expressions compared with non-offenders. Violent offenders also showed a higher criterion for classifying moderate and high intensity male expressions as fearful, indicative of a more conservative response style, compared with angry, happy, or sad. These results suggest that both types of offender show problems in emotion recognition, and may have implications for understanding the inhibition of violent and sexually violent behaviors. PMID:26029137

  6. Emotional expression recognition and attribution bias among sexual and violent offenders: a signal detection analysis.

    PubMed

    Gillespie, Steven M; Rotshtein, Pia; Satherley, Rose-Marie; Beech, Anthony R; Mitchell, Ian J

    2015-01-01

    Research with violent offenders has consistently shown impaired recognition of other's facial expressions of emotion. However, the extent to which similar problems can be observed among sexual offenders remains unknown. Using a computerized task, we presented sexual and violent offenders, and non-offenders, with male and female expressions of anger, disgust, fear, happiness, sadness, and surprise, morphed with neutral expressions at varying levels of intensity (10, 55, and 90% expressive). Based on signal detection theory, we used hit rates and false alarms to calculate the sensitivity index d-prime (d') and criterion (c) for each emotional expression. Overall, sexual offenders showed reduced sensitivity to emotional expressions across intensity, sex, and type of expression, compared with non-offenders, while both sexual and violent offenders showed particular reduced sensitivity to fearful expressions. We also observed specific effects for high (90%) intensity female faces, with sexual offenders showing reduced sensitivity to anger compared with non-offenders and violent offenders, and reduced sensitivity to disgust compared with non-offenders. Furthermore, both sexual and violent offenders showed impaired sensitivity to high intensity female fearful expressions compared with non-offenders. Violent offenders also showed a higher criterion for classifying moderate and high intensity male expressions as fearful, indicative of a more conservative response style, compared with angry, happy, or sad. These results suggest that both types of offender show problems in emotion recognition, and may have implications for understanding the inhibition of violent and sexually violent behaviors.

  7. [Curcumine inhibits migration and invasion of hepatic stellate cells by reducing MMP-2 expression and activity].

    PubMed

    Huang, Jian-xian; Zhu, Bao-he; He, De; Huang, Lin; Hu, Ke; Huang, Bo

    2009-11-01

    To investigate the molecular mechanism of the inhibitory effect of curcumine on the migration and invasion of hepatic stellate cells (HSC). Rat hepatic stellate cells were cultured and activated with ConA. Matrix metalloproteinase-2 (MMP-2) expression and activity was determined by Western blot and gelatin zymography. Migration and invasion of HSC was assessed by wound healing assay and modified Boyden chamber assay. Curcumine reduced the level and activity of MMP-2 expression in activated HSC in a dose-dependent manner. When treated with 25, 50 or 100 micromol/L curcumine, the expression of MMP-2 was reduced by 21.8%+/-5.1%, 65.5%+/-9.2% or 87.9%+/-11.5% (P < 0.05), and the activity of MMP-2 was also significantly reduced by curcumine. Migration and invasion of activated HSC was also inhibited by curcumine in a dose-dependent way. When treated with 25, 50 or 100 micromol/L curcumine, the migration of activated HSC was reduced by 27.5%+/-5.8%, 54.4%+/-7.6% or 67.1%+/-9.3% (P < 0.05), and the invasion of activated HSC was also significantly reduced by curcumine. Curcumine inhibits migration and invasion of activated HSC by reducing MMP-2 expression and activity.

  8. Control of total GFP expression by alterations to the 3′ region nucleotide sequence

    PubMed Central

    2013-01-01

    Background Previously, we distinguished the Escherichia coli type II cytoplasmic membrane translocation pathways of Tat, Yid, and Sec for unfolded and folded soluble target proteins. The translocation of folded protein to the periplasm for soluble expression via the Tat pathway was controlled by an N-terminal hydrophilic leader sequence. In this study, we investigated the effect of the hydrophilic C-terminal end and its nucleotide sequence on total and soluble protein expression. Results The native hydrophilic C-terminal end of GFP was obtained by deleting the C-terminal peptide LeuGlu-6×His, derived from pET22b(+). The corresponding clones induced total and soluble GFP expression that was either slightly increased or dramatically reduced, apparently through reconstruction of the nucleotide sequence around the stop codon in the 3′ region. In the expression-induced clones, the hydrophilic C-terminus showed increased Tat pathway specificity for soluble expression. However, in the expression-reduced clone, after analyzing the role of the 5′ poly(A) coding sequence with a substituted synonymous codon, we proved that the longer 5′ poly(A) coding sequence interacted with the reconstructed 3′ region nucleotide sequence to create a new mRNA tertiary structure between the 5′ and 3′ regions, which resulted in reduced total GFP expression. Further, to recover the reduced expression by changing the 3′ nucleotide sequence, after replacing selected C-terminal 5′ codons and the stop codon in the ORF with synonymous codons, total GFP expression in most of the clones was recovered to the undeleted control level. The insertion of trinucleotides after the stop codon in the 3′-UTR recovered or reduced total GFP expression. RT-PCR revealed that the level of total protein expression was controlled by changes in translational or transcriptional regulation, which were induced or reduced by the substitution or insertion of 3′ region nucleotides. Conclusions We found that the hydrophilic C-terminal end of GFP increased Tat pathway specificity and that the 3′ nucleotide sequence played an important role in total protein expression through translational and transcriptional regulation. These findings may be useful for efficiently producing recombinant proteins as well as for potentially controlling the expression level of specific genes in the body for therapeutic purposes. PMID:23834827

  9. Expression of HSP72 in the gastric mucosa is regulated by gastric acid in rats-Correlation of HSP72 expression with mucosal protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wada, Isao; Otaka, Michiro; Jin, Mario

    2006-10-20

    Background and aim: The real mechanism of adaptive cytoprotection in the gastric mucosa is not well established. In the present study, we investigated the effect of acid suppressing agents on a 72-kDa heat shock protein (HSP72) expression, which is known as endogenous cytoprotective factor, in the gastric mucosa. Also, the association of gastric mucosal protective function against HCl-challenge was compared between HSP72-induced and -reduced group. Materials and methods: Expression of HSP72 was measured by Western blotting in the gastric mucosa before and after administration of famotidine or omeprazole. The gastric mucosal protective function against 0.6 N HCl was compared betweenmore » control group and HSP72-reduced group. Also, the effect of increased expression of gastric HSP72 by additional administration of zinc sulfate or zinc L-carnosine, which is known as HSP72-inducer, on mucosal protective function was studied. Results: HSP72 expression in the gastric mucosa was reduced by acid suppressing agents. The lowest expression level of HSP72 was observed 12 h (famotidine, H2-receptor antagonist) or 48 h (omeprazole, proton pump inhibitor) after administration. The gastric mucosal protective ability against 0.6 N HCl was also reduced when HSP72 expression was decreased by famotidine or omeprazole. This phenomenon was reversed by HSP72 induction by additional administration of zinc derivatives. Conclusion: Our results might indicate that the expression of HSP72 in the gastric mucosa is physiologically regulated by gastric acid, and that HSP72 induction could be important in view of mucosal protection especially when HSP72 expression is reduced by administration of acid suppressing agents such as proton pump inhibitor or H2 receptor antagonist.« less

  10. Endothelial microparticles reduce ICAM-1 expression in a microRNA-222-dependent mechanism

    PubMed Central

    Jansen, Felix; Yang, Xiaoyan; Baumann, Katharina; Przybilla, David; Schmitz, Theresa; Flender, Anna; Paul, Kathrin; Alhusseiny, Adil; Nickenig, Georg; Werner, Nikos

    2015-01-01

    Endothelial microparticles (EMP) are released from activated or apoptotic endothelial cells (ECs) and can be taken up by adjacent ECs, but their effect on vascular inflammation after engulfment is largely unknown. We sought to determine the role of EMP in EC inflammation. In vitro, EMP treatment significantly reduced tumour necrosis factor-α-induced endothelial intercellular adhesion molecule (ICAM)-1 expression on mRNA and protein level, whereas there was no effect on vascular cell adhesion molecule-1 expression. Reduced ICAM-1 expression after EMP treatment resulted in diminished monocyte adhesion in vitro. In vivo, systemic treatment of ApoE−/− mice with EMP significantly reduced murine endothelial ICAM-1 expression. To explore the underlying mechanisms, Taqman microRNA array was performed and microRNA (miR)-222 was identified as the strongest regulated miR between EMP and ECs. Following experiments demonstrated that miR-222 was transported into recipient ECs by EMP and functionally regulated expression of its target protein ICAM-1 in vitro and in vivo. After simulating diabetic conditions, EMP derived from glucose-treated ECs contained significantly lower amounts of miR-222 and showed reduced anti-inflammatory capacity in vitro and in vivo. Finally, circulating miR-222 level was diminished in patients with coronary artery disease (CAD) compared to patients without CAD. EMPs promote anti-inflammatory effects in vitro and in vivo by reducing endothelial ICAM-1 expression via the transfer of functional miR-222 into recipient cells. In pathological hyperglycaemic conditions, EMP-mediated miR-222-dependent anti-inflammatory effects are reduced. PMID:26081516

  11. Endothelial microparticles reduce ICAM-1 expression in a microRNA-222-dependent mechanism.

    PubMed

    Jansen, Felix; Yang, Xiaoyan; Baumann, Katharina; Przybilla, David; Schmitz, Theresa; Flender, Anna; Paul, Kathrin; Alhusseiny, Adil; Nickenig, Georg; Werner, Nikos

    2015-09-01

    Endothelial microparticles (EMP) are released from activated or apoptotic endothelial cells (ECs) and can be taken up by adjacent ECs, but their effect on vascular inflammation after engulfment is largely unknown. We sought to determine the role of EMP in EC inflammation. In vitro, EMP treatment significantly reduced tumour necrosis factor-α-induced endothelial intercellular adhesion molecule (ICAM)-1 expression on mRNA and protein level, whereas there was no effect on vascular cell adhesion molecule-1 expression. Reduced ICAM-1 expression after EMP treatment resulted in diminished monocyte adhesion in vitro. In vivo, systemic treatment of ApoE-/- mice with EMP significantly reduced murine endothelial ICAM-1 expression. To explore the underlying mechanisms, Taqman microRNA array was performed and microRNA (miR)-222 was identified as the strongest regulated miR between EMP and ECs. Following experiments demonstrated that miR-222 was transported into recipient ECs by EMP and functionally regulated expression of its target protein ICAM-1 in vitro and in vivo. After simulating diabetic conditions, EMP derived from glucose-treated ECs contained significantly lower amounts of miR-222 and showed reduced anti-inflammatory capacity in vitro and in vivo. Finally, circulating miR-222 level was diminished in patients with coronary artery disease (CAD) compared to patients without CAD. EMPs promote anti-inflammatory effects in vitro and in vivo by reducing endothelial ICAM-1 expression via the transfer of functional miR-222 into recipient cells. In pathological hyperglycaemic conditions, EMP-mediated miR-222-dependent anti-inflammatory effects are reduced. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  12. The specific social costs of expressive negative symptoms in schizophrenia: reduced smiling predicts interactional outcome.

    PubMed

    Riehle, M; Mehl, S; Lincoln, T M

    2018-04-17

    We tested whether people with schizophrenia and prominent expressive negative symptoms (ENS) show reduced facial expressions in face-to-face social interactions and whether this expressive reduction explains negative social evaluations of these persons. We compared participants with schizophrenia with high ENS (n = 18) with participants with schizophrenia with low ENS (n = 30) and with healthy controls (n = 39). Participants engaged in an affiliative role-play that was coded for the frequency of positive and negative facial expression and rated for social performance skills and willingness for future interactions with the respective role-play partner. Participants with schizophrenia with high ENS showed significantly fewer positive facial expressions than those with low ENS and controls and were also rated significantly lower on social performance skills and willingness for future interactions. Participants with schizophrenia with low ENS did not differ from controls on these measures. The group difference in willingness for future interactions was significantly and independently mediated by the reduced positive facial expressions and social performance skills. Reduced facial expressiveness in schizophrenia is specifically related to ENS and has negative social consequences. These findings highlight the need to develop aetiological models and targeted interventions for ENS and its social consequences. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. CPT-11-Induced Delayed Diarrhea Develops via Reduced Aquaporin-3 Expression in the Colon

    PubMed Central

    Kon, Risako; Tsubota, Yuika; Minami, Moe; Kato, Saki; Matsunaga, Yukari; Kimura, Hiroshi; Murakami, Yuta; Fujikawa, Tetsuya; Sakurai, Ryoya; Tomimoto, Rei; Machida, Yoshiaki; Ikarashi, Nobutomo; Sugiyama, Kiyoshi

    2018-01-01

    While irinotecan (CPT-11) has a potent anti-cancer effect, it also causes serious diarrhea as an adverse reaction. In this study, we analyzed the pathogenic mechanism of CPT-11-induced delayed diarrhea by focusing on water channel aquaporin-3 (AQP3) in the colon. When rats received CPT-11, the expression level of AQP3 was reduced during severe diarrhea. It was found that the expression levels of inflammatory cytokines and the loss of crypt cells were increased in the colon when CPT-11 was administered. When celecoxib, an anti-inflammatory drug, was concomitantly administered, both the diarrhea and the reduced expression of AQP3 induced by CPT-11 were suppressed. The inflammation in the rat colon during diarrhea was caused via activated macrophage by CPT-11. These results showed that when CPT-11 is administered, the expression level of AQP3 in the colon is reduced, resulting in delayed diarrhea by preventing water transport from the intestinal tract. It was also suggested that the reduced expression of AQP3 might be due to the inflammation that occurs following the loss of colonic crypt cells and to the damage caused by the direct activation of macrophages by CPT-11. Therefore, it was considered that anti-inflammatory drugs that suppress the reduction of AQP3 expression could prevent CPT-11-induced delayed diarrhea. PMID:29316651

  14. CPT-11-Induced Delayed Diarrhea Develops via Reduced Aquaporin-3 Expression in the Colon.

    PubMed

    Kon, Risako; Tsubota, Yuika; Minami, Moe; Kato, Saki; Matsunaga, Yukari; Kimura, Hiroshi; Murakami, Yuta; Fujikawa, Tetsuya; Sakurai, Ryoya; Tomimoto, Rei; Machida, Yoshiaki; Ikarashi, Nobutomo; Sugiyama, Kiyoshi

    2018-01-06

    While irinotecan (CPT-11) has a potent anti-cancer effect, it also causes serious diarrhea as an adverse reaction. In this study, we analyzed the pathogenic mechanism of CPT-11-induced delayed diarrhea by focusing on water channel aquaporin-3 (AQP3) in the colon. When rats received CPT-11, the expression level of AQP3 was reduced during severe diarrhea. It was found that the expression levels of inflammatory cytokines and the loss of crypt cells were increased in the colon when CPT-11 was administered. When celecoxib, an anti-inflammatory drug, was concomitantly administered, both the diarrhea and the reduced expression of AQP3 induced by CPT-11 were suppressed. The inflammation in the rat colon during diarrhea was caused via activated macrophage by CPT-11. These results showed that when CPT-11 is administered, the expression level of AQP3 in the colon is reduced, resulting in delayed diarrhea by preventing water transport from the intestinal tract. It was also suggested that the reduced expression of AQP3 might be due to the inflammation that occurs following the loss of colonic crypt cells and to the damage caused by the direct activation of macrophages by CPT-11. Therefore, it was considered that anti-inflammatory drugs that suppress the reduction of AQP3 expression could prevent CPT-11-induced delayed diarrhea.

  15. Prognostic value of decreased expression of RBM4 in human gastric cancer.

    PubMed

    Yong, Hongmei; Zhu, Huijun; Zhang, Shu; Zhao, Wei; Wang, Wei; Chen, Chen; Ding, Guipeng; Zhu, Lun; Zhu, Ziyuan; Liu, Huaidong; Zhang, Yongjie; Wen, Jinbo; Kang, Xing; Zhu, Jin; Feng, Zhenqing; Liu, Baorui

    2016-06-21

    RNA-binding motif 4 (RBM4) is a multifunctional protein that participates in regulating alternative splicing and mRNA translation. Its reduced expression has been associated with poor overall survival in lung cancer, breast cancer and ovarian cancer. We assessed RBM4 protein expression levels with immunohistochemistry in tissue microarrays containing malignant gastric cancer tissues and benign tissues from 813 patients. We also examined the expression levels of RBM4 mRNA in twenty-five paired gastric cancer samples and adjacent noncancerous tissues. Both RBM4 protein and mRNA expression levels were significantly lower in gastric cancer tissues compared with the adjacent noncancerous tissues. There was a significant association between reduced RBM4 protein expression and differentiation (P < 0.001), lymph node metastasis (P = 0.026), TNM state (P = 0.014) and distant metastasis (P = 0.036). Patients with reduced RBM4 expression (P < 0.001, CI = 0.315-0.710) and TNM stage III and IV (P < 0.001, CI = 4.757-11.166) had a poor overall survival. These findings suggest that RBM4 is a new biomarker in gastric cancer, as the reduced expression of this protein is correlated with poor differentiation, lymph node status and distant metastasis. Further, lower RBM4 expression is an independent prognostic marker for gastric cancer.

  16. Platelet dysfunction associated with the novel Trp29Cys thromboxane A₂ receptor variant.

    PubMed

    Mumford, A D; Nisar, S; Darnige, L; Jones, M L; Bachelot-Loza, C; Gandrille, S; Zinzindohoue, F; Fischer, A-M; Mundell, S J; Gaussem, P

    2013-03-01

    Genetic variations that affect the structure of the thromboxane A2 receptor (TP receptor) provide insights into the function of this key platelet and vascular receptor, but are very rare in unselected populations. To determine the functional consequences of the TP receptor Trp29Cys (W29C) substitution. We performed a detailed phenotypic analysis of an index case (P1) with reduced platelet aggregation and secretion responses to TP receptor pathway activators, and a heterozygous TP receptor W29C substitution. An analysis of the variant W29C TP receptor expressed in heterologous cells was performed. Total TP receptor expression in platelets from P1 was similar to that of controls, but there was reduced maximum binding and reduced affinity of binding to the TP receptor antagonist [(3) H]SQ29548. HEK293 cells transfected with W29C TP receptor cDNA showed similar total TP receptor expression to wild-type (WT) controls. However, the TP receptor agonist U46619 was less potent at inducing rises in cytosolic free Ca(2+) in HEK293 cells expressing the W29C TP receptor than in WT controls, indicating reduced receptor function. Immunofluorescence microscopy and cell surface ELISA showed intracellular retention and reduced cell surface expression of the W29C TP receptor in HEK293 cells. Consistent with the platelet phenotype, both maximum binding and the affinity of binding of [(3) H]SQ29548 to the W29C TP receptor were reduced compared to WT controls. These findings extend the phenotypic description of the very rare disorder TP receptor deficiency, and show that the W29C substitution reduces TP receptor function by reducing surface receptor expression and by disrupting ligand binding. © 2012 International Society on Thrombosis and Haemostasis.

  17. Deregulated Expression of SRC, LYN and CKB Kinases by DNA Methylation and Its Potential Role in Gastric Cancer Invasiveness and Metastasis

    PubMed Central

    Rey, Juan Antonio; Pinto, Giovanny Rebouças; Lamarão, Leticia Martins; Montenegro, Raquel Carvalho; Alves, Ana Paula Negreiros Nunes; Assumpção, Paulo Pimentel; Borges, Barbara do Nascimento; Smith, Marília Cardoso; Burbano, Rommel Rodriguez

    2015-01-01

    Kinases are downstream modulators and effectors of several cellular signaling cascades and play key roles in the development of neoplastic disease. In this study, we aimed to evaluate SRC, LYN and CKB protein and mRNA expression, as well as their promoter methylation, in gastric cancer. We found elevated expression of SRC and LYN kinase mRNA and protein but decreased levels of CKB kinase, alterations that may have a role in the invasiveness and metastasis of gastric tumors. Expression of the three studied kinases was also associated with MYC oncogene expression, a possible biomarker for gastric cancer. To understand the mechanisms that regulate the expression of these genes, we evaluated the DNA promoter methylation of the three kinases. We found that reduced SRC and LYN methylation and increased CKB methylation was associated with gastric cancer. The reduced SRC and LYN methylation was associated with increased levels of mRNA and protein expression, suggesting that DNA methylation is involved in regulating the expression of these kinases. Conversely, reduced CKB methylation was observed in samples with reduced mRNA and protein expression, suggesting CKB expression was found to be only partly regulated by DNA methylation. Additionally, we found that alterations in the DNA methylation pattern of the three studied kinases were also associated with the gastric cancer onset, advanced gastric cancer, deeper tumor invasion and the presence of metastasis. Therefore, SRC, LYN and CKB expression or DNA methylation could be useful markers for predicting tumor progression and targeting in anti-cancer strategies. PMID:26460485

  18. Deregulated Expression of SRC, LYN and CKB Kinases by DNA Methylation and Its Potential Role in Gastric Cancer Invasiveness and Metastasis.

    PubMed

    Mello, Adriano Azevedo; Leal, Mariana Ferreira; Rey, Juan Antonio; Pinto, Giovanny Rebouças; Lamarão, Leticia Martins; Montenegro, Raquel Carvalho; Alves, Ana Paula Negreiros Nunes; Assumpção, Paulo Pimentel; Borges, Barbara do Nascimento; Smith, Marília Cardoso; Burbano, Rommel Rodriguez

    2015-01-01

    Kinases are downstream modulators and effectors of several cellular signaling cascades and play key roles in the development of neoplastic disease. In this study, we aimed to evaluate SRC, LYN and CKB protein and mRNA expression, as well as their promoter methylation, in gastric cancer. We found elevated expression of SRC and LYN kinase mRNA and protein but decreased levels of CKB kinase, alterations that may have a role in the invasiveness and metastasis of gastric tumors. Expression of the three studied kinases was also associated with MYC oncogene expression, a possible biomarker for gastric cancer. To understand the mechanisms that regulate the expression of these genes, we evaluated the DNA promoter methylation of the three kinases. We found that reduced SRC and LYN methylation and increased CKB methylation was associated with gastric cancer. The reduced SRC and LYN methylation was associated with increased levels of mRNA and protein expression, suggesting that DNA methylation is involved in regulating the expression of these kinases. Conversely, reduced CKB methylation was observed in samples with reduced mRNA and protein expression, suggesting CKB expression was found to be only partly regulated by DNA methylation. Additionally, we found that alterations in the DNA methylation pattern of the three studied kinases were also associated with the gastric cancer onset, advanced gastric cancer, deeper tumor invasion and the presence of metastasis. Therefore, SRC, LYN and CKB expression or DNA methylation could be useful markers for predicting tumor progression and targeting in anti-cancer strategies.

  19. Characterization of Staphylococcus aureus mutants expressing reduced susceptibility to common house-cleaners

    PubMed Central

    Davis, A.O.; O’Leary, J.O.; Muthaiyan, A.; Langevin, M.J.; Delgado, A.; Abalos, A.T.; Fajardo, A.R.; Marek, J.; Wilkinson, B.J.; Gustafson, J.E.

    2013-01-01

    Aims To characterize mutants of Staphylococcus aureus expressing reduced susceptibility to house cleaners (HC), assess the impact of the alternative sigma factor SigB on HC susceptibility, and determine the MIC of clinical methicillin-resistant S. aureus (MRSA) to a HC. Methods and Results Susceptibility to HC, HC components, H2O2, vancomycin and oxacillin and physiological parameters were determined for HC-reduced susceptibility (HCRS) mutants, parent strain COL and COLsigB::kan. HCRS mutants selected with three HC expressed reduced susceptibility to multiple HC, HC components, H2O2 and vancomycin. Two unique HCRS mutants also lost the methicillin resistance determinant. In addition, all HCRS mutants exhibited better growth at two temperatures, and one HCRS mutant expressed reduced carotenoid production. COLsigB::kan demonstrated increased susceptibility to all HC and many HC components. sigB operon mutations were not detected in one HCRS mutant background. Of 76 clinical MRSA, 20 exhibited reduced susceptibility to a HC. Conclusions HCRS mutants demonstrate altered susceptibility to multiple antimicrobials. While sigB is required for full HC resistance, one HCRS mechanism does not involve sigB operon mutations. Clinical MRSA expressing reduced susceptibility to a common HC were detected. Significance and Impact of the Study This study suggests that HCRS mutants are not protected against, nor selected by, practical HC concentrations. PMID:15659191

  20. Triolein reduces MMP-1 upregulation in dermal fibroblasts generated by ROS production in UVB-irradiated keratinocytes.

    PubMed

    Leirós, Gustavo J; Kusinsky, Ana Gabriela; Balañá, María Eugenia; Hagelin, Karin

    2017-02-01

    Cytokine production and oxidative stress generated by ultraviolet radiation B (UVB) skin exposure are main factors of skin photoaging. Interleukin-6 (IL-6) produced by irradiated keratinocytes is proposed to have a role in metalloproteinases (MMPs) expression activation in dermal fibroblasts. We examined the effect of triolein treatment of UVB-irradiated keratinocytes on MMP1 (interstitial collagenase) expression response of dermal fibroblasts. We assayed UVB-irradiated keratinocytes soluble signals, mainly IL-6 and reactive oxygen species (ROS). IL-6 expression and ROS generation were assayed in UVB-irradiated keratinocytes. MMP1 mRNA expression response was assayed in fibroblasts grown in keratinocytes conditioned medium. We evaluated the effect of treating keratinocytes with triolein on IL-6 expression and ROS generation in keratinocytes, and MMP1 expression in fibroblasts. The irradiation of epidermal cells with sublethal UVB doses increased IL-6 expression and ROS generation. Conditioned culture medium collected from keratinocytes was used to culture dermal fibroblasts. MMP1 mRNA expression increase was observed in fibroblasts cultured in medium collected from UVB-irradiated keratinocytes. Triolein treatment reduced the IL-6 expression and ROS generation in keratinocytes and this effect was reflected in downregulation of MMP1 expression in fibroblasts. Triolein reduces both the expression of IL-6 and ROS generation in irradiated keratinocytes. It seems to exert an anti-inflammatory and anti-oxidative stress effect on irradiated keratinocytes that in turn reduces MMP1 expression in dermal fibroblasts. Collectively, these results indicate that triolein could act as a photoprotective agent. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  1. Heat shock protein 90{beta}: A novel mediator of vitamin D action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angelo, Giana; Mineral Bioavailability Laboratory, 711 Washington Street, Boston, MA 02111; Lamon-Fava, Stefania

    2008-03-14

    We investigated the role of Heat shock protein 90 (Hsp90) in vitamin D action in Caco-2 cells using geldanamycin (GA) to block Hsp90 function and RNA interference to reduce Hsp90{beta} expression. When cells were exposed to GA, vitamin D-mediated gene expression and transcriptional activity were inhibited by 69% and 54%, respectively. Gel shift analysis indicated that GA reduced vitamin D-mediated DNA binding activity of the vitamin D receptor (VDR). We tested the specific role of Hsp90{beta} by knocking down its expression with stably expressed short hairpin RNA. Vitamin D-induced gene expression and transcriptional activity were reduced by 90% and 80%,more » respectively, in Hsp90{beta}-deficient cells. Nuclear protein for VDR and RXR{alpha}, its heterodimer partner, were not reduced in Hsp90{beta}-deficient cells. These findings indicate that Hsp90{beta} is needed for optimal vitamin D responsiveness in the enterocyte and demonstrate a specific role for Hsp90{beta} in VDR signaling.« less

  2. Diabetes mellitus reduces the function and expression of ATP-dependent K⁺ channels in cardiac mitochondria.

    PubMed

    Fancher, Ibra S; Dick, Gregory M; Hollander, John M

    2013-03-28

    Our goal was to determine the effects of type I diabetes mellitus on the function and expression of ATP-dependent K(+) channels in cardiac mitochondria (mitoKATP), composed of a pore-forming subunit (Kir6.1) and a diazoxide-sensitive sulphonylurea receptor (SUR1). We tested the hypothesis that diabetes reduces Kir6.1 and SUR1 expression as well as diazoxide-induced depolarization of mitochondrial membrane potential (ΔΨm). Male FVB mice were made diabetic for 5weeks with multiple low dose injections of streptozotocin. Cardiac mitochondria were separated into two populations: subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM). mitoKATP expression was determined via Western blot analysis of Kir6.1 and SUR1 proteins. mitoKATP function was determined by measuring ΔΨm with the potentiometric dye rhodamine 123. Diabetes reduced Kir6.1 and SUR1 expression in IFM by over 40% (p<0.05 for both). Similarly, diabetes reduced Kir6.1 expression in SSM by approximately 40% (p<0.05); however, SUR1 expression was unaffected. Opening mitoKATP with diazoxide (100μM) depolarized control IFM ΔΨm by 80% of the valinomycin maximum; diabetic IFM depolarized only 30% (p<0.05). Diazoxide-induced depolarization was much less in SSM (20-30%) and unaffected by diabetes. Our data indicate that diabetes reduces mitoKATP expression and function in IFM. These changes in mitoKATP may provide an opportunity to understand mechanisms leading to diabetic cardiomyopathy and loss of cardioprotective mechanisms in the diabetic heart. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Astaxanthin modulates osteopontin and transforming growth factor β1 expression levels in a rat model of nephrolithiasis: a comparison with citrate administration.

    PubMed

    Alex, Manju; Sauganth Paul, M V; Abhilash, M; Mathews, Varghese V; Anilkumar, T V; Nair, R Harikumaran

    2014-09-01

    To evaluate the effect of astaxanthin on renal angiotensin-I converting enzyme (ACE) levels, osteopontin (OPN) and transforming growth factor β1 (TGF-β1) expressions and the extent of crystal deposition in experimentally induced calcium oxalate kidney stone disease in a male Wistar rat model. To compare the efficacy of astaxanthin treatment with a currently used treatment strategy (citrate administration) for kidney stones. The expression of OPN was assessed by immunohistochemistry. One step reverse transcriptase polymerase chain reaction followed by densitometry was used to assess renal OPN and TGF-β1 levels. Renal ACE levels were quantified by an enzyme-linked immunosorbent assay method. Crystal deposition in kidney was analysed by scanning electron microscopic (SEM)-energy-dispersive X-ray (EDX). The renal ACE levels and the expression of OPN and TGF-β1 were upregulated in the nephrolithiasis-induced rats. Astaxanthin treatment reduced renal ACE levels and the expression OPN and TGF-β1. SEM-EDX analysis showed that crystal deposition was reduced in the astaxanthin-treated nephrolithiatic group. Astaxanthin treatment was more effective than citrate administration in the regulation of renal ACE levels, OPN and TGF-β1 expressions. Astaxanthin administration reduced renal calcium oxalate crystal deposition possibly by modulating the renal renin-angiotensin system (RAS), which reduced the expression of OPN and TGF-β1 levels. Astaxanthin administration was more effective than citrate treatment in reducing crystal deposition and down-regulating the expression of OPN and TGF-β1. © 2013 The Authors. BJU International © 2013 BJU International.

  4. Glucose Oxidase Induces Cellular Senescence in Immortal Renal Cells through ILK by Downregulating Klotho Gene Expression

    PubMed Central

    Troyano-Suárez, Nuria; del Nogal-Avila, María; Mora, Inés; Sosa, Patricia; López-Ongil, Susana; Rodriguez-Puyol, Diego; Olmos, Gemma; Ruíz-Torres, María Piedad

    2015-01-01

    Cellular senescence can be prematurely induced by oxidative stress involved in aging. In this work, we were searching for novel intermediaries in oxidative stress-induced senescence, focusing our interest on integrin-linked kinase (ILK), a scaffold protein at cell-extracellular matrix (ECM) adhesion sites, and on the Klotho gene. Cultured renal cells were treated with glucose oxidase (GOx) for long time periods. GOx induced senescence, increasing senescence associated β-galactosidase activity and the expression of p16. In parallel, GOx increased ILK protein expression and activity. Ectopic overexpression of ILK in cells increased p16 expression, even in the absence of GOx, whereas downregulation of ILK inhibited the increase in p16 due to oxidative stress. Additionally, GOx reduced Klotho gene expression and cells overexpressing Klotho protein did not undergo senescence after GOx addition. We demonstrated a direct link between ILK and Klotho since silencing ILK expression in cells and mice increases Klotho expression and reduces p53 and p16 expression in renal cortex. In conclusion, oxidative stress induces cellular senescence in kidney cells by increasing ILK protein expression and activity, which in turn reduces Klotho expression. We hereby present ILK as a novel downregulator of Klotho gene expression. PMID:26583057

  5. Glucose Oxidase Induces Cellular Senescence in Immortal Renal Cells through ILK by Downregulating Klotho Gene Expression.

    PubMed

    Troyano-Suárez, Nuria; del Nogal-Avila, María; Mora, Inés; Sosa, Patricia; López-Ongil, Susana; Rodriguez-Puyol, Diego; Olmos, Gemma; Ruíz-Torres, María Piedad

    2015-01-01

    Cellular senescence can be prematurely induced by oxidative stress involved in aging. In this work, we were searching for novel intermediaries in oxidative stress-induced senescence, focusing our interest on integrin-linked kinase (ILK), a scaffold protein at cell-extracellular matrix (ECM) adhesion sites, and on the Klotho gene. Cultured renal cells were treated with glucose oxidase (GOx) for long time periods. GOx induced senescence, increasing senescence associated β-galactosidase activity and the expression of p16. In parallel, GOx increased ILK protein expression and activity. Ectopic overexpression of ILK in cells increased p16 expression, even in the absence of GOx, whereas downregulation of ILK inhibited the increase in p16 due to oxidative stress. Additionally, GOx reduced Klotho gene expression and cells overexpressing Klotho protein did not undergo senescence after GOx addition. We demonstrated a direct link between ILK and Klotho since silencing ILK expression in cells and mice increases Klotho expression and reduces p53 and p16 expression in renal cortex. In conclusion, oxidative stress induces cellular senescence in kidney cells by increasing ILK protein expression and activity, which in turn reduces Klotho expression. We hereby present ILK as a novel downregulator of Klotho gene expression.

  6. Facial expression coding in children and adolescents with autism: Reduced adaptability but intact norm-based coding.

    PubMed

    Rhodes, Gillian; Burton, Nichola; Jeffery, Linda; Read, Ainsley; Taylor, Libby; Ewing, Louise

    2018-05-01

    Individuals with autism spectrum disorder (ASD) can have difficulty recognizing emotional expressions. Here, we asked whether the underlying perceptual coding of expression is disrupted. Typical individuals code expression relative to a perceptual (average) norm that is continuously updated by experience. This adaptability of face-coding mechanisms has been linked to performance on various face tasks. We used an adaptation aftereffect paradigm to characterize expression coding in children and adolescents with autism. We asked whether face expression coding is less adaptable in autism and whether there is any fundamental disruption of norm-based coding. If expression coding is norm-based, then the face aftereffects should increase with adaptor expression strength (distance from the average expression). We observed this pattern in both autistic and typically developing participants, suggesting that norm-based coding is fundamentally intact in autism. Critically, however, expression aftereffects were reduced in the autism group, indicating that expression-coding mechanisms are less readily tuned by experience. Reduced adaptability has also been reported for coding of face identity and gaze direction. Thus, there appears to be a pervasive lack of adaptability in face-coding mechanisms in autism, which could contribute to face processing and broader social difficulties in the disorder. © 2017 The British Psychological Society.

  7. Dynamic expression of FKBP5 in the medial prefrontal cortex regulates resiliency to conditioned fear

    PubMed Central

    Criado-Marrero, Marangelie; Morales Silva, Roberto J.; Velazquez, Bethzaly; Hernández, Anixa; Colon, María; Cruz, Emmanuel; Soler-Cedeño, Omar; Porter, James T.

    2017-01-01

    The factors influencing resiliency to the development of post-traumatic stress disorder (PTSD) remain to be elucidated. Clinical studies associate PTSD with polymorphisms of the FK506 binding protein 5 (FKBP5). However, it is unclear whether changes in FKBP5 expression alone could produce resiliency or susceptibility to PTSD-like symptoms. In this study, we used rats as an animal model to examine whether FKBP5 in the infralimbic (IL) or prelimbic (PL) medial prefrontal cortex regulates fear conditioning or extinction. First, we examined FKBP5 expression in IL and PL during fear conditioning or extinction. In contrast to the stable expression of FKBP5 seen in PL, FKBP5 expression in IL increased after fear conditioning and remained elevated even after extinction suggesting that IL FKBP5 levels may modulate fear conditioning or extinction. Consistent with this possibility, reducing basal FKBP5 expression via local infusion of FKBP5–shRNA into IL reduced fear conditioning. Furthermore, reducing IL FKBP5, after consolidation of the fear memory, enhanced extinction memory indicating that IL FKBP5 opposed formation of the extinction memory. Our findings demonstrate that lowering FKBP5 expression in IL is sufficient to both reduce fear acquisition and enhance extinction, and suggest that lower expression of FKBP5 in the ventral medial prefrontal cortex could contribute to resiliency to PTSD. PMID:28298552

  8. Intestinal ischemic preconditioning reduces liver ischemia reperfusion injury in rats

    PubMed Central

    XUE, TONG-MIN; TAO, LI-DE; ZHANG, JIE; ZHANG, PEI-JIAN; LIU, XIA; CHEN, GUO-FENG; ZHU, YI-JIA

    2016-01-01

    The aim of the current study was to investigate whether intestinal ischemic preconditioning (IP) reduces damage to the liver during hepatic ischemia reperfusion (IR). Sprague Dawley rats were used to model liver IR injury, and were divided into the sham operation group (SO), IR group and IP group. The results indicated that IR significantly increased Bax, caspase 3 and NF-κBp65 expression levels, with reduced expression of Bcl-2 compared with the IP group. Compared with the IR group, the levels of AST, ALT, MPO, MDA, TNF-α and IL-1 were significantly reduced in the IP group. Immunohistochemistry for Bcl-2 and Bax indicated that Bcl-2 expression in the IP group was significantly increased compared with the IR group. In addition, IP reduced Bax expression compared with the IR group. The average liver injury was worsened in the IR group and improved in the IP group, as indicated by the morphological evaluation of liver tissues. The present study suggested that IP may alleviates apoptosis, reduce the release of pro-inflammatory cytokines, ameloriate reductions in liver function and reduce liver tissue injury. To conclude, IP provided protection against hepatic IR injury. PMID:26821057

  9. Botulinum toxin and the facial feedback hypothesis: can looking better make you feel happier?

    PubMed

    Alam, Murad; Barrett, Karen C; Hodapp, Robert M; Arndt, Kenneth A

    2008-06-01

    The facial feedback hypothesis suggests that muscular manipulations which result in more positive facial expressions may lead to more positive emotional states in affected individuals. In this essay, we hypothesize that the injection of botulinum toxin for upper face dynamic creases might induce positive emotional states by reducing the ability to frown and create other negative facial expressions. The use of botulinum toxin to pharmacologically alter upper face muscular expressiveness may curtail the appearance of negative emotions, most notably anger, but also fear and sadness. This occurs via the relaxation of the corrugator supercilii and the procerus, which are responsible for brow furrowing, and to a lesser extent, because of the relaxation of the frontalis. Concurrently, botulinum toxin may dampen some positive expressions like the true smile, which requires activity of the orbicularis oculi, a muscle also relaxed after toxin injections. On balance, the evidence suggests that botulinum toxin injections for upper face dynamic creases may reduce negative facial expressions more than they reduce positive facial expressions. Based on the facial feedback hypothesis, this net change in facial expression may potentially have the secondary effect of reducing the internal experience of negative emotions, thus making patients feel less angry, sad, and fearful.

  10. Suppression of the vacuolar invertase gene delays senescent sweetening in chipping potatoes.

    PubMed

    Wiberley-Bradford, Amy E; Bethke, Paul C

    2018-01-01

    Potato chip processors require potato tubers that meet quality specifications for fried chip color, and color depends largely upon tuber sugar contents. At later times in storage, potatoes accumulate sucrose, glucose, and fructose. This developmental process, senescent sweetening, manifests as a blush of color near the center of the fried chip, becomes more severe with time, and limits the storage period. Vacuolar invertase (VInv) converts sucrose to glucose and fructose and is hypothesized to play a role in senescent sweetening. To test this hypothesis, senescent sweetening was quantified in multiple lines of potato with reduced VInv expression. Chip darkening from senescent sweetening was delayed by about 4 weeks for tubers with reduced VInv expression. A strong positive correlation between frequency of dark chips and tuber hexose content was observed. Tubers with reduced VInv expression had lower hexose to sucrose ratios than controls. VInv activity contributes to reducing sugar accumulation during senescent sweetening. Sucrose breakdown during frying may contribute to chip darkening. Suppressing VInv expression increases the storage period of the chipping potato crop, which is an important consideration, as potatoes with reduced VInv expression are entering commercial production in the USA. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. A plasmid-based Escherichia coli gene expression system with cell-to-cell variation below the extrinsic noise limit

    PubMed Central

    2017-01-01

    Experiments in synthetic biology and microbiology can benefit from protein expression systems with low cell-to-cell variability (noise) and expression levels precisely tunable across a useful dynamic range. Despite advances in understanding the molecular biology of microbial gene regulation, many experiments employ protein-expression systems exhibiting high noise and nearly all-or-none responses to induction. I present an expression system that incorporates elements known to reduce gene expression noise: negative autoregulation and bicistronic transcription. I show by stochastic simulation that while negative autoregulation can produce a more gradual response to induction, bicistronic expression of a repressor and gene of interest can be necessary to reduce noise below the extrinsic limit. I synthesized a plasmid-based system incorporating these principles and studied its properties in Escherichia coli cells, using flow cytometry and fluorescence microscopy to characterize induction dose-response, induction/repression kinetics and gene expression noise. By varying ribosome binding site strengths, expression levels from 55–10,740 molecules/cell were achieved with noise below the extrinsic limit. Individual strains are inducible across a dynamic range greater than 20-fold. Experimental comparison of different regulatory networks confirmed that bicistronic autoregulation reduces noise, and revealed unexpectedly high noise for a conventional expression system with a constitutively expressed transcriptional repressor. I suggest a hybrid, low-noise expression system to increase the dynamic range. PMID:29084263

  12. Protein expression of targets of the FMRP regulon is altered in brains of subjects with schizophrenia and mood disorders

    PubMed Central

    Folsom, Timothy D.; Thuras, Paul D.; Fatemi, S. Hossein

    2016-01-01

    Fragile X mental retardation protein (FMRP) is an RNA binding protein with 842 target mRNAs in mammalian brain. Silencing of the fragile X mental retardation 1 (FMR1) gene leads to loss of expression of FMRP and upregulated metabotropic glutamate receptor 5 (mGluR5) signaling resulting in the multiple physical and cognitive deficits associated with fragile X syndrome (FXS). Reduced FMRP expression has been identified in subjects with autism, schizophrenia, bipolar disorder, and major depression who do not carry the mutation for FMR1. Our laboratory has recently demonstrated altered expression of four downstream targets of FMRP-mGluR5 signaling in brains of subjects with autism: homer 1, amyloid beta A4 precursor protein (APP), ras-related C3 botulinum toxin substrate 1 (RAC1), and striatal-enriched protein tyrosine phosphatase (STEP). In the current study we investigated the expression of the same four proteins in lateral cerebella of subjects with schizophrenia, bipolar disorder, and major depression and in frontal cortex of subjects with schizophrenia and bipolar disorder. In frontal cortex we observed: 1) reduced expression of 120 kDa form of APP in subjects with schizophrenia and bipolar disorder; 2) reduced expression of 61 kDa and 33 kDa forms of STEP in subjects with schizophrenia; 3) reduced expression of 88 kDa form of APP in subjects with bipolar disorder; and 3) trends for reduced expression of 88 kDa form of APP and homer 1 in subjects with schizophrenia and bipolar disorder, respectively. In lateral cerebella there was no group difference, however we observed increased expression of RAC1 in subjects with bipolar disorder, and trends for increased RAC1 in subjects with schizophrenia and major depression. Our results provide further evidence that proteins involved in the FMRP-mGluR5 signaling pathway are altered in schizophrenia and mood disorders. PMID:25956630

  13. Protein expression of targets of the FMRP regulon is altered in brains of subjects with schizophrenia and mood disorders.

    PubMed

    Folsom, Timothy D; Thuras, Paul D; Fatemi, S Hossein

    2015-07-01

    Fragile X mental retardation protein (FMRP) is an RNA binding protein with 842 target mRNAs in mammalian brain. Silencing of the fragile X mental retardation 1 (FMR1) gene leads to loss of expression of FMRP and upregulated metabotropic glutamate receptor 5 (mGluR5) signaling resulting in the multiple physical and cognitive deficits associated with fragile X syndrome (FXS). Reduced FMRP expression has been identified in subjects with autism, schizophrenia, bipolar disorder, and major depression who do not carry the mutation for FMR1. Our laboratory has recently demonstrated altered expression of four downstream targets of FMRP-mGluR5 signaling in brains of subjects with autism: homer 1, amyloid beta A4 precursor protein (APP), ras-related C3 botulinum toxin substrate 1 (RAC1), and striatal-enriched protein tyrosine phosphatase (STEP). In the current study we investigated the expression of the same four proteins in lateral cerebella of subjects with schizophrenia, bipolar disorder, and major depression and in frontal cortex of subjects with schizophrenia and bipolar disorder. In frontal cortex we observed: 1) reduced expression of 120 kDa form of APP in subjects with schizophrenia and bipolar disorder; 2) reduced expression of 61 kDa and 33k Da forms of STEP in subjects with schizophrenia; 3) reduced expression of 88 kDa form of APP in subjects with bipolar disorder; and 3) trends for reduced expression of 88 kDa form of APP and homer 1 in subjects with schizophrenia and bipolar disorder, respectively. In lateral cerebella there was no group difference, however we observed increased expression of RAC1 in subjects with bipolar disorder, and trends for increased RAC1 in subjects with schizophrenia and major depression. Our results provide further evidence that proteins involved in the FMRP-mGluR5 signaling pathway are altered in schizophrenia and mood disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Curcumin Protects against Atherosclerosis in Apolipoprotein E-Knockout Mice by Inhibiting Toll-like Receptor 4 Expression.

    PubMed

    Zhang, Shanshan; Zou, Jun; Li, Peiyang; Zheng, Xiumei; Feng, Dan

    2018-01-17

    Toll-like receptor 4 (TLR4) has been reported to play a critical role in the pathogenesis of atherosclerosis, the current study aimed to investigate whether curcumin suppresses atherosclerosis development in ApoE-knockout (ApoE -/- ) mice by inhibiting TLR4 expression. ApoE -/- mice were fed a high-fat diet supplemented with or without curcumin (0.1% w/w) for 16 weeks. Curcumin supplementation significantly reduced TLR4 expression and macrophage infiltration in atherosclerotic plaques. Curcumin also reduced aortic interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) expression, nuclear factor-κB (NF-κB) activity, and plasma IL-1β, TNF-α, soluble VCAM-1 and ICAM-1 levels. In addition, aortic sinus sections revealed that curcumin treatment reduced the extent of atherosclerotic lesions and inhibited atherosclerosis development. In vitro, curcumin inhibited NF-κB activation in macrophages and reduced TLR4 expression induced by lipopolysaccharide. Our results indicate that curcumin protects against atherosclerosis at least partially by inhibiting TLR4 expression and its related inflammatory reaction.

  15. Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator-activated receptor-delta.

    PubMed

    Yan, Zhen Cheng; Liu, Dao Yan; Zhang, Li Li; Shen, Chen Yi; Ma, Qun Li; Cao, Ting Bing; Wang, Li Juan; Nie, Hai; Zidek, Walter; Tepel, Martin; Zhu, Zhi Ming

    2007-03-09

    Obesity is one major cardiovascular risk factor. We tested effects of endurance exercise on cannabinoid receptor type 1 (CB1) and peroxisome proliferator-activated receptor-delta (PPAR-delta)-dependent pathways in adipose tissue. Male Wistar rats were randomly assigned to standard laboratory chow or a high-fat diet without and with regular endurance exercise. Exercise in rats on high-fat diet significantly reduced visceral fat mass, blood pressure, and adipocyte size (each p<0.05). Adipocyte hypertrophy induced by high-fat diet was accompanied by increased CB1 expression in adipose tissue, whereas exercise significantly reduced CB1 expression (each p<0.05). CB1 receptor expression and adipocyte differentiation were directly regulated by PPAR-delta. Adipocyte hypertrophy induced by high-fat diet was accompanied by reduced PPAR-delta. Furthermore, selective silencing of PPAR-delta by RNA interference in 3T3-L1-preadipocyte cells significantly increased CB1 expression from 1.00+/-0.06 (n=3) to 1.91+/-0.06 (n=3; p<0.01) and increased adipocyte differentiation, whereas adenovirus-mediated overexpression of PPAR-delta significantly reduced CB1 expression to 0.39+/-0.03 (n=3; p<0.01) and reduced adipocyte differentiation. In the presence of the CB1 antagonist rimonabant adipocyte differentiation in stimulated 3T3 L1 preadipocyte cells was significantly reduced. The study indicates that high-fat diet-induced hypertrophy of adipocytes is associated with increased CB1 receptor expression which is directly regulated by PPAR-delta. Both CB1 and PPAR-delta are intimately involved in therapeutic interventions against a most important cardiovascular risk factor.

  16. Characterization of pressure-mediated vascular tone in resistance arteries from bile duct-ligated rats

    PubMed Central

    Jadeja, Ravirajsinh N.; Thounaojam, Menaka C.; Khurana, Sandeep

    2017-01-01

    In cirrhosis, changes in pressure-mediated vascular tone, a key determinant of systemic vascular resistance (SVR), are unknown. To address this gap in knowledge, we assessed ex vivo dynamics of pressurized mesenteric resistance arteries (diameter ~ 260 μm) from bile duct-ligated (BDL) and sham-operated (SHAM) rats and determined the underlying mechanisms. At isobaric intraluminal pressure (70 mmHg) as well as with step-wise increase in pressure (10-110 mmHg), arteries from SHAM-rats constricted more than BDL-rats, and had reduced luminal area. In both groups, incubation with LNAME (a NOS inhibitor) had no effect on pressure-mediated tone, and expression of NOS isoforms were similar. TEA, which enhances Ca2+ influx, augmented arterial tone only in SHAM-rats, with minimal effect in those from BDL-rats that was associated with reduced expression of Ca2+ channel TRPC6. In permeabilized arteries, high-dose Ca2+ and γGTP enhanced the vascular tone, which remained lower in BDL-rats that was associated with reduced ROCK2 and pMLC expression. Further, compared to SHAM-rats, in BDL-rats, arteries had reduced collagen expression which was associated with increased expression and activity of MMP-9. BDL-rats also had increased plasma reactive oxygen species (ROS). In vascular smooth muscle cells in vitro, peroxynitrite enhanced MMP-9 activity and reduced ROCK2 expression. These data provide evidence that in cirrhosis, pressure-mediated tone is reduced in resistance arteries, and suggest that circulating ROS play a role in reducing Ca2+ sensitivity and enhancing elasticity to induce arterial adaptations. These findings provide insights into mechanisms underlying attenuated SVR in cirrhosis. PMID:28430609

  17. Anteroventral third ventricle (AV3V) lesions alter c-fos expression induced by salt loading

    NASA Technical Reports Server (NTRS)

    Rocha, M. J.; Beltz, T. G.; Dornelles, R. C.; Johnson, A. K.; Franci, C. R.

    1999-01-01

    Lesion of the anteroventral third-ventricle region (AV3VX) reduced saline consumption. Salt loading in AV3VX rats resulted in reduced but not completely abolished c-fos expression in the supraoptic and paraventricular nuclei. Intrinsic osmosensitivity of the magnocellular neurons, or input from other brain areas, such as the subfornical and median preoptic nuclei, may account for this residual c-fos expression. These regions showed c-fos expression following salt loading. Copyright 1999 Elsevier Science B.V.

  18. Reduced Smad4 expression and DNA topoisomerase inhibitor chemosensitivity in non-small cell lung cancer.

    PubMed

    Ziemke, Michael; Patil, Tejas; Nolan, Kyle; Tippimanchai, Darinee; Malkoski, Stephen P

    2017-07-01

    Smad4 is a tumor suppressor that transduces transforming growth factor beta signaling and regulates genomic stability. We previously found that Smad4 knockdown in vitro inhibited DNA repair and increased sensitivity to DNA topoisomerase inhibitors. In this study, we assessed the association between reduced Smad4 expression and DNA topoisomerase inhibitor sensitivity in human non-small cell lung cancer (NSCLC) patients and evaluated the relationship between genomic alterations of Smad4 and molecular alterations in DNA repair molecules. We retrospectively identified NSCLC patients who received etoposide or gemcitabine. Chemotherapeutic response was quantified by RECIST 1.1 criteria and Smad4 expression was assessed by immunohistochemistry. Relationships between Smad4 mutation and DNA repair molecule mutations were evaluated using publically available datasets. We identified 28 individuals who received 30 treatments with gemcitabine or etoposide containing regimens for NSCLC. Reduced Smad4 expression was seen in 13/28 patients and was not associated with significant differences in clinical or pathologic parameters. Patients with reduced Smad4 expression had a larger response to DNA topoisomerase inhibitor containing regimens then patients with high Smad4 expression (-25.7% vs. -6.8% in lesion size, p=0.03); this relationship was more pronounced with gemcitabine containing regimens. The overall treatment response was higher in patients with reduced Smad4 expression (8/14 vs 2/16 p=0.02). Analysis of data from The Cancer Genome Atlas revealed that Smad4 mutation or homozygous loss was mutually exclusive with genomic alterations in DNA repair molecules. Reduced Smad4 expression may predict responsiveness to regimens that contain DNA topoisomerase inhibitors. That Smad4 signaling alterations are mutually exclusive with alterations in DNA repair machinery is consistent with an important role of Smad4 in regulating DNA repair. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. [Neratinib + Valproate] exposure permanently reduces ERBB1 and RAS expression in 4T1 mammary tumors and enhances M1 macrophage infiltration.

    PubMed

    Booth, Laurence; Roberts, Jane L; Rais, Rumeesa; Kirkwood, John; Avogadri-Connors, Francesca; Cutler, Richard E; Lalani, Alshad S; Poklepovic, Andrew; Dent, Paul

    2018-01-19

    The irreversible ERBB1/2/4 inhibitor neratinib has been shown in vitro to rapidly reduce the expression of ERBB1/2/4 and RAS proteins via autophagic/lysosomal degradation. We have recently demonstrated that neratinib and valproate interact to suppress the growth of 4T1 mammary tumors but had not defined whether the [neratinib + valproate] drug combination, in a mouse, had altered the biology of the 4T1 cells. Exposure of 4T1 mammary tumors to [neratinib + valproate] for three days resulted, two weeks later, in tumors that expressed less ERBB1, K-RAS, N-RAS, indoleamine-pyrrole 2,3-dioxygenase (IDO-1), ornithine decarboxylase (ODC) and had increased Class I MHCA expression. Tumors previously exposed to [neratinib + valproate] grew more slowly than those exposed to vehicle control and contained more CD8+ cells and activated NK cells. M1 but not M2 macrophage infiltration was significantly enhanced by the drug combination. In vitro exposure of 4T1 tumor cells to [neratinib + valproate] variably reduced the expression of histone deacetylases 1-11. In vivo , prior exposure of tumors to [neratinib + valproate] permanently reduced the expression of HDACs 1-3, 6 and 10. Combined knock down of HDACs 1/2/3 or of 3/10 rapidly reduced the expression IDO-1, and ODC and increased the expression of MHCA. H&E staining of normal tissues at animal nadir revealed no obvious cyto-architectural differences between control and drug-treated animals. We conclude that [neratinib + valproate] evolves 4T1 tumors to grow more slowly and to be more sensitive to checkpoint immunotherapy antibodies.

  20. [Neratinib + Valproate] exposure permanently reduces ERBB1 and RAS expression in 4T1 mammary tumors and enhances M1 macrophage infiltration

    PubMed Central

    Booth, Laurence; Roberts, Jane L.; Rais, Rumeesa; Kirkwood, John; Avogadri-Connors, Francesca; Cutler, Richard E.; Lalani, Alshad S.; Poklepovic, Andrew; Dent, Paul

    2018-01-01

    The irreversible ERBB1/2/4 inhibitor neratinib has been shown in vitro to rapidly reduce the expression of ERBB1/2/4 and RAS proteins via autophagic/lysosomal degradation. We have recently demonstrated that neratinib and valproate interact to suppress the growth of 4T1 mammary tumors but had not defined whether the [neratinib + valproate] drug combination, in a mouse, had altered the biology of the 4T1 cells. Exposure of 4T1 mammary tumors to [neratinib + valproate] for three days resulted, two weeks later, in tumors that expressed less ERBB1, K-RAS, N-RAS, indoleamine-pyrrole 2,3-dioxygenase (IDO-1), ornithine decarboxylase (ODC) and had increased Class I MHCA expression. Tumors previously exposed to [neratinib + valproate] grew more slowly than those exposed to vehicle control and contained more CD8+ cells and activated NK cells. M1 but not M2 macrophage infiltration was significantly enhanced by the drug combination. In vitro exposure of 4T1 tumor cells to [neratinib + valproate] variably reduced the expression of histone deacetylases 1-11. In vivo, prior exposure of tumors to [neratinib + valproate] permanently reduced the expression of HDACs 1-3, 6 and 10. Combined knock down of HDACs 1/2/3 or of 3/10 rapidly reduced the expression IDO-1, and ODC and increased the expression of MHCA. H&E staining of normal tissues at animal nadir revealed no obvious cyto-architectural differences between control and drug-treated animals. We conclude that [neratinib + valproate] evolves 4T1 tumors to grow more slowly and to be more sensitive to checkpoint immunotherapy antibodies. PMID:29464055

  1. Long noncoding RNA BC200 regulates cell growth and invasion in colon cancer.

    PubMed

    Wu, Kaiming; Xu, Kaiwu; Liu, Kuanzhi; Huang, Jiehong; Chen, Jianhui; Zhang, Jian; Zhang, Ning

    2018-06-01

    Colon cancer is the third most commonly diagnosed and deadly cancer worldwide. Efforts have been made to characterize its pathological mechanisms and to explore new therapeutic targets of this disease. Aberrant expression of long noncoding RNAs (lncRNAs) has been associated with the pathogenesis of colon cancer. In the current study, we aimed to define the biological mechanism of the lncRNA BC200 in colon cancer. Here, we found that expression of BC200 was up-regulated in colon cancer tissues as compared with adjacent non-cancerous tissues. The BC200 level was positively correlated with advanced TNM stage. The Kaplan-Meier method indicated that the cumulative survival rate was significantly lower in patients with high BC200 expression than in those with low BC200 expression. Interestingly, we found that knockdown of BC200 inhibited proliferation of HCT-116 and HT29 colon cancer cell lines and reduce the expression of cell proliferation markers, such as Ki-67 and PCNA. In addition, silencing of BC200 could induce obvious G0/G1 arrest and cause apoptosis in HCT-116 and HT29 cells and reduced the expression of cyclin D1, cyclin E, and c-Myc through inhibiting the expression of β-catenin. Importantly, we found that knockdown of BC200 reduced invasion of HCT-116 and HT29 cells and epithelial-mesenchymal transition (EMT) by reducing the expression of MMP-2 and MMP-9. Mechanistically, silencing of BC200 significantly reduced the phosphorylation of STAT3. Overall, the findings presented here suggest that lncRNA BC200 may serve as a novel oncogene and a new therapeutic target for colon cancer. Copyright © 2018. Published by Elsevier Ltd.

  2. “Stealth” Adenoviruses Blunt Cell-Mediated and Humoral Immune Responses against the Virus and Allow for Significant Gene Expression upon Readministration in the Lung

    PubMed Central

    Croyle, Maria A.; Chirmule, Narendra; Zhang, Yi; Wilson, James M.

    2001-01-01

    Most of the early gene therapy trials for cystic fibrosis have been with adenovirus vectors. First-generation viruses with E1a and E1b deleted are limited by transient expression of the transgene and substantial inflammatory responses. Gene transfer is also significantly curtailed following a second dose of virus. In an effort to reduce adenovirus-associated inflammation, capsids of first-generation vectors were modified with various activated monomethoxypolyethylene glycols. Cytotoxic T-lymphocyte production was significantly reduced in C57BL/6 mice after a single intratracheal administration of modified vectors, and length of gene expression was extended from 4 to 42 days. T-cell subsets from mice exposed to the conjugated vectors demonstrated a marked decrease in Th1 responses and slight enhancement of Th2 responses compared to animals dosed with native virus. Neutralizing antibodies (NAB) against adenovirus capsid proteins were reduced in serum and bronchoalveolar lavage fluid of animals after a single dose of modified virus, allowing significant levels of gene expression upon rechallenge with native adenovirus. Modification with polyethylene glycol (PEG) also allowed substantial gene expression from the new vectors in animals previously immunized with unmodified virus. However, gene expression was significantly reduced after two doses of the same PEG-conjugated vector. Alternating the activation group of PEG between doses did produce significant gene expression upon readministration. This technology in combination with second-generation or helper-dependent adenovirus could produce dosing strategies which promote successful readministration of vector in clinical trials and marked expression in patients with significant anti-adenovirus NAB levels and reduce the possibility of immune reactions against viral vectors for gene therapy. PMID:11312351

  3. Sugar and hexokinase suppress expression of PIP aquaporins and reduce leaf hydraulics that preserves leaf water potential.

    PubMed

    Kelly, Gilor; Sade, Nir; Doron-Faigenboim, Adi; Lerner, Stephen; Shatil-Cohen, Arava; Yeselson, Yelena; Egbaria, Aiman; Kottapalli, Jayaram; Schaffer, Arthur A; Moshelion, Menachem; Granot, David

    2017-07-01

    Sugars affect central aspects of plant physiology, including photosynthesis, stomatal behavior and the loss of water through the stomata. Yet, the potential effects of sugars on plant aquaporins (AQPs) and water conductance have not been examined. We used database and transcriptional analyses, as well as cellular and whole-plant functional techniques to examine the link between sugar-related genes and AQPs. Database analyses revealed a high level of correlation between the expression of AQPs and that of sugar-related genes, including the Arabidopsis hexokinases 1 (AtHXK1). Increased expression of AtHXK1, as well as the addition of its primary substrate, glucose (Glc), repressed the expression of 10 AQPs from the plasma membrane-intrinsic proteins (PIP) subfamily (PIP-AQPs) and induced the expression of two stress-related PIP-AQPs. The osmotic water permeability of mesophyll protoplasts of AtHXK1-expressing plants and the leaf hydraulic conductance of those plants were significantly reduced, in line with the decreased expression of PIP-AQPs. Conversely, hxk1 mutants demonstrated a higher level of hydraulic conductance, with increased water potential in their leaves. In addition, the presence of Glc reduced leaf water potential, as compared with an osmotic control, indicating that Glc reduces the movement of water from the xylem into the mesophyll. The production of sugars entails a significant loss of water and these results suggest that sugars and AtHXK1 affect the expression of AQP genes and reduce leaf water conductance, to coordinate sugar levels with the loss of water through transpiration. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  4. FOXO1 regulates VEGFA expression and promotes angiogenesis in healing wounds.

    PubMed

    Jeon, Hyeran Helen; Yu, Quan; Lu, Yongjian; Spencer, Evelyn; Lu, Chanyi; Milovanova, Tatyana; Yang, Yang; Zhang, Chenying; Stepanchenko, Olga; Vafa, Rameen P; Coelho, Paulo G; Graves, Dana T

    2018-03-25

    Angiogenesis is a critical aspect of wound healing. We investigated the role of keratinocytes in promoting angiogenesis in mice with lineage-specific deletion of the transcription factor FOXO1. The results indicate that keratinocyte-specific deletion of Foxo1 reduces VEGFA expression in mucosal and skin wounds and leads to reduced endothelial cell proliferation, reduced angiogenesis, and impaired re-epithelialization and granulation tissue formation. In vitro FOXO1 was needed for VEGFA transcription and expression. In a porcine dermal wound-healing model that closely resembles healing in humans, local application of a FOXO1 inhibitor reduced angiogenesis. This is the first report that FOXO1 directly regulates VEGFA expression and that FOXO1 is needed for normal angiogenesis during wound healing. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  5. Farnesoid-X-receptor expression in monocrotaline-induced pulmonary arterial hypertension and right heart failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Lusi; Department of Rheumatology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325015; Jiang, Ying

    Objective: The farnesoid-X-receptor (FXR) is a metabolic nuclear receptor superfamily member that is highly expressed in enterohepatic tissue and is also expressed in the cardiovascular system. Multiple nuclear receptors, including FXR, play a pivotal role in cardiovascular disease (CVD). Pulmonary arterial hypertension (PAH) is an untreatable cardiovascular system disease that leads to right heart failure (RHF). However, the potential physiological/pathological roles of FXR in PAH and RHF are unknown. We therefore compared FXR expression in the cardiovascular system in PAH, RHF and a control. Methods and results: Hemodynamic parameters and morphology were assessed in blank solution-exposed control, monocrotaline (MCT)-exposed PAHmore » (4 weeks) and RHF (7 weeks) Sprague–Dawley rats. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR), Western blot (WB), immunohistochemistry (IHC) analysis and immunofluorescence (IF) analysis were performed to assess FXR levels in the lung and heart tissues of MCT-induced PAH and RHF rats. In normal rats, low FXR levels were detected in the heart, and nearly no FXR was expressed in rat lungs. However, FXR expression was significantly elevated in PAH and RHF rat lungs but reduced in PAH and RHF rat right ventricular (RV) tissues. FXR expression was reduced only in RHF rat left ventricular (LV) tissues. Conclusions: The differential expression of FXR in MCT-induced PAH lungs and heart tissues in parallel with PAH pathophysiological processes suggests that FXR contributes to PAH. - Highlights: • FXR was expressed in rat lung and heart tissues. • FXR expression increased sharply in the lung tissues of PAH and RHF rats. • FXR expression was reduced in PAH and RHF rat RV tissue. • FXR expression was unaltered in PAH LV but reduced in RHF rat LV tissue. • FXR expression was prominent in the neovascularization region.« less

  6. Ginkgolide B Reduces LOX-1 Expression by Inhibiting Akt Phosphorylation and Increasing Sirt1 Expression in Oxidized LDL-Stimulated Human Umbilical Vein Endothelial Cells

    PubMed Central

    Chen, Beidong; Li, Xingguang; Qi, Ruomei

    2013-01-01

    Oxidized low-density lipoprotein (ox-LDL) is an important risk factor in the development of atherosclerosis. LOX-1, a lectin-like receptor for ox-LDL, is present primarily on endothelial cells and upregulated by ox-LDL, tumor necrosis factor a, shear stress, and cytokines in atherosclerosis. Recent studies demonstrated that ginkgolide B, a platelet-activating factor receptor antagonist, has antiinflammatory and antioxidant effects on endothelial and nerve cells. The present study investigated the effects of ginkgolide B on LOX-1 expression and the possible mechanism of action. Our results showed that ginkgolide B inhibited LOX-1 and intercellular cell adhesion molecule-1 (ICAM-1) expression in ox-LDL-stimulated endothelial cells through a mechanism associated with the attenuation of Akt activation. Similar data were obtained by silencing Akt and LY294002. We also evaluated Sirt1 and nuclear factor erythroid 2-related factor 2 (Nrf2) expression. These molecules play a protective role in endothelial cell injury. The results showed that ginkgolide B increased Sirt1 expression in ox-LDL-treated cells. The inhibitory effects of ginkgolide B on LOX-1 and ICAM-1 expression were reduced in Sirt1 siRNA-transfected cells. Nrf2 expression was increased in ox-LDL-treated cells, and ginkgolide B downregulated Nrf2 expression. These results suggest that ginkgolide B reduces Nrf2 expression by inhibiting LOX-1 expression, consequently reducing oxidative stress injury in ox-LDL-stimulated cells. Altogether, these results indicate that the protective effect of ginkgolide B on endothelial cells may be attributable to a decrease in LOX-1 expression and an increase in Sirt1 expression in ox-LDL-stimulated endothelial cells, the mechanism of which is linked to the inhibition of Akt activation. Ginkgolide B may be a multiple-target drug that exerts protective effects in ox-LDL-treated human umbilical vein endothelial cells. PMID:24069345

  7. Effect of transforming growth factor-beta1 on embryonic and posthatch muscle growth and development in normal and low score normal chicken.

    PubMed

    Li, X; Velleman, S G

    2009-02-01

    During skeletal muscle development, transforming growth factor-beta1 (TGF-beta1) is a potent inhibitor of muscle cell proliferation and differentiation. The TGF-beta1 signal is carried by Smad proteins into the cell nucleus, inhibiting the expression of key myogenic regulatory factors including MyoD and myogenin. However, the molecular mechanism by which TGF-beta1 inhibits muscle cell proliferation and differentiation has not been well documented in vivo. The present study investigated the effect of TGF-beta1 on in vivo skeletal muscle growth and development. A chicken line, Low Score Normal (LSN) with reduced muscling and upregulated TGF-beta1 expression, was used and compared to a normal chicken line. The injection of TGF-beta1 at embryonic day (ED) 3 significantly reduced the pectoralis major (p. major) muscle weight in the normal birds at 1 wk posthatch, whereas no significant difference was observed in the LSN birds. The difference between normal and LSN birds in response to TGF-beta1 is likely due to different levels of endogenous TGF-beta1 where the LSN birds have increased TGF-beta1 expression in their p. major muscle at both 17 ED and 6 wk posthatch. Smad3 expression was reduced by TGF-beta1 from 10 ED to 1 wk posthatch in normal p. major muscle. Unlike Smad3, Smad7 expression was not significantly affected by TGF-beta1 until posthatch in both normal and LSN p. major muscle. Expression of MyoD was reduced 35% by TGF-beta1 during embryonic development in normal p. major muscle, whereas LSN p. major muscle showed a delayed decrease at 1 d posthatch in MyoD expression in response to the TGF-beta1 treatment. Myogenin expression was reduced 29% by TGF-beta1 after hatch in normal p. major muscle. In LSN p. major muscle, TGF-beta1 treatment significantly decreased myogenin expression by 43% at 1 d posthatch and 32% at 1 wk posthatch. These data suggested that TGF-beta1 reduced p. major muscle growth by inhibiting MyoD and myogenin expression during both embryonic and posthatch development. Furthermore, TGF-beta1 also reduced the expression of the cell adhesion receptor beta1 integrin subunit during embryonic and posthatch muscle growth in normal and LSN chickens. Therefore, the reduction of beta1 integrin in response to TGF-beta1 is also associated with decreased posthatch muscle growth. The results from this study indicate that TGF-beta1 inhibits skeletal muscle growth by regulating MyoD and myogenin expression. These data also suggest that a beta1 integrin-mediated alternative pathway is likely involved in the TGF-beta1-induced reduction of muscle growth.

  8. Sad people are more accurate at expression identification with a smaller own-ethnicity bias than happy people.

    PubMed

    Hills, Peter J; Hill, Dominic M

    2017-07-12

    Sad individuals perform more accurately at face identity recognition (Hills, Werno, & Lewis, 2011), possibly because they scan more of the face during encoding. During expression identification tasks, sad individuals do not fixate on the eyes as much as happier individuals (Wu, Pu, Allen, & Pauli, 2012). Fixating on features other than the eyes leads to a reduced own-ethnicity bias (Hills & Lewis, 2006). This background indicates that sad individuals would not view the eyes as much as happy individuals and this would result in improved expression recognition and a reduced own-ethnicity bias. This prediction was tested using an expression identification task, with eye tracking. We demonstrate that sad-induced participants show enhanced expression recognition and a reduced own-ethnicity bias than happy-induced participants due to scanning more facial features. We conclude that mood affects eye movements and face encoding by causing a wider sampling strategy and deeper encoding of facial features diagnostic for expression identification.

  9. Modulation of Glucose Transporter 1 (GLUT1) Expression Levels Alters Mouse Mammary Tumor Cell Growth In Vitro and In Vivo

    PubMed Central

    Young, Christian D.; Lewis, Andrew S.; Rudolph, Michael C.; Ruehle, Marisa D.; Jackman, Matthew R.; Yun, Ui J.; Ilkun, Olesya; Pereira, Renata; Abel, E. Dale; Anderson, Steven M.

    2011-01-01

    Tumor cells exhibit an altered metabolism characterized by elevated aerobic glycolysis and lactate secretion which is supported by an increase in glucose transport and consumption. We hypothesized that reducing or eliminating the expression of the most prominently expressed glucose transporter(s) would decrease the amount of glucose available to breast cancer cells thereby decreasing their metabolic capacity and proliferative potential. Of the 12 GLUT family glucose transporters expressed in mice, GLUT1 was the most abundantly expressed at the RNA level in the mouse mammary tumors from MMTV-c-ErbB2 mice and cell lines examined. Reducing GLUT1 expression in mouse mammary tumor cell lines using shRNA or Cre/Lox technology reduced glucose transport, glucose consumption, lactate secretion and lipid synthesis in vitro without altering the concentration of ATP, as well as reduced growth on plastic and in soft agar. The growth of tumor cells with reduced GLUT1 expression was impaired when transplanted into the mammary fat pad of athymic nude mice in vivo. Overexpression of GLUT1 in a cell line with low levels of endogenous GLUT1 increased glucose transport in vitro and enhanced growth in nude mice in vivo as compared to the control cells with very low levels of GLUT1. These studies demonstrate that GLUT1 is the major glucose transporter in mouse mammary carcinoma models overexpressing ErbB2 or PyVMT and that modulation of the level of GLUT1 has an effect upon the growth of mouse mammary tumor cell lines in vivo. PMID:21826239

  10. Leptin attenuates BACE1 expression and Amyloid-β genesis via the activation of SIRT1 signaling pathway

    PubMed Central

    Marwarha, Gurdeep; Raza, Shaneabbas; Meiers, Craig; Ghribi, Othman

    2014-01-01

    The aspartyl protease β-site AβPP-cleaving enzyme 1 (BACE1) catalyzes the rate-limiting step in Aβ production, a peptide at the nexus of neurodegenerative cascades in Alzheimer Disease (AD). The adipocytokine leptin has been demonstrated to reduce Aβ production and decrease BACE1 activity and expression levels. However, the signaling cascades involved in the leptin-induced mitigation in Aβ levels and BACE1 expression levels have not been elucidated. We have demonstrated that the transcription factor nuclear factor – kappa B (NF-κB) positively regulates BACE1 transcription. NF-κB activity is tightly regulated by the mammalian sirtuin SIRT1. Multiple studies have cogently evinced that leptin activates the metabolic master regulator SIRT1. In this study, we determined the extent to which SIRT1 expression and activity regulate the leptin-induced attenuation in BACE1 expression and Aβ levels in cultured human neuroblastoma SH-SY5Y cells. This study also elucidated and delineated the signal transduction pathways involved in the leptin induced mitigation in BACE1 expression. Our results demonstrate for the first time that leptin attenuates the activation and transcriptional activity of NF-κB by reducing the acetylation of the p65 subunit in a SIRT1-dependent manner. Furthermore, our data shows that leptin reduces the NF-κB – mediated transcription of BACE1 and consequently reduces Amyloid-β genesis. Our study provides a valuable insight and a novel mechanism by which leptin reduces BACE1 expression and Amyloid-β production and may help design potential therapeutic interventions. PMID:24874077

  11. Systemic propranolol acts centrally to reduce conditioned fear in rats without impairing extinction.

    PubMed

    Rodriguez-Romaguera, Jose; Sotres-Bayon, Francisco; Mueller, Devin; Quirk, Gregory J

    2009-05-15

    Previous work has implicated noradrenergic beta-receptors in the consolidation and reconsolidation of conditioned fear. Less is known, however, about their role in fear expression and extinction. The beta-receptor blocker propranolol has been used clinically to reduce anxiety. With an auditory fear conditioning task in rats, we assessed the effects of systemic propranolol on the expression and extinction of two measures of conditioned fear: freezing and suppression of bar-pressing. One day after receiving auditory fear conditioning, rats were injected with saline, propranolol, or peripheral beta-receptor blocker sotalol (both 10 mg/kg, IP). Twenty minutes after injection, rats were given either 6 or 12 extinction trials and were tested for extinction retention the following day. The effect of propranolol on the firing rate of neurons in prelimbic (PL) prefrontal cortex was also assessed. Propranolol reduced freezing by more than 50%, an effect that was evident from the first extinction trial. Suppression was also significantly reduced. Despite this, propranolol had no effect on the acquisition or retention of extinction. Unlike propranolol, sotalol did not affect fear expression, although both drugs significantly reduced heart rate. This suggests that propranolol acts centrally to reduce fear. Consistent with this, propranolol reduced the firing rate of PL neurons. Propranolol reduced the expression of conditioned fear, without interfering with extinction learning. Reduced fear with intact extinction suggests a possible use for propranolol in reducing anxiety during extinction-based exposure therapies, without interfering with long-term clinical response.

  12. EMP2 is a novel therapeutic target for endometrial cancer stem cells

    PubMed Central

    Kiyohara, Meagan H.; Dillard, Christen; Tsui, Jessica; Kim, Sara Ruth; Lu, Jianyi; Sachdev, Divya; Goodglick, Lee; Tong, Maomeng; Torous, Vanda Farahmand; Aryasomayajula, Chinmayi; Wang, Wei; Najafzadeh, Parisa; Gordon, Lynn K.; Braun, Jonathan; McDermott, Sean; Wicha, Max S.; Wadehra, Madhuri

    2017-01-01

    Previous studies have suggested that overexpression of the oncogenic protein epithelial membrane protein-2 (EMP2) correlates with endometrial carcinoma progression and ultimately poor survival from disease. To understand the role of EMP2 in the etiology of disease, gene analysis was performed to show transcripts that are reciprocally regulated by EMP2 levels. In particular, EMP2 expression correlates with and helps regulate the expression of several cancer stem cell associated markers including aldehyde dehydrogenase 1 (ALDH1). ALDH expression significantly promotes tumor initiation and correlates with the levels of EMP2 expression in both patient samples and tumor cell lines. As therapy against CSCs in endometrial cancer is lacking, the ability of anti-EMP2 IgG1 therapy to reduce primary and secondary tumor formation using xenograft HEC1A models was determined. Anti-EMP2 IgG1 reduced the expression and activity of ALDH and correspondingly reduced both primary and secondary tumor load. Our results collectively suggest that anti-EMP2 therapy may be a novel method of reducing endometrial cancer stem cells. PMID:28604744

  13. Reduced B Lymphoid Kinase (Blk) Expression Enhances Proinflammatory Cytokine Production and Induces Nephrosis in C57BL/6-lpr/lpr Mice

    PubMed Central

    Papillion, Amber M.; Tatum, Arthur H.; Princiotta, Michael F.; Hayes, Sandra M.

    2014-01-01

    BLK, which encodes B lymphoid kinase, was recently identified in genome wide association studies as a susceptibility gene for systemic lupus erythematosus (SLE), and risk alleles mapping to the BLK locus result in reduced gene expression. To determine whether BLK is indeed a bona fide susceptibility gene, we developed an experimental mouse model, namely the Blk+/−.lpr/lpr (Blk+/−.lpr) mouse, in which Blk expression levels are reduced to levels comparable to those in individuals carrying a risk allele. Here, we report that Blk is expressed not only in B cells, but also in IL-17-producing γδ and DN αβ T cells and in plasmacytoid dendritic cells (pDCs). Moreover, we found that solely reducing Blk expression in C57BL/6-lpr/lpr mice enhanced proinflammatory cytokine production and accelerated the onset of lymphoproliferation, proteinuria, and kidney disease. Together, these findings suggest that BLK risk alleles confer susceptibility to SLE through the dysregulation of a proinflammatory cytokine network. PMID:24637841

  14. C-fos mediates antipsychotic-induced neurotensin gene expression in the rodent striatum.

    PubMed

    Robertson, G S; Tetzlaff, W; Bedard, A; St-Jean, M; Wigle, N

    1995-07-01

    The ubiquitous inducibility of the immediate-early gene c-fos in the central nervous system has led to the search for downstream genes which are regulated by its product, Fos. Recent evidence suggests that c-fos induction by a single injection of the classical antipsychotic haloperidol may contribute to the subsequent increase in neurotensin gene expression in the rodent striatum. Consistent with this proposal, in the present study haloperidol-induced Fos-like immunoreactivity and neurotensin/neuromedin N messenger RNA were found to be expressed by the same population of striatal neurons. Moreover, inhibition of haloperidol-induced c-fos expression by intrastriatal injection of antisense phosphorothioate oligodeoxynucleotides complimentary either to bases 109-126 or 127-144 of c-fos attenuated the subsequent increase in neurotensin/neuromedin N messenger RNA. However, injection of a sense phosphorothioate oligodeoxynucleotide corresponding to bases 127-144 of c-fos did not reduce haloperidol-induced c-fos or neurotensin/neuromedin N expression. Furthermore, constitutive expression of Jun-like immunoreactivity in the striatum was not reduced by either the sense or antisense phosphorothioate oligodeoxynucleotides. Similarly, the sense and antisense phosphorothioate oligodeoxynucleotide failed to reduce proenkephalin messenger RNA, which is located in the same striatal neurons that express haloperidol-induced neurotensin/neuromedin N messenger RNA, which is located in the same striatal neurons that express haloperidol-induced neurotensin/neuromedin N messenger RNA. Lastly, haloperidol-induced increases in nerve growth factor I-A-, JunB- and FosB-like immunoreactivity and fosB messenger RNA were not decreased by intrastriatal injection of either the sense or antisense phosphorothioate oligodeoxynucleotides. These results indicate that the antisense phosphorothioate oligodeoxynucleotides attenuated haloperidol-induced neurotensin/neuromedin N expression by selectively reducing c-fos expression and emphasize the potential importance of immediate-early gene induction in the mechanism of action of this antipsychotic drug.

  15. Reduced E-cadherin expression is associated with abdominal pain and symptom duration in a study of alternating and diarrhea predominant IBS.

    PubMed

    Wilcz-Villega, E; McClean, S; O'Sullivan, M

    2014-03-01

    Increased intestinal permeability and altered expression of tight junction (TJ) proteins may be implicated in the pathogenesis of irritable bowel syndrome (IBS). This study aimed to investigate the expression of adherens junction (AJ) protein E-cadherin and TJ proteins zonula occludens (ZO)-1 and claudin (CLD)-1 and associations with IBS symptoms. Junctional proteins were immunostained in cecal biopsy tissue of Rome II IBS patients (n = 34) comprising both alternating (IBS-A) and diarrhea predominant (IBS-D) subtypes, and controls (n = 12). IBS symptom duration, abdominal pain severity and stool frequency were assessed for IBS patients. Protein expression was determined by immunofluorescence. E-cadherin and ZO-1 protein expression was significantly lower (p = 0.03 and p = 0.016, respectively) in the cecal surface epithelium of the IBS group comprising both IBS-A and IBS-D subtypes. CLD-1 expression was not significantly altered compared with controls. On subtype analysis, ZO-1 expression was significantly reduced in both IBS-A and IBS-D compared with controls, whereas E-cadherin was reduced only in IBS-A. Lower E-cadherin expression was associated with longer symptoms duration specifically in IBS-A patients (rs = -0.76, p = 0.004). Reduced E-cadherin associated with abdominal pain severity in the overall IBS group (rs = -0.36, p = 0.041), but this association was unrelated to IBS subtype. E-cadherin protein expression in the cecum was significantly lower in IBS-A compared with controls and associated with longstanding symptoms. E-cadherin was further associated with abdominal pain severity in the IBS group overall, but unrelated to IBS subtype. Altered E-cadherin expression may provide novel insights into mechanisms underlying intestinal barrier dysfunction in IBS. © 2013 John Wiley & Sons Ltd.

  16. 17β-estradiol-induced growth of triple-negative breast cancer cells is prevented by the reduction of GPER expression after treatment with gefitinib.

    PubMed

    Girgert, Rainer; Emons, Günter; Gründker, Carsten

    2017-02-01

    Triple-negative breast cancers (TNBCs) are neither susceptible to endocrine therapy due to a lack of estrogen receptor α expression nor trastuzumab. TNBCs frequently overexpress epidermal growth factor receptor (EGFR) and membrane bound estrogen receptor, GPER. To a certain extent the growth of TNBCs is stimulated by 17β-estradiol via GPER. We analyzed whether inhibition of EGFR by gefitinib reduces the expression of GPER and subsequent signal transduction in TNBC cells. Dependence of proliferation on 17β-estradiol was determined using Alamar Blue assay. Expression of GPR30 and activation of c-src, EGFR and cAMP-responsive element binding (CREB) protein by 17β-estradiol was analyzed by western blotting. Expression of c-fos, cyclin D1 and aromatase was determined using RT-PCR. Gefitinib reduced GPER expression concentration‑ and time‑dependently. In HCC70 cells, GPER expression was reduced to 15±11% (p<0.05) after treatment with 200 nM gefitinib for four days, and in HCC1806 cells GPER expression was reduced to 39±5% (p<0.01) of the control. 17β-estradiol significantly increased the percentage of HCC1806 cells within 7 days to 145±29% of the control (HCC70, 110±8%). This increase in cell growth was completely prevented in both TNBC cell lines after GPR30 expression was downregulated by treatment with 200 nM gefitinib. In HCC1806 cells, activation of c-src was increased by 17β-estradiol to 350±50% (p<0.01), and gefitinib reduced src activation to 110%. Similar results were obtained in the HCC70 cells. Phosphorylation of EGFR increased to 240±40% (p<0.05) in the HCC1806 cells treated with 17β-estradiol (HCC70, 147±25%). Gefitinib completely prevented this activation. Phosphorylation of CREB and induction of c-fos, cyclin D1 and aromatase expression by 17β-estradiol were all prevented by gefitinib. These experiments conclusively show that reduction of GPER expression is a promising therapeutic approach for TNBC.

  17. Epoxyeicosatrienoic Acid Analog Decreases Renal Fibrosis by Reducing Epithelial-to-Mesenchymal Transition

    PubMed Central

    Skibba, Melissa; Hye Khan, Md. Abdul; Kolb, Lauren L.; Yeboah, Michael M.; Falck, John R.; Amaradhi, Radhika; Imig, John D.

    2017-01-01

    Renal fibrosis, which is a critical pathophysiological event in chronic kidney diseases, is associated with renal epithelial-to-mesenchymal transition (EMT). Epoxyeicosatrienoic acids (EETs) are Cyp epoxygenase arachidonic acid metabolites that demonstrate biological actions that result in kidney protection. Herein, we investigated the ability of 14,15-EET and its synthetic analog, EET-A, to reduce kidney fibrosis induced by unilateral ureter obstruction (UUO). C57/BL6 male mice underwent sham or UUO surgical procedures and were treated with 14,15-EET or EET-A in osmotic pump (i.p.) for 10 days following UUO surgery. UUO mice demonstrated renal fibrosis with an 80% higher kidney-collagen positive area and 70% higher α-smooth muscle actin (SMA) positive renal areas compared to the sham group. As a measure of collagen content, kidney hydroxyproline content was also higher in UUO (6.4 ± 0.5 μg/10 mg) compared to sham group (2.5 ± 0.1 μg/10 mg). Along with marked renal fibrosis, UUO mice had reduced renal expression of EET producing Cyp epoxygenase enzymes. Endogenous 14,15-EET or EET-A demonstrated anti-fibrotic action in UUO by reducing kidney-collagen positive area (50–60%), hydroxyproline content (50%), and renal α-SMA positive area (85%). In UUO mice, renal expression of EMT inducers, Snail1 and ZEB1 were higher compared to sham group. Accordingly, renal epithelial marker E-cadherin expression was reduced and mesenchymal marker expression was elevated in the UUO compared to sham mice. Interestingly, EET-A reduced EMT in UUO mice by deceasing renal Snail1 and ZEB1 expression. EET-A treatment also opposed the decrease in renal E-cadherin expression and markedly reduced several prominent renal mesenchymal/myofibroblast markers in UUO mice. Overall, our results demonstrate that EET-A is a novel anti-fibrotic agent that reduces renal fibrosis by decreasing renal EMT. PMID:28713267

  18. Correlation between mutations and mRNA expression of APC and MUTYH genes: new insight into hereditary colorectal polyposis predisposition.

    PubMed

    Aceto, Gitana Maria; Fantini, Fabiana; De Iure, Sabrina; Di Nicola, Marta; Palka, Giandomenico; Valanzano, Rosa; Di Gregorio, Patrizia; Stigliano, Vittoria; Genuardi, Maurizio; Battista, Pasquale; Cama, Alessandro; Curia, Maria Cristina

    2015-10-28

    Transcript dosage imbalance may influence the transcriptome. To gain insight into the role of altered gene expression in hereditary colorectal polyposis predisposition, in the present study we analyzed absolute and allele-specific expression (ASE) of adenomatous polyposis coli (APC) and mutY Homolog (MUTYH) genes. We analyzed DNA and RNA extracted from peripheral blood mononuclear cells (PBMC) of 49 familial polyposis patients and 42 healthy blood donors selected according similar gender and age. Patients were studied for germline alterations in both genes using dHPLC, MLPA and automated sequencing. APC and MUTYH mRNA expression levels were investigated by quantitative Real-Time PCR (qRT-PCR) analysis using TaqMan assay and by ASE assays using dHPLC-based primer extension. Twenty out of 49 patients showed germline mutations: 14 in APC gene and six in MUTYH gene. Twenty-nine patients did not show mutations in both genes. Results from qRT-PCR indicated that gene expression of both APC and MUTYH was reduced in patients analyzed. In particular, a significant reduction in APC expression was observed in patients without APC germline mutation vs control group (P < 0.05) while APC expression in the mutation carrier patients, although lower compared to control individuals, did not show statistical significance. On the other hand a significant reduced MUTYH expression was detected in patients with MUTYH mutations vs control group (P < 0.05). Altered ASE of APC was detected in four out of eight APC mutation carriers. In particular one case showed a complete loss of one allele. Among APC mutation negative cases, 4 out of 13 showed a moderate ASE. ASE of MUTYH did not show any altered expression in the cases analyzed. Spearman's Rho Test analysis showed a positive and significant correlation between APC and MUTYH genes both in cases and in controls (P = 0.020 and P < 0.001). APC and MUTYH showed a reduced germline expression, not always corresponding to gene mutation. Expression of APC is decreased in mutation negative cases and this appears to be a promising indicator of FAP predisposition, while for MUTYH gene, mutation is associated to reduced mRNA expression. This study could improve the predictive genetic diagnosis of at-risk individuals belonging to families with reduced mRNA expression regardless of presence of mutation.

  19. Mechanical Loading of Articular Cartilage Reduces IL-1-Induced Enzyme Expression

    PubMed Central

    Torzilli, P. A.; Bhargava, M.; Chen, C. T.

    2011-01-01

    Objective: Exposure of articular cartilage to interleukin-1 (IL-1) results in increased synthesis of matrix degrading enzymes. Previously mechanical load applied together with IL-1 stimulation was found to reduce aggrecan cleavage by ADAMTS-4 and 5 and MMP-1, -3, -9, and -13 and reduce proteoglycan loss from the extracellular matrix. To further delineate the inhibition mechanism the gene expression of ADAMTS-4 and 5; MMP-1, -3, -9, and -13; and TIMP-1, -2, and -3 were measured. Design: Mature bovine articular cartilage was stimulated with a 0.5 MPa compressive stress and 10 ng/ml of IL-1α for 3 days and then allowed to recover without stimulation for 1 additional day. The media was assayed for proteoglycan content on a daily basis, while chondrocyte gene expression (mRNA) was measured during stimulation and 1 day of recovery. Results: Mechanical load alone did not change the gene expression for ADAMTS, MMP, or TIMP. IL-1 caused an increase in gene expression for all enzymes after 1 day of stimulation while not affecting the TIMP levels. Load applied together with IL-1 decreased the expression levels of ADAMTS-4 and -5 and MMP-1 and -3 and increased TIMP-3 expression. Conclusions: A mechanical load appears to modify cartilage degradation by IL-1 at the cellular level by reducing mRNA. PMID:22039566

  20. A role for tyrosinase-related protein 1 in 4-tert-butylphenol-induced toxicity in melanocytes: Implications for vitiligo.

    PubMed

    Manga, Prashiela; Sheyn, David; Yang, Fan; Sarangarajan, Rangaprasad; Boissy, Raymond E

    2006-11-01

    Vitiligo presents with depigmented cutaneous lesions following localized melanocyte death. Multiple factors contribute to cell death, including genetically determined susceptibility to trauma, and environmental factors, such as exposure to 4-tert-butylphenol (4-TBP). We demonstrate that 4-TBP induces oxidative stress that is more readily overcome by melanocytes from normally pigmented individuals than from two individuals with vitiligo. The antioxidant catalase selectively and significantly reduced death of melanocytes derived from two individuals with vitiligo, indicating a role for oxidative stress in vitiligo pathogenesis. In normal melanocytes, oxidative stress results in reduced expression of microphthalmia-associated transcription factor (MITF). Melanocyte-stimulating hormone-induced expression of MITF protein caused increased sensitivity to 4-TBP, whereas sensitivity of melanomas correlated with MITF expression. MITF stimulates melanin synthesis by up-regulating expression of melanogenic enzymes such as tyrosinase-related protein-1 (Tyrp1). Although melanin content per se did not affect sensitivity to 4-TBP, expression of Tyrp1 significantly increased sensitivity. Melanocytes and melanomas that express functional Tyrp1 were significantly more sensitive to 4-TBP than Tyrp1-null cells. Thus, normal melanocytes respond to 4-TBP by reducing expression of MITF and Tyrp1. We hypothesize that melanocytes in vitiligo demonstrate reduced ability to withstand oxidative stress due, partly, to a disruption in MITF regulation of Tyrp1.

  1. Caffeic acid phenethyl ester inhibits 3-MC-induced CYP1A1 expression through induction of hypoxia-inducible factor-1α

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyung Gyun; Han, Eun Hee; Im, Ji Hye

    2015-09-25

    Caffeic acid phenethyl ester (CAPE), a natural component of propolis, is reported to have anticarcinogenic properties, although its precise chemopreventive mechanism remains unclear. In this study, we examined the effects of CAPE on 3-methylcholanthrene (3-MC)-induced CYP1A1 expression and activities. CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. Moreover, CAPE inhibited 3-MC-induced CYP1A1 activity, mRNA expression, protein level, and promoter activity. CAPE treatment also decreased 3-MC-inducible xenobiotic-response element (XRE)-linked luciferase, aryl hydrocarbons receptor (AhR) transactivation and nuclear localization. CAPE induced hypoxia inducible factor-1α (HIF-1α) protein level and HIF-1α responsible element (HRE) transcriptional activity. CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 protein expression. Takenmore » together, CAPE decreases 3-MC-mediated CYP1A1 expression, and this inhibitory response is associated with inhibition of AhR and HIF-1α induction. - Highlights: • CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. • CAPE inhibited 3-MC-induced CYP1A1 expression. • CAPE induced HIF-1α induction. • CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 expression.« less

  2. Genome-wide gene expression profiling reveals aberrant MAPK and Wnt signaling pathways associated with early parthenogenesis.

    PubMed

    Liu, Na; Enkemann, Steven A; Liang, Ping; Hersmus, Remko; Zanazzi, Claudia; Huang, Junjiu; Wu, Chao; Chen, Zhisheng; Looijenga, Leendert H J; Keefe, David L; Liu, Lin

    2010-12-01

    Mammalian parthenogenesis could not survive but aborted during mid-gestation, presumably because of lack of paternal gene expression. To understand the molecular mechanisms underlying the failure of parthenogenesis at early stages of development, we performed global gene expression profiling and functional analysis of parthenogenetic blastocysts in comparison with those of blastocysts from normally fertilized embryos. Parthenogenetic blastocysts exhibited changes in the expression of 749 genes, of which 214 had lower expression and 535 showed higher expressions than fertilized embryos using a minimal 1.8-fold change as a cutoff. Genes important for placenta development were decreased in their expression in parthenote blastocysts. Some maternally expressed genes were up-regulated and paternal-related genes were down-regulated. Moreover, aberrantly increased Wnt signaling and reduced mitogen-activated protein kinase (MAPK) signaling were associated with early parthenogenesis. The protein level of extracellular signal-regulated kinase 2 (ERK2) was low in parthenogenetic blastocysts compared with that of fertilized blastocysts 120 h after fertilization. 6-Bromoindirubin-3'-oxime, a specific glycogen synthase kinase-3 (GSK-3) inhibitor, significantly decreased embryo hatching. The expression of several imprinted genes was altered in parthenote blastocysts. Gene expression also linked reduced expression of Xist to activation of X chromosome. Our findings suggest that failed X inactivation, aberrant imprinting, decreased ERK/MAPK signaling and possibly elevated Wnt signaling, and reduced expression of genes for placental development collectively may contribute to abnormal placenta formation and failed fetal development in parthenogenetic embryos.

  3. Modulation of cAMP levels by high fat diet and curcumin and regulatory effects on CD36/FAT scavenger receptor/fatty acids transporter gene expression

    USDA-ARS?s Scientific Manuscript database

    Curcumin, a polyphenol from turmeric (Curcuma longa), reduces inflammation, atherosclerosis, and obesity in several animal studies. In Ldlr-/- mice fed a high-fat diet (HFD), curcumin reduces plasma lipid levels, therefore contributing to a lower accumulation of lipids and to reduced expression of f...

  4. Role of protein kinase A and class II phosphatidylinositol 3-kinase C2β in the downregulation of KCa3.1 channel synthesis and membrane surface expression by lyso-globotriaosylceramide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Ju Yeon; Park, Seonghee, E-mail: sp@ewha.ac.kr

    The intermediate conductance calcium-activated potassium channel (KCa3.1) mediates proliferation of many cell types including fibroblasts, and is a molecular target for intervention in various cell proliferative diseases. Our previous study showed that reduction of KCa3.1 channel expression by lyso-globotriaosylceramide (lyso-Gb3) inhibits differentiation into myofibroblasts and collagen synthesis, which might lead to development of ascending thoracic aortic aneurysm secondary to Fabry disease. However, how lyso-Gb3 downregulates KCa3.1 channel expression is unknown. Therefore, we aimed to investigate the underlying mechanisms of lyso-Gb3-mediated KCa3.1 channel downregulation, focusing on the cAMP signaling pathway. We found that lyso-Gb3 increased the intracellular cAMP concentration by upregulationmore » of adenylyl cyclase 6 and inhibited ERK 1/2 phosphorylation through the protein kinase A (PKA) pathway, leading to the inhibition of KCa3.1 channel synthesis, not the exchange protein directly activated by cAMP (Epac) pathway. Moreover, lyso-Gb3 suppressed expression of class II phosphatidylinositol 3-kinase C2β (PI3KC2β) by PKA activation, which reduces the production of phosphatidylinositol 3-phosphate [PI(3)P], and the reduced membrane surface expression of KCa3.1 channel was recovered by increasing the intracellular levels of PI(3)P. Consequently, our findings that lyso-Gb3 inhibited both KCa3.1 channel synthesis and surface expression by increasing intracellular cAMP, and controlled surface expression through changes in PI3KC2β-mediated PI(3)P production, suggest that modulation of PKA and PI3KC2β activity to control of KCa3.1 channel expression can be an alternative important target to attenuate ascending thoracic aortic aneurysms in Fabry disease. - Highlights: • Lyso-Gb3 causes elevation of intracellular cAMP. • Lyso-Gb3 inhibits the ERK 1/2 phosphorylation through PKA, thereby reducing KCa3.1 channel synthesis. • Lyso-Gb3 reduces PI3KC2β-mediated intracellular PI(3)P production. • Lyso-Gb3 reduces both surface and total expression of the KCa3.1 channel. • Increasing intracellular levels of PI(3)P only recovers the reduced surface expression.« less

  5. l-Homocarnosine attenuates inflammation in cerebral ischemia-reperfusion injury through inhibition of nod-like receptor protein 3 inflammasome.

    PubMed

    Huang, Jing; Wang, Tao; Yu, Daorui; Fang, Xingyue; Fan, Haofei; Liu, Qiang; Yi, Guohui; Yi, Xinan; Liu, Qibin

    2018-06-08

    We investigated the therapeutic effects of l-homocarnosine against inflammation in a rat model of cerebral ischemia-reperfusion injury. Rats were grouped into control, middle cerebral artery occlusion (MCAO), 0.5 mM l-homocarnosine + MCAO, and 1 mM l-homocarnosine + MCAO treatment groups. Superoxide dismutase (SOD), glutathione peroxidase (Gpx), catalase, lipid peroxidation, and reduced glutathione (GSH) levels were measured. Neurological scores were assessed, and histopathology, scanning electron microscopy (SEM), and fluorescence microscopy analyses were conducted. The mRNA expression levels of nod-like receptor protein 3 (NLRP3), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6) and protein expression levels of NLRP3 were assessed. l-Homocarnosine supplementation substantially increased SOD, catalase, Gpx, and GSH levels, whereas it reduced the levels of lipid peroxidation relative to MCAO rats. l-Homocarnosine significantly reduced the infarct area and neurological deficit score, as well as histopathological alteration, apoptosis, and necrosis in brain tissue. The mRNA expression levels of NLRP3, TNF-α, and IL-6 were increased in MCAO rats, whereas l-homocarnosine supplementation reduced mRNA expression by >40%, and NLRP3 protein expression was reduced by >30% in 1 mM l-homocarnosine-treated MCAO rats. We propose that l-homocarnosine exerts a protective effect in cerebral ischemia-reperfusion injury-induced rats by downregulating NLRP3 expression. Copyright © 2017. Published by Elsevier B.V.

  6. Rescue of protein expression defects may not be enough to abolish the pro-arrhythmic phenotype of long QT type 2 mutations.

    PubMed

    Perry, Matthew D; Ng, Chai Ann; Phan, Kevin; David, Erikka; Steer, Kieran; Hunter, Mark J; Mann, Stefan A; Imtiaz, Mohammad; Hill, Adam P; Ke, Ying; Vandenberg, Jamie I

    2016-07-15

    Most missense long QT syndrome type 2 (LQTS2) mutations result in Kv11.1 channels that show reduced levels of membrane expression. Pharmacological chaperones that rescue mutant channel expression could have therapeutic potential to reduce the risk of LQTS2-associated arrhythmias and sudden cardiac death, but only if the mutant Kv11.1 channels function normally (i.e. like WT channels) after membrane expression is restored. Fewer than half of mutant channels exhibit relatively normal function after rescue by low temperature. The remaining rescued missense mutant Kv11.1 channels have perturbed gating and/or ion selectivity characteristics. Co-expression of WT subunits with gating defective missense mutations ameliorates but does not eliminate the functional abnormalities observed for most mutant channels. For patients with mutations that affect gating in addition to expression, it may be necessary to use a combination therapy to restore both normal function and normal expression of the channel protein. In the heart, Kv11.1 channels pass the rapid delayed rectifier current (IKr ) which plays critical roles in repolarization of the cardiac action potential and in the suppression of arrhythmias caused by premature stimuli. Over 500 inherited mutations in Kv11.1 are known to cause long QT syndrome type 2 (LQTS2), a cardiac electrical disorder associated with an increased risk of life threatening arrhythmias. Most missense mutations in Kv11.1 reduce the amount of channel protein expressed at the membrane and, as a consequence, there has been considerable interest in developing pharmacological agents to rescue the expression of these channels. However, pharmacological chaperones will only have clinical utility if the mutant Kv11.1 channels function normally after membrane expression is restored. The aim of this study was to characterize the gating phenotype for a subset of LQTS2 mutations to assess what proportion of mutations may be suitable for rescue. As an initial screen we used reduced temperature to rescue expression defects of mutant channels expressed in Xenopus laevis oocytes. Over half (∼56%) of Kv11.1 mutants exhibited functional gating defects that either dramatically reduced the amount of current contributing to cardiac action potential repolarization and/or reduced the amount of protective current elicited in response to premature depolarizations. Our data demonstrate that if pharmacological rescue of protein expression defects is going to have clinical utility in the treatment of LQTS2 then it will be important to assess the gating phenotype of LQTS2 mutations before attempting rescue. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  7. Age-associated reduction of cellular spreading/mechanical force up-regulates matrix metalloproteinase-1 expression and collagen fibril fragmentation via c-Jun/AP-1 in human dermal fibroblasts.

    PubMed

    Qin, Zhaoping; Voorhees, John J; Fisher, Gary J; Quan, Taihao

    2014-12-01

    The dermal compartment of human skin is largely composed of dense collagen-rich fibrils, which provide structural and mechanical support. Skin dermal fibroblasts, the major collagen-producing cells, are interact with collagen fibrils to maintain cell spreading and mechanical force for function. A characteristic feature of aged human skin is fragmentation of collagen fibrils, which is initiated by matrix metalloproteinase 1 (MMP-1). Fragmentation impairs fibroblast attachment and thereby reduces spreading. Here, we investigated the relationship among fibroblast spreading, mechanical force, MMP-1 expression, and collagen fibril fragmentation. Reduced fibroblast spreading due to cytoskeletal disruption was associated with reduced cellular mechanical force, as determined by atomic force microscopy. These reductions substantially induced MMP-1 expression, which led to collagen fibril fragmentation and disorganization in three-dimensional collagen lattices. Constraining fibroblast size by culturing on slides coated with collagen micropatterns also significantly induced MMP-1 expression. Reduced spreading/mechanical force induced transcription factor c-Jun and its binding to a canonical AP-1 binding site in the MMP-1 proximal promoter. Blocking c-Jun function with dominant negative mutant c-Jun significantly reduced induction of MMP-1 expression in response to reduced spreading/mechanical force. Furthermore, restoration of fibroblast spreading/mechanical force led to decline of c-Jun and MMP-1 levels and eliminated collagen fibril fragmentation and disorganization. These data reveal a novel mechanism by which alteration of fibroblast shape/mechanical force regulates c-Jun/AP-1-dependent expression of MMP-1 and consequent collagen fibril fragmentation. This mechanism provides a foundation for understanding the cellular and molecular basis of age-related collagen fragmentation in human skin. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  8. Altered fatty acid metabolism and reduced stearoyl-coenzyme a desaturase activity in asthma.

    PubMed

    Rodriguez-Perez, N; Schiavi, E; Frei, R; Ferstl, R; Wawrzyniak, P; Smolinska, S; Sokolowska, M; Sievi, N A; Kohler, M; Schmid-Grendelmeier, P; Michalovich, D; Simpson, K D; Hessel, E M; Jutel, M; Martin-Fontecha, M; Palomares, O; Akdis, C A; O'Mahony, L

    2017-11-01

    Fatty acids and lipid mediator signaling play an important role in the pathogenesis of asthma, yet this area remains largely underexplored. The aims of this study were (i) to examine fatty acid levels and their metabolism in obese and nonobese asthma patients and (ii) to determine the functional effects of altered fatty acid metabolism in experimental models. Medium- and long-chain fatty acid levels were quantified in serum from 161 human volunteers by LC/MS. Changes in stearoyl-coenzyme A desaturase (SCD) expression and activity were evaluated in the ovalbumin (OVA) and house dust mite (HDM) murine models. Primary human bronchial epithelial cells from asthma patients and controls were evaluated for SCD expression and activity. The serum desaturation index (an indirect measure of SCD) was significantly reduced in nonobese asthma patients and in the OVA murine model. SCD1 gene expression was significantly reduced within the lungs following OVA or HDM challenge. Inhibition of SCD in mice promoted airway hyper-responsiveness. SCD1 expression was suppressed in bronchial epithelial cells from asthma patients. IL-4 and IL-13 reduced epithelial cell SCD1 expression. Inhibition of SCD reduced surfactant protein C expression and suppressed rhinovirus-induced IP-10 secretion, which was associated with increased viral titers. This is the first study to demonstrate decreased fatty acid desaturase activity in humans with asthma. Experimental models in mice and human epithelial cells suggest that inhibition of desaturase activity leads to airway hyper-responsiveness and reduced antiviral defense. SCD may represent a new target for therapeutic intervention in asthma patients. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  9. HDAC inhibitors enhance neratinib activity and when combined enhance the actions of an anti-PD-1 immunomodulatory antibody in vivo.

    PubMed

    Booth, Laurence; Roberts, Jane L; Poklepovic, Andrew; Avogadri-Connors, Francesca; Cutler, Richard E; Lalani, Alshad S; Dent, Paul

    2017-10-27

    Patients whose NSCLC tumors become afatinib resistant presently have few effective therapeutic options to extend their survival. Afatinib resistant NSCLC cells were sensitive to clinically relevant concentrations of the irreversible pan-HER inhibitor neratinib, but not by the first generation ERBB1/2/4 inhibitor lapatinib. In multiple afatinib resistant NSCLC clones, HDAC inhibitors reduced the expression of ERBB1/3/4, but activated c-SRC, which resulted in higher total levels of ERBB1/3 phosphorylation. Neratinib also rapidly reduced the expression of ERBB1/2/3/4, c-MET and of mutant K-/N-RAS; K-RAS co-localized with phosphorylated ATG13 and with cathepsin B in vesicles. Combined exposure of cells to [neratinib + HDAC inhibitors] caused inactivation of mTORC1 and mTORC2, enhanced autophagosome and subsequently autolysosome formation, and caused an additive to greater than additive induction of cell death. Knock down of Beclin1 or ATG5 prevented HDAC inhibitors or neratinib from reducing ERBB1/3/4 and K-/N-RAS expression and reduced [neratinib + HDAC inhibitor] lethality. Neratinib and HDAC inhibitors reduced the expression of multiple HDAC proteins via autophagy that was causal in the reduced expression of PD-L1, PD-L2 and ornithine decarboxylase, and increased expression of Class I MHCA. In vivo , neratinib and HDAC inhibitors interacted to suppress the growth of 4T1 mammary tumors, an effect that was enhanced by an anti-PD-1 antibody. Our data support the premises that neratinib lethality can be enhanced by HDAC inhibitors, that neratinib may be a useful therapeutic tool in afatinib resistant NSCLC, and that [neratinib + HDAC inhibitor] exposure facilitates anti-tumor immune responses.

  10. HDAC inhibitors enhance neratinib activity and when combined enhance the actions of an anti-PD-1 immunomodulatory antibody in vivo

    PubMed Central

    Booth, Laurence; Roberts, Jane L.; Poklepovic, Andrew; Avogadri-Connors, Francesca; Cutler, Richard E.; Lalani, Alshad S.; Dent, Paul

    2017-01-01

    Patients whose NSCLC tumors become afatinib resistant presently have few effective therapeutic options to extend their survival. Afatinib resistant NSCLC cells were sensitive to clinically relevant concentrations of the irreversible pan-HER inhibitor neratinib, but not by the first generation ERBB1/2/4 inhibitor lapatinib. In multiple afatinib resistant NSCLC clones, HDAC inhibitors reduced the expression of ERBB1/3/4, but activated c-SRC, which resulted in higher total levels of ERBB1/3 phosphorylation. Neratinib also rapidly reduced the expression of ERBB1/2/3/4, c-MET and of mutant K-/N-RAS; K-RAS co-localized with phosphorylated ATG13 and with cathepsin B in vesicles. Combined exposure of cells to [neratinib + HDAC inhibitors] caused inactivation of mTORC1 and mTORC2, enhanced autophagosome and subsequently autolysosome formation, and caused an additive to greater than additive induction of cell death. Knock down of Beclin1 or ATG5 prevented HDAC inhibitors or neratinib from reducing ERBB1/3/4 and K-/N-RAS expression and reduced [neratinib + HDAC inhibitor] lethality. Neratinib and HDAC inhibitors reduced the expression of multiple HDAC proteins via autophagy that was causal in the reduced expression of PD-L1, PD-L2 and ornithine decarboxylase, and increased expression of Class I MHCA. In vivo, neratinib and HDAC inhibitors interacted to suppress the growth of 4T1 mammary tumors, an effect that was enhanced by an anti-PD-1 antibody. Our data support the premises that neratinib lethality can be enhanced by HDAC inhibitors, that neratinib may be a useful therapeutic tool in afatinib resistant NSCLC, and that [neratinib + HDAC inhibitor] exposure facilitates anti-tumor immune responses. PMID:29163826

  11. Rapid modulation of the silent information regulator 1 by melatonin after hypoxia-ischemia in the neonatal rat brain.

    PubMed

    Carloni, Silvia; Riparini, Giulia; Buonocore, Giuseppe; Balduini, Walter

    2017-10-01

    Increasing evidence indicates that melatonin possesses protective effects toward different kinds of damage in various organs, including the brain. In a neonatal model of hypoxia-ischemia (HI), melatonin was neuroprotective and preserved the expression of the silent information regulator 1 (SIRT1) 24 hours after the insult. This study aimed to gain more insight into the role of SIRT1 in the protective effect of melatonin after HI by studying the early (1 hour) modulation of SIRT1 and its downstream targets, and the consequences on necrosis, apoptosis, autophagy, and glial cell activation. We found that melatonin administered 5 minutes after the ischemic insult significantly reduced necrotic cell death assessed 1 hour after its administration. In parallel, we found a reduced activation of the early phases of intrinsic apoptosis, detected by reduced BAX translocation to the mitochondria and preservation of the mitochondrial expression of cytochrome C, indicating a reduced outer mitochondrial membrane permeabilization in the melatonin-treated ischemic animals. These effects were concomitant to increased expression and activity of SIRT1, reduced expression and acetylation of p53, and increased autophagy activation. Melatonin also reduced HI-induced glial cells activation. SIRT1 was expressed in neurons after HI and melatonin but not in reactive glial cells expressing GFAP. Colocalization between SIRT1 and GFAP was found in some cells in control conditions. In summary, our results provide more insight into the connection between SIRT1 and melatonin in neuroprotection. The possibility that melatonin-induced SIRT1 activity might contribute to differentiate neuronal progenitor cells during the neurodegenerative process needs to be further investigated. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Angiotensin II Reduces Food Intake by Altering Orexigenic Neuropeptide Expression in the Mouse Hypothalamus

    PubMed Central

    Yoshida, Tadashi; Semprun-Prieto, Laura; Wainford, Richard D.; Sukhanov, Sergiy; Kapusta, Daniel R.

    2012-01-01

    Angiotensin II (Ang II), which is elevated in many chronic disease states such as end-stage renal disease and congestive heart failure, induces cachexia and skeletal muscle wasting by increasing muscle protein breakdown and reducing food intake. Neurohormonal mechanisms that mediate Ang II-induced appetite suppression are unknown. Consequently, we examined the effect of Ang II on expression of genes regulating appetite. Systemic Ang II (1 μg/kg · min) infusion in FVB mice rapidly reduced hypothalamic expression of neuropeptide Y (Npy) and orexin and decreased food intake at 6 h compared with sham-infused controls but did not change peripheral leptin, ghrelin, adiponectin, glucagon-like peptide, peptide YY, or cholecystokinin levels. These effects were completely blocked by the Ang II type I receptor antagonist candesartan or deletion of Ang II type 1a receptor. Ang II markedly reduced phosphorylation of AMP-activated protein kinase (AMPK), an enzyme that is known to regulate Npy expression. Intracerebroventricular Ang II infusion (50 ng/kg · min) caused a reduction of food intake, and Ang II dose dependently reduced Npy and orexin expression in the hypothalamus cultured ex vivo. The reduction of Npy and orexin in hypothalamic cultures was completely prevented by candesartan or the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside. Thus, Ang II type 1a receptor-dependent Ang II signaling reduces food intake by suppressing the hypothalamic expression of Npy and orexin, likely via AMPK dephosphorylation. These findings have major implications for understanding mechanisms of cachexia in chronic disease states such as congestive heart failure and end-stage renal disease, in which the renin-angiotensin system is activated. PMID:22234465

  13. 11β-HSD1 reduces metabolic efficacy and adiponectin synthesis in hypertrophic adipocytes.

    PubMed

    Koh, Eun Hee; Kim, Ah-Ram; Kim, Hyunshik; Kim, Jin Hee; Park, Hye-Sun; Ko, Myoung Seok; Kim, Mi-Ok; Kim, Hyuk-Joong; Kim, Bum Joong; Yoo, Hyun Ju; Kim, Su Jung; Oh, Jin Sun; Woo, Chang-Yun; Jang, Jung Eun; Leem, Jaechan; Cho, Myung Hwan; Lee, Ki-Up

    2015-06-01

    Mitochondrial dysfunction in hypertrophic adipocytes can reduce adiponectin synthesis. We investigated whether 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) expression is increased in hypertrophic adipocytes and whether this is responsible for mitochondrial dysfunction and reduced adiponectin synthesis. Differentiated 3T3L1 adipocytes were cultured for up to 21 days. The effect of AZD6925, a selective 11β-HSD1 inhibitor, on metabolism was examined. db/db mice were administered 600 mg/kg AZD6925 daily for 4 weeks via gastric lavage. Mitochondrial DNA (mtDNA) content, mRNA expression levels of 11 β -H sd1 and mitochondrial biogenesis factors, adiponectin synthesis, fatty acid oxidation (FAO), oxygen consumption rate and glycolysis were measured. Adipocyte hypertrophy in 3T3L1 cells exposed to a long duration of culture was associated with increased 11 β -Hsd1 mRNA expression and reduced mtDNA content, mitochondrial biogenesis factor expression and adiponectin synthesis. These cells displayed reduced mitochondrial respiration and increased glycolysis. Treatment of these cells with AZD6925 increased adiponectin synthesis and mitochondrial respiration. Inhibition of FAO by etomoxir blocked the AZD6925-induced increase in adiponectin synthesis, indicating that 11β-HSD1-mediated reductions in FAO are responsible for the reduction in adiponectin synthesis. The expression level of 11 β -Hsd1 was higher in adipose tissues of db/db mice. Administration of AZD6925 to db/db mice increased the plasma adiponectin level and adipose tissue FAO. In conclusion, increased 11β-HSD1 expression contributes to reduced mitochondrial respiration and adiponectin synthesis in hypertrophic adipocytes. © 2015 Society for Endocrinology.

  14. Genetically Modifying the Insect Gut Microbiota to Control Chagas Disease Vectors through Systemic RNAi

    PubMed Central

    Taracena, Mabel L.; Oliveira, Pedro L.; Almendares, Olivia; Umaña, Claudia; Lowenberger, Carl; Dotson, Ellen M.; Paiva-Silva, Gabriela O.; Pennington, Pamela M.

    2015-01-01

    Technologies based on RNA interference may be used for insect control. Sustainable strategies are needed to control vectors of Chagas disease such as Rhodnius prolixus. The insect microbiota can be modified to deliver molecules to the gut. Here, Escherichia coli HT115(DE3) expressing dsRNA for the Rhodnius heme-binding protein (RHBP) and for catalase (CAT) were fed to nymphs and adult triatomine stages. RHBP is an egg protein and CAT is an antioxidant enzyme expressed in all tissues by all developmental stages. The RNA interference effect was systemic and temporal. Concentrations of E. coli HT115(DE3) above 3.35 × 107 CFU/mL produced a significant RHBP and CAT gene knockdown in nymphs and adults. RHBP expression in the fat body was reduced by 99% three days after feeding, returning to normal levels 10 days after feeding. CAT expression was reduced by 99% and 96% in the ovary and the posterior midgut, respectively, five days after ingestion. Mortality rates increased by 24-30% in first instars fed RHBP and CAT bacteria. Molting rates were reduced by 100% in first instars and 80% in third instars fed bacteria producing RHBP or CAT dsRNA. Oviposition was reduced by 43% (RHBP) and 84% (CAT). Embryogenesis was arrested in 16% (RHBP) and 20% (CAT) of laid eggs. Feeding females 105 CFU/mL of the natural symbiont, Rhodococcus rhodnii, transformed to express RHBP-specific hairpin RNA reduced RHBP expression by 89% and reduced oviposition. Modifying the insect microbiota to induce systemic RNAi in R. prolixus may result in a paratransgenic strategy for sustainable vector control. PMID:25675102

  15. Dietary phosphatidylcholine impacts on growth performance and lipid metabolism in adult Genetically Improved Farmed Tilapia (GIFT) strain of Nile tilapia Oreochromis niloticus.

    PubMed

    Tian, Juan; Wen, Hua; Lu, Xing; Liu, Wei; Wu, Fan; Yang, Chang-Geng; Jiang, Ming; Yu, Li-Juan

    2018-01-01

    This study aimed to determine the effects of supplementing the diet of adult Nile tilapia Oreochromis niloticus with phosphatidylcholine (PC) on growth performance, body composition, fatty acid composition and gene expression. Genetically Improved Farmed Tilapia fish with an initial body weight of 83·1 (sd 2·9) g were divided into six groups. Each group was hand-fed a semi-purified diet containing 1·7 (control diet), 4·0, 6·5, 11·5, 21·3 or 41·0 g PC/kg diet for 68 d. Supplemental PC improved the feed efficiency rate, which was highest in the 11·5 g PC/kg diet. Weight gain and specific growth rate were unaffected. Dietary PC increased PC content in the liver and decreased crude fat content in the liver, viscera and body. SFA and MUFA increased and PUFA decreased in muscle with increasing dietary PC. Cytoplasmic phospholipase A 2 and secreted phospholipase A 2 mRNA expression were up-regulated in the brain and heart in PC-supplemented fish. PC reduced fatty acid synthase mRNA expression in the liver and visceral tissue but increased expression in muscle. Hormone-sensitive lipase and lipoprotein lipase expression increased in the liver with increasing dietary PC. Growth hormone mRNA expression was reduced in the brain and insulin-like growth factor-1 mRNA expression in liver reduced with PC above 6·5 g/kg. Our results demonstrate that dietary supplementation with PC improves feed efficiency and reduces liver fat in adult Nile tilapia, without increasing weight gain, representing a novel dietary approach to reduce feed requirements and improve the health of Nile tilapia.

  16. Opposing roles of miR-21 and miR-29 in the progression of fibrosis in Duchenne muscular dystrophy.

    PubMed

    Zanotti, Simona; Gibertini, Sara; Curcio, Maurizio; Savadori, Paolo; Pasanisi, Barbara; Morandi, Lucia; Cornelio, Ferdinando; Mantegazza, Renato; Mora, Marina

    2015-07-01

    Excessive extracellular matrix deposition progressively replacing muscle fibres is the endpoint of most severe muscle diseases. Recent data indicate major involvement of microRNAs in regulating pro- and anti-fibrotic genes. To investigate the roles of miR-21 and miR-29 in muscle fibrosis in Duchenne muscle dystrophy, we evaluated their expression in muscle biopsies from 14 patients, and in muscle-derived fibroblasts and myoblasts. In Duchenne muscle biopsies, miR-21 expression was significantly increased, and correlated directly with COL1A1 and COL6A1 transcript levels. MiR-21 expression was also significantly increased in Duchenne fibroblasts, more so after TGF-β1 treatment. In Duchenne fibroblasts the expression of miR-21 target transcripts PTEN (phosphatase and tensin homolog deleted on chromosome 10) and SPRY-1 (Sprouty homolog 1) was significantly reduced; while collagen I and VI transcript levels and soluble collagen production were significantly increased. MiR-29a and miR-29c were significantly reduced in Duchenne muscle and myoblasts, and miR-29 target transcripts, COL3A1, FBN1 and YY1, significantly increased. MiR-21 silencing in mdx mice reduced fibrosis in the diaphragm muscle and in both Duchenne fibroblasts and mdx mice restored PTEN and SPRY-1 expression, and significantly reduced collagen I and VI expression; while miR-29 mimicking in Duchenne myoblasts significantly decreased miR-29 target transcripts. These findings indicate that miR-21 and miR-29 play opposing roles in Duchenne muscle fibrosis and suggest that pharmacological modulation of their expression has therapeutic potential for reducing fibrosis in this condition. Copyright © 2015. Published by Elsevier B.V.

  17. MiR-24 alleviates cardiomyocyte apoptosis after myocardial infarction via targeting BIM.

    PubMed

    Pan, L-J; Wang, X; Ling, Y; Gong, H

    2017-07-01

    Ischemia hypoxia induces cardiomyocyte (CM) apoptosis in the process of acute myocardial infarction (AMI). It was showed that pro-apoptosis factor BIM participates in regulating tumor cell apoptosis under ischemia or hypoxia condition, while its role in CM apoptosis after AMI is still unclear. It was revealed that miR-24 expression was significantly reduced in myocardial tissue after AMI. Bioinformatics analysis exhibits that miR-24 is targeted to the 3'-UTR of BIM. This study aims to investigate the role of miR-24 in mediating BIM expression and CM apoptosis. Dual-luciferase assay was used to confirm the targeted regulation between miR-24 and BIM. Cells were cultured under ischemia hypoxia for 12 h after transfection for 48 h. Cell apoptosis was tested by using flow cytometry. The caspase activity was detected by using spectrophotometry. Wistar rats were divided into four groups, including Sham, AMI, AMI + agomir-control, and AMI + agomir-24 groups. Cardiac function was evaluated by using echocardiography. CM apoptosis was determined by using TUNEL. Infarction area was measured by using evans blue staining. MiR-24 targeted suppressed BIM expression. MiR-24 mimic and/or si-BIM transfection significantly declined the BIM expression, inhibited caspase-9 and caspase-3 activities, and reduced cell apoptosis in H9C2 cells. MiR-24 expression was decreased, while BIM levels were up-regulated in myocardium after AMI. Agomir-24 injection down-regulated the BIM expression in myocardium, reduced CM apoptosis, narrowed infarction area, and improved cardiac function in rats. MiR-24 was reduced, whereas BIM was enhanced in the CM after AMI. MiR-24 up-regulation plays a critical role in decreasing BIM expression, reducing CM apoptosis, and improving cardiac function after AMI.

  18. Inhibition of p38 mitogen-activated protein kinase signaling reduces multidrug transporter activity and anti-epileptic drug resistance in refractory epileptic rats.

    PubMed

    Shao, Yiye; Wang, Cuicui; Hong, Zhen; Chen, Yinghui

    2016-03-01

    It is widely recognized that P-glycoprotein (P-gp) mediates drug resistance in refractory epilepsy. However, the molecular mechanism underlying the up-regulation of P-gp expression remains unclear. Our previous studies have demonstrated that p38 mitogen-activated protein kinase (MAPK) regulates P-gp expression in cultured K562 cells. However, a lack of in vivo research leaves unanswered questions regarding whether p38MAPK regulates P-gp expression or drug resistance in refractory epilepsy. This in vivo study examined the effects of p38MAPK on the expression of P-gp and mdr1 in the rat brain and quantified antiepileptic drug (AED) concentrations in the hippocampal extracellular fluid. In addition, the role of p38MAPK in electrical and behavioral activity in a rat epilepsy model was studied. The results indicated that p38MAPK inhibition by SB202190 reduced P-gp expression, while increasing AED concentration in the hippocampal extracellular fluid in refractory epileptic rats. SB202190 also reduced the resistance to AEDs in drug-resistant rats and significantly reduced the severity of seizure activity. These results suggest that p38MAPK could participate in drug resistance in refractory epilepsy through the regulation of P-gp. We show that the specific inhibitor of p38MAPK could down-regulate the expression of multidrug transporter (P-glycoprotein) in blood-brain barrier, increase the concentration of antiepileptic drugs in the hippocampal extracellular fluid and reduce anti-epileptic drug resistance in refractory epileptic rats. We propose that the p38MAPK signaling pathway participates in drug resistance in refractory epilepsy through the regulation of P-glycoprotein expression. © 2015 International Society for Neurochemistry.

  19. Leptin attenuates BACE1 expression and amyloid-β genesis via the activation of SIRT1 signaling pathway.

    PubMed

    Marwarha, Gurdeep; Raza, Shaneabbas; Meiers, Craig; Ghribi, Othman

    2014-09-01

    The aspartyl protease β-site AβPP-cleaving enzyme 1 (BACE1) catalyzes the rate-limiting step in Aβ production, a peptide at the nexus of neurodegenerative cascades in Alzheimer Disease (AD). The adipocytokine leptin has been demonstrated to reduce Aβ production and decrease BACE1 activity and expression levels. However, the signaling cascades involved in the leptin-induced mitigation in Aβ levels and BACE1 expression levels have not been elucidated. We have demonstrated that the transcription factor nuclear factor - kappa B (NF-κB) positively regulates BACE1 transcription. NF-κB activity is tightly regulated by the mammalian sirtuin SIRT1. Multiple studies have cogently evinced that leptin activates the metabolic master regulator SIRT1. In this study, we determined the extent to which SIRT1 expression and activity regulate the leptin-induced attenuation in BACE1 expression and Aβ levels in cultured human neuroblastoma SH-SY5Y cells. This study also elucidated and delineated the signal transduction pathways involved in the leptin induced mitigation in BACE1 expression. Our results demonstrate for the first time that leptin attenuates the activation and transcriptional activity of NF-κB by reducing the acetylation of the p65 subunit in a SIRT1-dependent manner. Furthermore, our data shows that leptin reduces the NF-κB-mediated transcription of BACE1 and consequently reduces Amyloid-β genesis. Our study provides a valuable insight and a novel mechanism by which leptin reduces BACE1 expression and Amyloid-β production and may help design potential therapeutic interventions. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. MicroRNA-153 Physiologically Inhibits Expression of Amyloid-β Precursor Protein in Cultured Human Fetal Brain Cells and Is Dysregulated in a Subset of Alzheimer Disease Patients*

    PubMed Central

    Long, Justin M.; Ray, Balmiki; Lahiri, Debomoy K.

    2012-01-01

    Regulation of amyloid-β (Aβ) precursor protein (APP) expression is complex. MicroRNAs (miRNAs) are expected to participate in the molecular network that controls this process. The composition of this network is, however, still undefined. Elucidating the complement of miRNAs that regulate APP expression should reveal novel drug targets capable of modulating Aβ production in AD. Here, we investigated the contribution of miR-153 to this regulatory network. A miR-153 target site within the APP 3′-untranslated region (3′-UTR) was predicted by several bioinformatic algorithms. We found that miR-153 significantly reduced reporter expression when co-transfected with an APP 3′-UTR reporter construct. Mutation of the predicted miR-153 target site eliminated this reporter response. miR-153 delivery in both HeLa cells and primary human fetal brain cultures significantly reduced APP expression. Delivery of a miR-153 antisense inhibitor to human fetal brain cultures significantly elevated APP expression. miR-153 delivery also reduced expression of the APP paralog APLP2. High functional redundancy between APP and APLP2 suggests that miR-153 may target biological pathways in which they both function. Interestingly, in a subset of human AD brain specimens with moderate AD pathology, miR-153 levels were reduced. This same subset also exhibited elevated APP levels relative to control specimens. Therefore, endogenous miR-153 inhibits expression of APP in human neurons by specifically interacting with the APP 3′-UTR. This regulatory interaction may have relevance to AD etiology, where low miR-153 levels may drive increased APP expression in a subset of AD patients. PMID:22733824

  1. Macrophage-Specific Expression of IL-37 in Hyperlipidemic Mice Attenuates Atherosclerosis.

    PubMed

    McCurdy, Sara; Baumer, Yvonne; Toulmin, Emma; Lee, Bog-Hieu; Boisvert, William A

    2017-11-15

    Atherosclerosis, the progressive buildup of plaque within arterial blood vessels, can lead to fatal downstream events, such as heart attack or stroke. A key event contributing to the development of atherosclerosis is the infiltration of monocytes and its associated inflammation, as well as the formation of lipid-laden macrophage foam cells within the vessel wall. IL-37 is recognized as an important anti-inflammatory cytokine expressed especially by immune cells. This study was undertaken to elucidate the role of macrophage-expressed IL-37 in reducing the production and effects of proinflammatory cytokines, preventing foam cell formation, and reducing the development of atherosclerosis. Expression of human IL-37 was achieved with a macrophage-specific overexpression system, using the CD68 promoter in mouse primary bone marrow-derived macrophages via retroviral transduction. Macrophage IL-37 expression in vitro resulted in decreased mRNA (e.g., IL-1B, IL-6, and IL-12) and secreted protein production (e.g., IL-6, M-CSF, and ICAM-1) of key inflammatory mediators. IL-37 expression also inhibited macrophage proliferation, apoptosis, and transmigration, as well as reduced lipid uptake, compared with controls in vitro. The in vivo effects of macrophage-expressed IL-37 were investigated through bone marrow transplantation of transduced hematopoietic stem cells into irradiated atherosclerosis-prone Ldlr -/- mice. After 10 wk on a high-fat/high-cholesterol diet, mice with IL-37-expressing macrophages showed reduced disease pathogenesis, which was demonstrated by significantly less arterial plaque development and systemic inflammation compared with control mice. The athero-protective effect of macrophage-expressed IL-37 has implications for development of future therapies to treat atherosclerosis, as well as other chronic inflammatory diseases. Copyright © 2017 by The American Association of Immunologists, Inc.

  2. Aggregatibacter actinomycetemcomitans regulates the expression of integrins and reduces cell adhesion via integrin α5 in human gingival epithelial cells.

    PubMed

    Kochi, Shinsuke; Yamashiro, Keisuke; Hongo, Shoichi; Yamamoto, Tadashi; Ugawa, Yuki; Shimoe, Masayuki; Kawamura, Mari; Hirata-Yoshihara, Chiaki; Ideguchi, Hidetaka; Maeda, Hiroshi; Takashiba, Shogo

    2017-12-01

    Gingival epithelial cells form a physiological barrier against bacterial invasion. Excessive bacterial invasion destroys the attachment between the tooth surface and the epithelium, resulting in periodontitis. Integrins play a significant role in cell attachment; therefore, we hypothesized that bacterial infection might decrease the expressions of these integrins in gingival epithelial cells, resulting in reduced cell adhesion. Immortalized human gingival epithelial cells were co-cultured with Aggregatibacter actinomycetemcomitans Y4 (Aa Y4), and the gene expression levels of IL-8, proliferating cell nuclear antigen (PCNA), and integrins (α2, α3, α5, β4, and β6) were measured using quantitative reverse transcription polymerase chain reaction. Expression of PCNA and integrins, except integrin α5, was significantly downregulated, while expression of IL-8 and integrin α5 was significantly upregulated in the cells co-cultured with Aa Y4. The number of adherent cells significantly decreased when co-cultured with Aa Y4, as determined using cell adhesion assays. In the cells co-cultured with Aa Y4 and an integrin α5 neutralizing antibody, there was no effect on the expression of IL-8 and PCNA, while the expressions of integrins α2, α3, β4, and β6, and the number of adherent cells did not decrease. The number of invading bacteria in the cells was reduced in the presence of the antibody and increased in the presence of TLR2/4 inhibitor. Therefore, integrin α5 might be involved in Aa Y4 invasion into gingival epithelial cells, and the resulting signal transduction cascade reduces cell adhesion by decreasing the expression of integrins, while the TLR2/4 signaling cascade regulates IL-8 expression.

  3. Frequent downregulation of miR-34 family in human ovarian cancers.

    PubMed

    Corney, David C; Hwang, Chang-Il; Matoso, Andres; Vogt, Markus; Flesken-Nikitin, Andrea; Godwin, Andrew K; Kamat, Aparna A; Sood, Anil K; Ellenson, Lora H; Hermeking, Heiko; Nikitin, Alexander Yu

    2010-02-15

    The miR-34 family is directly transactivated by tumor suppressor p53, which is frequently mutated in human epithelial ovarian cancer (EOC). We hypothesized that miR-34 expression would be decreased in EOC and that reconstituted miR-34 expression might reduce cell proliferation and invasion of EOC cells. miR-34 expression was determined by quantitative reverse transcription-PCR and in situ hybridization in a panel of 83 human EOC samples. Functional characterization of miR-34 was accomplished by reconstitution of miR-34 expression in EOC cells with synthetic pre-miR molecules followed by determining changes in proliferation, apoptosis, and invasion. miR-34a expression is decreased in 100%, and miR-34b*/c in 72%, of EOC with p53 mutation, whereas miR-34a is also downregulated in 93% of tumors with wild-type p53. Furthermore, expression of miR-34b*/c is significantly reduced in stage IV tumors compared with stage III (P = 0.0171 and P = 0.0029, respectively). Additionally, we observed promoter methylation and copy number variations at mir-34. In situ hybridization showed that miR-34a expression is inversely correlated with MET immunohistochemical staining, consistent with translational inhibition by miR-34a. Finally, miR-34 reconstitution experiments in p53 mutant EOC cells resulted in reduced proliferation, motility, and invasion, the latter of which was dependent on MET expression. Our work suggests that miR-34 family plays an important role in EOC pathogenesis and reduced expression of miR-34b*/c may be particularly important for progression to the most advanced stages. Part of miR-34 effects on motility and invasion may be explained by regulation of MET, which is frequently overexpressed in EOC.

  4. Budesonide increases TLR4 and TLR2 expression in Treg lymphocytes of allergic asthmatics.

    PubMed

    Pace, Elisabetta; Di Sano, Caterina; Ferraro, Maria; Bruno, Andreina; Caputo, Valentina; Gallina, Salvatore; Gjomarkaj, Mark

    2015-06-01

    Reduced innate immunity responses as well as reduced T regulatory activities characterise bronchial asthma. In this study the effect of budesonide on the expression of TLR4 and TLR2 in T regulatory lymphocyte sub-population was assessed. TLR4 and TLR2 expression in total peripheral blood mononuclear cells (PBMC), in CD4+/CD25+ and in CD4+/CD25- was evaluated, by flow cytometric analysis, in mild intermittent asthmatics (n = 14) and in controls (n = 11). The in vitro effects of budesonide in modulating: TLR4 and TLR2 expression in controls and in asthmatics; IL-10 expression and cytokine release (IL-6 and TNF-α selected by a multiplex assay) in asthmatics were also explored. TLR4 and TLR2 were reduced in total PBMC from asthmatics in comparison to PBMC from controls. CD4+CD25+ cells expressed at higher extent TLR2 and TLR4 in comparison to CD4+CD25- cells. Budesonide was able to increase the expression of TLR4, TLR2 and IL-10 in CD4+/CD25 highly+ cells from asthmatics. TLR4 ligand, LPS induced Foxp3 expression. Budesonide was also able to reduce the release of IL-6 and TNF-α by PBMC of asthmatics. Budesonide potentiates the activity of Treg by increasing TLR4, TLR2 and IL-10 expression. This event is associated to the decreased release of IL-6 and TNF-α in PBMC treated with budesonide. These findings shed light on new mechanisms by which corticosteroids, drugs widely used for the clinical management of bronchial asthma, control T lymphocyte activation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Human T-cell leukemia virus type 1 Tax oncoprotein represses the expression of the BCL11B tumor suppressor in T-cells

    PubMed Central

    Takachi, Takayuki; Takahashi, Masahiko; Takahashi-Yoshita, Manami; Higuchi, Masaya; Obata, Miki; Mishima, Yukio; Okuda, Shujiro; Tanaka, Yuetsu; Matsuoka, Masao; Saitoh, Akihiko; Green, Patrick L; Fujii, Masahiro

    2015-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T cell leukemia (ATL), which is an aggressive form of T-cell malignancy. HTLV-1 oncoproteins, Tax and HBZ, play crucial roles in the immortalization of T-cells and/or leukemogenesis by dysregulating the cellular functions in the host. Recent studies show that HTLV-1-infected T-cells have reduced expression of the BCL11B tumor suppressor protein. In the present study, we explored whether Tax and/or HBZ play a role in downregulating BCL11B in HTLV-1-infected T-cells. Lentiviral transduction of Tax in a human T-cell line repressed the expression of BCL11B at both the protein and mRNA levels, whereas the transduction of HBZ had little effect on the expression. Tax mutants with a decreased activity for the NF-κB, CREB or PDZ protein pathways still showed a reduced expression of the BCL11B protein, thereby implicating a different function of Tax in BCL11B downregulation. In addition, the HTLV-2 Tax2 protein reduced the BCL11B protein expression in T-cells. Seven HTLV-1-infected T-cell lines, including three ATL-derived cell lines, showed reduced BCL11B mRNA and protein expression relative to an uninfected T-cell line, and the greatest reductions were in the cells expressing Tax. Collectively, these results indicate that Tax is responsible for suppressing BCL11B protein expression in HTLV-1-infected T-cells; Tax-mediated repression of BCL11B is another mechanism that Tax uses to promote oncogenesis of HTLV-1-infected T-cells. PMID:25613934

  6. Ursolic acid improves podocyte injury caused by high glucose.

    PubMed

    Xu, Li; Fan, Qiuling; Wang, Xu; Li, Lin; Lu, Xinxing; Yue, Yuan; Cao, Xu; Liu, Jia; Zhao, Xue; Wang, Lining

    2017-08-01

    Autophagy plays an important role in the maintenance of podocyte homeostasis. Reduced autophagy may result in limited renal cell function during exposure to high glucose conditions. In this study we investigated the effects of ursolic acid (UA) on autophagy and podocyte injury, which were induced by high glucose. Conditionally immortalized murine podocytes were cultured in media supplemented with high glucose and the effects of the PI3K inhibitor LY294002 and UA on protein expression were determined. miR-21 expression was detected by real-time RT-PCR. Activation of the PTEN-PI3K/Akt/mTOR pathway, expression of autophagy-related proteins and expression of podocyte marker proteins were determined by western blot. Immunofluorescence was used to monitor the accumulation of LC3 puncta. Autophagosomes were also observed by transmission electron microscopy. During exposure to high glucose conditions, the normal level of autophagy was reduced in podocytes, and this defective autophagy induced podocyte injury. Increased miR-21 expression, decreased PTEN expression and abnormal activation of the PI3K/Akt/mTOR pathway were observed in cells that were cultured in high glucose conditions. UA and LY294002 reduced podocyte injury through the restoration of defective autophagy. Our data suggest that UA inhibits miR-21 expression and increases PTEN expression, which in turn inhibits Akt and mTOR and restores normal levels of autophagy. Our data suggest that podocyte injury is associated with reduced levels of autophagy during exposure to high glucose conditions, UA attenuated podocyte injury via an increase in autophagy through miR-21 inhibition and PTEN expression, which inhibit the abnormal activation of the PI3K/Akt/mTOR pathway. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  7. Caloric restriction improves endothelial dysfunction during vascular aging: Effects on nitric oxide synthase isoforms and oxidative stress in rat aorta.

    PubMed

    Zanetti, Michela; Gortan Cappellari, Gianluca; Burekovic, Ismet; Barazzoni, Rocco; Stebel, Marco; Guarnieri, Gianfranco

    2010-11-01

    Aging is characterized by activation of inducible over endothelial nitric oxide synthase (iNOS and eNOS), impaired antioxidant activity and increased oxidative stress, which reduces nitric oxide bioavailability and causes endothelial dysfunction. Caloric restriction (CR) blunts oxidative stress. We investigated whether CR impacts endothelial dysfunction in aging and the underlying mechanisms. Aortas from young (YC, 6 months of age) and old (OC, 24 months of age) rats ad-libitum fed and from old rats caloric-restricted for 3-weeks (OR, 26%) were investigated. Endothelium-dependent vasorelaxation was impaired in OC, associated with reduced eNOS and increased iNOS expression (P<0.05). Aortic nitrite was similar in OC and YC, but the contribution of calcium-independent NOS to total NOS activity was increased whereas that of calcium-dependent NOS was reduced (p≤0.0003). Plasma thiobarbituric acid-reactive substances (TBARS) were elevated in OC as well as aortic nitrotyrosine (P<0.05). Expression of manganese superoxide dismutase (MnSOD) and total SOD activity were impaired in OC (P<0.05 vs. YC), whereas copper-zinc (CuZn) SOD expression was similar in OC and YC. CR restored endothelial dysfunction in old rats, reduced iNOS expression, total nitrite and calcium-independent NOS activity in aorta (P<0.05) without changes in eNOS expression and calcium-dependent NOS activity. Sirtuin-1 expression did not differ among groups. Plasma TBARS and aortic nitrotyrosine were reduced (P<0.05) in OR compared with OC. In OR CuZnSOD protein and SOD activity increased (P<0.05) without changes in MnSOD expression. Short-term CR improves age-related endothelial dysfunction. Reversal of altered iNOS/eNOS ratio, reduced oxidative stress and increased SOD enzyme activity rather than enhanced NO production appear to be involved in this effect. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Reduced Cx43 expression triggers increased fibrosis due to enhanced fibroblast activity.

    PubMed

    Jansen, John A; van Veen, Toon A B; de Jong, Sanne; van der Nagel, Roel; van Stuijvenberg, Leonie; Driessen, Helen; Labzowski, Ronald; Oefner, Carolin M; Bosch, Astrid A; Nguyen, Tri Q; Goldschmeding, Roel; Vos, Marc A; de Bakker, Jacques M T; van Rijen, Harold V M

    2012-04-01

    Arrhythmogenic ventricular remodeling is hallmarked by both reduced gap junction expression and increased collagen deposition. We hypothesized that reduced connexin43 (Cx43) expression is responsible for enhanced fibrosis in the remodeled heart, resulting in an arrhythmogenic substrate. Therefore, we investigated the effect of normal or reduced Cx43 expression on the formation of fibrosis in a physiological (aging) and pathophysiological (transverse aortic constriction [TAC]) mouse model. The Cx43(fl/fl) and Cx43(CreER(T)/fl) mice were aged 18 to 21 months or, at the age of 3 months, either TAC or sham operated and euthanized after 16 weeks. Epicardial activation mapping of the right and left ventricles was performed on Langendorff perfused hearts. Sustained ventricular arrhythmias were induced in 0 of 11 aged Cx43(fl/fl) and 10 of 15 Cx43(Cre-ER(T)/fl) mice (P<0.01). Cx43 expression was reduced by half in aged Cx43(CreER(T)/fl) compared with aged Cx43(fl/fl) mice, whereas collagen deposition was significantly increased from 1.1±0.2% to 7.4±1.3%. Aged Cx43(CreER(T)/fl) mice with arrhythmias had significantly higher levels of fibrosis and conduction heterogeneity than aged Cx43(CreER(T)/fl) mice without arrhythmias. The TAC operation significantly increased fibrosis in control compared with sham (4.0±1.2% versus 0.4±0.06%), but this increase was significantly higher in Cx43(CreER(T)/fl) mice (10.8±1.4%). Discoidin domain receptor 2 expression was unchanged, but procollagen peptide I and III expression and collagen type 1α2 mRNA levels were higher in TAC-operated Cx43HZ mice. Reduced cellular coupling results in more excessive collagen deposition during aging or pressure overload in mice due to enhanced fibroblast activity, leading to increased conduction in homogeneity and proarrhythmia.

  9. Reduced expression of G protein-coupled receptor kinases in schizophrenia but not in schizoaffective disorder

    PubMed Central

    Bychkov, ER; Ahmed, MR; Gurevich, VV; Benovic, JL; Gurevich, EV

    2011-01-01

    Alterations of multiple G protein-mediated signaling pathways are detected in schizophrenia. G protein-coupled receptor kinases (GRKs) and arrestins terminate signaling by G protein-coupled receptors exerting powerful influence on receptor functions. Modifications of arrestin and/or GRKs expression may contribute to schizophrenia pathology. Cortical expression of arrestins and GRKs was measured postmortem in control and subjects with schizophrenia or schizoaffective disorder. Additionally, arrestin/GRK expression was determined in elderly patients with schizophrenia and age-matched control. Patients with schizophrenia, but not schizoaffective disorder, displayed reduced concentration of arrestin and GRK mRNAs and GRK3 protein. Arrestins and GRK significantly decreased with age. In elderly patients, GRK6 was reduced, with other GRKs and arrestins unchanged. Reduced cortical concentration of GRKs in schizophrenia (resembling that in aging) may result in altered G protein-dependent signaling, thus contributing to prefrontal deficits in schizophrenia. The data suggest distinct molecular mechanisms underlying schizophrenia and schizoaffective disorder. PMID:21784156

  10. Implications of Bt traits on mycotoxin contamination in maize: Overview and recent experimental results in southern United States.

    PubMed

    Abbas, Hamed K; Zablotowicz, Robert M; Weaver, Mark A; Shier, W Thomas; Bruns, H Arnold; Bellaloui, Nacer; Accinelli, Cesare; Abel, Craig A

    2013-12-04

    Mycotoxin contamination levels in maize kernels are controlled by a complex set of factors including insect pressure, fungal inoculum potential, and environmental conditions that are difficult to predict. Methods are becoming available to control mycotoxin-producing fungi in preharvest crops, including Bt expression, biocontrol, and host plant resistance. Initial reports in the United States and other countries have associated Bt expression with reduced fumonisin, deoxynivalenol, and zearalenone contamination and, to a lesser extent, reduced aflatoxin contamination in harvested maize kernels. However, subsequent field results have been inconsistent, confirming that fumonisin contamination can be reduced by Bt expression, but the effect on aflatoxin is, at present, inconclusive. New maize hybrids have been introduced with increased spectra of insect control and higher levels of Bt expression that may provide important tools for mycotoxin reduction and increased yield due to reduced insect feeding, particularly if used together with biocontrol and host plant resistance.

  11. [Expression analysis of a transformer gene in Daphnia pulex after RNAi].

    PubMed

    Guo, C Y; Chen, P; Zhang, M M; Ning, J J; Wang, С L; Wang, D L; Zhao, Y L

    2016-01-01

    In order to explore the importance of the transformer (tra) gene in reproductive mode switching in Daphnia pulex, we studied the effect of silencing of this gene using RNA interference (RNAi). We obtained Dptra dsRNA by constructing and using a dsRNA expression vector and transcription method in vitro. D. pulex individuals in different reproductive modes were treated by soaking in a solution of Dptra dsRNA. We then assayed the expression of the endogenous Dptra mRNA after RNAi treatment using RT-PCR and obtained the suppression ratio. Expression of the tra gene in the RNAi groups was down-regulated compared with the controls after 16 h (p < 0.05). We also analyzed the effect of RNAi on the expression of the TRA protein using Western blot, which showed that the expression level of the TRA protein was reduced after RNAi treatment. Our experimental results showed that soaking of D. pulex adults in tra-specific dsRNA transcribed in vitro can specifically reduce the level of tra mRNA and also reduce the expression of the TRA protein, demonstrating effective in vivo silencing of the tra gene.

  12. MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes.

    PubMed

    Horie, Takahiro; Ono, Koh; Nishi, Hitoo; Iwanaga, Yoshitaka; Nagao, Kazuya; Kinoshita, Minako; Kuwabara, Yasuhide; Takanabe, Rieko; Hasegawa, Koji; Kita, Toru; Kimura, Takeshi

    2009-11-13

    GLUT4 shows decreased levels in failing human adult hearts. We speculated that GLUT4 expression in cardiac muscle may be fine-tuned by microRNAs. Forced expression of miR-133 decreased GLUT4 expression and reduced insulin-mediated glucose uptake in cardiomyocytes. A computational miRNA target prediction algorithm showed that KLF15 is one of the targets of miR-133. It was confirmed that over-expression of miR-133 reduced the protein level of KLF15, which reduced the level of the downstream target GLUT4. Cardiac myocytes infected with lenti-decoy, in which the 3'UTR with tandem sequences complementary to miR-133 was linked to the luciferase reporter gene, had decreased miR-133 levels and increased levels of GLUT4. The expression levels of KLF15 and GLUT4 were decreased at the left ventricular hypertrophy and congestive heart failure stage in a rat model. The present results indicated that miR-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiomyocytes.

  13. Reduced expression levels of PTEN are associated with decreased sensitivity of HCC827 cells to icotinib.

    PubMed

    Zhai, Yang; Zhang, Yanjun; Nan, Kejun; Liang, Xuan

    2017-05-01

    The clinical resistance of non-small cell lung cancer (NSCLC) to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) has been linked to EGFR T790M resistance mutations or MET amplifications. Additional mechanisms underlying EGFR-TKI drug resistance remain unclear. The present study demonstrated that icotinib significantly inhibited the proliferation and increased the apoptosis rate of HCC827 cells; the cellular mRNA and protein expression levels of phosphatase and tensin homolog (PTEN) were also significantly downregulated. To investigate the effect of PTEN expression levels on the sensitivity of HCC827 cells to icotinib, PTEN expression was silenced using a PTEN-specific small interfering RNA. The current study identified that the downregulation of PTEN expression levels may promote cellular proliferation in addition to decreasing the apoptosis of HCC827 cells, and may reduce the sensitivity of HCC827 cells to icotinib. These results suggested that reduced PTEN expression levels were associated with the decreased sensitivity of HCC827 cells to icotinib. Furthermore, PTEN expression levels may be a useful marker for predicting icotinib resistance and elucidating the resistance mechanisms underlying EGFR-mutated NSCLC.

  14. Reduced expression levels of PTEN are associated with decreased sensitivity of HCC827 cells to icotinib

    PubMed Central

    Zhai, Yang; Zhang, Yanjun; Nan, Kejun; Liang, Xuan

    2017-01-01

    The clinical resistance of non-small cell lung cancer (NSCLC) to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) has been linked to EGFR T790M resistance mutations or MET amplifications. Additional mechanisms underlying EGFR-TKI drug resistance remain unclear. The present study demonstrated that icotinib significantly inhibited the proliferation and increased the apoptosis rate of HCC827 cells; the cellular mRNA and protein expression levels of phosphatase and tensin homolog (PTEN) were also significantly downregulated. To investigate the effect of PTEN expression levels on the sensitivity of HCC827 cells to icotinib, PTEN expression was silenced using a PTEN-specific small interfering RNA. The current study identified that the downregulation of PTEN expression levels may promote cellular proliferation in addition to decreasing the apoptosis of HCC827 cells, and may reduce the sensitivity of HCC827 cells to icotinib. These results suggested that reduced PTEN expression levels were associated with the decreased sensitivity of HCC827 cells to icotinib. Furthermore, PTEN expression levels may be a useful marker for predicting icotinib resistance and elucidating the resistance mechanisms underlying EGFR-mutated NSCLC. PMID:28521430

  15. E5 can be expressed in anal cancer and leads to epidermal growth factor receptor-induced invasion in a human papillomavirus 16-transformed anal epithelial cell line.

    PubMed

    Wechsler, Erin Isaacson; Tugizov, Sharof; Herrera, Rossana; Da Costa, Maria; Palefsky, Joel M

    2018-05-01

    We detected the first human papillomavirus (HPV)-16-immortalized anal epithelial cell line, known as AKC2 cells to establish an in vitro model of HPV-16-induced anal carcinogenesis. Consistent with detection of E6, E7 and E5 expression in anal cancer biopsies, AKC2 cells expressed high levels of all three HPV oncogenes. Also, similar to findings in anal cancer biopsies, epidermal growth factor receptor (EGFR) was overexpressed in AKC2 cells. AKC2 cells exhibited a poorly differentiated and invasive phenotype in three-dimensional raft culture and inhibition of EGFR function abrogated AKC2 invasion. Reducing E5 expression using E5-targeted siRNAs in AKC2 cells led to knockdown of E5 expression, but also HPV-16 E2, E6 and E7 expression. AKC2 cells treated with E5-targeted siRNA had reduced levels of total and phosphorylated EGFR, and reduced invasion. Rescue of E6/E7 expression with simultaneous E5 knockdown confirmed that E5 plays a key role in EGFR overexpression and EGFR-induced invasion.

  16. Intestinal inflammation reduces expression of DRA, a transporter responsible for congenital chloride diarrhea.

    PubMed

    Yang, H; Jiang, W; Furth, E E; Wen, X; Katz, J P; Sellon, R K; Silberg, D G; Antalis, T M; Schweinfest, C W; Wu, G D

    1998-12-01

    The pathogenesis of diarrhea in intestinal inflammatory states is a multifactorial process involving the effects of inflammatory mediators on epithelial transport function. The effect of colonic inflammation on the gene expression of DRA (downregulated in adenoma), a chloride-sulfate anion transporter that is mutated in patients with congenital chloridorrhea, was examined in vivo as well as in an intestinal epithelial cell line. DRA mRNA expression was diminished five- to sevenfold in the HLA-B27/beta2m transgenic rat compared with control. In situ hybridization showed that DRA, which is normally expressed in the upper crypt and surface epithelium of the colon, was dramatically reduced in the surface epithelium of the HLA-B27/beta2m transgenic rat, the interleukin-10 (IL-10) knockout mouse with spontaneous colitis, and in patients with ulcerative colitis. Immunohistochemistry demonstrated that mRNA expression of DRA reflected that of protein expression in vivo. IL-1beta reduced DRA mRNA expression in vitro by inhibiting gene transcription. The loss of transport function in the surface epithelium of the colon by attenuation of transporter gene expression, perhaps inhibited at the level of gene transcription by proinflammatory cytokines, may play a role in the pathogenesis of diarrhea in colitis.

  17. Reduction of liver fructokinase expression and improved hepatic inflammation and metabolism in liquid fructose-fed rats after atorvastatin treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vila, Laia; Rebollo, Alba; Adalsteisson, Gunnar S.

    Consumption of beverages that contain fructose favors the increasing prevalence of metabolic syndrome alterations in humans, including non-alcoholic fatty liver disease (NAFLD). Although the only effective treatment for NAFLD is caloric restriction and weight loss, existing data show that atorvastatin, a hydroxymethyl-glutaryl-CoA reductase inhibitor, can be used safely in patients with NAFLD and improves hepatic histology. To gain further insight into the molecular mechanisms of atorvastatin's therapeutic effect on NAFLD, we used an experimental model that mimics human consumption of fructose-sweetened beverages. Control, fructose (10% w/v solution) and fructose + atorvastatin (30 mg/kg/day) Sprague-Dawley rats were sacrificed after 14 days.more » Plasma and liver tissue samples were obtained to determine plasma analytes, liver histology, and the expression of liver proteins that are related to fatty acid synthesis and catabolism, and inflammatory processes. Fructose supplementation induced hypertriglyceridemia and hyperleptinemia, hepatic steatosis and necroinflammation, increased the expression of genes related to fatty acid synthesis and decreased fatty acid {beta}-oxidation activity. Atorvastatin treatment completely abolished histological signs of necroinflammation, reducing the hepatic expression of metallothionein-1 and nuclear factor kappa B binding. Furthermore, atorvastatin reduced plasma (x 0.74) and liver triglyceride (x 0.62) concentrations, decreased the liver expression of carbohydrate response element binding protein transcription factor (x0.45) and its target genes, and increased the hepatic activity of the fatty acid {beta}-oxidation system (x 1.15). These effects may be related to the fact that atorvastatin decreased the expression of fructokinase (x 0.6) in livers of fructose-supplemented rats, reducing the metabolic burden on the liver that is imposed by continuous fructose ingestion. - Graphical Abstract: Display Omitted Research Highlights: >Fructose administration as a liquid solution to Sprague-Dawley male rats induced hypertriglyceridemia, hyperleptinemia, hepatic steatosis and necroinflammation. >Atorvastatin administration: >Abolished histological sings of necroinflammation and reduced plasma and liver triglyceride concentrations. >Reduced the expression of phospho-I{kappa}B >Reduced the expression of fructokinase, a key enzyme controlling fructose metabolism« less

  18. Expression of modified tocopherol content and profile in sunflower tissues.

    PubMed

    Del Moral, Lidia; Fernández-Martínez, José M; Pérez-Vich, Begoña; Velasco, Leonardo

    2012-01-30

    Alpha-tocopherol is the predominant tocopherol form in sunflower seeds. Sunflower lines that accumulate increased levels of beta-, gamma- and delta-tocopherol in seeds as well as lines with reduced and increased total seed tocopherol content have been developed. The objective of this research was to evaluate whether the modified tocopherol levels are expressed in plant tissues other than seeds. Lines with increased levels of beta-, gamma- and delta-tocopherol in seeds also possessed increased levels of these tocopherols in leaves, roots and pollen. Correlation coefficients for the proportion of individual tocopherols in different plant tissues were significantly positive in all cases, ranging from 0.68 to 0.97. A line with reduced tocopherol content in seeds also showed reduced content in roots and pollen. Genetic modifications producing altered seed tocopherol profiles in sunflower are also expressed in leaves, roots and pollen. Reduced total seed tocopherol content is mainly expressed at the root and pollen level. The expression of tocopherol mutations in other plant tissues will enable further studies on the physiological role of tocopherols and could be of interest for early selection for these traits in breeding programmes. Copyright © 2011 Society of Chemical Industry.

  19. Frequent Attenuation of the WWOX Tumor Suppressor in Osteosarcoma is Associated with Increased Tumorigenicity and Aberrant RUNX2 Expression

    PubMed Central

    Kurek, Kyle; Del Mare, Sara; Salah, Zaidoun; Abdeen, Suhaib; Sadiq, Hussain; Lee, Sukhee; Gaudio, Eugenio; Zanesi, Nicola; Jones, Kevin B.; DeYoung, Barry; Amir, Gail; Gebhardt, Mark; Warman, Matthew; Stein, Gary S.; Stein, Janet L.; Lian, Jane B.; Aqeilan, Rami I.

    2011-01-01

    The WW domain-containing oxidoreductase (WWOX) is a tumor suppressor that is deleted or attenuated in most human tumors. Wwox-deficient mice develop osteosarcoma (OS), an aggressive bone tumor with poor prognosis that often metastasizes to lung. On the basis of these observations, we examined the status of WWOX in human OS specimens and cell lines. In human OS clinical samples, WWOX expression was absent or reduced in 58% of tumors examined (P< 0.0001). Compared to the primary tumors, WWOX levels frequently increased in tumors resected following chemotherapy. In contrast, tumor metastases to lung often exhibited reduced WWOX levels, relative to the primary tumor. In human OS cell lines having reduced WWOX expression, ectopic expression of WWOX inhibited proliferation and attenuated invasion in vitro, and suppressed tumorgenicity in nude mice. Expression of WWOX was associated with reduced RUNX2 expression in OS cell lines, whereas Runx2 levels were elevated in femurs of Wwox-deficient mice. Furthermore, WWOX reconstitution in HOS cells was associated with downregulation of RUNX2 levels and RUNX2 target genes, consistent with the ability of WWOX to suppress RUNX2 transactivation activity. In clinical samples, RUNX2 was expressed in the majority of primary tumors and undetectable in most tumors resected following chemotherapy, whereas most metastases were RUNX2 positive. Our results deepen the evidence of a tumor suppressor role for WWOX in OS, furthering its prognostic and therapeutic significance in this disease. PMID:20530675

  20. Interleukin-22 ameliorates liver fibrosis through miR-200a/beta-catenin

    PubMed Central

    Hu, Bang-li; Shi, Cheng; Lei, Rong-e; Lu, Dong-hong; Luo, Wei; Qin, Shan-yu; Zhou, You; Jiang, Hai-xing

    2016-01-01

    IL-22 ameliorates liver fibrosis by inhibiting hepatic stellate cells (HSC), and loss of miR-200a is associated with the development of liver fibrosis. The study aimed to investigate the interplay between IL-22 and miR-200a in regulating liver fibrosis in vivo and in vitro. We observed that IL-22 significantly reduced the proliferation of HSC and increased the expression of p-STAT3. β-catenin was identified as a target gene of miR-200a by luciferase reporter assay, and upregulation of miR-200a significantly attenuated the proliferation of HSC and reduced β-catenin expression. IL-22 treatment increased expression of miR-200a and decreased expression of β-catenin in HSC. The expression of p-STAT3 and miR-200a was elevated while β-catenin was decreased in fibrotic rat liver after IL-22 treatment. Expression levels of β-catenin and p-STAT3 were inversely correlated in fibrotic rat liver and HSC. Upregulation of β-catenin suppressed expression of p-STAT3 in HSC. We concluded that IL-22 inhibits HSC activation and ameliorates liver fibrosis through enhancing expression of miR-200a and reducing expression of β-catenin, suggesting there may be a crosstalk between IL-22/STAT3 and β-catenin pathway. PMID:27819314

  1. Expression of beta-dystroglycan is reduced or absent in many human carcinomas.

    PubMed

    Cross, S S; Lippitt, J; Mitchell, A; Hollingsbury, F; Balasubramanian, S P; Reed, M W R; Eaton, C; Catto, J W; Hamdy, F; Winder, S J

    2008-11-01

    Dystroglycan is an important structural and signalling protein that is expressed in most human cells. alpha-Dystroglycan has been investigated and found to be reduced in human cancers, but there is only one published study on the expression of beta-dystroglycan in human cancer and that was only on small numbers of breast and prostatic cancers. The aim was to conduct a comprehensive immunohistochemical survey of the expression of beta-dystroglycan in normal human tissues and common cancers. Triplicate tissue microarrays of 681 samples of normal human tissues and common cancers were stained using an antibody directed against the cytoplasmic component of beta-dystroglycan. beta-Dystroglycan was strongly expressed at the intercellular junctions and basement membranes of all normal human epithelia. Expression of beta-dystroglycan was absent or markedly reduced in 100% of oesophageal adenocarcinomas, 97% of colonic cancers, 100% of transitional cell carcinomas of the urothelium and 94% of breast cancers. In the breast cancers, the only tumours that showed any retention of beta-dystroglycan expression were small low-grade oestrogen receptor-positive tumours. The only cancers that showed retention of beta-dystroglycan expression were cutaneous basal cell carcinomas. There is loss or marked reduction of beta-dystroglycan expression (by immunohistochemistry) in the vast majority of human cancers surveyed. Since beta-dystroglycan is postulated to have a tumour suppressor effect, this loss may have important functional significance.

  2. Expression of the Thomsen-Friedenreich (TF) tumor antigen in human abort placentas.

    PubMed

    Richter, D U; Jeschke, U; Bergemann, C; Makovitzky, J; Lüthen, F; Karsten, U; Briese, V

    2005-01-01

    The Thomsen-Friedenreich antigen (TF), or more precisely epitope, has been known as a pancarcinoma antigen. It consists of galactose-beta1-3-N-acetylgalactose. We have already described the expression of TF in the normal placenta. TF is expressed by the syncytium and by extravillous trophoblast cells. In this study, we investigated the expression of TF in the abort placenta. Frozen samples of human abort placentas (12 placentas), obtained from the first and second trimesters of pregnancy and, for comparison, samples of normal placentas (17 placentas) from the first, second and third trimesters of pregnancy, were used. Expression of TF was investigated by immunohistochemical methods. For identification of TF-positive cells in abort placentas, immunofluorescence methods were used. Evaluation of simple and double immunofluorescence was performed on a laser scanning microscope. Furthermore, we isolated trophoblast cells from first and third trimester placentas and evaluated cytokeratin 7 and Muc1 expression by immunofluorescence methods. We observed expression of TF antigen in the syncytiotrophoblasts layer of the placenta in all three trimesters of pregnancy in normal and abort placentas evaluated by immunohistochemical methods. There was no expression of TF antigen in the decidua of abort placentas. Immunofluorescence double staining of TF antigen and cytokeratin 7 showed reduced expression of both antigens in the abort decidua and co-expression of both antigens in the syncytiotrophoblast layer of normal and abort placentas. TF expression in the syncytiotrophoblast was reduced in abort placentas. In the isolated trophoblast cells, no TF expression was found, however, Muc1 expression was visualized. Expression of TF antigen was reduced in the first and second trimester abort decidua compared to the normal decidua during the same time of pregnancy. TF antigen was restricted to the syncytiotrophoblast and extravillous trophoblast cells in the decidua. Abort placentas expressed TF antigen on the syncytiotrophoblast layer, but with lower intensity compared to normal placentas. We found a significantly reduced co-expression of TF antigen and cytokeratin 7 in the decidua of abort placentas. These data suggested a reduction of extravillous trophoblast cells in the decidua of abort placentas. In addition, we found higher numbers of CD45-positive cells in the abort decidua compared to normal placentas.

  3. Modeled Microgravity Disrupts Collagen I/Integrin Signaling During Osteoblastic Differentiation of Human Mesenchymal Stem Cells

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie E.; Zayzafoon, Majd; Gonda, Steven R.; Gathings, William E.; McDonald, Jay M.

    2004-01-01

    Spaceflight leads to reduced bone mineral density in weight bearing bones that is primarily attributed to a reduction in bone formation. We have previously demonstrated severely reduced osteoblastogenesis of human mesenchymal stem cells (hMSC) following seven days culture in modeled microgravity. One potential mechanism for reduced osteoblastic differentiation is disruption of type I collagen-integrin interactions and reduced integrin signaling. Integrins are heterodimeric transmembrane receptors that bind extracellular matrix proteins and produce signals essential for proper cellular function, survival, and differentiation. Therefore, we investigated the effects of modeled microgravity on integrin expression and function in hMSC. We demonstrate that seven days of culture in modeled microgravity leads to reduced expression of the extracellular matrix protein, type I collagen (Col I). Conversely, modeled microgravity consistently increases Col I-specific alpha2 and beta1 integrin protein expression. Despite this increase in integrin sub-unit expression, autophosphorylation of adhesion-dependent kinases, focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (PYK2), is significantly reduced. Activation of Akt is unaffected by the reduction in FAK activation. However, reduced downstream signaling via the Ras-MAPK pathway is evidenced by a reduction in Ras and ERK activation. Taken together, our findings indicate that modeled microgravity decreases integrin/MAPK signaling, which likely contributes to the observed reduction in osteoblastogenesis.

  4. The anti-seizure drugs vinpocetine and carbamazepine, but not valproic acid, reduce inflammatory IL-1β and TNF-α expression in rat hippocampus.

    PubMed

    Gómez, Carlos D; Buijs, Rudolf M; Sitges, María

    2014-09-01

    In the present study, the effects of the two classical anti-epileptic drugs, carbamazepine and valproic acid, and the non-classical anti-seizure drug vinpocetine were investigated on the expression of the pro-inflammatory cytokines IL-1β and TNF-α in the hippocampus of rats by PCR or western blot after the administration of one or seven doses. Next, the effects of the anti-seizure drugs were investigated on the rise in cytokine expression induced by lipopolysaccharides (LPS) inoculation in vivo. To validate our methods, the changes induced by the pro-convulsive agents 4-aminopyridine, pentylenetetrazole and pilocarpine were also tested. Finally, the effect of the anti-seizure drugs on seizures and on the concomitant rise in pro-inflammatory cytokine expression induced by 4-aminopyridine was explored. Results show that vinpocetine and carbamazepine reduced the expression of IL-1β and TNF-α from basal conditions, and the increase in both pro-inflammatory cytokines induced by LPS. In contrast, valproic acid failed to reduce both the expression of the cytokines from basal conditions and the rise in IL-1β and TNF-α expression induced by LPS. Tonic-clonic seizures induced either by 4-aminopyridine, pentylenetetrazole or pilocarpine increased the expression of IL-1β and TNF-α markedly. 4-aminopyridine-induced changes were reduced by all the tested anti-seizure drugs, although valproic acid was less effective. We conclude that the anti-seizure drugs, vinpocetine and carbamazepine, whose mechanisms of action involve a decrease in ion channels permeability, also reduce cerebral inflammation. The mechanism of action of anti-seizure drugs like vinpocetine and carbamazepine involves a decrease in Na(+) channels permeability. We here propose that this mechanism of action also involves a decrease in cerebral inflammation. © 2014 International Society for Neurochemistry.

  5. miR-137 regulates the constitutive androstane receptor and modulates doxorubicin sensitivity in parental and doxorubicin-resistant neuroblastoma cells

    PubMed Central

    Takwi, Apana A; Wang, Yue-Ming; Wu, Jing; Michaelis, Martin; Cinatl, Jindrich; Chen, Taosheng

    2013-01-01

    Chemotherapy is the most common treatment for cancer. However, multidrug resistance (MDR) remains a major obstacle to effective chemotherapy, limiting the efficacy of both conventional chemotherapeutic and novel biologic agents. The constitutive androstane receptor (CAR), a xenosensor, is a key regulator of MDR. It functions in xenobiotic detoxification by regulating the expression of phase I drug metabolizing enzymes and ATP-binding cassette (ABC) transporters, whose overexpression in cancers and whose role in drug resistance make them potential therapeutic targets for reducing MDR. MicroRNAs (miRNAs) are endogenous negative regulators of gene expression and have been implicated in most cellular processes, including drug resistance. Here we report the inversely related expression of miR-137 and CAR in parental and doxorubicin-resistant neuroblastoma cells, wherein miR-137 is down-regulated in resistant cells. miR-137 over-expression resulted in down-regulation of CAR protein and mRNA (via mRNA degradation); it sensitized doxorubicin-resistant cells to doxorubicin (as shown by reduced proliferation, increased apoptosis, and increased G2-phase cell cycle arrest) and reduced the in vivo growth rate of neuroblastoma xenografts. We observed similar results in cellular models of hepatocellular and colon cancers, indicating that the doxorubicin-sensitizing effect of miR-137 is not tumor type-specific. Finally, we show for the first time a negative feedback loop whereby miR-137 down-regulates CAR expression and CAR down-regulates miR-137 expression. Hypermethylation of the miR-137 promoter and negative regulation of miR-137 by CAR contribute in part to reduced miR-137 expression and increased CAR and MDR1 expression in doxorubicin-resistant neuroblastoma cells. These findings demonstrate that miR-137 is a crucial regulator of cancer response to doxorubicin treatment, and they identify miR-137 as a highly promising target to reduce CAR-driven doxorubicin resistance. PMID:23934188

  6. Reduced GABAA receptor α6 expression in the trigeminal ganglion alters inflammatory TMJ hypersensitivity

    PubMed Central

    Puri, Jyoti; Vinothini, Priya; Reuben, Jayne; Bellinger, Larry L.; Ailing, Li; Peng, Yuan B.; Kramer, Phillip R.

    2012-01-01

    Trigeminal ganglia neurons express the GABAA receptor subunit alpha 6 (Gabrα6) but the role of this particular subunit in orofacial hypersensitivity is unknown. In this report the function of Gabrα6 was tested by reducing its expression in the trigeminal ganglia and measuring the effect of this reduction on inflammatory temporomandibular joint (TMJ) hypersensitivity. Gabrα6 expression was reduced by infusing the trigeminal ganglia of male Sprague Dawley rats with small interfering RNA (siRNA) having homology to either the Gabrα6 gene (Gabrα6 siRNA) or no known gene (control siRNA). Sixty hours after siRNA infusion the rats received a bilateral TMJ injection of complete Freund’s adjuvant to induce an inflammatory response. Hypersensitivity was then quantitated by measuring meal duration, which lengthens when hypersensitivity increases. Neuronal activity in the trigeminal ganglia was also measured by quantitating the amount of phosphorylated ERK. Rats in a different group that did not have TMJ inflammation had an electrode placed in the spinal cord at the level of C1 sixty hours after siRNA infusion to record extracellular electrical activity of neurons that responded to TMJ stimulation. Our results show that Gabrα6 was expressed in both neurons and satellite glia of the trigeminal ganglia and that Gabrα6 positive neurons within the trigeminal ganglia have afferents in the TMJ. Gabrα6 siRNA infusion reduced Gabrα6 gene expression by 30% and significantly lengthened meal duration in rats with TMJ inflammation. Gabrα6 siRNA infusion also significantly increased p-ERK expression in the trigeminal ganglia of rats with TMJ inflammation and increased electrical activity in the spinal cord of rats without TMJ inflammation. These results suggest that maintaining Gabrα6 expression was necessary to inhibit primary sensory afferents in the trigeminal pathway and reduce inflammatory orofacial nociception. PMID:22521829

  7. Weight-loss changes PPAR expression, reduces atherosclerosis and improves cardiovascular function in obese insulin-resistant mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verreth, Wim; Verhamme, Peter; Pelat, Michael

    2003-09-01

    Weight-loss in obese insulin-resistant, but not in insulin-sensitive, persons reduces CHD risk. It is not known to what extent changes in the adipose gene expression profile are important for reducing CHD risk. We studied the effect of diet restriction-induced weight-loss on gene expression in adipose tissue, atherosclerosis and cardiovascular function in mice with combined leptin and LDL-receptor deficiency. Obesity, hypertriglyceridemia and insulin-resistance are associated with hypertension, impaired left ventricle function and accelerated atherosclerosis in those mice. Diet restriction during 12 weeks caused a 45% weight-loss and changes in the gene expression in adipose tissue of PPARa and PPAR? and ofmore » key genes regulating glucose transport and insulin sensitivity, lipid metabolism, oxidative stress and inflammation, most of which are under the transcriptional control of PPARs. These changes were associated with increased insulin-sensitivity, decreased hypertriglyceridemia, reduced mean 24-hour blood pressure and heart rate, restored circadian variations of blood pressure and heart rate, increased ejection fraction, and reduced atherosclerosis. Thus, induction of PPARa and PPAR? in adipose tissue is a key mechanism for reducing atherosclerosis and improving cardiovascular function resulting from weight-loss. Our observations point to the critical role of PPARs in the pathogenesis of cardiovascular features of the metabolic syndrome.« less

  8. Region-Specific Onset of Handling-Induced Changes in Corticotropin-Releasing Factor and Glucocorticoid Receptor Expression

    PubMed Central

    Fenoglio, Kristina A.; Brunson, Kristen L.; Avishai-Eliner, Sarit; Chen, Yuncai; Baram, Tallie Z.

    2011-01-01

    Early-life experience including maternal care profoundly influences hormonal stress responses during adulthood. Daily handling on postnatal day (P) 2–9, eliciting augmented maternal care upon returning pups to their cage, permanently modifies the expression of the stress neuromodulators corticotropin-releasing factor (CRF) and glucocorticoid receptor (GR). We have previously demonstrated reduced hypothalamic CRF expression already at the end of the handling period, followed by enhanced hippocampal GR mRNA levels (by P45). However, the initial site(s) and time of onset of these enduring changes have remained unclear. Therefore, we used semiquantitative in situ hybridization to delineate the spatiotemporal evolution of CRF and GR expression throughout stress-regulatory brain regions in handled (compared with undisturbed) pups. Enhanced CRF mRNA expression was apparent in the amygdaloid central nucleus (ACe) of handled pups already by P6. By P9, the augmented CRF mRNA levels persisted in ACe, accompanied by increased peptide expression in the bed nucleus of the stria terminalis and reduced expression in the paraventricular nucleus. The earliest change in GR consisted of reduced expression in the ACe of handled pups on P9, a time point when hippocampal GR expression was not yet affected. Thus, altered gene expression in ACe, bed nucleus of the stria terminalis as well as paraventricular nucleus may contribute to the molecular cascade by which handling (and increased maternal care) influences the stress response long term. PMID:15044366

  9. Effect of dexamethasone on expression of glucocorticoid receptor in human monocyte cell line THP-1.

    PubMed

    Li, Bo; Bai, Xiangjun; Wanh, Haiping

    2006-01-01

    The effect of dexamethasone with different concentrations and different stimulating periods on the expression of glucocorticoid receptors (GRalpha, GRbeta) protein was investigated in human monocyte cell line THP-1. The cultured human monocyte line THP-1 cells were stimulated by dexamethasone with different concentrations and different periods. The expression of GRalpha and GRbeta protein was detected by Western blotting. The results showed that the expression of GRalpha and GRbeta was detected in the THP-1 cells. The quantity of GRalpha expression was reduced by dexamethasone under the same concentration with the prolongation of the stimulating periods. The quantity of GRbeta expression was increased by dexamethasone treatment in a time- and dose-dependent manner. It was concluded that dexamethasone stimulation time-dependently reduced the GRalpha expression in THP-1 cells. Dexamethasone stimulation time- and dose-dependently increased the GRbeta expression in THP-1 cells. The expression of GRalpha and GRbeta was regulated by glucocorticoid.

  10. Trek2a regulates gnrh3 expression under control of melatonin receptor Mt1 and α2-adrenoceptor.

    PubMed

    Loganathan, Kavinash; Moriya, Shogo; Parhar, Ishwar S

    2018-02-12

    Gonadotrophin-releasing hormone (GnRH) expression is associated with the two-pore domain potassium ion (K + ) channel-related K + (TREK) channel trek2a expression and melatonin levels. We aimed to investigate correlation of trek2a expression with gnrh3 expression, and regulatory mechanisms of trek2a expression by the melatonin receptor Mt1 and α 2 -adrenoceptor which are regulated by melatonin. trek2a specific siRNA, Mt1 antagonist luzindole and α 2 -adrenoceptor antagonist prazosin were administered into the adult zebrafish brain and gene expressions were examined by real-time PCR. trek2a specific siRNA administration significantly reduced expression levels of trek2a, gnrh3 and mt1. Luzindole administration suppressed trek2a and gnrh3 expressions. Prazosin administration reduced trek2a and gnrh3 expressions. It is suggested that Trek2a regulates gnrh3 expression under the control of Mt1 and α 2 -adrenoceptor. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. microRNA-26a suppresses recruitment of macrophages by down-regulating macrophage colony-stimulating factor expression through the PI3K/Akt pathway in hepatocellular carcinoma.

    PubMed

    Chai, Zong-Tao; Zhu, Xiao-Dong; Ao, Jian-Yang; Wang, Wen-Quan; Gao, Dong-Mei; Kong, Jian; Zhang, Ning; Zhang, Yuan-Yuan; Ye, Bo-Gen; Ma, De-Ning; Cai, Hao; Sun, Hui-Chuan

    2015-05-29

    microRNAs (miRNAs) have been reported to modulate macrophage colony-stimulating factor (M-CSF) and macrophages. The aim of this study was to find whether miR-26a can suppress M-CSF expression and the recruitment of macrophages. Hepatocellular carcinoma (HCC) cell lines with decreased or increased expression of miR-26a were established in a previous study. M-CSF expression by tumor cells was measured by enzyme-linked immunosorbent assay, and cell migration assays were used to explore the effect of HCC cell lines on macrophage recruitment in vitro. Real-time PCR measured a panel of mRNAs expressed by macrophages. Xenograft models were used to observe tumor growth. Immunohistochemistry was conducted to study the relation between miR-26a expression and M-CSF expression and macrophage recruitment in patients with HCC. Ectopic expression of miR-26a reduced expression of M-CSF. The conditioned medium (CM) from HepG2 cells that overexpressed miR-26a reduced the migration ability of THP-1 cells stimulated by phorbol myristate acetate (PMA) increased expression of interleukin (IL)-12b or IL-23 mRNA and decreased expression of chemokine (C-C motif) ligand (CCL)22, CCL17, and IL-10 mRNA, in comparison to the medium from the parental HepG2 cells. These effects could be interrupted by the PI3K/Akt pathway inhibitor LY294002. Ectopic expression of miR-26a in HCC cells suppressed tumor growth, M-CSF expression, and infiltration of macrophages in tumors. Similar results were also found when using HCCLM3 cells. Furthermore, the expression of miR-26a was inversely correlated with M-CSF expression and macrophage infiltration in tumor tissues from patients with HCC. miR-26a expression reduced M-CSF expression and recruitment of macrophages in HCC.

  12. Expression differences of programmed death ligand 1 in de-novo and recurrent glioblastoma multiforme

    PubMed Central

    Heynckes, Sabrina; Gaebelein, Annette; Haaker, Gerrit; Grauvogel, Jürgen; Franco, Pamela; Mader, Irina; Carro, Maria Stella; Prinz, Marco; Delev, Daniel; Schnell, Oliver; Heiland, Dieter Henrik

    2017-01-01

    The biology of recurrent glioblastoma multiforme (GBM) is a dynamic process influenced by selection pressure induced by different antitumoural therapies. The poor clinical outcome of tumours in the recurrent stage necessitates the development of effective therapeutic strategies. Checkpoint-inhibition (PD1/PD-L1 Inhibition) is a hallmark of immunotherapy being investigated in ongoing clinical trials. The purpose of this study was to analyse the PD-L1 expression in de-novo and recurrent glioblastoma multiforme and to explore associated genetic alterations and clinical traits. We show that PD-L1 expression was reduced in recurrent GBM in comparison to de-novo GBM. Additionally, patients who received an extended dose of temozolomide (TMZ) chemotherapy showed a significantly reduced level of PD-L1 expression in the recurrence stage compared to the corresponding de-novo tumour. Our findings may provide an explanation for potentially lower response to immunotherapy in the recurrent stage due to the reduced expression of the therapeutic target PD-L1. PMID:29088776

  13. Effects of Anger Awareness and Expression Training versus Relaxation Training on Headaches: A Randomized Trial

    PubMed Central

    Slavin-Spenny, Olga; Lumley, Mark A.; Thakur, Elyse R.; Nevedal, Dana C.; Hijazi, Alaa M.

    2013-01-01

    Background and purpose Stress contributes to headaches, and effective interventions for headaches routinely include relaxation training (RT) to directly reduce negative emotions and arousal. Yet, suppressing negative emotions, particularly anger, appears to augment pain, and experimental studies suggest that expressing anger may reduce pain. Therefore, we developed and tested anger awareness and expression training (AAET) on people with headaches. Methods Young adults with headaches (N = 147) were randomized to AAET, RT, or a wait-list control. We assessed affect during sessions, and process and outcome variables at baseline and 4 weeks after treatment. Results On process measures, both interventions increased self-efficacy to manage headaches, but only AAET reduced alexithymia and increased emotional processing and assertiveness. Yet, both interventions were equally effective at improving headache outcomes relative to controls. Conclusions Enhancing anger awareness and expression may improve chronic headaches, although not more than RT. Researchers should study which patients are most likely to benefit from emotional expression versus emotional reduction approaches to chronic pain. PMID:23620190

  14. The irreversible ERBB1/2/4 inhibitor neratinib interacts with the PARP1 inhibitor niraparib to kill ovarian cancer cells.

    PubMed

    Booth, Laurence; Roberts, Jane L; Samuel, Peter; Avogadri-Connors, Francesca; Cutler, Richard E; Lalani, Alshad S; Poklepovic, Andrew; Dent, Paul

    2018-06-03

    The irreversible ERBB1/2/4 inhibitor neratinib has been shown to rapidly down-regulate the expression of ERBB1/2/4 as well as the levels of c-MET, PDGFRα and mutant RAS proteins via autophagic degradation. Neratinib interacted in an additive to synergistic fashion with the approved PARP1 inhibitor niraparib to kill ovarian cancer cells. Neratinib and niraparib caused the ATM-dependent activation of AMPK which in turn was required to cause mTOR inactivation, ULK-1 activation and ATG13 phosphorylation. The drug combination initially increased autophagosome levels followed later by autolysosome levels. Preventing autophagosome formation by expressing activated mTOR or knocking down of Beclin1, or knock down of the autolysosome protein cathepsin B, reduced drug combination lethality. The drug combination caused an endoplasmic reticulum stress response as judged by enhanced eIF2α phosphorylation that was responsible for reducing MCL-1 and BCL-XL levels and increasing ATG5 and Beclin1 expression. Knock down of BIM, but not of BAX or BAK, reduced cell killing. Expression of activated MEK1 prevented the drug combination increasing BIM expression and reduced cell killing. Downstream of the mitochondrion, drug lethality was partially reduced by knock down of AIF, but expression of dominant negative caspase 9 was not protective. Our data demonstrate that neratinib and niraparib interact to kill ovarian cancer cells through convergent DNA damage and endoplasmic reticulum stress signaling. Cell killing required the induction of autophagy and was cathepsin B and AIF -dependent, and effector caspase independent.

  15. Decreased expression of γ-carboxylase in diabetes-associated arterial stiffness: impact on matrix Gla protein.

    PubMed

    Doyon, Marielle; Mathieu, Patrick; Moreau, Pierre

    2013-02-01

    Arterial stiffness is accelerated in type 1 diabetic patients. Medial artery calcification (MAC) contributes to the development of arterial stiffness. Vitamin K oxidoreductase (VKOR) reduces the vitamin K required by γ-carboxylase to activate matrix γ-carboxyglutamic acid (Gla) protein (MGP), an inhibitor of vascular calcification. This study aimed to evaluate the hypothesis that diabetes reduces the γ-carboxylation of MGP in the aortic wall, leading to increased vascular calcification, and the role of γ-carboxylase and VKOR in this γ-carboxylation deficit. Type 1 diabetes was induced in male Wistar rats with a single ip injection of streptozotocin. Augmentation of arterial stiffness in diabetic rats was shown by a 44% increase in aortic pulse wave velocity. Aortic and femoral calcification were increased by 26 and 56%, respectively. γ-Carboxylated MGP (cMGP, active) was reduced by 36% and the aortic expression of γ-carboxylase was reduced by 58%. Expression of γ-carboxylase correlated with cMGP (r= 0.59) and aortic calcification (r = -0.57). VKOR aortic expression and activity were not modified by diabetes. Vitamin K plasma concentrations were increased by 191% in diabetic rats. In ex vivo experiments with aortic rings, vitamin K supplementation prevented the glucose-induced decrease in γ-carboxylase expression. Our results suggest that reduced cMGP, through an impaired expression of γ-carboxylase, is involved in the early development of MAC in diabetes, and therefore, in the acceleration of arterial stiffness. A defect in vitamin K uptake by target cells could also be involved.

  16. Reduced Renal Methylarginine Metabolism Protects against Progressive Kidney Damage

    PubMed Central

    Caplin, Ben; Boruc, Olga; Bruce-Cobbold, Claire; Cutillas, Pedro; Dormann, Dirk; Faull, Peter; Grossman, Rebecca C.; Khadayate, Sanjay; Mas, Valeria R.; Nitsch, Dorothea D.; Wang, Zhen; Norman, Jill T.; Wilcox, Christopher S.; Wheeler, David C.; Leiper, James

    2015-01-01

    Nitric oxide (NO) production is diminished in many patients with cardiovascular and renal disease. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthesis, and elevated plasma levels of ADMA are associated with poor outcomes. Dimethylarginine dimethylaminohydrolase-1 (DDAH1) is a methylarginine-metabolizing enzyme that reduces ADMA levels. We reported previously that a DDAH1 gene variant associated with increased renal DDAH1 mRNA transcription and lower plasma ADMA levels, but counterintuitively, a steeper rate of renal function decline. Here, we test the hypothesis that reduced renal-specific ADMA metabolism protects against progressive renal damage. Renal DDAH1 is expressed predominately within the proximal tubule. A novel proximal tubule–specific Ddah1 knockout (Ddah1PT−/−) mouse demonstrated tubular cell accumulation of ADMA and lower NO concentrations, but unaltered plasma ADMA concentrations. Ddah1PT−/− mice were protected from reduced kidney tissue mass, collagen deposition, and profibrotic cytokine expression in two independent renal injury models: folate nephropathy and unilateral ureteric obstruction. Furthermore, a study of two independent kidney transplant cohorts revealed higher levels of human renal allograft methylarginine-metabolizing enzyme gene expression associated with steeper function decline. We also report an association among DDAH1 expression, NO activity, and uromodulin expression supported by data from both animal and human studies, raising the possibility that kidney DDAH1 expression exacerbates renal injury through uromodulin-related mechanisms. Together, these data demonstrate that reduced renal tubular ADMA metabolism protects against progressive kidney function decline. Thus, circulating ADMA may be an imprecise marker of renal methylarginine metabolism, and therapeutic ADMA reduction may even be deleterious to kidney function. PMID:25855779

  17. Reduced Erg Dosage Impairs Survival of Hematopoietic Stem and Progenitor Cells.

    PubMed

    Xie, Ying; Koch, Mia Lee; Zhang, Xin; Hamblen, Melanie J; Godinho, Frank J; Fujiwara, Yuko; Xie, Huafeng; Klusmann, Jan-Henning; Orkin, Stuart H; Li, Zhe

    2017-07-01

    ERG, an ETS family transcription factor frequently overexpressed in human leukemia, has been implicated as a key regulator of hematopoietic stem cells. However, how ERG controls normal hematopoiesis, particularly at the stem and progenitor cell level, and how it contributes to leukemogenesis remain incompletely understood. Using homologous recombination, we generated an Erg knockdown allele (Erg kd ) in which Erg expression can be conditionally restored by Cre recombinase. Erg kd/kd animals die at E10.5-E11.5 due to defects in endothelial and hematopoietic cells, but can be completely rescued by Tie2-Cre-mediated restoration of Erg in these cells. In Erg kd/+ mice, ∼40% reduction in Erg dosage perturbs both fetal liver and bone marrow hematopoiesis by reducing the numbers of Lin - Sca-1 + c-Kit + (LSK) hematopoietic stem and progenitor cells (HSPCs) and megakaryocytic progenitors. By genetic mosaic analysis, we find that Erg-restored HSPCs outcompete Erg kd/+ HSPCs for contribution to adult hematopoiesis in vivo. This defect is in part due to increased apoptosis of HSPCs with reduced Erg dosage, a phenotype that becomes more drastic during 5-FU-induced stress hematopoiesis. Expression analysis reveals that reduced Erg expression leads to changes in expression of a subset of ERG target genes involved in regulating survival of HSPCs, including increased expression of a pro-apoptotic regulator Bcl2l11 (Bim) and reduced expression of Jun. Collectively, our data demonstrate that ERG controls survival of HSPCs, a property that may be used by leukemic cells. Stem Cells 2017;35:1773-1785. © 2017 AlphaMed Press.

  18. Inhibition of growth hormone receptor by Somavert reduces expression of GPER and prevents growth stimulation of triple-negative breast cancer by 17β-estradiol

    PubMed Central

    Girgert, Rainer; Emons, Günter; Gründker, Carsten

    2018-01-01

    Currently, conventional chemotherapy is the only treatment option for triple-negative breast cancers (TNBC) due to a lack of a unique target. In TNBC, a high expression of the membrane bound G protein-coupled estrogen receptor (GPER), correlates with a worse outcome. There is a potential for an association between growth hormone receptor (GHR) and GPER expression. To confirm this hypothesis, GHR was inhibited in TNBC cells with Somavert, and GPER expression levels, and the effect on signal transduction and proliferation induction in TNBC cells were analyzed. Proliferation of TNBC cells was measured using an Alamar-blue assay. Expression of GPER and activation of c-src and epidermal growth factor receptor (EGFR) by 17β-estradiol was analyzed by western blotting. Induction of c-fos, cyclin D1 and aromatase expression was determined by reverse transcription-semi-quantitative polymerase chain reaction. The expression of GPER was concentration- and time-dependently reduced by Somavert down to 46±7% (P<0.01) of the control. Furthermore, 17β-estradiol significantly increased the cell number of HCC1806 cells to 128±14% (P<0.05), and that of MDA-MB-453 cells to 115±3%. This increase in cell number was reduced to 103±11% in HCC1806 cells in which GPER expression was downregulated by Somavert, and to 102±3% in MDA-MB-453 cells. In addition, 17β-estradiol increased the activation of c-src in HCC1806 cells by 1.8-fold, and Somavert reduced p-src to 63% of control. In MDA-MB-453 cells src phosphorylation increased by 7-fold upon stimulation with estradiol, but after treatment with Somavert only a 4-fold increase was observed. Phosphorylation of EGFR was increased by 2.2-fold of control in HCC1806 cells by 17β-estradiol, and by 1.4-fold in MDA-MD-453 cells. Somavert completely prevented this activation. Induction of cyclin D1 and aromatase expression by 17β-estradiol was also prevented by Somavert. Somavert reduces GPER expression in triple negative breast cancer cells. Treatment with Somavert prevents induction of genes regulating proliferation by 17β-estradiol. Inhibition of GPER expression is a promising therapeutic intervention for TNBC. PMID:29805678

  19. Inhibition of growth hormone receptor by Somavert reduces expression of GPER and prevents growth stimulation of triple-negative breast cancer by 17β-estradiol.

    PubMed

    Girgert, Rainer; Emons, Günter; Gründker, Carsten

    2018-06-01

    Currently, conventional chemotherapy is the only treatment option for triple-negative breast cancers (TNBC) due to a lack of a unique target. In TNBC, a high expression of the membrane bound G protein-coupled estrogen receptor (GPER), correlates with a worse outcome. There is a potential for an association between growth hormone receptor (GHR) and GPER expression. To confirm this hypothesis, GHR was inhibited in TNBC cells with Somavert, and GPER expression levels, and the effect on signal transduction and proliferation induction in TNBC cells were analyzed. Proliferation of TNBC cells was measured using an Alamar-blue assay. Expression of GPER and activation of c-src and epidermal growth factor receptor (EGFR) by 17β-estradiol was analyzed by western blotting. Induction of c-fos, cyclin D1 and aromatase expression was determined by reverse transcription-semi-quantitative polymerase chain reaction. The expression of GPER was concentration- and time-dependently reduced by Somavert down to 46±7% (P<0.01) of the control. Furthermore, 17β-estradiol significantly increased the cell number of HCC1806 cells to 128±14% (P<0.05), and that of MDA-MB-453 cells to 115±3%. This increase in cell number was reduced to 103±11% in HCC1806 cells in which GPER expression was downregulated by Somavert, and to 102±3% in MDA-MB-453 cells. In addition, 17β-estradiol increased the activation of c-src in HCC1806 cells by 1.8-fold, and Somavert reduced p-src to 63% of control. In MDA-MB-453 cells src phosphorylation increased by 7-fold upon stimulation with estradiol, but after treatment with Somavert only a 4-fold increase was observed. Phosphorylation of EGFR was increased by 2.2-fold of control in HCC1806 cells by 17β-estradiol, and by 1.4-fold in MDA-MD-453 cells. Somavert completely prevented this activation. Induction of cyclin D1 and aromatase expression by 17β-estradiol was also prevented by Somavert. Somavert reduces GPER expression in triple negative breast cancer cells. Treatment with Somavert prevents induction of genes regulating proliferation by 17β-estradiol. Inhibition of GPER expression is a promising therapeutic intervention for TNBC.

  20. STAT3 Knockdown Reduces Pancreatic Cancer Cell Invasiveness and Matrix Metalloproteinase-7 Expression in Nude Mice

    PubMed Central

    Huang, Ke jian; Wu, Wei dong; Jiang, Tao; Cao, Jun; Feng, Zhen zhong; Qiu, Zheng jun

    2011-01-01

    Aims Transducer and activator of transcription-3 (STAT3) plays an important role in tumor cell invasion and metastasis. The aim of the present study was to investigate the effects of STAT3 knockdown in nude mouse xenografts of pancreatic cancer cells and underlying gene expression. Methods A STAT3 shRNA lentiviral vector was constructed and infected into SW1990 cells. qRT-PCR and western immunoblot were performed to detect gene expression. Nude mouse xenograft assays were used to assess changes in phenotypes of these stable cells in vivo. HE staining was utilized to evaluate tumor cell invasion and immunohistochemistry was performed to analyze gene expression. Results STAT3 shRNA successfully silenced expression of STAT3 mRNA and protein in SW1990 cells compared to control cells. Growth rate of the STAT3-silenced tumor cells in nude mice was significantly reduced compared to in the control vector tumors and parental cells-generated tumors. Tumor invasion into the vessel and muscle were also suppressed in the STAT3-silenced tumors compared to controls. Collagen IV expression was complete and continuous surrounding the tumors of STAT3-silenced SW1990 cells, whereas collagen IV expression was incomplete and discontinuous surrounding the control tumors. Moreover, microvessel density was significantly lower in STAT3-silenced tumors than parental or control tumors of SW1990 cells. In addition, MMP-7 expression was reduced in STAT3-silenced tumors compared to parental SW1990 xenografts and controls. In contrast, expression of IL-1β and IgT7α was not altered. Conclusion These data clearly demonstrate that STAT3 plays an important role in regulation of tumor growth, invasion, and angiogenesis, which could be act by reducing MMP-7 expression in pancreatic cancer cells. PMID:21991388

  1. Expression of Biglycan in First Trimester Chorionic Villous Sampling Placental Samples and Altered Function in Telomerase-Immortalized Microvascular Endothelial Cells.

    PubMed

    Chui, Amy; Gunatillake, Tilini; Brennecke, Shaun P; Ignjatovic, Vera; Monagle, Paul T; Whitelock, John M; van Zanten, Dagmar E; Eijsink, Jasper; Wang, Yao; Deane, James; Borg, Anthony J; Stevenson, Janet; Erwich, Jan Jaap; Said, Joanne M; Murthi, Padma

    2017-06-01

    Biglycan (BGN) has reduced expression in placentae from pregnancies complicated by fetal growth restriction (FGR). We used first trimester placental samples from pregnancies with later small for gestational age (SGA) infants as a surrogate for FGR. The functional consequences of reduced BGN and the downstream targets of BGN were determined. Furthermore, the expression of targets was validated in primary placental endothelial cells isolated from FGR or control pregnancies. APPROACH AND RESULTS: BGN expression was determined using real-time polymerase chain reaction in placental tissues collected during chorionic villous sampling performed at 10 to 12 weeks' gestation from pregnancies that had known clinical outcomes, including SGA. Short-interference RNA reduced BGN expression in telomerase-immortalized microvascular endothelial cells, and the effect on proliferation, angiogenesis, and thrombin generation was determined. An angiogenesis array identified downstream targets of BGN, and their expression in control and FGR primary placental endothelial cells was validated using real-time polymerase chain reaction. Reduced BGN expression was observed in SGA placental tissues. BGN reduction decreased network formation of telomerase-immortalized microvascular endothelial cells but did not affect thrombin generation or cellular proliferation. The array identified target genes, which were further validated: angiopoetin 4 ( ANGPT4 ), platelet-derived growth factor receptor α ( PDGFRA ), tumor necrosis factor superfamily member 15 ( TNFSF15 ), angiogenin ( ANG ), serpin family C member 1 ( SERPIN1 ), angiopoietin 2 ( ANGPT2 ), and CXC motif chemokine 12 ( CXCL12 ) in telomerase-immortalized microvascular endothelial cells and primary placental endothelial cells obtained from control and FGR pregnancies. This study reports a temporal relationship between altered placental BGN expression and subsequent development of SGA. Reduction of BGN in vascular endothelial cells leads to disrupted network formation and alterations in the expression of genes involved in angiogenesis. Therefore, differential expression of these may contribute to aberrant angiogenesis in SGA pregnancies. © 2017 American Heart Association, Inc.

  2. Emotional facial expressions reduce neural adaptation to face identity.

    PubMed

    Gerlicher, Anna M V; van Loon, Anouk M; Scholte, H Steven; Lamme, Victor A F; van der Leij, Andries R

    2014-05-01

    In human social interactions, facial emotional expressions are a crucial source of information. Repeatedly presented information typically leads to an adaptation of neural responses. However, processing seems sustained with emotional facial expressions. Therefore, we tested whether sustained processing of emotional expressions, especially threat-related expressions, would attenuate neural adaptation. Neutral and emotional expressions (happy, mixed and fearful) of same and different identity were presented at 3 Hz. We used electroencephalography to record the evoked steady-state visual potentials (ssVEP) and tested to what extent the ssVEP amplitude adapts to the same when compared with different face identities. We found adaptation to the identity of a neutral face. However, for emotional faces, adaptation was reduced, decreasing linearly with negative valence, with the least adaptation to fearful expressions. This short and straightforward method may prove to be a valuable new tool in the study of emotional processing.

  3. Posterior Hox gene reduction in an arthropod: Ultrabithorax and Abdominal-B are expressed in a single segment in the mite Archegozetes longisetosus

    PubMed Central

    2013-01-01

    Background Hox genes encode transcription factors that have an ancestral role in all bilaterian animals in specifying regions along the antero-posterior axis. In arthropods (insects, crustaceans, myriapods and chelicerates), Hox genes function to specify segmental identity, and changes in Hox gene expression domains in different segments have been causal to the evolution of novel arthropod morphologies. Despite this, the roles of Hox genes in arthropods that have secondarily lost or reduced their segmental composition have been relatively unexplored. Recent data suggest that acariform mites have a reduced segmental component of their posterior body tagma, the opisthosoma, in that only two segments are patterned during embryogenesis. This is in contrast to the observation that in many extinct and extant chelicerates (that is, horseshoe crabs, scorpions, spiders and harvestmen) the opisthosoma is comprised of ten or more segments. To explore the role of Hox genes in this reduced body region, we followed the expression of the posterior-patterning Hox genes Ultrabithorax (Ubx) and Abdominal-B (Abd-B), as well as the segment polarity genes patched (ptc) and engrailed (en), in the oribatid mite Archegozetes longisetosus. Results We find that the expression patterns of ptc are in agreement with previous reports of a reduced mite opisthosoma. In comparison to the ptc and en expression patterns, we find that Ubx and Abd-B are expressed in a single segment in A. longisetosus, the second opisthosomal segment. Abd-B is initially expressed more posteriorly than Ubx, that is, into the unsegmented telson; however, this domain clears in subsequent stages where it remains in the second opisthosomal segment. Conclusions Our findings suggest that Ubx and Abd-B are expressed in a single segment in the opisthosoma. This is a novel observation, in that these genes are expressed in several segments in all studied arthropods. These data imply that a reduction in opisthosomal segmentation may be tied to a dramatically reduced Hox gene input in the opisthosoma. PMID:23991696

  4. A Chimeric HS4-SAR Insulator (IS2) That Prevents Silencing and Enhances Expression of Lentiviral Vectors in Pluripotent Stem Cells

    PubMed Central

    Gutierrez-Guerrero, Alejandra; Cobo, Marién; Muñoz, Pilar

    2014-01-01

    Chromatin insulators, such as the chicken β-globin locus control region hypersensitive site 4 (HS4), and scaffold/matrix attachment regions (SARs/MARs) have been incorporated separately or in combination into retroviral vectors (RVs) in order to increase transgene expression levels, avoid silencing and reduce expression variability. However, their incorporation into RVs either produces a reduction on titer and/or expression levels or do not have sufficient effect on stem cells. In order to develop an improved insulator we decided to combine SAR elements with HS4 insulators. We designed several synthetic shorter SAR elements containing 4 or 5 MAR/SARs recognition signatures (MRS) and studied their effects on a lentiviral vector (LV) expressing eGFP through the SFFV promoter (SE). A 388 bp SAR element containing 5 MRS, named SAR2, was as efficient or superior to the other SARs analyzed. SAR2 enhanced transgene expression and reduced silencing and variability on human embryonic stem cells (hESCs). We next compared the effect of different HS4-based insulators, the HS4-Core (250 bp), the HS4-Ext (400 bp) and the HS4-650 (650 bp). All HS4 elements reduced silencing and expression variability but they also had a negative effect on transgene expression levels and titer. In general, the HS4-650 element had a better overall effect. Based on these data we developed a chimeric insulator, IS2, combining the SAR2 and the HS4-650. When incorporated into the 3′ LTR of the SE LV, the IS2 element was able to enhance expression, avoid silencing and reduce variability of expression on hESCs. Importantly, these effects were maintained after differentiation of the transduced hESCs toward the hematopoietic linage. Neither the HS4-650 nor the SAR2 elements had these effects. The IS2 element is therefore a novel insulator that confers expression stability and enhances expression of LVs on stem cells. PMID:24400083

  5. Growth hormone regulation of metabolic gene expression in muscle: a microarray study in hypopituitary men.

    PubMed

    Sjögren, Klara; Leung, Kin-Chuen; Kaplan, Warren; Gardiner-Garden, Margaret; Gibney, James; Ho, Ken K Y

    2007-07-01

    Muscle is a target of growth hormone (GH) action and a major contributor to whole body metabolism. Little is known about how GH regulates metabolic processes in muscle or the extent to which muscle contributes to changes in whole body substrate metabolism during GH treatment. To identify GH-responsive genes that regulate substrate metabolism in muscle, we studied six hypopituitary men who underwent whole body metabolic measurement and skeletal muscle biopsies before and after 2 wk of GH treatment (0.5 mg/day). Transcript profiles of four subjects were analyzed using Affymetrix GeneChips. Serum insulin-like growth factor I (IGF-I) and procollagens I and III were measured by RIA. GH increased serum IGF-I and procollagens I and III, enhanced whole body lipid oxidation, reduced carbohydrate oxidation, and stimulated protein synthesis. It induced gene expression of IGF-I and collagens in muscle. GH reduced expression of several enzymes regulating lipid oxidation and energy production. It reduced calpain 3, increased ribosomal protein L38 expression, and displayed mixed effects on genes encoding myofibrillar proteins. It increased expression of circadian gene CLOCK, and reduced that of PERIOD. In summary, GH exerted concordant effects on muscle expression and blood levels of IGF-I and collagens. It induced changes in genes regulating protein metabolism in parallel with a whole body anabolic effect. The discordance between muscle gene expression profiles and metabolic responses suggests that muscle is unlikely to contribute to GH-induced stimulation of whole body energy and lipid metabolism. GH may regulate circadian function in skeletal muscle by modulating circadian gene expression with possible metabolic consequences.

  6. ERAP1 reduces accumulation of aberrant and disulfide-linked forms of HLA-B27 on the cell surface.

    PubMed

    Tran, Tri M; Hong, Sohee; Edwan, Jehad H; Colbert, Robert A

    2016-06-01

    Endoplasmic reticulum (ER) aminopeptidase 1 (ERAP1) variants contribute to the risk of ankylosing spondylitis in HLA-B27 positive individuals, implying a disease-related interaction between these gene products. The aim of this study was to determine whether reduced ERAP1 expression would alter the cell surface expression of HLA-B27 and the formation of aberrant disulfide-linked forms that have been implicated in the pathogenesis of spondyloarthritis. ERAP1 expression was knocked down in monocytic U937 cells expressing HLA-B27 and endogenous HLA class I. The effect of ERAP1 knockdown on the accumulation HLA-B alleles (B18, B51, and B27) was assessed using immunoprecipitation, isoelectric focusing, and immunoblotting, as well as flow cytometry with antibodies specific for different forms of HLA-B27. Cell surface expression of aberrant disulfide-linked HLA-B27 dimers was assessed by immunoprecipitation and electrophoresis on non-reducing polyacrylamide gels. ERAP1 knockdown increased the accumulation of HLA-B27 on the cell surface including disulfide-linked dimers, but had no effect on levels of HLA-B18 or -B51. Antibodies with unique specificity for HLA-B27 confirmed increased cell surface expression of complexes shown previously to contain long peptides. IFN-γ treatment resulted in striking increases in the expression of disulfide-linked HLA-B27 heavy chains, even in cells with normal ERAP1 expression. Our results suggest that normal levels of ERAP1 reduce the accumulation of aberrant and disulfide-linked forms of HLA-B27 in monocytes, and thus help to maintain the integrity of cell surface HLA-B27 complexes. Published by Elsevier Ltd.

  7. ERAP1 Reduces Accumulation of Aberrant and Disulfide-Linked Forms of HLA-B27 on the Cell Surface

    PubMed Central

    Tran, Tri; Hong, Sohee; Edwan, Jehad; Colbert, Robert A.

    2016-01-01

    Objective Endoplasmic reticulum (ER) aminopeptidase 1 (ERAP1) variants contribute to the risk of ankylosing spondylitis in HLA-B27 positive individuals, implying a disease-related interaction between these gene products. The aim of this study was to determine whether reduced ERAP1 expression would alter the cell surface expression of HLA-B27 and the formation of aberrant disulfide-linked forms that have been implicated in the pathogenesis of spondyloarthritis. Methods ERAP1 expression was knocked down in monocytic U937 cells expressing HLA-B27 and endogenous HLA class I. The effect of ERAP1 knockdown on the accumulation HLA-B alleles (B18, B51, and B27) was assessed using immunoprecipitation, isoelectric focusing, and immunoblotting, as well as flow cytometry with antibodies specific for different forms of HLA-B27. Cell surface expression of aberrant disulfide-linked HLA-B27 dimers was assessed by immunoprecipitation and electrophoresis on non-reducing polyacrylamide gels. Results ERAP1 knockdown increased the accumulation of HLA-B27 on the cell surface including disulfide-linked dimers, but had no effect on levels of HLA-B18 or -B51. Antibodies with unique specificity for HLA-B27 confirmed increased cell surface expression of complexes shown previously to contain long peptides. IFN-γ treatment resulted in striking increases in the expression of disulfide-linked HLA-B27 heavy chains, even in cells with normal ERAP1 expression. Conclusions Our results suggest that normal levels of ERAP1 reduce the accumulation of aberrant and disulfide-linked forms of HLA-B27 in monocytes, and thus help to maintain the integrity of cell surface HLA-B27 complexes. PMID:27107845

  8. Multifunctional effect of epigallocatechin-3-gallate (EGCG) in downregulation of gelatinase-A (MMP-2) in human breast cancer cell line MCF-7.

    PubMed

    Sen, Triparna; Moulik, Shuvojit; Dutta, Anindita; Choudhury, Paromita Roy; Banerji, Aniruddha; Das, Shamik; Roy, Madhumita; Chatterjee, Amitava

    2009-02-13

    The tumor inhibiting property of green tea polyphenol epigallocatechin-3-gallate (EGCG) is well documented. Studies reveal that matrix-metalloproteinases (MMPs) play pivotal roles in tumor invasion through degradation of basement membranes and extracellular matrix (ECM). We studied the effect of EGCG on matrixmetalloproteinases-2 (MMP-2), the factors involved in activation, secretion and signaling molecules that might be involved in the regulation of MMP-2 in human breast cancer cell line, MCF-7. MCF-7 was treated with EGCG (20 muM, 24 h), the effect of EGCG on MMP-2 expression, activity and its regulatory molecules were studied by gelatin zymography, Western blot, quantitative and semi-quantitative real time RT-PCR, immunoflourescence and cell adhesion assay. EGCG treatment reduced the activity, protein expression and mRNA expression level of MMP-2. EGCG treatment reduced the expression of focal adhesion kinase (FAK), membrane type-1-matrix metalloproteinase (MT1-MMP), nuclear factor-kappa B (NF-kB), vascular endothelial growth factor (VEGF) and reduced the adhesion of MCF-7 cells to ECM, fibronectin and vitronectin. Real time RT-PCR revealed a reduced expression of integrin receptors alpha5, beta1, alphav and beta3 due to EGCG treatment. Down regulation of expression of MT1-MMP, NF-kB, VEGF and disruption of functional status of integrin receptors may indicate decreased MMP-2 activation; low levels of FAK expression might indicate disruption in FAK-induced MMP-2 secretion and decrease in activation of phosphatidyl-inositol-3-kinase (PI-3K), extracellular regulated kinase (ERK) indicates probable hindrance in MMP-2 regulation and induction. We propose EGCG as potential inhibitor of expression and activity of pro-MMP-2 by a process involving multiple regulatory molecules in MCF-7.

  9. Reduced Ang2 expression in aging endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohensinner, P.J., E-mail: philipp.hohensinner@meduniwien.ac.at; Ebenbauer, B.; Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna

    Aging endothelial cells are characterized by increased cell size, reduced telomere length and increased expression of proinflammatory cytokines. In addition, we describe here that aging reduces the migratory distance of endothelial cells. Furthermore, we observe an increase of the quiescence protein Ang1 and a decrease of the endothelial activation protein Ang2 upon aging. Supplementing Ang2 to aged endothelial cells restored their migratory capacity. We conclude that aging shifts the balance of the Ang1/Ang2 network favouring a quiescent state. Activation of endothelial cells in aging might be necessary to enhance wound healing capacities. -- Highlights: •Endothelial cells display signs of agingmore » before reaching proliferative senescence. •Aging endothelial cells express more angiopoietin 1 and less angiopoietin 2 than young endothelial cells. •Migratory capacity is reduced in aging endothelial cells.« less

  10. Reduced GNG2 expression levels in mouse malignant melanomas and human melanoma cell lines

    PubMed Central

    Yajima, Ichiro; Kumasaka, Mayuko Y; Naito, Yuji; Yoshikawa, Toshikazu; Takahashi, Hiro; Funasaka, Yoko; Suzuki, Tamio; Kato, Masashi

    2012-01-01

    Heterotrimeric G protein is composed of a Gα-subunit and a Gβγ-dimer. Previous studies have revealed that Gβγ-dimers including the Gγ2 subunit (Gng2/GNG2) are associated with cell proliferation, differentiation, invasion and angiogenesis. At present, however, there is no information on the expression level of Gng2/GNG2 alone in any kind of tumor. In this study, we performed DNA microarray analysis in a benign melanocytic tumor and a malignant melanoma from RET-transgenic mice (RET-mice). Gng2 transcript expression levels in a malignant melanoma were less than 1/10 of the level in a benign tumor. The difference in Gng2 transcript expression levels between benign tumors and malignant melanomas was greatest among all of the G protein γ subunits examined in this study. Moreover, protein expression levels of Gng2 were decreased in malignant melanomas compared with those in benign melanocytic tumors in RET-mice. Analysis of human malignant melanomas also showed reduced GNG2 protein expression levels in five human malignant melanoma cell lines compared with the expression levels in normal human epithelial melanocytes (NHEM). Thus, we demonstrated for the first time that Gng2/GNG2 expression levels are reduced in malignant melanoma, suggesting that GNG2 could be a novel biomarker for malignant melanoma. PMID:22679562

  11. Tissue factor expression by myeloid cells contributes to protective immune response against Mycobacterium tuberculosis infection.

    PubMed

    Venkatasubramanian, Sambasivan; Tripathi, Deepak; Tucker, Torry; Paidipally, Padmaja; Cheekatla, Satyanarayana; Welch, Elwyn; Raghunath, Anjana; Jeffers, Ann; Tvinnereim, Amy R; Schechter, Melissa E; Andrade, Bruno B; Mackman, Nizel; Idell, Steven; Vankayalapati, Ramakrishna

    2016-02-01

    Tissue factor (TF) is a transmembrane glycoprotein that plays an essential role in hemostasis by activating coagulation. TF is also expressed by monocytes/macrophages as part of the innate immune response to infections. In the current study, we determined the role of TF expressed by myeloid cells during Mycobacterium tuberculosis (M. tb) infection by using mice lacking the TF gene in myeloid cells (TF(Δ) ) and human monocyte derived macrophages (MDMs). We found that during M. tb infection, a deficiency of TF in myeloid cells was associated with reduced inducible nitric oxide synthase (iNOS) expression, enhanced arginase 1 (Arg1) expression, enhanced IL-10 production and reduced apoptosis in infected macrophages, which augmented M. tb growth. Our results demonstrate that a deficiency of TF in myeloid cells promotes M2-like phenotype in M .tb infected macrophages. A deficiency in TF expression by myeloid cells was also associated with reduced fibrin deposition and increased matrix metalloproteases (MMP)-2 and MMP-9 mediated inflammation in M. tb infected lungs. Our studies demonstrate that TF expressed by myeloid cells has newly recognized abilities to polarize macrophages and to regulate M. tb growth. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Role of Extracellular miR-122 in Breast Cancer Metastasis

    DTIC Science & Technology

    2016-02-01

    expression by miR-122 reduced the level of the GLUT1 causing reduced glucose uptake; and 4) anti-miR-122 therapy suppressed metastasis in a xenograft mouse...metastatic niche selection by circulating tumor cells. 100% completed.  Major Task 3: Orthotopic xenograft tumors expressing high miR-122 and...aforementioned cell lines and used to treat NSG mice i.v (Fig. 5). Xenograft tumors were established in NSG mice for over-expression of miR-122 in

  13. LPS causes pericyte loss and microvascular dysfunction via disruption of Sirt3/angiopoietins/Tie-2 and HIF-2α/Notch3 pathways.

    PubMed

    Zeng, Heng; He, Xiaochen; Tuo, Qin-Hui; Liao, Duan-Fang; Zhang, Guo-Qiang; Chen, Jian-Xiong

    2016-02-12

    Recent studies reveal a crucial role of pericyte loss in sepsis-associated microvascular dysfunction. Sirtuin 3 (SIRT3) mediates histone protein post-translational modification related to aging and ischemic disease. This study investigated the involvement of SIRT3 in LPS-induced pericyte loss and microvascular dysfunction. Mice were exposed to LPS, expression of Sirt3, HIF-2α, Notch3 and angiopoietins/Tie-2, pericyte/endothelial (EC) coverage and vascular permeability were assessed. Mice treated with LPS significantly reduced the expression of SIRT3, HIF-2α and Notch3 in the lung. Furthermore, exposure to LPS increased Ang-2 while inhibited Ang-1/Tie-2 expression with a reduced pericyte/EC coverage. Intriguingly, knockout of Sirt3 upregulated Ang-2, but downregulated Tie-2 and HIF-2α/Notch3 expression which resulted in a dramatic reduction of pericyte/EC coverage and exacerbation of LPS-induced vascular leakage. Conversely, overexpression of Sirt3 reduced Ang-2 expression and increased Ang-1/Tie-2 and HIF-2α/Notch3 expression in the LPS treated mice. Overexpression of Sirt3 further prevented LPS-induced pericyte loss and vascular leakage. This was accompanied by a significant reduction of the mortality rate. Specific knockout of prolyl hydroxylase-2 (PHD2) increased HIF-2α/Notch3 expression, improved pericyte/EC coverage and reduced the mortality rate in the LPS-treated mice. Our study demonstrates the importance of SIRT3 in preserving vascular integrity by targeting pericytes in the setting of LPS-induced sepsis.

  14. Expression analysis of an evolutionarily conserved metallophosphodiesterase gene, Mpped1, in the normal and beta-catenin-deficient malformed dorsal telencephalon.

    PubMed

    Chen, Chun-Ming; Wang, Hsuan-Yao; You, Li-Ru; Shang, Rong-Li; Liu, Fu-Chin

    2010-06-01

    We report the expression of the mouse Mpped1 in the telencephalon through embryonic stages to adulthood. Using Northern blotting analysis and RNA in situ hybridization (ISH), our data show that Mpped1 is specifically expressed in the brain and is enriched in the cortical plate of the developing telencephalon. Postnatally, the expression of Mpped1 is reduced in the cerebral cortex relative to its levels in the embryonic dorsal telencephalon. Also, Mpped1 expression is sustained in the hippocampal CA1 region. Examination of the expression of Mpped1 and other cortical layer markers by ISH in a malformed beta-catenin null dorsal telencephalon show that the Mpped1-, Cux2-, and Rorbeta-expressing superficial cortical layers are reduced and form patchy patterns, and the Tbr-1-expressing deep-layer neurons are incorrectly located on superficial layers, indicative of a migration defect of cortical neurons in the absence of beta-catenin.

  15. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Nobuhiko, E-mail: ntkhs@hoku-iryo-u.ac.jp; Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510; Yoshizaki, Takayuki

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. Black-Right-Pointing-Pointer Adipose lipin-1 expression is reduced in obesity. Black-Right-Pointing-Pointer Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. Black-Right-Pointing-Pointer Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytesmore » by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-{kappa}B activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.« less

  16. MyD88 expression in the rat dental follicle: Implications for osteoclastogenesis and tooth eruption

    PubMed Central

    Liu, Dawen; Yao, Shaomian; Wise, Gary E.

    2010-01-01

    Myeloid differentiation factor 88 (MyD88) is a key adaptor molecule in the interleukin-1 (IL-1) and IL-18 Toll-like receptor signaling pathway. Because it is present in dental follicle (DF) cells in vitro, the purpose of this study was to determine its chronological expression in vivo, as well as its possible role in osteoclastogenesis and tooth eruption. An oligo DNA microarray was used to determine gene expression of MyD88 in vivo in the DFs from the first mandibular molars of postnatal rats from days 1–11. The results showed that MyD88 was expressed maximally at day 3. Using siRNA to knock down MyD88 expression in the DF cells also reduced the gene expression of nuclear factor-kappa B-1 (NFKB1) and monocyte chemoattractant protein 1 (MCP-1). IL-1α up-regulated the expression of NFKB1, MCP-1 and receptor activator of nuclear factor kappa B ligand (RANKL), but knockdown of MyD88 nullified this IL-1α effect. Conditioned medium from DF cells with MyD88 knocked down reduced chemotactic activity for mononuclear cells and reduced osteoclastogenesis as opposed to controls. In conclusion, the maximal expression of MyD88 at day 3 in the DF may contribute to the major burst of osteoclastogenesis needed for eruption by up-regulating MCP-1 and RANKL expression. PMID:20662905

  17. 78 FR 23738 - Monsanto Company and Forage Genetics International (FGI); Availability of Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-22

    ... pathway. Suppression of the CCOMT gene expression leads to lower CCOMT protein expression resulting in reduced synthesis of G lignin subunit compared to conventional alfalfa at the same stage of growth. The reduction in G lignin subunit synthesis leads to reduced accumulation of total lignin, measured as acid...

  18. Coordination of Myeloid Differentiation with Reduced Cell Cycle Progression by PU.1 Induction of MicroRNAs Targeting Cell Cycle Regulators and Lipid Anabolism.

    PubMed

    Solomon, Lauren A; Podder, Shreya; He, Jessica; Jackson-Chornenki, Nicholas L; Gibson, Kristen; Ziliotto, Rachel G; Rhee, Jess; DeKoter, Rodney P

    2017-05-15

    During macrophage development, myeloid progenitor cells undergo terminal differentiation coordinated with reduced cell cycle progression. Differentiation of macrophages from myeloid progenitors is accompanied by increased expression of the E26 transformation-specific transcription factor PU.1. Reduced PU.1 expression leads to increased proliferation and impaired differentiation of myeloid progenitor cells. It is not understood how PU.1 coordinates macrophage differentiation with reduced cell cycle progression. In this study, we utilized cultured PU.1-inducible myeloid cells to perform genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) analysis coupled with gene expression analysis to determine targets of PU.1 that may be involved in regulating cell cycle progression. We found that genes encoding cell cycle regulators and enzymes involved in lipid anabolism were directly and inducibly bound by PU.1 although their steady-state mRNA transcript levels were reduced. Inhibition of lipid anabolism was sufficient to reduce cell cycle progression in these cells. Induction of PU.1 reduced expression of E2f1 , an important activator of genes involved in cell cycle and lipid anabolism, indirectly through microRNA 223. Next-generation sequencing identified microRNAs validated as targeting cell cycle and lipid anabolism for downregulation. These results suggest that PU.1 coordinates cell cycle progression with differentiation through induction of microRNAs targeting cell cycle regulators and lipid anabolism. Copyright © 2017 American Society for Microbiology.

  19. GC-rich coding sequences reduce transposon-like, small RNA-mediated transgene silencing.

    PubMed

    Sidorenko, Lyudmila V; Lee, Tzuu-Fen; Woosley, Aaron; Moskal, William A; Bevan, Scott A; Merlo, P Ann Owens; Walsh, Terence A; Wang, Xiujuan; Weaver, Staci; Glancy, Todd P; Wang, PoHao; Yang, Xiaozeng; Sriram, Shreedharan; Meyers, Blake C

    2017-11-01

    The molecular basis of transgene susceptibility to silencing is poorly characterized in plants; thus, we evaluated several transgene design parameters as means to reduce heritable transgene silencing. Analyses of Arabidopsis plants with transgenes encoding a microalgal polyunsaturated fatty acid (PUFA) synthase revealed that small RNA (sRNA)-mediated silencing, combined with the use of repetitive regulatory elements, led to aggressive transposon-like silencing of canola-biased PUFA synthase transgenes. Diversifying regulatory sequences and using native microalgal coding sequences (CDSs) with higher GC content improved transgene expression and resulted in a remarkable trans-generational stability via reduced accumulation of sRNAs and DNA methylation. Further experiments in maize with transgenes individually expressing three crystal (Cry) proteins from Bacillus thuringiensis (Bt) tested the impact of CDS recoding using different codon bias tables. Transgenes with higher GC content exhibited increased transcript and protein accumulation. These results demonstrate that the sequence composition of transgene CDSs can directly impact silencing, providing design strategies for increasing transgene expression levels and reducing risks of heritable loss of transgene expression.

  20. Short-Term Hyperprolactinemia Reduces the Expression of Purinergic P2X7 Receptors during Allergic Inflammatory Response of the Lungs.

    PubMed

    Ochoa-Amaya, Julieta E; Queiroz-Hazarbassanov, Nicolle; Namazu, Lilian B; Calefi, Atilio S; Tobaruela, Carla N; Margatho, Rafael; Palermo-Neto, João; Ligeiro de Oliveira, Ana P; Felicio, Luciano F

    2018-06-06

    We have previously shown that domperidone-induced short-term hyperprolactinemia reduces the lung's allergic inflammatory response in an ovalbumin antigenic challenge model. Since purinergic receptor P2X7R activity leads to proinflammatory cytokine release and is possibly related to the pathogenesis of allergic respiratory conditions, the present study was designed to investigate a possible involvement of purinergic and prolactin receptors in this phenomenon. To induce hyperprolactinemia, domperidone was injected intraperitoneally in rats at a dose of 5.1 mg × kg-1 per day for 5 days. P2X7 expression was evaluated by lung immunohistochemistry while prolactin receptor expression in bronchoalveolar lavage leukocytes was analyzed through flow cytometry. Previous reports demonstrated that rats subjected to short-term hyperprolactinemia exhibited a decrease in leukocyte counts in bronchoalveolar lavage, especially granulocytes. Here, it is revealed that hyperprolactinemia promotes an increased expression of prolactin receptors in granulocytes. Also, increased expression of purinergic P2X7R observed in allergic animals was significantly reduced by hyperprolactinemia. Both purinergic and prolactin receptor expression changes occur during the anti-asthmatic effect of hyperprolactinemia. © 2018 S. Karger AG, Basel.

  1. Reduced toll-like receptor 4 and substance P gene expression is associated with airway bacterial colonization in children.

    PubMed

    Grissell, Terry V; Chang, Anne B; Gibson, Peter G

    2007-04-01

    Neuro-immune interactions are increasingly relevant to human health and disease. The neuropeptide Substance P also has antibacterial activity and bears similarities to the innate immune antibacterial defensins. This suggests possible co-regulation of neuropeptide and innate immune mediators. In this study, non-bronchoscopic bronchoalveolar lavage (BAL) was performed on 69 children. BAL was examined for cellular profile, microbiology (bacteria, virus) and gene expression for TLRs 2, 3, 4; chemokine receptors (CCR3, CCR5, CXCR1); neurotrophins and neurokinin genes (TAC1, TAC3, CGRP, NGF). In children with bacterial colonization (n=10) there was an airway inflammatory response with increased BAL neutrophils, IL-8 protein, and CXCR1 expression. Substance P (TAC1) and TLR4 RNA expression were reduced in children with bacterial colonization. TLR3 mRNA was increased in 7.2% (n=5) children with rhinovirus, and there was a non-significant trend to increased TLR2. There is evidence for co-regulation of neurokinin (TAC1) and TLR4 gene expression in airway cells from children with airway bacterial colonization and their reduced expression may be associated with an impaired bacterial clearance. (c) 2007 Wiley-Liss, Inc.

  2. γ-Oryzanol reduces adhesion molecule expression in vascular endothelial cells via suppression of nuclear factor-κB activation.

    PubMed

    Sakai, Satoshi; Murata, Takahisa; Tsubosaka, Yoshiki; Ushio, Hideki; Hori, Masatoshi; Ozaki, Hiroshi

    2012-04-04

    γ-Oryzanol (γ-ORZ) is a mixture of phytosteryl ferulates purified from rice bran oil. In this study, we examined whether γ-ORZ represents a suppressive effect on the lipopolysaccharide (LPS)-induced adhesion molecule expression on vascular endothelium. Treatment with LPS elevated the mRNA expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin in bovine aortic endothelial cells (BAECs). Pretreatment with γ-ORZ dose-dependently decreased the LPS-mediated expression of these genes. Western blotting also revealed that pretreatment with γ-ORZ dose-dependently inhibited LPS-induced VCAM-1 expression in human umbilical vein endothelial cells. Consistently, pretreatment with γ-ORZ dose-dependently reduced LPS-induced U937 monocyte adhesion to BAECs. In immunofluorescence, LPS caused nuclear factor-κB (NF-κB) nuclear translocation in 40% of BAECs, which indicates NF-κB activation. Pretreatment with γ-ORZ, as well as its components (cycloartenyl ferulate, ferulic acid, or cycloartenol), dose-dependently inhibited LPS-mediated NF-κB activation. Collectively, our results suggested that γ-ORZ reduced LPS-mediated adhesion molecule expression through NF-κB inhibition in vascular endothelium.

  3. Altered Expression of the Malate-Permeable Anion Channel OsALMT4 Reduces the Growth of Rice Under Low Radiance

    PubMed Central

    Liu, Jie; Xu, Muyun; Estavillo, Gonzalo M.; Delhaize, Emmanuel; White, Rosemary G.; Zhou, Meixue; Ryan, Peter R.

    2018-01-01

    We examined the function of OsALMT4 in rice (Oryza sativa L.) which is a member of the aluminum-activated malate transporter family. Previous studies showed that OsALMT4 localizes to the plasma membrane and that expression in transgenic rice lines results in a constitutive release of malate from the roots. Here, we show that OsALMT4 is expressed widely in roots, shoots, flowers, and grain but not guard cells. Expression was also affected by ionic and osmotic stress, light and to the hormones ABA, IAA, and salicylic acid. Malate efflux from the transgenic plants over-expressing OsALMT4 was inhibited by niflumate and salicylic acid. Growth of transgenic lines with either increased OsALMT4 expression or reduced expression was measured in different environments. Light intensity caused significant differences in growth between the transgenic lines and controls. When day-time light was reduced from 700 to 300 μmol m-2s-1 independent transgenic lines with either increased or decreased OsALMT4 expression accumulated less biomass compared to their null controls. This response was not associated with differences in photosynthetic capacity, stomatal conductance or sugar concentrations in tissues. We propose that by disrupting malate fluxes across the plasma membrane carbon partitioning and perhaps signaling are affected which compromises growth under low light. We conclude that OsALMT4 is expressed widely in rice and facilitates malate efflux from different cell types. Altering OsALMT4 expression compromises growth in low-light environments. PMID:29774038

  4. Silencing a sugar transporter gene reduces growth and fecundity in the brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae).

    PubMed

    Ge, Lin-Quan; Jiang, Yi-Ping; Xia, Ting; Song, Qi-Sheng; Stanley, David; Kuai, Peng; Lu, Xiu-Li; Yang, Guo-Qing; Wu, Jin-Cai

    2015-07-17

    The brown planthopper (BPH), Nilaparvata lugens, sugar transporter gene 6 (Nlst6) is a facilitative glucose/fructose transporter (often called a passive carrier) expressed in midgut that mediates sugar transport from the midgut lumen to hemolymph. The influence of down regulating expression of sugar transporter genes on insect growth, development, and fecundity is unknown. Nonetheless, it is reasonable to suspect that transporter-mediated uptake of dietary sugar is essential to the biology of phloem-feeding insects. Based on this reasoning, we posed the hypothesis that silencing, or reducing expression, of a BPH sugar transporter gene would be deleterious to the insects. To test our hypothesis, we examined the effects of Nlst6 knockdown on BPH biology. Reducing expression of Nlst6 led to profound effects on BPHs. It significantly prolonged the pre-oviposition period, shortened the oviposition period, decreased the number of eggs deposited and reduced body weight, compared to controls. Nlst6 knockdown also significantly decreased fat body and ovarian (particularly vitellogenin) protein content as well as vitellogenin gene expression. Experimental BPHs accumulated less fat body glucose compared to controls. We infer that Nlst6 acts in BPH growth and fecundity, and has potential as a novel target gene for control of phloem-feeding pest insects.

  5. Shear stress reduces protease activated receptor-1 expression in human endothelial cells

    NASA Technical Reports Server (NTRS)

    Nguyen, K. T.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.

    2001-01-01

    Shear stress has been shown to regulate several genes involved in the thrombotic and proliferative functions of endothelial cells. Thrombin receptor (protease-activated receptor-1: PAR-1) increases at sites of vascular injury, which suggests an important role for PAR-1 in vascular diseases. However, the effect of shear stress on PAR-1 expression has not been previously studied. This work investigates effects of shear stress on PAR-1 gene expression in both human umbilical vein endothelial cells (HUVECs) and microvascular endothelial cells (HMECs). Cells were exposed to different shear stresses using a parallel plate flow system. Northern blot and flow cytometry analysis showed that shear stress down-regulated PAR-1 messenger RNA (mRNA) and protein levels in both HUVECs and HMECs but with different thresholds. Furthermore, shear-reduced PAR-1 mRNA was due to a decrease of transcription rate, not increased mRNA degradation. Postshear stress release of endothelin-1 in response to thrombin was reduced in HUVECs and HMECs. Moreover, inhibitors of potential signaling pathways applied during shear stress indicated mediation of the shear-decreased PAR-1 expression by protein kinases. In conclusion, shear stress exposure reduces PAR-1 gene expression in HMECs and HUVECs through a mechanism dependent in part on protein kinases, leading to altered endothelial cell functional responses to thrombin.

  6. Effect of Antenatal Expression of Breast Milk at Term in Reducing Breast Feeding Failures.

    PubMed

    Singh, G; Chouhan, R; Sidhu, K

    2009-04-01

    Though breast feeding is natural, during the first 2-3 days, when enough breast milk is not available with mother, she may introduce bottle feeding erroneously for improving nutrition to her baby. We studied the effect of antenatal expression of breast milk at term in reducing breast feeding failure as compared to conventional method of initiation of breast feeding. A prospective study was carried out in 180 booked cases at term. Daily expression of breast milk at least once a day after 37 weeks of pregnancy was introduced in randomly selected 90 pregnant ladies. Prior examination was done to exclude any inverted or cracked nipples and appropriate treatment instituted. The study group who expressed breast milk daily after 37 weeks did not find it difficult to initiate breast feeding after vaginal or cesarean delivery. Sufficient milk started flowing within half an hour of initiation of breast feeding in most 85 (94.4%) subjects of study group as compared to 63 (70%) patients of control group, which was statistically significant. There was no increase in any delivery complication. There were two partial breast feeding failures in control group but none in study group. Daily antenatal breast milk expression after 37 completed weeks of pregnancy significantly reduced the time for establishing full breast feeding and reduced breast feeding failures.

  7. The Bmi-1 helix–turn and ring finger domains are required for Bmi-1 antagonism of (–) epigallocatechin-3-gallate suppression of skin cancer cell survival

    PubMed Central

    Balasubramanian, Sivaprakasam; Scharadin, Tiffany M.; Han, Bingshe; Xu, Wen; Eckert, Richard L.

    2016-01-01

    The Bmi-1 Polycomb group (PcG) protein is an important epigenetic regulator of chromatin status. Elevated Bmi-1 expression is observed in skin cancer and contributes to cancer cell survival. (–) Epigallocatechin-3-gallate (EGCG), an important green tea-derived cancer prevention agent, reduces Bmi-1 level resulting in reduced skin cancer cell survival. This is associated with increased p21Cip1 and p27Kip1 expression, reduced cyclin, and cyclin dependent kinase expression, and increased cleavage of apoptotic markers. These EGCG-dependent changes are attenuated by vector-mediated maintenance of Bmi-1 expression. In the present study, we identify Bmi-1 functional domains that are required for this response. Bmi-1 expression reverses the EGCG-dependent reduction in SCC-13 cell survival, but Bmi-1 mutants lacking the helix–turn–helix–turn–helix–turn (Bmi-1ΔHT) or ring finger (Bmi-1ΔRF) domains do not reverse the EGCG impact. The reduction in Ring1B ubiquitin ligase activity, observed in the presence of mutant Bmi-1, is associated with reduced ability of these mutants to interact with and activate Ring1B ubiquitin ligase, the major ligase responsible for the ubiquitination of histone H2A during chromatin condensation. This results in less chromatin condensation leading to increased tumor suppressor gene expression and reduced cell survival; thereby making the cells more susceptible to the anti-survival action of EGCG. We further show that these mutants act in a dominant-negative manner to inhibit the action of endogenous Bmi-1. Our results suggest that the HT and RF domains are required for Bmi-1 ability to maintain skin cancer cell survival in response to cancer preventive agents. PMID:25843776

  8. Sodium Meta-Arsenite Ameliorates Hyperglycemia in Obese Diabetic db/db Mice by Inhibition of Hepatic Gluconeogenesis

    PubMed Central

    Lee, Eun-Kyu; Oh, Hyun-Hee; Choi, Cheol Soo; Kim, Sujong; Jun, Hee-Sook

    2014-01-01

    Sodium meta-arsenite (SA) is implicated in the regulation of hepatic gluconeogenesis-related genes in vitro; however, the effects in vivo have not been studied. We investigated whether SA has antidiabetic effects in a type 2 diabetic mouse model. Diabetic db/db mice were orally intubated with SA (10 mg kg−1 body weight/day) for 8 weeks. We examined hemoglobin A1c (HbA1c), blood glucose levels, food intake, and body weight. We performed glucose, insulin, and pyruvate tolerance tests and analyzed glucose production and the expression of gluconeogenesis-related genes in hepatocytes. We analyzed energy metabolism using a comprehensive animal metabolic monitoring system. SA-treated diabetic db/db mice had reduced concentrations of HbA1c and blood glucose levels. Exogenous glucose was quickly cleared in glucose tolerance tests. The mRNA expressions of genes for gluconeogenesis-related enzymes, glucose 6-phosphatase (G6Pase), and phosphoenolpyruvate carboxykinase (PEPCK) were significantly reduced in the liver of SA-treated diabetic db/db mice. In primary hepatocytes, SA treatment decreased glucose production and the expression of G6Pase, PEPCK, and hepatocyte nuclear factor 4 alpha (HNF-4α) mRNA. Small heterodimer partner (SHP) mRNA expression was increased in hepatocytes dependent upon the SA concentration. The expression of Sirt1 mRNA and protein was reduced, and acetylated forkhead box protein O1 (FoxO1) was induced by SA treatment in hepatocytes. In addition, SA-treated diabetic db/db mice showed reduced energy expenditure. Oral intubation of SA ameliorates hyperglycemia in db/db mice by reducing hepatic gluconeogenesis through the decrease of Sirt1 expression and increase in acetylated FoxO1. PMID:25610880

  9. Reduced expression of HSP27 following HAD-B treatment is associated with Her2 downregulation in NIH:OVCAR-3 human ovarian cancer cells.

    PubMed

    Li, Kuo Chu; Heo, Kyun; Ambade, Nitin; Kim, Min Kyung; Kim, Kyung-Hee; Yoo, Byong Chul; Yoo, Hwa-Seung

    2015-09-01

    The Korean traditional medicine, HangAmDan (HAD), was developed in 1996 for use as an antitumor agent, and has since been modified to HAD‑B (an altered form of HAD), in order to potentiate its therapeutic effects. In the present study, the effect of HAD‑B on the proliferation and invasion of NIH:OVCAR‑3 and SKOV‑3 human ovarian cancer cell lines was investigated. In addition, the expression of major signal transduction molecules and changes in the proteome in these cells were measured. HAD‑B treatment effectively induced a reduction in the levels of cell proliferation in serum‑free conditioned media. However, unaltered levels of PARP and caspase‑3 indicated that HAD‑B does not reduce proliferation by inducing apoptotic cell death. Fluorescence‑activated cell sorting analysis revealed no significant change in apoptosis following HAD-B treatment. Invasion assay results indicated a reduced rate of invasion following HAD‑B treatment. HAD‑B also influenced the expression of major signal transduction molecules; the phosphorylation of mTOR and AKT was reduced, while that of ERK was increased. Alterations in the proteomes of the two cell lines were investigated following HAD‑B treatment. Among the 9 proteins with differential expression, heat‑shock protein β‑1 (HSP27) was downregulated in NIH:OVCAR‑3 cells treated with HAD‑B. The reduced expression of HSP27 was associated with human epidermal growth factor receptor 2 (Her2) downregulation in these cells. In conclusion, the results of the current proteome assessment suggest that HAD‑B has the potential to suppress the proliferation and invasion of human ovarian cancer cells. HAD‑B treatment of NIH:OVCAR‑3 cells suppressed HSP27 expression and was also associated with Her2 downregulation.

  10. Reduced Renal Methylarginine Metabolism Protects against Progressive Kidney Damage.

    PubMed

    Tomlinson, James A P; Caplin, Ben; Boruc, Olga; Bruce-Cobbold, Claire; Cutillas, Pedro; Dormann, Dirk; Faull, Peter; Grossman, Rebecca C; Khadayate, Sanjay; Mas, Valeria R; Nitsch, Dorothea D; Wang, Zhen; Norman, Jill T; Wilcox, Christopher S; Wheeler, David C; Leiper, James

    2015-12-01

    Nitric oxide (NO) production is diminished in many patients with cardiovascular and renal disease. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthesis, and elevated plasma levels of ADMA are associated with poor outcomes. Dimethylarginine dimethylaminohydrolase-1 (DDAH1) is a methylarginine-metabolizing enzyme that reduces ADMA levels. We reported previously that a DDAH1 gene variant associated with increased renal DDAH1 mRNA transcription and lower plasma ADMA levels, but counterintuitively, a steeper rate of renal function decline. Here, we test the hypothesis that reduced renal-specific ADMA metabolism protects against progressive renal damage. Renal DDAH1 is expressed predominately within the proximal tubule. A novel proximal tubule-specific Ddah1 knockout (Ddah1(PT-/-)) mouse demonstrated tubular cell accumulation of ADMA and lower NO concentrations, but unaltered plasma ADMA concentrations. Ddah1(PT-/-) mice were protected from reduced kidney tissue mass, collagen deposition, and profibrotic cytokine expression in two independent renal injury models: folate nephropathy and unilateral ureteric obstruction. Furthermore, a study of two independent kidney transplant cohorts revealed higher levels of human renal allograft methylarginine-metabolizing enzyme gene expression associated with steeper function decline. We also report an association among DDAH1 expression, NO activity, and uromodulin expression supported by data from both animal and human studies, raising the possibility that kidney DDAH1 expression exacerbates renal injury through uromodulin-related mechanisms. Together, these data demonstrate that reduced renal tubular ADMA metabolism protects against progressive kidney function decline. Thus, circulating ADMA may be an imprecise marker of renal methylarginine metabolism, and therapeutic ADMA reduction may even be deleterious to kidney function. Copyright © 2015 by the American Society of Nephrology.

  11. ABNORMAL INFLORESCENCE MERISTEM1 Functions in Salicylic Acid Biosynthesis to Maintain Proper Reactive Oxygen Species Levels for Root Meristem Activity in Rice

    PubMed Central

    Zhao, Hongyu; Ruan, Wenyuan; Deng, Minjuan; Wang, Fang; Peng, Jinrong; Luo, Jie; Chen, Zhixiang

    2017-01-01

    Root meristem activity determines root growth and root architecture and consequently affects water and nutrient uptake in plants. However, our knowledge about the regulation of root meristem activity in crop plants is very limited. Here, we report the isolation and characterization of a short root mutant in rice (Oryza sativa) with reduced root meristem activity. This root growth defect is caused by a mutation in ABNORMAL INFLORESCENCE MERISTEM1 (AIM1), which encodes a 3-hydroxyacyl-CoA dehydrogenase, an enzyme involved in β-oxidation. The reduced root meristem activity of aim1 results from reduced salicylic acid (SA) levels and can be rescued by SA application. Furthermore, reduced SA levels are associated with reduced levels of reactive oxygen species (ROS) in aim1, likely due to increased expression of redox and ROS-scavenging-related genes, whose increased expression is (at least in part) caused by reduced expression of the SA-inducible transcriptional repressors WRKY62 and WRKY76. Like SA, ROS application substantially increased root length and root meristem activity in aim1. These results suggest that AIM1 is required for root growth in rice due to its critical role in SA biosynthesis: SA maintains root meristem activity through promoting ROS accumulation by inducing the activity of WRKY transcriptional repressors, which repress the expression of redox and ROS-scavenging genes. PMID:28298519

  12. Role of insulin receptor and insulin signaling on αPS2CβPS integrins' lateral diffusion.

    PubMed

    Mainali, Dipak; Syed, Aleem; Arora, Neha; Smith, Emily A

    2014-12-01

    Integrins are ubiquitous transmembrane receptors with adhesion and signaling properties. The influence of insulin receptor and insulin signaling on αPS2CβPS integrins' lateral diffusion was studied using single particle tracking in S2 cells before and after reducing the insulin receptor expression or insulin stimulation. Insulin signaling was monitored by Western blotting for phospho-Akt expression. The expression of the insulin receptor was reduced using RNA interference (RNAi). After insulin receptor RNAi, four significant changes were measured in integrin diffusion properties: (1) there was a 24% increase in the mobile integrin population, (2) 14% of the increase was represented by integrins with Brownian diffusion, (3) for integrins that reside in confined zones of diffusion, there was a 45% increase in the diameter of the confined zone, and (4) there was a 29% increase in the duration integrins spend in confined zones of diffusion. In contrast to reduced expression of the insulin receptor, which alters integrin diffusion properties, insulin stimulation alone or insulin stimulation under conditions of reduced insulin receptor expression have minimal effects on altering the measured integrin diffusion properties. The differences in integrin diffusion measured after insulin receptor RNAi in the presence or absence of insulin stimulation may be the result of other insulin signaling pathways that are activated at reduced insulin receptor conditions. No change in the average integrin diffusion coefficient was measured for any conditions included in this study.

  13. Ectopic Cdx2 Expression in Murine Esophagus Models an Intermediate Stage in the Emergence of Barrett's Esophagus

    PubMed Central

    Kong, Jianping; Crissey, Mary Ann; Funakoshi, Shinsuke; Kreindler, James L.; Lynch, John P.

    2011-01-01

    Barrett's esophagus (BE) is an intestinal metaplasia that occurs in the setting of chronic acid and bile reflux and is associated with a risk for adenocarcinoma. Expression of intestine-specific transcription factors in the esophagus likely contributes to metaplasia development. Our objective was to explore the effects of an intestine-specific transcription factor when expressed in the mouse esophageal epithelium. Transgenic mice were derived in which the transcription factor Cdx2 is expressed in squamous epithelium using the murine Keratin-14 gene promoter. Effects of the transgene upon cell proliferation and differentiation, gene expression, and barrier integrity were explored. K14-Cdx2 mice express the Cdx2 transgene in esophageal squamous tissues. Cdx2 expression was associated with reduced basal epithelial cell proliferation and altered cell morphology. Ultrastructurally two changes were noted. Cdx2 expression was associated with dilated space between the basal cells and diminished cell-cell adhesion caused by reduced Desmocollin-3 mRNA and protein expression. This compromised epithelial barrier function, as the measured trans-epithelial electrical resistance (TEER) of the K14-Cdx2 epithelium was significantly reduced compared to controls (1189 Ohm*cm2 ±343.5 to 508 Ohm*cm2±92.48, p = 0.0532). Secondly, basal cells with features of a transitional cell type, intermediate between keratinocytes and columnar Barrett's epithelial cells, were observed. These cells had reduced keratin bundles and increased endoplasmic reticulum levels, suggesting the adoption of secretory-cell features. Moreover, at the ultrastructural level they resembled “Distinctive” cells associated with multilayered epithelium. Treatment of the K14-Cdx2 mice with 5′-Azacytidine elicited expression of BE-associated genes including Cdx1, Krt18, and Slc26a3/Dra, suggesting the phenotype could be advanced under certain conditions. We conclude that ectopic Cdx2 expression in keratinocytes alters cell proliferation, barrier function, and differentiation. These altered cells represent a transitional cell type between normal squamous and columnar BE cells. The K14-Cdx2 mice represent a useful model to study progression from squamous epithelium to BE. PMID:21494671

  14. Ectopic Cdx2 expression in murine esophagus models an intermediate stage in the emergence of Barrett's esophagus.

    PubMed

    Kong, Jianping; Crissey, Mary Ann; Funakoshi, Shinsuke; Kreindler, James L; Lynch, John P

    2011-04-06

    Barrett's esophagus (BE) is an intestinal metaplasia that occurs in the setting of chronic acid and bile reflux and is associated with a risk for adenocarcinoma. Expression of intestine-specific transcription factors in the esophagus likely contributes to metaplasia development. Our objective was to explore the effects of an intestine-specific transcription factor when expressed in the mouse esophageal epithelium. Transgenic mice were derived in which the transcription factor Cdx2 is expressed in squamous epithelium using the murine Keratin-14 gene promoter. Effects of the transgene upon cell proliferation and differentiation, gene expression, and barrier integrity were explored. K14-Cdx2 mice express the Cdx2 transgene in esophageal squamous tissues. Cdx2 expression was associated with reduced basal epithelial cell proliferation and altered cell morphology. Ultrastructurally two changes were noted. Cdx2 expression was associated with dilated space between the basal cells and diminished cell-cell adhesion caused by reduced Desmocollin-3 mRNA and protein expression. This compromised epithelial barrier function, as the measured trans-epithelial electrical resistance (TEER) of the K14-Cdx2 epithelium was significantly reduced compared to controls (1189 Ohm*cm(2) ±343.5 to 508 Ohm*cm(2)±92.48, p = 0.0532). Secondly, basal cells with features of a transitional cell type, intermediate between keratinocytes and columnar Barrett's epithelial cells, were observed. These cells had reduced keratin bundles and increased endoplasmic reticulum levels, suggesting the adoption of secretory-cell features. Moreover, at the ultrastructural level they resembled "Distinctive" cells associated with multilayered epithelium. Treatment of the K14-Cdx2 mice with 5'-Azacytidine elicited expression of BE-associated genes including Cdx1, Krt18, and Slc26a3/Dra, suggesting the phenotype could be advanced under certain conditions. We conclude that ectopic Cdx2 expression in keratinocytes alters cell proliferation, barrier function, and differentiation. These altered cells represent a transitional cell type between normal squamous and columnar BE cells. The K14-Cdx2 mice represent a useful model to study progression from squamous epithelium to BE.

  15. Human T-cell leukemia virus type 1 Tax oncoprotein represses the expression of the BCL11B tumor suppressor in T-cells.

    PubMed

    Takachi, Takayuki; Takahashi, Masahiko; Takahashi-Yoshita, Manami; Higuchi, Masaya; Obata, Miki; Mishima, Yukio; Okuda, Shujiro; Tanaka, Yuetsu; Matsuoka, Masao; Saitoh, Akihiko; Green, Patrick L; Fujii, Masahiro

    2015-04-01

    Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T cell leukemia (ATL), which is an aggressive form of T-cell malignancy. HTLV-1 oncoproteins, Tax and HBZ, play crucial roles in the immortalization of T-cells and/or leukemogenesis by dysregulating the cellular functions in the host. Recent studies show that HTLV-1-infected T-cells have reduced expression of the BCL11B tumor suppressor protein. In the present study, we explored whether Tax and/or HBZ play a role in downregulating BCL11B in HTLV-1-infected T-cells. Lentiviral transduction of Tax in a human T-cell line repressed the expression of BCL11B at both the protein and mRNA levels, whereas the transduction of HBZ had little effect on the expression. Tax mutants with a decreased activity for the NF-κB, CREB or PDZ protein pathways still showed a reduced expression of the BCL11B protein, thereby implicating a different function of Tax in BCL11B downregulation. In addition, the HTLV-2 Tax2 protein reduced the BCL11B protein expression in T-cells. Seven HTLV-1-infected T-cell lines, including three ATL-derived cell lines, showed reduced BCL11B mRNA and protein expression relative to an uninfected T-cell line, and the greatest reductions were in the cells expressing Tax. Collectively, these results indicate that Tax is responsible for suppressing BCL11B protein expression in HTLV-1-infected T-cells; Tax-mediated repression of BCL11B is another mechanism that Tax uses to promote oncogenesis of HTLV-1-infected T-cells. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  16. Reducing Peripheral Inflammation with Infliximab Reduces Neuroinflammation and Improves Cognition in Rats with Hepatic Encephalopathy

    PubMed Central

    Dadsetan, Sherry; Balzano, Tiziano; Forteza, Jerónimo; Cabrera-Pastor, Andrea; Taoro-Gonzalez, Lucas; Hernandez-Rabaza, Vicente; Gil-Perotín, Sara; Cubas-Núñez, Laura; García-Verdugo, José-Manuel; Agusti, Ana; Llansola, Marta; Felipo, Vicente

    2016-01-01

    Inflammation contributes to cognitive impairment in patients with hepatic encephalopathy (HE). However, the process by which peripheral inflammation results in cognitive impairment remains unclear. In animal models, neuroinflammation and altered neurotransmission mediate cognitive impairment. Taking into account these data, we hypothesized that in rats with HE: (1) peripheral inflammation is a main contributor to neuroinflammation; (2) neuroinflammation in hippocampus impairs spatial learning by altering AMPA and/or NMDA receptors membrane expression; (3) reducing peripheral inflammation with infliximab (anti-TNF-a) would improve spatial learning; (4) this would be associated with reduced neuroinflammation and normalization of the membrane expression of glutamate receptors. The aims of this work were to assess these hypotheses. We analyzed in rats with portacaval shunt (PCS) and control rats, treated or not with infliximab: (a) peripheral inflammation by measuring prostaglandin E2, IL10, IL-17, and IL-6; (b) neuroinflammation in hippocampus by analyzing microglial activation and the content of TNF-a and IL-1b; (c) AMPA and NMDA receptors membrane expression in hippocampus; and (d) spatial learning in the Radial and Morris water mazes. We assessed the effects of treatment with infliximab on peripheral inflammation, on neuroinflammation and AMPA and NMDA receptors membrane expression in hippocampus and on spatial learning and memory. PCS rats show increased serum prostaglandin E2, IL-17, and IL-6 and reduced IL-10 levels, indicating increased peripheral inflammation. PCS rats also show microglial activation and increased nuclear NF-kB and expression of TNF-a and IL-1b in hippocampus. This was associated with altered AMPA and NMDA receptors membrane expression in hippocampus and impaired spatial learning and memory in the radial and Morris water maze. Treatment with infliximab reduces peripheral inflammation in PCS rats, normalizing prostaglandin E2, IL-17, IL-6, and IL-10 levels in serum. Infliximab also prevents neuroinflammation, reduces microglial activation, translocates NF-kB into nucleoli and normalizes TNF-a and IL-1b content in hippocampus. This was associated with normalization of AMPA receptors membrane expression in hippocampus and of spatial learning and memory. The results suggest that peripheral inflammation contributes to spatial learning impairment in PCS rats. Treatment with anti-TNF-a could be a new therapeutic approach to improve cognitive function in patients with HE. PMID:27853420

  17. The protective effect of fasudil pretreatment combined with ischemia postconditioning on myocardial ischemia/reperfusion injury in rats.

    PubMed

    Li, W-N; Wu, N; Shu, W-Q; Guan, Y-E; Jia, D-L

    2014-01-01

    Ischemic postconditioning (IPO) and pharmacological pretreatment may reduce myocardial necrosis and apoptosis during ischemia/reperfusion. This study aimed to determine the protective effect of fasudil pretreatment combined with IPO on myocardial ischemia/reperfusion injury in rats and explore the possible mechanisms. The SD rats were induced by intraperitoneal injection of fasudil hydrochloride (1 or 10 mg/kg) 60 min before the initiation of ischemia, while the control rats were given the same volume of saline. The hearts were hung on the Langendorff perfusion apparatus and underwent 30 min global ischemia and 120 min reperfusion. The IPO protocol was induced by six cycles of 10 sec ischemia and 10 sec reperfusion at the onset of reperfusion. The hemodynamic changes were measured, myocardial infarct size was determined by triphenyltetrazolium chloride (TTC) staining, cardiomyocyte apoptosis was detected by TUNEL staining, lactate dehydrogenase (LDH) was analyzed from coronary effluents, phosphorylation of Akt and eNOS, as well as expression of Bcl-2 and Bax were measured by western blotting analysis. The high-dose fasudil (10 mg/kg) pretreatment group and IPO group significantly improved post-ischemia cardiac function, reduced myocardial infarct size, attenuated cardiomyocyte apoptosis, decreased the release of LDH, increased expression of phospho-Akt, phospho-eNOS and Bcl-2, and reduced expression of Bax compared with the control group (p < 0.05). In addition, the high-dose fasudil pretreatment combined with IPO group could further improved post-ischemia cardiac function, reduced myocardial infarct size, attenuated cardiomyocyte apoptosis, decreased the release of LDH, increased expression of phospho-Akt, phospho-eNOS and Bcl-2, and reduced expression of Bax compared with the single treatment groups (p < 0.05). The combination of high-dose fasudil pretreatment and IPO had a synergistic protective effect on myocardial ischemia/reperfusion injury, which was mediated via upregulating the PI3K/Akt/eNOS pathway, increasing expression of antiapoptotic Bcl-2, and decreasing expression of proapoptotic Bax.

  18. FOXP3 over-expression inhibits melanoma tumorigenesis via effects on proliferation and apoptosis.

    PubMed

    Tan, BeeShin; Anaka, Matthew; Deb, Siddhartha; Freyer, Claudia; Ebert, Lisa M; Chueh, Anderly C; Al-Obaidi, Sheren; Behren, Andreas; Jayachandran, Aparna; Cebon, Jonathan; Chen, Weisan; Mariadason, John M

    2014-01-15

    The Forkhead box P3 (FOXP3) transcription factor is the key driver of regulatory T cell (Treg cells) differentiation and immunosuppressive function. In addition, FOXP3 has been reported to be expressed in many tumors, including melanoma. However, its role in tumorigenesis is conflicting, with both tumor suppressive and tumor promoting functions described. The aim of the current study was to characterize the expression and function of FOXP3 in melanoma. FOXP3 expression was detected by immunohistochemistry (IHC) in 12% (18/146) of stage III and IV melanomas. However expression was confined to fewer than 1% of cells in these tumors. Stable over-expression of FOXP3 in the SK-MEL-28 melanoma cell line reduced cell proliferation and clonogenicity in vitro, and reduced xenograft growth in vivo. FOXP3 over-expression also increased pigmentation and the rate of apoptosis of SK-MEL-28 cells. Based on its infrequent expression in human melanoma, and its growth inhibitory and pro-apoptotic effect in over-expressing melanoma cells, we conclude that FOXP3 is not likely to be a key tumor suppressor or promoter in melanoma.

  19. Executioner Caspase-3 and 7 Deficiency Reduces Myocyte Number in the Developing Mouse Heart

    PubMed Central

    Cardona, Maria; López, Juan Antonio; Serafín, Anna; Rongvaux, Anthony; Inserte, Javier; García-Dorado, David; Flavell, Richard; Llovera, Marta; Cañas, Xavier; Vázquez, Jesús; Sanchis, Daniel

    2015-01-01

    Executioner caspase-3 and -7 are proteases promoting cell death but non-apoptotic roles are being discovered. The heart expresses caspases only during development, suggesting they contribute to the organ maturation process. Therefore, we aimed at identifying novel functions of caspases in heart development. We induced simultaneous deletion of executioner caspase-3 and -7 in the mouse myocardium and studied its effects. Caspase knockout hearts are hypoplastic at birth, reaching normal weight progressively through myocyte hypertrophy. To identify the molecular pathways involved in these effects, we used microarray-based transcriptomics and multiplexed quantitative proteomics to compare wild type and executioner caspase-deficient myocardium at different developmental stages. Transcriptomics showed reduced expression of genes promoting DNA replication and cell cycle progression in the neonatal caspase-deficient heart suggesting reduced myocyte proliferation, and expression of non-cardiac isoforms of structural proteins in the adult null myocardium. Proteomics showed reduced abundance of proteins involved in oxidative phosphorylation accompanied by increased abundance of glycolytic enzymes underscoring retarded metabolic maturation of the caspase-null myocardium. Correlation between mRNA expression and protein abundance of relevant genes was confirmed, but transcriptomics and proteomics indentified complementary molecular pathways influenced by caspases in the developing heart. Forced expression of wild type or proteolytically inactive caspases in cultured cardiomyocytes induced expression of genes promoting cell division. The results reveal that executioner caspases can modulate heart’s cellularity and maturation during development, contributing novel information about caspase biology and heart development. PMID:26121671

  20. Iodine excess exposure during pregnancy and lactation impairs maternal thyroid function in rats

    PubMed Central

    Salgueiro, Rafael Barrera; Vitzel, Kaio Fernando; Pantaleão, Thiago; Corrêa da Costa, Vânia Maria

    2017-01-01

    Adequate maternal iodine consumption during pregnancy and lactation guarantees normal thyroid hormones (TH) production, which is crucial to the development of the fetus. Indeed, iodine deficiency is clearly related to maternal hypothyroidism and deleterious effects in the fetal development. Conversely, the effects of iodine excess (IE) consumption on maternal thyroid function are still controversial. Therefore, this study aimed to investigate the impact of IE exposure during pregnancy and lactation periods on maternal hypothalamus–pituitary–thyroid axis. IE-exposed dams presented reduced serum TH concentration and increased serum thyrotropin (TSH) levels. Moreover, maternal IE exposure increased the hypothalamic expression of Trh and the pituitary expression of Trhr, Dio2, Tsha and Tshb mRNA, while reduced the Gh mRNA content. Additionally, IE-exposed dams presented thyroid morphological alterations, increased thyroid oxidative stress and decreased expression of thyroid genes/proteins involved in TH synthesis, secretion and metabolism. Furthermore, Dio1 mRNA expression and D1 activity were reduced in the liver and the kidney of IE-treated animals. Finally, the mRNA expression of Slc5a5 and Slc26a4 were reduced in the mammary gland of IE-exposed rats. The latter results are in accordance with the reduction of prolactin expression and serum levels in IE-treated dams. In summary, our study indicates that the exposure to IE during pregnancy and lactation induces primary hypothyroidism in rat dams and impairs iodide transfer to the milk. PMID:28814477

  1. Cathepsin B and uPAR regulate self-renewal of glioma-initiating cells through GLI-regulated Sox2 and Bmi1 expression

    PubMed Central

    Rao, Jasti S.

    2013-01-01

    Cancer-initiating cells comprise a heterogeneous population of undifferentiated cells with the capacity for self-renewal and high proliferative potential. We investigated the role of uPAR and cathepsin B in the maintenance of stem cell nature in glioma-initiating cells (GICs). Simultaneous knockdown of uPAR and cathepsin B significantly reduced the expression of CD133, Nestin, Sox2 and Bmi1 at the protein level and GLI1 and GLI2 at the messenger RNA level. Also, knockdown of uPAR and cathepsin B resulted in a reduction in the number of GICs as well as sphere size. These changes are mediated by Sox2 and Bmi1, downstream of hedgehog signaling. Addition of cyclopamine reduced the expression of Sox2 and Bmi1 along with GLI1 and GLI2 expression, induced differentiation and reduced subsphere formation of GICs thereby indicating that hedgehog signaling acts upstream of Sox2 and Bmi1. Further confirmation was obtained from increased luciferase expression under the control of a GLI-bound Sox2 and Bmi1 luciferase promoter. Simultaneous knockdown of uPAR and cathepsin B also reduced the expression of Nestin Sox2 and Bmi1 in vivo. Thus, our study highlights the importance of uPAR and cathepsin B in the regulation of malignant stem cell self-renewal through hedgehog components, Bmi1 and Sox2. PMID:23222817

  2. Macrophage heterogeneity and cholesterol homeostasis: classically-activated macrophages are associated with reduced cholesterol accumulation following treatment with oxidized LDL.

    PubMed

    Chu, Eugene M; Tai, Daven C; Beer, Jennifer L; Hill, John S

    2013-02-01

    Macrophages are centrally involved during atherosclerosis development and are the predominant cell type that accumulates cholesterol in the plaque. Macrophages however, are heterogeneous in nature reflecting a variety of microenvironments and different phenotypes may be more prone to contribute towards atherosclerosis progression. Using primary human monocyte-derived macrophages, we sought to evaluate one aspect of atherogenic potential of different macrophage phenotypes by determining their propensity to associate with and accumulate oxidized low density lipoprotein (oxLDL). Classically-activated macrophages treated simultaneously with interferon γ (IFNγ) and tumor necrosis factor α (TNFα) associated with less oxLDL and accumulated less cholesterol compared to untreated controls. The combined treatment of IFNγ and TNFα reduced the mRNA expression of CD36 and the expression of both cell surface CD36 and macrophage scavenger receptor 1 (MSR1) protein. Under oxLDL loaded conditions, IFNγ and TNFα did not reduce macrophage protein expression of the transcription factor peroxisome proliferator-actived receptor γ (PPARγ) which is known to positively regulate CD36 expression. However, macrophages treated with IFNγ attenuated the ability of the PPARγ-specific agonist rosiglitazone from upregulating cell surface CD36 protein expression. Our results demonstrate that the observed reduction of cholesterol accumulation in macrophages treated with IFNγ and TNFα following oxLDL treatment was due at least in part to reduced cell surface CD36 and MSR1 protein expression. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Tungstate reduces the expression of gluconeogenic enzymes in STZ rats.

    PubMed

    Nocito, Laura; Zafra, Delia; Calbó, Joaquim; Domínguez, Jorge; Guinovart, Joan J

    2012-01-01

    Oral administration of sodium tungstate has shown hyperglycemia-reducing activity in several animal models of diabetes. We present new insights into the mechanism of action of tungstate. We studied protein expression and phosphorylation in the liver of STZ rats, a type I diabetes model, treated with sodium tungstate in the drinking water (2 mg/ml) and in primary cultured-hepatocytes, through Western blot and Real Time PCR analysis. Tungstate treatment reduces the expression of gluconeogenic enzymes (PEPCK, G6Pase, and FBPase) and also regulates transcription factors accountable for the control of hepatic metabolism (c-jun, c-fos and PGC1α). Moreover, ERK, p90rsk and GSK3, upstream kinases regulating the expression of c-jun and c-fos, are phosphorylated in response to tungstate. Interestingly, PKB/Akt phosphorylation is not altered by the treatment. Several of these observations were reproduced in isolated rat hepatocytes cultured in the absence of insulin, thereby indicating that those effects of tungstate are insulin-independent. Here we show that treatment with tungstate restores the phosphorylation state of various signaling proteins and changes the expression pattern of metabolic enzymes.

  4. Quercetin protects against inflammation, MMP‑2 activation and apoptosis induction in rat model of cardiopulmonary resuscitation through modulating Bmi‑1 expression.

    PubMed

    Wang, Dawei; Lou, Xiaoqian; Jiang, Xiao-Ming; Yang, Chenxi; Liu, Xiao-Liang; Zhang, Nan

    2018-05-08

    With extensive pharmacological actions, quercetin has anti‑oxidant, free radical scavenging, anti‑tumor, anti‑inflammatory, anti‑bacterial and anti‑viral activity. Quercetin also reduces blood glucose and reduces high blood pressure, and has immunoregulation and cardiovascular protection functions. Additionally, it has been reported that it can reduce depression. The current study evaluated whether quercetin protects against inflammation, matrix metalloproteinase‑2 (MMP‑2) activation and apoptosis induction in a rat model of cardiopulmonary resuscitation (CPR), and whether Bmi‑1 expression was involved in the effects. In CPR model rats, treatment with quercetin significantly recovered left ventricular ejection fraction, left ventricular fractional shortening, ejection fraction (%), and left ventricle weight/body weight. Treatment with quercetin significantly inhibited ROS generation, inflammation and MMP‑2 protein expression in the rat model CPR. Finally, quercetin significantly suppressed caspase‑3 activity and activated Bmi‑1 protein expression in the rat model of CPR. The results demonstrated that quercetin protects against inflammation, MMP‑2 activation and apoptosis induction in a rat model of CPR, and that this may be mediated by modulating Bmi‑1 expression.

  5. Colchicine Depolymerizes Microtubules, Increases Junctophilin-2, and Improves Right Ventricular Function in Experimental Pulmonary Arterial Hypertension.

    PubMed

    Prins, Kurt W; Tian, Lian; Wu, Danchen; Thenappan, Thenappan; Metzger, Joseph M; Archer, Stephen L

    2017-05-31

    Pulmonary arterial hypertension (PAH) is a lethal disease characterized by obstructive pulmonary vascular remodeling and right ventricular (RV) dysfunction. Although RV function predicts outcomes in PAH, mechanisms of RV dysfunction are poorly understood, and RV-targeted therapies are lacking. We hypothesized that in PAH, abnormal microtubular structure in RV cardiomyocytes impairs RV function by reducing junctophilin-2 (JPH2) expression, resulting in t-tubule derangements. Conversely, we assessed whether colchicine, a microtubule-depolymerizing agent, could increase JPH2 expression and enhance RV function in monocrotaline-induced PAH. Immunoblots, confocal microscopy, echocardiography, cardiac catheterization, and treadmill testing were used to examine colchicine's (0.5 mg/kg 3 times/week) effects on pulmonary hemodynamics, RV function, and functional capacity. Rats were treated with saline (n=28) or colchicine (n=24) for 3 weeks, beginning 1 week after monocrotaline (60 mg/kg, subcutaneous). In the monocrotaline RV, but not the left ventricle, microtubule density is increased, and JPH2 expression is reduced, with loss of t-tubule localization and t-tubule disarray. Colchicine reduces microtubule density, increases JPH2 expression, and improves t-tubule morphology in RV cardiomyocytes. Colchicine therapy diminishes RV hypertrophy, improves RV function, and enhances RV-pulmonary artery coupling. Colchicine reduces small pulmonary arteriolar thickness and improves pulmonary hemodynamics. Finally, colchicine increases exercise capacity. Monocrotaline-induced PAH causes RV-specific derangement of microtubules marked by reduction in JPH2 and t-tubule disarray. Colchicine reduces microtubule density, increases JPH2 expression, and improves both t-tubule architecture and RV function. Colchicine also reduces adverse pulmonary vascular remodeling. These results provide biological plausibility for a clinical trial to repurpose colchicine as a RV-directed therapy for PAH. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  6. Protease-Activated Receptor 4 Variant p.Tyr157Cys Reduces Platelet Functional Responses and Alters Receptor Trafficking.

    PubMed

    Norman, Jane E; Cunningham, Margaret R; Jones, Matthew L; Walker, Mary E; Westbury, Sarah K; Sessions, Richard B; Mundell, Stuart J; Mumford, Andrew D

    2016-05-01

    Protease-activated receptor 4 (PAR4) is a key regulator of platelet reactivity and is encoded by F2RL3, which has abundant rare missense variants. We aimed to provide proof of principle that rare F2LR3 variants potentially affect platelet reactivity and responsiveness to PAR1 antagonist drugs and to explore underlying molecular mechanisms. We identified 6 rare F2RL3 missense variants in 236 cardiac patients, of which the variant causing a tyrosine 157 to cysteine substitution (Y157C) was predicted computationally to have the greatest effect on PAR4 structure. Y157C platelets from 3 cases showed reduced responses to PAR4-activating peptide and to α-thrombin compared with controls, but no reduction in responses to PAR1-activating peptide. Pretreatment with the PAR1 antagonist vorapaxar caused lower residual α-thrombin responses in Y157C platelets than in controls, indicating greater platelet inhibition. HEK293 cells transfected with a PAR4 Y157C expression construct had reduced PAR4 functional responses, unchanged total PAR4 expression but reduced surface expression. PAR4 Y157C was partially retained in the endoplasmic reticulum and displayed an expression pattern consistent with defective N-glycosylation. Mutagenesis of Y322, which is the putative hydrogen bond partner of Y157, also reduced PAR4 surface expression in HEK293 cells. Reduced PAR4 responses associated with Y157C result from aberrant anterograde surface receptor trafficking, in part, because of disrupted intramolecular hydrogen bonding. Characterization of PAR4 Y157C establishes that rare F2RL3 variants have the potential to markedly alter platelet PAR4 reactivity particularly after exposure to therapeutic PAR1 antagonists. © 2016 American Heart Association, Inc.

  7. Neuroprotective effect of mesenchymal stem cell through complement component 3 downregulation after transient focal cerebral ischemia in mice.

    PubMed

    Jung, Hye-Seon; Jeong, Si-Yeon; Yang, Jiwon; Kim, So-Dam; Zhang, Baojin; Yoo, Hyun Seung; Song, Sun U; Jeon, Myung-Shin; Song, Yun Seon

    2016-10-28

    Bone marrow-derived mesenchymal stem cells (MSCs) are used in stroke treatment despite the poor understanding of its mode of action. The immune suppressive and anti-inflammatory properties of MSCs possibly play important roles in regulating neuroinflammation after stroke. We investigated whether MSCs reduce the inflammatory complement component 3 (C3) levels, thus, providing neuroprotection during stroke. Mice were subjected to transient focal cerebral ischemia (tFCI), after which MSCs were intravenously injected. The infarct volume of the brain was reduced in MSC-injected tFCI mice, and C3 expression was significantly reduced in both the brain and the blood. Additionally, the profiles of other inflammatory mediators demonstrated neuroprotective changes in the MSCs-treated group. In order to analyze the effect of MSCs on neurons during cerebral ischemia, primary cortical neurons were co-cultured with MSCs under oxygen-glucose deprivation (OGD). Primary neurons co-cultured with MSCs exhibited reduced levels of C3 expression and increased protection against OGD, indicating that treatment with MSCs reduces excessive C3 expression and rescues ischemia-induced neuronal damage. Our finding suggests that reduction of C3 expression by MSCs can help to ameliorate ischemic brain damage, offering a new neuroprotective strategy in stroke therapy. Copyright © 2016. Published by Elsevier Ireland Ltd.

  8. Rha1, a new mutant of Arabidopsis disturbed in root slanting, gravitropism and auxin physiology.

    PubMed

    Fortunati, Alessio; Piconese, Silvia; Tassone, Paola; Ferrari, Simone; Migliaccio, Fernando

    2008-11-01

    A new Arabidopsis mutant is characterized (rha1) that shows, in the roots, reduced right-handed slanting, reduced gravitropism and resistance to 2,4-D, TIBA, NPA and ethylene. It also shows reduced length in the shoot and root, reduced number of lateral roots and shorter siliques. The gene was cloned through TAIL-PCR and resulted in a HSF. Because none of the known gravitropic and auxinic mutants result from damage in a HSF, rha1 seems to belong to a new class of this group of mutants. Quantitative PCR analysis showed that the expression of the gene is increased by heat and cold shock, and by presence of 2,4-D in the media. Study of the expression through the GUS reporter gene revealed increased expression in clinostated and gravistimulated plants, but only in adult tissues, and not in the apical meristems of shoots and roots.

  9. Rha1, a new mutant of Arabidopsis disturbed in root slanting, gravitropism and auxin physiology

    PubMed Central

    Fortunati, Alessio; Piconese, Silvia; Tassone, Paola; Ferrari, Simone

    2008-01-01

    A new Arabidopsis mutant is characterized (rha1) that shows, in the roots, reduced right-handed slanting, reduced gravitropism and resistance to 2,4-D, TIBA, NPA and ethylene. It also shows reduced length in the shoot and root, reduced number of lateral roots and shorter siliques. The gene was cloned through TAIL-PCR and resulted in a HSF. Because none of the known gravitropic and auxinic mutants result from damage in a HSF, rha1 seems to belong to a new class of this group of mutants. Quantitative PCR analysis showed that the expression of the gene is increased by heat and cold shock, and by presence of 2,4-D in the media. Study of the expression through the GUS reporter gene revealed increased expression in clinostated and gravistimulated plants, but only in adult tissues, and not in the apical meristems of shoots and roots. PMID:19704429

  10. Kruppel-like factor 2 (KLF2) regulates proinflammatory activation of monocytes

    PubMed Central

    Das, Hiranmoy; Kumar, Ajay; Lin, Zhiyong; Patino, Willmar D.; Hwang, Paul M.; Feinberg, Mark W.; Majumder, Pradip K.; Jain, Mukesh K.

    2006-01-01

    The mechanisms regulating activation of monocytes remain incompletely understood. Herein we provide evidence that Kruppel-like factor 2 (KLF2) inhibits proinflammatory activation of monocytes. In vitro, KLF2 expression in monocytes is reduced by cytokine activation or differentiation. Consistent with this observation, KLF2 expression in circulating monocytes is reduced in patients with chronic inflammatory conditions such as coronary artery disease. Adenoviral overexpression of KLF2 inhibits the LPS-mediated induction of proinflammatory factors, cytokines, and chemokines and reduces phagocytosis. Conversely, short interfering RNA-mediated reduction in KLF2 increased inflammatory gene expression. Reconstitution of immunodeficient mice with KLF2-overexpressing monocytes significantly reduced carrageenan-induced acute paw edema formation. Mechanistically, KLF2 inhibits the transcriptional activity of both NF-κB and activator protein 1, in part by means of recruitment of transcriptional coactivator p300/CBP-associated factor. These observations identify KLF2 as a novel negative regulator of monocytic activation. PMID:16617118

  11. Influence of flanking sequences on variability in expression levels of an introduced gene in transgenic tobacco plants.

    PubMed Central

    Dean, C; Jones, J; Favreau, M; Dunsmuir, P; Bedbrook, J

    1988-01-01

    The petunia rbcS gene SSU301 was introduced into tobacco using Agrobacterium tumefaciens-mediated transformation. The time at which rbcS expression was maximal after transfer of the tobacco plants to the greenhouse was determined. The expression level of the SSU301 gene varied up to 9 fold between individual tobacco plants which had been standardized physiologically as much as possible. The presence of adjacent pUC plasmid sequences did not affect the expression of the SSU301 gene. In an attempt to reduce the between-transformant variability in expression, the SSU301 gene was introduced into tobacco surrounded by 10kb of 5' and 13 kb of 3' DNA sequences which normally flank SSU301 in petunia. The longer flanking regions did not reduce the between-transformant variability of SSU301 gene expression. Images PMID:3174450

  12. Low-level laser therapy (LLLT) reduces the COX-2 mRNA expression in both subplantar and total brain tissues in the model of peripheral inflammation induced by administration of carrageenan.

    PubMed

    Prianti, Antonio Carlos Guimarães; Silva, José Antonio; Dos Santos, Regiane Feliciano; Rosseti, Isabela Bueno; Costa, Maricilia Silva

    2014-07-01

    In the classical model of edema formation and hyperalgesia induced by carrageenan administration in rat paw, the increase in prostaglandin E2 (PGE2) production in the central nervous system (CNS) contributes to the severity of the inflammatory and pain responses. Prostaglandins are generated by the cyclooxygenase (COX). There are two distinct COX isoforms, COX-1 and COX-2. In inflammatory tissues, COX-2 is greatly expressed producing proinflammatory prostaglandins (PGs). Low-level laser therapy (LLLT) has been used in the treatment of inflammatory pathologies, reducing both pain and acute inflammatory process. Herein we studied the effect of LLLT on both COX-2 and COX-1 messenger RNA (mRNA) expression in either subplantar or brain tissues taken from rats treated with carrageenan. The experiment was designed as follows: A1 (saline), A2 (carrageenan-0.5 mg/paw), A3 (carrageenan-0.5 mg/paw + LLLT), A4 (carrageenan-1.0 mg/paw), and A5 (carrageenan-1.0 mg/paw + LLLT). Animals from the A3 and A5 groups were irradiated at 1 h after carrageenan administration, using a diode laser with an output power of 30 mW and a wavelength of 660 nm. The laser beam covered an area of 0.785 cm(2), resulting in an energy dosage of 7.5 J/cm(2). Both COX-2 and COX-1 mRNAs were measured by RT-PCR. Six hours after carrageenan administration, COX-2 mRNA expression was significantly increased both in the subplantar (2.2-4.1-fold) and total brain (8.65-13.79-fold) tissues. COX-1 mRNA expression was not changed. LLLT (7.5 J/cm(2)) reduced significantly the COX-2 mRNA expression both in the subplantar (~2.5-fold) and brain (4.84-9.67-fold) tissues. The results show that LLLT is able to reduce COX-2 mRNA expression. It is possible that the mechanism of LLLT decreasing hyperalgesia is also related to its effect in reducing the COX-2 expression in the CNS.

  13. PHTHALATE ESTER-INDUCED GUBERNACULAR LIGAMENT LESIONS ARE ASSOCIATED WITH REDUCED INSL3 GENE EXPRESSION IN THE FETAL RAT TESTIS DURING SEXUAL DIFFERENTIATION

    EPA Science Inventory

    Phthalate ester-induced gubernacular ligament lesions are associated with reduced Insl3 gene expression in the fetal rat testis during sexual differentiation.
    Vickie S Wilson, Christy Lambright, Johnathan Furr, Joseph Ostby, Carmen Wood, Gary Held, L.Earl Gray Jr.
    U.S. EPA,...

  14. PHTHALATE ESTER-INDUCED GUBERNACULAR LESIONS ARE ASSOCIATED WITH REDUCED INSL-3 GENE EXPRESSION IN THE FETAL RAT TESTIS

    EPA Science Inventory

    Phthalate ester-induced gubernacular ligament lesions are associated with reduced Insl3 gene expression in the fetal rat testis during sexual differentiation.
    VS Wilson, C Lambright, J Furr, J Ostby, C Wood, G Held, LE Gray Jr.
    U.S. EPA, ORD, NHEERL, Reproductive Toxicology...

  15. Spatial Control of Cell Transfection Using Soluble or Solid-Phase Redox Agents and a Redox-Active Ferrocenyl Lipid

    PubMed Central

    Aytar, Burcu S.; Muller, John P. E.; Kondo, Yukishige; Abbott, Nicholas L.; Lynn, David M.

    2013-01-01

    We report principles for active, user-defined control over the locations and timing with which DNA is expressed in cells. Our approach exploits unique properties of a ferrocenyl cationic lipid that is inactive when oxidized, but active when chemically reduced. We show that methods that exert spatial control over the administration of reducing agents can lead to local activation of lipoplexes and spatial control over gene expression. The versatility of this approach is demonstrated using both soluble and solid-phase reducing agents. These methods provide control over cell transfection, including methods for remote activation and the patterning of expression using solid-phase redox agents, that are difficult to achieve using conventional lipoplexes. PMID:23965341

  16. Spatial control of cell transfection using soluble or solid-phase redox agents and a redox-active ferrocenyl lipid.

    PubMed

    Aytar, Burcu S; Muller, John P E; Kondo, Yukishige; Abbott, Nicholas L; Lynn, David M

    2013-09-11

    We report principles for active, user-defined control over the locations and timing with which DNA is expressed in cells. Our approach exploits unique properties of a ferrocenyl cationic lipid that is inactive when oxidized, but active when chemically reduced. We show that methods that exert spatial control over the administration of reducing agents can lead to local activation of lipoplexes and spatial control over gene expression. The versatility of this approach is demonstrated using both soluble and solid-phase reducing agents. These methods provide control over cell transfection, including methods for remote activation and the patterning of expression using solid-phase redox agents, that are difficult to achieve using conventional lipoplexes.

  17. Deletion of Interleukin-6 Signal Transducer gp130 in Small Sensory Neurons Attenuates Mechanonociception and Down-Regulates TRPA1 Expression

    PubMed Central

    Malsch, Philipp; Andratsch, Manfred; Vogl, Christian; Link, Andrea S.; Alzheimer, Christian; Brierley, Stuart M.; Hughes, Patrick A.

    2014-01-01

    Glycoprotein 130 (gp130) is the signal transducing receptor subunit for cytokines of the interleukin-6 (IL-6) family, and it is expressed in a multitude of cell types of the immune and nervous system. IL-6-like cytokines are not only key regulators of innate immunity and inflammation but are also essential factors for the differentiation and development of the somatosensory system. Mice with a null mutation of gp130 in primary nociceptive afferents (SNS-gp130−/−) are largely protected from hypersensitivity to mechanical stimuli in mouse models of pathological pain. Therefore, we set out to investigate how neuronal gp130 regulates mechanonociception. SNS-gp130−/− mice revealed reduced mechanosensitivity to high mechanical forces in the von Frey assay in vivo, and this was associated with a reduced sensitivity of nociceptive primary afferents in vitro. Together with these findings, transient receptor potential ankyrin 1 (TRPA1) mRNA expression was significantly reduced in DRG from SNS-gp130−/− mice. This was also reflected by a reduced number of neurons responding with calcium transients to TRPA1 agonists in primary DRG cultures. Downregulation of Trpa1 expression was predominantly discovered in nonpeptidergic neurons, with the deficit becoming evident during stages of early postnatal development. Regulation of Trpa1 mRNA expression levels downstream of gp130 involved the classical Janus kinase family-signal transducer and activator of transcription pathway. Our results closely link proinflammatory cytokines to the expression of TRPA1, both of which have been shown to contribute to hypersensitive pain states. We suggest that gp130 has an essential role in mechanonociception and in the regulation of TRPA1 expression. PMID:25057188

  18. Activity and protein expression of the Na+/H+ exchanger is reduced in syncytiotrophoblast microvillous plasma membranes isolated from preterm intrauterine growth restriction pregnancies.

    PubMed

    Johansson, M; Glazier, J D; Sibley, C P; Jansson, T; Powell, T L

    2002-12-01

    Regulation of syncytiotrophoblast intracellular pH is critical to optimum enzymatic and transport functions of the placenta. Previous studies of Na(+)/H(+) exchanger (NHE) activity in the placenta from pregnancies complicated by intrauterine growth restriction (IUGR) have produced conflicting results. The possible role of altered placental pH regulation in the development of acidosis in some fetuses subjected to IUGR remains to be fully established. We investigated the activity and protein expression of the NHE in syncytiotrophoblast microvillous (MVM) plasma membranes isolated from preterm and term placentas obtained from uncomplicated and IUGR pregnancies. Western blotting showed that the expression of NHE isoforms 1, 2, and 3 was approximately 10-fold greater in MVM than in basal plasma membrane (BM). Immunohistochemistry localized NHE-1 and NHE-2 to MVM and BM and NHE-3 to the MVM, BM, and cytoplasm of the syncytiotrophoblast. NHE-1 expression in MVM from preterm IUGR placentas was reduced by 55%, compared with gestational age-matched controls (P < 0.05, n = 6 and n = 16, respectively), whereas NHE-1 expression was unaltered in term IUGR placentas (n = 8). The activity (amiloride-sensitive Na(+) uptake) of NHE in MVM from IUGR preterm placentas was reduced by 48% (P < 0.05, n = 6). In contrast, MVM NHE activity was unchanged in term IUGR (n = 7). Using Northern blotting, no difference could be demonstrated in NHE-1 mRNA expression between IUGR and control groups. The reduced activity and expression of NHE in MVM of preterm IUGR placentas may compromise placental function and may contribute to the development of fetal acidosis in preterm IUGR fetuses.

  19. Gentamicin induces efaA expression and biofilm formation in Enterococcus faecalis.

    PubMed

    Kafil, Hossein Samadi; Mobarez, Ashraf Mohabati; Moghadam, Mehdi Forouzandeh; Hashemi, Zahra Sadat; Yousefi, Mehdi

    2016-03-01

    Enterococci have been ranked among the leading causes of nosocomial bacteremia and urinary tract infection. This study aimed to investigate the effect of ampicillin, vancomycin, gentamicin and ceftizoxime on biofilm formation and gene expression of colonization factors on Enterococcus faecalis. Twelve clinical isolates of E. faecalis were used to investigate the effect of antibiotics on biofilm formation and gene expression of efaA, asa1, ebpA, esp and ace. Flow system assay and Microtiter plates were used for biofilm assay. Two hundred clinical isolates were used for confirming the effect of antibiotics on biofilm formation. Ampicillin, vancomycin and ceftizoxime did not have any significant effect on biofilm formation, but gentamicin induced biofilm formation in 89% of isolates. In twelve selected isolate gentamicin increased expression of esp (+50.9%) and efaA (+33.9%) genes and reduced or maintained expression of others (asa1:-47.4%, ebpA: 0, ace:-19.2%). Vancomycin increased expression of esp (+89.1%) but reduced the others (asa1: -34.9%, ebpA:-11%, ace:-30%, efaA:-60%). Ceftizoxime increased slightly ebpA (+19.7%) and reduced others (asa1:-66.2%, esp:-35%, ace:-28.1%, efaA:-38.4%). and ampicillin strongly increased expression of ace (+231%), esp (+131%) and ebpA (+83%) but reduced others (asa1:-85.5%, efaA:-47.4%). The findings of the present study showed that antibiotics may have a role in biofilm formation and sustainability of enterococci, especially in case of gentamicin. efaA gene may have an important role, especially in antibiotic induced biofilm formation by gentamicin. Experiments with efaA mutants are needed to investigate the exact effect of efaA on biofilm formation with antibiotic induced cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. RNA Sequencing Reveals Differences between the Global Transcriptomes of Salmonella enterica Serovar Enteritidis Strains with High and Low Pathogenicities

    PubMed Central

    2014-01-01

    Salmonella enterica serovar Enteritidis is one of the important causes of bacterial food-borne gastroenteritis worldwide. Field strains of S. Enteritidis are relatively genetically homogeneous; however, they show extensive phenotypic diversity and differences in virulence potential. RNA sequencing (RNA-Seq) was used to characterize differences in the global transcriptome between several genetically similar but phenotypically diverse poultry-associated field strains of S. Enteritidis grown in laboratory medium at avian body temperature (42°C). These S. Enteritidis strains were previously characterized as high-pathogenicity (HP; n = 3) and low-pathogenicity (LP; n = 3) strains based on both in vitro and in vivo virulence assays. Using the negative binomial distribution-based statistical tools edgeR and DESeq, 252 genes were identified as differentially expressed in LP strains compared with their expression in the HP strains (P < 0.05). A majority of genes (235, or 93.2%) showed significantly reduced expression, whereas a few genes (17, or 6.8%) showed increased expression in all LP strains compared with HP strains. LP strains showed a unique transcriptional profile that is characterized by significantly reduced expression of several transcriptional regulators and reduced expression of genes involved in virulence (e.g., Salmonella pathogenicity island 1 [SPI-1], SPI-5, and fimbrial and motility genes) and protection against osmotic, oxidative, and other stresses, such as iron-limiting conditions commonly encountered within the host. Several functionally uncharacterized genes also showed reduced expression. This study provides a first concise view of the global transcriptional differences between field strains of S. Enteritidis with various levels of pathogenicity, providing the basis for future functional characterization of several genes with potential roles in virulence or stress regulation of S. Enteritidis. PMID:24271167

  1. Resveratrol decreases noise-induced cyclooxygenase-2 expression in the rat cochlea.

    PubMed

    Seidman, Michael D; Tang, Wenxue; Bai, Venkatesh Uma; Ahmad, Nadir; Jiang, Hao; Media, Joseph; Patel, Nimisha; Rubin, Cory J; Standring, Robert T

    2013-05-01

    Our previous studies have demonstrated the efficacy of resveratrol, a grape constituent noted for its antioxidant and anti-inflammatory properties, in reducing temporary threshold shifts and decreasing cochlear hair cell damage following noise exposure. This study was designed to identify the potential protective mechanism of resveratrol by measuring its effect on cyclooxygenase-2 (COX-2) protein expression and reactive oxygen species (ROS) formation following noise exposure. Controlled animal intervention study. Otology Laboratory, Henry Ford Health System. Twenty-two healthy male Fischer 344 rats (2-3 months old) were exposed to acoustic trauma of variable duration with or without intervention. An additional 20 healthy male rats were used to study COX-2 expression at different time points during and following treatment of 24 hours of noise exposure. Cochlear harvest was performed at various time intervals for measurement of COX-2 protein expression via Western blot analysis and immunostaining. Peripheral blood was also obtained for ROS analysis using flow cytometry. Acoustic trauma exposure resulted in a progressive up-regulation of COX-2 protein expression, commencing at 8 hours and peaking at 32 hours. Similarly, ROS production increased after noise exposure. However, treatment with resveratrol reduced noise-induced COX-2 expression as well as ROS formation in the blood as compared with the controls. COX-2 levels are induced dramatically following noise exposure. This increased expression may be a potential mechanism of noise-induced hearing loss (NIHL) and a possible mechanism of resveratrol's ability to mitigate NIHL by its ability to reduce COX-2 expression.

  2. Ganoderma lucidum Polysaccharides Reduce Lipopolysaccharide-Induced Interleukin-1β Expression in Cultured Smooth Muscle Cells and in Thoracic Aortas in Mice

    PubMed Central

    Liang, Chan-Jung; Lee, Chiang-Wen; Sung, Hsin-Ching; Chen, Yung-Hsiang; Hsu, Hsien-Yeh; Tseng, Ying-Chin; Li, Chi-Yuan; Wang, Shu-Huei

    2014-01-01

    The expression of inflammatory cytokines on vascular walls is a critical event in vascular diseases and inflammation. The aim of the present study was to examine the effects of an extract of Ganoderma lucidum (Reishi) polysaccharides (EORPs), which is effective against immunological disorders, on interleukin- (IL-) 1β expression by human aortic smooth muscle cells (HASMCs) and the underlying mechanism. The lipopolysaccharide- (LPS-) induced IL-1β expression was significantly reduced when HASMCs were pretreated with EORP by Western blot and immunofluorescent staining. Pretreatment with 10 μg/mL EORP decreased LPS-induced ERK, p38, JNK, and Akt phosphorylation. But the increase in IL-1β expression with LPS treatment was only inhibited by pretreatment with the ERK1/2 inhibitor, while the JNK and p38 inhibitors had no effect. In addition, EORP reduced the phosphorylation and nuclear translocation of nuclear factor- (NF-) κB p65 in LPS-treated HASMCs. Furthermore, in vivo, IL-1β expression was strongly expressed in thoracic aortas in LPS-treated mice. Oral administration of EORP decreased IL-1β expression. The level of IL-1β expression in LPS-treated or in LPS/EORP-treated group was very low and was similar to that of the saline-treated group in toll-like receptor 4-deficient (TLR4−/−) mice. These findings suggest that EORP has the anti-inflammatory property and could prove useful in the prevention of vascular diseases and inflammatory responses. PMID:24723958

  3. Adverse fibrosis in the aging heart depends on signaling between myeloid and mesenchymal cells; role of inflammatory fibroblasts.

    PubMed

    Cieslik, Katarzyna A; Trial, JoAnn; Crawford, Jeffrey R; Taffet, George E; Entman, Mark L

    2014-05-01

    Aging has been associated with adverse fibrosis. Here we formulate a new hypothesis and present new evidence that unresponsiveness of mesenchymal stem cells (MSC) and fibroblasts to transforming growth factor beta (TGF-β), due to reduced expression of TGF-β receptor I (TβRI), provides a foundation for cardiac fibrosis in the aging heart via two mechanisms. 1) TGF-β promotes expression of Nanog, a transcription factor that retains MSC in a primitive state. In MSC derived from the aging heart, Nanog expression is reduced and therefore MSC gradually differentiate and the number of mesenchymal fibroblasts expressing collagen increases. 2) As TGF-β signaling pathway components negatively regulate transcription of monocyte chemoattractant protein-1 (MCP-1), a reduced expression of TβRI prevents aging mesenchymal cells from shutting down their own MCP-1 expression. Elevated MCP-1 levels that originated from MSC attract transendothelial migration of mononuclear leukocytes from blood to the tissue. MCP-1 expressed by mesenchymal fibroblasts promotes further migration of monocytes and T lymphocytes away from the endothelial barrier and supports the monocyte transition into macrophages and finally into myeloid fibroblasts. Both myeloid and mesenchymal fibroblasts contribute to fibrosis in the aging heart via collagen synthesis. This article is part of a Special Issue entitled "Myocyte-Fibroblast Signalling in Myocardium ". © 2013. Published by Elsevier Ltd. All rights reserved.

  4. Downregulation of the expression of mitochondrial electron transport complex genes in autism brains.

    PubMed

    Anitha, Ayyappan; Nakamura, Kazuhiko; Thanseem, Ismail; Matsuzaki, Hideo; Miyachi, Taishi; Tsujii, Masatsugu; Iwata, Yasuhide; Suzuki, Katsuaki; Sugiyama, Toshiro; Mori, Norio

    2013-05-01

    Mitochondrial dysfunction (MtD) and abnormal brain bioenergetics have been implicated in autism, suggesting possible candidate genes in the electron transport chain (ETC). We compared the expression of 84 ETC genes in the post-mortem brains of autism patients and controls. Brain tissues from the anterior cingulate gyrus, motor cortex, and thalamus of autism patients (n = 8) and controls (n = 10) were obtained from Autism Tissue Program, USA. Quantitative real-time PCR arrays were used to quantify gene expression. We observed reduced expression of several ETC genes in autism brains compared to controls. Eleven genes of Complex I, five genes each of Complex III and Complex IV, and seven genes of Complex V showed brain region-specific reduced expression in autism. ATP5A1 (Complex V), ATP5G3 (Complex V) and NDUFA5 (Complex I) showed consistently reduced expression in all the brain regions of autism patients. Upon silencing ATP5A1, the expression of mitogen-activated protein kinase 13 (MAPK13), a p38 MAPK responsive to stress stimuli, was upregulated in HEK 293 cells. This could have been induced by oxidative stress due to impaired ATP synthesis. We report new candidate genes involved in abnormal brain bioenergetics in autism, supporting the hypothesis that mitochondria, critical for neurodevelopment, may play a role in autism. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.

  5. Ethanol-induced changes in Poly (ADP ribose) Polymerase and neuronal developmental gene expression

    PubMed Central

    Gavin, David P.; Kusumo, Handojo; Sharma, Rajiv P.; Guizzetti, Marina

    2016-01-01

    Prenatal alcohol exposure has profound effects on neuronal growth and development. Poly-ADP Ribose Polymerase (PARP) enzymes are perhaps unique in the field of epigenetics in that they directly participate in histone modifications, transcription factor modifications, DNA methylation/demethylation and are highly inducible by ethanol. It was our hypothesis that ethanol would induce PARP enzymatic activity leading to alterations in neurodevelopmental gene expression. Mouse E18 cortical neurons were treated with ethanol, PARP inhibitors, and nuclear hormone receptor transcription factor PPARγ agonists and antagonists. Subsequently, we measured PARP activity and changes in Bdnf, OKSM (Oct4, Klf4, Sox2, c-Myc), DNA methylating/demethylating factors, and Pparγ mRNA expression, promoter 5-methylcytosine (5MC) and 5-hydroxymethylcytosine (5HMC), and PPARγ promoter binding. We found that ethanol reduced Bdnf4, 9a, and Klf4 mRNA expression, and increased c-Myc expression. These changes were reversed with a PARP inhibitor. In agreement with its role in DNA demethylation PARP inhibition increased 5MC levels at the c-Myc promoter. In addition, we found that elevated PARP enzymatic activity reduced PPARγ promoter binding, and this corresponded to decreased Bdnf and Klf4 mRNA expression. Our results suggest that PARP participates in DNA demethylation and reduces PPARγ promoter binding. The current study underscores the importance of PARP in ethanol-induced changes to neurodevelopmental gene expression. PMID:27497606

  6. Gene Expression-Genotype Analysis Implicates GSDMA, GSDMB, and LRRC3C as Contributors to Inflammatory Bowel Disease Susceptibility.

    PubMed

    Söderman, Jan; Berglind, Linda; Almer, Sven

    2015-01-01

    To investigate the biological foundation of the inflammatory bowel disease (IBD), ulcerative colitis and Crohn's disease, susceptibility locus rs2872507, we have investigated the expression of 13 genes using ileal and colonic biopsies from patients with IBD (inflamed and noninflamed mucosa) or from individuals without IBD (noninflamed mucosa). The susceptibility allele was consistently associated with reduced expression of GSDMB (P = 4.1 × 10(-3)-7.2 × 10(-10)). The susceptibility allele was also associated with the increased expression of GSDMA (P = 1.6 × 10(-4)) and LRRC3C (P = 7.8 × 10(-6)) in colon tissue from individuals without IBD and with the reduced expression of PGAP3 (IBD; P = 2.0 × 10(-3)) and ZPBP2 (Crohn's disease; P = 7.7 × 10(-4)) in noninflamed ileum. Inflammation resulted in the reduced colonic expression of ERBB2, GRB7, MIEN1, and PGAP3 (P = 1.0 × 10(-4)-1.0 × 10(-9)) and the increased colonic expression of IKZF3 and CSF3 (P = 2.4 × 10(-7)-3.5 × 10(-8)). Based on our results and published findings on GSDMA, GSDMB, LRRC3C, and related proteins, we propose that this locus in part affects IBD susceptibility via effects on apoptosis and cell proliferation and believe this hypothesis warrants further experimental investigation.

  7. Prostaglandin E1 reduces the glomerular mRNA expression of monocyte-chemoattractant protein 1 in anti-thymocyte antibody-induced glomerular injury.

    PubMed

    Jocks, T; Zahner, G; Freudenberg, J; Wolf, G; Thaiss, F; Helmchen, U; Stahl, R A

    1996-06-01

    To study whether prostaglandins (PG) can regulate the mRNA expression of monocyte-chemoattractant protein 1 (MCP-1) in glomerular immune injury, MCP-1 mRNA levels were evaluated in anti-thymocyte antibody (ATS) -induced glomerular injury by Northern blotting and reverse transcription-polymerase chain reaction. Immune injury was induced in vivo by the intravenous application of ATS to male Wistar rats and in vitro by the perfusion of isolated rat kidneys with ATS and rat serum. In vivo 3 h and 5 days after antibody application, glomerular mRNA expression of MCP-1 was markedly enhanced compared with controls. In the isolated perfused kidney, antibody and complement also induced an increase in MCP-1 expression at 10 min and 60 min after antibody perfusion. When the rats were treated with PGE (250 micrograms, twice daily), the increase in MCP-1 expression was reduced. This was associated with a reduction of intraglomerular recruitment of monocytes/macrophages. In the isolated perfused kidneys, PGE1 (1 mg/L) prevented the antibody- and rat serum-stimulated increase in glomerular MCP-1 mRNA expression. These data demonstrate that PGE1 reduces glomerular MCP-1 mRNA expression in glomerulonephritis and in the isolated perfused rat kidney after induction of immune injury with antibody and complement. The data suggest that prostaglandins might mediate MCP-1 effects in glomerular immune injuries.

  8. Morphometric analysis of the cerebral expression of ATP-binding cassette transporter protein ABCB1 in chronic schizophrenia: Circumscribed deficits in the habenula.

    PubMed

    Bernstein, Hans-Gert; Hildebrandt, Jens; Dobrowolny, Henrik; Steiner, Johann; Bogerts, Bernhard; Pahnke, Jens

    2016-11-01

    There is increasing evidence that microvascular abnormalities and malfunction of the blood-brain barrier (BBB) significantly contribute to schizophrenia pathophysiology. The ATP-binding cassette transporter ABCB1 is an important molecular component of the intact BBB, which has been implicated in a number of neurodegenerative and psychiatric disorders, including schizophrenia. However, the regional and cellular expression of ABCB1 in schizophrenia is yet unexplored. Therefore, we studied ABCB1 protein expression immunohistochemically in twelve human post-mortem brain regions known to play a role in schizophrenia, in 13 patients with schizophrenia and nine controls. In ten out of twelve brain regions under study, no significant differences were found with regard to the numerical density of ABCB1-expressing capillaries between all patients with schizophrenia and control cases. The left and right habenular complex, however, showed significantly reduced capillary densities in schizophrenia patients. In addition, we found a significantly reduced density of ABCB1-expressing neurons in the left habenula. Reduced ABCB1 expression in habenular capillaries might contribute to increased brain levels of proinflammatory cytokines in patients with schizophrenia, while decreased expression of this protein in a subpopulation of medial habenular neurons (which are probably purinergic) might be related to abnormalities of purines and their receptors found in this disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Expression of the pituitary transcription factor Ptx-1, but not that of the trans-activating factor prop-1, is reduced in human corticotroph adenomas and is associated with decreased alpha-subunit secretion.

    PubMed

    Skelly, R H; Korbonits, M; Grossman, A; Besser, G M; Monson, J P; Geddes, J F; Burrin, J M

    2000-07-01

    We have studied the expression of the pituitary transcription factors Ptx-1 and Prop-1 in a series of 34 pituitary adenomas fully characterized for in vitro hormone secretion and histological staining. In studies involving mammalian cell lines, the pituitary transcription factor Ptx-1 has been shown to be a pituitary hormone panactivator, whereas more recent studies have shown that it plays an important role in alpha-subunit gene expression. Its expression has not been examined previously in human pituitary adenomas characterized by in vitro hormone secretory profiles. Of the 34 pituitary adenomas studied, Ptx-1 expression was reduced by more than 50% compared to that of the housekeeping gene human glyceraldehyde-3-phosphate dehydrogenase in the 6 corticotroph adenomas, which also had significantly reduced alpha-subunit production (all 6 tumors secreting < or =0.5 ng/24 h). Mutations of the pituitary transcription factor Prop-1, which is responsible for the syndrome of Ames dwarfism in mice, are being increasingly recognized as a cause of combined pituitary hormone deficiency in humans, although ACTH deficiency has been described only once. Prop-1 expression was detected in all 34 pituitary adenomas, including 6 corticotroph adenomas and 5 gonadotroph adenomas. The expression of Prop-1 has not been described previously in these cell phenotypes.

  10. Constitutive IDO expression in human cancer is sustained by an autocrine signaling loop involving IL-6, STAT3 and the AHR

    PubMed Central

    Sahm, Felix; Rauschenbach, Katharina J.; Trump, Saskia; Winter, Marcus; Ott, Martina; Ochs, Katharina; Lutz, Christian; Liu, Xiangdong; Anastasov, Natasa; Lehmann, Irina; Höfer, Thomas; von Deimling, Andreas; Wick, Wolfgang; Platten, Michael

    2014-01-01

    Indoleamine-2,3-dioxygenase (IDO) inhibitors have entered clinical trials based on their ability to restore anti-tumor immunity in preclinical studies. However, the mechanisms leading to constitutive expression of IDO in human tumors are largely unknown. Here we analyzed the pathways mediating constitutive IDO expression in human cancer. IDO-positive tumor cells and tissues showed basal phosphorylation and acetylation of STAT3 as evidenced by western blotting and immunoprecipitation. Inhibition of IL-6 or STAT3 using siRNA and/or pharmacological inhibitors reduced IDO mRNA and protein expression as well as kynurenine formation. In turn, IDO enzymatic activity activated the AHR as shown by the induction of AHR target genes. IDO-mediated AHR activation induced IL-6 expression, while inhibition or knockdown of the AHR reduced IL-6 expression. IDO activity thus sustains its own expression via an autocrine AHR–IL-6–STAT3 signaling loop. Inhibition of the AHR–IL-6–STAT3 signaling loop restored T-cell proliferation in mixed leukocyte reactions performed in the presence of IDO-expressing human cancer cells. Identification of the IDO-AHR-IL-6-STAT3 signaling loop maintaining IDO expression in human cancers reveals novel therapeutic targets for the inhibition of this core pathway promoting immunosuppression of human cancers. The relevance of the IDO-AHR-IL-6-STAT3 transcriptional circuit is underscored by the finding that high expression of its members IDO, STAT3 and the AHR target gene CYP1B1 is associated with reduced relapse-free survival in lung cancer patients. PMID:24657910

  11. Reduced microRNA-188-3p expression contributes to apoptosis of spermatogenic cells in patients with azoospermia.

    PubMed

    Song, Wen-Yan; Meng, Hui; Wang, Xue-Gai; Jin, Hai-Xia; Yao, Gui-Dong; Shi, Sen-Lin; Wu, Liang; Zhang, Xiang-Yang; Sun, Ying-Pu

    2017-02-01

    Human mutL homologl (MLH1) works coordinately in sequential steps to initiate repair of DNA mismatches, and aberrant MLH1 expression is related to spermatogenetic malfunction. In the present study, MLH1 expression in patients with azoospermia was investigated, and moderating effects of miR-188-3p on MLH1 expression and spermatogenesis were identified. Testicular tissues from 16 patients with obstructive azoospermia (OA) and non-obstructive azoospermia (NOA), and tissues of eight healthy patients were collected. Real-time PCR, Western blotting and immunohistochemical staining were used to detect MLH1 expression. Chromatin immunoprecipitation assay and luciferase reporter assay were performed to evaluate histone acetylation level of miR-188-3p and relationships between miR-188-3p and MLH1. Testicular MLH1 expression at mRNA and protein levels was significantly increased, while miR-188-3p expression was lower in patients with OA and NOA than that in controls. Reduced histone acetylation level of miR-188-3p promoter was observed in patients with azoospermia. Overexpression/inhibition of HDAC1, but not HDAC2, contributed to the significant reduction/increase of miR-188-3p expression. miR-188-3p targeted 3' UTR of MLH1 and regulated MLH1 expression. miR-188-3p inhibitor led to elevation of apoptotic level of spermatogenic cells in mice, while this effect was reversed by si-MLH1. Down-regulation of miR-188-3p by reducing histone acetylation up-regulated MLH1 expression and contributed to promotion of apoptosis in spermatogenic cells, in patients with azoospermia. © 2016 John Wiley & Sons Ltd.

  12. HDM2 promotes WIP1-mediated medulloblastoma growth

    PubMed Central

    Buss, Meghan C.; Read, Tracy-Ann; Schniederjan, Matthew J.; Gandhi, Khanjan; Castellino, Robert C.

    2012-01-01

    Medulloblastoma is the most common malignant childhood brain tumor. The protein phosphatase and oncogene WIP1 is over-expressed or amplified in a significant number of primary human medulloblastomas and cell lines. In the present study, we examine an important mechanism by which WIP1 promotes medulloblastoma growth using in vitro and in vivo models. Human cell lines and intracerebellar xenografted animal models were used to study the role of WIP1 and the major TP53 regulator, HDM2, in medulloblastoma growth. Stable expression of WIP1 enhances growth of TP53 wild-type medulloblastoma cells, compared with cells with stable expression of an empty-vector or mutant WIP1. In an animal model, WIP1 enhances proliferation and reduces the survival of immunodeficient mice bearing intracerebellar xenografted human medulloblastoma cells. Cells with increased WIP1 expression also exhibit increased expression of HDM2. HDM2 knockdown or treatment with the HDM2 inhibitor Nutlin-3a, the active enantomer of Nutlin-3, specifically inhibits the growth of medulloblastoma cells with increased WIP1 expression. Nutlin-3a does not affect growth of medulloblastoma cells with stable expression of an empty vector or of mutant WIP1. Knockdown of WIP1 or treatment with the WIP1 inhibitor CCT007093 results in increased phosphorylation of known WIP1 targets, reduced HDM2 expression, and reduced growth specifically in WIP1 wild-type and high-expressing medulloblastoma cells. Combined WIP1 and HDM2 inhibition is more effective than WIP1 inhibition alone in blocking growth of WIP1 high-expressing medulloblastoma cells. Our preclinical study supports a role for therapies that target WIP1 and HDM2 in the treatment of medulloblastoma. PMID:22379189

  13. Neuropeptide Y as a possible homeostatic element for changes in cortical excitability induced by repetitive transcranial magnetic stimulation.

    PubMed

    Jazmati, Danny; Neubacher, Ute; Funke, Klaus

    2018-02-24

    Repetitive transcranial magnetic stimulation (rTMS) is able to modify cortical excitability. Rat rTMS studies revealed a modulation of inhibitory systems, in particular that of the parvalbumin-expressing (PV+) interneurons, when using intermittent theta-burst stimulation (iTBS). The potential disinhibitory action of iTBS raises the questions of how neocortical circuits stabilize excitatory-inhibitory balance within a physiological range. Neuropeptide Y (NPY) appears to be one candidate. Analysis of cortical expression of PV, NPY and vesicular glutamate transporter type 1 (vGluT1) by immunohistochemical means at the level of cell counts, mean neuropil expression and single cell pre-/postsynaptic expression, with and without intraventricular NPY-injection. Our results show that iTBS not only reduced the number of neurons with high-PV expression in a dose-dependent fashion, but also increased the cortical expression of NPY, discussed to reduce glutamatergic transmission, and this was further associated with a reduced vGluT1 expression, an indicator of glutamateric presynaptic activity. Interneurons showing a low-PV expression exhibit less presynaptic vGluT1 expression compared to those with a high-PV expression. Intraventricular application of NPY prior to iTBS prevented the iTBS-induced reduction in the number of high-PV neurons, the reduction in tissue vGluT1 level and that presynaptic to high-PV cells. We conclude that NPY, possibly via a global but also slow homeostatic control of glutamatergic transmission, modulates the strength and direction of the iTBS effects, likely preventing pathological imbalance of excitatory and inhibitory cortical activity but still allowing enough disinhibition beneficial for plastic changes as during learning. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. The gut microbiota reduces leptin sensitivity and the expression of the obesity-suppressing neuropeptides proglucagon (Gcg) and brain-derived neurotrophic factor (Bdnf) in the central nervous system.

    PubMed

    Schéle, Erik; Grahnemo, Louise; Anesten, Fredrik; Hallén, Anna; Bäckhed, Fredrik; Jansson, John-Olov

    2013-10-01

    The gut microbiota contributes to fat mass and the susceptibility to obesity. However, the underlying mechanisms are not completely understood. To investigate whether the gut microbiota affects hypothalamic and brainstem body fat-regulating circuits, we compared gene expression of food intake-regulating neuropeptides between germ-free and conventionally raised (CONV-R) mice. We found that CONV-R mice had decreased expression of the antiobesity neuropeptide glucagon-like peptide-1 (GLP-1) precursor proglucagon (Gcg) in the brainstem. Moreover, in both the hypothalamus and the brainstem, CONV-R mice had decreased expression of the antiobesity neuropeptide brain-derived neurotrophic factor (Bdnf). CONV-R mice had reduced expression of the pro-obesity peptides neuropeptide-Y (Npy) and agouti-related protein (Agrp), and increased expression of the antiobesity peptides proopiomelanocortin (Pomc) and cocaine- and amphetamine-regulated transcript (Cart) in the hypothalamus. The latter changes in neuropeptide expression could be secondary to elevated fat mass in CONV-R mice. Leptin treatment caused less weight reduction and less suppression of orexigenic Npy and Agrp expression in CONV-R mice compared with germ-free mice. The hypothalamic expression of leptin resistance-associated suppressor of cytokine signaling 3 (Socs-3) was increased in CONV-R mice. In conclusion, the gut microbiota reduces the expression of 2 genes coding for body fat-suppressing neuropeptides, Gcg and Bdnf, an alteration that may contribute to fat mass induction by the gut microbiota. Moreover, the presence of body fat-inducing gut microbiota is associated with hypothalamic signs of Socs-3-mediated leptin resistance, which may be linked to failed compensatory body fat reduction.

  15. Valsartan Upregulates Kir2.1 in Rats Suffering from Myocardial Infarction via Casein Kinase 2.

    PubMed

    Li, Xinran; Hu, Hesheng; Wang, Ye; Xue, Mei; Li, Xiaolu; Cheng, Wenjuan; Xuan, Yongli; Yin, Jie; Yang, Na; Yan, Suhua

    2015-06-01

    Myocardial infarction (MI) results in an increased susceptibility to ventricular arrhythmias, due in part to decreased inward-rectifier K+ current (IK1), which is mediated primarily by the Kir2.1 protein. The use of renin-angiotensin-aldosterone system antagonists is associated with a reduced incidence of ventricular arrhythmias. Casein kinase 2 (CK2) binds and phosphorylates SP1, a transcription factor of KCNJ2 that encodes Kir2.1. Whether valsartan represses CK2 activation to ameliorate IK1 remodeling following MI remains unclear. Wistar rats suffering from MI received either valsartan or saline for 7 days. The protein levels of CK2 and Kir2.1 were each detected via a Western blot analysis. The mRNA levels of CK2 and Kir2.1 were each examined via quantitative real-time PCR. CK2 expression was higher at the infarct border; and was accompanied by a depressed IK1/Kir2.1 protein level. Additionally, CK2 overexpression suppressed KCNJ2/Kir2.1 expression. By contrast, CK2 inhibition enhanced KCNJ2/Kir2.1 expression, establishing that CK2 regulates KCNJ2 expression. Among the rats suffering from MI, valsartan reduced CK2 expression and increased Kir2.1 expression compared with the rats that received saline treatment. In vitro, hypoxia increased CK2 expression and valsartan inhibited CK2 expression. The over-expression of CK2 in cells treated with valsartan abrogated its beneficial effect on KCNJ2/Kir2.1. AT1 receptor antagonist valsartan reduces CK2 activation, increases Kir2.1 expression and thereby ameliorates IK1 remodeling after MI in the rat model.

  16. Characterization of GAB1 Expression Over the Menstrual Cycle in Women With and Without Polycystic Ovarian Syndrome Provides a New Insight Into Its Pathophysiology

    PubMed Central

    Roemer, K. L.; Young, S. L.

    2014-01-01

    Context: In a previous microarray analysis, GRB2-associated binding protein 1 (GAB1), a docking protein closely related to the insulin receptor substrate, was down-regulated in endometrium of women with polycystic ovary syndrome (PCOS). Objective: The objective of the study was to characterize the cyclic expression of endometrial GAB1 in vivo in normal women and those with PCOS as well as investigate the possible mechanisms of endometrial regulation of GAB1 expression and action in vitro. Design: This was an experimental and case-control study. Setting: The study was conducted at a tertiary university hospital. Patients: Normal proven fertile women (controls; n = 31) and women with PCOS (cases; n = 26) participated in the study. Interventions: Interventions included timed endometrial biopsies at different phases of the menstrual cycle. Ishikawa cells were cultured with β-estradiol (E2), medroxyprogesterone acetate, and E2 + medroxyprogesterone acetate. Transfection of small interfering RNA for GAB1 in Ishikawa cells incubated with or without insulin. Main Outcome Measures: GAB1 mRNA expression in Ishikawa cells and in endometrium of cases and controls was measured. Protein expression of phosphorylated MAPK by Western blot was also measured. Immunohistochemical localization and expression of phosphorylated GAB1 in endometrium was also measured, using a digital histological score. Results: In endometrial tissue, GAB1 mRNA was reduced in the proliferative phase of PCOS women, compared with controls (P = .003; ANOVA). When all the phases of the menstrual cycle were grouped, GAB1 protein expression was reduced in endometrium of PCOS women (P < .0001; Student t test). E2 increases GAB1 mRNA expression in Ishikawa cells (P = .001; ANOVA). Phosphorylated MAPK is reduced in cells transfected with small interfering RNA for GAB1 (P = .008; ANOVA) and incubated with insulin. Conclusions: GAB1 mRNA expression is positively modulated by E2. Endometrial GAB1 protein and mRNA expression are reduced in women with PCOS, suggesting that the endometrium of PCOS women have a defect in insulin signaling due to GAB1 down-regulation. PMID:25144631

  17. hCG-induced endoplasmic reticulum stress triggers apoptosis and reduces steroidogenic enzyme expression through activating transcription factor 6 in Leydig cells of the testis

    PubMed Central

    Park, Sun-Ji; Kim, Tae-Shin; Park, Choon-Keun; Lee, Sang-Hee; Kim, Jin-Man; Lee, Kyu-Sun; Lee, In-kyu; Park, Jeen-Woo; Lawson, Mark A; Lee, Dong-Seok

    2014-01-01

    Endoplasmic reticulum (ER) stress generally occurs in secretory cell types. It has been reported that Leydig cells, which produce testosterone in response to human chorionic gonadotropin (hCG), express key steroidogenic enzymes for the regulation of testosterone synthesis. In this study, we analyzed whether hCG induces ER stress via three unfolded protein response (UPR) pathways in mouse Leydig tumor (mLTC-1) cells and the testis. Treatment with hCG induced ER stress in mLTC-1 cells via the ATF6, IRE1a/XBP1, and eIF2α/GADD34/ATF4 UPR pathways, and transient expression of 50 kDa protein activating transcription factor 6 (p50ATF6) reduced the expression level of steroidogenic 3β-hydroxy-steroid dehydrogenase Δ5-Δ4-isomerase (3β-HSD) enzyme. In an in vivo model, high-level hCG treatment induced expression of p50ATF6 while that of steroidogenic enzymes, especially 3β-HSD, 17α-hydroxylase/C17–20 lyase (CYP17), and 17β-hydrozysteroid dehydrogenase (17β-HSD), was reduced. Expression levels of steroidogenic enzymes were restored by the ER stress inhibitor tauroursodeoxycholic acid (TUDCA). Furthermore, lentivirus-mediated transient expression of p50ATF6 reduced the expression level of 3β-HSD in the testis. Protein expression levels of phospho-JNK, CHOP, and cleaved caspases-12 and -3 as markers of ER stress-mediated apoptosis markedly increased in response to high-level hCG treatment in mLTC-1 cells and the testis. Based on transmission electron microscopy and H&E staining of the testis, it was shown that abnormal ER morphology and destruction of testicular histology induced by high-level hCG treatment were reversed by the addition of TUDCA. These findings suggest that hCG-induced ER stress plays important roles in steroidogenic enzyme expression via modulation of the ATF6 pathway as well as ER stress-mediated apoptosis in Leydig cells. PMID:23256993

  18. Cellular antioxidant effects of atorvastatin in vitro and in vivo.

    PubMed

    Wassmann, Sven; Laufs, Ulrich; Müller, Kirsten; Konkol, Christian; Ahlbory, Katja; Bäumer, Anselm T; Linz, Wolfgang; Böhm, Michael; Nickenig, Georg

    2002-02-01

    3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) may exert direct effects on vascular cells and beneficially influence endothelial dysfunction. Because reactive oxygen species (ROS) may lead to vascular damage and dysfunction, we investigated the effect of atorvastatin on ROS production and the underlying mechanisms in vitro and in vivo. Cultured rat aortic vascular smooth muscle cells were incubated with 10 micromol/L atorvastatin. Angiotensin II-induced and epidermal growth factor-induced ROS production were significantly reduced by atorvastatin (dichlorofluorescein fluorescence laser microscopy). Atorvastatin downregulated mRNA expression of the NAD(P)H oxidase subunit nox1, whereas p22phox mRNA expression was not significantly altered (reverse transcription-polymerase chain reaction, Northern analysis). Membrane translocation of rac1 GTPase, which is required for the activation of NAD(P)H oxidase, was inhibited by atorvastatin (Western blot). mRNA expression of superoxide dismutase isoforms and glutathione peroxidase was not modified by atorvastatin, whereas catalase expression was upregulated at mRNA and protein levels, resulting in an increased enzymatic activity. Effects of atorvastatin on ROS production and nox1, rac1, and catalase expression were inhibited by L-mevalonate but not by 25-hydroxycholesterol. In addition, spontaneously hypertensive rats were treated with atorvastatin for 30 days. ROS production in aortic segments was significantly reduced in statin-treated rats (lucigenin chemiluminescence). Treatment with atorvastatin reduced vascular mRNA expression of p22phox and nox1 and increased aortic catalase expression. mRNA expression of superoxide dismutases, glutathione peroxidase, and NAD(P)H oxidase subunits gp91phox, p40phox, p47phox, and p67phox remained unchanged. Translocation of rac1 from the cytosol to the cell membrane was also reduced in vivo. Thus, atorvastatin exerts cellular antioxidant effects in cultured rat vascular smooth muscle cells and in the vasculature of spontaneously hypertensive rats mediated by decreased expression of essential NAD(P)H oxidase subunits and by upregulation of catalase expression. These effects of atorvastatin may contribute to the vasoprotective effects of statins.

  19. Thalidomide Reduces Hemorrhage of Brain Arteriovenous Malformations in a Mouse Model.

    PubMed

    Zhu, Wan; Chen, Wanqiu; Zou, Dingquan; Wang, Liang; Bao, Chen; Zhan, Lei; Saw, Daniel; Wang, Sen; Winkler, Ethan; Li, Zhengxi; Zhang, Meng; Shen, Fanxia; Shaligram, Sonali; Lawton, Michael; Su, Hua

    2018-05-01

    Brain arteriovenous malformation (bAVM) is an important risk factor for intracranial hemorrhage. Current treatments for bAVM are all associated with considerable risks. There is no safe method to prevent bAVM hemorrhage. Thalidomide reduces nose bleeding in patients with hereditary hemorrhagic telangiectasia, an inherited disorder characterized by vascular malformations. In this study, we tested whether thalidomide and its less toxic analog, lenalidomide, reduce bAVM hemorrhage using a mouse model. bAVMs were induced through induction of brain focal activin-like kinase 1 ( Alk1 , an AVM causative gene) gene deletion and angiogenesis in adult Alk1 -floxed mice. Thalidomide was injected intraperitoneally twice per week for 6 weeks, starting either 2 or 8 weeks after AVM induction. Lenalidomide was injected intraperitoneally daily starting 8 weeks after AVM induction for 6 weeks. Brain samples were collected at the end of the treatments for morphology, mRNA, and protein analyses. The influence of Alk1 downregulation on PDGFB (platelet-derived growth factor B) expression was also studied on cultured human brain microvascular endothelial cells. The effect of PDGFB in mural cell recruitment in bAVM was explored by injection of a PDGFB overexpressing lentiviral vector to the mouse brain. Thalidomide or lenalidomide treatment reduced the number of dysplastic vessels and hemorrhage and increased mural cell (vascular smooth muscle cells and pericytes) coverage in the bAVM lesion. Thalidomide reduced the burden of CD68 + cells and the expression of inflammatory cytokines in the bAVM lesions. PDGFB expression was reduced in ALK1-knockdown human brain microvascular endothelial cells and in mouse bAVM lesion. Thalidomide increased Pdgfb expression in bAVM lesion. Overexpression of PDGFB mimicked the effect of thalidomide. Thalidomide and lenalidomide improve mural cell coverage of bAVM vessels and reduce bAVM hemorrhage, which is likely through upregulation of Pdgfb expression. © 2018 American Heart Association, Inc.

  20. Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mercado, Nicolas; Thimmulappa, Rajesh; Thomas, Catherine M.R.

    2011-03-11

    Research highlights: {yields} Nrf2 anti-oxidant function is impaired when HDAC activity is inhibited. {yields} HDAC inhibition decreases Nrf2 protein stability. {yields} HDAC2 is involved in reduced Nrf2 stability and both correlate in COPD samples. {yields} HDAC inhibition increases Nrf2 acetylation. -- Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a crucial role in cellular defence against oxidative stress by inducing the expression of multiple anti-oxidant genes. However, where high levels of oxidative stress are observed, such as chronic obstructive pulmonary disease (COPD), Nrf2 activity is reduced, although the molecular mechanism for this defect is uncertain. Here, we show thatmore » down-regulation of histone deacetylase (HDAC) 2 causes Nrf2 instability, resulting in reduced anti-oxidant gene expression and increase sensitivity to oxidative stress. Although Nrf2 protein was clearly stabilized after hydrogen peroxide (H{sub 2}O{sub 2}) stimulation in a bronchial epithelial cell line (BEAS2B), Nrf2 stability was decreased and Nrf2 acetylation increased in the presence of an HDAC inhibitor, trichostatin A (TSA). TSA also reduced Nrf2-regulated heme-oxygenase-1 (HO-1) expression in these cells, and this was confirmed in acute cigarette-smoke exposed mice in vivo. HDAC2 knock-down by RNA interference resulted in reduced H{sub 2}O{sub 2}-induced Nrf2 protein stability and activity in BEAS2B cells, whereas HDAC1 knockdown had no effect. Furthermore, monocyte-derived macrophages obtained from healthy volunteers (non-smokers and smokers) and COPD patients showed a significant correlation between HDAC2 expression and Nrf2 expression (r = 0.92, p < 0.0001). Thus, reduced HDAC2 activity in COPD may account for increased Nrf2 acetylation, reduced Nrf2 stability and impaired anti oxidant defences.« less

  1. Using the Positive and Negative Syndrome Scale (PANSS) to Define Different Domains of Negative Symptoms: Prediction of Everyday Functioning by Impairments in Emotional Expression and Emotional Experience.

    PubMed

    Harvey, Philip D; Khan, Anzalee; Keefe, Richard S E

    2017-12-01

    Background: Reduced emotional experience and expression are two domains of negative symptoms. The authors assessed these two domains of negative symptoms using previously developed Positive and Negative Syndrome Scale (PANSS) factors. Using an existing dataset, the authors predicted three different elements of everyday functioning (social, vocational, and everyday activities) with these two factors, as well as with performance on measures of functional capacity. Methods: A large (n=630) sample of people with schizophrenia was used as the data source of this study. Using regression analyses, the authors predicted the three different aspects of everyday functioning, first with just the two Positive and Negative Syndrome Scale factors and then with a global negative symptom factor. Finally, we added neurocognitive performance and functional capacity as predictors. Results: The Positive and Negative Syndrome Scale reduced emotional experience factor accounted for 21 percent of the variance in everyday social functioning, while reduced emotional expression accounted for no variance. The total Positive and Negative Syndrome Scale negative symptom factor accounted for less variance (19%) than the reduced experience factor alone. The Positive and Negative Syndrome Scale expression factor accounted for, at most, one percent of the variance in any of the functional outcomes, with or without the addition of other predictors. Implications: Reduced emotional experience measured with the Positive and Negative Syndrome Scale, often referred to as "avolition and anhedonia," specifically predicted impairments in social outcomes. Further, reduced experience predicted social impairments better than emotional expression or the total Positive and Negative Syndrome Scale negative symptom factor. In this cross-sectional study, reduced emotional experience was specifically related with social outcomes, accounting for essentially no variance in work or everyday activities, and being the sole meaningful predictor of impairment in social outcomes.

  2. Prebiotic oligosaccharides reduce proinflammatory cytokines in intestinal Caco-2 cells via activation of PPARγ and peptidoglycan recognition protein 3.

    PubMed

    Zenhom, Marwa; Hyder, Ayman; de Vrese, Michael; Heller, Knut J; Roeder, Thomas; Schrezenmeir, Jürgen

    2011-05-01

    Prebiotic oligosaccharides modulate the intestinal microbiota and beneficially affect the human body by reducing intestinal inflammation. This immunomodulatory effect was assumed to be bacterial in origin. However, some observations suggest that oligosaccharides may exert an antiinflammatory effect per se. We hypothesized that oligosaccharides affect the intestinal immunity via activation of peptidoglycan recognition protein 3 (PGlyRP3), which reduces the expression of proinflammatory cytokines. Caco-2 cells were treated with the oligosaccharides, α3-sialyllactose, or fructooligosaccharides (Raftilose p95), and the effects of these treatments on PGlyRP3 and PPARγ expression, the release and expression of some proinflammatory cytokines, and NF-κB translocation were tested. Both oligosaccharides had antiinflammatory activity; they significantly reduced IL-12 secretion in Caco-2 cells and gene expression of IL-12p35, IL-8, and TNFα. They also reduced the gene expression and nuclear translocation of NF-κB. Both oligosaccharides dose and time dependently induced the production of PGlyRP3, the silencing of which by transfection of Caco-2 cells with specific small interfering RNA targeting PGlyRP3 abolished the antiinflammatory role of both oligosaccharides. Incubation of Caco-2 cells with both oligosaccharides induced PPARγ. Antagonizing PPARγ by culturing the cells with GW9662 for 24 h inhibited the oligosaccharide-induced PGlyRP3 production and the antiinflammatory effect of the oligosaccharides. We conclude that oligosaccharides may exert an antiinflammatory effect by inducing the nuclear receptor PPARγ, which regulates the antiinflammatory PGlyRP3.

  3. Reduced Expression of CD45 Protein-tyrosine Phosphatase Provides Protection against Anthrax Pathogenesis*S⃞

    PubMed Central

    Panchal, Rekha G.; Ulrich, Ricky L.; Bradfute, Steven B.; Lane, Douglas; Ruthel, Gordon; Kenny, Tara A.; Iversen, Patrick L.; Anderson, Arthur O.; Gussio, Rick; Raschke, William C.; Bavari, Sina

    2009-01-01

    The modulation of cellular processes by small molecule inhibitors, gene inactivation, or targeted knockdown strategies combined with phenotypic screens are powerful approaches to delineate complex cellular pathways and to identify key players involved in disease pathogenesis. Using chemical genetic screening, we tested a library of known phosphatase inhibitors and identified several compounds that protected Bacillus anthracis infected macrophages from cell death. The most potent compound was assayed against a panel of sixteen different phosphatases of which CD45 was found to be most sensitive to inhibition. Testing of a known CD45 inhibitor and antisense phosphorodiamidate morpholino oligomers targeting CD45 also protected B. anthracis-infected macrophages from cell death. However, reduced CD45 expression did not protect anthrax lethal toxin (LT) treated macrophages, suggesting that the pathogen and independently added LT may signal through distinct pathways. Subsequent, in vivo studies with both gene-targeted knockdown of CD45 and genetically engineered mice expressing reduced levels of CD45 resulted in protection of mice after infection with the virulent Ames B. anthracis. Intermediate levels of CD45 expression were critical for the protection, as mice expressing normal levels of CD45 or disrupted CD45 phosphatase activity or no CD45 all succumbed to this pathogen. Mechanism-based studies suggest that the protection provided by reduced CD45 levels results from regulated immune cell homeostasis that may diminish the impact of apoptosis during the infection. To date, this is the first report demonstrating that reduced levels of host phosphatase CD45 modulate anthrax pathogenesis. PMID:19269962

  4. Interactions between neutral endopeptidase (EC 3.4.24.11) and the substance P (NK1) receptor expressed in mammalian cells.

    PubMed

    Okamoto, A; Lovett, M; Payan, D G; Bunnett, N W

    1994-05-01

    Interactions between neutral endopeptidase-24.11 (NEP) and the substance P receptor (SPR; NK1) were investigated by examining substance P (SP) degradation, SP binding and SP-induced Ca2+ mobilization in epithelial cells transfected with cDNA encoding the rat SPR and rat NEP. Expression of NEP accelerated the degradation of SP by intact epithelial cells and by membrane preparations, and degradation was reduced by the NEP inhibitor thiorphan. In cells expressing SPR alone, specific 125I-SP binding after 20 min incubation at 37 degrees C was 92.2 +/- 3.1% of maximal binding and was unaffected by thiorphan. Coexpression of NEP in the same cells as the SPR markedly reduced SP binding to 13.9 +/- 0.5% of maximal, and binding was increased to 82.7 +/- 2.4% of maximal with thiorphan. Coexpression of NEP in the same cells as the SPR also reduced to undetectable the increase in intracellular Ca2+ in response to low concentrations of SP (0.3 and 0.5 nM), and significantly reduced the response to higher concentrations (1 and 3 nM). The Ca2+ response was restored to control values by inhibition of NEP with thiorphan. In contrast, SP binding and SP-induced Ca2+ mobilization were only slightly reduced when cells expressing SPR alone were mixed with a 3- to 24-fold excess of cells expressing NEP alone. Therefore, in this system, NEP markedly down-regulates SP binding and SP-induced Ca2+ mobilization only when coexpressed in the same cells as the SPR.

  5. Reduced Chrna7 expression in mice is associated with decreases in hippocampal markers of inhibitory function: implications for neuropsychiatric diseases.

    PubMed

    Adams, C E; Yonchek, J C; Schulz, K M; Graw, S L; Stitzel, J; Teschke, P U; Stevens, K E

    2012-04-05

    The α7* nicotinic acetylcholine receptor encoded by CHRNA7 (human)/Chrna7 (mice) regulates the release of both the inhibitory neurotransmitter GABA and the excitatory neurotransmitter glutamate in the hippocampal formation. A heterozygous (Het) deletion at 15q13.3 containing CHRNA7 is associated with increased risk for schizophrenia, autism, and epilepsy. Each of these diseases are characterized by abnormalities in excitatory and inhibitory hippocampal circuit function. Reduced Chrna7 expression results in decreased hippocampal α7* receptor density, abnormal hippocampal auditory sensory processing, and increased hippocampal CA3 pyramidal neuron activity in C3H mice Het for a null mutation in Chrna7. These abnormalities demonstrate that decreased Chrna7 expression alters hippocampal inhibitory circuit function. The current study examined the specific impact of reduced Chrna7 expression on hippocampal inhibitory circuits by measuring the levels of GABA, GABA(A) receptors, the GABA synthetic enzyme l-glutamic acid decarboxylase-65 (GAD-65), and the vesicular GABA transporter 1 (GAT-1) in wild-type (Chrna7 +/+) and Het (Chrna7 +/-) C3H α7 mice of both genders. GAD-65 levels were significantly decreased in male and female Het C3H α7 mice, whereas GABA(A) receptors were significantly reduced only in male Het C3H α7 mice. No changes in GABA and GAT-1 levels were detected. These data suggest that reduced CHRNA7 expression may contribute to the abnormalities in hippocampal inhibitory circuits observed in schizophrenia, autism, and/or epilepsy. Published by Elsevier Ltd.

  6. Reduced Chrna7 expression in mice is associated with decreases in hippocampal markers of inhibitory function: implications for neuropsychiatric diseases

    PubMed Central

    Adams, Catherine E.; Yonchek, Joan C.; Schulz, Kalynn M.; Graw, Sharon L.; Stitzel, Jerry; Teschke, Patricia U.; Stevens, Karen E.

    2012-01-01

    The α7* nicotinic acetylcholine receptor encoded by CHRNA7 (human)/Chrna7 (mice) regulates the release of both the inhibitory neurotransmitter γ-aminobutyric acid (GABA) and the excitatory neurotransmitter glutamate in the hippocampal formation. A heterozygous deletion at 15q13.3 containing CHRNA7 is associated with increased risk for schizophrenia, autism and epilepsy. Each of these diseases is characterized by abnormalities in excitatory and inhibitory hippocampal circuit function. Reduced Chrna7 expression results in decreased hippocampal α7* receptor density, abnormal hippocampal auditory sensory processing and increased hippocampal CA3 pyramidal neuron activity in C3H mice heterozygous for a null mutation in Chrna7. These abnormalities demonstrate that decreased Chrna7 expression alters hippocampal inhibitory circuit function. The current study examined the specific impact of reduced Chrna7 expression on hippocampal inhibitory circuits by measuring the levels of GABA, GABAA receptors, the GABA synthetic enzyme glutamate decarboxylase-65 (GAD-65) and the vesicular GABA transporter GAT-1 in wild type (Chrna7 +/+) and heterozygous (Chrna7 +/−) C3H α7 mice of both genders. GAD-65 levels were significantly decreased in male and female heterozygous C3H α7 mice while GABAA receptors were significantly reduced only in male heterozygous C3H α7 mice. No changes in GABA and GAT-1 levels were detected. These data suggest that reduced CHRNA7 expression may contribute to the abnormalities in hippocampal inhibitory circuits observed in schizophrenia, autism and/or epilepsy. PMID:22314319

  7. Effects of triploidy on growth and protein degradation in skeletal muscle during recovery from feed deprivation in juvenile rainbow trout (Oncorhynchus mykiss).

    PubMed

    Cleveland, Beth M; Weber, Gregory M

    2013-09-01

    Identifying physiological differences between diploid and triploid rainbow trout will help define how ploidy affects mechanisms that impact growth and nutrient utilization. Juvenile diploid and triploid female rainbow trout (Oncorhynchus mykiss) were either continually fed or fasted for one week, followed by four weeks of refeeding, and indices of growth and proteolysis-related gene expression in skeletal muscle were measured. Fasting reduced growth, and based on gene expression analysis, increased capacity for protein degradation. Regardless of feeding treatment, triploids displayed slightly greater feed intake and specific growth rates than diploids. Continually fed triploids displayed lower expression of several autophagy-related genes than diploids, suggesting that reduced rates of protein degradation contributed to their faster growth. Reduced expression of ubiquitin ligases fbxo32 and fbxo25 and autophagy-related genes during refeeding implicates reduced proteolysis in recovery growth. At one week of refeeding triploids exhibited greater gains in eviscerated body weight and length, whereas diploids exhibited greater gains in gastrointestinal tract weights. During refeeding two autophagy-related genes, atg4b and lc3b, decreased within one week to continually fed levels in the triploids, but in diploids overshot in expression at one and two weeks of refeeding then rebounding above continually fed levels by week four, suggesting a delayed return to basal levels of proteolysis. Published by Elsevier Inc.

  8. Reducing acetate excretion from E. coli K-12 by over-expressing the small RNA sgrS

    PubMed Central

    Negrete, Alejandro; Majdalani, Nadim; Phue, Je Nie; Shiloach, Joseph

    2011-01-01

    When exposed to the non-metabolized glucose derivative alpha methyl glucoside, both E. coli K-12 (JM109 and MG1655) and E. coli B (BL21) respond by reducing the concentration of the mRNA of the ptsG gene which is responsible for the biosynthesis of the glucose transporter EIICBglu. This occurs through the over-expression of the non-coding small RNA SgrS, which interacts specifically with the mRNA of the ptsG gene and prevents its translation. However, when these bacteria are exposed to a glucose concentration of 40 g/L, over-expression of SgrS is observed only in E. coli B (BL21). Unlike E. coli K-12 (JM109 and MG1655), which are affected by high glucose concentration and produce higher levels of acetate, E. coli B (BL21) is not affected. Based on this information, it was assumed that over-expression of SgrS enables E. coli B (BL21) to reduce its acetate excretion by controlling the glucose transport. When SgrS was over-expressed in both E. coli K-12 strains from a multicopy plasmid, it was possible to reduce their acetate excretion levels to those seen in E. coli B. This observation opens a new approach towards controlling bacterial metabolism through the use of non-coding RNA. PMID:22107968

  9. Reducing acetate excretion from E. coli K-12 by over-expressing the small RNA SgrS.

    PubMed

    Negrete, Alejandro; Majdalani, Nadim; Phue, Je-Nie; Shiloach, Joseph

    2013-01-25

    When exposed to the nonmetabolized glucose derivative alpha methyl glucoside (αMG), both Escherichia coli K-12 (JM109 and MG1655) and E. coli B (BL21) respond by reducing the concentration of the mRNA of the ptsG gene which is responsible for the biosynthesis of the glucose transporter EIICB(glu). This occurs through the over-expression of the noncoding small RNA SgrS, which interacts specifically with the mRNA of the ptsG gene and prevents its translation. However, when these bacteria are exposed to a glucose concentration of 40 g/L, over-expression of SgrS is observed only in E. coli B (BL21). Unlike E. coli K-12 (JM109 and MG1655), which are affected by high glucose concentration and produce higher levels of acetate, E. coli B (BL21) is not affected. Based on this information, it was assumed that over-expression of SgrS enables E. coli B (BL21) to reduce its acetate excretion by controlling the glucose transport. When SgrS was over-expressed in both E. coli K-12 strains from a multicopy plasmid, it was possible to reduce their acetate excretion levels to those seen in E. coli B. This observation opens a new approach towards controlling bacterial metabolism through the use of noncoding RNA. Published by Elsevier B.V.

  10. Micro-RNA-126 Reduces the Blood Thrombogenicity in Diabetes Mellitus via Targeting of Tissue Factor.

    PubMed

    Witkowski, Marco; Weithauser, Alice; Tabaraie, Termeh; Steffens, Daniel; Kränkel, Nicolle; Witkowski, Mario; Stratmann, Bernd; Tschoepe, Diethelm; Landmesser, Ulf; Rauch-Kroehnert, Ursula

    2016-06-01

    Diabetes mellitus involves vascular inflammatory processes and is a main contributor to cardiovascular mortality. Notably, heightened levels of circulating tissue factor (TF) account for the increased thrombogenicity and put those patients at risk for thromboembolic events. Here, we sought to investigate the role of micro-RNA (miR)-driven TF expression and thrombogenicity in diabetes mellitus. Plasma samples of patients with diabetes mellitus were analyzed for TF protein and activity as well as miR-126 expression before and after optimization of the antidiabetic treatment. We found low miR-126 levels to be associated with markedly increased TF protein and TF-mediated thrombogenicity. Reduced miR-126 expression was accompanied by increased vascular inflammation as evident from the levels of vascular adhesion molecule-1 and fibrinogen, as well as leukocyte counts. With optimization of the antidiabetic treatment miR-126 levels increased and thrombogenicity was reduced. Using a luciferase reporter system, we demonstrated miR-126 to directly bind to the F3-3'-untranslated region, thereby reducing TF expression both on mRNA and on protein levels in human microvascular endothelial cells as well as TF mRNA and activity in monocytes. Circulating miR-126 exhibits antithrombotic properties via regulating post-transcriptional TF expression, thereby impacting the hemostatic balance of the vasculature in diabetes mellitus. © 2016 The Authors.

  11. Inhibition of bone morphogenetic protein signaling attenuates anemia associated with inflammation

    PubMed Central

    Steinbicker, Andrea U.; Sachidanandan, Chetana; Vonner, Ashley J.; Yusuf, Rushdia Z.; Deng, Donna Y.; Lai, Carol S.; Rauwerdink, Kristen M.; Winn, Julia C.; Saez, Borja; Cook, Colleen M.; Szekely, Brian A.; Roy, Cindy N.; Seehra, Jasbir S.; Cuny, Gregory D.; Scadden, David T.; Peterson, Randall T.; Bloch, Kenneth D.

    2011-01-01

    Anemia of inflammation develops in settings of chronic inflammatory, infectious, or neoplastic disease. In this highly prevalent form of anemia, inflammatory cytokines, including IL-6, stimulate hepatic expression of hepcidin, which negatively regulates iron bioavailability by inactivating ferroportin. Hepcidin is transcriptionally regulated by IL-6 and bone morphogenetic protein (BMP) signaling. We hypothesized that inhibiting BMP signaling can reduce hepcidin expression and ameliorate hypoferremia and anemia associated with inflammation. In human hepatoma cells, IL-6–induced hepcidin expression, an effect that was inhibited by treatment with a BMP type I receptor inhibitor, LDN-193189, or BMP ligand antagonists noggin and ALK3-Fc. In zebrafish, the induction of hepcidin expression by transgenic expression of IL-6 was also reduced by LDN-193189. In mice, treatment with IL-6 or turpentine increased hepcidin expression and reduced serum iron, effects that were inhibited by LDN-193189 or ALK3-Fc. Chronic turpentine treatment led to microcytic anemia, which was prevented by concurrent administration of LDN-193189 or attenuated when LDN-193189 was administered after anemia was established. Our studies support the concept that BMP and IL-6 act together to regulate iron homeostasis and suggest that inhibition of BMP signaling may be an effective strategy for the treatment of anemia of inflammation. PMID:21393479

  12. Vascular endothelial growth factor A amplification in colorectal cancer is associated with reduced M1 and M2 macrophages and diminished PD-1-expressing lymphocytes.

    PubMed

    Burmeister, Katharina; Quagliata, Luca; Andreozzi, Mariacarla; Eppenberger-Castori, Serenella; Matter, Matthias S; Perrina, Valeria; Grobholz, Rainer; Jochum, Wolfram; Horber, Daniel; Moosmann, Peter; Lehmann, Frank; Köberle, Dieter; Ng, Charlotte K Y; Piscuoglio, Salvatore; Tornillo, Luigi; Terracciano, Luigi M

    2017-01-01

    VEGFA is an angiogenic factor secreted by tumors, in particular those with VEGFA amplification, as well as by macrophages and lymphocytes in the tumor microenvironment. Here we sought to define the presence of M1/M2 macrophages, PD-1-positive lymphocytes and PD-L1 tumoral and stromal expression in colorectal cancers harboring VEGFA amplification or chromosome 6 polysomy. 38 CRCs of which 13 harbored VEGFA amplification, 6 with Chr6 polysomy and 19 with neutral VEGFA copy number were assessed by immunohistochemistry for CD68 (marker for M1/M2 macrophages), CD163 (M2 macrophages), programmed death 1(PD-1)- tumor infiltrating and stromal lymphocytes as well as tumoral and stromal PD-1 ligand (PD-L1) expression. CRCs with VEGFA amplification or Chr6 polysomy were associated with decreased M1/M2 macrophages, reduced PD-1-expressing lymphocyte infiltration, as well as reduced stromal expression of PD-L1 at the tumor front. Compared to intermediate-grade CRCs, high-grade CRCs were associated with increased M1/M2 macrophages and increased tumoral expression of PD-L1. Our results suggest that VEGFA amplification or Chr6 polysomy is associated with an altered tumor immune microenvironment.

  13. Ectopic Expression of Xylella fastidiosa rpfF Conferring Production of Diffusible Signal Factor in Transgenic Tobacco and Citrus Alters Pathogen Behavior and Reduces Disease Severity.

    PubMed

    Caserta, R; Souza-Neto, R R; Takita, M A; Lindow, S E; De Souza, A A

    2017-11-01

    The pathogenicity of Xylella fastidiosa is associated with its ability to colonize the xylem of host plants. Expression of genes contributing to xylem colonization are suppressed, while those necessary for insect vector acquisition are increased with increasing concentrations of diffusible signal factor (DSF), whose production is dependent on RpfF. We previously demonstrated that transgenic citrus plants ectopically expressing rpfF from a citrus strain of X. fastidiosa subsp. pauca exhibited less susceptibility to Xanthomonas citri subsp. citri, another pathogen whose virulence is modulated by DSF accumulation. Here, we demonstrate that ectopic expression of rpfF in both transgenic tobacco and sweet orange also confers a reduction in disease severity incited by X. fastidiosa and reduces its colonization of those plants. Decreased disease severity in the transgenic plants was generally associated with increased expression of genes conferring adhesiveness to the pathogen and decreased expression of genes necessary for active motility, accounting for the reduced population sizes achieved in the plants, apparently by limiting pathogen dispersal through the plant. Plant-derived DSF signal molecules in a host plant can, therefore, be exploited to interfere with more than one pathogen whose virulence is controlled by DSF signaling.

  14. ABNORMAL INFLORESCENCE MERISTEM1 Functions in Salicylic Acid Biosynthesis to Maintain Proper Reactive Oxygen Species Levels for Root Meristem Activity in Rice.

    PubMed

    Xu, Lei; Zhao, Hongyu; Ruan, Wenyuan; Deng, Minjuan; Wang, Fang; Peng, Jinrong; Luo, Jie; Chen, Zhixiang; Yi, Keke

    2017-03-01

    Root meristem activity determines root growth and root architecture and consequently affects water and nutrient uptake in plants. However, our knowledge about the regulation of root meristem activity in crop plants is very limited. Here, we report the isolation and characterization of a short root mutant in rice ( Oryza sativa ) with reduced root meristem activity. This root growth defect is caused by a mutation in ABNORMAL INFLORESCENCE MERISTEM1 ( AIM1 ), which encodes a 3-hydroxyacyl-CoA dehydrogenase, an enzyme involved in β-oxidation. The reduced root meristem activity of aim1 results from reduced salicylic acid (SA) levels and can be rescued by SA application. Furthermore, reduced SA levels are associated with reduced levels of reactive oxygen species (ROS) in aim1 , likely due to increased expression of redox and ROS-scavenging-related genes, whose increased expression is (at least in part) caused by reduced expression of the SA-inducible transcriptional repressors WRKY62 and WRKY76. Like SA, ROS application substantially increased root length and root meristem activity in aim1 These results suggest that AIM1 is required for root growth in rice due to its critical role in SA biosynthesis: SA maintains root meristem activity through promoting ROS accumulation by inducing the activity of WRKY transcriptional repressors, which repress the expression of redox and ROS-scavenging genes. © 2017 American Society of Plant Biologists. All rights reserved.

  15. Face in profile view reduces perceived facial expression intensity: an eye-tracking study.

    PubMed

    Guo, Kun; Shaw, Heather

    2015-02-01

    Recent studies measuring the facial expressions of emotion have focused primarily on the perception of frontal face images. As we frequently encounter expressive faces from different viewing angles, having a mechanism which allows invariant expression perception would be advantageous to our social interactions. Although a couple of studies have indicated comparable expression categorization accuracy across viewpoints, it is unknown how perceived expression intensity and associated gaze behaviour change across viewing angles. Differences could arise because diagnostic cues from local facial features for decoding expressions could vary with viewpoints. Here we manipulated orientation of faces (frontal, mid-profile, and profile view) displaying six common facial expressions of emotion, and measured participants' expression categorization accuracy, perceived expression intensity and associated gaze patterns. In comparison with frontal faces, profile faces slightly reduced identification rates for disgust and sad expressions, but significantly decreased perceived intensity for all tested expressions. Although quantitatively viewpoint had expression-specific influence on the proportion of fixations directed at local facial features, the qualitative gaze distribution within facial features (e.g., the eyes tended to attract the highest proportion of fixations, followed by the nose and then the mouth region) was independent of viewpoint and expression type. Our results suggest that the viewpoint-invariant facial expression processing is categorical perception, which could be linked to a viewpoint-invariant holistic gaze strategy for extracting expressive facial cues. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. An Acceptance-Based Psychoeducation Intervention to Reduce Expressed Emotion in Relatives of Bipolar Patients

    ERIC Educational Resources Information Center

    Eisner, Lori R.; Johnson, Sheri L.

    2008-01-01

    Expressed emotion (EE) is a robust predictor of outcome in bipolar disorder. Despite decades of research, interventions to reduce EE levels have had only modest effects. This study used an expanded model of EE to develop an intervention. Research has demonstrated a strong link between attributions and EE in families of patients with psychiatric…

  17. Deinking selectivity (Z-factor) : a new parameter to evaluate the performance of flotation deinking process

    Treesearch

    J.Y. Zhu; F. Tan; K.L. Scallon; Y. Zhao; Y. Deng

    2004-01-01

    Reducing fiber loss is also important to conserve resources and reduce the cost of secondary fibers. This study proposes a deinking selectivity concept that considers both ink removal and fiber yield in determining the performance of deinking operations. The defined deinking selectivity, or Z-factor, is expressed by the ratio of ink removal expressed by the...

  18. Geraniol promotes functional recovery and attenuates neuropathic pain in rats with spinal cord injury.

    PubMed

    Lv, Yan; Zhang, Liang; Li, Na; Mai, Naiken; Zhang, Yu; Pan, Shuyi

    2017-12-01

    Geraniol, a plant-derived monoterpene, has been extensively studied and showed a wide variety of beneficial effects. The aim of this study was to investigate the therapeutic effect of geraniol on functional recovery and neuropathic pain in rats with spinal cord injury (SCI). Rats received a clip-compression SCI and were treated with geraniol 6 h following SCI. Treatment of SCI rats with geraniol markedly improved locomotor function, and reduced sensitivity to the mechanical allodynia and thermal hyperalgesia. Treatment of SCI rats with geraniol increased NeuN-positive cells, suppressed expression of glial fibrillary acidic protein, and reduced activity of caspase-3 in the injured region. Treatment of SCI rats with geraniol reduced levels of malondialdehyde and 3-nitrotyrosine, upregulated protein expression of nuclear factor-erythroid 2-related factor 2 and heme oxygenase 1, and suppressed expression of inducible nitric oxide synthase in the injured region. In addition, treatment of SCI rats with geraniol downregulated protein expression of N-methyl-d-aspartate receptor 1 and reduced the number of CD68-positive cells and protein levels of TNF-α in the injured region. In conclusion, geraniol significantly promoted the recovery of neuronal function and attenuated neuropathic pain after SCI.

  19. Hand1 overexpression inhibits medulloblastoma metastasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asuthkar, Swapna; Guda, Maheedhara R.; Martin, Sarah E.

    2016-08-19

    Medulloblastoma (MB) is the most frequent malignant pediatric brain tumor. Current treatment includes surgery, radiation and chemotherapy. However, ongoing treatment in patients is further classified according to the presence or absence of metastasis. Since metastatic medulloblastoma are refractory to current treatments, there is need to identify novel biomarkers that could be used to reduce metastatic potential, and more importantly be targeted therapeutically. Previously, we showed that ionizing radiation-induced uPAR overexpression is associated with increased accumulation of β-catenin in the nucleus. We further demonstrated that uPAR protein act as cytoplasmic sequestration factor for a novel basic helix-loop-helix transcription factor, Hand1. Amongmore » the histological subtypes classical and desmoplastic subtypes account for the majority while large cell/anaplastic variant is most commonly associated with metastatic disease. In this present study using immunohistochemical approach and patient data mining for the first time, we demonstrated that Hand1 expression is observed to be downregulated in all the subtypes of medulloblastoma. Previously we showed that Hand1 overexpression regulated medulloblastoma angiogenesis and here we investigated the role of Hand1 in the context of Epithelial-Mesenchymal Transition (EMT). Moreover, UW228 and D283 cells overexpressing Hand1 demonstrated decreased-expression of mesenchymal markers (N-cadherin, β-catenin and SOX2); metastatic marker (SMA); and increased expression of epithelial marker (E-cadherin). Strikingly, human pluripotent stem cell antibody array showed that Hand1 overexpression resulted in substantial decrease in pluripotency markers (Nanog, Oct3/4, Otx2, Flk1) suggesting that Hand1 expression may be essential to attenuate the EMT and our findings underscore a novel role for Hand1 in medulloblastoma metastasis. - Highlights: • Hand1 expression is downregulated in Medulloblastoma. • Hand1 over expression reduce the expression of signaling from WNT, SHH and Group 3 medulloblastoma subgroups. • Hand1 overexpression reduced metastatic abilities by reducing the expression of β-catenin and N-cadherin.« less

  20. Pancreatic β-Cell Dysfunction in Diet-Induced Obese Mice: Roles of AMP-Kinase, Protein Kinase Cε, Mitochondrial and Cholesterol Metabolism, and Alterations in Gene Expression

    PubMed Central

    Pepin, Émilie; Al-Mass, Anfal; Attané, Camille; Zhang, Kezhuo; Lamontagne, Julien; Lussier, Roxane; Madiraju, S. R. Murthy; Joly, Erik; Ruderman, Neil B.; Sladek, Robert; Prentki, Marc; Peyot, Marie-Line

    2016-01-01

    Diet induced obese (DIO) mice can be stratified according to their weight gain in response to high fat diet as low responders (LDR) and high responders (HDR). This allows the study of β-cell failure and the transitions to prediabetes (LDR) and early diabetes (HDR). C57BL/6N mice were fed for 8 weeks with a normal chow diet (ND) or a high fat diet and stratified as LDR and HDR. Freshly isolated islets from ND, LDR and HDR mice were studied ex-vivo for mitochondrial metabolism, AMPK activity and signalling, the expression and activity of key enzymes of energy metabolism, cholesterol synthesis, and mRNA profiling. Severely compromised glucose-induced insulin secretion in HDR islets, as compared to ND and LDR islets, was associated with suppressed AMP-kinase activity. HDR islets also showed reduced acetyl-CoA carboxylase activity and enhanced activity of 3-hydroxy-3-methylglutaryl-CoA reductase, which led respectively to elevated fatty acid oxidation and increased cholesterol biosynthesis. HDR islets also displayed mitochondrial membrane hyperpolarization and reduced ATP turnover in the presence of elevated glucose. Expression of protein kinase Cε, which reduces both lipolysis and production of signals for insulin secretion, was elevated in DIO islets. Genes whose expression increased or decreased by more than 1.2-fold were minor between LDR and ND islets (17 differentially expressed), but were prominent between HDR and ND islets (1508 differentially expressed). In HDR islets, particularly affected genes were related to cell cycle and proliferation, AMPK signaling, mitochondrial metabolism and cholesterol metabolism. In conclusion, chronically reduced AMPK activity, mitochondrial dysfunction, elevated cholesterol biosynthesis in islets, and substantial alterations in gene expression accompany β-cell failure in HDR islets. The β-cell compensation process in the prediabetic state (LDR) is largely independent of transcriptional adaptive changes, whereas the transition to early diabetes (HDR) is associated with major alterations in gene expression. PMID:27043434

  1. Gene-specific alterations of hepatic nuclear receptor regulated gene expression by ligand activation or hepatocyte-selective knockout inhibition of RXRα signaling during inflammation

    PubMed Central

    Kosters, Astrid; Tian, Feng; Wan, Yvonne Yu-Jie; Karpen, Saul J.

    2013-01-01

    Background Inflammation leads to transcriptional downregulation of many hepatic genes, particulary those activated by RXRα-heterodimers. Inflammation-mediated reduction of nuclear RXRα levels is a main factor in reduced nuclear receptor (NR)–regulated hepatic gene expression, eventually leading to cholestasis and liver damage. Aim To investigate roles for RXRα in hepatic gene expression during inflammation, using two complementary mouse models: ligand–activation of RXRα, and in mice expressing hepatocyte-specific expression of RXRα missing its DNA-binding-domain (DBD; hs-RxrαΔex4−/−) Methods To activate RXRα, mice were gavage-fed with LG268 or vehicle for 5 days. To inhibit RXRα function, hs-RxrαΔex4−/− were used. All mice were IP-injected with LPS or saline for 16 hrs prior to analysis of hepatic RNA, protein and NR-DNA binding. Results LG268-treatment attenuated the LPS-mediated reductions of several RXRα-regulated genes, coinciding with maintained RXRα occupancy in both Bsep and Ostβ promoters. Lacking full hepatocyte-RXRα function (hs-RxrαΔex4−/− mice) led to enhancement of LPS-mediated changes in gene expression, but surprisingly, maintenance of RNA levels of some RXRα-regulated genes. Investigations revealed that Hs-Rxrα−/− hepatocytes expressed an internally-truncated, ~44 kDa, RXRα-form. DNA-binding capacity of NR-heterodimers was equivalent in wt and hs-RxrαΔex4−/− livers, but reduced by LPS in both. ChIP-QPCR revealed reduced RXRα occupancy to the Bsep RXRα:FXR site was reduced, but not absent, in hs-RxrαΔex4−/− livers. Conclusions There are differential regulatory roles for hepatic RXRα, both in basal and inflammatory states, suggesting new and complex multi-domain roles for RXRα in regulating hepatic gene expression. Moreover, there is an unexpected non-obligate role for the DBD of RXRα. PMID:22098603

  2. Impact of scavenging hydrogen peroxide in the endoplasmic reticulum for β cell function.

    PubMed

    Lortz, S; Lenzen, S; Mehmeti, I

    2015-08-01

    Oxidative folding of nascent proteins in the endoplasmic reticulum (ER), catalysed by one or more members of the protein disulfide isomerase family and the sulfhydryl oxidase ER oxidoreductin 1 (ERO1), is accompanied by generation of hydrogen peroxide (H2O2). Because of the high rate of insulin biosynthesis and the low expression of H2O2-inactivating enzymes in pancreatic β cells, it has been proposed that the luminal H2O2 concentration might be very high. As the role of this H2O2 in ER stress and proinsulin processing is still unsolved, an ER-targeted and luminal-active catalase variant, ER-Catalase N244, was expressed in insulin-secreting INS-1E cells. In these cells, the influence of ER-specific H2O2 removal on cytokine-mediated cytotoxicity and ER stress, insulin gene expression, insulin content and secretion was analysed. The expression of ER-Catalase N244 reduced the toxicity of exogenously added H2O2 significantly with a threefold increase of the EC50 value for H2O2. However, the expression of cytokine-induced ER stress genes and viability after incubation with β cell toxic cytokines (IL1β alone or together with TNFα+IFNγ) was not affected by ER-Catalase N244. In control and ER-Catalase N244 expressing cells, insulin secretion and proinsulin content was identical, while removal of luminal H2O2 reduced insulin gene expression and insulin content in ER-Catalase N244 expressing cells. These data show that ER-Catalase N244 reduced H2O2 toxicity but did not provide protection against pro-inflammatory cytokine-mediated toxicity and ER stress. Insulin secretion was not affected by decreasing H2O2 in the ER in spite of a reduced insulin transcription and processing. © 2015 Society for Endocrinology.

  3. [The use of expressive writing in the course of care for cancer patients to reduce emotional distress: analysis of the literature].

    PubMed

    Gallo, Isabella; Garrino, Lorenza; Di Monte, Valerio

    2015-01-01

    The emotional distress represents one of the symptoms most frequently reported in the cancer patient in therapy, increasing the risk of developing a disease depressive. Through the analysis of the literature we want to assess whether the use of expressive writing on cancer patients in their care pathway compared to the use of writing neutral reduces emotional distress. The bibliographic search was conducted using the databases CINAHL, PubMed, Cochrane Library and PsycInfo. The results of research conducted on 7 randomized controlled trials, including 3 pilot studies have shown after expressive writing sessions (experimental group) versus neutral writing (control group) a significant reduction in distress in the experimental group early stages of cancer (p = 0,0183); in patients with a diagnosis of metastatic assigned to the group expressive writing there was a statistically significant relevance in the reduction of mood disorders (p = 0,03).Were determined statistically significant group differences also with respect to some measure on the quality of sleep (p = 0,04). The expressive writing did not produce significant reductions in psychological distress and improvements in physical health (p > 0,20) in patients diagnosed with metastatic disease of long duration and, in the palliative care there have been results of feasibility for poor adherence at follow-up. From the results it is evident that the strategies of expressive writing improves the management of the disease, reduce the physical and psychological symptoms related to the tumor while reducing the emotional distress in patients at an early stage of the disease.

  4. Aged red garlic extract reduces lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophages and acute pulmonary inflammation through haeme oxygenase-1 induction.

    PubMed

    Park, H-J; Jeon, B T; Kim, H C; Roh, G S; Shin, J-H; Sung, N-J; Han, J; Kang, D

    2012-05-01

    It is known that garlic has antioxidative and anti-inflammatory properties. Aged red garlic (ARG), a novel aged garlic formulation, has higher antioxidant effects than fresh raw garlic. This study was performed to examine the anti-inflammatory effects of ARG extract (ARGE). The anti-inflammatory effects of ARGE were evaluated in the lipopolysaccharide (LPS)-treated Raw 264.7 macrophages and acute lung inflammatory mice. NO production was determined by the Griess method, and iNOS, HO-1 and COX-2 expressions were measured using Western blot analysis. Histology and inflammation extent of lung were analysed using haematoxylin-eosin staining and immunohistochemistry. ARGE treatment markedly reduced LPS-induced nitrite production in RAW 264.7 macrophages and reduced inducible nitric oxide synthase (iNOS) expression. Treatment of cells with ARGE led to a significant increase in haeme oxygenase-1 (HO-1) protein expression, which was mediated by stimulating the expression of nuclear factor erythroid 2-related factor 2 (Nrf2). Treatment with zinc protoporphyrin, a selective inhibitor of HO-1, significantly reversed the ARGE-mediated inhibition of nitrite production (P < 0.05). In LPS-induced inflammatory mice, ARGE treatment down-regulated iNOS and COX-2 expressions, while it up-regulated HO-1 expression. These results show that ARGE reduces LPS-induced nitric oxide production in RAW 264.7 macrophages through HO-1 induction and suggest that ARGE may have potential effects on prevention and treatment of acute inflammatory lung injury. © 2012 The Authors Acta Physiologica © 2012 Scandinavian Physiological Society.

  5. An extracellular disulfide bond forming protein (DsbF) from Mycobacterium tuberculosis: Structural, biochemical and gene expression analysis

    PubMed Central

    Chim, Nicholas; Riley, Robert; The, Juliana; Im, Soyeon; Segelke, Brent; Lekin, Tim; Yu, Minmin; Hung, Li Wei; Terwilliger, Tom; Whitelegge, Julian P.; Goulding, Celia W.

    2010-01-01

    Disulfide bond forming (Dsb) proteins ensure correct folding and disulfide bond formation of secreted proteins. Previously, we showed that Mycobacterium tuberculosis DsbE (Mtb DsbE, Rv2878c) aids in vitro oxidative folding of proteins. Here we present structural, biochemical and gene expression analyses of another putative Mtb secreted disulfide bond isomerase protein homologous to Mtb DsbE, Mtb DsbF (Rv1677). The X-ray crystal structure of Mtb DsbF reveals a conserved thioredoxin fold although the active-site cysteines may be modeled in both oxidized and reduced forms, in contrast to the solely reduced form in Mtb DsbE. Furthermore, the shorter loop region in Mtb DsbF results in a more solvent-exposed active site. Biochemical analyses show that, similar to Mtb DsbE, Mtb DsbF can oxidatively refold reduced, unfolded hirudin and has a comparable pKa for the active-site solvent-exposed cysteine. However, contrary to Mtb DsbE, the Mtb DsbF redox potential is more oxidizing and its reduced state is more stable. From computational genomics analysis of the M. tuberculosis genome, we identified a potential Mtb DsbF interaction partner, Rv1676, a predicted peroxiredoxin. Complex formation is supported by protein co-expression studies and inferred by gene expression profiles, whereby Mtb DsbF and Rv1676 are upregulated under similar environments. Additionally, comparison of Mtb DsbF and Mtb DsbE gene expression data indicate anticorrelated gene expression patterns, suggesting that these two proteins and their functionally linked partners constitute analogous pathways that may function under different conditions. PMID:20060836

  6. Low expression of D2R and Wntless correlates with high motivation for heroin.

    PubMed

    Tacelosky, Diana M; Alexander, Danielle N; Morse, Megan; Hajnal, Andras; Berg, Arthur; Levenson, Robert; Grigson, Patricia S

    2015-12-01

    Drug overdose now exceeds car accidents as the leading cause of accidental death in the United States. Of those drug overdoses, a large percentage of the deaths are due to heroin and/or pharmaceutical overdose, specifically misuse of prescription opioid analgesics. It is imperative, then, that we understand the mechanisms that lead to opioid abuse and addiction. The rewarding actions of opioids are mediated largely by the mu-opioid receptor (MOR), and signaling by this receptor is modulated by various interacting proteins. The neurotransmitter dopamine also contributes to opioid reward, and opioid addiction has been linked to reduced expression of dopamine D2 receptors (D2R) in the brain. That said, it is not known if alterations in the expression of these proteins relate to drug exposure and/or to the "addiction-like" behavior exhibited for the drug. Here, we held total drug self-administration constant across acquisition and showed that reduced expression of the D2R and the MOR interacting protein, Wntless, in the medial prefrontal cortex was associated with greater addiction-like behavior for heroin in general and with a greater willingness to work for the drug in particular. In contrast, reduced expression of the D2R in the nucleus accumbens and hippocampus was correlated with greater seeking during signaled nonavailability of the drug. Taken together, these data link reduced expression of both the D2R and Wntless to the explicit motivation for the drug rather than to differences in total drug intake per se. (c) 2015 APA, all rights reserved).

  7. Overwintering Is Associated with Reduced Expression of Immune Genes and Higher Susceptibility to Virus Infection in Honey Bees

    PubMed Central

    Steinmann, Nadja; Corona, Miguel; Neumann, Peter; Dainat, Benjamin

    2015-01-01

    The eusocial honey bee, Apis mellifera, has evolved remarkable abilities to survive extreme seasonal differences in temperature and availability of resources by dividing the worker caste into two groups that differ in physiology and lifespan: summer and winter bees. Most of the recent major losses of managed honey bee colonies occur during the winter, suggesting that winter bees may have compromised immune function and higher susceptibility to diseases. We tested this hypothesis by comparing the expression of eight immune genes and naturally occurring infection levels of deformed wing virus (DWV), one of the most widespread viruses in A. mellifera populations, between summer and winter bees. Possible interactions between immune response and physiological activity were tested by measuring the expression of vitellogenin and methyl farnesoate epoxidase, a gene coding for the last enzyme involved in juvenile hormone biosynthesis. Our data show that high DWV loads in winter bees correlate with reduced expression of genes involved in the cellular immune response and physiological activity and high expression of humoral immune genes involved in antibacterial defense compared with summer bees. This expression pattern could reflect evolutionary adaptations to resist bacterial pathogens and economize energy during the winter under a pathogen landscape with reduced risk of pathogenic viral infections. The outbreak of Varroa destructor infestation could have overcome these adaptations by promoting the transmission of viruses. Our results suggest that reduced cellular immune function during the winter may have increased honey bee’s susceptibility to DWV. These results contribute to our understanding of honey bee colony losses in temperate regions. PMID:26121358

  8. FOXP3 over-expression inhibits melanoma tumorigenesis via effects on proliferation and apoptosis.

    PubMed Central

    Tan, BeeShin; Anaka, Matthew; Deb, Siddhartha; Freyer, Claudia; Ebert, Lisa M.; Chueh, Anderly C.; Al-Obaidi, Sheren; Behren, Andreas; Jayachandran, Aparna; Cebon, Jonathan; Chen, Weisan; Mariadason, John M.

    2014-01-01

    The Forkhead box P3 (FOXP3) transcription factor is the key driver of regulatory T cell (Treg cells) differentiation and immunosuppressive function. In addition, FOXP3 has been reported to be expressed in many tumors, including melanoma. However, its role in tumorigenesis is conficting, with both tumor suppressive and tumor promoting functions described. The aim of the current study was to characterize the expression and function of FOXP3 in melanoma. FOXP3 expression was detected by immunohistochemistry (IHC) in 12% (18/146) of stage III and IV melanomas. However expression was confined to fewer than 1% of cells in these tumors. Stable over-expression of FOXP3 in the SK-MEL-28 melanoma cell line reduced cell proliferation and clonogenicity in vitro, and reduced xenograft growth in vivo. FOXP3 over-expression also increased pigmentation and the rate of apoptosis of SK-MEL-28 cells. Based on its infrequent expression in human melanoma, and its growth inhibitory and pro-apoptotic effect in over-expressing melanoma cells, we conclude that FOXP3 is not likely to be a key tumor suppressor or promoter in melanoma. PMID:24406338

  9. Testing the effects of suppression and reappraisal on emotional concordance using a multivariate multilevel model.

    PubMed

    Butler, Emily A; Gross, James J; Barnard, Kobus

    2014-04-01

    In theory, the essence of emotion is coordination across experiential, behavioral, and physiological systems in the service of functional responding to environmental demands. However, people often regulate emotions, which could either reduce or enhance cross-system concordance. The present study tested the effects of two forms of emotion regulation (expressive suppression, positive reappraisal) on concordance of subjective experience (positive-negative valence), expressive behavior (positive and negative), and physiology (inter-beat interval, skin conductance, blood pressure) during conversations between unacquainted young women. As predicted, participants asked to suppress showed reduced concordance for both positive and negative emotions. Reappraisal instructions also reduced concordance for negative emotions, but increased concordance for positive ones. Both regulation strategies had contagious interpersonal effects on average levels of responding. Suppression reduced overall expression for both regulating and uninstructed partners, while reappraisal reduced negative experience. Neither strategy influenced the uninstructed partners' concordance. These results suggest that emotion regulation impacts concordance by altering the temporal coupling of phasic subsystem responses, rather than by having divergent effects on subsystem tonic levels. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. ERK1 is important for Th2 differentiation and development of experimental asthma

    PubMed Central

    Goplen, Nicholas; Karim, Zunayet; Guo, Lei; Zhuang, Yonghua; Huang, Hua; Gorska, Magdalena M.; Gelfand, Erwin; Pagés, Gilles; Pouysségur, Jacques; Alam, Rafeul

    2012-01-01

    The ERK1/2 signaling pathway regulates a variety of T-cell functions. We observed dynamic changes in the expression of ERK1/2 during T-helper cell differentiation. Specifically, the expression of ERK1/2 was decreased and increased by IL-12 and IL-4, respectively. To address this subject further, we examined the specific role of ERK1 in Th2 differentiation and development of experimental asthma using ERK1−/− mice. ERK1−/− mice were unable to mount airway inflammation and hyperreactivity in two different models of asthma, acute and chronic. ERK1−/− mice had reduced expression of Th2 cytokines IL-4 and IL-5 but not IL-17A or IFN-γ. They had reduced levels of allergen-specific IgE and blood eosinophils. T cells from immunized ERK1−/− mice manifested reduced proliferation in response to the sensitizing allergen. ERK1−/− T cells had reduced and short-lived expression of JunB following TCR stimulation, which likely contributed to their impaired Th2 differentiation. Immunized ERK1−/− mice showed reduced numbers of CD44high CD4 T cells in the spleen. In vitro studies demonstrated that Th2 but not Th1 cells from ERK1−/− mice had reduced numbers of CD44high cells. Finally, CD4 T cells form ERK1−/− mice expressed higher levels of BIM under growth factor-deprived conditions and reduced Mcl-1 on stimulation. As a result, the survival of CD4 T cells, especially CD44high Th2 cells, was much reduced in ERK1−/− mice. We conclude that ERK1 plays a nonredundant role in Th2 differentiation and development of experimental asthma. ERK1 controls Th2 differentiation and survival through its effect on JunB and BIM, respectively.—Goplen, N., Karim, Z., Guo, L., Zhuang, Y., Huang, H., Gorska, M. M., Gelfand, E., Pagés, G., Pouysségur, J., Alam, R. ERK1 is important for Th2 differentiation and development of experimental asthma. PMID:22262639

  11. Cyclin-dependent kinase 2 protects podocytes from apoptosis

    PubMed Central

    Saurus, Pauliina; Kuusela, Sara; Dumont, Vincent; Lehtonen, Eero; Fogarty, Christopher L.; Lassenius, Mariann I.; Forsblom, Carol; Lehto, Markku; Saleem, Moin A.; Groop, Per-Henrik; Lehtonen, Sanna

    2016-01-01

    Loss of podocytes is an early feature of diabetic nephropathy (DN) and predicts its progression. We found that treatment of podocytes with sera from normoalbuminuric type 1 diabetes patients with high lipopolysaccharide (LPS) activity, known to predict progression of DN, downregulated CDK2 (cyclin-dependent kinase 2). LPS-treatment of mice also reduced CDK2 expression. LPS-induced downregulation of CDK2 was prevented in vitro and in vivo by inhibiting the Toll-like receptor (TLR) pathway using immunomodulatory agent GIT27. We also observed that CDK2 is downregulated in the glomeruli of obese Zucker rats before the onset of proteinuria. Knockdown of CDK2, or inhibiting its activity with roscovitine in podocytes increased apoptosis. CDK2 knockdown also reduced expression of PDK1, an activator of the cell survival kinase Akt, and reduced Akt phosphorylation. This suggests that CDK2 regulates the activity of the cell survival pathway via PDK1. Furthermore, PDK1 knockdown reduced the expression of CDK2 suggesting a regulatory loop between CDK2 and PDK1. Collectively, our data show that CDK2 protects podocytes from apoptosis and that reduced expression of CDK2 associates with the development of DN. Preventing downregulation of CDK2 by blocking the TLR pathway with GIT27 may provide a means to prevent podocyte apoptosis and progression of DN. PMID:26876672

  12. Sodium arsenite represses the expression of myogenin in C2C12 mouse myoblast cells through histone modifications and altered expression of Ezh2, Glp, and Igf-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Gia-Ming; Present address: The University of Chicago, Section of Hematology/Oncology, 900 E. 57th Street, Room 7134, Chicago, IL 60637; Bain, Lisa J., E-mail: lbain@clemson.edu

    2012-05-01

    Arsenic is a toxicant commonly found in water systems and chronic exposure can result in adverse developmental effects including increased neonatal death, stillbirths, and miscarriages, low birth weight, and altered locomotor activity. Previous studies indicate that 20 nM sodium arsenite exposure to C2C12 mouse myocyte cells delayed myoblast differentiation due to reduced myogenin expression, the transcription factor that differentiates myoblasts into myotubes. In this study, several mechanisms by which arsenic could alter myogenin expression were examined. Exposing differentiating C2C12 cells to 20 nM arsenic increased H3K9 dimethylation (H3K9me2) and H3K9 trimethylation (H3K9me3) by 3-fold near the transcription start site ofmore » myogenin, which is indicative of increased repressive marks, and reduced H3K9 acetylation (H3K9Ac) by 0.5-fold, indicative of reduced permissive marks. Protein expression of Glp or Ehmt1, a H3-K9 methyltransferase, was also increased by 1.6-fold in arsenic-exposed cells. In addition to the altered histone remodeling status on the myogenin promoter, protein and mRNA levels of Igf-1, a myogenic growth factor, were significantly repressed by arsenic exposure. Moreover, a 2-fold induction of Ezh2 expression, and an increased recruitment of Ezh2 (3.3-fold) and Dnmt3a (∼ 2-fold) to the myogenin promoter at the transcription start site (− 40 to + 42), were detected in the arsenic-treated cells. Together, we conclude that the repressed myogenin expression in arsenic-exposed C2C12 cells was likely due to a combination of reduced expression of Igf-1, enhanced nuclear expression and promoter recruitment of Ezh2, and altered histone remodeling status on myogenin promoter (− 40 to + 42). -- Highlights: ► Igf-1 expression is decreased in C2C12 cells after 20 nM arsenite exposure. ► Arsenic exposure alters histone remodeling on the myogenin promoter. ► Glp expression, a H3–K9 methyltransferase, was increased in arsenic-exposed cells. ► Ezh2 and Dnmt3a localization to the myogenin promoter is induced by arsenic.« less

  13. Differential Regulation of Thyroid Hormone Metabolism Target Genes during Non-thyroidal Illness Syndrome Triggered by Fasting or Sepsis in Adult Mice

    PubMed Central

    Fontes, Klaus N.; Cabanelas, Adriana; Bloise, Flavia F.; de Andrade, Cherley Borba Vieira; Souza, Luana L.; Wilieman, Marianna; Trevenzoli, Isis H.; Agra, Lais C.; Silva, Johnatas D.; Bandeira-Melo, Christianne; Silva, Pedro L.; Rocco, Patricia R. M.; Ortiga-Carvalho, Tania M.

    2017-01-01

    Fasting and sepsis induce profound changes in thyroid hormone (TH) central and peripheral metabolism. These changes affect TH action and are called the non-thyroidal illness syndrome (NTIS). To date, it is still debated whether NTIS represents an adaptive response or a real hypothyroid state at the tissue level. Moreover, even though it has been considered the same syndrome, we hypothesized that fasting and sepsis induce a distinct set of changes in thyroid hormone metabolism. Herein, we aimed to evaluate the central and peripheral expression of genes involved in the transport (MCT8/Slc16a2 and MCT10/Slc16a10), metabolism (Dio1, Dio2, and Dio3) and action (Thra and Thrb) of TH during NTIS induced by fasting or sepsis. Male mice were subjected to a 48 h period of fasting or cecal ligation and puncture (CLP)-induced sepsis. At the peripheral level, fasting led to: (1) reduced serum thyroxine (T4) and triiodothyronine (T3), expression of Dio1, Thra, Slc16a2, and MCT8 protein in liver; (2) increased hepatic Slc16a10 and Dio3 expression; and (3) decreased Slc16a2 and Slc16a10 expressions in the thyroid gland. Fasting resulted in reduction of Tshb expression in the pituitary and increased expression of Dio2 in total hypothalamus, arcuate (ARC) and paraventricular (PVN) nucleus. CLP induced sepsis resulted in reduced: (1) T4 serum levels; (2) Dio1, Slc16a2, Slc16a10, Thra, and Thrb expression in liver as well as Slc16a2 expression in the thyroid gland (3) Thrb and Tshb mRNA expression in the pituitary; (4) total leukocyte counts in the bone marrow while increased its number in peritoneal and pleural fluids. In summary, fasting- or sepsis-driven NTIS promotes changes in the set point of hypothalamus-pituitary-thyroid axis through different mechanisms. Reduced hepatic THRs expression in conjunction with reduced TH transporters expression in the thyroid gland may indicate, respectively, reduction in the peripheral action and in the secretion of TH, which may contribute to the low TH serum levels observed in both models. PMID:29118715

  14. Differential Regulation of Thyroid Hormone Metabolism Target Genes during Non-thyoidal Illness Syndrome Triggered by Fasting or Sepsis in Adult Mice.

    PubMed

    Fontes, Klaus N; Cabanelas, Adriana; Bloise, Flavia F; de Andrade, Cherley Borba Vieira; Souza, Luana L; Wilieman, Marianna; Trevenzoli, Isis H; Agra, Lais C; Silva, Johnatas D; Bandeira-Melo, Christianne; Silva, Pedro L; Rocco, Patricia R M; Ortiga-Carvalho, Tania M

    2017-01-01

    Fasting and sepsis induce profound changes in thyroid hormone (TH) central and peripheral metabolism. These changes affect TH action and are called the non-thyroidal illness syndrome (NTIS). To date, it is still debated whether NTIS represents an adaptive response or a real hypothyroid state at the tissue level. Moreover, even though it has been considered the same syndrome, we hypothesized that fasting and sepsis induce a distinct set of changes in thyroid hormone metabolism. Herein, we aimed to evaluate the central and peripheral expression of genes involved in the transport (MCT8/ Slc16a2 and MCT10/ Slc16a10 ), metabolism ( Dio1, Dio2 , and Dio3 ) and action ( Thra and Thrb ) of TH during NTIS induced by fasting or sepsis. Male mice were subjected to a 48 h period of fasting or cecal ligation and puncture (CLP)-induced sepsis. At the peripheral level, fasting led to: (1) reduced serum thyroxine (T 4 ) and triiodothyronine (T 3 ), expression of Dio1, Thra, Slc16a2 , and MCT8 protein in liver; (2) increased hepatic Slc16a10 and Dio3 expression; and (3) decreased Slc16a2 and Slc16a10 expressions in the thyroid gland. Fasting resulted in reduction of Tshb expression in the pituitary and increased expression of Dio2 in total hypothalamus, arcuate (ARC) and paraventricular (PVN) nucleus. CLP induced sepsis resulted in reduced: (1) T 4 serum levels; (2) Dio1, Slc16a2, Slc16a10, Thra , and Thrb expression in liver as well as Slc16a2 expression in the thyroid gland (3) Thrb and Tshb mRNA expression in the pituitary; (4) total leukocyte counts in the bone marrow while increased its number in peritoneal and pleural fluids. In summary, fasting- or sepsis-driven NTIS promotes changes in the set point of hypothalamus-pituitary-thyroid axis through different mechanisms. Reduced hepatic THRs expression in conjunction with reduced TH transporters expression in the thyroid gland may indicate, respectively, reduction in the peripheral action and in the secretion of TH, which may contribute to the low TH serum levels observed in both models.

  15. An optimized ERP brain-computer interface based on facial expression changes.

    PubMed

    Jin, Jing; Daly, Ian; Zhang, Yu; Wang, Xingyu; Cichocki, Andrzej

    2014-06-01

    Interferences from spatially adjacent non-target stimuli are known to evoke event-related potentials (ERPs) during non-target flashes and, therefore, lead to false positives. This phenomenon was commonly seen in visual attention-based brain-computer interfaces (BCIs) using conspicuous stimuli and is known to adversely affect the performance of BCI systems. Although users try to focus on the target stimulus, they cannot help but be affected by conspicuous changes of the stimuli (such as flashes or presenting images) which were adjacent to the target stimulus. Furthermore, subjects have reported that conspicuous stimuli made them tired and annoyed. In view of this, the aim of this study was to reduce adjacent interference, annoyance and fatigue using a new stimulus presentation pattern based upon facial expression changes. Our goal was not to design a new pattern which could evoke larger ERPs than the face pattern, but to design a new pattern which could reduce adjacent interference, annoyance and fatigue, and evoke ERPs as good as those observed during the face pattern. Positive facial expressions could be changed to negative facial expressions by minor changes to the original facial image. Although the changes are minor, the contrast is big enough to evoke strong ERPs. In this paper, a facial expression change pattern between positive and negative facial expressions was used to attempt to minimize interference effects. This was compared against two different conditions, a shuffled pattern containing the same shapes and colours as the facial expression change pattern, but without the semantic content associated with a change in expression, and a face versus no face pattern. Comparisons were made in terms of classification accuracy and information transfer rate as well as user supplied subjective measures. The results showed that interferences from adjacent stimuli, annoyance and the fatigue experienced by the subjects could be reduced significantly (p < 0.05) by using the facial expression change patterns in comparison with the face pattern. The offline results show that the classification accuracy of the facial expression change pattern was significantly better than that of the shuffled pattern (p < 0.05) and the face pattern (p < 0.05). The facial expression change pattern presented in this paper reduced interference from adjacent stimuli and decreased the fatigue and annoyance experienced by BCI users significantly (p < 0.05) compared to the face pattern.

  16. An optimized ERP brain-computer interface based on facial expression changes

    NASA Astrophysics Data System (ADS)

    Jin, Jing; Daly, Ian; Zhang, Yu; Wang, Xingyu; Cichocki, Andrzej

    2014-06-01

    Objective. Interferences from spatially adjacent non-target stimuli are known to evoke event-related potentials (ERPs) during non-target flashes and, therefore, lead to false positives. This phenomenon was commonly seen in visual attention-based brain-computer interfaces (BCIs) using conspicuous stimuli and is known to adversely affect the performance of BCI systems. Although users try to focus on the target stimulus, they cannot help but be affected by conspicuous changes of the stimuli (such as flashes or presenting images) which were adjacent to the target stimulus. Furthermore, subjects have reported that conspicuous stimuli made them tired and annoyed. In view of this, the aim of this study was to reduce adjacent interference, annoyance and fatigue using a new stimulus presentation pattern based upon facial expression changes. Our goal was not to design a new pattern which could evoke larger ERPs than the face pattern, but to design a new pattern which could reduce adjacent interference, annoyance and fatigue, and evoke ERPs as good as those observed during the face pattern. Approach. Positive facial expressions could be changed to negative facial expressions by minor changes to the original facial image. Although the changes are minor, the contrast is big enough to evoke strong ERPs. In this paper, a facial expression change pattern between positive and negative facial expressions was used to attempt to minimize interference effects. This was compared against two different conditions, a shuffled pattern containing the same shapes and colours as the facial expression change pattern, but without the semantic content associated with a change in expression, and a face versus no face pattern. Comparisons were made in terms of classification accuracy and information transfer rate as well as user supplied subjective measures. Main results. The results showed that interferences from adjacent stimuli, annoyance and the fatigue experienced by the subjects could be reduced significantly (p < 0.05) by using the facial expression change patterns in comparison with the face pattern. The offline results show that the classification accuracy of the facial expression change pattern was significantly better than that of the shuffled pattern (p < 0.05) and the face pattern (p < 0.05). Significance. The facial expression change pattern presented in this paper reduced interference from adjacent stimuli and decreased the fatigue and annoyance experienced by BCI users significantly (p < 0.05) compared to the face pattern.

  17. Involvement of the DNA mismatch repair system in cisplatin sensitivity of testicular germ cell tumours.

    PubMed

    Rudolph, Christiane; Melau, Cecilie; Nielsen, John E; Vile Jensen, Kristina; Liu, Dekang; Pena-Diaz, Javier; Rajpert-De Meyts, Ewa; Rasmussen, Lene Juel; Jørgensen, Anne

    2017-08-01

    Testicular germ cell tumours (TGCT) are highly sensitive to cisplatin-based chemotherapy, but patients with tumours containing differentiated teratoma components are less responsive to this treatment. The cisplatin sensitivity in TGCT has previously been linked to the embryonic phenotype in the majority of tumours, although the underlying mechanism largely remains to be elucidated. The aim of this study was to investigate the role of the DNA mismatch repair (MMR) system in the cisplatin sensitivity of TGCT. The expression pattern of key MMR proteins, including MSH2, MSH6, MLH1 and PMS2, were investigated during testis development and in the pathogenesis of TGCT, including germ cell neoplasia in situ (GCNIS). The TGCT-derived cell line NTera2 was differentiated using retinoic acid (10 μM, 6 days) after which MMR protein expression and activity, as well as cisplatin sensitivity, were investigated in both undifferentiated and differentiated cells. Finally, the expression of MSH2 was knocked down by siRNA in NTera2 cells after which the effect on cisplatin sensitivity was examined. MMR proteins were expressed in proliferating cells in the testes, while in malignant germ cells MMR protein expression was found to coincide with the expression of the pluripotency factor OCT4, with no or low expression in the more differentiated yolk sac tumours, choriocarcinomas and teratomas. In differentiated NTera2 cells we found a significantly (p < 0.05) lower expression of the MMR and pluripotency factors, as well as a reduced MMR activity and cisplatin sensitivity, compared to undifferentiated NTera2 cells. Also, we found that partial knockdown of MSH2 expression in undifferentiated NTera2 cells resulted in a significantly (p < 0.001) reduced cisplatin sensitivity. This study reports, for the first time, expression of the MMR system in fetal gonocytes, from which GCNIS cells are derived. Our findings in primary TGCT specimens and TGCT-derived cells suggest that a reduced sensitivity to cisplatin in differentiated TGCT components could result from a reduced expression of MMR proteins, in particular MSH2 and MLH1, which are involved in the recognition of cisplatin adducts and in activation of the DNA damage response pathway to initiate apoptosis.

  18. Sugar metabolism, chip color, invertase activity, and gene expression during long-term cold storage of potato (Solanum tuberosum) tubers from wild-type and vacuolar invertase silencing lines of Katahdin.

    PubMed

    Wiberley-Bradford, Amy E; Busse, James S; Jiang, Jiming; Bethke, Paul C

    2014-11-16

    Storing potato tubers at low temperatures minimizes sprouting and disease but can cause an accumulation of reducing sugars in a process called cold-induced sweetening. Tubers with increased amounts of reducing sugars produce dark-colored, bitter-tasting fried products with elevated amounts of acrylamide, a possible carcinogen. Vacuolar invertase (VInv), which converts sucrose produced by starch breakdown to glucose and fructose, is the key determinant of reducing sugar accumulation during cold-induced sweetening. In this study, wild-type tubers and tubers in which VInv expression was reduced by RNA interference were used to investigate time- and temperature-dependent changes in sugar contents, chip color, and expression of VInv and other genes involved in starch metabolism in tubers during long-term cold storage. VInv activities and tuber reducing sugar contents were much lower, and tuber sucrose contents were much higher, in transgenic than in wild-type tubers stored at 3-9°C for up to eight months. Large differences in VInv mRNA accumulation were not observed at later times in storage, especially at temperatures below 9°C, so differences in invertase activity were likely established early in the storage period and maintained by stability of the invertase protein. Sugar contents, chip color, and expression of several of the studied genes, including AGPase and GBSS, were affected by storage temperature in both wild-type and transgenic tubers. Though transcript accumulation for other sugar-metabolism genes was affected by storage temperature and duration, it was essentially unaffected by invertase silencing and altered sugar contents. Differences in stem- and bud-end sugar contents in wild-type and transgenic tubers suggested different compartmentalization of sucrose at the two ends of stored tubers. VInv silencing significantly reduced cold-induced sweetening in stored potato tubers, likely by means of differential VInv expression early in storage. Transgenic tubers retained sensitivity to storage temperature, and accumulated greater amounts of sucrose, glucose and fructose at 3°C than at 7-9°C. At each storage temperature, suppression of VInv expression and large differences in tuber sugar contents had no effect on expression of AGPase and GBSS, genes involved in starch metabolism, suggesting that transcription of these genes is not regulated by tuber sugar content.

  19. Tungstate Reduces the Expression of Gluconeogenic Enzymes in STZ Rats

    PubMed Central

    Calbó, Joaquim; Domínguez, Jorge; Guinovart, Joan J.

    2012-01-01

    Aims Oral administration of sodium tungstate has shown hyperglycemia-reducing activity in several animal models of diabetes. We present new insights into the mechanism of action of tungstate. Methods We studied protein expression and phosphorylation in the liver of STZ rats, a type I diabetes model, treated with sodium tungstate in the drinking water (2 mg/ml) and in primary cultured-hepatocytes, through Western blot and Real Time PCR analysis. Results Tungstate treatment reduces the expression of gluconeogenic enzymes (PEPCK, G6Pase, and FBPase) and also regulates transcription factors accountable for the control of hepatic metabolism (c-jun, c-fos and PGC1α). Moreover, ERK, p90rsk and GSK3, upstream kinases regulating the expression of c-jun and c-fos, are phosphorylated in response to tungstate. Interestingly, PKB/Akt phosphorylation is not altered by the treatment. Several of these observations were reproduced in isolated rat hepatocytes cultured in the absence of insulin, thereby indicating that those effects of tungstate are insulin-independent. Conclusions Here we show that treatment with tungstate restores the phosphorylation state of various signaling proteins and changes the expression pattern of metabolic enzymes. PMID:22905122

  20. The magnitude and colour of noise in genetic negative feedback systems.

    PubMed

    Voliotis, Margaritis; Bowsher, Clive G

    2012-08-01

    The comparative ability of transcriptional and small RNA-mediated negative feedback to control fluctuations or 'noise' in gene expression remains unexplored. Both autoregulatory mechanisms usually suppress the average (mean) of the protein level and its variability across cells. The variance of the number of proteins per molecule of mean expression is also typically reduced compared with the unregulated system, but is almost never below the value of one. This relative variance often substantially exceeds a recently obtained, theoretical lower limit for biochemical feedback systems. Adding the transcriptional or small RNA-mediated control has different effects. Transcriptional autorepression robustly reduces both the relative variance and persistence (lifetime) of fluctuations. Both benefits combine to reduce noise in downstream gene expression. Autorepression via small RNA can achieve more extreme noise reduction and typically has less effect on the mean expression level. However, it is often more costly to implement and is more sensitive to rate parameters. Theoretical lower limits on the relative variance are known to decrease slowly as a measure of the cost per molecule of mean expression increases. However, the proportional increase in cost to achieve substantial noise suppression can be different away from the optimal frontier-for transcriptional autorepression, it is frequently negligible.

  1. NHE8 plays important roles in gastric mucosal protection

    PubMed Central

    Xu, Hua; Li, Jing; Chen, Huacong; Wang, Chunhui

    2013-01-01

    Sodium/hydrogen exchanger (NHE) 8 is an apically expressed membrane protein in the intestinal epithelial cells. It plays important roles in sodium absorption and bicarbonate secretion in the intestine. Although NHE8 mRNA has been detected in the stomach, the precise location and physiological role of NHE8 in the gastric glands remain unclear. In the current study, we successfully detected the expression of NHE8 in the glandular region of the stomach by Western blotting and located NHE8 protein at the apical membrane in the surface mucous cells by a confocal microscopic method. We also identified the expression of downregulated-in-adenoma (DRA) in the surface mucous cells in the stomach. Using NHE8−/− mice, we found that NHE8 plays little or no role in basal gastric acid production, yet NHE8−/− mice have reduced gastric mucosal surface pH and higher incidence of developing gastric ulcer. DRA expression was reduced significantly in the stomach in NHE8−/− mice. The propensity for gastric ulcer, reduced mucosal surface pH, and low DRA expression suggest that NHE8 is indirectly involved in gastric bicarbonate secretion and gastric mucosal protection. PMID:23220221

  2. Survivin Modulates Squamous Cell Carcinoma-Derived Stem-Like Cell Proliferation, Viability and Tumor Formation in Vivo

    PubMed Central

    Lotti, Roberta; Palazzo, Elisabetta; Petrachi, Tiziana; Dallaglio, Katiuscia; Saltari, Annalisa; Truzzi, Francesca; Quadri, Marika; Puviani, Mario; Maiorana, Antonino; Marconi, Alessandra; Pincelli, Carlo

    2016-01-01

    Squamous Cell Carcinoma-derived Stem-like Cells (SCC-SC) originate from alterations in keratinocyte stem cells (KSC) gene expression and sustain tumor development, invasion and recurrence. Since survivin, a KSC marker, is highly expressed in SCC-SC, we evaluate its role in SCC-SC cell growth and SCC models. Survivin silencing by siRNA decreases clonal growth of SCC keratinocytes and viability of total, rapidly adhering (RAD) and non-RAD (NRAD) cells from primary SCC. Similarly, survivin silencing reduces the expression of stem cell markers (OCT4, NOTCH1, CD133, β1-integrin), while it increases the level of differentiation markers (K10, involucrin). Moreover, survivin silencing improves the malignant phenotype of SCC 3D-reconstruct, as demonstrated by reduced epidermal thickness, lower Ki-67 positive cell number, and decreased expression of MMP9 and psoriasin. Furthermore, survivin depletion by siRNA in RasG12V-IκBα-derived tumors leads to smaller tumor formation characterized by lower mitotic index and reduced expression of the tumor-associated marker HIF1α, VEGF and CD51. Therefore, our results indicate survivin as a key gene in regulating SCC cancer stem cell formation and cSCC development. PMID:26771605

  3. Dietary restriction decreases coenzyme Q and ubiquinol potentially via changes in gene expression in the model organism C. elegans.

    PubMed

    Fischer, Alexandra; Klapper, Maja; Onur, Simone; Menke, Thomas; Niklowitz, Petra; Döring, Frank

    2015-05-06

    Dietary restriction (DR) is a robust intervention that extends both health span and life span in many organisms. Ubiquinol and ubiquinone represent the reduced and oxidized forms of coenzyme Q (CoQ). CoQ plays a central role in energy metabolism and functions in several cellular processes including gene expression. Here we used the model organism Caenorhabditis elegans to determine level and redox state of CoQ and expression of genes in response to DR. We found that DR down-regulates the steady-state expression levels of several evolutionary conserved genes (i.e. coq-1) that encode key enzymes of the mevalonate and CoQ-synthesizing pathways. In line with this, DR decreases the levels of total CoQ and ubiquinol. This CoQ-reducing effect of DR is obvious in adult worms but not in L4 larvae and is also evident in the eat-2 mutant, a genetic model of DR. In conclusion, we propose that DR reduces the level of CoQ and ubiquinol via gene expression in the model organism C. elegans. © 2015 International Union of Biochemistry and Molecular Biology.

  4. Decreased Nephrin and GLEPP-1, But Increased VEGF, Flt-1, and Nitrotyrosine, Expressions in Kidney Tissue Sections From Women With Preeclampsia

    PubMed Central

    Zhao, Shuang; Gu, Xin; Groome, Lynn J.; Wang, Yuping

    2011-01-01

    Renal injury is a common pathophysiological feature in women with preeclampsia as evidenced by increased protein leakage (proteinuria) and glomerular injury (glomerular endotheliosis). Recently, podocyturia was found in preeclampsia, suggesting podocyte shedding occurs in this pregnancy disorder. However, podocyte function in preeclampsia is poorly understood. In this study, the authors have examined podocyte-specific protein expressions for nephrin, glomerular epithelial protein 1 (GLEPP-1), and ezrin in kidney biopsy tissue sections from women with preeclampsia. Expressions for vascular endothelial growth factor (VEGF) and its receptor Flt-1 and oxidative stress marker nitrotyrosine and antioxidant CuZn-superoxide dismutase (CuZn-SOD) were also examined. Kidney tissue sections from nonhypertensive and chronic hypertensive participants were stained as controls. The findings were (1) nephrin and GLEPP-1 were mainly expressed in glomerular podocytes; (2) ezrin was expressed in both glomerular podocytes and tubular epithelial cells; (3) compared to tissue sections from nonhypertensive and chronic hypertensive participants, nephrin and GLEPP-1 expressions were much reduced in tissue sections from preeclampsia and ezrin expression was reduced in podocytes; (4) enhanced VEGF, Flt-1, and nitrotyrosine, but reduced CuZn-SOD, expressions were observed in both glomerular podocytes and endothelial cells in tissue sections from preeclampsia; and (5) the expression pattern for nephrin, GLEPP-1, ezrin, VEGF, Flt-1, and CuZn-SOD were similar between tissue sections from nonhypertensive and chronic hypertensive participants. Although the authors could not conclude from this biopsy study whether the podocyte injury is the cause or effect of the preeclampsia phenotype, the data provide compelling evidence that podocyte injury accompanied by altered angiogenesis process and increased oxidative stress occurs in kidney of patients with preeclampsia. PMID:19528353

  5. Hypothermia reduces VEGF-165 expression, but not osteogenic differentiation of human adipose stem cells under hypoxia

    PubMed Central

    Bakker, Astrid D.; Hogervorst, Jolanda M. A.; Nolte, Peter A.; Klein-Nulend, Jenneke

    2017-01-01

    Cryotherapy is successfully used in the clinic to reduce pain and inflammation after musculoskeletal damage, and might prevent secondary tissue damage under the prevalent hypoxic conditions. Whether cryotherapy reduces mesenchymal stem cell (MSC) number and differentiation under hypoxic conditions, causing impaired callus formation is unknown. We aimed to determine whether hypothermia modulates proliferation, apoptosis, nitric oxide production, VEGF gene and protein expression, and osteogenic/chondrogenic differentiation of human MSCs under hypoxia. Human adipose MSCs were cultured under hypoxia (37°C, 1% O2), hypothermia and hypoxia (30°C, 1% O2), or control conditions (37°C, 20% O2). Total DNA, protein, nitric oxide production, alkaline phosphatase activity, gene expression, and VEGF protein concentration were measured up to day 8. Hypoxia enhanced KI67 expression at day 4. The combination of hypothermia and hypoxia further enhanced KI67 gene expression compared to hypoxia alone, but was unable to prevent the 1.2-fold reduction in DNA amount caused by hypoxia at day 4. Addition of hypothermia to hypoxic cells did not alter the effect of hypoxia alone on BAX-to-BCL-2 ratio, alkaline phosphatase activity, gene expression of SOX9, COL1, or osteocalcin, or nitric oxide production. Hypothermia decreased the stimulating effect of hypoxia on VEGF-165 gene expression by 6-fold at day 4 and by 2-fold at day 8. Hypothermia also decreased VEGF protein expression under hypoxia by 2.9-fold at day 8. In conclusion, hypothermia decreased VEGF-165 gene and protein expression, but did not affect differentiation, or apoptosis of MSCs cultured under hypoxia. These in vitro results implicate that hypothermia treatment in vivo, applied to alleviate pain and inflammation, is not likely to harm early stages of callus formation. PMID:28166273

  6. Effects of hypo- and hyperthyroidism on proliferation, angiogenesis, apoptosis and expression of COX-2 in the corpus luteum of female rats.

    PubMed

    Silva, J F; Ocarino, N M; Vieira, A L S; Nascimento, E F; Serakides, R

    2013-08-01

    Although thyroid dysfunction occurs frequently in humans and some animal species, the mechanisms by which hypo- and hyperthyroidism affect the corpus luteum have not been thoroughly elucidated. This study evaluated the levels of proliferative activity, angiogenesis, apoptosis and expression of cyclooxygenase-2 in the corpus luteum of female rats with thyroid dysfunction. These processes may be important in understanding the reproductive changes caused by thyroid dysfunction. A total of 18 adult female rats were divided into three groups (control, hypothyroid and hyperthyroid) with six animals per group. Three months after treatment to induce thyroid dysfunction, the rats were euthanized in the dioestrus phase. The ovaries were collected and immunohistochemically analysed for expression of the cell proliferation marker CDC-47, vascular endothelial growth factor (VEGF), VEGF receptor Flk-1 and cyclooxygenase-2 (COX-2). Apoptosis was evaluated using the TUNEL assay. Hypothyroidism reduced the intensity and area of COX-2 expression in the corpus luteum (p < 0.05), while hyperthyroidism did not alter COX-2 expression in the dioestrus phase. Hypothyroidism significantly reduced the expression of CDC-47 in endothelial cells and pericytes in the corpus luteum, whereas hyperthyroidism did not induce a detectable change in CDC-47 expression (p > 0.05). Hypothyroidism reduced the level of apoptosis in luteal cells (p < 0.05) and increased VEGF expression in the corpus luteum. In contrast, hyperthyroidism increased the level of apoptosis in the corpus luteum (p < 0.05). In conclusion, thyroid dysfunction differentially affects the levels of proliferative activity, angiogenesis and apoptosis and COX-2 expression in the corpus luteum of female rats. © 2013 Blackwell Verlag GmbH.

  7. Suppression of Akt/Foxp3-mediated miR-183 expression blocks Sp1-mediated ADAM17 expression and TNFα-mediated NFκB activation in piceatannol-treated human leukemia U937 cells.

    PubMed

    Liu, Wen-Hsin; Chang, Long-Sen

    2012-09-01

    To address the mechanism of piceatannol in inhibiting TNFα-mediated pathway, studies on piceatannol-treated human leukemia U937 cells were conducted. Piceatannol treatment reduced TNFα shedding and NFκB activation and decreased the release of soluble TNFα into the culture medium of U937 cells. Moreover, ADAM17 expression was down-regulated in piceatannol-treated cells. Over-expression of ADAM17 abrogated the ability of piceatannol to suppress TNFα-mediated NFκB activation. Piceatannol-evoked β-TrCP up-regulation promoted Sp1 degradation, thus reducing transcriptional level of ADAM17 gene in U937 cells. Piceatannol treatment induced p38 MAPK phosphorylation but inactivation of Akt and ERK. In contrast to p38 MAPK inhibitor or restoration of ERK activation, transfection of constitutive active Akt abolished the effect of piceatannol on β-TrCP, Sp1 and ADAM17 expression. Piceatannol-elicited down-regulation of miR-183 expression was found to cause β-TrCP up-regulation. Inactivation of Akt resulted in Foxp3 down-regulation and reduced miR-183 expression in piceatannol-treated cells. Knock-down of Foxp3 and chromatin immunoprecipitating revealed that Foxp3 genetically regulated transcription of miR-183 gene. Taken together, our data indicate that suppression of Akt/Foxp3-mediated miR-183 expression blocks Sp1-mediated ADAM17 expression in piceatannol-treated U937 cells. Consequently, piceatannol suppresses TNFα shedding, leading to inhibition of TNFα/NFκB pathway. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Plasticity-Related Gene Expression During Eszopiclone-Induced Sleep.

    PubMed

    Gerashchenko, Dmitry; Pasumarthi, Ravi K; Kilduff, Thomas S

    2017-07-01

    Experimental evidence suggests that restorative processes depend on synaptic plasticity changes in the brain during sleep. We used the expression of plasticity-related genes to assess synaptic plasticity changes during drug-induced sleep. We first characterized sleep induced by eszopiclone in mice during baseline conditions and during the recovery from sleep deprivation. We then compared the expression of 18 genes and two miRNAs critically involved in synaptic plasticity in these mice. Gene expression was assessed in the cerebral cortex and hippocampus by the TaqMan reverse transcription polymerase chain reaction and correlated with sleep parameters. Eszopiclone reduced the latency to nonrapid eye movement (NREM) sleep and increased NREM sleep amounts. Eszopiclone had no effect on slow wave activity (SWA) during baseline conditions but reduced the SWA increase during recovery sleep (RS) after sleep deprivation. Gene expression analyses revealed three distinct patterns: (1) four genes had higher expression either in the cortex or hippocampus in the group of mice with increased amounts of wakefulness; (2) a large proportion of plasticity-related genes (7 out of 18 genes) had higher expression during RS in the cortex but not in the hippocampus; and (3) six genes and the two miRNAs showed no significant changes across conditions. Even at a relatively high dose (20 mg/kg), eszopiclone did not reduce the expression of plasticity-related genes during RS period in the cortex. These results indicate that gene expression associated with synaptic plasticity occurs in the cortex in the presence of a hypnotic medication. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  9. Controlled expression of pectic enzymes in Arabidopsis thaliana enhances biomass conversion without adverse effects on growth.

    PubMed

    Tomassetti, Susanna; Pontiggia, Daniela; Verrascina, Ilaria; Reca, Ida Barbara; Francocci, Fedra; Salvi, Gianni; Cervone, Felice; Ferrari, Simone

    2015-04-01

    Lignocellulosic biomass from agriculture wastes is a potential source of biofuel, but its use is currently limited by the recalcitrance of the plant cell wall to enzymatic digestion. Modification of the wall structural components can be a viable strategy to overcome this bottleneck. We have previously shown that the expression of a fungal polygalacturonase (pga2 from Aspergillus niger) in Arabidopsis and tobacco plants reduces the levels of de-esterified homogalacturonan in the cell wall and significantly increases saccharification efficiency. However, plants expressing pga2 show stunted growth and reduced biomass production, likely as a consequence of an extensive loss of pectin integrity during the whole plant life cycle. We report here that the expression in Arabidopsis of another pectic enzyme, the pectate lyase 1 (PL1) of Pectobacterium carotovorum, under the control of a chemically inducible promoter, results, after induction of the transgene, in a saccharification efficiency similar to that of plants expressing pga2. However, lines with high levels of transgene induction show reduced growth even in the absence of the inducer. To overcome the problem of plant fitness, we have generated Arabidopsis plants that express pga2 under the control of the promoter of SAG12, a gene expressed only during senescence. These plants expressed pga2 only at late stages of development, and their growth was comparable to that of WT plants. Notably, leaves and stems of transgenic plants were more easily digested by cellulase, compared to WT plants, only during senescence. Expression of cell wall-degrading enzymes at the end of the plant life cycle may be therefore a useful strategy to engineer crops unimpaired in biomass yield but improved for bioconversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The absence of p53 during Human Cytomegalovirus infection leads to decreased UL53 expression, disrupting UL50 localization to the inner nuclear membrane, and thereby inhibiting capsid nuclear egress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuan, Man I; O’Dowd, John M.; Fortunato, Elizabeth

    Our electron microscopy study (Kuan et al., 2016) found HCMV nuclear capsid egress was significantly reduced in p53 knockout cells (p53KOs), correlating with inhibited formation of infoldings of the inner nuclear membrane (IINMs). Molecular examination of these phenomena has found p53KOs expressed UL97 and phosphorylated lamins, however the lamina failed to remodel. The nuclear egress complex (NEC) protein UL50 was expressed in almost all cells. UL50 re-localized to the inner nuclear membrane (INM) in ~90% of wt cells, but only ~35% of p53KOs. UL53 expression was significantly reduced in p53KOs, and cells lacking UL50 nuclear staining, expressed no UL53. Re-introductionmore » of p53 into p53KOs largely recovered UL53 positivity and UL50 nuclear re-localization. Nuclear rim located UL50/53 puncta, which co-localized with the major capsid protein, were largely absent in p53KOs. We believe these puncta were IINMs. In the absence of p53, UL53 expression was inhibited, disrupting formation of the NEC/IINMs, and reducing functional virion secretion. -- Highlights: •Phosphorylated nuclear lamins were inefficiently remodeled in p53KO cells. •p53KO cells expressed UL50, but it was not efficiently targeted to the nuclear rim. •UL53 was not expressed in the large majority of p53KO cells. •Cells failing to express UL53 did not localize UL50 to the nucleus. •NEC puncta/infoldings of the inner nuclear membrane were scarce in p53KO cells.« less

  11. Deletion of RhoA in Progesterone Receptor-Expressing Cells Leads to Luteal Insufficiency and Infertility in Female Mice.

    PubMed

    El Zowalaty, Ahmed E; Li, Rong; Zheng, Yi; Lydon, John P; DeMayo, Francesco J; Ye, Xiaoqin

    2017-07-01

    Ras homolog gene family, member A (RhoA) is widely expressed throughout the female reproductive system. To assess its role in progesterone receptor-expressing cells, we generated RhoA conditional knockout mice RhoAd/d (RhoAf/f-Pgr-Cre+/-). RhoAd/d female mice had comparable mating activity, serum luteinizing hormone, prolactin, and estradiol levels and ovulation with control but were infertile with progesterone insufficiency, indicating impaired steroidogenesis in RhoAd/d corpus luteum (CL). RhoA was highly expressed in wild-type luteal cells and conditionally deleted in RhoAd/d CL. Gestation day 3.5 (D3.5) RhoAd/d ovaries had reduced numbers of CL, less defined corpus luteal cord formation, and disorganized CL collagen IV staining. RhoAd/d CL had lipid droplet and free cholesterol accumulation, indicating the availability of cholesterol for steroidogenesis, but disorganized β-actin and vimentin staining, indicating disrupted cytoskeleton integrity. Cytoskeleton is important for cytoplasmic cholesterol movement to mitochondria and for regulating mitochondria. Dramatically reduced expression of mitochondrial markers heat shock protein 60 (HSP60), voltage-dependent anion channel, and StAR was detected in RhoAd/d CL. StAR carries out the rate-limiting step of steroidogenesis. StAR messenger RNA expression was reduced in RU486-treated D3.5 wild-type CL and tended to be induced in progesterone-treated D3.5 RhoAd/d CL, with parallel changes of HSP60 expression. These data demonstrated the in vivo function of RhoA in CL luteal cell cytoskeleton integrity, cholesterol transport, StAR expression, and progesterone synthesis, and a positive feedback on StAR expression in CL by progesterone signaling. These findings provide insights into mechanisms of progesterone insufficiency.

  12. Comparative gene expression analysis between coronary arteries and internal mammary arteries identifies a role for the TES gene in endothelial cell functions relevant to coronary artery disease.

    PubMed

    Archacki, Stephen R; Angheloiu, George; Moravec, Christine S; Liu, Hui; Topol, Eric J; Wang, Qing Kenneth

    2012-03-15

    Coronary artery disease (CAD) is the leading cause of death worldwide. It has been established that internal mammary arteries (IMA) are resistant to the development of atherosclerosis, whereas left anterior descending (LAD) coronary arteries are athero-prone. The contrasting properties of these two arteries provide an innovative strategy to identify the genes that play important roles in the development of atherosclerosis. We carried out microarray analysis to identify genes differentially expressed between IMA and LAD. Twenty-nine genes showed significant differences in their expression levels between IMA and LAD, which included the TES gene encoding Testin. The role of TES in the cardiovascular system is unknown. Here we show that TES is involved in endothelial cell (EC) functions relevant to atherosclerosis. Western blot analysis showed higher TES expression in IMA than in LAD. Reverse transcription polymerase chain reaction and western blot analyses showed that TES was consistently and markedly down-regulated by more than 6-fold at both mRNA and protein levels in patients with CAD compared with controls without CAD (P= 0.000049). The data suggest that reduced TES expression is associated with the development of CAD. Knockdown of TES expression by small-interfering RNA promoted oxidized-LDL-mediated monocyte adhesion to ECs, EC migration and the transendothelial migration of monocytes, while the over-expression of TES in ECs blunted these processes. These results demonstrate association between reduced TES expression and CAD, establish a novel role for TES in EC functions and raise the possibility that reduced TES expression increases susceptibility to the development of CAD.

  13. Downregulation of CXCR4 Expression and Functionality After Zoledronate Exposure in Canine Osteosarcoma.

    PubMed

    Byrum, M L; Pondenis, H C; Fredrickson, R L; Wycislo, K L; Fan, T M

    2016-07-01

    The establishment and progression of metastases remains the life-limiting factor for dogs diagnosed with osteosarcoma (OS). The pattern of metastases is likely regulated through interactions between chemokine receptors and chemokines, and perturbations in these signaling cascades responsible for cytoskeletal organization and directional migration have the potential to alter metastatic cell trafficking behaviors. Zoledronate will impair directional migration of OS cells through downregulation of chemokine (C-X-C motif) receptor 4 (CXCR4) expression and functionality. Nineteen archived tumor specimens and plasma from 20 dogs with OS. Prospectively, the expressions of CXCR4 were studied in OS cell lines and spontaneous tumor samples. The effect of zoledronate on CXCR4 expression and functionality was investigated by characterizing responses in 3 OS cell lines. In 19 OS specimens and 20 dogs with OS, changes in CXCR4 expression and circulating CXCR4 concentrations were characterized in response to zoledronate therapy respectively. All canine OS cells express CXCR4, and zoledronate reduces CXCR4 expression and functionality by 27.7% (P < .0001), through augmented proteasome degradation and reduced prenylation of heterotrimeric G-proteins in 33% of tumor cell lines evaluated. In OS-bearing dogs, zoledronate reduces CXCR4 expressions by 40% within the primary tumor compared to untreated controls (P = .03) and also decreases the circulating concentrations of CXCR4 in 18 of 20 dogs with OS. Zoledronate can alter CXCR4 expression and functionality in OS cells, and consequent perturbations in CXCR4 intracellular signaling cascades might influence patterns of metastases. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  14. Transcription factor Mohawk and the pathogenesis of human anterior cruciate ligament degradation

    PubMed Central

    Nakahara, Hiroyuki; Hasegawa, Akihiko; Otabe, Koji; Ayabe, Fumiaki; Matsukawa, Tetsuya; Onizuka, Naoko; Ito, Yoshiaki; Ozaki, Toshifumi; Lotz, Martin K.; Asahara, Hiroshi

    2013-01-01

    Objective To investigate the expression and function of Mohawk (MKX) in human adult anterior cruciate ligament (ACL) tissues and ligament cells from normal and osteoarthritis-affected knees. Methods Knee joints were obtained at autopsy within 24-48 hours postmortem from 13 normal donors (age 36.9±11.0 years), 16 OA donors (age 79.7±11.4 years) and 8 old donors without OA (age 76.9±12.9 years). All cartilage surfaces were graded macroscopically. MKX expression was analyzed by immunohistochemistry and quantitative PCR. ACL-derived cells were used to study regulation of MKX expression by IL-1β. MKX was knocked down by siRNA to analyze function of MKX in extracellular matrix (ECM) production and differentiation in ACL-derived cells. Results The expression of MKX was significantly decreased in ACL-derived cells from OA knees compared with normal knees. Consistent with this finding, immunohistochemistry showed that MKX positive cells were significantly reduced in ACL tissues from OA donors in particular in cells located in disorientated fibers. In ACL-derived cells, IL-1β strongly suppressed MKX gene expression and reduced ligament ECM genes, COL1A1 and TNXB. On the other hand, SOX9, chondrocyte master transcription factor, was up regulated by IL-1β treatment. Importantly, knock down of MKX expression by siRNA upregulated SOX9 expression in ACL-derived cells, whereas the expression of COL1A1 and TNXB were decreased. Conclusion Reduced expression of MKX is a feature of degenerated ACL in OA-affected joints and this may be in part mediated by IL-1β. MKX appears necessary to maintain the tissue specific cellular differentiation status and ECM production in adult human tendons and ligaments. PMID:23686683

  15. Ruxolitinib synergizes with DMF to kill via BIM+BAD-induced mitochondrial dysfunction and via reduced SOD2/TRX expression and ROS.

    PubMed

    Tavallai, Mehrad; Booth, Laurence; Roberts, Jane L; McGuire, William P; Poklepovic, Andrew; Dent, Paul

    2016-04-05

    We determined whether the myelofibrosis drug ruxolitinib, an inhibitor of Janus kinases 1/2 (JAK1 and JAK2), could interact with the multiple sclerosis drug dimethyl-fumarate (DMF) to kill tumor cells; studies used the in vivo active form of the drug, mono-methyl fumarate (MMF). Ruxolitinib interacted with MMF to kill brain, breast, lung and ovarian cancer cells, and enhanced the lethality of standard of care therapies such as paclitaxel and temozolomide. MMF also interacted with other FDA approved drugs to kill tumor cells including Celebrex® and Gilenya®. The combination of [ruxolitinib + MMF] inactivated ERK1/2, AKT, STAT3 and STAT5; reduced expression of MCL-1, BCL-XL, SOD2 and TRX; increased BIM expression; decreased BAD S112 S136 phosphorylation; and enhanced pro-caspase 3 cleavage. Expression of activated forms of STAT3, MEK1 or AKT each significantly reduced drug combination lethality; prevented BAD S112 S136 dephosphorylation and decreased BIM expression; and preserved TRX, SOD2, MCL-1 and BCL-XL expression. The drug combination increased the levels of reactive oxygen species in cells, and over-expression of TRX or SOD2 prevented drug combination tumor cell killing. Over-expression of BCL-XL or knock down of BAX, BIM, BAD or apoptosis inducing factor (AIF) protected tumor cells. The drug combination increased AIF : HSP70 co-localization in the cytosol but this event did not prevent AIF : eIF3A association in the nucleus.

  16. Reduced retinoids and retinoid receptors' expression in pancreatic cancer: A link to patient survival.

    PubMed

    Bleul, Tim; Rühl, Ralph; Bulashevska, Svetlana; Karakhanova, Svetlana; Werner, Jens; Bazhin, Alexandr V

    2015-09-01

    Pancreatic ductal adenocarcinoma (PDAC) represents one of the deadliest cancers in the world. All-trans retinoic acid (ATRA) is the major physiologically active form of vitamin A, regulating expression of many genes. Disturbances of vitamin A metabolism are prevalent in some cancer cells. The main aim of this work was to investigate deeply the components of retinoid signaling in PDAC compared to in the normal pancreas and to prove the clinical importance of retinoid receptor expression. For the study, human tumor tissues obtained from PDAC patients and murine tumors from the orthotopic Panc02 model were used for the analysis of retinoids, using high performance liquid chromatography mass spectrometry and real-time RT-PCR gene expression analysis. Survival probabilities in univariate analysis were estimated using the Kaplan-Meier method and the Cox proportional hazards model was used for the multivariate analysis. In this work, we showed for the first time that the ATRA and all-trans retinol concentration is reduced in PDAC tissue compared to their normal counterparts. The expression of RARα and β as well as RXRα and β are down-regulated in PDAC tissue. This reduced expression of retinoid receptors correlates with the expression of some markers of differentiation and epithelial-to-mesenchymal transition as well as of cancer stem cell markers. Importantly, the expression of RARα and RXRβ is associated with better overall survival of PDAC patients. Thus, reduction of retinoids and their receptors is an important feature of PDAC and is associated with worse patient survival outcomes. © 2014 Wiley Periodicals, Inc.

  17. Methods and compositions for altering lignin composition in plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Avinash C.; Tang, Yuhong; Blancaflor, Elison

    The invention provides methods for decreasing lignin content in plants by reducing expression of a folylpolyglutamate synthetase 1 (FPGS1) coding sequence in the plant. Also provided are methods for reducing lignin content in a plant by down-regulation of FPGS1 expression in the plant. Nucleic acid molecules for modulation of FPGS1 expression and transgenic plants the same are also provided. Plants described herein may be used, for example, as improved biofuel feedstock and as highly digestible forage crops. Methods for processing plant tissue and for producing biofuels by utilizing such plants are also provided.

  18. Divergence and Necessary Conditions for Extremums

    NASA Technical Reports Server (NTRS)

    Quirein, J. A.

    1973-01-01

    The problem is considered of finding a dimension reducing transformation matrix B that maximizes the divergence in the reduced dimension for multi-class cases. A comparitively simple expression for the gradient of the average divergence with respect to B is developed. The developed expression for the gradient contains no eigenvectors or eigenvalues; also, all matrix inversions necessary to evaluate the gradient are available from computing the average divergence.

  19. Patient Expression of Emotions and Neurologist Responses in First Multiple Sclerosis Consultations

    PubMed Central

    Del Piccolo, Lidia; Pietrolongo, Erika; Radice, Davide; Tortorella, Carla; Confalonieri, Paolo; Pugliatti, Maura; Lugaresi, Alessandra; Giordano, Andrea; Heesen, Christoph; Solari, Alessandra

    2015-01-01

    Background Anxiety and depression are common in people with multiple sclerosis (MS), but data on emotional communication during MS consultations are lacking. We assessed patient expressions of emotion and neurologist responses during first-ever MS consultations using the Verona Coding Definitions of Emotional Sequences (VR-CoDES). Methods We applied VR-CoDES to recordings/transcripts of 88 outpatient consultations (10 neurologists, four MS Italian centers). Before consultation, patients completed the Hospital Anxiety and Depression Scale (HADS). Multilevel sequential analysis was performed on the number of cues/concerns expressed by patients, and the proportion of reduce space responses by neurologists. Results Patients expressed 492 cues and 45 concerns (median 4 cues and 1 concern per consultation). The commonest cues were verbal hints of hidden worries (cue type b, 41%) and references to stressful life events (type d, 26%). Variables independently associated with number of cues/concerns were: anxiety (HADS-Anxiety score >8) (incidence risk ratio, IRR 1.08, 95% CI 1.06-1.09; p<0.001); patient age (IRR 0.98, 95% CI 0.98-0.99; p<0.001); neurologist age (IRR 0.94, 95% CI 0.92-0.96; p=0.03); and second opinion consultation (IRR 0.72, 95% CI 0.60-0.86; p=0.007). Neurologists reacted to patient emotions by reducing space (changing subject, taking no notice, giving medical advice) for 58% of cues and 76% of concerns. Anxiety was the only variable significantly associated with ‘reduce space’ responses (odds ratio 2.17, 95% CI 1.32-3.57; p=0.003). Conclusions Patient emotional expressions varied widely, but VR-CoDES cues b and d were expressed most often. Patient anxiety was directly associated with emotional expressions; older age of patients and neurologists, and second opinion consultations were inversely associated with patient emotional expression. In over 50% of instances, neurologists responded to these expressions by reducing space, more so in anxious patients. These findings suggest that neurologists need to improve their skills in dealing with patient emotions. PMID:26030822

  20. Maternal protein restriction in the rat inhibits placental insulin, mTOR, and STAT3 signaling and down-regulates placental amino acid transporters.

    PubMed

    Rosario, Fredrick J; Jansson, Nina; Kanai, Yoshikatsu; Prasad, Puttur D; Powell, Theresa L; Jansson, Thomas

    2011-03-01

    The mechanisms underlying reduced fetal growth in response to maternal protein restriction are not well established. Maternal levels of insulin, IGF-I, and leptin are decreased in rats fed a low protein (LP) diet. Because these hormones stimulate placental amino acid transporters in vitro, we hypothesized that maternal protein restriction inhibits placental leptin, insulin/IGF-I, and mammalian target of rapamycin signaling and down-regulates the expression and activity of placental amino acid transporters. Pregnant rats were fed either an isocaloric low protein (LP, 4% protein) or control diet (18% protein) and studied at gestational day (GD)15, GD19, or GD21 (term 23). At GD19 and GD21, placental expression of phosphorylated eukaryotic initiation factor 4E binding protein 1 (Thr-36/46 or Thr-70) and phosphorylated S6 ribosomal protein (Ser-235/236) was decreased in the LP group. In addition, placental expression of phosphorylated S6 kinase 1 (Thr-389), phosphorylated Akt (Thr-308), and phosphorylated signal transducer and activator of transcription 3 (Tyr-705) was reduced at GD21. In microvillous plasma membranes (MVM) isolated from placentas of LP animals, protein expression of the sodium-coupled neutral amino acid transporter (SNAT)2 and the large neutral amino acid transporters 1 and 2 was reduced at GD19 and GD21. MVM SNAT1 protein expression was reduced at GD21 in LP rats. SNAT4 and 4F2 heavy chain expression in MVM was unaltered. System A and L amino acid transporter activity was decreased in MVM from LP animals at GD19 and GD21. In conclusion, maternal protein restriction inhibits placental insulin, mammalian target of rapamycin signaling, and signal transducer and activator of transcription 3 signaling, which is associated with a down-regulation of placental amino acid transporters. We speculate that maternal endocrine and metabolic control of placental nutrient transport reduces fetal growth in response to protein restriction.

  1. Effects of long-term treatment with the luteinizing hormone-releasing hormone (LHRH) agonist Decapeptyl and the LHRH antagonist Cetrorelix on the levels of pituitary LHRH receptors and their mRNA expression in rats

    PubMed Central

    Horvath, Judit E.; Bajo, Ana M.; Schally, Andrew V.; Kovacs, Magdolna; Herbert, Francine; Groot, Kate

    2002-01-01

    The effects of depot formulations of the luteinizing hormone-releasing hormone (LHRH) agonist Decapeptyl (25 μg/day) for 30 days or LHRH antagonist Cetrorelix pamoate (100 μg/day) for 30 days and daily injections of 100 μg of Decapeptyl for 10 days on the expression of mRNA for pituitary LHRH receptor (LHRH-R) and the levels of LHRH-R protein were evaluated in rats. Serum sex steroid concentrations and the weights of the reproductive organs were greatly reduced in all groups treated with analogs, demonstrating an efficient blockade of the pituitary–gonadal axis. Decapeptyl microcapsules elevated serum LH in female rats, but decreased it in male rats. LHRH-R mRNA expression in female pituitaries was reduced to 41% and 56–65% on days 10 and 30, respectively, whereas LHRH-R protein was 64% of control on day 10 and returned to pretreatment levels on day 30. Decapeptyl microcapsules reduced LHRH-R mRNA expression in male pituitaries to 58% on day 30 but not LHRH-R protein. Daily injections of Decapeptyl caused a desensitization of LH responses in female rats, while raising LHRH-R mRNA expression in female rats by 23% and LHRH-R protein levels by 119%. Cetrorelix pamoate reduced serum LH in female rats and diminished LHRH-R mRNA to 30% and 26% and LHRH-R protein to 57% and 48% on days 10 and 30, respectively. Elevated LHRH-R protein levels of ovariectomized rats were reduced after 10-day treatment with Cetrorelix or 100 μg/day Decapeptyl. Thus, changes in the mRNA expression after treatment with Cetrorelix, but not always Decapeptyl, paralleled those of LHRH-R protein. The inhibitory effect of Cetrorelix on serum LH, pituitary LHRH-R mRNA, and LHRH-R protein was greater than that of Decapeptyl. PMID:12409615

  2. The Bmi-1 helix-turn and ring finger domains are required for Bmi-1 antagonism of (-) epigallocatechin-3-gallate suppression of skin cancer cell survival.

    PubMed

    Balasubramanian, Sivaprakasam; Scharadin, Tiffany M; Han, Bingshe; Xu, Wen; Eckert, Richard L

    2015-07-01

    The Bmi-1 Polycomb group (PcG) protein is an important epigenetic regulator of chromatin status. Elevated Bmi-1 expression is observed in skin cancer and contributes to cancer cell survival. (-) Epigallocatechin-3-gallate (EGCG), an important green tea-derived cancer prevention agent, reduces Bmi-1 level resulting in reduced skin cancer cell survival. This is associated with increased p21(Cip1) and p27(Kip1) expression, reduced cyclin, and cyclin dependent kinase expression, and increased cleavage of apoptotic markers. These EGCG-dependent changes are attenuated by vector-mediated maintenance of Bmi-1 expression. In the present study, we identify Bmi-1 functional domains that are required for this response. Bmi-1 expression reverses the EGCG-dependent reduction in SCC-13 cell survival, but Bmi-1 mutants lacking the helix-turn-helix-turn-helix-turn (Bmi-1ΔHT) or ring finger (Bmi-1ΔRF) domains do not reverse the EGCG impact. The reduction in Ring1B ubiquitin ligase activity, observed in the presence of mutant Bmi-1, is associated with reduced ability of these mutants to interact with and activate Ring1B ubiquitin ligase, the major ligase responsible for the ubiquitination of histone H2A during chromatin condensation. This results in less chromatin condensation leading to increased tumor suppressor gene expression and reduced cell survival; thereby making the cells more susceptible to the anti-survival action of EGCG. We further show that these mutants act in a dominant-negative manner to inhibit the action of endogenous Bmi-1. Our results suggest that the HT and RF domains are required for Bmi-1 ability to maintain skin cancer cell survival in response to cancer preventive agents. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Methamphetamine differentially affects BDNF and cell death factors in anatomically defined regions of the hippocampus

    PubMed Central

    Galinato, Melissa H.; Orio, Laura; Mandyam, Chitra D.

    2014-01-01

    Methamphetamine exposure reduces hippocampal long-term potentiation (LTP) and neurogenesis and these alterations partially contribute to hippocampal maladaptive plasticity. The potential mechanisms underlying methamphetamine-induced maladaptive plasticity were identified in the present study. Expression of brain-derived neurotrophic factor (BDNF; a regulator of LTP and neurogenesis), and its receptor tropomyosin-related kinase B (TrkB) were studied in the dorsal and ventral hippocampal tissue lysates in rats that intravenously self-administered methamphetamine in a limited access (1 h/day) or extended access (6 h/day) paradigm for 17 days post baseline sessions. Extended access methamphetamine enhanced expression of BDNF with significant effects observed in the dorsal and ventral hippocampus. Methamphetamine-induced enhancements in BDNF expression were not associated with TrkB receptor activation as indicated by phospho (p)-TrkB-706 levels. Conversely, methamphetamine produced hypophosphorylation of NMDA receptor subunit 2B (GluN2B) at Tyr-1472 in the ventral hippocampus, indicating reduced receptor activation. In addition, methamphetamine enhanced expression of anti-apoptotic protein Bcl-2 and reduced pro-apoptotic protein Bax levels in the ventral hippocampus, suggesting a mechanism for reducing cell death. Analysis of Akt, a pro-survival kinase that suppresses apoptotic pathways and pAkt at Ser-473 demonstrated that extended access methamphetamine reduces Akt expression in the ventral hippocampus. These data reveal that alterations in Bcl-2 and Bax levels by methamphetamine were not associated with enhanced Akt expression. Given that hippocampal function and neurogenesis vary in a subregion-specific fashion, where dorsal hippocampus regulates spatial processing and has higher levels of neurogenesis, whereas ventral hippocampus regulates anxiety-related behaviors, these data suggest that methamphetamine self-administration initiates distinct allostatic changes in hippocampal subregions that may contribute to the altered synaptic activity in the hippocampus, which may underlie enhanced negative affective symptoms and perpetuation of the addiction cycle. PMID:25463524

  4. A novel cantharidin analog N-Benzylcantharidinamide reduces the expression of MMP-9 and invasive potentials of Hep3B via inhibiting cytosolic translocation of HuR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ji-Yeon; Chung, Tae-Wook; Choi, Hee-Jung

    2014-05-02

    Highlights: • We examined the inhibition of N-Benzylcantharidinamide on MMP-9-mediated invasion. • Unlike cantharidin, N-Benzylcantharidinamide has very low toxicity on Hep3B cells. • The reduced MMP-9 expression was due to HuR-mediated decrease of mRNA stability. • We suggest N-Benzylcantharidinamide as a novel inhibitor of MMP-9-related invasion. - Abstract: Invasion and metastasis are major causes of malignant tumor-associated mortality. The present study aimed to investigate the molecular events underlying inhibitory effect of N-Benzylcantharidinamide, a novel synthetic analog of cantharidin, on matrix metalloproteinase-9 (MMP-9)-mediated invasion in highly metastatic hepatocellular carcinoma Hep3B cells. In this investigation, among six analogs of cantharidin, only N-Benzylcantharidinamidemore » has the inhibitory action on MMP-9 expression at non-toxic dose. The MMP-9 expression and invasion of Hep3B cells were significantly suppressed by treatment of N-Benzylcantharidinamide in a dose-dependent manner. On the other hand, the transcriptional activity of MMP-9 promoter and nuclear levels of NF-κB and AP-1 as the main transcriptional factors inducing MMP-9 expression were not affected by it although the level of MMP-9 mRNA was reduced by treatment of N-Benzylcantharidinamide. Interestingly, the stability of MMP-9 mRNA was significantly reduced by N-Benzylcantharidinamide-treatment. In addition, the cytosolic translocation of human antigen R (HuR), which results in the increase of MMP-9 mRNA stability through interaction of HuR with 3′-untranslated region of MMP-9 mRNA, was suppressed by treatment of N-Benzylcantharidinamide, in a dose-dependent manner. Taken together, it was demonstrated, for the first time, that N-Benzylcantharidinamide suppresses MMP-9 expression by reducing HuR-mediated MMP-9 mRNA stability for the inhibition of invasive potential in highly metastatic Hep3B cells.« less

  5. Dietary tomato and lycopene impact androgen signaling- and carcinogenesis-related gene expression during early TRAMP prostate carcinogenesis

    PubMed Central

    Wan, Lei; Tan, Hsueh-Li; Thomas-Ahner, Jennifer M.; Pearl, Dennis K.; Erdman, John W.; Moran, Nancy E.; Clinton, Steven K.

    2014-01-01

    Consumption of tomato products containing the carotenoid lycopene is associated with a reduced risk of prostate cancer. To identify gene expression patterns associated with early testosterone-driven prostate carcinogenesis, which are impacted by dietary tomato and lycopene, wild type (WT) and transgenic adenocarcinoma of the mouse prostate (TRAMP) mice were fed control or tomato- or lycopene-containing diets from 4-10 wk-of-age. Eight-week-old mice underwent sham surgery, castration, or castration followed by testosterone-repletion (2.5 mg/kg/d initiated 1 wk after castration). Ten-wk-old intact TRAMP mice exhibit early multifocal prostatic intraepithelial neoplasia (PIN). Of the 200 prostate cancer-related genes measured by quantitative NanoString®, 189 are detectable, 164 significantly differ by genotype, 179 by testosterone status, and 30 by diet type (P<0.05). In TRAMP, expression of Birc5, Mki67, Aurkb, Ccnb2, Foxm1, and Ccne2 is greater compared to WT and is decreased by castration. In parallel, castration reduces Ki67-positive staining (P<0.0001) compared to intact and testosterone-repleted TRAMP mice. Expression of genes involved in androgen metabolism/signaling pathways are reduced by lycopene feeding (Srd5a1) and by tomato-feeding (Srd5a2, Pxn, and Srebf1). Additionally, tomato-feeding significantly reduced expression of genes associated with stem cell features, Aldh1a and Ly6a, while lycopene-feeding significantly reduced expression of neuroendocrine differentiation-related genes, Ngfr and Syp. Collectively, these studies demonstrate a profile of testosterone-regulated genes associated with early stages of prostate carcinogenesis that are potential mechanistic targets of dietary tomato components. Future studies on androgen signaling/metabolism, stem cell features, and neuroendocrine differentiation pathways may elucidate the mechanisms by which dietary tomato and lycopene impact prostate cancer risk. PMID:25315431

  6. Effects of insulin and exercise training on FGF21, its receptors and target genes in obesity and type 2 diabetes.

    PubMed

    Kruse, Rikke; Vienberg, Sara G; Vind, Birgitte F; Andersen, Birgitte; Højlund, Kurt

    2017-10-01

    Pharmacological doses of FGF21 improve glucose tolerance, lipid metabolism and energy expenditure in rodents. Induced expression and secretion of FGF21 from muscle may increase browning of white adipose tissue (WAT) in a myokine-like manner. Recent studies have reported that insulin and exercise increase FGF21 in plasma. Obesity and type 2 diabetes are potentially FGF21-resistant states, but to what extent FGF21 responses to insulin and exercise training are preserved, and whether FGF21, its receptors and target genes are altered, remains to be established. The effects of insulin during euglycaemic-hyperinsulinaemic clamps and 10 week endurance training on serum FGF21 were examined in individuals with type 2 diabetes and in glucose tolerant overweight/obese and lean individuals. Gene expression of FGF21, its receptors and target genes in muscle and WAT biopsies was evaluated by quantitative real-time PCR (qPCR). Insulin increased serum and muscle FGF21 independent of overweight/obesity or type 2 diabetes, and there were no effects associated with exercise training. The insulin-induced increases in serum FGF21 and muscle FGF21 expression correlated tightly (p < 0.001). In WAT, overweight/obesity with and without type 2 diabetes led to reduced expression of KLB, but increased FGFR1c expression. However, the expression of most FGF21 target genes was unaltered except for reduced CIDEA expression in individuals with type 2 diabetes. Insulin-induced expression of muscle FGF21 correlates strongly with a rise in serum FGF21, and this response appears intact in overweight/obesity and type 2 diabetes. FGF21 resistance may involve reduced KLB expression in WAT. However, increased FGFR1c expression or other mechanisms seem to ensure adequate expression of most FGF21 target genes in WAT.

  7. Magnolol reduced TNF-α-induced vascular cell adhesion molecule-1 expression in endothelial cells via JNK/p38 and NF-κB signaling pathways.

    PubMed

    Liang, Chan-Jung; Lee, Chiang-Wen; Sung, Hsin-Ching; Chen, Yung-Hsiang; Wang, Shu-Huei; Wu, Pei-Jhen; Chiang, Yao-Chang; Tsai, Jaw-Shiun; Wu, Chau-Chung; Li, Chi-Yuan; Chen, Yuh-Lien

    2014-01-01

    Expression of cell adhesion molecules by the endothelium and the attachment of leukocytes to these cells play major roles in inflammation and cardiovascular disorders. Magnolol, a major active component of Magnolia officinalis, has antioxidative and anti-inflammatory properties. In the present study, the effects of magnolol on the expression of vascular cell adhesion molecule-1 (VCAM-1) in human aortic endothelial cells (HAECs) and the related mechanisms were investigated. TNF-α induced VCAM-1 protein expression and mRNA stability were significantly decreased in HAECs pre-treated with magnolol. Magnolol significantly reduced the phosphorylation of ERK, JNK, and p38 in TNF-α-treated HAECs. The decrease in VCAM-1 expression in response to TNF-α treatment was affected by JNK and p38 inhibitors, not by an ERK inhibitor. Magnolol also attenuates NF-κB activation and the translocation of HuR (an RNA binding protein) in TNF-α-stimulated HAECs. The VCAM-1 expression was weaker in the aortas of TNF-α-treated apo-E deficient mice with magnolol treatment. These data demonstrate that magnolol inhibits TNF-α-induced JNK/p38 phosphorylation, HuR translocation, NF-κB activation, and thereby suppresses VCAM-1 expression resulting in reduced leukocyte adhesion. Taken together, these results suggest that magnolol has an anti-inflammatory property and may play an important role in the prevention of atherosclerosis and inflammatory responses.

  8. Loss of p21{sup Sdi1} expression in senescent cells after DNA damage accompanied with increase of miR-93 expression and reduced p53 interaction with p21{sup Sdi1} gene promoter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Ok Ran; Lim, In Kyoung, E-mail: iklim@ajou.ac.kr

    2011-04-08

    Highlights: {yields} Reduced p21 expression in senescent cells treated with DNA damaging agents. {yields} Increase of [{sup 3}H]thymidine and BrdU incorporations in DNA damaged-senescent cells. {yields} Upregulation of miR-93 expression in senescent cells in response to DSB. {yields} Failure of p53 binding to p21 promoter in senescent cells in response to DSB. {yields} Molecular mechanism of increased cancer development in aged than young individuals. -- Abstract: To answer what is a critical event for higher incidence of tumor development in old than young individuals, primary culture of human diploid fibroblasts were employed and DNA damage was induced by doxorubicin ormore » X-ray irradiation. Response to the damage was different between young and old cells; loss of p21{sup sdi1} expression in spite of p53{sup S15} activation in old cells along with [{sup 3}H]thymidine and BrdU incorporation, but not in young cells. The phenomenon was confirmed by other tissue fibroblasts obtained from different donor ages. Induction of miR-93 expression and reduced p53 binding to p21 gene promoter account for loss of p21{sup sdi1} expression in senescent cells after DNA damage, suggesting a mechanism of in vivo carcinogenesis in aged tissue without repair arrest.« less

  9. Gene Expression-Genotype Analysis Implicates GSDMA, GSDMB, and LRRC3C as Contributors to Inflammatory Bowel Disease Susceptibility

    PubMed Central

    Söderman, Jan; Berglind, Linda; Almer, Sven

    2015-01-01

    To investigate the biological foundation of the inflammatory bowel disease (IBD), ulcerative colitis and Crohn's disease, susceptibility locus rs2872507, we have investigated the expression of 13 genes using ileal and colonic biopsies from patients with IBD (inflamed and noninflamed mucosa) or from individuals without IBD (noninflamed mucosa). The susceptibility allele was consistently associated with reduced expression of GSDMB (P = 4.1 × 10−3–7.2 × 10−10). The susceptibility allele was also associated with the increased expression of GSDMA (P = 1.6 × 10−4) and LRRC3C (P = 7.8 × 10−6) in colon tissue from individuals without IBD and with the reduced expression of PGAP3 (IBD; P = 2.0 × 10−3) and ZPBP2 (Crohn's disease; P = 7.7 × 10−4) in noninflamed ileum. Inflammation resulted in the reduced colonic expression of ERBB2, GRB7, MIEN1, and PGAP3 (P = 1.0 × 10−4–1.0 × 10−9) and the increased colonic expression of IKZF3 and CSF3 (P = 2.4 × 10−7–3.5 × 10−8). Based on our results and published findings on GSDMA, GSDMB, LRRC3C, and related proteins, we propose that this locus in part affects IBD susceptibility via effects on apoptosis and cell proliferation and believe this hypothesis warrants further experimental investigation. PMID:26484354

  10. GEC-targeted HO-1 expression reduces proteinuria in glomerular immune injury.

    PubMed

    Duann, Pu; Lianos, Elias A

    2009-09-01

    Induction of heme oxygenase (HO)-1 is a key defense mechanism against oxidative stress. Compared with tubules, glomeruli are refractory to HO-1 upregulation in response to injury. This can be a disadvantage as it may be associated with insufficient production of cytoprotective heme-degradation metabolites. We, therefore, explored whether 1) targeted HO-1 expression can be achieved in glomeruli without altering their physiological integrity and 2) this expression reduces proteinuria in immune injury induced by an anti-glomerular basement membrane (GBM) antibody (Ab). We employed a 4.125-kb fragment of a mouse nephrin promoter downstream to which a FLAG-tagged hHO-1 cDNA sequence was inserted and subsequently generated transgenic mice from the FVB/N parental strain. There was a 16-fold higher transgene expression in the kidney than nonspecific background (liver) while the transprotein immunolocalized in glomerular epithelial cells (GEC). There was no change in urinary protein excretion, indicating that GEC-targeted HO-1 expression had no effect on glomerular protein permeability. Urinary protein excretion in transgenic mice with anti-GBM Ab injury (days 3 and 6) was significantly lower compared with wild-type controls. There was no significant change in renal expression levels of profibrotic (TGF-beta1) or anti-inflammatory (IL-10) cytokines in transgenic mice with anti-GBM Ab injury. These observations indicate that GEC-targeted HO-1 expression does not alter glomerular physiological integrity and reduces proteinuria in glomerular immune injury.

  11. GEC-targeted HO-1 expression reduces proteinuria in glomerular immune injury

    PubMed Central

    Duann, Pu; Lianos, Elias A.

    2009-01-01

    Induction of heme oxygenase (HO)-1 is a key defense mechanism against oxidative stress. Compared with tubules, glomeruli are refractory to HO-1 upregulation in response to injury. This can be a disadvantage as it may be associated with insufficient production of cytoprotective heme-degradation metabolites. We, therefore, explored whether 1) targeted HO-1 expression can be achieved in glomeruli without altering their physiological integrity and 2) this expression reduces proteinuria in immune injury induced by an anti-glomerular basement membrane (GBM) antibody (Ab). We employed a 4.125-kb fragment of a mouse nephrin promoter downstream to which a FLAG-tagged hHO-1 cDNA sequence was inserted and subsequently generated transgenic mice from the FVB/N parental strain. There was a 16-fold higher transgene expression in the kidney than nonspecific background (liver) while the transprotein immunolocalized in glomerular epithelial cells (GEC). There was no change in urinary protein excretion, indicating that GEC-targeted HO-1 expression had no effect on glomerular protein permeability. Urinary protein excretion in transgenic mice with anti-GBM Ab injury (days 3 and 6) was significantly lower compared with wild-type controls. There was no significant change in renal expression levels of profibrotic (TGF-β1) or anti-inflammatory (IL-10) cytokines in transgenic mice with anti-GBM Ab injury. These observations indicate that GEC-targeted HO-1 expression does not alter glomerular physiological integrity and reduces proteinuria in glomerular immune injury. PMID:19587144

  12. hnRNP L controls HPV16 RNA polyadenylation and splicing in an Akt kinase-dependent manner

    PubMed Central

    Kajitani, Naoko; Glahder, Jacob; Wu, Chengjun; Yu, Haoran; Nilsson, Kersti

    2017-01-01

    Abstract Inhibition of the Akt kinase activates HPV16 late gene expression by reducing HPV16 early polyadenylation and by activating HPV16 late L1 mRNA splicing. We identified ‘hot spots’ for RNA binding proteins at the early polyA signal and at splice sites on HPV16 late mRNAs. We observed that hnRNP L was associated with sequences at all HPV16 late splice sites and at the early polyA signal. Akt kinase inhibition resulted in hnRNP L dephosphorylation and reduced association of hnRNP L with HPV16 mRNAs. This was accompanied by an increased binding of U2AF65 and Sam68 to HPV16 mRNAs. Furthermore, siRNA knock-down of hnRNP L or Akt induced HPV16 gene expression. Treatment of HPV16 immortalized keratinocytes with Akt kinase inhibitor reduced hnRNP L binding to HPV16 mRNAs and induced HPV16 L1 mRNA production. Finally, deletion of the hnRNP L binding sites in HPV16 subgenomic expression plasmids resulted in activation of HPV16 late gene expression. In conclusion, the Akt kinase inhibits HPV16 late gene expression at the level of RNA processing by controlling the RNA-binding protein hnRNP L. We speculate that Akt kinase activity upholds an intracellular milieu that favours HPV16 early gene expression and suppresses HPV16 late gene expression. PMID:28934469

  13. Downregulation of CD147 expression by RNA interference inhibits HT29 cell proliferation, invasion and tumorigenicity in vitro and in vivo.

    PubMed

    Li, Rui; Pan, Yuqin; He, Bangshun; Xu, Yeqiong; Gao, Tianyi; Song, Guoqi; Sun, Huiling; Deng, Qiwen; Wang, Shukui

    2013-12-01

    We investigated the effect of CD147 silencing on HT29 cell proliferation and invasion. We constructed a novel short hairpin RNA (shRNA) expression vector pYr-mir30-shRNA. The plasmid was transferred to HT29 cells. The expression of CD147, MCT1 (lactate transporters monocarboxylate transporter 1) and MCT4 (lactate transporters monocarboxylate transporter 4) were monitored by quantitative PCR and western blotting, respectively. The MMP-2 (matrix metalloproteinase-2) and MMP-9 (matrix metalloproteinase-9) activities were determined by gelatin zymography assay, while the intracellular lactate concentration was determined by the lactic acid assay kit. WST-8 assay was used to determine the HT29 cell proliferation and the chemosensitivity. Invasion assay was used to determine the invasion of HT29 cells. In addition, we established a colorectal cancer model, and detected CD147 expression in vivo. The results showed that the expression of CD147 and MCT1 was significantly reduced at both mRNA and protein levels, and also the activity of MMP-2 and MMP-9 was reduced. The proliferation and invasion were decreased, but chemosensitivity to cisplatin was increased. In vivo, the CD147 expression was also significantly decreased, and reduced the tumor growth after CD147 gene silencing. The results demonstrated that silencing of CD147 expression inhibited the proliferation and invasion, suggesting CD147 silencing might be an adjuvant gene therapy strategy to chemotherapy.

  14. Serotonin- and Dopamine-Related Gene Expression in db/db Mice Islets and in MIN6 β-Cells Treated with Palmitate and Oleate.

    PubMed

    Cataldo, L R; Mizgier, M L; Busso, D; Olmos, P; Galgani, J E; Valenzuela, R; Mezzano, D; Aranda, E; Cortés, V A; Santos, J L

    2016-01-01

    High circulating nonesterified fatty acids (NEFAs) concentration, often reported in diabetes, leads to impaired glucose-stimulated insulin secretion (GSIS) through not yet well-defined mechanisms. Serotonin and dopamine might contribute to NEFA-dependent β-cell dysfunction, since extracellular signal of these monoamines decreases GSIS. Moreover, palmitate-treated β-cells may enhance the expression of the serotonin receptor Htr2c, affecting insulin secretion. Additionally, the expression of monoamine-oxidase type B (Maob) seems to be lower in islets from humans and mice with diabetes compared to nondiabetic islets, which may lead to increased monoamine concentrations. We assessed the expression of serotonin- and dopamine-related genes in islets from db/db and wild-type (WT) mice. In addition, the effect of palmitate and oleate on the expression of such genes, 5HT content, and GSIS in MIN6 β-cell was determined. Lower Maob expression was found in islets from db/db versus WT mice and in MIN6 β-cells in response to palmitate and oleate treatment compared to vehicle. Reduced 5HT content and impaired GSIS in response to palmitate (-25%; p < 0.0001) and oleate (-43%; p < 0.0001) were detected in MIN6 β-cells. In conclusion, known defects of GSIS in islets from db/db mice and MIN6 β-cells treated with NEFAs are accompanied by reduced Maob expression and reduced 5HT content.

  15. Using the Positive and Negative Syndrome Scale (PANSS) to Define Different Domains of Negative Symptoms

    PubMed Central

    Khan, Anzalee; Keefe, Richard S. E.

    2017-01-01

    Background: Reduced emotional experience and expression are two domains of negative symptoms. The authors assessed these two domains of negative symptoms using previously developed Positive and Negative Syndrome Scale (PANSS) factors. Using an existing dataset, the authors predicted three different elements of everyday functioning (social, vocational, and everyday activities) with these two factors, as well as with performance on measures of functional capacity. Methods: A large (n=630) sample of people with schizophrenia was used as the data source of this study. Using regression analyses, the authors predicted the three different aspects of everyday functioning, first with just the two Positive and Negative Syndrome Scale factors and then with a global negative symptom factor. Finally, we added neurocognitive performance and functional capacity as predictors. Results: The Positive and Negative Syndrome Scale reduced emotional experience factor accounted for 21 percent of the variance in everyday social functioning, while reduced emotional expression accounted for no variance. The total Positive and Negative Syndrome Scale negative symptom factor accounted for less variance (19%) than the reduced experience factor alone. The Positive and Negative Syndrome Scale expression factor accounted for, at most, one percent of the variance in any of the functional outcomes, with or without the addition of other predictors. Implications: Reduced emotional experience measured with the Positive and Negative Syndrome Scale, often referred to as “avolition and anhedonia,” specifically predicted impairments in social outcomes. Further, reduced experience predicted social impairments better than emotional expression or the total Positive and Negative Syndrome Scale negative symptom factor. In this cross-sectional study, reduced emotional experience was specifically related with social outcomes, accounting for essentially no variance in work or everyday activities, and being the sole meaningful predictor of impairment in social outcomes. PMID:29410933

  16. Impaired plant growth and development caused by human immunodeficiency virus type 1 Tat.

    PubMed

    Cueno, Marni E; Hibi, Yurina; Imai, Kenichi; Laurena, Antonio C; Okamoto, Takashi

    2010-10-01

    Previous attempts to express the human immunodeficiency virus 1 (HIV-1) Tat (trans-activator of transcription) protein in plants resulted in a number of physiological abnormalities, such as stunted growth and absence of seed formation, that could not be explained. In the study reported here, we expressed Tat in tomato and observed phenotypic abnormalities, including stunted growth, absence of root formation, chlorosis, and plant death, as a result of reduced cytokinin levels. These reduced levels were ascribed to a differentially expressed CKO35 in Tat-bombarded tomato. Of the two CKO isoforms that are naturally expressed in tomato, CKO43 and CKO37, only the expression of CKO37 was affected by Tat. Our analysis of the Tat confirmed that the Arg-rich and RGD motifs of Tat have functional relevance in tomato and that independent mutations at these motifs caused inhibition of the differentially expressed CKO isoform and the extracellular secretion of the Tat protein, respectively, in our Tat-bombarded tomato samples.

  17. A cytoskeleton-associated protein, TMAP/CKAP2, is involved in the proliferation of human foreskin fibroblasts.

    PubMed

    Jeon, Sang-Min; Choi, Bongkun; Hong, Kyung Uk; Kim, Eunhee; Seong, Yeon-Sun; Bae, Chang-Dae; Park, Joobae

    2006-09-15

    Previously, we reported the cloning of a cytoskeleton-associated protein, TMAP/CKAP2, which was up-regulated in primary human gastric cancers. Although TMAP/CKAP2 has been found to be expressed in most cancer cell lines examined, the function of CKAP2 is not known. In this study, we found that TMAP/CKAP2 was not expressed in G0/G1 arrested HFFs, but that it was expressed in actively dividing cells. After initiating the cell cycle, TMAP/CKAP2 levels remained low throughout most of the G1 phase, but gradually increased between late G1 and G2/M. Knockdown of TMAP/CKAP2 reduced pRB phosphorylation and increased p27 expression, and consequently reduced HFF proliferation, whereas constitutive TMAP/CKAP2 expression increased pRB phosphorylation and enhanced proliferation. Our results show that this novel cytoskeleton-associated protein is expressed cell cycle dependently and that it is involved in cell proliferation.

  18. A structured sparse regression method for estimating isoform expression level from multi-sample RNA-seq data.

    PubMed

    Zhang, L; Liu, X J

    2016-06-03

    With the rapid development of next-generation high-throughput sequencing technology, RNA-seq has become a standard and important technique for transcriptome analysis. For multi-sample RNA-seq data, the existing expression estimation methods usually deal with each single-RNA-seq sample, and ignore that the read distributions are consistent across multiple samples. In the current study, we propose a structured sparse regression method, SSRSeq, to estimate isoform expression using multi-sample RNA-seq data. SSRSeq uses a non-parameter model to capture the general tendency of non-uniformity read distribution for all genes across multiple samples. Additionally, our method adds a structured sparse regularization, which not only incorporates the sparse specificity between a gene and its corresponding isoform expression levels, but also reduces the effects of noisy reads, especially for lowly expressed genes and isoforms. Four real datasets were used to evaluate our method on isoform expression estimation. Compared with other popular methods, SSRSeq reduced the variance between multiple samples, and produced more accurate isoform expression estimations, and thus more meaningful biological interpretations.

  19. Rare TREM2 variants associated with Alzheimer's disease display reduced cell surface expression.

    PubMed

    Sirkis, Daniel W; Bonham, Luke W; Aparicio, Renan E; Geier, Ethan G; Ramos, Eliana Marisa; Wang, Qing; Karydas, Anna; Miller, Zachary A; Miller, Bruce L; Coppola, Giovanni; Yokoyama, Jennifer S

    2016-09-02

    Rare variation in TREM2 has been associated with greater risk for Alzheimer's disease (AD). TREM2 encodes a cell surface receptor expressed on microglia and related cells, and the R47H variant associated with AD appears to affect the ability of TREM2 to bind extracellular ligands. In addition, other rare TREM2 mutations causing early-onset neurodegeneration are thought to impair cell surface expression. Using a sequence kernel association (SKAT) analysis in two independent AD cohorts, we found significant enrichment of rare TREM2 variants not previously characterized at the protein level. Heterologous expression of the identified variants showed that novel variants S31F and R47C displayed significantly reduced cell surface expression. In addition, we identified rare variant R136Q in a patient with language-predominant AD that also showed impaired surface expression. The results suggest rare TREM2 variants enriched in AD may be associated with altered TREM2 function and that AD risk may be conferred, in part, from altered TREM2 surface expression.

  20. Emotion Unchained: Facial Expression Modulates Gaze Cueing under Cognitive Load.

    PubMed

    Pecchinenda, Anna; Petrucci, Manuel

    2016-01-01

    Direction of eye gaze cues spatial attention, and typically this cueing effect is not modulated by the expression of a face unless top-down processes are explicitly or implicitly involved. To investigate the role of cognitive control on gaze cueing by emotional faces, participants performed a gaze cueing task with happy, angry, or neutral faces under high (i.e., counting backward by 7) or low cognitive load (i.e., counting forward by 2). Results show that high cognitive load enhances gaze cueing effects for angry facial expressions. In addition, cognitive load reduces gaze cueing for neutral faces, whereas happy facial expressions and gaze affected object preferences regardless of load. This evidence clearly indicates a differential role of cognitive control in processing gaze direction and facial expression, suggesting that under typical conditions, when we shift attention based on social cues from another person, cognitive control processes are used to reduce interference from emotional information.

  1. Emotion Unchained: Facial Expression Modulates Gaze Cueing under Cognitive Load

    PubMed Central

    Petrucci, Manuel

    2016-01-01

    Direction of eye gaze cues spatial attention, and typically this cueing effect is not modulated by the expression of a face unless top-down processes are explicitly or implicitly involved. To investigate the role of cognitive control on gaze cueing by emotional faces, participants performed a gaze cueing task with happy, angry, or neutral faces under high (i.e., counting backward by 7) or low cognitive load (i.e., counting forward by 2). Results show that high cognitive load enhances gaze cueing effects for angry facial expressions. In addition, cognitive load reduces gaze cueing for neutral faces, whereas happy facial expressions and gaze affected object preferences regardless of load. This evidence clearly indicates a differential role of cognitive control in processing gaze direction and facial expression, suggesting that under typical conditions, when we shift attention based on social cues from another person, cognitive control processes are used to reduce interference from emotional information. PMID:27959925

  2. Reduced opsin gene expression in a cave-dwelling fish

    PubMed Central

    Tobler, Michael; Coleman, Seth W.; Perkins, Brian D.; Rosenthal, Gil G.

    2010-01-01

    Regressive evolution of structures associated with vision in cave-dwelling organisms is the focus of intense research. Most work has focused on differences between extreme visual phenotypes: sighted, surface animals and their completely blind, cave-dwelling counterparts. We suggest that troglodytic systems, comprising multiple populations that vary along a gradient of visual function, may prove critical in understanding the mechanisms underlying initial regression in visual pathways. Gene expression assays of natural and laboratory-reared populations of the Atlantic molly (Poecilia mexicana) revealed reduced opsin expression in cave-dwelling populations compared with surface-dwelling conspecifics. Our results suggest that the reduction in opsin expression in cave-dwelling populations is not phenotypically plastic but reflects a hardwired system not rescued by exposure to light during retinal ontogeny. Changes in opsin gene expression may consequently represent a first evolutionary step in the regression of eyes in cave organisms. PMID:19740890

  3. Expression Differentiation Is Constrained to Low-Expression Proteins over Ecological Timescales

    PubMed Central

    Margres, Mark J.; Wray, Kenneth P.; Seavy, Margaret; McGivern, James J.; Herrera, Nathanael D.; Rokyta, Darin R.

    2016-01-01

    Protein expression level is one of the strongest predictors of protein sequence evolutionary rate, with high-expression protein sequences evolving at slower rates than low-expression protein sequences largely because of constraints on protein folding and function. Expression evolutionary rates also have been shown to be negatively correlated with expression level across human and mouse orthologs over relatively long divergence times (i.e., ∼100 million years). Long-term evolutionary patterns, however, often cannot be extrapolated to microevolutionary processes (and vice versa), and whether this relationship holds for traits evolving under directional selection within a single species over ecological timescales (i.e., <5000 years) is unknown and not necessarily expected. Expression is a metabolically costly process, and the expression level of a particular protein is predicted to be a tradeoff between the benefit of its function and the costs of its expression. Selection should drive the expression level of all proteins close to values that maximize fitness, particularly for high-expression proteins because of the increased energetic cost of production. Therefore, stabilizing selection may reduce the amount of standing expression variation for high-expression proteins, and in combination with physiological constraints that may place an upper bound on the range of beneficial expression variation, these constraints could severely limit the availability of beneficial expression variants. To determine whether rapid-expression evolution was restricted to low-expression proteins owing to these constraints on highly expressed proteins over ecological timescales, we compared venom protein expression levels across mainland and island populations for three species of pit vipers. We detected significant differentiation in protein expression levels in two of the three species and found that rapid-expression differentiation was restricted to low-expression proteins. Our results suggest that various constraints on high-expression proteins reduce the availability of beneficial expression variants relative to low-expression proteins, enabling low-expression proteins to evolve and potentially lead to more rapid adaptation. PMID:26546003

  4. Brain and Hepatic Mt mRNA Is Reduced in Response to Mild Energy Restriction and n-3 Polyunsaturated Fatty Acid Deficiency in Juvenile Rats

    PubMed Central

    Mehus, Aaron A.; Picklo, Sr, Matthew J.

    2017-01-01

    Metallothioneins (MTs) perform important regulatory and cytoprotective functions in tissues including the brain. While it is known that energy restriction (ER) and dietary n-3 polyunsaturated fatty acid (PUFA) deficiency impact postnatal brain growth and development, little data exist regarding the impact of undernutrition upon MT expression in growing animals. We tested the hypothesis that ER with and without dietary n-3 PUFA deficiency reduces MT expression in juvenile rats. ER rats were individually pair-fed at 75% of the ad libitum (AL) intake of control rats provided diets consisting of either soybean oil (SO) that is α-linolenic acid (ALA; 18:3n-3) sufficient or corn oil (CO; ALA-deficient). Fatty acids (FA) and metal concentrations of liver and brain regions were analyzed. Tissue expression of MTs (Mt1-3) and modulators of MT expression including glucocorticoid receptors (Nr3c1 and Nr3c2) and several mediators of thyroid hormone regulation (Dio1-3, Mct8, Oatp1c1, Thra, and Thrb) were measured. Plasma corticosterone and triiodothyronine levels were also evaluated. ER, but not metal deficiency, reduced Mt2 expression in the cerebellum (50%) and cerebral cortex (23%). In liver, a reduction in dietary n-3 PUFA reduced Mt1, Mt2, Nr3c1, Mct8, and Thrb. ER elevated Nr3c1, Dio1, and Thrb and reduced Thra in the liver. Given MT’s role in cellular protection, further studies are needed to evaluate whether ER or n-3 PUFA deficiency may leave the juvenile brain and/or liver more susceptible to endogenous or environmental stressors. PMID:29048374

  5. Brain and Hepatic Mt mRNA Is Reduced in Response to Mild Energy Restriction and n-3 Polyunsaturated Fatty Acid Deficiency in Juvenile Rats.

    PubMed

    Mehus, Aaron A; Picklo, Matthew J

    2017-10-19

    Metallothioneins (MTs) perform important regulatory and cytoprotective functions in tissues including the brain. While it is known that energy restriction (ER) and dietary n -3 polyunsaturated fatty acid (PUFA) deficiency impact postnatal brain growth and development, little data exist regarding the impact of undernutrition upon MT expression in growing animals. We tested the hypothesis that ER with and without dietary n -3 PUFA deficiency reduces MT expression in juvenile rats. ER rats were individually pair-fed at 75% of the ad libitum (AL) intake of control rats provided diets consisting of either soybean oil (SO) that is α-linolenic acid (ALA; 18:3 n -3) sufficient or corn oil (CO; ALA-deficient). Fatty acids (FA) and metal concentrations of liver and brain regions were analyzed. Tissue expression of MTs ( Mt1-3 ) and modulators of MT expression including glucocorticoid receptors ( Nr3c1 and Nr3c2 ) and several mediators of thyroid hormone regulation ( Dio1-3 , Mct8 , Oatp1c1 , Thra , and Thrb ) were measured. Plasma corticosterone and triiodothyronine levels were also evaluated. ER, but not metal deficiency, reduced Mt2 expression in the cerebellum (50%) and cerebral cortex (23%). In liver, a reduction in dietary n -3 PUFA reduced Mt1 , Mt2 , Nr3c1 , Mct8 , and Thrb . ER elevated Nr3c1 , Dio1 , and Thrb and reduced Thra in the liver. Given MT's role in cellular protection, further studies are needed to evaluate whether ER or n -3 PUFA deficiency may leave the juvenile brain and/or liver more susceptible to endogenous or environmental stressors.

  6. The KMO allele encoding Arg452 is associated with psychotic features in bipolar disorder type 1, and with increased CSF KYNA level and reduced KMO expression.

    PubMed

    Lavebratt, C; Olsson, S; Backlund, L; Frisén, L; Sellgren, C; Priebe, L; Nikamo, P; Träskman-Bendz, L; Cichon, S; Vawter, M P; Osby, U; Engberg, G; Landén, M; Erhardt, S; Schalling, M

    2014-03-01

    The kynurenine pathway metabolite kynurenic acid (KYNA), modulating glutamatergic and cholinergic neurotransmission, is increased in cerebrospinal fluid (CSF) of patients with schizophrenia or bipolar disorder type 1 with psychotic features. KYNA production is critically dependent on kynurenine 3-monooxygenase (KMO). KMO mRNA levels and activity in prefrontal cortex (PFC) are reduced in schizophrenia. We hypothesized that KMO expression in PFC would be reduced in bipolar disorder with psychotic features and that a functional genetic variant of KMO would associate with this disease, CSF KYNA level and KMO expression. KMO mRNA levels were reduced in PFC of bipolar disorder patients with lifetime psychotic features (P=0.005, n=19) or schizophrenia (P=0.02, n=36) compared with nonpsychotic patients and controls. KMO genetic association to psychotic features in bipolar disorder type 1 was studied in 493 patients and 1044 controls from Sweden. The KMO Arg(452) allele was associated with psychotic features during manic episodes (P=0.003). KMO Arg(452) was studied for association to CSF KYNA levels in an independent sample of 55 Swedish patients, and to KMO expression in 717 lymphoblastoid cell lines and 138 hippocampal biopsies. KMO Arg(452) associated with increased levels of CSF KYNA (P=0.03) and reduced lymphoblastoid and hippocampal KMO expression (P≤0.05). Thus, findings from five independent cohorts suggest that genetic variation in KMO influences the risk for psychotic features in mania of bipolar disorder patients. This provides a possible mechanism for the previous findings of elevated CSF KYNA levels in those bipolar patients with lifetime psychotic features and positive association between KYNA levels and number of manic episodes.

  7. Artesunate inhibits adipogeneis in 3T3-L1 preadipocytes by reducing the expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Byeong-Churl, E-mail: jangbc123@gw.kmu.ac.kr

    Differentiation of preadipocyte, also called adipogenesis, leads to the phenotype of mature adipocyte. However, excessive adipogenesis is closely linked to the development of obesity. Artesunate, one of artemisinin-type sesquiterpene lactones from Artemisia annua L., is known for anti-malarial and anti-cancerous activities. In this study, we investigated the effect of artesunate on adipogenesis in 3T3-L1 preadipocytes. Artesunate strongly inhibited lipid accumulation and triglyceride (TG) synthesis during the differentiation of 3T3-L1 preadipocytes into adipocytes at 5 μM concentration. Artesunate at 5 μM also reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), and perilipin A butmore » also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) during adipocyte differentiation. Moreover, artesunate at 5 μM reduced leptin, but not adiponectin, mRNA expression during adipocyte differentiation. Taken together, these findings demonstrate that artesunate inhibits adipogenesis in 3T3-L1 preadipoytes through the reduced expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3. -- Highlights: •Artesunate, an artemisinin derivative, inhibits adipogenesis. •Artesunate inhibits C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3 in 3T3-L1 adipocytes. •Artesunate reduces leptin, but not adiponectin, expression in 3T3-L1 adipocytes. •Artesunate thus may have therapeutic potential against obesity.« less

  8. Tetrandrine has anti-adipogenic effect on 3T3-L1 preadipocytes through the reduced expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Byeong-Churl, E-mail: jangbc123@gw.kmu.ac.kr

    Tetrandrine is a bisbenzylisoquinoline alkaloid isolated from the roots of Stephania tetrandra S. Moore and has been shown to possess anti-inflammatory and anti-cancerous activities. In this study, the effect of tetrandrine on adipogenesis in 3T3-L1 preadipocytes was investigated. Tetrandrine at 10 μM concentration strongly inhibited lipid accumulation and triglyceride (TG) synthesis during the differentiation of 3T3-L1 preadipocytes into adipocytes. On mechanistic levels, tetrandrine reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), and perilipin A but also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) during 3T3-L1 adipocyte differentiation. Tetrandrinemore » also reduced the mRNA expression of leptin, but not adiponectin, during 3T3-L1 adipocyte differentiation. Collectively, these findings show that tetrandrine has strong anti-adipogenic effect on 3T3-L1 preadipocytes and the effect is largely attributable to the reduced expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3. - Highlights: • Tetrandrine, a bisbenzylisoquinoline alkaloid, inhibits adipogenesis. • Tetrandrine inhibits C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3 in 3T3-L1 adipocytes. • Tetrandrine reduces leptin, but not adiponectin, expression in 3T3-L1 adipocytes. • Tetrandrine may thus have therapeutic potential against obesity.« less

  9. Interactions between neutral endopeptidase (EC 3.4.24.11) and the substance P (NK1) receptor expressed in mammalian cells.

    PubMed Central

    Okamoto, A; Lovett, M; Payan, D G; Bunnett, N W

    1994-01-01

    Interactions between neutral endopeptidase-24.11 (NEP) and the substance P receptor (SPR; NK1) were investigated by examining substance P (SP) degradation, SP binding and SP-induced Ca2+ mobilization in epithelial cells transfected with cDNA encoding the rat SPR and rat NEP. Expression of NEP accelerated the degradation of SP by intact epithelial cells and by membrane preparations, and degradation was reduced by the NEP inhibitor thiorphan. In cells expressing SPR alone, specific 125I-SP binding after 20 min incubation at 37 degrees C was 92.2 +/- 3.1% of maximal binding and was unaffected by thiorphan. Coexpression of NEP in the same cells as the SPR markedly reduced SP binding to 13.9 +/- 0.5% of maximal, and binding was increased to 82.7 +/- 2.4% of maximal with thiorphan. Coexpression of NEP in the same cells as the SPR also reduced to undetectable the increase in intracellular Ca2+ in response to low concentrations of SP (0.3 and 0.5 nM), and significantly reduced the response to higher concentrations (1 and 3 nM). The Ca2+ response was restored to control values by inhibition of NEP with thiorphan. In contrast, SP binding and SP-induced Ca2+ mobilization were only slightly reduced when cells expressing SPR alone were mixed with a 3- to 24-fold excess of cells expressing NEP alone. Therefore, in this system, NEP markedly down-regulates SP binding and SP-induced Ca2+ mobilization only when coexpressed in the same cells as the SPR. Images Figure 1 Figure 2 PMID:7514869

  10. Treatment with geraniol ameliorates methionine-choline-deficient diet-induced non-alcoholic steatohepatitis in rats.

    PubMed

    Chen, Jun; Fan, Xiaoxia; Zhou, Lin; Gao, Xiaogang

    2016-07-01

    Non-alcoholic steatohepatitis (NASH) is one of the most common causes of chronic liver disease and is considered to be a causative factor of cryptogenic cirrhosis and hepatocellular carcinoma. The aim of this work was to investigate whether treatment with geraniol (a monoterpene) attenuated NASH induced by methionine-choline-deficient (MCD) diet in rats. Rats were fed with MCD diet to induce NASH and treated with geraniol (200 mg/kg/day) for 10 weeks. Treatment with geraniol reduced histological scores, fibrosis, and apoptosis in livers, lowered activities of alanine aminotransferase and aspartate aminotransferase in serum, and attenuated hepatic fat accumulation in rats fed with MCD diet. Treatment with geraniol preserved hepatic mitochondrial function, evidenced by reduced mitochondrial reactive oxygen species formation, enhanced adenosine triphosphate formation and membrane integrity, restored mitochondrial electron transport chain enzyme activity, and increased mitochondrial DNA content in rats fed with MCD diet. Treatment with geraniol reduced uncoupling protein 2 protein expression, and enhanced protein expression of prohibitin, mRNA expression of peroxisome proliferator-activated receptor α, and activity of mitochondrial carnitine palmitoyl transferase-I in livers of rats fed with MCD diet. Treatment with geraniol abated oxidative stress, evidenced by reduced malondialdehyde and 3-nitrotyrosine formation, enhanced activity of glutathione S-epoxide transferase, and down-regulated expression of inducible nitric oxide synthase and cytochrome P450 2E1 in livers of rats fed with MCD diet. Treatment with geraniol reduced myeloperoxidase activity and protein expression of tumor necrosis factor alpha and IL-6 in livers of rats fed with MCD diet. Treatment with geraniol attenuated MCD-induced NASH in rats. © 2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  11. Long-Term Dexamethasone Exposure Down-Regulates Hepatic TFR1 and Reduces Liver Iron Concentration in Rats

    PubMed Central

    Li, Huifang; Jiang, Shuxia; Yang, Chun; Yang, Shu; He, Bin; Ma, Wenqiang; Zhao, Ruqian

    2017-01-01

    Exposure to stress is known to cause hepatic iron dysregulation, but the relationship between prolonged stress and liver iron metabolism is not yet fully understood. Thirty 13-week-old female Sprague–Dawley rats were randomly divided into two groups, as follows: the control group (saline-injection) and the dexamethasone group (Dexamethasone (Dex)-injection 0.1 mg/kg/day). After the 21-day stress trial, the results showed that chronic Dex administration not only impaired serum corticosterone (p = 0.00) and interleukin-6 (IL-6) (p = 0.01) levels, but also decreased white blood cell counts (p = 0.00), and reduced blood lymphocyte counts (p = 0.00). The daily Dex-injection also significantly reduced body weight (p < 0.01) by inhibiting food intake. Consecutive Dex administration resulted in decreased iron intake (p = 0.00), enhanced serum iron levels (p = 0.01), and increased the serum souble transferrin receptor (sTfR) content (p = 0.00) in rats. Meanwhile, long-term Dex exposure down-regulated duodenal cytochrome b (DCYTB) (p = 0.00) and the divalent metal transporter 1 (DMT1) (p = 0.04) protein expression, but up-regulated ferroportin (FPN) protein expression (p = 0.04). Chronic Dex administration reduced liver iron concentration (p = 0.02) in rats. Hepatic transferrin receptor 1 (TFR1) expression was lowered at the protein level (p = 0.03), yet with uncoupled mRNA abundance in Dex-treated rats. Enhanced iron-regulatory protein (IRP)/iron-responsive element (IRE) binding activity was observed, but did not line up with lowered hepatic TFR1 protein expression. This study indicates that long-term Dex exposure reduces liver iron content, which is closely associated with down-regulated hepatic TFR1 protein expression. PMID:28629118

  12. Chronic Exercise Reduces CETP and Mesterolone Treatment Counteracts Exercise Benefits on Plasma Lipoproteins Profile: Studies in Transgenic Mice.

    PubMed

    Casquero, Andrea Camargo; Berti, Jairo Augusto; Teixeira, Laura Lauand Sampaio; de Oliveira, Helena Coutinho Franco

    2017-12-01

    Regular exercise and anabolic androgenic steroids have opposing effects on the plasma lipoprotein profile and risk of cardio-metabolic diseases in humans. Studies in humans and animal models show conflicting results. Here, we used a mice model genetically modified to mimic human lipoprotein profile and metabolism. They under-express the endogenous LDL receptor gene (R1) and express a human transgene encoding the cholesteryl ester transfer protein (CETP), normally absent in mice. The present study was designed to evaluate the independent and interactive effects of testosterone supplementation, exercise training and CETP expression on the plasma lipoprotein profile and CETP activity. CETP/R1 and R1 mice were submitted to a 6-week swimming training and mesterolone (MEST) supplementation in the last 3 weeks. MEST treatment increased markedly LDL levels (40%) in sedentary CETP/R1 mice and reduced HDL levels in exercised R1 mice (18%). A multifactorial ANOVA revealed the independent effects of each factor, as follows. CETP expression reduced HDL (21%) and increased non-HDL (15%) fractions. MEST treatment increased the VLDL concentrations (42%) regardless of other interventions. Exercise training reduced triacylglycerol (25%) and free fatty acids (20%), increased both LDL and HDL (25-33%), and reduced CETP (19%) plasma levels. Significant factor interactions showed that the increase in HDL induced by exercise is explained by reducing CETP activity and that MEST blunted the exercise-induced elevation of HDL-cholesterol. These results reinforce the positive metabolic effects of exercise, resolved a controversy about CETP response to exercise and evidenced MEST potency to counteract specific exercise benefits.

  13. Unloading-induced bone loss was suppressed in gold-thioglucose treated mice.

    PubMed

    Hino, K; Nifuji, A; Morinobu, M; Tsuji, K; Ezura, Y; Nakashima, K; Yamamoto, H; Noda, M

    2006-10-15

    Loss of mechanical stress causes bone loss. However, the mechanisms underlying the unloading-induced bone loss are largely unknown. Here, we examined the effects of gold-thioglucose (GTG) treatment, which destroys ventromedial hypothalamus (VMH), on unloading-induced bone loss. Unloading reduced bone volume in control (saline-treated) mice. Treatment with GTG-reduced bone mass and in these GTG-treated mice, unloading-induced reduction in bone mass levels was not observed. Unloading reduced the levels of bone formation rate (BFR) and mineral apposition rate (MAR). GTG treatment also reduced these parameters and under this condition, unloading did not further reduce the levels of BFR and MAR. Unloading increased the levels of osteoclast number (Oc.N/BS) and osteoclast surface (Oc.S/BS). GTG treatment did not alter the basal levels of these bone resorption parameters. In contrast to control, GTG treatment suppressed unloading-induced increase in the levels of Oc.N/BS and Oc.S/BS. Unloading reduced the levels of mRNA expression of the genes encoding osteocalcin, type I collagen and Cbfa1 in bone. In contrast, GTG treatment suppressed such unloading-induced reduction of mRNA expression. Unloading also enhanced the levels of fat mass in bone marrow and mRNA expression of the genes encoding PPARgamma2, C/EBPalpha, and C/EBPbeta in bone. In GTG-treated mice, unloading did not increase fat mass and the levels of fat-related mRNA expression. These results indicated that GTG treatment suppressed unloading-induced alteration in bone loss. 2006 Wiley-Liss, Inc.

  14. Expression levels of antimicrobial peptide tachyplesin I in transgenic Ornithogalum lines affect the resistance to Pectobacterium infection.

    PubMed

    Lipsky, Alexander; Joshi, Janak Raj; Carmi, Nir; Yedidia, Iris

    2016-11-20

    The genus Ornithogalum includes several ornamental species that suffer substantial losses from bacterial soft rot caused by Pectobacteria. The absence of effective control measures for use against soft rot bacteria led to the initiation of a project in which a small antimicrobial peptide from an Asian horseshoe crab, tachyplesin (tpnI), was introduced into two commercial cultivars: O. dubium and O. thyrsoides. Disease severity and bacterial colonization were examined in transgenic lines expressing this peptide. Disease resistance was evaluated in six lines of each species by measuring bacterial proliferation in the plant tissue. Three transgenic lines of each species were subjected to further analysis in which the expression level of the transgene was evaluated using RT-PCR and qRT-PCR. The development of disease symptoms and bacterial colonization of the plant tissue were also examined using GFP-expressing strain of P. carotovorum subsp. brasiliense Pcb3. Confocal-microscopy imaging revealed significantly reduced quantities of bacterial cells in the transgenic plant lines that had been challenged with the bacterium. The results clearly demonstrate that tpnI expression reduces bacterial proliferation, colonization and disease symptom (reduced by 95-100%) in the transgenic plant tissues. The quantity of tpnI transcripts, as measured by qRT-PCR, was negatively correlated with the protection afforded to the plants, as measured by the reduced severity of disease symptoms in the tissue. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Reduced miR-512 and the Elevated Expression of Its Targets cFLIP and MCL1 Localize to Neurons With Hyperphosphorylated Tau Protein in Alzheimer Disease.

    PubMed

    Mezache, Louisa; Mikhail, Madison; Garofalo, Michela; Nuovo, Gerard J

    2015-10-01

    The cause for the neurofibrillary tangles and plaques in Alzheimer disease likely relates to an abnormal accumulation of their key components, which include β-amyloid and hyperphosphorylated tau protein. We segregated Alzheimer brain sections from people with end-stage disease into those with abundant hyperphosphorylated tau protein and those without and compared each to normal brains for global microRNA patterns. A significant reduced expression of several microRNAs, including miR-512, was evident in the Alzheimer brain sections with abundant hyperphosphorylated tau. Immunohistochemistry documented that 2 known targets of microRNA-512, cFLIP and MCL1, were significantly over expressed and each colocalized to neurons with the abnormal tau protein. Analysis for apoptosis including activated caspase-3, increased caspase-4 and caspase-8, apoptosis initiating factor, APAF-1 activity, and the TUNEL assay was negative in the areas where neurons showed hyperphosphorylated tau. MCM2 expression, a marker of neuroprogenitor cells, was significantly reduced in the Alzheimer sections that contained the hyperphosphorylated tau. These results suggest that a basic defect in Alzheimer disease may be the reduced microRNA-driven increased expression of proteins that may alter the apoptotic/antiapoptotic balance of neurons. This, in turn, could lead to the accumulation of key Alzheimer proteins such as hyperphosphorylated tau that ultimately prevent normal neuronal function and lead to disease symptomatology.

  16. Cyclosporine A impairs the macrophage reverse cholesterol transport in mice by reducing sterol fecal excretion.

    PubMed

    Zanotti, Ilaria; Greco, Daniela; Lusardi, Giulia; Zimetti, Francesca; Potì, Francesco; Arnaboldi, Lorenzo; Corsini, Alberto; Bernini, Franco

    2013-01-01

    Despite the efficacy in reducing acute rejection events in organ transplanted subjects, long term therapy with cyclosporine A is associated with increased atherosclerotic cardiovascular morbidity. We studied whether this drug affects the antiatherogenic process of the reverse cholesterol transport from macrophages in vivo. Cyclosporine A 50 mg/kg/d was administered to C57BL/6 mice by subcutaneous injection for 14 days. Macrophage reverse cholesterol transport was assessed by following [(3)H]-cholesterol mobilization from pre-labeled intraperitoneally injected macrophages, expressing or not apolipoprotein E, to plasma, liver and feces. The pharmacological treatment significantly reduced the amount of radioactive sterols in the feces, independently on the expression of apolipoprotein E in the macrophages injected into recipient mice and in absence of changes of plasma levels of high density lipoprotein-cholesterol. Gene expression analysis revealed that cyclosporine A inhibited the hepatic levels of cholesterol 7-alpha-hydroxylase, concomitantly with the increase in hepatic and intestinal expression of ATP Binding Cassette G5. However, the in vivo relevance of the last observation was challenged by the demonstration that mice treated or not with cyclosporine A showed the same levels of circulating beta-sitosterol. These results indicate that treatment of mice with cyclosporine A impaired the macrophage reverse cholesterol transport by reducing fecal sterol excretion, possibly through the inhibition of cholesterol 7-alpha-hydroxylase expression. The current observation may provide a potential mechanism for the high incidence of atherosclerotic coronary artery disease following the immunosuppressant therapy in organ transplanted recipients.

  17. Overexpression of an Arabidopsis heterogeneous nuclear ribonucleoprotein gene, AtRNP1, affects plant growth and reduces plant tolerance to drought and salt stresses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhenyu, E-mail: wzy72609@163.com; Zhao, Xiuyang, E-mail: xiuzh@psb.vib-ugent.be; Wang, Bing, E-mail: wangbing@ibcas.ac.cn

    Heterogeneous nuclear ribonucleoproteins (hnRNPs) participate in diverse regulations of plant growth and environmental stress responses. In this work, an Arabidopsis hnRNP of unknown function, AtRNP1, was investigated. We found that AtRNP1 gene is highly expressed in rosette and cauline leaves, and slightly induced under drought, salt, osmotic and ABA stresses. AtRNP1 protein is localized to both the nucleus and cytoplasm. We performed homologous overexpression of AtRNP1 and found that the transgenic plants showed shortened root length and plant height, and accelerated flowering. In addition, the transgenic plants also showed reduced tolerance to drought, salt, osmotic and ABA stresses. Further studiesmore » revealed that under both normal and stress conditions, the proline contents in the transgenic plants are markedly decreased, associated with reduced expression levels of a proline synthase gene and several stress-responsive genes. These results suggested that the overexpression of AtRNP1 negatively affects plant growth and abiotic stress tolerance. - Highlights: • AtRNP1 is a widely expressed gene and its expression is slightly induced under abiotic stresses. • AtRNP1 protein is localized to both the nucleus and cytoplasm. • Overexpression of AtRNP1 affects plant growth. • Overexpression of AtRNP1 reduces plant tolerance to drought and salt stresses. • AtRNP1 overexpression plants show decreased proline accumulation and stress-responsive gene expressions.« less

  18. Gremlin-1 Overexpression in Mouse Lung Reduces Silica-Induced Lymphocyte Recruitment – A Link to Idiopathic Pulmonary Fibrosis through Negative Correlation with CXCL10 Chemokine

    PubMed Central

    Koli, Katri; Sutinen, Eva; Rönty, Mikko; Rantakari, Pia; Fortino, Vittorio; Pulkkinen, Ville; Greco, Dario; Sipilä, Petra; Myllärniemi, Marjukka

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by activation and injury of epithelial cells, the accumulation of connective tissue and changes in the inflammatory microenvironment. The bone morphogenetic protein (BMP) inhibitor protein gremlin-1 is associated with the progression of fibrosis both in human and mouse lung. We generated a transgenic mouse model expressing gremlin-1 in type II lung epithelial cells using the surfactant protein C (SPC) promoter and the Cre-LoxP system. Gremlin-1 protein expression was detected specifically in the lung after birth and did not result in any signs of respiratory insufficiency. Exposure to silicon dioxide resulted in reduced amounts of lymphocyte aggregates in transgenic lungs while no alteration in the fibrotic response was observed. Microarray gene expression profiling and analyses of bronchoalveolar lavage fluid cytokines indicated a reduced lymphocytic response and a downregulation of interferon-induced gene program. Consistent with reduced Th1 response, there was a downregulation of the mRNA and protein expression of the anti-fibrotic chemokine CXCL10, which has been linked to IPF. In human IPF patient samples we also established a strong negative correlation in the mRNA expression levels of gremlin-1 and CXCL10. Our results suggest that in addition to regulation of epithelial-mesenchymal crosstalk during tissue injury, gremlin-1 modulates inflammatory cell recruitment and anti-fibrotic chemokine production in the lung. PMID:27428020

  19. Gremlin-1 Overexpression in Mouse Lung Reduces Silica-Induced Lymphocyte Recruitment - A Link to Idiopathic Pulmonary Fibrosis through Negative Correlation with CXCL10 Chemokine.

    PubMed

    Koli, Katri; Sutinen, Eva; Rönty, Mikko; Rantakari, Pia; Fortino, Vittorio; Pulkkinen, Ville; Greco, Dario; Sipilä, Petra; Myllärniemi, Marjukka

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by activation and injury of epithelial cells, the accumulation of connective tissue and changes in the inflammatory microenvironment. The bone morphogenetic protein (BMP) inhibitor protein gremlin-1 is associated with the progression of fibrosis both in human and mouse lung. We generated a transgenic mouse model expressing gremlin-1 in type II lung epithelial cells using the surfactant protein C (SPC) promoter and the Cre-LoxP system. Gremlin-1 protein expression was detected specifically in the lung after birth and did not result in any signs of respiratory insufficiency. Exposure to silicon dioxide resulted in reduced amounts of lymphocyte aggregates in transgenic lungs while no alteration in the fibrotic response was observed. Microarray gene expression profiling and analyses of bronchoalveolar lavage fluid cytokines indicated a reduced lymphocytic response and a downregulation of interferon-induced gene program. Consistent with reduced Th1 response, there was a downregulation of the mRNA and protein expression of the anti-fibrotic chemokine CXCL10, which has been linked to IPF. In human IPF patient samples we also established a strong negative correlation in the mRNA expression levels of gremlin-1 and CXCL10. Our results suggest that in addition to regulation of epithelial-mesenchymal crosstalk during tissue injury, gremlin-1 modulates inflammatory cell recruitment and anti-fibrotic chemokine production in the lung.

  20. Nandrolone and resistance training induce heart remodeling: role of fetal genes and implications for cardiac pathophysiology.

    PubMed

    Tanno, Ana Paula; das Neves, Vander José; Rosa, Kaleizu Teodoro; Cunha, Tatiana Sousa; Giordano, Fernanda Cristina Linarello; Calil, Caroline Morini; Guzzoni, Vinicius; Fernandes, Tiago; de Oliveira, Edilamar Menezes; Novaes, Pedro Duarte; Irigoyen, Maria Cláudia; Moura, Maria José Costa Sampaio; Marcondes, Fernanda Klein

    2011-10-24

    This study was conducted to assess the isolated and combined effects of nandrolone and resistance training on cardiac morphology, function, and mRNA expression of pathological cardiac hypertrophy markers. Wistar rats were randomly divided into four groups and submitted to 6 weeks of treatment with nandrolone and/or resistance training. Cardiac parameters were determined by echocardiography. Heart was analyzed for collagen infiltration. Real-time RT-PCR was used to assess the pathological cardiac hypertrophy markers. Both resistance training and nandrolone induced cardiac hypertrophy. Nandrolone increased the cardiac collagen content, and reduced the cardiac index in non-trained and trained groups, when compared with the respective vehicle-treated groups. Nandrolone reduced the ratio of maximum early to late transmitral flow velocity in non-trained and trained groups, when compared with the respective vehicle-treated groups. Nandrolone reduced the alpha-myosin heavy chain gene expression in both non-trained and trained groups, when compared with the respective vehicle-treated groups. Training reduced the beta-myosin heavy chain gene expression in the groups treated with vehicle and nandrolone. Only the association between training and nandrolone increased the expression of the skeletal alpha-actin gene and atrial natriuretic peptide in the left ventricle. This study indicated that nandrolone, whether associated with resistance training or not, induces cardiac hypertrophy, which is associated with enhanced collagen content, re-expression of fetal genes the in left ventricle, and impaired diastolic and systolic function. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Elimination of Kalrn Expression in POMC Cells Reduces Anxiety-Like Behavior and Contextual Fear Learning

    PubMed Central

    Mandela, Prashant; Yan, Yan; LaRese, Taylor; Eipper, Betty A.; Mains, Richard E.

    2014-01-01

    Kalirin, a Rho GDP/GTP exchange factor for Rac1 and RhoG, is known to play an essential role in the formation and maintenance of excitatory synapses and in the secretion of neuropeptides. Mice unable to express any of the isoforms of Kalrn in cells that produce POMC at any time during development (POMC cells) exhibited reduced anxiety-like behavior and reduced acquisition of passive avoidance behavior, along with sex-specific alteration in the corticosterone response to restraint stress. Strikingly, lack of Kalrn expression in POMC cells closely mimicked the effects of global Kalrn knockout on anxiety-like behavior and passive avoidance conditioning without causing the other deficits noted in Kalrn knockout mice. Our data suggest that deficits in excitatory inputs onto POMC neurons are responsible for the behavioral phenotypes observed. PMID:25014196

  2. Reducing expression of synapse-restricting protein Ephexin5 ameliorates Alzheimer’s-like impairment in mice

    PubMed Central

    Sell, Gabrielle L.; Schaffer, Thomas B.; Margolis, Seth S.

    2017-01-01

    Accumulation of amyloid-β (Aβ) protein may cause synapse degeneration and cognitive impairment in Alzheimer’s disease (AD) by reactivating expression of the developmental synapse repressor protein Ephexin5 (also known as ARHGEF15). Here, we have reported that Aβ is sufficient to acutely promote the production of Ephexin5 in mature hippocampal neurons and in mice expressing human amyloid precursor protein (hAPP mice), a model for familial AD that produces high brain levels of Aβ. Ephexin5 expression was highly elevated in the hippocampi of human AD patients, indicating its potential relevance to AD. We also observed elevated Ephexin5 expression in the hippocampi of hAPP mice. Removal of Ephexin5 expression eliminated hippocampal dendritic spine loss and rescued AD-associated behavioral deficits in the hAPP mice. Furthermore, selective reduction of Ephexin5 expression using shRNA in the dentate gyrus of presymptomatic adolescent hAPP mice was sufficient to protect these mice from developing cognitive impairment. Thus, pathological elevation of Ephexin5 expression critically drives Aβ-induced memory impairment, and strategies aimed at reducing Ephexin5 levels may represent an effective approach to treating AD. PMID:28346227

  3. CPT1{alpha} over-expression increases long-chain fatty acid oxidation and reduces cell viability with incremental palmitic acid concentration in 293T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jambor de Sousa, Ulrike L.; Koss, Michael D.; Fillies, Marion

    2005-12-16

    To test the cellular response to an increased fatty acid oxidation, we generated a vector for an inducible expression of the rate-limiting enzyme carnitine palmitoyl-transferase 1{alpha} (CPT1{alpha}). Human embryonic 293T kidney cells were transiently transfected and expression of the CPT1{alpha} transgene in the tet-on vector was activated with doxycycline. Fatty acid oxidation was measured by determining the conversion of supplemented, synthetic cis-10-heptadecenoic acid (C17:1n-7) to C15:ln-7. CPT1{alpha} over-expression increased mitochondrial long-chain fatty acid oxidation about 6-fold. Addition of palmitic acid (PA) decreased viability of CPT1{alpha} over-expressing cells in a concentration-dependent manner. Both, PA and CPT1{alpha} over-expression increased cell death. Interestingly,more » PA reduced total cell number only in cells over-expressing CPT1{alpha}, suggesting an effect on cell proliferation that requires PA translocation across the mitochondrial inner membrane. This inducible expression system should be well suited to study the roles of CPT1 and fatty acid oxidation in lipotoxicity and metabolism in vivo.« less

  4. BAG3 increases the invasiveness of uterine corpus carcinoma cells by suppressing miR-29b and enhancing MMP2 expression.

    PubMed

    Habata, Shutaro; Iwasaki, Masahiro; Sugio, Asuka; Suzuki, Miwa; Tamate, Masato; Satohisa, Seiro; Tanaka, Ryoichi; Saito, Tsuyoshi

    2015-05-01

    Approximately 30% of uterine corpus carcinomas are diagnosed at an advanced stage and have a poor prognosis. Our previous study indicated that BCL2-associated athanogene 3 (BAG3) enhances matrix metalloproteinase-2 (MMP2) expression and binds to MMP2 to positively regulate the process of cell invasion in ovarian cancer cells. Recently, altered miRNA expression patterns were observed in several groups of patients with endometrial cancers. One of the altered miRNAs, miR-29b, reportedly reduces tumor invasiveness by suppressing MMP2 expression. Our aim in the present study was to examine the relationships among BAG3, miR-29b and MMP2 in endometrioid adenocarcinoma cells. We found that BAG3 suppresses miR-29b expression and enhances MMP2 expression, which in turn increases cell motility and invasiveness. Moreover, restoration of miR-29b through BAG3 knockdown reduced MMP2 expression, as well as cell motility and invasiveness. Collectively, our findings indicate that BAG3 enhances MMP2 expression by suppressing miR-29b, thereby increasing the metastatic potential of endometrioid adenocarcinomas.

  5. Conditional expression of the type 2 angiotensin II receptor in mesenchymal stem cells inhibits neointimal formation after arterial injury.

    PubMed

    Feng, Jian; Liu, Jian-Ping; Miao, Li; He, Guo-Xiang; Li, De; Wang, Hai-Dong; Jing, Tao

    2014-10-01

    Percutaneous coronary interventions (PCIs) are an effective treatment for obstructive coronary artery diseases. However, the procedure's success is limited by remodeling and formation of neointima. In the present study, we engineered rat mesenchymal stem cells (MSCs) to express type 2 angiotensin II receptor (AT2R) using a tetracycline-regulated system that can strictly regulate AT2R expression. We tested the ability of the modified MSCs to reduce neointima formation following arterial injury. We subjected rats to balloon injury, and reverse transcriptase polymerase chain reaction (RT-PCR) indicated no significant AT2R expression in normal rat arteries. Low expression of AT2R was observed at 28 days after balloon-induced injury. Interestingly, MSCs alone were unable to reduce neointimal hyperplasia after balloon-induced injury; after transplantation of modified MSCs, doxycycline treatment significantly upregulated neointimal AT2R expression and inhibited osteopontin mRNA expression, as well as neointimal formation. Taken together, these results suggest that transplantation of MSCs conditionally expressing AT2R could effectively suppress neointimal hyperplasia following balloon-induced injury. Therefore, MSCs with a doxycycline-controlled gene induction system may be useful for the management of arterial injury after PCI.

  6. BRCA1/p220 loss triggers BRCA1-IRIS overexpression via mRNA stabilization in breast cancer cells

    PubMed Central

    Shimizu, Yoshiko; Mullins, Nicole; Blanchard, Zannel; ElShamy, Wael M.

    2012-01-01

    BRCA1/p220-assocaited and triple negative/basal-like (TN/BL) tumors are aggressive and incurable breast cancer diseases that share among other features the no/low BRCA1/p220 expression. Here we show that BRCA1/p220 silencing in normal human mammary epithelial (HME) cells reduces expression of two RNA-destabilizing proteins, namely AUF1 and pCBP2, both proteins bind and destabilize BRCA1-IRIS mRNA. BRCA1-IRIS overexpression in HME cells triggers expression of several TN/BL markers, e.g., cytokeratins 5 and 17, p-cadherin, EGFR and cyclin E as well as expression and activation of the pro-survival proteins; AKT and survivin. BRCA1-IRIS silencing in the TN/BL cell line, SUM149 or restoration of BRCA1/p220 expression in the mutant cell line, HCC1937 reduced expression of TN/BL markers, AKT, survivin, and induced cell death. Collectively, we propose that BRCA1/p220 loss of expression or function triggers BRCA1-IRIS overexpression through a post-transcriptional mechanism, which in turn promotes formation of aggressive and invasive breast tumors by inducing expression of TN/BL and survival proteins. PMID:22431556

  7. Synthetic Nucleic Acids and Treatment of Neurological Diseases.

    PubMed

    Corey, David R

    2016-10-01

    The ability to control gene expression with antisense oligonucleotides (ASOs) could provide a new treatment strategy for disease. To review the use of ASOs for the treatment of neurological disorders. Articles were identified through a search of PubMed references from 2000 to 2016 for articles describing the use of ASOs to treat disease, with specific attention to neurological disease. We concentrated our review on articles pertaining to activation of frataxin expression (Friedreich's ataxia) and production of active survival motor neuron 2 (SMN2, spinal muscular atrophy). Many neurological diseases are caused by inappropriate expression of a protein. Mutations may reduce expression of a wild-type protein, and strategies to activate expression may provide therapeutic benefit. For other diseases, a mutant protein may be expressed too highly and methods that reduce mutant protein expression might form the basis for drug development. Synthetic ASOs can recognize cellular RNA and control gene expression. Antisense oligonucleotides are not a new concept, but successful clinical development has proceeded at a slow pace. Advances in ASO chemistry, biological understanding, and clinical design are making successful applications more likely. Both laboratory and clinical studies are demonstrating the potential of ASOs as a source of drugs to treat neurological disease.

  8. BDNF mRNA expression in rat hippocampus and prefrontal cortex: effects of neonatal ventral hippocampal damage and antipsychotic drugs.

    PubMed

    Lipska, B K; Khaing, Z Z; Weickert, C S; Weinberger, D R

    2001-07-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in development, synapse remodelling and responses to stress and injury. Its abnormal expression has been implicated in schizophrenia, a neuropsychiatric disorder in which abnormal neural development of the hippocampus and prefrontal cortex has been postulated. To clarify the effects of antipsychotic drugs used in the therapy of schizophrenia on BDNF mRNA, we studied its expression in rats treated with clozapine and haloperidol and in rats with neonatal lesions of the ventral hippocampus, used as an animal model of schizophrenia. Both antipsychotic drugs reduced BDNF expression in the hippocampus of control rats, but did not significantly lower its expression in the prefrontal cortex. The neonatal hippocampal lesion itself suppressed BDNF mRNA expression in the dentate gyrus and tended to reduce its expression in the prefrontal cortex. These results indicate that, unlike antidepressants, antipsychotics down-regulate BDNF mRNA, and suggest that their therapeutic properties are not mediated by stimulation of this neurotrophin. To the extent that the lesioned rat models some pathophysiological aspects of schizophrenia, our data suggest that a neurodevelopmental insult might suppress expression of the neurotrophin in certain brain regions.

  9. Survivin expression promotes VEGF-induced tumor angiogenesis via PI3K/Akt enhanced β-catenin/Tcf-Lef dependent transcription.

    PubMed

    Fernández, Jaime G; Rodríguez, Diego A; Valenzuela, Manuel; Calderon, Claudia; Urzúa, Ulises; Munroe, David; Rosas, Carlos; Lemus, David; Díaz, Natalia; Wright, Mathew C; Leyton, Lisette; Tapia, Julio C; Quest, Andrew Fg

    2014-09-09

    Early in cancer development, tumour cells express vascular endothelial growth factor (VEGF), a secreted molecule that is important in all stages of angiogenesis, an essential process that provides nutrients and oxygen to the nascent tumor and thereby enhances tumor-cell survival and facilitates growth. Survivin, another protein involved in angiogenesis, is strongly expressed in most human cancers, where it promotes tumor survival by reducing apoptosis as well as favoring endothelial cell proliferation and migration. The mechanisms by which cancer cells induce VEGF expression and angiogenesis upon survivin up-regulation remain to be fully established. Since the PI3K/Akt signalling and β-catenin-Tcf/Lef dependent transcription have been implicated in the expression of many cancer-related genes, including survivin and VEGF, we evaluated whether survivin may favor VEGF expression, release from tumor cells and induction of angiogenesis in a PI3K/Akt-β-catenin-Tcf/Lef-dependent manner. Here, we provide evidence linking survivin expression in tumor cells to increased β-catenin protein levels, β-catenin-Tcf/Lef transcriptional activity and expression of several target genes of this pathway, including survivin and VEGF, which accumulates in the culture medium. Alternatively, survivin downregulation reduced β-catenin protein levels and β-catenin-Tcf/Lef transcriptional activity. Also, using inhibitors of PI3K and the expression of dominant negative Akt, we show that survivin acts upstream in an amplification loop to promote VEGF expression. Moreover, survivin knock-down in B16F10 murine melanoma cells diminished the number of blood vessels and reduced VEGF expression in tumors formed in C57BL/6 mice. Finally, in the chick chorioallantoid membrane assay, survivin expression in tumor cells enhanced VEGF liberation and blood vessel formation. Importantly, the presence of neutralizing anti-VEGF antibodies precluded survivin-enhanced angiogenesis in this assay. These findings provide evidence for the existance of a posititve feedback loop connecting survivin expression in tumor cells to PI3K/Akt enhanced β-catenin-Tcf/Lef-dependent transcription followed by secretion of VEGF and angiogenesis.

  10. Reduced expression of selected FASCICLIN-LIKE ARABINOGALACTAN PROTEIN genes associates with the abortion of kernels in field crops of Zea mays (maize) and of Arabidopsis seeds.

    PubMed

    Cagnola, Juan Ignacio; Dumont de Chassart, Gonzalo Javier; Ibarra, Silvia Elizabeth; Chimenti, Claudio; Ricardi, Martiniano María; Delzer, Brent; Ghiglione, Hernán; Zhu, Tong; Otegui, María Elena; Estevez, José Manuel; Casal, Jorge José

    2018-03-01

    Abortion of fertilized ovaries at the tip of the ear can generate significant yield losses in maize crops. To investigate the mechanisms involved in this process, 2 maize hybrids were grown in field crops at 2 sowing densities and under 3 irrigation regimes (well-watered control, drought before pollination, and drought during pollination), in all possible combinations. Samples of ear tips were taken 2-6 days after synchronous hand pollination and used for the analysis of gene expression and sugars. Glucose and fructose levels increased in kernels with high abortion risk. Several FASCICLIN-LIKE ARABINOGALACTAN PROTEIN (FLA) genes showed negative correlation with abortion. The expression of ZmFLA7 responded to drought only at the tip of the ear. The abundance of arabinogalactan protein (AGP) glycan epitopes decreased with drought and pharmacological treatments that reduce AGP activity enhanced the abortion of fertilized ovaries. Drought also reduced the expression of AthFLA9 in the siliques of Arabidopsis thaliana. Gain- and loss-of-function mutants of Arabidopsis showed a negative correlation between AthFLA9 and seed abortion. On the basis of gene expression patterns, pharmacological, and genetic evidence, we propose that stress-induced reductions in the expression of selected FLA genes enhance abortion of fertilized ovaries in maize and Arabidopsis. © 2018 John Wiley & Sons Ltd.

  11. ATP7A is a novel target of retinoic acid receptor β2 in neuroblastoma cells

    PubMed Central

    Bohlken, A; Cheung, B B; Bell, J L; Koach, J; Smith, S; Sekyere, E; Thomas, W; Norris, M; Haber, M; Lovejoy, D B; Richardson, D R; Marshall, G M

    2009-01-01

    Increased retinoic acid receptor β (RARβ2) gene expression is a hallmark of cancer cell responsiveness to retinoid anticancer effects. Moreover, low basal or induced RARβ2 expression is a common feature of many human cancers, suggesting that RARβ2 may act as a tumour suppressor gene in the absence of supplemented retinoid. We have previously shown that low RARβ2 expression is a feature of advanced neuroblastoma. Here, we demonstrate that the ABC domain of the RARβ2 protein alone was sufficient for the growth inhibitory effects of RARβ2 on neuroblastoma cells. ATP7A, the copper efflux pump, is a retinoid-responsive gene, was upregulated by ectopic overexpression of RARβ2. The ectopic overexpression of the RARβ2 ABC domain was sufficient to induce ATP7A expression, whereas, RARβ2 siRNA blocked the induction of ATP7A expression in retinoid-treated neuroblastoma cells. Forced downregulation of ATP7A reduced copper efflux and increased viability of retinoid-treated neuroblastoma cells. Copper supplementation enhanced cell growth and reduced retinoid-responsiveness, whereas copper chelation reduced the viability and proliferative capacity. Taken together, our data demonstrates ATP7A expression is regulated by retinoic acid receptor β and it has effects on intracellular copper levels, revealing a link between the anticancer action of retinoids and copper metabolism. PMID:19127267

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yan; Wu, Jian-Feng; Tang, Yan-Yan

    Highlights: • U II reduces cholesterol efflux in THP-1 macrophages. • U II decreases the expression of ABCA1. • Inhibition of the ERK/NF-κB pathway reduces U II effects on ABCA1 expression and cholesterol efflux. - Abstract: Objective: Foam cell formation in the arterial wall plays a key role in the development of atherosclerosis. Recent studies showed that Urotensin II (U II) is involved in the pathogenesis of atherosclerosis. Here we examined the effects of human U II on ATP-binding cassette transporter A1 (ABCA1) expression and the underlying mechanism in THP-1 macrophages. Methods and results: Cultured THP-1 macrophages were treated withmore » U II, followed by measuring the intracellular lipid contents, cholesterol efflux and ABCA1 levels. The results showed that U II dramatically decreased ABCA1 levels and impaired cholesterol efflux. However, the effects of U II on ABCA1 protein expression and cellular cholesterol efflux were partially reversed by inhibition of extracellular signal regulated kinase 1/2 (ERK1/2) and nuclear factor kappa B (NF-κB) activity, suggesting the potential roles of ERK1/2 and NF-κB in ABCA1 expression, respectively. Conclusion: Our current data indicate that U II may have promoting effects on the progression of atherosclerosis, likely through suppressing ABCA1 expression via activation of the ERK/NF-κB pathway and reducing cholesterol efflux to promote macrophage foam cell formation.« less

  13. Heterogeneity of leukemia-initiating capacity of chronic myelogenous leukemia stem cells

    PubMed Central

    Zhang, Bin; Li, Ling; Ho, Yinwei; Li, Min; Marcucci, Guido

    2016-01-01

    Chronic myelogenous leukemia (CML) results from transformation of a long-term hematopoietic stem cell (LTHSC) by expression of the BCR-ABL fusion gene. However, BCR-ABL–expressing LTHSCs are heterogeneous in their capacity as leukemic stem cells (LSCs). Although discrepancies in proliferative, self-renewal, and differentiation properties of normal LTHSCs are being increasingly recognized, the mechanisms underlying heterogeneity of leukemic LTHSCs are poorly understood. Using a CML mouse model, we identified gene expression differences between leukemic and nonleukemic LTHSCs. Expression of the thrombopoietin (THPO) receptor MPL was elevated in leukemic LTHSC populations. Compared with LTHSCs with low MPL expression, LTHSCs with high MPL expression showed enhanced JAK/STAT signaling and proliferation in response to THPO in vitro and increased leukemogenic capacity in vivo. Although both G0 and S phase subpopulations were increased in LTHSCs with high MPL expression, LSC capacity was restricted to quiescent cells. Inhibition of MPL expression in CML LTHSCs reduced THPO-induced JAK/STAT signaling and leukemogenic potential. These same phenotypes were also present in LTHSCs from patients with CML, and patient LTHSCs with high MPL expression had reduced sensitivity to BCR-ABL tyrosine kinase inhibitor treatment but increased sensitivity to JAK inhibitors. Together, our studies identify MPL expression levels as a key determinant of heterogeneous leukemia-initiating capacity and drug sensitivity of CML LTHSCs and suggest that high MPL–expressing CML stem cells are potential targets for therapy. PMID:26878174

  14. Abnormal Expressions of DNA Glycosylase Genes NEIL1, NEIL2, and NEIL3 Are Associated with Somatic Mutation Loads in Human Cancer.

    PubMed

    Shinmura, Kazuya; Kato, Hisami; Kawanishi, Yuichi; Igarashi, Hisaki; Goto, Masanori; Tao, Hong; Inoue, Yusuke; Nakamura, Satoki; Misawa, Kiyoshi; Mineta, Hiroyuki; Sugimura, Haruhiko

    2016-01-01

    The effects of abnormalities in the DNA glycosylases NEIL1, NEIL2, and NEIL3 on human cancer have not been fully elucidated. In this paper, we found that the median somatic total mutation loads and the median somatic single nucleotide mutation loads exhibited significant inverse correlations with the median NEIL1 and NEIL2 expression levels and a significant positive correlation with the median NEIL3 expression level using data for 13 cancer types from the Cancer Genome Atlas (TCGA) database. A subset of the cancer types exhibited reduced NEIL1 and NEIL2 expressions and elevated NEIL3 expression, and such abnormal expressions of NEIL1, NEIL2, and NEIL3 were also significantly associated with the mutation loads in cancer. As a mechanism underlying the reduced expression of NEIL1 in cancer, the epigenetic silencing of NEIL1 through promoter hypermethylation was found. Finally, we investigated the reason why an elevated NEIL3 expression level was associated with an increased number of somatic mutations in cancer and found that NEIL3 expression was positively correlated with the expression of APOBEC3B, a potent inducer of mutations, in diverse cancers. These results suggested that the abnormal expressions of NEIL1, NEIL2, and NEIL3 are involved in cancer through their association with the somatic mutation load.

  15. Activation of cannabinoid CB2 receptor ameliorates atherosclerosis associated with suppression of adhesion molecules.

    PubMed

    Zhao, Yan; Yuan, Zuyi; Liu, Yan; Xue, Jiahong; Tian, Yuling; Liu, Weimin; Zhang, Weiping; Shen, Yan; Xu, Wei; Liang, Xiao; Chen, Tao

    2010-03-01

    Adhesion molecules have been implicated in the development and progression of atherosclerosis. Cannabinoids have been reported to modulate the migration and adhesion molecules expression of various cell types. Here we examined the effects of WIN55212-2, a cannabinoid receptor 1 (CB1-R)/cannabinoid receptor 2 (CB2-R) agonist on the development of atherosclerotic lesions in apolipoprotein E-deficient (ApoE-/-) mice, which are vulnerable because of their high plasma cholesterol and triacylglycerol levels, focusing on the expression of endothelial adhesion molecules. In the aorta of ApoE-/- mice, WIN55212-2 significantly reduced aortic root plaque area. The mechanism for this seemed to be reduced infiltration of macrophages into the atherosclerotic plaque which was also associated with reduced expression of vascular cellular adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and P-selectin in the aorta. In vitro studies revealed reduced cell adhesion of a monocytic cell line (U937) to human umbilical vein endothelial cells after incubation with WIN55212-2. The reduction in macrophage adhesion also correlated with significant reductions in the expression of VCAM-1, ICAM-1, and P-selectin, indicating that reduced infiltration of macrophages in atherosclerotic plaques may occur as a result of the direct effect of WIN55212-2 on adhesion molecules in macrophages and endothelial cells. In conclusion, WIN55212-2 seems to have direct anti-atherosclerotic effects in an animal model of atherosclerosis. These effects were at least partly due to effects on the expression of VCAM-1, ICAM-1, and P-selectin, which led to reduced macrophage adhesion and infiltration. Furthermore, the protective effects completely blocked by the highly selective CB2 receptor antagonist AM630 suggest that these beneficial effects of WIN55212-2 may be mediated through the CB2 receptor.

  16. Oat consumption reduced intestinal fat deposition and improved health span in Caenorhabditis elegans model

    PubMed Central

    Gao, Chenfei; Gao, Zhanguo; Greenway, Frank L.; Burton, Jeffrey H.; Johnson, William D.; Keenan, Michael J.; Enright, Frederick M.; Martin, Roy J.; Chu, YiFang; Zheng, Jolene

    2015-01-01

    In addition to their fermentable dietary fiber and the soluble β-glucan fiber, oats have unique avenanthramides that have anti-inflammatory and antioxidant properties that reduce coronary heart disease in human clinical trials. We hypothesized that oat consumption will increase insulin sensitivity, reduce body fat, and improve health span in Caenorhabditis elegans through a mechanism involving the daf-2 gene, which codes for the insulin/insulin-like growth factor-1–like receptor, and that hyperglycemia will attenuate these changes. Caenorhabditis elegans wild type (N2) and the null strains sir-2.1, daf-16, and daf-16/daf-2 were fed Escherichia coli (OP50) and oat flakes (0.5%, 1.0%, or 3%) with and without 2% glucose. Oat feeding decreased intestinal fat deposition in N2, daf-16, or daf-16/daf-2 strains (P < .05); and glucose did not affect intestinal fat deposition response. The N2, daf-16, or sir-2.1 mutant increased the pharyngeal pumping rate (P < .05), a surrogate marker of life span, following oat consumption. Oat consumption increased ckr-1, gcy-8, cpt-1, and cpt-2 mRNA expression in both the N2 and the sir-2.1 mutant, with significantly higher expression in sir-2.1 than in N2 (P < .01). Additional glucose further increased expression 1.5-fold of the 4 genes in N2 (P < .01), decreased the expression of all except cpt-1 in the daf-16 mutant, and reduced mRNA expression of the 4 genes in the daf-16/daf-2 mutant (P < .01). These data suggest that oat consumption reduced fat storage and increased ckr-1, gcy-8, cpt-1, or cpt-2 through the sir-2.1 genetic pathway. Oat consumption may be a beneficial dietary intervention for reducing fat accumulation, augmenting health span, and improving hyperglycemia-impaired lipid metabolism. PMID:26253816

  17. Valsartan independent of AT₁ receptor inhibits tissue factor, TLR-2 and -4 expression by regulation of Egr-1 through activation of AMPK in diabetic conditions.

    PubMed

    Ha, Yu Mi; Park, Eun Jung; Kang, Young Jin; Park, Sang Won; Kim, Hye Jung; Chang, Ki Churl

    2014-10-01

    Patients suffering from diabetes mellitus (DM) are at a severe risk of atherothrombosis. Early growth response (Egr)-1 is well characterized as a central mediator in vascular pathophysiology. We tested whether valsartan independent of Ang II type 1 receptor (AT1R) can reduce tissue factor (TF) and toll-like receptor (TLR)-2 and -4 by regulating Egr-1 in THP-1 cells and aorta in streptozotocin-induced diabetic mice. High glucose (HG, 15 mM) increased expressions of Egr-1, TF, TLR-2 and -4 which were significantly reduced by valsartan. HG increased Egr-1 expression by activation of PKC and ERK1/2 in THP-1 cells. Valsartan increased AMPK phosphorylation in a concentration and time-dependent manner via activation of LKB1. Valsartan inhibited Egr-1 without activation of PKC or ERK1/2. The reduced expression of Egr-1 by valsartan was reversed by either silencing Egr-1, or compound C, or DN-AMPK-transfected cells. Valsartan inhibited binding of NF-κB and Egr-1 to TF promoter in HG condition. Furthermore, valsartan reduced inflammatory cytokine (TNF-α, IL-6 and IL-1β) production and NF-κB activity in HG-activated THP-1 cells. Interestingly, these effects of valsartan were not affected by either silencing AT1R in THP-1 cells or CHO cells, which were devoid of AT1R. Importantly, administration of valsartan (20 mg/kg, i.p) for 8 weeks significantly reduced plasma TF activity, expression of Egr-1, TLR-2, -4 and TF in thoracic aorta and improved glucose tolerance of streptozotocin-induced diabetic mice. Taken together, we concluded that valsartan may reduce atherothrombosis in diabetic conditions through AMPK/Egr-1 regulation. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  18. Valsartan independent of AT1 receptor inhibits tissue factor, TLR-2 and-4 expression by regulation of Egr-1 through activation of AMPK in diabetic conditions

    PubMed Central

    Ha, Yu Mi; Park, Eun Jung; Kang, Young Jin; Park, Sang Won; Kim, Hye Jung; Chang, Ki Churl

    2014-01-01

    Patients suffering from diabetes mellitus (DM) are at a severe risk of atherothrombosis. Early growth response (Egr)-1 is well characterized as a central mediator in vascular pathophysiology. We tested whether valsartan independent of Ang II type 1 receptor (AT1R) can reduce tissue factor (TF) and toll-like receptor (TLR)-2 and-4 by regulating Egr-1 in THP-1 cells and aorta in streptozotocin-induced diabetic mice. High glucose (HG, 15 mM) increased expressions of Egr-1, TF, TLR-2 and-4 which were significantly reduced by valsartan. HG increased Egr-1 expression by activation of PKC and ERK1/2 in THP-1 cells. Valsartan increased AMPK phosphorylation in a concentration and time-dependent manner via activation of LKB1. Valsartan inhibited Egr-1 without activation of PKC or ERK1/2. The reduced expression of Egr-1 by valsartan was reversed by either silencing Egr-1, or compound C, or DN-AMPK-transfected cells. Valsartan inhibited binding of NF-κB and Egr-1 to TF promoter in HG condition. Furthermore, valsartan reduced inflammatory cytokine (TNF-α, IL-6 and IL-1β) production and NF-κB activity in HG-activated THP-1 cells. Interestingly, these effects of valsartan were not affected by either silencing AT1R in THP-1 cells or CHO cells, which were devoid of AT1R. Importantly, administration of valsartan (20 mg/kg, i.p) for 8 weeks significantly reduced plasma TF activity, expression of Egr-1, TLR-2,-4 and TF in thoracic aorta and improved glucose tolerance of streptozotocin-induced diabetic mice. Taken together, we concluded that valsartan may reduce atherothrombosis in diabetic conditions through AMPK/Egr-1 regulation. PMID:25109475

  19. Activation of Ventral Tegmental Area 5-HT2C Receptors Reduces Incentive Motivation.

    PubMed

    Valencia-Torres, Lourdes; Olarte-Sánchez, Cristian M; Lyons, David J; Georgescu, Teodora; Greenwald-Yarnell, Megan; Myers, Martin G; Bradshaw, Christopher M; Heisler, Lora K

    2017-06-01

    Obesity is primarily due to food intake in excess of the body's energetic requirements, intake that is not only associated with hunger but also the incentive value of food. The 5-hydroxytryptamine 2C receptor (5-HT 2C R) is a target for the treatment of human obesity. Mechanistically, 5-HT 2C Rs are positioned to influence both homeostatic feeding circuits within the hypothalamus and reward circuits within the ventral tegmental area (VTA). Here we investigated the role of 5-HT 2C Rs in incentive motivation using a mathematical model of progressive ratio (PR) responding in mice. We found that the 5-HT 2C R agonist lorcaserin significantly reduced both ad libitum chow intake and PR responding for chocolate pellets and increased c-fos expression in VTA 5-HT 2C R expressing γ-aminobutyric acid (GABA) neurons, but not 5-HT 2C R expressing dopamine (DA) neurons. We next adopted a chemogenetic approach using a 5-HT 2C R CRE line to clarify the function of subset of 5-HT 2C receptor expressing VTA neurons in the modulation of appetite and food-motivated behavior. Activation of VTA 5-HT 2C receptor expressing neurons significantly reduced ad libitum chow intake, operant responding for chocolate pellets, and the incentive value of food. In contrast, chemogenetic inhibition of VTA 5-HT 2C receptor expressing neurons had no effect on the feeding behavior. These results indicate that activation of the subpopulation of 5-HT 2C R neurons within the VTA is sufficient to significantly reduce homeostatic feeding and effort-based intake of palatable food, and that this subset has an inhibitory role in motivational processes. These findings are relevant to the treatment of obesity.

  20. Increased SHP-1 Protein Expression by High Glucose Levels Reduces Nephrin Phosphorylation in Podocytes*

    PubMed Central

    Denhez, Benoit; Lizotte, Farah; Guimond, Marie-Odile; Jones, Nina; Takano, Tomoko; Geraldes, Pedro

    2015-01-01

    Nephrin, a critical podocyte membrane component that is reduced in diabetic nephropathy, has been shown to activate phosphotyrosine signaling pathways in human podocytes. Nephrin signaling is important to reduce cell death induced by apoptotic stimuli. We have shown previously that high glucose level exposure and diabetes increased the expression of SHP-1, causing podocyte apoptosis. SHP-1 possesses two Src homology 2 domains that serve as docking elements to dephosphorylate tyrosine residues of target proteins. However, it remains unknown whether SHP-1 interacts with nephrin and whether its elevated expression affects the nephrin phosphorylation state in diabetes. Here we show that human podocytes exposed to high glucose levels exhibited elevated expression of SHP-1, which was associated with nephrin. Coexpression of nephrin-CD16 and SHP-1 reduced nephrin tyrosine phosphorylation in transfected human embryonic kidney 293 cells. A single tyrosine-to-phenylalanine mutation revealed that rat nephrin Tyr1127 and Tyr1152 are required to allow SHP-1 interaction with nephrin. Overexpression of dominant negative SHP-1 in human podocytes prevented high glucose-induced reduction of nephrin phosphorylation. In vivo, immunoblot analysis demonstrated that nephrin expression and phosphorylation were decreased in glomeruli of type 1 diabetic Akita mice (Ins2+/C96Y) compared with control littermate mice (Ins2+/+), and this was associated with elevated SHP-1 and cleaved caspase-3 expression. Furthermore, immunofluorescence analysis indicated increased colocalization of SHP-1 with nephrin in diabetic mice compared with control littermates. In conclusion, our results demonstrate that high glucose exposure increases SHP-1 interaction with nephrin, causing decreased nephrin phosphorylation, which may, in turn, contribute to diabetic nephropathy. PMID:25404734

  1. Monocarboxylate transporters MCT1 and MCT4 are independent prognostic biomarkers for the survival of patients with clear cell renal cell carcinoma and those receiving therapy targeting angiogenesis.

    PubMed

    Cao, Yan-Wei; Liu, Yong; Dong, Zhen; Guo, Lei; Kang, En-Hao; Wang, Yong-Hua; Zhang, Wei; Niu, Hai-Tao

    2018-04-12

    Prognostic biomarkers for patients with clear cell renal cell carcinoma (ccRCC), particularly those receiving therapy targeting angiogenesis, are not well established. In this study, we examined the correlations of monocarboxylate transporter 1 (MCT1) and MCT4, 2 critical transporters for glycolytic metabolism, with various clinicopathological parameters as well as survival of patients with ccRCC and those treated with vascular endothelial growth factor receptor (VEGFR) inhibitors. A cohort of 150 ccRCC patients were recruited into this study. All patients underwent radical or partial nephrectomy as the first-line treatment, and 38 received targeted therapy (sorafenib or sunitinib) after the surgery. Expression levels of MCT1, MCT4, and CD34 were examined by immunohistochemistry. Correlations between MCT1 or MCT4 expression and different clinicopathological parameters or patient survival were analyzed among all as well as patients receiving targeted therapy. MCT1 or MCT4 expression did not significantly correlate with sex, age, tumor diameter, microvascular density, tumor staging, pathological Furmann grade, or MSKCC (P>0.05). High expression of either MCT1 or MCT4 significantly correlated with reduced overall survival (OS) and progression-free survival (PFS) among the total cohort of ccRCC patients. For patients receiving targeted therapy, high expression of either MCT1 or MCT4 significantly correlated with reduced PFS, but not OS. Both conditions were independent prognostic biomarkers for reduced PFS among all patients or those receiving targeted therapy. MCT1 and MCT4 are prognostic biomarkers for patients with ccRCC or those receiving targeted therapy. High expression of these 2 proteins predicts reduced PFS in these patients. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Soluble FGFR4 extracellular domain inhibits FGF19-induced activation of FGFR4 signaling and prevents nonalcoholic fatty liver disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Qiang; The First Affiliated Hospital of Xiamen University, Xiamen; Jiang, Yuan

    2011-06-17

    Highlights: {yields} Soluble FGFR4 extracellular domain (FGFR4-ECD) was effectively expressed. {yields} FGFR4-ECD inhibited FGF19-induced activation of FGFR4 signaling. {yields} FGFR4-ECD reduced palmitic acid-induced steatosis of HepG2 cells. {yields} FGFR4-ECD reduced tetracycline-induced fatty liver in mice. {yields} FGFR4-ECD partially restored tetracycline-repressed PPAR{alpha} expression. -- Abstract: Fibroblast growth factor receptor 4 (FGFR4) is a transmembrane tyrosine kinase receptor that plays a crucial role in the regulation of hepatic bile acid and lipid metabolism. FGFR4 underlies high-fat diet-induced hepatic steatosis, suggesting that inhibition of FGFR4 activation may be an effective way to prevent or treat nonalcoholic fatty liver disease (NAFLD). To determine whethermore » neutralization of FGFR4 ligands by soluble FGFR4 extracellular domain (FGFR4-ECD) can inhibit the activation of FGFR4, we constructed FGFR4-ECD expression vector and showed that FGFR4-ECD was effectively expressed in cells and secreted into culture medium. FGFR4-ECD inhibited FGF19-induced activation of FGFR4 signaling and reduced steatosis of HepG2 induced by palmitic acid in vitro. Furthermore, in a tetracycline-induced fatty liver model, expression of FGFR4-ECD in mouse liver reduced the accumulation of hepatic lipids and partially restored the expression of peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}), which promotes the mitochondrial fatty acid beta-oxidation but is repressed by tetracycline. Taken together, these results demonstrate that FGFR4-ECD can block FGFR4 signaling and prevent hepatic steatosis, highlighting the potential value of inhibition of FGFR4 signaling as a method for therapeutic intervention against NAFLD.« less

  3. Gender-specific reduction of hepatic Mrp2 expression by high-fat diet protects female mice from ANIT toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Bo; Csanaky, Iván L.; Aleksunes, Lauren M.

    Emerging evidence suggests that feeding a high-fat diet (HFD) to rodents affects the expression of genes involved in drug transport. However, gender-specific effects of HFD on drug transport are not known. The multidrug resistance-associated protein 2 (Mrp2, Abcc2) is a transporter highly expressed in the hepatocyte canalicular membrane and is important for biliary excretion of glutathione-conjugated chemicals. The current study showed that hepatic Mrp2 expression was reduced by HFD feeding only in female, but not male, C57BL/6J mice. In order to determine whether down-regulation of Mrp2 in female mice altered chemical disposition and toxicity, the biliary excretion and hepatotoxicity ofmore » the Mrp2 substrate, α-naphthylisothiocyanate (ANIT), were assessed in male and female mice fed control diet or HFD for 4 weeks. ANIT-induced biliary injury is a commonly used model of experimental cholestasis and has been shown to be dependent upon Mrp2-mediated efflux of an ANIT glutathione conjugate that selectively injures biliary epithelial cells. Interestingly, HFD feeding significantly reduced early-phase biliary ANIT excretion in female mice and largely protected against ANIT-induced liver injury. In summary, the current study showed that, at least in mice, HFD feeding can differentially regulate Mrp2 expression and function and depending upon the chemical exposure may enhance or reduce susceptibility to toxicity. Taken together, these data provide a novel interaction between diet and gender in regulating hepatobiliary excretion and susceptibility to injury. -- Highlights: ► High-fat diet decreases hepatic Mrp2 expression only in female but not in male mice. ► HFD significantly reduces early-phase biliary ANIT excretion in female mice. ► HFD protects female mice against ANIT-induced liver injury.« less

  4. Role of CD44 in lymphokine-activated killer cell-mediated killing of melanoma.

    PubMed

    Sun, Jingping; Law, Gabriela P; McKallip, Robert J

    2012-03-01

    In the current study, we examined the potential significance of CD44 expression on lymphokine-activated killer (LAK) cells in their interaction and killing of melanoma cells. Stimulation of splenocytes with IL-2 led to a significant increase in the expression of CD44 on T cells, NK cells, and NKT cells. Treatment of melanoma-bearing CD44 WT mice with IL-2 led to a significant reduction in the local tumor growth while treatment of melanoma-bearing CD44 KO mice with IL-2 was ineffective at controlling tumor growth. Furthermore, the ability of splenocytes from IL-2-treated CD44 KO mice to kill melanoma tumor targets was significantly reduced when compared to the anti-tumor activity of splenocytes from IL-2-treated CD44 WT mice. The importance of CD44 expression on the LAK cells was further confirmed by the observation that adoptively transferred CD44 WT LAK cells were significantly more effective than CD44 KO LAK cells at controlling tumor growth in vivo. Next, the significance of the increased expression of CD44 in tumor killing was examined and showed that following stimulation with IL-2, distinct populations of cells with low (CD44(lo)) or elevated (CD44(hi)) expression of CD44 are generated and that the CD44(hi) cells are responsible for killing of the melanoma cells. The reduced killing activity of the CD44 KO LAK cells did not result from reduced activation or expression of effector molecules but was due, at least in part, to a reduced ability to adhere to B16F10 tumor cells.

  5. Immune function of peripheral T cells in patients with venous thromboembolism or coronary artery atherosclerosis.

    PubMed

    Zhou, Lin; Song, Haoming; Xu, Wenjun; Xu, Jiahong; Jiang, Jinfa; Gong, Zhu; Liu, Yang; Yan, Wenwen; Wang, Lemin

    2014-06-01

    Recent studies have shown that the major risk factors for arterial thrombotic diseases are closely associated with venous thromboembolism (VTE). This study aimed to investigate the expression of CD3, CD4 and CD8 in T lymphocytes, the CD4/CD8 ratio and high-sensitivity C-reactive protein (hs-CRP) levels in patients with VTE, coronary artery atherosclerosis (CAA) and healthy subjects. A total of 82 healthy subjects, 51 VTE patients and 114 CAA patients were recruited, and the expression of CD3, CD4 and CD8 in T lymphocytes and the CD4/CD8 ratio were determined. Serum hs-CRP was also measured. Compared to healthy subjects, VTE patients had significantly reduced CD3 expression (p=0.019), comparable CD4 expression (p=0.868), significantly reduced CD8 expression (p<0.001) and increased CD4/CD8 ratio (p=0.044). However, VTE patients had comparable expression of CD3, CD4 and CD8 and CD4/CD8 ratio to CAA patients. In addition, among patients with VTE or CAA, the proportion of patients with reduced CD3+ and CD8+ T lymphocytes or increased CD4/CD8 ratio was significantly higher than in healthy subjects. In addition, hs-CRP in both VTE and CAA groups was significantly higher than in healthy subjects. The antigen recognition and signal transduction activation of T cells is significantly reduced in patients with VTE or CAA, and the killing effect of T cells on pathogens, including viruses, is also significantly compromised. In addition, inflammatory and immune mechanisms are involved in the occurrence and development of venous and arterial thrombosis. Copyright © 2013 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  6. Streptomyces-Aspergillus flavus interactions: impact on aflatoxin B accumulation.

    PubMed

    Verheecke, C; Liboz, T; Anson, P; Zhu, Y; Mathieu, F

    2015-01-01

    The aim of this work was to investigate the potential of Streptomyces sp. as biocontrol agents against aflatoxins in maize. As such, we assumed that Streptomyces sp. could provide a complementary approach to current biocontrol systems such as Afla-guard(®) and we focused on biocontrol that was able to have an antagonistic contact with A. flavus. A previous study showed that 27 (out of 38) Streptomyces sp. had mutual antagonism in contact with A. flavus. Among these, 16 Streptomyces sp. were able to reduce aflatoxin content to below 17% of the residual concentration. We selected six strains to understand the mechanisms involved in the prevention of aflatoxin accumulation. Thus, in interaction with A. flavus, we monitored by RT-qPCR the gene expression of aflD, aflM, aflP, aflR and aflS. All the Streptomyces sp. were able to reduce aflatoxin concentration (24.0-0.2% residual aflatoxin B1). They all impacted on gene expression, but only S35 and S38 were able to repress expression significantly. Indeed, S35 significantly repressed aflM expression and S38 significantly repressed aflR, aflM and aflP. S6 reduced aflatoxin concentrations (2.3% residual aflatoxin B1) and repressed aflS, aflM and enhanced aflR expression. In addition, the S6 strain (previously identified as the most reducing pure aflatoxin B1) was further tested to determine a potential adsorption mechanism. We did not observe any adsorption phenomenon. In conclusion, this study showed that Streptomyces sp. prevent the production of (aflatoxin gene expression) and decontamination of (aflatoxin B1 reduction) aflatoxins in vitro.

  7. Activation of Ventral Tegmental Area 5-HT2C Receptors Reduces Incentive Motivation

    PubMed Central

    Valencia-Torres, Lourdes; Olarte-Sánchez, Cristian M; Lyons, David J; Georgescu, Teodora; Greenwald-Yarnell, Megan; Myers, Martin G; Bradshaw, Christopher M; Heisler, Lora K

    2017-01-01

    Obesity is primarily due to food intake in excess of the body's energetic requirements, intake that is not only associated with hunger but also the incentive value of food. The 5-hydroxytryptamine 2C receptor (5-HT2CR) is a target for the treatment of human obesity. Mechanistically, 5-HT2CRs are positioned to influence both homeostatic feeding circuits within the hypothalamus and reward circuits within the ventral tegmental area (VTA). Here we investigated the role of 5-HT2CRs in incentive motivation using a mathematical model of progressive ratio (PR) responding in mice. We found that the 5-HT2CR agonist lorcaserin significantly reduced both ad libitum chow intake and PR responding for chocolate pellets and increased c-fos expression in VTA 5-HT2CR expressing γ-aminobutyric acid (GABA) neurons, but not 5-HT2CR expressing dopamine (DA) neurons. We next adopted a chemogenetic approach using a 5-HT2CRCRE line to clarify the function of subset of 5-HT2C receptor expressing VTA neurons in the modulation of appetite and food-motivated behavior. Activation of VTA 5-HT2C receptor expressing neurons significantly reduced ad libitum chow intake, operant responding for chocolate pellets, and the incentive value of food. In contrast, chemogenetic inhibition of VTA 5-HT2C receptor expressing neurons had no effect on the feeding behavior. These results indicate that activation of the subpopulation of 5-HT2CR neurons within the VTA is sufficient to significantly reduce homeostatic feeding and effort-based intake of palatable food, and that this subset has an inhibitory role in motivational processes. These findings are relevant to the treatment of obesity. PMID:27882999

  8. Effects of Moderate Alcohol Consumption on Gene Expression Related to Colonic Inflammation and Antioxidant Enzymes in Rats

    PubMed Central

    Klarich, DawnKylee S.; Penprase, Jerrold; Cintora, Patricia; Medrano, Octavio; Erwin, Danielle; Brasser, Susan M.; Hong, Mee Young

    2017-01-01

    Excessive alcohol consumption is a risk factor associated with colorectal cancer; however, some studies have reported that moderate alcohol consumption may not contribute additional risk for developing colorectal cancer while others suggest that moderate alcohol consumption provides a protective effect that reduces colorectal cancer risk. The purpose of this study was to determine the effects of moderate voluntary alcohol (20% ethanol) intake on alternate days for 3 months in outbred Wistar rats on risk factors associated with colorectal cancer development. Colonic gene expression of cyclooxygenase-2, RelA, 8-oxoguanine DNA glycosylase 1, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase M1, and aldehyde dehydrogenase 2 were determined. Blood alcohol content, liver function enzyme activities, and 8-oxo-deoxyguanosine DNA adducts were also assessed. Alcohol-treated rats were found to have significantly lower 8-oxo-deoxyguanosine levels in blood, a marker of DNA damage. Alanine aminotransferase and lactate dehydrogenase were both significantly lower in the alcohol group. Moderate alcohol significantly decreased cyclooxygenase-2 gene expression, an inflammatory marker associated with colorectal cancer risk. The alcohol group had significantly increased glutathione-S-transferase M1 expression, an antioxidant enzyme that helps detoxify carcinogens, such as acetaldehyde, and significantly increased aldehyde dehydrogenase 2 expression, which allows for greater acetaldehyde clearance. Increased expression of glutathione-S-transferase M1 and aldehyde dehydrogenase 2 likely contributed to reduce mucosal damage that is caused by acetaldehyde accumulation. These results indicate that moderate alcohol may reduce the risk for colorectal cancer development, which was evidenced by reduced inflammation activity and lower DNA damage after alcohol exposure. PMID:28599714

  9. Role of endogenous insulin gene enhancer protein ISL-1 in angiogenesis

    PubMed Central

    Xiong, Si-qi; Jiang, Hai-bo; Li, Yan-xiu; Li, Hai-bo; Xu, Hui-zhuo; Wu, Zhen-kai; Zheng, Wei

    2016-01-01

    Objective To elucidate the role of insulin gene enhancer protein ISL-1 (Islet-1) in angiogenesis and regulation of vascular endothelial growth factor (VEGF) expression in vitro and in vivo. Methods siRNA targeting Islet-1 was transfected to human umbilical vein endothelial cell lines (HUVECs). The expression of Islet-1 and VEGF in the cultured cells was measured using real-time PCR and immunoblotting. 3-[4,5-dimethylthiazol-2-yl]-2,5- diphenyltetrazolium bromide; thiazolyl blue (MTT) assay was used to analyze the proliferation of HUVECs affected by Islet-1. Wound healing and Transwell assays were conducted to assess the motility of HUVECs. The formation of capillary-like structures was examined using growth factor–reduced Matrigel. siRNA targeting Islet-1 was intravitreally injected into the murine model of oxygen-induced retinopathy (OIR). Retinal neovascularization was evaluated with angiography using fluorescein-labeled dextran and then quantified histologically. Real-time PCR and immunoblotting were used to determine whether local Islet-1 silencing affected the expression of Islet-1 and VEGF in murine retinas. Results The expression of Islet-1 and VEGF in HUVECs was knocked down by siRNA. Reduced endogenous Islet-1 levels in cultured cells greatly inhibited the proliferation, migration, and tube formation in HUVECs in vitro. Retinal neovascularization following injection of Islet-1 siRNA was significantly reduced compared with that of the contralateral control eye. Histological analysis indicated that the neovascular nuclei protruding into the vitreous cavity were decreased. Furthermore, the Islet-1 and VEGF expression levels were downregulated in murine retinas treated with siRNA against Islet-1. Conclusions Reducing the expression of endogenous Islet-1 inhibits proliferation, migration, and tube formation in vascular endothelial cells in vitro and suppresses retinal angiogenesis in vivo. Endogenous Islet-1 regulates angiogenesis via VEGF. PMID:27994436

  10. Effects of valsartan on ventricular arrhythmia induced by programmed electrical stimulation in rats with myocardial infarction

    PubMed Central

    Jiao, Kun-Li; Li, Yi-Gang; Zhang, Peng-Pai; Chen, Ren-Hua; Yu, Yi

    2012-01-01

    Abstract The impact of angiotensin II receptor blockers (ARBs) on electrical remodelling after myocardial infarction (MI) remains unclear. The purpose of the present study was to evaluate the effect of valsartan on incidence of ventricular arrhythmia induced by programmed electrical stimulation (PES) and potential link to changes of myocardial connexins (Cx) 43 expression and distribution in MI rats. Fifty-nine rats were randomly divided into three groups: Sham (n = 20), MI (n = 20) and MI + Val (20 mg/kg/day per gavage, n = 19). After eight weeks, the incidence of PES-induced ventricular tachycardia (VT) and fibrillation (VF) was compared among groups. mRNA and protein expressions of Cx43, angiotensin II type 1 receptor (AT1R) in the LV border zone (BZ) and non-infarct zone (NIZ) were determined by real-time PCR and Western blot, respectively. Connexins 43 protein and collagen distribution were examined by immunohistochemistry in BZ and NIZ sections from MI hearts. Valsartan effectively improved the cardiac function, reduced the prolonged QTc (163.7 ± 3.7 msec. versus 177.8 ± 4.5 msec., P < 0.05) after MI and the incidence of VT or VF evoked by PES (21.1% versus 55%, P < 0.05). Angiotensin II type 1 receptor expression was significantly increased in BZ and NIZ sections after MI, which was down-regulated by valsartan. The mRNA and protein expressions of Cx43 in BZ were significantly reduced after MI and up-regulated by valsartan. Increased collagen deposition and reduced Cx43 expression in BZ after MI could be partly attenuated by Valsartan. Valsartan reduced the incidence of PES-induced ventricular arrhythmia, this effect was possibly through modulating the myocardial AT1R and Cx43 expression. PMID:22128836

  11. Nitric oxide donors rescue diabetic nephropathy through oxidative-stress-and nitrosative-stress-mediated Wnt signaling pathways

    PubMed Central

    Hsu, Yung-Chien; Lee, Pei-Hsien; Lei, Chen-Chou; Ho, Cheng; Shih, Ya-Hsueh; Lin, Chun-Liang

    2015-01-01

    Aims/Introduction The role of the renal nitric oxide (NO) system in the pathophysiology of diabetic nephropathy constitutes a very challenging and fertile field for future investigation. The purpose of the present study was to investigate whether NO donors can attenuate diabetic renal fibrosis and apoptosis through modulating oxidative-and nitrosative-stress, and Wnt signaling using in vivo diabetic models. Materials and Methods Diabetic rat was induced by a single intraperitoneal injection of streptozotocin. Rats in each group were intraperitoneally given 2,2′-(hydroxynitrosohydrazino)bis-ethanamine (1 U/kg/day) and vehicle for 28 and 56 consecutive days. Expression of the oxidative-and nitrosative-stress, and Wnt signaling components were examined in kidneys from diabetic animals by quantitative reverse transcription polymerase chain reaction, western blot analysis and immunohistochemical staining. Results NO donor treatment significantly reduced the ratio of kidney weight to bodyweight and proteinuria. This treatment also significantly restored the suppressive effect of diabetes on urinary NO2 + NO3 levels. Immunohistochemistry showed that NO donor treatment significantly reduced transforming growth factor (TGF)-β1, fibronectin, cleaved caspase-3 and triphosphate-biotin nick end-labeling expression in the glomeruli of diabetic rats. We found that diabetes promoted 8-hydroxy-2′-deoxyguanosine, and peroxynitrite expression coincided with reduced endothelial NO synthase expression in glomeruli. Interestingly, NO donor treatment completely removed oxidative stress and nitrosative stress, and restored endothelial NO synthase expression in diabetic renal glomeruli. Immunohistomorphometry results showed that NO donor treatment significantly restored suppressed Wnt5a expression and β-catenin immunoreactivities in glomeruli. Based on laser-captured microdissection for quantitative reverse transcription polymerase chain reaction, diabetes significantly increased TGF-β1, and fibronectin expression coincided with depressed Wnt5a expression. NO donor treatment reduced TGF-β1, fibronectin activation, and the suppressing effect of diabetes on Wnt5a and β-catenin expression in renal glomeruli. Conclusions NO donor treatment alleviates extracellular matrix accumulation and apoptosis in diabetic nephropathy in vivo by not only preventing the diabetes-mediated oxidative and nitrostative stress, but also restoring downregulation of endothelial NO synthase expression and Wnt/β-catenin signaling. These findings suggest that modulation of NO is a viable alternative strategy for rescuing diabetic renal injury. PMID:25621130

  12. Expression, Purification, and Characterization of a Recombinant Flavin Reductase from the Luminescent Marine Bacterium "Photobacterium Leiognathi": A Set of Exercises for Students

    ERIC Educational Resources Information Center

    Crowley, Thomas E.

    2010-01-01

    In "Photobacterium," the flavin reductase encoded by "lux"G regenerates the reduced form of flavin mononucleotide (FMN). Reduced FMN is one of the substrates of the luciferase enzyme that catalyzes a light-emitting reaction. A set of experiments, that employs a "lux"G-expression plasmid construct (pGhis) and is suitable for an undergraduate…

  13. The Role of ARX in Human Pancreatic Endocrine Specification

    PubMed Central

    Gage, Blair K.; Asadi, Ali; Baker, Robert K.; Webber, Travis D.; Wang, Rennian; Itoh, Masayuki; Hayashi, Masaharu; Miyata, Rie; Akashi, Takumi; Kieffer, Timothy J.

    2015-01-01

    The in vitro differentiation of human embryonic stem cells (hESCs) offers a model system to explore human development. Humans with mutations in the transcription factor Aristaless Related Homeobox (ARX) often suffer from the syndrome X-linked lissencephaly with ambiguous genitalia (XLAG), affecting many cell types including those of the pancreas. Indeed, XLAG pancreatic islets lack glucagon and pancreatic polypeptide-positive cells but retain somatostatin, insulin, and ghrelin-positive cells. To further examine the role of ARX in human pancreatic endocrine development, we utilized genomic editing in hESCs to generate deletions in ARX. ARX knockout hESCs retained pancreatic differentiation capacity and ARX knockout endocrine cells were biased toward somatostatin-positive cells (94% of endocrine cells) with reduced pancreatic polypeptide (rarely detected), glucagon (90% reduced) and insulin-positive (65% reduced) lineages. ARX knockout somatostatin-positive cells shared expression patterns with human fetal and adult δ-cells. Differentiated ARX knockout cells upregulated PAX4, NKX2.2, ISL1, HHEX, PCSK1, PCSK2 expression while downregulating PAX6 and IRX2. Re-expression of ARX in ARX knockout pancreatic progenitors reduced HHEX and increased PAX6 and insulin expression following differentiation. Taken together these data suggest that ARX plays a key role in pancreatic endocrine fate specification of pancreatic polypeptide, somatostatin, glucagon and insulin positive cells from hESCs. PMID:26633894

  14. Hirsutella sinensis mycelium attenuates bleomycin-induced pulmonary inflammation and fibrosis in vivo

    PubMed Central

    Huang, Tsung-Teng; Lai, Hsin-Chih; Ko, Yun-Fei; Ojcius, David M.; Lan, Ying-Wei; Martel, Jan; Young, John D.; Chong, Kowit-Yu

    2015-01-01

    Hirsutella sinensis mycelium (HSM), the anamorph of Cordyceps sinensis, is a traditional Chinese medicine that has been shown to possess various pharmacological properties. We previously reported that this fungus suppresses interleukin-1β and IL-18 secretion by inhibiting both canonical and non-canonical inflammasomes in human macrophages. However, whether HSM may be used to prevent lung fibrosis and the mechanism underlying this activity remain unclear. Our results show that pretreatment with HSM inhibits TGF-β1–induced expression of fibronectin and α-SMA in lung fibroblasts. HSM also restores superoxide dismutase expression in TGF-β1–treated lung fibroblasts and inhibits reactive oxygen species production in lung epithelial cells. Furthermore, HSM pretreatment markedly reduces bleomycin–induced lung injury and fibrosis in mice. Accordingly, HSM reduces inflammatory cell accumulation in bronchoalveolar lavage fluid and proinflammatory cytokines levels in lung tissues. The HSM extract also significantly reduces TGF-β1 in lung tissues, and this effect is accompanied by decreased collagen 3α1 and α-SMA levels. Moreover, HSM reduces expression of the NLRP3 inflammasome and P2X7R in lung tissues, whereas it enhances expression of superoxide dismutase. These findings suggest that HSM may be used for the treatment of pulmonary inflammation and fibrosis. PMID:26497260

  15. The Role of ARX in Human Pancreatic Endocrine Specification.

    PubMed

    Gage, Blair K; Asadi, Ali; Baker, Robert K; Webber, Travis D; Wang, Rennian; Itoh, Masayuki; Hayashi, Masaharu; Miyata, Rie; Akashi, Takumi; Kieffer, Timothy J

    2015-01-01

    The in vitro differentiation of human embryonic stem cells (hESCs) offers a model system to explore human development. Humans with mutations in the transcription factor Aristaless Related Homeobox (ARX) often suffer from the syndrome X-linked lissencephaly with ambiguous genitalia (XLAG), affecting many cell types including those of the pancreas. Indeed, XLAG pancreatic islets lack glucagon and pancreatic polypeptide-positive cells but retain somatostatin, insulin, and ghrelin-positive cells. To further examine the role of ARX in human pancreatic endocrine development, we utilized genomic editing in hESCs to generate deletions in ARX. ARX knockout hESCs retained pancreatic differentiation capacity and ARX knockout endocrine cells were biased toward somatostatin-positive cells (94% of endocrine cells) with reduced pancreatic polypeptide (rarely detected), glucagon (90% reduced) and insulin-positive (65% reduced) lineages. ARX knockout somatostatin-positive cells shared expression patterns with human fetal and adult δ-cells. Differentiated ARX knockout cells upregulated PAX4, NKX2.2, ISL1, HHEX, PCSK1, PCSK2 expression while downregulating PAX6 and IRX2. Re-expression of ARX in ARX knockout pancreatic progenitors reduced HHEX and increased PAX6 and insulin expression following differentiation. Taken together these data suggest that ARX plays a key role in pancreatic endocrine fate specification of pancreatic polypeptide, somatostatin, glucagon and insulin positive cells from hESCs.

  16. The Effects of Tempol on Cyclophosphamide-Induced Oxidative Stress in Rat Micturition Reflexes

    PubMed Central

    Gonzalez, Eric J.; Peterson, Abbey; Malley, Susan; Daniel, Mitchel; Lambert, Daniel; Kosofsky, Michael; Vizzard, Margaret A.

    2015-01-01

    We hypothesized that cyclophosphamide- (CYP-) induced cystitis results in oxidative stress and contributes to urinary bladder dysfunction. We determined (1) the expression of oxidative stress markers 3-nitrotyrosine (3-NT), reactive oxygen species (ROS)/reactive nitrogen species (RNS), inflammatory modulators, neuropeptides calcitonin gene-related peptide (CGRP), substance P (Sub P), and adenosine triphosphate (ATP) that contribute to the inflammatory process in the urinary tract and (2) the functional role of oxidative stress in urinary bladder dysfunction with an antioxidant, Tempol, (1 mM in drinking water) combined with conscious cystometry. In CYP-treated (4 hr or 48 hr; 150 mg/kg, i.p.) rats, ROS/RNS and 3-NT significantly (P ≤ 0.01) increased in urinary bladder. CYP treatment increased ATP, Sub P, and CGRP expression in the urinary bladder and cystometric fluid. In CYP-treated rats, Tempol significantly (P ≤ 0.01) increased bladder capacity and reduced voiding frequency compared to CYP-treated rats without Tempol. Tempol significantly (P ≤ 0.01) reduced ATP expression, 3-NT, and ROS/RNS expression in the urinary tract of CYP-treated rats. These studies demonstrate that reducing oxidative stress in CYP-induced cystitis improves urinary bladder function and reduces markers of oxidative stress and inflammation. PMID:25973443

  17. Phenotypic changes in neutrophils related to anti-inflammatory therapy.

    PubMed

    Barton, A E; Bayley, D L; Mikami, M; Llewellyn-Jones, C G; Stockley, R A

    2000-01-03

    Previous work from the group has shown that non-steroidal anti-inflammatory agents given to volunteers and patients inhibit PMN function possibly by affecting the developing neutrophil during the differentiation process. In this study indomethacin treatment in vivo reduced neutrophil chemotaxis and proteolytic degradation of fibronectin, with a maximal effect after 14 days. Stimulated neutrophil adherence to fibronectin was also reduced but this was not due to quantitative changes in beta(2) integrin expression or function. L-Selectin expression on resting and stimulated neutrophils was increased after 14 days and there was a small decrease in plasma levels of soluble L-selectin. These effects, however, could not be reproduced by treatment of neutrophils with indomethacin in vitro, suggesting they are due to effects on differentiating/maturing PMNs. In an attempt to interpret these changes, studies were performed with dexamethasone, which is known to alter neutrophil function and kinetics. Dexamethasone treatment reduced chemotaxis and increased superoxide generation after 1 day and was associated with increased expression of activated beta(2) integrins and reduced L-selectin expression on resting neutrophils. This suggests the appearance of mainly 'activated' cells as a result of demargination and indicates that the effects of indomethacin are distinctive and not related to changes in compartmentalisation.

  18. Circadian Stress Regimes Affect the Circadian Clock and Cause Jasmonic Acid-Dependent Cell Death in Cytokinin-Deficient Arabidopsis Plants[OPEN

    PubMed Central

    Nitschke, Silvia; Cortleven, Anne; Iven, Tim; Havaux, Michel; Schmülling, Thomas

    2016-01-01

    The circadian clock helps plants measure daylength and adapt to changes in the day-night rhythm. We found that changes in the light-dark regime triggered stress responses, eventually leading to cell death, in leaves of Arabidopsis thaliana plants with reduced cytokinin levels or defective cytokinin signaling. Prolonged light treatment followed by a dark period induced stress and cell death marker genes while reducing photosynthetic efficiency. This response, called circadian stress, is also characterized by altered expression of clock and clock output genes. In particular, this treatment strongly reduced the expression of CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY). Intriguingly, similar changes in gene expression and cell death were observed in clock mutants lacking proper CCA1 and LHY function. Circadian stress caused strong changes in reactive oxygen species- and jasmonic acid (JA)-related gene expression. The activation of the JA pathway, involving the accumulation of JA metabolites, was crucial for the induction of cell death, since the cell death phenotype was strongly reduced in the jasmonate resistant1 mutant background. We propose that adaptation to circadian stress regimes requires a normal cytokinin status which, acting primarily through the AHK3 receptor, supports circadian clock function to guard against the detrimental effects of circadian stress. PMID:27354555

  19. Mushroom β-Glucan May Immunomodulate the Tumor-Associated Macrophages in the Lewis Lung Carcinoma

    PubMed Central

    Wang, Wan-Jhen; Wu, Yu-Sheng; Chen, Sherwin; Liu, Chi-Feng

    2015-01-01

    The present study showed that oral mushroom beta-glucan treatment significantly increased IFN-γ mRNA expression but significantly reduced COX-2 mRNA expression within the lung. For LLC tumor model, oral Ganoderma lucidum or Antrodia camphorata polysaccharides treatments significantly reduced TGF-β production in serum. In addition, IL-12 and IFN-γ mRNA expression were significantly increased, but IL-6, IL-10, COX-2, and TGF-β mRNA expression were substantially following oral mushroom polysaccharides treatments. The study highlights the efficacious effect of mushroom polysaccharides for ameliorating the immune suppression in the tumor microenvironment. Increased M1 phenotype of tumor-associated macrophages and attenuated M2 phenotype of tumor-associated macrophages could be achieved by ingesting mushroom polysaccharides. PMID:26167490

  20. A Review of Feature Extraction Software for Microarray Gene Expression Data

    PubMed Central

    Tan, Ching Siang; Ting, Wai Soon; Mohamad, Mohd Saberi; Chan, Weng Howe; Deris, Safaai; Ali Shah, Zuraini

    2014-01-01

    When gene expression data are too large to be processed, they are transformed into a reduced representation set of genes. Transforming large-scale gene expression data into a set of genes is called feature extraction. If the genes extracted are carefully chosen, this gene set can extract the relevant information from the large-scale gene expression data, allowing further analysis by using this reduced representation instead of the full size data. In this paper, we review numerous software applications that can be used for feature extraction. The software reviewed is mainly for Principal Component Analysis (PCA), Independent Component Analysis (ICA), Partial Least Squares (PLS), and Local Linear Embedding (LLE). A summary and sources of the software are provided in the last section for each feature extraction method. PMID:25250315

  1. Allotopic expression of a mitochondrial alternative oxidase confers cyanide resistance to human cell respiration

    PubMed Central

    Hakkaart, Gerrit A J; Dassa, Emmanuel P; Jacobs, Howard T; Rustin, Pierre

    2006-01-01

    Human mitochondrial respiration is distinct from that of most plants, microorganisms and even some metazoans in that it reduces molecular oxygen only through the highly cyanide-sensitive enzyme cytochrome c oxidase. Here we show that expression of the cyanide-insensitive alternative oxidase (AOX), recently identified in the ascidian Ciona intestinalis, is well tolerated by cultured human cells and confers spectacular cyanide resistance to mitochondrial substrate oxidation. The expressed AOX seems to be confined to mitochondria. AOX involvement in electron flow is triggered by a highly reduced redox status of the respiratory chain (RC) and enhanced by pyruvate; otherwise, the enzyme remains essentially inactive. AOX expression promises to be a valuable tool to limit the deleterious consequences of RC deficiency in human cells and whole animals. PMID:16322757

  2. Selenoprotein W expression and regulation in mouse brain and neurons

    PubMed Central

    Raman, Arjun V; Pitts, Matthew W; Seyedali, Ali; Hashimoto, Ann C; Bellinger, Frederick P; Berry, Marla J

    2013-01-01

    Background Selenoprotein W (Sepw1) is a selenium-containing protein that is abundant in brain and muscle of vertebrate animals. Muscular expression of Sepw1 is reduced by dietary selenium (Se) deficiency in mammals, whereas brain expression is maintained. However, expression of Sepw1 depends on the Se transporter selenoprotein P (Sepp1). Methods We assessed the regional and cellular expression of Sepw1 in the mouse brain and neuronal cultures. Results We found that Sepw1 is widespread in neurons and neuropil of mouse brain and appears in both the soma and processes of neurons in culture. Pyramidal neurons of cortex and hippocampus express high levels of Sepw1. It is also abundant in Purkinje neurons and their dendritic arbors in the cerebellum. Analysis of synaptosome fractions prepared from mice brains indicated that Sepw1 is present at synapses, as were several proteins involved in selenoprotein synthesis. Synaptic expression of Sepw1 expression is reduced in mice lacking Sepp1 compared with control mice, although selenoprotein synthesis factors were similarly expressed in both genotypes. Lastly, Sepw1 mRNA coimmunoprecipitates with Staufen 2 protein in a human neuronal cell line. Conclusions Our results suggest that Sepw1 may be locally synthesized in distal compartments of neurons including synapses. PMID:24392277

  3. RRE-dependent HIV-1 Env RNA effects on Gag protein expression, assembly and release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López, Claudia S., E-mail: lopezcl@ohsu.edu; Sloan, Rachel; Cylinder, Isabel

    The HIV-1 Gag proteins are translated from the full-length HIV-1 viral RNA (vRNA), whereas the envelope (Env) protein is translated from incompletely spliced Env mRNAs. Nuclear export of vRNAs and Env mRNAs is mediated by the Rev accessory protein which binds to the rev-responsive element (RRE) present on these RNAs. Evidence has shown there is a direct or indirect interaction between the Gag protein, and the cytoplasmic tail (CT) of the Env protein. Our current work shows that env gene expression impacts HIV-1 Gag expression and function in two ways. At the protein level, full-length Env expression altered Gag proteinmore » expression, while Env CT-deletion proteins did not. At the RNA level, RRE-containing Env mRNA expression reduced Gag expression, processing, and virus particle release from cells. Our results support models in which Gag is influenced by the Env CT, and Env mRNAs compete with vRNAs for nuclear export. - Highlights: • At the protein level, full-length HIV-1 Env alters Gag protein expression. • HIV-1 Env RNA expression reduces Gag levels and virus release. • Env RNA effects on Gag are dependent on the RRE. • RRE-containing Env RNAs compete with vRNAs for nuclear export.« less

  4. High expression of NKG2A/CD94 and low expression of granzyme B are associated with reduced cord blood NK cell activity.

    PubMed

    Wang, Yanyan; Xu, Han; Zheng, Xiaodong; Wei, Haiming; Sun, Rui; Tian, Zhigang

    2007-10-01

    Human umbilical cord blood (CB) has recently been used as a source of stem cells in transplantation. NK cells derived from CB are the key effector cells involved in graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL). It was reported that the activity of CB NK cells was lower than that of adult peripheral blood (PB) NK cells. In this study, we analyzed the expression of some NK cell receptors and cytotoxicity-related molecules in CB and PB NK cells. The expressions of activating NK receptors, CD16, NKG2D and NKp46, did not show significant difference between CB and PB NK cells. But the expression of inhibitory receptor NKG2A/CD94 was significantly higher on CB NK cells. As to the effector function molecules, granzyme B was expressed significantly lower in CB NK cells, but the expressions of intracellular perforin, IFN-gamma, TNF-alpha and cell surface FasL and TRAIL did not show difference between CB and PB NK cells. The results indicated that the high expression of NKG2A/CD94 and low expression of granzyme B may be related with the reduced activity of CB NK cells.

  5. Glucocorticoid receptor expression on circulating leukocytes in healthy and asthmatic adolescents in response to exercise

    PubMed Central

    Lu, Kim D.; Cooper, Dan; Haddad, Fadia; Zaldivar, Frank; Kraft, Monica; Radom-Aizik, Shlomit

    2017-01-01

    Background Poor aerobic fitness is associated with worsening of asthma symptoms and fitness training may improve asthma control. The mechanism linking fitness with asthma is not known. We hypothesized that repeated bouts of exercise would lead to a downregulation of glucocorticoid receptor (GR) expression on circulating leukocytes reflecting a reduced responsiveness to stress. Methods In a prospective exercise training intervention of healthy and asthmatic adolescents, GR expression in leukocytes was measured using flow cytometry in response to a brief exercise challenge before and after the training intervention. PBMC gene expression of GR, GRβ, HSP70, and TGFβ1, 2 were determined using RT-PCR. Results Peak V̇O2 increased by 14.6 ± 2.3% indicating an effective training (p<0.01). There was a significant difference in GR expression among leukocyte subtypes, with highest expression in eosinophils. Following the training intervention, there was a significant decrease in baseline GR expression (p<0.05) in leukocyte and monocyte subtypes in both healthy and asthmatic adolescents. Conclusions This is the first study in adolescents to show that exercise training reduces GR expression on circulating leukocytes. We speculate that exercise training downregulates the stress response in general, manifested by decreased GR expression, and may explain why improving fitness improves asthma health. PMID:28796240

  6. [The molecular mechanisms and morphological manifestations of leiomyoma reduction induced by selective progesterone receptor modulators].

    PubMed

    Demura, T A; Revazova, Z V; Kogan, E A; Adamyan, L V

    to investigate the molecular mechanisms and morphological substrate of reduced uterine leiomyoma in patients receiving the selective progesterone receptor modulator (SPRM) ulipristal acetate for 3 months, by estimating the immunohistochemical expression of the markers steroid receptor coactivator 1 (SRC-1), nuclear receptor corepressor 1 (NCoR-1), ER, PgR, Ki-67, p16, TGF-β, and VEGF in tumor tissue. The investigation enrolled 75 women with uterine leiomyoma, menorrhagias, and anemia. Group 1 included 40 patients who were treated with ulipristal for 3 months, followed by laparoscopic myomectomy. Group 2 consisted of 35 patients who underwent surgery without previous preparation. The intra- and postoperative parameters and molecular and morphological changes in the myomatous nodules were comparatively analyzed in both groups. After 3 months of therapy initiation, menorrhagia completely ceased, myomatous nodules decreased in size (p<0.05), hemoglobin levels were elevated (p<0.01), and total intraoperative blood loss and operative time decreased in all the patients in Group 1. The morphological substrate of partial leiomyoma reduction was leiomyocyte apoptosis and dystrophy, tumor stroma sclerosis and hyalinosis with diminished Ki-67 expression and elevated p16 in the smooth muscle cells, trophic nodular tissue disorders exhibited by vascular wall sclerosis and lower VEGF and TGF-β expression, and leiomyocyte hormonal reception dysregulation that made itself evident through the reduced expression of SRC-1 with the unchanged expression of PR and ER and the maintained level of NCoR-1. The molecular mechanisms of tumor reduction involved the reduced Ki-67 expression and elevated p16, lower VEGF and TGF-β, diminished SRC-1 expression with the maintained level of PR, ER, and NCoR-1. Overall, this is suggestive of enhanced apoptosis and reduced leiomyoma proliferation and angiogenesis induced by SPRM and indicative of the expediency of using ulipristal acetate as a preoperative agent for organ-sparing surgery in reproductive-aged patients with uterine myoma, menorrhagias, and anemia.

  7. B-cell lymphoma 2 is associated with advanced tumor grade and clinical stage, and reduced overall survival in young Chinese patients with colorectal carcinoma.

    PubMed

    Wang, Jiasheng; He, Gan; Yang, Qiang; Bai, Lian; Jian, Bin; Li, Qugang; Li, Zhongfu

    2018-06-01

    The development of biomarkers that accurately and reliably detect colorectal cancer is a promising approach for colorectal cancer screening. Therefore, the objective of the present study was to evaluate the protein expression of α-methylacyl-CoA racemase (P504S/AMACR), tumor protein p53 (p53), B-cell lymphoma 2 (Bcl-2) and Ki-67/mindbomb E3 ubiquitin protein ligase 1 (MIB-1) in a population of Chinese patients with colorectal carcinoma. Colorectal tumors with matched normal tissue margins were collected from 148 surgical patients, and the demographic and clinical characteristics were collected. Immunohistochemical staining and western blot analysis of P504S/AMACR, p53, Bcl-2 and Ki-67/MIB-1 were conducted. Statistical analyses were used to compare protein expression in the colorectal tumors and matched normal tissue margins and to identify any associations between them and various clinicopathological parameters. Survival analyses were performed using the Kaplan-Meier method. In the present study, immunohistochemistry and western blot analysis revealed significantly higher expression of all four proteins in colorectal tumors compared with matched normal tissue margins (P<0.001). Spearman's rank correlation analysis revealed that Bcl-2 expression was negatively correlated with pathological grade and Tumor-Node-Metastasis (TNM) stage (-0.827 and -0.388, respectively; P<0.05). Bcl-2 expression was revealed to be a significant prognostic indicator of colorectal carcinoma [relative risk (95% CI), 0.703 (0.552-0.895); P<0.05]. The log-rank test revealed a significant association between low Bcl-2 expression and reduced overall survival (P=0.039), as well as a significant association between older age (>55 years) and reduced overall survival (P<0.001) in Chinese patients with colorectal carcinoma. In conclusion, low expression of Bcl-2 is significantly correlated with advanced pathological grade and TNM stage and is a prognostic indicator of reduced overall survival in young Chinese patients with colorectal carcinoma.

  8. Calcium signalling from the type I inositol 1,4,5-trisphosphate receptor is required at early phase of liver regeneration.

    PubMed

    Oliveira, André G; Andrade, Viviane A; Guimarães, Erika S; Florentino, Rodrigo M; Sousa, Pedro A; Marques, Pedro E; Melo, Flávia M; Ortega, Miguel J; Menezes, Gustavo B; Leite, M Fatima

    2015-04-01

    Liver regeneration is a multistage process that unfolds gradually, with different mediators acting at different stages of regeneration. Calcium (Ca(2+) ) signalling is essential for liver regeneration. In hepatocytes, Ca(2+) signalling results from the activation of inositol 1,4,5-trisphosphate receptors (InsP3 R) of which two of the three known isoforms are expressed (InsP3 R-I and InsP3 R-II). Here, we investigated the role of the InsP3 R-I-dependent Ca(2+) signals in hepatic proliferation during liver regeneration. Partial hepatectomy (HX) in combination with knockdown of InsP3 R-I (AdsiRNA-I) was used to evaluate the role of InsP3 R-I on liver regeneration and hepatocyte proliferation, as assessed by liver to body mass ratio, PCNA expression, immunoblots and measurements of intracellular Ca(2+) signalling. AdsiRNA-I efficiently infected the liver as demonstrated by the expression of β-galactosidase throughout the liver lobules. Moreover, this construct selectively and efficiently reduced the expression of InsP3 R-I, as evaluated by immunoblots. Expression of AdsiRNA-I in liver decreased peak Ca(2+) amplitude induced by vasopressin in isolated hepatocytes 2 days after HX. Reduced InsP3 R-I expression prior to HX also delayed liver regeneration, as measured by liver to body weight ratio, and reduced hepatocyte proliferation, as evaluated by PCNA staining, at the same time point. At later stages of regeneration, control hepatocytes showed a decreased expression of InsP3 R, as well as reduced InsP3 R-mediated Ca(2+) signalling, events that did not affect liver growth. Together, these results show that InsP3 R-I-dependent Ca(2+) signalling is an early triggering pathway required for liver regeneration. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Effect of hyperglycaemia on muscarinic M3 receptor expression and secretory sensitivity to cholinergic receptor activation in islets.

    PubMed

    Hauge-Evans, A C; Reers, C; Kerby, A; Franklin, Z; Amisten, S; King, A J; Hassan, Z; Vilches-Flores, A; Tippu, Z; Persaud, S J; Jones, P M

    2014-10-01

    Islets are innervated by parasympathetic nerves which release acetylcholine (ACh) to amplify glucose-induced insulin secretion, primarily via muscarinic M3 receptors (M3R). Here we investigate the consequence of chronic hyperglycaemia on islet M3R expression and secretory sensitivity of mouse islets to cholinergic receptor activation. The impact of hyperglycaemia was studied in (i) islets isolated from ob/ob mice, (ii) alginate-encapsulated mouse islets transplanted intraperitoneally into streptozotocin-induced diabetic mice and (iii) mouse and human islets maintained in vitro at 5.5 or 16 mmol/l glucose. Blood glucose levels were assessed by a commercial glucose meter, insulin content by RIA and M3R expression by qPCR and immunohistochemistry. M3R mRNA expression was reduced in both ob/ob islets and islets maintained at 16 mmol/l glucose for 3 days (68 and 50% control, respectively). In all three models of hyperglycaemia the secretory sensitivity to the cholinergic receptor agonist, carbachol, was reduced by 60-70% compared to control islets. Treatment for 72 h with the irreversible PKC activator, PMA, or the PKC inhibitor, Gö6983, did not alter islet M3R mRNA expression nor did incubation with the PI3K-inhibitor, LY294002, although enhancement of glucose-induced insulin secretion by LY294002 was reduced in islets maintained at 16 mmol/l glucose, as was mRNA expression of the PI3K regulatory subunit, p85α. Cholinergic regulation of insulin release is impaired in three experimental islet models of hyperglycaemia consistent with reduced expression of M3 receptors. Our data suggest that the receptor downregulation is a PKC- and PI3K-independent consequence of the hyperglycaemic environment, and they imply that M3 receptors could be potential targets in the treatment of type 2 diabetes. © 2014 John Wiley & Sons Ltd.

  10. A soluble form of Siglec-9 provides an antitumor benefit against mammary tumor cells expressing MUC1 in transgenic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomioka, Yukiko, E-mail: ytomi@muses.tottori-u.ac.jp; Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553; Morimatsu, Masami, E-mail: mmorimat@vetmed.hokudai.ac.jp

    Highlights: • Tumor-associated antigen MUC1 binds to Siglec-9. • Soluble Siglec-9 reduced proliferation of MUC1-positive tumor in transgenic mice. • Soluble Siglec-9 and MUC1 on tumor cells were colocalized in transgenic mice. • MUC1 expression on tumor cells were reduced in soluble Siglec-9 transgenic mice. - Abstract: Tumor-associated MUC1 binds to Siglec-9, which is expected to mediate tumor cell growth and negative immunomodulation. We hypothesized that a soluble form of Siglec-9 (sSiglec-9) competitively inhibits a binding of MUC1 to its receptor molecules like human Siglec-9, leading to provide antitumor benefit against MUC1-expressing tumor, and generated transgenic mouse lines expressing sSiglec-9more » (sSiglec-9 Tg). When mammary tumor cells expressing MUC1 were intraperitoneally transplanted into sSiglec-9 Tg, tumor proliferation was slower with the lower histological malignancy as compared with non-transgenic mice. The sSiglec-9 was detected in the ascites caused by the tumor in the sSiglec-9 Tg, and sSiglec-9 and MUC1 were often colocalized on surfaces of the tumor cells. PCNA immunohistochemistry also revealed the reduced proliferation of the tumor cells in sSiglec-9 Tg. In sSiglec-9 Tg with remarkable suppression of tumor proliferation, MUC1 expressions were tend to be reduced. In the ascites of sSiglec-9 Tg bearing the tumor, T cells were uniformly infiltrated, whereas aggregations of degenerative T cells were often observed in the non-transgenic mice. These results suggest that sSiglec-9 has an antitumor benefit against MUC1-expressing tumor in the transgenic mice, which may avoid the negative immunomodulation and/or suppress tumor-associated MUC1 downstream signal transduction, and subsequent tumor proliferation.« less

  11. Triptolide inhibits transcription of hTERT through down-regulation of transcription factor specificity protein 1 in primary effusion lymphoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Cong; Wang, Jingchao; Guo, Wei

    Primary effusion lymphoma (PEL) is a rare and aggressive non-Hodgkin's lymphoma. Human telomerase reverse transcriptase (hTERT), a key component responsible for the regulation of telomerase activity, plays important roles in cellular immortalization and cancer development. Triptolide purified from Tripterygium extracts displays a broad-spectrum bioactivity profile, including immunosuppressive, anti-inflammatory, and anti-tumor. In this study, it is investigated whether triptolide reduces hTERT expression and suppresses its activity in PEL cells. The mRNA and protein levels of hTERT were examined by real time-PCR and Western blotting, respectively. The activity of hTERT promoter was determined by Dual luciferase reporter assay. Our results demonstrated thatmore » triptolide decreased expression of hTERT at both mRNA and protein levels. Further gene sequence analysis indicated that the activity of hTERT promoter was suppressed by triptolide. Triptolide also reduced the half-time of hTERT. Additionally, triptolide inhibited the expression of transcription factor specificity protein 1(Sp1) in PEL cells. Furthermore, knock-down of Sp1 by using specific shRNAs resulted in down-regulation of hTERT transcription and protein expression levels. Inhibition of Sp1 by specific shRNAs enhanced triptolide-induced cell growth inhibition and apoptosis. Collectively, our results demonstrate that the inhibitory effect of triptolide on hTERT transcription is possibly mediated by inhibition of transcription factor Sp1 in PEL cells. - Highlights: • Triptolide reduces expression of hTERT by decreasing its transcription level. • Triptolide reduces promoter activity and stability of hTERT. • Triptolide down-regulates expression of Sp1. • Special Sp1 shRNAs inhibit transcription and protein expression of hTERT. • Triptolide and Sp1 shRNA2 induce cell proliferation inhibition and apoptosis.« less

  12. A Rb1 promoter variant with reduced activity contributes to osteosarcoma susceptibility in irradiated mice

    PubMed Central

    2014-01-01

    Background Syndromic forms of osteosarcoma (OS) account for less than 10% of all recorded cases of this malignancy. An individual OS predisposition is also possible by the inheritance of low penetrance alleles of tumor susceptibility genes, usually without evidence of a syndromic condition. Genetic variants involved in such a non-syndromic form of tumor predisposition are difficult to identify, given the low incidence of osteosarcoma cases and the genetic heterogeneity of patients. We recently mapped a major OS susceptibility QTL to mouse chromosome 14 by comparing alpha-radiation induced osteosarcoma in mouse strains which differ in their tumor susceptibility. Methods Tumor-specific allelic losses in murine osteosacoma were mapped along chromosome 14 using microsatellite markers and SNP allelotyping. Candidate gene search in the mapped interval was refined using PosMed data mining and mRNA expression analysis in normal osteoblasts. A strain-specific promoter variant in Rb1 was tested for its influence on mRNA expression using reporter assay. Results A common Rb1 allele derived from the BALB/cHeNhg strain was identified as the major determinant of radiation-induced OS risk at this locus. Increased OS-risk is linked with a hexanucleotide deletion in the promoter region which is predicted to change WT1 and SP1 transcription factor-binding sites. Both in-vitro reporter and in-vivo expression assays confirmed an approx. 1.5 fold reduced gene expression by this promoter variant. Concordantly, the 50% reduction in Rb1 expression in mice bearing a conditional hemizygous Rb1 deletion causes a significant rise of OS incidence following alpha-irradiation. Conclusion This is the first experimental demonstration of a functional and genetic link between reduced Rb1 expression from a common promoter variant and increased tumor risk after radiation exposure. We propose that a reduced Rb1 expression by common variants in regulatory regions can modify the risk for a malignant transformation of bone cells after radiation exposure. PMID:25092376

  13. Osteocalcin protects pancreatic beta cell function and survival under high glucose conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kover, Karen, E-mail: kkover@cmh.edu; University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108; Yan, Yun

    Diabetes is characterized by progressive beta cell dysfunction and loss due in part to oxidative stress that occurs from gluco/lipotoxicity. Treatments that directly protect beta cell function and survival in the diabetic milieu are of particular interest. A growing body of evidence suggests that osteocalcin, an abundant non-collagenous protein of bone, supports beta cell function and proliferation. Based on previous gene expression data by microarray, we hypothesized that osteocalcin protects beta cells from glucose-induced oxidative stress. To test our hypothesis we cultured isolated rat islets and INS-1E cells in the presence of normal, high, or high glucose ± osteocalcin for up tomore » 72 h. Oxidative stress and viability/mitochondrial function were measured by H{sub 2}O{sub 2} assay and Alamar Blue assay, respectively. Caspase 3/7 activity was also measured as a marker of apoptosis. A functional test, glucose stimulated insulin release, was conducted and expression of genes/protein was measured by qRT-PCR/western blot/ELISA. Osteocalcin treatment significantly reduced high glucose-induced H{sub 2}O{sub 2} levels while maintaining viability/mitochondrial function. Osteocalcin also significantly improved glucose stimulated insulin secretion and insulin content in rat islets after 48 h of high glucose exposure compared to untreated islets. As expected sustained high glucose down-regulated gene/protein expression of INS1 and BCL2 while increasing TXNIP expression. Interestingly, osteocalcin treatment reversed the effects of high glucose on gene/protein expression. We conclude that osteocalcin can protect beta cells from the negative effects of glucose-induced oxidative stress, in part, by reducing TXNIP expression, thereby preserving beta cell function and survival. - Highlights: • Osteocalcin reduces glucose-induced oxidative stress in beta cells. • Osteocalcin preserves beta cell function and survival under stress conditions. • Osteocalcin reduces glucose-induced TXNIP expression in beta cells.« less

  14. Global hypomethylation and promoter methylation in small intestinal neuroendocrine tumors: an in vivo and in vitro study.

    PubMed

    Fotouhi, Omid; Adel Fahmideh, Maral; Kjellman, Magnus; Sulaiman, Luqman; Höög, Anders; Zedenius, Jan; Hashemi, Jamileh; Larsson, Catharina

    2014-07-01

    Aberrant DNA methylation is a feature of human cancer affecting gene expression and tumor phenotype. Here, we quantified promoter methylation of candidate genes and global methylation in 44 small intestinal-neuroendocrine tumors (SI-NETs) from 33 patients by pyrosequencing. Findings were compared with gene expression, patient outcome and known tumor copy number alterations. Promoter methylation was observed for WIF1, RASSF1A, CTNNB1, CXCL14, NKX2-3, P16, LAMA1, and CDH1. By contrast APC, CDH3, HIC1, P14, SMAD2, and SMAD4 only had low levels of methylation. WIF1 methylation was significantly increased (P = 0.001) and WIF1 expression was reduced in SI-NETs vs. normal references (P = 0.003). WIF1, NKX2-3, and CXCL14 expression was reduced in metastases vs. primary tumors (P<0.02). Low expression of RASSF1A and P16 were associated with poor overall survival (P = 0.045 and P = 0.011, respectively). Global methylation determined by pyrosequencing of LINE1 repeats was reduced in tumors vs. normal references, and was associated with loss in chromosome 18. The tumors fell into three clusters with enrichment of WIF1 methylation and LINE1 hypomethylation in Cluster I and RASSF1A and CTNNB1 methylation and loss in 16q in Cluster II. In Cluster III, these alterations were low-abundant and NKX2-3 methylation was low. Similar analyses in the SI-NET cell lines HC45 and CNDT2 showed methylation for CDH1 and WIF1 and/or P16, CXCL14, NKX2-3, LAMA1, and CTNNB1. Treatment with the demethylating agent 5-azacytidine reduced DNA methylation and increased expression of these genes in vitro. In conclusion, promoter methylation of tumor suppressor genes is associated with suppressed gene expression and DNA copy number alterations in SI-NETs, and may be restored in vitro.

  15. Applications of Slow Light in Telecommunications

    DTIC Science & Technology

    2006-04-01

    that the distortion of the transmitted waveform can be dramatically reduced by using frequency-flattened gain profiles [ Stenner et al.]. Time [ns...Express 13, 7872 (2005). >> K.Y. Song et al. Opt. Express 13, 83 (2005). >> M.D. Stenner et al. Opt. Express 13, 9995 (2005). >> X. Zhao et al. Opt

  16. High Intensity Interval Training Favourably Affects Angiotensinogen mRNA Expression and Markers of Cardiorenal Health in a Rat Model of Early-Stage Chronic Kidney Disease.

    PubMed

    Tucker, Patrick S; Scanlan, Aaron T; Dalbo, Vincent J

    2015-01-01

    The majority of CKD-related complications stem from cardiovascular pathologies such as hypertension. To help reduce cardiovascular complications, aerobic exercise is often prescribed. Emerging evidence suggests high intensity interval training (HIIT) may be more beneficial than traditional aerobic exercise. However, appraisals of varying forms of aerobic exercise, along with descriptions of mechanisms responsible for health-related improvements, are lacking. This study examined the effects of 8 weeks of HIIT (85% VO2max), versus low intensity aerobic exercise (LIT; 45-50% VO2max) and sedentary behaviour (SED), in an animal model of early-stage CKD. Tissue-specific mRNA expression of RAAS-related genes and CKD-related clinical markers were examined. Compared to SED, HIIT resulted in increased plasma albumin (p = 0.001), reduced remnant kidney weight (p = 0.028), and reduced kidney weight-body weight ratios (p = 0.045). Compared to LIT, HIIT resulted in reduced Agt mRNA expression (p = 0.035), reduced plasma LDL (p = 0.001), triglycerides (p = 0.029), and total cholesterol (p = 0.002), increased plasma albumin (p = 0.047), reduced remnant kidney weight (p = 0.005), and reduced kidney weight-body weight ratios (p = 0.048). These results suggest HIIT is a more potent regulator of several markers that describe and influence health in CKD.

  17. High Intensity Interval Training Favourably Affects Angiotensinogen mRNA Expression and Markers of Cardiorenal Health in a Rat Model of Early-Stage Chronic Kidney Disease

    PubMed Central

    Tucker, Patrick S.; Scanlan, Aaron T.; Dalbo, Vincent J.

    2015-01-01

    The majority of CKD-related complications stem from cardiovascular pathologies such as hypertension. To help reduce cardiovascular complications, aerobic exercise is often prescribed. Emerging evidence suggests high intensity interval training (HIIT) may be more beneficial than traditional aerobic exercise. However, appraisals of varying forms of aerobic exercise, along with descriptions of mechanisms responsible for health-related improvements, are lacking. This study examined the effects of 8 weeks of HIIT (85% VO2max), versus low intensity aerobic exercise (LIT; 45–50% VO2max) and sedentary behaviour (SED), in an animal model of early-stage CKD. Tissue-specific mRNA expression of RAAS-related genes and CKD-related clinical markers were examined. Compared to SED, HIIT resulted in increased plasma albumin (p = 0.001), reduced remnant kidney weight (p = 0.028), and reduced kidney weight-body weight ratios (p = 0.045). Compared to LIT, HIIT resulted in reduced Agt mRNA expression (p = 0.035), reduced plasma LDL (p = 0.001), triglycerides (p = 0.029), and total cholesterol (p = 0.002), increased plasma albumin (p = 0.047), reduced remnant kidney weight (p = 0.005), and reduced kidney weight-body weight ratios (p = 0.048). These results suggest HIIT is a more potent regulator of several markers that describe and influence health in CKD. PMID:26090382

  18. Increased cardiac alpha-myosin heavy chain in left atria and decreased myocardial insulin-like growth factor (Igf-I) expression accompany low heart rate in hibernating grizzly bears.

    PubMed

    Barrows, N D; Nelson, O L; Robbins, C T; Rourke, B C

    2011-01-01

    Grizzly bears (Ursus arctos horribilis) tolerate extended periods of extremely low heart rate during hibernation without developing congestive heart failure or cardiac chamber dilation. Left ventricular atrophy and decreased left ventricular compliance have been reported in this species during hibernation. We evaluated the myocardial response to significantly reduced heart rate during hibernation by measuring relative myosin heavy-chain (MyHC) isoform expression and expression of a set of genes important to muscle plasticity and mass regulation in the left atria and left ventricles of active and hibernating bears. We supplemented these data with measurements of systolic and diastolic function via echocardiography in unanesthetized grizzly bears. Atrial strain imaging revealed decreased atrial contractility, decreased expansion/reservoir function (increased atrial stiffness), and decreased passive-filling function (increased ventricular stiffness) in hibernating bears. Relative MyHC-α protein expression increased significantly in the atrium during hibernation. The left ventricle expressed 100% MyHC-β protein in both groups. Insulin-like growth factor (IGF-I) mRNA expression was reduced by ∼50% in both chambers during hibernation, consistent with the ventricular atrophy observed in these bears. Interestingly, mRNA expression of the atrophy-related ubiquitin ligases Muscle Atrophy F-box (MAFBx) and Muscle Ring Finger 1 did not increase, nor did expression of myostatin or hypoxia-inducible factor 1α (HIF-1α). We report atrium-specific decreases of 40% and 50%, respectively, in MAFBx and creatine kinase mRNA expression during hibernation. Decreased creatine kinase expression is consistent with lowered energy requirements and could relate to reduced atrial emptying function during hibernation. Taken together with our hemodynamic assessment, these data suggest a potential downregulation of atrial chamber function during hibernation to prevent fatigue and dilation due to excessive work against an optimally filled ventricle, a response unpredicted by the Frank-Starling mechanism.

  19. Impact of toll-like-receptor-9 (TLR9) deficiency on visceral adipose tissue adipokine expression during chronic DSS-induced colitis in mice.

    PubMed

    Karrasch, T; Schmid, A; Kopp, A; Obermeier, F; Hofmann, C; Schäffler, A

    2015-02-01

    Studies postulate an involvement of adipokines in inflammatory gastrointestinal diseases. Leptin-deficient ob/ob mice as well as TLR9-deficient mice have a more moderate course of chronic DSS-induced colitis (DSS-CC) and adipocytes do express functional TLR9 molecules. Adipokine mRNA expression in visceral adipose tissue of mice before and after the induction of DSS-CC was investigated. Experiments were performed in both TLR9(wt/wt) and TLR9(-/-) mice. In vitro, the effect of TLR9 blocking peptide on leptin and visfatin protein secretion was studied in 3T3-L1 adipocytes. Induction of DSS-CC led to an upregulation of leptin mRNA expression in TLR9(wt/wt) mice, while TLR9(-/-) animals showed a significant reduction of leptin expression even below baseline. While visfatin expression remained unchanged in TLR9(wt/wt) animals, TLR9(-/-) mice exhibited a significant induction during DSS-CC. CTRP-3 expression was reduced after colitis induction only in TLR9(-/-) animals. Of note, IL-6 expression levels remained unchanged, while CXCL1/KC and cyclophilin A expression was reduced in DSS-CC. Inhibition of TLR9 signaling by using TLR9 blocking peptide led to reduced leptin protein secretion into cell culture supernatants in 3T3-L1 adipocytes, while visfatin protein secretion was enhanced. DSS-CC leads to differential adipokine expression profiles in the visceral fat pad in TLR9(wt/wt) vs. TLR9(-/-) mice. In vitro, inhibition of TLR9 signaling induces visfatin secretion while inhibiting leptin secretion in adipocytes. Thus, visceral adipokines are regulated by intact TLR9 signaling pathway and a specific interplay between the leptin- and the TLR9-pathways might be of pathophysiological importance in chronic intestinal inflammation. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Resveratrol Reduces Prostate Cancer Growth and Metastasis by Inhibiting the Akt/MicroRNA-21 Pathway

    PubMed Central

    Sheth, Sandeep; Jajoo, Sarvesh; Kaur, Tejbeer; Mukherjea, Debashree; Sheehan, Kelly; Rybak, Leonard P.; Ramkumar, Vickram

    2012-01-01

    The consumption of foods containing resveratrol produces significant health benefits. Resveratrol inhibits cancer by reducing cell proliferation and metastasis and by inducing apoptosis. These actions could be explained by its ability to inhibit (ERK-1/2), Akt and suppressing the levels of estrogen and insulin growth factor -1 (IGF-1) receptor. How these processes are manifested into the antitumor actions of resveratrol is not clear. Using microarray studies, we show that resveratrol reduced the expression of various prostate-tumor associated microRNAs (miRs) including miR-21 in androgen-receptor negative and highly aggressive human prostate cancer cells, PC-3M-MM2. This effect of resveratrol was associated with reduced cell viability, migration and invasiveness. Additionally, resveratrol increased the expression of tumor suppressors, PDCD4 and maspin, which are negatively regulated by miR-21. Short interfering (si) RNA against PDCD4 attenuated resveratrol’s effect on prostate cancer cells, and similar effects were observed following over expression of miR-21 with pre-miR-21 oligonucleotides. PC-3M-MM2 cells also exhibited high levels of phospho-Akt (pAkt), which were reduced by both resveratrol and LY294002 (a PI3-kinase inhibitor). MiR-21 expression in these cells appeared to be dependent on Akt, as LY294002 reduced the levels of miR-21 along with a concurrent increase in PDCD4 expression. These in vitro findings were further corroborated in a severe combined immunodeficient (SCID) mouse xenograft model of prostate cancer. Oral administration of resveratrol not only inhibited the tumor growth but also decreased the incidence and number of metastatic lung lesions. These tumor- and metastatic-suppressive effects of resveratrol were associated with reduced miR-21 and pAkt, and elevated PDCD4 levels. Similar anti-tumor effects of resveratrol were observed in DU145 and LNCaP prostate cancer cells which were associated with suppression of Akt and PDCD4, but independent of miR-21.These data suggest that resveratrol’s anti-tumor actions in prostate cancer could be explained, in part, through inhibition of Akt/miR-21 signaling pathway. PMID:23272133

  1. Decreased calcium pump expression in human erythrocytes is connected to a minor haplotype in the ATP2B4 gene.

    PubMed

    Zámbó, Boglárka; Várady, György; Padányi, Rita; Szabó, Edit; Németh, Adrienn; Langó, Tamás; Enyedi, Ágnes; Sarkadi, Balázs

    2017-07-01

    Plasma membrane Ca 2+ -ATPases are key calcium exporter proteins in most tissues, and PMCA4b is the main calcium transporter in the human red blood cells (RBCs). In order to assess the expression level of PMCA4b, we have developed a flow cytometry and specific antibody binding method to quantitatively detect this protein in the erythrocyte membrane. Interestingly, we found several healthy volunteers showing significantly reduced expression of RBC-PMCA4b. Western blot analysis of isolated RBC membranes confirmed this observation, and indicated that there are no compensatory alterations in other PMCA isoforms. In addition, reduced PMCA4b levels correlated with a lower calcium extrusion capacity in these erythrocytes. When exploring the potential genetic background of the reduced PMCA4b levels, we found no missense mutations in the ATP2B4 coding regions, while a formerly unrecognized minor haplotype in the predicted second promoter region closely correlated with lower erythrocyte PMCA4b protein levels. In recent GWA studies, SNPs in this ATP2B4 haplotype have been linked to reduced mean corpuscular hemoglobin concentrations (MCHC), and to protection against malaria infection. Our data suggest that an altered regulation of gene expression is responsible for the reduced RBC-PMCA4b levels that is probably linked to the development of human disease-related phenotypes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Carbon Monoxide Preserves Circadian Rhythm to Reduce the Severity of Subarachnoid Hemorrhage in Mice.

    PubMed

    Schallner, Nils; Lieberum, Judith-Lisa; Gallo, David; LeBlanc, Robert H; Fuller, Patrick M; Hanafy, Khalid A; Otterbein, Leo E

    2017-09-01

    Subarachnoid hemorrhage (SAH) is associated with a temporal pattern of stroke incidence. We hypothesized that natural oscillations in gene expression controlling circadian rhythm affect the severity of neuronal injury. We moreover predict that heme oxygenase-1 (HO-1/ Hmox1 ) and its product carbon monoxide (CO) contribute to the restoration of rhythm and neuroprotection. Murine SAH model was used where blood was injected at various time points of the circadian cycle. Readouts included circadian clock gene expression, locomotor activity, vasospasm, neuroinflammatory markers, and apoptosis. In addition, cerebrospinal fluid and peripheral blood leukocytes from SAH patients and controls were analyzed for clock gene expression. Significant elevations in the clock genes Per-1 , Per-2 , and NPAS-2 were observed in the hippocampus, cortex, and suprachiasmatic nucleus in mice subjected to SAH at zeitgeber time (ZT) 12 when compared with ZT2. Clock gene expression amplitude correlated with basal expression of HO-1, which was also significantly greater at ZT12. SAH animals showed a significant reduction in cerebral vasospasm, neuronal apoptosis, and microglial activation at ZT12 compared with ZT2. In animals with myeloid-specific HO-1 deletion ( Lyz-Cre-Hmox1 fl/fl ), Per-1, Per-2 , and NPAS-2 expression was reduced in the suprachiasmatic nucleus, which correlated with increased injury. Treatment with low-dose CO rescued Lyz-Cre-Hmox1 fl/fl mice, restored Per-1, Per-2 , and NPAS-2 expression, and reduced neuronal apoptosis. Clock gene expression regulates, in part, the severity of SAH and requires myeloid HO-1 activity to clear the erythrocyte burden and inhibit neuronal apoptosis. Exposure to CO rescues the loss of HO-1 and thus merits further investigation in patients with SAH. © 2017 American Heart Association, Inc.

  3. Low-level laser therapy (LLLT; 780 nm) acts differently on mRNA expression of anti- and pro-inflammatory mediators in an experimental model of collagenase-induced tendinitis in rat.

    PubMed

    Pires, Débora; Xavier, Murilo; Araújo, Tiago; Silva, José Antônio; Aimbire, Flavio; Albertini, Regiane

    2011-01-01

    Low-level laser therapy (LLLT) has been found to produce anti-inflammatory effects in a variety of disorders. Tendinopathies are directly related to unbalance in expression of pro- and anti-inflammatory cytokines which are responsible by degeneration process of tendinocytes. In the current study, we decided to investigate if LLLT could reduce mRNA expression for TNF-α, IL-1β, IL-6, TGF-β cytokines, and COX-2 enzyme. Forty-two male Wistar rats were divided randomly in seven groups, and tendinitis was induced with a collagenase intratendinea injection. The mRNA expression was evaluated by real-time PCR in 7th and 14th days after tendinitis. LLLT irradiation with wavelength of 780 nm required for 75 s with a dose of 7.7 J/cm(2) was administered in distinct moments: 12 h and 7 days post tendinitis. At the 12 h after tendinitis, the animals were irradiated once in intercalate days until the 7th or 14th day in and them the animals were killed, respectively. In other series, 7 days after tendinitis, the animals were irradiated once in intercalated days until the 14th day and then the animals were killed. LLLT in both acute and chronic phases decreased IL-6, COX-2, and TGF-β expression after tendinitis, respectively, when compared to tendinitis groups: IL-6, COX-2, and TGF-β. The LLLT not altered IL-1β expression in any time, but reduced the TNF-α expression; however, only at chronic phase. We conclude that LLLT administered with this protocol reduces one of features of tendinopathies that is mRNA expression for pro-inflammatory mediators.

  4. Major Transcriptome Changes Accompany the Growth of Pseudomonas aeruginosa in Blood from Patients with Severe Thermal Injuries

    PubMed Central

    Kruczek, Cassandra; Kottapalli, Kameswara Rao; Dissanaike, Sharmila; Dzvova, Nyaradzo; Griswold, John A.; Colmer-Hamood, Jane A.; Hamood, Abdul N.

    2016-01-01

    Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that causes serious infections in immunocompromised hosts including severely burned patients. After multiplying within the burn wound, P. aeruginosa translocate into the bloodstream causing bacterial sepsis frequently leading to organ dysfunction and septic shock. Although the pathogenesis of P. aeruginosa infection of thermally-injured wounds has been extensively analyzed, little is known regarding the ability of P. aeruginosa to adapt and survive within the blood of severely burned patients during systemic infection. To identify such adaptations, transcriptome analyses (RNA-seq) were conducted on P. aeruginosa strain PA14 that was grown in whole blood from a healthy volunteer or three severely burned patients. Compared with growth in blood from healthy volunteers, growth of PA14 in the blood from severely burned patients significantly altered the expression of 2596 genes, with expression of 1060 genes enhanced, while that of 1536 genes was reduced. Genes whose expression was significantly reduced included genes related to quorum sensing, quorum sensing-controlled virulence factors and transport of heme, phosphate, and phosphonate. Genes whose expression was significantly enhanced were related to the type III secretion system, the pyochelin iron-acquisition system, flagellum synthesis, and pyocyanin production. We confirmed changes in expression of many of these genes using qRT-PCR. Although severe burns altered the levels of different blood components in each patient, the growth of PA14 in their blood produced similar changes in the expression of each gene. These results suggest that, in response to changes in the blood of severely burned patients and as part of its survival strategy, P. aeruginosa enhances the expression of certain virulence genes and reduces the expression of others. PMID:26933952

  5. Disruption of β-catenin/CBP signaling inhibits human airway epithelial-mesenchymal transition and repair.

    PubMed

    Moheimani, Fatemeh; Roth, Hollis M; Cross, Jennifer; Reid, Andrew T; Shaheen, Furquan; Warner, Stephanie M; Hirota, Jeremy A; Kicic, Anthony; Hallstrand, Teal S; Kahn, Michael; Stick, Stephen M; Hansbro, Philip M; Hackett, Tillie-Louise; Knight, Darryl A

    2015-11-01

    The epithelium of asthmatics is characterized by reduced expression of E-cadherin and increased expression of the basal cell markers ck-5 and p63 that is indicative of a relatively undifferentiated repairing epithelium. This phenotype correlates with increased proliferation, compromised wound healing and an enhanced capacity to undergo epithelial-mesenchymal transition (EMT). The transcription factor β-catenin plays a vital role in epithelial cell differentiation and regeneration, depending on the co-factor recruited. Transcriptional programs driven by the β-catenin/CBP axis are critical for maintaining an undifferentiated and proliferative state, whereas the β-catenin/p300 axis is associated with cell differentiation. We hypothesized that disrupting the β-catenin/CBP signaling axis would promote epithelial differentiation and inhibit EMT. We treated monolayer cultures of human airway epithelial cells with TGFβ1 in the presence or absence of the selective small molecule ICG-001 to inhibit β-catenin/CBP signaling. We used western blots to assess expression of an EMT signature, CBP, p300, β-catenin, fibronectin and ITGβ1 and scratch wound assays to assess epithelial cell migration. Snai-1 and -2 expressions were determined using q-PCR. Exposure to TGFβ1 induced EMT, characterized by reduced E-cadherin expression with increased expression of α-smooth muscle actin and EDA-fibronectin. Either co-treatment or therapeutic administration of ICG-001 completely inhibited TGFβ1-induced EMT. ICG-001 also reduced the expression of ck-5 and -19 independent of TGFβ1. Exposure to ICG-001 significantly inhibited epithelial cell proliferation and migration, coincident with a down regulation of ITGβ1 and fibronectin expression. These data support our hypothesis that modulating the β-catenin/CBP signaling axis plays a key role in epithelial plasticity and function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Transforming growth factor-β-induced gene product-h3 inhibits odontoblastic differentiation of dental pulp cells.

    PubMed

    Serita, Suguru; Tomokiyo, Atsushi; Hasegawa, Daigaku; Hamano, Sayuri; Sugii, Hideki; Yoshida, Shinichiro; Mizumachi, Hiroyuki; Mitarai, Hiromi; Monnouchi, Satoshi; Wada, Naohisa; Maeda, Hidefumi

    2017-06-01

    The aim of this study was to investigate transforming growth factor-β-induced gene product-h3 (βig-h3) expression in dental pulp tissue and its effects on odontoblastic differentiation of dental pulp cells (DPCs). A rat direct pulp capping model was prepared using perforated rat upper first molars capped with mineral trioxide aggregate cement. Human DPCs (HDPCs) were isolated from extracted teeth. βig-h3 expression in rat dental pulp tissue and HDPCs was assessed by immunostaining. Mineralization of HDPCs was assessed by Alizarin red-S staining. Odontoblast-related gene expression in HDPCs was analyzed by quantitative RT-PCR. Expression of βig-h3 was detected in rat dental pulp tissue, and attenuated by direct pulp capping, while expression of interleukin-1β and tumor necrosis factor-α was increased in exposed pulp tissue. βig-h3 expression was also detected in HDPCs, with reduced expression during odontoblastic differentiation. The above cytokines reduced βig-h3 expression in HDPCs, and promoted their mineralization. Recombinant βig-h3 inhibited the expression of odontoblast-related genes and mineralization of HDPCs, while knockdown of βig-h3 gene expression promoted the expression of odontoblast-related genes in HDPCs. The present findings suggest that βig-h3 in DPCs may be involved in reparative dentin formation and that its expression is likely to negatively regulate this process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Helping Yourself by Offering Help: Mediators of Expressive Helping in Survivors of Hematopoietic Stem Cell Transplant.

    PubMed

    Williamson, Timothy J; Stanton, Annette L; Austin, Jane E; Valdimarsdottir, Heiddis B; Wu, Lisa M; Krull, Jennifer L; Rini, Christine M

    2017-10-01

    A randomized experiment by Rini et al. (Health Psychol. 33(12):1541-1551, 2014) demonstrated that expressive helping, which involves three expressive writing sessions regarding hematopoietic stem cell transplant, followed by one writing session directed toward helping other stem cell transplant recipients, reduced psychological distress and bothersome physical symptoms among stem cell transplant recipients with elevated survivorship problems, relative to a neutral writing control condition. The current study evaluated whether word use reflective of emotional expression, cognitive processing, and change in perspective mediates the effects of expressive helping. The essays of 67 stem cell transplant recipients with high survivorship problems were analyzed with Linguistic Inquiry and Word Count. Multiple mediation modeling was used to test the hypothesized mechanisms of expressive helping on distress and bothersome physical symptoms. Relative to the control condition, expressive helping produced significant reductions in psychological distress and marginal reductions in physical symptom bother in the analyzed subset of participants from the parent study. Results indicated that positive emotion word use significantly mediated effects of expressive helping on reduced distress, but only for participants who used average (compared to above or below average) rates of negative emotion words. Cognitive processing and change in perspective did not significantly mediate benefits of expressive helping. Expressive helping carried its positive effects on distress through participants' higher expression of positive emotions when coupled with moderate rates of negative emotions. Findings highlight the benefit of expressing both positive and negative emotions in stressful situations.

  8. The Regulatory Small RNA MarS Supports Virulence of Streptococcus pyogenes.

    PubMed

    Pappesch, Roberto; Warnke, Philipp; Mikkat, Stefan; Normann, Jana; Wisniewska-Kucper, Aleksandra; Huschka, Franziska; Wittmann, Maja; Khani, Afsaneh; Schwengers, Oliver; Oehmcke-Hecht, Sonja; Hain, Torsten; Kreikemeyer, Bernd; Patenge, Nadja

    2017-09-25

    Small regulatory RNAs (sRNAs) play a role in the control of bacterial virulence gene expression. In this study, we investigated an sRNA that was identified in Streptococcus pyogenes (group A Streptococcus, GAS) but is conserved throughout various streptococci. In a deletion strain, expression of mga, the gene encoding the multiple virulence gene regulator, was reduced. Accordingly, transcript and proteome analyses revealed decreased expression of several Mga-activated genes. Therefore, and because the sRNA was shown to interact with the 5' UTR of the mga transcript in a gel-shift assay, we designated it MarS for m ga-activating regulatory sRNA. Down-regulation of important virulence factors, including the antiphagocytic M-protein, led to increased susceptibility of the deletion strain to phagocytosis and reduced adherence to human keratinocytes. In a mouse infection model, the marS deletion mutant showed reduced dissemination to the liver, kidney, and spleen. Additionally, deletion of marS led to increased tolerance towards oxidative stress. Our in vitro and in vivo results indicate a modulating effect of MarS on virulence gene expression and on the pathogenic potential of GAS.

  9. Exercise training reduces inflammatory mediators in the intestinal tract of healthy older adult mice.

    PubMed

    Packer, Nicholas; Hoffman-Goetz, Laurie

    2012-06-01

    Aging is associated with increased intestinal inflammation and elevated risk of chronic diseases including inflammatory bowel diseases and colon cancer; many epidemiologic studies show that regular exercise reduces risk. This study examined the effects of long-term voluntary exercise on inflammatory mediators expressed in the intestine of older (15-16 months), healthy C57BL/6 mice. Animals were assigned to four months of freewheel running (WR; n = 20) or to a "sedentary" no wheel running (NWR; n = 20) control group. Intestinal lymphocytes were harvested and analysed for expression of (1) pro-inflammatory (TNF-α, IL-1β) and pleiotropic (IL-6) cytokines, and (2) pro-(caspase-3/-7) and anti-(Bcl-2) apoptotic proteins. Training was confirmed by skeletal muscle enzyme activity; stress was assessed by plasma 8-iso-PGF(2α) and corticosterone. The WR mice had a lower expression of TNF-α, caspase-7, and 8-isoprostanes (p < .05) compared to sedentary controls, suggesting that long-term exercise may "protect" the bowel by reducing inflammatory cytokine and apoptotic protein expression.

  10. Chlorella vulgaris reduces the impact of stress on hypothalamic-pituitary-adrenal axis and brain c-fos expression.

    PubMed

    Souza Queiroz, Julia; Marín Blasco, Ignacio; Gagliano, Humberto; Daviu, Nuria; Gómez Román, Almudena; Belda, Xavier; Carrasco, Javier; Rocha, Michelle C; Palermo Neto, João; Armario, Antonio

    2016-03-01

    Predominantly emotional stressors activate a wide range of brain areas, as revealed by the expression of immediate early genes, such as c-fos. Chlorella vulgaris (CV) is considered a biological response modifier, as demonstrated by its protective activities against infections, tumors and stress. We evaluated the effect of acute pretreatment with CV on the peripheral and central responses to forced swimming stress in adult male rats. Pretreatment with CV produced a significant reduction of stress-related hypothalamic-pituitary-adrenal activation, demonstrated by decreased corticotrophin releasing factor gene expression in the hypothalamic paraventricular nucleus (PVN) and lower ACTH response. Hyperglycemia induced by the stressor was similarly reduced. This attenuated neuroendocrine response to stress occurred in parallel with a diminished c-fos expression in most evaluated areas, including the PVN. The data presented in this study reinforce the usefulness of CV to diminish the impact of stressors, by reducing the HPA response. Although our results suggest a central effect of CV, further studies are necessary to understand the precise mechanisms underpinning this effect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Inhibition of Wnt/beta-catenin signaling downregulates expression of aldehyde dehydrogenase isoform 3A1 (ALDH3A1) to reduce resistance against temozolomide in glioblastoma in vitro.

    PubMed

    Suwala, Abigail Kora; Koch, Katharina; Rios, Dayana Herrera; Aretz, Philippe; Uhlmann, Constanze; Ogorek, Isabella; Felsberg, Jörg; Reifenberger, Guido; Köhrer, Karl; Deenen, René; Steiger, Hans-Jakob; Kahlert, Ulf D; Maciaczyk, Jaroslaw

    2018-04-27

    Glioblastoma is the most aggressive type of glioma. The Wingless (Wnt) signaling pathway has been shown to promote stem cell properties and resistance to radio- and chemotherapy in glioblastoma. Here, we demonstrate that pharmacological Wnt pathway inhibition using the porcupine inhibitor LGK974 acts synergistically with temozolomide (TMZ), the chemotherapeutic drug currently used as standard treatment for glioblastoma, to suppress in vitro growth of glioma cells. Synergistic growth inhibition was independent of the O 6 -alkylguanine DNA alkyltransferase ( MGMT ) promoter methylation status. Transcriptomic analysis revealed that expression of aldehyde dehydrogenase 3A1 ( ALDH3A1 ) was significantly down-regulated when cells were treated with LGK974 and TMZ. Suppressing ALDH3A1 expression increased the efficacy of TMZ and reduced clonogenic potential accompanied by decreased expression of stem cell markers CD133, Nestin and Sox2. Taken together, our study suggests that previous observations concerning Wnt signaling blockade to reduce chemoresistance in glioblastoma is at least in part mediated by inhibition of ALDH3A1.

  12. Increased susceptibility of aging gastric mucosa to injury: The mechanisms and clinical implications

    PubMed Central

    Tarnawski, Andrzej S; Ahluwalia, Amrita; Jones, Michael K

    2014-01-01

    This review updates the current views on aging gastric mucosa and the mechanisms of its increased susceptibility to injury. Experimental and clinical studies indicate that gastric mucosa of aging individuals-“aging gastropathy”-has prominent structural and functional abnormalities vs young gastric mucosa. Some of these abnormalities include a partial atrophy of gastric glands, impaired mucosal defense (reduced bicarbonate and prostaglandin generation, decreased sensory innervation), increased susceptibility to injury by a variety of damaging agents such as ethanol, aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs), impaired healing of injury and reduced therapeutic efficacy of ulcer-healing drugs. Detailed analysis of the above changes indicates that the following events occur in aging gastric mucosa: reduced mucosal blood flow and impaired oxygen delivery cause hypoxia, which leads to activation of the early growth response-1 (egr-1) transcription factor. Activation of egr-1, in turn, upregulates the dual specificity phosphatase, phosphatase and tensin homologue deleted on chromosome ten (PTEN) resulting in activation of pro-apoptotic caspase-3 and caspase-9 and reduced expression of the anti-apoptosis protein, survivin. The imbalance between pro- and anti-apoptosis mediators results in increased apoptosis and increased susceptibility to injury. This paradigm has human relevance since increased expression of PTEN and reduced expression of survivin were demonstrated in gastric mucosa of aging individuals. Other potential mechanisms operating in aging gastric mucosa include reduced telomerase activity, increase in replicative cellular senescence, and reduced expression of vascular endothelial growth factor and importin-α-a nuclear transport protein essential for transport of transcription factors to nucleus. Aging gastropathy is an important and clinically relevant issue because of: (1) an aging world population due to prolonged life span; (2) older patients have much greater risk of gastroduodenal ulcers and gastrointestinal complications (e.g., NSAIDs-induced gastric injury) than younger patients; and (3) increased susceptibility of aging gastric mucosa to injury can be potentially reduced or reversed pharmacologically. PMID:24782600

  13. FOXP2 Expression in Frontotemporal Lobar Degeneration-Tau.

    PubMed

    López-González, Irene; Palmeira, Andre; Aso, Ester; Carmona, Margarita; Fernandez, Liana; Ferrer, Isidro

    2016-09-06

    FOXP2 is altered in a variety of language disorders. We found reduced mRNA and protein expression of FOXP2 in frontal cortex area 8 in Pick's disease, and frontotemporal lobar degeneration-tau linked to P301L mutation presenting with language impairment in comparison with age-matched controls and cases with parkinsonian variant progressive supranuclear palsy. Foxp2 mRNA and protein are also reduced with disease progression in the somatosensory cortex in transgenic mice bearing the P301S mutation in MAPT when compared with wild-type littermates. Our findings support the presence of FOXP2 expression abnormalities in sporadic and familial frontotemporal degeneration tauopathies.

  14. Matrix metalloproteinase-9 expression by Hodgkin-Reed-Sternberg cells is associated with reduced overall survival in young adult patients with classical Hodgkin lymphoma.

    PubMed

    Campos, Antonio Hugo; Vassallo, Jose; Soares, Fernando Augusto

    2013-01-01

    Previous studies have investigated the prognostic relevance of MMP9 in classical Hodgkin lymphoma (cHL), with negative results. However, we have found that MMP9 immunoistochemical expression by Hodgkin-Reed-Sternberg cells is associated with reduced overall survival in a subset of young adult Brazilian patients diagnosed with cHL. Additionally, we have observed that MMP9 expression by neoplastic cells in cHL is associated with EBV positivity. These results may support a rational basis for additional studies on the role of this metalloproteinase as a target for therapy in classical Hodgkin lymphoma.

  15. Role of decoy molecules in neuronal ischemic preconditioning

    PubMed Central

    Panneerselvam, Mathivadhani; Patel, Piyush M.; Roth, David M.; Kidd, Michael W.; Chin-Lee, Blake; Head, Brian P.; Niesman, Ingrid R.; Inoue, Satoki; Patel, Hemal H.; Davis, Daniel P.

    2011-01-01

    Decoy receptors bind with TNF related apoptosis inducing ligands (TRAIL) but do not contain the cytoplasmic domains necessary to transduce apoptotic signals. We hypothesized that decoy receptors may confer neuronal protection against lethal ischemia after ischemic preconditioning (IPC). Mixed cortical neurons were exposed to IPC one day prior to TRAIL treatment or lethal ischemia. IPC increased decoy receptor but reduced death receptor expression compared to lethal ischemia. IPC-induced increase in decoy receptor expression was reduced by prior treatment with CAPE, a nuclear factor-kappa B inhibitor (NFκB). Expression of decoy molecules, dependent on NFκB, may mediate neuronal survival induced by IPC. PMID:21315738

  16. Engineering a Saccharomyces cerevisiae wine yeast that exhibits reduced ethanol production during fermentation under controlled microoxygenation conditions.

    PubMed

    Heux, Stéphanie; Sablayrolles, Jean-Marie; Cachon, Rémy; Dequin, Sylvie

    2006-09-01

    We recently showed that expressing an H(2)O-NADH oxidase in Saccharomyces cerevisiae drastically reduces the intracellular NADH concentration and substantially alters the distribution of metabolic fluxes in the cell. Although the engineered strain produces a reduced amount of ethanol, a high level of acetaldehyde accumulates early in the process (1 g/liter), impairing growth and fermentation performance. To overcome these undesirable effects, we carried out a comprehensive analysis of the impact of oxygen on the metabolic network of the same NADH oxidase-expressing strain. While reducing the oxygen transfer rate led to a gradual recovery of the growth and fermentation performance, its impact on the ethanol yield was negligible. In contrast, supplying oxygen only during the stationary phase resulted in a 7% reduction in the ethanol yield, but without affecting growth and fermentation. This approach thus represents an effective strategy for producing wine with reduced levels of alcohol. Importantly, our data also point to a significant role for NAD(+) reoxidation in controlling the glycolytic flux, indicating that engineered yeast strains expressing an NADH oxidase can be used as a powerful tool for gaining insight into redox metabolism in yeast.

  17. Autism: reduced connectivity between cortical areas involved in face expression, theory of mind, and the sense of self.

    PubMed

    Cheng, Wei; Rolls, Edmund T; Gu, Huaguang; Zhang, Jie; Feng, Jianfeng

    2015-05-01

    Whole-brain voxel-based unbiased resting state functional connectivity was analysed in 418 subjects with autism and 509 matched typically developing individuals. We identified a key system in the middle temporal gyrus/superior temporal sulcus region that has reduced cortical functional connectivity (and increased with the medial thalamus), which is implicated in face expression processing involved in social behaviour. This system has reduced functional connectivity with the ventromedial prefrontal cortex, which is implicated in emotion and social communication. The middle temporal gyrus system is also implicated in theory of mind processing. We also identified in autism a second key system in the precuneus/superior parietal lobule region with reduced functional connectivity, which is implicated in spatial functions including of oneself, and of the spatial environment. It is proposed that these two types of functionality, face expression-related, and of one's self and the environment, are important components of the computations involved in theory of mind, whether of oneself or of others, and that reduced connectivity within and between these regions may make a major contribution to the symptoms of autism. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  18. Expression of NLRR3 orphan receptor gene is negatively regulated by MYCN and Miz-1, and its downregulation is associated with unfavorable outcome in neuroblastoma.

    PubMed

    Akter, Jesmin; Takatori, Atsushi; Hossain, Md Shamim; Ozaki, Toshinori; Nakazawa, Atsuko; Ohira, Miki; Suenaga, Yusuke; Nakagawara, Akira

    2011-11-01

    Our previous study showed that expression of NLRR3 is significantly high in favorable neuroblastomas (NBL), whereas that of NLRR1 is significantly high in unfavorable NBLs. However, the molecular mechanism of transcriptional regulation of NLRR3 remains elusive. This study was undertaken to clarify the transcriptional regulation of NLRR3 and its association with the prognosis of NBL. NLRR3 and MYCN expressions in NBL cell lines were analyzed after induction of cell differentiation, MYCN knockdown, and overexpression. The transcriptional regulation of NLRR3 was analyzed by luciferase reporter and chromatin immunoprecipitation assays. Quantitative PCR was used for examining the expression of NLRR3, Miz-1, or MYCN in 87 primary NBLs. The expression of NLRR3 mRNA was upregulated during differentiation of NBL cells induced by retinoic acid, accompanied with reduced expression of MYCN, suggesting that NLRR3 expression was inversely correlated with MYCN in differentiation. Indeed, knockdown of MYCN induced NLRR3 expression, whereas exogenously expressed MYCN reduced cellular NLRR3 expression. We found that Miz-1 was highly expressed in favorable NBLs and NLRR3 was induced by Miz-1 expression in NBL cells. MYCN and Miz-1 complexes bound to NLRR3 promoter and showed a negative regulation of NLRR3 expression. In addition, a combination of low expression of NLRR3 and high expression of MYCN was highly associated with poor prognosis. NLRR3 is a direct target of MYCN, which associates with Miz-1 and negatively regulates NLRR3 expression. NLRR3 may play a role in NBL differentiation and the survival of NBL patients by inversely correlating with MYCN amplification. ©2011 AACR

  19. Postsynaptic density protein transcripts are differentially modulated by minocycline alone or in add-on to haloperidol: Implications for treatment resistant schizophrenia.

    PubMed

    Buonaguro, Elisabetta F; Tomasetti, Carmine; Chiodini, Paolo; Marmo, Federica; Latte, Gianmarco; Rossi, Rodolfo; Avvisati, Livia; Iasevoli, Felice; de Bartolomeis, Andrea

    2017-04-01

    In this study, we investigated whether minocycline, a second-generation tetracycline proposed as an add-on to antipsychotics in treatment-resistant schizophrenia (TRS), may affect the expression of Homer and Arc postsynaptic density (PSD) transcripts, implicated in synaptic regulation. Minocycline was administered alone or with haloperidol in rats exposed or not to ketamine, mimicking acute glutamatergic psychosis or naturalistic conditions, respectively. Arc expression was significantly reduced by minocycline compared with controls. Minocycline in combination with haloperidol also significantly reduced Arc expression compared with both controls and haloperidol alone. Moreover, haloperidol/minocycline combination significantly affected Arc expression in cortical regions, while haloperidol alone was ineffective on cortical gene expression. These results suggest that minocycline may strongly affect the expression of Arc as mediated by haloperidol, both in terms of quantitative levels and of topography of haloperidol-related expression. It is noteworthy that no significant pre-treatment effect was found, suggesting that pre-exposure to ketamine did not grossly affect gene expression. Minocycline was not found to significantly affect haloperidol-related Homer1a expression. No significant changes in Homer1b/c expression were observed. These results are consistent with previous observations that minocycline may modulate postsynaptic glutamatergic transmission, affecting distinct downstream pathways initiated by N-methyl-D-aspartate (NMDA) receptor modulation, i.e. Arc-mediated but not Homer1a-mediated pathways.

  20. Endophytic bacterium Sphingomonas SaMR12 promotes cadmium accumulation by increasing glutathione biosynthesis in Sedum alfredii Hance.

    PubMed

    Pan, Fengshan; Meng, Qian; Wang, Qiong; Luo, Sha; Chen, Bao; Khan, Kiran Yasmin; Yang, Xiaoe; Feng, Ying

    2016-07-01

    A hydroponic experiment was conducted to verify the effects of inoculation with endophytic bacteria Sphingomonas SaMR12 on root growth, cadmium (Cd) uptake, reactive oxygen species (ROS), antioxidases, glutathione (GSH) and the related gene expression of Sedum alfredii Hance under different levels of Cd such as 0, 10, 25, 100 and 400 μM. The results showed that inoculation of SaMR12 improved Cd accumulation and upregulated glutathione synthase (GS) expression, but slightly reduced malondialdehyde (MDA) concentration and alleviated Cd-induced damage in roots. However it didn't alter the activities of antioxidant enzymes. When Cd concentration exceeded 25 μM, SaMR12 increased the concentration of GSH and the expression level of GSH1. At high Cd treatment levels (100 and 400 μM), SaMR12 significantly reduced H2O2 concentration and enhanced expression level of 1-Cys peroxiredoxin PER1 and ATPS genes. These results indicate that although SaMR12 has no significant effects on antioxidases activities, it reduces H2O2 concentration by enhancing GSH concentration and relevant genes expression, and subsequently improves Cd tolerance and accumulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The magnitude and colour of noise in genetic negative feedback systems

    PubMed Central

    Voliotis, Margaritis; Bowsher, Clive G.

    2012-01-01

    The comparative ability of transcriptional and small RNA-mediated negative feedback to control fluctuations or ‘noise’ in gene expression remains unexplored. Both autoregulatory mechanisms usually suppress the average (mean) of the protein level and its variability across cells. The variance of the number of proteins per molecule of mean expression is also typically reduced compared with the unregulated system, but is almost never below the value of one. This relative variance often substantially exceeds a recently obtained, theoretical lower limit for biochemical feedback systems. Adding the transcriptional or small RNA-mediated control has different effects. Transcriptional autorepression robustly reduces both the relative variance and persistence (lifetime) of fluctuations. Both benefits combine to reduce noise in downstream gene expression. Autorepression via small RNA can achieve more extreme noise reduction and typically has less effect on the mean expression level. However, it is often more costly to implement and is more sensitive to rate parameters. Theoretical lower limits on the relative variance are known to decrease slowly as a measure of the cost per molecule of mean expression increases. However, the proportional increase in cost to achieve substantial noise suppression can be different away from the optimal frontier—for transcriptional autorepression, it is frequently negligible. PMID:22581772

  2. Role of Renin-Angiotensin System and Oxidative Stress on Vascular Inflammation in Insulin Resistence Model

    PubMed Central

    Renna, N. F.; Lembo, C.; Diez, E.; Miatello, R. M.

    2013-01-01

    (1) This study aims to demonstrate the causal involvement of renin angiotensin system (RAS) and oxidative stress (OS) on vascular inflammation in an experimental model of metabolic syndrome (MS) achieved by fructose administration to spontaneously hypertensive rats (FFHR) during 12 weeks. (2) Chronic treatment with candesartan (C) (10 mg/kg per day for the last 6 weeks) or 4OH-Tempol (T) (10−3 mmol/L in drinking water for the last 6 weeks) reversed the increment in metabolic variables and systolic blood pressure. In addition, chronic C treatment reverted cardiovascular remodeling but not T. (3) Furthermore, chronic treatment with C was able to completely reverse the expression of NF-κB and VCAM-1, but T only reduced the expression. C reduced the expression of proatherogenic cytokines as CINC2, CINC3, VEGF, Leptin, TNF-alpha, and MCP-1 and also significantly reduced MIP-3, beta-NGF, and INF-gamma in vascular tissue in this experimental model. T was not able to substantially modify the expression of these cytokines. (4) The data suggest the involvement of RAS in the expression of inflammatory proteins at different vascular levels, allowing the creation of a microenvironment suitable for the creation, perpetuation, growth, and destabilization of vascular injury. PMID:23365721

  3. Role of Renin-Angiotensin system and oxidative stress on vascular inflammation in insulin resistence model.

    PubMed

    Renna, N F; Lembo, C; Diez, E; Miatello, R M

    2013-01-01

    (1) This study aims to demonstrate the causal involvement of renin angiotensin system (RAS) and oxidative stress (OS) on vascular inflammation in an experimental model of metabolic syndrome (MS) achieved by fructose administration to spontaneously hypertensive rats (FFHR) during 12 weeks. (2) Chronic treatment with candesartan (C) (10 mg/kg per day for the last 6 weeks) or 4OH-Tempol (T) (10(-3) mmol/L in drinking water for the last 6 weeks) reversed the increment in metabolic variables and systolic blood pressure. In addition, chronic C treatment reverted cardiovascular remodeling but not T. (3) Furthermore, chronic treatment with C was able to completely reverse the expression of NF-κB and VCAM-1, but T only reduced the expression. C reduced the expression of proatherogenic cytokines as CINC2, CINC3, VEGF, Leptin, TNF-alpha, and MCP-1 and also significantly reduced MIP-3, beta-NGF, and INF-gamma in vascular tissue in this experimental model. T was not able to substantially modify the expression of these cytokines. (4) The data suggest the involvement of RAS in the expression of inflammatory proteins at different vascular levels, allowing the creation of a microenvironment suitable for the creation, perpetuation, growth, and destabilization of vascular injury.

  4. Paclitaxel-induced lung injury and its amelioration by parecoxib sodium.

    PubMed

    Liu, Wen-jie; Zhong, Zhong-jian; Cao, Long-hui; Li, Hui-ting; Zhang, Tian-hua; Lin, Wen-qian

    2015-08-10

    To investigate the mechanism of paclitaxel-induced lung injury and its amelioration by parecoxib sodium. In this study, rats were randomly divided into: the control group (Con); the paclitaxel chemotherapy group (Pac); the paclitaxel+ parecoxib sodium intervention group (Pac + Pare); and the parecoxib sodium group (Pare). We observed changes in alveolar ventilation function, alveolar-capillary membrane permeability, lung tissue pathology and measured the levels of inflammatory cytokines and cyclooxygenase-2 (Cox-2) in lung tissue, the expression of tight junction proteins (Zo-1 and Claudin-4). Compared with the Con group, the lung tissue of the Pac group showed significantly increased expression of Cox-2 protein (p < 0.01), significant lung tissue inflammatory changes, significantly increased expression of inflammatory cytokines, decreased expression of Zo-1 and Claudin-4 proteins (p < 0.01), increased alveolar-capillary membrane permeability (p < 0.01), and reduced ventilation function (p < 0.01). Notably, in Pac + Pare group, intraperitoneal injection of parecoxib sodium led to decreased Cox-2 and ICAM-1 levels and reduced inflammatory responses, the recovered expression of Zo-1 and Claudin-4, reduced level of indicators reflecting the high permeability state, and close-to-normal levels of ventilation function. Intervention by the Cox-2-specific inhibitor parecoxib sodium can block this damage.

  5. Paclitaxel-induced lung injury and its amelioration by parecoxib sodium

    PubMed Central

    Liu, Wen-jie; Zhong, Zhong-jian; Cao, Long-hui; Li, Hui-ting; Zhang, Tian-hua; Lin, Wen-qian

    2015-01-01

    To investigate the mechanism of paclitaxel-induced lung injury and its amelioration by parecoxib sodium. In this study, rats were randomly divided into: the control group (Con); the paclitaxel chemotherapy group (Pac); the paclitaxel+ parecoxib sodium intervention group (Pac + Pare); and the parecoxib sodium group (Pare). We observed changes in alveolar ventilation function, alveolar-capillary membrane permeability, lung tissue pathology and measured the levels of inflammatory cytokines and cyclooxygenase-2 (Cox-2) in lung tissue, the expression of tight junction proteins (Zo-1 and Claudin-4). Compared with the Con group, the lung tissue of the Pac group showed significantly increased expression of Cox-2 protein (p < 0.01), significant lung tissue inflammatory changes, significantly increased expression of inflammatory cytokines, decreased expression of Zo-1 and Claudin-4 proteins (p < 0.01), increased alveolar-capillary membrane permeability (p < 0.01), and reduced ventilation function (p < 0.01). Notably, in Pac + Pare group, intraperitoneal injection of parecoxib sodium led to decreased Cox-2 and ICAM-1 levels and reduced inflammatory responses, the recovered expression of Zo-1 and Claudin-4, reduced level of indicators reflecting the high permeability state, and close-to-normal levels of ventilation function. Intervention by the Cox-2-specific inhibitor parecoxib sodium can block this damage. PMID:26256764

  6. Facial responsiveness of psychopaths to the emotional expressions of others

    PubMed Central

    Mokros, Andreas; Olderbak, Sally; Wilhelm, Oliver

    2018-01-01

    Psychopathic individuals show selfish, manipulative, and antisocial behavior in addition to emotional detachment and reduced empathy. Their empathic deficits are thought to be associated with a reduced responsiveness to emotional stimuli. Immediate facial muscle responses to the emotional expressions of others reflect the expressive part of emotional responsiveness and are positively related to trait empathy. Empirical evidence for reduced facial muscle responses in adult psychopathic individuals to the emotional expressions of others is rare. In the present study, 261 male criminal offenders and non-offenders categorized dynamically presented facial emotion expressions (angry, happy, sad, and neutral) during facial electromyography recording of their corrugator muscle activity. We replicated a measurement model of facial muscle activity, which controls for general facial responsiveness to face stimuli, and modeled three correlated emotion-specific factors (i.e., anger, happiness, and sadness) representing emotion specific activity. In a multi-group confirmatory factor analysis, we compared the means of the anger, happiness, and sadness latent factors between three groups: 1) non-offenders, 2) low, and 3) high psychopathic offenders. There were no significant mean differences between groups. Our results challenge current theories that focus on deficits in emotional responsiveness as leading to the development of psychopathy and encourage further theoretical development on deviant emotional processes in psychopathic individuals. PMID:29324826

  7. BETAINE PREVENTS MALLORY-DENK BODY FORMATION IN DRUG-PRIMED MICE BY EPIGENETIC MECHANISMS

    PubMed Central

    Oliva, Joan; Bardag-Gorce, Fawzia; Li, Jun; French, Barbara A; Nguyen, Sheila K.; Lu, Shelly C.; French, Samuel W.

    2012-01-01

    Previous studies showed that S-Adenosylmethionine (SAMe) prevented MDB formation and the hypomethylation of histones induced by DDC feeding. These results suggest that formation of MDBs is an epigenetic phenomenon. To further test this theory, drug-primed mice were fed the methyl donor, betaine, together with DDC, which was refed for 7 days. Betaine significantly reduced MDB formation, decreased the liver/body weight ratio and decreased the number of FAT10 positive liver cells when they proliferate in response to DDC refeeding. Betaine also significantly prevented the decreased expression of BHMT, AHCY, MAT1a and GNMT and the increased expression of MTHFR, caused by DDC refeeding. S-Adenosylhomocysteine (SAH) levels were reduced by DDC refeeding and this was prevented by betaine. The results support the concept that betaine donates methyl groups, increasing methionine available in the cell. SAMe metabolism was reduced by the decrease in GNMT expression, which prevented the conversion of SAMe to SAH. As a consequence, betaine prevented MDB formation and FAT10 positive cell proliferation by blocking the epigenetic memory expressed by hepatocytes. The results further support the concept that MDB formation is the result of an epigenetic phenomenon, where a change in methionine metabolism causes global gene expression changes in hepatocytes. PMID:19073172

  8. BIGH3 modulates adhesion and migration of hematopoietic stem and progenitor cells

    PubMed Central

    Klamer, Sofieke E; Kuijk, Carlijn GM; Hordijk, Peter L; van der Schoot, C Ellen; von Lindern, Marieke; van Hennik, Paula B; Voermans, Carlijn

    2013-01-01

    Cell adhesion and migration are important determinants of homing and development of hematopoietic stem and progenitor cells (HSPCs) in bone marrow (BM) niches. The extracellular matrix protein transforming growth factor-β (TGF-β) inducible gene H3 (BIGH3) is involved in adhesion and migration, although the effect of BIGH3 is highly cell type-dependent. BIGH3 is abundantly expressed by mesenchymal stromal cells, while its expression in HSPCs is relatively low unless induced by certain BM stressors. Here, we set out to determine how BIGH3 modulates HSPC adhesion and migration. We show that primary HSPCs adhere to BIGH3-coated substrates, which is, in part, integrin-dependent. Overexpression of BIGH3 in HSPCs and HL60 cells reduced the adhesion to the substrate fibronectin in adhesion assays, which was even more profound in electrical cell-substrate impedance sensing (ECIS) assays. Accordingly, the CXCL12 induced migration over fibronectin-coated surface was reduced in BIGH3-expressing HSPCs. The integrin expression profile of HSPCs was not altered upon BIGH3 expression. Although expression of BIGH3 did not alter actin polymerization in response to CXCL12, it inhibited the PMA-induced activation of the small GTPase RAC1 as well as the phosphorylation and activation of extracellular-regulated kinases (ERKs). Reduced activation of ERK and RAC1 may be responsible for the inhibition of cell adhesion and migration by BIGH3 in HSPCs. Induced BIGH3 expression upon BM stress may contribute to the regulation of BM homeostasis. PMID:24152593

  9. Notch signaling is involved in human articular chondrocytes de-differentiation during osteoarthritis.

    PubMed

    Sassi, Nadia; Gadgadi, Nadia; Laadhar, Lilia; Allouche, Mohamed; Mourali, Slim; Zandieh-Doulabi, Behrouz; Hamdoun, Moncef; Nulend, Jenneke Klein; Makni, Sondès; Sellami, Slaheddine

    2014-02-01

    During osteoarthritis (OA), chondrocytes undergo de-differentiation, resulting in the acquisition of a fibroblast-like morphology, decreased expression of collagen type II (colII) and aggrecan, and increased expression of collagen type I (colI), metalloproteinase 13 (MMP13) and nitric oxide synthase (eNOS). Notch signaling plays a crucial role during embryogenesis. Several studies showed that Notch is expressed in adulthood. The aim of our study was to confirm the involvement of Notch signaling in human OA at in vitro and ex vivo levels. Normal human articular chondrocytes were cultured during four passages either treated or not with a Notch inhibitor: DAPT. Human OA cartilage was cultured with DAPT for five days. Chondrocytes secreted markers and some Notch pathway components were analyzed using Western blotting and qPCR. Passaging chondrocytes induced a decrease in the cartilage markers: colII and aggrecan. DAPT-treated chondrocytes and OA cartilage showed a significant increase in healthy cartilage markers. De-differentiation markers, colI, MMP13 and eNOS, were significantly reduced in DAPT-treated chondrocytes and OA cartilage. Notch1 expression was proportional to colI, MMP13 and eNOS expression and inversely proportional to colII and aggrecan expression in nontreated cultured chondrocytes. Notch ligand: Jagged1 increased in chondrocytes culture. DAPT treatment resulted in reduced Jagged1 expression. Notch target gene HES1 increased during chondrocyte culture and was reduced when treated with DAPT. Targeting Notch signaling during OA might lead to the restitution of the typical chondrocyte phenotype and even to chondrocyte redifferentiation during the pathology.

  10. Effects of Arsenic Trioxide on INF-gamma Gene Expression in MRL/lpr Mice and Human Lupus.

    PubMed

    Hu, Hongye; Chen, Enjiu; Li, Yongji; Zhu, Xiaochun; Zhang, Ting; Zhu, Xiaofang

    2017-11-20

    Arsenic trioxide (As2O3; ATO), a traditional Chinese medicine, is used to treat patients with acute promye-locytic leukemia, while its application for treatment of systemic lupus erythematosus (SLE) is still under evaluation. The high expression of INF-gamma (INF-γ) is a primary pathogenic factor in SLE. It is found that ATO can reduce INF-γ expression levels in lupus-prone mice, whereas it is not clear whether ATO has the same effect on SLE patients. Therefore, this study was to investigate the underlying mechanism of the effects of ATO on the expression of INF-γ in splenocytes of MRL/lpr mice and PBMCs of human lupus. The mRNA and protein expression levels of INF-γ were assessed by real-time RT-PCR and ELISA, respectively. The histone acetylation status of the INF-γ promoter and the binding of RNA polymerase II (RNA Pol II) to the INF-γ promoter were detected using a chromatin immunoprecipitation (ChIP) technique. The mRNA and protein expression levels of INF-γ decreased in both splenocytes of MRL/lpr mice and PBMCs of SLE patients with ATO treatment, which were accompanied by reduced histone H4 and H3 acetylation in INF-γ promoter and decreased combination of RNA Pol II to the INF-γ promoter. Therefore, ATO may reduce the expression level of the INF-γ by altering the levels of INF-γ promoter acetylation and the combination of RNA Pol II to the INF-γ promoter in splenocytes of MRL/lpr mice and PBMCs of SLE patients.

  11. Requirement for STAT1 in LPS-induced gene expression in macrophages.

    PubMed

    Ohmori, Y; Hamilton, T A

    2001-04-01

    This study examines the role of the signal transducer and activator of transcription 1 (STAT1) in induction of lipopolysaccharide (LPS)-stimulated gene expression both in vitro and in vivo. LPS-induced expression of an interferon (IFN)-inducible 10-kDa protein (IP-10), IFN regulatory factor-1 (IRF-1), and inducible nitric oxide synthase (iNOS) mRNAs was severely impaired in macrophages prepared from Stat1-/- mice, whereas levels of tumor necrosis factor alpha and KC (a C-X-C chemokine) mRNA in LPS-treated cell cultures were unaffected. A similar deficiency in LPS-induced gene expression was observed in livers and spleens from Stat1-/- mice. The reduced LPS-stimulated gene expression seen in Stat1-/- macrophages was not the result of reduced activation of nuclear factor kappaB. LPS stimulated the delayed activation of both IFN-stimulated response element and IFN-gamma-activated sequence binding activity in macrophages from wild-type mice. Activation of these STAT1-containing transcription factors was mediated by the intermediate induction of type I IFNs, since the LPS-induced IP-10, IRF-1, and iNOS mRNA expression was markedly reduced in macrophages from IFN-alpha/betaR-/- mice and blocked by cotreatment with antibodies against type I IFN. These results indicate that indirect activation of STAT1 by LPS-induced type I IFN participates in promoting optimal expression of LPS-inducible genes, and they suggest that STAT1 may play a critical role in innate immunity against gram-negative bacterial infection.

  12. Angiotensin II alters the expression of duodenal iron transporters, hepatic hepcidin, and body iron distribution in mice.

    PubMed

    Tajima, Soichiro; Ikeda, Yasumasa; Enomoto, Hideaki; Imao, Mizuki; Horinouchi, Yuya; Izawa-Ishizawa, Yuki; Kihira, Yoshitaka; Miyamoto, Licht; Ishizawa, Keisuke; Tsuchiya, Koichiro; Tamaki, Toshiaki

    2015-08-01

    Angiotensin II (ANG II) has been shown to affect iron metabolism through alteration of iron transporters, leading to increased cellular and tissue iron contents. Serum ferritin, a marker of body iron storage, is elevated in various cardiovascular diseases, including hypertension. However, the associated changes in iron absorption and the mechanism underlying increased iron content in a hypertensive state remain unclear. The C57BL6/J mice were treated with ANG II to generate a model of hypertension. Mice were divided into three groups: (1) control, (2) ANG II-treated, and (3) ANG II-treated and ANG II receptor blocker (ARB)-administered (ANG II-ARB) groups. Mice treated with ANG II showed increased serum ferritin levels compared to vehicle-treated control mice. In ANG II-treated mice, duodenal divalent metal transporter-1 and ferroportin (FPN) expression levels were increased and hepatic hepcidin mRNA expression and serum hepcidin concentration were reduced. The mRNA expression of bone morphogenetic protein 6 and CCAAT/enhancer-binding protein alpha, which are regulators of hepcidin, was also down-regulated in the livers of ANG II-treated mice. In terms of tissue iron content, macrophage iron content and renal iron content were increased by ANG II treatment, and these increases were associated with reduced expression of transferrin receptor 1 and FPN and increased expression of ferritin. These changes induced by ANG II treatment were ameliorated by the administration of an ARB. Angiotensin II (ANG II) altered the expression of duodenal iron transporters and reduced hepcidin levels, contributing to the alteration of body iron distribution.

  13. Human amniotic epithelial cells inhibit CD4+ T cell activation in acute kidney injury patients by influencing the miR-101-c-Rel-IL-2 pathway.

    PubMed

    Liu, Junfeng; Hua, Rong; Gong, Zhangbin; Shang, Bin; Huang, Yongyi; Guo, Lihe; Liu, Te; Xue, Jun

    2017-01-01

    In the pathogenesis of acute kidney injury (AKI), the release of multiple interleukins can lead to increased kidney damage. Human amniotic epithelial cells (HuAECs) can inhibit immune cell activation in vivo and in vitro. We hypothesized that HuAECs could weaken patient-derived peripheral blood CD4+ T-cell activation and decreasing the ability of these cells to express and release IL-2. -Cell proliferation assay revealed that under the same culture conditions, activated AKI patient-derived CD4+ T cells had a significantly reduced proliferation rate when were co-cultured with HuAECs. And the level of IL-2 released was also significantly reduced. Western blot and qRT-PCR assays showed that the expression of c-Rel in the CD4+ T cells was also significantly reduced. However, the expression level of endogenous miR-101 in the CD4+ T cells co-cultured with HuAECs was significantly increased. Luciferase reporter assay results suggested that miR-101 could bind to a specific site in the c-Rel 3' UTR and induce the post-transcriptional silencing of c-Rel. Subsequently, we over-expressed miR-101 in AKI patient-derived CD4+ T cells. The qRT-PCR and western blot assay results revealed that the expression of endogenous c-Rel was significantly reduced, while the ELISA results indicated that the level of IL-2 released was also significantly decreased. Finally, ChIP-PCR assay results showed that the miR-101-overexpressing CD4+ T-cell group and the HuAEC co-culture CD4+ T-cell group exhibited significantly decreased binding capacities between the 'c-Rel-NFκB' complex and the IL-2 gene promoter, and the transcriptional activity of IL-2 was also significantly decreased. Therefore, we confirmed that HuAECs can stimulate miR-101 expression in AKI patient-derived peripheral blood CD4+ T cells, thus inhibiting the expression of the miR-101 target gene c-Rel and leading to a reduction in IL-2 expression and release. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Potentiation of angiogenic switch in capillary endothelial cells by cAMP: A cross-talk between up-regulated LLO biosynthesis and the HSP-70 expression.

    PubMed

    Martínez, Juan A; Tavárez, José J; Oliveira, Caroline M; Banerjee, Dipak K

    2006-05-01

    During tumor growth and invasion, the endothelial cells from a relatively quiescent endothelium start proliferating. The exact mechanism of switching to a new angiogenic phenotype is currently unknown. We have examined the role of intracellular cAMP in this process. When a non-transformed capillary endothelial cell line was treated with 2 mM 8Br-cAMP, cell proliferation was enhanced by approximately 70%. Cellular morphology indicated enhanced mitosis after 32-40 h with almost one-half of the cell population in the S phase. Bcl-2 expression and caspase-3, -8, and -9 activity remained unaffected. A significant increase in the Glc(3)Man(9)GlcNAc(2)-PP-Dol biosynthesis and turnover, Factor VIIIC N-glycosylation, and cell surface expression of N-glycans was observed in cells treated with 8Br-cAMP. Dol-P-Man synthase activity in the endoplasmic reticulum membranes also increased. A 1.4-1.6-fold increase in HSP-70 and HSP-90 expression was also observed in 8Br-cAMP treated cells. On the other hand, the expression of GRP-78/Bip was 2.3-fold higher compared to that of GRP-94 in control cells, but after 8Br-cAMP treatment for 32 h, it was reduced by 3-fold. GRP-78/Bip expression in untreated cells was 1.2-1.5-fold higher when compared with HSP-70 and HSP-90, whereas that of the GRP-94 was 1.5-1.8-fold lower. After 8Br-cAMP treatment, GRP-78/Bip expression was reduced 4.5-4.8-fold, but the GRP-94 was reduced by 1.5-1.6-fold only. Upon comparison, a 2.9-fold down-regulation of GRP-78/Bip was observed compared to GRP-94. We, therefore, conclude that a high level of Glc(3)Man(9)GlcNAc(2)-PP-Dol, resulting from 8Br-cAMP stimulation up-regulated HSP-70 expression and down-regulated that of the GRP-78/Bip, maintained adequate protein folding, and reduced endoplasmic reticulum stress. As a result capillary endothelial cell proliferation was induced.

  15. Elimination of Kalrn expression in POMC cells reduces anxiety-like behavior and contextual fear learning.

    PubMed

    Mandela, Prashant; Yan, Yan; LaRese, Taylor; Eipper, Betty A; Mains, Richard E

    2014-07-01

    Kalirin, a Rho GDP/GTP exchange factor for Rac1 and RhoG, is known to play an essential role in the formation and maintenance of excitatory synapses and in the secretion of neuropeptides. Mice unable to express any of the isoforms of Kalrn in cells that produce POMC at any time during development (POMC cells) exhibited reduced anxiety-like behavior and reduced acquisition of passive avoidance behavior, along with sex-specific alteration in the corticosterone response to restraint stress. Strikingly, lack of Kalrn expression in POMC cells closely mimicked the effects of global Kalrn knockout on anxiety-like behavior and passive avoidance conditioning without causing the other deficits noted in Kalrn knockout mice. Our data suggest that deficits in excitatory inputs onto POMC neurons are responsible for the behavioral phenotypes observed. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. GRP78/Dna K Is a Target for Nexavar/Stivarga/Votrient in the Treatment of Human Malignancies, Viral Infections and Bacterial Diseases.

    PubMed

    Roberts, Jane L; Tavallai, Mehrad; Nourbakhsh, Aida; Fidanza, Abigail; Cruz-Luna, Tanya; Smith, Elizabeth; Siembida, Paul; Plamondon, Pascale; Cycon, Kelly A; Doern, Christopher D; Booth, Laurence; Dent, Paul

    2015-10-01

    Prior tumor cell studies have shown that the drugs sorafenib (Nexavar) and regorafenib (Stivarga) reduce expression of the chaperone GRP78. Sorafenib/regorafenib and the multi-kinase inhibitor pazopanib (Votrient) interacted with sildenafil (Viagra) to further rapidly reduce GRP78 levels in eukaryotes and as single agents to reduce Dna K levels in prokaryotes. Similar data were obtained in tumor cells in vitro and in drug-treated mice for: HSP70, mitochondrial HSP70, HSP60, HSP56, HSP40, HSP10, and cyclophilin A. Prolonged 'rafenib/sildenafil treatment killed tumor cells and also rapidly decreased the expression of: the drug efflux pumps ABCB1 and ABCG2; and NPC1 and NTCP, receptors for Ebola/Hepatitis A and B viruses, respectively. Pre-treatment with the 'Rafenib/sildenafil combination reduced expression of the Coxsackie and Adenovirus receptor in parallel with it also reducing the ability of a serotype 5 Adenovirus or Coxsackie virus B4 to infect and to reproduce. Sorafenib/pazopanib and sildenafil was much more potent than sorafenib/pazopanib as single agents at preventing Adenovirus, Mumps, Chikungunya, Dengue, Rabies, West Nile, Yellow Fever, and Enterovirus 71 infection and reproduction. 'Rafenib drugs/pazopanib as single agents killed laboratory generated antibiotic resistant E. coli which was associated with reduced Dna K and Rec A expression. Marginally toxic doses of 'Rafenib drugs/pazopanib restored antibiotic sensitivity in pan-antibiotic resistant bacteria including multiple strains of blakpc Klebsiella pneumoniae. Thus, Dna K is an antibiotic target for sorafenib, and inhibition of GRP78/Dna K has therapeutic utility for cancer and for bacterial and viral infections. © 2015 Wiley Periodicals, Inc.

  17. Anabolic steroids reduce spinal cord injury-related bone loss in rats associated with increased Wnt signaling

    PubMed Central

    Sun, Li; Pan, Jiangping; Peng, Yuanzhen; Wu, Yong; Li, Jianghua; Liu, Xuan; Qin, Yiwen; Bauman, William A.; Cardozo, Christopher; Zaidi, Mone; Qin, Weiping

    2013-01-01

    Background Spinal cord injury (SCI) causes severe bone loss. At present, there is no practical treatment to delay or prevent bone loss in individuals with motor-complete SCI. Hypogonadism is common in men after SCI and may exacerbate bone loss. The anabolic steroid nandrolone reduces bone loss due to microgravity or nerve transection. Objective To determine whether nandrolone reduced bone loss after SCI and, if so, to explore the mechanisms of nandrolone action. Methods Male rats with complete transection of the spinal cord were administered nandrolone combined with a physiological replacement dose of testosterone, or vehicle, beginning on day 29 after SCI and continued for 28 days. Results SCI reduced distal femoral and proximal tibial bone mineral density (BMD) by 25 and 16%, respectively, at 56 days. This bone loss was attenuated by nandrolone. In ex vivo osteoclasts cultures, SCI increased mRNA levels for tartrate-resistant acid phosphatase (TRAP) and calcitonin receptor; nandrolone-normalized expression levels of these transcripts. In ex vivo osteoblast cultures, SCI increased receptor activator of NF-kB ligand (RANKL) mRNA levels but did not alter osteoprotegerin (OPG) mRNA expression; nandrolone-increased expression of OPG and OPG/RANKL ratio. SCI reduced mRNA levels of Wnt signaling-related genes Wnt3a, low-density lipoprotein receptor-related protein 5 (LRP5), Fzd5, Tcf7, and ectodermal-neural cortex 1 (ENC1) in osteoblasts, whereas nandrolone increased expression of each of these genes. Conclusions The results demonstrate that nandrolone reduces bone loss after SCI. A potential mechanism is suggested by our findings wherein nandrolone modulates genes for differentiation and activity of osteoclasts and osteoblasts, at least in part, through the activation of Wnt signaling. PMID:24090150

  18. Obeticholic acid reduces bacterial translocation and inhibits intestinal inflammation in cirrhotic rats.

    PubMed

    Úbeda, María; Lario, Margaret; Muñoz, Leticia; Borrero, María-José; Rodríguez-Serrano, Macarena; Sánchez-Díaz, Ana-María; Del Campo, Rosa; Lledó, Lourdes; Pastor, Óscar; García-Bermejo, Laura; Díaz, David; Álvarez-Mon, Melchor; Albillos, Agustín

    2016-05-01

    In advanced cirrhosis, gut bacterial translocation is the consequence of intestinal barrier disruption and leads to bacterial infection. Bile acid abnormalities in cirrhosis could play a role in the integrity of the intestinal barrier and the control of microbiota, mainly through the farnesoid X receptor. We investigated the long-term effects of the farnesoid X receptor agonist, obeticholic acid, on gut bacterial translocation, intestinal microbiota composition, barrier integrity and inflammation in rats with CCl4-induced cirrhosis with ascites. Cirrhotic rats received a 2-week course of obeticholic acid or vehicle starting once ascites developed. We then determined: bacterial translocation by mesenteric lymph node culture, ileum expression of antimicrobial peptides and tight junction proteins by qPCR, fecal albumin loss, enteric bacterial load and microbiota composition by qPCR and pyrosequencing of ileum mucosa-attached contents, and intestinal inflammation by cytometry of the inflammatory infiltrate. Obeticholic acid reduced bacterial translocation from 78.3% to 33.3% (p<0.01) and upregulated the expression of the farnesoid X receptor-associated gene small heterodimer partner. Treatment improved ileum expression of antimicrobial peptides, angiogenin-1 and alpha-5-defensin, tight junction proteins zonulin-1 and occludin, and reduced fecal albumin loss and liver fibrosis. Enteric bacterial load normalized, and the distinctive mucosal microbiota of cirrhosis was reduced. Gut immune cell infiltration was reduced and inflammatory cytokine and Toll-like receptor 4 expression normalized. In ascitic cirrhotic rats, obeticholic acid reduces gut bacterial translocation via several complementary mechanisms at the intestinal level. This agent could be used as an alternative to antibiotics to prevent bacterial infection in cirrhosis. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  19. Application of glycine reduces arsenic accumulation and toxicity in Oryza sativa L. by reducing the expression of silicon transporter genes.

    PubMed

    Kumar Dubey, Arvind; Kumar, Navin; Ranjan, Ruma; Gautam, Ambedkar; Pande, Veena; Sanyal, Indraneel; Mallick, Shekhar

    2018-02-01

    The present study was intended to investigate the role of amino acid glycine in detoxification of As in Oryza sativa L. The growth parameters such as, shoot length and fresh weight were decreased during As(III) and As(V) toxicity. However, the application of glycine recovered the growth parameters against As stress. The application of glycine reduced the As accumulation in all the treatments, and it was more effective against As(III) treatment and reduced the accumulation by 68% in root and 71% in shoot. Similarly, the translocation of As from root to shoot, was higher against As(III) and As(V) treatments, whereas, reduced upon glycine application. The translocation of Fe and Na was also affected by As, which was lower under As(III) and As(V) treatments. However, the application of glycine significantly enhanced the translocation of Fe and Na in the shoot. Besides, the expression of lower silicon transporters i.e. Lsi-1 and Lsi-2 was observed to be significantly suppressed in the root with the application of glycine against As treatment. Similarly, the expression of three GRX and two GST gene isoforms were found to be significantly increased with glycine application. Simultaneously, the activities of antioxidant enzymes i.e. l-arginine dependent NOS, SOD, NTR and GRX were found to be significantly enhanced in the presence of glycine. Increased activities of antioxidant enzymes coincided with the decreased level of TBARS and H 2 O 2 in rice seedlings. Overall, the results suggested that the application of glycine reduces As accumulation through suppressing the gene expression of lower silicon transporters and ameliorates As toxicity by enhancing antioxidants defense mechanism in rice seedlings. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Pharmacologic Suppression of Hepcidin Increases Macrophage Cholesterol Efflux and Reduces Foam Cell Formation and Atherosclerosis

    PubMed Central

    Saeed, Omar; Otsuka, Fumiyuki; Polavarapu, Rohini; Karmali, Vinit; Weiss, Daiana; Davis, Talina; Rostad, Brad; Pachura, Kimberly; Adams, Lila; Elliott, John; Taylor, W. Robert; Narula, Jagat; Kolodgie, Frank; Virmani, Renu; Hong, Charles C.; Finn, Aloke V.

    2012-01-01

    Objectives We recently reported that lowering of macrophage free intracellular iron increases expression of cholesterol efflux transporters ABCA1 and ABCG1 by reducing generation of reactive oxygen species. In this study, we explore whether reducing macrophage intracellular iron levels via pharmacologic suppression of hepcidin can increase macrophage-specific expression of cholesterol efflux transporters and reduce atherosclerosis. Methods and Results To suppress hepcidin, increase expression of the iron exporter ferroportin (FPN), and reduce macrophage intracellular iron, we used a small molecule inhibitor of BMP signaling, LDN 193189 (LDN). LDN (10 mg/kg i.p. bid) was administered to mice and its effects on atherosclerosis, intracellular iron, oxidative stress, lipid efflux, and foam cell formation were measured in plaques and peritoneal macrophages. Long-term LDN administration to Apo E (-/-) mice increased ABCA1 immunoreactivity within intraplaque macrophages by 3.7-fold (n=8; p=0.03), reduced oil-red-o positive lipid area by 50% (n=8; p=0.02) and decreased total plaque area by 43% (n=8; p=0.001). LDN suppressed liver hepcidin transcription and increased macrophage FPN, lowering intracellular iron and hydrogen peroxide production. LDN treatment increased macrophage ABCA1 and ABCG1 expression, significantly raised cholesterol efflux to ApoA-1 and decreased foam cell formation. All preceding LDN-induced effects on cholesterol efflux were reversed by exogenous hepcidin administration, suggesting that modulation of intracellular iron levels within macrophages as the mechanism by which LDN triggers these effects. Conclusion These data suggest that pharmacologic manipulation of iron homeostasis may be a promising target to increase macrophage reverse cholesterol transport and limit atherosclerosis. PMID:22095982

  1. Glutamine reduces myocardial cell apoptosis in a rat model of sepsis by promoting expression of heat shock protein 90.

    PubMed

    Li, Wanxia; Tao, Shaoyu; Wu, Qinghua; Wu, Tao; Tao, Ran; Fan, Jun

    2017-12-01

    Myocardial cell injury and cardiac myocyte apoptosis are associated with sepsis. Glutamine (Gln) has been reported to repair myocardial cell injury. The aim of this study was to explore the role of Gln on cardiac myocytes in a cecal ligation and puncture (CLP) model of sepsis in Wistar rats. Following induction of sepsis in a CLP rat model, viral encoding heat shock protein 90 (Hsp90) gene and Hsp90dsDNA were designed to express and knockdown Hsp90, respectively. Rat cardiac tissues were examined histologically, and apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling staining. The expression of B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein, Hsp90, p53 upregulated modulator of apoptosis, and p53 was measured by western blotting and real-time polymerase chain reaction. Caspase-3, caspase-8, and caspase-9 were detected by enzyme-linked immunosorbent assay. Rat cardiac myocyte damage induced by CLP was reduced by Gln treatment and Hsp90 overexpression, and these changes were reversed by Hsp90 knockdown. Bcl-2 expression, Bcl-2-associated X protein, p53, p53 upregulated modulator of apoptosis, caspase-8, caspase-9, and caspase-3 activities were significantly upregulated in the CLP model, which were reduced by Gln treatment and Hsp90 overexpression. Gln reduced apoptosis of cardiac myocytes in a rat model of sepsis, by promoting Hsp90 expression. Further studies are needed to determine the possible therapeutic action of Gln in sepsis in human tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Hepatocyte-Specific Expression of Human Lysosome Acid Lipase Corrects Liver Inflammation and Tumor Metastasis in lal−/− Mice

    PubMed Central

    Du, Hong; Zhao, Ting; Ding, Xinchun; Yan, Cong

    2016-01-01

    The liver is a major organ for lipid synthesis and metabolism. Deficiency of lysosomal acid lipase (LAL; official name Lipa, encoded by Lipa) in mice (lal−/−) results in enlarged liver size due to neutral lipid storage in hepatocytes and Kupffer cells. To test the functional role of LAL in hepatocyte, hepatocyte-specific expression of human LAL (hLAL) in lal−/− mice was established by cross-breeding of liver-activated promoter (LAP)–driven tTA transgene and (tetO)7-CMV-hLAL transgene with lal−/− knockout (KO) (LAP-Tg/KO) triple mice. Hepatocyte-specific expression of hLAL in LAP-Tg/KO triple mice reduced the liver size to the normal level by decreasing lipid storage in both hepatocytes and Kupffer cells. hLAL expression reduced tumor-promoting myeloid-derived suppressive cells in the liver of lal−/− mice. As a result, B16 melanoma metastasis to the liver was almost completely blocked. Expression and secretion of multiple tumor-promoting cytokines or chemokines in the liver were also significantly reduced. Because hLAL is a secretory protein, lal−/− phenotypes in other compartments (eg, blood, spleen, and lung) also ameliorated, including systemic reduction of myeloid-derived suppressive cells, an increase in CD4+ and CD8+ T and B lymphocytes, and reduced B16 melanoma metastasis in the lung. These results support a concept that LAL in hepatocytes is a critical metabolic enzyme in controlling neutral lipid metabolism, liver homeostasis, immune response, and tumor metastasis. PMID:26212911

  3. Venlafaxine treatment after endothelin-1-induced cortical stroke modulates growth factor expression and reduces tissue damage in rats.

    PubMed

    Zepeda, Rodrigo; Contreras, Valentina; Pissani, Claudia; Stack, Katherine; Vargas, Macarena; Owen, Gareth I; Lazo, Oscar M; Bronfman, Francisca C

    2016-08-01

    Neuromodulators, such as antidepressants, may contribute to neuroprotection by modulating growth factor expression to exert anti-inflammatory effects and to support neuronal plasticity after stroke. Our objective was to study whether early treatment with venlafaxine, a serotonin-norepinephrine reuptake inhibitor, modulates growth factor expression and positively contributes to reducing the volume of infarcted brain tissue resulting in increased functional recovery. We studied the expression of BDNF, FGF2 and TGF-β1 by examining their mRNA and protein levels and cellular distribution using quantitative confocal microscopy at 5 days after venlafaxine treatment in control and infarcted brains. Venlafaxine treatment did not change the expression of these growth factors in sham rats. In infarcted rats, BDNF mRNA and protein levels were reduced, while the mRNA and protein levels of FGF2 and TGF-β1 were increased. Venlafaxine treatment potentiated all of the changes that were induced by cortical stroke alone. In particular, increased levels of FGF2 and TGF-β1 were observed in astrocytes at 5 days after stroke induction, and these increases were correlated with decreased astrogliosis (measured by GFAP) and increased synaptophysin immunostaining at twenty-one days after stroke in venlafaxine-treated rats. Finally, we show that venlafaxine reduced infarct volume after stroke resulting in increased functional recovery, which was measured using ladder rung motor tests, at 21 days after stroke. Our results indicate that the early oral administration of venlafaxine positively contributes to neuroprotection during the acute and late events that follow stroke. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The Influence of Social Threat on Pain, Aggression, and Empathy in Women.

    PubMed

    Karos, Kai; Meulders, Ann; Goubert, Liesbet; Vlaeyen, Johan W S

    2018-03-01

    Only one published study has investigated the effect of a threatening social context on the perception and expression of pain, showing that social threat leads to increased pain reports but reduced nonverbal pain expression. The current study aimed to replicate and extend these findings to further explore the effects of a threatening social context. Healthy, female participants (N = 71) received 10 electrocutaneous stimuli delivered by a confederate. They were led to believe that the confederate was requested to administer 10 painful stimuli (control group) or that the confederate deliberately chose to deliver 10 painful stimuli when given the choice to deliver between 1 to 10 painful stimuli (social threat group). Self-reported pain intensity, unpleasantness, threat value of pain, and painful facial expression were assessed. Additionally, empathy and aggression toward the confederate were investigated. Social threat did not affect painful facial expression or self-reported pain intensity, but led to increased aggression toward the confederate. Moreover, perceived social threat predicted the threat value of pain and reduced empathy toward the confederate. We were not able to replicate the previously reported dissociation between pain reports and pain expression as a result of social threat. However, social threat was associated with an increased threat value of pain, increased aggression, and reduced empathy. A threatening social context affects how threatening pain is perceived and has interpersonal consequences such as increased aggression and reduced empathy, thereby creating a double burden on the individual suffering from pain. Copyright © 2017 The American Pain Society. Published by Elsevier Inc. All rights reserved.

  5. Deletion of Tsc2 in Nociceptors Reduces Target Innervation, Ion Channel Expression, and Sensitivity to Heat

    PubMed Central

    Carlin, Dan; Golden, Judith P.; Monk, Kelly R.

    2018-01-01

    Abstract The mechanistic target of rapamycin complex 1 (mTORC1) is known to regulate cellular growth pathways, and its genetic activation is sufficient to enhance regenerative axon growth following injury to the central or peripheral nervous systems. However, excess mTORC1 activation may promote innervation defects, and mTORC1 activity mediates injury-induced hypersensitivity, reducing enthusiasm for the pathway as a therapeutic target. While mTORC1 activity is required for full expression of some pain modalities, the effects of pathway activation on nociceptor phenotypes and sensory behaviors are currently unknown. To address this, we genetically activated mTORC1 in mouse peripheral sensory neurons by conditional deletion of its negative regulator Tuberous Sclerosis Complex 2 (Tsc2). Consistent with the well-known role of mTORC1 in regulating cell size, soma size and axon diameter of C-nociceptors were increased in Tsc2-deleted mice. Glabrous skin and spinal cord innervation by C-fiber neurons were also disrupted. Transcriptional profiling of nociceptors enriched by fluorescence-associated cell sorting (FACS) revealed downregulation of multiple classes of ion channels as well as reduced expression of markers for peptidergic nociceptors in Tsc2-deleted mice. In addition to these changes in innervation and gene expression, Tsc2-deleted mice exhibited reduced noxious heat sensitivity and decreased injury-induced cold hypersensitivity, but normal baseline sensitivity to cold and mechanical stimuli. Together, these data show that excess mTORC1 activity in sensory neurons produces changes in gene expression, neuron morphology and sensory behavior. PMID:29766046

  6. Candida krusei and Candida glabrata reduce the filamentation of Candida albicans by downregulating expression of HWP1 gene.

    PubMed

    de Barros, Patrícia Pimentel; Freire, Fernanda; Rossoni, Rodnei Dennis; Junqueira, Juliana Campos; Jorge, Antonio Olavo Cardoso

    2017-07-01

    Pathogenicity of Candida albicans is associated with its capacity switch from yeast-like to hyphal growth. The hyphal form is capable to penetrate the epithelial surfaces and to damage the host tissues. Therefore, many investigations have focused on mechanisms that control the morphological transitions of C. albicans. Recently, certain studies have showed that non-albicans Candida species can reduce the capacity of C. albicans to form biofilms and to develop candidiasis in animal models. Then, the objective of this study was to evaluate the effects of Candida krusei and Candida glabrata on the morphogenesis of C. albicans. Firstly, the capacity of reference and clinical strains of C. albicans in forming hyphae was tested in vitro. After that, the expression of HWP1 (hyphal wall protein 1) gene was determined by quantitative real-time PCR (polymerase chain reaction) assay. For both reference and clinical strains, a significant inhibition of the hyphae formation was observed when C. albicans was incubated in the presence of C. krusei or C. glabrata compared to the control group composed only by C. albicans. In addition, the culture mixed of C. albicans-C. krusei or C. albicans-C. glabrata reduced significantly the expression of HWP1 gene of C. albicans in relation to single cultures of this specie. In both filamentation and gene expression assays, C. krusei showed the higher inhibitory activity on the morphogenesis of C. albicans compared to C. glabrata. C. krusei and C. glabrata are capable to reduce the filamentation of C. albicans and consequently decrease the expression of the HWP1 gene.

  7. Reduced Cystathionine γ-Lyase and Increased miR-21 Expression Are Associated with Increased Vascular Resistance in Growth-Restricted Pregnancies

    PubMed Central

    Cindrova-Davies, Tereza; Herrera, Emilio A.; Niu, Youguo; Kingdom, John; Giussani, Dino A.; Burton, Graham J.

    2013-01-01

    Increased vascular impedance in the fetoplacental circulation is associated with fetal hypoxia and growth restriction. We sought to investigate the role of hydrogen sulfide (H2S) in regulating vasomotor tone in the fetoplacental vasculature. H2S is produced endogenously by catalytic activity of cystathionine β-synthase and cystathionine γ-lyase (CSE). Immunohistochemical analysis localized CSE to smooth muscle cells encircling arteries in stem villi. Immunoreactivity was reduced in placentas from pregnancies with severe early-onset growth-restriction and preeclampsia displaying abnormal umbilical artery Doppler waveforms compared with preeclamptic placentas with normal waveforms and controls. These findings were confirmed at the protein and mRNA levels. MicroRNA-21, which negatively regulates CSE expression, was increased in placentas with abnormal Doppler waveforms. Exposure of villus explants to hypoxia-reoxygenation significantly reduced CSE protein and mRNA and increased microRNA-21 expression. No changes were observed in cystathionine β-synthase expression, immunolocalized principally to the trophoblast, in pathologic placentas or in vitro. Finally, perfusion of normal placentas with an H2S donor, after preconstriction with a thromboxane mimetic, resulted in dose-dependent vasorelaxation. Glibenclamide and NG-nitro-l-arginine methyl ester partially blocked the effect, indicating that H2S acts through ATP-sensitive K+ channels and nitric oxide synthesis. These results demonstrate that H2S is a powerful vasodilator of the placental vasculature and that expression of CSE is reduced in placentas associated with increased vascular resistance. PMID:23410520

  8. Caveolin-1–mediated Suppression of Cyclooxygenase-2 via a β-catenin-Tcf/Lef–dependent Transcriptional Mechanism Reduced Prostaglandin E2 Production and Survivin Expression

    PubMed Central

    Rodriguez, Diego A.; Tapia, Julio C.; Fernandez, Jaime G.; Torres, Vicente A.; Muñoz, Nicolas; Galleguillos, Daniela; Leyton, Lisette

    2009-01-01

    Augmented expression of cyclooxygenase-2 (COX-2) and enhanced production of prostaglandin E2 (PGE2) are associated with increased tumor cell survival and malignancy. Caveolin-1 is a scaffold protein that has been proposed to function as a tumor suppressor in human cancer cells, although mechanisms underlying this ability remain controversial. Intriguingly, the possibility that caveolin-1 regulates the expression of COX-2 has not been explored. Here we show that augmented caveolin-1 expression in cells with low basal levels of this protein, such as human colon cancer (HT29, DLD-1), breast cancer (ZR75), and embryonic kidney (HEK293T) cells reduced COX-2 mRNA and protein levels and β-catenin-Tcf/Lef and COX-2 gene reporter activity, as well as the production of PGE2 and cell proliferation. Moreover, COX-2 overexpression or PGE2 supplementation increased levels of the inhibitor of apoptosis protein survivin by a transcriptional mechanism, as determined by PCR analysis, survivin gene reporter assays and Western blotting. Furthermore, addition of PGE2 to the medium prevented effects attributed to caveolin-1–mediated inhibition of β-catenin-Tcf/Lef–dependent transcription. Finally, PGE2 reduced the coimmunoprecipitation of caveolin-1 with β-catenin and their colocalization at the plasma membrane. Thus, by reducing COX-2 expression, caveolin-1 interrupts a feedback amplification loop involving PGE2-induced signaling events linked to β-catenin/Tcf/Lef–dependent transcription of tumor survival genes including cox-2 itself and survivin. PMID:19244345

  9. Naringin regulates cholesterol homeostasis and inhibits inflammation via modulating NF-κB and ERK signaling pathways in vitro.

    PubMed

    Liang, Jing; Wang, Changyuan; Peng, Jinyong; Li, Wenshuang; Jin, Yue; Liu, Qi; Meng, Qiang; Liu, Kexin; Sun, Huijun

    2016-02-01

    The main purpose of this study was to examine if naringin contributed to the regulation of cholesterol homeostasis and inflammatory cytokine expressions in cholesterol and 25-OH-cholesterol-treated HepG2 cells and TNF-α-treated HUVECs. The gene and protein expressions related to cholesterol homeostasis and inflammation were determined by quantitative real-time reverse transcription-polymerase chain reaction and Western blotting. We obtained the following results: (1) A concentration-dependent increase of LDLR and CYP7A1 expressions was observed, through activating expressions of SREBP2 and PPARy in HepG2 cells after exposure to naringin; (2) EL gene and protein expressions in HUVECs were inhibited by naringin; (3) the expressions of inflammatory factors such as CRP, TNF-α, ICAM-1 and VCAM-1 in HepG2 cells, ICAM-1 and VCAM-1 in HUVECs restrained by naringin were confirmed; (4) NF-κB and ERK1/2 activities were quenched by naringin. In summary, naringin might not only effectively reduce cholesterol levels by stimulating cholesterol metabolism but also inhibit inflammatory response through reducing inflammatory cytokine expressions. The effects of naringin were achieved via modulating NF-κB and ERK signaling pathways.

  10. Osteoprotegerin expression in triple-negative breast cancer cells promotes metastasis.

    PubMed

    Weichhaus, Michael; Segaran, Prabu; Renaud, Ashleigh; Geerts, Dirk; Connelly, Linda

    2014-10-01

    Osteoprotegerin (OPG) is a secreted member of the tumor necrosis factor (TNF) receptor superfamily that has been well characterized as a negative regulator of bone remodeling. OPG is also expressed in human breast cancer tissues and cell lines. In vitro studies suggest that OPG exerts tumor-promoting effects by binding to TNF-related apoptosis inducing ligand (TRAIL), thereby preventing induction of apoptosis. However, the in vivo effect of OPG expression by primary breast tumors has not been characterized. We knocked down OPG expression in MDA-MB-231 and MDA-MB-436 human breast cancer cells using shRNA and siRNA to investigate impact on metastasis in the chick embryo model. We observed a reduction in metastasis with OPG knockdown cells. We found that lowering OPG expression did not alter sensitivity to TRAIL-induced apoptosis; however, the OPG knockdown cells had a reduced level of invasion. In association with this we observed reduced expression of the proteases Cathepsin D and Matrix Metalloproteinase-2 upon OPG knockdown, indicating that OPG may promote metastasis via modulation of protease expression and invasion. We conclude that OPG has a metastasis-promoting effect in breast cancer cells. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  11. Early diffusion of gene expression profiling in breast cancer patients associated with areas of high income inequality.

    PubMed

    Ponce, Ninez A; Ko, Michelle; Liang, Su-Ying; Armstrong, Joanne; Toscano, Michele; Chanfreau-Coffinier, Catherine; Haas, Jennifer S

    2015-04-01

    With the Affordable Care Act reducing coverage disparities, social factors could prominently determine where and for whom innovations first diffuse in health care markets. Gene expression profiling is a potentially cost-effective innovation that guides chemotherapy decisions in early-stage breast cancer, but adoption has been uneven across the United States. Using a sample of commercially insured women, we evaluated whether income inequality in metropolitan areas was associated with receipt of gene expression profiling during its initial diffusion in 2006-07. In areas with high income inequality, gene expression profiling receipt was higher than elsewhere, but it was associated with a 10.6-percentage-point gap between high- and low-income women. In areas with low rates of income inequality, gene expression profiling receipt was lower, with no significant differences by income. Even among insured women, income inequality may indirectly shape diffusion of gene expression profiling, with benefits accruing to the highest-income patients in the most unequal places. Policies reducing gene expression profiling disparities should address low-inequality areas and, in unequal places, practice settings serving low-income patients. Project HOPE—The People-to-People Health Foundation, Inc.

  12. Unripe Rubus coreanus Miquel suppresses migration and invasion of human prostate cancer cells by reducing matrix metalloproteinase expression.

    PubMed

    Kim, Yesl; Lee, Seung Min; Kim, Jung-Hyun

    2014-01-01

    Rubus coreanus Miquel (RCM) is used to promote prostate health and has been shown to have anti-oxidant and anti-carcinogenic activities. However, the effects and mechanisms of RCM on prostate cancer metastasis remain unclear. PC-3 and DU 145 cells were treated with ethanol or water extract of unripe or ripe RCM and examined for cell invasion, migration, and matrix metalloproteinases (MMPs) activity and expression. Phosphoinositide 3-kinase (PI3K) and Akt activities were examined. Unripe RCM extracts exerted significant inhibitory effects on cell migration, invasion, and MMPs activities. A significant reduction in MMPs activities by unripe RCM ethanol extract treatment (UE) was associated with reduction of MMPs expression and induction of tissue inhibitors of metalloproteinases (TIMPs) expression. Furthermore, PI3K/Akt activity was diminished by UE treatment. In this study, we demonstrated that UE decreased metastatic potential of prostate cancer cells by reducing MMPs expression through the suppression of PI3K/Akt phosphorylation, thereby decreasing MMP activity and enhancing TIMPs expression.

  13. MCT1 modulates cancer cell pyruvate export and growth of tumors that co-express MCT1 and MCT4

    PubMed Central

    Hong, Candice Sun; Graham, Nicholas A.; Gu, Wen; Camacho, Carolina Espindola; Mah, Vei; Maresh, Erin L.; Alavi, Mohammed; Bagryanova, Lora; Krotee, Pascal A. L.; Gardner, Brian K.; Behbahan, Iman Saramipoor; Horvath, Steve; Chia, David; Mellinghoff, Ingo K.; Hurvitz, Sara A.; Dubinett, Steven M.; Critchlow, Susan E.; Kurdistani, Siavash K.; Goodglick, Lee; Braas, Daniel; Graeber, Thomas G.; Christofk, Heather R.

    2016-01-01

    SUMMARY Monocarboxylate Transporter 1 (MCT1) inhibition is thought to block tumor growth through disruption of lactate transport and glycolysis. Here we show MCT1 inhibition impairs proliferation of glycolytic breast cancer cells co-expressing MCT1 and MCT4 via disruption of pyruvate rather than lactate export. MCT1 expression is elevated in glycolytic breast tumors, and high MCT1 expression predicts poor prognosis in breast and lung cancer patients. Acute MCT1 inhibition reduces pyruvate export but does not consistently alter lactate transport or glycolytic flux in breast cancer cells that co-express MCT1 and MCT4. Despite the lack of glycolysis impairment, MCT1 loss-of-function decreases breast cancer cell proliferation and blocks growth of mammary fat pad xenograft tumors. Our data suggest MCT1 expression is elevated in glycolytic cancers to promote pyruvate export, which when inhibited enhances oxidative metabolism and reduces proliferation. This study presents an alternative molecular consequence of MCT1 inhibitors further supporting their use as anti-cancer therapeutics. PMID:26876179

  14. MCT1 Modulates Cancer Cell Pyruvate Export and Growth of Tumors that Co-express MCT1 and MCT4.

    PubMed

    Hong, Candice Sun; Graham, Nicholas A; Gu, Wen; Espindola Camacho, Carolina; Mah, Vei; Maresh, Erin L; Alavi, Mohammed; Bagryanova, Lora; Krotee, Pascal A L; Gardner, Brian K; Behbahan, Iman Saramipoor; Horvath, Steve; Chia, David; Mellinghoff, Ingo K; Hurvitz, Sara A; Dubinett, Steven M; Critchlow, Susan E; Kurdistani, Siavash K; Goodglick, Lee; Braas, Daniel; Graeber, Thomas G; Christofk, Heather R

    2016-02-23

    Monocarboxylate transporter 1 (MCT1) inhibition is thought to block tumor growth through disruption of lactate transport and glycolysis. Here, we show MCT1 inhibition impairs proliferation of glycolytic breast cancer cells co-expressing MCT1 and MCT4 via disruption of pyruvate rather than lactate export. MCT1 expression is elevated in glycolytic breast tumors, and high MCT1 expression predicts poor prognosis in breast and lung cancer patients. Acute MCT1 inhibition reduces pyruvate export but does not consistently alter lactate transport or glycolytic flux in breast cancer cells that co-express MCT1 and MCT4. Despite the lack of glycolysis impairment, MCT1 loss-of-function decreases breast cancer cell proliferation and blocks growth of mammary fat pad xenograft tumors. Our data suggest MCT1 expression is elevated in glycolytic cancers to promote pyruvate export that when inhibited, enhances oxidative metabolism and reduces proliferation. This study presents an alternative molecular consequence of MCT1 inhibitors, further supporting their use as anti-cancer therapeutics. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Alpha-linolenic acid regulates Cox2/VEGF/MAP kinase pathway and decreases the expression of HPV oncoproteins E6/E7 through restoration of p53 and Rb expression in human cervical cancer cell lines.

    PubMed

    Deshpande, Rashmi; Mansara, Prakash; Kaul-Ghanekar, Ruchika

    2016-03-01

    Cervical cancer represents the largest cause of mortality in women worldwide. In our previous report, we have shown how alpha-linolenic acid (ALA), an omega-3 fatty acid, regulated the growth of cervical cancer cells. The present study aimed to explore mechanistic details for the anticancer activity of ALA in cervical cancer cell lines, SiHa and HeLa. ALA significantly modulated the growth kinetics of the cells and reduced cell migration with concomitant decrease in the expression of VEGF, MMP-2, and MMP-9 proteins. Besides this, ALA significantly decreased the expression of phosphorylated p38, pERK1/2, c-JUN, NFκB, and COX2, proteins. Most importantly, ALA reduced the expression of HPV onco-proteins E6 and E7, resulting into restoration of expression of tumor suppressor proteins, p53 and Rb. These results suggested that ALA could be explored for its therapeutic potential in cervical cancer.

  16. Identification of a regulatory T cell specific cell surface molecule that mediates suppressive signals and induces Foxp3 expression.

    PubMed

    Wang, Rui; Wan, Qi; Kozhaya, Lina; Fujii, Hodaka; Unutmaz, Derya

    2008-07-16

    Regulatory T (T(reg)) cells control immune activation and maintain tolerance. How T(regs) mediate their suppressive function is unclear. Here we identified a cell surface molecule, called GARP, (or LRRC32), which within T cells is specifically expressed in T(regs) activated through the T cell receptor (TCR). Ectopic expression of GARP in human naïve T (T(N)) cells inhibited their proliferation and cytokine secretion upon TCR activation. Remarkably, GARP over-expression in T(N) cells induced expression of T(reg) master transcription factor Foxp3 and endowed them with a partial suppressive function. The extracellular but not the cytoplasmic region of GARP, was necessary for these functions. Silencing Foxp3 in human T(reg) cells reduced expression of GARP and attenuated their suppressive function. However, GARP function was not affected when Foxp3 was downregulated in GARP-overexpressing cells, while silencing GARP in Foxp3-overexpressing cells reduced their suppressive activity. These findings reveal a novel cell surface molecule-mediated regulatory mechanism, with implications for modulating aberrant immune responses.

  17. Reduced expression of brain cannabinoid receptor 1 (Cnr1) is coupled with an increased complementary micro-RNA (miR-26b) in a mouse model of fetal alcohol spectrum disorders.

    PubMed

    Stringer, Randa L; Laufer, Benjamin I; Kleiber, Morgan L; Singh, Shiva M

    2013-08-02

    Prenatal alcohol exposure is known to result in fetal alcohol spectrum disorders, a continuum of physiological, behavioural, and cognitive phenotypes that include increased risk for anxiety and learning-associated disorders. Prenatal alcohol exposure results in life-long disorders that may manifest in part through the induction of long-term gene expression changes, potentially maintained through epigenetic mechanisms. Here we report a decrease in the expression of Canabinoid receptor 1 (Cnr1) and an increase in the expression of the regulatory microRNA miR-26b in the brains of adult mice exposed to ethanol during neurodevelopment. Furthermore, we show that miR-26b has significant complementarity to the 3'-UTR of the Cnr1 transcript, giving it the potential to bind and reduce the level of Cnr1 expression. These findings elucidate a mechanism through which some genes show long-term altered expression following prenatal alcohol exposure, leading to persistent alterations to cognitive function and behavioural phenotypes observed in fetal alcohol spectrum disorders.

  18. Alkaline phosphatase in osteoblasts is down-regulated by pulsatile fluid flow

    NASA Technical Reports Server (NTRS)

    Hillsley, M. V.; Frangos, J. A.

    1997-01-01

    It is our hypothesis that interstitial fluid flow plays a role in the bone remodeling response to mechanical loading. The fluid flow-induced expression of three proteins (collagen, osteopontin, and alkaline phosphatase) involved in bone remodeling was investigated. Rat calvarial osteoblasts subjected to pulsatile fluid flow at an average shear stress of 5 dyne/cm2 showed decreased alkaline phosphatase (AP) mRNA expression after only 1 hour of flow. After 3 hours of flow, AP mRNA levels had decreased to 30% of stationary control levels and remained at this level for an additional 5 hours of flow. Steady flow (4 dyne/cm2 fluid shear stress), in contrast, resulted in a delayed and less dramatic decrease in AP mRNA expression to 63% of control levels after 8 hours of flow. The reduced AP mRNA expression under pulsatile flow conditions was followed by reduced AP enzyme activity after 24 hours. No changes in collagen or osteopontin mRNA expression were detected over 8 hours of pulsatile flow. This is the first time fluid flow has been shown to affect gene expression in osteoblasts.

  19. Intact Rapid Facial Mimicry as well as Generally Reduced Mimic Responses in Stable Schizophrenia Patients

    PubMed Central

    Chechko, Natalya; Pagel, Alena; Otte, Ellen; Koch, Iring; Habel, Ute

    2016-01-01

    Spontaneous emotional expressions (rapid facial mimicry) perform both emotional and social functions. In the current study, we sought to test whether there were deficits in automatic mimic responses to emotional facial expressions in patients (15 of them) with stable schizophrenia compared to 15 controls. In a perception-action interference paradigm (the Simon task; first experiment), and in the context of a dual-task paradigm (second experiment), the task-relevant stimulus feature was the gender of a face, which, however, displayed a smiling or frowning expression (task-irrelevant stimulus feature). We measured the electromyographical activity in the corrugator supercilii and zygomaticus major muscle regions in response to either compatible or incompatible stimuli (i.e., when the required response did or did not correspond to the depicted facial expression). The compatibility effect based on interactions between the implicit processing of a task-irrelevant emotional facial expression and the conscious production of an emotional facial expression did not differ between the groups. In stable patients (in spite of a reduced mimic reaction), we observed an intact capacity to respond spontaneously to facial emotional stimuli. PMID:27303335

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pols, Thijs W.H.; Ottenhoff, Roelof; Vos, Mariska

    NR4A nuclear receptors are induced in the liver upon fasting and regulate hepatic gluconeogenesis. Here, we studied the role of nuclear receptor Nur77 (NR4A1) in hepatic lipid metabolism. We generated mice expressing hepatic Nur77 using adenoviral vectors, and demonstrate that these mice exhibit a modulation of the plasma lipid profile and a reduction in hepatic triglyceride. Expression analysis of >25 key genes involved in lipid metabolism revealed that Nur77 inhibits SREBP1c expression. This results in decreased SREBP1c activity as is illustrated by reduced expression of its target genes stearoyl-coA desaturase-1, mitochondrial glycerol-3-phosphate acyltransferase, fatty acid synthase and the LDL receptor,more » and provides a mechanism for the physiological changes observed in response to Nur77. Expression of LXR target genes Abcg5 and Abcg8 is reduced by Nur77, and may suggest involvement of LXR in the inhibitory action of Nur77 on SREBP1c expression. Taken together, our study demonstrates that Nur77 modulates hepatic lipid metabolism through suppression of SREBP1c activity.« less

  1. Decreased astroglial monocarboxylate transporter 4 expression in temporal lobe epilepsy.

    PubMed

    Liu, Bei; Niu, Le; Shen, Ming-Zhi; Gao, Lei; Wang, Chao; Li, Jie; Song, Li-Jia; Tao, Ye; Meng, Qiang; Yang, Qian-Li; Gao, Guo-Dong; Zhang, Hua

    2014-10-01

    Efflux of monocaroxylates like lactate, pyruvate, and ketone bodies from astrocytes through monocarboxylate transporter 4 (MCT4) supplies the local neuron population with metabolic intermediates to meet energy requirements under conditions of increased demand. Disruption of this astroglial-neuron metabolic coupling pathway may contribute to epileptogenesis. We measured MCT4 expression in temporal lobe epileptic foci excised from patients with intractable epilepsy and in rats injected with pilocarpine, an animal model of temporal lobe epilepsy (TLE). Cortical MCT4 expression levels were significantly lower in TLE patients compared with controls, due at least partially to MCT4 promoter methylation. Expression of MCT4 also decreased progressively in pilocarpine-treated rats from 12 h to 14 days post-administration. Underexpression of MCT4 in cultured astrocytes induced by a short hairpin RNA promoted apoptosis. Knockdown of astrocyte MCT4 also suppressed excitatory amino acid transporter 1 (EAAT1) expression. Reduced MCT4 and EAAT1 expression by astrocytes may lead to neuronal hyperexcitability and epileptogenesis in the temporal lobe by reducing the supply of metabolic intermediates and by allowing accumulation of extracellular glutamate.

  2. Dcx Re-expression Reduces Subcortical Band Heterotopia and Seizure Threshold in an Animal Model of Neuronal Migration Disorder

    PubMed Central

    Manent, Jean-Bernard; Wang, Yu; Chang, YoonJeung; Paramasivam, Murugan; LoTurco, Joseph J

    2009-01-01

    Disorders of neuronal migration can lead to malformations of the cerebral neocortex that greatly increase the risk of seizures. It remains untested whether malformations caused by disorders in neuronal migration can be reduced by reactivating cellular migration, and whether such repair can decrease seizure risk. Here we show, in a rat model of subcortical band heterotopia (SBH) generated by in utero RNAi of Dcx, that aberrantly positioned neurons can be stimulated to migrate by re-expressing Dcx after birth. Re-starting migration in this way both reduces neocortical malformations and restores neuronal patterning. We find further that the capacity to reduce SBH has a critical period in early postnatal development. Moreover, intervention after birth reduces convulsant-induced seizure threshold to levels similar to that of malformation-free controls. These results suggest that disorders of neuronal migration may be eventually treatable by re-engaging developmental programs both to reduce the size of cortical malformations and to reduce seizure risk. PMID:19098909

  3. Roles of endothelial A-type lamins in migration of T cells on and under endothelial layers

    NASA Astrophysics Data System (ADS)

    Song, Kwang Hoon; Lee, Jaehyun; Park, Hyoungjun; Kim, Hye Mi; Park, Jeehun; Kwon, Keon Woo; Doh, Junsang

    2016-03-01

    Stiff nuclei in cell-dense microenvironments may serve as distinct biomechanical cues for cell migration, but such a possibility has not been tested experimentally. As a first step addressing this question, we altered nuclear stiffness of endothelial cells (ECs) by reducing the expression of A-type lamins using siRNA, and investigated the migration of T cells on and under EC layers. While most T cells crawling on control EC layers avoided crossing over EC nuclei, a significantly higher fraction of T cells on EC layers with reduced expression of A-type lamins crossed over EC nuclei. This result suggests that stiff EC nuclei underlying T cells may serve as “duro-repulsive” cues to direct T cell migration toward less stiff EC cytoplasm. During subendothelial migration under EC layers with reduced expression of A-type lamins, T cells made prolonged contact and substantially deformed EC nuclei, resulting in reduced speed and directional persistence. This result suggests that EC nuclear stiffness promotes fast and directionally persistent subendothelial migration of T cells by allowing minimum interaction between T cells and EC nuclei.

  4. Epithelial heparan sulfate regulates Sonic Hedgehog signaling in lung development.

    PubMed

    He, Hua; Huang, Meina; Sun, Shenfei; Wu, Yihui; Lin, Xinhua

    2017-08-01

    The tree-like structure of the mammalian lung is generated from branching morphogenesis, a reiterative process that is precisely regulated by numerous factors. How the cell surface and extra cellular matrix (ECM) molecules regulate this process is still poorly understood. Herein, we show that epithelial deletion of Heparan Sulfate (HS) synthetase Ext1 resulted in expanded branching tips and reduced branching number, associated with several mesenchymal developmental defects. We further demonstrate an expanded Fgf10 expression and increased FGF signaling activity in Ext1 mutant lungs, suggesting a cell non-autonomous mechanism. Consistent with this, we observed reduced levels of SHH signaling which is responsible for suppressing Fgf10 expression. Moreover, reactivating SHH signaling in mutant lungs rescued the tip dilation phenotype and attenuated FGF signaling. Importantly, the reduced SHH signaling activity did not appear to be caused by decreased Shh expression or protein stability; instead, biologically active form of SHH proteins were reduced in both the Ext1 mutant epithelium and surrounding wild type mesenchymal cells. Together, our study highlights the epithelial HS as a key player for dictating SHH signaling critical for lung morphogenesis.

  5. ANGPTL3 is part of the machinery causing dyslipidemia majorily via LPL inhibition in mastitis mice.

    PubMed

    Xiao, Hong-Bo; Wang, Ji-Ying; Sun, Zhi-Liang

    2017-12-01

    Previous investigations have shown that inflammation induces changes in lipid and lipoprotein metabolism, and increased expression of angiopoietin-like protein 3 (ANGPTL3) contributes to the development of dyslipidemia. Here we investigated whether there is a correlation between increased ANGPTL3 expression and dyslipidemia in mastitis mice. Thirty mice were divided into two groups: control group and Staphylococcus aureus (S. aureus)-induced mastitis mice group. Changes in the levels of blood lipids [total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C)]; activity of myeloperoxidase (MPO); concentrations of plasma inflammation biomarkers [interferon-γ (IFNγ), tumor necrosis factor α (TNFα), and interleukin-1α (IL-1α)]; concentration of plasma ANGPTL3 protein; lipoprotein lipase (LPL) activities in postheparin plasma; expressions of hepatic N-acetylgalactosaminyltransferase 2 (GALNT2), hepatic ANGPTL3 and adipose LPL were determined. The major results indicated specific pathological mammary tissue changes, elevated MPO activity, reduced GALNT2 mRNA expression, elevated ANGPTL3 mRNA and protein expression and reduced LPL mRNA and protein expression. In plasma samples the S.aureus infused mice displayed elevated ANGPTL3 protein concentration, TG, TC and LDL-C levels, and reduced postheparin LPL activities and HDL-C level. The data suggests that ANGPTL3 is part of the machinery causing dyslipidemia majorily via LPL inhibition in mastitis mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. TRPM5 mediates acidic extracellular pH signaling and TRPM5 inhibition reduces spontaneous metastasis in mouse B16-BL6 melanoma cells

    PubMed Central

    Maeda, Toyonobu; Suzuki, Atsuko; Koga, Kaori; Miyamoto, Chihiro; Maehata, Yojiro; Ozawa, Shigeyuki; Hata, Ryu-Ichiro; Nagashima, Yoji; Nabeshima, Kazuki; Miyazaki, Kaoru; Kato, Yasumasa

    2017-01-01

    Extracellular acidity is a hallmark of solid tumors and is associated with metastasis in the tumor microenvironment. Acidic extracellular pH (pHe) has been found to increase intracellular Ca2+ and matrix metalloproteinase-9 (MMP-9) expression by activating NF-κB in the mouse B16 melanoma model. The present study assessed whether TRPM5, an intracellular Ca2+-dependent monovalent cation channel, is associated with acidic pHe signaling and induction of MMP-9 expression in this mouse melanoma model. Treatment of B16 cells with Trpm5 siRNA reduced acidic pHe-induced MMP-9 expression. Enforced expression of Trpm5 increased the rate of acidic pHe-induced MMP-9 expression, as well as increasing experimental lung metastasis. This genetic manipulation did not alter the pHe critical for MMP-9 induction but simply amplified the percentage of inducible MMP-9 at each pHe. Treatment of tumor bearing mice with triphenylphosphine oxide (TPPO), an inhibitor of TRPM5, significantly reduced spontaneous lung metastasis. In silico analysis of clinical samples showed that high TRPM5 mRNA expression correlated with poor overall survival rate in patients with melanoma and gastric cancer but not in patients with cancers of the ovary, lung, breast, and rectum. These results showed that TRPM5 amplifies acidic pHe signaling and may be a promising target for preventing metastasis of some types of tumor. PMID:29108231

  7. Suppressor of cytokine signaling 1 modulates invasion and metastatic potential of colorectal cancer cells.

    PubMed

    David, Muriel; Naudin, Cécile; Letourneur, Martine; Polrot, Mélanie; Renoir, Jack-Michel; Lazar, Vladimir; Dessen, Philippe; Roche, Serge; Bertoglio, Jacques; Pierre, Josiane

    2014-07-01

    Suppressor of cytokine signaling (SOCS) 1 is an inducible negative regulator of cytokine signaling but its role in human cancer is not completely established. Here we report that, while SOCS1 is expressed in normal colonic epithelium and colon adenocarcinomas, its level decreases during progression of colon adenocarcinomas, the lowest level being found in the most aggressive stage and least differentiated carcinomas. Forced expression of SOCS1 in metastatic colorectal SW620 cells reverses many characteristics of Epithelial-Mesenchymal Transition (EMT), as highlighted by the disappearance of the transcription factor ZEB1 and the mesenchymal form of p120ctn and the re-expression of E-cadherin. Furthermore, miRNA profiling indicated that SOCS1 also up-regulates the expression of the mir-200 family of miRNAs, which can promote the mesenchymal-epithelial transition and reduce tumor cell migration. Accordingly, overexpression of SOCS1 induced cell morphology changes and dramatically reduced tumor cell invasion in vitro. When injected in nude mice, SOCS1-expressing SW620 cells induced metastases in a smaller number of animals than parental SW620 cells, and did not generate any adrenal gland or bone metastasis. Overall, our results suggest that SOCS1 controls metastatic progression of colorectal tumors by preventing the mesenchymal-epithelial transition (MET), including E-cadherin expression. This pathway may be associated with survival to colorectal cancer by reducing the capacity of generating metastases. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  8. SOX2 plays a critical role in EGFR-mediated self-renewal of human prostate cancer stem-like cells.

    PubMed

    Rybak, Adrian P; Tang, Damu

    2013-12-01

    SOX2 is an essential transcription factor for stem cells and plays a role in tumorigenesis, however its role in prostate cancer stem cells (PCSCs) remains unclear. We report here a significant upregulation of SOX2 at both mRNA and protein levels in DU145 PCSCs propagated as suspension spheres in vitro. The expression of SOX2 in DU145 PCSCs is positively regulated by epidermal growth factor receptor (EGFR) signaling. Activation of EGFR signaling, following the addition of epidermal growth factor (EGF) or ectopic expression of a constitutively-active EGFR mutant (EGFRvIII), increased SOX2 expression and the self-renewal of DU145 PCSCs. Conversely, a small molecule EGFR inhibitor (AG1478) blocked EGFR activation, reduced SOX2 expression and inhibited PCSC self-renewal activity, implicating SOX2 in mediating EGFR-dependent self-renewal of PCSCs. In line with this notion, ectopic SOX2 expression enhanced EGF-induced self-renewal of DU145 PCSCs, while SOX2 knockdown reduced PCSC self-renewal with EGF treatment no longer capable of enhancing their propagation. Furthermore, SOX2 knockdown reduced the capacity of DU145 PCSCs to grow under anchorage-independent conditions. Finally, DU145 PCSCs generated xenograft tumors more aggressively with elevated levels of SOX2 expression compared to xenograft tumors derived from non-PCSCs. Collectively, we provide evidence that SOX2 plays a critical role in EGFR-mediated self-renewal of DU145 PCSCs. © 2013.

  9. A Complex Interaction Between Reduced Reelin Expression and Prenatal Organophosphate Exposure Alters Neuronal Cell Morphology.

    PubMed

    Mullen, Brian R; Ross, Brennan; Chou, Joan Wang; Khankan, Rana; Khialeeva, Elvira; Bui, Kimberly; Carpenter, Ellen M

    2016-06-01

    Genetic and environmental factors are both likely to contribute to neurodevelopmental disorders including schizophrenia, autism spectrum disorders, and major depressive disorders. Prior studies from our laboratory and others have demonstrated that the combinatorial effect of two factors-reduced expression of reelin protein and prenatal exposure to the organophosphate pesticide chlorpyrifos oxon-gives rise to acute biochemical effects and to morphological and behavioral phenotypes in adolescent and young adult mice. In the current study, we examine the consequences of these factors on reelin protein expression and neuronal cell morphology in adult mice. While the cell populations that express reelin in the adult brain appear unchanged in location and distribution, the levels of full length and cleaved reelin protein show persistent reductions following prenatal exposure to chlorpyrifos oxon. Cell positioning and organization in the hippocampus and cerebellum are largely normal in animals with either reduced reelin expression or prenatal exposure to chlorpyrifos oxon, but cellular complexity and dendritic spine organization is altered, with a skewed distribution of immature dendritic spines in adult animals. Paradoxically, combinatorial exposure to both factors appears to generate a rescue of the dendritic spine phenotypes, similar to the mitigation of behavioral and morphological changes observed in our prior study. Together, our observations support an interaction between reelin expression and chlorpyrifos oxon exposure that is not simply additive, suggesting a complex interplay between genetic and environmental factors in regulating brain morphology. © The Author(s) 2016.

  10. Shaker-related voltage-gated K+ channel expression and vasomotor function in human coronary resistance arteries.

    PubMed

    Nishijima, Yoshinori; Korishettar, Ankush; Chabowski, Dawid S; Cao, Sheng; Zheng, Xiaodong; Gutterman, David D; Zhang, David X

    2018-01-01

    K V channels are important regulators of vascular tone, but the identity of specific K V channels involved and their regulation in disease remain less well understood. We determined the expression of K V 1 channel subunits and their role in cAMP-mediated dilation in coronary resistance arteries from subjects with and without CAD. HCAs from patients with and without CAD were assessed for mRNA and protein expression of K V 1 channel subunits with molecular techniques and for vasodilator response with isolated arterial myography. Assays of mRNA transcripts, membrane protein expression, and vascular cell-specific localization revealed abundant expression of K V 1.5 in vascular smooth muscle cells of non-CAD HCAs. Isoproterenol and forskolin, two distinct cAMP-mediated vasodilators, induced potent dilation of non-CAD arterioles, which was inhibited by both the general K V blocker 4-AP and the selective K V 1.5 blocker DPO-1. The cAMP-mediated dilation was reduced in CAD and was accompanied by a loss of or reduced contribution of 4-AP-sensitive K V channels. K V 1.5, as a major 4-AP-sensitive K V 1 channel expressed in coronary VSMCs, mediates cAMP-mediated dilation in non-CAD arterioles. The cAMP-mediated dilation is reduced in CAD coronary arterioles, which is associated with impaired 4-AP-sensitive K V channel function. © 2017 John Wiley & Sons Ltd.

  11. KLF4-dependent epigenetic remodeling modulates podocyte phenotypes and attenuates proteinuria

    PubMed Central

    Hayashi, Kaori; Sasamura, Hiroyuki; Nakamura, Mari; Azegami, Tatsuhiko; Oguchi, Hideyo; Sakamaki, Yusuke; Itoh, Hiroshi

    2014-01-01

    The transcription factor Kruppel-like factor 4 (KLF4) has the ability, along with other factors, to reprogram somatic cells into induced pluripotent stem (iPS) cells. Here, we determined that KLF4 is expressed in kidney glomerular podocytes and is decreased in both animal models and humans exhibiting a proteinuric. Transient restoration of KLF4 expression in podocytes of diseased glomeruli in vivo, either by gene transfer or transgenic expression, resulted in a sustained increase in nephrin expression and a decrease in albuminuria. In mice harboring podocyte-specific deletion of Klf4, adriamycin-induced proteinuria was substantially exacerbated, although these animals displayed minimal phenotypical changes prior to adriamycin administration. KLF4 overexpression in cultured human podocytes increased expression of nephrin and other epithelial markers and reduced mesenchymal gene expression. DNA methylation profiling and bisulfite genomic sequencing revealed that KLF4 expression reduced methylation at the nephrin promoter and the promoters of other epithelial markers; however, methylation was increased at the promoters of genes encoding mesenchymal markers, suggesting selective epigenetic regulation of podocyte gene expression. Together, these results suggest that KLF4 epigenetically modulates podocyte phenotype and function and that the podocyte epigenome can be targeted for direct intervention and reduction of proteinuria. PMID:24812666

  12. Signal transduction in the carnivorous plant Sarracenia purpurea. Regulation of secretory hydrolase expression during development and in response to resources.

    PubMed Central

    Gallie, D R; Chang, S C

    1997-01-01

    Carnivory in plants has developed as an evolutionary adaptation to nutrient-poor environments. A significant investment of the resources of a carnivorous plant is committed to producing the traps, attractants, and digestive enzymes needed for the carnivory. The cost:benefit ratio of carnivory can be improved by either maximizing the prey capture rate or by reducing the metabolic commitment toward carnivory. Using the pitcher plant Sarracenia purpurea, we have investigated whether the expression of the hydrolytic enzymes needed for digestion is regulated in response to the presence of prey. Expression of protease, RNase, nuclease, and phosphatase activities could be induced in the fluid of nonactive traps by the addition of nucleic acids, protein, or reduced nitrogen, suggesting that hydrolase expression is induced upon perception of the appropriate chemical signal. Hydrolase expression was also developmentally controlled since expression commenced upon opening of a trap, increased for several days, and in the absence of prey largely ceased within 2 weeks. Nevertheless, the traps remained competent to induce expression in response to the appropriate signals. These data suggest that in young traps hydrolase expression is developmentally regulated, which is later replaced by a signal transduction mechanism, and they demonstrate the ability of a carnivorous species to respond to the availability of resources. PMID:9414556

  13. Signal transduction in the carnivorous plant Sarracenia purpurea. Regulation of secretory hydrolase expression during development and in response to resources.

    PubMed

    Gallie, D R; Chang, S C

    1997-12-01

    Carnivory in plants has developed as an evolutionary adaptation to nutrient-poor environments. A significant investment of the resources of a carnivorous plant is committed to producing the traps, attractants, and digestive enzymes needed for the carnivory. The cost:benefit ratio of carnivory can be improved by either maximizing the prey capture rate or by reducing the metabolic commitment toward carnivory. Using the pitcher plant Sarracenia purpurea, we have investigated whether the expression of the hydrolytic enzymes needed for digestion is regulated in response to the presence of prey. Expression of protease, RNase, nuclease, and phosphatase activities could be induced in the fluid of nonactive traps by the addition of nucleic acids, protein, or reduced nitrogen, suggesting that hydrolase expression is induced upon perception of the appropriate chemical signal. Hydrolase expression was also developmentally controlled since expression commenced upon opening of a trap, increased for several days, and in the absence of prey largely ceased within 2 weeks. Nevertheless, the traps remained competent to induce expression in response to the appropriate signals. These data suggest that in young traps hydrolase expression is developmentally regulated, which is later replaced by a signal transduction mechanism, and they demonstrate the ability of a carnivorous species to respond to the availability of resources.

  14. Na,K-ATPase is a target of cigarette smoke and reduced expression predicts poor patient outcome of smokers with lung cancer

    PubMed Central

    Huynh, Thu P.; Mah, Vei; Sampson, Valerie B.; Chia, David; Fishbein, Michael C.; Horvath, Steve; Alavi, Mohammad; Wu, Debbie C.; Harper, Jeffrey; Sarafian, Ted; Dubinett, Steven M.; Langhans, Sigrid A.; Goodglick, Lee

    2012-01-01

    Diminished Na,K-ATPase expression has been reported in several carcinomas and has been linked to tumor progression. However, few studies have determined whether Na,K-ATPase function and expression are altered in lung malignancies. Because cigarette smoke (CS) is a major factor underlying lung carcinogenesis and progression, we investigated whether CS affects Na,K-ATPase activity and expression in lung cell lines. Cells exposed to CS in vitro showed a reduction of Na,K-ATPase activity. We detected the presence of reactive oxygen species (ROS) in cells exposed to CS before Na,K-ATPase inhibition, and neutralization of ROS restored Na,K-ATPase activity. We further determined whether Na,K-ATPase expression correlated with increasing grades of lung adenocarcinoma and survival of patients with smoking history. Immunohistochemical analysis of lung adenocarcinoma tissues revealed reduced Na,K-ATPase expression with increasing tumor grade. Using tissue microarray containing lung adenocarcinomas of patients with known smoking status, we found that high expression of Na,K-ATPase correlated with better survival. For the first time, these data demonstrate that CS is associated with loss of Na,K-ATPase function and expression in lung carcinogenesis, which might contribute to disease progression. PMID:22345575

  15. Regulation of the macrophage oxytocin receptor in response to inflammation

    PubMed Central

    Szeto, Angela; Sun-Suslow, Ni; Mendez, Armando J.; Hernandez, Rosa I.; Wagner, Klaus V.

    2017-01-01

    It has been demonstrated that the neuropeptide oxytocin (OT) attenuates oxidative stress and inflammation in macrophages. In the current study, we examined the role of inflammation on the expression of the oxytocin receptor (OXTR). We hypothesized that OXTR expression is increased during the inflammation through a nuclear factor-κB (NF-κB)-mediated pathway, thus responding as an acute-phase protein. Inflammation was induced by treating macrophages (human primary, THP-1, and murine) with lipopolysaccharide (LPS) and monitored by expression of IL-6. Expression of OXTR and vasopressin receptors was assessed by qPCR, and OXTR expression was confirmed by immunoblotting. Inflammation upregulated OXTR transcription 10- to 250-fold relative to control in THP-1 and human primary macrophages and increased OXTR protein expression. In contrast, vasopressin receptor-2 mRNA expression was reduced following LPS treatment. Blocking NF-κB activation prevented the increase in OXTR transcription. OT treatment of control cells and LPS-treated cells increased ERK1/2 phosphorylation, demonstrating activation of the OXTR/Gαq/11 signaling pathway. OT activation of OXTR reduced secretion of IL-6 in LPS-activated macrophages. Collectively, these findings suggest that OXTR is an acute-phase protein and that its increased expression is regulated by NF-κB and functions to attenuate cellular inflammatory responses in macrophages. PMID:28049625

  16. Silencing or inhibition of endoplasmic reticulum aminopeptidase 1 (ERAP1) suppresses free heavy chain expression and Th17 responses in ankylosing spondylitis

    PubMed Central

    Chen, Liye; Ridley, Anna; Hammitzsch, Ariane; Al-Mossawi, Mohammad Hussein; Bunting, Helen; Georgiadis, Dimitris; Chan, Antoni; Kollnberger, Simon; Bowness, Paul

    2016-01-01

    Objective Human leucocyte antigen (HLA)-B27 and endoplasmic reticulum aminopeptidase 1 (ERAP1) are strongly associated with ankylosing spondylitis (AS). ERAP1 is a key aminopeptidase in HLA class I presentation and can potentially alter surface expression of HLA-B27 free heavy chains (FHCs). We studied the effects of ERAP1 silencing/inhibition/variations on HLA-B27 FHC expression and Th17 responses in AS. Methods Flow cytometry was used to measure surface expression of HLA class I in peripheral blood mononuclear cells (PBMCs) from patients with AS carrying different ERAP1 genotypes (rs2287987, rs30187 and rs27044) and in ERAP1-silenced/inhibited/mutated HLA-B27-expressing antigen presenting cells (APCs). ERAP1-silenced/inhibited APCs were cocultured with KIR3DL2CD3ε-reporter cells or AS CD4+ T cells. Th17 responses of AS CD4+ T cells were measured by interleukin (IL)-17A ELISA and Th17 intracellular cytokine staining. FHC cell surface expression and Th17 responses were also measured in AS PBMCs following ERAP1 inhibition. Results The AS-protective ERAP1 variants, K528R and Q730E, were associated with reduced surface FHC expression by monocytes from patients with AS and HLA-B27-expressing APCs. ERAP1 silencing or inhibition in APCs downregulated HLA-B27 FHC surface expression, reduced IL-2 production by KIR3DL2CD3ε-reporter cells and suppressed the Th17 expansion and IL-17A secretion by AS CD4+ T cells. ERAP1 inhibition of AS PBMCs reduced HLA class I FHC surface expression by monocytes and B cells, and suppressed Th17 expansion. Conclusions ERAP1 activity determines surface expression of HLA-B27 FHCs and potentially promotes Th17 responses in AS through binding of HLA-B27 FHCs to KIR3DL2. Our data suggest that ERAP1 inhibition has potential for AS treatment. PMID:26130142

  17. Expression and Function of Chemokines CXCL9-11 in Micturition Pathways in Cyclophosphamide (CYP)-Induced Cystitis and Somatic Sensitivity in Mice

    PubMed Central

    Guo, Michael; Chang, Phat; Hauke, Eric; Girard, Beatrice M.; Tooke, Katharine; Ojala, Jacqueline; Malley, Susan M.; Hsiang, Harrison; Vizzard, Margaret A.

    2018-01-01

    Changes in urinary bladder function and somatic sensation may be mediated, in part, by inflammatory changes in the urinary bladder including the expression of chemokines. Male and female C57BL/6 mice were treated with cyclophosphamide (CYP; 75 mg/kg, 200 mg/kg, i.p.) to induce bladder inflammation (4 h, 48 h, chronic). We characterized the expression of CXC chemokines (CXCL9, CXCL10 and CXCL11) in the urinary bladder and determined the effects of blockade of their common receptor, CXCR3, at the level urinary bladder on bladder function and somatic (hindpaw and pelvic) sensation. qRT-PCR and Enzyme-Linked Immunoassays (ELISAs) were used to determine mRNA and protein expression of CXCL9, CXCL10 and CXCL11 in urothelium and detrusor. In urothelium of female mice treated with CYP, CXCL9 and CXCL10 mRNA significantly (p ≤ 0.01) increased with CYP treatment whereas CXC mRNA expression in the detrusor exhibited both increases and decreases in expression with CYP treatment. CXC mRNA expression urothelium and detrusor of male mice was more variable with both significant (p ≤ 0.01) increases and decreases in expression depending on the specific CXC chemokine and CYP treatment. CXCL9 and CXCL10 protein expression was significantly (p ≤ 0.01) increased in the urinary bladder with 4 h CYP treatment in female mice whereas CXC protein expression in the urinary bladder of male mice did not exhibit an overall change in expression. CXCR3 blockade with intravesical instillation of AMG487 (5 mg/kg) significantly (p ≤ 0.01) increased bladder capacity, reduced voiding frequency and reduced non-voiding contractions in female mice treated with CYP (4 h, 48 h). CXCR3 blockade also reduced (p ≤ 0.01) hindpaw and pelvic sensitivity in female mice treated with CYP (4 h, 48 h). CXC chemokines may be novel targets for treating urinary bladder dysfunction and somatic sensitization resulting from urinary bladder inflammation. PMID:29681802

  18. Vascular smooth muscle-specific knockdown of the noncardiac form of the L-type calcium channel by microRNA-based short hairpin RNA as a potential antihypertensive therapy.

    PubMed

    Rhee, Sung W; Stimers, Joseph R; Wang, Wenze; Pang, Li

    2009-05-01

    In different rodent models of hypertension, vascular voltage-gated L-type calcium channel (Ca(L)) current and vascular tone is increased because of increased expression of the noncardiac form of the Ca(L) (Ca(v)1.2). The objective of this study was to develop a small interfering RNA (siRNA) expression system against the noncardiac form of Ca(v)1.2 to reduce its expression in vascular smooth muscle cells (VSMCs). siRNAs expressing plasmids and appropriate controls were constructed and first screened in human embryonic kidney (HEK) 293 cells cotransfected with a rat Ca(v)1.2 expression vector. The most effective gene silencing was achieved with a modified mir-30a-based short hairpin RNA (shRNAmir) driven by the cytomegalovirus promoter. In A7r5 cells, a vascular smooth muscle cell line, two copies of shRNAmir driven by a chimeric VSMC-specific enhancer/promoter reduced endogenous Ca(v)1.2 expression by 61% and decreased the Ca(L) current carried by barium by 47%. Moreover, the chimeric vascular smooth muscle-specific enhancer/promoter displayed almost no activity in non-VSMCs (PC-12 and HEK 293). Because the proposed siRNA was designed to only target the noncardiac form of Ca(v)1.2, it did not affect the Ca(L) expression and function in cultured cardiomyocytes, even when driven by a stronger cytomegalovirus promoter. In conclusion, vascular Ca(v)1.2 expression and function were effectively reduced by VSMC-specific delivery of the noncardiac form of Ca(v)1.2 siRNA without similarly affecting cardiac Ca(L) expression and function. When coupled with a viral vector, this molecular intervention in vivo may provide a novel long-term vascular-specific gene therapy for hypertension.

  19. Follicular expression of pro-inflammatory cytokines tumour necrosis factor-α (TNFα), interleukin 6 (IL6) and their receptors in cattle: TNFα, IL6 and macrophages suppress thecal androgen production in vitro.

    PubMed

    Samir, Moafaq; Glister, Claire; Mattar, Dareen; Laird, Mhairi; Knight, Phil G

    2017-07-01

    Pro-inflammatory cytokines secreted by macrophages and other cell types are implicated as intraovarian factors affecting different aspects of ovarian function including follicle and corpus luteum 'turnover', steroidogenesis and angiogenesis. Here, we compared granulosal (GC) and thecal (TC) expression of TNF, IL6 and their receptors (TNFRSF1A, TNFRSF1B and IL6R) during bovine antral follicle development; all five mRNA transcripts were detected in both GC and TC and statistically significant cell-type and follicle stage-related differences were evident. Since few studies have examined cytokine actions on TC steroidogenesis, we cultured TC under conditions that retain a non-luteinized 'follicular' phenotype and treated them with TNFα and IL6 under basal and LH-stimulated conditions. Both TNFα and IL6 suppressed androgen secretion concomitantly with CYP17A1 and LHCGR mRNA expression. In addition, TNFα reduced INSL3, HSD3B1 and NOS3 expression but increased NOS2 expression. IL6 also reduced LHCGR and STAR expression but did not affect HSD3B1, INSL3, NOS2 or NOS3 expression. As macrophages are a prominent source of these cytokines in vivo , we next co-cultured TC with macrophages and observed an abolition of LH-induced androgen production accompanied by a reduction in CYP17A1, INSL3, LHCGR, STAR, CYP11A1 and HSD3B1 expression. Exposure of TC to bacterial lipopolysaccharide also blocked LH-induced androgen secretion, an effect reduced by a toll-like receptor blocker (TAK242). Collectively, the results support an inhibitory action of macrophages on thecal androgen production, likely mediated by their secretion of pro-inflammatory cytokines that downregulate the expression of LHCGR, CYP17A1 and INSL3. Bovine theca interna cells can also detect and respond directly to lipopolysaccharide. © 2017 Society for Reproduction and Fertility.

  20. Extrinsic factors regulate partial agonist efficacy of strychnine-sensitive glycine receptors

    PubMed Central

    Farroni, Jeffrey S; McCool, Brian A

    2004-01-01

    Background Strychnine-sensitive glycine receptors in many adult forebrain regions consist of alpha2 + beta heteromeric channels. This subunit composition is distinct from the alpha1 + beta channels found throughout the adult spinal cord. Unfortunately, the pharmacology of forebrain alpha2beta receptors are poorly defined compared to 'neonatal' alpha2 homomeric channels or 'spinal' alpha1beta heteromers. In addition, the pharmacologic properties of native alpha2beta glycine receptors have been generally distinct from receptors produced by heterologous expression. To identify subtype-specific pharmacologic tools for the forebrain alpha2beta receptors, it is important to identify a heterologous expression system that closely resembles these native glycine-gated chloride channels. Results While exploring pharmacological properties of alpha2beta glycine receptors compared to alpha2-homomers, we found that distinct heterologous expression systems appeared to differentially influence partial agonist pharmacology. The β-amino acid taurine possessed 30–50% efficacy for alpha2-containing receptor isoforms when expressed in HEK 293 cells. However, taurine efficacy was dramatically reduced in L-cell fibroblasts. Similar results were obtained for β-alanine. The efficacy of these partial agonists was also strongly reduced by the beta subunit. There were no significant differences in apparent strychnine affinity values calculated from concentration-response data between expression systems or subunit combinations. Nor did relative levels of expression correlate with partial agonist efficacy when compared within or between several different expression systems. Finally, disruption of the tubulin cytoskeleton reduced the efficacy of partial agonists in a subunit-dependent, but system-independent, fashion. Conclusions Our results suggest that different heterologous expression systems can dramatically influence the agonist pharmacology of strychnine-sensitive glycine receptors. In the systems examine here, these effects are independent of both absolute expression level and any system-related alterations in the agonist binding site. We conclude that complex interactions between receptor composition and extrinsic factors may play a significant role in determining strychnine-sensitive glycine receptor partial agonist pharmacology. PMID:15301692

  1. Extrinsic factors regulate partial agonist efficacy of strychnine-sensitive glycine receptors.

    PubMed

    Farroni, Jeffrey S; McCool, Brian A

    2004-08-09

    Strychnine-sensitive glycine receptors in many adult forebrain regions consist of alpha2 + beta heteromeric channels. This subunit composition is distinct from the alpha1 + beta channels found throughout the adult spinal cord. Unfortunately, the pharmacology of forebrain alpha2beta receptors are poorly defined compared to 'neonatal' alpha2 homomeric channels or 'spinal' alpha1beta heteromers. In addition, the pharmacologic properties of native alpha2beta glycine receptors have been generally distinct from receptors produced by heterologous expression. To identify subtype-specific pharmacologic tools for the forebrain alpha2beta receptors, it is important to identify a heterologous expression system that closely resembles these native glycine-gated chloride channels. While exploring pharmacological properties of alpha2beta glycine receptors compared to alpha2-homomers, we found that distinct heterologous expression systems appeared to differentially influence partial agonist pharmacology. The beta-amino acid taurine possessed 30-50% efficacy for alpha2-containing receptor isoforms when expressed in HEK 293 cells. However, taurine efficacy was dramatically reduced in L-cell fibroblasts. Similar results were obtained for beta-alanine. The efficacy of these partial agonists was also strongly reduced by the beta subunit. There were no significant differences in apparent strychnine affinity values calculated from concentration-response data between expression systems or subunit combinations. Nor did relative levels of expression correlate with partial agonist efficacy when compared within or between several different expression systems. Finally, disruption of the tubulin cytoskeleton reduced the efficacy of partial agonists in a subunit-dependent, but system-independent, fashion. Our results suggest that different heterologous expression systems can dramatically influence the agonist pharmacology of strychnine-sensitive glycine receptors. In the systems examine here, these effects are independent of both absolute expression level and any system-related alterations in the agonist binding site. We conclude that complex interactions between receptor composition and extrinsic factors may play a significant role in determining strychnine-sensitive glycine receptor partial agonist pharmacology.

  2. Resveratrol improves left ventricular diastolic relaxation in type 2 diabetes by inhibiting oxidative/nitrative stress: in vivo demonstration with magnetic resonance imaging

    PubMed Central

    Zhang, Hanrui; Morgan, Brandon; Potter, Barry J.; Ma, Lixin; Dellsperger, Kevin C.; Ungvari, Zoltan

    2010-01-01

    Resveratrol is a natural phytophenol that exhibits cardioprotective effects. This study was designed to elucidate the mechanisms by which resveratrol protects against diabetes-induced cardiac dysfunction. Normal control (m-Leprdb) mice and type 2 diabetic (Leprdb) mice were treated with resveratrol orally for 4 wk. In vivo MRI showed that resveratrol improved cardiac function by increasing the left ventricular diastolic peak filling rate in Leprdb mice. This protective role is partially explained by resveratrol's effects in improving nitric oxide (NO) production and inhibiting oxidative/nitrative stress in cardiac tissue. Resveratrol increased NO production by enhancing endothelial NO synthase (eNOS) expression and reduced O2·− production by inhibiting NAD(P)H oxidase activity and gp91phox mRNA and protein expression. The increased nitrotyrosine (N-Tyr) protein expression in Leprdb mice was prevented by the inducible NO synthase (iNOS) inhibitor 1400W. Resveratrol reduced both N-Tyr and iNOS expression in Leprdb mice. Furthermore, TNF-α mRNA and protein expression, as well as NF-κB activation, were reduced in resveratrol-treated Leprdb mice. Both Leprdb mice null for TNF-α (dbTNF−/dbTNF− mice) and Leprdb mice treated with the NF-κB inhibitor MG-132 showed decreased NAD(P)H oxidase activity and iNOS expression as well as elevated eNOS expression, whereas m-Leprdb mice treated with TNF-α showed the opposite effects. Thus, resveratrol protects against cardiac dysfunction by inhibiting oxidative/nitrative stress and improving NO availability. This improvement is due to the role of resveratrol in inhibiting TNF-α-induced NF-κB activation, therefore subsequently inhibiting the expression and activation of NAD(P)H oxidase and iNOS as well as increasing eNOS expression in type 2 diabetes. PMID:20675566

  3. Hormonal Regulation and Distinct Functions of Semaphorin-3B and Semaphorin-3F in Ovarian Cancer

    PubMed Central

    Joseph, Doina; Ho, Shuk-Mei; Syed, Viqar

    2009-01-01

    Semaphorins comprise a family of molecules that influence neuronal growth and guidance. Class-3 semaphorins, semaphorin-3B (SEMA3B) and semaphorin-3F (SEMA3F) illustrate their effects by forming a complex with neuropilins (NP-1 or NP-2) and plexins. We examined the status and regulation of semaphorins and their receptors in human ovarian cancer cells. A significantly reduced expression of SEMA3B (83 kD), SEMA3F (90 kD), and plexin-A3 was observed in ovarian cancer (OVCA) cell lines when compared to normal human ovarian surface epithelial (HOSE) cells. The expression of NP-1, NP-2 and plexin-A1 was not altered in HOSE and OVCA cells. The decreased expression of SEMA3B, SEMA3F, and plexin-A3 was confirmed in stage 3 ovarian tumors. Treatment of OVCA cells with luteinizing hormone, follicle-stimulating hormone, and estrogen induced a significant upregulation of SEMA3B, whereas SEMA3F was upregulated only by estrogen. Co-treatment of cell lines with a hormone and its specific antagonist blocked the effect of the hormone. Ectopic expression of SEMA3B or SEMA3F reduced soft-agar colony formation, adhesion, and cell invasion of OVCA cell cultures. Forced expression of SEMA3B, but not SEMA3F, inhibited viability of OVCA cells. Overexpression of SEMA3B and SEMA3F reduced focal adhesion kinase (FAK) phosphorylation and matrix metalloproteinase (MMP)-2 and -9 expression in OVCA cells. Forced expression of SEMA3F, but not SEMA3B in OVCA cells, significantly inhibited endothelial cell tube formation. Collectively, our results suggest loss of SEMA3 expression could be a hallmark of cancer progression. Furthermore, gonadotropin- and/or estrogen-mediated maintenance of SEMA3 expression could control ovarian cancer angiogenesis and metastasis. PMID:20124444

  4. Expression of Vitamin D-Activating Enzyme 1α-Hydroxylase (CYP27B1) Decreases during Melanoma Progression**

    PubMed Central

    Brożyna, Anna A.; Jóźwicki, Wojciech; Janjetovic, Zorica; Slominski, Andrzej T.

    2012-01-01

    Summary 1α-Hydroxylase (CYP27B1), the enzyme responsible for the synthesis of the biologically active form of vitamin D (1,25(OH)2D3), is expressed in the skin. To assess the correlation between progression of melanocytic tumors and CYP27B1, we analyzed its expression in 29 benign nevi, 75 primary cutaneous melanomas, 40 metastases, and 4 re-excision and 6 normal skin biopsies. Immunoreactivity for CYP27B1 was significantly lower in the vertical growth phase (VGP) and metastatic melanomas (0.6 and 0.5 arbitrary units [AU], respectively) in comparison with nevi and radial growth phase (RGP) tumors (1.2 and 1.1 AU, respectively); and expression was reduced in more advanced lesions (Clark levels III–V, Breslow thickness ≥2.1 mm; 0.8 and 0.7 AU, respectively). There was an inverse correlation between CYP27B1 and Ki-67 expression. Furthermore, CYP27B1 expression was reduced in primary melanomas that created metastases in comparison with non-metastasizing melanomas. Reduced CYP27B1 expression in RGP was related to shorter overall survival (810 vs 982 vs 1151 days in melanomas with absent, low, and high CYP27B1 immunoreactivity), and low CYP27B1 expression in RGP and VGP was related to shorter disease-free survival (114 vs 339 vs 737 days and 129 vs 307 vs 737 days, respectively, in melanomas with absent, low, and high CYP27B1). Also, CYP27B1 expression was inversely related to melanin in melanoma cells in vivo and melanoma cells cultured in vitro. Thus, reduction of CYP27B1 correlates with melanoma phenotype and behavior, and its lack affects the survival of melanoma patients, indicating a role in the pathogenesis and progression of this cancer. PMID:22995334

  5. Effects of PCB 126 and PCB 153 on secretion of steroid hormones and mRNA expression of steroidogenic genes (STAR, HSD3B, CYP19A1) and estrogen receptors (ERα, ERβ) in prehierarchical chicken ovarian follicles.

    PubMed

    Sechman, Andrzej; Batoryna, Marta; Antos, Piotr A; Hrabia, Anna

    2016-12-15

    The objective of this study was to assess the in vitro effects of dioxin-like PCB 126 and non-dioxin-like PCB 153 on basal and ovine LH (oLH)-stimulated testosterone (T) and estradiol (E2) secretion and expression of steroidogenic genes (STAR, HSD3B and CYP19A1) and estrogen receptors α (ERα) and β (ERβ) in white (WF) and yellowish (YF) prehierarchical follicles of the hen ovary. Steroid concentrations in a medium and gene expression in follicles following 6h of exposition were determined by RIA and real-time qPCR, respectively. Both PCBs increased basal and oLH-stimulated T secretion by the WF follicles. PCB 126 reduced basal E2 secretion by the WF follicles. PCB 153 elevated but PCB 126 reduced oLH-stimulated E2 secretion by the prehierarchical follicles. PCB 126 increased basal STAR and HSD3B and reduced CYP19A1 mRNA expression in these follicles. PCB 153 increased basal expression of STAR and HSD3B in YF follicles, but diminished HSD3B mRNA levels in the WF. The studied PCBs had an opposite effect on basal and oLH-stimulated CYP19A1 mRNA expression in prehierarchical follicles. Both PCBs modulated basal and inhibited oLH-stimulated ERα and ERβ gene expression in the prehierarchical follicles. In conclusion, data of the current study demonstrate the congener-specific effects of PCBs on sex steroid secretion by prehierarchical follicles of the chicken ovary, which are at least partly related to STAR, HSD3B and CYP19A1 gene expression. It is suggested that PCBs, by influencing follicular steroidogenesis and expression of estrogen receptors, may impair development and selection of yellowish follicles to the preovulatory hierarchy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Combination of ADMSCs and chondrocytes reduces hypertrophy and improves the functional properties of osteoarthritic cartilage.

    PubMed

    Ahmed, M R; Mehmood, A; Bhatti, F-ur-R; Khan, S N; Riazuddin, S

    2014-11-01

    To evaluate the therapeutic efficacy of Adipose derived MSCs (ADMSCs) in combination with chondrocytes in counteracting oxidative stress in chondrocytes in vitro and in rat model of osteoarthritis (OA). Cultured chondrocytes were exposed to oxidative stress with 200 μM Hydrogen peroxide (H2O2), followed by co-culture with ADMSCs or chondrocytes or combination of both cell types in a transwell culture system for 36 h. The cytoprotective effect was assessed by immunocytochemistry and gene expression analysis. In vivo study evaluated therapeutic effect of the above mentioned three treatments after transplantation in OA rats. The Combination of ADMSCs + Chondrocytes decreased the extent of oxidative stress-induced damage of chondrocytes. Enhanced expression level of Acan and Collagen type-II alpha (Col2a1) with a correspondingly decreased expression of Collagen type-I alpha (Col1a1) and Matrix metallopeptidase 13 (Mmp13) was maximally observed in this group. Moreover, reduced count of annexin-V positive cells, Caspase (Casp3) gene expression and Lactate dehydrogenase (LDH) release with concomitantly enhanced viability and expression of proliferating cell nuclear antigen (PCNA) gene was observed. In vivo study showed that homing of cells and proteoglycan contents of knee joints were significantly better in ADMSCs + Chondrocytes transplanted rats. Increased expression of Acan and Col2a1 along with decreased expression of Col1a1 and Mmp13 indicated formation of hyaline cartilage in this group. These rats also demonstrated significantly reduced expression of Casp3 while increased expression of PCNA genes than the other cell transplanted groups. Our results demonstrated that a combination of ADMSCs and chondrocytes may be a more effective therapeutic strategy against OA than the use of ADMSCs or chondrocytes separately. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  7. Vascular Smooth Muscle-Specific Knockdown of the Noncardiac Form of the L-Type Calcium Channel by MicroRNA-Based Short Hairpin RNA as a Potential Antihypertensive Therapy

    PubMed Central

    Rhee, Sung W.; Stimers, Joseph R.; Wang, Wenze; Pang, Li

    2009-01-01

    In different rodent models of hypertension, vascular voltage-gated L-type calcium channel (CaL) current and vascular tone is increased because of increased expression of the noncardiac form of the CaL (Cav1.2). The objective of this study was to develop a small interfering RNA (siRNA) expression system against the noncardiac form of Cav1.2 to reduce its expression in vascular smooth muscle cells (VSMCs). siRNAs expressing plasmids and appropriate controls were constructed and first screened in human embryonic kidney (HEK) 293 cells cotransfected with a rat Cav1.2 expression vector. The most effective gene silencing was achieved with a modified mir-30a-based short hairpin RNA (shRNAmir) driven by the cytomegalovirus promoter. In A7r5 cells, a vascular smooth muscle cell line, two copies of shRNAmir driven by a chimeric VSMC-specific enhancer/promoter reduced endogenous Cav1.2 expression by 61% and decreased the CaL current carried by barium by 47%. Moreover, the chimeric vascular smooth muscle-specific enhancer/promoter displayed almost no activity in non-VSMCs (PC-12 and HEK 293). Because the proposed siRNA was designed to only target the noncardiac form of Cav1.2, it did not affect the CaL expression and function in cultured cardiomyocytes, even when driven by a stronger cytomegalovirus promoter. In conclusion, vascular Cav1.2 expression and function were effectively reduced by VSMC-specific delivery of the noncardiac form of Cav1.2 siRNA without similarly affecting cardiac CaL expression and function. When coupled with a viral vector, this molecular intervention in vivo may provide a novel long-term vascular-specific gene therapy for hypertension. PMID:19244098

  8. CD248/endosialin critically regulates hepatic stellate cell proliferation during chronic liver injury via a PDGF-regulated mechanism.

    PubMed

    Wilhelm, Annika; Aldridge, Victoria; Haldar, Debashis; Naylor, Amy J; Weston, Christopher J; Hedegaard, Ditte; Garg, Abhilok; Fear, Janine; Reynolds, Gary M; Croft, Adam P; Henderson, Neil C; Buckley, Christopher D; Newsome, Philip N

    2016-07-01

    CD248 (endosialin) is a stromal cell marker expressed on fibroblasts and pericytes. During liver injury, myofibroblasts are the main source of fibrotic matrix. To determine the role of CD248 in the development of liver fibrosis in the rodent and human setting. CD248 expression was studied by immunostaining and quantitative PCR in both normal and diseased human and murine liver tissue and isolated hepatic stellate cells (HSCs). Hepatic fibrosis was induced in CD248(-/-) and wild-type controls with carbon tetrachloride (CCl4) treatment. Expression of CD248 was seen in normal liver of humans and mice but was significantly increased in liver injury using both immunostaining and gene expression assays. CD248 was co-expressed with a range of fibroblast/HSC markers including desmin, vimentin and α-smooth muscle actin (α-SMA) in murine and human liver sections. CD248 expression was restricted to isolated primary murine and human HSC. Collagen deposition and α-SMA expression, but not inflammation and neoangiogenesis, was reduced in CD248(-/-) mice compared with wild-type mice after CCl4 treatment. Isolated HSC from wild-type and CD248(-/-) mice expressed platelet-derived growth factor receptor α (PDGFR-α) and PDGFR-β at similar levels. As expected, PDGF-BB stimulation induced proliferation of wild-type HSC, whereas CD248(-/-) HSC did not demonstrate a proliferative response to PDGF-BB. Abrogated PDGF signalling in CD248(-/-) HSC was confirmed by significantly reduced c-fos expression in CD248(-/-) HSC compared with wild-type HSC. Our data show that deletion of CD248 reduces susceptibility to liver fibrosis via an effect on PDGF signalling, making it an attractive clinical target for the treatment of liver injury. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  9. Reduced Expression of the Liver/Beta-Cell Glucose Transporter Isoform in Glucose-Insensitive Pancreatic Beta Cells of Diabetic Rats

    NASA Astrophysics Data System (ADS)

    Thorens, Bernard; Weir, Gordon C.; Leahy, John L.; Lodish, Harvey F.; Bonner-Weir, Susan

    1990-09-01

    Rats injected with a single dose of streptozocin at 2 days of age develop non-insulin-dependent diabetes 6 weeks later. The pancreatic beta islet cells of these diabetic rats display a loss of glucose-induced insulin secretion while maintaining sensitivity to other secretagogues such as arginine. We analyzed the level of expression of the liver/beta-cell glucose transporter isoform in diabetic islets by immunofluorescence staining of pancreas sections and by Western blotting of islet lysates. Islets from diabetic animals have a reduced expression of this beta-cell-specific glucose transporter isoform and the extent of reduction is correlated with the severity of hyperglycemia. In contrast, expression of this transporter isoform in liver is minimally modified by the diabetes. Thus a decreased expression of the liver/beta-cell glucose transporter isoform in beta cells is associated with the impaired glucose sensing characteristic of diabetic islets; our data suggest that this glucose transporter may be part of the beta-cell glucose sensor.

  10. Mucins in Gastric Cancer – An Update

    PubMed Central

    Boltin, Doron; Niv, Yaron

    2013-01-01

    Mucins are high-molecular-weight glycoproteins expressed throughout the gastrointestinal tract, with a key role in mucosal protection and function. In gastric cancer expression of MUC5AC and MUC1 is reduced and denovo expression of MUC2 occurs. With progressive loss of tumor differentiation and increased tumor stage, expression of MUC5AC and MUC1 is further reduced, and MUC2 decreases. Isolated MUC2 expression (the intestinal phenotype) correlates with metastatic spread and poor survival. There is emerging evidence that MUC1 acts as an oncoprotein when overexpressed. The cytoplasmic tail of MUC1 interacts with the H. pylori virulence factor cagA and is a major effector of the wnt-β catenin intracellular signalling cascade. Polymorphism in the MUC1 gene has been identified in gastric cancer patients and may have a prospective role in the stratification of high-risk subjects. The MUC1 gene also mediates resistance to the recombinant HER2/neu antibody trastuzumab. Future research efforts will examine targeting MUC1 for therapeutic purposes. PMID:24077811

  11. Air-liquid biofilm formation is dependent on ammonium depletion in a Saccharomyces cerevisiae flor strain.

    PubMed

    Zara, Giacomo; Budroni, Marilena; Mannazzu, Ilaria; Zara, Severino

    2011-12-01

    Air-liquid biofilm formation appears to be an adaptive mechanism that promotes foraging of Saccharomyces cerevisiae flor strains in response to nutrient starvation. The FLO11 gene plays a central role in this phenotype as its expression allows yeast cells to rise to the liquid surface. Here, we investigated the role of ammonium depletion in air-liquid biofilm formation and FLO11 expression in a S. cerevisiae flor strain. The data obtained show that increasing ammonium concentrations from 0 to 450 m m reduce air-liquid biofilm in terms of biomass and velum formation and correlate with a reduction of FLO11 expression. Rapamycin inhibition of the TOR pathway and deletion of RAS2 gene significantly reduced biofilm formation and FLO11 expression. Taken together, these data suggest that ammonium depletion is a key factor in the induction of air-liquid biofilm formation and FLO11 expression in S. cerevisiae flor strains. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Parental vitamin deficiency affects the embryonic gene expression of immune-, lipid transport- and apolipoprotein genes

    NASA Astrophysics Data System (ADS)

    Skjærven, Kaja H.; Jakt, Lars Martin; Dahl, John Arne; Espe, Marit; Aanes, Håvard; Hamre, Kristin; Fernandes, Jorge M. O.

    2016-10-01

    World Health Organization is concerned for parental vitamin deficiency and its effect on offspring health. This study examines the effect of a marginally dietary-induced parental one carbon (1-C) micronutrient deficiency on embryonic gene expression using zebrafish. Metabolic profiling revealed a reduced 1-C cycle efficiency in F0 generation. Parental deficiency reduced the fecundity and a total of 364 genes were differentially expressed in the F1 embryos. The upregulated genes (53%) in the deficient group were enriched in biological processes such as immune response and blood coagulation. Several genes encoding enzymes essential for the 1-C cycle and for lipid transport (especially apolipoproteins) were aberrantly expressed. We show that a parental diet deficient in micronutrients disturbs the expression in descendant embryos of genes associated with overall health, and result in inherited aberrations in the 1-C cycle and lipid metabolism. This emphasises the importance of parental micronutrient status for the health of the offspring.

  13. Eye-Specific Gene Expression following Embryonic Ethanol Exposure in Zebrafish: Roles for Heat Shock Factor 1

    PubMed Central

    Kashyap, Bhavani; Pegorsch, Laurel; Frey, Ruth A.; Sun, Chi; Shelden, Eric A.; Stenkamp, Deborah L.

    2014-01-01

    The mechanisms through which ethanol exposure results in developmental defects remain unclear. We used the zebrafish model to elucidate eye-specific mechanisms that underlie ethanol-mediated microphthalmia (reduced eye size), through time-series microarray analysis of gene expression within eyes of embryos exposed to 1.5% ethanol. 62 genes were differentially expressed (DE) in ethanol-treated as compared to control eyes sampled during retinal neurogenesis (24-48 hours post-fertilization). The EDGE (extraction of differential gene expression) algorithm identified >3000 genes DE over developmental time in ethanol-exposed eyes as compared to controls. The DE lists included several genes indicating a mis-regulated cellular stress response due to ethanol exposure. Combined treatment with sub-threshold levels of ethanol and a morpholino targeting heat shock factor 1 mRNA resulted in microphthalmia, suggesting convergent molecular pathways. Thermal preconditioning partially prevented ethanol-mediated microphthalmia while maintaining Hsf-1 expression. These data suggest roles for reduced Hsf-1 in mediating microphthalmic effects of embryonic ethanol exposure. PMID:24355176

  14. The imprinted gene Magel2 regulates normal circadian output.

    PubMed

    Kozlov, Serguei V; Bogenpohl, James W; Howell, Maureen P; Wevrick, Rachel; Panda, Satchin; Hogenesch, John B; Muglia, Louis J; Van Gelder, Russell N; Herzog, Erik D; Stewart, Colin L

    2007-10-01

    Mammalian circadian rhythms of activity are generated within the suprachiasmatic nucleus (SCN). Transcripts from the imprinted, paternally expressed Magel2 gene, which maps to the chromosomal region associated with Prader-Willi Syndrome (PWS), are highly enriched in the SCN. The Magel2 message is circadianly expressed and peaks during the subjective day. Mice deficient in Magel2 expression entrain to light cycles and express normal running-wheel rhythms, but with markedly reduced amplitude of activity and increased daytime activity. These changes are associated with reductions in food intake and male fertility. Orexin levels and orexin-positive neurons in the lateral hypothalamus are substantially reduced, suggesting that some of the consequences of Magel2 loss are mediated through changes in orexin signaling. The robust rhythmicity of Magel2 expression in the SCN and the altered behavioral rhythmicity of null mice reveal Magel2 to be a clock-controlled circadian output gene whose disruption results in some of the phenotypes characteristic of PWS.

  15. Impairment of Hepcidin Upregulation by Lipopolysaccharide in the Interleukin-6 Knockout Mouse Brain.

    PubMed

    Zhang, Fa-Li; Hou, Hui-Min; Yin, Zhi-Nan; Chang, Lan; Li, Fe-Mi; Chen, Y-J; Ke, Ya; Qian, Zhong-Ming

    2017-01-01

    To find out whether the Interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signaling pathway is involved in the expression of hepcidin in the mouse brain in vivo , we investigated the phosphorylation of STAT3, as well as the expression of hepcidin mRNA, ferroportin 1 (Fpn1) and ferritin light chain (Ft-L) proteins in the cortex and hippocampus of LPS-treated wild type (IL-6+/+) and IL-6 knockout (IL-6-/-) mice. We demonstrated that IL-6 knockout could significantly reduce the response of hepcidin mRNA, phospho-STAT3, Fpn1 and Ft-L protein expression to LPS treatment, in both the cortex and hippocampus of mice. Also, Stattic, an inhibitor of STAT3, significantly reduced the expression of phospho-STAT3 and hepcidin mRNA in the cortex and hippocampus of the LPS-treated wild type mice. These findings provide in vivo evidence for the involvement of the IL-6/STAT3 signaling pathway in the expression of hepcidin.

  16. Ginsenoside Rg1 improves fertility and reduces ovarian pathological damages in premature ovarian failure model of mice.

    PubMed

    He, Lianli; Ling, Li; Wei, Tianqin; Wang, Yaping; Xiong, Zhengai

    2017-04-01

    This study aims to investigate the effect as well as mechanism of ginsenoside Rg1 (Rg1) on premature ovarian failure (POF) induced by d-galactose (d-gal) in mice. C57BL/6 female mice were divided into four groups randomly, which were the saline group, the d-gal group, the d-gal + Rg1 group, and the Rg1 group. Body weight was recorded. Overall ovarian function including estrous cycles, sex hormone secretion, ovarian follicle development, and ovarian morphology was analyzed by H&E staining and ELISA. Effect of Rg1 on aging was determined by analyzing the activities of oxidation-associated biomarkers, pro-inflammatory cytokine secretion, expression of senescence-associated proteins, and fertility. Compared with the d-gal group, in Rg1 + d-gal group, body weight was increased significantly, estrous cycle block was released, and fertility and the morphology of ovaries were restored. And, Rg1 treatment after d-gal administration significantly reduced senescence-associated protein expression, increased the activity of total superoxide dismutase and glutathione peroxidase from bovine erythrocyte, and induced higher follicle stimulating hormone receptor protein expression. Additionally, the expression levels of malondialdehyde, interleukin-1β, tumor necrosis factor-α, and interleukin-6 were significantly decreased. Together, Rg1 improves mouse fertility and reduces ovarian pathological damage in d-gal-induced POF model possibly through enhancing anti-inflammatory and antioxidant capacities and reducing expression of senescence signal pathway proteins. Impact statement Ginsenoside Rg1 (Rg1) is a kind of natural estrogen and it has antioxidation and antiaging effects. However, whether Rg1 has effects on premature ovarian failure (POF) is still not clear. In this study, aging model induced by d-galactose was used to mimic POF. The effect and possible mechanism of Rg1 on ovary aging was investigated. We found that Rg1 treatment up-regulated the expression of follicle stimulating hormone receptor and down-regulated senescence-associated protein expression in granule cells of POF mice. Particularly, Rg1 improved fertility ability and reduced ovarian pathological damages by its antioxidative and anti-inflammation capacity. Thus, Rg1 enhances the antiaging ability of ovary and fertility ability of POF mice through enhancing the anti-inflammatory and antioxidant capacities of ovary.

  17. Deficient expression of DNA repair enzymes in early progression to sporadic colon cancer

    PubMed Central

    2012-01-01

    Background Cancers often arise within an area of cells (e.g. an epithelial patch) that is predisposed to the development of cancer, i.e. a "field of cancerization" or "field defect." Sporadic colon cancer is characterized by an elevated mutation rate and genomic instability. If a field defect were deficient in DNA repair, DNA damages would tend to escape repair and give rise to carcinogenic mutations. Purpose To determine whether reduced expression of DNA repair proteins Pms2, Ercc1 and Xpf (pairing partner of Ercc1) are early steps in progression to colon cancer. Results Tissue biopsies were taken during colonoscopies of 77 patients at 4 different risk levels for colon cancer, including 19 patients who had never had colonic neoplasia (who served as controls). In addition, 158 tissue samples were taken from tissues near or within colon cancers removed by resection and 16 tissue samples were taken near tubulovillous adenomas (TVAs) removed by resection. 568 triplicate tissue sections (a total of 1,704 tissue sections) from these tissue samples were evaluated by immunohistochemistry for 4 DNA repair proteins. Substantially reduced protein expression of Pms2, Ercc1 and Xpf occurred in field defects of up to 10 cm longitudinally distant from colon cancers or TVAs and within colon cancers. Expression of another DNA repair protein, Ku86, was infrequently reduced in these areas. When Pms2, Ercc1 or Xpf were reduced in protein expression, then either one or both of the other two proteins most often had reduced protein expression as well. The mean inner colon circumferences, from 32 resections, of the ascending, transverse and descending/sigmoid areas were measured as 6.6 cm, 5.8 cm and 6.3 cm, respectively. When combined with other measurements in the literature, this indicates the approximate mean number of colonic crypts in humans is 10 million. Conclusions The substantial deficiencies in protein expression of DNA repair proteins Pms2, Ercc1 and Xpf in about 1 million crypts near cancers and TVAs suggests that the tumors arose in field defects that were deficient in DNA repair and that deficiencies in Pms2, Ercc1 and Xpf are early steps, often occurring together, in progression to colon cancer. PMID:22494821

  18. Prostacyclin synthase expression and epigenetic regulation in nonsmall cell lung cancer.

    PubMed

    Cathcart, Mary-Clare; Gray, Steven G; Baird, Anne-Marie; Boyle, Elaine; Gately, Kathy; Kay, Elaine; Cummins, Robert; Pidgeon, Graham P; O'Byrne, Kenneth J

    2011-11-15

    Prostacyclin synthase (PGIS) metabolizes prostaglandin H(2), into prostacyclin. This study aimed to determine the expression profile of PGIS in nonsmall cell lung cancer (NSCLC) and examine potential mechanisms involved in PGIS regulation. PGIS expression was examined in human NSCLC and matched controls by reverse transcriptase polymerase chain reaction (RT-PCR), Western analysis, and immunohistochemistry. A 204-patient NSCLC tissue microarray was stained for PGIS and cyclooxygenase 2 (COX2) expression. Staining intensity was correlated with clinical parameters. Epigenetic mechanisms underpinning PGIS promoter expression were examined using RT-PCR, methylation-specific PCR, and chromatin immunoprecipitation analysis. PGIS expression was reduced/absent in human NSCLC protein samples (P < .0001), but not mRNA relative to matched controls. PGIS tissue expression was higher in squamous cell carcinoma (P = .004) and in male patients (P < .05). No significant correlation of PGIS or COX2 expression with overall patient survival was observed, although COX2 was prognostic for short-term (2-year) survival (P < .001). PGIS mRNA expression was regulated by DNA CpG methylation and histone acetylation in NSCLC cell lines, with chromatin remodeling taking place directly at the PGIS gene. PGIS mRNA expression was increased by both demethylation agents and histone deacetylase inhibitors. Protein levels were unaffected by demethylation agents, whereas PGIS protein stability was negatively affected by histone deacetylase inhibitors. PGIS protein expression is reduced in NSCLC, and does not correlate with overall patient survival. PGIS expression is regulated through epigenetic mechanisms. Differences in expression patterns between mRNA and protein levels suggest that PGIS expression and protein stability are regulated post-translationally. PGIS protein stability may have an important therapeutic role in NSCLC. Copyright © 2011 American Cancer Society.

  19. The role of human chorionic gonadotropin in regulation of naïve and memory T cells activity in vitro.

    PubMed

    Zamorina, S A; Litvinova, L S; Yurova, K A; Khaziakhmatova, O G; Timganova, V P; Bochkova, M S; Khramtsov, P V; Rayev, M B

    2018-01-01

    The role of human chorionic gonadotropin (hCG) in the regulation of molecular genetics factors determining the functional activity of human naïve and memory T cells in vitro was studied. It was found that hCG (10 and 100IU/ml) inhibited CD28 and CD25 expression on the naïve T cells (CD45RA+) and CD25 expression on the memory T cells (CD45R0+). hCG didn't affect the CD71 proliferation marker expression in total. Nevertheless, hCG reduced the percentage of proliferating memory T cells with simultaneous suppression of CD71 expression on proliferating CD45R0+cells. In parallel, expression of U2af1l4, Gfi1, and hnRNPLL genes, which are Ptprc gene alternative splicing regulators was evaluated. It was established that hCG stimulated the expression of U2af1l4 and hnRNPLL genes, responsible for the assembly of CD45R0 in memory T cells, but reduced the expression of Gfi1 in these cells. In general, hCG promotes the differentiation of memory T cells by increasing of CD45R0 expression, but inhibits proliferation and CD25 expression which reflects their functional activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Transcriptional regulation of an insulin-sensitizing adipokine adipolin/CTRP12 in adipocytes by Krüppel-like factor 15.

    PubMed

    Enomoto, Takashi; Ohashi, Koji; Shibata, Rei; Kambara, Takahiro; Uemura, Yusuke; Yuasa, Daisuke; Kataoka, Yoshiyuki; Miyabe, Megumi; Matsuo, Kazuhiro; Joki, Yusuke; Hayakawa, Satoko; Hiramatsu-Ito, Mizuho; Ito, Masanori; Murohara, Toyoaki; Ouchi, Noriyuki

    2013-01-01

    Obese states characterized by chronic inflammation are closely linked to the development of metabolic dysfunction. We identified adipolin/CTRP12 as an insulin-sensitizing and anti-inflammatory adipokine. Although obese conditions down-regulate adipolin expression, its molecular mechanism is largely unknown. Here we show that the transcriptional regulator Krüppel-like factor (KLF) 15 is involved in the regulation of adipolin expression in adipocytes. White adipose tissue from diet-induced obese (DIO) mice showed decreased expression of KLF9 and KLF15 among several KLFs, which was accompanied by reduced expression of adipolin. In cultured 3T3L1 adipocytes, treatment with TNFα significantly reduced the mRNA levels of KLF9, KLF15 and adipolin. Adenovirus-mediated overexpression of KLF15 but not KLF9 reversed TNFα-induced reduction of adipolin expression in adipocytes. Conversely, gene targeting ablation of KLF15 attenuated adipolin expression in adipocytes. Expression of KLF15 but not KLF9 enhanced the promoter activity of adipolin in HEK293 cells. Pretreatment of 3T3L1 adipocytes with the JNK inhibitor SP600125, but not p38 MAPK inhibitor SB203580 blocked the inhibitory effects of TNFα on adipolin and KLF15 expression. These data suggest that adipose inflammation under conditions of obesity suppresses adipolin expression via JNK-dependent down-regulation of KLF15 in adipocytes.

  1. Transcriptional Regulation of an Insulin-Sensitizing Adipokine Adipolin/CTRP12 in Adipocytes by Krüppel-Like Factor 15

    PubMed Central

    Enomoto, Takashi; Ohashi, Koji; Shibata, Rei; Kambara, Takahiro; Uemura, Yusuke; Yuasa, Daisuke; Kataoka, Yoshiyuki; Miyabe, Megumi; Matsuo, Kazuhiro; Joki, Yusuke; Hayakawa, Satoko; Hiramatsu-Ito, Mizuho; Ito, Masanori; Murohara, Toyoaki; Ouchi, Noriyuki

    2013-01-01

    Obese states characterized by chronic inflammation are closely linked to the development of metabolic dysfunction. We identified adipolin/CTRP12 as an insulin-sensitizing and anti-inflammatory adipokine. Although obese conditions down-regulate adipolin expression, its molecular mechanism is largely unknown. Here we show that the transcriptional regulator Krüppel-like factor (KLF) 15 is involved in the regulation of adipolin expression in adipocytes. White adipose tissue from diet-induced obese (DIO) mice showed decreased expression of KLF9 and KLF15 among several KLFs, which was accompanied by reduced expression of adipolin. In cultured 3T3L1 adipocytes, treatment with TNFα significantly reduced the mRNA levels of KLF9, KLF15 and adipolin. Adenovirus-mediated overexpression of KLF15 but not KLF9 reversed TNFα-induced reduction of adipolin expression in adipocytes. Conversely, gene targeting ablation of KLF15 attenuated adipolin expression in adipocytes. Expression of KLF15 but not KLF9 enhanced the promoter activity of adipolin in HEK293 cells. Pretreatment of 3T3L1 adipocytes with the JNK inhibitor SP600125, but not p38 MAPK inhibitor SB203580 blocked the inhibitory effects of TNFα on adipolin and KLF15 expression. These data suggest that adipose inflammation under conditions of obesity suppresses adipolin expression via JNK-dependent down-regulation of KLF15 in adipocytes. PMID:24358263

  2. Low Density Lipoproteins Promote Unstable Calcium Handling Accompanied by Reduced SERCA2 and Connexin-40 Expression in Cardiomyocytes

    PubMed Central

    Cabello, Nuria; Llach, Anna; Vallmitjana, Alexander; Benítez, Raúl; Badimon, Lina; Cinca, Juan; Llorente-Cortés, Vicenta; Hove-Madsen, Leif

    2013-01-01

    The damaging effects of high plasma levels of cholesterol in the cardiovascular system are widely known, but little attention has been paid to direct effects on cardiomyocyte function. We therefore aimed at testing the hypothesis that Low Density Lipoprotein (LDL) cholesterol affects calcium dynamics and signal propagation in cultured atrial myocytes. For this purpose, mRNA and protein expression levels were determined by real time PCR and western blot analysis, respectively, and intracellular calcium was visualized in fluo-4 loaded atrial HL-1 myocyte cultures subjected to field stimulation. At low stimulation frequencies all cultures had uniform calcium transients at all tested LDL concentrations. However, 500 µg LDL/mL maximally reduced the calcium transient amplitude by 43% from 0.30±0.04 to 0.17±0.02 (p<0.05). Moreover, LDL-cholesterol dose-dependently increased the fraction of alternating and irregular beat-to-beat responses observed when the stimulation interval was shortened. This effect was linked to a concurrent reduction in SERCA2, RyR2, IP3RI and IP3RII mRNA levels. SERCA2 protein levels were also reduced by 43% at 200 µg LDL/mL (p<0.05) and SR calcium loading was reduced by 38±6% (p<0.001). By contrast, HDL-cholesterol had no significant effect on SERCA expression or SR calcium loading. LDL-cholesterol also slowed the conduction velocity of the calcium signal from 3.2+0.2 mm/s without LDL to 1.7±0.1 mm/s with 500 µg LDL/mL (p<0.05). This coincided with a reduction in Cx40 expression (by 44±3%; p<0.05 for mRNA and by 79±2%; p<0.05 for Cx40 protein at 200 µg/ml LDL) whereas the Cx-43 expression did not significantly change. In conclusion, LDL-cholesterol destabilizes calcium handling in cultured atrial myocytes subjected to rapid pacing by reducing SERCA2 and Cx40 expression and by slowing the conduction velocity of the calcium signal. PMID:23516438

  3. A Syntenic Cross Species Aneuploidy Genetic Screen Links RCAN1 Expression to β-Cell Mitochondrial Dysfunction in Type 2 Diabetes

    PubMed Central

    Peiris, Heshan; Duffield, Michael D.; Fadista, Joao; Kashmir, Vinder; Genders, Amanda J.; McGee, Sean L.; Martin, Alyce M.; Saiedi, Madiha; Morton, Nicholas; Carter, Roderick; Cousin, Michael A.; Oskolkov, Nikolay; Volkov, Petr; Hough, Tertius A.; Fisher, Elizabeth M. C.; Tybulewicz, Victor L. J.; Busciglio, Jorge; Coskun, Pinar E.; Becker, Ann; Belichenko, Pavel V.; Mobley, William C.; Ryan, Michael T.; Chan, Jeng Yie; Laybutt, D. Ross; Coates, P. Toby; Yang, Sijun; Ling, Charlotte; Groop, Leif; Pritchard, Melanie A.; Keating, Damien J.

    2016-01-01

    Type 2 diabetes (T2D) is a complex metabolic disease associated with obesity, insulin resistance and hypoinsulinemia due to pancreatic β-cell dysfunction. Reduced mitochondrial function is thought to be central to β-cell dysfunction. Mitochondrial dysfunction and reduced insulin secretion are also observed in β-cells of humans with the most common human genetic disorder, Down syndrome (DS, Trisomy 21). To identify regions of chromosome 21 that may be associated with perturbed glucose homeostasis we profiled the glycaemic status of different DS mouse models. The Ts65Dn and Dp16 DS mouse lines were hyperglycemic, while Tc1 and Ts1Rhr mice were not, providing us with a region of chromosome 21 containing genes that cause hyperglycemia. We then examined whether any of these genes were upregulated in a set of ~5,000 gene expression changes we had identified in a large gene expression analysis of human T2D β-cells. This approach produced a single gene, RCAN1, as a candidate gene linking hyperglycemia and functional changes in T2D β-cells. Further investigations demonstrated that RCAN1 methylation is reduced in human T2D islets at multiple sites, correlating with increased expression. RCAN1 protein expression was also increased in db/db mouse islets and in human and mouse islets exposed to high glucose. Mice overexpressing RCAN1 had reduced in vivo glucose-stimulated insulin secretion and their β-cells displayed mitochondrial dysfunction including hyperpolarised membrane potential, reduced oxidative phosphorylation and low ATP production. This lack of β-cell ATP had functional consequences by negatively affecting both glucose-stimulated membrane depolarisation and ATP-dependent insulin granule exocytosis. Thus, from amongst the myriad of gene expression changes occurring in T2D β-cells where we had little knowledge of which changes cause β-cell dysfunction, we applied a trisomy 21 screening approach which linked RCAN1 to β-cell mitochondrial dysfunction in T2D. PMID:27195491

  4. Modulation of Human Valve Interstitial Cell Phenotype and Function Using a Fibroblast Growth Factor 2 Formulation

    PubMed Central

    Latif, Najma; Quillon, Alfred; Sarathchandra, Padmini; McCormack, Ann; Lozanoski, Alec; Yacoub, Magdi H.; Chester, Adrian H.

    2015-01-01

    Valve interstitial cells (VICs) are fibroblastic in nature however in culture it is widely accepted that they differentiate into a myofibroblastic phenotype. This study assessed a fibroblast culture media formulation for its ability to maintain the phenotype and function of VICs as in the intact healthy valve. Normal human VICs were cultured separately in standard DMEM and in fibroblast media consisting of FGF2 (10ng/ml), insulin (50ng/ml) and 2% FCS for at least a week. Cell morphology, aspect ratio, size, levels and distribution of protein expression, proliferation, cell cycle, contraction and migration were assessed. Some VICs and some valve endothelial cells expressed FGF2 in valve tissue and this expression was increased in calcified valves. VICs in DMEM exhibited large, spread cells whereas VICs in fibroblast media were smaller, elongated and spindly. Aspect ratio and size were both significantly higher in DMEM (p<0.01). The level of expression of α-SMA was significantly reduced in fibroblast media at day 2 after isolation (p<0.01) and the expression of α-SMA, SM22 and EDA-fibronectin was significantly reduced in fibroblast media at days 7 and 12 post-isolation (p<0.01). Expression of cytoskeletal proteins, bone marker proteins and extracellular matrix proteins was reduced in fibroblast media. Proliferation of VICs in fibroblast media was significantly reduced at weeks 1 (p<0.05) and 2 (p<0.01). Collagen gel contraction was significantly reduced in fibroblast media (p<0.05). VICs were found to have significantly fewer and smaller focal adhesions in fibroblast media (p<0.01) with significantly fewer supermature focal adhesions in fibroblast media (p<0.001). Ultrastructurally, VICs in fibroblast media resembled native VICs from intact valves. VICs in fibroblast media demonstrated a slower migratory ability after wounding at 72 hours (p<0.01). Treatment of human VICs with this fibroblast media formulation has the ability to maintain and to dedifferentiate the VICs back to a fibroblastic phenotype with phenotypic and functional characteristics ascribed to cells in the intact valve. This methodology is fundamental in the study of normal valve biology, pathology and in the field of tissue engineering. PMID:26042674

  5. Interleukin-33 treatment reduces secondary injury and improves functional recovery after contusion spinal cord injury.

    PubMed

    Pomeshchik, Yuriy; Kidin, Iurii; Korhonen, Paula; Savchenko, Ekaterina; Jaronen, Merja; Lehtonen, Sarka; Wojciechowski, Sara; Kanninen, Katja; Koistinaho, Jari; Malm, Tarja

    2015-02-01

    Interleukin-33 (IL-33) is a member of the interleukin-1 cytokine family and highly expressed in the naïve mouse brain and spinal cord. Despite the fact that IL-33 is known to be inducible by various inflammatory stimuli, its cellular localization in the central nervous system and role in pathological conditions is controversial. Administration of recombinant IL-33 has been shown to attenuate experimental autoimmune encephalomyelitis progression in one study, yet contradictory reports also exist. Here we investigated for the first time the pattern of IL-33 expression in the contused mouse spinal cord and demonstrated that after spinal cord injury (SCI) IL-33 was up-regulated and exhibited a nuclear localization predominantly in astrocytes. Importantly, we found that treatment with recombinant IL-33 alleviated secondary damage by significantly decreasing tissue loss, demyelination and astrogliosis in the contused mouse spinal cord, resulting in dramatically improved functional recovery. We identified both central and peripheral mechanisms of IL-33 action. In spinal cord, IL-33 treatment reduced the expression of pro-inflammatory tumor necrosis factor-alpha and promoted the activation of anti-inflammatory arginase-1 positive M2 microglia/macrophages, which chronically persisted in the injured spinal cord for up to at least 42 days after the treatment. In addition, IL-33 treatment showed a tendency towards reduced T-cell infiltration into the spinal cord. In the periphery, IL-33 treatment induced a shift towards the Th2 type cytokine profile and reduced the percentage and absolute number of cytotoxic, tumor necrosis factor-alpha expressing CD4+ cells in the spleen. Additionally, IL-33 treatment increased expression of T-regulatory cell marker FoxP3 and reduced expression of M1 marker iNOS in the spleen. Taken together, these results provide the first evidence that IL-33 administration is beneficial after CNS trauma. Treatment with IL33 may offer a novel therapeutic strategy for patients with acute contusion SCI. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Aging Periosteal Progenitor Cells have Reduced Regenerative Responsiveness to Bone Injury and to the Anabolic Actions of PTH 1-34 Treatment

    PubMed Central

    Yukata, Kiminori; Xie, Chao; Li, Tian-Fang; Takahata, Masahiko; Hoak, Donna; Kondabolu, Sirish; Zhang, Xinping; Awad, Hani A.; Schwarz, Edward M.; Beck, Christopher A.; Jonason, Jennifer H.; O’Keefe, Regis J.

    2014-01-01

    A stabilized tibia fracture model was used in young (8-week old) and aged (1-year old) mice to define the relative bone regenerative potential and the relative responsiveness of the periosteal progenitor population with aging and PTH 1-34 (PTH) systemic therapy. Bone regeneration was assessed through gene expressions, radiographic imaging, histology/histomorphometry, and biomechanical testing. Radiographs and microCT showed increased calcified callus tissue and enhanced bone healing in young compared to aged mice. A key mechanism involved reduced proliferation, expansion, and differentiation of periosteal progenitor cell populations in aged mice. The experiments showed that PTH increased calcified callus tissue and torsional strength with a greater response in young mice. Histology and quantitative histomorphometry confirmed that PTH increased callus tissue area due primarily to an increase in bone formation, since minimal changes in cartilage and mesenchyme tissue area occurred. Periosteum examined at 3, 5, and 7 days showed that PTH increased cyclin D1 expression, the total number of cells in the periosteum, and width of the periosteal regenerative tissue. Gene expression showed that aging delayed differentiation of both bone and cartilage tissues during fracture healing. PTH resulted in sustained Col10a1 expression consistent with delayed chondrocyte maturation, but otherwise minimally altered cartilage gene expression. In contrast, PTH 1-34 stimulated expression of Runx2 and Osterix, but resulted in reduced Osteocalcin. β-catenin staining was present in mesenchymal chondroprogenitors and chondrocytes in early fracture healing, but was most intense in osteoblastic cells at later times. PTH increased active β-catenin staining in the osteoblast populations of both young and aged mice, but had a lesser effect in cartilage. Altogether the findings show that reduced fracture healing in aging involves decreased proliferation and differentiation of stem cells lining the bone surface. While PTH 1-34 enhances the proliferation and expansion of the periosteal stem cell population and accelerates bone formation and fracture healing, the effects are proportionately reduced in aged mice compared to young mice. β-catenin is induced by PTH in early and late fracture healing and is a potential target of PTH 1-34 effects. PMID:24530870

  7. MiR-339 and especially miR-766 reactivate the expression of tumor suppressor genes in colorectal cancer cell lines through DNA methyltransferase 3B gene inhibition.

    PubMed

    Afgar, Ali; Fard-Esfahani, Pezhman; Mehrtash, Amirhosein; Azadmanesh, Kayhan; Khodarahmi, Farnaz; Ghadir, Mahdis; Teimoori-Toolabi, Ladan

    2016-11-01

    It is observed that upregulation of DNMT3B enzyme in some cancers, including colon cancer, could lead to silencing of tumor suppressor genes. MiR-339 and miR-766 have been predicted to target 3'UTR of DNMT3B gene. Luciferase reporter assay validated that individual and co-transfection of miR-766 and miR-339 into the HEK293T cell reduced luciferase activity to 26% ± 0.41%, 43% ± 0.42 and 64% ± 0.52%, respectively, compared to the control (P < 0.05). Furthermore, transduction of miR-339 and miR-766 expressing viruses into colon cancer cell lines (SW480 and HCT116) decreased DNMT3B expression (1.5, 3-fold) and (3, 4-fold), respectively. In addition, DNA methylation of some tumor suppressor genes decreased. Expression of these genes such as SFRP1 (2 and 1.6-fold), SFRP2 (0.07 and 4-fold), WIF1 (0.05 and 4-fold), and DKK2 (2 and 4-fold) increased in SW-339 and SW-766 cell lines; besides, expression increments for these genes in HCT-339 and HCT-766 cell lines were (2.8, 4-fold), (0.005, 1.5-fold), (1.7 and 3-fold) and (0.04, 1.7-fold), respectively. Also, while in SW-766, cell proliferation reduced to 2.8% and 21.7% after 24 and 48 hours, respectively, SW-339 showed no reduced proliferation. Meanwhile, HCT-766 and HCT-339 showed (3.5%, 12.8%) and (18.8%, 33.9%) reduced proliferation after 24 and 48 hours, respectively. Finally, targeting DNMT3B by these miRs, decreased methylation of tumor suppressor genes such as SFRP1, SFRP2, WIF1 and DKK2 in the mentioned cell lines, and returned the expression of these tumor suppressor genes which can contribute to lethal effect on colon cancer cells and reducing tumorigenicity of these cells.

  8. The levels of mutant K-RAS and mutant N-RAS are rapidly reduced in a Beclin1 / ATG5 -dependent fashion by the irreversible ERBB1/2/4 inhibitor neratinib

    PubMed Central

    Booth, Laurence; Roberts, Jane L.; Poklepovic, Andrew; Kirkwood, John; Avogadri-Connors, Francesca; Cutler Jr, Richard E.; Lalani, Alshad S.; Dent, Paul

    2018-01-01

    ABSTRACT The FDA approved irreversible inhibitor of ERBB1/2/4, neratinib, was recently shown to rapidly down-regulate the expression of ERBB1/2/4 as well as the levels of c-MET and mutant K-RAS via autophagic degradation. In the present studies, in a dose-dependent fashion, neratinib reduced the expression levels of mutant K-RAS or of mutant N-RAS, which was augmented in an additive to greater than additive fashion by the HDAC inhibitors sodium valproate and AR42. Neratinib could reduce PDGFRα levels in GBM cells, that was enhanced by sodium valproate. Knock down of Beclin1 or of ATG5 prevented neratinib and neratinib combined with sodium valproate / AR42 from reducing the expression of mutant N-RAS in established PDX and fresh PDX models of ovarian cancer and melanoma, respectively. Neratinib and the drug combinations caused the co-localization of mutant RAS proteins and ERBB2 with Beclin1 and cathepsin B. The drug combination activated the AMP-dependent protein kinase that was causal in enhancing HMG Co A reductase phosphorylation. Collectively, our data reinforce the concept that the irreversible ERBB1/2/4 inhibitor neratinib has the potential for use in the treatment of tumors expressing mutant RAS proteins. PMID:29219657

  9. Increased Bacterial Load and Expression of Antimicrobial Peptides in Skin of Barrier-Deficient Mice with Reduced Cancer Susceptibility.

    PubMed

    Natsuga, Ken; Cipolat, Sara; Watt, Fiona M

    2016-01-01

    Mice lacking three epidermal barrier proteins-envoplakin, periplakin, and involucrin (EPI-/- mice)-have a defective cornified layer, reduced epidermal γδ T cells, and increased dermal CD4(+) T cells. They are also resistant to developing skin tumors. The tumor-protective mechanism involves signaling between Rae-1 expressing keratinocytes and the natural killer group 2D receptor on immune cells, which also plays a role in host defenses against infection. Given the emerging link between bacteria and cancer, we investigated whether EPI-/- mice have an altered skin microbiota. The bacterial phyla were similar in wild-type and EPI-/- skin. However, bacteria were threefold more abundant in EPI-/- skin and penetrated deeper into the epidermis. The major epithelial defense mechanism against bacteria is production of antimicrobial proteins (AMPs). EPI-/- skin exhibited enhanced expression of antimicrobial peptides. However, reducing the bacterial load by antibiotic treatment or breeding mice under specific pathogen-free conditions did not reduce AMP expression or alleviate the abnormalities in T-cell populations. We conclude that the atopic characteristics of EPI-/- skin are a consequence of the defective barrier rather than a response to the increased bacterial load. It is therefore unlikely that the increase in skin microbiota contributes directly to the observed cancer resistance. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Glioma-Associated Oncogene Homolog Inhibitors Have the Potential of Suppressing Cancer Stem Cells of Breast Cancer.

    PubMed

    Jeng, Kuo-Shyang; Jeng, Chi-Juei; Sheen, I-Shyan; Wu, Szu-Hua; Lu, Ssu-Jung; Wang, Chih-Hsuan; Chang, Chiung-Fang

    2018-05-05

    Overexpression of Sonic Hedgehog signaling (Shh) pathway molecules is associated with invasiveness and recurrence in breast carcinoma. Therefore, inhibition of the Shh pathway downstream molecule Glioma-associated Oncogene Homolog (Gli) was investigated for its ability to reduce progression and invasiveness of patient-derived breast cancer cells and cell lines. Human primary breast cancer T2 cells with high expression of Shh signaling pathway molecules were compared with breast cancer line MDA-MB-231 cells. The therapeutic effects of Gli inhibitors were examined in terms of the cell proliferation, apoptosis, cancer stem cells, cell migration and gene expression. Blockade of the Shh signaling pathway could reduce cell proliferation and migration only in MDA-MB-231 cells. Hh pathway inhibitor-1 (HPI-1) increased the percentages of late apoptotic cells in MDA-MB-231 cells and early apoptotic cells in T2 cells. It reduced Bcl2 expression for cell proliferation and increased Bim expression for apoptosis. In addition, Gli inhibitor HPI-1 decreased significantly the percentages of cancer stem cells in T2 cells. HPI-1 worked more effectively than GANT-58 against breast carcinoma cells. In conclusion, HPI-1 could inhibit cell proliferation, reduce cell invasion and decrease cancer stem cell population in breast cancer cells. To target Gli-1 could be a potential strategy to suppress breast cancer stem cells.

  11. The levels of mutant K-RAS and mutant N-RAS are rapidly reduced in a Beclin1 / ATG5 -dependent fashion by the irreversible ERBB1/2/4 inhibitor neratinib.

    PubMed

    Booth, Laurence; Roberts, Jane L; Poklepovic, Andrew; Kirkwood, John; Sander, Cindy; Avogadri-Connors, Francesca; Cutler, Richard E; Lalani, Alshad S; Dent, Paul

    2018-02-01

    The FDA approved irreversible inhibitor of ERBB1/2/4, neratinib, was recently shown to rapidly down-regulate the expression of ERBB1/2/4 as well as the levels of c-MET and mutant K-RAS via autophagic degradation. In the present studies, in a dose-dependent fashion, neratinib reduced the expression levels of mutant K-RAS or of mutant N-RAS, which was augmented in an additive to greater than additive fashion by the HDAC inhibitors sodium valproate and AR42. Neratinib could reduce PDGFRα levels in GBM cells, that was enhanced by sodium valproate. Knock down of Beclin1 or of ATG5 prevented neratinib and neratinib combined with sodium valproate / AR42 from reducing the expression of mutant N-RAS in established PDX and fresh PDX models of ovarian cancer and melanoma, respectively. Neratinib and the drug combinations caused the co-localization of mutant RAS proteins and ERBB2 with Beclin1 and cathepsin B. The drug combination activated the AMP-dependent protein kinase that was causal in enhancing HMG Co A reductase phosphorylation. Collectively, our data reinforce the concept that the irreversible ERBB1/2/4 inhibitor neratinib has the potential for use in the treatment of tumors expressing mutant RAS proteins.

  12. A time-course study of long term over-expression of ARR19 in mice

    PubMed Central

    Qamar, Imteyaz; Ahmad, Mohammad Faiz; Narayanasamy, Arul

    2015-01-01

    A leucine-rich protein, ARR19 (androgen receptor corepressor-19 kDa), is highly expressed in male reproductive organs and moderately in others. Previously, we have reported that ARR19 is differentially expressed in adult Leydig cells during the testis development and inhibits steroidogenesis by reducing the expression of steroidogenic enzymes. Whereas in prostate, ARR19 represses the transcriptional activity of AR (androgen receptor), it is important for male sexual differentiation and maturation in prostate and epididymis, through the recruitment of HDAC4. In this study we show that long term adenovirus mediated overexpression of ARR19 in mice testis has the potential of inhibiting the differentiation of testicular and prostatic cells by reducing the size of testis and prostate but has no effect on the growth of seminal vesicles. Further, it reduces the level of progesterone and testosterone by reducing the steroidogenic enzymes such as 3HSD, P450c17 and StAR. This is the first study reporting a time-course analysis of the implications of long term overexpression of ARR19 in mice testis and its effect on other organs such as prostate and seminal vesicles. Taken together, these results suggest that ARR19 may play an important role in the differentiation of male reproductive organs such as testis and prostate. PMID:26260329

  13. Abrogation of epithelial BMP2 and BMP4 causes Amelogenesis Imperfecta by reducing MMP20 and KLK4 expression.

    PubMed

    Xie, Xiaohua; Liu, Chao; Zhang, Hua; Jani, Priyam H; Lu, Yongbo; Wang, Xiaofang; Zhang, Bin; Qin, Chunlin

    2016-05-05

    Amelogenesis Imperfecta (AI) can be caused by the deficiencies of enamel matrix proteins, molecules responsible for the transportation and secretion of enamel matrix components, and proteases processing enamel matrix proteins. In the present study, we discovered the double deletion of bone morphogenetic protein 2 (Bmp2) and bone morphogenetic protein 4 (Bmp4) in the dental epithelium by K14-cre resulted in hypoplastic enamel and reduced density in X-ray radiography as well as shortened enamel rods under scanning electron microscopy. Such enamel phenotype was consistent with the diagnosis of hypoplastic amelogenesis imperfecta. Histological and molecular analyses revealed that the removal of matrix proteins in the mutant enamel was drastically delayed, which was coincided with the greatly reduced expression of matrix metalloproteinase 20 (MMP20) and kallikrein 4 (KLK4). Although the expression of multiple enamel matrix proteins was down-regulated in the mutant ameloblasts, the cleavage of ameloblastin was drastically impaired. Therefore, we attributed the AI primarily to the reduction of MMP20 and KLK4. Further investigation found that BMP/Smad4 signaling pathway was down-regulated in the K14-cre;Bmp2(f/f);Bmp4(f/f)ameloblasts, suggesting that the reduced MMP20 and KLK4 expression may be due to the attenuated epithelial BMP/Smad4 signaling.

  14. Abrogation of epithelial BMP2 and BMP4 causes Amelogenesis Imperfecta by reducing MMP20 and KLK4 expression

    PubMed Central

    Xie, Xiaohua; Liu, Chao; Zhang, Hua; Jani, Priyam H.; Lu, Yongbo; Wang, Xiaofang; Zhang, Bin; Qin, Chunlin

    2016-01-01

    Amelogenesis Imperfecta (AI) can be caused by the deficiencies of enamel matrix proteins, molecules responsible for the transportation and secretion of enamel matrix components, and proteases processing enamel matrix proteins. In the present study, we discovered the double deletion of bone morphogenetic protein 2 (Bmp2) and bone morphogenetic protein 4 (Bmp4) in the dental epithelium by K14-cre resulted in hypoplastic enamel and reduced density in X-ray radiography as well as shortened enamel rods under scanning electron microscopy. Such enamel phenotype was consistent with the diagnosis of hypoplastic amelogenesis imperfecta. Histological and molecular analyses revealed that the removal of matrix proteins in the mutant enamel was drastically delayed, which was coincided with the greatly reduced expression of matrix metalloproteinase 20 (MMP20) and kallikrein 4 (KLK4). Although the expression of multiple enamel matrix proteins was down-regulated in the mutant ameloblasts, the cleavage of ameloblastin was drastically impaired. Therefore, we attributed the AI primarily to the reduction of MMP20 and KLK4. Further investigation found that BMP/Smad4 signaling pathway was down-regulated in the K14-cre;Bmp2f/f;Bmp4f/fameloblasts, suggesting that the reduced MMP20 and KLK4 expression may be due to the attenuated epithelial BMP/Smad4 signaling. PMID:27146352

  15. Circadian Stress Regimes Affect the Circadian Clock and Cause Jasmonic Acid-Dependent Cell Death in Cytokinin-Deficient Arabidopsis Plants.

    PubMed

    Nitschke, Silvia; Cortleven, Anne; Iven, Tim; Feussner, Ivo; Havaux, Michel; Riefler, Michael; Schmülling, Thomas

    2016-07-01

    The circadian clock helps plants measure daylength and adapt to changes in the day-night rhythm. We found that changes in the light-dark regime triggered stress responses, eventually leading to cell death, in leaves of Arabidopsis thaliana plants with reduced cytokinin levels or defective cytokinin signaling. Prolonged light treatment followed by a dark period induced stress and cell death marker genes while reducing photosynthetic efficiency. This response, called circadian stress, is also characterized by altered expression of clock and clock output genes. In particular, this treatment strongly reduced the expression of CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY). Intriguingly, similar changes in gene expression and cell death were observed in clock mutants lacking proper CCA1 and LHY function. Circadian stress caused strong changes in reactive oxygen species- and jasmonic acid (JA)-related gene expression. The activation of the JA pathway, involving the accumulation of JA metabolites, was crucial for the induction of cell death, since the cell death phenotype was strongly reduced in the jasmonate resistant1 mutant background. We propose that adaptation to circadian stress regimes requires a normal cytokinin status which, acting primarily through the AHK3 receptor, supports circadian clock function to guard against the detrimental effects of circadian stress. © 2016 American Society of Plant Biologists. All rights reserved.

  16. Olanzapine Prevents the PCP-induced Reduction in the Neurite Outgrowth of Prefrontal Cortical Neurons via NRG1

    PubMed Central

    Zhang, Qingsheng; Yu, Yinghua; Huang, Xu-Feng

    2016-01-01

    Accumulating evidence suggests that reducing neurite outgrowth and synaptic plasticity plays a critical role in the pathology of cognitive deficits in schizophrenia. The N-methyl-D-aspartate receptor antagonist phencyclidine (PCP) can induce symptoms of schizophrenia as well as reduce dendritic spine density and neurite growth. The antipsychotic drug olanzapine may improve these deficits. This study aimed to investigate: (1) if olanzapine prevents PCP-induced suppression of neurite outgrowth and synaptic protein expression; (2) if olanzapine affects the Akt-GSK3 signaling pathway; and (3) the role of neuregulin 1 (NRG1) in this process. Immunofluorescence revealed that PCP treatment for 24 hours reduces both neurite length (28.5%) and the number of neurite branches (35.6%) in primary prefrontal cortical neuron cultures. PCP reduced protein and mRNA expressions of synaptophysin (24.9% and 23.2%, respectively) and PSD95 (31.5% and 21.4%, respectively), and the protein expression of p-Akt (26.7%) and p-GSK3β (35.2%). Olanzapine co-treatment prevented these PCP-induced effects in normal neurons but not in neurons from NRG1-knockout mice. These results indicate that NRG1 mediates the preventive effects of olanzapine on the PCP-induced impairment of neurite outgrowth and synaptic protein expression. This study provides potential targets for interventions on improving the efficacy of olanzapine on preventing cognitive deficits in schizophrenia. PMID:26781398

  17. Protein kinase cα regulates the expression of complement receptor Ig in human monocyte-derived macrophages.

    PubMed

    Ma, Yuefang; Usuwanthim, Kanchana; Munawara, Usma; Quach, Alex; Gorgani, Nick N; Abbott, Catherine A; Hii, Charles S; Ferrante, Antonio

    2015-03-15

    The complement receptor Ig (CRIg) is selectively expressed by macrophages. This receptor not only promotes the rapid phagocytosis of bacteria by macrophages but also has anti-inflammatory and immunosuppressive functions. Previous findings have suggested that protein kinase C (PKC) may be involved in the regulation of CRIg expression in human macrophages. We have now examined the role of PKCα in CRIg expression in human monocyte-derived macrophages (MDM). Macrophages nucleofected with plasmid containing short hairpin RNA against PKCα showed markedly reduced expression of PKCα, but normal PKCζ expression, by Western blotting analysis, and vice versa. PKCα-deficient MDM showed increased expression of CRIg mRNA and protein (both the long and short form), an increase in phagocytosis of complement-opsonized Candida albicans, and decreased production of TNF-α and IL-6. TNF-α caused a marked decrease in CRIg expression, and addition of anti-TNF mAb to the TNF-α-producing MDMs increased CRIg expression. PKCα-deficient macrophages also showed significantly less bacterial LPS-induced downregulation of CRIg. In contrast, cells deficient in PKCα showed decreased expression of CR type 3 (CR3) and decreased production of TNF-α and IL-6 in response to LPS. MDM developed under conditions that increased expression of CRIg over CR3 showed significantly reduced production of TNF-α in response to opsonized C. albicans. The findings indicate that PKCα promotes the downregulation of CRIg and upregulation of CR3 expression and TNF-α and IL-6 production, a mechanism that may promote inflammation. Copyright © 2015 by The American Association of Immunologists, Inc.

  18. Sustained expression of steroid receptor coactivator SRC-2/TIF-2 is associated with better prognosis in malignant pleural mesothelioma.

    PubMed

    Jennings, Cormac J; O'Grady, Anthony; Cummins, Robert; Murer, Bruno; Al-Alawi, Mazen; Madden, Stephen F; Mutti, Luciano; Harvey, Brian J; Thomas, Warren; Kay, Elaine W

    2012-01-01

    Estrogen receptor beta (ERβ) overexpression by malignant pleural mesothelioma (MPM) tumor cells correlates with enhanced patient survival. ER-regulated transcription is mediated by the p160 family of steroid receptor coactivators (SRCs), and SRC isoform overexpression is associated with worse prognosis in many steroid-related malignancies. The aim of this study was to establish whether SRC isoform expression varied between individual MPM tumors with positive or negative prognostic significance. Immunohistochemical analysis of tumor biopsies from 89 subjects with confirmed histological diagnosis of MPM and biopsies from 3 normal control subjects was performed to detect the expression of SRC-1, SRC-2 (TIF-2), SRC-3 (AIB-1), and ERβ. Allred scores for expression of ERβ and each of the SRCs were determined, and Kaplan-Meier survival curves were calculated to correlate biomarker expression, gender, and histology type with postdiagnosis survival. ERβ and all the SRCs were expressed at high levels in normal pleural mesothelium, and expression of each biomarker was reduced or lost in a subset of the MPM subjects; however, postdiagnosis survival only significantly correlated with TIF-2 expression. Low or intermediate expression of TIF-2 correlated with reduced median postdiagnosis survival (9 months) compared with those subjects whose tumors highly expressed TIF-2 (20 months) (p = 0.036, log-rank test). Maintained high expression of TIF-2 in tumor cells is a positive prognostic indicator for postdiagnosis survival in patients with confirmed MPM. This is the first clinical study to correlate high TIF-2 expression with improved patient prognosis in any malignancy.

  19. Reduced Ang2 expression in aging endothelial cells.

    PubMed

    Hohensinner, P J; Ebenbauer, B; Kaun, C; Maurer, G; Huber, K; Wojta, J

    2016-06-03

    Aging endothelial cells are characterized by increased cell size, reduced telomere length and increased expression of proinflammatory cytokines. In addition, we describe here that aging reduces the migratory distance of endothelial cells. Furthermore, we observe an increase of the quiescence protein Ang1 and a decrease of the endothelial activation protein Ang2 upon aging. Supplementing Ang2 to aged endothelial cells restored their migratory capacity. We conclude that aging shifts the balance of the Ang1/Ang2 network favouring a quiescent state. Activation of endothelial cells in aging might be necessary to enhance wound healing capacities. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Estimating surface temperature in forced convection nucleate boiling - A simplified method

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Papell, S. S.

    1977-01-01

    A simplified expression to estimate surface temperatures in forced convection boiling was developed using a liquid nitrogen data base. Using the principal of corresponding states and the Kutateladze relation for maximum pool boiling heat flux, the expression was normalized for use with other fluids. The expression was applied also to neon and water. For the neon data base, the agreement was acceptable with the exclusion of one set suspected to be in the transition boiling regime. For the water data base at reduced pressure greater than 0.05 the agreement is generally good. At lower reduced pressures, the water data scatter and the calculated temperature becomes a function of flow rate.

Top